apNersion: apps/vi
kind: Deployment
metadata:
annotations:
deployment.kubernetes.io/revisio
creatlonTimestamp: "2023-07-25T 21
generation: 1
labels:
app: nginx
name: nglinx
namespace: my-k&s
resourceVersion: "225996"
uld: 15cdcd08-37 ff-4ae3-99b5-17 653

Kubernetes

Practical Guide for Developers and DevOps Teams

Kevin Welter

® Rheinwerk
Computing

Rheinwerk Computing

The Rheinwerk Computing series offers new and established professionals comprehen-
sive guidance to enrich their skillsets and enhance their career prospects. Our publica-
tions are written by the leading experts in their fields. Each book is detailed and hands-on
to help readers develop essential, practical skills that they can apply to their daily work.

Explore more of the Rheinwerk Computing library!

Bernd Oggl, Michael Kofler
Docker: Practical Guide for Developers and DevOps Teams

2023,491pages, paperback and e-book
www.rheinwerk-computing.com/5650

Bernd Oggl, Michael Kofler
Git: Project Management for Developers and DevOps Teams

2023,407 pages, paperback and e-book
www.rheinwerk-computing.com/5555

Michael Kofler
Linux: The Comprehensive Guide

2024,1178&ages, paperback and e-book
www.rheinwerk-computing.com/5779

Michael Kofler
Scripting: Automation with Bash, PowerShell, and Python

2024,470 pages, paperback and e-book
www.rheinwerk-computing.com/5851

Johannes Ernesti, Peter Kaiser
Python 3: The Comprehensive Guide

2022,1036pages, paperback and e-book
www.rheinwerk-computing.com/5566

www.rheinwerk-computing.com

Kevin Welter

Kubernetes

Practical Guide for Developers and DevOps Teams

® Rheinwerk

Imprint

This e-book is a publication many contributed to, specifically:

Editor Rachel Gibson

Acquisitions Editor Hareem Shafi

German Edition Editor Dr. Christoph Meister
Translation Winema Language Services, Inc.
Copyeditor Melinda Rankin

Cover Design Graham Geary

Photo Credit Shutterstock: 1716623578/© hxdbzxy
Layout Design Vera Brauner

Production E-Book Kelly O’Callaghan

Typesetting E-Book SatzPro, Germany

We hope that you liked this e-book. Please share your feedback with us and read the
Service Pages to find out how to contact us.

The Library of Congress has cataloged the printed edition as follows:
Names: Welter, Kevin, author.

Title: Kubernetes : practical guide for developers and DevOps teams / Kevin
Welter.

Description: 1st edition. | Bonn ; Boston : Rheinwerk Publishing, 2024. |
Includes index.

Identifiers: LCCN 2024034038 | ISBN 9781493226467 (hardcover) | ISBN
9781493226474 (ebook)

Subjects: LCSH: Virtual computer systems. | Cloud computing. | Application
software--Development--Computer programs. | Kubernetes.

Classification: LCC QA76.9.V5 W45 2024 | DDC 005.4/3--dc23/eng/20240802
LC record available at https://Iccn.loc.gov/2024034038

ISBN 978-1-4932-2646-7 (print)
ISBN 978-1-4932-2647-4 (e-book)
ISBN 978-1-4932-2648-1 (print and e-book)

© 2025 by Rheinwerk Publishing, Inc., Boston (MA)
Lt edition 2025
Bt German edition published 2024 by Rheinwerk Verlag, Bonn, Germany

Contents

PIETACE ettt R R 13
1 Introduction to Kubernetes 21
1.1 Basic Principles and Concepts: Why Use Container Clusters at All? 21
111 WhyUse Containers at All? ... ceoeeceseceoesens 23
11.2 Why You Need a Container Management TOOIccccoveenerneccnncrenennns 27
113 OfPets and Cattle ... cessceeseeesenes 28
114 Stateless and Stateful Applications ... 29
1.1.5 Separation of CONCEINS ... eessesssee s essseseen 31
1.2 Kubernetes, the Tool of Choice ..., 34
121 Why Do Companies Want to Use Kubernetes?crnecenecens 34
122 The Promise of KUDEINETESccinecrnecrncrineceineceisecsineceieeessesssnesnen 37
123 MAJOr FERATUTIES oottt sssssse i i seesssesssessans 41
1.2.4 For Which Companies Is Kubernetes Useful? 42
125 Which Companies Should Not Use Kubernetes?ccovecomecnneceenecnns 44
1.3 Architecture and Components ... seeeses 45
1.3 1 MASEEI NOAES ..ottt ssae s sssse s sss s seeseen 46
132 WOTKEr NOAES ...oueeierieicrircrieciceneeiseeiseeiseresesiesesesasesssseees 49
133 APICAIl FIOW ccoiriieceieeieecieeieceieseaeeeasesiesessasesneas 51
1.4 AKubernetes Cluster on Your Computer 53
141 MiniKube 0N MAaCOS ...ceecineeeiseeriseesisessseesesssssssesssessssssessesssnessen 54
142 MiNIKUDE ON LINUX ocooriiirreireceieceiserimeeiisessssessiseesissessseesssssssssesssesssssesssesssnessen 55
143 Minikube 0N WINAOWSccoememecinecieeiseeineniresieeieeessesisesssessssesssesssessesssessanes 57
144 Launching MiniKube ... cesssseseessenes 58
145 Controlling MiNiKUDEc.ovcecemcrecrnecrineernecrieesieeseneesisssesssecssesssssesssnessen 58
146 Possible Errors when Starting Minikube ... 59
1.4.7 Container Registry of Minikube 59
1.5 Interaction with Kubernetes via the Command Line and Dashboard 61
151 Minikube Comes With KUDECL]cocccecrnecrnrerirecrneceiecinecereceineciiecnes 61
152 InStalling KUDECE] ... seasceeseeesenan 61
153 Accessing the Cluster Using Kubeconfig ... 65
154 NAMESPACES ..o nes 67
155 kubect! COMMANGScccnececriceiecrineceieerisecsieessieeseessssssesesessssesssessssessen 68
156 Switching Clusters and Namespaces Easilycnrrenneccercnnccenns 77
157 The Kubernetes Dashboard ... 78

Contents

1.6 Lens: The IDE for Kubernetes ... 81
161 OVerview Of LENScceecerecrrecrienieecriesieeesesecnens 82
1.6.2 Advantages over the Kubernetes Dashboardmeconccnnecenecens 83
1.6.3 The LENS RETEIENCE ...t sssss et ssssss s ssseseen 86
1.7 The Kubernetes Cluster from Raspberry Piscoocccccveummcmmmmccccccremmuessnnnnee 89
171 Choosing the Right Raspberry Piscncnneconecenenns 90
1.7.2 Installation of KUDEINELESccincincirnecreceieceneceieceieceieceeseeseesnen 92
173 Usingthe Kubeconfig File of the Pi Cluster ... 93
2 Basic Objects and Concepts in Kubernetes 95
2.1 Pod and Container Managementceceeessesessseseseos 98
211 CONtAINET ENGINES .ouvereriercerieeeeeerienmseessesiesiesasesssesssensesssessssssnssssesssessseees 101
212 YOUI FIFSEOWN PO ..ot sisee e sssseessses s esssessssesesnns 104
2.1.3 Multiple Containers within @ Podccccnnecnnineinecnccnnn. 106
2.1.4 Communication between CoNtainersrecneceneeennecrereseenne 109
2. 15 INIECONTAINET ittt ssse e sssessss e e sasenes 110
2.1.6 Pod Phases and Container STatusSEscvrnecrnneeinecreneceieeeisneceieseenns 113
2.1.7 The Restart Policy of POS 114
2.1.8 When the Pod Comes to an ENdccrnecrcrnecrnecseseseecseesnanne 115
2.2 Annotations and Labels ... incncesineesessiessesssssiesseseens 118
221 Using Labels and SEIECOrSccesecseeieeriseesiseeseseeseeseinns 119
222 FIeld SEIECTOIS oottt een 121
223 NOUESEIECLON oot ssae e sasenies 122
2.2.4 Node Affinity and Antiaffinity ... 124
2.2.5 Pod Affinity and Antiaffinity ... 128
226 Taints and TOIErations ... sseees 133
227 ANNOTATIONS oot nes 136
2.3 Deployments and ReplicaSetsreceeceeeeseseseesseeeseans 138
231 The Role Of REPIICASELS ...t ssse s seesesens 139
232 Creating Deployments ... seseseaens 142
2.3.3 Rolling Updates via the Deployment Objectccoocvcimcroncrrnecrnecnnnn. 144
2.3.4 Rollback via DEPIOYMENTcocciereiecerecrieriesrirecrisesserecressesssseeseseesissesens 150
2.4 ConfigMaps and SECrets ... sesssassessessseseeseens 152
241 What Are CONTIGMAPS?ooreuereeiceriisereeesseeseaaeseessseesesssessssssessssssecsssesessenes 154
242 WHhHat Are SECIetS? ...ttt sssees 162
2.5 Establishing a Communication with Services and an Ingresscccc.... 171
251 Communication between Podscceneseensecenneseseenns 173

Contents

2.52 Communication via a Service ..., 174
253 Communication via INGress ... 180
3 Everything as Code: Tools and Principles for
Kubernetes Operations 187
3.1 Declarative Configurationsrnenensessissensesseeseeseens 188
3.2 YAML: The Language for Kubernetescmomrcrcnnenscesisnseneens 192
321 Basics Of YAML SYNTAX ...coccveunecreerecreenecriiiseceemeceeieseseessecniasenees 192
3.2.2 DataTypesin YAML ..., 194
3.23 Anchorsand Aliasesniinicceinnenens 196
3.24 Single-Line YAML Notation in Documentation 197
3.2.5 WEAKNESSES OF YAML .oomiieiiiceierieciiseceieesiseesiessiseessssssssssssssessssessssesssnesson 197
3.2.6 TIPS TOr PractiCal USE ...t sssesssesssessans 199
3.3 Version Management of Kubernetes Manifests . 200
331 USING GIT oottt sssessse s sssessssssse s s sssessssssssesssessaess 201
3.3.2 Managing Numerous Kubernetes Manifestsnnecnecens 203
3.3.3 Branching Strat@gies ... seeesens 207
3.34 Division of the Repositoriescncrnccneceecnnns 211
3.4 Continuous Integration and Continuous Delivery ... 213
3.41 Pipeline Steps for Kubernetes 213
3.4.2 Pipeline Architectures 218
343 GITOPS ettt 223
3.5 Templating Using Kustomize 225
3.5.1 Basic Principles of Kustomize 226
3.5.2 ReESOUICE GENEIATON ..ot 231
3.5.3 More Kustomize BUilt-INs ... 233
3.54 Conclusion on KUSTOMIZE ..., 234
4 Advanced Objects and Concepts in Kubernetes 235
4.1 DACMONSELS ...ttt 236
4.2 JobS in KUDEINELES ..ot ssssesesssessesnessssseenn 239
4.2.1 Real-Life Kubernetes JODScccoveneinecenn. 240
4.2.2 Queue Worker with RabbitMQ 242
423 KUDEINEtes CronJobDSceierneceiseiseceieceieeessessieesissessssesseseessssessenees 246

Contents

4.3 Custom Resources and Custom Resource Definitions 248
431 Example: A Monitoring CR .. 249
432 Validation iN CRD ...ceirecrieeeieeeieceissesisecsieseiessssesssesssssesssessassssssessenees 252
4.3.3 OPEIALOrS .ottt 255
4.4 DownWard APl ... 258
4.5 Pod Priority and Preemption ... 261
4.6 \Versioning Objects in Kubernetescccccc...... 263
5 Stateful Applications and Storage 265
5.1 Stateful Applications in Kubernetes through StatefulSets ..., 266
51.1 Pod Management POIICYcneeineciineesisesiecsissessseesssecssseessessssesees 269
5.1.2 Strategies for Updatescoomcmncrrunn. 270
5.1.3 Retention Policy for Persistent Volume Claimscccccovevmerennecernerenecens 272
5.2 Persistent Volumes and Persistent Volume Claims ..., 273
521 STOrage TYPES fOr PVS ... ccceiecrinecriesriseesisesiseesisssssssesssesssssssssnesssnesees 278
5.2.2 CSI Drivers for External Storage Mediaccccouereennecrieneccenne 281
5.2.3 Storage Classes and Dynamic PVSmconeceonecunnees 283
524 PostgreSQL as StatefulSet with Persistent Volume ... 286
5.3 Ephemeral VOIUMES ...t eeeess s esssssesssesessssssssseneenes 289
5.4 Other Features of VOIUMESrincereinecesesieceeessiesessesssannes 291
541 Volume SNapShotsceceneeciseceiseeisesieseesiseeseseesieees 292
5.4.2 Projected VOIUMES ... 295
6 Kubernetes Governance and Security:
Prepare for Production 299
6.1 PO SECUIILY ..ot ssesasessesssasesesssssssssssssessesssssesssssssssesssssssseens 301
6.2 Pod Security AdMISSIONcooiimccirinnecieeiineeneesiesesssesiesesssssesssessssssesssessssseens 304
6.3 Admission CONEIOIIEr ... sesseesessssssessessssseens 306
6.4 Kubernetes POlICIes ...t sssseeseesssssessessssseens 308
6.5 POlICY ODJECLSoooreeeeccrercccrieceeeiie i essssssesseessesesssssessessssssessssssseenn 311

10

Contents

6.6 Role-Based Access Control in Kubernetescccoocommccrrrnnnnnns 313
6.6.1 Subjects: Users, Groups, and Service ACCOUNTSoccreemnevrnecereerirecnnees 315
6.6.2 Roles and ROIE BINAINGScccuucurereeeceieceieeiesniecsiesseecseseessseesesessesssesons 317
6.6.3 CONCIUSION oo ceeicceese s sesese e sesse s esesessenen 319
7 Developing Applications for Kubernetes:
Ready for Production 321
7.1 Managing POd RESOUICESccomreinceeeeereeeeeieeesssesessssssesssesesissesesssessssanns 322
7.2 Readiness, Liveness, and Startup Probescccovncnnnnnn. 325
721 HOW to Define PrODES ... cessesssssesessssessssenensenes 328
7.2.2 Testing Probes Using an EXamplenerenncceeineseeeseceeseeecenes 330
7.3 Scaling and Load Balancing ... 335
731 Horizontal POd AUTOSCAlING ..o ssesessieenene 335
7.3.2 Vertical POd AUTOSCAlING .cvueeceeciccireceirecricsiecriesieecseessisseeseseesesessinns 339
7.3.3 ClUSEEr AULOSCAIET ..o seesesesssecssssensenes 341
T8 MONIEOTING ...ttt sesie s sssee s ssses s sssesese oo 342
7.4.1 Introduction: Prometheus, Grafana, and Alertmanagercccccccueeeeee. 343
7.42 Monitoring on the Pi Clusterccceeceees 345
8 Orchestrating Kubernetes Using Helm 357
8.1 Helm: The Kubernetes Package Managercccccommmmucuec. 358
8.1.1 Creatinga First Helm Chart ..., 361
8.1.2 Deploying a Helm Chart via the Command Line Interfaceccccconeeeeun. 361
8.1.3 Setting Up and Managing a Helm Repository 363
8.1.4 Deploying a Helm Chartvia Lens 365
8.1.5 Updating and Deleting Helm Releasesccoervonerrunnnne. 366
8.1.6 Downloading Helm Charts from a Repositoryeeceneceenn. 368
8.2 Reading and Developing Helm Chartscccnnceerienseccesnnens 368
821 The Templating Engine and the Language of the Charts 369
8.2.2 Configuring Charts with Values 374
8.2.3 Conditions in Helm Templatesccecnecrneennns 378
8.2.4 Other Operations and Control StruCturescnecnnecrnecenecennne 380
8.2.5 Helm Diff for Checking Changesccoouneceuuen. 383

n

Contents

8.3 Developing Custom Charts ...
8.3.1 The Framework of Your Helm Chart
8.3.2 Packaging Charts and Storing Them in the Repository

8.3.3

Managing Dependencies in Helm Charts

8.4 Conclusion

Service Pages
Legal Notes .

12

385
386
387
390

394

395
397

Preface

Be water, my friend.
—Bruce Lee

Perhaps you know the interview with Bruce Lee from which this quote comes. The idea
at the heart of his statement is the adaptability of water. What Bruce Lee meant was
that you must adapt to your opponent in a fight. Adapt when necessary. Be open in
order to be able to react appropriately to the environment and changing circum-
stances. This sentence has been with me for quite a while—not only because I do mar-
tial arts, but above all because this metaphor is also very appropriate in IT.

When I started my training as an IT specialist in system integration in 2011, I had no
idea what kind of world would open up to me. I learned the IT craft from scratch. I can
still remember my first projects very well: We installed a network for a law firm. I
drilled the holes myself, pulled the cables, and crimped the network connectors. I also
configured and installed a new server for a medium-sized company, fixed the cables,
and set it up in a server room on site.

If you need a server today, you simply need to click Launch in your cloud provider’s
frontend. A virtual machine (VM) is then activated for you by magic in some high-
security data center. The world is constantly changing, and so is technology. Abstrac-
tion makes it increasingly easier to use, but this does not bring only advantages.

I first came into contact with the cloud, DevOps, Docker, and Kubernetes after graduat-
ing in 2017, and the topic has stayed with me ever since. I still remember the days
during my studies when I asked myself: “How does my software actually get to the cus-
tomer?”

Ilearned programming during my apprenticeship and studies. First it was Java, then C,
then C++. I also learned what software engineering is, how to create unified modeling
language (UML) diagrams, and how to develop in a machine-oriented way in assembler.
But there was one thing I always missed: How does the software ultimately reach the
customer? The operation itself had never really been part of my training. Thus, I am
concerned with questions such as the following:

®m How is the software built and packaged?
® How is the software delivered?

® What happens if the software doesn't work?

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 13

Preface

Most of the time, I ran my own development on my computer or in the integrated
development environment (IDE). For a long time, no one was able to give me a satisfac-
tory answer to my questions about the last piece of the puzzle.

I entered a dual-study program, and during the practical phases, I worked in depart-
ments that created software concepts. The work of my colleagues was to think about
what the business requirements were and how they could be translated into software,
and we wrote hundreds of pages of specifications and drew UML diagrams. The soft-
ware was then developed both onshore and offshore by partner companies, which
usually worked less than optimally. They were classic waterfall projects. Again, [never
understood the software development process from start to finish. I always thought:
“There is something missing. Somehow it doesn't fit yet.” And sometimes, I thought:
“Maybe I'm just too stupid for that.”

Today, [know that I'm not too stupid and that I was just missing the last little piece of
the jigsaw. After my studies, I came into contact with modern agile software develop-
ment for the first time. One team designs, develops, and delivers the software, while
another team takes care of operations. That was also the first time I came across terms
such as cloud, Docker, and Kubernetes. I had already learned about agile software devel-
opment during my studies, but all the tools used for it were new to me. My world was
completely turned upside down.

I'was familiar with virtual machines from my training, and I also knew that a cloud ser-
vice is more than just a storage service like Dropbox or OneDrive. Today, among other
things, I hold the AWS Certified Solutions Architect—Professional certification, and as I
write about my past, I start smiling. The world of IT is so much bigger than I could have
ever imagined, and I have really discovered my passion.

Since I've been using the cloud, Docker, and Kubernetes, it's felt really smooth for me. I
now understand how modern software operation works and what is needed for it. For
this reason, I want to share my findings with you in this book.

In 2017, I published an online course on the Udemy platform about getting started with
Docker. My aim was to make getting started easier so that the participants get a feel for
Docker by getting involved themselves. That's what I've been missing in my dual stud-
ies so far. I am a hands-on person and learn best when I do something with my own
hands.

This book is also written in such a way that you get a quick introduction to the topic of
Kubernetes. You will set up a cluster yourself and deploy your first services. I will take
you on a journey and introduce you to the topic in a structured way because I love to
keep things simple. It will get complicated all by itself, and pretty soon, so you will learn
everything step by step that is important to make your software fit Kubernetes.

14 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

Structure

Acknowledgments
To my son, Levi Ace: You show me every day what is truly important in life.

To my wife, Nicole: Thank you for always having my back, even when I'm writing until
late at night.

To my best friend and business partner, Fabian: Thank you for our journey together
over a decade.

Structure

Let me briefly explain what you can expect on the following pages. You are already in
the middle of the Preface. I want to pick up where you are right now and introduce what
awaits you.

Chapter 1 and Chapter 2 have been designed as a tutorial. Each section builds on the

preceding one. You will get to know the basic principles and concepts and then get
down to work very quickly. After these chapters, you will be prepared for Kubernetes
and can then delve deeper into individual topics. From Chapter 3 onward, we will take
a closer look at individual aspects. You can read those chapters in the order in which
you need them.

Note

Some sections in Chapter 1and Chapter 2 are very well suited as reference sections. If
you have the feeling in a particular section that this is not the right time for it, then you
can just skim through it. This will feed your subconscious and you can come back to it
when you need to read it in more detail.

In Chapter 3, I will take you on a tour of infrastructure as code (IaC). You will learn about
YAML and the difference between declarative and imperative work.

Note

As you will already be working with YAML and [aC in Chapter 2, you are welcome to skip
to Chapter 3 for a small digression before continuing with Chapter 2.

In Chapter 4, we will delve into more advanced concepts and objects.

Chapter 5 is dedicated to the topic of storage and stateful applications. What do you do
with applications that have a state, much like databases have? What types of storage are
available in Kubernetes, and how can you best manage your data?

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 15

Preface

Security and governance is a major topic in IT. In Chapter 6, I will introduce you to top-
ics such as user and rights management, pod security, and Kubernetes policies. You will
get to know the basic principles to prepare your application for production.

In Chapter 7, you will learn everything you need to know to make your application
“ready for production,” such as resource management, health checks, and scaling for
your applications.

Finally, in Chapter 8, you will get to know Helm, the Kubernetes package manager. Note
that you will have already used Helm in earlier chapters to deploy finished applications
in examples. Helm will make your life as a developer very easy and help you to make
your application fit for multiple environments.

What You Should Already Know Now

Kubernetes is software that builds on knowledge of other topics, such as the topic of
containers, which themselves can fill entire books. For this reason, there are some pre-
requisites that you're expected to meet in this book so that you can be introduced to
the topic of Kubernetes quickly without us getting bogged down in the details.

The Kubernetes tool is a container management system, which is why some basic
knowledge of containers is required. You should be able to answer questions like the
following:

® What is a container?

®m How is a container structured?

® How can I build container images and bring my software into a container?
®m How can I start and stop containers?

® How does the container tool work on my computer?

Iuse Docker Desktop as a basis, build containers using Dockerfiles, and will set up a test
cluster using Minikube as a container with you in Chapter 1, Section 1.4. Depending on
your operating system, you can of course also use other tools, such as Podman. You are
not dependent on Minikube either and can use other test clusters if you are familiar
with them.

Note

If you use a company computer, you may need a license for Docker Desktop. If you are
unsure, it is best to ask or to use your private computer.

The containers used in this book are all based on Linux images. It is therefore an advan-
tage if you are familiar with the basics of Linux. You should also be able to use the com-
mand line through tools such as Bash or another shell. If you've ever written Bash
scripts before, then what we use in this book will be a breeze for you. If you run the

16 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

Structure

examples on a Windows operating system, you should be able to use PowerShell. How-
ever, I will also provide you with the most important commands in that respect.

We will use command line interface (CLI) tools such as kubectl and Minikube. These are
programs that are executed on the command line to operate Kubernetes, for example.
Here I will guide you step by step, but you will find your way around more quickly if
you have already used CLI tools previously.

In general, however, this book is suitable for beginners. You will get to know Kuber-
netes from the ground up, and I will try to pick you up as best I can from where you are
right now. This means that even if you have little experience with the tools mentioned
so far, you will be able to work through this book. In some places, it may be advanta-
geous for you to put the book away and grab additional learning content on Docker and
the like.

What You Will Learn

As mentioned earlier, this book is aimed at developers and DevOps engineers who
want to get to grips with Kubernetes—whether you've only recently heard of Kuber-
netes or have been using it for some time. After reading this book, you will have the
tools you need to develop and run your applications for Kubernetes. You will be able to
build resilient, scalable, and reliable infrastructures. Your applications will be ready for
production environments thanks to self-healing and load balancing.

You will not or will only marginally learn how to install or administrate a Kubernetes
cluster in this book. However, what you will learn is how to run applications in a cluster
and what you need to bear in mind as a developer. In addition, you will learn how to
operate and control a Kubernetes cluster. For this purpose, you will install a test cluster
on your computer based on Minikube. This will help you to try everything out in a test
environment.

Important to Know

In the advanced chapters, you will delve deeper into the peculiarities of Kubernetes. I
use simple applications as an example. If you try to run through the examples directly
with your own applications, the learning effect is significantly higher, and you can then
implement what you have learned much better in your daily work.

Perhaps you know this too: Imagine you want to go on a vacation to Italy and use a lan-
guage app at home to learn the most important terms such as hello, goodbye, and apple.
Even short phrases like “A coffee, please” and “I'd like to pay.”

Then the time has come. You have arrived at your vacation destination and enter the
first café. The waiter asks you what you would like to have and suddenly everything
you have learned is gone. Not a word escapes your lips.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 17

Preface

Here’s what memory research has found out: The recall of a new skill is most successful
when the circumstances are as similar as possible to those under which the neuronal
connections took place. So when we study at home at our desks using an app, we find it
easiest to retrieve the information by using that very same app. In a new situation, such
as an Italian café, the circumstances are different, and we can no longer recall the infor-
mation.

For this reason, it is important that you try out each chapter’s content either directly or
additionally with your own projects. This will make everything more interconnected
and you will be able to apply the content much better. Have confidence in the process
of this book. In the end, everything will fall into place and you will be able to use Kuber-
netes successfully in your environment. We still have a few steps to go before then, but
I will accompany you.

I also want to introduce you to a model developed by the Canadian psychologist Albert
Bandura (see Figure 1).

& Repressing

& Forgetting

_— >

Learning by Listening,
Watching, Practicing,
and Repeating

Conscious
Competence

Conscious
Incompetence

Internalization

Uncovering

"Blind Spots" Habitualization

Feedback Familiarization

3uijspow ay3 Buipozeq >

CRITICISM Automation
Unconscious
"Copying from
Others"
Unconscious LEARNING THE MODEL Unconscious
Incompetence «— Competence

Figure 1 Four Stages of Learning According to Albert Bandura

18 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

Book Resources

You may even already know it, because it is a well-known model of how learning works
for us humans. Bandura divides human learning into four stages:

1. Unconscious incompetence
2. Conscious incompetence
3. Conscious competence

4. Unconscious competence

Think about your driver's license. Can you remember what it was like for you when you
first got behind the steering wheel? Or stalled the car at traffic lights for the first time?
You suddenly realize that you are missing a skill. You want to drive but you also realize
that it won't be an easy path because the only way from conscious incompetence to
conscious competence is hard work. You learn and practice over and over again.

After a while you will be able to drive. But there's always that little voice in your head
saying: “Shift gears now” or “Look over your shoulder and signal.” You must drive with
full awareness and cognitive effort. Only after many hours of driving does the activity
gradually become easier and you develop automatism. Today I can drive the car while
listening to children's music for my son's sake and singing along loudly. Driving itself
has become unconscious and easy.

By purchasing this book, you have already left the first phase behind you. You are
aware that you have to learn. The transition from phase 2 to phase 3 is the hardest and
is often associated with a lot of frustration. The book will make the transition as easy as
possible so that you can enjoy implementing it and become a Kubernetes expert with
ease. I wish you lots of success and fun reading, learning, and playing.

Book Resources

Sample listings are available for you to download from the website for this book. Go to
www.rheinwerk-computing.com/5964. Scroll down to the Product Supplements box.
You will see the downloadable files along with a brief description of the file content.
Click the Download button to start the download. Depending on the size of the file (and
the speed of your internet connection), it may take some time for the download to
complete.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 19

http://www.rheinwerk-computing.com/5964

© 2025 by Rheinwerk Publishing Inc., Boston (MA)

Chapter1
Introduction to Kubernetes

Kubernetes, also known as K8s, is an open-source system for automating
deployment, scaling, and management of containerized applications.
—kubernetes.io

Developing containers and running them on your laptop computer is easily doable
with a little know-how. However, operating hundreds of containers across multiple
host systems, scaling them as required, and not risking any downtime is a lot more
complicated.

Kubernetes (K8s) was developed to address and solve these types of issues. The name
has its origins in Greek and means helmsman. This is also where the Kubernetes logo
comes from. Developed by Google and continued as an open-source project, it is now
an integral part of many companies.

Before I guide you through installing your first Kubernetes cluster on your computer,
let's dive into the basics of Kubernetes.

Good to Know

The abbreviation K8s comes from replacing the eight letters of ubernete with the num-
ber 8.

Note

The book is based on Kubernetes version v1.27. If your company uses clusters of an
older version, then some features are probably not available. For new features, | will
point this out separately in the corresponding chapter.

If you are unsure whether a feature can be used in your company, you can check the
Kubernetes documentation at https.//kubernetes.io/ or ask your administrator.

1.1 Basic Principles and Concepts: Why Use Container Clusters at All?

To better understand Kubernetes, I want to take you back to the past and the system’s
origins. Kubernetes saw the light of day on June 7, 2014, at least in the public world, as

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 21

https://kubernetes.io/

1 Introduction to Kubernetes

the first commit was published on GitHub on that day. However, the idea for a con-
tainer management platform was not new. It originated back in the 2000s at Google as
even then developers had to operate several hundred thousand containers there.

With so many containers, Google needed a system that would simplify the administra-
tion and operation of a large number of servers. But at that time there was not yet a large
market for it, and the developers at Google built their own solution. That was when Borg
was born. As Google states in their abstract, “Borg simplifies life for its users by offering
a declarative job specification language, name service integration, real-time job moni-
toring, and tools to analyze and simulate system behavior” (see http.//s-prs.co/v596463).

Google used Borg to tackle a variety of challenges related to managing large clusters of
machines. Problems that were solved by Borg included, for example:

® Resource management
Borg automated the scheduling, starting, stopping, restarting, and monitoring of
containers. This allowed developers to focus on their development work instead of
managing resources.

m Efficiency and capacity utilization
Using techniques such as overcommitment, Borg enabled a high utilization of the
available resources. This saved Google from high data center costs.

= Error handling

Borg offered runtime functions and scheduling rules that reduced the time needed
for troubleshooting.

Good to Know
The introduction of Borg was a decisive step for Google to manage its infrastructure

efficiently. Where they used to monitor and manage the servers themselves, this could
be taken over by Borg.

In the course of this book, you will also see that Kubernetes automatically moves all
your applications to a functioning server in the event of a server hardware failure. This
saves you time and reduces downtime simultaneously.

Even today, we still expect exactly these benefits from a management system. But the
world has moved on since then, more and more companies have opted for containers,
and Borg has also needed to evolve.

Kubernetes was to be a new development for the existing container management tool.
Years of experience with Borg were to flow into a new design. Parts that worked were
adopted and other parts were optimized. What is probably the biggest difference from
Borg is the new license model. The developers at Google opted for an open-source
model and donated Kubernetes version 1.0 to the Cloud Native Computing Founda-
tion. This makes Kubernetes an open and independent system, which is perhaps why it
is currently so popular.

22 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596463

1.1 Basic Principles and Concepts: Why Use Container Clusters at All?

Good to Know

The Cloud Native Computing Foundation is part of the Linux Foundation, which intro-
duces itself on its website as follows: “The Linux Foundation provides a neutral, trusted
hub for developers and organizations to code, manage, and scale open technology
projects and ecosystems.”

In my view, a foundation as a company for an open-source technology increases the
trust and independence of Kubernetes.

You can find out more about the history of Borg and the origins of Kubernetes at the
following two links:

= http://s-prs.co/v596401
= http://s-prs.co/v596402

1.1.1 Why Use Containers at All?

Perhaps you have already developed and operated containers yourself. Docker is cur-
rently the best-known representative of containers, and it is usually used as a synonym
for container. Just as Kleenex is the paper tissue, Docker is the container. Docker did
not invent the concept of containers, but it has done a great deal to make it so wide-
spread today. This is understandable, because containers

® are lightweight,
B are easy to use, and

® run on virtually any server that has a container runtime.

In addition, container images are easy to transport and contain everything your appli-
cation needs. You no longer face a common problem: “But it doesn’t run on my com-
puter!”

When we compare containers with virtual machines, the biggest advantage is obvious:
you do not need to install a complete operating system with a container.
You may already be familiar with the evolution of virtualization, as shown in Figure 1.1.

You can see how the deployment of applications has evolved over time from bare
metal to virtualization. (This is not to say that containers are replacing virtual
machines, but they outstrip them in many application scenarios.)

But why has it developed like this? Let's consider a very simplified example.

Think of a data center. There are racks there that can contain multiple bare metal serv-
ers. A rack has a maximum capacity of servers that it can hold, and the data center has
a maximum capacity of racks it can hold. If you now think of a regional web store that
runs on one of the servers, it is busier in the evening than in the middle of the night.
The server therefore has nothing to do during the night and heats up the data center

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 23

http://s-prs.co/v596401
http://s-prs.co/v596402

1 Introduction to Kubernetes

unnecessarily. If you only have servers like this, you will have very poor capacity utili-
zation throughout the data center and therefore high costs.

>
°
©
>
°
©
>
o
©

Bare Metal Virtualized Containerized

| Bin/Library | | Bin/Library | ‘ App ‘ ‘ App ‘ ‘ App ‘
| Operating System | |0perating System | | Bin/Library | | Bin/Library | | Bin/Library |
Virtual Machine Virtual Machine Container Container Container

Figure 1.1 Evolution of Virtualization

In addition, you have to design the server for the peak load so that every customer can
buy your products even at peak times. This means you generally have an oversized
server. Another point is the dependency on the operating system and the underlying
hardware. You have a single operating system with the drivers for the server's hard-
ware. You cannot simply make a clone of it and install it on another server, which in
turn makes backup and recovery more difficult.

Note

Of course, you can also install multiple applications on one server. If, for example,
another application runs batch jobs and performs billing at times when nothing is hap-
pening in the web store, you also increase the workload, but virtualization brings even
more to the table.

How can you increase the utilization of a server and overcome the difficulties of the
bare metal server? If you enable the server to run virtual machines, you can run multi-
ple virtual servers on a bare metal instance. With more instances, you create better uti-
lization and even spread the costs of the server across multiple virtual servers. But it's
not just capacity utilization that will improve:

® You are more independent of the actual hardware and can also run your virtual
machine (VM) on other servers without much effort.

® You can set up backup and recovery processes very easily using VMs.

® You can use golden images to set standards that are easy to use.

Thus, virtual machines are an optimization of the bare metal server, each with its own
operating system. They behave like real servers: they have to boot up everything at

24 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

1.1 Basic Principles and Concepts: Why Use Container Clusters at All?

startup and still have the overhead of an ordinary server. But then the following ques-

tion arises: Could it be even simpler and smaller? The answer is found in containeriza-

tion.

Good to Know

Companies that operate their Kubernetes clusters in the cloud usually even build their
clusters on virtual machines. This makes sense, as bare metal instances on Amazon
Web Services (AWS) only start at 48 CPU cores and 384 GB of RAM. You could easily run
all containers from smaller clusters on a single instance, but that would be fatal in the
event of a hardware error.

For redundancy and scalability, it is therefore better to have smaller instances, but
more of them.

Let's take the web store and pack it and everything we need for operation into a con-

tainer. For this purpose, we separate the application from the virtual machine and can

use the web store independently of it. All you need for a container is a runtime that is

installed either directly on the bare metal instance or in a virtual machine. This allows

you to benefit from the advantages of containers:

Containers use significantly fewer system resources than virtual machines, as they
do not require a complete operating system.

Thanks to containerization, applications can be used without much effort across dif-
ferent operating systems and hardware environments.

By using containers, applications can be rolled out, updated, and scaled more
quickly.

Containers also speed up the development process, and the portability of the images
means they can be run on any developer computer.

Containers therefore have a number of advantages over virtual machines, but they do

not replace virtual machines or bare metal servers. All of these have their right to exist

and a corresponding use case. However, this example shows why applications are now-

adays almost exclusively developed in containers.

Good to Know

Compared to virtual machines, a container is even better for the utilization of your
servers. The smaller the unit, the easier it is to find a gap on a server.

Take a jar full of marbles, for example, as shown in Figure 1.2. There is still enough air

between the marbles to fill in small beads, and then there is still enough air between

the beads to fill in fine sand.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 25

1 Introduction to Kubernetes

°

@

([)

e?

Figure 1.2 Jar Containing Marbles and Beads

If we look at modern applications, it is much easier to handle them in containers. Even
the startup is significantly faster, and that again changes the way scaling works. In the
past, the physical server received a CPU or memory upgrade so that the monolithic
application had more power.

Today, all you need to do is start another container with the same application, and the
load is distributed to the new container within a few minutes.

If there is no more space on the server, a new server in the cloud starts up as if by magic
and the container is deployed there. The trend is moving from vertical scaling to hori-
zontal scaling—but this is not as simple as it may sometimes sound: there is a lot of
know-how and work that goes into such a cluster setup.

Good to Know

The good thing about horizontal scaling is that you no longer have to rely on a large
server as a single point of failure. If the load is distributed across many smaller servers,
you can compensate for a failure much more easily.

The technologies and software architecture currently work hand in hand. New applica-
tions are usually only developed in a microservice architecture, and communication
must ideally be asynchronous and event-based. Companies want to outsource their
workloads to clouds and only pay for what they really need thanks to automatic and
requirements-based scaling.

26 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

1.1 Basic Principles and Concepts: Why Use Container Clusters at All?

1.1.2 Why You Need a Container Management Tool

The use of many microservices and horizontal scaling raises new challenges. Suddenly
there are hundreds or thousands of containers that have to be operated and monitored
simultaneously.

I have fond memories of when I first came into contact with containers. In 2017, I
worked in a company that was undergoing a major transformation. It had just made
the decision that all software, whether legacy applications or new developments,
should be migrated to Amazon's cloud. As part of this, a program was set up to rede-
velop an old distribution platform, and all new microservices were to be containerized
and run on Kubernetes.

That was just two years after the release of Kubernetes version 1.0. The new container
world works completely differently from the applications that were developed decades
ago. In the past, when a web application was developed, it usually had a monolithic
design and ran as a virtual machine on a server in the data center. These applications
were also often designed for a specific number of users. Scaling according to demand
was not easily possible. This was also the case in that company.

If the old sales platform received more traffic than expected—for example, because
there was a Christmas campaign—then the application had to be assigned more CPU
and memory. It could therefore only be scaled vertically. In most cases, this was accom-
panied by weeks of preparation and planning, with employees only concerned with
capacity management. The rest of the time, this application ran at a 30% load and
unnecessarily heated up the data center.

The architecture of new applications is moving away from monolithic designs and
toward microservice architectures: smaller, independent services that communicate
asynchronously and are therefore loosely coupled. In the example of a web application,
aweb server such as Nginx can simply be scaled as required. Whether the user's request
is answered by one or another Nginx instance does not matter to either the web server
or the user. The main thing is that the answer is the same. Loose coupling allows us to
scale precisely that part of the system that is currently experiencing a capacity bottle-
neck.

So it is not the case that we have to pack the monolithic applications into containers
and deploy them on Kubernetes in order to arrive in the brave new world. It is instead
based on a completely new concept and requires a new and modern microservice
architecture, which in turn requires a rethink within a company. The microservice
architecture means that there are suddenly not just a few monolithic applications, but
several small applications. The number of these in larger projects quickly reaches dou-
ble figures, and in companies it can easily be in the hundreds or thousands. This also
changes the challenges in a company.

Smaller services often provide the opportunity to deliver updates by way of continu-
ous integration and continuous delivery (CI/CD). This has the following advantages:

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 27

1 Introduction to Kubernetes

® Developers can deploy more easily and quickly.
®m More responsibility lies with the developers.
® The burden on operations is reduced.

® The focus shifts more toward a higher quality.

But there are also disadvantages:
® Every change harbors the risk of errors.
® Dependencies on other components can be forgotten.

® Release processes are ignored.

The degree of automation must also be significantly increased so that tickets are not
opened every minute in IT operations causing the phone to not cease ringing.

Another aspect is the change in processes and sometimes the entire organization. It is
usually not just the technology that changes, but cultural changes through the princi-
ples of DevOps or process optimizations through Lean and ITIL go hand in hand with
the technology. As a developer, you are caught in the middle of all the changes and are
expected to quickly develop outstanding software that is stable in operation and
makes the end customer happy.

Amid all the chaos, Kubernetes comes into play. The container management tool
allows you to monitor your containers automatically and scale, restart, or terminate
them as required. As a platform, it fits very well into modern processes and gives you as
a developer more personal responsibility. Kubernetes also ensures that users do not
experience any downtime during releases, and we will take a closer look at why Kuber-
netes simplifies the operation of microservices.

1.1.3 Of Pets and Cattle

You already know that there needs to be a rethink within companies, and you may
already be familiar with the classic comparison of pets and cattle. Pets are animals you
have at home, while cattle are the farmer's livestock. In the world of monolithic appli-
cations, servers are usually treated like pets. A pet is fed, cared for, and loved. It has a
name and belongs to the family, and it cannot simply be replaced by another animal.

The servers were also difficult to replace in the infrastructure of the monolithic appli-
cations. If the infrastructure runs out of support, migrations are necessary, which are
associated with major risks. The goal is therefore to prevent the server from going bad,
and a new server is out of the question. Spare parts, such as hard disks and power sup-
ply units, are in the safe waiting to be used so that the applications can continue to run.

If we look at a farmer's cattle as a counterexample, we can observe a completely differ-
ent kind of love. A farmer also looks after their cattle, but the cows have numbers on
their ears rather than names to identify them. They have a clear task, to provide milk

28 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

1.1 Basic Principles and Concepts: Why Use Container Clusters at All?

and meat. After a certain time, when an animal becomes too old or ill, it is simply
replaced by another one.

Note

The standard example with pets and cattle is perhaps a little macabre. A nice alterna-
tive is the comparison between wildflowers and bonsai.

A bonsai requires constant care and attention. You need to monitor its shape, size, soil
type, and supply of fertilizer on a regular basis. Moving a bonsai to a new environment
or changing its care conditions can have a significant impact on its well-being and
growth.

Wildflowers, on the other hand, are robust by nature. They grow where conditions per-
mit, without making specific demands on the location or the environment. If an area is
no longer suitable, you can simply sow them in a new location without having to con-
sider the previous position or special conditions.

Since the advent of cloud computing, the handling of infrastructure has been changing
more and more in the direction of cattle. If a server no longer works, a new one is set up
to take over the task. The setup and migration of the applications is automated.

Kubernetes can take over these tasks so that you don't need to worry about the infra-
structure. The advantages are obvious: infrastructure issues are resolved automati-
cally, and the infrastructure can be scaled as per your requirements. This saves
companies a lot of money because they only pay for as much computing power as they
actually need, and automation prevents the odd on-call assignment.

But it is not only the servers that are treated as cattle. Even the applications that run in
containers are no longer pets. Have you heard of Chaos Monkey yet? This is a tool
developed by Netflix to check the stability of production systems. Imagine that a mon-
key has broken into your data center. It accidentally bites through cables and hits the
servers with a hammer. Would your application survive this?

You don't need to introduce a chaos monkey in your company right now, but the idea
behind it is a good one. Just ask yourself a question: Would users notice if a component
or container failed? If the answer is yes, then there is definitely room for improvement.

1.1.4 Stateless and Stateful Applications

To develop an application for Kubernetes, one key question is important: Is your appli-
cation stateless or stateful? Does your application have to remember a state? But what
is the difference between these two concepts?

Imagine you are in Italy sitting in a cafe in a small town near Venice. You have a direct
view of the Adriatic and order a coffee. The waiter brings you your coffee, and milk and
sugar are provided, but you drink your coffee black.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 29

1 Introduction to Kubernetes

This is a good example of stateless. The cafe itself does not store any information about
you as a customer and does not know your previous orders. When you order some-
thing, you get the same items as any other customer making that order. Each order is
treated in isolation, without any previous history being taken into account. It is there-
fore stateless as it does not store any permanent state or information.

Let's now take a look at the stateful concept. When I take my buddy Fabian to our favor-
ite cafe, he just nods to the waiter and we both get a black coffee. No milk, no sugar. The
waiter simply knows us.

It's like being a member of a gym and saving your personal data and workout progress
in your member account. You go to the leg press, insert your card into the machine,
and it suggests the right weight for your workout progress. Here, the status is saved and
continuously updated to provide a personalized experience. So the gym or your favor-
ite coffee shop is stateful because it stores and uses information about you to improve
your workout routine or bring you your favorite drink directly. The saved state brings
convenience, but also more responsibility. You need to think about how the status is
saved. For example, what do you do if the waiter who knows you is out sick?

States bring challenges with them:

® Data must be kept consistent across all instances. (Every waiter must know us.)
® Horizontal scaling is more difficult. (A new waiter must be trained first.)

® You need to think about backup and recovery. (How does the data get restored if the
waiter is absent?)

When we transfer all this to the world of IT, you can compare a simple website with an
online store. If you imagine the website of a small carpenter’s workshop from a neigh-
boring village, you will find pictures of projects, information on how to reach the work-
shop, and perhaps a contact form. This is all data that is displayed to every user when
they access the website. No data needs to be kept or stored, and even the contact form
simply sends an email to the managing director. The website is stateless.

The online store of a large furniture store, on the other hand, provides features that
require a state. Think of the shopping cart, for example. It contains all the products you
want to buy. The order history and invoices also represent data about you that must be
stored. Thanks to the data, the online store can also make suggestions to you, such as
“Customers who bought a table also bought a chair” or categories tailored to you.

In more simple terms, stateless means that each interaction is independent and con-
tains no information about previous interactions. Stateful, on the other hand, means
that information about past interactions is stored and used to provide a continuous
experience. However, you will notice from the examples that there are states in most
applications that need to be saved.

30 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

1.1 Basic Principles and Concepts: Why Use Container Clusters at All?

Usually, we cannot control the fact that states have to be saved. What we can control,
however, is the way we design our applications. As many of them as possible should be
stateless because they are then much easier to handle.

Stateless applications
® are easier to scale and provide higher performance,
® are easier to deploy, and

® are better to manage and debug.

Good to Know

An application must be handled differently in Kubernetes depending on whether or
not it stores data.

A database is stateful, and if it is operated in Kubernetes, Kubernetes cannot simply
terminate or rebuild it. For this type of use case, there is a separate object that has pre-
cisely these properties for running stateful applications. You will get to know this
object in Chapter 5, Section 5.1.

1.1.5 Separation of Concerns

Separation of concerns is a design principle in software development. It aims to divide
complex systems into several components or modules. Each module has a clearly
defined and limited responsibility or task. This division significantly improves the
maintenance, further development, and comprehensibility of the software.

A classic example is the three-tier architecture, as shown in Figure 1.3, which you may
already be familiar with. Let's assume you are developing an online store.

Frontend

Backend

Database

Figure 1.3 Simple Three-Tier Architecture

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 31

1 Introduction to Kubernetes

You could, for example, separate the frontend, backend, and database. The frontend is
responsible for providing the HTML, CSS, and JavaScript files. In the end, that's what the
customer sees. They can add products to their shopping cart, check them out at the end,
and buy them.

The backend is the application that runs in the background and processes requests
from the frontend. Once the customer has entered their credit card details, the backend
can take care of the actual billing process.

Finally, persistence is required, which can be mapped with a database, which will be
used by the backend to store or retrieve data. For example, the customer's order history
is stored there. There are API interfaces between the individual components that
enable communication between them.

Good to Know

The three-tier architecture is one possibility, but there are others. One of my customers
has multiple software products in use. Some of these are legacy applications in the
data center and others are software-as-a-service (SaaS) applications in the cloud. In
order to exchange data between the systems, we have developed connectors, with a
separate connector for each data path, based on the extract, transform, and load (ETL)
principle.

This separation allows developers working on the user interface to do so without hav-
ing to worry about how the business logic or database access works.

The API defines types of communication with the backend and which functions it
offers. At the same time, backend developers can work on the business logic without
having to think about the frontend. This separation makes it much easier to maintain
and expand the application as there are different programming languages for the
respective components and usually also different developers or even entire teams.

The layout then often looks as shown in Figure 1.4, and the developers can focus on spe-
cific modules.

In the world of containers, attempts are often made to divide the components into
atomic units in order to make the separation of concerns as strong as possible. It is not
uncommon for the backend to be split into multiple microservices. You then have sep-
arate microservices for the shopping cart, billing, ordering, and so on. Depending on
the system, an even more granular categorization may make sense. The smaller the
system, the greater the effort required to maintain it. The overhead then increases,
which is why it is important to check where the cut needs to be made.

32 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

1.1 Basic Principles and Concepts: Why Use Container Clusters at All?

Framework

Module A
Development Team

Module A Module B

Module B
Development Team

Figure 1.4 Responsibility of Developers

Good to Know

The term atomic is derived from the Greek word atomos and means indivisible. When |
talk about atomic components (which you provide in containers), this always means
that they cannot be further divided into smaller units. They are part of a larger applica-
tion, but the separation of tasks and responsibilities helps in many areas.

Just as you as a developer want to keep individual functions in your code small, you
also want to keep the components small. They should have a task and nothing more.

In development projects, often not everything can always be considered in advance.
You should therefore not be afraid to separate or combine components later on in the
project. It is also always good to look for the sweet spot so that you don't fall into one
extreme (too small...) or the other (... or too large components). What advantages can

you achieve through good partitioning? Here are some examples:

Granular scalability

With atomic containers, you can scale exactly the parts of your application that are
needed. If, for example, the number of web servers needs to be increased, you can
scale it without having to scale the database directly.

Independent updates
Atomic containers make it possible to update parts of your application inde-
pendently of each other. This minimizes downtime and simplifies deployment.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 33

[+]

1 Introduction to Kubernetes

® Improved resource utilization
As each component is isolated in its own container, you can distribute resources as
you wish. In combination with simple scaling, your operations are significantly
more flexible, saving resources and, thus, money.

® Increased security and stability
Separation increases security, because if one container is compromised, the other
containers are not necessarily at risk. In addition, an error in a container does not
directly lead to the failure of the entire system.

= Easy maintenance and further development
The separation into atomic components also facilitates further development and
maintenance, which means you need to do significantly less reverse engineering.

If you have no separation, then that is just as bad as being too compartmentalized. The
challenge is to find the right arrangement for your application. If you start with a
hypothesis, you will find out over time whether you need to subdivide further or com-
bine components again.

Just have the confidence to get started.

1.2 Kubernetes, the Tool of Choice

You have now learned what a container management tool is needed for and why and
have become familiar with the most important overarching concepts. You also know
how Kubernetes came about. But why is Kubernetes the tool of choice?

I want to start by looking at the reasons that companies want to use Kubernetes in the
first place, because let's be honest: a company does not optimize its IT in order to use
the latest software tools without a business purpose behind it.

I will then briefly take you through the arguments with which Kubernetes is entering
the market and give you an insight into my experience of this in the real world. Does
Kubernetes really deliver what it promises?

To conclude this section, I will clearly emphasize for which companies Kubernetes is
useful and for which companies it is not. Kubernetes is certainly not the panacea for
every IT problem.

1.2.1 Why Do Companies Want to Use Kubernetes?

The first question I ask my customers when they want to introduce Kubernetes is:
“What goal do you want to achieve with it?” The answers can be varied. In my experi-
ence, they can always be broken down into the following three aspects:

34 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

1.2 Kubernetes, the Tool of Choice

® Faster time-to-market
® Saving costs through optimized processes

® Opening up new markets through new software

But in the end, it always comes down to clear, measurable facts, usually about making
more money or spending less money. What does it look like in your company? Has
your company been using Kubernetes for some time, or are you one of the first in the
development team to use Kubernetes? Do you know the goals behind it?

You have likely experienced this yourself. You develop a prototype, and a decision is
made from one day to the next: the project is canceled. Only if you as a developer know
the company's goals in advance can you make sure that the project will become a suc-
cess during development. You make a major contribution to the success of your com-
pany and can also prioritize your tasks much better thanks to the clarity of your goals.

The decision to use a platform such as Kubernetes usually has a greater impact on a
company than a prototype. To avoid one project relying on Kubernetes, another on
Amazon ECS, and a third one on Docker Swarm, it is necessary to set a standard.

What motivates your company to invest time and money to introduce Kubernetes?

To help you better understand the decisions in your company, I would like to briefly
digress on the purpose of a company and the resulting value chain.

Good to Know

For us as computer scientists, the technological advantages are usually the most
important elements—for example:

m Automated rollouts/rollbacks

m Service discovery/load balancing

® Horizontal scaling

= Memory orchestration

m Self-healing

Unfortunately, technical excellence is often not (only) important for decision-makers. It
is our task to translate these technological advantages. In the end, they can always be

broken down to the following: we save time and money using Kubernetes or can
develop and deliver software faster.

Every company has a purpose and must create added value for society in order to sur-
vive. Try to imagine a village 5,000 years ago. Everyone in this village had a job. The
miller ground the farmer's grain so that the flour could be processed into bread by the
baker. The butcher processed the hunters' game. Everyone contributed to the village
community to ensure its survival. In the worst case, anyone who was unable to contrib-
ute to the community was cast out.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 35

1 Introduction to Kubernetes

Even back then, small chains of value creation emerged where several people worked
on products to process them and turn them into something “more valuable.” For
example, the chef could cook a dish from the butcher's meat. Figure 1.5 illustrates what
such value chains looked like. Each individual contributed something to the village
community and received something in return.

(O (O (O
fme))
(O (O (O
fe)) (e

Figure 1.5 Added Value in Village Community

Today, value chains are much more complex than they were back then, but every com-
pany still has to contribute something to society in order to earn money. Money is the
currency used to express how much value it has for society or for an individual. Money
has enabled value chains to become larger and companies to grow. Unfortunately,
money also contributes to the chains being forgotten. But our society can only func-
tion in this way today because every company works like a cog in a clockwork mecha-
nism. We notice this above all when a cogwheel no longer runs smoothly.

Good to Know

The introduction of the monetary system made a growing society possible in the first
place. Bartering was still possible in a village community, but imagine what it would be
like if you spent months developing an application for a car company on the barter sys-
tem. You would get a car in exchange—but you wouldn’t have any gas, food, or drink,
and you wouldn't even be able to pay the rent or mortgage on your house.

36 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

1.2 Kubernetes, the Tool of Choice

There is also a value chain in your company, and you are part of it. The question is: Do
you know what part you play in this? Because the better you understand it, the better
you can pay into it. So if you're part of the value chain, then Kubernetes is a tool to opti-
mize the value chain, and we're going to look at exactly how Kubernetes can do that.

Good to Know

Any software such as Kubernetes that you use in your company should be measured by
how well it contributes to the optimization of value creation. This is the only way to
determine whether it is a sensible business decision.

1.2.2 The Promise of Kubernetes

Let's first take a look at what Kubernetes promises. I want to introduce you to the three
core competencies that Kubernetes lists on its website. These are probably on every
management slide, and they provide a picture at a high strategic level to convince a
company's decision-makers.

ButIthink they are also important for you to understand how Kubernetes is positioned
in the market and what questions you may face when you say, “I'm developing applica-
tions on Kubernetes.”

Planet Scale

As you learned in Section 1.1, Google developed the core concepts of Kubernetes on the
basis of Borg. Kubernetes is therefore based on the same principles Google has used to
run billions of containers per week. For you, the Planet Scale competency means that
Kubernetes can grow with your requirements. So it doesn't matter whether you oper-
ate hundreds, thousands, or millions of containers.

But is it really that simple?

In this book, you will not learn what a good cluster should look like or what the perfect
cluster setup for your company looks like; however, I want to give you a few insights
into what clusters look like in German companies.

In theory, Planet Scale is probably possible, but in real life I have rarely seen companies
that have a huge cluster for everything, as was the case with Borg and Google. Instead,
there is always an organizational separation at a certain point, be it between different
company subsidiaries or between different subject areas. The clusters can be divided
into two types:

m Large clusters, which I refer to as cluster as a service

® Individual clusters that are provided for large applications with multiple microser-
vices

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 37

1 Introduction to Kubernetes

I call the large clusters clusters as a service because they usually provide a home for
many different small applications that are created in a company but cannot be directly
assigned to a large project. A small project team can thus quickly and easily get a con-
tainer live and does not have to worry so much about cluster operation.

This approach already goes in the direction of how Kubernetes is actually intended: a
cluster for all of the company's containers. That’s no problem with Planet Scale either,
but one cluster for many brings operational and configuration challenges that cause
companies to structure clusters to fit the hierarchy. Here are some of the challenges
that I have already encountered with customers:

® Roles and rights
These must be clearly thought out so that teams cannot influence each other.

= Resources
Allocation is more difficult, and containers from different teams could fight over
resources.

= Billing
Who produces which costs? Breaking down server costs into containers is much
more complicated.

Good to Know

The fact that an IT system adapts to the structure of the company and its hierarchy is
also known as Conway's law.

This makes it much easier to separate individual clusters. If there is a separate cluster
for each project, there will be no complicated separations that need to be observed and
maintained and monitored by an operations team.

However, the separation into individual clusters also has its disadvantages. What is
often forgotten is that the basic setup of a cluster can cost a lot of money: the cluster
requires management services that need computing power, and a setup of two servers
is far from sufficient to be highly available. The budget for this may be a little looser in
corporations for security reasons, but the situation is somewhat different in medium-
sized or small companies.

Nor can the appropriate budget be made available for every prototype or for small
applications. A prototype in particular does not yet have a reliable business case, and it
must be quick, simple, and cost-effective to operate. A dedicated Kubernetes cluster is
simply oversized here.

Note

Take a look at the clusters in your company. How are they designed? Do you think it's
right?

38 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

1.2 Kubernetes, the Tool of Choice

Here’s the bottom line on Planet Scale: A cluster structure must be well thought out and
adapted to the company; there are many facets that need to be considered. But let's be
honest: for very few companies is Planet Scale relevant at all.

I would like to take a closer look at one promise in this context—namely, that you can
scale clusters as you like without having to increase the size of the operating team.

From my experience, I can state quite clearly that we are still a long way from that end
as each scaling stage brings further challenges. For example:

m A cluster setup for 5,000 containers is different from a setup for 50,000 containers.

®m A larger number of applications also means more responsibility and higher
demands on a cluster.

® For every additional virtual machine in the cluster, the probability that a machine
will fail also increases.

I have yet to experience a company in which principles of no operations (NoOps) really
take full effect. A high degree of automation is constantly being used in an attempt to
reduce operations to just a few supporters. But a lot of steps are needed to get there,
and I don't think it's realistic that the vast majority of companies will ever achieve this
form of automation.

In this book, we will go into a few more points that are relevant for you on the way to
NoOps. You will learn how to prepare your application for operation in a cluster.

Never Outgrow
How long have you been a software developer? Can you still remember the days when
the runtime of a function specified in Big O notation was important for performance?

I can still remember when it was said: “Bubblesort has a runtime of O(*2).” To be honest,
that was the last time I gave much thought to resources or runtimes. Today, optimized
libraries and cheaper hardware save us a lot.

The Never Outgrow competency of Kubernetes follows exactly the same line. What
could be worse than waiting three months for a test environment until the hardware is
set up in the data center? You may smile at the thought, but unfortunately this is still
the standard in many companies.

In Kubernetes, you can create a new namespace at the click of a mouse, and your appli-
cations can be deployed for a new test in no time at all. You can delete them just as
quickly when the test is finished.

Kubernetes promises

® that a cluster can grow with you and your requirements,
® that you can retain flexibility in scaling, and

m that everything is billed according to the pay-as-you-go principle.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 39

1 Introduction to Kubernetes

Admittedly, developers have never had so much freedom before. I ran several Kuber-
netes clusters in an operations team for several years. We had built the clusters on AWS
infrastructure and automated them to a fairly high degree. For example, if more
resources were needed because all servers were at capacity, a new server was automat-
ically scaled to accommodate new containers. That made our work much easier. Some-
times we were told things like: “We would like to do a load test and need an environ-
ment for it.” The best feeling was always being able to say: “You have it in your own
hands and can do it without us.”

I am convinced that more responsibility for developers leads directly to better prod-
ucts. It increases the speed of development because you don't have to wait a couple of
weeks for someone from the ops team to finally have the time to provide new hard-
ware; that’s especially frustrating when you as a developer could do it yourself.

Note

More responsibility for developers doesn't happen overnight, and the path to it is
sometimes a little unfamiliar. But the work is worth it. | have had mostly positive expe-
riences with it so far.

Here’s the bottom line on Never Outgrow: If the cluster is set up well, it simply grows
with your applications. You are more flexible and can focus on what is important: the
development of your product.

But one thing is important to me: an increasingly higher degree of abstraction and a
growing number of cheap resources mean that we as developers are thinking less and
less about runtimes and efficient programs. It is therefore important to me that we do
not forget our craft and do not throw more resources at every problem. I just had to
optimize the runtime of an application a few weeks ago and am glad to have the tools
to do so. Never outgrow is a nice feature, but the rest should not fall by the wayside.

Run K8s Anywhere
Are you already in the cloud or are you still working on premise?

You know what? In my opinion, this question is actually unimportant—or at least,
there is no general right or wrong. It always depends on the specific area of application.

The nice thing is that Kubernetes doesn't care which infrastructure it runs on, per the
Run K8s Anywhere competency. You can also set up a cluster on premise in such a way
that you can fully utilize the features of Kubernetes.

Kubernetes promises

® torun in the cloud, on premise, or in a hybrid environment;
® to easily move workloads as per your requirements; and

® to give you all the freedom you need due to being open source.

40 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

1.2 Kubernetes, the Tool of Choice

And from my point of view, it lives up to it. The combination of these points makes
Kubernetes an interesting abstraction of your applications from the actual hardware.
In this book, you will also learn how workloads can be moved from one node to another
and how you can influence where containers run.

Alot has happened with Kubernetes in recent years, and open standards have been devel-
oped that allow you to connect different storage systems according to the same schema,
for example. This makes it really easy to operate Kubernetes in your own data center.

What I regard as extremely positive is the development of managed Kubernetes ser-
vices. Due to their great popularity, the major cloud providers also offer managed clus-
ters. This makes it particularly interesting for small companies that do not want to
worry about operating a cluster.

Here’s the bottom line on Run K8s Anywhere: Yes, you can run Kubernetes on many plat-
forms and have a lot of freedom. However, setting up a cluster involves a great deal of
effort, so you don't have the option of quickly switching from an on-premise cluster to
a cloud cluster. It takes something to set up the infrastructure components properly.
Many questions need to be answered and aligned with individual objectives.

The big advantage for you as a developer is that if the cluster is in place, your applica-
tion does not care where the cluster is located. You simply have an additional abstrac-
tion layer, which is very useful for developers.

1.2.3 Major Features

You have now learned about the three most important core promises of Kubernetes,
but you can certainly imagine that a cluster adds complexity to the company in addi-
tion to costs. So it makes sense to ask the following question: “What's in it for me?”

Let's also take a look at the features that are boldly presented on the website. What we
expect from Kubernetes is a simplification in the operation of containers. But how
exactly does Kubernetes want to achieve this? It implements the following;:

® Automated rollouts and rollbacks
Automated rollouts have become the standard in the world of the cloud, but they are
not being implemented enough in most companies. Kubernetes offers the possibil-
ity of rolling out rollouts automatically and without downtime. You can even moni-
tor the application and roll it back automatically in the event of errors. Thaven't seen
many automated rollbacks with my customers so far, but even manual rollbacks are
practically possible at the touch of a button.

m Service discovery and load balancing
You don't want to worry about exactly where your application is running and how
the traffic is routed there. Kubernetes takes care of this for you and knows at all
times where a container is and how the load can be routed to it. This also opens up
the world of autoscaling.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 41

1 Introduction to Kubernetes

® Horizontal scaling
If your application receives more requests than it can handle, it should be scaled as
automatically as possible. In Kubernetes, this works almost automatically by start-
ing up a new container, a process that is referred to as horizontal scaling. We will look
at exactly how this works in Chapter 7, Section 7.3. In my opinion, this feature is one

of the biggest advantages of Kubernetes.

m Storage orchestration
You don't want to have to deal with storage personally either when the hard disk is
full or a new disk needs to be connected. Through abstraction, Kubernetes offers you
a standardized API to use storage for your application. In Chapter 5, you will learn
how easy it is.

m Self-healing
Have you ever been on call at night? How nice would it be if your application could
heal itself—or at least keep running until normal operations can take care of the
problem? Kubernetes offers technical self-healing and takes care of containers when
they are no longer running.

But let me be honest: Kubernetes cannot do more on its own than switch on and off.
You have already gained a lot with this, but for full self-healing, a little more brain-
power is required from the developers.

® Secret management and config management
Every application needs configs and secrets. When planning and programming your
application, you must decide how best to deal with this. Sensitive data such as pass-
words or private keys in particular must be treated with special care. Kubernetes
offers a simple way to manage this data. We will look at this in detail in Chapter 2,
Section 2.4.

= Batch execution
Do you have regular jobs that need to be processed? In the classic world, these are
executed by cron jobs on virtual machines. Kubernetes provides an option for pro-
cessing such tasks, which you will learn about in Chapter 4, Section 4.1. And it comes
with all the advantages of Kubernetes.

From my experience, I can tell you that all these features in one tool are very useful. As
with self-healing, not everything is always as promised, but over time working with
Kubernetes becomes very pleasant. In the course of this book, you will learn about each
of these topics in detail and be able to form your own opinion.

1.2.4 For Which Companies Is Kubernetes Useful?

Imagine a family that is about to decide on a new car. The father travels a lot for work
and needs a car that he can drive hundreds of miles on the freeway in one go. It should
contain all possible assistance systems and make driving as pleasant as possible. At the

42 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

1.2 Kubernetes, the Tool of Choice

same time, he wants to have fun driving and be able to hit the gas. The mother, on the
other hand, wants a comfortable and spacious car so that she can easily load her three
children and the dog. It has to be safe, and an electric car would suit her best for short
journeys.

The family goes on vacation twice a year and goes camping once. To fit everything in
the car, it must have a large trunk and preferably a hitch.

It's extremely difficult to choose a car that suits every situation. If it is a large SUV, then
it is good for the family, but not economical for business trips. If it's a normal sedan,
then it will be difficult to go on a camping vacation.

If buying a car is so difficult, how complicated is it to commit to a container platform?
And for which companies is it even suitable?

If we look at the core competencies and features of Kubernetes, the question arises as
to which companies it makes sense to use Kubernetes for. There is no one-size-fits-all
answer, but there are indications of when Kubernetes is helpful.

A company develops applications that consist of multiple services, microservices or
components. A separate stack of applications is deployed for each customer. The more
services you have at the same time, the more sense it makes to have a platform that
simplifies the management of applications and makes it more efficient. Kubernetes
can help with the deployment, scaling, and management of these applications and
reduces complexity by automating standard operational tasks.

If the following aspects apply to your company, then you are on the right track with
Kubernetes:

® Scalability
Do you want your applications to cope with peak loads or strong growth? Kuber-
netes enables the automatic scaling of resources to meet utilization and perfor-
mance requirements.

®m High availability
Do your applications have high availability requirements? The simple distribution
of applications across multiple nodes and the automatic restart in the event of
errors or failures means that Kubernetes guarantees a high level of reliability.

m Efficient resource utilization
Would you like to increase the utilization of your hardware? Kubernetes makes it
possible to scale resources such as CPU and memory according to actual require-
ments and thus to pay only for what you actually use.

® Flexibility and portability
Do you develop platform-independent applications that are deployed in different
environments? Kubernetes provides a standardized platform for the execution of
containers. This facilitates the portability of applications between different cloud
providers or local data centers.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 43

1 Introduction to Kubernetes

However, Kubernetes can also be useful for smaller companies, especially if they
develop complex applications or are growing rapidly. It provides flexibility, scalability,
and improved efficiency in the provision and management of applications.

1.2.5 Which Companies Should Not Use Kubernetes?

Kubernetes is not suitable for each and every company, just like your doctor doesn’t
always recommend the same balm for every skin problem. The balm can help in many
cases, but not in every case.

The introduction of new technologies brings not only opportunities, but also obliga-
tions. The following points play an important role in this regard:

® Specialist knowledge
The implementation and maintenance of Kubernetes requires extensive knowledge.

= Cost
The need for specialized personnel can significantly increase the cost of using Kuber-
netes.

= Change
The use of Kubernetes leads to a change in working methods and process design in
IT operations.

® Avoiding over engineering
Premature or excessive technical fine-tuning can hamper the development of a
company.

= Growth
Excessive complexity and high operating costs can slow the growth of a startup or
small business.

Let's go through two sample situations in which I would not recommend the use of
Kubernetes from the outset.

First, imagine that you work in a startup and create a simple application with a three-
tier architecture (frontend, backend, and database). The technology stack is straightfor-
ward; the operation of your application is uncomplicated and can be managed with
minimal effort. You only have a few customers and are currently more concerned with
the further development of features and customer acquisition.

In this case, a single server with containers or a cloud service for container operation
can be completely sufficient.

In another case, imagine that your applications have special infrastructure require-
ments. Especially with legacy applications that are to be migrated to Kubernetes, it can
happen that things simply don't “fit.” For example, have seen a company’s application

44 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

1.3 Architecture and Components

that absolutely needed a fixed IP address so that it could be enabled for access to other
resources in the firewall. Although there are ways to implement such requirements in
Kubernetes, you will lose all the advantages of the system, which means you can save
yourself the effort.

In addition, particularly strict guidelines on compliance, security, or data protection
can also mean that the use of Kubernetes does not make any sense.

We had a similar challenge with another application. The company wanted to migrate
adata import job that was previously running on AWS ECS to Kubernetes. However, the
application was developed in such a way that a function based on AWS Lambda checked
the start condition and then started the job if necessary. The container for the import
itself required around 25 GB of RAM and did not fit into the company’s other microser-
vice landscape. The challenge was to determine how this service could be meaningfully
mapped using Kubernetes resources.

Sometimes, you conclude that it just doesn't make any sense. In this example, how-
ever, we migrated the job to Kubernetes with some development work and rebuilt it
accordingly.

In such cases, you need to clearly weigh whether migration to Kubernetes makes sense
and what benefits you want to gain from it. To put it more generally: there are no one-
size-fits-all solutions, and Kubernetes is not a panacea either. Each company must
examine its own requirements and assess whether the use of the system brings more
advantages than disadvantages. As a developer, you also need to check whether Kuber-
netes is the right platform for your applications.

1.3 Architecture and Components

Let’s now move on to the architecture of Kubernetes. With Kubernetes, several compo-
nents work together to ultimately provide what you call by the generic term Kuber-
netes. In the following sections, you will see how Kubernetes works at its core. It always
makes me realize that Kubernetes is not witchcraft either, but just introduces another
level of abstraction. It takes work off our hands because we no longer have to worry
about the underlying hardware, but under the hood there is the same technology as
ever.

With Kubernetes, a distinction is made between master nodes (masters for short) and
worker nodes (workers for short). A node is a server that is part of a Kubernetes cluster.
The masters are also referred to as control plane nodes because they run the services
that are considered the brains of Kubernetes. The workers are controlled by the masters
and receive commands to start containers and provide them with everything they
need: from storage and secrets to network connections.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 45

1 Introduction to Kubernetes

Figure 1.6 shows the services divided into masters and workers and how they commu-
nicate with each other. Use this overview to see what the big picture looks like in the
following sections. I will now go into each individual component and its significance.

Master Node
Control Plane

——
® o Wiz
ul kubelet Engl ne

I
i
I
kube-controller- kubelet |
manager |
I
1
1
I

sched
kube-scheduler @
[k-proxy b e e a

Worker Node

kube-proxy
kubectl
API

Requests kube apiserver Worker Node
@ Container VT T T T 1
. K“be'a kubelet Engine : ® :
Q0
kubelet kubelet : @ :
etcd ! :
1 1
! I
! I

e o
o o o
kube-proxy Q fToTTTTTToo :

cloud-controller- kube-proxy
manager

ee_

Figure 1.6 Kubernetes Architecture

1.3.1 Master Nodes

Let's start with the master nodes. In the simplest version, your Kubernetes cluster has
a master or control plane, which controls the cluster, registers workers, and manages
resources.

The masters are the brains of the cluster. They store configuration and status data, pro-
vide the API, and ensure that new containers are deployed. The masters monitor the
cluster and its resources and decide on which worker containers will be executed. There
are several services that take over the tasks. I will introduce you to these in a moment.

The Kubernetes master executes various server and manager processes for the cluster,
which themselves also run in containers. As the software has matured, new compo-
nents have been developed to meet specific requirements, culminating in what Kuber-
netes is today. Let us now take a closer look at the individual components and their
function.

46 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

1.3 Architecture and Components

kube-apiserver

The kube-apiserver component is of central importance for the operation of the Kuber-
netes cluster. It is the center of communication, as you will see in Section 1.3.3. All calls,
for both internal and external traffic, are processed via this component.

In addition to providing the AP], it is also responsible for tasks such as the following:

® Validating requests and manifests
® Checking authorizations

® Monitoring rate limits and quotas

In addition, kube-apiserver is the only component that establishes a connection to the
etcd database. The cluster would not work without it. You could no longer control any-
thing, and nothing could change within the cluster.

The advantage of this central component is that nothing happens without kube-
apiserver being aware of it. For example, you can implement watch requests to receive
information when certain resources change or are newly created.

kube-scheduler

If you want to know where there is still room for a container on your cluster, it is best
to ask kube-scheduler. This component knows your nodes and how much CPU and
memory are available. It also has a plan of how many resources have already been
reserved, and it knows all your rules that allow you to influence pod scheduling. There
are affinities, taints, and tolerations for this, which we will look at in more detail in
Chapter 2, Section 2.2.3.

kube-scheduler takes all of this into account in its algorithm to determine which node
can best host additional containers. It always tries to achieve a certain balance across
the cluster and uses preemptions to “displace” containers to new nodes if necessary.

kube-scheduler is always in close contact with kube-apiserver to receive new requests
and information about nodes and containers.

The etcd Database

Looking for the brain of Kubernetes? Then etcd is the right place for you. As a key-value
database, etcd is not only used by Kubernetes, but is also of interest for other distrib-
uted systems. It uses the so-called raft consensus algorithm to provide highly available
data persistence with the quorum concept.

Quorum

The quorum is a concept in the theory of distributed systems that refers to the mini-
mum number of nodes required to perform a certain operation in a distributed system
or to make a decision. This ensures consistency in a cluster.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 47

1 Introduction to Kubernetes

Imagine the following scenario: You have a database in which you store your data.
When you retrieve data, you receive it from the database. So far, so good—but if you
now operate the database with two distributed instances to increase reliability, things
get complicated. What happens if you query both databases and they each return a dif-
ferent result? How do you decide which of the two is right?

The quorum is a way of maintaining consistency, because in this case the majority of
nodes is right. To avoid a stalemate, an odd number of nodes is always used in a clus-
ter. This means that in a cluster with three nodes, one can fail without any problems;
with five nodes, it’s two; and so on. In most cases, a cluster of three nodes is used in a
production environment.

Aslong as the etcd database can provide its data, your Kubernetes cluster will be able to
get out of any predicament. etcd saves all manifests of resources of the cluster and thus
always maintains the desired state. For example, if a node fails, Kubernetes can roll out
your containers again on a new node using your manifests.

The only interface for the etcd database is kube-apiserver. Everything that goes into or
out of etcd can therefore only be carried out via kube-apiserver. This ensures that only
authorized actions can manipulate the stored information.

cloud-controller-manager

The cloud-controller-manager component handles communication with other cloud
services. This allows Kubernetes itself to remain independent, as the cloud services are
integrated via cloud-controller-manager. For this purpose, a plug-in mechanism is used
that makes virtually anything possible:

® Managing the cluster
® Deleting Kubernetes resources

® Creating infrastructure in the cloud such as load balancers when a specific Kuber-
netes object is created

® Deleting nodes when the infrastructure in the cloud is deleted

cloud-controller-manager therefore makes operating a cluster in the cloud more conve-
nient. However, cluster management tools such as Rancher also use these components
to gain access to the cluster and manage it.

kube-controller-manager

Perhaps one of your nodes doesn't seem to be doing so well, and the containers on it
are having problems. Or maybe a container had an error and was terminated. Fortu-
nately, you can use kube-controller-manager, which carries out the monitoring of vari-
ous functions independently and automatically. It is comparable to a worker in the
engine room.

48 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

1.3 Architecture and Components

There are many different controllers with different tasks. To simplify matters, these
controllers are grouped together under their manager and provided as a single binary
file. An overview of this is shown in Table 1.1.

Node controller Monitors all nodes and will actively evacuate the containers
from a node if it is no longer intact.

Replication controller Regularly checks the correct number of containers. If one is no
longer functional, it takes care of starting a new one.

Endpoints controller Takes care of the connection between services and containers.
You will become familiar with this process in Chapter 2, Sec-
tion 2.5.

Service account controller Creates standard service accounts and API access tokens for

newly created namespaces.

Table 1.1 Controllers under kube-controller-manager and Their Functions

At this point, let’s take a closer look at the node controller. This controller recognizes
immediately if a node is not working correctly and cannot be reached, for example. The
node controller communicates regularly with the nodes, and each node needs a so-
called kube-node-lease that it must renew on a regular basis. This is a heartbeat that
allows the node controller to recognize that the node is still alive.

If this heartbeat does not occur within a certain time slot, the node controller becomes
active and takes care of the evacuation of the containers and ensures that they are
rebuilt on a functioning node. It also maintains a list of available nodes and updates it
when new ones are added or old ones need to be removed. It also takes care of the
onboarding of new nodes and assigns Classless Inter-Domain Routings (CIDRs) to
them, for example.

The node controller is therefore an important component for keeping a Kubernetes
cluster alive.

1.3.2 Worker Nodes

The kubelet and the kube proxy—as well as the container engine, which starts and
keeps the containers running—are executed on all worker nodes. You will get to know
the container engines in Chapter 2, Section 2.1.1. The worker is the one who carries out

the work at the end. No management processes run on it, but only application contain-
ers, which makes workers interchangeable. This is precisely where the magic of Kuber-
netes lies, because it means that a worker can fail or be replaced and the applications
will still continue to run. Let's now look at the components that run on the worker
nodes.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 49

1 Introduction to Kubernetes

The Kubelet

Imagine you own an apartment building with 60 residential units. As the owner, you
don't want to take care of the management of the apartments yourself and so you hire
a janitor. The janitor looks after the apartments and ensures that each one is in the
desired condition. If a new tenant moves in, you as the owner establish clear rules for
how the apartment is to be used and the janitor takes care of enforcing them.

In this metaphor, you are kube-apiserver, the janitor is the kubelet, and the apartments
are the containers. Thus, the kubelet is the central component on all nodes, which also
takes care of the registration of new nodes. To do this, it registers with kube-apiserver.
The kube-apiserver component can then pass jobs to the kubelet in the form of mani-
fests in order to deploy containers. A manifest describes everything that is necessary to
execute the container. If a container requires access to storage, secrets, or configura-
tions, the kubelet ensures access.

Another task of the kubelet is to monitor the containers. The status is also sent back to
the kube-apiserver, which in turn saves it in the etcd database. The kubelet does not
work alone, but interacts with the underlying container engine, which is ultimately
responsible for executing containers.

Good to Know

The kubelet also runs on the master nodes, as these also run containers that the
kubelet takes care of.

The Kube Proxy

Let's continue to use the image of your apartment building. Imagine you don't just
have one house, but 10 of them combined into one building complex. There is a door-
man in the entrance area of every house. Every doorman knows exactly which tenant
lives in which apartment and in which building, because you as the owner always let
them know when a new apartment is being moved into. Now, when the courier arrives,
the doorman directs the mail to the right house, so that packages always arrive at the
right apartment.

The doorman is the kube proxy that is contacted by the kube-apiserver when a new con-
tainer gets deployed. Every kube proxy on every node knows about this at all times.
This is the only way to ensure that the data packages reach the right container. The
kube proxy is therefore responsible for managing the network connectivity to the con-
tainers.

50 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

1.3 Architecture and Components

1.3.3 API Call Flow

Kubernetes consists of numerous components that have to interact with each other. To
give you a better idea of how the communication between the components takes place
in order to deploy a container at the end, I will take you through a simplified example.
I will leave out the different Kubernetes objects that you will learn about in Chapter 2
for now, as these make it much more difficult to understand the API flow.

Assume that you want to deploy a container in Kubernetes. Using the kubectl tool,
which you will learn more about in Section 1.5, you can send a request with a manifest
of your desired container to kube-apiserver. The manifest is written in the YAML lan-
guage, which we will take a closer look at in Chapter 3, Section 3.2.

The manifest contains everything Kubernetes needs to know to set up the container. As
soon as you send the request, kube-apiserver starts a process that basically runs as fol-
lows:

1. kube-apiserver accepts the request and saves the manifest in the etcd database.

2. kube-controller-manager becomes active and receives information from kube-
apiserver that there is a new manifest.

3. kube-controller-manager asks kube-apiserver whether the container has already
been deployed according to the manifest and, if so, whether the current status cor-
responds to the desired status.

4. kube-apiserver responds that the container does not yet exist.
kube-controller-manager gives kube-apiserver the command to create the con-
tainer.

6. kube-apiserver contacts kube-scheduler to check which worker the container can be
deployed to. The scheduler then responds to it.

7. kube-apiserver sends the necessary information from the manifest to the kubelet of
the corresponding worker that is to build the container.

8. Inaddition, kube-apiserver sends network information to each kube proxy that this
container is made available on the corresponding worker.

9. The kubelet on the worker will then ensure that the container is created in the con-
tainer engine and receives all the necessary resources, such as secrets or volumes,
that are requested in the manifest.

10. The kubelet returns the information about the successful deployment to kube-
apiserver, which saves the information in etcd.

Good to Know

This process is repeated again and again, even if there is only a small change such as
increasing the memory of the container.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 51

1 Introduction to Kubernetes

As you will learn in Chapter 2, there are different objects in Kubernetes, some of which
build on each other. Here too, this API flow is run through again and again for each
object. This may sound a bit much at first and can seem dauntingly complicated due to
the amount of communication. However, the concept from Section 1.1.5 was also
applied here—that is, separation of concerns.

You have probably also noticed that kube-apiserver is always involved in the communi-
cation. Kubernetes is based on the hub and spoke architecture (or hub and spoke API
pattern). There is a hub as a central point through which all requests and messages flow.
It acts as an intermediary and controls the data traffic between the various end points.
The spokes are the end points that are connected to the hub. Figure 1.7 offers a simple
illustration. Each spoke is responsible for a specific function or service and interacts
with other spokes via the hub.

Figure 1.7 Communication through Hub and Spoke Architecture

Even if direct communication would be faster at first, this model is easier for many
small services. If you take a look at Figure 1.8, you can see that there are a lot of commu-
nication channels with just five services. Each additional service increases complexity,
and you need to familiarize each new service with each existing service. In the hub and
spoke architecture, each spoke only communicates with the hub. The hub takes care of
distribution, and if a new service is added, the hub can also receive messages from it
and send them to other services.

A nice side effect of centralized communication is easy monitoring. All transactions
run via the hub, which makes it easier to analyze errors. With Kubernetes, for example,
you also ensure that not every service can write to the etcd database. This contributes

52 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

14 AKubernetes Cluster on Your Computer

to consistency and in turn reduces errors. Precisely because etcd is such a critical com-
ponent, a well-considered communication architecture is crucial.

)
3

Figure 1.8 lllustration of Direct Communication

1.4 A Kubernetes Cluster on Your Computer

After all the theory, let's finally get down to the practical part. A Kubernetes cluster
always consists of multiple servers (as already described). However, Minikube was
developed so that you don't have to set up a server farm to learn K8s and can be able to
test and play without much effort.

Note

In the following sections, | will introduce you to the Minikube tool, which only requires
one computer. However, it is ideal if you have multiple computers available that you
can use to build a small test cluster. In addition, at some points in the book, we will
reach the limits of Minikube. For this reason, in addition to Minikube, | present a cost-
effective way of setting up a Kubernetes cluster based on Raspberry Pis in Section 1.7.

However, it is optional, and | will make it clear in the book when a demo with multiple
nodes makes sense.

Minikube simulates a Kubernetes cluster on your local computer using a container or
VM. This works very well for experimentation purposes, but in the end it is only a sim-
ulation of a real distributed Kubernetes setup. The performance and size of the cluster

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 53

1 Introduction to Kubernetes

are limited to your computer, but for almost all the exercises in this book, Minikube
will suffice.

In the following sections, I will guide you through the installation for the different
operating systems and show you how to get Minikube up and running with Docker.

An installed Docker engine is required for the installation. I use Docker Desktop for
that. You can find the installation instructions at the following address: http://s-prs.co/
v596403.

The next chapters are all designed for the operation of Minikube in Docker. If you still
want to start Minikube with a VM manager, you should take a look at the installation
instructions available at http://s-prs.co/v596404. However, I recommend that you fol-
low the instructions presented here to avoid possible incompatibilities.

Important Note for Company Computers

If you want to carry out the following instructions with a device that is managed by
your employer, this can lead to problems. Most workstations have restricted rights or
certain security policies that prevent the instructions provided here from working. | rec-
ommend that you use a computer that is not managed by a company and on which
you have full admin rights. And of course, it makes sense perhaps not to use your own
workstation with important data for such experiments.

If you still want to use a company computer, then contact your company's administra-
tor if you have any problems.

If you use your company computer, you may need a license for Docker Desktop. Please
check this beforehand.

1.4.1 Minikube on macOS

There are different ways to install Minikube for Mac. It is a command line tool and is
also installed via the terminal. I'll show you two options, the first of which is the sim-
plest.

Installation via the Homebrew Package Manager

The easiest way is to use a package manager called Homebrew. It makes installing soft-
ware quick and easy, because where you would normally have to download, install, and
configure packages manually, Homebrew does it for you. If you have not yet installed a
package manager for your Mac, I recommend that you do so now.

Open the terminal and run the following command:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
HEAD/install.sh)"

54 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596403
http://s-prs.co/v596403
http://s-prs.co/v596404

14 AKubernetes Cluster on Your Computer

You will then be asked to enter your password and confirm the installation by pressing
(Enter]. After the installation has been completed, you can use the package manager
with the brew command.

You can now carry out the installation of Minikube. To do this, enter the following com-
mand in your terminal:

brew install minikube
This will download and install Minikube from Homebrew. Once the installation is com-
plete, you can use the minikube version command to test whether the software has been

installed and if it is ready. The command line should then output the corresponding
version of Minikube. In my case, the output looks as follows:

minikube version
minikube version: v1.30.1
commit: 08896fd1dc362c097c925146c4a0d0dac715ace0

Note that you may have a newer version depending on when you read this book.

Manual Installation

If you do not wish to install the Homebrew package manager, you can also install Mini-
kube manually. First, you need to download the installation files that match your pro-
cessor architecture. The following command is suitable for Macs with Intel processors:

curl -LO https://storage.googleapis.com/minikube/releases/latest/minikube-
darwin-amde4

Then, install Minikube. You need to have admin rights for this step:

sudo install minikube-darwin-amdé4 /usr/local/bin/minikube

Run the following commands if your Mac has an Apple processor:

curl -LO https://storage.googleapis.com/minikube/releases/latest/minikube-
darwin-arme4
sudo install minikube-darwin-armé64 /usr/local/bin/minikube

You should now also be able to test whether the installation was successful using the

minikube version command.

1.4.2 Minikube on Linux

In the following sections, I will address the most common installations for Linux. You
can find a complete selection at http://s-prs.co/v596405.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 55

http://s-prs.co/v596405

1 Introduction to Kubernetes

Installation on Linux with x86-64 Architecture

If you have an x86-64 architecture, you can perform the installation in three ways,
depending on which distribution you are using. A Minikube package may also be avail-
able in a repository for easy installation.

If you need a Debian package, the following two commands will download the installa-
tion file and install Minikube:

curl -LO https://storage.googleapis.com/minikube/releases/latest/minikube_
latest_amd64.deb
sudo dpkg -i minikube_latest_amd64.deb

If you use an RPM distribution, this will get you there:

curl -LO https://storage.googleapis.com/minikube/releases/latest/minikube-
latest.x86_64.rpm
sudo rpm -Uvh minikube-latest.x86_64.rpm

You can also download and install the binary file directly:

curl -LO https://storage.googleapis.com/minikube/releases/latest/minikube-
linux-amd64
sudo install minikube-linux-amdé4 /usr/local/bin/minikube

Installation on Linux with ARM64 Architecture

There are also three ways to install the ARM64 architecture.

With a Debian package:

curl -LO0 https://storage.googleapis.com/minikube/releases/latest/minikube_
latest_arm64.deb
sudo dpkg -1 minikube_latest_armé4.deb

With an RPM package:

curl -LO https://storage.googleapis.com/minikube/releases/latest/minikube-
latest.aarch64.rpm
sudo rpm -Uvh minikube-latest.aarch64.rpm

Downloading the binary file:

curl -LO https://storage.googleapis.com/minikube/releases/latest/minikube-
linux-arm64
sudo install minikube-linux-armé4 /usr/local/bin/minikube

56 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

14 AKubernetes Cluster on Your Computer

1.4.3 Minikube on Windows

Three options are available for the installation on Windows. If you have already
installed the Chocolatey package manager or Windows Package Manager, you can skip
to the corresponding instructions. The installation via a package manager is much eas-
ier, but you must install one first.

Package Manager for Windows

If you want to use a package manager and have installed Windows 10 or Windows 11,
you should take a look at Windows Package Manager. This significantly simplifies the
installation of programs such as Minikube. You can find detailed instructions from
Microsoft at the following link: http://s-prs.co/v596406.

Installation Using Chocolatey

The installation using the Chocolatey package manager is very simple. You need to run
the following command in your PowerShell:

choco install minikube

Installation Using the Windows Package Manager

The installation is also easy via Windows Package Manager. Just run the following com-
mand in PowerShell:

winget install minikube

Manual Installation

The commands for a manual installation are somewhat more complex. To avoid hav-
ing to type the commands from the book, I recommend that you copy the commands
from the Minikube installation page. To do this, go to http://s-prs.co/v596405 and select
the Windows operating system and .exe download in Installer Type.

Then you can copy the following command and paste it into the PowerShell to down-
load Minikube:

New-Item -Path 'c:\' -Name 'minikube' -ItemType Directory
-Force Invoke-WebRequest -OutFile 'c:\minikube\minikube.exe'
-Uri 'https://github.com/kubernetes/minikube/releases/latest/download/
minikube-windows-amd64.exe'
-UseBasicParsing

For Minikube to be executable in PowerShell, the program must be entered in the PATH
variable. The following command takes care of this (note that this command requires
admin rights). Then you must start PowerShell as an administrator:

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 57

http://s-prs.co/v596406
http://s-prs.co/v596405

1 Introduction to Kubernetes

$oldPath = [Environment]::GetEnvironmentVariable('Path',
[EnvironmentVariableTarget]: :Machine)
if ($oldPath.Split(';"') -inotcontains 'C:\minikube'){
[Environment]::SetEnvironmentVariable('Path', $('{0};C:\minikube' -f
$oldPath), [EnvironmentVariableTarget]::Machine)

}

You can now close and reopen PowerShell and use the minikube version command to
test whether the software has been installed and if it is ready to use. The command line
should then output the corresponding version of Minikube. In my case, the output
looks as follows:

minikube version
minikube version: v1.30.1
commit: 088961d1dc362c097¢925146c4a0d0dac715ace0

Note that you may have a newer version depending on when you read this book.

1.4.4 Launching Minikube

Once you have installed Minikube, you can easily launch it from your command line.
To do this, you want to run the following command:

minikube start

Minikube then creates some activity and documents all processes in logs, which will be
output directly. Because it is based on Docker, Minikube will download the latest con-
tainer first. Minikube also indicates which version of Kubernetes is being started. You
will then see information about additional add-ons that are not relevant for the time
being. You do not need to make a note of any of this as we will come back to it in due
course.

You now have a Kubernetes cluster running in a Docker container on your computer.

1.4.5 Controlling Minikube

Before we get to the interaction with the Kubernetes cluster, I would like to briefly
explain how you can use Minikube. We have already executed the minikube start com-
mand. You have used this command to start the cluster in a Docker container.

If you want to pause the containers running in the cluster, you can use the minikube
pause and minikube unpause commands. These will both pause your containers, which
we will deploy in later chapters, and stop the system containers that make up Kuber-
netes. You should use these commands when you are not using your test cluster as
doing so saves resources.

58 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

14 AKubernetes Cluster on Your Computer

You can also stop Minikube by running minikube stop. This stops the Minikube con-
tainer completely. However, the state remains the same. This command is good to run
before you shut down your computer. The same container is restarted via the start
command and continues in the same state as before it was stopped.

Finally, you can use the minikube delete command to delete your cluster entirely. This
command is particularly useful if you need a fresh cluster and want to get rid of your
old tests.

These commands enable you to control Minikube. There are a few other commands
that are relevant, and we will take a closer look at them in the corresponding chapters.

1.4.6 Possible Errors when Starting Minikube

You may encounter two small errors when you start Minikube. Let's take a brief look at
how this happens and how you can solve it if you receive the corresponding error mes-
sage.

If you run the minikube start command, the following error may occur:

Exiting due to PROVIDER_DOCKER_NOT_RUNNING:

"docker version --format -:" exit status 1: Cannot connect to the
Docker daemon at unix:///Users/kevinwelter/.docker/run/docker.sock.
Is the docker daemon running?

This error may look slightly different on Windows, but the issue is the same, and the
hint is already in the error message. The Is the docker daemon running? message indi-
cates that Docker Desktop is not running. Start Docker and try to execute the com-
mand again. Minikube should now start. This error can occur especially after restarting
your computer if you have not activated Docker via autostart.

Another error message after you run the minikube start command might look some-

thing like this:

command not found: minikube

This indicates that the command line interface tool cannot be found. If you have car-
ried out the installation steps given earlier correctly, then try to restart the command
line. In some cases, especially when installing manually, the tool may not yet be acti-
vated in the path.

1.4.7 Container Registry of Minikube

Throughout this book, you will do exercises that require the Minikube container regis-
try add-on. Here I will show you how to install and use it. You can also skip this for now
and return when you need the extension. I will point this out at the appropriate place.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 59

1 Introduction to Kubernetes

Minikube comes with some add-ons that allow you to build a nice and simple Kuber-
netes test environment without the need for external dependencies.

You can use the minikube addons 1ist command to get an overview of the extensions.
We won't need them all, but perhaps you will come back to them at some point.

The most important add-on is the container registry. If you want to develop your own
containers and deploy them in Kubernetes, there is no way around a registry, as Kuber-
netes only retrieves the images required for the containers from there. In production
environments, you naturally need a professional registry to manage and securely store
your images. For our test cluster, however, such an effort is excessive and we can revert
to the useful add-on.

The add-on can be activated using the minikube addons enable registry command. Now
the next part is important! This is because a port that you should use is displayed as the
output. You do not need this!

Instead, you want to run the eval $(minikube docker-env) command on Linux or on a
Mac. In PowerShell, the command is minikube -p minikube docker-env | Invoke-Expression.

This call makes sure that you use the Docker daemon from Minikube. You can then also
access the registry via the default port 5000.

Note

You must run the eval $(minikube docker-env) command with every new command
line; otherwise, you will not be able to access the registry. If you don't want to think
about it every time, you can also write the command in your .bashrc or .zshrg,
depending on the command line, so that it gets always executed. You can enter the
command in your profile in PowerShell.

Note that you then use the Docker host from Minikube.

Now let's test whether you can store containers in the registry. Use the following one-
line Dockerfile for this purpose:

FROM nginx

Create this as a Dockerfile and run the docker build -t localhost:5000/test-nginx .
command. Your own Nginx image will now be built and tagged with the name of the
registry. Then you can store the image in the registry using the docker push local-
host:5000/test-nginx command. From now on, Kubernetes can access the image with
the image name and download it.

60 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

1.5 Interaction with Kubernetes via the Command Line and Dashboard

Important Convention for the Image Name

If you are familiar with Docker, then you will certainly also know the naming conven-
tions for images. You must start the name using the URL of the registry, as this is the
only way Docker can also assign the image to a registry and store it there in the event
of a push.

You can of course continue to name the images locally as you wish.

1.5 Interaction with Kubernetes via the Command Line and
Dashboard

Kubernetes comes with two options for interacting with the cluster: kubectl as a tool
for the command line, and the Kubernetes dashboard, which can be accessed via the
browser.

Both tools use the Kubernetes API and make their requests to kube-apiserver in the con-
trol plane.

1.5.1 Minikube Comes With kubectl

The easiest way to communicate with your Kubernetes cluster via kubect1 is to use the
kubectl instance that comes with Minikube. This instance is always compatible with
the corresponding cluster version and can simply be used via the minikube kubectl
command, which of course is particularly useful if you need an older version of kubect1
because the clusters in your company have a different version.

And that’s all. However, you should set an alias in your command line so that you do
not always need to type the entire minikube kubectl command.

1.5.2 Installing kubectl

The kubectl instance provided with Minikube is very helpful and easy to use for the
development environment. In a production environment, you should not rely on
kubectl supplied by Minikube. First, the dependency between kubectl and Minikube is
unnecessary, and second, you cannot install an independent version of kubectl.

For this reason, we will now take a closer look at how to install the “right” CLI tool on
your computer. As with Minikube, this depends on the operating system.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 61

1 Introduction to Kubernetes

Version and Version Conflicts

In the following sections, | will show you how to install the latest version of kubectl. At
the time of writing this chapter, that’s version 1.27, the same version as the Minikube
cluster. If you also use the latest version of Minikube, there should be no conflicts.
However, you must check that the versions are the same.

The kubectl instance is always one version upward and one version downward com-
patible. Thus, if you install version 1.27, you can control clusters with versions 1.26, 1.27,
and 1.28. In case you use an older version in your company, you will find a link to the
Kubernetes documentation for each operating system at the end of the relevant sec-
tion. There you can read how to install an older version of kubectl.

kubectl on macOS

The easiest way to install kubect]l on macOS is also via the Homebrew package man-
ager. If you installed this in Section 1.4.1, you can simply run the following command:

brew install kubectl

That’s it. Homebrew will then install the appropriate package.

If you want to install without the package manager or install an older version, you
can also install it manually. The manual installation is somewhat more complex with
kubectl and differs depending on the processor type. You can find the current com-
mands at the following link: http://s-prs.co/v596407.

kubectl on Linux

You can also use the native package manager for Linux to install kubectl.

Installation Using the apt Package Manager

The default apt package manager is available for operating systems based on Debian.
To use it, run the following commands:

sudo apt update

sudo apt install -y ca-certificates curl

curl -fsSL https://packages.cloud.google.com/apt/doc/apt-key.gpg | \
sudo gpg --dearmor -o /etc/apt/keyrings/kubernetes-archive-keyring.gpg

echo "deb [signed-by=/etc/apt/keyrings/kubernetes-archive-keyring.gpg]
https://apt.kubernetes.io/ kubernetes-xenial main" | \
sudo tee /etc/apt/sources.list.d/kubernetes.list

sudo apt update

sudo apt install -y kubectl

62 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596407

1.5 Interaction with Kubernetes via the Command Line and Dashboard

For Debian version 9 or older, you need the following package:

sudo apt install -y apt-transport-https

For versions older than Debian 12 and Ubuntu 22.04, you may have to create the /etc/
apt/keyrings folder manually.

Installation Using the yum Package Manager
The default yum package manager is available for operating systems based on RedHat.
To use it, run the following commands:

cat <<EOF | sudo tee /etc/yum.repos.d/kubernetes.repo

[kubernetes]

name=Kubernetes
baseurl=https://packages.cloud.google.com/yum/repos/kubernetes-el7-\$basearch
enabled=1

gpgcheck=1

gpgkey=https://packages.cloud.google.com/yum/doc/yum-key.gpg https://
packages.cloud.google.com/yum/doc/rpm-package-key.gpg

EOF

sudo yum install -y kubectl

You can also install the packages for Linux without a package manager. The instruc-
tions for this as well as the instructions for installing older versions can be found at the
following address: http://s-prs.co/v596408.

kubectl on Windows

As with Minikube, you can use the Chocolatey and Winget package managers on Win-
dows systems.

Run the following command in PowerShell for Chocolatey:

choco install kubernetes-cli

For Winget, run the following command in PowerShell:

winget install -e --id Kubernetes.kubectl

You can also install the packages for Windows without a package manager. The instruc-
tions for this as well as the instructions for installing older versions can be found at the
following address: http://s-prs.co/v596409.

Function Test for kubectl|

You can now check whether you can run kubect1:

kubectl version --client

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 63

http://s-prs.co/v596408
http://s-prs.co/v596409

1 Introduction to Kubernetes

The output should read something like this:

Client Version: version.Info{Major:"1", Minor:"27", GitVersion:"v1.27.3",
GitCommit:"25b4e43193bcdabc7328a6d147b11b73a33f1598", [..] }

Depending on the operating system, further system information is also displayed.
However, the important thing here is that you can run kubectl and that you have the
latest version. You should also check again against the Minikube cluster for whether
there could be version conflicts, as mentioned earlier.

Activating Autocompletion for kubectl

For your Linux or macOS command lines (Bash, Zsh, or Fish), and for your Windows
PowerShell, kubectl provides very useful autocompletion options by pressing [Tab].
Because calls using kubectl can become very long and complex, working without these
completions is really no fun. To enable autocompletion, follow these steps:

1. To install the completion, run the appropriate command for your package man-
ager:

For mac0S

brew install bash-completion@2
For Linux

apt install bash-completion
yum install bash-completion

Note the output after the installation and add the corresponding line to the
~/.bash_profile file so that Bash completion is permanently activated. This should
look something like this:

Add the following line to your ~/.bash_profile:
[[-r "/usr/local/etc/profile.d/bash_completion.sh" 1] && . "/usr/
local/etc/profile.d/bash_completion.sh"
2. Finally, run one of the following commands:
Installing for Bash:
echo 'source <(kubectl completion bash)' >>~/.bash_profile
Installing for Zsh:
echo 'source <(kubectl completion zsh)' >>~/.zshrc
Installing for Fish:
echo 'kubectl completion fish | source' >>~/.config/fish/config.fish
Installing for PowerShell:
kubectl completion powershell | Out-String | Invoke-Expression

Once you have activated autocompletion, you need to restart your command line.
Now the autocompletion of kubectl should work.

64 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

1.5 Interaction with Kubernetes via the Command Line and Dashboard

There are also other little helpers in the shell that make working with Kubernetes
clusters easier. For example, take a look at the ZSH plugin for kubectl, which you
can find at http://s-prs.co/v596410. It comes with a large number of aliases that
make your work much easier.

1.5.3 Accessing the Cluster Using Kubeconfig

To be able to access Kubernetes clusters using the kubectl CLI tool, you need to config-
ure the tool. First, the tool needs to know which cluster it should address and how it can
reach it. Second, kubectl must authenticate itself against the Kubernetes API This is
defined in the so-called Kubeconfig file, or Kubeconfig for short. kubectl searches for
the file

1. either automatically in ~/.kube/config,

2. or it expects the paths to several files as environment parameters such as
KUBECONFIG="/.kube/config:/path/to/other/config.

This is the same for Linux, macOS, and Windows PowerShell.

Minikube configures kubectl automatically when you execute the minikube start com-
mand. If you installed kubectl in the previous section, you should run minikube stop
again and then minikube start to be on the safe side. Minikube should also have created
the Kubeconfig file correctly.

To check that Kubeconfig has been successfully created and that you can reach your
Kubernetes cluster, run the kubectl get namespaces command. This then returns all
namespaces that were created with the cluster by default. The output should read
something like this:

NAME STATUS AGE
default Active 16s
kube-node-lease Active 17s
kube-public Active 17s
kube-system Active 18s

Let's analyze a Kubeconfig file in more detail to understand how Kubernetes can use it
to connect to your cluster. As an example, we’ll look at the Kubeconfig file generated by
Minikube. This should look similar to the one shown in Listing 1.1.

apiVersion: vl

clusters:

- cluster:
certificate-authority: /Users/kevinwelter/.minikube/ca.crt
extensions:
- extension:

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 65

http://s-prs.co/v596410

1 Introduction to Kubernetes

last-update: Sun, 16 Jul 2023 18:48:50 CEST
provider: minikube.sigs.k8s.1io
version: v1.30.1
name: cluster_info
server: https://127.0.0.1:59746
name: minikube
contexts:
- context:
cluster: minikube
extensions:
- extension:
last-update: Sun, 16 Jul 2023 18:48:50 CEST
provider: minikube.sigs.k8s.io
version: v1.30.1
name: context_info
namespace: default
user: minikube
name: minikube
current-context: minikube
kind: Config
preferences: {}
users:
- name: minikube
user:
client-certificate: /Users/kevinwelter/.minikube/profiles/minikube/
client.crt
client-key: /Users/kevinwelter/.minikube/profiles/minikube/client.key

Listing 1.1 Kubeconfig from Minikube

The configuration is simple and quickly explained. It is divided into the following
blocks:

® clusters

B contexts

B ysers

Information on the cluster itself can be found under the cluster item. For example, my
Minikube cluster can be reached at the address https://127.0.0.1:59746. Information
about certificates is also stored in this section. For example, you will find out that these
are located under the path /Users/kevinwelter/.minikube/ca.crt

A specific context for a cluster is saved under contexts, which kubectl uses when log-
ging in. For this reason, the user with which you log in and which namespace is active
after the start is stored here. You can see the active context under current-context.

66 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

1.5 Interaction with Kubernetes via the Command Line and Dashboard

Information about your user is stored under user, and the certificates you need for
authentication are linked.

Readable Certificates

Kubeconfig often contains the certificates in the text. This allows anyone who has
access to Kubeconfig to connect to the cluster.

In a company, you usually have multiple clusters for different environments. This also
means that you have multiple Kubeconfig files. In addition to using the KUBECONFIG
environment variable, you can also use the --kubeconfig option to provide kubectl
with the path to Kubeconfig. However, this route is somewhat tedious in everyday life.
Another option is to merge multiple Kubeconfig files into one Kubeconfig, in which
case you do not need to set the environment variable. You can find an example of this
in Section 1.7.3. I will show you the best way to work with multiple clusters in Section
1.5.6.

Note

You should discuss with the cluster admins how you want to obtain the Kubeconfig file
for a cluster in your company. This varies slightly depending on the structure.

1.5.4 Namespaces

I have used the term namespace a few times now without explaining it properly. So let
me make up for that at this point.

With Kubernetes, namespace is used in a similar way as it is in programming languages.

A namespace is a separate area that allows you to isolate resources.

A namespace in Kubernetes is like a country in the real world. Each country (name-
space) has its own government (resource management), laws (access rules), and inhab-
itants (pods, services, etc.). The resources and administration are isolated within a
country (namespace) so that activities in one country cannot affect the other countries.

This means that a namespace offers you the options

B to assign access rights to users,

® to allocate quotas for resources, and

® to avoid name conflicts.

A classic use case on a shared development cluster occurs when you and a developer
colleague are working on the same software in different branches. You both want to

deploy a version on Kubernetes, but the names of the resources would lead to a con-
flict. If you create your own namespace, you won't get in each other's way.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 67

1 Introduction to Kubernetes

However, not every resource is bound to a namespace in Kubernetes. In Section 1.5.5,
you will get to know a command from kubectl to query the resources that are bound to
namespaces.

At some point you may ask yourself how you can best cut namespaces and which appli-
cations should come together in a namespace. There is no universal answer to this
question, as it depends in part on the cluster structure. I always look at the following
points:

m Are the applications part of a larger coherent component?

® Do the applications need each other?

® Are the containers loosely coupled, but do they belong together?

If you answer yes to these questions, then you should deploy the applications to the

same namespace. The good thing is that your decision does not have to be final. In the
future, you will also be able to quickly deploy an application to a separate namespace.

Good to Know
If you set up a fresh cluster, Kubernetes will start with four initial namespaces:
® default

This namespace is created so that you can start directly without having to create
your own namespace.

B kube-node-lease

This contains the lease objects that are connected to the Kubernetes nodes.
Kubelet sends the heartbeats over it.

®m kube-public
This namespace is readable for everyone and is usually only used by the cluster.
® kube-system

This is used for objects created by Kubernetes.

Note

You should only use the default namespace for quick tests. It is better to create a sepa-
rate namespace for your application. Otherwise, conflicts can arise, especially in clus-
ters that have multiple users.

1.5.5 kubectl Commands

Now that you know how to configure kubectl for a cluster, I would like to briefly intro-
duce you to the structure of the tool and the most important commands. We will use
the individual commands in detail in the following chapters.

68 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

1.5 Interaction with Kubernetes via the Command Line and Dashboard

Note
This section is perfectly suited for reference. If you have never used kubectl before,

please follow the instructions. Otherwise, come back if you need one command or
another again in the course of the book.

If you have used CLI tools before, you will quickly get used to kubectl. Like every CLI
tool, kubectl also has a help function that you can always consult for the syntax. To do
so, enter the following command:

kubectl --help

The shortened output will look as follows:

kubectl controls the Kubernetes-Cluster manager.
Find more information at: https://kubernetes.io/docs/reference/kubectl/
Basic Commands (Beginner):

create Create a resource from a file or from stdin

Basic Commands (Intermediate):
Deploy Commands:

Cluster Management Commands:

You can see the commands supported by kubectl. These are grouped into topics, and
behind each command you will find an additional explanation. If you need help for a
specific command, you can also call it for each command. If you want to get more infor-
mation on the create command, you must run kubectl create --help.

You will then receive examples of the application in the output, other commands that
can be combined with create, and options that you can use. The effect of the com-
mands and options is also displayed.

This goes even further with most commands. If you now want to create a namespace
using create, but do not know the exact syntax, then you can simply enter kubectl
create namespace --help to receive the information you need in order to enter the name
of your new namespace.

The really good thing about kubectl is that the commands have meaningful names, so
it's easy if you know what you want to do. You want to create a pod? Then the command
you need to enter is create pod.

If you want to have all pods in one output, you must use get pods.

If you want to delete a pod, you should enter delete pod [PODNAME].

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 69

1 Introduction to Kubernetes

We will now go through the most important commands of kubectl, and then you will
see how easy it is to use Kubernetes.

As a developer, you will hardly need some of the commands, as you can also use
kubectl to administrate the cluster. For this reason, we will not go through all the com-
mands, but you will get to know the most important ones.

Note
You can also create an alias for Kubernetes to avoid all the typing work.

For Linux and Mac:
alias k="kubectl'
For the PowerShell:
Set-Alias -Name k -Value kubectl

kubectl get

Let's start with a command that allows you to see which resources are running or are
active in Kubernetes. To do this, use the kubectl get command. If you remember Sec-
tion 1.5.3, then you already know this command. As a test, you used the kubectl get
namespaces command to display the namespaces.

In our example, we want to display the generated pod. To do this, you simply need to
replace namespaces with pods in the command—thus, kubectl get pods. When you run
the test command in your console, you will see all pods that are available in your active
namespace. However, these are not all the pods, as Kubernetes also uses some system
pods that are executed in other namespaces. To assign a desired namespace to the
command, you can use the -n <namespace> option to select a specific namespace. You
can also specify the -A option to output all pods in all namespaces. Then the command
would read kubectl get pods -A.

If you enter the command in your console, your output should look something like
this:

NAMESPACE NAME READY ~ STATUS RESTARTS AGE
kube-system coredns-787d4945fb-qcsvy 1/1 Running 0 8d
kube-system etcd-minikube 1/1 Running 0 8d
kube-system kube-apiserver-minikube 1/1 Running 0 8d
kube-system kube-proxy-42gdl 1/1 Running 0O 8d
kube-system kube-scheduler-minikube 1/1 Running 0 &d
kube-system storage-provisioner 1/1 Running 0 8d

70 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

1.5 Interaction with Kubernetes via the Command Line and Dashboard

If you want to view a specific pod, you can also enter the name of the pod after the com-
mand. Note, however, that you must also specify the exact namespace. Thus, if we use
the information from the first output to output the pod named etcd-minikube, the
command looks as follows: kubectl get pods -n kube-system etcd-minikube.

An additional option of get that you will need often is -o. This allows you to customize
the output format. For example, you can use the -o wide command to output more
information when outputting the pods or use the -o yaml option to output the object as
YAML code.

kubectl create

Let’s now take a closer look at the command from the preceding example. You can use
the create command to create Kubernetes resources.

When you run the kubectl create namespace my-k8s command, the my-k8s namespace
should be created as a result. The kubectl get namespace command allows you to check
whether or not the namespace has been created.

Now let’s deploy the first pod in the new namespace. For this purpose, we use the
deployment object. I will go into more detail about the Kubernetes objects and how
they are connected in Chapter 2.

In this example, you’'ll install a Nginx web server in your new namespace. To do this,
use the following command: kubectl create deployment nginx --image=nginx -n my-k8s.
This command creates a deployment object with named nginx and passes nginx as the
image to it. Kubernetes searches for this image in Docker Hub, downloads it, and cre-
ates a pod from it.

You need the -n my-k8s option so that Kubernetes knows in which namespace the
object is supposed to be created. If you do not add the namespace, the deployment will
be created in the default namespace.

Now you can check what Kubernetes has created. You can use kubectl get pods -nmy-k8s
to view the pod created and whether it is in the running state. With kubectl get
deployment -n my-k8s, you can view the generated deployment object.

You have now entered imperative instructions by using the create command to create
an object, and Kubernetes has followed them. However, it is also possible to define
resources in YAML and roll out this file. The command to deploy resources from a file
named deployment.yaml is kubectl create -f ./deployment.yaml. You can use the -f
option to give a file to kubect1.

In most cases, you want to define and deploy resources as code in Kubernetes, and this
also follows the declarative approach. We will deal with this topic in Chapter 3.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com n

1 Introduction to Kubernetes

kubectl replace

You now know the create command, which you can use to create resources in Kuber-
netes. However, this command has its limits: if a resource already exists, it cannot be
created by kubectl. You need another command to update a resource, and that is
kubectl replace. It is the counterpart to create and also follows the imperative ap-
proach.

replace has a weakness because, as the name suggests, the resource in question is
replaced. This can lead to a pod being dismantled and the new one being set up, even
with the smallest changes. replace should therefore be carried out with caution, espe-
cially in production environments.

A resource can only be replaced if the complete manifest in YAML is provided with the
change. This means that you first need the YAML code of the deployment object for the
current example. For this purpose, you can use the get command that you already
know. The kubect] get deployment nginx -o yaml -n my-k8s command displays the YAML
code on your console. The shortened result should look similar to Listing 1.2.

apiVersion: apps/vl
kind: Deployment
metadata:
annotations:
deployment.kubernetes.io/revision: "1"
creationTimestamp: "2023-07-25T21:32:347"
generation: 1
labels:
app: nginx
name: nginx
namespace: my-k8s
resourceVersion: "225996"
uid: 15cdcd08-37ff-4ae3-99b5-176524dat166
spec:
progressDeadlineSeconds: 600
replicas: 1

Listing 1.2 Output of Deployment

I'will go into the YAML format in more detail in Chapter 3, Section 3.2. For now, it is suf-
ficient to write the output to a file named deployment.yaml.

As shown in Listing 1.2, in that file, you can change replicas: 1toreplicas: 2. When you
install this update, Kubernetes will start a second pod. To do this, you need to run the
kubectl replace -f deployment.yaml command.

72 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

1.5 Interaction with Kubernetes via the Command Line and Dashboard

As areturn, you obtain deployment.apps/nginx replaced, and Kubernetes should imme-
diately start deploying the second pod. Then you should use the get command to check
whether the second pod has been started in your namespace.

Good to Know

You may have noticed that you did not have to specify the namespace by using -n in
the command. If you look at the YAML manifest, you will see the namespace: my-k8s
parameter. This enables Kubernetes to find the correct assignment.

kubectl apply

The far more elegant way to create resources and import updates using kubectl is the
kubectl apply command. The advantage of apply is that this command checks whether
a resource has already been created. If not, it will create a new one. If a resource has
already been created, it will import the changes as an update. The apply command is
therefore much more flexible than create.

apply also proceeds differently than the replace command during an update. This is
based on a declarative approach. You can find more information on this in Chapter 3,
Section 3.1. Simply put, the apply command will try to adjust the available resources
until the result matches what you have defined in the manifest.

As with replace, the apply command requires a manifest in order to roll something
out—either individually via kubectl apply -f deployment.yaml, or for an entire folder by
using kubectl apply -f <FOLDER>.

Because apply is completely different from create, kubectl will also show you a warning
if you try to update the created nginx using apply. Just give it a try with the following
command: kubectl apply - deployment.yaml -nmy-k8s. The warning looks as follows:

Warning: resource deployments/nginx is missing the kubectl.kubernetes.io/last-
applied-configuration annotation which is required by kubectl apply. kubectl
apply should only be used on resources created declaratively by either kubectl
create --save-config or kubectl apply.

The cleanest way is to generate the resource directly by using apply because then there
are generally no conflicts. This is also the standard procedure in most projects. To
enable you to test this in your cluster, you will learn about the delete command in the
next step.

kubectl delete

The kubectl delete command allows you to delete resources in their entirety. You can
define and delete individual resources by name as well as entire groups of resources
that you have defined in files.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 73

1 Introduction to Kubernetes

In the current example, you can again reference the file using kubectl delete -f
deployment.yaml, or you can use the name of the deployment as when creating it. To
display the name again, you can use the get command as described previously. The
deployment is called nginx and can be deleted accordingly by using the following com-
mand: kubectl delete deployment nginx -nmy-k8s.

There are two other options worth mentioning for the delete command that you may
sometimes need. First, you can force the deletion by using --force. This is useful if, for
example, a pod no longer responds at all and can no longer be shut down correctly. The
complete command would then be kubectl delete pod TestPod --force.

Second, you can also delete multiple resources using a label. This is useful if you have
also created a service or other Kubernetes resources for the pod. Let's assume that you
have created a service and a pod and given them a Name=TestApp label. If you now want
to delete both, you can simply run the kubectl delete pods,services -1 Name=TestApp
command. I will go into the topic of labels and selectors in more detail in Chapter 2, Sec-
tion 2.2.

At this point, I want to refer you once again to the kubect1 help. There you will find addi-
tional options and information on how to use them.

kubectl describe

Because you have deleted your deployment, you can now use apply to roll out
deployment.yaml. You should now find the deployment and two pods in your name-
space again. You know the get commands and can see the names of your pods. But now
you’ll want to get more information about your resources. The kubectl describe com-
mand is available for this purpose. It provides detailed information, status messages,
and events.

You can try it on one of your pods by using the kubect1 describe pods nginx-748c667d99-
xt1jp -n my-k8s command. (The name of the pod is generated and will be different for
you.) These outputs are important during debugging. Here you can also see whether an
image could be pulled and much more.

The describe command also enables you to simply display all available resources by
specifying only the resource in the command—for example, kubectl describe pods -n
my-k8s. Take a look at your deployment now via describe. There you can see informa-
tion about the replicas, the annotations, and also events such as scaling events.

This allows you to display every Kubernetes resource in your cluster. In the Section
subsection, I will show you how to determine which resources are available, which you
can then also view via describe.

kubectl logs

If you want to debug your containers, it is very useful to have access to the application
logs. As with Docker, you can output these very easily using the kubect1 logs command.

74 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

1.5 Interaction with Kubernetes via the Command Line and Dashboard

In the current example, you want to view the logs of one of your nginx containers. Run
the kubectl logs nginx-748c667d99-9448b -nmy-k8s command. (Don’t forget to adapt the
name of the pod to your environment.) The logs of the container are now displayed.

You can also extend the command with options. One notable feature is the ability to
output logs of multiple pods that are identified by a label. You can check which label
your pods have by using the describe command. The app=nginx label should be on the
pods. When you now use the kubectl logs -1 app=nginx --all-containers=true -nmy-k8s
command, you'll get the logs from both pods. As you can see, [have added the addi-
tional --all-containers option. We will look at the structure of a pod in Chapter 2, Sec-
tion 2.1, but this much can be said in advance: a pod can consist of multiple containers,

and this option will give you the logs from each of the containers.

If you run the command, you will receive the current logs that have been written up to
this point. Sometimes it is necessary to receive the logs directly without having to send
the command every time. You can activate the streaming function using the -f option.

kubectl exec

Sometimes you may need to enter the container for debugging purposes—for exam-
ple, to view the folder structure. This is also possible with the kubectl exec command,
which enables you to execute commands in the container of a pod. For example, if you
want to check which date is set in the nginx container, you can use the kubectl exec
nginx-748c667d99-9448b -n my-k8s -- date command to call the date tool in the con-
tainer and display the date.

You can run any command in the container in this style. If you want to display the
folder structure under the /usr folder, you need to use kubectl exec nginx-748c667d99-
9448b -n my-k8s - 1s /usr. You can also interactively connect to the container and take
over the shell there. The kubectl exec --stdin --tty nginx-748c667d99-9448b -nmy-k8s --
/bin/bash command will lead you into the container, while every further command
will then be executed in the container. You can terminate this again by using the exit
command.

Note

Not every container comes with a Bash command line. This means that you may have
to use /bin/sh instead of /bin/bash, depending on which image the container is based
on.

kubectl port-forward

Now let’s look at a very interesting command. You can use kubectl port-forward to
open a tunnel from your machine to access your pods.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 75

1 Introduction to Kubernetes

Note

With regard to development, this is a wonderful opportunity to test something quickly.
In production environments, however, you should only use this method for debugging
purposes. If it is not even restricted for your user, clarify this with your cluster admins
to be on the safe side.

Let's try this out on your nginx pods right away. The kubectl port-forward pod/nginx-
748c667d99-9448b -n my-k8s 8080:80 command allows you to open port 8080 on your
computer and forward it to port 80 of nginx, which naturally expects requests on port
80 as it is a web server. You can now call address 127.0.0.1:8080 in your browser and
should then see the welcome page of your nginx container.

As long as forwarding is active, your command line is blocked. If you want to continue
working, you can open a second window or cancel the forwarding process. You are now
welcome to check the logs of your pods again. There you should find an entry from
your call that looks similar to the following:

127.0.0.1 - - [27/3Jul/2023:21:04:32 +0000] "GET / HTTP/1.1" 200 615

"-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/115.0.0.0 Safari/537.36" "-"

2023/07/27 21:04:32 [error] 28#28: *1 open() "/usr/share/nginx/html/
favicon.ico" failed (2: No such file or directory),

client: 127.0.0.1, server: localhost, request: "GET /favicon.ico HTTP/1.1",
host: "127.0.0.1:8080", referrer: "http://127.0.0.1:8080/"

kubectl api-resources

The kubect] tool also comes with a command that enables you to find out more about
the resources. We will go into the most important components in more detail in Chap-
ter 2, but when you use kubectl, it is important for you to know what you can query by
using get or describe, for example.

The command is kubectl api-resources. When you run this command, you will receive
a list of all resources offered by Kubernetes in the current version. There you can also
see in which version this component is used. This is particularly relevant for Kuber-
netes updates, as the versions of the resources can change and thus the YAML mani-
fests can as well.

What is also interesting to know is whether a resource is assigned to a namespace or
not. As you already know, a pod is assigned to a namespace. This is why you also need
the -n option in the commands to refer to the corresponding namespace. A persistent
volume (PV), on the other hand, is not assigned to a namespace and is only bound to a
namespace by the persistent volume claim (PVC). But we will come to that in Chapter 5.

76 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

1.5 Interaction with Kubernetes via the Command Line and Dashboard

Example

You can use the following commands to query whether resources are bound to name-
spaces or not:

® kubectl api-resources --namespaced=true

m kubectl api-resources --namespaced=false

1.5.6 Switching Clusters and Namespaces Easily

At this point, I would like to introduce two tools that will make your work with kubectl
much more convenient. There are two things that become quite annoying over time:
® Specifying the namespace for each command by using -n

®m Working with multiple clusters simultaneously

There is a nice solution for both. The kubens tool helps you to change namespaces, while
kubectx helps you to change clusters. You can find simple installation instructions for
your system at http://s-prs.co/v596411.

After the installation, you must also check the completion for your command line,
because this is the big advantage and makes your work much more pleasant, and you
can select namespaces very easily.

Let's go through a quick example. You are currently in the default namespace and want
to switch to the test namespace. The kubens test command allows you to change the
namespace. The output should look as shown in Listing 1.3.

Context "minikube" modified.
Active namespace is "ingress-nginx".

Listing 1.3 Output from kubens

Good to Know

You can change the namespace permanently with kubect1 as follows:

kubectl config set-context --current --namespace=my-namespace

kubectx works just as easily as kubens. The kubectx minikube command enables you to
switch to the cluster named minikube. kubectx requires the corresponding Kubeconfig
file to be integrated as described in Section 1.5.3. The tool extracts all information from
the context of the Kubeconfig file.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 77

http://s-prs.co/v596411

1 Introduction to Kubernetes

Good to Know
A permanent change of the Kubernetes cluster via kubectl is also possible, as follows:

kubectl config use-context minikube

Note
If you have many namespaces or clusters to choose from, you should take a look at the
fzf tool. It is a fuzzy finder for the command line, which ensures that you only have to

call kubectx, for example, and can then select the cluster interactively. You can find the
tool in GitHub at http://s-prs.co/v596412.

1.5.7 The Kubernetes Dashboard

The Kubernetes dashboard is the graphical user interface for Kubernetes, which also
uses the Kubernetes API to allow you to manage it. Minikube comes with the dash-
board out of the box, and the Kubernetes dashboard can also be used in most compa-
nies.

Starting the Dashboard with Minikube
With Minikube, the dashboard can be started via a simple command. To do this, you

need to run the following command in your command line.

minikube dashboard
After executing the command, Minikube will download the dashboard container and
deploy it in your Kubernetes cluster. A connection to the dashboard is then automati-

cally established, and the page opens in your default browser. The dashboard should
look like the one shown in Figure 1.9.

default

Workloads

N

There is nothing to display here

Cron Jobs You can , select other namespace or to learn more.

Daemon Sets

Deployments

Jobs

Pods

Replica Sets

Replication Controllers

Stateful Sets

Figure 1.9 Kubernetes Dashboard: Overview

78 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596412

1.5 Interaction with Kubernetes via the Command Line and Dashboard

A Tour of the Dashboard

Let's explore the dashboard interface together so that you can familiarize yourself with
its operation.

In the top bar, you can see a dropdown field that reads Default. There you can select the
namespace you want your dashboard to display. If you have gone through the intro-
duction to kubectl, you will also find your my-k8s namespace there. (If you have not
done this, go through the examples in the previous sections again and create the
resources there.) If you select the namespace, you will be shown an overview of your
resources, as in Figure 1.10. You can see the deployment of nginx, the two pods, and a
ReplicaSet, as well as additional information. If you recall the outputs of kubectl get,
you will also see similarities there.

mein-k8s

= Workloads

g Workload Status
Cron Jobs
Daemon Sets
Deployments
Jobs
Pods
Replica Sets

Replication Controllers ~

Stateful Sets Running: 1

—

Service Deployments Replica Sets

—

Running: 2: Running: 1

Ingresses N
Ingress Classes

Deployments
Services N

Config and Storage Name Images Labels Created 1

Config Maps N nginx app: nginx 3.days.ago

Figure 1.10 Overview of Resources in Your Namespace

On the left-hand side you will find a menu with the option to select the most important
resources in Kubernetes. For example, if you click Pods, you will see a list of all pods
running in this namespace. This allows you to navigate through the individual re-
sources.

If you now click the name of one of your pods, you should be taken to a page where you
can get all the information about this specific pod, just as you can do using kubectl
describe.

Let's say you want to debug this pod. You've already collected the information you
need, and now you want to look at the logs. Kubernetes provides additional menu
items in the pod view in the form of icons, as shown in Figure 1.11. From left to right,
there are icons for View Logs, Exec into Pod, Edit, and Delete.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 79

1 Introduction to Kubernetes

= Workloads > Pods > nginx-748c667d99-9448b

Figure 1.11 Menu Bar in Pod View

Click the View Logs icon. This opens a window containing the logs. It is important to
know that you can also select the different containers within a pod using a dropdown
list, as shown in Figure 1.12.

Logs from nginx ~ in nginx-748c667.. ~

Figure 1.12 Selecting Logs for Different Containers in Pod

You have now looked at the logs and want to go into the container to check something
there. To do this, return to the pod view and select the second icon from Figure 1.11. This
will take you to the pod's shell window. As with kubect] exec, you can enter commands
in the container and navigate through the file system.

The Edit icon opens a window containing the pod's YAML manifest, which you can cus-
tomize and update using the Update button. An indication is given that an update via
this route is equivalent to a kubectl apply operation. For this reason, a new manifest is
passed to Kubernetes, and it attempts to adapt the resources accordingly.

You now want to make this adjustment on the basis of the deployment resource. To do
this, you need to navigate to Deployments in the dashboard and click the nginx deploy-
ment. Then click the Edit icon and search for the definition of replicas, as shown inline

98 in Figure 1.13.

Edit a resource

YAML JSON

spec
replicas
selector
matchLabels

app: nginx
template
metadata
creationTimestamp: null
labels
app: nginx
spec

Figure 1.13 Editing Deployment in Kubernetes Dashboard

80 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

1.6 Lens: The IDE for Kubernetes

Kubernetes always extends the YAML manifest with status messages and metadata,
which is why the manifest is significantly larger. However, we are only interested in the
definition that is shown under spec. Change the number of replicas from 2 to 3, then
click Update. Now the deployment will start another pod. Then click Pods in the naviga-
tion bar and see how the third pod is started.

So much for the Kubernetes dashboard. You now know how to navigate through the
individual resources and how to view and customize resources and debug pods. You
should take some time to click through the dashboard and familiarize yourself further
with it, because it is a good alternative to kubectl in order to get a quick and graphical
overview of your Kubernetes setup.

1.6 Lens: The IDE for Kubernetes

With kubectl and the Kubernetes dashboard, you have become familiar with the stan-
dard tools for using Kubernetes. I remember clearly that I only worked with those two
until a few months ago. Most of the time, I used the command line with kubect],
because the Kubernetes dashboard is sometimes a bit slow depending on the cluster. In
addition, it is difficult to switch between the individual clusters in a multicluster setup
with the Kubernetes dashboard because a new website must be called each time.

I always wanted a tool that combines both worlds: a graphical user interface and high
speed while working. Then I tried OpenLens. You will see shortly that this tool com-
bines kubectl and the dashboard. The integrations with Helm, which I will introduce in
Chapter 8, also make OpenLens an excellent tool for developers. It will expand your
tool set and definitely make you more flexible in the use of Kubernetes. But enough
raving. Let's get started now so you can see for yourself.

To install OpenLens, go to the following website: http://s-prs.co/v596413.

There you will find the correct installation command for your operating system and
can install OpenLens.

Licensing Terms of Lens

While | was writing this book, Lens changed its licensing terms, with the result that it is
no longer free of charge.

| have looked for an alternative for you and found OpenlLens. The Lens team continues
to develop the core in Openlens as an open-source product. Unfortunately, a few fea-
tures are missing, which | think is a shame, but you don't have to buy a license for the
exercises described in this book. kubectl is perfectly adequate.

I will use the name Lens herein synonymously with OpenLens.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 81

http://s-prs.co/v596413

1 Introduction to Kubernetes

1.6.1 Overview of Lens

When you open Lens, you will first be taken to the start page. On the left-hand side
there is a hotbar. That’s where you can store your clusters for quick access, and that's
exactly what we're going to do for Minikube now. Figure 1.14 shows how you can get to
your cluster. Click the menu button @ in the hotbar to access the catalog. Select @ Clus-
ters to see all your clusters.

Catalog

Bre¢

\, CATEGORIES
o &G | Source Labels Version Distro Status
benera

B Clusters) cal
®) Links

Figure 1.14 Inserting Minikube in Hotbar

Lens enables you to manage multiple clusters. The tool retrieves the access data and
information on your clusters from the Kubeconfig file. This means that you do not
need to configure the clusters manually; your Minikube cluster is already known, as
the minikube start command also writes the Kubeconfig file. If other clusters are
already included in your Kubeconfig file, then these are also listed here.

To add your cluster to the hotbar, click the options button € and select Add to Hotbar.
After that a new icon will appear below the catalog. When you click it, you will be logged
into your cluster.

First you see the overview of the cluster, as shown in Figure 1.15. On the left, you can rec-
ognize the similarity to the Kubernetes dashboard. You have the option of selecting
and displaying each resource individually. Click Workloads - Overview to be taken to
the same page that you know from the Kubernetes dashboard.

As you can see in Figure 1.16, you can select your namespace via the dropdown menu.
Now you can also navigate through the resources created in the previous chapters and
familiarize yourself with Lens. At its core, it is similar to the dashboard.

Try to display a pod as described in Section 1.5.7, and open the logs. You may already
notice how quickly you can navigate and how well thought-out the design and user
experience are. The fact that logs and terminal windows are opened at the bottom and
navigation through the resources is still possible is unbeatable in your day-to-day
work.

82 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

1.6 Lens: The IDE for Kubernetes

Ml minikube
Master

B Cluster

Figure 1.15 First Screen: Cluster Overview

All Namespaces

Figure 1.16 Selecting Namespace in Lens

1.6.2 Advantages over the Kubernetes Dashboard

The design and speed are not the only advantages of Lens over the Kubernetes dash-
board. I now want to show you a few more features that will be useful for you in the
future.

Activating Cluster Metrics

I'would like to start by showing you the metrics. In Figure 1.15, you probably noticed the
following message: Metrics are not available due to missing or invalid Prometheus con-
figuration. Prometheus is a very common monitoring tool in the world of Kubernetes.
Among other things, it collects metrics as time series that can be queried and displayed
using simple commands. I will go into more detail about Prometheus in Chapter 7, Sec-
tion 7.4, but for now note that Lens recognizes Prometheus and can display the metrics.

Activating Simple Port Forwarding

As you learned in Section 1.5.5, you can use port forwarding with kubectl to reach your
containers via a tunnel. This can be very convenient during development and debug-
ging. As the Kubernetes dashboard is a web application, port forwarding is not possible
there. Lens offers port forwarding and even makes forwarding very easy compared to
kubectl.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 83

1 Introduction to Kubernetes

Like kubectl, Lens can create tunnels for pods or services. A port definition is required
that specifies the port under which the application can be reached. Unfortunately, we
do not have these in our nginx example and must first add them to the YAML manifest.

To do this, click Workloads + Deployments in Lens, select Nginx in your namespace, and
click the Edit icon. There, as shown in bold in Listing 1.4, you want to insert the corre-
sponding code snippet and then click Save & Close.

spec:
containers:
- name: nginx
image: nginx
ports:
- name: http
containerPort: 80
protocol: TCP

Listing 1.4 Adding Port Definition for Pods

Good to Know

I want to make a small addition to the port definition in Listing 1.4. You may have asked
yourself whether name: http is necessary, as you are using port 80, and you must also
set https as the name if you use port 443. The answer is no. The name is freely select-
able.

For me, the name http was the most logical in this case. You can also name the port
according to its function, such as metrics for a port on which metrics are queried.

The deployment will update and deploy the pods with the new configuration. Go to the
pod overview and click a pod. The info window opens on the right. In it, you will also
find information on the containers, as shown in Figure 1.17.

Click Forward and enter “8080” as the local port. A browser window should now open
automatically, showing you the default page of your nginx. If that is not the case, you
can reach the container at http://127.0.0.1:8080/.

Note

When you use port forwarding, you should keep in mind that a port can only be used
once on your computer. For example, if you try to enter port 8080 a second time, you
will receive an error message. If that happens, you can either select a different port or
delete the old forwarding.

84 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

1.6 Lens: The IDE for Kubernetes

CPU Memory Filesystem

nginx

Always

Forward...

Figure 1.17 Container Info Window with Port Forward

In contrast to kubectl, port forwarding does not block the terminal, but is managed by
Lens in the background. You can view and manage the overview of your tunnels in the
navigation on the left under Network - Port Forwarding.

Helm Integration

The integration of Helm into Lens makes developing easier. Whereas I used to operate
the tools on the command line, I can now do most things via Lens. We will go into Helm
in more detail in Chapter 8, so a brief summary will suffice here.

Helm is a package manager for Kubernetes manifests. It allows you to provide Kuber-
netes objects very easily in so-called charts, which you can configure using parameters.
This is pretty useful if you have different environments and also makes it convenient
to use other charts. For example, it allows you to activate or deactivate autoscaling by
setting a variable. This means you can always deliver your application appropriately.

If you click Helm - Charts in the menu on the left, you will be taken to an overview page.
Lens has already activated a Helm repository from the Bitnami provider for you and
shows you an overview of the software offered by Bitnami, as shown in Figure 1.18. This
is very convenient for development purposes because you can find many tools, from
Jenkins to databases, and roll them out in Minikube at the touch of a button.

Try it out for yourself and roll out a Jenkins. You should also familiarize yourself with
this. The more you work with it, the easier it will become.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 85

1 Introduction to Kubernetes

. Charts Releases
Ml minikube ~

Config Q

Name Description Version App Version Repository
influxdb InfluxDB(TM) is an open sourc 5.8.1 bitnami
jaeger Jaeger is a distributed tracing 1.2.8 bitnami
e jasperreports JasperReports Server is a stal bitnami
e jenkins Jenkins is an open source Col NGET

e joomla Joomla! is an award winning ¢ NGET

jupyterhub JupyterHub brings the power: 4.1. NGET
kafka Apache Kafka is a distributed bitnami

e keycloak Keycloak is a high performanc NGET

58 O @

Helm e kiam kiam is a proxy that captures, 1.3. bitnami

Charts ° kibana Kibana is an open source, bro bitnami

e kong Kong is an open source Micro 9.4. bitnami

Figure 1.18 Overview of Helm Charts in Lens

1.6.3 The Lens Reference

I would like to provide you with a reference so that you can look up how to do some-
thing in Lens whenever you need to. I expanded this section whenever an exercise was
added in an upcoming chapter that requires you to do something in Lens. This means
that the following chapters with exercises are not unnecessarily large and you can sim-
ply look them up again if necessary.

Creating Resources

You can easily create new resources in Lens. Regardless of which menu item you are on,
you will see a + button in the bottom line, as shown in Figure 1.19. If you click that but-
ton and select Create Resource, an editor opens to write YAML manifests. In the Select
Template ... dropdown menu, you will find a selection of resources and templates that
you can use and expand. This is very convenient if you want to familiarize yourself
with Kubernetes or get to know new resources. Of course, you can also use your own
manifests here or use the examples from this book.

Finally, click Create and the manifest will be transferred to Kubernetes and set up. If
you have errors in the manifest, Lens will point them out and you can correct them.

86 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

1.6 Lens: The IDE for Kubernetes

+

Figure 1.19 Creating Resources and Opening Terminals in Lens

Terminal within Lens

In Figure 1.19, you can also see the Terminal Session option, which allows you to open
your own command line in Lens. This is very helpful as you can then simply use
kubectl within Lens.

This integration makes your work even easier because you don't need to switch
between the different windows.

[+]

Good to Know

Especially since OpenLens has removed some functions, such as exec or logs, the termi-
nal is worth its weight in gold.

The Pod Action Bar

With kubectl, you have already learned some commands to perform actions with pods.
At this point, I want to show you how you can use Lens to perform actions on pods.

To do this, go to the pod overview under Workloads « Pods and click the pod you want
to use. This opens the pod overview on the right, and at the top you will see the action
bar, which looks like the one shown in Figure 1.20.

Pod: nginx-6f7fd8cbf5-zk8rx

Figure 1.20 Action Bar for Pods in Lens

Note [«]

The action bar is slightly smaller in OpenLens. Unfortunately, you can perform only edit
and delete actions here. | have nevertheless covered the complete action bar to give
you a full overview.

Let's go from left to right and try the options out directly:

1. The first icon is the equivalent of kubectl attach. It allows you to connect to the run-
ning container, and you are in the running process. This enables you to receive all

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 87

1 Introduction to Kubernetes

log messages directly on the console. In my daily work, I don't use this as I prefer
using the logs.

2. You can use the second icon to run kubectl exec. In Lens, this function is called pod
shell because you can use it to open a new command line in the corresponding
container and execute commands there. This is useful if you want to debug some-
thing or search for files in the file system.

3. You can view the pod's logs by clicking the third icon. It does the same thing as
kubectl logs and shows you the current logs of the container in a new window.

4. Icon number 4 performs a deletion by eviction. Eviction is a special way of “expel-
ling” pods from nodes. I do not use this option either and instead recommend the
normal delete function. Eviction can lead to problems as it does not delete the pod
cleanly from the etcd database.

5. The pen icon is intended for editing the pod. When you click it, a window opens and
displays the YAML manifest, which you can edit and save.

6. The sixth icon performs the normal deletion of the pod via kubectl delete. The pod
is then terminated and the pod manifest is deleted from etcd. However, if it is part of
a deployment with a ReplicaSet, for example, Kubernetes will create a new pod
again.

Custom Resources and Custom Resource Definitions

You will learn about the concept of custom resources (CRs) and custom resource defini-
tions (CRDs) in Chapter 4. Here, I'll show you where you can find them later in Lens.

At the bottom of the left-hand menu, you will find the custom resources menu, as
shown in Figure 1.21. As soon as you start creating CRs and CRDs, these will also be dis-
played in the left-hand menu in dropdowns corresponding to the CRD group. You
therefore have the option of navigating either via the left-hand menu or via the Defini-
tions menu item. As usual, all CRDs are then displayed in the main window, which you
can select to display the corresponding CRs.

@ Custom
Resources

Definitions

stable.example

.com

Cron Tab

Figure 1.21 Custom Resources Menu in Lens

Adding a New Cluster

Usually, Lens simply retrieves the information about your Kubernetes clusters from all
Kubeconfig files in your home directory under ~/.kube. You can therefore simply

88 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

1.7 The Kubernetes Cluster from Raspberry Pis

extend your Kubeconfig file with a new cluster or store another Kubeconfig file there
and thus also have access to it in Lens.

In addition, Lens provides the option of adding a new Kubeconfig file and thus a new
cluster without having to adapt the Kubeconfig file in your home directory. To do this,
you need to go to the catalog in Lens and click Clusters in the categories. As shown in
Figure 1.22, you will find the + button there; click it and select Add from Kubeconfig. This
opens a text window into which you can copy the Kubeconfig file. Then, click Add Clus-
ter.

Add from kubeconfig e

+

Figure 1.22 Adding New Kubeconfig File to Lens

The second option shown in Figure 1.22 is to use Sync Kubeconfig(s), which allows you
to select a folder or a Kubeconfig file. The folder is then searched for Kubeconfig files in
the same way as the ~/.kube path. You can also manage the Kubeconfig syncs later
under General - Preferences - Kubernetes and remove or add folders.

In the catalog, you can click Settings via the button with three dots and adjust the name
of the cluster. In addition, you can add a Pi cluster to the hotbar.

Note

Remember: If you do not store the Kubeconfig file in the ~/.kube directory, you cannot
control the new cluster via kubectl. Another option is to merge two Kubeconfig files. |
will describe this in Section 1.7.3.

1.7 The Kubernetes Cluster from Raspberry Pis

You have already taken your first steps with Kubernetes in Minikube in the previous
sections. In this section, I will introduce a simple and inexpensive way of setting up a
real cluster. Minikube itself is virtualized in a Docker container and therefore quickly
reaches its limits, especially with network demos.

You are also welcome to use this section at a later stage and set up a cluster if you need
it in an exercise. The hardware requirements of a “real” Kubernetes cluster naturally

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 89

1 Introduction to Kubernetes

depend on the number of containers you want to manage and can become very large.
Our test environment is much more modest in this respect; a few small Raspberry Pis
are sufficient for the examples in this book. However, if you want to run alarge number
of different containers at the same time, the cluster will reach its limits. But that is pre-
cisely the strength of Kubernetes: you have two nodes and can try out networks such
as a service and an ingress, which we’ll discuss in Chapter 2, Section 2.5. If that's not

enough, you can simply add more devices and let your cluster grow.
In this section, we will go through the following steps:

1. I'will introduce the hardware I use.

2. You will set up the Raspberry Pis.

3. We will install Kubernetes together.

Note

| followed various instructions on the internet to set up the Raspberry Pis. A good web-
site to consult if you have problems is https://tutorials-raspberrypi.com/.

1.7.1 Choosing the Right Raspberry Pis

At the beginning, I was a little undecided about which Raspberry Pis would work best
for this use case. There are different models and versions available, which of course also
cost different amounts of money. In the end, I decided on the following setup, and am
more than happy with it:

® 2 x Raspberry Pi 4s, 4 GB memory ($61.75 each)

® 2 x SD cards, 64 GB each ($15.00 for two)

m 2 x official Raspberry Pi power supply units ($7.99 each)
® Five-port switch + network cable ($17.99)

m Stackable acrylic case ($6.50)

In my experience, the longer I research, the more expensive it gets, because the tin-
kerer in me becomes active. There are many possibilities to buy even better housings
for the Pis or to install fans in the housings. I have been running the cluster for several
days in a row now and do not see any sign of overheating. You will find a small example
of temperature monitoring later in Chapter 7, Section 7.4.2. 1 also bought a heat sink set.

This lowers the temperature by a few degrees—but in the end, this is all optional and
not necessary for a Kubernetes test cluster.

Of course, you can also use memory cards and power supply units that you still have at
home, and a 32 GB memory card will probably suffice. In this case, I have opted for a
setup that can also withstand larger requirements, but you can also start a little smaller.

90 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

https://tutorials-raspberrypi.com/

1.7 The Kubernetes Cluster from Raspberry Pis

The great thing about Kubernetes is that if you push your cluster to the limit, you can
simply add another Pi.

Note [«]

The Pis all have a built-in Wi-Fi module. However, | immediately added the switch so
that | have a more stable connection between the master and the worker. A Wi-Fi con-
nection would of course be sufficient for your test cluster, and you can save yourself
the switch.

The Pis arrive without anything loaded. To be able to use the Raspberry Pis, you must
install an operating system on an SD card. There are specially developed operating sys-
tems available, which are based on Debian. To record to SD card, you can use Raspberry
Pi Imager, which you can find at https://www.raspberrypi.com/software/; select the
download for your computer.

Once you have installed the imager, you can select your suitable Raspberry Pi version,
as shown in Figure 1.23. You'll want to use Raspberry Pi OS Lite (64 bit) as the operating
system, as this comes without a desktop, which you won't need anyway. You can find it
in the selections under Raspberry Pi OS (Other). Then select the SD card and click Next.
You will be asked if you want to make OS customizations; click Edit Settings to set some
important elements.

' Raspberry Pi

Raspberry Pi Gerat Betriebssystem SD-Karte

RASPBERRY P14 RASPBERRY PI OS LITE (64-BIT) SD-KARTE WAHLEN

Figure 1.23 Raspberry Pi Imager

I have chosen raspberrypil as the host name for the master and raspberrypi2 for the
worker. The user's name is kevinwelter. I have stored my public key in the Services tab
so that I can later access the Pis via SSH. Next, click Save, then select Yes to apply the
customizations.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 91

https://www.raspberrypi.com/software/

1 Introduction to Kubernetes

Once you have installed the image on both SD cards, you can insert them into the Pis
and connect them with a power supply unit. The Pis will then start automatically. To
log in, I use two command line windows and the commands from Listing 1.5.

You have now set up the Pis initially. In the next step, you will install Kubernetes.

ssh -i .ssh/pi_key kevinwelter@raspberrypil.local
ssh -1 .ssh/pi_key kevinwelter@raspberrypi2.local

Listing 1.5 Login to Pis via SSH

1.7.2 Installation of Kubernetes

We suggest K3S (https://docs.k3s.io) as your Kubernetes installation. This is a slightly
adapted version that is very lightweight and therefore perfect for your Pi cluster. How-
ever, you must first make small adjustments to the hosts.

Commands You Need to Execute on Both Raspberry Pis
Open the cmdline.txt file by using the sudo nano /boot/cmdline.txt command, then

insert a space and the following values at the end:

cgroup_enable=cpuset cgroup_memory=1 cgroup_enable=memory

If you have not used Nano previously, note that you can save and close the changes via
+(xJ.

Then you must change iptables to legacy, because there is a small problem with the
Debian of the Pis. Finally, restart the devices:

sudo update-alternatives --set iptables /usr/sbin/iptables-legacy
sudo update-alternatives --set ip6tables /usr/sbin/ip6tables-legacy
sudo reboot

Commands for raspberrypil
The first Pi will be the K3s master. For this purpose, you need to run the following com-

mands:

export K3S_KUBECONFIG_MODE="644"
curl -sflL https://get.k3s.io | sh -

This command downloads the script for installation and executes it directly. At the
end, you will receive the information that K3s has been started. You can also check the
current status via the sudo systemctl status k3s command.

Now you still need the node token with which worker nodes can register with the mas-
ter. You can display it via sudo cat /var/lib/rancher/k3s/server/node-token.

92 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

https://docs.k3s.io

1.7 The Kubernetes Cluster from Raspberry Pis

Commands for raspberrypi2

You can now install the worker and register it with the master. You also need two other
environmental parameters. The first one is the URL for the master, which in this case is
simply the host name. The second one is the node token that you issued in the previous
step. Run the commands as follows and adjust the values for your setup if necessary:

export K3S_KUBECONFIG_MODE="644"

export K3S_URL="https://raspberrypil:6443"
export K3S_TOKEN="K101a..560"

curl -sfL https://get.k3s.io | sh -

You can then check on the master whether the worker has been installed correctly. Run
sudo k3s kubectl get node and you should get an output similar to the one shown in Lis-
ting 1.6. You have now installed Kubernetes on your Raspberry Pis.

NAME STATUS ~ ROLES AGE
raspberrypi2 Ready <none> 18d
raspberrypil Ready control-plane,master 18d

Listing 1.6 Displaying Nodes of Raspberry Pi Cluster

Note

These instructions make sure that you will always install the latest version of K3s.
However, this should not be a problem for the examples in this book.

1.7.3 Using the Kubeconfig File of the Pi Cluster

Solong as you are logged in on the master, you can use the kubectl installed there, but
in the next step you need to get access to the Pi cluster with Lens and with kubectl on
your machine. To enable this, you need the Kubeconfig file, which you can obtain using
the cat /etc/rancher/k3s/k3s.yaml command on the master. It is best to first copy the
file into an editor of your choice, as you must change the server: https://127.0.0.1:
6443 parameter to the name of the master—in this case, server: https://raspberry-
pil:6443.You can now use the customized Kubeconfig file and add it to your system in
three ways:

1. You can add the Kubecontfig file only in Lens, as described in Section 1.6.3.

2. If you store the Kubeconfig file under the ~/.kube path and adjust the environment
parameters as described in Section 1.5.3, you can access it via both Lens and kubectl.

3. Alternatively, you can transfer both Kubeconfig files to a single file under ~/.kube/
config; this means that you do not have to set any environment parameters.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 93

1 Introduction to Kubernetes

If you have selected option 2 or 3, you can use kubectx to switch clusters. I introduced
this tool in Section 1.5.6.

Example

There are several ways to merge Kubeconfigs. | want to describe the most elegant one
now. For PowerShell, you have to adapt the commands slightly:

1. First, you need to make a backup of your Kubeconfig file:
cp ~/.kube/config ~/.kube/config-backup

2. Add all Kubeconfig files to the KUBECONFIG environment variable so that they can be
found by kubectl:

export KUBECONFIG=~/.kube/config:/path/one:/path/two
3. You can merge the Kubeconfig files using kubect1:
kubectl config view --flatten > config
4. Then replace the old Kubeconfig file with the new one:
mv config ~/.kube/config
5. You can now check in a new terminal window whether all clusters are found:

kubectl config get-clusters

Once you have integrated the Kubeconfig file, you should carry out a short test to check
whether you also have access to the cluster. If everything works, you are ready to carry
out the exercises from the book on your own Raspberry Pi cluster.

Good to Know
You can switch the Raspberry Pis on and off without any problems. The cluster should
rebuild itself correctly as you are only using one master.

If you remember Section 1.3, you will know that a connection failure with more than
one master would be fatal. By breaking the connection, the etcd quorum would no lon-
ger know which dataset is the correct one. In that case, you would have to perform a
recovery or rebuild the cluster.

94 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

Chapter 2

Basic Objects and Concepts in
Kubernetes

I never dreamed about success. | worked for it.
—Estée Lauder

In the preceding chapter, you got to know Kubernetes at a high level. You now know the
architecture and have your own test cluster. Along the way, you became familiar with
some resources and executed your first commands in the cluster. Let's now take a look
at the theory and the concepts behind it. The theory is usually the hardest part of a
book, but I will provide some practical examples that you can try out using Lens and
Minikube.

In the first step, you will get an overview of the most important objects, which are also
referred to as API objects, and then I will introduce them in more detail thereafter. The
sections build on each other.

Note

| recommend that you really try out everything. Every exercise, no matter how small it
may seem, will help you to anchor your new knowledge. You will see how your brain
links the knowledge directly to your own use cases and how this gives you new ideas.

Let's start by looking at which components are active in Kubernetes when you make a
request to a website that gets its data from a backend. You will get to know all these
components in this chapter.

Figure 2.1 shows how a user sends a request that is accepted by an ingress. The ingress
redirects the request to a service that has the frontend as a selector. The request then
gets redirected from the service to a frontend pod, which in turn retrieves the data
from the backend via a service.

This looks like a lot of communication effort at first, but you will see that each of the
objects fulfills a purpose, especially for a distributed system.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 95

2 Basic Objects and Concepts in Kubernetes

Node Node Node
Request @
EE—
Ingress
Service Service @
Selector=Frontend Selector=Backend Pod

Label=Frontend

Pod Pod Pod
Label=Backend Label=Frontend Label=Backend

1| 1| P
& © & © ©

ConfigMap Secret ConfigMap Secret ConfigMap Secret

Figure 2.1 Sequence of Request in Kubernetes

Note
Feel free to take a look at the overall picture from time to time during the course of the

chapter. Think about how what you have learned fits into this picture. By the end of the
chapter, you will understand how everything fits together.

Let’s walk through the components:

m Let's start with the pod, which can contain and manage one or more containers.
When you use Kubernetes, you always create and manage pods and cannot manage
the containers they contain by yourself. This is why the pod is the smallest unit in
Kubernetes. So when you roll out your application in Kubernetes, it always runs
under the control of a pod. The pod is responsible for the execution of containers,
provides resources such as network configurations and storage, and can share these
between several containers within the pod.

Pods form the basis for other resources, such as deployments or StatefulSets, and are
generally not created in production systems without them because they manage
and monitor the individual pods.

96 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

Basic Objects and Concepts in Kubernetes

® One of the most important concepts in Kubernetes is that of labels and annotations.
These are not only there to identify Kubernetes resources; you can also use them to
control the entire cluster as you wish. You can link resources to each other, group
objects, or assign pods to specific nodes. Although simple, this concept represents a
very strong implementation.

® You already used a Kubernetes deployment in Chapter 1, Section 1.5.5. I have not

included the deployment in Figure 2.1 as it is more of an object in the background.
You can consider deployments to be a higher-level abstraction for the provision of
applications. They allow you to update your applications, perform rollbacks, and
scale your pods. A deployment always creates a ReplicaSet, which in turn creates and
manages the pods. A deployment is the perfect resource if your application is state-
less.

® The ReplicaSet ensures that you always have the number of pods available that you
actually need. Like the deployment, it is not contained in Figure 2.1 as it manages
your pods in the background. For example, if your application is supposed to have
two pods for reasons of reliability, the ReplicaSet takes over the monitoring. If it
detects that a pod has been terminated, it will scale a new one. At the same time, it
will terminate a pod if you manually scale a third one. This means that it continu-
ously monitors the number of pods running and automatically creates or deletes
pods to reach the desired number.

ReplicaSets are actually used only in combination with deployments. Like pods, you
can also create ReplicaSets individually, but this is not useful in practice as you
would lose the additional rollout mechanisms of the deployment.

®m Now let’s move to ConfigMaps and secrets. These two objects allow you to configure
your applications externally, which enables you to separate the configuration data
and sensitive data from the pods. As its name suggests, sensitive data such as pass-
words or API keys are provided in a secret, and you can provide any configurations
for your applications in ConfigMaps.

®m The Kubernetes service enables network communication with pods and takes care of
load balancing. It provides stable IP addresses and DNS names to reach your pods.
Thanks to load balancing, the service makes it easier for you to scale your applica-
tions. It always directs the requests to the right pods. Services are a crucial compo-
nent for the communication of your applications.

m Using ingress resources, you can implement external access to your application.
These allow you to route HTTP and HTTPS requests to the service, which then redi-
rects the traffic to your pods. This can be done on the basis of host or path rules,
which we will look at in more detail later. To apply the rules, Kubernetes uses the so-
called ingress controller, which is usually Nginx. The controller then redirects the
traffic based on the ingress rules.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 97

2 Basic Objects and Concepts in Kubernetes

2.1 Pod and Container Management

Let's now take a closer look at the concept of the Kubernetes pod. The pod is the small-
est unit that you can create and manage using Kubernetes, and its task is to manage
one or multiple containers. Kubernetes calls this unit a pod and thus remains true to
Docker's whale metaphor as in the world of whales, a pod is a unit made up of several
whales that live together.

Think of the pod as a small team of employees working together to accomplish a spe-
cific task. Each member of the team has a distinct role, but they share resources and
communicate with each other to achieve their common goals. Each employee on the
team corresponds to a container.

If you work according to the separation of concerns principle discussed in Chapter 1,
then a container has a specific task that is mapped and executed in a single process. In
addition, the container with your application only executes exactly this application. If
your application requires additional logging or proxy functionalities, then it makes
sense to outsource these to separate containers in order to keep your application lean.
However, this additional functionality is necessary for your application and belongs to
it, which is why it makes sense to link these two containers in a logical unit.

The question you need to answer as a developer is as follows: When do containers
belong together in a pod and when do they not?

The advantages of a single container per pod are as follows:
®m More flexible deployments
® More granular scaling

m Higher degree of decoupling

The advantages of multiple containers per pod are as follows:

® Faster communication between containers

® Improved separation of tasks

® Further development of the individual containers independently of each other

The team metaphor for a pod makes the concept a little more tangible, but the addi-
tional pods are actually mostly little helpers that support the main application. Table

2.1 describes typical use cases for these helpers. This may make some decisions easier
for you.

The important thing here is that the little helper must be decoupled from the main
application. For example, if adding a sidecar limits scalability, then you need to move
this functionality to a separate pod.

98 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.1 Pod and Container Management

Fame e

Ambassador These little helpers perform proxy tasks, which allows you to outsource the
authentication to an API, for example. Your application simply sends the
data to the ambassador, which in turn takes care of setting up the HTTPS
connection and managing the access tokens.

Adapter An adapter modifies data that goes into or out of the main application. This
is useful if you need to convert data into a specific format but do not want
to implement this in the main application. This is a perfect use case for leg-
acy applications.

Sidecar A sidecar adds additional functionality to your application. Monitoring or
logging is usually implemented via a sidecar.

Table 2.1 Terminology of Helper Containers within Pods

Note

Here’s a little help to decide whether your containers belong in the same pod. Simply
ask yourself the following questions:

® Do the containers have to share a common resource?
For example, if you have two containers that share a common file system, then
they belongin a pod. A use case could look as follows: A container makes files avail-
able to users. Another container is responsible for updating this data. According to
the separation of concerns concept, this would be a separation that makes sense,
and yet the two containers belong inseparably together.

® Do the pods have different scaling requirements?
For example, if you have a database and a web server, both applications have dif-
ferent scaling requirements. While the web server is stateless, the database is
stateful and cannot be replaced that easily. Accordingly, you must move these two
containers to individual pods.
In addition, a high load on the web server does not directly mean that you also
need more database instances. The goal is to have a good utilization for each pod
so that you don't waste any resources.

® Can the containers run on separate machines?
If your answer to this question is yes, then you can move the containers to different
pods with a clear conscience.

Figure 2.2 illustrates the inner workings of a pod. In this example, the pod has

B two containers,
® two volumes, and

® 3 pause container.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 99

2 Basic Objects and Concepts in Kubernetes

Pod

Helper
Container

l l
- &

/var/app/ /var/log

Application

Pause

Contai
ontainer Pod-IP
192.168.0.21

Figure 2.2 Structure of Pod

Ifa pod is created, the pause container starts first. It initializes the IP address, the name-
space, and the cgroups and holds them until the pod gets terminated. Each additional
container within the pod can rely on the initialized resources and receive incoming
traffic via the IP address, for example. The pause container is useful because even if
your application containers are restarted, the IP address remains.

Good to Know

The pause container is invisible and is never displayed in the Kubernetes CLI. However,
it runs on the node and you can see it via the container runtime.

The volumes can also be used by both containers. You can even access it at the same
time and use it to exchange data, for example. However, you must be aware that this
can cause conflicts that Kubernetes does not prevent or monitor for you. For this rea-
son, you should pay close attention to which container can write and read during
implementation. It is best if one container writes and the other is read-only. However,
we will return to the topic of shared storage in Section 2.1.3, and you will learn about a
use case that illustrates how you can use it.

Good to Know

As Kubernetes manages only the pod object, all containers within a pod are of course
started on the same node. This is the only way that the containers within a pod can
also share resources such as network and storage.

100 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.1 Pod and Container Management

2.1.1 Container Engines

When you first came into contact with containers, you probably used Docker. At least
that was what I did, and for me Docker is still synonymous with containers today.
Docker may not be the first one, but it is currently one of the best-known container
engines on the market. But Docker is much more than a simple container runtime. It
provides an easy way to develop containers, and with Docker Swarm it has developed a
competitor product to Kubernetes.

Good to Know

Docker is a container engine that runs the Docker containers via a container runtime.
To distinguish between these two terms, remember the following: A container engine
processes the user requests, interprets them and commands the container runtime.
The container runtime only takes care of the execution of the containers and what is
necessary for this.

As Kubernetes wanted to define a more open and independent standard, Docker was
marked as deprecated in Kubernetes version 1.20 and can no longer be used as a run-
time in the newer versions as before. This was not a decision that was made overnight.

Container Runtime Interface (CRI) was developed so that Kubernetes could open up to
other runtimes in addition to Docker.

Good to Know

CRI'is a plug-in interface that can be implemented by container runtimes. It defines the
communication between Kubelet and the container runtime, which is implemented
using the gRPC protocol. This interface allows Kubernetes to communicate with any
runtime that has implemented the interface.

A lot has happened on the market in recent years, and driven by Docker, an industry
standard for containers was defined in 2015. The standard of the Open Container Initia-
tive (OCI) comprises three specifications that can be used as a guide for projects and
developers. The specifications describe what containers are and how they should be
used, and from this what a runtime must look like or how images can be saved in a reg-
istry is derived. You can find an overview of the specifications in Table 2.2. The OCI stan-
dard allows you to build your application with Docker, Buildah, or Podman and still be
able to deploy it on Kubernetes. It is therefore definitely worth taking a look at the OCI
website at https://opencontainers.org/.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 101

https://opencontainers.org/

2 Basic Objects and Concepts in Kubernetes

runtime-spec Describes what a runtime must be able to do and what it should
look like
image-spec Describes the standard of a container image and what its manifest

should look like

distribution-spec Is closely related to runtime-spec and image-spec and describes,
for example, how the images are to be uploaded to a registry

Table 2.2 Overview of OCI Specifications

Docker has contributed a lot to the independence and openness of containers. For
example, Docker has extracted its own runtime and transferred it to an independent
project called containerd. Another component called libcontainer was also donated,
from which runC was developed.

That should be enough history. Now, how is a runtime structured?
If you search for container runtimes, you will always find a division into
= Jow-level runtimes, and

® high-level runtimes.

runC, for example, is a low-level runtime that creates and executes containers. How-
ever, it is controlled by a high-level runtime such as containerd.

containerd takes care of everything as a high-level runtime. It downloads the image
from the repository, manages the storage, and passes runC the container specification
it needs to start the container. It also monitors runC during the execution of the con-
tainers. In Kubernetes, starting a container would be similar to Figure 2.3.

The CRIinterface allows you to exchange containerd and runC with any other runtime.
In addition to containerd, there is another runtime that currently plays an important
role in the Kubernetes context. CRI-O is a runtime that is specifically developed for
Kubernetes. CRI-O also uses runC to execute the container, but like containerd, it has
the option of using other low-level runtimes.

Note

CRI-O is sometimes also referred to as the container engine. According to my research,
however, it is only a container runtime. The terms are often used interchangeably on
the internet, which sometimes makes it difficult to determine what is right or wrong.

For questions like this, | prefer to look at the GitHub repo, because that's where you'll
find the truth: https://github.com/cri-o/cri-o.

102 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

https://github.com/cri-o/cri-o

2.1 Pod and Container Management

L)
[Ld

kubelet,

push Container Spec

get Image
containerd

starts
Container

Y

runC

runs

Y

Container

Figure 2.3 Communication of Runtimes

Ultimately, which runtime you want to use under the hood of Kubernetes is a matter of
taste. But let me be honest with you: I have never dealt with the runtime as intensively
as I did for this book, and it will make no difference to you as a developer. For some
basic understanding, it's good that you know how containers are executed, but you
don't need to dive much deeper.

Good to Know
Let’s have a brief digression on how Kubernetes starts a container through CRI-O.

As you learned in Chapter 1, Section 1.3.3 about the API flow, Kubernetes passes the pod
manifest to the kubelet. Here’s what happens next:

1. The kubelet forwards the request to CRI-O via the CRI interface of Kubernetes.

2. CRI-O extracts the container image from the specified registry, unpacks it, and cre-
ates a root file system.

3. CRI-O then generates an OCI runtime specification that describes how the con-
tainer must run.

4. It transfers these to the low-level runtime runC.

5. The container is then monitored via a separate conmon process. This is a monitor-
ing process that ensures communication between CRI-O and runC. It redirects logs
and exit codes and thus passes on the status to the top.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 103

2 Basic Objects and Concepts in Kubernetes

2.1.2 Your First Own Pod

That’s enough theory! Let’s now deploy your own first container in a pod. We will use a
simple example and extend an Nginx web server. To do this, you can use the Dockerfile
from Listing 2.1. In Chapter 1, Section 1.4.7, I described how you can create a container

registry using Minikube. We need that container registry now, and if you haven't acti-
vated it yet, you can do so now.

Note

| use Docker here for the build. You can of course also use any other tool for this pur-
pose.

If your command line is located in the same folder as your Dockerfile, you can use the
docker build -t localhost:5000/my-nginx . command to build your image. The docker
push localhost:5000/my-nginx command allows you to load the image into the registry.

FROM nginx
RUN echo '<!DOCTYPE html><html><body><h1>Hello, World!</h1></body></html>"
>/usr/share/nginx/html/index.html

Listing 2.1 Dockerfile for Nginx Container

Note

If pushing the image causes problems, you should compare the respective error mes-
sage with the following:

Get "http://localhost:5000/v2/": dial tcp [::1]:5000:
connect: connection refused

This is an indication that you need to run the eval $(minikube docker-env) command
again. You must execute this in every new command line so that Minikube uses the
correct Docker environment. Only then will you reach the registry.

Now that your Nginx image is already available in the registry, you can use it to start
the pod in Kubernetes. To do this, you can use the manifest from Listing 2.2 and gener-
ate it via Lens. Take another look at the Lens reference guide (Chapter 1, Section 1.6.3),

where you will find the instructions for creating resources. Under Image, you enter the
container image that you have built and pushed into the registry.

Good to Know

The apiVersion in the manifest references the version of the corresponding Kuber-
netes object. In Chapter 4, Section 4.6, you will learn how objects are versioned in
Kubernetes.

104 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.1 Pod and Container Management

apiVersion: vl
kind: Pod
metadata:
name: my-nginx
spec:
containers:
- name: my-container
image: localhost:5000/my-nginx
ports:
- containerPort: 80

Listing 2.2 Pod Manifest for Your Own Nginx
To check, open Lens and look at your pod under Workloads - Pods. This should look like

Figure 2.4. Activate port forwarding as described in Chapter 1, Section 1.6.2, and open
the Nginx page in the browser. You should now be greeted by a Hello World message.

Note

You are not dependent on Lens in these examples. You can also use kubectl. In this
case, you can see the following output via kubectl get pod:

NAME READY STATUS RESTARTS AGE

my-nginx 1/1 Running 0 12s

Then you can use the kubectl describe pod my-nginx command to obtain detailed
information. Here’s the abridged version:

Name: my-nginx

Namespace: default

Priority: 0

Service Account: default

Node: minikube/192.168.49.2

Start Time: Tue, 13 Feb 2024 23:34:32 +0100
Labels: <none>

Annotations: <none>

Status: Running

IP: 10.244.1.6

Even if | don't always use both tools in the book, you can simply try it out with both. It
will help you to familiarize yourself with Lens and kubect1.

Congratulations! You have your first container running on your Kubernetes cluster.
Let's be honest, it's actually not that complicated. Try it out with one of your own appli-
cations: the quicker you take what you have learned into your own projects, the better
it will anchor itself in your subconscious

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 105

2 Basic Objects and Concepts in Kubernetes

Pods Namespace: default

[Name Containers Controlled By Node

&% Workloads

O my-nginx [] minikube

Figure 2.4 First Pod in Lens

2.1.3 Multiple Containers within a Pod

You have already learned that a pod can contain more than one container. Let's take a
look at this concept in practice.

You now have your own nginx web server that delivers your Hello, World page. As a lit-
tle helper, we want to provide the web server with a sidecar container that collects and
processes the logs. This means that the main container does not also have to take care
of redirecting logs to a central server; instead, we swap this task out to the sidecar con-
tainer. You can see the target image of the pod in Figure 2.5.

Pod
. my-log-
my-nginx collector
write read

/var/log/nginx

Figure 2.5 Nginx with Log Collector
Use the Dockerfile from Listing 2.3 to create your own log collector. The Dockerfile con-

tains a small shell script that accesses the access.log file of Nginx in an endless loop and
transfers it to a separate file named sidecaraccess.log. Once you have adopted the code,

106 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.1 Pod and Container Management

build an image again and store it in the registry. I have named the image localhost:
5000/my-1log-collector.

Note

Don't be surprised by the example. Of course, it is not thought through to the end, and
lines that have already been transferred are simply bluntly transferred to the file again.
However, the example gives you a good first impression of how a sidecar container
should function.

FROM busybox

RUN echo -e '#!/bin/sh\nwhile true; do cat /var/log/nginx/access.log >>
/var/log/nginx/sidecaraccess.log; sleep 5; done' > /bin/log-collector.sh
8& chmod +x /bin/log-collector.sh

ENTRYPOINT ["/bin/log-collector.sh"]

Listing 2.3 Dockerfile for Log CollectorSidecar Container

Good to Know

You will come across the busybox image often in the Kubernetes world. It is known as
the Swiss Army knife of embedded Linux because it contains most of the standard
Linux tools. At the same time, the image is very compact and extremely lightweight at
less than 5 MB. So if you want to do something with Linux tools, think of the busybox
image.

Now you can expand the pod manifest from Listing 2.2 as shown in Listing 2.4. You can
see that two containers are now specified, and the same log volume has been assigned
to both. This is also the transfer point of the data at the end. Both containers can access
the volume. Nginx writes its logs to this path, and the log collector picks them up and
processes them further.

Deploy the manifest via Lens and set up port forwarding again. Now open the Nginx
page so that the log collector also has logs to collect. You can now use kubectl exec to
open a shell in one of the containers. You can find the command in Chapter 1, Section
15.5. In the /var/log/nginx path, you need to check whether the log collector extracts
the logs correctly and writes them to its own file.

Note

Use an emptyDir as the volume in Listing 2.4. This is an empty folder that you mount
under /var/log/nginx. The lifecycle of this volume ends after the pod is terminated. We
will look at volumes in more detail in Chapter 5.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 107

2 Basic Objects and Concepts in Kubernetes

apiVersion: vl
kind: Pod
metadata:

name: my-nginx

spec:

containers:

name: my-container
image: localhost:5000/my-nginx
ports:
- containerPort: 80
volumeMounts:
- name: log-volume

mountPath: /var/log/nginx
name: my-log-collector
image: localhost:5000/my-log-collector
volumeMounts:
- name: log-volume

mountPath: /var/log/nginx

volumes:

name: log-volume
emptyDir: {}

Listing 2.4 Pod Manifest for Log Collector as Sidecar

Note

In case something does not work as it should, | would like to point out the possibilities
for error analysis. | always proceed according to a similar pattern.

In this example, it would be as follows:

1.

108

Check in Lens or kubectl whether the containers are running and, if not, analyze
the error messages. Possible issues include the following:

—The image name is incorrect.

—The image is not in the registry.

. Check the manifest:

— Are the indentations correct?

—Is the volume stored on the same path on both containers?

. Check the logs of the individual containers:

— Perhaps one of the paths is not correct.

— The script has an error.

© 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.1 Pod and Container Management

2.1.4 Communication between Containers

You have now developed and deployed your first pod with a sidecar container. Perhaps
you are now asking yourself the following question: Do the containers always have to
talk to each other via the file system?

There are different strategies for how the containers can interact with each other. You
can select the appropriate strategy depending on the function of the second container.
You have familiarized yourself with the standard helper containers and their functions
in Table 2.1. You can see the corresponding communication channels in Figure 2.6.

Pod
Application Sidecar
Pod
— Proxy » i
> » Other Service
Application Ambassador
Pod
Application [«— Adapter [« Other Service

Figure 2.6 How Helper Containers Communicate with Each Other

The classic sidecar container communicates via the file system, just like your log collec-
tor. A log collector is even the typical use case for this: your main application produces
data, and the helper container processes it further.

The second option is the ambassador, which is used as a proxy to the outside world.
Because the containers within a pod share an IP address, the main application can

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 109

2 Basic Objects and Concepts in Kubernetes

easily access the ambassador container via localhost and send data. Possible tasks for
the ambassador are as follows:
® Act as a service broker to other services

® Apply authentication to APIs

In each of these cases, your main application does not have to take care of a certain part
of the logic itself. It knows only the ambassador container, sends its requests to it, and
the rest is done by the ambassador.

The third strategy is the adapter container, which provides communication from the
outside to the inside. Here too the communication is established via localhost, but in
the other direction. Possible use cases can include the following:

® Validation of incoming data

®m Transformation of data before it reaches the main application

®m Transformation of communication protocols

Here the incoming traffic is simply transformed or prepared for the main application,
and only then does it go into the main application.

Good to Know

The containers in a pod all start at the same time. It is therefore impossible to predict
which container will be the first to boot up. This means that in your applications, you
cannot rely on the sidecar container being started after the application.

2.1.5 Init Container

The more complex an application in a pod is, the more demanding deployment
becomes. When you deploy the pod, you have little control over the speed of the
startup. Sometimes this can be a little frustrating because the database is not yet ready
or other prerequisites are missing. You could of course implement such checks in your
application, but there is a much nicer method: the init container.

Each pod can define one or more init containers, which are always started before the
main application. The sequence is strict, and one init container starts after the other.
Your application container can only start once all of them have been successful. This
means you can always be sure that your main application will not start until all init
containers have successfully completed their tasks. The following use cases for this
could be conceivable:

® The init container checks whether interfaces such as databases are accessible.
® Init containers can prepare the file system and assign or restrict rights.

B An init container can start on the basis of a different image with other tools that do
not belong in the main application but are needed for preparation.

110 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.1 Pod and Container Management

A major advantage of the init container is that you can assign your own authorizations
to it. This allows you to assign secrets to the init container that are not required by the
main application, which allows you, for example, to assign rights that enable you to
access resources or APIs during initialization that you do not need during the execu-
tion. This increases the degree of security, as you assign rights according to the least
privilege principle.

Let’s now extend your pod with an init container in Listing 2.5, which creates two files
in the file system for preparation. First it initializes the sidecaraccess.log file, and so that
you can see that it is actually creating something, it also creates the initcontainer.log
file. In the end, the pod will look as shown in Figure 2.7.

Pod
o my-log-
my-nginx collector
write read

initialize Init

Container

/var/log/nginx

Figure 2.7 Pod Extension with Init Container

Note
You can already see that the pods will fill up with many containers over time, but they

are inseparable. This is why Kubernetes manages pods and not the individual contain-
ers.

You can now roll out the new pod manifest via Lens and see how the containers behave.
The pod now contains three containers: it successfully completes the init container
first and then starts the other two containers. In the end, the pod in the Lens overview
should look as shown in Figure 2.8. As the init container has been successfully com-
pleted, it is only displayed as an empty box at the end. Now use the pod shell to check
whether the two files have been created correctly.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com m

2 Basic Objects and Concepts in Kubernetes

O my-nginx s e

Figure 2.8 Pod with Init Container in Lens

As you can see, the concept of the init container is also easy to use. Can you think of an
example from your company that is perfect for init containers? Try it out for yourself.

Note

You have a great deal of freedom when you develop an init container. You can use your
own code of your choice, whether Python, Java, or other. The only important thing is
that the container must complete successfully at the end; otherwise, the main applica-
tion won’t be able to start.

Note

If the init container fails, Kubernetes will start it again and again by default until the
attempt is successful. In Section 2.1.7, you will learn how to set the restart policy.

apiVersion: vl
kind: Pod
metadata:
name: my-nginx
spec:
initContainers:
- name: init-my-log-collector
image: busybox
command: ['sh', '-c', "touch /var/log/nginx/sidecaraccess.log && touch
/var/log/nginx/initcontainer.log"]
volumeMounts:
- name: log-volume
mountPath: /var/log/nginx
containers:
- name: my-container
image: localhost:5000/my-nginx
ports:
- containerPort: 80
volumeMounts:
- name: log-volume
mountPath: /var/log/nginx
- name: my-log-collector
image: localhost:5000/my-log-collector
volumeMounts:

112 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.1 Pod and Container Management

- name: log-volume
mountPath: /var/log/nginx
volumes:
- name: log-volume
emptyDir: {}

Listing 2.5 Log Collector Pod Manifest with Init Container

2.1.6 Pod Phases and Container Statuses

You have already started and run several containers on Kubernetes. Finally, I would like
to introduce you to the different phases that containers or pods can be in.

Let's start with the phases of a pod that are listed in Table 2.3. You can already see the
phases in Lens in the pod overview in the Status column. These are a good indication of
the current state of your pod. For example, if you have a pod that has been in the pend-
ing phase for a long time, then you should take action and see why it cannot switch to

running.

Running The pod is running on a node and all containers have been successfully cre-
ated. At least one container is running or is in the start process.

Succeeded All containers in a pod have been successfully terminated and will not be
restarted. This is particularly visible in Kubernetes jobs, which you will learn
more about in Chapter 4, Section 4.2.

Pending This status indicates that the pod is currently being created. During this time,
Kubernetes loads the images, it gives the pod access to resources such as vol-
umes and secrets, and the containers are waiting to be started.

If any of these cannot be provided to the pod or the scheduler cannot find a
suitable node, the pod remains in this status. It waits until all preconditions
have been met.

Failed All containers of a pod are terminated and at least one of them is faulty. This
can happen through the system or through a status code that is not 0.

Unknown Kubernetes cannot determine the state of the pod. This happens, forexample,

if the node on which the pod is running is no longer accessible.

Table 2.3 Possible Pod Phases

Good to Know

The statuses of pods do not always indicate existing issues. A pod in pending status
may have problems pulling the image or mounting a volume. A pod in running status

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 113

2 Basic Objects and Concepts in Kubernetes

may be in a crash loop where the container in the pod is constantly restarting due to a
problem.

In most cases, you will need to take a closer look at the pod to understand how it is
doing.

In addition to the pod phases, there are also the container statuses, which you can find
in Table 2.4. These are not always so obvious, but are very meaningful, especially in the
case of errors.

Running A container that is in this phase was able to start without any problems and
is currently being executed.

Terminated A container is terminated when it has either been successfully completed or
something has gone wrong for some reason. You can use the exit code to
find out why the container was terminated.

Waiting If a container is not running or terminated, it is in the waiting phase. Here,
for example, it waits for a secret or for the container image to be down-
loaded.

Table 2.4 Possible Container Phases

In Lens, you can either see these in the pod overview as in Figure 2.9, or you can click a
pod to see more information under Containers, including exit codes. This will help you
with debugging, because sometimes you can only find the decisive clue as to why a
container is not starting or has been terminated in the "last state.”

Containers

HE

Figure 2.9 Container Status Display in Lens

You can also output this information by using the kubectl describe pod command.

2.1.7 The Restart Policy of Pods

For init containers, I stated that they start again and again until they complete success-
fully. However, this is only half the truth, as you have the option of configuring this
behavior. The setting for this is called the restart policy and applies to all containers in
a pod.

14 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.1 Pod and Container Management

The default setting ensures that containers that fail are always restarted. This is suitable
in most cases, but sometimes there are applications where this is not the best option.
Via the restart policy, you can determine under which circumstances a pod should be
restarted. You can choose from the three options listed in Table 2.5.

Always This is the default value and always This is suitable for applications that
restarts a container, regardless of need to run continuously.
why it was terminated.

OnFailure Only restarts the container if theexit This is useful, for example, for batch
code is not equal to 0. This means jobs that are not restarted until they
that the container has not been suc- have completed successfully.

cessfully completed.

Never The container is never restarted, If you need full control over the run-
regardless of why it was terminated. ning of the container, then this
option is the best.

Table 2.5 Restart Policy Options

In Listing 2.6, you can see the extension of the pod manifest from Listing 2.2 with a
restart policy. You can see that this policy is defined at the pod level, which is why it
applies to all containers within the pod. For example, if you define restartPolicy:
Never, the init container will not restart if it fails.

apiVersion: vl
kind: Pod
metadata:
name: my-nginx
spec:
containers:
- name: my-container
image: localhost:5000/my-nginx
restartPolicy: Always

Listing 2.6 Setting Restart Policy in Pod Manifest

2.1.8 When the Pod Comes to an End

An important process that you should know as a developer is the scheduling of pods. In
Kubernetes, pods should be scaled according to requirements, which means that pods
are constantly being started and terminated. This is part of your daily work, which is
why it is important that your application can be shut down properly (a graceful shut-
down).

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 115

2 Basic Objects and Concepts in Kubernetes

Good to Know

A graceful shutdown includes, for example,
® the conclusion of current transactions,
® closing a database session, and

m exiting your application via exit code 0.

For your application to even realize that the pod is supposed to be terminated, it must
respond to signals sent by the kubelet. The kubelet gives your application a certain
amount of time to shut down. This is referred to as the grace period and is set to 30 sec-
onds by default. If your application cannot respond to signals or takes longer than the
grace period, the container is simply terminated by means of a hard shutdown. This
must be avoided so that it does not lead to unwanted inconsistencies in the data or dis-
connections for your users.

Let's take a look at how scheduling works with Kubernetes. It does not matter whether
you have triggered the scheduling manually using kubect1 or whether Kubernetes does
it itself for some reason:

1. Inthe first step, the pod is updated in the API server with the time at which the pod
should be deleted. For this to happen, the grace period is simply added to the current
time.

2. Ifa preStop hook has been defined, it will now be executed.

3. The kubelet will then send a TERM signal to each container in the pod. Only the pro-
cess with ID 1 receives the signal.

4. If all containers have been terminated, the pod can also be completely terminated.
While the signals are being sent to your application, the kubelet will start to shut down

the pod properly. For example, it must be removed from connected objects such as
ReplicaSets or services.

If the grace period expires at any point in the process, the pod and all containers in it
are forcibly deleted (force delete). For this purpose, the following is true:

® Each process in a container receives the SIGKILL signal and is thus simply terminated
hard.

®m The pod object is immediately deleted from the API server by setting the grace
period to O, which means that the pod can no longer be found by any client.

Finally, the final remnants such as the pause container are tidied up.

116 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.1 Pod and Container Management

Good to Know

There are two container hooks that you can define:

1. postStart

2. preStop

Here you can either use exec to execute a command or a script in the container or call

another endpoint via HTTP. You can find out more about this at http.//s-prs.co/
v596414.

Note

The terminating status is not one of the classic phases of a pod that you learned about
in Section 2.1.6. This status is displayed in some kubectl commands if the pod is cur-
rently in the scheduling process but is still waiting for the grace period.

The grace period is the most important option in the scheduling process. You should
consider whether the default value of 30 is sufficient for your application. The grace
period is defined via the terminationGracePeriodSeconds option, as you can see in Lis-

ting 2.7.

apiVersion: vl
kind: Pod
metadata:
name: my-nginx
spec:
containers:
- name: my-container
image: localhost:5000/my-nginx
terminationGracePeriodSeconds: 60

Listing 2.7 Grace Period Set in Pod Manifesto

You always have the option to override the grace period using kubectl and force the
deletion of a pod via kubectl delete --force or kubectl delete --grace-period=0.

Good to Know

If the grace period is set to 0, the termination will be forced immediately.

Now that you know how scheduling works in Kubernetes, you need to prepare your
application for a graceful shutdown. For this to work, two things must be fulfilled:

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 17

http://s-prs.co/v596414
http://s-prs.co/v596414

2 Basic Objects and Concepts in Kubernetes

® Your application runs on PID 1 of the container.

® Your application should be able to handle signals.

To get your application to PID 1, there are several ways to structure your Dockerfile. You
can take a look at the following article, for example, which explains this in detail: http://
$-prs.co/v596415.

How your application can handle signals depends on the programming language.
You'll have to see how this can be implemented in your application or framework. Con-
sider which steps are necessary for your application in the signal handler in order to be
switched off without negative side effects.

2.2 Annotations and Labels

Each object in Kubernetes is initially independent of all others. However, each one has
specific functions that help you to operate your application, although there are some
objects that can support and manage others. Pods can, for example, be managed by
other objects, such as deployments. There must be a simple way to link these more or
less independent objects together.

Another challenge is the number of objects in a cluster. The more objects are running
in a cluster, the more important it is to keep an overview of them.

But it's not just the technical components that need clarity about individual objects.
Precisely because there is a lot going on in a cluster, you also want to be able to quickly
see which pods belong together and how you need to handle them.

For this reason, the concept of labels and annotations was introduced:

® Labels are like labels on a folder in your office cabinet that provide information
about the contents of the folder. They make it easier for you to find the right folder
or group of folders. Labels are flexible key-value pairs, and you can customize them
according to your needs to add context-related information.

® Annotations are, as the name suggests, notes that provide additional information
about an object. They are also key-value pairs, but are not used to group or identify
objects. An annotation could be a table of contents in a folder. You cannot use it to
find the right folder, but it gives you more information about the contents of the
folder.

But not only pods are organized with labels. Kubernetes nodes also have labels, and
scheduling decisions are made based on these labels. The principle is very simple, and
yet you can set up complex rules that allow you to organize your entire cluster.

118 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596415
http://s-prs.co/v596415

2.2 Annotations and Labels

Good to Know

There are always matching selectors for the labels, which allow you to select and filter
resources based on the labels.

2.2.1 Using Labels and Selectors

Let's jump straight into an example. In Kubernetes, labels are a way of adding metadata
to your resources. This metadata can contain various information about an object. In
the simplest case, this is the name of a group or the environment. But it can also be any-
thing else that helps you organize your resources, such as

® the assignment to a larger application,
® the version of your application, or

® the owner of your application.

Listing 2.8 offers an example. You can see an Nginx pod to which the app and
environment labels are assigned. You can use those labels now to select this pod.

The concept of selectors is not new. You refer to a specific label and can thus make it
clear which resources you want to use. In the example, you could display the group of
all production resources. Or you can display all resources that belong to the nginx appli-
cation.

apiVersion: vl
kind: Pod
metadata:
name: nginx example
namespace: default
labels:
environment: production
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80

Listing 2.8 Labels on Pod

There are different ways to write a selector. For example, there are the equality-based
selectors:

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 119

2

Basic Objects and Concepts in Kubernetes

Equality = or == selects resources whose labels correspond exactly to the specified
value:

kubectl get pods -1 app=nginx

Inequality != selects resources whose labels do not correspond to the specified
value:

kubectl get pods -1 appl=nginx

You can also use set-based selectors. These can be filtered using a set of values, whereby

only one of these values needs to apply:

In selects resources whose labels are contained in a specified list of values:

kubectl get pods -1 'environment In (production,test)’

NotIn selects resources whose labels are not contained in a specified list of values,
whereby resources that have not set the label at all are also output:

kubectl get pods -1 'environment NotIn (test)'

Exists selects resources that have a specific label, regardless of value:

kubectl get pods -1 ‘environment'

There are also selectors that you define for Kubernetes objects. The Kubernetes service,
which you will learn about in Section 2.5, uses the selectors to distribute the network

traffic to the correct pods. You can see an adequate example in Listing 2.9.

apiVersion: vl
kind: Service
metadata:

name: nginx example
namespace: default
labels:

app: nginx

environment: production

spec:

ports:
- protocol: TCP
port: 80
targetPort: 80
selector:
app: nginx
environment: production

Listing 2.9 Selector in Service

120 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.2 Annotations and Labels

You are completely free to choose your labels. Kubernetes does not provide any speci-
fications; there are only recommended labels that you can use. Some of these are also
used by third-party tools such as Helm. An overview is shown in Table 2.6.

app.kubernetes.io/name Name of your application nginx

app.kubernetes.io/instance Unique name that can identify a single Nginx-1337
instance of your application

app.kubernetes.io/version Version of your application; you are free 1.0.5
to use whatever version you like

app.kubernetes.io/component Which component takes up the resource Web server
in the context of a large application

app.kubernetes.io/part-of Where you can add the name of the Sales platform
larger application

app.kubernetes.io/managed-by Set automatically if you use a tool such helm
as Helm

Table 2.6 Recommended Default Labels

Good to Know

In general, all labels without a prefix are private, which means there are no specifica-
tions. However, Kubernetes uses certain prefixes to mark system resources. You can
separate a prefix from the actual label by using a / character.

All labels starting with kubernetes.io and k8s.1io are created and managed by Kuber-
netes. You can find a complete overview at http://s-prs.co/v596416.

2.2.2 Field Selectors

Field selectors are a nice addition to select resources based on specific field values. They
make it possible to make precise queries on objects based on the values of their fields,
such as metadata.namespace or metadata.name. You could query the pod in Listing 2.8, for
example, using kubectl get pods --field-selector metadata.name=nginx-example.

Thus, not only are you not limited to labels, but you can also make more interesting
queries, such as to view all pods with a certain status. Using a command like kubectl get
pods --field-selector status.phase=Running, you can query all running pods.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 121

http://s-prs.co/v596416

2 Basic Objects and Concepts in Kubernetes

Note

The field selectors also have their limits, and you cannot query each and every field. The
available fields vary depending on the resource. For more information on this, refer to
the documentation at http://s-prs.co/v596417.

The field selectors only support the = and != operators. You can also connect several
selectors together to make more complex queries—for example:

kubectl get pods --field-selector= \
status.phase!=Running,spec.restartPolicy=Always

Field selectors are a nice extension that can help you to quickly query certain resources,
especially on the command line.

2.2.3 NodeSelector

As you know, one of the purposes of Kubernetes is to make server management easier
for you. Usually, you don't want to have to worry about where your application is cur-
rently running. However, there are times when it is important to be able to control the
scheduling, such as in the following cases:

® Your pods require certain resources.
® Not all replications of a pod should run on the same node.

m Certain pods such as the backend and frontend should run on the same node.

For this purpose, you have three settings available that you can adjust in your pod
manifests:

® NodeSelector
You select the node on which you want your pod to run.

® Node affinity and antiaffinity
You provide your pod with rules that tell it which node it should run on.

® Pod affinity and antiaffinity:
You provide your pod with rules for which pods may or may not run on the same
node.

All of these adjustments are also based on labels. You can assign labels to each node,
which can then be processed with selectors to create such rules. But let's start with
NodeSelector.

Let's take an application that needs an Nvidia GPU. It should only be trained on a node
that also has an Nvidia GPU; otherwise, the application will not run. Listing 2.10 shows
an example in which the nodeSelector option is used.

122 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596417

2.2

Annotations and Labels

apiVersion: vl
kind: Pod
metadata:

name: cuda-test
spec:

containers:

- name: cuda-test
image: "registry.k8s.io/cuda-vector-add:v0.1"
resources:

limits:
nvidia.com/gpu: 1
nodeSelector:

graphic: nvidia

Listing 2.10 NodeSelector Example

The pod will then only run on nodes that have the graphic: nvidia label assigned. If
there is no node with this requirement, Kubernetes will not be able to start the pod.

Good to Know

NodeSelector is the easiest way to assign pods to specific nodes. If a node with the
desired label is available in the cluster, the pod can start. If there is none, the container

remains in pending status until a corresponding node is available.

nodeSelector:

nodeSelector: nodeSelector:
graphic=nvidia graphic=amd

Node 1 Node 2

graphic=nvidia graphic=""

Figure 2.10 Function of NodeSelector

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

123

2 Basic Objects and Concepts in Kubernetes

Figure 2.10 shows how the scheduler would distribute pods:

® The first pod has the graphic=nvidia NodeSelector defined and can therefore only be
trained on node 1.

®m The second pod does not have a NodeSelector and can be trained on both node 1 and
node 2.

® The third pod has a NodeSelector on graphic=amd and does not find a node.

In Lens, you can easily display the labels of the nodes. To do this, go to your cluster, click
Nodes, and then click the name of the node you want to use. You should be able to see
thelabels, as shown in Figure 2.11. On the Raspberry Pi master, for example, you can see
the node-role.kubernetes.io/master=true tag, which you can use to identify the master
nodes. As always, however, you are free to add more labels.

Node: raspberrypi1

CPU Memory Disk Pods

Created 40d 16h 54m ago 2023-12-09T22:19:19+01:00
Name raspberrypi

Labels beta.kubernetes.io/arch=armé4

beta.kubernetes.io/instance-type=k3s beta.kubernetes.io/os=linux

kubernetes.io/arch=arm64 kubernetes.io/hostname=raspberrypi1
kubernetes.io/os=linux node-role kubernetes.io/control-plane=true
node-role.kubernetes.io/master=true

node.kubernetes.io/instance-type=k3s

Figure 2.11 Labels of Raspberry Pi Master Node

Good to Know

Depending on the infrastructure on which the cluster is based, you will also see other
useful labels. For example, a cluster in AWS should also have the availability zones or
the region as a label. This allows you to make very fine-grained decisions about where
your pods should run.

2.2.4 Node Affinity and Antiaffinity

An extension to NodeSelector is the node affinity and node antiaffinity concept. It al-
lows you to define significantly better specifications and more complex rules. For

124 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.2 Annotations and Labels

example, you can formulate an affinity so that the pod would rather run on a specific
node. However, if there is no space on the node, the pod can also start on another node.
Where the NodeSelector simply decides that "the pod will not be started,” with affinity,
you can say that it’s "better to be on the wrong node than on no node at all."

Good to Know

Affinity is particularly interesting if you have clusters with many nodes where you need
to be able to control very precisely how the scheduling should work. For production sys-
tems, you should at least be familiar with the concept.

You are welcome to read this section and come back to it if it is of interest to your appli-
cation.

You can configure affinity in the manifest as follows:
®m requiredDuringSchedulingIgnoredDuringExecution

The rule must be fulfilled. As with NodeSelector, this forces the default setting.
m preferredbDuringSchedulingIgnoredDuringExecution

The scheduler tries to comply with the rule, but can also schedule if it cannot adhere
toit.

Note

The names of the two affinity options give the impression that there should also be a
requiredDuringExecution option due to the IgnoredDuringExecution part. However,
this option is not currently available. The topic has been discussed in the community
for some time, but there is no longer any reference to it in the official Kubernetes docu-
mentation.

From my point of view, it would be a special case anyway. The option would only
become active if the label of a node were to change at runtime, and | can't think of any
use case in which this happens.

An example could look like the one shown in Listing 2.11.

apiVersion: vl
kind: Pod
metadata:
name: region-pod
spec:
affinity:
nodeAffinity:
requiredburingSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 125

2 Basic Objects and Concepts in Kubernetes

- key: "region"
operator: "In"
values:

- "USA"
- "Europe"
containers:
- name: example-container
image: nginx

Listing 2.1 Pod with Necessary Node Affinity

Here you have a cluster with nodes in different regions, and you want a pod to be
allowed to launch only in Europe or the USA. By using the requiredDuringScheduling
option you can enforce the rule and the pod cannot be started in China by mistake.

The rules can be extended in two ways:

® You can add another condition in matchExpressions. In that case, a pod can only be
scheduled on the node if all rules apply. For example, in the affinity in Listing 2.12,
you enter the hard disk type as an additional condition. This means that only nodes
from Europe or the USA that use SSDs can be used by the pod

®m However, you can also add another condition in nodeSelectorTerms. This means that
the node must fulfill either one or the other in order to be eligible for the pod. In Lis-
ting 2.13, this rule means that the node must either be located in the USA or Europe
or have the production tag as its environment.

nodeAffinity:
requiredburingSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:

- key: "region"
operator: "In"
values:

- "USA"
- "Europe"

- key: "disktype"
operator: "In"
values:

- "ssd"

Listing 2.12 Additional AND Condition within Affinity

Note

You can use In,NotIn, Exists, DoesNotExist, Gt, and Lt as operators for affinities.

126 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.2 Annotations and Labels

nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:

- key: "region"
operator: "In"
values:

- "USA"
- "Europe"
- matchExpressions:

- key: "environment"
operator: "In"
values:

- "production"

Listing 2.13 Additional OR Condition within Affinity

The syntax for preferredbDuringScheduling is slightly different. You can also assign a
weighting for each rule, which helps to decide where the pod should prefer to run. For
this purpose, Kubernetes will check each node for the rules, and if one of them applies,
the node is assigned the weighting in terms of points. At the end, the pod on the node
with the most points is scheduled. In Listing 2.14, the pod prefers a node from the USA.

apiVersion: vl

kind: Pod
metadata:
name: region-pod
spec:
affinity:
nodeAffinity:
preferredburingSchedulingIgnoredDuringExecution:
- weight: 2
preference:
matchExpressions:
- key: "region"
operator: "In"
values:
- "USA"
- weight: 1
preference:
matchExpressions:

- key: "region"
operator: "In"

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 127

2 Basic Objects and Concepts in Kubernetes

values:
- "Europe"
containers:
- name: example-container
image: nginx

Listing 2.14 Pod with Preferred Node Affinity

In comparison, Listing 2.15 prefers a node in Europe with an SSD over a node in the USA
without an SSD. However, a node in the USA with an SSD beats all others because it has
the highest number of points.

nodeAffinity:
preferredburingSchedulingIgnoredDuringExecution:
- weight: 2
preference:
matchExpressions:
- key: "region"
operator: "In"
values:
- "USA"
- weight: 1
preference:
matchExpressions:
- key: "region"
operator: "In"
values:
- "Europe"
- weight: 2
preference:
matchExpressions:
- key: "disktype"
operator: "In"
values:
- "ssd"

Listing 2.15 Pod with Another Node Affinity Rule

2.2.5 Pod Affinity and Antiaffinity

Another way to tell the pod where it should prefer to run is pod affinity and pod antiaf-
finity. You can use this to tell a pod which other pods should run on a node and which
should not run there. Use cases for this include the following:

128 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.2 Annotations and Labels

® One of your applications should run on the same node as the database in order to
speed up communication.

®m Two replications of the same pod should not run on the same node to ensure reli-
ability.

If you look at Figure 2.12, you will see three pods from Nginx and three pods from the
backend. The distribution is poor: if a node fails, either all backend pods or all Nginx
pods are gone. In addition, requests from Nginx to the backend must always be routed
to another node.

Node Node
app=nginx app=backend
app=nginx app=backend
app=nginx app=backend

Figure 2.12 Pod Distribution without Pod Affinity

You can see a much nicer distribution in Figure 2.13. There is one Nginx pod and one
backend pod on each node, but there is another node, and the utilization of the other
nodes may be lower than before.

Note
Higher reliability and availability can lead to higher costs.

Note

As is the case with many other settings, you should also proceed iteratively with affini-
ties. Set a hypothesis such as "I want to reduce latency," then try to verify it. Try to
approach the sweet spot bit by bit.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 129

2 Basic Objects and Concepts in Kubernetes

Node Node Node
app=nginx app=nginx app=nginx
app=backend app=backend app=backend

Figure 2.13 Pod Distribution with Pod Affinity

As with node affinity, you have the following options:
®m requiredDuringSchedulingIgnoredDuringExecution

m preferredburingSchedulingIgnoredDuringExecution

In Listing 2.16, an Nginx pod is forced by pod affinity to be deployed on a node with a
backend pod. If you roll out this manifest via Lens, you will see that the status simply
remains set to Pending. Kubernetes cannot schedule the pod until you roll out a pod
with the app=backend label.

apiVersion: vl
kind: Pod
metadata:
name: nginx-pod
spec:
affinity:
podAffinity:
requiredburingSchedulingIgnoredDuringExecution:
- labelSelector:
matchlabels:
app: backend
topologyKey: "kubernetes.io/hostname"
containers:
- name: example-container
image: nginx

Listing 2.16 Pod Affinity: app=backend

130 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.2 Annotations and Labels

You can see an example of antiaffinity in Listing 2.17. There you force Nginx not to run
on nodes on which another Nginx pod is already running. If you only have two nodes
but want to deploy three pods, Kubernetes cannot roll out the third pod. On the Rasp-
berry Pi cluster, it then looks as shown in Figure 2.14.

apiVersion: vl
kind: Pod
metadata:
name: nginx-pod
labels:
app: nginx
spec:
affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:
matchlabels:
app: nginx
topologyKey: "kubernetes.io/hostname"
containers:
- name: example-container
image: nginx

Listing 2.17 Pod Antiaffinity to Itself

Containers Node Status

Pending

Figure 2.14 Pod Antiaffinity on Raspberry Pi Cluster

If you want to make the rules a little less strict, you can do this in the same way as with
the node affinities. Listing 2.18 shows the syntax for a preferredDuringScheduling rule.
Just try it out!

affinity:
podAntiAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 100
podAffinityTerm:
labelSelector:

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 131

2 Basic Objects and Concepts in Kubernetes

matchlabels:
app: nginx
topologyKey: "kubernetes.io/hostname"

Listing 2.18 Pod Antiaffinity with preferredDuringScheduling Rule

Good to Know

You can also use matchExpressions as with the node affinities.

You have probably already noticed the topologyKey option. This option defines the
label according to which the nodes are grouped. For example, if you have nodes in dif-
ferent data centers or in the cloud in different availability zones, your nodes should be
marked with the topology.kubernetes.io/zone label.

If you then write an antiaffinity rule, you can specify the following: "The pod should not
run in a zone where a pod of the same application is already running." This will remove
all nodes that are running in the same zone as the node on which one of your pods is
already running. I have recorded this for you in Figure 2.15. The second pod selects the
node from zone B because one is already running in zone A.

Node Node Node

O

Zone: A Zone: A Zone: B

Figure 2.15 Grouping Nodes by topologyKey

132 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.2 Annotations and Labels

This gives you even more control over where your pods should run and can increase
reliability.

Note

Depending on the number of nodes in a cluster, pod affinities require a high comput-
ing effort. Kubernetes recommends not using pod affinity for clusters with several
hundred nodes.

2.2.6 Taints and Tolerations

You now know how to use NodeSelector and affinities to make pods favor specific
nodes. However, there are situations in which you will also want to allow the node to
reject certain pods. The reasons for this include the following:

® Reservation of nodes
Certain nodes should be reserved for special purposes or special groups of pods,
such as the masters.

® Dealing with special hardware
In clusters where some nodes have specialized hardware such as GPUs, you want to
prevent ordinary pods from blocking these resources.

= Controlled pod management
During maintenance work or upgrades of a node, you want to prevent new pods
from being started there.

® Error handling
In the event of node errors such as network issues or resource bottlenecks, you want
to prevent new pods from being started on the faulty nodes.

For this purpose, you can use the concept of taints and tolerations. You assign a taint to
anode, and any pod that does not tolerate this taint will be rejected. You set the tolera-
tions on the pods that you want to allow to run on these nodes.

For example, if your master has set a taint and you want to run one of your applications
on it, then it only needs the toleration and can thus be deployed by the scheduler on
the master. Taints and tolerations work together in this way to ensure that pods are not
placed on unsuitable nodes.

You can assign one or more taints to a node. Kubernetes also uses taints automatically
to control the scheduling of pods. For example, if a node is not yet ready, a taint pre-
vents pods from being started on the node.

You can assign three effects to your taints, with which you can control how Kubernetes
should handle pods. A detailed list is provided in Table 2.7.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 133

2 Basic Objects and Concepts in Kubernetes

Good to Know

The eviction of pods is the process by which a pod on a node must be deleted. If possi-
ble, it will then get restarted on another node. There are different scenarios when this
is advantageous. The node controller automatically sets taints if, for example, the node
is no longer accessible or has other problems.

You can find more about this topic at http://s-prs.co/v596418.

Taint Effect Effects on Running Pods Effects on New Pods

NoExecute B Pods without toleration are The pod cannot start without

evicted immediately. toleration.

® Pods with toleration, but
without tolerationSeconds,
remain on the node indefi-
nitely.

® Pods with toleration and tol-
erationSeconds are evicted
after the specified time has

elapsed.
NoSchedule No eviction of existing pods. The pod cannot start without
toleration.
PreferNoSchedule No eviction of existing pods. New pods without toleration are

avoided if possible, but that is
not guaranteed.

Table 2.7 Taints and Their Effects

To set a taint, you need a key, a value, and an effect. For example, if you want to define
a NoSchedule taint for the master, you could run the following command:

kubectl taint nodes nodel nodeType=master:NoSchedule

nodeType is the key, while master is the value. To remove a taint, you simply need to add
a hyphen (-) after the command:

kubectl taint nodes nodel nodeType=master:NoSchedule-
On the other hand, you need to assign tolerations to your pods if you want them to
accept taints. The tolerations look similar to affinities, and you can use the Exists and

Equal operators. Listing 2.19 shows a toleration that accepts a taint with the nodeType
key. The value of the taint is irrelevant to this toleration.

134 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596418

2.2 Annotations and Labels

apiVersion: vl
kind: Pod
metadata:
name: nginx
spec:
containers:
- name: nginx
image: nginx
tolerations:
- key: "nodeType"
operator: "Exists"
effect: "NoSchedule"

Listing 2.19 Pod with Toleration Operator "Exists"

In Listing 2.20, however, only one taint is tolerated where the nodeType has the master
value. Consequently, if you have a node with the worker value, the pod will not be able
to start there.

Of course, you can also add multiple tolerations to a pod, such as to tolerate other
effects or completely different taints.

Good to Know

An empty value for key with operator: Exists matches all keys, values and effects.
This means that your pod will simply tolerate all taints.

An empty value for effect can be used with all effects.

The term empty value simply refers to passing an empty string with "".

apiVersion: vl
kind: Pod
metadata:

name: nginx
spec:

containers:

- name: nginx
image: nginx

tolerations:

- key: "nodeType"
operator: "Equal”
value: "master"
effect: "NoSchedule"

Listing 2.20 Pod with Toleration Operator "Equal

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 135

2 Basic Objects and Concepts in Kubernetes

2.2.7 Annotations

Like labels, annotations are an essential component of Kubernetes. They provide a
flexible method for enriching objects with additional information. While labels are
used to identify and organize objects within Kubernetes, annotations allow you to
store additional information that goes beyond the core functionality of Kubernetes.
Classic use cases include the following:

m Storage of complex data
For example, this includes data that can contain entire JSON objects.

® Additional information
You can include contact information, release notes, or auditing information. For
example, one of my customers has stored the application's protection requirements
there.

® Extensions and integrations
Kubernetes tools and extensions use annotations to enable specific functions or
provide information.

You can view examples of annotations and what is saved there in each object that you
have created. Take a look at an Nginx pod that you created in the previous sections.
There you will find the kubectl.kubernetes.io/last-applied-configuration annotation
and, as a value, a JSON object with the complete manifest that you rolled out last.

You will also find annotations in other objects. In Section 2.3, you will learn about
deployments. The revision of the deployment is counted under the deployment.
kubernetes.io/revision value. With each new rollout, Kubernetes counts up by one,
and you can see which deployment is currently active.

Good to Know

An annotation can store data of up to 256 KB.

Let's take a look at how you can add annotations to a pod yourself. In Listing 2.21, we
give the pod a JSON object under the build annotation.

apiVersion: vl
kind: Pod
metadata:
name: nginx-example
namespace: default
annotations:
build: |
{
"repo": "nginx-example"
"hash": "afj34iweo",
"timestamp": "2023-12-12T14:38:237"

136 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.2 Annotations and Labels

spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80

Listing 2.21 Pod with Annotations

The nice thing about this is that you can pass a multiline string in YAML, which makes
it very easy to read in the code. We will go deeper into the YAML syntax in Chapter 3,
Section 3.2.

The advantage of JSON is that you can easily see the current status of your application's
code yourself. You can also have the data read automatically and process it further. The
options for using this are enormous, and this can make it easier for you to manage your
applications.

Figure 2.16 shows how the annotations are displayed in Lens. Simply click your pod, and
you will see the annotations directly in the menu that pops up.

Pod: nginx-example

Name nginx-example
Namespace default

Annotations build={ "repo": "nginx-example" "hash": "...

kubectl.kubernetes.io/last-applied-confi...

Status Running
Figure 2.16 Displaying Annotations in Lens
An example of how the Prometheus annotations-monitoring application uses annota-

tions is shown in Listing 2.22. The tool you will learn about in Chapter 7, Section 7.4 uses
the annotations to detect whether a pod provides metrics and, if so, on which port. In

Chapter 8, you will learn that Helm also uses annotations to store and read information
about objects.

metadata:
annotations:
prometheus.io/scrape: "true"
prometheus.io/port: "8080"

Listing 2.22 Annotation for Prometheus

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 137

2 Basic Objects and Concepts in Kubernetes

2.3 Deployments and ReplicaSets

At this point, you know how to run your application in Kubernetes as a pod. You
already know the label concepts and how the Kubernetes resources can be controlled
and coupled. But now we come to the real magic of Kubernetes.

As you know, Kubernetes is primarily designed for managing a large number of pods.
In a production environment, you will want to create multiple pods of the same type so
that you can distribute the load or increase reliability. Now you don't need to manually
create and deploy multiple pod manifests, because this is exactly what the deployment
and ReplicaSet Kubernetes objects are responsible for.

You can imagine these as the manager and the foreman of a craft business. The man-
ager (deployment) knows the plan of the project and its goals, and they can also make
strategic decisions to replace workers in a project. The manager always sees the big pic-
ture. The manager instructs the foreman (ReplicaSet) to supervise the workers. The
foreman ensures that the work is carried out in accordance with the manager's instruc-
tions and that there is always a sufficient number of workers on the project. If a worker
is absent due to illness, the foreman takes care of a replacement.

Note

Although you can also use ReplicaSet without a deployment, the two objects simply
belong together. Kubernetes recommends never using ReplicaSet without a deploy-
ment, as the additional features make running your application much easier. However,
we will take a close look at both properties.

Figure 2.17 shows how the objects are connected. The deployment is the top-level
object, manages a ReplicaSet, and instructs the ReplicaSet to manage and monitor the
pods.

The deployment
® manages the lifecycle of pods and ReplicaSets,
® enables controlled updates through rolling updates, and

® enables rollbacks to previous versions.

The ReplicaSet

m ensures that the specified number of pods are running and

® monitors the pods and replaces faulty ones.

Both objects always check the current status with regard to the desired status. If some-
thing is not as desired, the objects try to restore the state.

138 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.3 Deployments and ReplicaSets

Pod Pod

Deployment ReplicaSet

Figure 2.17 Architecture of Deployments and ReplicaSets

2.3.1 The Role of ReplicaSets

ReplicaSet is one of the key objects for running your application stably in Kubernetes.
It makes sure that a certain number of pods of your container are always running. To
ensure this, the ReplicaSet also uses labels and selectors, which you learned about in
Section 2.2. These are also referred to as MatchLabels in the ReplicaSet and serve as a
selector. This is how the ReplicaSet knows which pods belong to it and will manage
them accordingly. MatchLabels are also key-value pairs that you define in the specifica-
tions of a ReplicaSet and the pods.

Listing 2.23 shows the extension of your Nginx pod from Section 2.1. Under template,
the ReplicaSet finds everything it needs to know to create the pods. In addition, we
have added the app: nginx label, and under selector.matchLabels you can see the selec-
tor used to select the set label. Another difference from the pod manifest is the replicas
option. There you tell ReplicaSet how many pods you want to run.

Now you can roll out the manifest from Listing 2.23 and view the pods created in Lens.

apiVersion: apps/vl
kind: ReplicaSet
metadata:
name: my-nginx-replicaset
labels:
app: nginx
spec:
replicas: 2
selector:
matchlabels:
app: nginx
template:
metadata:
labels:
app: nginx

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 139

2 Basic Objects and Concepts in Kubernetes

spec:
containers:
- name: my-container
image: localhost:5000/my-nginx
ports:
- containerPort: 80

Listing 2.23 ReplicaSet Manifest

As shown in Figure 2.18, you can see that ReplicaSet creates two pods as desired. For
each pod, ReplicaSet will add a unique ID to the name so that there is no name conflict.
You can also see in the overview that the pod is controlled by a ReplicaSet.

Figure 2.18 Pods Generated by ReplicaSet

You can view the ReplicaSet itself in Lens under Workloads - ReplicaSets. In the detail
view, you can then see which pods are managed by the ReplicaSet and what the status
of the pods is, as shown in Figure 2.19.

ReplicaSet: my-nginx-replicaset

2 current / 2 desired

Names Ready CP v Memo Status

Figure 2.19 Detail View of ReplicaSet in Lens

Good to Know

I mentioned that ReplicaSet will generate the pod manifest. This makes ReplicaSet the
owner of the pods. In Kubernetes, this concept is referred to as owners and dependents.
In this case, the ReplicaSet is the owner of the pods, and the pods are the dependents
of the ReplicaSet.

140 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.3 Deployments and ReplicaSets

In the deployed pod manifesto, this looks as follows:

ownerReferences:
- apiVersion: apps/vl
kind: ReplicaSet
name: my-nginx-replicaset
uid: b6238a34-7656-45e4-a377-e864e8ad9919
controller: true
blockOwnerDeletion: true

The nice thing about this approach is that you do not need to specify and link each
resource individually because Kubernetes is smart enough to generate the pods from
the ReplicaSet manifest. There is also a kind of garbage collection: if you delete the
owner, Kubernetes will delete its dependents first. You can control this option using
blockOwnerDeletion.

There are other owner and dependency connections that you will get to know. For
example, the deployment will be the owner of the ReplicaSet. You can find more infor-
mation about this topic at the following address: http://s-prs.co/v596419.

Take some time to play around with ReplicaSet:
® Delete one of the pods.
® Increase the replicas using kubectl scale.

® Try to reduce the number of replicas using Lens.

Try it out and see how ReplicaSet reacts. The principle behind ReplicaSet is very simple
and yet extremely powerful. By regularly comparing the desired and current status, it
always keeps the number of pods at the right level. This is the first step toward a system
that is able to perform a self-healing process. A very interesting extension is autoscal-
ing, which allows Kubernetes to increase or decrease the number of replicas itself
depending on the load. We will look at this in more detail in Chapter 7, Section 7.3.

Note

If you also want to start a single pod in addition to ReplicaSet with the app: nginx
MatchLabel, you should make sure that the pod does not have the same label. Replica-
Set will immediately see the pod as its task and include it in its management process.

Try rolling out the following manifest and see what ReplicaSet does to the pod:
apiVersion: vl
kind: Pod
metadata:
name: my-nginx
labels:
app: nginx

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 141

http://s-prs.co/v596419

2 Basic Objects and Concepts in Kubernetes

spec:
containers:
- name: my-container
image: localhost:5000/my-nginx
ports:
- containerPort: 80

The pod is terminated immediately, as ReplicaSet already has the required number of
pods running

2.3.2 Creating Deployments

You now know how ReplicaSet works and how it monitors pods and keeps them stable
at a desired number of replications. The functionality of ReplicaSet is kept simple, but
it needs a little more logic, especially when it comes to new rollouts. You can use the
Kubernetes deployment object for this purpose.

While ReplicaSet takes care of the pods, the deployment takes care of ReplicaSet, mon-
itors its status, and provides additional logic. A deployment can

® create, monitor, and clean up ReplicaSets;
® roll out a new version of pods by creating a new ReplicaSet; and

® monitor and pause rollouts and perform rollbacks.

If you look at the manifest in Listing 2.24, you can see that it is almost exactly the same
as Listing 2.23. You provide the pod template, the replications, and the MatchLabels. Of
course, the deployment manifest needs this information because it has to use it to cre-
ate the ReplicaSet and the pods

apiVersion: apps/vl
kind: Deployment
metadata:
name: my-nginx-deployment
labels:
app: nginx
spec:
replicas: 2
selector:
matchlabels:
app: nginx
template:
metadata:
labels:
app: nginx

142 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.3 Deployments and ReplicaSets

spec:
containers:
- name: my-container
image: localhost:5000/my-nginx
ports:
- containerPort: 80

Listing 2.24 Deployment Manifest

Now try to roll out the manifest and take a look at the deployment in Lens. To do this,
select Workloads « Deployments and click the my-nginx-deployment you have created.
Compared to ReplicaSet, you can see two special features, as shown in Figure 2.20: the

strategy type and the deploy revisions. These properties allow you to control the roll-
out and perform a rollback. Let us take a closer look at this in an example.

RollingUpdate

Available Progressing

Namespac(Pods ¥ Age

Figure 2.20 Detailed View of Deployment in Lens

Take a look at what exactly the deployment has generated. If you click the ReplicaSet
and the pods, you can see that the pods still belong to the ReplicaSet. However, the Rep-
licaSet now has an owner reference to your deployment. The structure is therefore
exactly the same as you saw in Figure 2.17. The deployment takes care of the ReplicaSet,
and the ReplicaSet takes care of the pods.

Good to Know

As the deployment manages the ReplicaSet, any changes you make to the ReplicaSet
will be overwritten by the deployment. Try changing the number of replicas in the Rep-
licaSet. The change will not take effect because the deployment will overwrite your
value again.

The deployment is the single point of truth. In this way, Kubernetes avoids inconsisten-
cies.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 143

2 Basic Objects and Concepts in Kubernetes

2.3.3 Rolling Updates via the Deployment Object
There are two update strategies you can choose between:

® Recreate

All existing pods are first deleted and then replaced by new ones.
®m RollingUpdate

You can control pod replacement and thus minimize downtime.

A use case for the recreate option could be a development cluster where you have few
resources available. If new pods cannot be trained, the old pods must first be deleted.
However, this strategy leads to failures in any case. You should therefore do without it
in production clusters.

The second strategy represents the standard for Kubernetes. The RollingUpdate option
replaces one pod after the other for you. This allows you to avoid application down-
times. Ideally, your application should have the following features to support rolling
updates:

® Horizontal scaling
Your application should be able to run multiple instances simultaneously.

m Statelessness
Your application should be stateless or save the state externally to enable seamless
updates.

® Readiness checks
You should implement readiness checks as described in Chapter 7, Section 7.2 to

ensure that new pods are healthy before they start managing the traffic.

Note

Kubernetes can also perform a rolling update without a readiness check. However, the
problem with this is that Kubernetes does not know when the new pods will be avail-
able and able to process requests. This is why you need readiness checks, because this
is the only way you can be sure that your application is fully up and running before
Kubernetes replaces the next pod.

Another advantage is that you can cancel the update of your application if the new ver-
sion has a problem and cannot be started up. Without a readiness check, Kubernetes
would not notice the problem.

Figure 2.21 shows what it will look like when you install an update. The deployment has
the following tasks during an update:

1. Creating a new ReplicaSet with a new pod specification
2. Upscaling pods in the new ReplicaSet
3. Downscaling pods in the old ReplicaSet

144 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.3 Deployments and ReplicaSets

A rollout is successful if all pods are running in the new ReplicaSet and the old Replica-
Set is set to O. But let's just give it a try. If you have not yet rolled out the deployment
from Listing 2.24, please do so now. The next step will be to update the image. To do
this, swap your own Nginx image image: localhost:5000/my-nginx with the official one.
Set the value to image: nginx and roll out the update.

Old Pods
-5 G
Pod Pod
ReplicaSet
New Pods
Deployment
_) —>
Pod Pod
ReplicaSet

Figure 2.21 Rolling Update Managed by Deployment

Observe the rollout process. This will happen very quickly in this case, as the Nginx
pods do not need long to report that they are ready. In Lens, click Workloads - Replica-
Sets, then take a look at the way the deployment works. You now have two ReplicaSets
there, and the pods are terminated on the old one and scaled on the new one.

If you compare the old ReplicaSet with the new one, you can see that your old image is
still stored in the old one. This makes it easy to roll back. In the deployment itself, you
can find the ReplicaSets under Deploy Revisions, as shown in Figure 2.22.

Good to Know

When you update a deployment, the old ReplicaSet remains in place. You can use the
.spec.revisionHistorylLimit option to control the maximum number of ReplicaSets
that can be kept. The default value is 10, but if you set the value to 0, you can no longer
perform a rollback.

Good to Know

Imagine the deployment is currently in the update process and you want to make a
quick change. Kubernetes can handle this use case without any problems. When you

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 145

2 Basic Objects and Concepts in Kubernetes

install the new update, the deployment will create another ReplicaSet, scale up pods
there, and scale down all old ReplicaSets.

Deploy Revisions

Name Namespace Pods

my-nginx-deployment-7998t default 2

my-nginx-deployment-d48b: default 0

Figure 2.22 ReplicaSets as Deploy Revisions in Deployment

There is another nice option that allows you to see how the deployment proceeds. Run
the kubectl get events command. Your output will look similar to Listing 2.25, where
you will find it in a very abridged version. It is nice to see how the new pods are started
by the new ReplicaSet and how the old pods are terminated at the end. In our Nginx
example, the process completes within just a few seconds. You can use one of your
applications here, implement the readiness check from Chapter 7, Section 7.2, and then

observe the rolling update process.

Good to Know

You can pause and resume a rollout using the kubectl rollout pause and kubectl
rollout resume commands. This can be particularly useful for larger deployments with
a large number of replicas—for example, if you see an error in the new version that you
want to analyze or resolve.

While the rollout is paused, you can make updates to the deployment. However, these
updates do not become active until the rollout is reactivated.

REASON OBJECT MESSAGE

Scheduled pod/799 Successfully assigned default/799

Pulling pod/799 Pulling image "nginx"

Pulled pod/799 Successfully pulled image "nginx" in 1.13s
Created pod/799 Created container my-container

Started pod/799 Started container my-container

Scheduled pod/7zm Successfully assigned default/7zm

Pulling pod/7zm Pulling image "nginx"

Pulled pod/7zm Successfully pulled image "nginx" in 1.2s
Created pod/7zm Created container my-container

Started pod/7zm Started container my-container

Succ..te rs/8d Created pod: 7zm

Succ..te rs/8d Created pod: 8d-brvnt

146 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.3 Deployments and ReplicaSets

Killing pod/c7 Stopping container my-container
Killing pod/s6 Stopping container my-container
Suc..Delete rs/94 Deleted pod: s6

Suc..Delete rs/94 Deleted pod: c7

ScalingRS deployment Scaled up replica set 8d to 1
ScalingRS deployment Scaled down replica set 94 to 1
ScalingRS deployment Scaled up replica set 8d to 2
ScalingRS deployment Scaled down replica set 94 to O

Listing 2.25 Procedure of Rolling Update

For rolling updates, you have two setting levers, maxUnavailable and maxSurge, which

you can use for configuration.

maxUnavailable
® What it does

It determines the maximum number of pods that may not be available during the
update.

= How it works
It can be a fixed number or a percentage, such as 5 pods or 10% of the pods. When
calculating the integer from the percentages, Kubernetes rounds down.

m Default value
25%

®m Example
If you set the value to 30%, then at least 70% of the pods must be running during
the update. New pods start, old ones are terminated, but Kubernetes makes sure
that at least 70% of the pods are always available and can answer requests.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

maxSurge

= What it does
It determines how many additional pods can be created during the update.

= How it works
It can also be a fixed number or a percentage. When calculating the integer from
the percentages, Kubernetes rounds up.

m Default value
25%

= Example
With the 30% setting, 30% more pods can be started during the update than you
specified in the manifest. Once old pods have terminated, Kubernetes can continue
to scale, but never more than 130% of the desired pods in total.

147

2 Basic Objects and Concepts in Kubernetes

Let's start with an example that illustrates these two levers. Listing 2.26 uses a deploy-
ment that runs with three replicas of busybox. The busybox container is called via sev-
eral simple commands:

® First it waits for 20 seconds.
® Then it creates the /tmp/ready file.

m After that, it waits for another 3,600 seconds so that it does not terminate.

A readiness check is set for the /tmp/ready file, which checks whether the file exists.
Thus, the readiness check will run successfully after about 20 seconds and mark the
pod as ready. This will give you some time to watch the rolling update.

We have configured 1 for maxUnavailable and maxSurge. In this case, this means that at
least two pods should always be available and a maximum of four pods may run simul-
taneously. Before you get started with the demo: How do you think the deployment
will proceed with a rolling update?

Roll out the deployment manifest in Kubernetes. Observe the pods and how much
time it takes them to get ready. You can also see in the deployment itself, as in Figure
2.23, that it takes a while for 0/3 to become 3/3. This is due to the readiness check, which
is only successful after 20 seconds. To enable you to now trigger a rolling update, you
need to change sleep 20; to sleep 30; and roll out the manifest again. Observe exactly
what happens.

[0 Name Namespace Replicas

3 rolling-deployment default 3

Figure 2.23 Deployment after Creation

As you can see in Figure 2.24, the pod display jumps to 2/4. If you display the pods, you
will see that a pod switches directly to Terminating status and two new pods are scaled
at the same time. The two remaining pods remain untouched for the time being. Not
until one of the new pods is ready will the next pod switch to Terminating status. The
third of the new pods is started immediately. At about the same time, the second pod is
ready and the last of the old pods is terminated.

[J Name Namespace Replicas

O rolling-deployment default 3

Figure 2.24 Deployment after Start of Rolling Update
We were therefore able to observe that at least two of the pods were always available

and a maximum of four pods were running at the same time. The pods in Terminating
status were not included here.

148 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.3 Deployments and ReplicaSets

Try out the rolling update a few more times and observe the process. You can try out
the following exercises:

m Use kubectl get events to take a look at the individual steps performed by Kuber-
netes.

m Update the deployment twice in quick succession with different values.

® Try pausing and resuming the rollout.

® Finally, you can play around with the replicas, maxUnavailable, and maxSurge values.

You should really take some time for this, because this is a core process in a production
system. You should be able to roll out your application with every release without any
downtime. The better you understand this process and the levers, the better you can
adapt Kubernetes to your application.

Good to Know

Kubernetes only distinguishes between the rolling update and recreate rollout strate-
gies in the deployment. There are a few other strategies such as blue-green or canary
deployment. These types of rollout are also possible with Kubernetes, but sometimes
require a little more effort. You can find a good article on this here: http://s-prs.co/
v596420.

apiVersion: apps/vl
kind: Deployment
metadata:
name: rolling-deployment
spec:
replicas: 3
strategy:
type: RollingUpdate
rollingUpdate:
maxUnavailable: 1
maxSurge: 1
selector:
matchLabels:
app: rolling
template:
metadata:
labels:
app: rolling
spec:
containers:
- name: busybox
image: busybox

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 149

http://s-prs.co/v596420
http://s-prs.co/v596420

2 Basic Objects and Concepts in Kubernetes

args:
- /bin/sh
- -
- >
sleep 20;
touch /tmp/ready;
sleep 3600;
readinessProbe:
exec:
command:
- cat
- /tmp/ready
initialDelaySeconds: 5
periodSeconds: 5

Listing 2.26 Example of Rolling Update

2.3.4 Rollback via Deployment

As described previously, the deployment provides a rollback mechanism. In addition,
ReplicaSets from previous versions simply remain and continue to hold the old pod
manifest. Accordingly, you still have all the manifests you need for a rollback in the
etcd database.

For our sample rollback, let’s extend the example from Section 2.3.3. If you have exper-
imented a lot, your ReplicaSet overview could look exactly like Figure 2.25. Now you’ll
use kubectl to roll back to the desired version.

Name Namespace Desired Current Age

rolling-deployment-55d66 default 0 21m

rolling-deployment-74466 default 6m51s

rolling-deployment-76588 default 26m

rolling-deployment-b8f5¢c’ default 6m28s

Figure 2.25 Overview of ReplicaSets from Previous Versions

Good to Know

If you have played a lot with the rolling updates, you will have noticed the following:
Kubernetes recognizes when you import the same YAML manifest from a previous ver-
sion and will not create a new ReplicaSet for it. The old ReplicaSet then becomes the
current one again, and the pods are scaled there.

150 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.3 Deployments and ReplicaSets

To get an idea of the latest versions, you can use the kubectl rollout history
deployment/rolling-deployment command. Depending on how much you have tried,
your output should look similar to that shown in Listing 2.27. Unfortunately, we have
not provided a change cause, which is why it is somewhat more difficult to recognize
which version we want to go back to. You can display the exact details via kubectl
rollout history deployment/rolling-deployment --revision 2. The entire pod template
is displayed, and you can choose which one you want. In this example, the changes
were only minor.

Good to Know

The change cause from Listing 2.27 is taken from the kubernetes.io/change-cause
deployment annotation. This means that if you set this annotation during the rollout
with info that indicates what has been changed, you can better recognize this in the
history.

Think carefully about whether you want to use this type of information. | personally do
not use the change cause, as the change is usually always available via a CI/CD pipeline
release and is contained in the Git commit. It must fit your processes because duplicate
maintenance is unnecessary.

Once you have decided on a revision, you can use either kubectl rollout undo
deployment/rolling-deployment to return to the last revision or kubectl rollout undo
deployment/rolling-deployment --to-revision=2 to return to revision 2. When you run
the command, you will see that Kubernetes performs the same procedure as with the
normal rolling update.

Take another look at the history. In my case, I rolled back to revision 2. This is no longer
displayed in the history, but is now the latest one—in my case, revision 5. Kubernetes
is smart enough to recognize that both revisions have the same manifest, so it will only
display one of them.

REVISION CHANGE - CAUSE

1 <none>
2 <none>
3 <none>
4 <none>

Listing 2.27 Deployment History

Finally, I want to show you a good way of easily recognizing differences between the
revisions. Especially if no change cause is provided and you need to debug quickly, you
can simply redirect the output of the revision details to a file and then compare it via a
diff —for example:

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 151

2 Basic Objects and Concepts in Kubernetes

kubectl rollout history deployment/rolling-deployment --revision 1 \
> first.out

kubectl rollout history deployment/rolling-deployment --revision 3 \
> second.out

diff one.out two.out

The output of the diff command should look similar to Listing 2.28. In the example,
you can see that we have switched from 30 seconds to 20 seconds and that the pod
template hash has changed as a result. Even major changes can be analyzed very well.

1cl
< deployment.apps/rolling-deployment with revision #1

> deployment.apps/rolling-deployment with revision #3

4c4

< pod-template-hash=76588598d6

> pod-template-hash=55d6687d47

13c13

< sleep 30; touch /tmp/ready; sleep 3600;
> sleep 20; touch /tmp/ready; sleep 3600;

Listing 2.28 Diff of Two Revision Details

Note

Deployment rollbacks are a great tool for responding quickly to problems. However, |
hardly ever use them in production systems. The problem with this is the traceability of
changes because if you perform a rollback, your manifests in the Git repository are no
longer up to date, and other team members will find it more difficult to track the
changes.

In the repo, you have the history and can also directly see the changes to the code. Suit-
able CI/CD pipelines will also enable you to roll back quickly, and you will have tracked
all changes to your production system.

2.4 ConfigMaps and Secrets

When you develop and build containers, everything your application needs belongs in
the container, with a few exceptions. One of them is secrets such as passwords or certif-
icates, and the other is configurations. The reason is that you don't want to build a sep-
arate image for each environment, but you want to be able to deploy a container in

152 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.4 ConfigMaps and Secrets

different environments and configure it as in Figure 2.26 using environment-specific
configuration.

Kubernetes
Cluster

Dev App App
Config Mount volume

Map or env vars

v v | Pods
(2 replicas)

QA »| Configuration
Config

Map

Creates

Prod ConfigMap
Config

Map

Figure 2.26 Configurations per Environment

Kubernetes provides the ConfigMap and secret objects for this purpose. These two
objects are like notebooks that you have on your desk. Anyone from your company can
take alook inside, but the notebook is locked with your passwords and can only be read
by you.

Secrets in etcd

Even if secrets provide a higher level of security, they can be found unencrypted in the
etcd database by default. This means that anyone with APl access can read them. Every
cluster admin also has access to your secrets. It is therefore important that you think in
advance about the secrets you want to store there and how you want to restrict access
to them. Of course, you have options to increase security:

m Setting encryption at rest

® |mplementing role-based access control (RBAC) rules

m Restricting secret access to specific containers

Keep these points in mind when using Kubernetes secrets. It is best to discuss them
with your cluster admins. Instructions for activating encryption at rest can be found at
the following address: http.//s-prs.co/v596421.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 153

http://s-prs.co/v596421

2 Basic Objects and Concepts in Kubernetes

2.41 What Are ConfigMaps?

You can use the ConfigMap object to implement the configuration of your applications
using Kubernetes. This decouples the configuration and the container image. Config-
Map primarily stores data as key-value pairs, which you can then inject into your con-
tainer and use in your application. In addition to the classic key-value pairs, you can
also store an entire file, such as a configuration in JSON, in a ConfigMap. This is very
useful for larger configurations and can be easily integrated into an application.

Secrets instead of ConfigMaps

ConfigMaps provide no protection at all for sensitive data; it is better to use the Kuber-
netes secrets object for this.

A ConfigMap has a very simple structure. In Listing 2.29, you can see that the relevant
fields for your data are data and binaryData. Normal key-value pairs are stored under
data, and binaryData was developed for Base64-encoded strings.

But to really understand what ConfigMap can do, we will try it out in different ways.
There are a total of four ways to make data from ConfigMap available for your applica-
tion. The content of ConfigMaps can be

® mounted by pods as a file system so that the application can read the file,

® set as environment parameters for the application within the pod manifest,

® passed as a command line argument for the container, or

® read within your application using the Kubernetes API

As always, there is no perfect way to integrate ConfigMaps. Depending on the use case
and the type of data you need in your application, one of these four approaches will
make the most sense. In the following sections, I will describe each of the four ap-
proaches so that you can then choose the right one for your application.

apiVersion: vl
kind: ConfigMap

metadata:

name: example-configmap
data:

simpleKey: simplevalue
binaryData:

binaryKey: dGVzdCBiaWShcnkgZGFOYQ==

Listing 2.29 Simple ConfigMap Manifest

154 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.4 ConfigMaps and Secrets

Good to Know

You cannot import an infinite amount of data via ConfigMap. A ConfigMap must not
exceed the maximum size of 1 MiB.

Integrating ConfigMaps as a Volume

Let's start with a ConfigMap that you will integrate as a volume. To do this, you need to
create the ConfigMap from Listing 2.30. In it, we have defined a complete JSON object
under the config.json key. If you roll out this ConfigMap and display it in Lens, it
should look like the one shown in Figure 2.27. You can see that the JSON object has been
imported correctly.

ConfigMap: example-configmap s B X

Created 48s ago 2024-01-12T13:43:42+01:00
Name example-configmap
Namespace default

Annotations kubectl.kubernetes.io/last-applied-config...

config.json

{
"key1": "valuel",
"key2": "value2"

Figure 2.27 Displaying ConfigMap in Lens

apiVersion: vl
kind: ConfigMap
metadata:
name: example-configmap
data:
config.json: |

{

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 155

2 Basic Objects and Concepts in Kubernetes

"keyl": "valuel",
"key2": "value2"

¥
Listing 2.30 ConfigMap Manifest with One File

You will learn more about the topic of volumes in Chapter 5, but at this point I want to
explain what you need to know about ConfigMaps. You can use the pod manifest from
Listing 2.31 for the example.

Here we define a volume named config-volume under volumes and link to the Config-
Map from Listing 2.30 and the config.json item. This volume is mounted under
volumeMounts in the mountPath: /etc/config, and you should then find the config.json
item in the container under this path.

apiVersion: vl
kind: Pod
metadata:

name: example-pod
spec:

containers:

- name: example-container
image: nginx
volumeMounts:

- name: config-volume
mountPath: /etc/config
volumes:

- name: config-volume
configMap:

name: example-configmap

items:

- key: "config.json"
path: "config.json"

Listing 2.31 Pod Manifest with ConfigMap Volume

In Figure 2.28, you can see how the volume is created by the kubelet using the Config-
Map. The volume contains the data you have defined in ConfigMap.

Roll out the pod manifest and connect to the pod via kubectl exec. Now you can check
the contents of the volume. The nice thing about integrating as a volume is that a sep-
arate file containing the value is stored for each key in the ConfigMap. This means that
you will find the file in the /etc/config/config.json path. You can also use cat to check
whether the content is correct.

156 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.4 ConfigMaps and Secrets

searches for
ConfigMap
inserts
/etc/config
get
@ creates based on config.json
ConfigMap
Kubelet
Volume

Figure 2.28 ConfigMap Provided as Volume

Note

As you can see in Listing 2.30, you can also design the values in multiple lines. You can
use the full range of YAML. You will learn more about YAML in Chapter 3, Section 3.2.

Next, let's add another key-value pair to the ConfigMap from Listing 2.30. 1 have added
test: "next one" underneath and rolled out the update in Lens. It will take a little time,
but then you will find a new file named test with the content next one in the volume
mount.

Good to Know

When you update a ConfigMap, the values in a volume mount get updated as well. The
kubelet periodically checks whether anything has changed and will then also import
the update into the volume mount. It can therefore take a few seconds for the update
to arrive in the pod.

When you integrate ConfigMaps as environment parameters, you will not receive an
update. In this case, you must restart the pod.

In the current pod definition, the kubelet will also mount each new parameter of the
ConfigMap in the volume as soon as it recognizes an update. However, you can already
restrict which items you want to provide for your application in the pod manifest. You
can find the corresponding extension in Listing 2.32. This gives you significantly more
control over the mount, for example, if you share a ConfigMap between multiple appli-
cations.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 157

2 Basic Objects and Concepts in Kubernetes

volumes:
- name: config-volume
configMap:
name: example-configmap
items:
- key: "config.json"
path: "config.json"

Listing 2.32 Special Selection of Keys in ConfigMap

Note

If you want to prevent an update of ConfigMap, you can achieve this by using an
immutable tag as in the following example:

apiVersion: vl
kind: ConfigMap
metadata:

name: example-configmap
immutable: true

data:
config.json: |
{
"keyl": "valuel",
"key2": "value2"
}

test: "next one"

Integrating ConfigMaps as Environment Parameters

Another common method of carrying out configurations in an application is to set
environment parameters. The values of a ConfigMap can also be used to set environ-
ment parameters. I would not pass an entire JSON object as a parameter in this case, but
it is perfect for classic configurations such as the log level or the host name of a data-
base.

For the example, we have prepared the ConfigMap from Listing 2.33 and the pod mani-
fest from Listing 2.34 for you. In the pod manifest, a reference to the ConfigMap is
transferred via envFrom. Kubernetes will then set all key-value pairs as environment
parameters.

Just try it out and log in to the pod via kubectl exec. You can use the env command to
view all environment parameters and also find LOG_LEVEL and DB_HOST there. You can
now also have the environment parameters imported by your application.

158 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.4

ConfigMaps and Secrets

apiVersion: vl
kind: ConfigMap
metadata:
name: example-env-configmap
data:
LOG_LEVEL: "debug"
DB_HOST: "localhost"

Listing 2.33 ConfigMap Example for Environment Parameters

apivVersion: vl
kind: Pod
metadata:
name: example-pod-env
spec:
containers:
- name: example-container
image: nginx
envFrom:
- configMapRef:
name: example-env-configmap

Listing 2.34 Pod Uses ConfigMap as Environment Parameter

This is a good example if you have a ConfigMap for an application. As with mounting as

a volume, you can specify the selection of environment parameters even more pre-

cisely. For example, you can load the log level from a different ConfigMap than the
database host. This allows you to design your ConfigMaps more freely.

In Listing 2.35, we have turned one ConfigMap into two, and in Listing 2.36 you can see
the update of the pod manifest. In this example, you use valueFrom to reference an

explicit value that is to be taken from a specific ConfigMap, and as you do not need the

value of PORT from the database ConfigMap in Listing 2.35, you do not have to drag it

along unnecessarily.

Good to Know

You can only define string values in ConfigMap. For this reason, the PORT parameter

from Listing 2.35 is not an integer.

apiVersion: vl
kind: ConfigMap
metadata:
name: example-env-configmap-log

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

159

2 Basic Objects and Concepts in Kubernetes

data:
LOG_LEVEL: "debug"
apiVersion: vl
kind: ConfigMap
metadata:
name: example-env-configmap-db

data:
DB_HOST: "localhost"
PORT: "1234"

Listing 2.35 Split Environment Parameter ConfigMaps

apiVersion: vl
kind: Pod
metadata:
name: example-pod-env
spec:
containers:
- name: example-container
image: nginx
env:
- name: DB_HOST
valueFrom:
configMapKeyRef:
name: example-env-configmap-db
key: DB_HOST
- name: LOG_LEVEL
valueFrom:
configMapKeyRef:
name: example-env-configmap-log
key: LOG_LEVEL

Listing 2.36 Pod Manifest with Selected Parameters from Various ConfigMaps

Note

In addition, you can always include a ConfigMap as an option. If the ConfigMap or the
parameter does not exist, the mounted volume or the environment parameters remain
empty. See Listing 2.37 and Listing 2.38 for these examples.

- name: LOG_LEVEL
valueFrom:
configMapKeyRef:
name: example-env-configmap-log

160 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.4 ConfigMaps and Secrets

key: LOG_LEVEL
optional: true

Listing 2.37 Example from Listing 2.36

volumes:
- name: config-volume
configMap:
name: example-configmap
optional: true

Listing 2.38 Example from Listing 2.31

Transferring a Container Command via a ConfigMap

I am showing you this option for the sake of completeness. There are probably use
cases where you want to transfer a command to a pod that can be configured by a Con-
figMap. But so far, I have never come across this in real life.

You can also parameterize the command for the container by setting an environment
parameter as in the previous section. For the example, we use the ConfigMap from Lis-
ting 2.33 and pass an echo on the parameter to a busybox image as a command in Lis-
ting 2.39. Kubernetes will start the pod, run the echo, and then the pod will terminate.

The kubectl logs example-pod command enables you to see that localhost gets output.
This is exactly the content you have defined in the ConfigMap under the DB_HOST
parameter.

apiVersion: vl
kind: Pod
metadata:
name: example-pod
spec:
containers:
- name: example-container
image: busybox
command: ["/bin/sh", "-c", "echo $HOST"]
env:
- name: HOST
valueFrom:
configMapKeyRef:
name: example-env-configmap
key: DB_HOST
restartPolicy: Never

Listing 2.39 Transferring Container Command as ConfigMap Parameter

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 161

2 Basic Objects and Concepts in Kubernetes

Querying ConfigMaps via Kubernetes API

Finally, I want to describe a brief example of how you can query a ConfigMap via the
Kubernetes API You could do this directly in your application or implement it as a side-
car.

Note

If you want to use the Kubernetes API directly from the application, you also need to
think about authorizations and access data in a production environment. The applica-
tion then requires a technical user who is authorized to read the ConfigMap.

For this purpose, we have prepared a Python script for you in Listing 2.40.

from kubernetes import client, config

config.load_kube_config()

vl = client.CoreV1Api()

configmap_name = 'example-configmap'

namespace = ‘default’

config_map = vl.read_namespaced_config_map(configmap_name, namespace)
print(config_map)

Listing 2.40 Python Script for Reading ConfigMap

The script uses the Kubernetes Python package, which you can download either using
pip install kubernetes or within your IDE, for example. The script does the following:

1. Itloads your Kubeconfig file.

2. It creates an API client.

3. It tries to load the ConfigMap from Listing 2.30 from the default namespace.
4. It displays the ConfigMap.

As a result, you receive the entire ConfigMap as a JSON payload, which you can now
continue to use and load the data from it.

2.4.2 What Are Secrets?

Kubernetes provides additional protection for secrets compared to ConfigMaps, as
secrets often contain sensitive data such as passwords, tokens, or certificates. However,
as we get into the examples, you will see that the YAML syntax is very similar to Config-
Maps, which makes it very easy to use. To ensure that the data in secrets is well pro-
tected, Kubernetes handles it very carefully. For example, the secret

® s sent only to the node on which a pod that relies on it is running;

® s stored by the kubelet in a temporary file system to prevent confidential data from
being stored permanently;

162 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.4 ConfigMaps and Secrets

® s deleted from the node as soon as the pod no longer needs the secret; and
® s only assigned to the containers in a pod to which you grant explicit access.
You can also contribute to the security of a secret's data by treating it as a secret in your

application even after it has been read. When writing a manifest, you should make sure
that only the container that needs the secret has access.

Good to Know

In addition to Kubernetes secrets, there are also other products available that make
managing secrets easier for you. For example, I've worked with customers who used
AWS Secrets Manager or HashiCorp Vault. Every product has its justification, and here
too | can only say: it needs to fit in with your process.

However, if you want to use a vault cluster to merely inject passwords, then this would
be a case of overengineering. It is best to talk to your cluster admins to find a suitable
solution.

Full Access through Privileged Containers

Usually, a secret can only be read by a pod to which you have explicitly granted access.
However, every container that is started with the privileged: true option can read all
the secrets that are stored on its Kubernetes node.

If you look at the manifest from Listing 2.41, you will see that the structure is the same
as for ConfigMaps.
apiVersion: vl
kind: Secret
metadata:
name: example-secret
type: Opaque
data:
username: YWRtaW4=
password: cGFzc3dvemQ=

Listing 2.41 Kubernetes Secret Manifest

However, there are three small differences:

1. Asyoucan see in the overview in Table 2.8, there are different types of secrets.
2. The values under data must always be Base64 encoded.

3. If you want to transfer strings, you must store them under stringData.

In general, like ConfigMaps, you can also use secrets in multiple ways and inject them
into your pods. Secrets can be

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 163

2 Basic Objects and Concepts in Kubernetes

® setasan environment parameter in a pod,
® mounted as a volume, and

® used as a pull secret for private container registries.

Opaque Default type for your data. Not subject to any specifi-
cations.

kubernetes.io/dockercfg Contains the serialized ~/.dockercfg.

kubernetes.io/dockerconfigjson Contains the serialized ~/.docker/config.json.

kubernetes.io/tls Here you can save TLS certificates. Acommon use

case is to store the certificates for an ingress.
kubernetes.io/ssh-auth Contains access data required for an SSH connection.

bootstrap.kubernetes.io/token Secrets that are used when setting up new Kuber-
netes nodes.

kubernetes.io/basic-auth Kubernetes checks whether the username and pass-
word keys are set during creation; otherwise, there
are no further advantages over the opaque type. It
makes it immediately clear to other developers what
the secret is intended for.

kubernetes.io/service-account-token Tokens from service accounts are stored here. This
token can be used by a pod to authenticate itself to
the Kubernetes API.

Table 2.8 Types of Secrets

Good to Know

Like ConfigMaps, secrets can also be
m optionally integrated,

m created as immutable, and

®m created with a maximum size of 1 MiB.

Secrets in the Repo

You should never check unencrypted secret manifests into a version management sys-
tem such as Git. Tools such as sops (https://github.com/getsops/sops) allow you to
encrypt the data beforehand and decrypt it during deployment. Clarify these proce-
dures with your company or your cluster admins in advance.

164 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

https://github.com/getsops/sops

2.4 ConfigMaps and Secrets

Integrating a Secret as an Environment Parameter

Setting secrets as environment parameters works in the same way as with ConfigMaps
except that the syntax is slightly different. Let’s look at a small example. For the exam-
ple, we’ll use the secret from Listing 2.41 and the pod manifest from Listing 2.42. 1 have
highlighted the changes to ConfigMap in bold.

apiVersion: vl
kind: Pod
metadata:
name: example-pod
spec:
containers:
- name: example-container
image: nginx
env:
- name: USERNAME
valueFrom:
secretKeyRef:
name: example-secret
key: username
- name: PASSWORD
valueFrom:
secretKeyRef:
name: example-secret
key: password

Listing 2.42 Pod Uses Secret as Environment Parameter

When you roll out the two manifests using Lens and look at the pod, you can also see
the environment parameters that are set in the container overview, as shown in Figure
2.29.1In addition, you can see which secret the parameter comes from and can even dis-
play the decrypted value.

Good to Know
As with a ConfigMap, you can set all values of a secret as environment parameters. The
syntax reads as follows:

envFrom:
- secretRef:
name: example-secret

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 165

2 Basic Objects and Concepts in Kubernetes

Pod: example-pod

Containers

® example-container

CPU Memory @ Filesystem

@ Metrics not available at the moment

Status running, ready

Image nginx

ImagePullPolicy Always

Environment PASSWORD : secret(example-secret)
[password] &

USERNAME : admin

Mounts /var/run/secrets/kubernetes.io/ser
viceaccount

from kube-api-access-m7xhp (ro)

Figure 2.29 Secret Parameters in Pod Overview

Integrating a Secret as a Volume

The integration of secrets as a volume also works in the same way as with ConfigMaps.
It is a useful option if you create the secrets as a dot file. The name of the file starts with
aperiod (.) and is thus hidden. In Listing 2.43, you can see a corresponding secret man-
ifest, and in Listing 2.44 is the matching pod manifest.

When you roll out the pod and log into it using kubectl exec, you should find a file
named .secret-file under /etc/secret-volume. Because it is a hidden file, you need the
1s -a command to be able to see the file.

apiVersion: vl
kind: Secret
metadata:
name: my-secret
type: Opaque
data:
.secret-file: SGVsbG8gV29ybGQh

Listing 2.43 Dot File Secret

166 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.4 ConfigMaps and Secrets

apiVersion: vl
kind: Pod
metadata:
name: dotfile-test-pod
spec:
containers:
- name: dotfile-test-container
image: nginx
volumeMounts:
- name: secret-volume
mountPath: /etc/secret-volume
volumes:
- name: secret-volume
secret:
secretName: my-secret

Listing 2.44 Pod Manifest with Secret Volume

Good to Know

You can also select specific keys to be integrated when you integrate the secrets as a
volume. To do this, you must simply adapt the manifest as follows:

secret:
secretName: my-secret
items:
- key: ".secret-file"
path: ".secret-file"

Creating Secrets Using kubectl

Like most other Kubernetes objects, you do not necessarily have to create secrets
declaratively. You can also use kubectl to create secrets. In this case, it may even make
sense to execute the commands within a pipeline because you want to decrypt pass-
words there at runtime and create them in Kubernetes. For this reason, I am presenting
this option here.

Note

I would always prefer an encoded YAML file to imperative commands, but there are sit-
uations where you might need the commands.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 167

2 Basic Objects and Concepts in Kubernetes

The kubectl commands vary slightly depending on the type from Table 2.8 you want to
create. But the basic structure remains the same. You can create the standard type
Opaque, for example, as in Listing 2.45. Simply enter the key and value directly there.

kubectl create secret generic my-secret \
--from-literal=username=admin \
--from-literal=password=secret

Listing 2.45 kubectl create secret from-literal

However, you can also refer to files containing the value as in Listing 2.46. The file name
is then used as the key.

kubectl create secret generic my-secret \
--from-file=/path/to/username \
--from-file=/path/to/password

Listing 2.46 kubectl create secret from-file

Secrets for Private Container Registry

In Kubernetes, you cannot deploy containers directly from your computer. You always
need a container registry that manages your images and can use Kubernetes to down-
load images. Docker Hub is a public registry that we use in many examples. As long as
your Kubernetes cluster can access it via the network, you can also use Docker Hub
images in your cluster.

If you develop software in a company and want to store container images, you will not
want to make them publicly accessible. With the Minikube registry, you have already
gained a first impression of how a private registry works. It is perfectly tailored to Mini-
kube, and you don't need to worry about anything else in this context. Operating a pri-
vate registry in a company is a little more challenging, but necessary, because in a
private registry you can manage a company's images much better and have more con-
trol. Many registries also provide additional features, such as image scans. Products I
have used in recent years include the following:

® Artifactory by JFrog

® Nexus

® Amazon ECR

But there are many others that fit more or less well into a company, depending on the
tech stack. The important thing about a registry is that it must be well integrated into

the development process, because if it is complicated to use, passwords will be stored
in text files again.

168 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.4 ConfigMaps and Secrets

Good to Know

Container registries from cloud providers such as Amazon ECR can be set up quickly
and easily within an account. In some companies, this means that the containers are
managed decentrally; that is, each team stores the containers separately. This is nei-
ther good nor bad in the first instance, but it should be a conscious decision as to
whether the containers are stored centrally or decentrally.

Personally, | think central storage is better for production images because you have
much more control over them. This way, rules such as these cannot simply be ignored:

® |mages must not be overwritten.
® |mages must not be deleted.

® |mages must be scanned for known security issues.

In most cases, private registries are also not accessible without authentication, and
Kubernetes cannot simply retrieve images. For this reason, you must teach Kubernetes
to authenticate itself. With Docker, you would simply use the docker login command
and use your user name and password. Based on that, Docker generates a configuration
file in JSON where it then saves the access data according to the schema shown in Lis-
ting 2.47. For each registry, this JSON file holds a string consisting of user name and
password, which is Base64 encoded.

{
"auths": {
"https://index.docker.io/v1/": {
"auth": "g4s...3rda"
}
}
}

Listing 2.47 docker/config.json

Good to Know

In Docker Desktop, the config.json file looks slightly different. There, the auth login is
not stored in the file, and in the JSON file you will only find the reference to "credsS-
tore": "desktop".

Kubernetes is based on this authentication, and you can store the access data from the
configuration file as a Kubernetes secret and reference it in the deployment manifest.
For this purpose, you can generate the secret from the config. json file by using the fol-
lowing command:

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 169

2 Basic Objects and Concepts in Kubernetes

kubectl create secret generic regcred \
--from-file=.dockerconfigjson=<path/to/.docker/config.json> \
--type=kubernetes.io/dockerconfigjson

Alternatively, you can create a secret and enter all the necessary parameters in the
command:

kubectl create secret docker-registry regcred \
--docker-server=<url> \
--docker-username=<username> \
--docker-password=<password> \
--docker-email=<emailadress>

In my opinion, the second option is the better one, because you create the secret explic-
itly with the values you need. You can also run this command in a deployment pipe-
line. In addition, you can create a manifest as in Listing 2.48 and store the config.json
file there, Base64 encoded. Choose the option that suits you best.

apiVersion: vl
data:
.dockerconfigjson: eyJh..X0=
kind: Secret
metadata:
name: regcred
type: kubernetes.io/dockerconfigjson

Listing 2.48 docker/config.json as Kubernetes Secret

Note

At this point, | want to point out once again that secrets should not be stored unen-
crypted in version management. You can run the command to create the secret in a Cl/
CD pipeline and insert passwords at runtime, or you can use an additional tool to
encrypt secret manifests before checking them into Git.

In a deployment manifest, you want to enter the secret as imagePullSecret. In Listing
2.49, you can see the option marked in bold. Set the name to the name you have given
the secret, and Kubernetes then can use the secret to retrieve images from a private
registry.

apiVersion: apps/vl
kind: Deployment
metadata:
name: my-nginx-deployment

170 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.5 Establishing a Communication with Services and an Ingress

labels:
app: nginx
spec:

spec:

imagePullSecrets:

- name: regcred

containers:

- name: my-container
image: localhost:5000/my-nginx
ports:
- containerPort: 80

Listing 2.49 imagePullSecret in Deployment

Information in the Secret

Outside of your test cluster, you should never store your private access data in a Kuber-
netes secret. Anyone who has access to the secret can also read your passwords.

Use a technical user whose authorizations are only limited to what is necessary for the
application. A technical user is specifically there to give a system access to other sys-
tems.

The method to create one differs from registry to registry. It is best to read the relevant
documentation to find out how the authorization concept works.

Note

Managing secrets is never easy. One of my clients operates their Kubernetes clusters in
AWS and uses AWS Secrets Manager to store secrets. At the same time, they use sops
to encrypt secrets in GitLab, which they then create as a Kubernetes secret.

As soon as it becomes complex and confusing, you need to think about how you could
simplify things, especially when there is no longer a single point of truth. At the follow-
ing link, you will find a Kubernetes operator that enables you to easily tap into external
secret stores: http://s-prs.co/v596422. This could make management a little easier for
you.

2.5 Establishing a Communication with Services and an Ingress

You have now learned a lot about individual pods and how you can run your applica-
tion in Kubernetes. But a pod seldom comes alone, and in a world of microservices

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com m

http://s-prs.co/v596422

2 Basic Objects and Concepts in Kubernetes

there can quickly be several hundred of them. The challenge here is that the applica-
tions want to communicate with each other. Because the pods in Kubernetes are very
volatile and you do not know on which node a pod is currently running, you need a
functioning service discovery.

Kubernetes provides the service object for this purpose. This object stores the informa-
tion about your pods and serves as a load balancer. For the communication from out-
side into the cluster, there is the ingress object, which allows you to control the data
traffic. Both objects are important and work together, because what would your appli-
cation be if no one could find it or reach it?

Imagine your application as a store in a city. They even have several stores with the
same product range at different locations. Your customers appreciate this because
your stores are packed on a Saturday afternoon and customers can spread out between
the stores. The service is your smart customer guidance system. It knows all your stores
and keeps a precise record of where one can find them. If a new store opens, it also
directs your customers to that new store.

If the service is a customer guidance system, then you can think of the ingress as a
smart parking guidance system that guides your customers from outside the city to the
right parking lot, where the customer guidance system (service) then takes over and
guides the customer to your store. The parking guidance system asks for the cus-
tomer's destination at the beginning and can even request the A38 permit and check
whether the customer is authorized to drive into the city at all.

This means that the ingress

m enables access from outside the cluster,

m checks for authorization, and

m redirects the packages to the service.

The service

®m knows all pod replicas and their location in the cluster,

m takes over the load balancing on the available pods, and

® redirects the requests to a pod.

Figure 2.30 shows the connections as the communication usually takes place. A pod

located in the same cluster can address the service directly to reach other pods. Com-
munication from outside the cluster can take place in two ways:

® Via the ingress, which accepts the packages on OSI layer 7 and redirects them to the
corresponding pod via the service

® Via a special NodePort service that works on layer 4 and simply redirects communi-
cation arriving on a specific port to the service

172 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.5 Establishing a Communication with Services and an Ingress

Cluster
NodePort
Pod
—>» —_—
Ingress Service
@ Pod
Pod

Figure 2.30 Communication with Service and Ingress

The way via NodePort is simple, but you have more control options by using an ingress.
I definitely recommend using an ingress for HTTP applications, but we'll take a closer
look at both.

2.5.1 Communication between Pods

A key feature of the Kubernetes design is network communication without the need
for network address translation (NAT). In Kubernetes, every pod can communicate
directly with every other pod, and all nodes can also communicate with all pods with-
out the need for NAT. This is made possible by the use of real IP addresses for pods and
efficient routing within the cluster. The IP address you see in a pod is also the IP address
that other pods can use to reach that pod. This design reduces network complexity and
ensures transparent communication within a cluster.

This means that if, for example, your frontend application is running on the same clus-
ter as your backend application, the two can communicate with each other via the IP
address. But just because something works doesn't mean it should be done that way. As
you know, pods are fast-moving and transient, so normally you would never want to
communicate with a single pod. You need a fixed end point that always directs you to
the right pod. This is why the service object exists.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 173

2 Basic Objects and Concepts in Kubernetes

Good to Know

Interestingly, pods are also assigned a DNS address that has the following structure:
[PodIP].[Namespace].pod.cluster.local.

It remains to be seen whether this DNS address is useful. If you need the IP address to
create the DNS name, you can also use it directly.

2.5.2 Communication via a Service

Try to think of one of your applications in production: What is the workload like there
throughout the day?

In most cases, there is no constant load. Data traffic is different in the morning than in
the evening, and in the evening it is different than during the night. In Kubernetes,
your application scales different numbers of pods to either match the load or to avoid
tying up resources unnecessarily. In addition, it can sometimes happen that your
Kubernetes deployment has to replace a nonfunctioning pod.

If the communication partner changes constantly, there needs to be a constant at one
point that is the gateway for requests. To meet the requirements, you need something
that monitors changes and helps you maintain communication channels. The Kuber-
netes service takes over these tasks for you and takes care of the following:

® Service discovery
The service knows all replicas and redirects incoming data traffic to them.

® Load balancing
It distributes the data traffic to all available pods.

m A fixed end point
With a fixed IP address and DNS name, the service is a reliable end point.

The correct way to communicate between pods within a Kubernetes cluster is therefore
always via a service. To determine which pods it should redirect the data traffic to, the
service uses the concept of labels and selectors for service discovery.

One component of Kubernetes that plays a key role in this process is the kube-proxy,
which takes care of handling the virtual cluster IPs of pods and services. For this pur-
pose, it listens for changes on apiserver and enters these in the routing tables of the
node. This allows traffic to be routed to the correct end points.

Good to Know
The DNS address of a service always has the same structure:
® Within a namespace, the name of the service is sufficient.

m Within the cluster, its structure is [ServiceName]. [Namespace].svc.cluster.local.

174 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.5 Establishing a Communication with Services and an Ingress

For example, if the name of your service is nginx-service and it is deployed in the
default namespace, you can always reach it via the following DNS address: nginx-
service.default.svc.cluster.local.

The service object is multifaceted, and there are five different types listed in Table 2.9.
Let’s look at the most important of these in more detail.

ClusterIP This is the default service type. This type makes it possible to address an
application within the cluster via an internal IP address.

NodePort You can use this type to provide a ClusterlIP service that gets mapped to a
port on each node in the cluster, which enables access from outside the
cluster via [NodeIP]:[NodePort].

LoadBalancer This type allows you to link the service to an external load balancer. If your
cluster is integrated with a cloud provider, this can also create a load bal-
ancer.

ExternalName You can use this service to refer to external host names via a CNAME

record. For example, you could make an external database accessible via
the Kubernetes service.

Headless You should use the headless service if you do not need load balancing or
ClusterlP. This allows you to connect a single pod to the service. (Note that
this is a special case, and I've never come across it in the real world.)

Table 2.9 Kubernetes Service Types

The ClusterlIP Service

Let's start with the most commonly used Kubernetes service. The ClusterIP service is
the default service; when someone talks about a service, they usually mean this type. In
the next example, you will create a service for the deployment in Listing 2.50.

apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx-deployment
labels:
app: nginx
spec:
replicas: 2
selector:
matchLabels:
app: nginx

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 175

2 Basic Objects and Concepts in Kubernetes

template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80

Listing 2.50 Example of Nginx Deployment Manifest Service

In the simplest case, you can use the imperative kubectl expose deployment nginx-
deployment command, and Kubernetes will create a suitable service for your deploy-
ment. To do this, Kubernetes looks at the deployment manifest and defines what the
service should look like based on the container ports. If you look at this in Lens, the ser-
vice has the same name as the deployment, has been assigned an IP address, and can be
reached via port 80. It should look like Figure 2.31.

O nginx-deployment ClusterlP 10.111.67.229 80/TCP = app=nginx 4m Active

Figure 2.31 Kubernetes Service in Lens

As a YAML manifest, a service looks like the example in Listing 2.51. Under spec.selec-
tor, you specify the labels that the service uses to identify the pods to which it should
redirect. Under ports, you define the port which the service opens and the destination
port to which it redirects. You can also roll out this manifest and compare the two. The
two have different IP addresses and a different name. But the function is the same. Both
redirect to the pods of your deployment.

apiVersion: vl
kind: Service
metadata:
name: nginx-service
spec:
selector:
app: nginx
ports:
- protocol: TCP
port: 80
targetPort: 80

Listing 2.51 ClusterlP Type Service

176 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.5 Establishing a Communication with Services and an Ingress

Good to Know

You can also define multiple ports in a service and assign names to the ports. This
allows you to open multiple ports in your application if you allow HTTP and HTTPS, for
example. To do this, simply add another entry to your list:

ports:

- name: http
protocol: TCP
port: 80
targetPort: 8080

- name: https
protocol: TCP
port: 443
targetPort: 8443

Good to Know

It is also possible to define a fixed ClusterlP for the service. However, it must be in the
CIDR range of the cluster and must not have been assigned yet. To do this, you want to
set the clusterIP option as in the following example:
apiVersion: vl
kind: Service
metadata:
name: nginx-service-fixed-ip
spec:
clusterIP: 10.98.37.199
selector:
app: nginx
ports:
- protocol: TCP
port: 80
targetPort: 80

Let’s now test the service briefly. As the ClusterIP service is only available within the
cluster, you need a container from which you can start a query. Use the busybox con-
tainer for this. In Listing 2.52, you will find a simple pod manifest to start the pod in the
cluster and keep it running. Now use the kubectl exec command to connect to the pod.
After that, you can send a query to Nginx via the service in the pod's command line.
Run the query using wget -q0- nginx-service or wget -q0- nginx-service.default.
svc.cluster.local.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 177

O

2 Basic Objects and Concepts in Kubernetes

apiVersion: vl
kind: Pod
metadata:
name: busybox
spec:
containers:
- name: busybox
image: busybox
command: ["sh", "-c", "while true; do sleep 3600; done"]

Listing 2.52 Busybox Pod Manifest

You can see that you simply need the name of the service within the same namespace,
but of course the full DNS name also works. Why don't you try the opposite and deploy
the busybox to a different namespace?

The NodePort Service

Most of the applications you develop are not only used within the cluster. Users or
applications from outside also want to reach and use your applications. A simple way
to make this possible is to extend the ClusterIP service.

If you assign a NodePort to the service, every node in your cluster will forward the data
traffic arriving on this port to your service. The entire thing is based on layer 4 of the
OSI model and therefore gives you few options for controlling the data traffic. Node-
Port services are the right choice, especially for applications that do not communicate
via HTTP.

Listing 2.53 shows the manifest for a NodePort service. The only difference is that you
need to pass type: NodePort, and Kubernetes then will select a port and redirect it to the
service. Figure 2.32 shows what the NodePort service in Lens looks like. In this case, it
redirects port 30586 to port 80 of the service, which in turn redirects the traffic to port
80 of the pod.

nginx-service NodePort 10.105.187.187 80:30586/TCP - app=nginx 6m58s Active

Figure 2.32 NodePort Service in Lens

apiVersion: vl
kind: Service
metadata:

name: nginx-service
spec:

type: NodePort

selector:

app: nginx

178 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.5 Establishing a Communication with Services and an Ingress

ports:
- protocol: TCP
port: 80

targetPort: 80

Listing 2.53 NodePort Type Service

Good to Know

If you do not want to activate a random port, you can also define a fixed port to be
opened by your nodes. To do this, expand the port definition of your NodePort service
as follows:

ports:

- name: http
protocol: TCP
port: 80
targetPort: 8080
nodePort: 30586

The NodePort service is somewhat difficult to test using Minikube. As Kubernetes runs
in the Docker container, it is not really accessible from the outside. As a small work-
around, you can use the docker exec -it [CONTAINER_ID] bash command to connect to
your container. There, you need to use the curl 127.0.0.1:[NODE_PORT] command to
test whether you receive the Nginx welcome page.

A much nicer test would be to use the Raspberry Pi setup from Chapter 1, Section 1.7,
because then you could also see that the NodePort is redirected from each node to your
service.

The ExternalName Service

This service is a little more specific. In this case, you need to enter an external DNS
name as shown in Listing 2.54. Requests that you send to the service will be redirected
to the external address.

apiVersion: vl
kind: Service
metadata:
name: external-dns-service
spec:
type: ExternalName
externalName: myservice.humanity-it.com

Listing 2.54 ExternalName Type Service

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 179

2 Basic Objects and Concepts in Kubernetes

But what may seem a little confusing at first makes working with external services very
charming. For example, if you are running a Postgres database in production on the
AWS RDS service, you can still have your pods communicate with a Kubernetes service.
You just add another abstraction to the database. This allows you to turn the RDS ser-
vice into a simple pod in a development environment that is sufficient for develop-
ment.

Note

If you need to use external services such as databases, the ExternalName service can
give you more flexibility and perhaps also save costs. Why don't you check in your com-
pany where you could use a service of the ExternalName type and simply bring data-
bases in development environments into Kubernetes?

2.5.3 Communication via Ingress

You have gotten to know and tried out the NodePort service—a simple way to open
your application to the outside world by activating a port. Unfortunately, this option
leaves very little scope for analyzing and routing data traffic. The alternative for your
HTTP application is an ingress.

Note

You can activate and deploy an ingress, but you can only use an ingress via a Minikube
CLl tunnel. This doesn't really make testing any different than a direct tunnel to the ser-
vice or pod.

However, the problem here is that Minikube itself runs in a Docker container and the
cluster IP address is not accessible from your host computer. Unfortunately, | have not
found an easy way around this problem.

I have used the Raspberry Pi cluster from Chapter 1, Section 1.7 for the examples here. A
test cluster from your company would be even better at this point.

The ingress object works on layer 7 of the OSI model and offers to redirect incoming
traffic to Kubernetes services based on rules. For example, you can

m decide to which service the traffic should be redirected based on the URL or path
called;

®m change the path using rewriting rules; or
m support TLS certificates to allow HTTPS traffic.
An ingress is typically a load balancer. However, the technical implementation

depends on the ingress controller. The ingress controller provides a load balancer that
takes over the task of the ingress as you define it in an ingress manifest.

180 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.5 Establishing a Communication with Services and an Ingress

The split between the ingress manifest and the actual implementation by the Ingress
controller has a major advantage: you can decide individually which technology suits
you and your cluster best. A cluster based on AWS infrastructure can rely on the AWS
Load Balancer Controller, which sets up an application load balancer (ALB) in the cloud
based on your manifest. For an on-premise cluster, for example, you can use the
ingress Nginx controller, which builds Nginx from the manifest within your cluster.
You are completely free to do this and can also use multiple ingress controllers at the
same time.

Good to Know

Depending on the ingress controller, you have more or fewer options for using addi-
tional features. For example, one of my clients uses an Nginx ingress and uses the
authentication feature there. An annotation sets an endpoint to the Authelia tool, the
user is redirected there and authenticates themselves, and they can then use the appli-
cation.

For an example of how you can customize the Nginx ingress, visit http://s-prs.co/
v596423.

Note

To be able to use multiple ingress controllers, you must define ingress classes, which
you can then reference in a manifest so that Kubernetes knows which controller is sup-
posed to generate the ingress. You can find out more about this topic at http://
s-prs.co/v596424.

Typically, when setting up a cluster, you need to think about which ingress controllers
you want to install. In your company, the cluster admins will have already done this.
You do not need to worry about the ingress controller in your test clusters.

On Minikube, you can activate the ingress controller using the minikube addons enable
ingress command. The Raspberry Pi cluster runs the Traefik ingress controller, which is
supplied directly with K3s.

Good to Know

Usually, all ingress controllers should have the same functions, but there are slight dif-
ferences from controller to controller. You can get an idea of the available selection of
controllers at the following link: http://s-prs.co/v596425.

Let's first take a look at the default backend. A default backend is often already config-
ured in the ingress controller. This Ingress should take over all requests that cannot be
assigned to any other ingress. If you do not want to rely on the implementation of the

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 181

http://s-prs.co/v596423
http://s-prs.co/v596423
http://s-prs.co/v596424
http://s-prs.co/v596424
http://s-prs.co/v596425

2 Basic Objects and Concepts in Kubernetes

ingress controller or want to define your own default backend, you can do this by using
the manifest from Listing 2.55.

For the example, we will again use the simple deployment with Nginx pods, which are
made accessible via a service, from Listing 2.50 and Listing 2.51. The default backend

extends the example and will redirect all HTTP requests that reach the cluster to the
nginx service on port 80. The ingress does not care which Kubernetes node the request
hits. Kubernetes checks the ingress rule and then redirects it accordingly.

Note

If you want to try the ingress on Minikube, you need to enable the ingress add-on via
the minikube addons enable ingress command, then use the minikube tunnel com-
mand after rolling out the ingress.

Note

You can use the default backend configuration for an error page—for example, to
inform your users of errors.

Note that you should always define an ingress with rules for your application.

apiVersion: networking.k8s.io/vl
kind: Ingress
metadata:
name: nginx-ingress
spec:
defaultBackend:
service:
name: nginx-service
port:
number: 80

Listing 2.55 Default Backend Ingress Manifest

An ingress gives you two options for defining rules so that you can control incoming
HTTP traffic:

®m Path based
® Host based

A path-based rule looks at everything after the / in the calling URL. For example, you
can redirect the user who calls /test to Nginx and the user who calls /test/db to a data-
base.

182 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

2.5 Establishing a Communication with Services and an Ingress

Note

The ingress will also redirect the complete path to your application. So if /test is redi-
rected to Nginx, then Nginx must also be able to handle the /test path.

You could work around this by using rewrite rules so that the ingress controller adjusts
the path before it goes to the application.

Good to Know

If there are multiple similar paths, the one that is the longest wins. The /test/db path
could also be a subpath of Nginx, but Kubernetes will then redirect the traffic to the
database.

The host can make the rules even more precise. Kubernetes looks at the URL of the host
that the user calls. For example, if you call raspberryl.local/test in the browser, the
ingress can redirect using the URL before the /. The rule for the /test path then only
applies if the host matches as well. The host is optional, and if it is not set, then the rule
applies to every HTTP request.

Let's try this out by creating a path-based ingress that points to the service. For this pur-
pose, you should use the manifest from Listing 2.56. This ingress is very simple because
it merely forwards everything from / to Nginx. This means that you do not need a
rewrite rule to redirect the correct path in the URL to your web server.

apiVersion: networking.k8s.io/v1
kind: Ingress

metadata:

name: nginx-ingress
spec:

rules:

- http:

paths:

- path: /
pathType: Prefix
backend:

service:
name: nginx-service
port:
number: 80

Listing 2.56 Ingress Manifest for Nginx

If you create the ingress in Lens and look at it, it should look similar to Figure 2.33.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 183

2 Basic Objects and Concepts in Kubernetes

[Name Namespace LoadBalancers Rules

O nginx-ingress 192.168.178.1 http://*/ -+ nginx-service:80

Figure 2.33 Ingress Created in Lens

In the overview, you can see the rule according to which this ingress redirects the data
traffic, and you can also see the IP addresses at which the ingress is active. When you
click the ingress, you should see the IPs of the Raspberry Pis there.

You can now access Nginx via your browser. You can either use the IP address of a Rasp-
berry Pi or the host name. It does not matter which of the nodes in the cluster you call.
Everyone accepts the calls and redirects them according to the ingress rules. We have
used Prefix for pathType, but there is also the Exact type. You can read exactly how both
work in Table 2.10.

Prefix The called path must start with the defined path. The use of uppercase and
lowercase letters is important, but the final / is ignored. Examples of how the
ingress would decide can be found in the documentation at the following
address:

http://s-prs.co/v596426

Exact The complete path must be called in exactly the same way and is case sensi-
tive. The Exact type is preferred over the Prefix type in the event of a match.

Table 2.10 Ingress pathTypes

A good way to define an ingress more specifically is to set a host name. By tightening
the rule, you could, for example, use the / path more frequently and thus continue to
operate multiple web servers in your cluster without a rewrite rule. The only thing you
need to make sure is that the DNS points to the Kubernetes cluster, preferably via aload
balancer.

You can see the change in bold in Listing 2.57. Here we use the host name of one of the
Raspberry Pis, which is resolved within the local network. If you import this change,
you will also see in the ingress overview that the rule for redirecting has changed. If you
now try to call the IP address, you will receive a 404 page not found error unless you
have defined a default backend.

You cannot access Nginx via the URL of the second Pi either. Only if you call up http://
raspberrypil.local/ will ingress redirect you to Nginx.

184 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596426

2.5 Establishing a Communication with Services and an Ingress

Good to Know

In the example, you can of course only access Nginx via raspberrypil because the DNS
points to it. Nevertheless, the second node would also redirect the traffic if you arrived
there with the URL.

In a real environment, the DNS would point to a load balancer in front of the Kuber-
netes cluster, which then redirects the traffic to any instance of the cluster. This means
you do not overload a single instance.

apiVersion: networking.k8s.io/vl
kind: Ingress
metadata:
name: nginx-ingress
spec:
rules:
- host: raspberryl.local
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: nginx-service
port:
number: 80

Listing 2.57 Ingress Manifest with Host Name

As you already know, you can also define multiple rules in an ingress. We have pro-
vided the preceding example as a manifest in Listing 2.58. Finally, try deploying
another application and making it accessible via the ingress. It doesn't have to be a
database either, but it will get you into trial and error, and the ingress concept will end
up being logical and easy for you.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

name: nginx-ingress
spec:

rules:

- host: raspberryl.local

http:

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 185

2 Basic Objects and Concepts in Kubernetes

paths:
- path: /
pathType: Prefix
backend:
service:
name: nginx-service
port:
number: 80
- path: /test/db
pathType: Prefix
backend:
service:
name: nginx-db
port:
number: 5432

Listing 2.58 Multiple Paths within Ingress

186 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

Chapter 3

Everything as Code: Tools and
Principles for Kubernetes Operations

The best instruction is one that gets by with as few words as possible.
—Maria Montessori

The quote from Maria Montessori that opens this chapter refers to pedagogy. The fewer
words we use to formulate an instruction, the easier it is to understand and the easier
it is to absorb. But I also think the idea is perfect for IT. The clearer your instructions to
the computer, the more likely it will do what you want.

Giving instructions to a machine is a common practice—for example:
1. You click the Outlook icon to open your email program.
2. You type text into the editor using your keyboard.

3. You instruct the program to send an email.

In Chapter], Section 1.5.5, you learned about the most common kubectl commands and
saw how you can use them to issue instructions to Kubernetes:

® Show me my pods!
® Create a deployment for me!

® Scale up from two to three pods!

This approach is referred to as an imperative one: you give the machine instructions it
must carry out, step by step. The challenge with instructions is to make them sustain-
able so that they can be repeated and executed with little effort, ideally even automat-
ically.

Of course, you can write a script and execute it in any environment. However, impera-
tive instructions always harbor the risk of being misinterpreted, because not every sys-
tem is always in the same state. The production environment could respond very
differently to the command sequence than the test environment. What if your deploy-
ment on the production environment already consists of three pods? Depending on
how you formulate the last instruction, a fourth pod is then created, which does not
correspond to the order; actually, nothing should have happened.

To avoid such misunderstandings, the status of the infrastructure must already be
known in such a way that your instructions can access it directly. This is referred to
as everything as code, and the approach is designed to solve precisely this type of

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 187

3 Everything as Code: Tools and Principles for Kubernetes Operations

problem: All objects are structured as text in a readable format for humans and com-
puters. These objects are then interpreted by the computer itself, which attempts to
achieve the desired state independently. You no longer work imperatively, but declara-
tively (Section 3.1).

This idea is not an invention of Kubernetes; it is also pursued by other configuration
management tools such as Terraform or Ansible. Infrastructure as code (IaC) is a
modern and widely used paradigm that allows you to define infrastructure compo-
nents such as servers, routers, and also Kubernetes resources as code:

® Once created, you can import a manifest again and again. It does not matter whether
the resources are no longer working due to an error or a new environment is to be
set up. You save time because the configuration is already available and all you have
to dois roll it out.

® JaC promotes the uniformity of the IT infrastructure, as you can use the same code
multiple times to create identical environments. Writing it down as code always
helps me to think about standardization. I inevitably ask myself which processes
and setups can be simplified or improved.

® You save yourself work because you don't have to perform the same steps manually
for every environment. This reduces human error, saves time and nerves, and sim-
plifies repeatability.

® Using [aC, you can store your infrastructures in your version management system,
which allows you to track changes quickly and easily and carry out rollbacks. In addi-
tion, the infrastructure is directly documented and collaboration within a team is
easier. You can use your review processes for changes, and the history of infrastruc-
ture changes is worth its weight in gold when it comes to debugging.

® You can fully automate your infrastructure with CI/CD pipelines.

Everything as code is the basis for stable and simple IT operations. So let's delve deeper
into the topic together in this chapter.

3.1 Declarative Configurations

Are you familiar with declarative programming using languages such as Haskell or
Lisp? The difference from widely used languages such as Java or Python is the type of
programming. With an imperative language such as Java, you tell the system step by
step how to achieve the desired result. In Haskell, you describe what the result should
be, and the way to get there remains open to the system. These are two completely dif-
ferent paradigms. If you are used to imperative programming, the declarative para-
digm will take some getting used to.

To understand the difference between imperative and declarative programming,
imagine that you want to plan a meeting with a business partner. According to the

188 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

3.1 Declarative Configurations

imperative paradigm, you would have to divide this task into many different steps: Call
Frank. If he doesn't answer his cell phone, send him a text message. If he hasn't
answered after two hours, call him again. If there is no confirmation by tonight, remove
the meeting from your calendar.

These steps must be processed in the correct order, and all logical conditions must be
formulated correctly; otherwise, Frank will still receive a reminder text message after
his call.

For better clarity, I have shown you a simplified imperative process in Figure 3.1. You
have a desired state in mind and want to get the system there by using commands. You
run a command and then check whether the system has reached the desired state. If
not, you must send another command to bring the state closer to the desired state. Not
until your check shows that the status has been reached can you end the process.

Checks
the Result

Executes Desired
Command ” Result

Figure 3.1 Simplified Imperative Approach

A declarative approach is much simpler: You tell your cell phone by voice control: “I'm
planning a meeting with Frank this afternoon.” Your cell phone then automatically
tries to call Frank in the background and arrange a meeting with him. Unfortunately, he
doesn't answer the phone. Your cell phone will then send a text message and a few min-
utes later you will receive confirmation that the appointment has been made.

You do not need to formulate and structure this process in detail each time; you are
no longer involved at all. You “only” specify the result, while your cell phone inde-
pendently finds a solution to receive confirmation from Frank. That sounds like a real
Al assistant. Unfortunately, a voice assistant does not currently think ahead on its own
and only executes one command.

The declarative paradigm is not only used in programming. It is also used in Kuber-
netes to provide a more abstract and flexible handling of resources and services. Take
the ReplicaSet, for example. You create the ReplicaSet and define that your application
should run on three pods. The ReplicaSet must then take care of achieving the desired
status and creates three new pods. At the same time, it constantly monitors the current
status and checks whether the desired number has been reached. If a pod fails, the Rep-
licaSet will start a new one. If —for whatever reason—there are already four pods, it will
scale down the number without you ever explicitly requesting this.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 189

3 Everything as Code: Tools and Principles for Kubernetes Operations

As a developer, you do not want to worry about how the ReplicaSet fulfills its task. You
leave it entirely up to the system what needs to be done to achieve the desired state.

Figure 3.2 shows a simplified representation of the declarative procedure. This time,
you not only have the desired status in your head, but also define it so that the system
canrecognize it. In Kubernetes, you would declare this in the YAML language, which we
will take a look at in Section 3.2. The system now understands which state is to be
achieved and works on it independently until the state is reached. This procedure is
referred to as a reconciliation loop as the current state is repeatedly compared with the
desired state.

System works
until the result
has been achieved

Defines Desired
_]
Result

Figure 3.2 Simplified Declarative Approach

Note

It would be desirable to have Kubernetes always achieve the intended result when we
declare it. Unfortunately, however, the system cannot solve all problems on its own
and will of course produce error messages if a precondition is not met. For example,
Kubernetes cannot deploy a pod if the declared image is not available.

The approach reminds me of the test, operate, test, and exit (TOTE) model from my nat-
ural language processing (NLP) training. This is a cognitive model that originates from
psychology and is used to explain feedback and control processes in human action.
You have a current state and a desired state and must do something to achieve the
desired state.

Let's take brushing your teeth as an example. You get up in the morning and want to
have clean teeth. Your procedure would be as follows according to the TOTE model:
1. Test

You check whether your teeth are clean and realize that you need to brush them.

2. Operate
You brush your teeth.

190 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

3.1 Declarative Configurations

3. Test (repetition)
After performing the operations, you check again whether your teeth are clean. If so,
stop cleaning. If not, go back to the operate stage.

4. Exit
You terminate the process.

In our case, this is how it works: In the imperative paradigm, you have to check the state
yourself and execute commands until you have reached the desired state. In the declar-
ative paradigm, it is always the system that works and checks until the desired state is
reached. The TOTE model therefore applies in both cases. The only question is: Who has
to do the work? You or the system?

If you remember Chapter 1, Section 1.5.5, there is one more thing you might be asking
yourself. In that section, you tried out your first kubectl commands. Thus, Kubernetes

also provides direct imperative commands to create or adapt resources. But why do
they exist if the declarative paradigm is so much better?

In Kubernetes, the imperative approach can be used for
® simple, small, and quick changes;

® one-off operations that are rarely performed;

®m debugging or troubleshooting; and

®m development environments.

Let's be honest: there is no system that is perfect, and we need good developers who
know what they are doing. There will always be times when you have to do it yourself,
especially when something has to be done quickly. That's why it's important to me that
you find your way around both kubectl and Lens and become confident in using them.
That is your tool to be able to intervene in an emergency.

With Kubernetes, however, I recommend that you always use the declarative paradigm
if possible, as this will make your life much easier. At the latest when you are working
with production systems, you cannot avoid it if you want to provide reliable applica-
tions and have all changes to the system precisely logged and monitored.

Good to Know

One of the main advantages of the declarative paradigm is the ability to map complex
systems simply and effectively as code. By defining the desired state, Kubernetes can
automatically perform the necessary steps to achieve and maintain this state. This
gives you advantages such as the following:

® |dempotence
The same configuration always leads to the same end state, regardless of the cur-
rent state of the system.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 191

3 Everything as Code: Tools and Principles for Kubernetes Operations

m Scalability
You can quickly and easily make adjustments to system resources by making
changes to the configuration file.
m Repeatability
You can easily reproduce identical environments by using the same configuration files.
m Self-healing
Kubernetes continuously monitors its status and independently takes steps to cor-
rect any deviations from the desired status.

3.2 YAML: The Language for Kubernetes

To make your intended result clear to Kubernetes, you need a language in which you
can specify your resources declaratively. Kubernetes uses the YAML markup language
for this purpose. In software development, you have certainly already become familiar
with markup languages such as XML or JSON, and perhaps you have even used YAML in
a different context. I want to take this opportunity to go into more detail about YAML,
because Kubernetes uses YAML to describe all resources and states of the cluster.

YAML is a recursive acronym and stands for YAML Ain't Markup Language. It is cur-
rently very popular alongside JSON and impresses with its significantly better readabil-
ity for humans. But what are markup languages actually used for?

Good to Know

YAML was actually only intended to be a simple markup language, which is why the
acronym was originally for Yet Another Markup Language. However, YAML has grown
considerably and is, of course, a markup language despite its name.

If you search for markup languages, you will find different types of them. The best
known is HTML, which allows you to structure and format text in such a way that a
machine can read and interpret it. YAML provides a format to put data into a structure
that is easy to read for both machines and humans.

YAML files have the extension .yaml, and sometimes you will also see .yml. Both are
fine, but according to the documentation the .yaml extension should be used.

3.2.1 Basics of YAML Syntax

If you look at YAML files, you can break each of them down to three basic elements:
m Key-value pairs

m Lists

® Nested structures

192 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

3.2 YAML: The Language for Kubernetes

Key-value pairs are the simplest form of data organization. Each pair consists of a key
and an associated value. In the following example, you can map a person's data in this
way:

name: "Kevin Welter"
company: "HumanITy GmbH."

You can use lists to define collections of elements. These are then grouped under a key.
Each list element is indicated by a - sign. The following example shows a list of cus-
tomer names.

customers:
- "Kevin Welter"
- "Sean Smith"
- "John Doe"

Sometimes you have more complex structures where individual lists and key-value
pairs are not enough. You now have a list of names, but there is much more informa-
tion about a customer. To map this information, you can use nested structures to
define entire objects. For this purpose, you use key-value pairs and lists that are
arranged in hierarchies.

Good to Know

You can create multiple YAML documents in one YAML file. These are separated by
three dashes (---):

name: Kevin Welter

name: Sean Smith

In the first line of a YAML file, the dashes are optional, but they explicitly indicate that a
new YAML document is starting.

In the following example, you have a list of customers who in turn have a company
assigned to them. Both the customer and the company have a name, and there is fur-
ther information about the company that can be entered in the substructure:

customers:
- name: "Kevin Welter"
company:
name: "HumanITy GmbH."
city: "Tucson"

zip: "85706"
- name: "Sean Smith"
company:

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 193

3 Everything as Code: Tools and Principles for Kubernetes Operations

name: "Smith Inc."
city: "Fort Worth"
zip: "76040"

If you think in terms of objects, then you have the company object and you have the cus-
tomer object. In this structure, the company belongs to the customer. In other cases, the
customer could also be specified as a list of employees in the company:

company:
name: "HumanITy GmbH."
employees:
- "Kevin Welter"
- "Fabian Schaub"

As you can see, you have complete freedom to map your data as you or your system
need it.

Indentations are of crucial importance in YAML. They define the hierarchy and struc-
ture of the data. In comparison, indentations are optional in JSON because the struc-
ture is defined by parentheses.

Indentations in YAML

® must be consistent within a document,

m define the hierarchy of an element,

m often lead to errors or misinterpretations, and

® make the file easier to read.

In the examples, I have used an indentation of two spaces in each case. Most YAML
parsers and editors support an indentation depth of two or four spaces by default.
There is no right or wrong here, but you should remain consistent within a document.
However, this is easier said than done with large YAML files. It has often happened to
me that a key-value pair was not assigned to the correct object due to an incorrect
indentation and I had to debug forever to find the error. An incorrect assignment is not
a syntax error and therefore your editor will not directly point out the problem.

Note

Never use tabs to structure the indentations of a YAML file! YAML requires the use of
spaces instead of tabs for indentation. The interpretation of tabs between different
editors and environments can vary and therefore result in conflicts.

3.2.2 Data Typesin YAML

In YAML, you can find all the classic data types that you also use in other programming
languages:

194 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

3.2 YAML: The Language for Kubernetes

string: "This is a string"
number: 123

float: 12.34

boolean: true

null value: null

With strings, you have several options for defining them. You can typically write a
string without the quotation marks. YAML always tries to interpret the values correctly.
However, if you want to use special characters such as :, ", or ' in the string, which are
also used by YAML, then you absolutely need the quotation marks, as shown in Listing
3.1. It does not matter whether you use single (' ') or double (" ") quotation marks. The
characters used in each case must not appear in the string itself, of course.

Note

You should follow a uniform convention within a YAML file. | always try to write a
string in quotation marks because that makes it clearer for me.

YAML also provides the option of defining strings that run across several lines. By using
the pipe (|) character, YAML retains the exact formatting, while > converts every line
break into a space.

name: Kevin Welter
info: "Kevin says: 'Sometimes quotation marks are needed
simpleString: 'C:\Users\Kevin'
doubleString: "Line 1\nLine 2"
blockText: |
Text in multiple lines
Line 2
foldedText: >
This is a long
text broken across multiple lines for better
legibility, but separated by spaces

"

Listing 3.1 Different String Syntax

Good to Know

Like Kubernetes, | use camel case as a convention for the keys in YAML. However, YAML
does not make any specifications here. You can even use spaces in a key. | recommend
that you use the programming language for which you are using YAML as a guide. For
example, use camelCase for Kubernetes, snake_case for Python, and so on.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 195

3 Everything as Code: Tools and Principles for Kubernetes Operations

3.2.3 Anchors and Aliases

Imagine a YAML file in which you define data that is repeated frequently. Suddenly
your file has more than 1,000 lines. No matter how well structured YAML is, the file
becomes more unreadable the larger it gets. For this purpose, YAML provides anchors
and aliases that allow you to define objects or parameters once and use them again
within the file according to the don't repeat yourself (DRY) principle.

An anchor is set using an 8anchorName, and an alias references the anchor using *anchor-
Name. You can see a simple example of this in Listing 3.2.

favoriteNumber: &number 42
myFavoriteNumber: *number

Listing 3.2 Simple Anchor and Alias

You can also anchor the key-value pairs of an entire object and include them in another
object. To do this, you need to use the syntax <<: *anchor, as shown in Listing 3.3. The
data from basicAuthor is transferred to specificAuthor. In this case, the subject area will
remain in the specificAuthor Kubernetes, but the name will be transferred.

basicAutor: &author
name: "Kevin Welter"
specialty: YAML
specificAuthor:
<<: *author
specialty: Kubernetes

Listing 3.3 Anchor of Entire Object

A useful real-life example where I use anchors again and again is in the GitLab pipeline
tool. GitLab CI uses YAML to define pipelines, and there are many lines that are
repeated over and over again. In Listing 3.4, you can see a manifest as an example. The
&script anchor is set here after the .launch key. In the devJob and prdJob objects, the
anchor is referenced by <<: *script_launch references, and all key-value pairs are
inserted at this point.

This has the following advantage: ykou only need to define the script once, and the
environments are differentiated by parameterization.

.launch: &script
stage: launch
script:

- ./deploy.sh $ENV
devJob:
<< *script
variables:
ENV: dev

196 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

3.2 YAML: The Language for Kubernetes

prdJob:
<< *script
variables:
ENV: prd
when: manual

Listing 3.4 Pipeline Manifest in YAML

3.2.4 Single-Line YAML Notation in Documentation

If you deal with the Kubernetes documentation, you will be confronted with a YAML
notation from time to time, which I would like to briefly introduce here. Not only
Kubernetes’s but also other documentation uses it, and I will also use it in this book on
occasion: it is the single-line YAML notation.

You have already come across several manifests. The structure with lines and indenta-
tions makes a document easy to read, but if you want to refer to a specific key-value
pair and include the complete hierarchy, you need a solution that saves space. An
example of this is spec.containers[].resources.limits.cpu to reference the CPU limit

from Listing 3.5.

Each . separates the levels of the hierarchy. This is similar to accessing nested object
properties in many programming languages. The square brackets ([]) after containers
indicate that it is a list. If you want to reference a specific entry in the list, you could also
add an index in the parentheses.

apiVersion: vl
kind: Pod
metadata:
name: my-pod
spec:
containers:

- name: my-container
image: my-image
resources:

limits:
cpu: "1"

Listing 3.5 Counterexample for Single-Line YAML Notation

3.2.5 Weaknesses of YAML

One of the main criticisms of YAML is the extensive specification, which covers a wide
range of data types. This is very convenient in some situations because you don't nec-
essarily have to put strings in quotation marks, for example, but it can lead to incorrect
interpretations.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 197

3 Everything as Code: Tools and Principles for Kubernetes Operations

A well-known example of this is the Norway problem. The Norway problem is caused
by a type inference weakness in YAML when processing character strings: the country
code for Norway, NO, is incorrectly interpreted as a Boolean value. An example of this
is shown in Listing 3.6. If the country code NO is written in YAML without quotation
marks, YAML will interpret it as False instead of the intended string, “NO”.

countries:
Sweden: SE
Norway: NO # This is interpreted as Boolean false
Finland: FI
Germany: DE

Listing 3.6 Norway Problem

In Listing 3.7, you will find further values that are interpreted by YAML as Booleans. The
interesting thing is that in the latest YAML specification, 1.2, which was published in
20009, the Boolean values have been restricted to True and False. Nevertheless, the old
specification remains in the libraries, and the Norway problem persists.

yes_value: yes Is interpreted as True
Is interpreted as False
Is interpreted as True

#
no_value: no #
#

off_value: off # Is interpreted as False
#
#

on_value: on

yes: y Is interpreted as True
no: n Is interpreted as False

Listing 3.7 Boolean Example

Warning
Although the new YAML specification 1.2 only interprets the True or False values as

Boolean, it can happen that libraries still use the old specification for parsing. For
example, Kubernetes uses the go-yaml library to parse YAML manifests.

You will find an issue posting in which this topic has been discussed for years at the fol-
lowing address: http://s-prs.co/v596427.

To avoid this problem, you can always enclose strings in quotation marks. This means
that there is no room for interpretation.

In addition to the Boolean problem, there are also other misinterpretations. You can
see two examples of this in Listing 3.8. The first is about port forwarding. For example,
if you use the SSH port, YAML will turn the value 22:22 into a time. Of course, it has no
problem with 80:80, as there is no corresponding time.

198 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596427

3.2 YAML: The Language for Kubernetes

port-forwarding-ssh: 22:22 # Incorrectly interpreted as time
port-forwarding-nginx: 80:80 # Correctly interpreted as a character string
software-version: 1.1.0 # Correctly interpreted as a character string
database-version: 2.1 # Incorrectly interpreted as a floating point number

Listing 3.8 Other YAML Misinterpretations

Version numbers can also cause problems. If you stick to semantic versioning and use
three numbers in each case, you won't have a problem. However, it’s different if you
only use two numbers, as with the database version in Listing 3.8. In that case, the num-
ber is interpreted as a float.

In general, it is best to write strings in quotation marks. This way you avoid any prob-
lems of misinterpretation. However, such a conflict occurs very rarely, and I have not
yet had any critical issues because of it. If you do not import your YAML manifests
directly in production, then in the worst case it could cost you some time in debugging.
But as you have read this section, you will certainly remember the problem at this
point.

3.2.6 Tips for Practical Use

I now want to give you a few useful tips that will hopefully make it easier for you to
work with Kubernetes resources. In real life, you will be using YAML files all the time, so
a good IDE or an editor with an appropriate add-on will save you a lot of headaches and
time-consuming troubleshooting:

= Comments
The best thing about YAML compared to JSON is that you have the option to write
comments. Especially with complex manifests, commentary is worth its weight in
gold. You mark a comment using #, as in the following example:

name: "KevinWelter" # Name of the author

® Linting tools
In addition to comments, I recommend using a linting tool that checks the syntax of
the YAML manifest. It is best to check which one is recommended for your develop-
ment environment, as there are several on the market, but in the end they all do
what they are supposed to. The most important thing is that you don't have to
search forever for an incorrect indentation as the linter points it out to you.

® Splitting files
As you know, you can integrate multiple documents into one YAML file. The recom-
mendation is that you create one file per resource. For small applications, I some-
times use a single file. For larger applications, I always create a separate file for each
Kubernetes object. There is no right or wrong here. Just see how it works best for you
and how you can best keep an overview.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 199

3 Everything as Code: Tools and Principles for Kubernetes Operations

When developing, you should always make sure that you use a uniform indentation,
a consistent naming convention, and anchors, because then even larger manifests
will remain readable and you will enjoy writing them.

3.3 Version Management of Kubernetes Manifests

Now you have already written and seen a whole lot of different YAML files, and these
need to be managed somehow. Managing Kubernetes manifests is a fundamental chal-
lenge, especially as your team grows or projects become more complex. At some point,
the following question arises: How can the manifests be managed efficiently and effec-
tively? This is where version management comes into play, an essential practice to pro-
mote order, traceability, and collaboration, which you are no doubt also familiar with
from the development of your software.

The YAML manifests are at the heart of the Kubernetes architecture as they define how
applications run, which resources they require, how they communicate with each
other, and what status they have. In a dynamic environment where changes are made
frequently and by different team members, version control is essential to maintain an
overview. Without version management, you and your team could easily lose track of
changes. Versioning the manifests helps you because you can

® track changes,
® quickly recognize and correct errors in new changes, and

® more easily perform rollbacks.

In software development, you have hopefully been working with version management
for a long time. Nevertheless, I would like to go into this briefly, because practical
knowledge is almost more important than being good at programming languages. We
want to clarify the following questions:

® What is Git?

® What is the best way to manage many Kubernetes manifests?

® What branching strategies are there, and what are your experiences with them?

Note
If you are already familiar with Git and version control, you can read the section cross-
wise anyway. Sometimes a keyword is enough to give you a new impetus for your own
work.

Before we get started, I would like to talk about a universal law that influences the pro-
cesses and their structure in every company. It does not matter whether it is the struc-
ture for repositories, the structure of the CI/CD pipelines, or the structure of entire IT
systems.

200 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

3.3 Version Management of Kubernetes Manifests

The law is referred to as Conway's law. It is a fundamental principle in software devel-
opment and organizational structure that was first formulated by Melvin E. Conway in
the 1960s. It states that the architecture of a software system reflects the communica-
tion structures of the organization that develops this system. In other words, the way
teams communicate and interact is directly reflected in the structure and design of the
software they create.

In the simplest case, this means:

® If you work in a DevOps team, you are more likely to use a monorepo and manage
your application and infrastructure as code there.

m Ifdev and ops are separated in your company, then there is certainly also a separa-
tion in the repositories.

If you keep Conway's law in mind, you will better understand the influence of the orga-
nizational structure on the design of software systems. Try to observe the law in your
company. This will help you to structure your projects.

Good to Know

This kind of separation also has something to do with responsibility and associated
authorizations. For a while, | worked for a team that was only responsible for running
the Kubernetes clusters. | supported the development of the team and the clusters. The
team wanted to work according to DevOps principles. They wanted to grant the devel-
opers the greatest possible freedom.

Unfortunately, this only worked as long as the developers took their responsibilities
seriously—but in the end it was the members of the ops team who were on call at
night and had to correct some of the developer's mistakes.

This repeatedly caused trouble and ultimately led to rights being restricted and the
pipeline and release structures being adapted.

3.3.1 Using Git

Git is a decentralized version control system that allows developers and teams to track
every change to files and directories in a Git project. It was initially developed by Linus
Torvalds in 2005 and has since become the standard for version management.

I can still remember the centralized version control system SVN. The biggest difference
is that with Git, all team members have a complete copy of the repository locally and
edit it there. You are therefore not dependent on the central server but can also use the
Git repository locally. I haven't seen a company that still uses SVN in a long time,
because the advantages of Git simply make SVN obsolete.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 201

3

Everything as Code: Tools and Principles for Kubernetes Operations

The most important advantages of Git are as follows:

Flexibility
Git can support you in a variety of nonlinear development workflows, allowing you
to map projects of any size.

High performance
You can quickly switch between different code versions and commit new changes.
Git is designed to manage code efficiently.

Security

The integrity of the source code is guaranteed in Git by means of the cryptographic
hashing algorithm SHA1, which protects your code and your change history against
unintentional or malicious changes.

One of the disadvantages of Git is learning how to use it. Although you can get into it

very quickly, even I sometimes have a knot in my head when I have to carry out work-

flows that I rarely use.

There are basic terms in Git that you should know:

Repository (repo)

A repository is a storage location that contains the complete history of all file
changes and the associated metadata. Each developer has a local copy of the repo,
develops changes there, and can synchronize them with the remote repo.

Commit

A commit is a summary of a series of changes in the repository. Each commit con-
tains a unique ID (the commit hash), the author of the changes, a commit message
describing the changes, and a reference to the previous commit(s).

Branch

A branch in Git makes it possible to branch off from the main development line and
work in a separate environment without affecting the main line. This is useful, for
example, for developing new features or mapping specific environments. More on
this will follow in Section 3.3.3.

Merge

The merge is the process of merging changes. Typically, this is the merging of two
branches. Git provides various merging strategies to simplify the integration of changes.
Tag

Tags are references that are used to mark certain points in the version history of a
repo, typically to mark release versions.

Good to Know

Git distinguishes between remote and local repositories. The remote repository is
located on a central server and can be used by any developer in your team.

202 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

3.3 Version Management of Kubernetes Manifests

The development process looks as follows:

® You first clone a remote repository to your local computer. This is then a complete
local repository with a copy of the entire project history.

® After you have made local commits, you can push these changes to the remote
repository to share them with the team.

® Conversely, you can retrieve changes made by others from the remote repository to
keep your local copy up to date.

Only the remote repository allows you to collaborate with others.

Git is designed to facilitate collaboration among developers, especially when it comes
to working on the same project or even the same branch at the same time. However,
despite its sophisticated merging and branching mechanisms, conflicts can arise
during the merging of changes.

A merge conflict occurs when two developers have made changes to the same parts of
one or more files and Git cannot automatically decide which version is the correct one.

Git clearly marks the areas in the files that contain conflicts. You need to open these
files, find the conflict areas, and manually decide which changes you want to keep,
change, or combine.

Note

There are many graphical tools for resolving merge conflicts that make your life easier.
I use my IDE, which shows me the differences. | can then simply choose what | want to
transfer.

At the following address, you will find a good tutorial for getting started, in which you
will learn how to use Git locally, what commands are available, and how to use aremote
repository, using GitHub as an example: http://s-prs.co/v596428.

But that’s enough theory for now. Next, let's take a concrete look at managing Kuber-
netes manifests.

3.3.2 Managing Numerous Kubernetes Manifests

If you use Kubernetes more intensively and write manifests for multiple environ-
ments, then you may be asking yourself the question: What is the best way to store
manifests in Git?

A good directory structure is important. Without it, projects will end up in chaos.
Important elements of the structure include the following:

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 203

http://s-prs.co/v596428

3 Everything as Code: Tools and Principles for Kubernetes Operations

® Clarity and consistency
The structure should be intuitive and easy to understand so that new team members
can quickly get to grips with it.

® Scalability
The structure must be flexible enough to scale with the growth of applications and
services.

® Separation of concerns
Different environments and applications should be clearly separated to avoid over-
laps and conflicts.

A major challenge is that you cannot easily parameterize manifests. This leads to prob-
lems at the latest when you want to use different manifests in the production environ-
ment than in the development environment.

In Git, there are two options that you can use in this case. Both have their advantages
and disadvantages:

m Folder structure within a branch

® One branch per environment

Let's take a look at two examples of a folder structure.

In an application-oriented structure, you can create a separate directory for each appli-
cation or service. Within each application directory, subfolders are created for the vari-
ous environments (e.g., dev, staging, prod). Thus, the structure could look like the one
shown in Listing 3.9.

kubernetes /

— appl/

— dev/

— deployment.yaml
—— service.yaml
— staging/

— deployment.yaml
— service.yaml
— prod/

— deployment.yaml
— service.yaml
— app2/
— dev/

— deployment.yaml
—— service.yaml
— staging/

— deployment.yaml
—— service.yaml

204 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

3.3 Version Management of Kubernetes Manifests

L— prod/

}— deployment.yaml
L service.yaml

Listing 3.9 Application-Oriented Structure

I recommend this structure in the following cases:

® Each application stands alone.

m Different developers are working on the applications.

® You want to emphasize the modularity of the individual applications.

This structure also makes it easier to write the CI/CD pipelines if you want to release the
applications individually.

Note

You should take inspiration from the examples in this section, but use the structure
that works best for you and modify it if necessary.

If you use Helm (see Chapter 8) or Kustomize (Section 3.5), then you can also select
other structures thanks to the parameterization of your templates. It is important to
me that you get an idea of what is possible.

The environment-oriented structuring of your Kubernetes projects focuses on organiz-
ing your directories by environment. Within these environment directories, you create

subfolders for each of your applications or services. Listing 3.10 shows an example of
this.

kubernetes /
— dev/
— app1/
| — deployment.yaml
| — service.yaml
— app2/
— deployment.yaml
— service.yaml
— staging/
— appl/
— deployment.yaml
— service.yaml
— prod/
— appl/
}— deployment.yaml
L service.yaml

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 205

3 Everything as Code: Tools and Principles for Kubernetes Operations

L app2/

}— deployment.yaml
L service.yaml

Listing 3.10 Environment-Oriented Structure

This structure is perfect in the following cases:
® The applications belong together, such as the backend and database.
® You always roll out the applications in a package.

® The clear separation of environments makes it easier for you to move applications
through the various stages of the development cycle.

This also facilitates the implementation of the CI/CD pipelines for rolling out a package.
For example, you can go to the environment folder and roll out all applications.

Note

In these structures, you must also transfer changes made to a manifest to other envi-
ronments. So you have more typing work to do, and the whole thing is more error-
prone because you are copying and pasting.

Thus, before you decide on a structure, you should read this entire section, in particular
Section 3.3.3.

The organization and naming of your manifests in Git play a decisive role in the clarity
and understanding of your configurations. A consistent naming convention helps you
and your team to quickly understand the content and purpose of each file. This is par-
ticularly important in complex projects with a large number of resources.

You should define the convention depending on the repository structure. An example
of this is <application>-<resourcetype>.yaml. For a frontend, this would be frontend-
deployment.yaml. If you imagine this in the environment-oriented structure, then
frontend would be found in the folder and in the name, as shown in Listing 3.11; in this
case, there is no gain in information.

kubernetes /

}—— dev/

‘ }— frontend/

‘ ‘ }— frontend-deployment.yaml
‘ ‘ L frontend-service.yaml

Listing 3.1 Naming Convention in Environment-Oriented Structure

206 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

3.3 Version Management of Kubernetes Manifests

Good to Know

Using the naming convention with the application in the name, you can also simply do
without the subfolders for applications that should always be deployed together. Sim-
ply check your use case to see what gives you a good overview without too much over-
head.

Another option is to add a version number—for example, if you want to develop the
manifests further. This allows you to see at a glance which version is active in which
environment.

What I have seen more often and what is important in some constellations is number-
ing manifests so that they are rolled out in the desired order. If you use kubectl apply -
f . toroll out all files in a folder, kubectl will work its way from top to bottom. With the
following naming, you can be sure that the correct sequence is adhered to during
deployment:

01-namespace.yaml
02-deployment.yaml

In most cases, it is not important, because a deployment simply waits for missing
resources such as ConfigMaps. However, if you want to deploy to a namespace, you
should create that first.

Note

You can write multiple resources in a YAML file and separate them using ---, but | rec-
ommend that you separate the resources. This allows you to create an overview of the
available resources in the folder structure.

Choosing the right naming convention and folder structure for your Kubernetes man-
ifests depends on the specific requirements of your project. Whether you choose one or
the other is secondary. It is important that you choose a well thought-out convention,
as this contributes significantly to the clarity, manageability, and efficiency of your
project. I recommend that you take inspiration from the examples, choose a conven-
tion that meets your team's needs, and apply and optimize it consistently over time.

3.3.3 Branching Strategies

The management of manifests and the definition of naming conventions is also
affected by the selected branching strategy. What you should definitely avoid is dupli-
cating too much code and copying it back and forth. A good branching strategy can

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 207

3 Everything as Code: Tools and Principles for Kubernetes Operations

help you in this regard. I want to introduce you to approaches that I have already used
in projects, whereby these approaches are also related to the division of your reposito-
ries, which we will look at in Section 3.3.4.

Good to Know
The way you organize your manifests, choose your branching strategy, and structure

your repositories has a profound impact on your development process, your team col-
laboration, and ultimately the efficiency and scalability of your projects.

If you have been using Git for some time, you will certainly be familiar with the classic
branching concepts and development workflows. Let me shed some light on the topic
from the perspective of Kubernetes. Over the years, various branching flows have
emerged, some of which you will no doubt already be using.

Git Flow

Git flow is the best-known workflow and was developed by Vincent Driessen in 2010. It
is based on two main branches with an unlimited lifetime: main (or master) for produc-
tion code and develop for preproduction code. Additional branches such as feature-*,
hotfix-*, and release-* support the development cycle. Sometimes there is still a release
branch in some projects that can be used in preparation for a new release. An example
of this workflow is illustrated in Figure 3.3.

» v10

main

hotfix

release

g

develop
~ @ O
)

S

feature

| —
———

feature

|

Figure 3.3 Git Flow

Git flow keeps branches clean at every stage of the project, follows a systematic naming
scheme, provides extensions and support in most Git tools, and is ideal for projects

208 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

3.3 Version Management of Kubernetes Manifests

that need to manage complex software versions or have long release cycles. Disadvan-
tages include the fact that Git histories are often difficult to read and that the CI/CD
pipeline is pretty complex due to the separation of the main and develop branches.

Good to Know

I've seen a few variations on this branching strategy, but in the end the principles were
always the same. The more heterogeneous the repository is and the more developers
are working on a repository, the more likely it is that this complex strategy will be used.

GitHub Flow

GitHub flow is a simpler workflow introduced by GitHub in 2011. It has six principles,
including the permanent deployability of the main branch and the creation of feature
branches directly from the main branch. GitHub flow promotes CI/CD, is simpler than
Git flow, and is ideal for projects that are not tied to release cycles.

Figure 3.4 illustrates a representation of the flow. A branch of the main branch is opened
for a change and should find its way back into the main branch very quickly.

change
change

Figure 3.4 GitHub Flow

Disadvantages include potentially unstable production code and unsuitability for
release planning. The development teams also need a certain amount of discipline
during development, but this strategy is the best, especially if you want to implement
changes directly with CI/CD.

Note

You can find the GitHub flow principles at the following address: http.//s-prs.co/
v596429.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 209

http://s-prs.co/v596429
http://s-prs.co/v596429

3 Everything as Code: Tools and Principles for Kubernetes Operations

GitLab Flow

GitLab flow, which was created by GitLab in 2014, differs from GitHub flow in its envi-
ronment branches, such as preproduction and production. It is based on eleven rules
that help you implement CI/CD and leads to a cleaner, less messy Git history.

GitLab flow is ideal for projects that need to adapt to release cycles or that require more
control over deployment. Before you deploy to production, you have to go through the
intermediate step again and merge into the production branch. An example of this is
shown in Figure 3.5.

pre-production

master

deployed on staging

Figure 3.5 GitLab Flow

A major disadvantage is the overhead of merging into the surrounding branches. This
can often lead to merge conflicts in projects because some developers have developed
directly on the environment branches. This also requires discipline within the team
and enforcing the rules.

Note

The rules of Gitlab flow can be found at the following address: http://s-prs.co/
v596430.

Depending on the setup of your repository, I would advise you to use a particular work-
flow. I often preferred GitLab flow in ops teams because the release cycles were of dif-
ferent lengths. Sometimes it took weeks before a deployment was brought from
preproduction to production. The surrounding branches give you a good overview.

If you develop your manifests in a repository together with your code, then you should
also use this branching strategy. I have often used Git flow for larger applications with
long release cycles.

210 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596430
http://s-prs.co/v596430

3.3 Version Management of Kubernetes Manifests

In my opinion, the ideal solution is GitHub flow. However, due to the direct integration
of the automatic deployment into the main branch, it is the most difficult to master
and is therefore feared by many.

Note

Even if GitHub flow is advertised, you should not simply switch to it. A few preliminary
steps are necessary to get there. Don't forget that every merge into the main branch
must be of high quality because it is rolled out directly to production.

GitLab flow is much more user-friendly and more controlled.

3.3.4 Division of the Repositories

Structuring your repository is a fundamental decision that has far-reaching effects on
team collaboration, development efficiency, and code maintainability. This decision is
closely linked to Conway's law, which I presented at the beginning of this section.

There are two classic models for structuring repositories and, as always, many gray
areas in between. There is no right or wrong here either. The important thing is that
you consciously decide on a division and that you are aware that it has an influence on
the branching strategy and the CI/CD pipelines.

Monorepo: One Repository for Everything
In a monorepo, the entire code is stored in a single repository. This supports close col-
laboration and simplifies the process of code sharing within the team. This approach
makes it easier for all developers to track changes throughout the project and effi-
ciently manage dependencies between different parts of the project. You would also
integrate the Kubernetes manifests into the repository using this approach. A mon-
orepo approach has advantages and disadvantages:
= Pros
— Improved transparency and traceability of changes throughout the entire project
— Simplified dependency management through central administration
— Supports uniform development culture and practices

— Changes to the software and manifests can be mapped in a commit or pull
request

m Drawbacks

— Canbea challenge in terms of performance and manageability for very large proj-
ects

— Difficult with shared responsibility between teams

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 21

3 Everything as Code: Tools and Principles for Kubernetes Operations

Good to Know

A monorepo is particularly suitable for DevOps teams that have full responsibility for
the entire lifecycle of the application.

Multiple Smaller Repositories: Modularity and Independence
The use of separate repositories for different modules or services provides a clear sepa-
ration of responsibilities and can increase the clarity of the project. This approach
makes it easier to develop, test, and deploy independent parts of the system separately.
In addition, different teams can develop the individual modules without affecting the
other development processes. This approach too has advantages and disadvantages:
= Pros
— Increased modularity and independence of the various project parts
— Lower risk of merge conflicts due to isolated work areas
— Enables specific access rights and security policies for different repositories
® Drawbacks
- Canincrease the complexity of integration and version management
— Requires additional effort for coordination and communication between the
teams
- Changes that belong together must be synchronized in several pull requests and
repositories

Good to Know

Multiple repositories are very suitable for teams with shared responsibility or when
developers from different teams are working on specific modules.

The ideal lies somewhere in between the two approaches. I've seen excellent monore-
pos where the development teams had a very fast and clear development process
thanks to good processes. On the other hand, I am used to splitting the repositories, as
it is often clearer and responsibility often has to be shared between teams, especially in
large companies.

You should therefore choose the repository structure that is best for your project and
be open to adapting the structures at a later date. My experience shows me that there
is always some movement in everything, which keeps things flexible.

212 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

3.4 Continuous Integration and Continuous Delivery

3.4 Continuous Integration and Continuous Delivery

Continuous integration and continuous delivery (CI/CD) have become indispensable
strategies not only for accelerating development and deployment processes, but also
for improving quality. CI/CD pipelines play a central role in the automation of the
build, test, and deployment processes and are indispensable in many companies today.

This section focuses on how you can set up and optimize CI/CD pipelines specifically
for handling Kubernetes manifests. We deliberately disregard the pipeline for pure
application development and focus on the deployment aspect.

By implementing CI/CD for your Kubernetes manifests, you benefit from several major
advantages:

® Faster deployment cycles
Automation minimizes delays and enables you to transfer changes to production
more quickly. The biggest advantage is that you always run through the same pipe-
line and avoid manual errors.

= Improved code quality
Regular integration, tests, and quality scans reveal problems at an early stage. You
are forced to improve code quality at an early stage. This can sometimes be annoy-
ing, but it makes a lot of sense in the long term.

= Improved collaboration
A centralized repository and automated workflows help you to work better together
as a team. In a code review, a successfully completed pipeline is the first indication
of a good level of maturity of the code.

® Increased reliability
Automated tests and deployments reduce the risk of human error and lead to more
stable releases. The release process is also faster, more reliable, and less error-prone.
In addition, your stress level is lower during a rollout in production than if you have
to carry out manual steps.

3.4.1 Pipeline Steps for Kubernetes

If you imagine a pipeline for your application, the steps to be carried out prior to
deployment are often pretty clear. This usually includes steps such as the following:

® Static code analysis
® Vulnerability checks of the libraries

® Unit tests including a verification of the test coverage

But what are the steps for Kubernetes manifests? When can you be sure that a deploy-
ment will not lead to errors?

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 213

3 Everything as Code: Tools and Principles for Kubernetes Operations

The answer lies in the integration of specific testing and validation steps that are tai-
lored to the special features of Kubernetes. I will introduce two possible pipeline steps
you can use.

Linting

When you develop and deploy applications in Kubernetes environments, the question
often arises as to how the quality and consistency of manifests can be efficiently
ensured. The linting process makes a decisive contribution to this. Linting tools ana-
lyze your YAML files to ensure syntactical correctness and check for compliance with
best practices.

One tool you can use for this is Kubeconform. Such static code analyses or linting tools
are particularly useful in a pull request pipeline. They give a direct indication of the
quality of the new code.

Let's take a look at how Kubeconform works. To begin, follow the installation instruc-
tions at the following address: http://s-prs.co/v596431.

I have prepared a deployment from Chapter 2, Section 2.3 with a syntax error for you in
Listing 3.12.

apiVersion: apps/vl
kind: Deployment
metadata:
name: my-nginx-deployment
labels:
app: nginx
spec:
replicas: "2"
selector:
matchLabels:
app: nginx
template:
metadata:
labels:

app: nginx

spec:
containers:

- name: my-container
image: localhost:5000/my-nginx
ports:

- containerPort: 80

Listing 3.12 invalid-deployment.yaml

214 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596431

3.4 Continuous Integration and Continuous Delivery

To make Kubeconform analyze this deployment, simply execute the following com-
mand:

kubeconform invalid-deployment.yaml

The result will then indicate the errors—in this case:

invalid-deployment.yaml - Deployment my-nginx-deployment is invalid: problem
validating schema. Check JSON formatting: jsonschema: '/spec/replicas' does not
validate .. expected integer or null, but got string

In this deployment, the value for replicas is a string, but it should be an integer.

Of course, you can analyze not only individual files, but also entire folders. You should
implement a linter in each of your pipelines. In GitLab CI, a simple step for linting could
look as shown in Listing 3.13. This can be installed quickly, and the linter hardly needs
any time for scanning.

lint_kubernetes_manifests:
stage: validate
image: docker.io/yannh/kubeconform:latest
script:
- kubeconform /pfad/zu/manifest

Listing 3.13 Example of Pipeline Linting Step in GitLab Cl

Good to Know

What looks so simple now has already helped me a lot in some cases. Especially when
things have to be done quickly, | sometimes make careless mistakes that are detected
by the linter.

| find a linter very important after running a templating engine like Helm (see Chapter 8).

Test or Validation after Deployment

Imagine you have now written Kubernetes manifests for your application and have
painstakingly checked whether everything works as it should. You will continue to
develop the manifests in the near future and want to avoid the manual effort of future
testing. You also want to be sure that all possible contingencies have been checked. You
can only achieve this through test automation, and there are also tools for Kubernetes
that support you in this respect.

This is where the Kubernetes Test Tool (KUTTL) comes into play. KUTTL is a powerful
framework that was developed specifically for testing Kubernetes clusters. It allows

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 215

3 Everything as Code: Tools and Principles for Kubernetes Operations

you to perform end-to-end tests that check not only the configuration, but also the
actual behavior of your applications in the cluster. KUTTL helps you with the following
actions:

= Ensuring functionality
Postdeployment tests validate that the application works as intended and that all
services communicate correctly with each other.

® Early error detection
By detecting issues immediately after deployment, errors can be troubleshot
quickly before they affect operations.

® Automation and reliability
Automated tests increase the reliability of deployments by reducing manual checks
and ensuring consistent test procedures.

KUTTL uses the strengths of Kubernetes to run tests in the same environment in which
your applications run. It allows you to define test cases as Kubernetes manifests. KUTTL
takes care of the setup, running the tests, and cleaning up afterward. This simplifies the
testing process. Let's start with a small example. For this purpose, you need to install
KUTTL for your system using the instructions provided at https://kuttl.dev/docs/
cli.html.

Now set up a simple test suite with the folder structure from Listing 3.14.

}— kuttl-test.yaml
L— tests
L test-nginx
}— 00-assert.yaml
L 00-install-nginx.yaml

Listing 3.14 KUTTL Folder Structure

If you run this test suite, the following will happen:

1. KUTTL will roll out a deployment with Nginx in Minikube.

2. Asatest, KUTTL will check whether the status of the pod is Running.

3. KUTTL will delete the deployment again.

4. KUTTL will issue a report on the tests.

The kuttl-test.yaml file in Listing 3.15 is located in the root directory. It defines the start-
ing point of KUTTL and references the folder with the tests. The tests folder then con-

tains the tests, which you can bundle into folders. We have a test-nginx folder
containing two files.

216 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

https://kuttl.dev/docs/cli.html
https://kuttl.dev/docs/cli.html

34

Continuous Integration and Continuous Delivery

apiVersion: kuttl.dev/vibetal
kind: TestSuite
testDirs:

- ./tests

Listing 3.15 kuttl-test.yaml

00-assert.yaml in Listing 3.16 describes the actual test, which will run after the deploy-

ment. 00-install-nginx.yaml is the usual Nginx deployment in Listing 3.17. KUTTL will
use it later to deploy it in Minikube and then run the test. KUTTL will check whether the
status of the pod labeled app: nginx is Running.

apiVersion: vl
kind: Pod
metadata:
labels:
app: nginx
status:
phase: Running

Listing 3.16 00-assert.yaml

apivVersion: apps/vl
kind: Deployment
metadata:
name: nginx-deployment
labels:
app: nginx
spec:
replicas: 1
selector:
matchLabels:
app: nginx
template:
metadata:

labels:
app: nginx

spec:

containers:

- name: nginx
image: nginx:latest
ports:

- containerPort: 80

Listing 3.17 00-install-nginx.yaml

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 217

3 Everything as Code: Tools and Principles for Kubernetes Operations

Now run the test suite using the following command:

kubectl kuttl test

At the end, KUTTL should provide a report on the tests.

Good to Know

In this way, you can test and verify various setups of your application using KUTTL.

As already mentioned, KUTTL can also carry out various verifications in addition to the
tests we have just tried out. This is ingenious because it allows you to check whether
your rollout was successful in the CI/CD pipeline after deployment.

The options for verifications are unlimited as you can run Kubernetes commands and
check the results, as shown in Listing 3.18.

In this example, the command checks whether the deployment from Listing 3.17 has
beenrolled out in the default namespace and whether a pod that has the Running status
can be found.

apiVersion: kuttl.dev/vibetal
kind: TestStep
commands :
- command: kubectl get pod -1 app=nginx -o jsonpath=
"{.items[0].status.phase}" -n default
expect:
stdout: Running

Listing 3.18 00-check-nginx.yaml

Asyou can see, KUTTL is extremely powerful for verifying rollouts or even writing tests
for your manifests. I can only recommend that you take a closer look at the tool and
implement it in your CI/CD pipeline.

3.4.2 Pipeline Architectures

In this section, we’ll take a look at the different architectures of CI/CD pipelines that can
be used in Kubernetes environments. Choosing the right architecture depends on sev-
eral factors, including the complexity of the application, the team size, security
requirements, the desired speed of deployment, and, most importantly, the Git reposi-
tory structure, which we discussed in Section 3.3.4.

There are different approaches to developing pipelines. You always have to decide
between a monolithic pipeline or functional pipelines and whether you want to define
the pipelines in a centralized or decentralized way:

218 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

3.4 Continuous Integration and Continuous Delivery

® Monolithic pipelines
In a monolithic architecture, all steps such as build, test, and deployment are han-
dled as a single, comprehensive process. This can be useful for simple projects or
small teams. However, it can slow you down in larger projects if you have to carry
out each previous step every time before a deployment.

® Functional pipelines
With this architecture, the CI/CD process is divided into smaller, independent parts.
This promotes modularity and enables faster pipelines that can still build on each
other, which allows you to separate the deployment from the build pipeline or use
your own test pipelines and run them independently of each other.

® (Centralized pipelines
A central pipeline manages all aspects of CI/CD for multiple projects or services. This
can simplify the administration, but also restrict flexibility.

® Decentralized pipelines
Here, each project or repository has its own CI/CD pipeline, which provides more
flexibility and allows for the adaptation to specific requirements.

Good to Know

As always, the world is not just black and white; the truth lies somewhere in the mid-
dle. Instead of centralizing everything, using pipeline templates that are integrated
into other projects could also make sense. This gives you standardized pipeline steps
that you can import. A good CI/CD pipeline is always found in several iterations.

I now want to introduce two pipeline concepts that I have developed for clients. Both
have their charms and fulfill their purpose in the project context. But I will also show
you the weaknesses of the pipelines at the end so that you can find some inspiration for
your own pipelines.

Build and Deployment Separated

In the introduction to Section 3.3, I presented Conway's law.

In this example, exactly what is stated in the law applies: the build and deployment
pipelines were separated because the development team should not have direct access
to deployments on Kubernetes clusters that are managed by an ops team.

Take a look at the pipeline in Figure 3.6. I have simplified the pipeline steps there:
® Build pipeline

— Maven build
Starts the build process with Maven, compiles the code, and executes tests.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 219

3 Everything as Code: Tools and Principles for Kubernetes Operations

— Docker build and push
Creates a Docker image from the Maven build. Uploads the finished Docker image
to a Docker registry.

— Trigger deployment
Triggers the deployment of the new Docker image and transfers the new version
number.
= Deployment pipeline
— Change of the image tag in the Helm chart
Updates the Helm chart with the new version number.

— Helm deploy
Runs the deployment process using Helm.

Docker Deployment
Build and Push Trigger

Maven Build

Y
Y

Replaces the
Image Tag > Helm Deploy
in the Helm Chart
Y
Kubernetes

Figure 3.6 CI/CD Pipeline: Build and Deployment Separated

What you cannot see here is that the two pipelines could run independently of each
other, with the deployment pipeline caching the last version number. As a result, the
deployment pipeline was always able to redeploy the latest version. Upon the trigger-
ing of the deployment pipeline through the build pipeline, the process had to be
approved for the production environment by an ops employee. Otherwise, the execu-
tion was blocked.

220 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

3.4 Continuous Integration and Continuous Delivery

Good to Know

The pipeline had many more steps, such as a static code analysis by SonarQube, but
here we will only deal with the general structure of a pipeline.

The strengths of this approach are as follows:

Not only does the division into build and deployment pipelines reflect the organiza-
tional structures between development and operations, but it also increases flexibil-
ity and control over the release process. By separating the functions into
independent pipelines, the two teams can make changes faster and more securely
without impacting each other.

The independence of the deployment pipeline, which makes it possible to redeploy
the latest stable version if required, underlines the reliability of this approach. In
addition, the required manual approval by the ops team for production deploy-
ments provides an additional level of security that fulfills compliance requirements
in this case.

Although the separation of build and deployment pipelines offers some advantages,
there are also aspects to view critically:

The strict separation can lead to silos that make communication and collaboration
between development and operations teams difficult.

Managing multiple pipelines can increase the complexity of the overall system. For
my clients, I was always involved in the coordination with the two teams in order to
have a common view.

Triggering and transferring information from one pipeline to another must be care-
fully considered. In this case, I implemented a web hook and passed parameters.

Monolithic Pipeline with Central Templates

In this case too, the pipeline has adapted to Conway's law, as the application is devel-
oped and operated by a DevOps team. There is a single pipeline for the Java application
that processes all steps in sequence. It uses central templates, which means that I didn't
have to develop every step from scratch, but instead adopted the company standard.

Such templates define the steps that your pipeline goes through and ensure consis-

tency and reusability within your CI/CD processes. The templates are then customized

using parameters.

You can find a representation of the pipeline in Figure 3.7.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 221

3

Everything as Code: Tools and Principles for Kubernetes Operations

%

Get Templates

Y

Docker Build

Y

Maven Build

Y

Image Push

Helm Deploy

Templates Repo

\4 Y

» Kubernetes

Figure 3.7 CI/CD Pipeline: Monolithic Pipeline with Central Templates

The steps of the pipeline are as follows:

Get templates
Templates and configuration files are retrieved from a central template repository.

Java build
The Java code is compiled, and tests and quality checks are also carried out.

Docker build
A Docker image is created based on the compiled Java code.

Image push
The newly created Docker image is uploaded to a Docker registry.

Helm deploy
This runs the deployment process using Helm.

Good to Know

| developed this pipeline with Azure DevOps. In my opinion, this is a very special pipe-
line tool, but very suitable for modularization. However, you can also implement cen-

tral templates with other tools such as GitLab Cl.

The strengths of this approach are as follows:

® Using a dedicated template repository as a source for pipeline templates takes some

getting used to, but it’s very powerful. This makes it easier for you to maintain and
update your pipelines as changes can be made in one central location. The templates

222 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

3.4 Continuous Integration and Continuous Delivery

also ensure that all projects benefit from proven standards and do not have to keep
reinventing the wheel.

® By consolidating the entire process into one pipeline, you minimize the need to syn-
chronize multiple pipelines and develop handover points. With a shared pipeline,
everyone on the team also feels responsible for the entire process. This also prevents
the creation of small silos within a DevOps team.

The weaknesses of this approach are as follows:

m Asall steps are carried out in a single pipeline, this quickly leads to long runtimes. If
an error occurs in one of the final steps, such as deployment, this can be very annoy-
ing and slow down the development process.

®m Dependence on central templates does not only bring advantages. A central tem-
plate has to be maintained, and if another team is involved, this can quickly lead to
conflicts. Updating to a newer template version must always be cross-checked to
ensure that the pipeline continues to do what it is supposed to do. These are similar
challenges in updating Java libraries.

All in all, there are many great ways in which you can structure and build your pipe-
lines. Each structure has advantages and disadvantages, but if you follow Conway's law,
you will find the right pipeline for the existing company structure.

3.43 GitOps

GitOps is a modern practice of software development and deployment in which Git
serves as a single source of truth for the entire infrastructure and application configu-
ration. GitOps relies on the principle of declarative configuration and allows you to
deploy in Kubernetes in a different way.

I have seen with many customers that deployment is typically carried out via the CI
pipeline. This means that imperative commands are executed by Jenkins, GitLab CI, or
a similar tool to roll out Kubernetes manifests. The biggest difference is that you no
longer use a CI tool to import new changes into Kubernetes.

The cluster itself regularly checks for changes in order to adjust the status if necessary.
The process is referred to as the reconciliation loop and is also used by Kubernetes
resources themselves to compare the current state with the expected state. The Repli-
caSet pays attention to the number of pods, for example, and makes adjustments if
necessary. For example, if you delete a pod, the ReplicaSet will immediately start a new
one to maintain the desired state. GitOps maximizes the self-healing capabilities of
Kubernetes by ensuring that the cluster state matches the desired state defined in the
Git repository at all times. Whenever there is a discrepancy, the GitOps tool automati-
cally makes corrections to restore the target state.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 223

3 Everything as Code: Tools and Principles for Kubernetes Operations

Good to Know
Compared to ordinary CI/CD pipelines, | see the following advantages with GitOps:

m Declarative instead of imperative

GitOps uses a declarative approach in which the desired state of the infrastructure
and applications is defined in Git. The tools ensure that this state is achieved and
maintained. CI/CD is more imperative and focuses on the steps required to achieve

a certain state.

m Easier compliance

You can rely entirely on the strengths of Git. Code reviews and the dual control

principle before merging to main are usually well-established processes.

® |ncreased level of security

There is no additional tool that requires a technical user as the cluster itself

retrieves the changes from Git.

® Improved auditability

You only have one place to look for changes. Pipeline logs, for example, are no lon-

ger required.
m Drift detection

As the reconciliation loop is run through regularly, GitOps quickly detects devia-

tions and reports or reverses them.

In a pipeline, you would typically execute kubectl commands to deploy your mani-
fests. With GitOps, the process looks more like the one shown in Figure 3.8. Instead of
using imperative commands to adjust the cluster state, a GitOps tool continuously
monitors the Git repository for changes and automatically applies them to the Kuber-
netes cluster. This approach enables a seamless integration of the reconciliation loop

with the version control and collaboration features of Git.

Kubernetes

it fetch/git pull
0 PR il GitOps Controller

Git-Repo

Figure 3.8 GitOps Controller

Note

There are many different GitOps tools that you should take a look at. | have often read
about Flux in connection with GitLab, and | have also come across Argo CD several
times. But make up your own mind, because it always depends on the tech stack you

use.

224 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

3.5 Templating Using Kustomize

You can find the repos at the following URLs:
® https://github.com/argoproj/argo-cd
® https://github.com/fluxcd/flux2

If you have the opportunity in your company, then you should talk about and evaluate
GitOps tools. Unfortunately, the biggest advantage is also a disadvantage: you are more
or less forced to make all changes via your Git repository. This sometimes requires a lot
of getting used to, but you will see that you and your team will achieve a higher quality
in your rollout through self-discipline and the methods of Git.

3.5 Templating Using Kustomize

Up to this point, you have written Kubernetes manifests and installed them on Mini-
kube, which you have hard-coded with values. But what can you do if you want the
manifest to look different for the production environment than for the development
environment? This could be the case, for example, if you

® have different resource requirements;
® want to use a different image in the production environment;
® want to have fewer replicas in the development environment; or

® want to assign other labels or annotations.

The simplest approach is this: You copy the manifest and change the values. Then you
would have a deployment-dev.yaml file and a deployment-prd.yaml file. I hope your
alarm bells are already ringing. Unfortunately, I have experienced this all too often in
companies that have made life difficult for themselves as duplication means that a
developer has to make the same changes in multiple files. Sooner or later, this will lead
to errors or incongruities.

But how can you proceed? The most important thing is that a manifest should be
parameterized. In the simplest case, you could work in a pipeline using the sed or yq
Linux tool to use the manifest as a template and replace placeholders. That's much bet-
ter, but it's best not to build anything yourself and instead to rely on existing tools. In
my view, there are currently two tools on the market that are highly relevant:

1. Helm

— Helm is a package manager for Kubernetes that can provide Kubernetes mani-
fests as a chart (package).

— It offers functions for versioning and managing dependencies.

— Italso uses a templating syntax to dynamically fill a manifest with values.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 225

https://github.com/argoproj/argo-cd
https://github.com/fluxcd/flux2

3 Everything as Code: Tools and Principles for Kubernetes Operations

2. Kustomize

— Kustomize is a tool for customizing Kubernetes manifests and thus works more
directly and easily.

— Instead of templating, it uses an overlay structure to apply changes to basic YAML
files.

— Thanks to the integration in kubectl, you do not need any additional syntax.

Helm goes one step further as a package manager, but we will go into this in more detail
in Chapter 8. For now, I would like to introduce Kustomize and the advantages that it
can bring to your project:

®m Kustomize allows you to make configuration adjustments without changing the
original files. This means you have the flexibility to customize your configurations
as needed without worrying about the integrity of your basic manifests.

® A big advantage you enjoy with Kustomize is the use of pure YAML without having
to resort to template parameters. In contrast to other tools such as Helm, which
require an additional processing step, you can validate and process manifests cre-
ated with Kustomize directly as YAML. This makes handling easier and more trans-
parent for you.

® You also benefit from the independence of templating engines. Kustomize uses sim-
ple editing of YAML files, so you don't need to learn any additional templating syn-
tax.

® The reusability and modularity provided by Kustomize allow you to create basic
configurations that you can reuse in different projects or contexts.

® The clear and comprehensible overlay structure of Kustomize enables you to clearly
separate basic configurations from environment-specific adjustments. This makes
managing different configurations for different environments clear and feasible.

® Finally, the seamless integration into Kubernetes is a decisive advantage. As Kus-
tomize is integrated directly into kubectl, you do not need any additional software
to use it.

Simply put, Kustomize offers you a good opportunity to provide your manifests for
several environments with little effort, without having to spend a lot of time familiar-
izing yourself with a new tool.

3.5.1 Basic Principles of Kustomize

Let's start directly with a simple example in which a production and a development
environment are defined and where different rules and requirements apply. The folder
structure for the example should look as shown in Listing 3.19. We will now set up the
files step by step.

226 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

35

Templating Using Kustomize

kustomize/

}—— base/

| — deployment.yaml

‘ — service.yaml

‘ — kustomization.yaml

L— overlays/

— dev/

k—— patch-dev.yaml

L kustomization.yaml

— prod/
F—— patch-prod.yaml

service-patch-prod.yaml

L kustomization.yaml

Listing 3.19 Folder Structure for Kustomize Example

First, define the basic configuration of the application. This includes a deployment with

Nginx as in Listing 3.20 and a service as in Listing 3.21. Place both in the base folder.

apiVersion: apps/vl
kind: Deployment
metadata:
name: my-nginx
spec:
replicas: 1
selector:
matchLabels:
app: my-nginx
template:
metadata:
labels:

app: my-nginx

spec:
containers:

- name: my-nginx-contalner
image: nginx:latest
ports:

- containerPort: 80

Listing 3.20 base/deployment.yaml|
apiVersion: vl
kind: Service

metadata:
name: my-nginx-service

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

227

3 Everything as Code: Tools and Principles for Kubernetes Operations

spec:
type: ClusterIP
selector:
app: my-nginx
ports:
- port: 80
targetPort: 80

Listing 3.21 base/service.yaml|

In addition, there is a kustomization.yaml file, provided in Listing 3.22, that contains a
reference to all basic manifests.

resources:
- deployment.yaml
- service.yaml

Listing 3.22 base/kustomization.yaml

Now let’s continue with the overlays. For the development environment, you want to
increase the number of replicas and use a different image, which is a version that has
not yet been released for production. There is a separate folder for the overlays and a
subfolder for each environment. For the development environment, that is overlay/
dev. Use the patch from Listing 3.23, and integrate it with kustomization.yaml from Lis-

ting 3.24.

apiversion: apps/vl
kind: Deployment
metadata:
name: my-nginx-app
spec:
replicas: 2
template:
spec:
containers:
- name: my-nginx-container
image: nginx:dev

Listing 3.23 overlay/dev/patch-dev.yaml|
resources:
- ../../base

patches:
- path: patch-dev.yaml

228 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

3.5 Templating Using Kustomize

target:
kind: Deployment
name: my-nginx

Listing 3.24 overlay/dev/kustomization.yaml
As you can see, you only include the fields in the patch file that are supposed to be

adapted in the basic file. For Kustomize to display the final result, you need to run the
following command in the folder:

kubectl kustomize overlays/dev

In the output, you should see the unchanged service and the complete deployment
from Listing 3.20 with the changes from Listing 3.23.

Good to Know

The kustomization.yaml file in Listing 3.24 describes which resources should receive the
patch. For this purpose, you can specify the following selectors under target, which
must all match:

= group

m version

® kind

= name

m]abelSelector

® annotationSelector

You do not need to specify every one, and can therefore control well what the change
should be applied to.

For production, you can also implement a change for the service, which you can see in
Listing 3.25.
apiVersion: vl
kind: Service
metadata:
name: my-nginx-service
spec:
type: LoadBalancer

Listing 3.25 overlay/prod/service-patch-prod.yaml

Also change the deployment to three replicas and to a stable image, as you can see in
Listing 3.26.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 229

3 Everything as Code: Tools and Principles for Kubernetes Operations

apiVersion: apps/vl
kind: Deployment
metadata:
name: my-nginx-app
spec:
replicas: 3
template:
spec:
containers:
- name: my-nginx-container
image: nginx:stable

Listing 3.26 overlay/prod/patch-prod.yaml|

In kustomization.yaml in Listing 3.27, you will now find two patches with the respective
selectors. Try outputting this manifest as well and check whether the changes are
applied as you want.

If you are satisfied with the adjustments, you can roll out the cluster using the follow-
ing command: kubectl apply -k overlays/dev.

resources:
- ../../base
patches:
- path: patch-prod.yaml
target:
group: apps

version: vl
kind: Deployment
name: my-nginx
- path: service-patch-prod.yaml
target:
version: vl
kind: Service
name: my-nginx-service

Listing 3.27 overlay/prod/kustomization.yaml|
Congratulations! You have written your first manifests, which you can roll out to dif-
ferent environments using Kustomize patches. From my point of view, the syntax for

the basic process is simple and easy to understand. In the following sections, we will
look at a few more features that will make life easier for you.

230 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

3.5 Templating Using Kustomize

3.5.2 Resource Generator

Kustomize provides powerful generators that allow you to dynamically create re-
sources such as ConfigMaps and secrets. These generators extract and process informa-
tion directly from files, literal values, or other sources to automatically generate Kuber-
netes resources.

Good to Know

The generators are particularly useful because you do not need to maintain configura-
tion files in a ConfigMap manifest, as you learned in Chapter 2, Section 2.4. This allows
you to simply reference existing configuration files, which are then inserted into Con-
figMap.

Suppose you have two configuration files that you want to include in your ConfigMap:
1. app.properties
Configurations for your application

2. logger.conf
A configuration file for logging your application

These files are located in the config/dev directory and are intended for your develop-
ment environment. The structure should look as shown in Listing 3.28. The contents of
the sample configurations can be found in Listing 3.29 and Listing 3.30.

| }— app.properties
‘ L logger.conf
L kustomization.yaml

Listing 3.28 Folder Structure of configMapGenerator

Note

The folder structure is not necessarily predefined by Kustomize; you have the freedom
to design it as you see fit.

app.name=MyApp
app.version=1.0.0
app.environment=dev

Listing 3.29 app.properties

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 231

3 Everything as Code: Tools and Principles for Kubernetes Operations

log.level=INFO
log.pattern=%d{yyyy-MM-dd HH:mm:ss} %-5level %logger{36} - %msg¥n
log.directory=/var/log/myApp

Listing 3.30 logger.conf

In the root directory, you have the kustomization.yaml file for the generator, which ref-
erences both files and also sets an additional TEST=true parameter, as shown in Listing
3.31.

configMapGenerator:
- name: my-config
files:
- config/dev/app.properties
- config/dev/logger.conf
literals:
- TEST=true

Listing 3.31 kustomization.yaml - configMapGenerator

If you now run Kustomize using kubectl kustomize ., your result should look like Lis-
ting 3.32.

apiVersion: vl
data:
TEST: "true"
app.properties: |
app . name=MyApp
app.version=1.0.0
app.environment=dev
logger.conf: |
log.level=INFO
log.pattern=%d{yyyy-MM-dd HH:mm:ss} %-5level %logger{36} - %msgikn
log.directory=/var/log/myApp
kind: ConfigMap
metadata:
name: my-config-9htd2ck66g

Listing 3.32 Generated ConfigMap
As you can see, the generator is very appealing and easy to use. With a generator, you
can simply reference existing configuration files and save yourself double mainte-

nance. In addition to configMapCenerator, there is also secretGenerator. You can find
information on this topic at http://s-prs.co/v596432.

232 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596432

3.5 Templating Using Kustomize

3.5.3 More Kustomize Built-Ins

The generators are referred to as built-ins for Kustomize. In addition to the generators,
there are a few others that allow you to make in-depth customizations to your Kuber-
netes manifests. I now want to introduce a few selected ones here; these will help you
standardize your resources and prevent unnecessary paperwork.

Note
You can find the entire selection of built-ins at http.//s-prs.co/v596433.

One useful built-in is the AnnotationTransformer which you can use to define standard
annotations that are attached to each resource by Kustomize. Imagine, for example,
that you have the compliance guideline that certain annotations must be attached to
the resources. Information about the responsible project or a cost center is necessary
for some business processes, but maintaining the annotations on each resource is
cumbersome.

Listing 3.33 shows how the AnnotationTransformer is activated. You only need to enter
the required annotations under the commonAnnotations object in a kustomization.yaml
file. Just try it out using the example from Listing 3.33.

commonAnnotations:
owner: kevinwelter

Listing 3.33 AnnotationTransformer

The generated ConfigMap should then contain the annotation, as in Listing 3.34.

kind: ConfigMap
metadata:
annotations:
owner: kevinwelter
name: my-config-9htd2ckeog

Listing 3.34 Generated Annotations
The same applies to labels, as you can see in Listing 3.35. Just like the AnnotationTrans-

former, the LabelTransformer adds the labels to each resource that’s generated by Kus-
tomize.

commonLabels:
owner: kevinwelter
app: nginx

Listing 3.35 LabelTransformer

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 233

http://s-prs.co/v596433

3 Everything as Code: Tools and Principles for Kubernetes Operations

Another useful feature is the prefix and suffix for names. This is particularly useful if
you roll out the same application more frequently, such as in a development cluster.
For this, you only need the lines shown in Listing 3.36.

namePrefix: kevin-
nameSuffix: -dev

Listing 3.36 PrefixSuffixTransformer

3.5.4 Conclusion on Kustomize

You can see how easy it is to make adjustments with Kustomize. It is a wonderfully sim-
ple tool that can be used quickly thanks to its integration in kubectl. You have also seen
that you don't need a lot of new knowledge to be able to carry out transformations or
use built-ins, but the gain is huge. You save typing work and can use manifests for
multiple environments and only change the fields that need to be changed by using
the patches.

Note

Before you start using Kustomize in your company, | recommend that you read Chap-
ter 8 on Helm. You should then decide which tool is best for you depending on the
application.

234 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

Chapter 4

Advanced Objects and Concepts
in Kubernetes

The only general principle that does not hinder progress is: anything
goes.
—Paul Feyerabend

Kubernetes provides a rich set of objects and concepts that allow you to efficiently
manage and scale complex applications. In Chapter 2, you got to know the basic princi-
ples of Kubernetes, which are essential for getting started and which you will use over
and over again. In this chapter, we will look at concepts and objects that will allow you

to delve even deeper into Kubernetes. This includes concepts such as custom resources
that allow you to extend the Kubernetes API and thus open up a world in which any-

thing is possible.

In the following sections, we will look at the following:

DaemonSets
Allow you to run a pod on any node in the cluster. Particularly useful for collecting
logs, monitoring, or other services required at system level.

Kubernetes jobs
Provide an easy way to perform tasks such as batch jobs. Kubernetes jobs start, run a
specific task, and end.

Custom resource definitions

Allow you to create custom resources that exist alongside the standard Kubernetes
objects. This allows you to extend the Kubernetes API, which enables you to create
customized solutions for specific use cases.

Downward API

Provides a way for you to inject metadata from the pod or cluster into the pod so
that your application can access information without the Kubernetes API.

Pod priority and preemption

This concept enables you to assign priorities to the pods that influence scheduling.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 235

4 Advanced Objects and Concepts in Kubernetes

Note

You should use this chapter as a reference guide. Some objects may not be important
or interesting to you right now, but if you come across them in the future, you can
return to this chapter.

4.1 DaemonSets

A DaemonSet ensures that exactly one instance of a pod is executed on each node in
your cluster. Even if new nodes are added to the cluster, the DaemonSet will start the
pods there. DaemonSets are particularly useful for system pods that have to be exe-
cuted on each node, or applications for logging and monitoring. The kube-proxy, for
example, is a system pod that runs on every node.

Examples and use cases include the following:

®m Logand data aggregation
A pod could collect logs and other data on each node, aggregate it, and send it to a
central server.

® Monitoring
Monitoring agents that collect system and application metrics from each node can
be rolled out via a DaemonSet.

® Network services
Like the kube-proxy, you can deploy pods that add functionality to your network.

® Security scans
Applications such as Falco can be deployed on any node and perform security scans
there.

Note

We will look at a simple example in this chapter to help you understand the principle.
On Minikube, of course, you only have a single node, which makes it somewhat more
difficult to observe the principle of DaemonSets.

Chapter 7, Section 7.4.2 contains a real use case with the Pi cluster, in which a Daemon-
Set is also used to collect metrics.

Let's start with the simple example in Listing 4.1. If you compare the manifest with the
deployment manifest from Chapter 2, Listing 2.24, you will hardly see any differences.
The syntax remains the same, which makes developing and reading the manifests easy.

apiVersion: apps/vl
kind: DaemonSet

236 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

4.1 DaemonSets

metadata:
name: my-nginx-Daemon
labels:
app: nginx
spec:
selector:
matchlabels:

app: nginx

template:
metadata:

labels:
app: nginx

spec:

containers:

- name: my-container
image: nginx
ports:

- containerPort: 80

Listing 4.1 Nginx DaemonSet
Unroll the manifest and observe what happens. In Lens, you will find the generated

DaemonSet under Workloads - DaemonSets. In Minikube, you can see that a pod is
being created. On other cluster setups like the Pi cluster from Chapter], Section 1.7, you

would see multiple pods.

When you deploy a DaemonSet, you should ask yourself the following question: On
which nodes should a pod run?

Depending on the cluster setup, there will be taints on nodes that will prevent the pods
from being deployed, typically on the master nodes. You should therefore think about
tolerations, which you got to know in Chapter 2, Section 2.2.6. If you look at the exam-

ple of the masters, then you need the tolerations from Listing 4.2 in a real cluster setup.

Good to Know
The DaemonSet controller automatically adds a few tolerations when it is created.

Take a look at the pod created from the example in Listing 4.1.

These tolerations are also useful, for example, to prevent kube-proxy from being
evicted if the node's load is simply too high. Without kube-proxy, the node would lack
functions, which in turn would result in other problems. DaemonSet pods are usually
important for the node, and therefore DaemonSets must be treated differently.

You can find a complete overview of the automatic tolerations at http://s-prs.co/
v596434.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 237

http://s-prs.co/v596434
http://s-prs.co/v596434

4 Advanced Objects and Concepts in Kubernetes

tolerations:

- key: node-role.kubernetes.io/control-plane
operator: Exists
effect: NoSchedule

- key: node-role.kubernetes.io/master
operator: Exists
effect: NoSchedule

Listing 4.2 Tolerations to Run on Master Nodes

Good to Know

As an alternative to the DaemonSet, you could also use systemd or something similar
directly on the nodes. However, you will then lose the ability to manage the daemons
using Kubernetes. With Kubernetes, you have a better overview of the pods, can access
logs and monitoring metrics just like your applications, and you can also use YAML
manifests to generate them.

As DaemonsSets are usually system pods, special features exist for their communica-
tion as well. Typically, it is an application that is not used by users, as we have used it in
the preceding example. Depending on the use case, you would use one of the following
communication patterns:

Push

Your pods in the DaemonSet are set up to send updates to another service and are
not reachable from the outside at all. An example could be a log collector that for-
wards the logs.

NodelP and port

Your pods in the DaemonSet can use a host port. This makes them accessible via the
IP addresses of the nodes and would allow another application to send requests to
the pods—for example, to retrieve metrics.

Service

You can of course also use Kubernetes services as in Chapter 2, Section 2.5 and make

the pods accessible from the outside. This is not unusual, but you must note that no
specific pod can be addressed by load balancing.

DNS

An alternative would be the headless service, which takes over the service discovery.
You can use it to query the DNS records of the pods.

Depending on the application, it is important to consider how the pod should be acces-
sible.

238 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

4.2 Jobsin Kubernetes

Good to Know

Because the pods of the DaemonSet are more important for a node than other pods, it
makes sense to set PriorityClass to a higher level. This way, you can make sure that
the other pods are displaced and the DaemonSet pods remain on the node.

We will take a closer look at the priority classes in Section 4.5.

4.2 Jobs in Kubernetes

Up to this point, you have learned about Kubernetes objects that ensure that pods run
permanently. But sometimes there are tasks such as batch jobs that have a defined end,
and this is where Kubernetes jobs come into play. The best way to imagine this is as fol-
lows:

A job in Kubernetes is like an external employee who is hired for a specific task in a
company. That person has a clear project assignment and remains with the company
until it has been successfully completed. The contract then ends, and the employee
leaves the company. An internal employee, on the other hand, is with the company for
the long term. The employee carries out work continuously and there is no defined
end.

This means that jobs

m work on one-off, limited tasks;

® end after the completion of their task; and

® start pods until the task has been completed.

Deployments, on the other hand, must

®m work on ongoing tasks;

® monitor pods and ensure their functionality; and

® scale as required.

Table 4.1 presents three job types that you can use. Each type has specific use cases. You
could use the one-off job for database migration. The parallel jobs are useful for pro-
cessing large amounts of data. For example, you could convert images or retrieve data

from external services. The queue worker job is perfectly suited for processing a mes-
sage queue.

One-off job Asingle pod is started and works through a task. If it fails, a new one will
be started until the pod completes successfully.

Table 4.1 Job Types in Kubernetes

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 239

4 Advanced Objects and Concepts in Kubernetes

Parallel jobs Work continues until a defined number of pods have been successfully
completed. You can run multiple pods in parallel.

Queue worker One or more pods process a queue. If one of them completes successfully
because the queue is empty, for example, then the job is completed suc-
cessfully, and no new pod is started.

Table 4.1 Job Types in Kubernetes (Cont.)

4.2.1 Real-Life Kubernetes Jobs

Let's get into practice now so that you can create your first job. Listing 4.3 shows a sim-
ple job manifest. As you can see in the container specification, the job starts a busybox
container, executes sleep 3, and then terminates.

apiVersion: batch/vl

kind: Job

metadata:
name: my-job

spec:
completions: 5
parallelism: 2
activeDeadlineSeconds: 60
template:

spec:

containers:

- name: sleep-container
image: busybox
command: ["/bin/sleep"]
args: ["3"]

restartPolicy: Never

Listing 4.3 Manifest of Kubernetes Job

You can see the new completions and parallelism options. These are the parameters
that allow you to choose between the job types from Table 4.1:

® completions defines the number of containers that must be successfully completed
for the job to be successful.

® parallelismdefines how many pods are started simultaneously.

Good to Know

completions and parallelismcan be set as follows:

240 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

4.2 Jobsin Kubernetes

® You do not need to make any additional settings for the one-off job, as both values
must be set to 1, which is the default.

® Use both options for parallel jobs. You decide how many pods should be success-
fully completed and how many may run simultaneously.

® For a queue worker job, you should leave the default value set for completions. This
is because the job should terminate when the queue is empty. However, you can
set the number of jobs that should run in parallel.

Use Lens to go to the Workloads - Jobs menu and create your first job using the mani-
fest. Take a look at what Kubernetes does and how it behaves. A job named my-job
should be started in the job overview. Because the manifest starts two pods at the same
time, you should see in the table under Completions how first 2/5, then 4/5, and then
5/5 have been successfully completed, as shown in Figure 4.1. When you click the job,
you will see in the information window that five pods have completed with the Suc-
ceeded status. You can also see in the events when the respective pod was started. If
your pods were to output logs, you could view all logs from all pods in the top-right cor-
ner of the action bar with the Log icon. This will be important at a later stage.

If you go to the pod overview under Workloads - Pods, you will also see each of the five
pods there. The job itself starts the pods as you have defined them in the manifest and
monitors them in a way similar to a deployment. However, the job has a different goal
when it comes to monitoring. As already mentioned, it should be possible to complete
the pod in a Kubernetes job and terminate it after its task.

&% Workloads Jobs 1 item Namespace: default Search Jobs...

Overview

Pods O Name Namespace Completions Age Conditions
Deployments O my-job default 2/5

DaemonSets

StatefulSets

Figure 4.1 Job Overview in Lens

Note

Once your jobs have completed, they still remain in the overview, and the pods also
remain visible. Not only does this disturb the overview, it also prevents you from
importing the same job manifest again—but you can simply delete them by using Lens
or kubectl. Information on how to automate the cleanup can be found at the following
address: http://s-prs.co/v596435.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 241

http://s-prs.co/v596435

4 Advanced Objects and Concepts in Kubernetes

4.2.2 Queue Worker with RabbitMQ

Now let's move on to a real-life example. Let’s set up RabbitMQ as a message queue in
Kubernetes and publish and consume messages with Kubernetes jobs there. The archi-
tecture is deliberately kept simple. You can find an illustration of this in Figure 4.2.

For this example, we will

® deploy RabbitMQ from Bitnami as a Helm chart,

® set up a queue,

® create a container that can send and consume messages,
® create a job that sends messages, and

® create a job that consumes the messages.

d M et Messages
send Messages RabbitMQ g g

Job Job

Figure 4.2 Filling and Reading RabbitMQ

Let's get started with the most important things. First, let’s create a RabbitMQ instance
based on the Bitnami Helm chart. Refer to Chapter 8, Section 8.1.2 to read in advance

how Helm charts can be deployed via Lens. However, you do not need to have any prior
experience with Helm for this exercise.

Look for the RabbitMQ chart in Lens under Helm - Charts (I use version 12.3.0) and
install it. A StatefulSet is now created for you and a RabbitMQ pod is started. It may take
a few minutes for the pod to boot up properly.

In the meantime, you can get the password for RabbitMQ from the release notes in
Helm. You can also find more detailed instructions for this in Chapter 8, Section 8.1.2.

If the pod is green, go to Network - Service. There you will see that two services have
been created. Use the “normal” service, not the headless service. If you look at the ser-
vice, you will see that it provides multiple ports. The management Ul is based on port
15672. For this purpose, you need to set up port forwarding, open the corresponding
page in the browser, and log in with the data from the release notes.

Iwon't go into RabbitMQ in detail, as this is not necessary for the example. For the test,
you'll simply create a queue that you can write to and read from.

To do this, click Queues and Streams. There you can create a new queue named test-
queue under Add a New Queue. This should look similar to Figure 4.3. Once you have
clicked Add Queue, the new queue appears directly in the overview. Then you can click

242 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

4.2 Jobsin Kubernetes

the name of the queue to get more information. You will later be able to see the mes-
sages you write and read there.

Add a new queue

Virtual host:

Type: | Default for virtual host v

Name: testqueue

Durability:

Add Auto expire ? | Message TTL ? | Overflow behaviour ?
Single active consumer ? | Dead letter exchange ? | Dead letter routing key ?
Max length ? | Max length bytes ?
| Leader locator ?

Figure 4.3 Creating Test Queue in RabbitMQ

To get messages in and out of the queue, examine Listing 4.4. There you will find a Bash
script with two functions:

® The publish function writes a message with the content “Hello World!” to RabbitMQ.

® The consume function reads messages from the queue in a loop and outputs them
until no more messages are available.

#!1/bin/bash
RABBITMQ_HOST="rabbitmq-1698791687.default.svc.cluster.local"”
RABBITMQ_PORT="15672"
RABBITMQ_USER="user"
RABBITMQ_PASSWORD="7DHPGoseHedmCUHuU"
QUEUENAME="testqueue"
function publish {
/usr/local/bin/rabbitmgadmin -H $RABBITMQ_HOST -P $RABBITMQ_PORT
-U $RABBITMQ_USER -p $RABBITMQ_PASSWORD publish routing_key=$QUEUENAME
payload="Hello World!"

}

function consume {
while :
do

MESSAGE=$(/usr/local/bin/rabbitmgadmin -H $RABBITMQ_HOST -P
$RABBITMQ_PORT -u $RABBITMQ_USER -p $RABBITMQ_PASSWORD
get queue=$QUEUENAME ackmode=ack_requeue_false)

if [[$MESSAGE != "No items"]]; then

echo "Received message: $MESSAGE"

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 243

4 Advanced Objects and Concepts in Kubernetes

else
echo "No more messages in queue."

break
fi
done
¥
if [[$1 == "publish"]]; then
publish
elif [[$1 == "consume"]]; then
consume
else
echo "Unknown command. Use 'publish' or 'consume'."
fi

Listing 4.4 Script for Consume and Publish Functions

The functions use parameters in lines 2 to 6, which you must replace with your val-
ues—namely, the password, the name of your created queue, and the host. The host
contains the DNS name of the service. Remember the naming conventions from Chap-
ter 2, Section 2.5.2, and use the DNS of your service.

Save the script as rabbitmg-script.sh, and then place it on the same level as the Docker-
file from Listing 4.5. To build the image, use the name localhost:5000/rabbitmg-manager
to place it on the Minikube registry with docker push. If you encounter problems, refer
back to Chapter 2, Section 2.1.2.

The Dockerfile in Listing 4.5 is kept simple. We use a special RabbitMQ tag as the
base image, which is specifically designed for management. This image contains the
rabbitmgadmin tool that you use in the script. The script is then copied into the con-
tainer, made executable, and set as the entry point.

FROM rabbitmq:3-management

COPY rabbitmg-script.sh /rabbitmg-script.sh
RUN chmod +x /rabbitmg-script.sh

ENTRYPOINT ["/rabbitmg-script.sh"]

Listing 4.5 Dockerfile for Rabbit Management Container

Once you have pushed the container image to the registry, you can start the Kuber-
netes job that is to write messages to the queue. Use the manifest from Listing 4.6 for
this purpose.

apiVersion: batch/vl
kind: Job
metadata:
name: rabbitmg-publisher-job

244 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

4.2 Jobsin Kubernetes

spec:
completions: 10
template:
spec:
containers:
- name: rabbitmg-manager
image: localhost:5000/rabbitmg-manager
args:
- publish
restartPolicy: OnFailure

Listing 4.6 Manifest for "Message Publisher" Job

Asyou can see, the job is based on the image and transfers publish as an argument. The
container will therefore generate a message and then exit. This means that you have to

increase the completions in order to write more messages, as this will generate more
pods. In the example, 10 pods are started, so 10 messages are written.

Now create the job in Lens and watch as the job scales one pod at a time and writes mes-

sages to the queue.

In the RabbitMQ management interface, you can also see how the messages are written
and ready to be picked up. In Figure 4.4, you can see the graphs created after the system
has written and read out the messages. You should now have 10 messages set to Ready.

Queue testqueue

Overview

Queued messages last minute ?

15

10
5 _/—/_\—
0
10:58:30 10:58:40 10:58:50 10:50:00 10:59:10 10:59:20

Message rates last minute ?

25 /s
2.0/s
1.5/s
1.0/s
0.5 /s

0.0/s
10:58:20 10:58:30 10:58:40 10:58:50 10:59:00 10:59:10

Ready
Unacked

Total

Publish

Deliver
(manual
ack)

Deliver
(auto ack)

0.00/s

0.00/s

M 0.00/s

Figure 4.4 Movements on Message Graph of Queue

Now the news is ready to be consumed and processed. You will use a queue worker job
to process the queue. The script is prepared accordingly, works in a loop until the queue

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

245

4 Advanced Objects and Concepts in Kubernetes

is empty, and then terminates successfully. This is a mandatory requirement, because
otherwise the job does not know when the queue is empty and cannot complete itself
successfully.

Listing 4.7 shows the manifest for the queue worker job.

apiversion: batch/vl
kind: Job
metadata:
name: rabbitmg-consumer-job
spec:
template:
spec:

containers:

- name: rabbitmg-manager
image: localhost:5000/rabbitmq-manager
args:

- consume
restartPolicy: OnFailure

Listing 4.7 Manifest for "Message Consumer" Job

The script is given consume as an argument, and it leaves out completions so that it is set
to the default value, 1. Now create the job via Lens and watch what happens here too.
Kubernetes creates a pod that processes all messages and outputs the message in the
logs. As you can see in Figure 4.4, in RabbitMQ the messages should drop to O again.

Congratulations! You have now created your first queue worker job and at the same
time used a job to create messages. You should now use the existing manifests and play
a little with the completions and parallelismvalues.

Try writing a total of 100 messages with two pods. Or run two queue workers that pro-
cess the messages. The more you try it out, the clearer the function will become, and
the better you will be able to call it when you need it.

Note

Here is a small task to complete this section: Can you find out what happens when the
number of completions is reached but some pods are still working? Have fun experi-
menting!

4.2.3 Kubernetes CronJobs

The CronJob is perfectly suited for tasks such as the monthly billing run. It is clear that
a task must be completed at a certain time, and similar to the cron jobs you know from
Linux, you can use the cron format to set a time at which a Kubernetes job should be

246 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

4.2

Jobs in Kubernetes

started. This means you do not need to create the job manually or via a pipeline but can
leave everything to the Kubernetes Cronjob, as shown in Figure 4.5. The Cron]Job creates
a Kubernetes job at the relevant time using a template.

If you look at the manifest from Listing 4.8, you will recognize the job definition.

apiversion: batch/vl
kind: CronJob
metadata:
name: my-cronjob
spec:
schedule: "*/5 * * * %"
jobTemplate:
spec:
completions: 5
parallelism: 2
activeDeadlineSeconds: 60
template:
spec:

containers:

- name: sleep-container
image: busybox
command: ["/bin/sleep"]
args: ["3"]

restartPolicy: Never

Listing 4.8 Manifest of Kubernetes CronJob

cronjob
controller

®

o@i

- ——» CronJob

Job

secrets

i
|
A4

Y

Developer

®

Pod

A A

|ConﬁgNmp || PVC |

Figure 4.5 CronJob Process

You also have the schedule option, which enables you to transfer the cron expression.
You can find your CronJobs in Lens under Workloads « CronJobs. If you then open the

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

247

4 Advanced Objects and Concepts in Kubernetes

CronJob menu by clicking on the particular Cronjob, it looks like the one shown in
Figure 4.6.

CronJob: my-cronjob

21s ago 2024-01-02T21:33:16+01:00

my-cronjob

Figure 4.6 CronJob View in Lens

For CronJobs in particular, you have two additional options, which you can also see in
the figure:

® You can pause Cronjobs; no jobs will then be created until you unpause them.

® You can use the Play button to trigger a manual trigger that immediately creates a
new job.

All jobs that are created by a Cronjob can still be found under Workloads - Jobs. One
advantage you have is that the CronJob names the jobs independently and you do not
have to worry about name conflicts. Automatic cleanup would be advisable at this
point.

Note

The manual Trigger button of the CronJob provides another advantage. You can use it
to map processes that are to be controlled manually.

If possible, you should avoid such manual processes, but | know that often you cannot
do without them. Perhaps it will help you at some point.

4.3 Custom Resources and Custom Resource Definitions

In Kubernetes, custom resources (CRs) and custom resource definitions (CRDs) represent
individual extensions of the Kubernetes API. These extensions allow you to modify the
Kubernetes system according to your specific requirements.

Imagine Kubernetes as a conductor coordinating a large number of musical instru-
ments (resources) in an orchestra (cluster). For some pieces of music, the normal
instruments alone are not enough, and the orchestra needs to be enlarged. CRs are like
additional, unique instruments that you add to your orchestra to create new melodies
or achieve specific timbres. CRDs are like the construction and operating instructions

248 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

4.3 Custom Resources and Custom Resource Definitions

for these instruments. You define what these new resources look like and how they
should be played. Once defined, these CRDs can be used to create specific instances of
the CRs—similar to a composer writing a new symphony that is then performed by the
orchestra.

A CR is an elegant way to extend the Kubernetes API by defining your own resource
types. It allows you to integrate your specific data structures and types into the Kuber-
netes system, have them validated by Kubernetes, and use them in one of your applica-
tions.

Good to Know

You could also map all the information you put in a CR with a ConfigMap, but then you
would lose the following:
m Validation
CRDs provide schema validation.
m Specific APIs
For example, you use a CR with kubectl like a pod. ConfigMaps are "only" generic
key-value stores.
® Controller integration
You cannot monitor ConfigMaps with Kubernetes controllers and integrate them
into automated processes.

We will take a closer look at these individual topics in this section.

The CRD plays a central role in the creation of new resource types. Without a definition
that describes what a CR should look like, there can be no CR. When you create a CRD,
the Kubernetes API server responds by generating a new RESTful resource path for each
version you specify. Once specified, the CRs behave like “regular” Kubernetes objects.
You can query them using kubectl, for example.

43.1 Example: A Monitoring CR

The CR concept is sometimes a little complicated to understand—especially when
there is no good use case available. Let's use an example to work out when a CR could
make your life easier and how an application uses the CR.

Imagine you have developed an advanced application monitoring system specifically
designed to provide detailed insight and analysis of the performance of applications
within a Kubernetes cluster. Your aim now is to make this system accessible to other
developers in the cluster so that they can create dashboards for their own applications.
To make this possible, you want to introduce a custom resource (CR) that allows devel-
opers to define specific metrics and the application to be monitored.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 249

4 Advanced Objects and Concepts in Kubernetes

Let’s call this CR AppMonitoringDashboard. A manifest for it could look like the one
shown in Listing 4.9. You give it the name of the application to be monitored, the
desired metrics, and an update rate.

Note

You can find out how to view CRs and CRDs in Lens in the reference part of Chapter 1,
Section 1.6.3.

apiVersion: monitoring.example.com/v1
kind: AppMonitoringDashboard
metadata:
name: my-app-dashboard
spec:
monitoredApplication: "MyApp"
metrics:
- "cpu_usage"
- "memory_usage"
- "disk_io"
refreshRate: 60

Listing 4.9 "AppMonitoringDashboard" Custom Resource

But before you can create the CR, you first need a CRD. The CRD must describe the new
API object. At the same time, it gives you the opportunity to validate the desired CR.
The validation is necessary because you want to outsource the creation of dashboards
to other developers, but your application can only create dashboards if all the import-
ant information is available.

In Listing 4.10, you can see the appropriate CRD for AppMonitoringDashboard. The
structure of the CR you need can be found in the schema section. In the CRD, you also
specify the names of the CRs in plural, singular, and short form. You can use the names
later, such as via kubectl, to select the CRs. For example, you can reference the pod
object by using the plural pods, singular pod, and short name po.

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
name: appmonitoringdashboards.monitoring.example.com
spec:
group: monitoring.example.com
names:
kind: AppMonitoringDashboard
listKind: AppMonitoringDashboardlList

250 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

4.3 Custom Resources and Custom Resource Definitions

plural: appmonitoringdashboards
singular: appmonitoringdashboard
scope: Namespaced
versions:
- name: vl
served: true
storage: true
schema:
openAPIV3Schema:
type: object
properties:
spec:
type: object
properties:
monitoredApplication:
type: string
metrics:
type: array
items:
type: string
refreshRate:
type: integer
required:
- monitoredApplication
- metrics

Listing 4.10 Custom Resource Definition for "AppMonitoringDashboard"

If you want to create your own CRD, you must make sure that the names match. Thus
metadata.name is a composite of the plural and the group. And names.kind is the singular
in camel case.

You will find a list of versions under the versions object. In the example, only v1 is avail-
able, but you could also create other versions. This allows you to develop the object fur-
ther and still support older versions.

Note

More information on versioning Kubernetes objects is provided in Section 4.6

You have now created the CRD and can create CRs as in Listing 4.9. However, the moni-
toring system that the CRs are supposed to use is still missing. As always, there are sev-
eral possible options. To give you an idea, I will present one possible process:

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 251

4 Advanced Objects and Concepts in Kubernetes

1. Monitoring the custom resources
You can activate a watcher in the Kubernetes API server on the CR. This watcher will

inform you when changes are made or a CR is created.

2. Extracting data from the CR
As soon as the monitoring app receives a notification about a new or changed CR, it

extracts the relevant configuration data from the CR.

3. Creating or updating the dashboard
The monitoring app then uses the extracted configuration data to create or update

the corresponding dashboard.

4. Integrating metrics data sources

The app configures a job to retrieve the metrics from the application.

Finally, I have provided an overview in Figure 4.7 so that you can see how the compo-

nents interact.

develops

Monitoring

Y

MonitoringApplication

creates

CRD
AppMonitoringDashboard

develops

Kubernetes
monitors L
> Application
watches
N CR
validates | AppMonitoringDashboard

A

Developer

creates

Figure 4.7 Overview of "AppMonitoringDashboard" CR and CRD

The developer responsible for monitoring develops the monitoring application and

defines a CRD. The monitoring application monitors the CRs and responds to changes.

A developer who wants to create a dashboard for their application in the monitoring

tool creates a CR with the necessary information. Your monitoring tool accesses the CR

and will use the information from the CR to monitor the application and generate a

dashboard.

4.3.2 Validation in CRD

When you create a CRD, you should have given it very clear thought and answered

questions such as these:

252

© 2025 by Rheinwerk Publishing Inc., Boston (MA)

4.3 Custom Resources and Custom Resource Definitions

® What is the object needed for?

® What should the object be able to do?

®m What properties should the objects have?

® What data type does a particular property have?
® What are the thresholds a property should have?

® Where does the object's responsibility end?

You certainly don't want to create a jack-of-all-trades object, which is why it makes
sense to also consider what the object is not. A good way to control this is to use rules
for the properties that validate the values entered.

In addition to validating the data type—that is, whether an integer is actually an
integer—a more detailed validation has also been possible since Kubernetes version
1.25. This allows you to set certain limits while you are still developing a CRD, which
means that the developer who ultimately creates the CRs knows what is possible—and
what is not.

In Listing 4.11, a simple extension of the data type validation is marked, which in this
example provides an upper and lower limit for integers or defines an enumeration in
our list. In the example, it protects against incorrect configurations of the metrics and
against overloading due to excessively fast update cycles.

schema:
openAPIV3Schema:
type: object
properties:
spec:
type: object
properties:
monitoredApplication:
type: string
metrics:
type: array
items:
type: string
enum: ["cpu_usage", "memory_usage", "disk_io",
"network_traffic", "http_requests"]
minItems: 1
refreshRate:
type: integer
minimum: 30
maximum: 3600

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 253

4 Advanced Objects and Concepts in Kubernetes

required:
- monitoredApplication
- metrics

Listing 4.11 Validation in CRDs

Good to Know

There are other validation options available, which you can find at the following
address: http://s-prs.co/v596436.

Listing 4.12 contains a somewhat more complex validation. Common Expression Lan-
guage (CEL) is used there to compare values with each other. This gives you even more

freedom to carry out validations. You can find very detailed instructions for this at
http://s-prs.co/v596437.

schema:
openAPIV3Schema:
type: object
properties:
spec:
type: object
properties:
monitoredApplication:
type: string
metrics:
type: array
items:
type: string
x-kubernetes-validations:
- rule: "size(self) > 0"
message: "At least one metric must be specified.”
refreshRate:
type: integer
x-kubernetes-validations:
- rule: "self >= 30 & self <= 3600"
message: “"must be between 30 and 3600 seconds."
required:
- monitoredApplication
- metrics

Listing 4.12 Validation Using CEL

254 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596436
http://s-prs.co/v596437

4.3 Custom Resources and Custom Resource Definitions

Note

During my tests, | noticed that Lens has some difficulties when it comes to deleting
CRDs. For such problems, | always refer to kubectl. Using a simple kubectl get crd
statement, you get your CRDs, and via a quick kubect] delete crd [CRD-NAME], you can
delete them.

As useful as the Ul of Lens is, sometimes you need the simplicity of the command line.

4.3.3 Operators

You certainly are familiar with this situation: There is a new configuration for your
application, and now the application must be restarted. Or you are once again ordered
by the operations team to roll out a new version of your database. Or you need to
import a recovery because a problem has occurred in your database.

Even as a developer, you can't avoid taking care of repetitive tasks, especially those that
require your expertise. Kubernetes can do a lot for you, but at some points even Kuber-
netes reaches its limits.

What if you had a little helper to support you in such tasks and make your life easier?

Operators are just the thing.

In my opinion, the operator concept is one of the most important ideas in Kubernetes.
Operators allow you to customize Kubernetes so that you can solve and automate any
problem.

An operator is an extension of Kubernetes based on CRs. In the example from Section
4.3.1, the monitoring application listened to the CRs independently. If a CR is created or
changed, the controller makes sure that what is specified will also be implemented.
Operators can provide support for tasks such as the following:

® Rolling updates

® Updates to new versions

® Backup and recovery

® Monitoring and importing configuration changes

Where previously a person had to intervene to complete repetitive tasks, these can now
be automated and simplified by an operator.

And moreover, this concept also allows you to swap out the watch functionality from
your actual application, which makes it even more streamlined. You encapsulate the
typical Kubernetes logic in the operator and do not need to keep it in your application.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 255

4 Advanced Objects and Concepts in Kubernetes

Architecture of the Operator

An operator works by constantly monitoring the Kubernetes API for certain custom
resources. As soon as a new custom resource is added or an existing one is changed, the
operator will be activated. Its aim is to adjust the current state of the cluster so that it
matches the desired state that you have defined in the custom resource. Figure 4.8
illustrates this process.

Kubernetes
Developer
creates/ executes
processes commands
A .
informs
Custom Resource Controller
modifies the state

Figure 4.8 How Operators Work

Deployments and ReplicaSets work in a similar way to operators. A deployment opera-
tor monitors the definitions of deployments and, for example, adjusts the number of
running pods to ensure that the desired number of replicas will be reached. Similarly, a
ReplicaSet ensures that a specified number of replicas run continuously. You may rec-
ognize the pattern of the reconciliation loops we talked about in Chapter 3, Section 3.1.

If you develop your own operator, you can use it to extend the functions of Kubernetes.
The operator then takes care of your own custom resource and keeps Kubernetes in the
desired state.

The controller is the heart of every operator. It listens to one or more custom resources
and can perform actions according to the definition in order to achieve or maintain the
desired state. The controller uses the Kubernetes API to monitor the current state of
the cluster, compares it with the desired state defined in the custom resource, and
takes the necessary steps to resolve any discrepancies. You can imagine the procedure
as follows:

® Monitoring
The controller registers an event listener with the Kubernetes API in order to be
informed about the creation, update, and deletion of custom resources.

256 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

4.3 Custom Resources and Custom Resource Definitions

®m Reconciliation
Each time a change is made, the controller retrieves the current state of the relevant
resources, compares it with the desired state specified in the custom resource, and
determines the actions required to correct any differences.

® Adaptations
These actions can include creating, updating, or deleting Kubernetes resources to
create the desired state. The controller can also call external services or adapt config-
urations.

Note

You can find out how to develop your own operators at the following address: http.//s-
prs.co/v596438.

Zalando’s PostgreSQL Operator

Finally, I want to present a useful example that will give you an understanding of the
operator. If you have ever dealt with databases, then you know that the following bullet
points are important to consider in production:

® Data must not be lost.

® Data must be protected.

® Data must always be available.

This simply makes life more complicated, and a single database instance does not suf-

fice. Remember Chapter 1, Section 1.1.4: A database is (of course) stateful, and from my
point of view, operating a database in Kubernetes is the supreme discipline.

You will learn about the StatefulSet in Chapter 5, but the StatefulSet capabilities did not
meet the expectations at Zalando, a company that was probably facing some opera-
tional challenges when it considered developing a PostgreSQL operator.

The operator allows you to easily deploy and manage Postgres clusters. In Listing 4.13,
you can see an example of the Postgres manifest that is created as a CR. The CR has
properties that the operator controller later uses to implement different things. In
addition to the number of instances, you also specify the users and databases that are
to be created. You can also simply pass the version of Postgres.

apiVersion: "acid.zalan.do/v1"
kind: postgresql
metadata:
name: my-postgres-cluster
namespace: default

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 257

http://s-prs.co/v596438
http://s-prs.co/v596438

4 Advanced Objects and Concepts in Kubernetes

spec:
teamId: "myteam"
volume:
size: 10Gi
numberOfInstances: 2
users:
admin:
- superuser
- createdb
user: []
databases:
testdatenbank: admin
postgresql:
version: "13"

Listing 4.13 Postgres Manifest of Zalando Operator

In comparison, if you were to set up Postgres as a StatefulSet, you would have to write
your own scripts to create the users, manage the rights, and take care of the database.
The controller takes care of this and makes your work easier.

This is just a simple example of the Postgres manifest. The Zalando operator provides a
wide range of functions, from storage extensions, backup, and recovery to a connec-
tion pool. It is definitely worth keeping an eye out for open-source operators for your
use cases.

4.4 Downward API

In some cases, it is useful to access information from the pod or Kubernetes within
your application. You can of course use the regular Kubernetes API to query data. How-
ever, there is another solution that provides data to your application without you hav-
ing to access the regular APL

The downward API allows you to provide fields from pods and containers, similar to
secrets and ConfigMaps. As you can see in Figure 4.9, you have two options for deploy-
ment:

® Environment parameters

= Volume

Good to Know

By making the information available via the downward API, you do not have to link
your application to Kubernetes but can have it injected just like other configurations.

258 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

4.4 Downward API

Pod
Container

Kubernetes API

Pod-Objekt
POD_Name=my-pod

kind: Pod NODE_Name=nodel
metadata:

name: my-pod
spec:

nodeName: nodel
status: downwardAPI

podIP: 1.2.3.4 Volume my-pod

hostIP: 5.6.7.8

pod-name.txt

Figure 4.9 Integrating Downward API

Let's look at how you can make the fields available via environment parameters. Listing
4.14 gives an example of this, in which we set the name of the node, the pod, and the
namespace as environment parameters.

apiVersion: vl
kind: Pod
metadata:
name: my-nginx
labels:
app: nginx
spec:
containers:
- name: my-nginx
image: nginx
ports:
- containerPort: 80
env:
- name: NODENAME
valueFrom:
fieldRef:
fieldPath: spec.nodeName
- name: PODNAME
valueFrom:
fieldRef:

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 259

4 Advanced Objects and Concepts in Kubernetes

fieldPath: metadata.name
- name: NAMESPACE
valueFrom:
fieldRef:
fieldPath: metadata.namespace

Listing 4.14 Integrating Downward APl as Environment Parameter

Unroll the manifest and connect to the pod via kubectl exec. If you now look at the
environment parameters via env, you should also find the following entries:

NAMESPACE=default

PODNAME=my-nginx
NODENAME=minikube

Good to Know

A complete overview of the fields that you can make available via the downward API
can be found at http://s-prs.co/v596439.

The second option is to integrate it as a volume. You may remember the syntax from
the ConfigMaps and secrets in Chapter 2, Section 2.4. In Listing 4.15, you can see the
manifest with the pod name and namespace. If you roll this out, you will find a separate
file with the corresponding values as content for each entry under the /etc/kubeinfo

path.

Note

Not all information is available via integration as a volume. The name of the node is an
example of this. For a complete overview, refer to the Kubernetes documentation.

apiVersion: vl
kind: Pod
metadata:

name: my-nginx

labels:
app: nginx

spec:

containers:

- name: my-nginx
image: nginx
ports:

- containerPort: 80

260 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596439

4.5

Pod Priority and Preemption

volumeMounts:
- name: kubeinfo
mountPath: /etc/kubeinfo
volumes:
- name: kubeinfo
downwardAPT:
items:
- path: "podname"
fieldRef:
fieldPath: metadata.name
- path: "namespace”
fieldRef:
fieldPath: metadata.namespace

Listing 4.15 Integrating Downward APl as Volume

4.5 Pod Priority and Preemption

There is another concept that allows you to control how the scheduler handles your

pods and which ones it prefers. Pod priority and preemption allow you to prioritize crit-
ical workloads and thereby displace less important pods in favor of higher priority

pods.

Good to Know

The displacement of low-priority pods is referred to as preemption.

Imagine, for example, that you have an on-premise cluster that is currently running
under full load so that a new node cannot be scaled up quickly. If you now have a job
that absolutely has to go through, but there is no space on the nodes, then you have a
problem. The scheduler cannot place the pod, and the pod remains in the pending sta-
tus. However, you could use a higher priority to tell the scheduler to distribute other

pods so that the job can start.

To assign priorities to your pods, you must use the PriorityClass object. Listing 4.16

shows an example with the name high-prio.

apiVersion: scheduling.k8s.io/v1
kind: PriorityClass
metadata:

name: high-prio

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

261

4 Advanced Objects and Concepts in Kubernetes

value: 1000
globalDefault: false
description: "Use this Class for High Prio Pods"

Listing 4.16 PriorityClass Manifest

The higher the value of PriorityClass, the higher the priority of the pod. The Priority-
(Class objects can be found in Lens under Config - Priority Classes. After rolling out the
example, you should see three priority classes, as shown in Figure 4.10.

Priority Classes 3 items Search Priori

Name Value Global Default

O
O high-prio 1000 false
O

system-cluster-critical 2000000000 false

system-node-critical 2000001000 false

Figure 4.10 Priority Classes in Lens

In the pod manifest, you can specify PriorityClass via the name. An example of this is
shown in Listing 4.17.

spec:
containers:
- name: nginx
image: nginx
priorityClassName: high-priority

Listing 4.17 Integrating PriorityClass into Pod

Good to Know

Since Kubernetes version 1.24, you can add a preemptionPolicy to the priority class. If
you set the value to never, then the pods can have a higher priority and are only dis-
placed later by even higher priorities, but they themselves cannot displace any other
pods.

This is useful if you have a pod that does not need to start immediately and therefore
should not interfere with other pods. But when it runs, it should also finish its work. An
example of this could be a long-running batch job.

262 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

4.6 Versioning Objects in Kubernetes

4.6 Versioning Objects in Kubernetes

Kubernetes is also evolving, and the objects have different development cycles. You
will always find these in the YAML manifests under apiVersion. Especially with regard
to Kubernetes updates, it is important to check the API versions and update them if

necessary.

Good to Know

All alpha and beta objects that are part of Kubernetes must be explicitly activated in

kube-apiserver beforehand.

Kubernetes carries out versioning according to the following scheme:

Alpha level

This API version contains the designation alpha, as in vlalphal, for example.

The object is still in its infancy. There is no guarantee of further development or a
regulated upgrade process. Its use is not recommended in production environ-
ments.

Beta level

This API version contains the designation beta, as in vibeta2, for example.

The object is expected to become a stable object in one of the next versions. How-
ever, the definition of the object may still change. The object can also be tested with
caution in a production environment.

Stable level

This API version is simply v1, v2, and so on.

The object is fully developed, tested, and approved. The object is guaranteed to be
supported in many further Kubernetes versions, and there are clear rules to ensure
compatibility in further versions.

Good to Know
The introduction of API groups should make it easier to extend the API. The developers
of Kubernetes had the following ideas:

® The monolithic vl APl is organized in modular groups in order to be able to activate
or deactivate entire groups. This is the cornerstone for being able to break down
the monolithic API server into smaller components.

® Groups can develop separately in the future.

® |dentically named types can be supported in different groups. Such a structure pro-
motes innovation while ensuring stability.

® The groups serve as the basis for extending the API with CRDs.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 263

4 Advanced Objects and Concepts in Kubernetes

Despite the division into groups, it was important to the developers that interaction
with tools such as kubectl remains simple. For example, you do not need to know the
group name to display your pods.

264 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

Chapter 5
Stateful Applications and Storage

You can have data without information, but you cannot have
information without data.
—Daniel Keys Moran

I can still remember how invaluable my first MP3 player with 512 MB was to me. I often
had to decide which musicI could keep on it and which I had to delete in order to listen
to new songs again. Music streaming has completely changed our lives in that respect.
Saving and backing up images has also changed. I used to make regular backups to my
external hard disk. That was tedious, and I didn't want to pay for a NAS. Today, I have
distributed my data in cloud storage. It's easier and cheaper than I could ever have
imagined.

Storage is getting cheaper and cheaper. This sometimes means that we no longer think
about what we are saving and whether it makes sense at all. The storage of data for our
applications has changed as well. With modern systems that work according to the
principle of software-defined storages, an upper limit is almost no longer visible. This
is tempting, but data from which we do not extract information is nothing more than
data waste that we should not allow to be created in the first place.

But in this chapter, I am not at all concerned with the meaningfulness of data. Instead,
we are going to talk about how you can

m store data in Kubernetes in the best possible way, and

m operate applications that require and manage data.

You can't do without data, and you need applications to process it. However, the oper-
ation of a stateful application is always somewhat more complicated than a stateless
application. With the StatefulSet, Kubernetes provides an object that is designed to run
stateful applications. There are small but subtle differences from the other objects you
have already seen, and we will take a closer look at these.

Kubernetes makes life very easy for us developers thanks to its abstractions, regardless
of whether we are dealing with storage in our own data center or in the cloud. Due to
abstraction, you can always allocate storage space to your application in the same way,
regardless of what exactly it is. In Kubernetes, you can define a wide variety of storage
classes, which are then mounted and used by the containers. In the end, the container

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 265

5 Stateful Applications and Storage

does not care whether it is an Amazon EBS volume or an NFS volume in your own data
center.

Ifthe cluster is set up properly and the storage classes are defined, then it is easy for you
to use the corresponding storage. This is a significant simplification of the develop-
ment process, more freedom for developers, and a reduction in the workload for IT
operations.

If you develop your application in a container, then sooner or later you will ask yourself
questions such as these:

® Where do I store my data?
® What doIdoifIlose data?
®m How fast is the storage medium?

®m What storage requirements does my application have?

This chapter is intended to get you thinking about these questions, and of course show
how you can make storage available to your applications in Kubernetes.

If you have already worked with containers, then you are certainly already familiar
with volumes. The concept of volumes also exists in Kubernetes. Essentially, volumes
are directories that are accessible in one or more containers and simplify data manage-
ment. The object abstracts the actual management of hard disks, and as a developer
you (almost) no longer need to worry about the actual storage.

There are two main categories of volumes: ephemeral and persistent. While ephemeral
volumes only exist during the lifetime of the associated pod and are suitable for tem-
porary data, persistent volumes retain their state even after the pod has been termi-
nated and are therefore ideal for long-term storage. With a web server such as Nginx,
for example, you use an ephemeral volume to store cache data. For a database, on the
other hand, you use a persistent volume to store the data securely even after a pod
restart or failure.

5.1 Stateful Applications in Kubernetes through StatefulSets

Do you remember Chapter 1, Section 1.1.4, where we talked about the differences
between stateful and stateless? The Kubernetes deployment from Chapter 2, Section 2.3
is intended for stateless applications.

But what do you do if you want to run a database in Kubernetes, for example? Let's take
alook at the StatefulSet.

StatefulSets were specifically developed for the management of stateful applications.
They differ from deployments in their ability to maintain and manage the state and
identity of individual pods within the set. This makes them interesting not only for
databases. You also can also use them if you

266 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

5.1 Stateful Applications in Kubernetes through StatefulSets

® have special requirements for the network and need stable identifiers, for example;
® require an orderly scaling;
® require an orderly rolling update process; or

® need stable and persistent storage.

Compared to deployment, the StatefulSet handles the pods more carefully. Order and
stability are important to the StatefulSet, as this is the only way to update a database
without losing data, for example. While deployments start or shut down new pods
simultaneously and in no particular order, StatefulSets handle the deployment and
scaling of pods in a strictly defined order and in a predictable manner.

Good to Know

StatefulSets work together with persistent volumes. The data is stored there for the
runtime of an individual pod and can be mounted and used again by another pod. The
structured naming of the pods makes it easier and more predictable to reuse the vol-
umes.

In Section 5.2, we will take a closer look at the topic of persistent volumes.

Each pod in a StatefulSet is given a unique and persistent identity. This identity is
retained across pod restarts and even across recreations. The StatefulSet assigns the
pods an ordinal index starting with the number 0. Contrary to a pod from a deploy-
ment, which has the structure my-pod-hq3w8f, the StatefulSet name has the following
structure: my-pod-O.

The network name of the pods is also predictable and stable. For this purpose, the pod
name and the index are used; in the example, that's my-pod-0. With a headless service,
you can always refer to a specific pod in combination with the pod name.

Probably the most important difference from deployments is the behavior during roll-
outs and scaling. Pods in a StatefulSet are created and deleted in a strict, predictable
order. This sequence is retained when scaling up or down. The first pod is not deleted
until the last one has been successfully deployed, which is critical and very important
in many stateful applications such as databases.

Good to Know

The pods in a StatefulSet are also not bound to a node. During an update or reschedul-
ing, Kubernetes only needs to make sure that the corresponding pod also gets its vol-
ume. However, depending on the infrastructure on which the cluster is running and
the volume type, the choice of nodes may be limited. For example, if you operate a clus-
ter in AWS and use an EBS volume as a persistent volume, only nodes in the same avail-
ability zone can mount this EBS volume.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 267

5 Stateful Applications and Storage

Let's start with a simple StatefulSet from Listing 5.1. Roll it out and watch the pods
launch. You can observe the rollout behavior very well. The StatefulSet starts one pod
after the other and waits until the pod is ready. In the example, this is only a few sec-
onds, but even if an application takes minutes to initialize, the sequence will be main-
tained.

apiVersion: apps/vl
kind: StatefulSet
metadata:
name: mysql
spec:
serviceName: "mysql"
replicas: 3
selector:
matchLabels:
app: mysql
template:
metadata:
labels:
app: mysgl
spec:
containers:
- name: mysql
image: mysql
ports:
- containerPort: 3306
env:
- name: MYSQL_ROOT_PASSWORD
value: "secretPassword"
volumeMounts:
- name: mysql-persistent-storage
mountPath: /var/lib/mysql
volumeClaimTemplates:
- metadata:
name: mysql-persistent-storage
spec:
accessModes: ["ReadWriteOnce"]
storageClassName: "standard"
resources:
requests:
storage: 1Gi

Listing 5.1 Manifest for StatefulSet

268 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

5.1 Stateful Applications in Kubernetes through StatefulSets

To make sure you can observe the update behavior, you need to update a small thing in
the template, such as the password, and roll it out again. You can see that the Stateful-
Set starts with the mysql-2 pod, then updates mysql-1, and finally mysql-0. This sequence
is always the same. The StatefulSet starts with the highest index and works its way to
the lowest index.

Note

The StatefulSet relies on the readiness check to know when your application is ready.
The readiness check reports the pod as ready as soon as your application is fully initial-
ized. We will take a closer look at how to configure this check in Chapter 7, Section 7.2.

5.1.1 Pod Management Policy

As with the deployment, you also have options for the StatefulSet, which enables you
to control the behavior. The pod management policy allows you to set the way the
StatefulSet should handle the pods. You can configure this under podManagementPolicy
in the manifest and choose from two options:

® QOrderedReady
With OrderedReady, your pods are managed in a strictly sequential order. This means
that the next pod in the series is only started or stopped once the preceding pod in
the StatefulSet has successfully transitioned to the ready state. You could already
observe this process in the previous example as this is the default value.

This policy is typically used for applications where the start sequence is important—
for example, if a pod depends on the data or status of another pod. It is also useful in
scenarios where a step-by-step initialization is required.

Good to Know

If you use OrderedReady, conditions may arise that require a manual intervention. If
you update the pod template to a configuration that never reaches the running and
ready state, the StatefulSet will stop the update and wait for your intervention.

Unfortunately, it is currently not sufficient to simply update the template due to an
open issue. You must then manually delete the pods the StatefulSet tried to update.

You can find the open issue here: http://s-prs.co/v596440.

® Parallel
With Parallel, you instruct the StatefulSet to start and stop pods in parallel. This
means that, similar to deployments, no specific order is adhered to when the pods
are managed. This option has no effect on the updates, which are still carried out
sequentially.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 269

http://s-prs.co/v596440

5 Stateful Applications and Storage

The policy is suitable for applications where the start sequence of the pods is not
critical. You can use it when a fast upscaling and downscaling is required, as all pods
can be started or stopped at the same time.

Note

You cannot change the pod management policy at a later date. To activate the policy,
you must delete the StatefulSet and create a new one. At the latest, you should be
aware of this the moment you want to use a StatefulSets for production purposes.

Listing 5.2 show an extension of the StatefulSet manifest with podManagementPolicy:
"Parallel”. Try out the change and observe the startup of the pods. You will see that all
three pods are started at the same time. If you then check the update behavior again
with another password change, you can continue to monitor the sequential updates.

apiVersion: apps/vl
kind: StatefulSet
metadata:
name: mysql
spec:
serviceName: "mysql"
replicas: 3
selector:
matchlabels:
app: mysql
podManagementPolicy: "Parallel"”
template:

Listing 5.2 StatefulSet with Pod Management Policy

5.1.2 Strategies for Updates

You can also influence the way in which a StatefulSet handles updates. There are two

update strategies you can choose from:

® The default option is RollingUpdate, which works in a similar way as deployment.

®m The second option is OnDelete, where the StatefulSet does not automatically replace
the existing pods during an update. You must then delete a pod from the StatefulSet
yourself for an update so that the StatefulSet creates a new pod. This gives you much
more control over the update process, but of course you have to do it yourself. Your
aim should be to ensure that your application can survive an automated rolling
update without any problems.

270 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

5.1 Stateful Applications in Kubernetes through StatefulSets

Note

Of course, your application must support rolling updates.

As you know from the rolling update of the deployment, the StatefulSet also replaces
one pod after the other. This involves waiting until the new pod has fully booted up and
the readiness check has been successfully completed. It is only then that the next pod
will be replaced. However, there are small differences:

® Only one pod is updated at a time, and you cannot currently configure the number.

®m The updates start with the pod that has the largest index and continue down to the
smallest index.

® You have an additional partition option that allows you to define from which index
the updates may be carried out.

Note

With Kubernetes version 1.24, the maxUnavailable option was introduced in an alpha
stage. If you want to use it, you can activate it in the API server.

You can use the partition option to specify the index from which the updates should
be carried out. The partition is an integer that specifies the starting point for the
update within the StatefulSet. Pods in the StatefulSet with an index equal to or higher
than partition are updated. Pods with a lower index remain unchanged even if you ter-
minate the pod. This provides you with more granular control over the update process
and more stability in your application.

Here is a small sample program. Suppose your StatefulSet has five pods, and you set the
partition to 2 and update the container image to a new version. In this case, the pods
with indexes 2, 3, and 4 will be updated. The first two pods with indexes 0 and 1 remain
unchanged. This allows you to carry out the version update slowly and in a controlled
manner. To update the other two pods, you want to set the partition back to 0 or delete
the line from the manifest, as the default value is also 0.

Let's try this out to observe the behavior of the StatefulSet. To do this, you need to use
the extension of the StatefulSet from Listing 5.3 and roll it out. As soon as all pods are
initialized, you can make another small change to the template. You can observe how
the StatefulSet sequentially updates the pods but leaves mysql-0 unchanged. Thus, the
last pod that is updated has the index that you specify in partition. Now you theoreti-
cally have time to test and check the new version of your application. If you also want
to update the last pod to the new version, simply change partition to 0. The StatefulSet
immediately starts replacing mysql-0.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 271

5 Stateful Applications and Storage

apiVersion: apps/vl
kind: StatefulSet
metadata:
name: mysql
spec:
serviceName: "mysql"
replicas: 3
selector:
matchlabels:
app: mysql
updateStrategy:
type: RollingUpdate
rollingUpdate:
partition: 1
template:

Listing 5.3 StatefulSet with Update Strategy

5.1.3 Retention Policy for Persistent Volume Claims

Kubernetes provides a new feature that allows you to control the retention of PVCs.

Note
Section 5.2 contains information about PVs and PVCs. However, | would like to mention

a new feature that has been available in beta stage since Kubernetes v1.27. Keep in
mind that the feature must be activated in the API server if you want to use it.

In the example from Listing 5.1, the pods also use PVs and PVCs. If you now scale down
the StatefulSet from three to two pods or even delete it, the PVC will simply remain. If
you scale it up again, the new pod will take over the PVC and thus the same PV. At first,
this makes sense, as it allows the pod to continue using the same data.

However, there are situations where you may want to assign a fresh PV to a pod, such
as in a test environment. For this purpose, you would currently have to delete the old
PVC so that a new rollout also creates a new PVC.

Listing 5.4 shows the extension of StatefulSet with the retention policy.

apiVersion: apps/vl
kind: StatefulSet
metadata:

name: mysql
spec:

serviceName: "mysql"

272 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

5.2 Persistent Volumes and Persistent Volume Claims

replicas: 3
selector:
matchlabels:
app: mysql
persistentVolumeClaimRetentionPolicy:
whenDeleted: Retain
whenScaled: Delete
template:

Listing 5.4 StatefulSet with PVC Retention Policy

As you can see, you can define the policy for the following:

®m phenDeleted
Here you define what happens if the StatefulSet is deleted in its entirety.

® phenScaled
This setting configures what the StatefulSet does to the PVC when you scale down

the pods.

Good to Know
If a pod is replaced by the StatefulSet due to an error, the PVC will be retained, and the
new pod can continue using it. It is therefore only deleted if you actively downscale or

delete the StatefulSet.

You can select the following options for both cases:

® Retain
This is the default value, and here the PVC is retained. This is how the StatefulSet
would behave even without the new feature.

m Delete
Deletes the PVC of the respective pod.

Note
If the PVCis deleted, the PV is not automatically deleted as well. However, the Stateful-
Set creates a new PVC and therefore a fresh PV. More on this follows in Section 5.2.

5.2 Persistent Volumes and Persistent Volume Claims

In a Kubernetes environment, persistent volumes and persistent volume claims are
crucial when it comes to managing persistent storage. These two resources form the
backbone for handling storage requirements in your cluster.

273

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

5 Stateful Applications and Storage

Imagine a PV as a highly flexible hard disk. The PV represents an abstraction of the
actual storage medium. The data stored in the PV can be stored on an NFS, iSCS], or a
cloud hard disk such as in AWS EBS.

You can therefore think in advance about the underlying storage and how securely or
quickly data needs to be accessed. In the end, however, your application does not care
where the data is stored because access to the PV is always the same.

The good thing about a PV is that it outlasts the lifecycle of the pod, allowing you to
store data permanently. There are of course a few pitfalls that I will go into, but if you're
aware of them, then you will be able to store your data safely on PVs.

Good to Know
A PV does not necessarily have to be assigned to a StatefulSet. You can also use it in a

deployment. However, a StatefulSet should store the data in a PV so that the data out-
lasts the lifecycle of the pod.

Listing 5.5 contains a simple PV manifest. As with every Kubernetes object, you define
the name and labels in the metadata. In the actual manifest, you define the size of the
storage, the way it can be accessed, and what type of storage it is.

apiVersion: vl
kind: PersistentVolume

metadata:
name: test-pv
labels:
app: my-pv-app
spec:
capacity:
storage: 5Gi
accessModes:
- ReadWriteOnce
hostPath:

path: /tmp/test

Listing 5.5 Simple Manifest for Persistent Volume

Note

The security of your data depends on the underlying storage medium. It's like the data
on your computer: if you don't have a backup and the hard disk is damaged, the data is
also gone.

274 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

5.2 Persistent Volumes and Persistent Volume Claims

In Listing 5.5, you can see a simple example with hostPath as the storage type, which
places the data on a path in the file system of the worker. If this worker is terminated,
the data will be lost.

For this reason, you should think carefully about what data you want to store and what
your availability requirements are.

The PV itself can only be requested via the PVC. An exclusive connection is created
between the PV and PVC that lasts for the lifetime of the product. No other PVC can eas-
ily claim the PV. However, depending on the storage type and the access mode, multi-
ple pods can access a PVC. We will take a closer look at this in Section 5.2.1.

In Figure 5.1, you can see a simplified illustration of how a PV and PVC interact. Assume
here that a pod is supposed to use an AWS EBS volume. This is done as follows:

1. The pod uses a PVC to write to the desired volume.
2. The PVC incorporates a matching PV.

3. The PV takes over responsibility for the communication to the actual EBS volume.

connects

uses
Amazon <

EBS

Figure 5.1 How a Pod Uses a PV

You can see the PVC as a list of requirements that a pod has for a PV. Listing 5.6 shows a
simple manifest of a PVC. The requirements you describe in the PVC must be fully met
by the PV; otherwise, the PV will not be claimed. The PVC waits until a suitable PV is
available.

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: test-pvc
spec:
storageClassName:

nn

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 275

5 Stateful Applications and Storage

accessModes:
- ReadWriteOnce
resources:
requests:
storage: 5Gi

Listing 5.6 Simple Persistent Volume Claim

If you compare the two manifests from Listing 5.5 and Listing 5.6, you will see that the
PVC requests 5 Gi of storage space, that the same access mode is used, and that no spe-
cific storage class is required in the PVC. The configuration must be exactly the same;
otherwise, the two objects will not find each other.

Just try it yourself. Copy the listings and use Lens to create a PV and then the PVC. Once
you have created the PV, you can see your PV in the menu under Storage - Persistent
Volumes, as in Figure 5.2.

Persistent Volumes

O Nar~ Storage Class Capacity Claim Status

O test-pv 5Gi

Figure 5.2 New Static PV Created
The status is Available, which indicates that no PVC has claimed the volume yet. Next,

when you create the PVC, Kubernetes will search for a matching PV and connect the
two. The PV then has the status Bound, as in Figure 5.3.

Persistent Volumes

[Nar ~ Storage Class Capacity Claim Status

O test-pv 5Gi

Figure 5.3 PV Claimed by PVC

The connection between the PV and PVC is fixed for the entire lifecycle. No other PVC
may claim the volume just like that. However, if you delete the PVC, the PV will be
retained, but its status changes to Released, as shown in Figure 5.4.

The advantage of this is that the data is not lost, and no other PVC can take over the PV
and use the data. The disadvantage is that you have to intervene manually to release
the PV again, back up the data, or delete it.

276 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

5.2 Persistent Volumes and Persistent Volume Claims

Persistent Volumes

O Nar ~ Storage Class Capacity Claim Status

O test-pv 5Gi Released

Figure 5.4 PV in "Released" status after PVC Has Been Deleted

Let's look at how you can release the PV again. Delete your created PVC and then click
the PV that has the Released status. A context window opens on the right-hand side
with information about the PV. There you can see under Claim which PVC is connected
to the PV, as shown in Figure 5.5. You now want to terminate this connection, as the
PVC no longer exists.

To do this, click the Edit (pencil) icon at the top to open the YAML manifest of the PV,
and search there for claimRef, as shown in Listing 5.7.

spec:
claimRef:
kind: PersistentVolumeClaim
namespace: default
name: test-pvc
uid: 180ef6fb-3703-40e3-a2ca-073f11ed89%ec
apiVersion: vl
resourceVersion: '781131'

Listing 5.7 Claim Reference in YAML Manifest of PV

Here you can see in more detail which PVC is connected to the PV. Due to the unique
uid, it is also not sufficient to recreate the PVC. Kubernetes recognizes that this is a new
resource and will not connect the two (even if the PVC is virtually the same). Now delete
claimRef from the manifest and click Save.

The PV will now return to the Available status and can be claimed again by a PVC.

Claim

PersistentVolumeClaim

default

Figure 5.5 Claim Reference of PVC on PV

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 277

5 Stateful Applications and Storage

5.2.1 Storage Types for PVs

Kubernetes provides an abstraction to different storage media through the PVs. You
learned about the hostPath in Listing 5.5. In this section, you will get to know some of
the storage types Kubernetes supports out of the box. The good thing about this is that
in the end, your application does not care where the data is located: regardless of
whether the data is saved in a path in the host system or on a network drive, the appli-
cation always saves in the same way.

Table 5.1 provides a list of the storage types Kubernetes supports out of the box in ver-
sion v1.27.If you use earlier Kubernetes versions, you may also come across other types
such as awsElasticBlockStore. However, these were gradually removed and switched to
the CSI driver.

csi The container storage interface supports a range of plug-ins that have been
developed in accordance with the standard.

fc The plug-in for fiber channel storage can implement storage solutions that are
connected via fiber optics.

hostPath The hostPath defines a path on the file system of a single node as storage. This
approach is not recommended in production environments as there are secu-
rity problems and availability is reduced.

iscsi This plug-in is for storage that is connected via SCSI over IP.

local The local plug-in is preferable over the hostPath. A local hard disk is
mounted, so access is more secure than with hostPath. However, the availabil-
ity is also reduced here because the PV is dependent on a node.

nfs This plug-in is used to connect a network file system.

Table 5.1 Storage Plug-ins Supported by Kubernetes

One prerequisite for using a specific storage type for Kubernetes is, of course, that the
corresponding storage is also connected. As a developer, you usually have little influ-
ence on which storage types can be used. However, it is important to know the options
so that you can talk to the cluster admins, if necessary, and place your requirements.
This enables you to understand how and where data can be stored and to communicate
your storage requirements. As you can imagine, saving data on type nfs is slower than
fcorscsi.

Good to Know

The clearer your application's requirements for the volume, the easier it is to select the
right storage type.

278 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

5.2 Persistent Volumes and Persistent Volume Claims

Let’s now take a closer look at some manifests. Listing 5.8 shows an example in which a
network file system (NFS) is used. Under nfs in the manifest, you specify the IP through
which the storage can be accessed and the path to which the data can be written. This is
the path on the NFS. You can also specify NFS-specific mountOptions.

apiVersion: vl
kind: PersistentVolume
metadata:
name: nfs-pv
spec:
capacity:
storage: 5Gi
accessModes:
- ReadWriteOnce
mountOptions:
- hard
- nfsvers=4.1
nfs:
path: /nfs-pfad
server: 192.168.0.5

Listing 5.8 Manifest of NFS Volume

I also want to show you the local volume in more detail, as you will be using simple
storage solutions, especially for quick tests or during development. The local volume is
preferable to hostPath. You can find a more detailed comparison in Table 5.2. You
should think of the local volumes as being similar to a Docker volume that is managed
by Kubernetes.

Scheduling The scheduler does not monitorthe The scheduler takes the local PV
connection between pod and PV. into account and will always exe-
The pod can be started on a differ- cute the pod on the corresponding
ent host when restarting and thus node.
lose the data.

Security The access to the host involves a This is a specially created and pre-

certain risk as paths can be
described that are not specifically
intended for Kubernetes.

In addition, it is difficult to control
who else has access to the path.

Table 5.2 Comparison of hostPath and Local Volumes

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

pared volume with clear boundar-
ies. The authorization is under the
control of Kubernetes.

279

5 Stateful Applications and Storage

Lifecycle The lifecycle is linked to the node. The lifecycle is linked to the lifecy-
This creates an additional risk as cle of the node.
the hostPath can also be written to
or deleted by other locations.

Suitability for Is only suitable for production sys- Suitable for productive use with
Production tems in exceptional cases (e.g., a caution, as the data is bound to a
system pod within a DaemonSet). node.

Table 5.2 Comparison of hostPath and Local Volumes (Cont.)

Listing 5.9 shows the manifest of a local volume. In addition to the path and local, node-
Affinity must also be defined. The affinity defines which node the PV is “attracted” to.
In the example, we defined that the PV is only generated on a node with the host name,
minikube. We explained and tested affinities in more detail in Chapter 2, Section 2.2.4.

apiVersion: vl
kind: PersistentVolume
metadata:
name: local-pv
spec:
capacity:
storage: 5Gi
volumeMode: Filesystem
accessModes:
- ReadWriteOnce
local:
path: /tmp/test
nodeAffinity:
required:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/hostname
operator: In
values:
- minikube

Listing 5.9 Manifest of Local Volume

Good to Know

You have probably already noticed the accessMode setting in the listings. There are four
access modes, but you cannot choose from all access modes for each storage, as these
are dependent on the storage itself

280 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

5.2 Persistent Volumes and Persistent Volume Claims

m ReadWriteOnce
Enables reading and writing from a single node simultaneously. If you use host-
Path, for example, you are forced to use this access mode. No other node can access
the path. However, you can allow multiple pods on the same node to access the PV.

® ReadOnlyMany
The PV can be mounted by several nodes with read-only access. This allows you to
make data available to multiple pods, but they are not allowed to change it.

m ReadWriteMany
If pods want to read and write data at the same time, they can use this access
mode. One use case is a website to which customers can upload images that store
your pods in an NFS.

® ReadWriteOncePod
This is a beta feature in version 1.27. The access mode ensures that only one pod
within the cluster can access the PV.

The documentation explains in full which storage you can use with which access
mode: http://s-prs.co/v596441.

5.2.2 CSl Drivers for External Storage Media

Similar to the container engine, which you learned about in Chapter 2, Section 2.1.],

Kubernetes has become increasingly open in recent versions. The container storage
interface (CSI) provides an interface that can be implemented by plug-ins. While you
could still use types such as awsElasticBlockStore, azureDisk, or gcePersistenDisk
directly in versions prior to Kubernetes v1.27, these were successively removed and
reimplemented via their own CSI drivers. This makes Kubernetes more lightweight at
its core.

The idea behind the CSI drivers is as simple as it is powerful: a wide variety of storage
types should be supported, which must be flexibly connected. The answer to this is a
standardized API that provides storage and cloud providers with an interface to pro-
vide storage for Kubernetes. As a developer, you then have the option of provisioning
and using this storage simply by generating PVs and PVCs. This facilitates your work
considerably because with one parameter you can decide whether the data should be
stored on a single volume such as AWS EBS or in a distributed storage system such as
AWS EFS.

Good to Know

Most drivers are also being further developed as open-source projects. You can find an
overview of the official repositories at the following URL if you search for "Driver":
http://s-prs.co/v596442.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 281

http://s-prs.co/v596441
http://s-prs.co/v596442

5 Stateful Applications and Storage

The drivers are installed as operators in Kubernetes, which are then contacted by api-
server as soon as a manifest uses the corresponding driver; after that, they provision
the storage.

Listing 5.10 shows the configuration for aws-ebs-csi-driver under csi.driver. This
parameter determines which storage solution is to be used.

apiVersion: vl
kind: PersistentVolume
metadata:
name: test-pv
spec:
accessModes:
- ReadWriteOnce
capacity:
storage: 5Gi
csi:
driver: ebs.csi.aws.com
fsType: ext4
volumeHandle: {EBS volume ID}
nodeAffinity:
required:
nodeSelectorTerms:
- matchExpressions:

- key: topology.ebs.csi.aws.com/zone
operator: In
values:

- {availability zone}

Listing 5.10 Static Persistent Volume Created on Amazon EBS

Good to Know

In production environments, the drivers are installed by cluster admins as the configu-
rations are special in each case. However, | want to give you a better feel for the drivers
and will make a brief digression here, using aws-ebs-csi-driver as an example.

Your starting point is always the driver repository because you will find everything you
need there: http://s-prs.co/v596443.

In this case, the driver first needs certain AWS authorizations. Then the operator with
Helm is installed on Kubernetes. (Helm charts are discussed in more detail in Chapter
8.) The Helm package contains everything the operator needs to recognize a configura-
tiona as in Listing 5.10 and to provide the storage, including the operator containers as
a deployment and the Kubernetes policies.

282 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596443

5.2 Persistent Volumes and Persistent Volume Claims

The most important thing is that you check which settings can be made for the driver
prior to the installation. For example, you have the option of activating a snapshotter
that allows you to make backups. These settings are also provided via Helm during
installation.

In essence, that’s all that needs to be done. The operator takes over the work and
extends the Kubernetes API. You can use the documentation to see which specific ser-
vices or configurations the driver provides and sets. Provisioning then works via the PV
and PVC manifest, which the driver recognizes and executes.

5.2.3 Storage Classes and Dynamic PVs

You have now learned how to generate PVs independently. These types of PVs are also
referred to as static PVs because you have to create and manage them yourself. How-
ever, Kubernetes can also create volumes dynamically on the basis of storage classes.
As shown in Figure 5.6, this allows the system to automatically respond to requests
from a PVC by providing the required PV, which means that a PVC does not wait until a
suitable PV is available, but simply creates its own.

StorageClass

creates and
accesses

Figure 5.6 PVC Creates PV Based on StorageClass

Note

Not every storage type can be created dynamically. For example, you must create the
local volume statically.

The storage classes provide an opportunity to bring more structure to the various stor-
age offerings. You have already gotten to know some of them and know that they differ
in terms of performance, availability, or manageability. In your corporate environ-
ment, you may even be given a handful of storage classes by the cluster admins as

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 283

[«]

5 Stateful Applications and Storage

these are directly dependent on the infrastructure. Clusters running on Azure require
different CSI drivers than clusters in an on-premise environment.

Listing 5.11 gives an example of how StorageClass is defined.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: cloud-storage
provisioner: ebs.csi.aws.com
volumeBindingMode: WaitForFirstConsumer
allowVolumeExpansion: true
parameters:
type: gp2
encrypted: "true"

Listing 5.11 Example of StorageClass Manifest

In this example, Amazon EBS is used as the provisioner, as you already know from Lis-
ting 5.10.

There are two options to consider. First, by using allowVolumeExpansion, the storage
class gives you the option of allowing the PVC to subsequently expand the memory.
This is not supported by every storage type, but makes handling PVs much easier. You
can simply add more storage if required and start with less at the beginning if it is still
unclear how much storage is actually needed.

Another important option is volumeBindingMode. Table 5.3 compares the two options.

Immediate The default mode, which Used if a volume can be used
ensures that a PV is generated by several nodes.
and claimed directly when the
PVCis created.

WaitForFirstConsumer In this mode, the binding Particularly useful if the PV
between the PVCand the PVis node is specific, as is the case
delayed until a pod uses the with local volumes.

PVCas a storage request. Can be the solution if a pod
This prevents the PV from does not start because the
being generated on a node node on which the volume is
that is not intended for the running has no capacity.

pod by the scheduler.

Table 5.3 Comparison of Options for volumeBindingMode

284 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

5.2 Persistent Volumes and Persistent Volume Claims

Good to Know

In Listing 5.11, you will not see an explicitly set reclaimPolicy. It is important to
note that the lifecycle of dynamically generated PVs corresponds to the PVC, and
reclaimPolicy: Delete is the default. This means that the PV will be deleted as soon as
the PVCis deleted.

The opposite is true for static PVs. This may be useful and sufficient for some use cases,
but you should make a conscious decision in favor of a reclaim policy.

The reclaim policy provides an answer to the following question: What happens to the
volume when the PVC's lifecycle ends?

You can choose from these three options:

m Retain
The PV remains and ends up in the released status. You can then restore the PV
using manual steps.

m Recycle
This is a deprecated function that empties the PV. Kubernetes recommends using
dynamic PVs instead.

m Delete
The PV is deleted and all data is lost.

The dynamic requirement of the PV is set by the PVC. In Listing 5.12, you can see the
PVC used by the StorageClass from Listing 5.11. You are free to choose any name for it.
For example, you could also assign the names according to speed or availability so that
it is immediately clear which type of storage is to be used when the PVC is created.

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: ebs-pvc
spec:
accessModes:

- ReadWriteOnce
storageClassName: cloud-storage
resources:

requests:

storage: 20Gi

Listing 5.12 PVC that Dynamically Generates PV via StorageClass
Unfortunately, you cannot test the EBS storage class on Minikube, but Minikube itself

comes with its own hostPath provisioner, which we will now try out to create dynamic
PVs.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 285

5 Stateful Applications and Storage

When you click Storage - Storage Classes in Lens, you will find a predefined class
named standard. This storage class is set as the default, which also explains why you
had to set the storageClassName: "" in Listing 5.6, as otherwise a PV is automatically
generated. If you look at the details, you will also find all the settings you are familiar
with from Listing 5.11.

For testing purposes, you can now adapt the code from Listing 56 and set
StorageClassName: standard. The PVC generates a PV directly and is connected to it.
Because the reclaim policy is set to Delete, you can now delete the PVC and the PV will
also be deleted.

The dynamic creation of PVs on the basis of the storage classes is very simple and saves
us from explicit specification of the PV. If you still have storage that can be expanded at
runtime, then why and when should you use a static PV at all? There are a few reasons:

® As with local volumes, it is not always possible to generate the PV dynamically.

® Asacluster admin in particular, you have more control over the storage. This some-
times makes sense in production environments as the storage requirements are
usually already clearly defined in production.

® By manually assigning the PVs to a storage, you have better options for optimizing
performance.

Otherwise, you are well served with dynamic PVs, and these are more flexible, espe-
cially in development environments.

5.2.4 PostgreSQL as StatefulSet with Persistent Volume

Let’s now run through a use case to put into practice what you have learned. In this con-
text, you will

® deploy a PostgreSQL database as a StatefulSet, and then
m create a hostPath PV for the StatefulSet.

In Listing 5.13, you can see a StatefulSet manifest that already has everything you need.
Try it yourself and roll it out on Minikube. I have marked the interesting parts for you.

apiVersion: apps/vl
kind: StatefulSet
metadata:
name: pgsql
spec:
serviceName: "pgsql"
replicas: 1
selector:
matchlabels:

app: pgsql

286 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

5.2 Persistent Volumes and Persistent Volume Claims

template:
metadata:
labels:
app: pgsql
spec:
containers:
- name: pgsql
image: postgres:latest
env:

- name: POSTGRES_PASSWORD
value: "examplepassword"
ports:
- containerPort: 5432
name: pgsql
volumeMounts:
- name: pgsql-storage
mountPath: /var/lib/postgresql/data
volumeClaimTemplates:
- metadata:
name: pgsql-storage
spec:
accessModes: ["ReadWriteOnce"]
storageClassName: "standard"
resources:
requests:
storage: 10Gi

Listing 5.13 StatefulSet Manifest of PostgreSQL

The StatefulSet is generated, which starts a pod. This pod will create a PVC based on
volumeClaimTemplate. This means that you do not have to create a PVC in order to trans-
fer it to the pod. This has the advantage for you that you do not need to create a sepa-
rate PVC for each new replica. The advantage of dynamic PVs also comes into play here.
Due to the standard StorageClass, Kubernetes recognizes that the PV should be created
via the hostPath provisioner of Minikube and executes this. So you don't have to do
anything else: the PVC claims the PV and is mounted in the pod.

Under volumeMounts, the PVC is placed on a path within the pod, which is then used by
the application.

Take a look at the resources created in Lens. There you will find the StatefulSet and the
pod named pgsql-0, as shown in Figure 5.7. You can also see whether the PVC and PV
have been generated.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 287

5

Stateful Applications and Storage

BiA
&% Workloads

Name pgsql

Namespace default

Annotations kubectl.kubernetes.io/last-applied-con...
Selector app=pgsql

INELES postgres:latest

Pod Status Running: 1

Name Node Names Ready CP v Memc Status

pgsql-0 minikube default 1/1 0.001 80.TM Runnit

Figure 5.7 StatefulSetin Lens

Let’s do a small test and see whether the data under the mount path is really stored on
the PV:

L

2.
3.

5.
6.

Open the shell of the pgsql-0 pod.

Log onto PostgreSQL by using the psql -U postgres command.

Run the following commands to create a table and insert a test dataset:
CREATE TABLE test (id SERIAL PRIMARY KEY, name VARCHAR(255));

INSERT INTO test (name) VALUES ('datal'), ('data2');

. Terminate the pod and wait until the StatefulSet creates a new pod. The pod will also

be named pgsql-0.
Open the command line in this pod and log into PostgreSQL.
Use the SELECT * FROM test; command to check whether the dataset still exists.

The table and dataset are also available in the new pod. This means that the data is

stored correctly on the PV.

Note

Up to this point, we have only mounted PVs as a file system in applications. But Kuber-
netes offers yet another option that you might come across.

The volumeMode option lets you choose between two modes. The default mode is
Filesystem. Kubernetes mounts the volume and will create a file system the first time.
So you don't have to worry about the file system, and your application can simply read
and write data.

You can also set the volumeMode to Block. This mounts the volume as a block device and
does not automatically install a file system. However, the pod must be able to handle a

288 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

5.3 Ephemeral Volumes

block device. Access to the volume should then be faster than with an additional file
system layer.

In practice, | have only come across the file system option so far, and this option will
also be sufficient for most applications in your case.

You have successfully used a PV as storage for a database. In a production environ-
ment, it would be appropriate to turn one PostgreSQL replica into several, depending
on the availability requirements. Of course, you can set your StatefulSet to deploy
multiple pods, but the data between the instances will not be replicated. Depending on
the application, this may require a little more development work, but it is worth it in
the end.

Finally, the following question may arise: Is a PV necessarily dependent on a Stateful-
Set?

The answer is no. You can of course also let your pods that are managed by a deploy-
ment use PVs. This can sometimes be useful if, for example, you are building a cache
that should still be available for the next pod when the pod is scheduled. But be careful!
Always keep the concepts from Chapter 1, Section 1.1.4 in mind, and then consciously

decide on a solution that suits you and your company.

5.3 Ephemeral Volumes

Ephemeral volumes are temporary and exist only as long as the pod that creates the vol-
ume exists. They can be used for data that does not need to persist beyond the life of
the pod, such as cache data or session information. This is ideal for temporary work-
loads, test environments, and stateless applications.

The advantages of ephemeral volumes are as follows:

® Performance
They can usually offer higher I/O performance rates as they are often stored directly
on the local node and have no network latency.

® Easier management
They are easier to manage because they are automatically created and deleted with
the pod.

® Lower costs
As the data does not need to be stored persistently, ephemeral volumes do not
require complex storage solutions such as network storage, cloud storage, or back-
ups. This significantly reduces costs and complexity.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 289

5 Stateful Applications and Storage

Table 5.4 lists the types of ephemeral volumes. In general, you can keep in mind the fol-
lowing: if the data is no longer needed after exiting the pod, you should use an ephem-
eral volume.

emptyDir An empty folder that is mounted at pod startup. The
kubelet creates the storage locally on the root disk or
even in the RAM.

configMap, secret, downwardAPI You have already become familiar with these types in
Chapter 2, Section 2.4 and Chapter 4, Section 4.4. You
can use them to inject configurations as files in a vol-
ume.

CST ephemeral volumes This allows you to make a volume available via a CSI
driver. Works in a similar way to persistent volumes.

Generic ephemeral volumes Works like emptyDir volumes, but provides even more
options, such as volumes on a network storage.

Table 5.4 Types of Ephemeral Volumes

Note

PVs of the hostPath type are of course also located directly on the node. This means
that their performance hardly makes a difference compared to an ephemeral volume.

Let's look at a few examples. You have already used emptyDir in Chapter 2, Section 2.1.3

in the log collector example. In Listing 5.14, you will find the syntax you can use to cre-
ate a simple emptyDir. Kubernetes will then create your volume in the default storage.

volumes:
- name: empty-dir
emptyDir: {}

Listing 5.14 Simple emptyDir

An emptyDir provides two options. You can limit the size, and you can create the vol-
ume directly in the RAM. The latter option is particularly appealing because access to it
is significantly faster than to a normal hard disk. However, you must keep in mind that
the data stored on it is also limited by the pod's resource limit, which you will learn
about in Chapter 7, Section 7.1. An example of this is shown in Listing 5.15.

290 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

5.4 Other Features of Volumes

volumes:
- name: empty-dir
emptyDir:
sizelimit: 500Mi
medium: Memory

Listing 5.15 emptyDir in RAM

As for CSI ephemeral volumes, you also need a CSI driver for generic ephemeral vol-
umes, which will provision the volume for you. They function in a way that’s similar to
an emptyDir volume and are linked to the lifecycle of a pod. Depending on the driver,
however, they have more options:

® You can also create the volume on a NAS.

® Depending on the driver, volumes may contain initial data. This is useful, for exam-
ple, if your application is supposed to start with a standard set of data.

® You can set functions such as snapshots, resizing, or monitoring the storage space.

However, you are dependent on a driver that supports these functions.

Note

Aside from emptyDir, the other ephemeral volumes are difficult to reproduce on Mini-
kube. However, you are already well equipped with emptyDir volumes; if you need
more, you should talk to your cluster admins in advance anyway. Perhaps they already
offer corresponding storage classes.

5.4 Other Features of Volumes

In this section, we’ll introduce you to two features that are worth mentioning and that
you might find useful in the future:
® Volume snapshots

® Projected volumes

Volume snapshots are particularly interesting if you have not yet developed a backup
strategy for persistent volumes in your company. They can provide a simple variant
that simplifies backup and recovery for you.

Projected volumes are useful if you want to use a large number of different configura-
tions in your pod. This concept allows you to group the configurations all together and
mount them under a single path.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 291

5 Stateful Applications and Storage

5.4.1 Volume Snapshots

You can add a snapshot to volumes that are created using the CSI driver. In Kubernetes,
a volume snapshot is a snapshot of the status of a storage volume; you may already be
familiar with this principle from other services. AWS also offers snapshots for your EBS
volumes.

Typically, you can use a snapshot much like a backup for a volume, or you can use it to
copy an existing volume to use with another pod.

Use cases for snapshots include

m general backups for disaster recovery,
® backups made before updating the database, and

® creating a copy to perform an error analysis on a system other than the live system.

Note

Before you use volume snapshots, you should work out a backup strategy. At one of my
clients, for example, we use the AWS backup, which takes automated EBS snapshots.
For this reason, the company does not need additional volume snapshots.

Backup Is Easy: Recovery Is Tough!

You will only know whether a backup works when you want to restore it. So if you want
to use volume snapshots as a backup strategy, you should test the procedure exten-
sively.

Let's first look at the three objects you should know about:

®m VolumeSnapshotContent
This object represents the snapshot that was taken of a volume in the cluster. It con-
tains the data copy of a volume at a specific point in time and serves as a basic com-
ponent for data backup.

® VolumeSnapshot
This object is a user's request for a snapshot. It is similar to the principle of a per-
sistent volume claim. You can use VolumeSnapshot to initiate the snapshot process.

® VolumeSnapshotClass
Similar to the StorageClass, you use this object to define the various attributes that

belong to a volume snapshot.

Good to Know

VolumeSnapshot, VolumeSnapshotContent, and VolumeSnapshotClass are CRDs and not
part of the core API.

292 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

5.4 Other Features of Volumes

As is usual with CRDs, there is an operator who takes care of the snapshots and listens
to the CRDs (see Chapter 4, Section 4.3.3). You may need to activate the volume snap-
shots in your cluster before you can use them. We can simply use add-ons for the Mini-
kube cluster. To do this, run the following commands in your command line:

minikube addons enable volumesnapshots
minikube addons enable csi-hostpath-driver

Note

Activating the csi-hostpath-driver add-on caused problems on my side. As is so often
the case, stopping and restarting the Minikube cluster helped.

Activating the add-ons automatically creates a new storage class named csi-hostpath-
sc for you, which you can find in Lens under Storage - Storage Classes. The three corre-
sponding CRDs for the volume snapshot are also created and can be found under Cus-
tom Resources - Definitions and should look as shown in Figure 5.8.

If you click VolumeSnapshotClass, you will see that a SnapshotClass named csi-
hostpath-snapclass has also been created.

Resource

* Custom

Resources

Definitions

Figure 5.8 Volume Snapshot CRDs in Lens

For the example, we now need a volume that is based on the new storage class. I have
prepared a PVC manifest in Listing 5.16. When you roll it out, a PV will be created auto-
matically.

apiVersion: vl
kind: PersistentVolumeClaim
metadata:

name: my-pvc

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 293

5 Stateful Applications and Storage

spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
storageClassName: csi-hostpath-sc

Listing 5.16 PVC with CSI Storage Class

Listing 5.17 shows an example of a VolumeSnapshot manifest. When you import it, the
snapshot controller will take a snapshot of your volume. Try it out and then take a look
at the VolumeSnapshotContent objects. You can now find a fresh snapshot there, as
shown in Figure 5.9.

apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshot
metadata:
name: my-pv-snapshot
spec:
volumeSnapshotClassName: csi-hostpath-snapclass
source:
persistentVolumeClaimName: my-pvc

Listing 5.17 VolumeSnapshot Manifest

VolumeSnapshotContent: snapcontent-de9c
c49e-8aec-4e05-ba82-ab2481a207bf

/7 8 X

Created 3m 30s ago 2024-02-07T22:48:36+01:00

snapcontent-de9cc49e-8aec-4e05-ba82-
ab2481a207bf

snapshot.storage kubernetes.io/manage...
snapshot.storage kubernetes.io/volume...
true
Restor e 1073741824
DeletionPolic Delete
Driver hostpath.csi.k8s.io
Volum csi-hostpath-snapclass

VolumeS 10t my-pv-snapshot

Figure 5.9 SnapshotVolumeContent

294 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

5.4 Other Features of Volumes

Now, of course, we also should try a restore. To do this, you must create a new PVC and
link it to the backup, as shown in Listing 5.18. When you roll it out and observe the PVC,
you will see that the PV generation takes a little longer than usual. The snapshot con-
troller must restore the backup in the background.

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: my-pvc-restore
spec:
storageClassName: csi-hostpath-sc
dataSource:
name: my-pv-snapshot
kind: VolumeSnapshot
apiGroup: snapshot.storage.k8s.1io
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi

Listing 5.18 Restoring PVC from Backup

That was the snapshot and restore process in fast-forward mode. If you want to use the
snapshot function in a cluster in your company, you must install the CRDs. You can
find instructions on how to do this in the corresponding GitHub repo at http://s-prs.co/
v596444.

Note

In this example, we have not even checked whether all the data has actually been
restored. You can perform another test according to the following scheme:

1. Mount the PVCin a pod.

2. Place a file on the PV.

3. Perform the snapshot and restore processes.
4. Mount the new PVCin a pod.

5. Check whether the file is available.

5.4.2 Projected Volumes

Kubernetes provides projected volumes for certain volume types. These are used to
combine multiple existing volume sources into a single shared volume, which is
particularly useful if an application needs to access different types of configurable

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 295

http://s-prs.co/v596444
http://s-prs.co/v596444

5 Stateful Applications and Storage

information, but you want to manage this information centrally. Your YAML manifest
will also be a little smaller and clearer.

Supported types are as follows:

® secrets
® ConfigMaps
B downwardAPI

B serviceAccountToken

If you remember Chapter 2, Section 2.4, then you know that you can integrate Config-

Maps and secrets as volumes. A separate file is then created for each parameter under
the mount path. However, as in Listing 5.19, you must perform a separate mount for
each ConfigMap.

spec:
containers:

- name: example-container
image: nginx
volumeMounts:

- name: config-volume
mountPath: /etc/config
- name: config-volume2
mountPath: /etc/config2
volumes:

- name: config-volume
configMap:

name: example-configmap

items:

- key: "config.json"
path: "config.json"

- name: config-volume2
configMap:

name: example-configmap2

items:

- key: "config2.json"
path: "config2.json"

Listing 5.19 ConfigMaps as Normal Volumes

296 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

5.4 Other Features of Volumes

The folder structure then looks as follows:

etc
F—— config
‘ L config.json
L— config?
L config2.json

The idea behind projected volumes is to bring together all types that contain configu-
ration information so that you can mount them under a single path. Listing 5.20 shows
the syntax for the projected volume. You only mount one volume and add all Config-
Maps below it.

spec:
containers:
- name: example-container
image: nginx
volumeMounts:
- name: projected-volume
mountPath: /etc/config
volumes:
- name: projected-volume
projected:
sources:
- configMap:
name: example-configmap
items:
- key: "config.json"
path: "config.json"
- configMap:
name: example-configmap2
items:
- key: "config2.json"
path: "config2.json"

Listing 5.20 ConfigMaps in Projected Volume

After that, the folder structure in your pod will look as follows:

etc
L config

f——— config.json
L config2.json

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 297

5 Stateful Applications and Storage

Just try it out for yourself; use the ConfigMap and secret examples from Chapter 2, Sec-
tion 2.4. The projected volume makes it easier to find the configurations, especially for
your application, because there is only one folder for them.

298 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

Chapter 6

Kubernetes Governance and Security:
Prepare for Production

The greatest enemy of knowledge is not ignorance, but the illusion of
being knowledgeable.
—Daniel J. Boorstin

IT is characterized by constant change. Complex technologies such as Kubernetes,
continuous innovation, and ever-increasing abstraction mean that it is becoming
increasingly difficult to recognize any danger in advance and make appropriate prepa-
rations—which, in IT, are known as mitigations.

For software to be secure, many small gears have to mesh together. From your develop-
ment projects, you are no doubt familiar with tools that perform vulnerability scans to
alert you to weaknesses in software libraries. Or perhaps you are already using
SonarQube for static code analysis, which can point out certain problems in your code.
In addition, there are areas such as network security, authentication, and—if we are
really precise—security in data centers. However, you don't just want to protect your-
self from hackers who deliberately want to damage your company; you also want to
protect your software or data from internal errors.

Assuming that a Kubernetes cluster is inherently secure or that the existing security
measures are sufficient can be dangerous. I know it's hard to deal with the security con-
cepts of Kubernetes, networks, and servers in addition to developing software. Never-
theless, a basic understanding is essential.

I first became really aware of the topic of container security in a customer project when
we were presented with a catalog of specifications. It contained easy-to-apply guide-
lines, such as carrying out vulnerability scans of the container images or using stan-
dardized images. Then it got more complicated with rules such as the following:

® Containers must not run as root.

® Containers must not write to the root file system.

® Containers must not have any privileges.

These requirements meant that many applications had to be redesigned and rebuilt
because no one had thought of these possibilities beforehand and therefore no one
used them.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 299

6 Kubernetes Governance and Security: Prepare for Production

In this chapter, I want to introduce security and governance topics so that you are pre-
pared for the use of Kubernetes in production and can prepare your applications for
this at an early stage. I want to make the start as easy as possible for you. The aim is for
you to be able to have a say with the cluster admins; fully securing and operating a clus-
ter setup is of course much more complex.

The concepts you learn will ensure not only that the infrastructure is robust and resil-
ient to threats, but also that you adhere to organizational policies and compliance
requirements.

By security in Kubernetes, we mean all measures and mechanisms that serve to protect
the clusters and the applications running in them from unauthorized access, misuse,
and other potential security threats. This includes various aspects:

® Authentication and authorization, for ensuring that only authorized users and ser-
vices have access to cluster resources

® Data security, for encryption of data both at rest and in transit to prevent data theft
or loss

® Vulnerability management, for regular scans and updates to identify and close secu-
rity gaps in applications and infrastructure

Governance refers to the policies, procedures, and controls used to manage and moni-
tor the administration and operation of Kubernetes clusters. Good governance ensures
that the infrastructure and applications are consistent with the business objectives,
standards, and compliance requirements of the company or project. For example, you
must ensure that the rules for releases are adhered to so that no code is used in produc-
tion that has not been tested and checked. Or you must ensure that the personal data
of customers is protected accordingly or that the company's IT resources are handled
responsibly.

The requirements are as complex as they are multilayered and look slightly different in
every company and often also in every project. Accordingly, it is important that you
check and consider very carefully which guidelines and restrictions should apply. This
is of course a completely separate work step and should not be done “on the side.”

The core elements of governance include the following:

® Policy management
The definition and enforcement of guidelines for the configuration and use of
resources in the cluster

= Compliance monitoring
Checking and ensuring that the cluster and the applications running on it comply
with regulatory requirements and internal standards

300 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

6.1 Pod Security

® Resource management
Control over the allocation and utilization of resources within the cluster to ensure
efficiency and cost control

® Audit and logging
The recording and analysis of activities in the cluster to investigate security inci-
dents and check compliance with guidelines

In real life, security and governance in Kubernetes are closely linked and complement
each other to create a secure, efficient, and compliant Kubernetes environment. The
implementation of security measures protects the infrastructure from external and
internal threats, while governance practices ensure that the use of this infrastructure
complies with organizational guidelines. Both are essential for the secure and respon-
sible operation of Kubernetes clusters in an enterprise environment.

6.1 Pod Security

For pods, there are several adjusting screws that influence their safety. The rights of a
pod are also referred to as privileges. Privileges affect what a pod or container can do
within a Kubernetes cluster.

Access to Secrets

If an attacker takes control of a privileged pod, they have far-reaching access to the
node.

Do you remember Chapter 2, Section 2.4, where we talked about secrets? A pod that

has privileged access can, for example, read all the secrets that are on the node.

Pods and the containers they contain can be given specific security restrictions to limit
what processes are allowed to do in the containers. For example, the user ID (UID) of the
process, the Linux capabilities, and the file system group can be restricted.

Linux Capabilities

Linux capabilities are often only required during startup. You can swap this functional-
ity out to the init container and thus prevent your application container from running
with the capabilities.

An overview of all Linux capabilities can be found at the following address: http.//s-
prs.co/v596445.

Without this restriction, a pod could control the node's network configuration, over-
write the root directory, and do many other things that you want to prevent. These

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 301

http://s-prs.co/v596445
http://s-prs.co/v596445

6 Kubernetes Governance and Security: Prepare for Production

capabilities are usually deactivated, but as always, there are exceptions. Some tools
require extended access—for example, the following:

®m Network operations
Network tools need direct access to network interfaces.

® Debugging and monitoring
Some monitoring tools must perform debugging at the kernel level and require cor-
respondingly extensive privileges.

® Storage and volume management
Some disk or file system management operations may require extended permis-
sions, especially if they are outside the standard Kubernetes volume APIs.

The restrictions that you can set are referred to as the security context. They can be
defined for the entire pod or per container and entered in the manifest, as in Listing 6.1.
The policy at container level is only valid for this container and overrides rules you
have set at the pod level. In the example, the container is prevented from starting the
process as root.

apiVersion: vl
kind: Pod
metadata:
name: nginx
spec:
securityContext:
runAsNonRoot: true
containers:
- image: nginx
name: nginx
securityContext:
runAsNonRoot: true

Listing 6.1 Example of Set Security Context

Good to Know

Not every rule at the pod level can also be set at the container level and vice versa.

If you set rules in the security context, this can result in your containers no longer
starting. Unfortunately, simply telling the pod that it is not allowed to start as root does
not suffice. The container must also behave accordingly; otherwise errors will occur, as

in Figure 6.1.

The challenge is therefore to set the appropriate security context for each pod so that
the pod has as many rights as it needs, but no more. This is referred to as the least priv-
ileged principle.

302 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

6.1 Pod Security

Source kubelet minikube

Count 5

Sub-object spec.containers{nginx}

Last seen 2024-02-14T16:15:19+01:00

Figure 6.1 Container Must Not Start as Root

Good to Know

You can also set SELinux labels via the security context. However, changing the SELinux
labels for a container can potentially allow the containerized process to break out of
the container image and access the host file system. You should therefore handle them
with care.

Your cluster admins in your company may already have given you specifications for
the security contexts. We'll look at the most important ones so that you can get a feel
for what you can set. You probably won't need all the rules, but you should think about
what rights your pod needs.

You can set the following options at the pod level:

® runAsNonRoot
If you set this value to true, the container must not be started as the root user.

® runAsUser
Here you define the user ID with which the containers are executed. This means you
can restrict the container to the authorizations of a specific user.

® runAsGroup
You can use this option to set the group ID with which your container is executed.

m fsGroup
Sets the group ID for all volumes used by the pod to set file permissions.

Good to Know

A complete overview of the options for the pod security context can be found in the API
documentation at the following address: http://s-prs.co/v596446.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 303

http://s-prs.co/v596446

6 Kubernetes Governance and Security: Prepare for Production

You can set the following options at the container level:

® privileged
Specifies whether the container is running in privileged mode. This gives the con-
tainer extensive access to the host.

® readOnlyRootFilesystem
Here you specify whether the root file system of the container should be write-
protected. This forces you to use volumes to store data.

® 3llowPrivilegeEscalation
This allows you to control whether processes in the container are allowed to increase
their privileges, such as by using setuid or setgid.

® capabilities
You can use this information to add or remove Linux capabilities from the con-
tainer. This allows you to assign necessary root user capabilities such as CHMOD to

your container.

Good to Know

A complete overview of the container security context options can be found in the API
documentation at http://s-prs.co/v596447.

6.2 Pod Security Admission

With the introduction of pod security admission (PSA), Kubernetes provides you with a
powerful tool to define and enforce security policies for pods.

Good to Know

Previously, pod security admission was referred to as pod security policy. You can still
find the old name in some documentation today.

PSA works on the basis of pod security standards, which are divided into three levels:
m Privileged

® Baseline

®m Restricted

The pod security standards are applied to namespaces. Each of these levels specifies

certain guidelines for what the security context of a pod in a particular namespace
should look like.

The degree of security of the individual levels ranges from very permissive to highly
restrictive. You can imagine it like an onion, as in Figure 6.2. The more layers are added,

304 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596447

6.2 Pod Security Admission

the more rights the pod has. The policies cover a wide range of security requirements
so that you can control at the namespace level what the pods can and cannot do.

Privileged

Baseline

Figure 6.2 Pod Security Standards

Of course, the safest thing to do would be to give each pod restricted guidelines, but not
every application can handle this.

Good to Know [+]

Keep in mind that privileges reduce the isolation of container and host. This can lead to
an application "breaking out" of the container and manipulating host resources or
accessing sensitive data.

The privileged policy is the least restrictive policy and offers the widest possible autho-
rizations. It is intended for system and infrastructure workloads. Under this policy, no
restrictions exist, and all operations are allowed. This mode is useful for workloads that
require access to system resources.

You can easily add the PSA to a namespace. An example of this is shown in Listing 6.2.

apiVersion: vl
kind: Namespace
metadata:
name: example-namespace
labels:
pod-security.kubernetes.io/enforce: baseline

Listing 6.2 Namespace with PSA

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 305

6 Kubernetes Governance and Security: Prepare for Production

Do Not Lock Yourself Out!

As you have also seen in Section 6.1, enforcing security context rules can cause your
pods to fail to start. You should therefore ensure that all pods comply with the guide-
lines when introducing them into existing namespaces; otherwise, your application
may fail.

6.3 Admission Controller

Say that you have a cluster that is home to many developers. Every developer knows
the security requirements, but you also want to check or ensure these. You could now
regularly scan all resources in the cluster and check whether the rules are being
adhered to. A far more effective method is to check each resource before it even moves
to the etcd database and thus becomes active in Kubernetes. To do this, you can simply
hook into each API request and check or change the requests.

The admission controllers are an essential part of the process of an API request in
Kubernetes. Their main functions include the modification (mutate) or validation of
the content of objects. For this purpose, you can define the rules an admission control-
ler can check.

Validating controllers look at a YAML manifest based on the rules and return the result
with regard to whether the rule is complied with or whether the manifest violates it.
The modifying controller will adapt the YAML manifest using a rule—for example, to
set a specified CPU limit—and returns the manifest.

Every request to Kubernetes also passes through the admission controller. Figure 6.3
illustrates the process each request goes through before an object finally moves to the
etcd database and becomes active in Kubernetes.

Kubernetes _— g Object A ehs
Request)| APl ration || Admission [Schema [—{ G0 0e 1 eted
Endpoint Validation

Figure 6.3 Sequence of APl Request

Let's play this through with an example. When you as a user try to run a pod manifest
using kubectl in your Kubernetes cluster, the corresponding API request goes through
this process before the pod is actually created in the cluster:

1. Authentication
First, the Kubernetes API server checks the identity of the user or service executing
the request. If you remember Chapter 1, Section 1.5.3, then you know that kubectl
uses the certificate in your Kubeconfig file for this purpose.

306 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

6.3 Admission Controller

2. Authorization
Once the user has been successfully authenticated, the API server checks whether
the user is authorized to create a pod. This is decided, for example, on the basis of
role-based access control (RBAC) guidelines.

3. Mutating admission
If configured, mutating rules are applied at this point. These can manipulate the pod
manifest in order to set certain labels, for example.

4. Schema validation
Kubernetes checks whether the schema of the YAML manifest is correct. This step
only takes place after the mutating step, as these rules could still change the mani-
fest.

5. Validating admission
In this step, you can define your own rules in addition to the schema validation. You
can use them to check whether the manifests comply with your security or compli-
ance guidelines.

6. Persistence in etcd
Only now is the manifest stored in the etcd database and then processed further by
Kubernetes, and the pod is generated.

If your request does not successfully pass one of these steps, then your pod will not
launch in Kubernetes in the end. In my opinion, the greatest strength lies in the valida-
tion step. If a manifest does not comply with the rules, it will be rejected prior to the
start. This allows you to enforce specific rules and thus ensure that security require-
ments are met, for example.

Good to Know

Kubernetes provides some standard admission controllers that you can use out of
the box. For example, you can set default values by using the DefaultIngressClass
controller or the DefaultStorageClass controller. Alternatively, you can use the
LimitRanger controller to check the requests and limits of pods.

A complete list and description of the standard controllers can be found at the follow-
ing address: http://s-prs.co/v596448.

Note

Admission controllers must be activated and deactivated in the API server. They are
transferred as parameters at the start. You should involve the cluster admins for the
clusters in your company. For example:

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 307

http://s-prs.co/v596448

6 Kubernetes Governance and Security: Prepare for Production

® For activation
--enable-admission-plugins=Namespacelifecycle,LimitRanger

® For deactivation
--disable-admission-plugins=PodNodeSelector

The MutatingAdmissionWebhook and ValidatingAdmissionWebhook webhook controllers
are particularly interesting. These allow for an unlimited expansion of the mutation
and validation logic, as you can either develop code for this yourself or use one of the
many available tools.

Good to Know

Tools that use the webhook controller include Gatekeeper and Kyverno.

As you can see, admission controllers, and especially webhook controllers, provide a
flexible way to check and enforce governance, security, and compliance in the Kuber-
netes cluster. By implementing custom checks and logic, you can exercise fine-grained
control over the resources in your clusters and ensure that only secure and compliant
configurations are applied.

6.4 Kubernetes Policies

Policies are essential in the Kubernetes ecosystem in order to control and optimize the
management of resources. These go hand in hand with the admission controllers dis-
cussed in Section 6.3, as the policies are typically validated by external tools. By using
policies, you can introduce finely tuned control mechanisms to ensure that cluster
usage meets your organizational requirements and best practices.

To give you a feel for the policies, I want to show you a few examples of the Kyverno
tool.

Note

We will not go into the installation of Kyverno, but if you want to try out the tool, you
can find more information at https://kyverno.io.

By using Kyverno, you have the option of writing policies that can run in either audit
or enforce mode. Using audit, the resources are only checked, and even if they do not
comply with the rules, they are deployed. However, you can view a report to get an
overview of your cluster's processes. With enforce, the resources are blocked and are
not deployed.

308 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

https://kyverno.io

6.4 Kubernetes Policies

Good to Know

If you do not want to enforce the rules, you can use Kyverno for reporting. | set up a
central reporting system for this at a client. This meant that no policies had to be rolled
out in the cluster for enforcement, but there was a central overview of compliance
with the security rules.

Let’s now look at some examples so that you can see how you might use a policy. Lis-
ting 6.3 shows a policy that prohibits the creation of pods whose images do not origi-
nate from a permitted registry. You can use this policy, for example, to enforce that
containers from the public—and therefore quite insecure—Docker Hub may not be
used. As you can see, Kyverno is given a manifest snippet under validate.pattern that
is supposed to be checked. In this case, the rule checks the image of the container. It is
also defined that this policy only applies to pods.

Monitor First, Then Block

You should be careful when enforcing rules with Kyverno because doing so means that
resources that do not comply with the policies may no longer be deployed. Even
resources that are already deployed in the cluster can have problems, and in the worst
case even system pods can be blocked. We had to rebuild an entire development clus-
ter for one customer because Kyverno had blocked everything.

It is best to start with audit policies and read the generated reports carefully. In the
next step, you can switch to automatically enforcing the rules.

apiVersion: kyverno.io/vl
kind: ClusterPolicy
metadata:
name: ensure-trusted-registry

spec:
validationFailureAction: enforce
rules:
- name: trusted-registries-only
match:
resources:
kinds:
- Pod
validate:

message: "Only images from trusted registries are allowed."
pattern:

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 309

6 Kubernetes Governance and Security: Prepare for Production

spec:
containers:
- image: "docker.io/trusted/*"

Listing 6.3 Kyverno Policy for Trusted Registries
You can find another policy in Listing 6.4. To control resource utilization within the

cluster, you can use Kyverno to make sure that each pod complies with resource limits.
We will take a closer look at the resources in Chapter 7, Section 7.1, but you can probably

already imagine that monitoring them is important for the stability of the cluster. Pods
without limits could otherwise paralyze the entire system, so it is important that no
pod is started without the appropriate information.

apiVersion: kyverno.io/vl
kind: ClusterPolicy

metadata:
name: require-resources-limits
spec:
validationFailureAction: enforce
Tules:
- name: check-resources
match:
resources:
kinds:
- Pod
validate:
message: "CPU and memory limits are required.”
pattern:
spec:
containers:
- resources:
limits:
memory: "?*"
cpu: "?K"

Listing 6.4 Enforcing Resource Limits

We talked about the security context in Section 6.1. These rules can also be checked and
enforced via Kyverno. An example of this is shown in Listing 6.5. If you do not already
specify the rules via the pod security standards, an explicit rule in Kyverno can be use-
ful.

apiVersion: kyverno.io/vl
kind: ClusterPolicy

310 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

6.5 Policy Objects

metadata:
name: disallow-root-user
spec:
validationFailureAction: enforce
rules:
- name: root-user-not-allowed
match:
resources:
kinds:
- Pod
validate:
message: "Execution as root user is prohibited."
pattern:
spec:
securityContext:
runAsNonRoot: true

Listing 6.5 Enforcing RunAsNonRoot Option

6.5 Policy Objects

There are objects that act as a type of Kubernetes policy but are different from it. I want
to present two of these in more detail, as they are particularly useful in larger clusters:

®m Resource quotas

® Limit ranges

Resource quotas enable you to specifically control and limit the resource consumption
in your Kubernetes cluster. These powerful policies allow you to set limits for resource
consumption at the namespace level. By defining resource quotas, you ensure that no
namespace allocates too many resources and that the availability of resources for the
entire cluster remains fair and balanced. This is particularly important in larger clusters
with different clients.

Good to Know

You can use resource quotas and limit ranges to protect your cluster from accidental or
deliberate resource theft. What would happen if you simply started pods that block an
entire node with your request requirements?

Either you have a cluster autoscaler that starts up new instances, or other pods cannot
start or, in the worst case, are even displaced.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 3N

6 Kubernetes Governance and Security: Prepare for Production

You can find an example of a resource quota in Listing 6.6. It defines that
® a maximum of 10 pods may be created in this namespace;

® a3 maximum of four CPU requests may be made;

® a3 maximum of five gigabytes of memory requests may be made;

® 10 CPUs is the limit for this namespace; and

® 10 gigabytes of memory is the limit for this namespace.

apiVersion: vl
kind: ResourceQuota
metadata:
name: example-quota
namespace: my-namespace
spec:
hard:
pods: "10"
requests.cpu: "4"
requests.memory: 5Gi
limits.cpu: "10"
limits.memory: 10Gi

Listing 6.6 Sample ResourceQuota Manifest

If you define a resource quota, then it makes sense that requests and limits are also set
for each pod and, if necessary, a default is enforced. This is where the LimitRange object
comes into play. With resource quotas, you set a maximum for the namespace, while
by using LimitRange, you can define the minimum and maximum for a single pod or
container.

An example of this is shown in Listing 6.7. There you can see how to specify values for
pods and containers. Limit ranges help you to ensure balanced and fair resource con-
sumption so that all applications can run smoothly.

apiVersion: vl
kind: LimitRange
metadata:
name: example-limits
namespace: my-namespace

spec:
limits:
- type: Pod
max:
cpu: "2"

memory: 1G1

312 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

6.6 Role-Based Access Control in Kubernetes

- type: Container
max:
cpu: "1"
memory: 500Mi
default:
cpu: "500m"
memory: 256Mi
defaultRequest:
cpu: "250m"
memory: 128Mi

Listing 6.7 Sample LimitRange Manifest

6.6 Role-Based Access Control in Kubernetes

In most cases, a role and authorization concept will already exist in a company cluster,
which means there is a plan for how users log in and how they are assigned authoriza-
tions. This also depends on how the cluster is structured and managed. A large cluster
will most likely have more restrictive policies than a small one as there are more users
and different teams on it. Nevertheless, I would like to give an introduction in this
chapter so that you can have your say and understand what is happening in the back-
ground.

RBAC in Kubernetes is a tool for defining who is allowed to do what in the cluster. It is
based on a combination of roles and authorizations that determine which actions
users, services, or applications are allowed to perform. RBAC enables you to precisely
control access to resources in the cluster.

In the Kubernetes RBAC process, several key objects play a central role in enabling fine-
grained access controls within a cluster. These objects include the following:

® (lusterRole
Defines authorizations at the cluster level that can go beyond individual name-
spaces. One example of this is the cluster admin, who has access to all namespaces.

® (lusterRoleBinding
Assigns a ClusterRole to users, groups, or service accounts. Only the binding enables
the assigned entities to exercise the defined authorizations.

® Role
Similar to a ClusterRole, but limited to a specific namespace. Roles define what can
be done within the namespace.

® RoleBinding
Binds a role to users, groups, or service accounts. This determines who has which
authorizations in the namespace.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 313

6 Kubernetes Governance and Security: Prepare for Production

m ServiceAccount
Special accounts used by pods to interact with the Kubernetes API server. They

enable applications to access Kubernetes resources.

® Users and groups
External users or groups that are not directly managed by Kubernetes but can be
identified by external authentication mechanisms.

Good to Know

You are familiar with Kubeconfig as an authentication mechanism for the cluster.
Kubernetes uses the CN field (common name), which contains the user name. This allows
a role to be bound to the user via RBAC.

You can find out more about user authentication at http://s-prs.co/v596449.

The RBAC process is relatively simple, and you may already be familiar with the princi-
ple from other tools. Figure 6.4 contains an overview of the process. You have a name-
space, and the roles and RoleBindings are defined in the namespace. The RoleBindings
are assigned to the users. The principle is also reminiscent of persistent volumes and
persistent volume claims. The same applies to ClusterRoles and ClusterRoleBindings.

Let’s now take a closer look at what exactly the individual resources do.

.e

Q

cluster cluster
role role
binding

Figure 6.4 Overview of RBAC

314 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596449

6.6 Role-Based Access Control in Kubernetes

6.6.1 Subjects: Users, Groups, and Service Accounts

Roles can be assigned to so-called subjects in Kubernetes. Subjects are actors that can
use the Kubernetes API with the rights of the role. As mentioned previously, there are
three categories of actors: users, groups, and service accounts.

In Kubernetes, users represent individual actors who require access to the system.
These can be developers or administrators, for example. User authentication is a criti-
cal step to ensure that only authorized persons or processes have access to the re-
sources and functions of the cluster.

A group in Kubernetes is a collection of users that are grouped together under a com-
mon name. Groups simplify the management of authorizations by making it possible
to assign roles and access rights collectively. Instead of assigning specific authoriza-
tions to individual users, you can assign roles to a group, which makes the administra-
tion of authorizations in large environments more efficient.

Note

Typically, users and groups are not managed directly via Kubernetes. For example, if
you want to establish a connection between your company's Active Directory and
Kubernetes, you will need a little more configuration work, depending on the cluster
structure. For one customer, for example, we used Rancher, which was also responsible
for user management. OpenShift also provides a more comprehensive user manage-
ment functionality than Kubernetes provides out of the box.

Roughly speaking, Rancher takes over the authentication in this case and then creates
an individual Kubeconfig file for your user, which you can then use to access Kuber-
netes.

It is best to talk to your cluster admins about this. You can also read more about this at
the following address: http.//s-prs.co/v596450.

Because we want to take a more technical look at RBAC, we will leave out the users and
groups and take a closer look at the service account. Service accounts are special
accounts that are used for applications and services within a Kubernetes cluster. They
provide an identity for processes running inside pods and allow these processes to
interact with the Kubernetes API server. Service accounts are essential for automation
within the cluster, as they enable applications and services to access cluster resources
securely and without manual intervention.

The biggest difference from a normal user is that the service account is tied to a name-
space. A default service account is automatically created when a new namespace is cre-
ated. The main function of a default service account is to provide basic authentication
and identity within the Kubernetes cluster. However, these accounts have no further
authorizations, which means that they cannot really be used to interact with the
Kubernetes API server.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 315

http://s-prs.co/v596450

6 Kubernetes Governance and Security: Prepare for Production

Let's take alook at how you can make requests to the Kubernetes API within a pod using
the service account. To do this, roll out the pod from Listing 6.8 and log into it using
kubectl exec.

apiVersion: vl
kind: Pod
metadata:
name: test-pod
spec:
containers:
- name: test-container
image: curlimages/curl:latest
command: ["sleep", "3600"]

Listing 6.8 Test Pod with Default Service Account

You can use the following command to read the service account token and send a
query to the API server using curl:

curl -sSk -H "Authorization: Bearer \
$(cat /var/run/secrets/kubernetes.io/serviceaccount/token)" \
https://kubernetes.default.svc/api/vl/namespaces/default/pods

The token is mounted in the pod as a secret, and you will always find it on this path. If
you execute the command, you will receive the following error:

"message": "pods is forbidden: User \"system:serviceaccount:default:default\"
cannot list resource \"pods\"

Using the request, you are trying to read the pods from the default namespace, but the
service account is not authorized to do so.

Given the limited capabilities of default service accounts, it is necessary to create dedi-
cated service accounts for most real-world applications. These dedicated accounts can
be equipped with specific roles and authorizations that are precisely tailored to the
needs of the respective application or service. You can find an example of a service
account manifest in Listing 6.9. We will assign a role to it straight away and then use it
for the query.

apiVersion: vl
kind: ServiceAccount
metadata:

name: my-serviceaccount

Listing 6.9 Service Account Manifest

316 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

6.6 Role-Based Access Control in Kubernetes

6.6.2 Roles and Role Bindings

Let's move on to the objects that enable you to define rights and assign them to an
account. A role in Kubernetes defines a set of permissions that specify which actions a
user, group, or service account can perform within a specific namespace. These autho-
rizations include reading, writing, or deleting Kubernetes resources such as pods,
deployments, and services.

You can find an example of a role in Listing 6.10. As you can see, a policy has three sub-
objects:

®m 3piGroups

B resources

B verbs

apiGroups group the various API resources in Kubernetes. These are divided into groups
to make it easier to expand the system. Each API group contains related resources. For
example, the apps API group contains resources that have to do with applications, such
as deployments, ReplicaSets, and StatefulSets.

resources are the specific objects to which a role has access. When you define a role or
ClusterRole, you list the resources for which the role is to grant authorizations. For
example, the resources could be pods, services, or deployments.

verbs define the operations that may be performed on the specified resources. You can
adjust these to a very detailed extent, as there are several of them. Verbs that you can
control using RBAC are as follows:

B create

m delete

m deletecollection
m get

m list

B patch

® ypdate

B pwatch

Good to Know

You can use the following command to view all APl objects and their verbs:

kubectl api-resources --sort-by name -o wide

Asyou can see, these three settings allow you to define very precisely which authoriza-
tions are set for which resources.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 317

6 Kubernetes Governance and Security: Prepare for Production

Note

Always remember the least privileged principle when designing roles. Assign users or
service accounts only the minimum necessary authorizations that they need for their
tasks.

Let’s now continue the example from the previous section. To do this, roll out the role
from Listing 6.10 in your cluster. This will allow the service account to access pods in
the default namespace with get, watch, and list.

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
namespace: default
name: pod-reader
rules:
- apiGroups: [""]
resources: ["pods"]
verbs: ["get", "watch", "list"]

Listing 6.10 Manifest of Role

Now bind this role to the service account from Listing 6.9 using RoleBinding from Lis-
ting 6.11. If you roll this out now, this role will be assigned to the service account.

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: read-pods
namespace: default
subjects:
- kind: ServiceAccount
name: my-serviceaccount
namespace: default
roleRef:
kind: Role
name: pod-reader
apiGroup: rbac.authorization.k8s.io

Listing 6.11 RoleBinding Manifest
Now that you have assigned the role to the service account, you still need to assign the
service account to the test pod so that it can use it. Adapt the manifest as in Listing 6.12.

Roll out the new pod, log back in to it using kubectl exec, and run the curl command
from the previous section.

318 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

6.6 Role-Based Access Control in Kubernetes

You should now receive a JSON object with all pods of the namespace.

apiVersion: vl
kind: Pod
metadata:
name: test-pod
spec:
serviceAccountName: my-serviceaccount
containers:
- name: test-container
image: curlimages/curl:latest
command: ["sleep", "3600"]

Listing 6.12 Test Pod with Its Own Service Account

6.6.3 Conclusion

As you have seen in the example, creating and assigning roles and authorizations with
RBAC is very simple. You only need to know in advance which accesses the pod requires
to the Kubernetes API You can then create the role accordingly and assign the rights
via a service account.

Of course, the simplicity of RBAC also harbors a danger. The more complex and detailed
the roles become, the more likely it is that an error will creep in and pods will gain
access that they should not have. This can be particularly dangerous if a pod is granted
admin access. In the end, assigning authorizations is always like a balancing act: overly
permissive roles can pose unintended security risks, while overly restrictive roles can
limit the functionality of your applications. It is therefore important to check the
authorizations regularly and ensure that they still meet the current requirements.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 319

© 2025 by Rheinwerk Publishing Inc., Boston (MA)

Chapter7

Developing Applications for
Kubernetes: Ready for Production

Failures are the norm in large-scale systems.
—Google

In Google's white paper on Borg, this is the first sentence in the chapter on availability.
And even today, we can only agree with this statement: the larger the system, the
higher the probability that an error will occur somewhere. However, the aim of a dis-
tributed system is not to make the individual components more fail-safe, but to build
the system itself in such a way that a failure can be tolerated.

This starts with the hardware level, for example. Hard disks have long been intercon-
nected in so-called redundant arrays of independent disks (RAIDs) to ensure data avail-
ability in the event of a single disk failure. Kubernetes is also designed and developed
in such a way that the failure of an individual component, such as a master or worker,
is manageable and can be compensated for. However, your applications must also be
prepared accordingly.

A big mistake that I unfortunately see far too often is to believe that a traditional appli-
cation can simply be packaged like a present using lift and shift, and with a new pink rib-
bon on the container, the application runs with all the benefits of a cluster system. But
there are other concepts and assumptions behind old applications, some of which were
developed several decades ago. Take, for example, a classic Java EE application that runs
on a JBoss application server. Such applications are usually implemented monolithi-
cally, have to perform many tasks, and are scaled vertically. If more power is required,
you simply add more CPU and memory.

One assumption in such an application is that stability prevails and that we are dealing
with long-running processes. A few years ago, for example, I experienced a JBoss appli-
cation at a customer that took about 30 minutes to start up. The application first filled
its storage with data from a database in order to be able to work afterward. You can cer-
tainly imagine how unpleasant the failure of a machine is on which this application is
running.

Kubernetes, on the other hand, follows the concept that errors are the rule. An applica-
tion must be able to cope with a failure without the overall system suffering as a result,

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 321

7 Developing Applications for Kubernetes: Ready for Production

requiring a decoupled software architecture based on the separation of concerns prin-
ciple from Chapter], Section 1.1.5. This makes it possible to replace or redevelop parts of

the overall system without any problems or major dependencies.

Note

An important concept is the transience of components and containers. Where updates
were installed on a server in traditional environments, today a new container is built to
replace the old one. The components are not built to last forever, so they are transient
and ephemeral. Remember the pets and cattle example from Chapter 1.

The new concepts alone do not make a good application, and they bring other chal-
lenges with them. In this chapter, [want to provide some tools that will enable you to
make your application ready for production for Kubernetes.

7.1 Managing Pod Resources

If many pods share the resources on a server, then these must also be managed. This
typically involves the two resources of CPU and memory. When you deploy a pod, it
will consume as many resources as it needs without any further settings. This can lead
to other pods not receiving sufficient CPU and becoming correspondingly slower. If
there is no memory available, this even leads to an “out of memory” error and the pod
terminates.

In the manifest of your pods, you can enter two pieces of information about your
resources that Kubernetes should take into account: requests and limits.

Requests allow you to transfer the “normal” consumption of your pod. This value is
used by Kubernetes to assign the pod to a node that can still provide sufficient
resources. Limits can be used to set the maximum amount of resources the pod can
receive.

Good to Know

Several versions of Kubernetes now also offer the management of ephemeral storage.
You can find more information on this in Chapter 5, Section 5.3.

Let's assume you have an application that typically requires 512 MiB of memory and 0.5
core CPU. Kubernetes wants to run it on a node that has a total of two core CPUs and 4
GiB of memory. Kubernetes checks all pods running on this node and adds the requests
together. Four pods of your application can therefore run simultaneously on this node.
If your pod requests more than is available, Kubernetes will try to run it on another
node.

322 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

7.1 Managing Pod Resources

Let's assume that four pods are now running on the node, thus filling that machine to
capacity. However, the requests do not say anything about how much the pods actually
consume. If your application has nothing to do, then it is possible that the node as a
whole has nothing to do either. This should be avoided as far as possible in order to
make optimal use of resources, which is why setting the right requests is so important.
What you can decide, however, is the maximum that a pod may use.

If you set a limit of one core CPU and 1 GiB of memory for the pods, then the individual
pods can double their resources. This can be useful, for example, if you have an applica-
tion that has a load peak from time to time. This allows the peak to be intercepted, but
the pod does not block resources unnecessarily. However, there is a risk that more
resources will be allocated than are available. This then leads to throttled pods or, in the
worst case, to out of memory errors.

You can find a graphical representation of this in Figure 7.1.

Memory
A .
Overcommitment
Out of
Memory of the Node -— Memory

Limits of all Pods on the Node
Actually utilized Memory
Requests of all Pods on the Node

> Time

A new Pod gets deployed A new Pod gets deployed

Figure 7.1 Overcommitment of Resources

You can see that the limit is above the node size at a certain time. This procedure is
referred to as overcommitment. If the actual consumption exceeds this threshold, then
out of memory errors will occur. However, Kubernetes sets a limit beforehand, which
leads to the expulsion of pods in order to mitigate out of memory issues. Unfortu-
nately, this does not always work.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 323

7 Developing Applications for Kubernetes: Ready for Production

Note

If your limits are higher than your requests, then you have an increased risk of running
into a resource bottleneck. If you do not yet know exactly how many resources your
application needs, then you should try out several iterations and observe your applica-
tion. You can then slowly refine the values.

Be Careful when Setting Limits and Requests

Especially in a production cluster, you should be careful when setting requests and lim-
its. An incorrect value can not only affect your application, but also steal resources
from other containers on the same host.

The best solution to start with is to set requests and limits to the same value as this
prevents a node from being overcommitted.

Let's take a look at the definition of resources in the manifest. You will find different
terms in the documentation, such as millicore or millicpu, which both have the same
meaning. They come from the Latin word mille, meaning thousand. So if you request
500 millicore, this is equivalent to 0.5 CPU. The requirement of 1 CPU means that one
CPU core of the computer is actually used.

You typically specify the size of the memory in the Mi (mebibytes) or Gi (gibibytes)
unit. You could theoretically also specify this in bytes, but that would make the mani-
fest unreadable. In Listing 7.1, you can see what a YAML manifest for an Nginx pod
could look like. You can also use the resource specification in your deployment config-
urations. Just try it out right away!

apiVersion: vl
kind: Pod
metadata:
name: nginx
spec:
containers:

- name: nginx
image: nginx
resources:

limits:
cpu: 200m
memory: 256Mi
requests:
cpu: 200m
memory: 256Mi

Listing 7.1 Resource Definition in YAML

324 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

7.2 Readiness, Liveness, and Startup Probes

To conclude this section, I invite you to try something out again. What happens if you
set the limits too low? And how can you even recognize this?

You can simply use the example from Listing 7.1 and set the memory limit and the
memory request to memory: 256Ki. To do this, open Lens and create a new resource. It is
even better if you test it on one of your deployments. After saving, you will see the new
pod trying to start but running into an error. In Figure 7.2, you can see the out of mem-
ory error (OOM-killed), which occurred of course because 256 kilobytes of RAM is a bit
meager.

Warning

- Failed to create pod sandbox: rpc error:
code = Unknown desc = failed to start
sandbox container for pod "nginx-
55bd4959ff-viwzd": Error response from

Name

nginx-55bd4959f A

daemon: failed to create shim task: OCI
runtime create failed: runc create failed:
unable to start container process: container
init was OOM-killed (memory limit too low?):
unknown

nginx-67b56c556

Figure 7.2 Error when Starting Pod with Insufficient Memory

In this case, you have clearly given the pod too little memory. There will be other cases
where this is not quite so clear. If your application wants to allocate memory during
operation but is not allowed to do so, then out of memory errors will occur as well. For
this reason, it is important that you check your application with a load test and adjust
the resources according to the findings.

Good to Know

As you now know, it is very dangerous to have no resource limits set at all. For this rea-
son, it is common for cluster admins to set default values. These are implemented via
so-called limit ranges, which we discussed in Chapter 6, Section 6.5. The administrator
can set default values as well as minimum and maximum values here.

There is also the option of limiting an entire namespace with the resource quotas. For
example, the administrator can specify that the total of the memory limit in your
namespace may not exceed 10 Gi.

You should therefore pay attention to such specifications in your company as they can
get in the way of your resource requirements.

7.2 Readiness, Liveness, and Startup Probes

When was the last time you had to call your internet provider because your DSL
stopped working? Did the support person there also ask you first of all whether you had

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 325

7 Developing Applications for Kubernetes: Ready for Production

restarted your router? It's probably the same for you as it is for me, and you've already
restarted everything before you even think of calling anywhere.

Even when operating our applications, a restart is sometimes worth its weight in gold.
But neither you nor a colleague from IT operations wants to be called on the weekend
or at night to restart the pod in Kubernetes. The good news is that Kubernetes can do
this on its own. You just have to teach it to do so.

For the self-healing functionality to work, Kubernetes provides three different testing
mechanisms to test how your application is doing. These so-called probes monitor the
health of the application and derive actions from this monitoring if, for example, your
application no longer works. You can define the following probes:

® Liveness probe
This probe allows you to check whether your application is working properly. Kuber-
netes can automatically restart your application if the liveness probe fails for a
defined period of time. In everyday language, the liveness probe is also simply
referred to as a health check.

® Readiness probe
This probe checks whether your application is ready to accept and process requests,
which enables you to ensure that your application is fully operational before it
receives requests. The Kubernetes service removes pods from load balancing if the
readiness probe fails. Not only is this useful for initialization, but you can also use
this function to remove pods from load balancing that are currently experiencing
problems.

® Startup probe
The startup probe is like a first check to see if everything in your container has
started up correctly. If you define a startup probe, all other probes are deactivated
until the startup probe is successful. You can use the startup probe if the initializa-
tion of one of your applications takes a very long time. If the startup probe fails, the
kubelet will restart the pod.

The action performed by the liveness or startup probe depends on the restart policy,
which you learned about in Chapter 2, Section 2.1.7. For example, if the policy is config-
ured to Never, the liveness probe will not restart the container.

Good to Know

| personally have never used the startup probe as most modern applications boot up
very quickly. However, if you have a legacy application that can take several minutes to
complete its startup, then you should use the startup probe.

Its advantage lies in the temporary deactivation of the liveness and readiness probes.
This prevents the pod from being recognized as unhealthy and restarting before it has
even fully booted up.

326 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

7.2 Readiness, Liveness, and Startup Probes

The probes represent a useful tool for improving the self-healing of your applications.
However, the implementation of probes is not recommended for every application.
The following questions will help you decide whether you should implement one of
the probes:
® Liveness probe

— Canthe application get into a state from which it cannot recover itself?

— Could an automated restart solve the problem?

— Could you define the probe in such a way that no unnecessary restarts have to be
accepted?

® Readiness probe

— Do conditions have to be met before the applications can process requests?

— Could you check these conditions?

— Does it make sense to remove the pod from the load balancing if the probe fails?
® Startup probe

— Do you use one of the other two probes?

— Does your application have a long startup process?

— Could the other two probes ensure a restart before the application is fully booted?
In Section 7.2.1, we'll look at how probes can be defined and what options you have for

implementing them. You can then answer one or two additional questions for which
you may not yet have an ideal answer.

Good to Know

If the application in your container can itself ensure that the container terminates with
an error, you do not need a liveness probe. In that case, you can use the restart policy to
define how the kubelet should react.

With a liveness probe, however, you are more flexible and can tell the kubelet when it
should take action according to the restart policy.

Avoid Endless Restarts

A warning at this point: make sure that the liveness probe only really becomes active if
® the application cannot rectify the error independently, and

® restarting the pod can help.

Incorrect implementation leads to repeated restarts of the pods, and the application
will no longer be usable.

Take, for example, an application that requires a database but can also respond to
requests without the database via a caching mechanism. This liveness probe should

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 327

7 Developing Applications for Kubernetes: Ready for Production

not include the database because otherwise the self-healing attempts of Kubernetes
would lead to a total failure.

7.2.1 How to Define Probes
You can design a probe in many different ways—for example, as follows:

® By executing a command in the container using exec
® By checking a TCP connection on a specific port

® By sending an HTTP request

Good to Know

Since Kubernetes v1.27, a liveness probe can also be used with the gRPC protocol. You
can find out more on this in the documentation at http://s-prs.co/v596451.

Let's start with the HTTP probes as you will probably need them most often. In Listing
7.2, you can see how the probes are defined in YAML under the spec.tem-
plate.spec.containers[] object. You can create separate probes for each container
within the pod. In Table 7.1, you can find the available options for configuring the
probes.

readinessProbe:
httpGet:
path: /health
port: 8080
initialDelaySeconds: 5
failureThreshold: 1
periodSeconds: 5
livenessProbe:
httpGet:
path: /health
port: 8080
initialDelaySeconds: 10
failureThreshold: 3
periodSeconds: 10
startupProbe:
httpGet:
path: /health
port: 8080
failureThreshold: 30
periodSeconds: 10

Listing 7.2 Example of HTTP Liveness, Readiness, and Startup Probes

328 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596451

7.2 Readiness, Liveness, and Startup Probes

For an HTTP probe, you need to let Kubernetes know through which port and on which
path an HTTP GET request should be sent. All response codes in the range >=200 8& < 400
are considered a success, whereas everything else is an error.

The appeal of an HTTP probe is that you can customize the health check of your appli-
cation. There are no limits, and you can implement anything from a simple check to a
complicated query. You are also free to decide whether you want to implement one
path for all probes or a separate path for each probe. We will run through an example of
this in Section 7.2.2.

initialDelaySeconds Use this option to tell the kubelet how 0
long it will wait before executing the first
probe.

failureThreshold Here you define how often a check must 3
fail in succession before the entire probe
fails.

periodSeconds Defines how often the probe will be exe- 10
cuted. With a value of 15, for example, the
kubelet checks every 15 seconds.

successThreshold For the readiness probe, you can define 1
how often the check must run successfully
before the pod status gets set to ready.

This value must be set to 1 for the liveness
and startup probes.

terminationGracePeriod- Here you can tell the kubelet how long it 30
Seconds should wait after scheduling the pod
before forcing the deletion.

Table 7.1 Configuration Options

Good to Know

Kubernetes recommends using the same APl endpoint for the readiness and liveness
probes, but with different values for failureThreshold. This causes the pod to switch
to the not ready status before it gets restarted by the kubelet. This has the advantage
that the pod is removed from the load balancing of the service. However, you are free
to decide how you define the APl endpoints.

Another option is to check a TCP port. An example of this is shown in Listing 7.3. The
kubelet attempts to open a socket on the container and the corresponding port. If that
does not work, the probe will fail.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 329

7 Developing Applications for Kubernetes: Ready for Production

As not every application can respond to HTTP requests, this is a good option for moni-
toring databases or queues, for example.

livenessProbe:
tcpSocket:
port: 8080
initialDelaySeconds: 5
periodSeconds: 5

Listing 7.3 Sample TCP Liveness Probe

The third option for a probe is to run a command on the container using exec. Listing
7.4 shows an example in which the cat /tmp/health command is executed in the con-
tainer. If this file does not exist, the probe will fail.

livenessProbe:
exec:
command:
- cat
- /tmp/health
initialDelaySeconds: 5
periodSeconds: 5

Listing 7.4 Sample Exec Liveness Probe

You can also run more complex commands. However, I only recommend such types of
probes if an HTTP probe or a TCP probe is not possible or useful.

7.2.2 Testing Probes Using an Example

I have prepared an example so that you can try out the readiness and liveness probes.
In this section, we will

m create a Python application that responds to HTTP probes;
® build a Docker image using the Python application;
m deploy the application as a deployment on Minikube; and

® test the probes with the application to see how Kubernetes responds.

We will make the Python application configurable using environment parameters. This
makes it much easier to test later by making simple configuration changes.

Let's start with the Python application that you can find in Listing 7.5. We use the Flask
web framework to provide a web server that listens for the /ready and /health paths.
The application expects READY_TIME and UNHEALTHY_TIME as environment parameters,
which you can set later in the deployment. The READY_TIME parameter allows you to
define how many seconds the application needs to tell Kubernetes that it is ready,

330 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

7.2 Readiness, Liveness, and Startup Probes

while you can use the UNHEALTHY_TIME parameter to define after how many seconds
after starting the application the unhealthy status will be returned.

You can immediately observe how Kubernetes will behave thanks to the way it works.

Note

You are welcome to add log messages to the application. This also allows you to check
the container logs to see when and how often Kubernetes performs the checks.

from flask import Flask
import os
import time
app = Flask(__name__)
Start time of the application
start_time = time.time()
Read environment variables
ready_time = int(os.environ.get('READY_TIME', 5))
unhealthy_time = int(os.environ.get('UNHEALTHY_TIME', 15))
@app.route('/ready")
def ready():
Returns OK if the application runs longer
than 'ready_time' runs in terms of seconds
if time.time() - start_time > ready_time:
return 'OK', 200
else:
return 'Not Ready', 503
@app.route('/health")
def health():
Returns OK as long as the application runs less
seconds than 'unhealthy_time'
if time.time() - start_time < unhealthy_time:
return 'OK', 200
else:
return 'Unhealthy', 503
if __name__ == '__main__":
app.run(host='0.0.0.0", port=8080)

Listing 7.5 "app.py" for Health Checker Application

In the next step, we will prepare everything so that you can package the application in
a container image and store it in the Minikube registry from Chapter 1, Section 1.4.7. For

this purpose, you need the (very simple and straightforward) requirements.txt file from
Listing 7.6 and the Dockerfile from Listing 7.7.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 331

7 Developing Applications for Kubernetes: Ready for Production

flask

Listing 7.6 requirements.txt File for Health Checker Application

FROM python:3.9-slim

WORKDIR /app

COPY requirements.txt .

RUN pip install --no-cache-dir -r requirements.txt
COPY app.py .

EXPOSE 8080

CMD ["python", "./app.py"]

Listing 7.7 Dockerfile for Health Checker Application

The files should be located in a folder on the same level, as shown in Listing 7.8.

}— Dockerfile

+— app.py

requirements.txt

Listing 7.8 File Structure of Health Checker Application

The Dockerfile is based on the official Python image, installs the dependencies from the
requirements.txt file in the subsequent step, and then copies the application into the
image. Use the following commands to build the image and store it in the Minikube
registry:

docker build -t localhost:5000/health-checker .
docker push localhost:5000/health-checker

Note

Remember to activate the Docker host of Minikube so that you can also reach the regis-
try. If you encounter problems, take another look at Chapter 1, Section 1.4.7.

Now everything is ready to deploy the application on Minikube. You can use the
deployment manifest from Listing 7.9 for this purpose.

apiVersion: apps/vl
kind: Deployment

metadata:
name: health-checker
spec:
replicas: 1
selector:

332 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

7.2 Readiness, Liveness, and Startup Probes

matchlLabels:
app: health-checker
template:
metadata:
labels:

app: health-checker

spec:
containers:

- name: health-checker
image: localhost:5000/health-checker
ports:

- containerPort: 8080
env:
- name: READY_TIME
value: "5"
- name: UNHEALTHY_TIME
value: "15"
readinessProbe:
httpCet:
path: /ready
port: 8080
initialDelaySeconds: 3
periodSeconds: 3
livenessProbe:
httpGet:
path: /health
port: 8080
initialDelaySeconds: 5
periodSeconds: 5

Listing 7.9 Deployment.yaml for Health Checker Application

Under spec.template.spec.containers[].env, you give the container the environment

parameters that are defined in the application. Roll out the deployment using Lens and

observe the pod that is created.

You will see the pod start and the container in it go through the following statuses:

1. The container is initially in Not Ready status. You can recognize this by the orange
box in Lens.

2. After five seconds, the container switches to Ready.

3. After approximately another 20 seconds, the container turns orange again because
the health check has failed.

4. Kubernetes restarts the pod.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 333

7 Developing Applications for Kubernetes: Ready for Production

The pod will get stuck in this cycle. Kubernetes keeps trying to restart the pod if the
health check fails. In Figure 7.3, you can see what the pod looks like after some time.
Kubernetes counts the number of restarts, and the application becomes set to
Unhealthy again shortly after it has reported Ready.

[Name Namespace Containers Restarts

[health-checker-7d7c747f€e 5] 37

Figure 7.3 Pod in Restart Circuit

Note

You may notice that the container does not switch to the Not Healthy state immedi-
ately after the UNHEALTHY_TIME has expired. This is due to the 1ivenessProbe settings in
our deployment. The kubelet only checks whether the application is still alive every five
seconds. Because we did not define a failureThreshold, Kubernetes takes the default
value of 3. It therefore takes up to 19 seconds for the container to be considered
unhealthy.

You will also find the following message in the pod's events, which will give you an indi-
cation of the problem (here you will see the status code that you have defined in the
application):

Liveness probe failed: HTTP probe failed with statuscode: 503
Now you should try out the different setting options for the probes. You can also adjust

the environment parameters and test the behavior of Kubernetes. If you want to go
one step further, then extend the example with a startup probe.

Note

Try to implement the probes for one of your own applications. Find out which values
are best for the probes. Try to answer the following questions:

® How long does your application need to be ready?
®m When is your application considered unhealthy?
® How long should Kubernetes wait before restarting your application?

You will find that there is no one-size-fits-all answer. Use a few iterations to test the
behavior.

334 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

7.3 Scaling and Load Balancing

7.3 Scaling and Load Balancing

In Chapter 1, Section 1.1, we talked about the concepts behind Kubernetes. Along with
self-healing, horizontal scaling is one of the best features of Kubernetes that signifi-

cantly simplifies IT operations. The idea behind this is to simply scale another con-
tainer when the load increases, and to do so fully automatically. A metric monitors the
load on the container based on the CPU or the number of messages in a queue, for
example. If the metric rises above a defined threshold value, then a new container is set
up and the load will be distributed to all existing containers via a load distributor. Of
course, the number of containers will be reduced again when the load decreases. As
shown in Figure 7.4, this principle allows you to consume only what you need. In the
cloud, that means that you save money, and that’s in line with the pay-as-you-go prin-

ciple.
r— - — a
| Automatic
| <€— Scaling Adjusts
the Capacity
Capacity

Figure 7.4 Automatic Scaling Based on Consumption

In my first job after graduating, [worked for a company that was right in the middle of
a cloud migration. The old sales platform ran 24/7 on a powerful server system from HP
in the company's own data center. It was a huge server rack full of computing power.
This server needed plenty of capacity to cope with the rush of buyers at a sales event.
But most of the time, the server was only running at 40% capacity (and that's a good
utilization!) and was unnecessarily heating up the data center.

However, not every application is designed for horizontal scaling. As described in
Chapter 1, Section 1.14, stateless applications are predestined for this. Horizontal scal-

ing is a requirement that must be taken into account in the software architecture. But
if everything fits, then you and the operations team will be able to sleep soundly.

7.3.1 Horizontal Pod Autoscaling

For horizontal pod scaling, the horizontal pod autoscaler (HPA) object is available. The
HPA enables your applications to respond dynamically to changes in the load by auto-
matically increasing or decreasing the number of pods, as shown in Figure 7.5. It can

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 335

7 Developing Applications for Kubernetes: Ready for Production

monitor certain metrics such as CPU utilization and scale automatically if threshold
values are exceeded or not reached.

Pod 1 Pod 2

Scaling

_— >

Pod 1

Pod 1 Pod 2

Figure 7.5 Horizontal Scaling

Horizontal in this context means that the number of pods is increased; that is, the clus-
ter grows in width. The counterpart to this is vertical scaling, which is discussed in Sec-
tion 7.3.2.

[+] Good to Know
The HPA process is a control loop that runs and checks regularly. The standard value is
15 seconds. This means that scaling does not take effect immediately if the threshold
value of a metric is exceeded.

Let's jump straight into an example. For Minikube, you want to run the minikube addons
enable metrics-server command in preparation. The metrics server then collects the
metrics from the kubelets for the pods that are needed for the HPA.

I had to stop and restart Minikube after activating the add-on so that the HPA could get
the metrics.

[»] Note

If you want to install the metrics server on an "ordinary" cluster such as the sample
Raspberry Pi cluster, you can find more information at the following address: http://s-
prs.co/v596452.

336 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596452
http://s-prs.co/v596452

7.3 Scaling and Load Balancing

For this example, we are using the Apache pod, which Kubernetes provides specifically
for this use case. You can find the manifest in Listing 7.10.

apiversion: apps/vl
kind: Deployment
metadata:
name: apache-hpa
spec:
selector:
matchLabels:
run: apache-hpa
template:
metadata:

labels:
run: apache-hpa

spec:

containers:

- name: apache-hpa
image: registry.k8s.io/hpa-example
ports:

- containerPort: 80
resources:
limits:
cpu: 300m
requests:
cpu: 300m
apiVersion: vl
kind: Service
metadata:
name: apache-hpa
labels:
run: apache-hpa
spec:
ports:
- port: 80
selector:
run: apache-hpa

Listing 7.10 HPA Example: Apache Deployment with Matching Service
Roll out the manifests for the deployment and the service. You can then roll out the
HPA object from Listing 7.11. There you define that the monitored metric is the CPU and

that the autoscaler can scale between a minimum of one pod and a maximum of three
pods.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 337

7 Developing Applications for Kubernetes: Ready for Production

Note

You can find the HPA example from the Kubernetes documentation at the following
address: http://s-prs.co/v596453.

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
name: apache-hpa
spec:
scaleTargetRef:
apiVersion: apps/vl
kind: Deployment
name: apache-hpa
minReplicas: 1
maxReplicas: 3
targetCPUUtilizationPercentage: 50

Listing 7.11 Manifest of Horizontal Pod Autoscaler

Good to Know

The HPA expects the definition of requests and limits from Section 7.1. This makes
sense because if the pod can simply use the entire CPU during your load test, then it is
difficult to see a result.

We now need to put the application under load in order to experience the HPA in
action. You can use the kubectl command from Listing 7.12 for this purpose. Make sure
that you create the load generator pod in the same namespace as the Apache pod. This
is the only way it can reach Apache with the command provided as we use the name of
the service. If your load generator is in a different namespace, you must adapt the URL.

kubectl run -i --tty load-generator --rm --image=busybox:1.28 \
--restart=Never -- /bin/sh -c "while sleep 0.01; do wget \
-q -0- http://apache-hpa; done"

Listing 7.12 Generating Load Generator

Now observe the behavior of the HPA and the deployment. As in Figure 7.6, you can see
that the load on the pods increases and the HPA scales new pods.

338 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596453

7.3 Scaling and Load Balancing

Namespace Metrics Min Pods Max Pods Replicas

Figure 7.6 HPA during Load Phase

Note

Regarding the command from Listing 7.12, it is important that you write the command
in your console in one line. Simply copying and pasting the multiline command caused
problems for me.

You have now created a very simple HPA and seen it in action. The HPA becomes par-
ticularly interesting when you use custom metrics. If you have a suitable application,
you will find more information on the following page: http.//s-prs.co/v596454.

7.3.2 Vertical Pod Autoscaling

While the HPA adjusts the number of pods to handle the load, the vertical pod auto-
scaler (VPA) focuses on the resource allocation of the individual pods. The VPA opti-
mizes the CPU and memory requirements of the pods running in your Kubernetes

cluster. This enlarges or reduces the size of the pod as required, as you can see in Figure
7.7.

Memory: "128Mi"

Memory: "64Mi"

Scaling

Pod 1

Pod 1

Figure 7.7 Vertical Scaling

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 339

http://s-prs.co/v596454

7 Developing Applications for Kubernetes: Ready for Production

The VPA continuously monitors the resource utilization of the pods and compares it
with the defined requests and limits. If it determines that the resource requirements
are not ideal, then it adjusts the requirements.

Note

| used the VPA in a project for Prometheus, which you can read about in Section 7.4.
This was a good way to make Prometheus scalable without having to synchronize
multiple replicas. What | found very critical about it is that the requests and limits are
not recognizable at a glance. In addition, the pod behaves in a different way than the
manifest in version management suggests.

For me, the VPA was an invisible magic hand that | found difficult to understand. The
HPA is much easier because you can quickly see how many replicas of a pod are cur-
rently running.

If you have the option, it is best to develop your application in such a way that it can
scale horizontally.

Let's briefly go through an example. We use the Apache pod from Listing 7.10 again, but
now we use a VPA. For this reason, make sure to delete the HPA for this example if you
have not already done so.

To install the VPA, you first need a set of CRDs. You can install them using the following
commands:

kubectl apply -f https://raw.githubusercontent.com/kubernetes/autoscaler/vpa-
release-1.0/vertical-pod-autoscaler/deploy/vpa-vi-crd-gen.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes/autoscaler/vpa-
release-1.0/vertical-pod-autoscaler/deploy/vpa-rbac.yaml

Then you can import the VPA object from Listing 7.13 and start the load generator again
as in the previous example (see Listing 7.12). Observe the pod and the way the VPA han-
dles it.

apiVersion: autoscaling.k8s.io/v1
kind: VerticalPodAutoscaler
metadata:
name: my-vpa
spec:
targetRef:
apiVersion: "apps/v1"
kind: Deployment
name: apache-hpa
updatePolicy:
updateMode: "Auto"

Listing 7.13 VPA Manifest

340 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

7.3 Scaling and Load Balancing

You have now become familiar with both options for the automatic scaling of Kuber-
netes. I always prefer horizontal scaling to vertical scaling. First, it allows you to create
multiple pods that run on different nodes, which ensures greater reliability. Second,
the requests and limits of a single pod are set in such a way that it can still find space
even on well-utilized nodes. This increases the capacity utilization and thus the effi-
ciency of your cluster.

In addition, applications that can scale horizontally are usually more robust. But that
also means that scaling is already part of the application, and in the development phase
you already need to think about how the shutdown of a pod works and how the overall
application can survive it. This way, you can make sure that your application survives
an unintentional failure of a pod and can be scaled accordingly. Of course, scaling
during operation can help, but it does not save poorly programmed apps whose archi-
tecture has a bottleneck.

In real life, you must select the scaling type that best suits your application. For exam-
ple, applications that depend on a stable state are difficult to scale horizontally: data-
bases are a prime example in this respect. With a web server like Apache, the result
depends on whether the requests can be distributed well to different pods via a load
balancer.

7.3.3 Cluster Autoscaler

For the sake of completeness, I also want to mention the cluster autoscaler. This tool is
particularly interesting if you have a very volatile load on your applications, but it is
usually the responsibility of the cluster admins. It allows you to automatically start
new nodes and delete old nodes. Especially in public cloud environments, you can save
money immediately. Figure 7.8 shows a graphical representation of the scaling.

Pod 1 Pod 1 Pod 4
@ = @ @
Pod 2 Pod 2 Pod 4

Pod 3 Pod 3
(o] [aen]

Figure 7.8 Cluster Autoscaling

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

341

7 Developing Applications for Kubernetes: Ready for Production

Good to Know
In my opinion, the cluster autoscaler provides several advantages:

m Cost efficiency
By adapting the cluster size to the actual load, you avoid the costs of unused
resources.

m Scalability
The cluster autoscaler allows your cluster to grow and shrink with the require-
ments of your applications, which is essential for scalable, cloud-native applica-
tions.

® |Improved developer experience
You need to worry very little about capacity. If you want to carry out a quick load
test, the cluster can simply map that independently.

How does the cluster autoscaler work? It continuously monitors the utilization of the
pods and nodes in your cluster and detects when pods cannot be started because not
enough resources such as CPU or memory are available on the existing nodes. Based on
this knowledge, the autoscaler then initiates the addition of new nodes to provide the
required resources. At the same time, it also recognizes when nodes are underutilized
and removes these nodes to save resources and costs. Remaining pods are evicted and
started on other nodes. This empties the node, and then it can be switched off.

You need the cluster autoscaler in particular if you want to manage Kubernetes clusters
in large, dynamic environments and have to think about geographical scaling in the
cloud. If you are not yet using it and are looking for more information, you can find the
GitHub repository at the following address: http://s-prs.co/v596455.

7.4 Monitoring

One key to stable operations is monitoring. Especially in the volatile world of Kuber-
netes, you need a good toolset to collect metrics, send alerts, and assist with debugging
when necessary. Not only do these tools give you insight into the performance and
health of your applications, but they also allow you to proactively respond to issues
before they become critical.

The complexity and dynamics of Kubernetes clusters with their numerous pods, ser-
vices, and other resources place special demands on monitoring. You need to be able to
collect and analyze the right data quickly in order to make informed decisions.

Good to Know

[will introduce specific tools that | have frequently used in companies. However, there
are also competing products for each of these tools that work according to similar

342 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596455

7.4 Monitoring

principles. | will mention these at one point or another, but you will see that if you
know one, you know them all.

You can always apply this basic knowledge to other tools.

If you already feel confident with the basic principles, you can go directly to Section
74.2. There we will bring all the tools together in a demo.

7.4.1 Introduction: Prometheus, Grafana, and Alertmanager

The Prometheus ecosystem is used for monitoring. When it comes to monitoring
applications in a Kubernetes cluster, this tool stack is widely used and has a corre-
spondingly large community. The stack includes the following tools:

® Prometheus
® Grafana

® Alertmanager

As a powerful open-source tool for monitoring and alerting, Prometheus has estab-
lished itself as the de facto standard for monitoring Kubernetes clusters. At its core,
Prometheus is a time series database, collects metrics from endpoints, and stores
them. With its powerful query language, you can create complex queries to get exactly
the insights you need. In addition, Prometheus supports alert rules that notify you as
soon as certain thresholds are exceeded.

Grafana is often the first choice to visualize the data collected by Prometheus. It pro-
vides a flexible platform for creating dashboards that provide a clear view of metrics.
Grafana also supports data from many other sources, making it a versatile tool for
monitoring.

The Alertmanager tool that is part of the Prometheus ecosystem is often used for alert-
ing purposes. It allows you to send notifications via various channels such as email,
Slack, or webhook, based on the alert rules you have defined in Prometheus.

Figure 7.9 shows the architecture of the components and how they interact with each
other.

But why is Prometheus the first choice when it comes to Kubernetes?

Prometheus was specifically developed to work in modern, dynamic environments
such as Kubernetes. It collects metrics via a pull mechanism in which it regularly que-
ries endpoints (targets) to collect relevant data. In a Kubernetes environment, these
targets can be pods, services, or node instances.

A key aspect of the integration is the service discovery of Prometheus within Kuber-
netes. Due to this feature, Prometheus automatically discovers new pods or services
that provide metrics. Monitoring would not be possible otherwise as Kubernetes

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 343

7 Developing Applications for Kubernetes: Ready for Production

resources are started up and shut down dynamically. This automatic detection is there-
fore crucial to ensure that Prometheus always collects up-to-date data as you cannot
possibly introduce new pods and nodes to your monitoring system “manually” after
each automatic scaling.

‘p SIaCk & Webhooks

A
Notifications

Sends Alerts

Data Source

Collects Metrics for Grafana

Data gets stored
persistently

e W it

Figure 7.9 Monitoring Architecture with Prometheus, Grafana, and Alertmanager

To recognize the pods it should query, Prometheus uses the Kubernetes API and checks
for certain annotations. An example of this is shown in Listing 7.14.

apiVersion: vl
kind: Pod
metadata:
name: my-app-pod
annotations:
prometheus.io/scrape: "true"
prometheus.io/path: "/metrics"
prometheus.io/port: "8080"

Listing 7.14 Configuration of Prometheus Scraping

344 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

7.4 Monitoring

Another point in Prometheus's favor is its many custom exporters developed by the
community. This gives you a direct interface for many tools to provide metrics for Pro-
metheus. Exporters act as bridges between Prometheus and the systems or applications
to be monitored. You collect metrics from these sources, convert them into the format
expected by Prometheus, and make them available via an HTTP endpoint.

Examples of this include the following:

® Node exporter
This collects hardware and operating system metrics from the host. The node
exporter is essential for gaining insight into the resource utilization and perfor-
mance of the physical or virtual machines running your Kubernetes cluster.

m Kube-state-metrics
This extends the metrics provided by Kubernetes by collecting detailed information
about the state of Kubernetes objects such as deployments, pods, and nodes.

® Grok exporter
This allows you to convert log files into metrics through queries and export them for
Prometheus.

The exporters are generally very easy to implement, and you can use them to have Pro-
metheus monitor almost everything. An example of how to use the node exporter can
be found in Section 7.4.2.

The extensibility and flexibility of Prometheus make it a good monitoring tool, which
is why it is so widely used. It's best to try it out for yourself to get a feel for it. You can
find the instructions for this in Section 7.4.2.

7.4.2 Monitoring on the Pi Cluster

Now let's get everything into the application and use Prometheus to monitor the Rasp-
berry Pi cluster. The goal is to see at a glance how the Pis are doing. Here, [am particu-
larly interested in the temperature, as I run the small computers without a fan. At the
same time, I also want to see how much RAM is still available.

The sequence of our work steps will be as follows:

Install the node exporter on Kubernetes.

Install Prometheus via a Helm chart.

Configure Prometheus so that the node exporter queries metrics.
. Install the Raspberry Pi exporter.

Extend the configuration of the node exporter.

. Install Grafana via a Helm chart.

N e W N

Create a dashboard to create the temperature display.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 345

7 Developing Applications for Kubernetes: Ready for Production

We will use the node exporter for this purpose. It already has a lot to offer, but for the
sample use case, we'll need to add more metrics for the Pis.

The node exporter can be installed in various ways. It typically runs directly on a server
and provides the metrics for Prometheus via a REST interface. For this example, let’s try
out the node exporter as a DaemonSet. Kubernetes then ensures that the service runs
on every node.

Access to the hostPath Volume

The node exporter pod accesses the host's file system through the hostPath volume.
This can be a danger in production environments, and you should be aware of this. For
this reason, you should clarify such a setup with the cluster admins beforehand.

Installing the Node Exporter on Kubernetes

First you need to create the monitoring namespace if you do not already have it. You can
find the manifest for the DaemonSet in Listing 7.15.

apiversion: apps/vl
kind: DaemonSet
metadata:
labels:
app.kubernetes.io/component: exporter
app.kubernetes.io/name: node-exporter
name: node-exporter
namespace: monitoring
spec:
selector:
matchlabels:
app.kubernetes.io/component: exporter
app.kubernetes.io/name: node-exporter
template:
metadata:
labels:
app.kubernetes.io/component: exporter
app.kubernetes.io/name: node-exporter
spec:
containers:
- args:
- --path.sysfs=/host/sys
- --path.rootfs=/host/root
- --no-collector.wifi
- --no-collector.hwmon

346 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

7.4 Monitoring

- --collector.filesystem.ignored-mount-points="/(dev|proc|sys|var
/1lib/docker/.+|var/lib/kubelet/pods/.+)($|/)
- --collector.netclass.ignored-devices="(veth.*)$
name: node-exporter
image: prom/node-exporter
ports:
- containerPort: 9100
protocol: TCP

Tesources:
limits:
cpu: 250m
memory: 180Mi
requests:
cpu: 102m
memory: 180Mi
volumeMounts:

- mountPath: /host/sys
mountPropagation: HostToContainer
name: sys
readOnly: true

- mountPath: /host/root
mountPropagation: HostToContainer
name: root
readOnly: true

volumes:
- hostPath:
path: /sys
name: sys
- hostPath:
path: /
name: root

Listing 7.15 Manifest for DaemonSet of Node Exporter

You will see that the node exporter will be accessible on port 9100. Provide the pods
with hostPath volumes so that the node exporter can also access the corresponding
paths in order to obtain metrics. Under spec.template.spec.containers[].args, you
can see the configurations specific to the node exporter. You will expand these later.
You can find the right service for the DaemonsSet in Listing 7.16. Roll out both Listing
7.15 and Listing 7.16 in your cluster.

kind: Service
apiVersion: vl
metadata:

name: node-exporter

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 347

7 Developing Applications for Kubernetes: Ready for Production

namespace: monitoring
annotations:
prometheus.io/scrape: 'true'
prometheus.io/port: '9100'
spec:
selector:
app.kubernetes.io/component: exporter
app.kubernetes.io/name: node-exporter
ports:
- name: node-exporter
protocol: TCP
port: 9100
targetPort: 9100

Listing 7.16 Manifest for Node Exporter Service

Installing Prometheus via a Helm Chart

Now let’s roll out Prometheus in your cluster. You'll use the Helm chart from Bitnami
for this purpose. To do this, use Lens to search for Prometheus in your cluster under
Helm - Charts. The Helm chart should look like the one shown in Figure 7.10. Now click
Install. The Helm chart opens as a file. Select the monitoring namespace here and click
Install.

Chart: bitnami/prometheus

Prometheus is an open source monitoring and Install
alerting system. It enables sysadmins to monitor

their infrastructures by collecting metrics from

configured targets at given intervals.

Version 0.4.7

Home https://github.com/prometheus/prometheus

WETNETRIEE

Keywords prometheus monitoring

Figure 7.10 Prometheus Helm Chartin Lens

After a few minutes, Prometheus should have started successfully. The Helm chart also
includes the alert manager, which is not relevant in this case. If you now set up port for-
warding for the Prometheus service and open the page, you will see the fresh UI of Pro-
metheus.

348 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

7.4 Monitoring

Next, you need to get Prometheus to fetch the data from the node exporter so that you
can also query it in Prometheus.

The configuration of Prometheus is created as a ConfigMap. Let’s expand this so that it
knows where to fetch the data from the node exporter. To do this, go to the Prometheus
ConfigMap in Lens under Config + ConfigMaps, which should have a name similar to
prometheus-1702161396-server

Click Edit and the YAML manifest will open. Listing 7.17 shows a section of it. The
changes you need to add are marked in bold. Then save the ConfigMap, switch to the
pod overview, and delete the current Prometheus pod so that the ReplicaSet builds a
new pod that pulls the new ConfigMap.

data:
prometheus.yaml: |
global:
external_labels:
monitor: prometheus-1702161396
scrape_configs:
- job_name: 'node-exporter’
kubernetes_sd_configs:
- role: endpoints
relabel_configs:

- source_labels: [__meta_kubernetes_endpoints_name]
regex: 'node-exporter’
action: keep

- job_name: prometheus
kubernetes_sd_configs:
- role: endpoints
namespaces:
names:
- monitoring
metrics_path: /metrics
relabel_configs:

Listing 7.17 Extension of Prometheus Scrape Configuration

Good to Know

The better option for activating a new ConfigMap would be to use an operator. There is
also an operator for Prometheus that takes over the responsibility for managing Con-
figMaps. This means that you do not need to restart the pods if you change the config-
uration. | have skipped this for our example as it focuses on monitoring. In production

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 349

7 Developing Applications for Kubernetes: Ready for Production

environments where you cannot simply restart services for a configuration change, you
should definitely use operators.

To check whether the configuration is effective and Prometheus queries the metrics of
the node exporter, you can check under Status - Targets in the Prometheus Ul whether
the metrics appear accordingly. It should look like Figure 7.11.

Targets

All scrape pools ¥ All Unhealthy Collapse All Q

show less

Endpoint

Figure 7.11 Node Exporter as Target of Prometheus

Extending the Node Exporter with Metrics from the Raspberry Pi

Now Prometheus can query the metrics of the node exporter, and we want to extend it
in such a way that we get specific metrics for the Raspberry Pis. I found the following
GitHub repository for this: http://s-prs.co/v596456. It may be a little older, but it is
clearly programmed and works perfectly. The way it works is simple:

® You install a timer on the Pi that regularly triggers a shell script.

® The shell script runs simple commands to obtain the data, which is then provided as
a metric for Prometheus.

® The data is stored in a file on the Pi's file system.
For the installation, you need to run the following command on each of your Raspberry
Pis:

curl -fsSL "https://raw.githubusercontent.com/fahlke/raspberrypi_exporter/

master/installer.sh" sudo bash

This command loads the installer.sh file from the repository and executes it. You prob-
ably know that the concept of executing content from the internet directly into the
shell is fundamentally insecure, so take a quick look at the code before you carry out
the installation that provides the script and the timer.

You can then use the commands from Listing 7.18 to check whether the service is run-
ning and if the metrics are written to the file under the /var/lib/node_exporter/textfile
collector path.

350 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596456

7.4 Monitoring

Check if the service is running

systemctl status raspberrypi_exporter.timer

Check if the metrics are written to disk

grep -E "~rpi" /var/lib/node_exporter/textfile_collector/raspberrypi-
metrics.prom

Listing 7.18 Commands for Checking Raspberry Pi Exporter

The next step is to extend the node exporter so that it can read the metrics in the file.
For this purpose, let’s extend the DaemonSet from Listing 7.15. To do this, go to the
Workloads - DaemonSets overview in Lens and edit the YAML manifest of the node
exporter. In Listing 7.19, the changes you need to make are printed in bold. For the pod
to be able to access the host's file, a hostPath volume must be created that releases this
exact path. The volume is then mounted in the pod so that the node exporter can
access the file. As a further argument, we give the application the path to the file under
the --collector.textfile.directory option so that the node exporter can read the file.
As soon as you save the manifest of the DaemonSet via the Save option, the pods will
automatically be replaced.

spec:
volumes:
- name: sys
hostPath:
path: /sys
type: "'
- name: root
hostPath:
path: /
type: "'
- name: pi
hostPath:
path: /var/lib/node_exporter/textfile_collector
type: "'
containers:
- name: node-exporter
image: prom/node-exporter
args:
- '--path.sysfs=/host/sys'
- '--path.rootfs=/host/root’
- "--no-collector.wifi’
- '--no-collector.hwmon'
- '--collector.textfile.directory=/var/lib/
node_exporter/textfile_collector'

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 351

7 Developing Applications for Kubernetes: Ready for Production

volumeMounts:
- name: sys
readOnly: true
mountPath: /host/sys
mountPropagation: HostToContainer
- name: root
readOnly: true
mountPath: /host/root
mountPropagation: HostToContainer
- name: pi
readOnly: true
mountPath: /var/lib/node_exporter/textfile_collector
mountPropagation: HostToContainer

Listing 7.19 Extension of Node Exporter Configuration for Pi Exporter

It may now take some time for the first data to be displayed in Prometheus. You should
then be able to query them as shown in Figure 7.12.

pi_temperature = | @ Execute

Load time: 21ms Resolution: 14s Result series: 2

Graph

= = Show Exemplars

[E] rpi_temperature{instance="10.42.0.12:9100", job="node-exporter", sensor="thermal_zone0", type="cpu-thermal"}
[E] rpi_temperature{instance="10.42.1.9:9100", job="node-exporter", sensor="thermal_zone0", type="cpu-thermal"}

Figure 7.12 Querying Temperature Metrics in Prometheus

352 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

7.4 Monitoring

Note

If no metrics appear, you should check the logs of the node exporter. This will show you
if it cannot access the file. You should also check the volume configuration again
because if the path is not mounted correctly in the pod, the application within the pod
will not be able to access it.

Installing and Configuring Grafana via a Helm Chart

Now let’s install Grafana to display the metrics in a more appealing way and organize
them in a dashboard. To do this, you want to search for Grafana in the Helm charts of
Bitnami and deploy the chart via Lens as with Prometheus. Make sure that you use the
same namespace. Then set up port forwarding and open the graphical user interface of
Grafana. The user name and password for the login can be found in the Helm release, as
described in Chapter 8, Section 8.1.2, Listing 8.4.

The first step you need to take now is to link Prometheus and Grafana. To do this, you
can specify Prometheus as the data source in the menu under Connections - Data
Sources. Click Add Data Source and then Prometheus. If you have deployed the two
applications in the same namespace, you can enter the service as a URL, as shown in
Figure 7.13. If they are deployed in different namespaces, you should look again for the
DNS naming convention described in Chapter 2, Section 2.5.2 and enter the URL accord-

ingly. Otherwise, you do not need to change anything in the configuration. Scroll down
and click Save & Test.

Connection

Prometheus server URL* (© http://prometheus-1702161396-server

Figure 7.13 Kubernetes Service as Prometheus URL

Once the data source has been set up, you can start creating a dashboard. We’ll load a
standard dashboard for the node exporter so that you don't have to start from scratch.
Grafana provides several standards that you can load very easily. The node exporter
dashboard can be found at the following address: http://s-prs.co/v59457.

You only need the ID of the dashboard to load it; in this case, that’s 1860. Then you can
click Create Dashboard under Home - Dashboards and then Import a Dashboard. Enter
the ID there, as in Figure 7.14; select Prometheus as the data source in the subsequent
step; and then click Import.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 353

http://s-prs.co/v59457

7 Developing Applications for Kubernetes: Ready for Production

Import dashboard

Import dashboard from file or Grafana.com

&
Upload dashboard JSON file

Drag and drop here or ¢
d file t

Find and import dashboards for common applications at grafana.com/dashboards &

1860

Figure 7.14 Entering Dashboard ID for Import

Next, let’s expand the Grafana board to include the new Raspberry Pi metrics. To do
this, you can simply add a new visualization via Add. The new window should then look
like Figure 7.15.

datasource default v Table) Fill Actual # Time series
Job | node-exporter v ® Last15minutes v Q O

Host 10.42.0.12:9100 v @)
All

Panel Title
v Panel options
- Title
Panel Title

17:00 17:05 17:10

Description
== {_name__="rpi_temperature", instance="10.42.0.12:9100", job="node-exporter", sensor="thermal. 7

== {_name__="rpi_temperature", instance="10.42.1.9:9100", job="node-exporter", sensor="thermal_z

B8 Query 1 h sfo ata a Transparent background

Data source Promethc v ' ® > MD=auto=509 Interval Qagsy inspector > Panel links

> Repeat options

A (Prometheus)
v Tooltip
Kick start your query Explain @ Run queries Builder Code .
Tooltip mode
Metric o Label filters Single All Hidde]
rpi_temperature

v Legend
+ Operations o

Visibility

Figure 7.15 Creating Your Own Visualization in Grafana

354 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

7.4 Monitoring

Note

Now you can experiment with the dashboard and view the various metrics. It is import-
ant that you also select your correct Raspberry Pi as the host in the dropdown menu as
in Figure 7.15 @; otherwise, Grafana will not display any data.

Select the metric you want to display @. In the dropdown menu, you will find all met-
rics known to Prometheus. There you should also find the new Raspberry Pi metrics
starting with rpi. In this example, use the temperature to see how high it currently is.

Now you can select the type of visualization, depending on how you want to use the
data @. A time series is a nice tool to see the progression, but I use the gauge type for
this display because I'm only interested in the current temperature. Under Operations
0, you can manipulate the data even further. For example, aggregation makes sense
for the gauge. Try a max aggregation, and select the instance as the label. You can save
the new metric to the dashboard via Apply.

Asyou can see, there are many ways to visualize your data. Feel free to play around with
it some more.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 355

© 2025 by Rheinwerk Publishing Inc., Boston (MA)

Chapter 8
Orchestrating Kubernetes Using Helm

Modularity in programming is like putting together a jigsaw puzzle:
every part has its place, and when everything comes together, a master-
piece is created.

Using Kubernetes comes with a number of challenges, especially when it comes to effi-
ciently managing, deploying, and scaling applications. As you have learned throughout
this book, each application entails a variety of manifests for deployments, services, vol-
umes, and more. Managing these manifests can quickly become confusing, especially if
you are trying to keep your applications consistent across multiple environments. In
addition, there are questions such as the following to consider:

® How can you ensure that your Kubernetes manifests are reusable and easy to up-
date?

® How can you efficiently manage complex applications with many dependent re-
sources?

® How can you ensure a uniform configuration across development, staging, and pro-
duction?

These and similar questions lead us to the search for a solution that not only simplifies
the provision and management of applications, but also emphasizes modularity and
reusability. This is where Helm comes into play.

Helm is based on the philosophies of modularity and don’t repeat yourself (DRY). Tasks
should therefore be divided into the simplest possible substeps and be reusable. Not
only is Helm a templating tool, but it also serves as a package manager for Kubernetes
manifests and supports you in deploying, managing, and orchestrating applications. It
is therefore obvious why it has become an indispensable tool in the Kubernetes world.

The answer lies in the numerous advantages Helm provides to you:

® Reusability of manifests through parameterization

® Deployment of complex Kubernetes applications as a simple and configurable pack-
age

® Simple centralization and standardization within your company

® Extensive ecosystem of predefined charts for numerous applications

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 357

8 Orchestrating Kubernetes Using Helm

In the course of this chapter, we will delve deep into the world of Helm. You will learn
how Helm overcomes the challenges of managing Kubernetes applications and how
you can use it to make your deployments more efficient and modular. Prepare yourself
to discover the possibilities Helm opens up for your Kubernetes management.

Note

The examples in this chapter are all based on Helm version 3.

8.1 Helm: The Kubernetes Package Manager

Helm is much more than a tool for parameterizing Kubernetes manifests. It is similar
to the Homebrew package manager for macOS or the corresponding Linux tools. You
select your software, specify where the package comes from, and can then install it on
Kubernetes. A Helm package includes all the manifests the application needs to run.

In Helm, there are three key terms you need to know:

® A Helm package is referred to as a chart and contains all the manifests and configu-
rations you need to deploy an application in Kubernetes.

m Jfyoudeploy a Helm chart in Kubernetes, it is referred to as a release. You can usually
deploy a chart multiple times in a cluster, and each instance is a separate release.

® Aswith other package managers, charts can be stored and distributed in a repository.

The parallels to containers and management by images, which are stored in reposito-
ries and instantiated to running containers, are obvious. However, there is a significant
difference in terms of flexibility: while a container image is unchangeable, you can
deeply customize Helm charts with specific configurations for each release. This gives
you the freedom to adapt and optimize applications exactly as required.

You can imagine the development process as shown in Figure 8.1. You work locally on a
chart and develop the Kubernetes manifests. You can either deploy these directly to
Kubernetes or store them in a Helm repository. From there, you can also access other
Helm charts, configure them, and then transfer them to Kubernetes.

But let’s do one thing at a time.

Let's first take a look at what is contained in a Helm chart. As you will see later, a Helm
chart usually contains multiple Kubernetes manifests. Let's take a web application that
uses a database as an example. The Helm chart contains the deployment, the service,
and the ingress manifest of the web application as well as the StatefulSet and service
manifest of the database. So you get everything Kubernetes needs to start the applica-
tion in one chart.

358 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

8.1 Helm: The Kubernetes Package Manager

Repository
Chart
Chart
Kubernetes
Push & Pull Release
deploys
uses Release
—_— Helm

Figure 8.1 Architecture of Helm

The difference from ordinary Kubernetes manifests is the templating of Helm. Helm
comes with a templating engine based on Go so that you can adapt the manifests to dif-
ferent environments or requirements using configurations.

Take a look at the release process in Figure 8.2. You can see that you need a values.yaml
file in addition to the Helm chart, which contains the parameters needed by your chart.
The magic of Helm lies in these values.

Helm Chart

creates release
Helm > Kubernetes
Manifests

valuesyaml|

Figure 8.2 Process for Releasing Helm Chart in K8s

Each finished chart comes with a values.yaml file that sets all the necessary parameters.
You can view this as a kind of default value that enables you to easily roll out the chart.
Things start getting magical when you start to overwrite the values in different situa-
tions, such as to replace the default values with environment-specific values. You do
not need to adapt the existing values.yaml file for that, but simply give Helm another
values.yaml during the templating process.

Let's take the values.yaml file from Listing 8.1, which is provided in a Helm chart, as an
example.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 359

8 Orchestrating Kubernetes Using Helm

name: humanity-backend
version: 1.0.0

Listing 8.1 Default "values.yaml" File

The name of the application and the version to be rolled out are set there. You now
want to customize the chart for your development environment and roll out a more
recent version. To do this, simply give Helm the values-dev.yaml file from Listing 8.2.

version: 1.2.0

Listing 8.2 Environment-Specific "values-dev.yaml" File

The values you set in this values file will replace the values from the default values file.
The great thing about this merging process is that you can define the values in different
ways and bring them into your charts. You can split your values into different files such
as the following:

® Company-specific values

® Environment-specific values

m Cluster-specific values

We will go into more detail about the options you have with values and how best to
structure them in Section 8.2.2.

Note

The way Helm charts are packaged and provided gives you the opportunity to develop
standards for applications in your company. Imagine a Saa$S agency that operates the
same software for multiple customers. Of course, the configuration has to be slightly
different for all customers, but this can be easily adjusted using charts. Instead of
maintaining a separate application for each customer, you can work in a standardized
way and only address the differences during deployment.

But enough theory for now. You will need Helm on your computer for the following
sections. The installation instructions for the Helm CLI for your system can be found at
http://s-prs.co/v596458.

You can find the appropriate shell completions for your command line at http://s-
prs.co/v596459.

Concerning the Helm CLI, it works similar to kubectl. You can use helm -h to display all
commands. The completion feature is very helpful in everyday life because nobody
needs to know all the calls in detail. You will become familiar with the most important
commands in the following sections.

360 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596458
http://s-prs.co/v596459
http://s-prs.co/v596459

8.1 Helm: The Kubernetes Package Manager

8.1.1 Creating a First Helm Chart

To get started, let’s have Helm generate the default chart for us. To do this, you want
to run the helm create humanity-backend command in your command line, where
humanity-backend is the name of the chart. Your folder structure should then look as
shown in Listing 8.3. Helm uses this command to create all the necessary files and even
provides you with a few sample manifests.

— Chart.yaml
— charts
— templates
— NOTES.txt
— _helpers.tpl
— deployment.yaml
— hpa.yaml
— ingress.yaml
— service.yaml
— serviceaccount.yaml
— tests
L test-connection.yaml
— values.yaml

Listing 8.3 Folder Structure of Default Helm Chart

You can now get an impression of the structure you have created:
® What does a Helm manifest look like?

® What is different from what you already know?

® Where do you find parallels to what you already know?

We will return to this sample chart again and again in the following sections. It already
contains a lot of what you need to know and what Helm enables you to do.

Note

You should install a Helm plugin for your IDE. | use IntelliJ and have installed the sug-
gested Go template plugin.

This makes your work a little easier, as you can jump directly from the template to the
value and generate the manifest in the IDE.

8.1.2 Deploying a Helm Chart via the Command Line Interface

Let's look at how to roll out a chart using the Helm CLI and at the sample humanity-
backend Helm chart.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 361

8 Orchestrating Kubernetes Using Helm

If you are in the chart folder, you can roll out the chart via one of two commands:

®m helminstall -fvalues.yaml humanity-backend .

®m helmupgrade --install -f values.yaml humanity-backend .

As mentioned previously, in these commands, humanity-backend is the name of the
release, and the final period (.) references the folder with the Helm chart.

You can use both commands to release the Helm chart in Minikube for the first time. In
this case, note that you must add the --install option to helmupgrade; otherwise, Helm
will throw an error as there is no release for upgrading yet. The --install option checks
if there is already a release, and if not, it will roll out the release like helm install. You
can use the same helm upgrade command when rolling out an update. The helm install
command would then throw an error because the release has already been rolled out in
the cluster.

Good to Know

Typically, I just use the upgrade command in a CI/CD pipeline because then | don't need
to distinguish whether a Helm chart has already been released or not.

However, the install command is useful if you want to make sure that there is not yet a
release with the corresponding name and do not want to overwrite an old version.

You can use the -f option to specify the values file to be used for templating. You can
enter as many values files as you like, and the last entry always overwrites the previous
one. This allows you to overwrite default values with environment-specific values, for
example. An example could look as follows:

helm upgrade --install -f values.yaml -f values-dev.yaml humanity-backend .

We'll take a closer look at exactly how to use values in Section 8.2.2.

As you know from the introduction, Helm also has repositories in which the charts are
stored. Here, we have deployed the chart directly from the folder. In Figure 8.3, you can
see that both methods are possible. You can deploy directly from the repository as well
as from the folder. Then you can install the Jenkins chart from the Bitnami repository
via the following command, for example:

helm install jenkins bitnami/jenkins

Instead of specifying the path to the Helm chart as before, you want to enter bitnami/
jenkins—that is, [reponame]/[chartname]. We'll look at how you can use a repository in
Section 8.1.3, while Section 8.1.4 provides more insight into the Jenkins chart itself.

362 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

8.1 Helm: The Kubernetes Package Manager

Repository

Chart

Chart

Push & Pull

uses
— Helm
./humanity-backend

Folder

Figure 8.3 Helm Chart in Repositories or as Folder Structure

Good to Know

Whether you store your chart in a Helm repository is a question of your development
process. A chart in the repository is ultimately just a packed archive with all files such
as templates and values. In Section 8.3.2, you will learn how to package a chart and
store itin a repository.

8.1.3 Setting Up and Managing a Helm Repository

One of the advantages of Helm is that you can use numerous open-source charts that
are available in public repositories. All you have to do is familiarize your Helm CLI or
Lens with the corresponding repositories. Now let’s discuss how to integrate new Helm
repositories to access these Helm charts.

Let's start with Lens. For this purpose, you need to open Lens and go to the settings.
Under the Kubernetes menu item, there is a Helm area that should look like Figure 8.4.
There you can select any known Helm repository via the dropdown menu. Lens uses
Artifact Hub as the official site to display the repositories.

Note
You can find Artifact Hub at https.//artifacthub.io/.

There you can also search for Helm charts and find many open-source applications that
you can install directly via Helm.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 363

https://artifacthub.io/

8 Orchestrating Kubernetes Using Helm

Helm

Helm Charts

Repositories ~ Add Custom Helm Repo

bitnami

Figure 8.4 Helm Repositories in Lens

As you can see, the Bitnami repository is already selected, and you can add more from
the dropdown menu if required.

Good to Know

Bitnami is a library of ready-made software packages. You will find the most popular
open-source applications from Bitnami already configured and easy to use. Especially
when | want to set something up quickly or try out a new tool, | look for Bitnami pack-
ages first.

Bitnami in Production Environments

Note that the Helm charts from Bitnami and other providers are not necessarily suit-
able for your production environments. They are usually designed to be "developer-
friendly," so | like to use them for testing. However, there is no guarantee that vulnera-
bilities, for example, will be patched regularly. In addition, the charts are very large, dif-
ficult to understand, and not (only) tailored to your use case. Sometimes it is better to
simply write your own chart and follow the KISS principle.

Thus, you should take a closer look if you want to use one of these packages in produc-
tion and discuss it with your IT department. Helm charts from the internet are very
suitable for initial tests on your own playground, but when it gets serious, you should
create your own deployments and check exactly what is needed.

If you want to manage Helm repositories in the CLI, you should use the helm repo com-
mands. For example, you can use the following command to add the repo for the Har-
bor tool:

helm repo add harbor https://helm.goharbor.io

You can use harbor to specify the name of the repo in your list and add the URL under
which the repo can be reached.

364 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

8.1 Helm: The Kubernetes Package Manager

The helm repo 1ist command enables you to display your added repos, while helm repo
remove allows you to remove repos, and helm repo update updates your local index of the
repository. You need the updated index so that you can also pull Helm charts that have
been newly added.

Note

If you have your own Helm repositories in your company, you can also add them via the
Helm CLI. Unfortunately, Lens has some difficulties adding it on its own, but once you
have added the repo, Lens can also access it.

8.1.4 Deploying a Helm Chart via Lens

Now that you know how to use the Helm repositories, let's look at how you can roll out
one of these charts through Lens. We'll use the Jenkins chart from the Bitnami reposi-
tory for this purpose. To do this, click Helm - Charts in your cluster menu in Lens and
enter “Jenkins” in the search field. When you click the chart, you will see more informa-
tion about the chart on the right-hand side, as shown in Figure 8.5—for example:

® The version
® How to install the chart

® How to configure the chart
Ml minikube Chart: bitnami/jenkins

Jenkins is an open Install
source Continuous

Integration and

Continuous Delivery

(CI/CD) server

designed to automate

the building, testing,

and deploying of any

software project.

jenkins

©
=)
©

Figure 8.5 Selecting Jenkins Chart in Lens

Good to Know

The difference from the Helm CLlI is that you can only use Lens to deploy charts that are
stored in a repository. For example, you do not have access to the humanity backend

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 365

8 Orchestrating Kubernetes Using Helm

chart that is already on your computer. However, we will look at how you can use your
own Helm repository in Section 8.3.2.

Tuse chart version 12.4.0 as this is currently the latest version. If necessary, you can sim-
ply use older versions of the software. Now click Install in the top-right-hand corner.

The values file of the Helm chart opens at the bottom, which you can use to customize
charts (Section 8.2.2). Confirm the settings in the values file by clicking Install. That’s it.
Jenkins will now be rolled out in your cluster.

To be able to access your new Jenkins server, you will of course need more information
about it. Helm provides the option of outputting notes that are necessary for the devel-
oper. To retrieve these notes, click Helm - Releases in Lens and then on your Jenkins
release. This will open another window in which you will find the information you need
under Notes. The notes should look similar to those shown in Listing 8.4.

1st Get the Jenkins URL by running:

2nd Login with the following credentials

echo Username: user

echo Password: $(kubectl get secret --namespace default jenkins-1698790333
-0 jsonpath="{.data.jenkins-password}" | base64 -d)

Listing 8.4 Release Notes of Jenkins Installation

You don't need the URL for now, because you can use simple port forwarding to access
Jenkins. However, what you will need is the password that was stored fully automati-
cally as a Kubernetes secret. Bitnami already provides you with the corresponding
kubectl command. (Remember: Your command will look slightly different because
your secret has a different name. This means that you cannot copy it directly from the
book.) Now check whether you can access the Jenkins GUI.

Warning

When | use the command to retrieve the secret in my Mac command line, the system
appends a percent sign (%) to the password. This could also be the case for you. Pay
attention to this and leave it out when copying.

8.1.5 Updating and Deleting Helm Releases

You have already seen the helm upgrade command. This command can also be used to
import a new version of the chart. There are generally two reasons that you want to
install updates: either the chart version has changed because you have made changes
to the templates, or you want to import new values.

366 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

8.1 Helm: The Kubernetes Package Manager

For both options, simply run the following command and reference the new chart or
enter the latest values.yaml file:

helm upgrade --install -f values.yaml humanity-backend .

In Lens, you can also simply select the release under Helm - Releases and then click
Upgrade as in Figure 8.6 to select a newer version in the window that opens. There,
adjust the values.

jenkins-1708336044

Chart jenkins-12.4.0 Upgrade

3m9s ago (2024-02-19 10:47:25.551697
+0100 CET)

Updated

Namespace default
Version 12.4.0

Status Deployed

Values

[User-supplied values only

1 affinity: {}
2 agent:

~ P O &

Figure 8.6 Helm Release Upgrade in Lens

You can select the version using the dropdown window as in Figure 8.7.

Release | jenkins-1708336044 Namespace |default Version [12.4.0 Upgrade version | bitnami/jenkins-12.4.0 v

Figure 8.7 Selecting Upgrade Version

If you only want to change the values, you can do this under Values, as shown in Figure
8.6. There you will see the current values. You can adjust them and then click Save.

Once you have performed an upgrade, Helm will take care of the rollout. For example,
if you have customized a deployment, Helm will make the changes and, if necessary,
swap the pods. Helm increments the revision of the release by one with each upgrade.
You can see the revision in the release overview.

If you want to delete all Kubernetes resources of a Helm release, this is very simple.
Helm remembers which resources belong to a release and can therefore easily update

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 367

8 Orchestrating Kubernetes Using Helm

or delete them. You may have already seen this in Section 8.1.2. You can access the
releases in Lens under Helm - Releases and also delete them there if you click the Helm
release and then click Delete. If the Helm release is deleted, all Kubernetes resources
that were managed by the release are also deleted.

The Helm CLI enables you to view the releases via helm 1s, and the response should look
like Listing 8.5 in a shortened version. Use helm uninstall jenkins-170 to delete the

release.
NAME NAME SPACE REVISION STATUS CHART
jenkins-170 default 1 deployed jenkins-12.4.0

Listing 8.5 Output of "helm Is" Command

8.1.6 Downloading Helm Charts from a Repository

Not only can you install Helm charts directly, but you can also download them. This is
very useful, for example, if you want to get a specific inspiration or understand a chart
in detail. The command for the download is composed as follows:

helm pull [reponame]/[chartname]

For example, if you want to download the Jenkins chart from Bitnami, you can use the
helm pull bitnami/jenkins command. In Section 8.3, we’ll take a look at how such a
Helm chart is structured.

Note

If you are unsure about the name of the repo, you can use helm repo 1s to check how
the name is defined.

Note

The --untar option makes sure that the chart is unpacked directly.

8.2 Reading and Developing Helm Charts

You have now been introduced to the basic principles of Helm, have used the CL],
and have already deployed your first chart. In this section, we’ll dive into the basics of
developing Helm charts. If you have looked at the Helm templates from the sample
humanity-backend chart, you will find a new syntax that differs fundamentally from the
previous YAML manifests.

First, we'll look at the templating engine of Helm. You will learn how to use the Go tem-
plating engine to create flexible and reusable manifests that you can easily adapt to

368 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

8.2 Reading and Developing Helm Charts

different environments. You will then learn more about the principle of values in order
to fill the templates with values. Then you will be introduced to various template func-
tions, which I have divided into three sections for you. Finally, we’ll look at the Helm
diff plugin, which helps you to display differences between the current and planned
states of your Helm releases.

After reading this section, you will have solid knowledge of how to read and develop
Helm charts.

8.2.1 The Templating Engine and the Language of the Charts

You have already written several manifests in the course of the book and deployed
them in Kubernetes. If you look at the deployment manifest from the default Helm
chart, it looks very strange at first glance. You can find an excerpt of it in Listing 8.6.
Even if the syntax seems a little strange at first, the aim of Helm is to create a YAML
manifest at the end, as you already know. This is the only way Kubernetes can do any-
thing with the manifest.

apiVersion: apps/vl
kind: Deployment

metadata:
name: {{ include "humanity-backend.fullname" . }}
labels:
{{- include "humanity-backend.labels" . | nindent 4 }}
spec:

{{- if not .values.autoscaling.enabled }}
replicas: {{ .Values.replicaCount }}
{{- end }}
selector:
matchlabels:
{{- include "humanity-backend.selectorlLabels" . | nindent 6 }}
template:
metadata:
{{- with .values.podAnnotations }}
annotations:
{{- toyaml . | nindent 8 }}
{{- end }}
labels:
{{- include "humanity-backend.labels" . | nindent 8 }}
{{- with .values.podlabels }}
{{- toYaml . | nindent 8 }}

{{- end }}

Listing 8.6 "deployment.yaml|" from Default Helm Chart

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 369

8 Orchestrating Kubernetes Using Helm

At the heart of the Helm engine is the templating syntax, which is based on Go tem-
plates and is supplemented by some Helm-specific extensions. A major goal is to
ensure the reusability of a manifest by means of parameterization. For example,
{{ .values.replicaCount }} refers to a value in values.yaml called replicaCount.

Helm uses double curly brackets ({{ }}) as placeholders within the YAML files of Kuber-
netes to insert dynamic values or execute logic. Everything inside these brackets is
evaluated by Helm before the final manifest is passed to Kubernetes. As shown in
Figure 8.8, the Helm templating engine will take all templates, import one or more
value files, and then process each of the template commands. Helm not only can use
values, but also has a wide range of options, which we will now look at in more detail.

e

HELM

N YAML File for .;E

templates
" ! Kubernetes
service.yaml ” TEmplate >
Engine
secret.yaml
A
deployment.yaml
values.yaml

Figure 8.8 Helm Templating Engine

Before we start with the examples, I want to show you how you can carry out templat-
ing using Helm. This allows you to track the impact of your changes during the devel-
opment process. If you are in the folder of the Helm chart, such as in humanity backend,
then you can run the helm template . command. Then you will receive the generated
manifests as output on the console.

Note

Templating is even easier with plugins for your IDE. | use the Kubernetes plugin for
IntelliJ, which also supports Helm.

370 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

8.2 Reading and Developing Helm Charts

Built-In Functions

Helm provides a variety of built-in functions that you can use within the templates to
manipulate values or evaluate conditions. You connect a function with a | (like the pipe
character in Linux) after the value, as shown in Listing 8.7. There I have extended
deployment.yaml and added the upper and quote functions after the names. This reads
the value from the humanity-backend.fullname parameter, then converts everything to
uppercase and places it in quotation marks.

name: {{ include "humanity-backend.fullname" . | upper | quote }}

replicas: {{ .Values.replicaCount | default 3 }}

Listing 8.7 "deployment.yaml|" Extended by Helm Functions

Note

If you look at where exactly some values come from, you will find the _helpers.tlp file in
the humanity-backend example. This is an advanced way to define and prepare param-
eters to keep the manifests "clean" and readable.

You can learn more about this at http://s-prs.co/v596460.

Try it out for yourself and carry out the templating to see the result. Another example
in Listing 8.7 has the default value, which you can define in the template.

One frequently used function is indent or nindent. As an example, take a look at the
excerpt from Listing 8.8 of the deployment.yaml file. The function inserts a certain
number of spaces before the values. This is particularly useful to keep the indentations
in generated YAML files correct; doing otherwise will lead to misinterpretations. In our
example, four spaces are inserted before each label so that the labels are arranged
under the labels object.

labels:
{{- include "humanity-backend.labels" . | nindent 4 }}

Listing 8.8 Indent Example from "deployment.yaml" File

If you render the template, the result looks like Listing 8.9.

Good to Know

The nindent function differs from indent only in that it also inserts a new line.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 3N

http://s-prs.co/v596460

8 Orchestrating Kubernetes Using Helm

apiVersion: apps/vl
kind: Deployment
metadata:
name: release-name-humanity-backend
labels:
helm.sh/chart: humanity-backend-0.1.0
app.kubernetes.io/name: humanity-backend
app.kubernetes.io/instance: release-name
app.kubernetes.io/version: "1.16.0"
app.kubernetes.io/managed-by: Helm

Listing 8.9 Indent Example Rendered

Another function that you will need often is the conversion to Base64, which is used to
encode values in Helm templates. The typical use case is a secret, where the values are
expected as a Base64 string.

Good to Know

You can use these functions anywhere in Helm. For example, you could encode the
name of the deployment from Listing 8.8 using Base64, but this makes no sense in this
case.

In the humanity-backend sample chart, create the new secret file from Listing 8.10 under
templates. Add the new password: test1234 key-value pair to values.yaml.

apiVersion: vl
kind: Secret
metadata:
name: my-secret
type: Opaque
data:
password: {{ .Values.password | bédenc }}

Listing 8.10 Secrets with Base64 Template

After calling helm template ., the generated secret will look as shown in Listing 8.11.

apiVersion: vl
kind: Secret
metadata:

name: my-secret
type: Opaque

372 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

8.2 Reading and Developing Helm Charts

data:
password: dGVzdDEyMzQ=

Listing 8.11 Generated Secret

You have now become familiar with a few of the most common functions and have
seen how you can use them. There are many others you can look up if you need them.
An overview of this is shown at the following URL: http://s-prs.co/v596461.

Built-In Objects

Helm contains so-called built-in objects that you can also reference within the tem-
plate. For example, these objects contain important information about the chart itself
or the current release, which is useful for the configuration and deployment of
resources in Kubernetes. The most frequently used built-in objects include the chart
and the release.

You can use the values of these objects in the same way as the normal values. In Listing
8.12, you will find an example of the charts object.

apiVersion: vl
kind: ConfigMap
metadata:
name: {{ .Chart.Name }}-config
data:
chartName: {{ .Chart.Name }}
chartVersion: {{ .Chart.Version }}

Listing 8.12 Sample Chart Object

You can store the information in a ConfigMap there, for example. Alternatively, you
can use the chart version within your deployment template. You could use the release
as in Listing 8.13, for example, to name your deployment. This is very useful and used
often.

Note

An overview of all built-in objects and their parameters can be found at http.//s-prs.co/
v596462.

apiVersion: apps/vl
kind: Deployment
metadata:
name: {{ .Release.Name }}

Listing 8.13 Sample Release Object

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 373

http://s-prs.co/v596461
http://s-prs.co/v596462
http://s-prs.co/v596462

8 Orchestrating Kubernetes Using Helm

8.2.2 Configuring Charts with Values

Let's move on to the Helm values. The values files are at the heart of every chart
because this is where the values are stored that turn the template into a real Kuber-
netes manifest. As mentioned previously, the main reason for using values files in
Helm charts is the separation of configuration and code. Instead of writing hard-coded
settings directly in the Kubernetes manifests, values allow settings such as image ver-
sions, resource limits, and other configurations to be injected dynamically.

The values are also written in YAML. You can apply everything you have learned in
Chapter 3, Section 3.2 here. However, depending on the structure, you may need to
access the values differently in the templates. Helm distinguishes between a flat struc-
ture and a nested structure.

Listing 8.14 shows a flat structure. The values are arranged directly under the root ele-
ment and are ideal for simple configurations. They are easy to understand and easy to
change.

name: nginx-app
imageName: nginx
imageTag: stable

Listing 8.14 Flat "values.yaml" File

The template in Listing 8.15 is also easy to read. It is immediately clear which parameter
is being used.

spec:
template:
spec:
containers:
- name: {{ .vValues.name }}
image: "{{ .Values.imageName }}:{{ .Values.imageTag }}"

Listing 8.15 Template for Flat "values.yaml!"

The nested structure in Listing 8.16 is well-suited for more complex charts if you want to
group configurations logically. This makes it easier to read the values.yaml file, but
quickly compromises the readability of the entire template.

application:
name: nginx-app
image:
repository: nginx
tag: stable

Listing 8.16 Nested "values.yaml" File

374 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

8.2 Reading and Developing Helm Charts

In Listing 8.17, you can already see that the link grows with each nesting level. .Val-
ues.imageTag becomes .Values.application.image.tag.

spec:
template:
spec:
containers:
- name: {{ .Values.application.name }}
image: "{{ .Values.application.image.repository }}:{{
.Values.application.image.tag }}"

Listing 8.17 Template for Nested "values.yaml" File

Note

For nested values, Helm recommends that an "existence check" be carried out for each
level. You should therefore check that the value is set at all. This also inflates the tem-
plates and makes them more difficult to read.

We’ll look at the existence check in Section 8.2.3.

Overwriting Values during Rollout

One of the strengths of Helm is the flexibility it offers in configuring deployments by
overwriting values in the values.yaml file. This allows you to make adjustments to the
configuration without having to edit the Helm chart or the default values yourself. This
is particularly useful for third-party charts. It gives you two options for setting new val-
ues. You can enter the values directly via the command line, or you can enter an addi-
tional values.yaml file.

By using the --set flag, you can overwrite individual values or nested values. For exam-
ple, if you want to activate autoscaling in the humanity-backend example, you can do
this as follows:

helm upgrade --install -f values.yaml
--set autoscaling.enabled=true humanity-backend .

Use this command to overwrite the default value in values.yaml, which is set to false.

Good to Know

This variant is a good way of setting secrets such as passwords, especially in CI/CD
pipelines. This means that you do not have to check them in as code in your Git repo,
but can inject them into the pipeline at runtime.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 375

8 Orchestrating Kubernetes Using Helm

Note

You can also use --set to overwrite a value in a list, but this is not recommended and
can be error-prone if the order of the list changes unexpectedly. Let's assume the fol-
lowing:
containers:

- name: nginx

- name: database

In this case, you could adjust the name of the database by using --set containers|
1].name=postgres.

The second option would be to pass another values.yaml file. This is particularly useful
if you want to adjust a large number of values and version them via Git. A classic use
case is when you have different configurations for each environment. For example, if
you want to activate autoscaling in the development environment, simply create a val-
ues-dev.yaml file as in Listing 8.18.

autoscaling:
enabled: true

Listing 8.18 Example of "values-dev.yaml|" File

You can then simply extend the command as follows:

helm upgrade --install -f values.yaml -f values-dev.yaml \
humanity-backend .

Good to Know

You can extend the list of values files as per your requirements. The file that you specify
last in the command has the highest priority and overwrites all values of the previous
files and so on.

Other use cases for additional values files include, for example, specific configurations
according to regions, AWS accounts, teams, or other criteria. Using different value
specifications, you can easily provide the individualized setups of a standardized
deployment.

Structure of a Values File

If you develop charts yourself, then a well-structured values file is the be-all and end-all.
However, as is so often the case, there is no one true structure. Depending on the size
of the chart, the values file will be different or even change in the course of develop-

376 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

8.2 Reading and Developing Helm Charts

ment. An example is shown in Listing 8.19. There we have divided the file into applica-
tion settings, service configuration, and advanced settings.

Application settings
application:
name: "nginx-app"
image:
repository: "nginx"
tag: "latest"
replicaCount: 2
Service configuration
service:
type: "LoadBalancer"
port: 80
Advanced settings
advanced:
logginglevel: "INFO"

Listing 8.19 Possible Structure of Values File

You could also define the log level at the root level or generally create a grouping for
your application's environment parameters. Also think about other members of your
team who may need to use your charts. What could they want to change in the chart
without having to touch the templates?

Note

Define appropriate default values for all configuration options. These values should be
selected in such a way that the chart works out of the box, but at the same time can be
easily adapted to specific requirements. This may save you one or two configuration
files.

If you look at the values.yaml file of humanity-backend, you will find various related
blocks and sometimes individual key-value pairs. Most of them are provided with com-
ments so that it is clear what you are configuring. At first glance, the file is clean and
easy to understand.

You can find a beautiful values design there under resources. I have inserted the

excerpt again in Listing 8.20.
resources: {}
limits:

cpu: 100m
memory: 128Mi

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 377

8 Orchestrating Kubernetes Using Helm

requests:
cpu: 100m
memory: 128Mi

Listing 8.20 Resource Configuration in humanity-backend

There is even a commented example of how you can set the configuration. The author
of the chart has left it up to you whether you want to include limits and requests. This
type of value is perfect if you want to make an entire part of the manifest configurable,
which means that you do not have to set each value individually in the template but
can swap out the template part to the values file.

In the deployment, exactly what is defined in values.yaml is simply inserted at the end.
Here is the command from deployment.yaml:

resources:
{{- toYaml .Values.resources | nindent 12 }}

You can find even more values of this type in values.yaml. During development, you
should also consider whether you want to swap out entire parts of the template to the
values file in order to give the user more flexibility later on.

8.2.3 Conditions in Helm Templates

Conditions in Helm allow you to show or hide parts of a template based on certain val-
ues or configurations. A condition checks a value or expression and only executes the
template instructions contained therein if the condition is evaluated as true.

Possible application scenarios include the following:

m Feature flags
Activate or deactivate certain components of a chart based on flags in the val-
ues.yaml file. This is ideal for a step-by-step introduction.

®m Environment-specific configuration
Customize configurations depending on the environment in which you are deploy-
ing.

® Dependencies between resources
Control the configuration of resources based on the creation of another resource in
the same chart. This allows you, for example, to change the replicas of a deployment
when you activate a horizontal pod autoscaler.

Let’s now take a closer look at the latter example.

In humanity-backend, you will find the hpa.yaml file in the templates. The entire object
is surrounded by an if statement, as you can see in Listing 8.21. This statement checks

378 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

8.2 Reading and Developing Helm Charts

whether the autoscaling.enabled value is set to true, which means that the horizontal
pod autoscaler is only generated if you set this value to true.

{{- if .values.autoscaling.enabled }}

{{- end }}

Listing 8.21 Conditions in "hpa.yaml" File

The default values in values.yaml can be found in Listing 8.22. Activate the flag there
and run the helm template . command. Helm should now also display the HPA object.

autoscaling:
enabled: false
minReplicas: 1
maxReplicas: 100
targetCPUUtilizationPercentage: 80

Listing 8.22 Autoscaling Values

The hpa.yaml file is not the only template in this chart that uses this flag. In deploy-
ment.yaml, you will find the code from Listing 8.23 because the configuration of the
replicas is deactivated in the deployment as soon as an HPA object is created. This
makes sense in this case, because you no longer want to define a fixed number of repli-
cas but instead want to use autoscaling.

Note

If an object is not activated by a flag, then the remaining values used under this object
are not actually necessary. You should still set default values in values.yaml during
development so that the user of a chart simply needs to set the flag to true.

{{- if not .values.autoscaling.enabled }}
replicas: {{ .Values.replicaCount }}

{{- end }}
Listing 8.23 Dependence of Flag for "deployment.yaml|"

As in every programming language, you also have the option of defining an else for
every if. An example of this is shown in Listing 8.24. This is very useful if, for example,
you want to implement a new API version of the object and use a flag to control which
option is active.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 379

8 Orchestrating Kubernetes Using Helm

{{- if .values.autoscaling.enabled }}
Manifests for autoscaling

{{- else }}
Alternative setup if autoscaling is not activated
{{- end }}

Listing 8.24 Example of Else Statement

The if statement is also an existence check. In the hpa.yaml file, you will find the code
from Listing 8.25. This code is inserted into the manifest only if the autoscaling.tar-
getCPUUtilizationPercentage parameter is set.

{{- if .values.autoscaling.targetCPUUtilizationPercentage }}
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: {{ .Values.autoscaling
.targetCPUUtilizationPercentage }}

{{- end }}

Listing 8.25 Sample Existence Check

Just try it out! Set some different values, think about what the end result should look
like, and check it using the helm template . command. Conditions are a powerful tool to
make your Helm charts more flexible and reusable.

8.2.4 Other Operations and Control Structures

In addition to the basic if statements, Helm templates provide a variety of advanced
operations and control structures that further increase flexibility. In this section, we’ll
look at some of these advanced techniques and how they can be applied in real life.

With Statement

The need to repeatedly specify long or complex paths to access certain object proper-
ties can impair the readability of configuration files and make them more confusing.

The with statement allows you to set the context for the block in which it is used to a
specific value. By defining a local context using the with statement, you can refer to the
immediate properties of the context object without specifying the full path.

Let's assume you have a deployment and want to structure the values as in Listing 8.26.

380 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

8.2 Reading and Developing Helm Charts

application:
name: "nginx-app"
image:
repository: "nginx"
tag: "latest”
replicaCount: 2

Listing 8.26 Values for Deployment
Your deployment will look like Listing 8.27 without the with statement. In each param-

eter, you use application repeatedly to refer to the corresponding object in the values
file.

apiversion: apps/vl
kind: Deployment

metadata:
name: {{ .Values.application.name }}
spec:
replicas: {{ .Values.application.replicaCount }}
template:
metadata:
labels:
app: {{ .Values.application.name }}
spec:
containers:

- name: {{ .Values.application.name }}
image: "{{ .Values.application.image.repository }}:{{
.Values.application.image.tag }}"

Listing 8.27 "deployment.yaml" File without "with" Statement

If you use with to set the context for the deployment to application, your deploy-
ment.yaml file will look like Listing 8.28. As you can see, this makes the lines clearer and
avoids unnecessary repetition.

{{- with .values.application }}
apiVersion: apps/vl
kind: Deployment

metadata:
name: {{ .name }}
spec:
replicas: {{ .replicaCount }}
template:
metadata:

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 381

8 Orchestrating Kubernetes Using Helm

labels:
app: {{ .name }}
spec:
containers:
- name: {{ .name }}
image: "{{ .image.repository }}:{{ .image.tag }}"
{{- end }}

Listing 8.28 "deployment.yam!" Including "with" Statement

Range Statement

When developing and managing Kubernetes applications, developers are often faced
with the challenge of dynamically configuring and creating multiple resources. The
task becomes particularly complex if the number or configuration of these resources is
supposed to be variable and depends directly on the values in values.yaml. A typical
example is the task of flexibly designing the number of containers within a pod.

You can use the range statement to iterate over lists or maps. Imagine you want to cre-
ate a pod manifest but make the number of containers configurable via the values.yaml
file. Listing 8.29 contains an example that allows you to create three containers within
the pod, using values.yaml from Listing 8.30.

apiVersion: vl
kind: Pod
metadata:
name: multi-container-pod
spec:
containers:
{{- range .Values.containers }}
- name: {{ .name }}
image: {{ .image }}
{{- end }}

Listing 8.29 Pod Manifest with "range" Function

containers:
- name: web-server
image: nginx:latest
- name: app-server
image: myapp:1.2.3
- name: helper
image: helper:latest

Listing 8.30 "values.yaml" for "range" Statement

382 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

8.2 Reading and Developing Helm Charts

Logical Operators and Comparison Operators

Sometimes a simple if statement is not enough. Helm templates also support the use
of logical operators such as and, or, and not to evaluate complex conditions. Helm also
supports a range of comparison operators such as eq (equal to), ne (not equal to), 1t (less
than), le (less than or equal to), gt (greater than), and ge (greater than or equal to) for
comparing values.

These operators behave as they do in any other programming language. Listing 8.31
contains a few examples to get a feel for this.

{{- if and .values.enabled .Values.production }}
enabled and production are both true

{{- if or .values.beta .Values.preview }}

beta or preview is true

{{- if not .values.disabled }}

{{- if eq .values.environment "production" }}
{{- if 1t .values.replicas 3 }}

Listing 8.31 Example of Operators

8.2.5 Helm Diff for Checking Changes

Helm charts can quickly become complex and confusing due to templating. Especially
when you are working on charts in a team, it is sometimes difficult to see in advance
what the adjustment of a particular value will change. You could then use helm template
to generate and check the result, but there is a nice function that simplifies the compar-
ison for you.

The Helm diff plugin easily shows you the differences between two Helm releases. You
can use it in various scenarios, for example to
®m compare what would change when a release gets updated;

m seethe differences between the deployed version and the version of a chart available
in the repository; or

m see the effects of changes in values.

Good to Know

For one customer, | outsourced the Helm diff plugin to a separate pipeline step that
requires manual approval for certain environments. This helped to identify errors in
advance and to carry out a final review of the changes.

To install the plugin, you need to run the following command:

helm plugin install https://github.com/databus23/helm-diff

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 383

8 Orchestrating Kubernetes Using Helm

For this example, let’s again use humanity-backend from Section 8.1.1. It’s best to deploy
the release again. Now let's activate the horizontal pod autoscaler. Open values.yaml
and change the value of autoscaling.enabled to true. Now you can use Helm diff to see
how the manifests change. To do this, run the following command:

helm diff upgrade humanity-backend . --values values.yaml

Listing 8.32 shows an excerpt from the output of Helm diff. On your console, the lines
that are added should be displayed in green, and those that are removed are marked in
red. You can see that the horizontal pod autoscaler object is added and the replicas
option is removed from the deployment.

default, humanity-backend, HorizontalPodAutoscaler (autoscaling) has been
added:

+ # Source: humanity-backend/templates/hpa.yaml

+ apiVersion: autoscaling/v2

+ kind: HorizontalPodAutoscaler
+ metadata:

+ name: humanity-backend

Listing 8.32 Helm Diff after Activation of Autoscaling

If you are happy with the changes, you can then release the chart as usual.

Note

The use of Helm diff is perfect for precisely such cases. You change a value and as a
result, the templates within several files change as well. Without these tools, such an
interaction can easily be overlooked.

Not only can you use Helm diff to check the changes before a release, but you can also
compare two revisions of a release with each other. This allows you to check what has
changed since the last release during debugging, for example. If you have installed the
update with autoscaling and a second revision of the humanity-backend release is avail-
able, you can use the following command:

helm diff revision humanity-backend 1 2

This command compares revision 1 with revision 2.

384 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

8.3 Developing Custom Charts

8.3 Developing Custom Charts

You have now already dealt with Helm and deployed your first Helm charts in Kuber-
netes. Let’s now look at how you can develop a Helm chart for your own application
and what you should pay attention to.

As you know, you can also use a Helm chart without a repository and simply check it
into the Git repo and roll it out in Kubernetes. This allows you to make use of parame-
terization, but you will lose a major advantage: the reusability of your chart in your
company.

The actual development process for Helm charts is illustrated in Figure 8.9.

Helm Chart

apiVersion: apps/vi

Y

kind: Deployment

Chart gets
created metadata:

Chart gets stored in
repository

Y

Repository

Helm Developer

Chart gets
downloaded

accesses the
chart

Helm performs the
installation

\J

>HELM
Application M
Developer

Figure 8.9 Development Process of Helm Charts

Let's assume you're developing a Helm chart for a Postgres database. This database is
not only used by yourself; it could also be used in other projects within your company.

Instead of thinking about a perfect Postgres setup for each project, you could think
about it once and provide a Helm chart for everyone else. This chart could also be pro-
moted as an inner-sourcing project in which several teams in your company can partic-
ipate.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 385

8 Orchestrating Kubernetes Using Helm

If you store the chart in a repository, other developers can easily use it and customize
it with values. In this section, we want to take a closer look at the development process,
which means you will learn what you need to develop a Helm chart that can be used by
others as well. Finally, we will look at the modularity of Helm and how you can write
even better charts using dependencies.

8.3.1 The Framework of Your Helm Chart

To develop a chart that other developers also want to use, you need a good framework.
Two things are important in this respect:

®m A well-maintained Chart.yaml file

m Helpful release notes

The Chart.yaml file contains all the essential metadata about the chart. If you develop a
chart yourself, you should also maintain it. Here are some useful values you should fill
in:
® jpiVersion
The APIversion of the chart that Helm uses to interpret the format and functionality
of the chart. In the examples here, it is v2 for Helm 3 charts.

B name
The name of the Helm chart. This name must be unique within a Helm repository.

®m version
The version of the chart that must follow the semantic versioning schema (SemVer).

® description
A brief description of your chart and its function.

®m keywords
A list of keywords associated with the chart. This can help to find the chart in
searches.

= home
A URL pointing to the homepage of the project.

® sources
A list of URLs that reference the source code of the software project packaged in the
chart.

® dependencies
A list of dependencies on other charts. Here you can specify which other charts are
required for this chart to work. We'll take a closer look at the dependencies in Section
833.

B maintainers
A list of responsible developers so that the user of the chart knows who to contact.

386 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

8.3 Developing Custom Charts

Note

There are other options for the Chart.yaml file. The complete overview can be found at
the following address: https://helm.sh/docs/topics/charts/.

You have already seen the release notes for other charts such as Jenkins. In the release
notes, you should include information such as

® Notes on user guidance
Clear instructions on how the user can interact with the deployed application.

® Postdeployment steps
Inform your users about the necessary steps after installation.

® Important notes
Share information that is relevant to the security, configuration, or usage of the
chart.

In the case of Jenkins, this was the output of the default password; in your case, it might
be something else.

Release notes are defined in a special file called NOTES.txt within the templates direc-
tory of your Helm chart. The syntax supports the templating engine of Helm, so you
can dynamically insert information based on the values of the installation.

Just download the Jenkins chart and open the release notes to get inspired. Listing 8.33
shows an excerpt from the release notes.

CHART NAME: {{ .Chart.Name }}

CHART VERSION: {{ .Chart.Version }}

APP VERSION: {{ .Chart.AppVersion }}

** Please be patient while the chart is being deployed **

{{- if .values.ingress.enabled }}

1st Get the Jenkins URL and associate its hostname to your cluster external
IP:

Listing 8.33 Excerpt from NOTES.txt File for Bitnami Jenkins

8.3.2 Packaging Charts and Storing Them in the Repository

Once you have developed and tested your own Helm chart, the next step is to prepare
it for distribution and use. An essential part of this process is packaging your chart and
storing it in a Helm repository. This makes your chart easy to find, versioned, and
accessible to other users or teams within your organization. For our example, we use
ChartMuseum, a lightweight, easy-to-use tool that serves as a repository for the Helm
charts.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 387

https://helm.sh/docs/topics/charts/

8 Orchestrating Kubernetes Using Helm

A Helm repository has a very simple structure. You can think of it as a collection of
packages that contain Helm charts. These repositories allow you to share and publish
charts, similar to code in a Git repository. By storing your chart in a repository, you
ensure the following:

® Simple versioning
Each version of your chart can be saved in the repository, allowing users to access
specific versions.

® A simple distribution
Development teams from your company can easily find and use your charts.
® A clear dependency management

Charts can build on each other. Helm pulls the dependencies from the repositories
and takes care of the individual steps.

Installing ChartMuseum

Let's start with the installation of ChartMuseum on Minikube. To install the tool, you
must first add the Helm repository of ChartMuseum:

helm repo add chartmuseum https://chartmuseum.github.io/charts
helm repo update

Then you can install the Helm chart via Lens. To do this, proceed as described in Section
8.1.4. You should be able to find and install the chart as shown in Figure 8.10. It is essen-
tial that you set the DISABLE_API parameter to false in the ChartMuseum values. This is
the only way you can upload Helm charts later via the APIL.

Chart: chartmuseum/chartmuseum

Host your own Helm Install
a Chart Repository

3.10.2

chartmuseum helm

charts repo

Figure 8.10 Installing ChartMuseum via Lens

388 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

8.3 Developing Custom Charts

Note

After adding the tool via helm repo, you may need to restart Lens so that it also scans
the new Helm repos and displays ChartMuseum.

Once the installation has completed, you'll want to forward a port to the ChartMuseum
service via Lens. I have forwarded port 8080 from my computer for this purpose. Now
you are ready to file Helm charts in ChartMuseum.

Packaging and Uploading a Helm Chart

In this example, we’ll use humanity-backend to package the chart immediately and load
it into ChartMuseum. For this purpose, you need to go to the chart folder and run the
following two commands:

helm package .
curl --data-binary "@humanity-backend-0.1.0.tgz" \
http://localhost:8080/api/charts

The first command creates the humanity-backend-0.1.0.tgz archive from your Helm
chart. The curl command uploads the chart to ChartMuseum.

Note

Helm will take all files in the folder with it when helm package is executed. Similar to
Git, however, Helm takes the .helmignore file into account. Here you can add all folders
and files Helm is supposed to ignore when creating the package.

Using a Chart from ChartMuseum

Finally, you'll want to check whether the chart really exists in ChartMuseum and
whether you can use it. To do this, you first need to add your ChartMuseum as a repos-
itory for Helm. Simply use the following command:

helm repo add my-chartmuseum http://localhost:8080/
Now you should be able to find your chart among the Helm charts in Lens, as shown in

Figure 8.11. You have now successfully stored your own Helm chart in a private reposi-
tory and you can try to install it.

Note

We have created and used ChartMuseum without authentication. However, you
should control access to it in your company. Talk to your cluster admins about this as

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 389

8 Orchestrating Kubernetes Using Helm

they may already have another repository solution in use that is connected to an
identity management system and therefore provides rights management, because
it should be obvious that anyone who can access the Helm charts can carry out far-
reaching manipulations. Adequate protection is absolutely essential, aside from test
setups and private computers.

Chart: my-chartmuseum/humanity-backend

A Helm chart for Install
Kubernetes

Figure 8.11 “humanity-backend” Chart in ChartMuseum

8.3.3 Managing Dependencies in Helm Charts

Using Helm, you have the option of having your charts build on each other. By defining
a dependency on another chart, you can create modular Helm charts. This approach
makes it possible to create reusable components that can be used in different projects
or under different conditions. It promotes the reuse of code, reduces redundancies, and
facilitates the maintenance of complex Kubernetes applications. In this section, we’ll
look at how Helm handles the management of dependencies between charts.

Figure 8.12 shows what such a dependency can look like. You have stored a versioned
chart of your application in a repository. From there, other charts can reference it and
use your application in your chart. Use cases for this include the following:
= Multichart projects
These projects have a large chart that you can use to deploy all components of an
application. The backend, frontend, and database are completely managed and orga-
nized in one chart.
® Customizing
In these cases, you want to customize a chart according to your needs and add addi-
tional Kubernetes resources.

We’'ll take a closer look at both use cases in the course of this section.

390 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

8.3 Developing Custom Charts

Application
Chart

A

Dependence

Umbrella Chart

Application

Figure 8.12 Dependencies on Charts

Good to Know

Charts that use other dependencies are often referred to as umbrella charts.

Adding and Updating Dependencies
As an example of a dependency, let’s now extend humanity-backend with a Postgres
database. We'll use the ready-made chart from Bitnami and enter the dependency in
Chart.yaml, as shown in Listing 8.34.

dependencies:
- name: postgresql
version: "14.1.2"
repository: "https://charts.bitnami.com/bitnami/"

Listing 8.34 Dependency in "Chart.yaml" File

Then you need to run the following command:

helm dependency update

Helm will now carry out several steps. First, it downloads the Helm chart of the Post-
gres database and stores it in the charts path. Helm will then create a file named
Chart.lock, which looks like the one shown in Listing 8.35.

dependencies:
- name: postgresql
repository: https://charts.bitnami.com/bitnami/

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 391

8 Orchestrating Kubernetes Using Helm

version: 14.1.2
digest: sha256:9133c60dc762bdd233266d780db91285710416033503fc4032ac43bel7d18f
generated: "2024-02-21T09:58:03.050996+01:00"

Listing 8.35 Chart.lock

This file saves the installed dependency with a hash value that you can use later, such
as in the pipeline, to reinstall the dependencies with the same version. Using the helm
dependency build command, you can install exactly the version that was recorded in the
Chart.lock file. This means that you do not need to check the subchart into the Git repo,
but you can be sure that the wrong version is not installed.

If you want to update the chart now, you have to increase the version of Postgres in
Chart.yaml file. In this case, I increase the value to version 14.1.3 and run the helm
dependency update command again. The old Helm chart will be replaced with the new
version, and the Chart.lock file will be updated.

You should update the dependencies regularly so that you also receive security
updates. Unfortunately, every subchart update process is a little time-consuming as
you have to look at the changes and check whether anything has changed in the config-
uration. This can be very time-consuming for large version jumps.

Good to Know

The URL of the repository is the same as the one you find when using helm repo 1s,
because we have entered it there as a local repo. Helm needs the correct URL to the
repository here, as the name of the local repo can vary from developer to developer.

Configuring Subcharts

The subcharts are primarily configured using the values.yaml file of the main chart.
Each subchart has its own values.yaml file that defines default values for the subchart.
To overwrite or adjust these default values, you need to define values for the subcharts
in your own values.yaml file in the main chart. To do this, you want to use the name of
the subchart as the key.

In this example with the Postgres database, you can add the configuration from Listing
8.36 in values.yaml to customize the user name, the password, and the name of the
database. The top postgresqgl key references the subchart, while the underlying keys
can be found in the values.yaml file of the postgres deployment.
postgresql:
global:
postgresql:
auth:
username: "kevinwelter"

392 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

8.3 Developing Custom Charts

password: "test1234"
database: "database"

Listing 8.36 Subchart Configuration in "values.yaml"

If you now roll out your chart, you can see in the Postgres pod that the parameters have
been adopted, as shown in Figure 8.13.

Pod: humanity-backend-postgresql-0 V4

POSTGRES_DATABASE : database
POSTGRES_PASSWORD : test1234

POSTGRES_POSTGRES_PASSWORD :
FJaXE5qt0S

POSTGRES_USER : kevinwelter

Figure 8.13 Postgres Environment Parameter

Note

Installing the dependency places the subchart under charts. There you can simply look
at the values.yaml file and determine which configurations you want to adjust.

Multichart Project

For a real-life example of the use of dependencies, let’s look at a Helm chart that serves
as a wrapper for several subcharts. This allows you to deploy and manage an applica-
tion consisting of multiple independent components as a whole. The structure could
then look like Listing 8.37. In this example, my-application consists of two subcharts—
frontend and backend—which are defined as dependencies in the Chart.yaml file of my-
application. Users can install my-application and Helm takes care of the deployment of
the frontend and backend subcharts based on their configurations.

my-application/
}— Chart.yaml

}—‘ values.yaml
L— charts/

}— frontend/
| L Chart.yaml
L— backend/

L Chart.yaml

Listing 8.37 Sample Structure of Multichart Project

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 393

8 Orchestrating Kubernetes Using Helm

Customizing Charts

In addition to using subcharts and multichart projects, there are situations in which
you’ll want to customize a Helm chart to your specific needs. This may be the case if
you need to integrate additional Kubernetes resources or adapt existing configura-
tions that are not directly covered by the default chart.

For one customer, for example, we enriched the default chart of the Kyverno tool with
policies that are to be checked globally for the company. Individual projects then built
on this “corporate Kyverno” and implemented additional policy extensions, which
were then rolled out in the clusters.

Another example is the extension of an application with ConfigMaps for monitoring
purposes. To do this, you can use a default chart as a dependency and create additional
ConfigMaps for the Prometheus operator. This means that the default chart can be
delivered directly with metrics and alerts.

Listing 8.38 shows an example of what such a setup can look like.

my-kyverno/
— Chart.yaml
— values.yaml
— charts/
L— kyverno/
}— Chart.yaml
L— ... # More files and folders of the Kyverno chart
— templates/
%— policies.yaml # Your individual policies
- prometheus-metrics.yaml # Your ConfigMap for Prometheus

Listing 8.38 Folder Structure for Chart Customization

8.4 Conclusion

Now you are familiar with Helm charts and their dependencies and have the tools you
need to manage your Kubernetes applications effectively. The ability to define depen-
dencies in your Helm charts helps you to make your applications modular and main-
tainable. You do not have to reinvent the charts; you can rely on other projects and
supplement and adapt your configuration through customizations.

Based on the skills you have now learned, you can approach your Kubernetes applica-
tions with a new perspective. When doing so, you should place your focus on modular-
ity, reusability, and easy manageability. Use these options to better structure and
manage your applications. Using Helm, you have the control and flexibility to design
your deployments exactly as you want them. Happy Helming!

394 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

The Author

Kevin Welter is the co-founder and managing director of
HumanITy GmbH, which supports large corporations such as
Deutsche Bahn, EnBW, and Deutsche Telekom with software
development and associated processes. Kevin's goal is to make
digitalization simple and attractive for medium-sized busi-
nesses.

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 395

© 2025 by Rheinwerk Publishing Inc., Boston (MA)

Index

A
Access control 313
accessMode
ReadOnlyMany 281
ReadWriteMany 281
ReadWriteOnce 281
ReadWriteOncePodocceeconnecerenneces 281
Adapter 99
Admission controller 306
Affinity 124
Alertmanager 343
Ambassador 99, 109
Annotation 97,118,136
Antiaffinity 124,128
API 248
API call flow 51
apiVersion 104
Architecture 45
Atomic 33
Audit 301
Authelia 181
Authentication 300
Authorization 300
B
Backend 32
Batch execution 42
Borg 22
Buildah 101
Busybox 107
C
Capabilities 301
Chaos monkey 29
ChartMuseum 387
cloud-controller-manager ... 48
Cloud Native Computing Foundation 23
Cluster autoscaler 341
ClusterIP 175
ClusterRole 313
ClusterRoleBinding 313
Common Expression Language (CEL) 254
Compliance 300
Components 45
Config management 42

Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

ConfigMap 97,152, 249
environment parameters c...... 158
Kubernetes API 162
volume 155

Container 23

containerd 102

Container engines 101

Container Runtime Interface (CRI) 101

Container status
running 114
terminated 114
waiting 114

Container storage interface (CSI) 278,281

Continuous deployment (CD)cccoueeeeerreenn. 213

Control plane 45

Conway’s law 38,201

CRI-O 102

Cron job 246

Custom resource (CR)ooocommvvommrvermrrveensreenenns 248

Custom resource definition (CRD) 235,248

D

DaemonSet 235,236

Dashboard 78

Data center 23

Data security 300

default (namespace) 68

Dependents 140

Deployment 97,138
creating 142
rollback 150
rolling updates 144

DevOps 28

distribution-spec 102

Docker 101

Docker Desktop 54

Dockerfile 104

Downward API 235, 258

Drift detection 224

E

Endpoints controller 49

Ephemeral volume 289

Error handling 22

etcd 47

397

Index

Eviction 134 Horizontal pod autoscaler (HPA)ccccou..... 335
ExternalName 175,179 Horizontal scaling 42
Hub and spoke 52
F
|
Falco 236
Feature flags 378 Idempotence 191
Field selectors 121 Image 61
Flask 330 image-spec 102
Folder structure 204 Ingress 97,171,180
Frontend 32 Init container 110
fzf 78
J
G
Job 235,239
Git JSON object 136
branch 202
branching 207 K
commit 202
Kubernetes manifestsccouuiuinsnenneee. 203 kube-apiserver 47
merge 202 Kubeconfig file 65
repository 202 kube-controller-manager ... 48
tag 202 kubectl
Git flow 208 alias 70
GitHub flow 209 autocompletion 64
GitLab flow 210 commands 68
GitOps 223 configuration 65
Google 22 installing 61
Governance 300 Linux 62
Graceful shutdown 115 macOS 62
Grace period 116,117 Minikube 61
Grafana 343,353 secrets 167
gRPC 101 versions 62
Windows 63
H kubectl] api-resources 76
kubectl apply 73
Headless 175 kubectl create 71
Health check 326 kubectl delete 73
Helm kubectl describe 74
chart 358 kubectl exec 75
ChartMuseum 387 kubectl get 70
dependencies 378 kubectl logs 74
environment-specific configuration 378 kubectl port-forward 75
feature flags 378 kubectl replace 72
Lens 85 kubectx 77
release 358 Kubelet 50
repository 358 kube-node-lease 68
templating 225 kubens 77
values.yaml 359 Kube proxy 50
High availability 43 kube-public 68
History 21 Kubernetes
Homebrew 54 advantages 42
398 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

Index

Kubernetes (Cont.) N
dashboard 61
disadvantages 44 Namespace 67,77
features 41 Naming convention 207
promise 37 Network address translation (NAT) .. 173
Kubernetes Test Tool (KUTTL)ccc.ccomvvennnen. 215 Network file system (NFS) e 279
kube-scheduler 47 Never Outgrow 39
kube-system 68 Node affinity 124
Kustomize 225 Node controller 49
Kyverno 308 NodePort 175,178
NodeSelector 122
L NoOps 39
Label 97,118 QO
Least privileged 302
Lens Open Container Initiative (OCI)ccoocecevuneen. 101
adding clusters 88 OpenLens 81
cluster metrics 83 Operators 255
custom resource definitions ... 88 architecture 256
custom resources 88 PostgreSQL 257
Helm 85 Overcommitment 323
licensing terms 81 Owners 140
pod action bar 87
port forwarding 83 P
resources 86
terminal 87 Pause container 100
libcontainer 102 Persistence 32
Lift and shift 321 Persistent volume 273
Limit range 312,325 csi 278
Liveness probe 326,327 fc 278
LoadBalancer 175 hostPath 278
Load balancing 41 iscsi 278
Log collector 107 local 278
Logging 301 nfs 278
storage types 278
M Persistent volume claim e 273
Pets and cattle 28
Masters 45 Pi cluster 89
maxsurge 147 hardware 90
maxUnavailable 147 installation 92
Minikube Kubeconfig file 93
container registry 59 SSH 92
controlling 58 Wi-Fi 91
dashboard 78 Pipeline
kubectl 61 architecture 218
launching 58 Kubernetes 213
Linux 55 linting 214
macOS 54 Planet Scale 37
Windows 57 Pod 96, 98, 104
Mitigations 299 communication 173
Monitoring 342 Pod affinity 128
Monorepo 211 Podman 101
Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 399

Index

Pod management policy
OrderedReady 269
Parallel 269

Pod phases
Failed
Pending
Running
Succeeded
Unknown

Pod priority

Pod resources

Pod security admission

Pod security policy

Pod shell

Policies

Policy management 300
Port forwarding 75, 83
Preemption 235,261
PriorityClass 261
Privileges 301
Projected volumecoeenecemncrrnecens 291, 295
Prometheus 343
Q

Queue worker 239
Quorum 47
R

RabbitMQ 242
Raft 47
Raspberry Pi 89
Readiness probe 326,327
Reconciliation loop 190
ReplicaSet 97,138,140
Replication controller 49
Resource management ... 22,301
Resource quota 311, 325
Restart policy 114
Retention policy 272
Role 313,315,317
RoleBinding 313,317
Rollback 41,150
Rolling updates 144
Rollout 41
runC 102
Run K8s Anywhere 40
runtime-spec 102

S
Scalability 43
Secret management 42
Secrets 97,152
container registry 168
environment parameters ... 165
kubectl 167
volume 166
Security context 302
sed 225
Selectors 119
Self-healing 42,326
Separation Of CONCEINScccorerrecrereeecrrerecnnns 31
Service 97
communication 174
end point 174
load balancing 174
service discovery 174
Service account 315
Service account controller ... 49
Service discovery 41
Sidecar 99, 106, 109
Single point of failure 26
Single source of truth 223
Software-defined storage ... 265
SonarQube 299
Startup probe 326,327
Stateful 29
StatefulSet 266
OnDelete 270
RollingUpdate 270
Stateless 29
Storage 278
Storage orchestration 42
Subjects 315
systemd 238
T
Taint 133
NoExecute 134
NoSchedule 134
PreferNoSchedule 134
Templating
Helm 225
Kustomize 225
Tolerations 133

400 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

Index

U w
UID 301 Winget 57
Workers 45,49
Vv
Y
Versioning 263
Version management ... 200 YAML
Vertical pod autoscaler (VPA)cccoooeeeceeeeenee 339 alias 196
Virtual machine 24 anchor 196
volumeBindingMode 284 comments 199
Volume snapshot 291 data types 194
Vulnerability management ... 300 indentations 194
linting 199
single-line 197
syntax 192
weaknesses 197
yq 225
Personal Copy for Jaleel Hussain, alex76alex43@gmail.com 401

Service Pages

The following sections contain notes on how you can contact us.

Praise and Criticism

We hope that you enjoyed reading this book. If it met your expectations, please do recom-
mend it. If you think there is room for improvement, please get in touch with the editor of
the book: rachelg@rheinwerk-publishing.com. We welcome every suggestion for improve-

ment but, of course, also any praise!

You can also share your reading experience via Twitter, Facebook, or email.

Supplements

If there are supplements available (sample code, exercise materials, lists, and so on), they
will be provided in your online library and on the web catalog page for this book. You can
directly navigate to this page using the following link: http://www.rheinwerk-computing.

com/5556 Should we learn about typos that alter the meaning or content errors, we will
provide a list with corrections there, too.

Technical Issues

If you experience technical issues with your e-book or e-book account at Rheinwerk Com-
puting, please feel free to contact our reader service: support@rheinwerk-publishing.com.

About Us and Our Program

The website http://www.rheinwerk-computing.com provides detailed and first-hand

information on our current publishing program. Here, you can also easily order all of our
books and e-books. Information on Rheinwerk Publishing Inc.and additional contact options
can also be found at http://www.rheinwerk-computing.com.

mailto:rachelg@rheinwerk-publishing.com
mailto:support%40rheinwerk-publishing.com?subject=
http://www.rheinwerk-computing.com
http://www.rheinwerk-computing.com

Legal Notes

This section contains the detailed and legally binding usage conditions for this e-book.

Copyright Note

This publication is protected by copyright in its entirety. All usage and exploitation rights
arereserved by the author and Rheinwerk Publishing; in particular the right of reproduction
and the right of distribution, be it in printed or electronic form.

© 2025 by Rheinwerk Publishing, Inc., Boston (MA)

Your Rights as a User

You are entitled to use this e-book for personal purposes only. In particular, you may print
the e-book for personal use or copy it as long as you store this copy on a device that is solely
and personally used by yourself. You are not entitled to any other usage or exploitation.

In particular, it is not permitted to forward electronic or printed copies to third parties.
Furthermore, it is not permitted to distribute the e-book on the Internet, in intranets, or
in any other way or make it available to third parties. Any public exhibition, other publica-
tion, or any reproduction of the e-book beyond personal use are expressly prohibited. The
aforementioned does not only apply to the e-book in its entirety but also to parts thereof
(e.g., charts, pictures, tables, sections of text).

Copyright notes, brands, and other legal reservations as well as the digital watermark may
not be removed from the e-book.

Digital Watermark

This e-book copy contains a digital watermark, a signature that indicates which person
may use this copy. If you, dear reader, are not this person, you are violating the copyright.
So please refrain from using this e-book and inform us about this violation. A brief email to
info@rheinwerk-publishing.com is sufficient. Thank you!

Trademarks

The common names, trade names, descriptions of goods, and so on used in this publication
may be trademarks without special identification and subject to legal regulations as such.

All products mentioned in this book are registered or unregistered trademarks of their
respective companies.

mailto:info%40rheinwerk-publishing.com?subject=

Limitation of Liability

Regardless of the care that has been taken in creating texts, figures, and programs, neither
the publisher nor the author, editor, or translator assume any legal responsibility or any
liability for possible errors and their consequences.

	Cover
	Contents
	Preface
	Structure
	What You Should Already Know Now
	What You Will Learn
	Important to Know

	Book Resources

	1: Introduction to Kubernetes
	1.1 Basic Principles and Concepts: Why Use Container Clusters at All?
	1.1.1 Why Use Containers at All?
	1.1.2 Why You Need a Container Management Tool
	1.1.3 Of Pets and Cattle
	1.1.4 Stateless and Stateful Applications
	1.1.5 Separation of Concerns

	1.2 Kubernetes, the Tool of Choice
	1.2.1 Why Do Companies Want to Use Kubernetes?
	1.2.2 The Promise of Kubernetes
	1.2.3 Major Features
	1.2.4 For Which Companies Is Kubernetes Useful?
	1.2.5 Which Companies Should Not Use Kubernetes?

	1.3 Architecture and Components
	1.3.1 Master Nodes
	1.3.2 Worker Nodes
	1.3.3 API Call Flow

	1.4 A Kubernetes Cluster on Your Computer
	1.4.1 Minikube on macOS
	1.4.2 Minikube on Linux
	1.4.3 Minikube on Windows
	1.4.4 Launching Minikube
	1.4.5 Controlling Minikube
	1.4.6 Possible Errors when Starting Minikube
	1.4.7 Container Registry of Minikube

	1.5 Interaction with Kubernetes via the Command Line and Dashboard
	1.5.1 Minikube Comes With kubectl
	1.5.2 Installing kubectl
	1.5.3 Accessing the Cluster Using Kubeconfig
	1.5.4 Namespaces
	1.5.5 kubectl Commands
	1.5.6 Switching Clusters and Namespaces Easily
	1.5.7 The Kubernetes Dashboard

	1.6 Lens: The IDE for Kubernetes
	1.6.1 Overview of Lens
	1.6.2 Advantages over the Kubernetes Dashboard
	1.6.3 The Lens Reference

	1.7 The Kubernetes Cluster from Raspberry Pis
	1.7.1 Choosing the Right Raspberry Pis
	1.7.2 Installation of Kubernetes
	1.7.3 Using the Kubeconfig File of the Pi Cluster

	2: Basic Objects and Concepts in Kubernetes
	2.1 Pod and Container Management
	2.1.1 Container Engines
	2.1.2 Your First Own Pod
	2.1.3 Multiple Containers within a Pod
	2.1.4 Communication between Containers
	2.1.5 Init Container
	2.1.6 Pod Phases and Container Statuses
	2.1.7 The Restart Policy of Pods
	2.1.8 When the Pod Comes to an End

	2.2 Annotations and Labels
	2.2.1 Using Labels and Selectors
	2.2.2 Field Selectors
	2.2.3 NodeSelector
	2.2.4 Node Affinity and Antiaffinity
	2.2.5 Pod Affinity and Antiaffinity
	2.2.6 Taints and Tolerations
	2.2.7 Annotations

	2.3 Deployments and ReplicaSets
	2.3.1 The Role of ReplicaSets
	2.3.2 Creating Deployments
	2.3.3 Rolling Updates via the Deployment Object
	2.3.4 Rollback via Deployment

	2.4 ConfigMaps and Secrets
	2.4.1 What Are ConfigMaps?
	2.4.2 What Are Secrets?

	2.5 Establishing a Communication with Services and an Ingress
	2.5.1 Communication between Pods
	2.5.2 Communication via a Service
	2.5.3 Communication via Ingress

	3: Everything as Code: Tools and Principles for Kubernetes Operations
	3.1 Declarative Configurations
	3.2 YAML: The Language for Kubernetes
	3.2.1 Basics of YAML Syntax
	3.2.2 Data Types in YAML
	3.2.3 Anchors and Aliases
	3.2.4 Single-Line YAML Notation in Documentation
	3.2.5 Weaknesses of YAML
	3.2.6 Tips for Practical Use

	3.3 Version Management of Kubernetes Manifests
	3.3.1 Using Git
	3.3.2 Managing Numerous Kubernetes Manifests
	3.3.3 Branching Strategies
	3.3.4 Division of the Repositories

	3.4 Continuous Integration and Continuous Delivery
	3.4.1 Pipeline Steps for Kubernetes
	3.4.2 Pipeline Architectures
	3.4.3 GitOps

	3.5 Templating Using Kustomize
	3.5.1 Basic Principles of Kustomize
	3.5.2 Resource Generator
	3.5.3 More Kustomize Built-Ins
	3.5.4 Conclusion on Kustomize

	4: Advanced Objects and Concepts in Kubernetes
	4.1 DaemonSets
	4.2 Jobs in Kubernetes
	4.2.1 Real-Life Kubernetes Jobs
	4.2.2 Queue Worker with RabbitMQ
	4.2.3 Kubernetes CronJobs

	4.3 Custom Resources and Custom Resource Definitions
	4.3.1 Example: A Monitoring CR
	4.3.2 Validation in CRD
	4.3.3 Operators

	4.4 Downward API
	4.5 Pod Priority and Preemption
	4.6 Versioning Objects in Kubernetes

	5: Stateful Applications and Storage
	5.1 Stateful Applications in Kubernetes through StatefulSets
	5.1.1 Pod Management Policy
	5.1.2 Strategies for Updates
	5.1.3 Retention Policy for Persistent Volume Claims

	5.2 Persistent Volumes and Persistent Volume Claims
	5.2.1 Storage Types for PVs
	5.2.2 CSI Drivers for External Storage Media
	5.2.3 Storage Classes and Dynamic PVs
	5.2.4 PostgreSQL as StatefulSet with Persistent Volume

	5.3 Ephemeral Volumes
	5.4 Other Features of Volumes
	5.4.1 Volume Snapshots
	5.4.2 Projected Volumes

	6: Kubernetes Governance and Security: Prepare for Production
	6.1 Pod Security
	6.2 Pod Security Admission
	6.3 Admission Controller
	6.4 Kubernetes Policies
	6.5 Policy Objects
	6.6 Role-Based Access Control in Kubernetes
	6.6.1 Subjects: Users, Groups, and Service Accounts
	6.6.2 Roles and Role Bindings
	6.6.3 Conclusion

	7: Developing Applications for Kubernetes: Ready for Production
	7.1 Managing Pod Resources
	7.2 Readiness, Liveness, and Startup Probes
	7.2.1 How to Define Probes
	7.2.2 Testing Probes Using an Example

	7.3 Scaling and Load Balancing
	7.3.1 Horizontal Pod Autoscaling
	7.3.2 Vertical Pod Autoscaling
	7.3.3 Cluster Autoscaler

	7.4 Monitoring
	7.4.1 Introduction: Prometheus, Grafana, and Alertmanager
	7.4.2 Monitoring on the Pi Cluster

	8: Orchestrating Kubernetes Using Helm
	8.1 Helm: The Kubernetes Package Manager
	8.1.1 Creating a First Helm Chart
	8.1.2 Deploying a Helm Chart via the Command Line Interface
	8.1.3 Setting Up and Managing a Helm Repository
	8.1.4 Deploying a Helm Chart via Lens
	8.1.5 Updating and Deleting Helm Releases
	8.1.6 Downloading Helm Charts from a Repository

	8.2 Reading and Developing Helm Charts
	8.2.1 The Templating Engine and the Language of the Charts
	8.2.2 Configuring Charts with Values
	8.2.3 Conditions in Helm Templates
	8.2.4 Other Operations and Control Structures
	8.2.5 Helm Diff for Checking Changes

	8.3 Developing Custom Charts
	8.3.1 The Framework of Your Helm Chart
	8.3.2 Packaging Charts and Storing Them in the Repository
	8.3.3 Managing Dependencies in Helm Charts

	8.4 Conclusion

	The Author
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (coated_FOGRA39_GCR_bas.icc)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (ISO Uncoated)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /DEU <FEFF005b004200610073006900650072007400200061007500660020002200670061006c0069006c0065006f005f00650062006f006f006b005f007600340022005d0020007a00750072002000450072007300740065006c006c0075006e0067002000650069006e00650072002000660069006e0061006c0065006e0020005000440046002d004400610074006500690020006600fc0072002000640065006e00200045002d0042006f006f006b002d0057006f0072006b0066006c006f0077002e0020005a00690065006c0020006900730074002000650073002c00200064006900650020004400610074006500690067007200f600df00650020006d00f60067006c006900630068007300740020006b006c00650069006e0020007a0075002000680061006c00740065006e00200028006400750072006300680020005200470042002d0046006100720062006500200075006e0064002000420069006c0064006b006f006d007000720069006d0069006500720075006e00670029002c0020006400690065002000420069006c0064007100750061006c0069007400e40074002000610062006500720020006700750074002000650072006b0065006e006e0062006100720020007a0075002000680061006c00740065006e002e00200073005200470042002d004600610072006200700072006f00660069006c00200077006900720064002000650069006e00670065006200650074007400650074002e002000480079007000650072006c0069006e006b0073002000770065007200640065006e0020006700670066002e0020006d0069007400670065006e006f006d006d0065006e002e0020004b006f006d007000610074006900620069006c0069007400e400740020006100750066002000500044004600200031002e0036002000650072006800f600680074002e0020004b006f006d007000720069006d0069006500720075006e006700200061007500660020004f0062006a0065006b0074006500620065006e00650020004d006100780069006d0061006c002e0020004100750066006c00f600730075006e0067002000610075006600200034003500300020006400700069002e00200053006500690074002000760035003a0020005300740061006e00640061007200640070006100700069006500720066006f0072006d006100740020006b006f00720072006900670069006500720074002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [450 450]
 /PageSize [595.276 841.890]
>> setpagedevice

