


Rheinwerk Computing

The Rheinwerk Computing series offers new and established professionals comprehen-

sive guidance to enrich their skillsets and enhance their career prospects. Our publica-

tions are written by the leading experts in their fields. Each book is detailed and hands-on 

to help readers develop essential, practical skills that they can apply to their daily work.

Explore more of the Rheinwerk Computing library!

Bernd Öggl, Michael Kofler 

Docker: Practical Guide for Developers and DevOps Teams

2023, 491 pages, paperback and e-book 
www.rheinwerk-computing.com/5650

Bernd Öggl, Michael Kofler

Git: Project Management for Developers and DevOps Teams

2023, 407 pages, paperback and e-book 
www.rheinwerk-computing.com/5555

Michael Kofler 

Linux: The Comprehensive Guide

2024, 1178 pages, paperback and e-book
www.rheinwerk-computing.com/5779

Michael Kofler

Scripting: Automation with Bash, PowerShell, and Python

2024, 470 pages, paperback and e-book
www.rheinwerk-computing.com/5851

Johannes Ernesti, Peter Kaiser

Python 3: The Comprehensive Guide

2022, 1036 pages, paperback and e-book
www.rheinwerk-computing.com/5566

www.rheinwerk-computing.com



Kevin Welter

Kubernetes
Practical Guide for Developers and DevOps Teams



Imprint

This e-book is a publication many contributed to, specifically:

Editor   Rachel Gibson
Acquisitions Editor   Hareem Shafi
German Edition Editor   Dr. Christoph Meister
Translation   Winema Language Services, Inc.
Copyeditor   Melinda Rankin
Cover Design   Graham Geary
Photo Credit   Shutterstock: 1716623578/© hxdbzxy
Layout Design   Vera Brauner
Production E-Book   Kelly O’Callaghan
Typesetting E-Book   SatzPro, Germany

We hope that you liked this e-book. Please share your feedback with us and read the  
Service Pages to find out how to contact us.

The Library of Congress has cataloged the printed edition as follows:
Names: Welter, Kevin, author.
Title: Kubernetes : practical guide for developers and DevOps teams / Kevin
Welter.
Description: 1st edition. | Bonn ; Boston : Rheinwerk Publishing, 2024. |
Includes index.
Identifiers: LCCN 2024034038 | ISBN 9781493226467 (hardcover) | ISBN
9781493226474 (ebook)
Subjects: LCSH: Virtual computer systems. | Cloud computing. | Application
software--Development--Computer programs. | Kubernetes.
Classification: LCC QA76.9.V5 W45 2024 | DDC 005.4/3--dc23/eng/20240802
LC record available at https://lccn.loc.gov/2024034038

ISBN 978-1-4932-2646-7 (print) 
ISBN 978-1-4932-2647-4 (e-book) 
ISBN 978-1-4932-2648-1 (print and e-book)

© 2025 by Rheinwerk Publishing, Inc., Boston (MA) 
1st edition 2025 
1st German edition published 2024 by Rheinwerk Verlag, Bonn, Germany





Contents

Preface ....................................................................................................................................................... 13

1 Introduction to Kubernetes 21

1.1 Basic Principles and Concepts: Why Use Container Clusters at All? ............... 21

1.1.1 Why Use Containers at All? ................................................................................. 23

1.1.2 Why You Need a Container Management Tool ........................................... 27

1.1.3 Of Pets and Cattle .................................................................................................. 28

1.1.4 Stateless and Stateful Applications ................................................................. 29

1.1.5 Separation of Concerns ........................................................................................ 31

1.2 Kubernetes, the Tool of Choice ....................................................................................... 34

1.2.1 Why Do Companies Want to Use Kubernetes? ............................................ 34

1.2.2 The Promise of Kubernetes ................................................................................. 37

1.2.3 Major Features ........................................................................................................ 41

1.2.4 For Which Companies Is Kubernetes Useful? ............................................... 42

1.2.5 Which Companies Should Not Use Kubernetes? ......................................... 44

1.3 Architecture and Components ........................................................................................ 45

1.3.1 Master Nodes ........................................................................................................... 46

1.3.2 Worker Nodes .......................................................................................................... 49

1.3.3 API Call Flow ............................................................................................................. 51

1.4 A Kubernetes Cluster on Your Computer .................................................................... 53

1.4.1 Minikube on macOS .............................................................................................. 54

1.4.2 Minikube on Linux ................................................................................................. 55

1.4.3 Minikube on Windows ......................................................................................... 57

1.4.4 Launching Minikube .............................................................................................. 58

1.4.5 Controlling Minikube ............................................................................................ 58

1.4.6 Possible Errors when Starting Minikube ........................................................ 59

1.4.7 Container Registry of Minikube ......................................................................... 59

1.5 Interaction with Kubernetes via the Command Line and Dashboard ........... 61

1.5.1 Minikube Comes With kubectl .......................................................................... 61

1.5.2 Installing kubectl .................................................................................................... 61

1.5.3 Accessing the Cluster Using Kubeconfig ........................................................ 65

1.5.4 Namespaces ............................................................................................................. 67

1.5.5 kubectl Commands ................................................................................................ 68

1.5.6 Switching Clusters and Namespaces Easily .................................................. 77

1.5.7 The Kubernetes Dashboard ................................................................................ 78
7



Contents
1.6 Lens: The IDE for Kubernetes ............................................................................................ 81

1.6.1 Overview of Lens ..................................................................................................... 82

1.6.2 Advantages over the Kubernetes Dashboard ............................................... 83

1.6.3 The Lens Reference ................................................................................................ 86

1.7 The Kubernetes Cluster from Raspberry Pis .............................................................. 89

1.7.1 Choosing the Right Raspberry Pis ..................................................................... 90

1.7.2 Installation of Kubernetes ................................................................................... 92

1.7.3 Using the Kubeconfig File of the Pi Cluster ................................................... 93

2 Basic Objects and Concepts in Kubernetes 95

2.1 Pod and Container Management ................................................................................... 98

2.1.1 Container Engines .................................................................................................. 101

2.1.2 Your First Own Pod ................................................................................................ 104

2.1.3 Multiple Containers within a Pod ..................................................................... 106

2.1.4 Communication between Containers ............................................................. 109

2.1.5 Init Container ........................................................................................................... 110

2.1.6 Pod Phases and Container Statuses ................................................................. 113

2.1.7 The Restart Policy of Pods .................................................................................... 114

2.1.8 When the Pod Comes to an End ........................................................................ 115

2.2 Annotations and Labels ...................................................................................................... 118

2.2.1 Using Labels and Selectors .................................................................................. 119

2.2.2 Field Selectors .......................................................................................................... 121

2.2.3 NodeSelector ............................................................................................................ 122

2.2.4 Node Affinity and Antiaffinity ........................................................................... 124

2.2.5 Pod Affinity and Antiaffinity ............................................................................... 128

2.2.6 Taints and Tolerations .......................................................................................... 133

2.2.7 Annotations .............................................................................................................. 136

2.3 Deployments and ReplicaSets ......................................................................................... 138

2.3.1 The Role of ReplicaSets ......................................................................................... 139

2.3.2 Creating Deployments .......................................................................................... 142

2.3.3 Rolling Updates via the Deployment Object ................................................. 144

2.3.4 Rollback via Deployment ..................................................................................... 150

2.4 ConfigMaps and Secrets ..................................................................................................... 152

2.4.1 What Are ConfigMaps? ........................................................................................ 154

2.4.2 What Are Secrets? .................................................................................................. 162

2.5 Establishing a Communication with Services and an Ingress ........................... 171

2.5.1 Communication between Pods ......................................................................... 173
8



Contents
2.5.2 Communication via a Service ............................................................................. 174

2.5.3 Communication via Ingress ................................................................................ 180

3 Everything as Code: Tools and Principles for 
Kubernetes Operations 187

3.1 Declarative Configurations ............................................................................................... 188

3.2 YAML: The Language for Kubernetes ........................................................................... 192

3.2.1 Basics of YAML Syntax .......................................................................................... 192

3.2.2 Data Types in YAML ............................................................................................... 194

3.2.3 Anchors and Aliases ............................................................................................... 196

3.2.4 Single-Line YAML Notation in Documentation ............................................ 197

3.2.5 Weaknesses of YAML ............................................................................................ 197

3.2.6 Tips for Practical Use ............................................................................................. 199

3.3 Version Management of Kubernetes Manifests ..................................................... 200

3.3.1 Using Git .................................................................................................................... 201

3.3.2 Managing Numerous Kubernetes Manifests ............................................... 203

3.3.3 Branching Strategies ............................................................................................. 207

3.3.4 Division of the Repositories ................................................................................ 211

3.4 Continuous Integration and Continuous Delivery ................................................. 213

3.4.1 Pipeline Steps for Kubernetes ............................................................................ 213

3.4.2 Pipeline Architectures ........................................................................................... 218

3.4.3 GitOps ........................................................................................................................ 223

3.5 Templating Using Kustomize ........................................................................................... 225

3.5.1 Basic Principles of Kustomize ............................................................................. 226

3.5.2 Resource Generator ............................................................................................... 231

3.5.3 More Kustomize Built-Ins .................................................................................... 233

3.5.4 Conclusion on Kustomize .................................................................................... 234

4 Advanced Objects and Concepts in Kubernetes 235

4.1 DaemonSets ............................................................................................................................. 236

4.2 Jobs in Kubernetes ................................................................................................................ 239

4.2.1 Real-Life Kubernetes Jobs .................................................................................... 240

4.2.2 Queue Worker with RabbitMQ .......................................................................... 242

4.2.3 Kubernetes CronJobs ............................................................................................. 246
9



Contents
4.3 Custom Resources and Custom Resource Definitions .......................................... 248

4.3.1 Example: A Monitoring CR .................................................................................. 249

4.3.2 Validation in CRD .................................................................................................... 252

4.3.3 Operators .................................................................................................................. 255

4.4 Downward API ........................................................................................................................ 258

4.5 Pod Priority and Preemption ............................................................................................ 261

4.6 Versioning Objects in Kubernetes .................................................................................. 263

5 Stateful Applications and Storage 265

5.1 Stateful Applications in Kubernetes through StatefulSets ................................ 266

5.1.1 Pod Management Policy ...................................................................................... 269

5.1.2 Strategies for Updates .......................................................................................... 270

5.1.3 Retention Policy for Persistent Volume Claims ............................................ 272

5.2 Persistent Volumes and Persistent Volume Claims ............................................... 273

5.2.1 Storage Types for PVs ............................................................................................ 278

5.2.2 CSI Drivers for External Storage Media ........................................................... 281

5.2.3 Storage Classes and Dynamic PVs .................................................................... 283

5.2.4 PostgreSQL as StatefulSet with Persistent Volume .................................... 286

5.3 Ephemeral Volumes ............................................................................................................. 289

5.4 Other Features of Volumes ............................................................................................... 291

5.4.1 Volume Snapshots ................................................................................................. 292

5.4.2 Projected Volumes ................................................................................................. 295

6 Kubernetes Governance and Security: 
Prepare for Production 299

6.1 Pod Security ............................................................................................................................. 301

6.2 Pod Security Admission ...................................................................................................... 304

6.3 Admission Controller ........................................................................................................... 306

6.4 Kubernetes Policies ............................................................................................................... 308

6.5 Policy Objects .......................................................................................................................... 311
10



Contents
6.6 Role-Based Access Control in Kubernetes .................................................................. 313

6.6.1 Subjects: Users, Groups, and Service Accounts ............................................ 315

6.6.2 Roles and Role Bindings ....................................................................................... 317

6.6.3 Conclusion ................................................................................................................ 319

7 Developing Applications for Kubernetes: 
Ready for Production 321

7.1 Managing Pod Resources ................................................................................................... 322

7.2 Readiness, Liveness, and Startup Probes .................................................................... 325

7.2.1 How to Define Probes ........................................................................................... 328

7.2.2 Testing Probes Using an Example ..................................................................... 330

7.3 Scaling and Load Balancing ............................................................................................... 335

7.3.1 Horizontal Pod Autoscaling ................................................................................ 335

7.3.2 Vertical Pod Autoscaling ...................................................................................... 339

7.3.3 Cluster Autoscaler .................................................................................................. 341

7.4 Monitoring ................................................................................................................................ 342

7.4.1 Introduction: Prometheus, Grafana, and Alertmanager ........................... 343

7.4.2 Monitoring on the Pi Cluster .............................................................................. 345

8 Orchestrating Kubernetes Using Helm 357

8.1 Helm: The Kubernetes Package Manager .................................................................. 358

8.1.1 Creating a First Helm Chart ................................................................................ 361

8.1.2 Deploying a Helm Chart via the Command Line Interface ....................... 361

8.1.3 Setting Up and Managing a Helm Repository .............................................. 363

8.1.4 Deploying a Helm Chart via Lens ...................................................................... 365

8.1.5 Updating and Deleting Helm Releases ........................................................... 366

8.1.6 Downloading Helm Charts from a Repository .............................................. 368

8.2 Reading and Developing Helm Charts ......................................................................... 368

8.2.1 The Templating Engine and the Language of the Charts ......................... 369

8.2.2 Configuring Charts with Values ........................................................................ 374

8.2.3 Conditions in Helm Templates .......................................................................... 378

8.2.4 Other Operations and Control Structures ...................................................... 380

8.2.5 Helm Diff for Checking Changes ....................................................................... 383
11



Contents
8.3 Developing Custom Charts ................................................................................................ 385

8.3.1 The Framework of Your Helm Chart ................................................................ 386

8.3.2 Packaging Charts and Storing Them in the Repository ............................. 387

8.3.3 Managing Dependencies in Helm Charts ...................................................... 390

8.4 Conclusion ................................................................................................................................ 394

The Author ............................................................................................................................................... 395

Index .......................................................................................................................................................... 397

Service Pages ............................................................................................................................................... 
Legal Notes ................................................................................................................................................... 

 I 
 II 
12



 

Preface

Be water, my friend.

—Bruce Lee

Perhaps you know the interview with Bruce Lee from which this quote comes. The idea

at the heart of his statement is the adaptability of water. What Bruce Lee meant was

that you must adapt to your opponent in a fight. Adapt when necessary. Be open in

order to be able to react appropriately to the environment and changing circum-

stances. This sentence has been with me for quite a while—not only because I do mar-

tial arts, but above all because this metaphor is also very appropriate in IT.

When I started my training as an IT specialist in system integration in 2011, I had no

idea what kind of world would open up to me. I learned the IT craft from scratch. I can

still remember my first projects very well: We installed a network for a law firm. I

drilled the holes myself, pulled the cables, and crimped the network connectors. I also

configured and installed a new server for a medium-sized company, fixed the cables,

and set it up in a server room on site.

If you need a server today, you simply need to click Launch in your cloud provider’s

frontend. A virtual machine (VM) is then activated for you by magic in some high-

security data center. The world is constantly changing, and so is technology. Abstrac-

tion makes it increasingly easier to use, but this does not bring only advantages.

I first came into contact with the cloud, DevOps, Docker, and Kubernetes after graduat-

ing in 2017, and the topic has stayed with me ever since. I still remember the days

during my studies when I asked myself: “How does my software actually get to the cus-

tomer?”

I learned programming during my apprenticeship and studies. First it was Java, then C,

then C++. I also learned what software engineering is, how to create unified modeling

language (UML) diagrams, and how to develop in a machine-oriented way in assembler.

But there was one thing I always missed: How does the software ultimately reach the

customer? The operation itself had never really been part of my training. Thus, I am

concerned with questions such as the following:

� How is the software built and packaged?

� How is the software delivered?

� What happens if the software doesn't work?
13Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



Preface
Most of the time, I ran my own development on my computer or in the integrated

development environment (IDE). For a long time, no one was able to give me a satisfac-

tory answer to my questions about the last piece of the puzzle.

I entered a dual-study program, and during the practical phases, I worked in depart-

ments that created software concepts. The work of my colleagues was to think about

what the business requirements were and how they could be translated into software,

and we wrote hundreds of pages of specifications and drew UML diagrams. The soft-

ware was then developed both onshore and offshore by partner companies, which

usually worked less than optimally. They were classic waterfall projects. Again, I never

understood the software development process from start to finish. I always thought:

“There is something missing. Somehow it doesn't fit yet.” And sometimes, I thought:

“Maybe I'm just too stupid for that.”

Today, I know that I'm not too stupid and that I was just missing the last little piece of

the jigsaw. After my studies, I came into contact with modern agile software develop-

ment for the first time. One team designs, develops, and delivers the software, while

another team takes care of operations. That was also the first time I came across terms

such as cloud, Docker, and Kubernetes. I had already learned about agile software devel-

opment during my studies, but all the tools used for it were new to me. My world was

completely turned upside down.

I was familiar with virtual machines from my training, and I also knew that a cloud ser-

vice is more than just a storage service like Dropbox or OneDrive. Today, among other

things, I hold the AWS Certified Solutions Architect—Professional certification, and as I

write about my past, I start smiling. The world of IT is so much bigger than I could have

ever imagined, and I have really discovered my passion.

Since I've been using the cloud, Docker, and Kubernetes, it's felt really smooth for me. I

now understand how modern software operation works and what is needed for it. For

this reason, I want to share my findings with you in this book.

In 2017, I published an online course on the Udemy platform about getting started with

Docker. My aim was to make getting started easier so that the participants get a feel for

Docker by getting involved themselves. That's what I've been missing in my dual stud-

ies so far. I am a hands-on person and learn best when I do something with my own

hands.

This book is also written in such a way that you get a quick introduction to the topic of

Kubernetes. You will set up a cluster yourself and deploy your first services. I will take

you on a journey and introduce you to the topic in a structured way because I love to

keep things simple. It will get complicated all by itself, and pretty soon, so you will learn

everything step by step that is important to make your software fit Kubernetes.
14 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



Structure
Acknowledgments

To my son, Levi Ace: You show me every day what is truly important in life.

To my wife, Nicole: Thank you for always having my back, even when I'm writing until

late at night.

To my best friend and business partner, Fabian: Thank you for our journey together

over a decade.

Structure

Let me briefly explain what you can expect on the following pages. You are already in

the middle of the Preface. I want to pick up where you are right now and introduce what

awaits you.

Chapter 1 and Chapter 2 have been designed as a tutorial. Each section builds on the

preceding one. You will get to know the basic principles and concepts and then get

down to work very quickly. After these chapters, you will be prepared for Kubernetes

and can then delve deeper into individual topics. From Chapter 3 onward, we will take

a closer look at individual aspects. You can read those chapters in the order in which

you need them.

Note

Some sections in Chapter 1 and Chapter 2 are very well suited as reference sections. If

you have the feeling in a particular section that this is not the right time for it, then you

can just skim through it. This will feed your subconscious and you can come back to it

when you need to read it in more detail.

In Chapter 3, I will take you on a tour of infrastructure as code (IaC). You will learn about

YAML and the difference between declarative and imperative work.

Note

As you will already be working with YAML and IaC in Chapter 2, you are welcome to skip

to Chapter 3 for a small digression before continuing with Chapter 2.

In Chapter 4, we will delve into more advanced concepts and objects.

Chapter 5 is dedicated to the topic of storage and stateful applications. What do you do

with applications that have a state, much like databases have? What types of storage are

available in Kubernetes, and how can you best manage your data?
15Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



Preface
Security and governance is a major topic in IT. In Chapter 6, I will introduce you to top-

ics such as user and rights management, pod security, and Kubernetes policies. You will

get to know the basic principles to prepare your application for production.

In Chapter 7, you will learn everything you need to know to make your application

“ready for production,” such as resource management, health checks, and scaling for

your applications.

Finally, in Chapter 8, you will get to know Helm, the Kubernetes package manager. Note

that you will have already used Helm in earlier chapters to deploy finished applications

in examples. Helm will make your life as a developer very easy and help you to make

your application fit for multiple environments.

What You Should Already Know Now

Kubernetes is software that builds on knowledge of other topics, such as the topic of

containers, which themselves can fill entire books. For this reason, there are some pre-

requisites that you’re expected to meet in this book so that you can be introduced to

the topic of Kubernetes quickly without us getting bogged down in the details.

The Kubernetes tool is a container management system, which is why some basic

knowledge of containers is required. You should be able to answer questions like the

following:

� What is a container?

� How is a container structured?

� How can I build container images and bring my software into a container?

� How can I start and stop containers?

� How does the container tool work on my computer?

I use Docker Desktop as a basis, build containers using Dockerfiles, and will set up a test

cluster using Minikube as a container with you in Chapter 1, Section 1.4. Depending on

your operating system, you can of course also use other tools, such as Podman. You are

not dependent on Minikube either and can use other test clusters if you are familiar

with them.

Note

If you use a company computer, you may need a license for Docker Desktop. If you are

unsure, it is best to ask or to use your private computer.

The containers used in this book are all based on Linux images. It is therefore an advan-

tage if you are familiar with the basics of Linux. You should also be able to use the com-

mand line through tools such as Bash or another shell. If you've ever written Bash

scripts before, then what we use in this book will be a breeze for you. If you run the
16 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



Structure
examples on a Windows operating system, you should be able to use PowerShell. How-

ever, I will also provide you with the most important commands in that respect.

We will use command line interface (CLI) tools such as kubectl and Minikube. These are

programs that are executed on the command line to operate Kubernetes, for example.

Here I will guide you step by step, but you will find your way around more quickly if

you have already used CLI tools previously.

In general, however, this book is suitable for beginners. You will get to know Kuber-

netes from the ground up, and I will try to pick you up as best I can from where you are

right now. This means that even if you have little experience with the tools mentioned

so far, you will be able to work through this book. In some places, it may be advanta-

geous for you to put the book away and grab additional learning content on Docker and

the like.

What You Will Learn

As mentioned earlier, this book is aimed at developers and DevOps engineers who

want to get to grips with Kubernetes—whether you've only recently heard of Kuber-

netes or have been using it for some time. After reading this book, you will have the

tools you need to develop and run your applications for Kubernetes. You will be able to

build resilient, scalable, and reliable infrastructures. Your applications will be ready for

production environments thanks to self-healing and load balancing.

You will not or will only marginally learn how to install or administrate a Kubernetes

cluster in this book. However, what you will learn is how to run applications in a cluster

and what you need to bear in mind as a developer. In addition, you will learn how to

operate and control a Kubernetes cluster. For this purpose, you will install a test cluster

on your computer based on Minikube. This will help you to try everything out in a test

environment.

Important to Know

In the advanced chapters, you will delve deeper into the peculiarities of Kubernetes. I

use simple applications as an example. If you try to run through the examples directly

with your own applications, the learning effect is significantly higher, and you can then

implement what you have learned much better in your daily work.

Perhaps you know this too: Imagine you want to go on a vacation to Italy and use a lan-

guage app at home to learn the most important terms such as hello, goodbye, and apple.

Even short phrases like “A coffee, please” and “I'd like to pay.”

Then the time has come. You have arrived at your vacation destination and enter the

first café. The waiter asks you what you would like to have and suddenly everything

you have learned is gone. Not a word escapes your lips.
17Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



Preface
Here’s what memory research has found out: The recall of a new skill is most successful

when the circumstances are as similar as possible to those under which the neuronal

connections took place. So when we study at home at our desks using an app, we find it

easiest to retrieve the information by using that very same app. In a new situation, such

as an Italian café, the circumstances are different, and we can no longer recall the infor-

mation.

For this reason, it is important that you try out each chapter’s content either directly or

additionally with your own projects. This will make everything more interconnected

and you will be able to apply the content much better. Have confidence in the process

of this book. In the end, everything will fall into place and you will be able to use Kuber-

netes successfully in your environment. We still have a few steps to go before then, but

I will accompany you.

I also want to introduce you to a model developed by the Canadian psychologist Albert

Bandura (see Figure 1).

Figure 1  Four Stages of Learning According to Albert Bandura

←    Forgetting

←
    D

e
co

d
in

g
 th

e
 M

o
d

e
lin

g

←
   

 R
e

p
re

ss
in

g

Conscious
Incompetence

Conscious
Competence

Unconscious
Incompetence

Unconscious
Competence

Internalization

Habitualization

Familiarization

Automation

Unconscious
"Copying from

Others"

LEARNING THE MODEL

Learning by Listening,
Watching, Practicing, 

and Repeating

Uncovering
"Blind Spots"

Feedback
CRITICISM
18 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



Book Resources
You may even already know it, because it is a well-known model of how learning works

for us humans. Bandura divides human learning into four stages:

1. Unconscious incompetence

2. Conscious incompetence

3. Conscious competence

4. Unconscious competence

Think about your driver's license. Can you remember what it was like for you when you

first got behind the steering wheel? Or stalled the car at traffic lights for the first time?

You suddenly realize that you are missing a skill. You want to drive but you also realize

that it won't be an easy path because the only way from conscious incompetence to

conscious competence is hard work. You learn and practice over and over again.

After a while you will be able to drive. But there's always that little voice in your head

saying: “Shift gears now” or “Look over your shoulder and signal.” You must drive with

full awareness and cognitive effort. Only after many hours of driving does the activity

gradually become easier and you develop automatism. Today I can drive the car while

listening to children's music for my son's sake and singing along loudly. Driving itself

has become unconscious and easy.

By purchasing this book, you have already left the first phase behind you. You are

aware that you have to learn. The transition from phase 2 to phase 3 is the hardest and

is often associated with a lot of frustration. The book will make the transition as easy as

possible so that you can enjoy implementing it and become a Kubernetes expert with

ease. I wish you lots of success and fun reading, learning, and playing.

Book Resources

Sample listings are available for you to download from the website for this book. Go to

www.rheinwerk-computing.com/5964. Scroll down to the Product Supplements box.

You will see the downloadable files along with a brief description of the file content.

Click the Download button to start the download. Depending on the size of the file (and

the speed of your internet connection), it may take some time for the download to

complete.
19Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://www.rheinwerk-computing.com/5964


© 2025 by Rheinwerk Publishing Inc., Boston (MA)



Chapter 1 

Introduction to Kubernetes

Kubernetes, also known as K8s, is an open-source system for automating 

deployment, scaling, and management of containerized applications.

—kubernetes.io

Developing containers and running them on your laptop computer is easily doable

with a little know-how. However, operating hundreds of containers across multiple

host systems, scaling them as required, and not risking any downtime is a lot more

complicated.

Kubernetes (K8s) was developed to address and solve these types of issues. The name

has its origins in Greek and means helmsman. This is also where the Kubernetes logo

comes from. Developed by Google and continued as an open-source project, it is now

an integral part of many companies.

Before I guide you through installing your first Kubernetes cluster on your computer,

let's dive into the basics of Kubernetes.

Good to Know

The abbreviation K8s comes from replacing the eight letters of ubernete with the num-

ber 8.

Note

The book is based on Kubernetes version v1.27. If your company uses clusters of an

older version, then some features are probably not available. For new features, I will

point this out separately in the corresponding chapter.

If you are unsure whether a feature can be used in your company, you can check the

Kubernetes documentation at https://kubernetes.io/ or ask your administrator.

1.1    Basic Principles and Concepts: Why Use Container Clusters at All?

To better understand Kubernetes, I want to take you back to the past and the system’s

origins. Kubernetes saw the light of day on June 7, 2014, at least in the public world, as
21Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

https://kubernetes.io/


1 Introduction to Kubernetes
the first commit was published on GitHub on that day. However, the idea for a con-

tainer management platform was not new. It originated back in the 2000s at Google as

even then developers had to operate several hundred thousand containers there.

With so many containers, Google needed a system that would simplify the administra-

tion and operation of a large number of servers. But at that time there was not yet a large

market for it, and the developers at Google built their own solution. That was when Borg

was born. As Google states in their abstract, “Borg simplifies life for its users by offering

a declarative job specification language, name service integration, real-time job moni-

toring, and tools to analyze and simulate system behavior” (see http://s-prs.co/v596463).

Google used Borg to tackle a variety of challenges related to managing large clusters of

machines. Problems that were solved by Borg included, for example:

� Resource management

Borg automated the scheduling, starting, stopping, restarting, and monitoring of

containers. This allowed developers to focus on their development work instead of

managing resources.

� Efficiency and capacity utilization

Using techniques such as overcommitment, Borg enabled a high utilization of the

available resources. This saved Google from high data center costs.

� Error handling

Borg offered runtime functions and scheduling rules that reduced the time needed

for troubleshooting.

Good to Know

The introduction of Borg was a decisive step for Google to manage its infrastructure

efficiently. Where they used to monitor and manage the servers themselves, this could

be taken over by Borg.

In the course of this book, you will also see that Kubernetes automatically moves all

your applications to a functioning server in the event of a server hardware failure. This

saves you time and reduces downtime simultaneously.

Even today, we still expect exactly these benefits from a management system. But the

world has moved on since then, more and more companies have opted for containers,

and Borg has also needed to evolve.

Kubernetes was to be a new development for the existing container management tool.

Years of experience with Borg were to flow into a new design. Parts that worked were

adopted and other parts were optimized. What is probably the biggest difference from

Borg is the new license model. The developers at Google opted for an open-source

model and donated Kubernetes version 1.0 to the Cloud Native Computing Founda-

tion. This makes Kubernetes an open and independent system, which is perhaps why it

is currently so popular.
22 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596463


1.1 Basic Principles and Concepts: Why Use Container Clusters at All?
Good to Know

The Cloud Native Computing Foundation is part of the Linux Foundation, which intro-

duces itself on its website as follows: “The Linux Foundation provides a neutral, trusted

hub for developers and organizations to code, manage, and scale open technology

projects and ecosystems.”

In my view, a foundation as a company for an open-source technology increases the

trust and independence of Kubernetes.

You can find out more about the history of Borg and the origins of Kubernetes at the

following two links:

� http://s-prs.co/v596401

� http://s-prs.co/v596402

1.1.1    Why Use Containers at All?

Perhaps you have already developed and operated containers yourself. Docker is cur-

rently the best-known representative of containers, and it is usually used as a synonym

for container. Just as Kleenex is the paper tissue, Docker is the container. Docker did

not invent the concept of containers, but it has done a great deal to make it so wide-

spread today. This is understandable, because containers

� are lightweight,

� are easy to use, and

� run on virtually any server that has a container runtime.

In addition, container images are easy to transport and contain everything your appli-

cation needs. You no longer face a common problem: “But it doesn’t run on my com-

puter!”

When we compare containers with virtual machines, the biggest advantage is obvious:

you do not need to install a complete operating system with a container.

You may already be familiar with the evolution of virtualization, as shown in Figure 1.1.

You can see how the deployment of applications has evolved over time from bare

metal to virtualization. (This is not to say that containers are replacing virtual

machines, but they outstrip them in many application scenarios.)

But why has it developed like this? Let's consider a very simplified example.

Think of a data center. There are racks there that can contain multiple bare metal serv-

ers. A rack has a maximum capacity of servers that it can hold, and the data center has

a maximum capacity of racks it can hold. If you now think of a regional web store that

runs on one of the servers, it is busier in the evening than in the middle of the night.

The server therefore has nothing to do during the night and heats up the data center
23Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596401
http://s-prs.co/v596402


1 Introduction to Kubernetes
unnecessarily. If you only have servers like this, you will have very poor capacity utili-

zation throughout the data center and therefore high costs.

Figure 1.1  Evolution of Virtualization

In addition, you have to design the server for the peak load so that every customer can

buy your products even at peak times. This means you generally have an oversized

server. Another point is the dependency on the operating system and the underlying

hardware. You have a single operating system with the drivers for the server's hard-

ware. You cannot simply make a clone of it and install it on another server, which in

turn makes backup and recovery more difficult.

Note

Of course, you can also install multiple applications on one server. If, for example,

another application runs batch jobs and performs billing at times when nothing is hap-

pening in the web store, you also increase the workload, but virtualization brings even

more to the table.

How can you increase the utilization of a server and overcome the difficulties of the

bare metal server? If you enable the server to run virtual machines, you can run multi-

ple virtual servers on a bare metal instance. With more instances, you create better uti-

lization and even spread the costs of the server across multiple virtual servers. But it's

not just capacity utilization that will improve:

� You are more independent of the actual hardware and can also run your virtual

machine (VM) on other servers without much effort.

� You can set up backup and recovery processes very easily using VMs.

� You can use golden images to set standards that are easy to use.

Thus, virtual machines are an optimization of the bare metal server, each with its own

operating system. They behave like real servers: they have to boot up everything at

Bare Metal

App

Bin/Library

Virtual Machine Container

Hardware Hardware Hardware

Operating System Operating System Operating System

Virtualized Containerized

App App

Bin/Library

Virtual Machine

Operating System

App App

App

Bin/Library

Container

App

Bin/Library

Container

Bin/Library

Operating System

App Hypervisor Container RuntimeApp App
24 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.1 Basic Principles and Concepts: Why Use Container Clusters at All?
startup and still have the overhead of an ordinary server. But then the following ques-

tion arises: Could it be even simpler and smaller? The answer is found in containeriza-

tion.

Good to Know

Companies that operate their Kubernetes clusters in the cloud usually even build their

clusters on virtual machines. This makes sense, as bare metal instances on Amazon

Web Services (AWS) only start at 48 CPU cores and 384 GB of RAM. You could easily run

all containers from smaller clusters on a single instance, but that would be fatal in the

event of a hardware error.

For redundancy and scalability, it is therefore better to have smaller instances, but

more of them.

Let's take the web store and pack it and everything we need for operation into a con-

tainer. For this purpose, we separate the application from the virtual machine and can

use the web store independently of it. All you need for a container is a runtime that is

installed either directly on the bare metal instance or in a virtual machine. This allows

you to benefit from the advantages of containers:

� Containers use significantly fewer system resources than virtual machines, as they

do not require a complete operating system.

� Thanks to containerization, applications can be used without much effort across dif-

ferent operating systems and hardware environments.

� By using containers, applications can be rolled out, updated, and scaled more

quickly.

� Containers also speed up the development process, and the portability of the images

means they can be run on any developer computer.

Containers therefore have a number of advantages over virtual machines, but they do

not replace virtual machines or bare metal servers. All of these have their right to exist

and a corresponding use case. However, this example shows why applications are now-

adays almost exclusively developed in containers.

Good to Know

Compared to virtual machines, a container is even better for the utilization of your

servers. The smaller the unit, the easier it is to find a gap on a server.

Take a jar full of marbles, for example, as shown in Figure 1.2. There is still enough air

between the marbles to fill in small beads, and then there is still enough air between

the beads to fill in fine sand.
25Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



1 Introduction to Kubernetes
Figure 1.2  Jar Containing Marbles and Beads

If we look at modern applications, it is much easier to handle them in containers. Even

the startup is significantly faster, and that again changes the way scaling works. In the

past, the physical server received a CPU or memory upgrade so that the monolithic

application had more power.

Today, all you need to do is start another container with the same application, and the

load is distributed to the new container within a few minutes.

If there is no more space on the server, a new server in the cloud starts up as if by magic

and the container is deployed there. The trend is moving from vertical scaling to hori-

zontal scaling—but this is not as simple as it may sometimes sound: there is a lot of

know-how and work that goes into such a cluster setup.

Good to Know

The good thing about horizontal scaling is that you no longer have to rely on a large

server as a single point of failure. If the load is distributed across many smaller servers,

you can compensate for a failure much more easily.

The technologies and software architecture currently work hand in hand. New applica-

tions are usually only developed in a microservice architecture, and communication

must ideally be asynchronous and event-based. Companies want to outsource their

workloads to clouds and only pay for what they really need thanks to automatic and

requirements-based scaling.
26 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.1 Basic Principles and Concepts: Why Use Container Clusters at All?
1.1.2    Why You Need a Container Management Tool

The use of many microservices and horizontal scaling raises new challenges. Suddenly

there are hundreds or thousands of containers that have to be operated and monitored

simultaneously.

I have fond memories of when I first came into contact with containers. In 2017, I

worked in a company that was undergoing a major transformation. It had just made

the decision that all software, whether legacy applications or new developments,

should be migrated to Amazon's cloud. As part of this, a program was set up to rede-

velop an old distribution platform, and all new microservices were to be containerized

and run on Kubernetes.

That was just two years after the release of Kubernetes version 1.0. The new container

world works completely differently from the applications that were developed decades

ago. In the past, when a web application was developed, it usually had a monolithic

design and ran as a virtual machine on a server in the data center. These applications

were also often designed for a specific number of users. Scaling according to demand

was not easily possible. This was also the case in that company.

If the old sales platform received more traffic than expected—for example, because

there was a Christmas campaign—then the application had to be assigned more CPU

and memory. It could therefore only be scaled vertically. In most cases, this was accom-

panied by weeks of preparation and planning, with employees only concerned with

capacity management. The rest of the time, this application ran at a 30% load and

unnecessarily heated up the data center.

The architecture of new applications is moving away from monolithic designs and

toward microservice architectures: smaller, independent services that communicate

asynchronously and are therefore loosely coupled. In the example of a web application,

a web server such as Nginx can simply be scaled as required. Whether the user's request

is answered by one or another Nginx instance does not matter to either the web server

or the user. The main thing is that the answer is the same. Loose coupling allows us to

scale precisely that part of the system that is currently experiencing a capacity bottle-

neck.

So it is not the case that we have to pack the monolithic applications into containers

and deploy them on Kubernetes in order to arrive in the brave new world. It is instead

based on a completely new concept and requires a new and modern microservice

architecture, which in turn requires a rethink within a company. The microservice

architecture means that there are suddenly not just a few monolithic applications, but

several small applications. The number of these in larger projects quickly reaches dou-

ble figures, and in companies it can easily be in the hundreds or thousands. This also

changes the challenges in a company.

Smaller services often provide the opportunity to deliver updates by way of continu-

ous integration and continuous delivery (CI/CD). This has the following advantages:
27Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



1 Introduction to Kubernetes
� Developers can deploy more easily and quickly.

� More responsibility lies with the developers.

� The burden on operations is reduced.

� The focus shifts more toward a higher quality.

But there are also disadvantages:

� Every change harbors the risk of errors.

� Dependencies on other components can be forgotten.

� Release processes are ignored.

The degree of automation must also be significantly increased so that tickets are not

opened every minute in IT operations causing the phone to not cease ringing.

Another aspect is the change in processes and sometimes the entire organization. It is

usually not just the technology that changes, but cultural changes through the princi-

ples of DevOps or process optimizations through Lean and ITIL go hand in hand with

the technology. As a developer, you are caught in the middle of all the changes and are

expected to quickly develop outstanding software that is stable in operation and

makes the end customer happy.

Amid all the chaos, Kubernetes comes into play. The container management tool

allows you to monitor your containers automatically and scale, restart, or terminate

them as required. As a platform, it fits very well into modern processes and gives you as

a developer more personal responsibility. Kubernetes also ensures that users do not

experience any downtime during releases, and we will take a closer look at why Kuber-

netes simplifies the operation of microservices.

1.1.3    Of Pets and Cattle

You already know that there needs to be a rethink within companies, and you may

already be familiar with the classic comparison of pets and cattle. Pets are animals you

have at home, while cattle are the farmer's livestock. In the world of monolithic appli-

cations, servers are usually treated like pets. A pet is fed, cared for, and loved. It has a

name and belongs to the family, and it cannot simply be replaced by another animal.

The servers were also difficult to replace in the infrastructure of the monolithic appli-

cations. If the infrastructure runs out of support, migrations are necessary, which are

associated with major risks. The goal is therefore to prevent the server from going bad,

and a new server is out of the question. Spare parts, such as hard disks and power sup-

ply units, are in the safe waiting to be used so that the applications can continue to run.

If we look at a farmer's cattle as a counterexample, we can observe a completely differ-

ent kind of love. A farmer also looks after their cattle, but the cows have numbers on

their ears rather than names to identify them. They have a clear task, to provide milk
28 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.1 Basic Principles and Concepts: Why Use Container Clusters at All?
and meat. After a certain time, when an animal becomes too old or ill, it is simply

replaced by another one.

Note

The standard example with pets and cattle is perhaps a little macabre. A nice alterna-

tive is the comparison between wildflowers and bonsai.

A bonsai requires constant care and attention. You need to monitor its shape, size, soil

type, and supply of fertilizer on a regular basis. Moving a bonsai to a new environment

or changing its care conditions can have a significant impact on its well-being and

growth.

Wildflowers, on the other hand, are robust by nature. They grow where conditions per-

mit, without making specific demands on the location or the environment. If an area is

no longer suitable, you can simply sow them in a new location without having to con-

sider the previous position or special conditions.

Since the advent of cloud computing, the handling of infrastructure has been changing

more and more in the direction of cattle. If a server no longer works, a new one is set up

to take over the task. The setup and migration of the applications is automated.

Kubernetes can take over these tasks so that you don't need to worry about the infra-

structure. The advantages are obvious: infrastructure issues are resolved automati-

cally, and the infrastructure can be scaled as per your requirements. This saves

companies a lot of money because they only pay for as much computing power as they

actually need, and automation prevents the odd on-call assignment.

But it is not only the servers that are treated as cattle. Even the applications that run in

containers are no longer pets. Have you heard of Chaos Monkey yet? This is a tool

developed by Netflix to check the stability of production systems. Imagine that a mon-

key has broken into your data center. It accidentally bites through cables and hits the

servers with a hammer. Would your application survive this?

You don't need to introduce a chaos monkey in your company right now, but the idea

behind it is a good one. Just ask yourself a question: Would users notice if a component

or container failed? If the answer is yes, then there is definitely room for improvement.

1.1.4    Stateless and Stateful Applications

To develop an application for Kubernetes, one key question is important: Is your appli-

cation stateless or stateful? Does your application have to remember a state? But what

is the difference between these two concepts?

Imagine you are in Italy sitting in a cafe in a small town near Venice. You have a direct

view of the Adriatic and order a coffee. The waiter brings you your coffee, and milk and

sugar are provided, but you drink your coffee black.
29Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



1 Introduction to Kubernetes
This is a good example of stateless. The cafe itself does not store any information about

you as a customer and does not know your previous orders. When you order some-

thing, you get the same items as any other customer making that order. Each order is

treated in isolation, without any previous history being taken into account. It is there-

fore stateless as it does not store any permanent state or information.

Let's now take a look at the stateful concept. When I take my buddy Fabian to our favor-

ite cafe, he just nods to the waiter and we both get a black coffee. No milk, no sugar. The

waiter simply knows us.

It's like being a member of a gym and saving your personal data and workout progress

in your member account. You go to the leg press, insert your card into the machine,

and it suggests the right weight for your workout progress. Here, the status is saved and

continuously updated to provide a personalized experience. So the gym or your favor-

ite coffee shop is stateful because it stores and uses information about you to improve

your workout routine or bring you your favorite drink directly. The saved state brings

convenience, but also more responsibility. You need to think about how the status is

saved. For example, what do you do if the waiter who knows you is out sick?

States bring challenges with them:

� Data must be kept consistent across all instances. (Every waiter must know us.)

� Horizontal scaling is more difficult. (A new waiter must be trained first.)

� You need to think about backup and recovery. (How does the data get restored if the

waiter is absent?)

When we transfer all this to the world of IT, you can compare a simple website with an

online store. If you imagine the website of a small carpenter’s workshop from a neigh-

boring village, you will find pictures of projects, information on how to reach the work-

shop, and perhaps a contact form. This is all data that is displayed to every user when

they access the website. No data needs to be kept or stored, and even the contact form

simply sends an email to the managing director. The website is stateless.

The online store of a large furniture store, on the other hand, provides features that

require a state. Think of the shopping cart, for example. It contains all the products you

want to buy. The order history and invoices also represent data about you that must be

stored. Thanks to the data, the online store can also make suggestions to you, such as

“Customers who bought a table also bought a chair” or categories tailored to you.

In more simple terms, stateless means that each interaction is independent and con-

tains no information about previous interactions. Stateful, on the other hand, means

that information about past interactions is stored and used to provide a continuous

experience. However, you will notice from the examples that there are states in most

applications that need to be saved.
30 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.1 Basic Principles and Concepts: Why Use Container Clusters at All?
Usually, we cannot control the fact that states have to be saved. What we can control,

however, is the way we design our applications. As many of them as possible should be

stateless because they are then much easier to handle.

Stateless applications

� are easier to scale and provide higher performance,

� are easier to deploy, and

� are better to manage and debug.

Good to Know

An application must be handled differently in Kubernetes depending on whether or

not it stores data.

A database is stateful, and if it is operated in Kubernetes, Kubernetes cannot simply

terminate or rebuild it. For this type of use case, there is a separate object that has pre-

cisely these properties for running stateful applications. You will get to know this

object in Chapter 5, Section 5.1.

1.1.5    Separation of Concerns

Separation of concerns is a design principle in software development. It aims to divide

complex systems into several components or modules. Each module has a clearly

defined and limited responsibility or task. This division significantly improves the

maintenance, further development, and comprehensibility of the software.

A classic example is the three-tier architecture, as shown in Figure 1.3, which you may

already be familiar with. Let's assume you are developing an online store.

Figure 1.3  Simple Three-Tier Architecture

Frontend

Backend

Database
31Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



1 Introduction to Kubernetes
You could, for example, separate the frontend, backend, and database. The frontend is

responsible for providing the HTML, CSS, and JavaScript files. In the end, that's what the

customer sees. They can add products to their shopping cart, check them out at the end,

and buy them.

The backend is the application that runs in the background and processes requests

from the frontend. Once the customer has entered their credit card details, the backend

can take care of the actual billing process.

Finally, persistence is required, which can be mapped with a database, which will be

used by the backend to store or retrieve data. For example, the customer's order history

is stored there. There are API interfaces between the individual components that

enable communication between them.

Good to Know

The three-tier architecture is one possibility, but there are others. One of my customers

has multiple software products in use. Some of these are legacy applications in the

data center and others are software-as-a-service (SaaS) applications in the cloud. In

order to exchange data between the systems, we have developed connectors, with a

separate connector for each data path, based on the extract, transform, and load (ETL)

principle.

This separation allows developers working on the user interface to do so without hav-

ing to worry about how the business logic or database access works.

The API defines types of communication with the backend and which functions it

offers. At the same time, backend developers can work on the business logic without

having to think about the frontend. This separation makes it much easier to maintain

and expand the application as there are different programming languages for the

respective components and usually also different developers or even entire teams.

The layout then often looks as shown in Figure 1.4, and the developers can focus on spe-

cific modules.

In the world of containers, attempts are often made to divide the components into

atomic units in order to make the separation of concerns as strong as possible. It is not

uncommon for the backend to be split into multiple microservices. You then have sep-

arate microservices for the shopping cart, billing, ordering, and so on. Depending on

the system, an even more granular categorization may make sense. The smaller the

system, the greater the effort required to maintain it. The overhead then increases,

which is why it is important to check where the cut needs to be made.
32 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.1 Basic Principles and Concepts: Why Use Container Clusters at All?
Figure 1.4  Responsibility of Developers

Good to Know

The term atomic is derived from the Greek word atomos and means indivisible. When I

talk about atomic components (which you provide in containers), this always means

that they cannot be further divided into smaller units. They are part of a larger applica-

tion, but the separation of tasks and responsibilities helps in many areas.

Just as you as a developer want to keep individual functions in your code small, you

also want to keep the components small. They should have a task and nothing more.

In development projects, often not everything can always be considered in advance.

You should therefore not be afraid to separate or combine components later on in the

project. It is also always good to look for the sweet spot so that you don't fall into one

extreme (too small…) or the other (… or too large components). What advantages can

you achieve through good partitioning? Here are some examples:

� Granular scalability

With atomic containers, you can scale exactly the parts of your application that are

needed. If, for example, the number of web servers needs to be increased, you can

scale it without having to scale the database directly.

� Independent updates

Atomic containers make it possible to update parts of your application inde-

pendently of each other. This minimizes downtime and simplifies deployment.

Framework

Module A Module B Module C

Module A
Development Team

Module C
Development Team

Module B
Development Team
33Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



1 Introduction to Kubernetes
� Improved resource utilization

As each component is isolated in its own container, you can distribute resources as

you wish. In combination with simple scaling, your operations are significantly

more flexible, saving resources and, thus, money.

� Increased security and stability

Separation increases security, because if one container is compromised, the other

containers are not necessarily at risk. In addition, an error in a container does not

directly lead to the failure of the entire system.

� Easy maintenance and further development

The separation into atomic components also facilitates further development and

maintenance, which means you need to do significantly less reverse engineering.

If you have no separation, then that is just as bad as being too compartmentalized. The

challenge is to find the right arrangement for your application. If you start with a

hypothesis, you will find out over time whether you need to subdivide further or com-

bine components again.

Just have the confidence to get started.

1.2    Kubernetes, the Tool of Choice

You have now learned what a container management tool is needed for and why and

have become familiar with the most important overarching concepts. You also know

how Kubernetes came about. But why is Kubernetes the tool of choice?

I want to start by looking at the reasons that companies want to use Kubernetes in the

first place, because let's be honest: a company does not optimize its IT in order to use

the latest software tools without a business purpose behind it.

I will then briefly take you through the arguments with which Kubernetes is entering

the market and give you an insight into my experience of this in the real world. Does

Kubernetes really deliver what it promises?

To conclude this section, I will clearly emphasize for which companies Kubernetes is

useful and for which companies it is not. Kubernetes is certainly not the panacea for

every IT problem.

1.2.1    Why Do Companies Want to Use Kubernetes?

The first question I ask my customers when they want to introduce Kubernetes is:

“What goal do you want to achieve with it?” The answers can be varied. In my experi-

ence, they can always be broken down into the following three aspects:
34 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.2 Kubernetes, the Tool of Choice
� Faster time-to-market

� Saving costs through optimized processes

� Opening up new markets through new software

But in the end, it always comes down to clear, measurable facts, usually about making

more money or spending less money. What does it look like in your company? Has

your company been using Kubernetes for some time, or are you one of the first in the

development team to use Kubernetes? Do you know the goals behind it?

You have likely experienced this yourself. You develop a prototype, and a decision is

made from one day to the next: the project is canceled. Only if you as a developer know

the company's goals in advance can you make sure that the project will become a suc-

cess during development. You make a major contribution to the success of your com-

pany and can also prioritize your tasks much better thanks to the clarity of your goals.

The decision to use a platform such as Kubernetes usually has a greater impact on a

company than a prototype. To avoid one project relying on Kubernetes, another on

Amazon ECS, and a third one on Docker Swarm, it is necessary to set a standard.

What motivates your company to invest time and money to introduce Kubernetes?

To help you better understand the decisions in your company, I would like to briefly

digress on the purpose of a company and the resulting value chain.

Good to Know

For us as computer scientists, the technological advantages are usually the most

important elements—for example:

� Automated rollouts/rollbacks

� Service discovery/load balancing

� Horizontal scaling

� Memory orchestration

� Self-healing

Unfortunately, technical excellence is often not (only) important for decision-makers. It

is our task to translate these technological advantages. In the end, they can always be

broken down to the following: we save time and money using Kubernetes or can

develop and deliver software faster.

Every company has a purpose and must create added value for society in order to sur-

vive. Try to imagine a village 5,000 years ago. Everyone in this village had a job. The

miller ground the farmer's grain so that the flour could be processed into bread by the

baker. The butcher processed the hunters' game. Everyone contributed to the village

community to ensure its survival. In the worst case, anyone who was unable to contrib-

ute to the community was cast out.
35Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



1 Introduction to Kubernetes
Even back then, small chains of value creation emerged where several people worked

on products to process them and turn them into something “more valuable.” For

example, the chef could cook a dish from the butcher's meat. Figure 1.5 illustrates what

such value chains looked like. Each individual contributed something to the village

community and received something in return.

Figure 1.5  Added Value in Village Community

Today, value chains are much more complex than they were back then, but every com-

pany still has to contribute something to society in order to earn money. Money is the

currency used to express how much value it has for society or for an individual. Money

has enabled value chains to become larger and companies to grow. Unfortunately,

money also contributes to the chains being forgotten. But our society can only func-

tion in this way today because every company works like a cog in a clockwork mecha-

nism. We notice this above all when a cogwheel no longer runs smoothly.

Good to Know

The introduction of the monetary system made a growing society possible in the first

place. Bartering was still possible in a village community, but imagine what it would be

like if you spent months developing an application for a car company on the barter sys-

tem. You would get a car in exchange—but you wouldn’t have any gas, food, or drink,

and you wouldn't even be able to pay the rent or mortgage on your house.

Farmer Miller Baker

Village

Butcher CookHunter
36 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.2 Kubernetes, the Tool of Choice
There is also a value chain in your company, and you are part of it. The question is: Do

you know what part you play in this? Because the better you understand it, the better

you can pay into it. So if you're part of the value chain, then Kubernetes is a tool to opti-

mize the value chain, and we're going to look at exactly how Kubernetes can do that.

Good to Know

Any software such as Kubernetes that you use in your company should be measured by

how well it contributes to the optimization of value creation. This is the only way to

determine whether it is a sensible business decision.

1.2.2    The Promise of Kubernetes

Let's first take a look at what Kubernetes promises. I want to introduce you to the three

core competencies that Kubernetes lists on its website. These are probably on every

management slide, and they provide a picture at a high strategic level to convince a

company's decision-makers.

But I think they are also important for you to understand how Kubernetes is positioned

in the market and what questions you may face when you say, “I'm developing applica-

tions on Kubernetes.”

Planet Scale

As you learned in Section 1.1, Google developed the core concepts of Kubernetes on the

basis of Borg. Kubernetes is therefore based on the same principles Google has used to

run billions of containers per week. For you, the Planet Scale competency means that

Kubernetes can grow with your requirements. So it doesn't matter whether you oper-

ate hundreds, thousands, or millions of containers.

But is it really that simple?

In this book, you will not learn what a good cluster should look like or what the perfect

cluster setup for your company looks like; however, I want to give you a few insights

into what clusters look like in German companies.

In theory, Planet Scale is probably possible, but in real life I have rarely seen companies

that have a huge cluster for everything, as was the case with Borg and Google. Instead,

there is always an organizational separation at a certain point, be it between different

company subsidiaries or between different subject areas. The clusters can be divided

into two types:

� Large clusters, which I refer to as cluster as a service

� Individual clusters that are provided for large applications with multiple microser-

vices
37Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



1 Introduction to Kubernetes
I call the large clusters clusters as a service because they usually provide a home for

many different small applications that are created in a company but cannot be directly

assigned to a large project. A small project team can thus quickly and easily get a con-

tainer live and does not have to worry so much about cluster operation.

This approach already goes in the direction of how Kubernetes is actually intended: a

cluster for all of the company's containers. That’s no problem with Planet Scale either,

but one cluster for many brings operational and configuration challenges that cause

companies to structure clusters to fit the hierarchy. Here are some of the challenges

that I have already encountered with customers:

� Roles and rights

These must be clearly thought out so that teams cannot influence each other.

� Resources

Allocation is more difficult, and containers from different teams could fight over

resources.

� Billing

Who produces which costs? Breaking down server costs into containers is much

more complicated.

Good to Know

The fact that an IT system adapts to the structure of the company and its hierarchy is

also known as Conway's law.

This makes it much easier to separate individual clusters. If there is a separate cluster

for each project, there will be no complicated separations that need to be observed and

maintained and monitored by an operations team.

However, the separation into individual clusters also has its disadvantages. What is

often forgotten is that the basic setup of a cluster can cost a lot of money: the cluster

requires management services that need computing power, and a setup of two servers

is far from sufficient to be highly available. The budget for this may be a little looser in

corporations for security reasons, but the situation is somewhat different in medium-

sized or small companies.

Nor can the appropriate budget be made available for every prototype or for small

applications. A prototype in particular does not yet have a reliable business case, and it

must be quick, simple, and cost-effective to operate. A dedicated Kubernetes cluster is

simply oversized here.

Note

Take a look at the clusters in your company. How are they designed? Do you think it's

right?
38 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.2 Kubernetes, the Tool of Choice
Here’s the bottom line on Planet Scale: A cluster structure must be well thought out and

adapted to the company; there are many facets that need to be considered. But let's be

honest: for very few companies is Planet Scale relevant at all.

I would like to take a closer look at one promise in this context—namely, that you can

scale clusters as you like without having to increase the size of the operating team.

From my experience, I can state quite clearly that we are still a long way from that end

as each scaling stage brings further challenges. For example:

� A cluster setup for 5,000 containers is different from a setup for 50,000 containers.

� A larger number of applications also means more responsibility and higher

demands on a cluster.

� For every additional virtual machine in the cluster, the probability that a machine

will fail also increases.

I have yet to experience a company in which principles of no operations (NoOps) really

take full effect. A high degree of automation is constantly being used in an attempt to

reduce operations to just a few supporters. But a lot of steps are needed to get there,

and I don't think it's realistic that the vast majority of companies will ever achieve this

form of automation.

In this book, we will go into a few more points that are relevant for you on the way to

NoOps. You will learn how to prepare your application for operation in a cluster.

Never Outgrow

How long have you been a software developer? Can you still remember the days when

the runtime of a function specified in Big O notation was important for performance?

I can still remember when it was said: “Bubblesort has a runtime of O(n2).” To be honest,

that was the last time I gave much thought to resources or runtimes. Today, optimized

libraries and cheaper hardware save us a lot.

The Never Outgrow competency of Kubernetes follows exactly the same line. What

could be worse than waiting three months for a test environment until the hardware is

set up in the data center? You may smile at the thought, but unfortunately this is still

the standard in many companies.

In Kubernetes, you can create a new namespace at the click of a mouse, and your appli-

cations can be deployed for a new test in no time at all. You can delete them just as

quickly when the test is finished.

Kubernetes promises

� that a cluster can grow with you and your requirements,

� that you can retain flexibility in scaling, and

� that everything is billed according to the pay-as-you-go principle.
39Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



1 Introduction to Kubernetes
Admittedly, developers have never had so much freedom before. I ran several Kuber-

netes clusters in an operations team for several years. We had built the clusters on AWS

infrastructure and automated them to a fairly high degree. For example, if more

resources were needed because all servers were at capacity, a new server was automat-

ically scaled to accommodate new containers. That made our work much easier. Some-

times we were told things like: “We would like to do a load test and need an environ-

ment for it.” The best feeling was always being able to say: “You have it in your own

hands and can do it without us.”

I am convinced that more responsibility for developers leads directly to better prod-

ucts. It increases the speed of development because you don't have to wait a couple of

weeks for someone from the ops team to finally have the time to provide new hard-

ware; that’s especially frustrating when you as a developer could do it yourself.

Note

More responsibility for developers doesn't happen overnight, and the path to it is

sometimes a little unfamiliar. But the work is worth it. I have had mostly positive expe-

riences with it so far.

Here’s the bottom line on Never Outgrow: If the cluster is set up well, it simply grows

with your applications. You are more flexible and can focus on what is important: the

development of your product.

But one thing is important to me: an increasingly higher degree of abstraction and a

growing number of cheap resources mean that we as developers are thinking less and

less about runtimes and efficient programs. It is therefore important to me that we do

not forget our craft and do not throw more resources at every problem. I just had to

optimize the runtime of an application a few weeks ago and am glad to have the tools

to do so. Never outgrow is a nice feature, but the rest should not fall by the wayside.

Run K8s Anywhere

Are you already in the cloud or are you still working on premise?

You know what? In my opinion, this question is actually unimportant—or at least,

there is no general right or wrong. It always depends on the specific area of application.

The nice thing is that Kubernetes doesn't care which infrastructure it runs on, per the

Run K8s Anywhere competency. You can also set up a cluster on premise in such a way

that you can fully utilize the features of Kubernetes.

Kubernetes promises

� to run in the cloud, on premise, or in a hybrid environment;

� to easily move workloads as per your requirements; and

� to give you all the freedom you need due to being open source.
40 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.2 Kubernetes, the Tool of Choice
And from my point of view, it lives up to it. The combination of these points makes

Kubernetes an interesting abstraction of your applications from the actual hardware.

In this book, you will also learn how workloads can be moved from one node to another

and how you can influence where containers run.

A lot has happened with Kubernetes in recent years, and open standards have been devel-

oped that allow you to connect different storage systems according to the same schema,

for example. This makes it really easy to operate Kubernetes in your own data center.

What I regard as extremely positive is the development of managed Kubernetes ser-

vices. Due to their great popularity, the major cloud providers also offer managed clus-

ters. This makes it particularly interesting for small companies that do not want to

worry about operating a cluster.

Here’s the bottom line on Run K8s Anywhere: Yes, you can run Kubernetes on many plat-

forms and have a lot of freedom. However, setting up a cluster involves a great deal of

effort, so you don't have the option of quickly switching from an on-premise cluster to

a cloud cluster. It takes something to set up the infrastructure components properly.

Many questions need to be answered and aligned with individual objectives.

The big advantage for you as a developer is that if the cluster is in place, your applica-

tion does not care where the cluster is located. You simply have an additional abstrac-

tion layer, which is very useful for developers.

1.2.3    Major Features

You have now learned about the three most important core promises of Kubernetes,

but you can certainly imagine that a cluster adds complexity to the company in addi-

tion to costs. So it makes sense to ask the following question: “What's in it for me?”

Let's also take a look at the features that are boldly presented on the website. What we

expect from Kubernetes is a simplification in the operation of containers. But how

exactly does Kubernetes want to achieve this? It implements the following:

� Automated rollouts and rollbacks

Automated rollouts have become the standard in the world of the cloud, but they are

not being implemented enough in most companies. Kubernetes offers the possibil-

ity of rolling out rollouts automatically and without downtime. You can even moni-

tor the application and roll it back automatically in the event of errors. I haven't seen

many automated rollbacks with my customers so far, but even manual rollbacks are

practically possible at the touch of a button.

� Service discovery and load balancing

You don't want to worry about exactly where your application is running and how

the traffic is routed there. Kubernetes takes care of this for you and knows at all

times where a container is and how the load can be routed to it. This also opens up

the world of autoscaling.
41Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



1 Introduction to Kubernetes
� Horizontal scaling

If your application receives more requests than it can handle, it should be scaled as

automatically as possible. In Kubernetes, this works almost automatically by start-

ing up a new container, a process that is referred to as horizontal scaling. We will look

at exactly how this works in Chapter 7, Section 7.3. In my opinion, this feature is one

of the biggest advantages of Kubernetes.

� Storage orchestration

You don't want to have to deal with storage personally either when the hard disk is

full or a new disk needs to be connected. Through abstraction, Kubernetes offers you

a standardized API to use storage for your application. In Chapter 5, you will learn

how easy it is.

� Self-healing

Have you ever been on call at night? How nice would it be if your application could

heal itself—or at least keep running until normal operations can take care of the

problem? Kubernetes offers technical self-healing and takes care of containers when

they are no longer running.

But let me be honest: Kubernetes cannot do more on its own than switch on and off.

You have already gained a lot with this, but for full self-healing, a little more brain-

power is required from the developers.

� Secret management and config management

Every application needs configs and secrets. When planning and programming your

application, you must decide how best to deal with this. Sensitive data such as pass-

words or private keys in particular must be treated with special care. Kubernetes

offers a simple way to manage this data. We will look at this in detail in Chapter 2,

Section 2.4.

� Batch execution

Do you have regular jobs that need to be processed? In the classic world, these are

executed by cron jobs on virtual machines. Kubernetes provides an option for pro-

cessing such tasks, which you will learn about in Chapter 4, Section 4.1. And it comes

with all the advantages of Kubernetes.

From my experience, I can tell you that all these features in one tool are very useful. As

with self-healing, not everything is always as promised, but over time working with

Kubernetes becomes very pleasant. In the course of this book, you will learn about each

of these topics in detail and be able to form your own opinion.

1.2.4    For Which Companies Is Kubernetes Useful?

Imagine a family that is about to decide on a new car. The father travels a lot for work

and needs a car that he can drive hundreds of miles on the freeway in one go. It should

contain all possible assistance systems and make driving as pleasant as possible. At the
42 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.2 Kubernetes, the Tool of Choice
same time, he wants to have fun driving and be able to hit the gas. The mother, on the

other hand, wants a comfortable and spacious car so that she can easily load her three

children and the dog. It has to be safe, and an electric car would suit her best for short

journeys.

The family goes on vacation twice a year and goes camping once. To fit everything in

the car, it must have a large trunk and preferably a hitch.

It's extremely difficult to choose a car that suits every situation. If it is a large SUV, then

it is good for the family, but not economical for business trips. If it's a normal sedan,

then it will be difficult to go on a camping vacation.

If buying a car is so difficult, how complicated is it to commit to a container platform?

And for which companies is it even suitable?

If we look at the core competencies and features of Kubernetes, the question arises as

to which companies it makes sense to use Kubernetes for. There is no one-size-fits-all

answer, but there are indications of when Kubernetes is helpful.

A company develops applications that consist of multiple services, microservices or

components. A separate stack of applications is deployed for each customer. The more

services you have at the same time, the more sense it makes to have a platform that

simplifies the management of applications and makes it more efficient. Kubernetes

can help with the deployment, scaling, and management of these applications and

reduces complexity by automating standard operational tasks.

If the following aspects apply to your company, then you are on the right track with

Kubernetes:

� Scalability

Do you want your applications to cope with peak loads or strong growth? Kuber-

netes enables the automatic scaling of resources to meet utilization and perfor-

mance requirements.

� High availability

Do your applications have high availability requirements? The simple distribution

of applications across multiple nodes and the automatic restart in the event of

errors or failures means that Kubernetes guarantees a high level of reliability.

� Efficient resource utilization

Would you like to increase the utilization of your hardware? Kubernetes makes it

possible to scale resources such as CPU and memory according to actual require-

ments and thus to pay only for what you actually use.

� Flexibility and portability

Do you develop platform-independent applications that are deployed in different

environments? Kubernetes provides a standardized platform for the execution of

containers. This facilitates the portability of applications between different cloud

providers or local data centers.
43Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



1 Introduction to Kubernetes
However, Kubernetes can also be useful for smaller companies, especially if they

develop complex applications or are growing rapidly. It provides flexibility, scalability,

and improved efficiency in the provision and management of applications.

1.2.5    Which Companies Should Not Use Kubernetes?

Kubernetes is not suitable for each and every company, just like your doctor doesn’t

always recommend the same balm for every skin problem. The balm can help in many

cases, but not in every case.

The introduction of new technologies brings not only opportunities, but also obliga-

tions. The following points play an important role in this regard:

� Specialist knowledge

The implementation and maintenance of Kubernetes requires extensive knowledge.

� Cost

The need for specialized personnel can significantly increase the cost of using Kuber-

netes.

� Change

The use of Kubernetes leads to a change in working methods and process design in

IT operations.

� Avoiding over engineering

Premature or excessive technical fine-tuning can hamper the development of a

company.

� Growth

Excessive complexity and high operating costs can slow the growth of a startup or

small business.

Let's go through two sample situations in which I would not recommend the use of

Kubernetes from the outset.

First, imagine that you work in a startup and create a simple application with a three-

tier architecture (frontend, backend, and database). The technology stack is straightfor-

ward; the operation of your application is uncomplicated and can be managed with

minimal effort. You only have a few customers and are currently more concerned with

the further development of features and customer acquisition.

In this case, a single server with containers or a cloud service for container operation

can be completely sufficient.

In another case, imagine that your applications have special infrastructure require-

ments. Especially with legacy applications that are to be migrated to Kubernetes, it can

happen that things simply don't “fit.” For example, I have seen a company’s application
44 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.3 Architecture and Components
that absolutely needed a fixed IP address so that it could be enabled for access to other

resources in the firewall. Although there are ways to implement such requirements in

Kubernetes, you will lose all the advantages of the system, which means you can save

yourself the effort.

In addition, particularly strict guidelines on compliance, security, or data protection

can also mean that the use of Kubernetes does not make any sense.

We had a similar challenge with another application. The company wanted to migrate

a data import job that was previously running on AWS ECS to Kubernetes. However, the

application was developed in such a way that a function based on AWS Lambda checked

the start condition and then started the job if necessary. The container for the import

itself required around 25 GB of RAM and did not fit into the company’s other microser-

vice landscape. The challenge was to determine how this service could be meaningfully

mapped using Kubernetes resources.

Sometimes, you conclude that it just doesn't make any sense. In this example, how-

ever, we migrated the job to Kubernetes with some development work and rebuilt it

accordingly.

In such cases, you need to clearly weigh whether migration to Kubernetes makes sense

and what benefits you want to gain from it. To put it more generally: there are no one-

size-fits-all solutions, and Kubernetes is not a panacea either. Each company must

examine its own requirements and assess whether the use of the system brings more

advantages than disadvantages. As a developer, you also need to check whether Kuber-

netes is the right platform for your applications.

1.3    Architecture and Components

Let’s now move on to the architecture of Kubernetes. With Kubernetes, several compo-

nents work together to ultimately provide what you call by the generic term Kuber-

netes. In the following sections, you will see how Kubernetes works at its core. It always

makes me realize that Kubernetes is not witchcraft either, but just introduces another

level of abstraction. It takes work off our hands because we no longer have to worry

about the underlying hardware, but under the hood there is the same technology as

ever.

With Kubernetes, a distinction is made between master nodes (masters for short) and

worker nodes (workers for short). A node is a server that is part of a Kubernetes cluster.

The masters are also referred to as control plane nodes because they run the services

that are considered the brains of Kubernetes. The workers are controlled by the masters

and receive commands to start containers and provide them with everything they

need: from storage and secrets to network connections.
45Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



1 Introduction to Kubernetes
Figure 1.6 shows the services divided into masters and workers and how they commu-

nicate with each other. Use this overview to see what the big picture looks like in the

following sections. I will now go into each individual component and its significance.

Figure 1.6  Kubernetes Architecture

1.3.1    Master Nodes

Let's start with the master nodes. In the simplest version, your Kubernetes cluster has

a master or control plane, which controls the cluster, registers workers, and manages

resources.

The masters are the brains of the cluster. They store configuration and status data, pro-

vide the API, and ensure that new containers are deployed. The masters monitor the

cluster and its resources and decide on which worker containers will be executed. There

are several services that take over the tasks. I will introduce you to these in a moment.

The Kubernetes master executes various server and manager processes for the cluster,

which themselves also run in containers. As the software has matured, new compo-

nents have been developed to meet specific requirements, culminating in what Kuber-

netes is today. Let us now take a closer look at the individual components and their

function.

Master Node
Control Plane

kube-apiserver

kube-proxy

kubelet

etcd

cloud-controller-
manager

kube-controller-
manager

Cloud

Worker Node

kube-proxy

kubelet

Container
Engine

Worker Node

kubectl

API
Requests

kube-scheduler

kube-proxy

kubelet

Container
Engine
46 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.3 Architecture and Components
kube-apiserver

The kube-apiserver component is of central importance for the operation of the Kuber-

netes cluster. It is the center of communication, as you will see in Section 1.3.3. All calls,

for both internal and external traffic, are processed via this component.

In addition to providing the API, it is also responsible for tasks such as the following:

� Validating requests and manifests

� Checking authorizations

� Monitoring rate limits and quotas

In addition, kube-apiserver is the only component that establishes a connection to the

etcd database. The cluster would not work without it. You could no longer control any-

thing, and nothing could change within the cluster.

The advantage of this central component is that nothing happens without kube-

apiserver being aware of it. For example, you can implement watch requests to receive

information when certain resources change or are newly created.

kube-scheduler

If you want to know where there is still room for a container on your cluster, it is best

to ask kube-scheduler. This component knows your nodes and how much CPU and

memory are available. It also has a plan of how many resources have already been

reserved, and it knows all your rules that allow you to influence pod scheduling. There

are affinities, taints, and tolerations for this, which we will look at in more detail in

Chapter 2, Section 2.2.3.

kube-scheduler takes all of this into account in its algorithm to determine which node

can best host additional containers. It always tries to achieve a certain balance across

the cluster and uses preemptions to “displace” containers to new nodes if necessary.

kube-scheduler is always in close contact with kube-apiserver to receive new requests

and information about nodes and containers.

The etcd Database

Looking for the brain of Kubernetes? Then etcd is the right place for you. As a key-value

database, etcd is not only used by Kubernetes, but is also of interest for other distrib-

uted systems. It uses the so-called raft consensus algorithm to provide highly available

data persistence with the quorum concept.

Quorum

The quorum is a concept in the theory of distributed systems that refers to the mini-

mum number of nodes required to perform a certain operation in a distributed system

or to make a decision. This ensures consistency in a cluster.
47Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



1 Introduction to Kubernetes
Imagine the following scenario: You have a database in which you store your data.

When you retrieve data, you receive it from the database. So far, so good—but if you

now operate the database with two distributed instances to increase reliability, things

get complicated. What happens if you query both databases and they each return a dif-

ferent result? How do you decide which of the two is right?

The quorum is a way of maintaining consistency, because in this case the majority of

nodes is right. To avoid a stalemate, an odd number of nodes is always used in a clus-

ter. This means that in a cluster with three nodes, one can fail without any problems;

with five nodes, it’s two; and so on. In most cases, a cluster of three nodes is used in a

production environment.

As long as the etcd database can provide its data, your Kubernetes cluster will be able to

get out of any predicament. etcd saves all manifests of resources of the cluster and thus

always maintains the desired state. For example, if a node fails, Kubernetes can roll out

your containers again on a new node using your manifests.

The only interface for the etcd database is kube-apiserver. Everything that goes into or

out of etcd can therefore only be carried out via kube-apiserver. This ensures that only

authorized actions can manipulate the stored information.

cloud-controller-manager

The cloud-controller-manager component handles communication with other cloud

services. This allows Kubernetes itself to remain independent, as the cloud services are

integrated via cloud-controller-manager. For this purpose, a plug-in mechanism is used

that makes virtually anything possible:

� Managing the cluster

� Deleting Kubernetes resources

� Creating infrastructure in the cloud such as load balancers when a specific Kuber-

netes object is created

� Deleting nodes when the infrastructure in the cloud is deleted

cloud-controller-manager therefore makes operating a cluster in the cloud more conve-

nient. However, cluster management tools such as Rancher also use these components

to gain access to the cluster and manage it.

kube-controller-manager

Perhaps one of your nodes doesn't seem to be doing so well, and the containers on it

are having problems. Or maybe a container had an error and was terminated. Fortu-

nately, you can use kube-controller-manager, which carries out the monitoring of vari-

ous functions independently and automatically. It is comparable to a worker in the

engine room.
48 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.3 Architecture and Components
There are many different controllers with different tasks. To simplify matters, these

controllers are grouped together under their manager and provided as a single binary

file. An overview of this is shown in Table 1.1.

At this point, let’s take a closer look at the node controller. This controller recognizes

immediately if a node is not working correctly and cannot be reached, for example. The

node controller communicates regularly with the nodes, and each node needs a so-

called kube-node-lease that it must renew on a regular basis. This is a heartbeat that

allows the node controller to recognize that the node is still alive.

If this heartbeat does not occur within a certain time slot, the node controller becomes

active and takes care of the evacuation of the containers and ensures that they are

rebuilt on a functioning node. It also maintains a list of available nodes and updates it

when new ones are added or old ones need to be removed. It also takes care of the

onboarding of new nodes and assigns Classless Inter-Domain Routings (CIDRs) to

them, for example.

The node controller is therefore an important component for keeping a Kubernetes

cluster alive.

1.3.2    Worker Nodes

The kubelet and the kube proxy—as well as the container engine, which starts and

keeps the containers running—are executed on all worker nodes. You will get to know

the container engines in Chapter 2, Section 2.1.1. The worker is the one who carries out

the work at the end. No management processes run on it, but only application contain-

ers, which makes workers interchangeable. This is precisely where the magic of Kuber-

netes lies, because it means that a worker can fail or be replaced and the applications

will still continue to run. Let's now look at the components that run on the worker

nodes.

Controller Function

Node controller Monitors all nodes and will actively evacuate the containers 

from a node if it is no longer intact.

Replication controller Regularly checks the correct number of containers. If one is no 

longer functional, it takes care of starting a new one.

Endpoints controller Takes care of the connection between services and containers. 

You will become familiar with this process in Chapter 2, Sec-

tion 2.5.

Service account controller Creates standard service accounts and API access tokens for 

newly created namespaces.

Table 1.1  Controllers under kube-controller-manager and Their Functions
49Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



1 Introduction to Kubernetes
The Kubelet

Imagine you own an apartment building with 60 residential units. As the owner, you

don't want to take care of the management of the apartments yourself and so you hire

a janitor. The janitor looks after the apartments and ensures that each one is in the

desired condition. If a new tenant moves in, you as the owner establish clear rules for

how the apartment is to be used and the janitor takes care of enforcing them.

In this metaphor, you are kube-apiserver, the janitor is the kubelet, and the apartments

are the containers. Thus, the kubelet is the central component on all nodes, which also

takes care of the registration of new nodes. To do this, it registers with kube-apiserver.

The kube-apiserver component can then pass jobs to the kubelet in the form of mani-

fests in order to deploy containers. A manifest describes everything that is necessary to

execute the container. If a container requires access to storage, secrets, or configura-

tions, the kubelet ensures access.

Another task of the kubelet is to monitor the containers. The status is also sent back to

the kube-apiserver, which in turn saves it in the etcd database. The kubelet does not

work alone, but interacts with the underlying container engine, which is ultimately

responsible for executing containers.

Good to Know

The kubelet also runs on the master nodes, as these also run containers that the

kubelet takes care of.

The Kube Proxy

Let's continue to use the image of your apartment building. Imagine you don't just

have one house, but 10 of them combined into one building complex. There is a door-

man in the entrance area of every house. Every doorman knows exactly which tenant

lives in which apartment and in which building, because you as the owner always let

them know when a new apartment is being moved into. Now, when the courier arrives,

the doorman directs the mail to the right house, so that packages always arrive at the

right apartment.

The doorman is the kube proxy that is contacted by the kube-apiserver when a new con-

tainer gets deployed. Every kube proxy on every node knows about this at all times.

This is the only way to ensure that the data packages reach the right container. The

kube proxy is therefore responsible for managing the network connectivity to the con-

tainers.
50 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.3 Architecture and Components
1.3.3    API Call Flow

Kubernetes consists of numerous components that have to interact with each other. To

give you a better idea of how the communication between the components takes place

in order to deploy a container at the end, I will take you through a simplified example.

I will leave out the different Kubernetes objects that you will learn about in Chapter 2

for now, as these make it much more difficult to understand the API flow.

Assume that you want to deploy a container in Kubernetes. Using the kubectl tool,

which you will learn more about in Section 1.5, you can send a request with a manifest

of your desired container to kube-apiserver. The manifest is written in the YAML lan-

guage, which we will take a closer look at in Chapter 3, Section 3.2.

The manifest contains everything Kubernetes needs to know to set up the container. As

soon as you send the request, kube-apiserver starts a process that basically runs as fol-

lows:

1. kube-apiserver accepts the request and saves the manifest in the etcd database.

2. kube-controller-manager becomes active and receives information from kube-

apiserver that there is a new manifest.

3. kube-controller-manager asks kube-apiserver whether the container has already

been deployed according to the manifest and, if so, whether the current status cor-

responds to the desired status.

4. kube-apiserver responds that the container does not yet exist.

5. kube-controller-manager gives kube-apiserver the command to create the con-

tainer.

6. kube-apiserver contacts kube-scheduler to check which worker the container can be

deployed to. The scheduler then responds to it.

7. kube-apiserver sends the necessary information from the manifest to the kubelet of

the corresponding worker that is to build the container.

8. In addition, kube-apiserver sends network information to each kube proxy that this

container is made available on the corresponding worker.

9. The kubelet on the worker will then ensure that the container is created in the con-

tainer engine and receives all the necessary resources, such as secrets or volumes,

that are requested in the manifest.

10. The kubelet returns the information about the successful deployment to kube-

apiserver, which saves the information in etcd.

Good to Know

This process is repeated again and again, even if there is only a small change such as

increasing the memory of the container.
51Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



1 Introduction to Kubernetes
As you will learn in Chapter 2, there are different objects in Kubernetes, some of which

build on each other. Here too, this API flow is run through again and again for each

object. This may sound a bit much at first and can seem dauntingly complicated due to

the amount of communication. However, the concept from Section 1.1.5 was also

applied here—that is, separation of concerns.

You have probably also noticed that kube-apiserver is always involved in the communi-

cation. Kubernetes is based on the hub and spoke architecture (or hub and spoke API

pattern). There is a hub as a central point through which all requests and messages flow.

It acts as an intermediary and controls the data traffic between the various end points.

The spokes are the end points that are connected to the hub. Figure 1.7 offers a simple

illustration. Each spoke is responsible for a specific function or service and interacts

with other spokes via the hub.

Figure 1.7  Communication through Hub and Spoke Architecture

Even if direct communication would be faster at first, this model is easier for many

small services. If you take a look at Figure 1.8, you can see that there are a lot of commu-

nication channels with just five services. Each additional service increases complexity,

and you need to familiarize each new service with each existing service. In the hub and

spoke architecture, each spoke only communicates with the hub. The hub takes care of

distribution, and if a new service is added, the hub can also receive messages from it

and send them to other services.

A nice side effect of centralized communication is easy monitoring. All transactions

run via the hub, which makes it easier to analyze errors. With Kubernetes, for example,

you also ensure that not every service can write to the etcd database. This contributes

Hub

Service

ServiceService

ServiceService
52 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.4 A Kubernetes Cluster on Your Computer
to consistency and in turn reduces errors. Precisely because etcd is such a critical com-

ponent, a well-considered communication architecture is crucial.

Figure 1.8  Illustration of Direct Communication

1.4    A Kubernetes Cluster on Your Computer

After all the theory, let's finally get down to the practical part. A Kubernetes cluster

always consists of multiple servers (as already described). However, Minikube was

developed so that you don't have to set up a server farm to learn K8s and can be able to

test and play without much effort.

Note

In the following sections, I will introduce you to the Minikube tool, which only requires

one computer. However, it is ideal if you have multiple computers available that you

can use to build a small test cluster. In addition, at some points in the book, we will

reach the limits of Minikube. For this reason, in addition to Minikube, I present a cost-

effective way of setting up a Kubernetes cluster based on Raspberry Pis in Section 1.7.

However, it is optional, and I will make it clear in the book when a demo with multiple

nodes makes sense.

Minikube simulates a Kubernetes cluster on your local computer using a container or

VM. This works very well for experimentation purposes, but in the end it is only a sim-

ulation of a real distributed Kubernetes setup. The performance and size of the cluster

Service

ServiceService

ServiceService
53Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



1 Introduction to Kubernetes
are limited to your computer, but for almost all the exercises in this book, Minikube

will suffice.

In the following sections, I will guide you through the installation for the different

operating systems and show you how to get Minikube up and running with Docker.

An installed Docker engine is required for the installation. I use Docker Desktop for

that. You can find the installation instructions at the following address: http://s-prs.co/

v596403.

The next chapters are all designed for the operation of Minikube in Docker. If you still

want to start Minikube with a VM manager, you should take a look at the installation

instructions available at http://s-prs.co/v596404. However, I recommend that you fol-

low the instructions presented here to avoid possible incompatibilities.

Important Note for Company Computers

If you want to carry out the following instructions with a device that is managed by

your employer, this can lead to problems. Most workstations have restricted rights or

certain security policies that prevent the instructions provided here from working. I rec-

ommend that you use a computer that is not managed by a company and on which

you have full admin rights. And of course, it makes sense perhaps not to use your own

workstation with important data for such experiments.

If you still want to use a company computer, then contact your company's administra-

tor if you have any problems.

If you use your company computer, you may need a license for Docker Desktop. Please

check this beforehand.

1.4.1    Minikube on macOS

There are different ways to install Minikube for Mac. It is a command line tool and is

also installed via the terminal. I'll show you two options, the first of which is the sim-

plest.

Installation via the Homebrew Package Manager

The easiest way is to use a package manager called Homebrew. It makes installing soft-

ware quick and easy, because where you would normally have to download, install, and

configure packages manually, Homebrew does it for you. If you have not yet installed a

package manager for your Mac, I recommend that you do so now.

Open the terminal and run the following command:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
HEAD/install.sh)"
54 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596403
http://s-prs.co/v596403
http://s-prs.co/v596404


1.4 A Kubernetes Cluster on Your Computer
You will then be asked to enter your password and confirm the installation by pressing

(Enter). After the installation has been completed, you can use the package manager

with the brew command.

You can now carry out the installation of Minikube. To do this, enter the following com-

mand in your terminal:

brew install minikube

This will download and install Minikube from Homebrew. Once the installation is com-

plete, you can use the minikube version command to test whether the software has been

installed and if it is ready. The command line should then output the corresponding

version of Minikube. In my case, the output looks as follows:

minikube version
minikube version: v1.30.1
commit: 08896fd1dc362c097c925146c4a0d0dac715ace0

Note that you may have a newer version depending on when you read this book.

Manual Installation

If you do not wish to install the Homebrew package manager, you can also install Mini-

kube manually. First, you need to download the installation files that match your pro-

cessor architecture. The following command is suitable for Macs with Intel processors:

curl -LO https://storage.googleapis.com/minikube/releases/latest/minikube-
darwin-amd64

Then, install Minikube. You need to have admin rights for this step:

sudo install minikube-darwin-amd64 /usr/local/bin/minikube

Run the following commands if your Mac has an Apple processor:

curl -LO https://storage.googleapis.com/minikube/releases/latest/minikube-
darwin-arm64
sudo install minikube-darwin-arm64 /usr/local/bin/minikube

You should now also be able to test whether the installation was successful using the

minikube version command.

1.4.2    Minikube on Linux

In the following sections, I will address the most common installations for Linux. You

can find a complete selection at http://s-prs.co/v596405.
55Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596405


1 Introduction to Kubernetes
Installation on Linux with x86-64 Architecture

If you have an x86-64 architecture, you can perform the installation in three ways,

depending on which distribution you are using. A Minikube package may also be avail-

able in a repository for easy installation.

If you need a Debian package, the following two commands will download the installa-

tion file and install Minikube:

curl -LO https://storage.googleapis.com/minikube/releases/latest/minikube_
latest_amd64.deb
sudo dpkg -i minikube_latest_amd64.deb

If you use an RPM distribution, this will get you there:

curl -LO https://storage.googleapis.com/minikube/releases/latest/minikube-
latest.x86_64.rpm
sudo rpm -Uvh minikube-latest.x86_64.rpm

You can also download and install the binary file directly:

curl -LO https://storage.googleapis.com/minikube/releases/latest/minikube-
linux-amd64
sudo install minikube-linux-amd64 /usr/local/bin/minikube

Installation on Linux with ARM64 Architecture

There are also three ways to install the ARM64 architecture.

With a Debian package:

curl -LO https://storage.googleapis.com/minikube/releases/latest/minikube_
latest_arm64.deb
sudo dpkg -i minikube_latest_arm64.deb

With an RPM package:

curl -LO https://storage.googleapis.com/minikube/releases/latest/minikube-
latest.aarch64.rpm
sudo rpm -Uvh minikube-latest.aarch64.rpm

Downloading the binary file:

curl -LO https://storage.googleapis.com/minikube/releases/latest/minikube-
linux-arm64
sudo install minikube-linux-arm64 /usr/local/bin/minikube
56 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.4 A Kubernetes Cluster on Your Computer
1.4.3    Minikube on Windows

Three options are available for the installation on Windows. If you have already

installed the Chocolatey package manager or Windows Package Manager, you can skip

to the corresponding instructions. The installation via a package manager is much eas-

ier, but you must install one first.

Package Manager for Windows

If you want to use a package manager and have installed Windows 10 or Windows 11,

you should take a look at Windows Package Manager. This significantly simplifies the

installation of programs such as Minikube. You can find detailed instructions from

Microsoft at the following link: http://s-prs.co/v596406.

Installation Using Chocolatey

The installation using the Chocolatey package manager is very simple. You need to run

the following command in your PowerShell:

choco install minikube

Installation Using the Windows Package Manager

The installation is also easy via Windows Package Manager. Just run the following com-

mand in PowerShell:

winget install minikube

Manual Installation

The commands for a manual installation are somewhat more complex. To avoid hav-

ing to type the commands from the book, I recommend that you copy the commands

from the Minikube installation page. To do this, go to http://s-prs.co/v596405 and select

the Windows operating system and .exe download in Installer Type.

Then you can copy the following command and paste it into the PowerShell to down-

load Minikube:

New-Item -Path 'c:\' -Name 'minikube' -ItemType Directory
  -Force Invoke-WebRequest -OutFile 'c:\minikube\minikube.exe'
  -Uri 'https://github.com/kubernetes/minikube/releases/latest/download/
             minikube-windows-amd64.exe'
  -UseBasicParsing

For Minikube to be executable in PowerShell, the program must be entered in the PATH
variable. The following command takes care of this (note that this command requires

admin rights). Then you must start PowerShell as an administrator:
57Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596406
http://s-prs.co/v596405


1 Introduction to Kubernetes
$oldPath = [Environment]::GetEnvironmentVariable('Path',
                       [EnvironmentVariableTarget]::Machine)
if ($oldPath.Split(';') -inotcontains 'C:\minikube'){
  [Environment]::SetEnvironmentVariable('Path', $('{0};C:\minikube' -f
                        $oldPath), [EnvironmentVariableTarget]::Machine)
}

You can now close and reopen PowerShell and use the minikube version command to

test whether the software has been installed and if it is ready to use. The command line

should then output the corresponding version of Minikube. In my case, the output

looks as follows:

minikube version
minikube version: v1.30.1
commit: 08896fd1dc362c097c925146c4a0d0dac715ace0

Note that you may have a newer version depending on when you read this book.

1.4.4    Launching Minikube

Once you have installed Minikube, you can easily launch it from your command line.

To do this, you want to run the following command:

minikube start

Minikube then creates some activity and documents all processes in logs, which will be

output directly. Because it is based on Docker, Minikube will download the latest con-

tainer first. Minikube also indicates which version of Kubernetes is being started. You

will then see information about additional add-ons that are not relevant for the time

being. You do not need to make a note of any of this as we will come back to it in due

course.

You now have a Kubernetes cluster running in a Docker container on your computer.

1.4.5    Controlling Minikube

Before we get to the interaction with the Kubernetes cluster, I would like to briefly

explain how you can use Minikube. We have already executed the minikube start com-

mand. You have used this command to start the cluster in a Docker container.

If you want to pause the containers running in the cluster, you can use the minikube
pause and minikube unpause commands. These will both pause your containers, which

we will deploy in later chapters, and stop the system containers that make up Kuber-

netes. You should use these commands when you are not using your test cluster as

doing so saves resources.
58 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.4 A Kubernetes Cluster on Your Computer
You can also stop Minikube by running minikube stop. This stops the Minikube con-

tainer completely. However, the state remains the same. This command is good to run

before you shut down your computer. The same container is restarted via the start

command and continues in the same state as before it was stopped.

Finally, you can use the minikube delete command to delete your cluster entirely. This

command is particularly useful if you need a fresh cluster and want to get rid of your

old tests.

These commands enable you to control Minikube. There are a few other commands

that are relevant, and we will take a closer look at them in the corresponding chapters.

1.4.6    Possible Errors when Starting Minikube

You may encounter two small errors when you start Minikube. Let's take a brief look at

how this happens and how you can solve it if you receive the corresponding error mes-

sage.

If you run the minikube start command, the following error may occur:

Exiting due to PROVIDER_DOCKER_NOT_RUNNING:
"docker version --format -:" exit status 1: Cannot connect to the
Docker daemon at unix:///Users/kevinwelter/.docker/run/docker.sock.
Is the docker daemon running?

This error may look slightly different on Windows, but the issue is the same, and the

hint is already in the error message. The Is the docker daemon running? message indi-

cates that Docker Desktop is not running. Start Docker and try to execute the com-

mand again. Minikube should now start. This error can occur especially after restarting

your computer if you have not activated Docker via autostart.

Another error message after you run the minikube start command might look some-

thing like this:

command not found: minikube

This indicates that the command line interface tool cannot be found. If you have car-

ried out the installation steps given earlier correctly, then try to restart the command

line. In some cases, especially when installing manually, the tool may not yet be acti-

vated in the path.

1.4.7    Container Registry of Minikube

Throughout this book, you will do exercises that require the Minikube container regis-

try add-on. Here I will show you how to install and use it. You can also skip this for now

and return when you need the extension. I will point this out at the appropriate place.
59Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



1 Introduction to Kubernetes
Minikube comes with some add-ons that allow you to build a nice and simple Kuber-

netes test environment without the need for external dependencies.

You can use the minikube addons list command to get an overview of the extensions.

We won't need them all, but perhaps you will come back to them at some point.

The most important add-on is the container registry. If you want to develop your own

containers and deploy them in Kubernetes, there is no way around a registry, as Kuber-

netes only retrieves the images required for the containers from there. In production

environments, you naturally need a professional registry to manage and securely store

your images. For our test cluster, however, such an effort is excessive and we can revert

to the useful add-on.

The add-on can be activated using the minikube addons enable registry command. Now

the next part is important! This is because a port that you should use is displayed as the

output. You do not need this!

Instead, you want to run the eval $(minikube docker-env) command on Linux or on a

Mac. In PowerShell, the command is minikube -p minikube docker-env | Invoke-Expression.

This call makes sure that you use the Docker daemon from Minikube. You can then also

access the registry via the default port 5000.

Note

You must run the eval $(minikube docker-env) command with every new command

line; otherwise, you will not be able to access the registry. If you don't want to think

about it every time, you can also write the command in your .bashrc or .zshrc,

depending on the command line, so that it gets always executed. You can enter the

command in your profile in PowerShell.

Note that you then use the Docker host from Minikube.

Now let's test whether you can store containers in the registry. Use the following one-

line Dockerfile for this purpose:

FROM nginx

Create this as a Dockerfile and run the docker build -t localhost:5000/test-nginx .
command. Your own Nginx image will now be built and tagged with the name of the

registry. Then you can store the image in the registry using the docker push local-
host:5000/test-nginx command. From now on, Kubernetes can access the image with

the image name and download it.
60 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.5 Interaction with Kubernetes via the Command Line and Dashboard
Important Convention for the Image Name

If you are familiar with Docker, then you will certainly also know the naming conven-

tions for images. You must start the name using the URL of the registry, as this is the

only way Docker can also assign the image to a registry and store it there in the event

of a push.

You can of course continue to name the images locally as you wish.

1.5    Interaction with Kubernetes via the Command Line and 

Dashboard

Kubernetes comes with two options for interacting with the cluster: kubectl as a tool

for the command line, and the Kubernetes dashboard, which can be accessed via the

browser.

Both tools use the Kubernetes API and make their requests to kube-apiserver in the con-

trol plane.

1.5.1    Minikube Comes With kubectl

The easiest way to communicate with your Kubernetes cluster via kubectl is to use the

kubectl instance that comes with Minikube. This instance is always compatible with

the corresponding cluster version and can simply be used via the minikube kubectl
command, which of course is particularly useful if you need an older version of kubectl
because the clusters in your company have a different version.

And that’s all. However, you should set an alias in your command line so that you do

not always need to type the entire minikube kubectl command.

1.5.2    Installing kubectl

The kubectl instance provided with Minikube is very helpful and easy to use for the

development environment. In a production environment, you should not rely on

kubectl supplied by Minikube. First, the dependency between kubectl and Minikube is

unnecessary, and second, you cannot install an independent version of kubectl.

For this reason, we will now take a closer look at how to install the “right” CLI tool on

your computer. As with Minikube, this depends on the operating system.
61Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



1 Introduction to Kubernetes
Version and Version Conflicts

In the following sections, I will show you how to install the latest version of kubectl. At

the time of writing this chapter, that’s version 1.27, the same version as the Minikube

cluster. If you also use the latest version of Minikube, there should be no conflicts.

However, you must check that the versions are the same.

The kubectl instance is always one version upward and one version downward com-

patible. Thus, if you install version 1.27, you can control clusters with versions 1.26, 1.27,

and 1.28. In case you use an older version in your company, you will find a link to the

Kubernetes documentation for each operating system at the end of the relevant sec-

tion. There you can read how to install an older version of kubectl.

kubectl on macOS

The easiest way to install kubectl on macOS is also via the Homebrew package man-

ager. If you installed this in Section 1.4.1, you can simply run the following command:

brew install kubectl

That’s it. Homebrew will then install the appropriate package.

If you want to install without the package manager or install an older version, you

can also install it manually. The manual installation is somewhat more complex with

kubectl and differs depending on the processor type. You can find the current com-

mands at the following link: http://s-prs.co/v596407.

kubectl on Linux

You can also use the native package manager for Linux to install kubectl.

Installation Using the apt Package Manager

The default apt package manager is available for operating systems based on Debian.

To use it, run the following commands:

sudo apt update
sudo apt install -y ca-certificates curl
curl -fsSL https://packages.cloud.google.com/apt/doc/apt-key.gpg | \
  sudo gpg --dearmor -o /etc/apt/keyrings/kubernetes-archive-keyring.gpg
echo "deb [signed-by=/etc/apt/keyrings/kubernetes-archive-keyring.gpg]
  https://apt.kubernetes.io/ kubernetes-xenial main" | \
  sudo tee /etc/apt/sources.list.d/kubernetes.list
sudo apt update
sudo apt install -y kubectl
62 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596407


1.5 Interaction with Kubernetes via the Command Line and Dashboard
For Debian version 9 or older, you need the following package:

sudo apt install -y apt-transport-https

For versions older than Debian 12 and Ubuntu 22.04, you may have to create the /etc/

apt/keyrings folder manually.

Installation Using the yum Package Manager

The default yum package manager is available for operating systems based on RedHat.

To use it, run the following commands:

cat <<EOF | sudo tee /etc/yum.repos.d/kubernetes.repo
[kubernetes]
name=Kubernetes
baseurl=https://packages.cloud.google.com/yum/repos/kubernetes-el7-\$basearch
enabled=1
gpgcheck=1
gpgkey=https://packages.cloud.google.com/yum/doc/yum-key.gpg https://
packages.cloud.google.com/yum/doc/rpm-package-key.gpg
EOF
sudo yum install -y kubectl

You can also install the packages for Linux without a package manager. The instruc-

tions for this as well as the instructions for installing older versions can be found at the

following address: http://s-prs.co/v596408.

kubectl on Windows

As with Minikube, you can use the Chocolatey and Winget package managers on Win-

dows systems.

Run the following command in PowerShell for Chocolatey:

choco install kubernetes-cli

For Winget, run the following command in PowerShell:

winget install -e --id Kubernetes.kubectl

You can also install the packages for Windows without a package manager. The instruc-

tions for this as well as the instructions for installing older versions can be found at the

following address: http://s-prs.co/v596409.

Function Test for kubectl

You can now check whether you can run kubectl:

kubectl version –-client
63Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596408
http://s-prs.co/v596409


1 Introduction to Kubernetes
The output should read something like this:

Client Version: version.Info{Major:"1", Minor:"27", GitVersion:"v1.27.3", 
GitCommit:"25b4e43193bcda6c7328a6d147b1fb73a33f1598", […] }

Depending on the operating system, further system information is also displayed.

However, the important thing here is that you can run kubectl and that you have the

latest version. You should also check again against the Minikube cluster for whether

there could be version conflicts, as mentioned earlier.

Activating Autocompletion for kubectl

For your Linux or macOS command lines (Bash, Zsh, or Fish), and for your Windows

PowerShell, kubectl provides very useful autocompletion options by pressing (Tab).

Because calls using kubectl can become very long and complex, working without these

completions is really no fun. To enable autocompletion, follow these steps:

1. To install the completion, run the appropriate command for your package man-

ager:

# For macOS
brew install bash-completion@2 
# For Linux
apt install bash-completion 
yum install bash-completion

Note the output after the installation and add the corresponding line to the

~/.bash_profile file so that Bash completion is permanently activated. This should

look something like this:

Add the following line to your ~/.bash_profile:
  [[ -r "/usr/local/etc/profile.d/bash_completion.sh" ]] && . "/usr/ 
  local/etc/profile.d/bash_completion.sh"

2. Finally, run one of the following commands:

Installing for Bash:

echo 'source <(kubectl completion bash)' >>~/.bash_profile
Installing for Zsh:

echo 'source <(kubectl completion zsh)' >>~/.zshrc
Installing for Fish:

echo 'kubectl completion fish | source' >>~/.config/fish/config.fish
Installing for PowerShell:

kubectl completion powershell | Out-String | Invoke-Expression
Once you have activated autocompletion, you need to restart your command line.

Now the autocompletion of kubectl should work.
64 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.5 Interaction with Kubernetes via the Command Line and Dashboard
There are also other little helpers in the shell that make working with Kubernetes

clusters easier. For example, take a look at the ZSH plugin for kubectl, which you

can find at http://s-prs.co/v596410. It comes with a large number of aliases that

make your work much easier.

1.5.3    Accessing the Cluster Using Kubeconfig

To be able to access Kubernetes clusters using the kubectl CLI tool, you need to config-

ure the tool. First, the tool needs to know which cluster it should address and how it can

reach it. Second, kubectl must authenticate itself against the Kubernetes API. This is

defined in the so-called Kubeconfig file, or Kubeconfig for short. kubectl searches for

the file

1. either automatically in ~/.kube/config,

2. or it expects the paths to several files as environment parameters such as 

KUBECONFIG=~/.kube/config:/path/to/other/config.

This is the same for Linux, macOS, and Windows PowerShell.

Minikube configures kubectl automatically when you execute the minikube start com-

mand. If you installed kubectl in the previous section, you should run minikube stop
again and then minikube start to be on the safe side. Minikube should also have created

the Kubeconfig file correctly.

To check that Kubeconfig has been successfully created and that you can reach your

Kubernetes cluster, run the kubectl get namespaces command. This then returns all

namespaces that were created with the cluster by default. The output should read

something like this:

NAME              STATUS   AGE
default           Active   16s
kube-node-lease   Active   17s
kube-public       Active   17s
kube-system       Active   18s

Let's analyze a Kubeconfig file in more detail to understand how Kubernetes can use it

to connect to your cluster. As an example, we’ll look at the Kubeconfig file generated by

Minikube. This should look similar to the one shown in Listing 1.1.

apiVersion: v1
clusters:
- cluster:
    certificate-authority: /Users/kevinwelter/.minikube/ca.crt
    extensions:
    - extension:
65Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596410


1 Introduction to Kubernetes
        last-update: Sun, 16 Jul 2023 18:48:50 CEST
        provider: minikube.sigs.k8s.io
        version: v1.30.1
      name: cluster_info
    server: https://127.0.0.1:59746
  name: minikube
contexts:
- context:
    cluster: minikube
    extensions:
    - extension:
        last-update: Sun, 16 Jul 2023 18:48:50 CEST
        provider: minikube.sigs.k8s.io
        version: v1.30.1
      name: context_info
    namespace: default
    user: minikube
  name: minikube
current-context: minikube
kind: Config
preferences: {}
users:
- name: minikube
  user:
    client-certificate: /Users/kevinwelter/.minikube/profiles/minikube/
client.crt
    client-key: /Users/kevinwelter/.minikube/profiles/minikube/client.key

Listing 1.1  Kubeconfig from Minikube

The configuration is simple and quickly explained. It is divided into the following

blocks:

� clusters

� contexts

� users

Information on the cluster itself can be found under the cluster item. For example, my

Minikube cluster can be reached at the address https://127.0.0.1:59746. Information

about certificates is also stored in this section. For example, you will find out that these

are located under the path /Users/kevinwelter/.minikube/ca.crt.

A specific context for a cluster is saved under contexts, which kubectl uses when log-

ging in. For this reason, the user with which you log in and which namespace is active

after the start is stored here. You can see the active context under current-context.
66 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.5 Interaction with Kubernetes via the Command Line and Dashboard
Information about your user is stored under user, and the certificates you need for

authentication are linked.

Readable Certificates

Kubeconfig often contains the certificates in the text. This allows anyone who has

access to Kubeconfig to connect to the cluster.

In a company, you usually have multiple clusters for different environments. This also

means that you have multiple Kubeconfig files. In addition to using the KUBECONFIG
environment variable, you can also use the --kubeconfig option to provide kubectl
with the path to Kubeconfig. However, this route is somewhat tedious in everyday life.

Another option is to merge multiple Kubeconfig files into one Kubeconfig, in which

case you do not need to set the environment variable. You can find an example of this

in Section 1.7.3. I will show you the best way to work with multiple clusters in Section

1.5.6.

Note

You should discuss with the cluster admins how you want to obtain the Kubeconfig file

for a cluster in your company. This varies slightly depending on the structure.

1.5.4    Namespaces

I have used the term namespace a few times now without explaining it properly. So let

me make up for that at this point.

With Kubernetes, namespace is used in a similar way as it is in programming languages.

A namespace is a separate area that allows you to isolate resources.

A namespace in Kubernetes is like a country in the real world. Each country (name-

space) has its own government (resource management), laws (access rules), and inhab-

itants (pods, services, etc.). The resources and administration are isolated within a

country (namespace) so that activities in one country cannot affect the other countries.

This means that a namespace offers you the options

� to assign access rights to users,

� to allocate quotas for resources, and

� to avoid name conflicts.

A classic use case on a shared development cluster occurs when you and a developer

colleague are working on the same software in different branches. You both want to

deploy a version on Kubernetes, but the names of the resources would lead to a con-

flict. If you create your own namespace, you won't get in each other's way.
67Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



1 Introduction to Kubernetes
However, not every resource is bound to a namespace in Kubernetes. In Section 1.5.5,

you will get to know a command from kubectl to query the resources that are bound to

namespaces.

At some point you may ask yourself how you can best cut namespaces and which appli-

cations should come together in a namespace. There is no universal answer to this

question, as it depends in part on the cluster structure. I always look at the following

points:

� Are the applications part of a larger coherent component?

� Do the applications need each other?

� Are the containers loosely coupled, but do they belong together?

If you answer yes to these questions, then you should deploy the applications to the

same namespace. The good thing is that your decision does not have to be final. In the

future, you will also be able to quickly deploy an application to a separate namespace.

Good to Know

If you set up a fresh cluster, Kubernetes will start with four initial namespaces:

� default
This namespace is created so that you can start directly without having to create

your own namespace.

� kube-node-lease
This contains the lease objects that are connected to the Kubernetes nodes.

Kubelet sends the heartbeats over it.

� kube-public
This namespace is readable for everyone and is usually only used by the cluster.

� kube-system
This is used for objects created by Kubernetes.

Note

You should only use the default namespace for quick tests. It is better to create a sepa-

rate namespace for your application. Otherwise, conflicts can arise, especially in clus-

ters that have multiple users.

1.5.5    kubectl Commands

Now that you know how to configure kubectl for a cluster, I would like to briefly intro-

duce you to the structure of the tool and the most important commands. We will use

the individual commands in detail in the following chapters.
68 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.5 Interaction with Kubernetes via the Command Line and Dashboard
Note

This section is perfectly suited for reference. If you have never used kubectl before,

please follow the instructions. Otherwise, come back if you need one command or

another again in the course of the book.

If you have used CLI tools before, you will quickly get used to kubectl. Like every CLI

tool, kubectl also has a help function that you can always consult for the syntax. To do

so, enter the following command:

kubectl --help

The shortened output will look as follows:

kubectl controls the Kubernetes-Cluster manager.
Find more information at: https://kubernetes.io/docs/reference/kubectl/
Basic Commands (Beginner):
   create          Create a resource from a file or from stdin
…
Basic Commands (Intermediate):
…
Deploy Commands:
…
Cluster Management Commands:
…

You can see the commands supported by kubectl. These are grouped into topics, and

behind each command you will find an additional explanation. If you need help for a

specific command, you can also call it for each command. If you want to get more infor-

mation on the create command, you must run kubectl create --help.

You will then receive examples of the application in the output, other commands that

can be combined with create, and options that you can use. The effect of the com-

mands and options is also displayed.

This goes even further with most commands. If you now want to create a namespace

using create, but do not know the exact syntax, then you can simply enter kubectl
create namespace --help to receive the information you need in order to enter the name

of your new namespace.

The really good thing about kubectl is that the commands have meaningful names, so

it's easy if you know what you want to do. You want to create a pod? Then the command

you need to enter is create pod.

If you want to have all pods in one output, you must use get pods.

If you want to delete a pod, you should enter delete pod [PODNAME].
69Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



1 Introduction to Kubernetes
We will now go through the most important commands of kubectl, and then you will

see how easy it is to use Kubernetes.

As a developer, you will hardly need some of the commands, as you can also use

kubectl to administrate the cluster. For this reason, we will not go through all the com-

mands, but you will get to know the most important ones.

Note

You can also create an alias for Kubernetes to avoid all the typing work.

For Linux and Mac:

alias k='kubectl'

For the PowerShell:

Set-Alias -Name k -Value kubectl

kubectl get

Let's start with a command that allows you to see which resources are running or are

active in Kubernetes. To do this, use the kubectl get command. If you remember Sec-

tion 1.5.3, then you already know this command. As a test, you used the kubectl get
namespaces command to display the namespaces.

In our example, we want to display the generated pod. To do this, you simply need to

replace namespaces with pods in the command—thus, kubectl get pods. When you run

the test command in your console, you will see all pods that are available in your active

namespace. However, these are not all the pods, as Kubernetes also uses some system

pods that are executed in other namespaces. To assign a desired namespace to the

command, you can use the -n <namespace> option to select a specific namespace. You

can also specify the -A option to output all pods in all namespaces. Then the command

would read kubectl get pods -A.

If you enter the command in your console, your output should look something like

this:

NAMESPACE    NAME                       READY   STATUS   RESTARTS  AGE
kube-system  coredns-787d4945fb-qcsvv   1/1     Running  0         8d
kube-system  etcd-minikube              1/1     Running  0         8d
kube-system  kube-apiserver-minikube    1/1     Running  0         8d
kube-system  kube-proxy-42gdl           1/1     Running  0         8d
kube-system  kube-scheduler-minikube    1/1     Running  0         8d
kube-system  storage-provisioner        1/1     Running  0         8d
…

70 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.5 Interaction with Kubernetes via the Command Line and Dashboard
If you want to view a specific pod, you can also enter the name of the pod after the com-

mand. Note, however, that you must also specify the exact namespace. Thus, if we use

the information from the first output to output the pod named etcd-minikube, the

command looks as follows: kubectl get pods -n kube-system etcd-minikube.

An additional option of get that you will need often is -o. This allows you to customize

the output format. For example, you can use the -o wide command to output more

information when outputting the pods or use the -o yaml option to output the object as

YAML code.

kubectl create

Let’s now take a closer look at the command from the preceding example. You can use

the create command to create Kubernetes resources.

When you run the kubectl create namespace my-k8s command, the my-k8s namespace

should be created as a result. The kubectl get namespace command allows you to check

whether or not the namespace has been created.

Now let’s deploy the first pod in the new namespace. For this purpose, we use the

deployment object. I will go into more detail about the Kubernetes objects and how

they are connected in Chapter 2.

In this example, you’ll install a Nginx web server in your new namespace. To do this,

use the following command: kubectl create deployment nginx --image=nginx -n my-k8s.

This command creates a deployment object with named nginx and passes nginx as the

image to it. Kubernetes searches for this image in Docker Hub, downloads it, and cre-

ates a pod from it.

You need the -n my-k8s option so that Kubernetes knows in which namespace the

object is supposed to be created. If you do not add the namespace, the deployment will

be created in the default namespace.

Now you can check what Kubernetes has created. You can use kubectl get pods -n my-k8s
to view the pod created and whether it is in the running state. With kubectl get
deployment -n my-k8s, you can view the generated deployment object.

You have now entered imperative instructions by using the create command to create

an object, and Kubernetes has followed them. However, it is also possible to define

resources in YAML and roll out this file. The command to deploy resources from a file

named deployment.yaml is kubectl create -f ./deployment.yaml. You can use the -f
option to give a file to kubectl.

In most cases, you want to define and deploy resources as code in Kubernetes, and this

also follows the declarative approach. We will deal with this topic in Chapter 3.
71Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



1 Introduction to Kubernetes
kubectl replace

You now know the create command, which you can use to create resources in Kuber-

netes. However, this command has its limits: if a resource already exists, it cannot be

created by kubectl. You need another command to update a resource, and that is

kubectl replace. It is the counterpart to create and also follows the imperative ap-

proach.

replace has a weakness because, as the name suggests, the resource in question is

replaced. This can lead to a pod being dismantled and the new one being set up, even

with the smallest changes. replace should therefore be carried out with caution, espe-

cially in production environments.

A resource can only be replaced if the complete manifest in YAML is provided with the

change. This means that you first need the YAML code of the deployment object for the

current example. For this purpose, you can use the get command that you already

know. The kubectl get deployment nginx -o yaml -n my-k8s command displays the YAML

code on your console. The shortened result should look similar to Listing 1.2.

apiVersion: apps/v1
kind: Deployment
metadata:
  annotations:
    deployment.kubernetes.io/revision: "1"
  creationTimestamp: "2023-07-25T21:32:34Z"
  generation: 1
  labels:
    app: nginx
  name: nginx
  namespace: my-k8s
  resourceVersion: "225996"
  uid: 15cdcd08-37ff-4ae3-99b5-176524daf166
spec:
  progressDeadlineSeconds: 600
  replicas: 1
…

Listing 1.2  Output of Deployment

I will go into the YAML format in more detail in Chapter 3, Section 3.2. For now, it is suf-

ficient to write the output to a file named deployment.yaml.

As shown in Listing 1.2, in that file, you can change replicas: 1 to replicas: 2. When you

install this update, Kubernetes will start a second pod. To do this, you need to run the

kubectl replace -f deployment.yaml command.
72 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.5 Interaction with Kubernetes via the Command Line and Dashboard
As a return, you obtain deployment.apps/nginx replaced, and Kubernetes should imme-

diately start deploying the second pod. Then you should use the get command to check

whether the second pod has been started in your namespace.

Good to Know

You may have noticed that you did not have to specify the namespace by using -n in

the command. If you look at the YAML manifest, you will see the namespace: my-k8s
parameter. This enables Kubernetes to find the correct assignment.

kubectl apply

The far more elegant way to create resources and import updates using kubectl is the

kubectl apply command. The advantage of apply is that this command checks whether

a resource has already been created. If not, it will create a new one. If a resource has

already been created, it will import the changes as an update. The apply command is

therefore much more flexible than create.

apply also proceeds differently than the replace command during an update. This is

based on a declarative approach. You can find more information on this in Chapter 3,

Section 3.1. Simply put, the apply command will try to adjust the available resources

until the result matches what you have defined in the manifest.

As with replace, the apply command requires a manifest in order to roll something

out—either individually via kubectl apply -f deployment.yaml, or for an entire folder by

using kubectl apply -f <FOLDER>.

Because apply is completely different from create, kubectl will also show you a warning

if you try to update the created nginx using apply. Just give it a try with the following

command: kubectl apply -f deployment.yaml -n my-k8s. The warning looks as follows:

Warning: resource deployments/nginx is missing the kubectl.kubernetes.io/last-
applied-configuration annotation which is required by kubectl apply. kubectl 
apply should only be used on resources created declaratively by either kubectl 
create --save-config or kubectl apply.

The cleanest way is to generate the resource directly by using apply because then there

are generally no conflicts. This is also the standard procedure in most projects. To

enable you to test this in your cluster, you will learn about the delete command in the

next step.

kubectl delete

The kubectl delete command allows you to delete resources in their entirety. You can

define and delete individual resources by name as well as entire groups of resources

that you have defined in files.
73Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



1 Introduction to Kubernetes
In the current example, you can again reference the file using kubectl delete -f
deployment.yaml, or you can use the name of the deployment as when creating it. To

display the name again, you can use the get command as described previously. The

deployment is called nginx and can be deleted accordingly by using the following com-

mand: kubectl delete deployment nginx -n my-k8s.

There are two other options worth mentioning for the delete command that you may

sometimes need. First, you can force the deletion by using --force. This is useful if, for

example, a pod no longer responds at all and can no longer be shut down correctly. The

complete command would then be kubectl delete pod TestPod --force.

Second, you can also delete multiple resources using a label. This is useful if you have

also created a service or other Kubernetes resources for the pod. Let's assume that you

have created a service and a pod and given them a Name=TestApp label. If you now want

to delete both, you can simply run the kubectl delete pods,services -l Name=TestApp
command. I will go into the topic of labels and selectors in more detail in Chapter 2, Sec-

tion 2.2.

At this point, I want to refer you once again to the kubectl help. There you will find addi-

tional options and information on how to use them.

kubectl describe

Because you have deleted your deployment, you can now use apply to roll out

deployment.yaml. You should now find the deployment and two pods in your name-

space again. You know the get commands and can see the names of your pods. But now

you’ll want to get more information about your resources. The kubectl describe com-

mand is available for this purpose. It provides detailed information, status messages,

and events.

You can try it on one of your pods by using the kubectl describe pods nginx-748c667d99-
xtljp -n my-k8s command. (The name of the pod is generated and will be different for

you.) These outputs are important during debugging. Here you can also see whether an

image could be pulled and much more.

The describe command also enables you to simply display all available resources by

specifying only the resource in the command—for example, kubectl describe pods -n
my-k8s. Take a look at your deployment now via describe. There you can see informa-

tion about the replicas, the annotations, and also events such as scaling events.

This allows you to display every Kubernetes resource in your cluster. In the Section 

subsection, I will show you how to determine which resources are available, which you

can then also view via describe.

kubectl logs

If you want to debug your containers, it is very useful to have access to the application

logs. As with Docker, you can output these very easily using the kubectl logs command.
74 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.5 Interaction with Kubernetes via the Command Line and Dashboard
In the current example, you want to view the logs of one of your nginx containers. Run

the kubectl logs nginx-748c667d99-9448b -n my-k8s command. (Don’t forget to adapt the

name of the pod to your environment.) The logs of the container are now displayed.

You can also extend the command with options. One notable feature is the ability to

output logs of multiple pods that are identified by a label. You can check which label

your pods have by using the describe command. The app=nginx label should be on the

pods. When you now use the kubectl logs -l app=nginx --all-containers=true -n my-k8s
command, you’ll get the logs from both pods. As you can see, I have added the addi-

tional --all-containers option. We will look at the structure of a pod in Chapter 2, Sec-

tion 2.1, but this much can be said in advance: a pod can consist of multiple containers,

and this option will give you the logs from each of the containers.

If you run the command, you will receive the current logs that have been written up to

this point. Sometimes it is necessary to receive the logs directly without having to send

the command every time. You can activate the streaming function using the -f option.

kubectl exec

Sometimes you may need to enter the container for debugging purposes—for exam-

ple, to view the folder structure. This is also possible with the kubectl exec command,

which enables you to execute commands in the container of a pod. For example, if you

want to check which date is set in the nginx container, you can use the kubectl exec
nginx-748c667d99-9448b -n my-k8s -- date command to call the date tool in the con-

tainer and display the date.

You can run any command in the container in this style. If you want to display the

folder structure under the /usr folder, you need to use kubectl exec nginx-748c667d99-
9448b -n my-k8s - ls /usr. You can also interactively connect to the container and take

over the shell there. The kubectl exec --stdin --tty nginx-748c667d99-9448b -n my-k8s --
/bin/bash command will lead you into the container, while every further command

will then be executed in the container. You can terminate this again by using the exit
command.

Note

Not every container comes with a Bash command line. This means that you may have

to use /bin/sh instead of /bin/bash, depending on which image the container is based

on.

kubectl port-forward

Now let’s look at a very interesting command. You can use kubectl port-forward to

open a tunnel from your machine to access your pods.
75Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



1 Introduction to Kubernetes
Note

With regard to development, this is a wonderful opportunity to test something quickly.

In production environments, however, you should only use this method for debugging

purposes. If it is not even restricted for your user, clarify this with your cluster admins

to be on the safe side.

Let's try this out on your nginx pods right away. The kubectl port-forward pod/nginx-
748c667d99-9448b -n my-k8s 8080:80 command allows you to open port 8080 on your

computer and forward it to port 80 of nginx, which naturally expects requests on port

80 as it is a web server. You can now call address 127.0.0.1:8080 in your browser and

should then see the welcome page of your nginx container.

As long as forwarding is active, your command line is blocked. If you want to continue

working, you can open a second window or cancel the forwarding process. You are now

welcome to check the logs of your pods again. There you should find an entry from

your call that looks similar to the following:

127.0.0.1 - - [27/Jul/2023:21:04:32 +0000] "GET / HTTP/1.1" 200 615
"-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/115.0.0.0 Safari/537.36" "-"
2023/07/27 21:04:32 [error] 28#28: *1 open() "/usr/share/nginx/html/
favicon.ico" failed (2: No such file or directory),
client: 127.0.0.1, server: localhost, request: "GET /favicon.ico HTTP/1.1", 
host: "127.0.0.1:8080", referrer: "http://127.0.0.1:8080/"

kubectl api-resources

The kubectl tool also comes with a command that enables you to find out more about

the resources. We will go into the most important components in more detail in Chap-

ter 2, but when you use kubectl, it is important for you to know what you can query by

using get or describe, for example.

The command is kubectl api-resources. When you run this command, you will receive

a list of all resources offered by Kubernetes in the current version. There you can also

see in which version this component is used. This is particularly relevant for Kuber-

netes updates, as the versions of the resources can change and thus the YAML mani-

fests can as well.

What is also interesting to know is whether a resource is assigned to a namespace or

not. As you already know, a pod is assigned to a namespace. This is why you also need

the -n option in the commands to refer to the corresponding namespace. A persistent

volume (PV), on the other hand, is not assigned to a namespace and is only bound to a

namespace by the persistent volume claim (PVC). But we will come to that in Chapter 5.
76 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.5 Interaction with Kubernetes via the Command Line and Dashboard
Example

You can use the following commands to query whether resources are bound to name-

spaces or not:

� kubectl api-resources --namespaced=true
� kubectl api-resources --namespaced=false

1.5.6    Switching Clusters and Namespaces Easily

At this point, I would like to introduce two tools that will make your work with kubectl
much more convenient. There are two things that become quite annoying over time:

� Specifying the namespace for each command by using -n

� Working with multiple clusters simultaneously

There is a nice solution for both. The kubens tool helps you to change namespaces, while

kubectx helps you to change clusters. You can find simple installation instructions for

your system at http://s-prs.co/v596411.

After the installation, you must also check the completion for your command line,

because this is the big advantage and makes your work much more pleasant, and you

can select namespaces very easily.

Let's go through a quick example. You are currently in the default namespace and want

to switch to the test namespace. The kubens test command allows you to change the

namespace. The output should look as shown in Listing 1.3.

Context "minikube" modified.
Active namespace is "ingress-nginx".

Listing 1.3  Output from kubens

Good to Know

You can change the namespace permanently with kubectl as follows:

kubectl config set-context --current --namespace=my-namespace

kubectx works just as easily as kubens. The kubectx minikube command enables you to

switch to the cluster named minikube. kubectx requires the corresponding Kubeconfig

file to be integrated as described in Section 1.5.3. The tool extracts all information from

the context of the Kubeconfig file.
77Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596411


1 Introduction to Kubernetes
Good to Know

A permanent change of the Kubernetes cluster via kubectl is also possible, as follows:

kubectl config use-context minikube

Note

If you have many namespaces or clusters to choose from, you should take a look at the

fzf tool. It is a fuzzy finder for the command line, which ensures that you only have to

call kubectx, for example, and can then select the cluster interactively. You can find the

tool in GitHub at http://s-prs.co/v596412.

1.5.7    The Kubernetes Dashboard

The Kubernetes dashboard is the graphical user interface for Kubernetes, which also

uses the Kubernetes API to allow you to manage it. Minikube comes with the dash-

board out of the box, and the Kubernetes dashboard can also be used in most compa-

nies.

Starting the Dashboard with Minikube

With Minikube, the dashboard can be started via a simple command. To do this, you

need to run the following command in your command line.

minikube dashboard

After executing the command, Minikube will download the dashboard container and

deploy it in your Kubernetes cluster. A connection to the dashboard is then automati-

cally established, and the page opens in your default browser. The dashboard should

look like the one shown in Figure 1.9.

Figure 1.9  Kubernetes Dashboard: Overview
78 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596412


1.5 Interaction with Kubernetes via the Command Line and Dashboard
A Tour of the Dashboard

Let's explore the dashboard interface together so that you can familiarize yourself with

its operation.

In the top bar, you can see a dropdown field that reads Default. There you can select the

namespace you want your dashboard to display. If you have gone through the intro-

duction to kubectl, you will also find your my-k8s namespace there. (If you have not

done this, go through the examples in the previous sections again and create the

resources there.) If you select the namespace, you will be shown an overview of your

resources, as in Figure 1.10. You can see the deployment of nginx, the two pods, and a

ReplicaSet, as well as additional information. If you recall the outputs of kubectl get,

you will also see similarities there.

Figure 1.10  Overview of Resources in Your Namespace

On the left-hand side you will find a menu with the option to select the most important

resources in Kubernetes. For example, if you click Pods, you will see a list of all pods

running in this namespace. This allows you to navigate through the individual re-

sources.

If you now click the name of one of your pods, you should be taken to a page where you

can get all the information about this specific pod, just as you can do using kubectl
describe.

Let's say you want to debug this pod. You've already collected the information you

need, and now you want to look at the logs. Kubernetes provides additional menu

items in the pod view in the form of icons, as shown in Figure 1.11. From left to right,

there are icons for View Logs, Exec into Pod, Edit, and Delete.
79Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



1 Introduction to Kubernetes
Figure 1.11  Menu Bar in Pod View

Click the View Logs icon. This opens a window containing the logs. It is important to

know that you can also select the different containers within a pod using a dropdown

list, as shown in Figure 1.12.

Figure 1.12  Selecting Logs for Different Containers in Pod

You have now looked at the logs and want to go into the container to check something

there. To do this, return to the pod view and select the second icon from Figure 1.11. This

will take you to the pod's shell window. As with kubectl exec, you can enter commands

in the container and navigate through the file system.

The Edit icon opens a window containing the pod's YAML manifest, which you can cus-

tomize and update using the Update button. An indication is given that an update via

this route is equivalent to a kubectl apply operation. For this reason, a new manifest is

passed to Kubernetes, and it attempts to adapt the resources accordingly.

You now want to make this adjustment on the basis of the deployment resource. To do

this, you need to navigate to Deployments in the dashboard and click the nginx deploy-

ment. Then click the Edit icon and search for the definition of replicas, as shown in line

98 in Figure 1.13.

Figure 1.13  Editing Deployment in Kubernetes Dashboard
80 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.6 Lens: The IDE for Kubernetes
Kubernetes always extends the YAML manifest with status messages and metadata,

which is why the manifest is significantly larger. However, we are only interested in the

definition that is shown under spec. Change the number of replicas from 2 to 3, then

click Update. Now the deployment will start another pod. Then click Pods in the naviga-

tion bar and see how the third pod is started.

So much for the Kubernetes dashboard. You now know how to navigate through the

individual resources and how to view and customize resources and debug pods. You

should take some time to click through the dashboard and familiarize yourself further

with it, because it is a good alternative to kubectl in order to get a quick and graphical

overview of your Kubernetes setup.

1.6    Lens: The IDE for Kubernetes

With kubectl and the Kubernetes dashboard, you have become familiar with the stan-

dard tools for using Kubernetes. I remember clearly that I only worked with those two

until a few months ago. Most of the time, I used the command line with kubectl,

because the Kubernetes dashboard is sometimes a bit slow depending on the cluster. In

addition, it is difficult to switch between the individual clusters in a multicluster setup

with the Kubernetes dashboard because a new website must be called each time.

I always wanted a tool that combines both worlds: a graphical user interface and high

speed while working. Then I tried OpenLens. You will see shortly that this tool com-

bines kubectl and the dashboard. The integrations with Helm, which I will introduce in

Chapter 8, also make OpenLens an excellent tool for developers. It will expand your

tool set and definitely make you more flexible in the use of Kubernetes. But enough

raving. Let's get started now so you can see for yourself.

To install OpenLens, go to the following website: http://s-prs.co/v596413.

There you will find the correct installation command for your operating system and

can install OpenLens.

Licensing Terms of Lens

While I was writing this book, Lens changed its licensing terms, with the result that it is

no longer free of charge.

I have looked for an alternative for you and found OpenLens. The Lens team continues

to develop the core in OpenLens as an open-source product. Unfortunately, a few fea-

tures are missing, which I think is a shame, but you don't have to buy a license for the

exercises described in this book. kubectl is perfectly adequate.

I will use the name Lens herein synonymously with OpenLens.
81Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596413


1 Introduction to Kubernetes
1.6.1    Overview of Lens

When you open Lens, you will first be taken to the start page. On the left-hand side

there is a hotbar. That’s where you can store your clusters for quick access, and that's

exactly what we're going to do for Minikube now. Figure 1.14 shows how you can get to

your cluster. Click the menu button 1 in the hotbar to access the catalog. Select 2 Clus-

ters to see all your clusters.

Figure 1.14  Inserting Minikube in Hotbar

Lens enables you to manage multiple clusters. The tool retrieves the access data and

information on your clusters from the Kubeconfig file. This means that you do not

need to configure the clusters manually; your Minikube cluster is already known, as

the minikube start command also writes the Kubeconfig file. If other clusters are

already included in your Kubeconfig file, then these are also listed here.

To add your cluster to the hotbar, click the options button 3 and select Add to Hotbar.

After that a new icon will appear below the catalog. When you click it, you will be logged

into your cluster.

First you see the overview of the cluster, as shown in Figure 1.15. On the left, you can rec-

ognize the similarity to the Kubernetes dashboard. You have the option of selecting

and displaying each resource individually. Click Workloads • Overview to be taken to

the same page that you know from the Kubernetes dashboard.

As you can see in Figure 1.16, you can select your namespace via the dropdown menu.

Now you can also navigate through the resources created in the previous chapters and

familiarize yourself with Lens. At its core, it is similar to the dashboard.

Try to display a pod as described in Section 1.5.7, and open the logs. You may already

notice how quickly you can navigate and how well thought-out the design and user

experience are. The fact that logs and terminal windows are opened at the bottom and

navigation through the resources is still possible is unbeatable in your day-to-day

work.
82 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.6 Lens: The IDE for Kubernetes
Figure 1.15  First Screen: Cluster Overview

Figure 1.16  Selecting Namespace in Lens

1.6.2    Advantages over the Kubernetes Dashboard

The design and speed are not the only advantages of Lens over the Kubernetes dash-

board. I now want to show you a few more features that will be useful for you in the

future.

Activating Cluster Metrics

I would like to start by showing you the metrics. In Figure 1.15, you probably noticed the

following message: Metrics are not available due to missing or invalid Prometheus con-

figuration. Prometheus is a very common monitoring tool in the world of Kubernetes.

Among other things, it collects metrics as time series that can be queried and displayed

using simple commands. I will go into more detail about Prometheus in Chapter 7, Sec-

tion 7.4, but for now note that Lens recognizes Prometheus and can display the metrics.

Activating Simple Port Forwarding

As you learned in Section 1.5.5, you can use port forwarding with kubectl to reach your

containers via a tunnel. This can be very convenient during development and debug-

ging. As the Kubernetes dashboard is a web application, port forwarding is not possible

there. Lens offers port forwarding and even makes forwarding very easy compared to

kubectl.
83Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



1 Introduction to Kubernetes
Like kubectl, Lens can create tunnels for pods or services. A port definition is required

that specifies the port under which the application can be reached. Unfortunately, we

do not have these in our nginx example and must first add them to the YAML manifest.

To do this, click Workloads • Deployments in Lens, select Nginx in your namespace, and

click the Edit icon. There, as shown in bold in Listing 1.4, you want to insert the corre-

sponding code snippet and then click Save & Close.

…
spec:
  containers:
    - name: nginx
      image: nginx
      ports:
      - name: http
        containerPort: 80
        protocol: TCP
…

Listing 1.4  Adding Port Definition for Pods

Good to Know

I want to make a small addition to the port definition in Listing 1.4. You may have asked

yourself whether name: http is necessary, as you are using port 80, and you must also

set https as the name if you use port 443. The answer is no. The name is freely select-

able.

For me, the name http was the most logical in this case. You can also name the port

according to its function, such as metrics for a port on which metrics are queried.

The deployment will update and deploy the pods with the new configuration. Go to the

pod overview and click a pod. The info window opens on the right. In it, you will also

find information on the containers, as shown in Figure 1.17.

Click Forward and enter “8080” as the local port. A browser window should now open

automatically, showing you the default page of your nginx. If that is not the case, you

can reach the container at http://127.0.0.1:8080/.

Note

When you use port forwarding, you should keep in mind that a port can only be used

once on your computer. For example, if you try to enter port 8080 a second time, you

will receive an error message. If that happens, you can either select a different port or

delete the old forwarding.
84 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.6 Lens: The IDE for Kubernetes
Figure 1.17  Container Info Window with Port Forward

In contrast to kubectl, port forwarding does not block the terminal, but is managed by

Lens in the background. You can view and manage the overview of your tunnels in the

navigation on the left under Network • Port Forwarding.

Helm Integration

The integration of Helm into Lens makes developing easier. Whereas I used to operate

the tools on the command line, I can now do most things via Lens. We will go into Helm

in more detail in Chapter 8, so a brief summary will suffice here.

Helm is a package manager for Kubernetes manifests. It allows you to provide Kuber-

netes objects very easily in so-called charts, which you can configure using parameters.

This is pretty useful if you have different environments and also makes it convenient

to use other charts. For example, it allows you to activate or deactivate autoscaling by

setting a variable. This means you can always deliver your application appropriately.

If you click Helm • Charts in the menu on the left, you will be taken to an overview page.

Lens has already activated a Helm repository from the Bitnami provider for you and

shows you an overview of the software offered by Bitnami, as shown in Figure 1.18. This

is very convenient for development purposes because you can find many tools, from

Jenkins to databases, and roll them out in Minikube at the touch of a button.

Try it out for yourself and roll out a Jenkins. You should also familiarize yourself with

this. The more you work with it, the easier it will become.
85Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



1 Introduction to Kubernetes
Figure 1.18  Overview of Helm Charts in Lens

1.6.3    The Lens Reference

I would like to provide you with a reference so that you can look up how to do some-

thing in Lens whenever you need to. I expanded this section whenever an exercise was

added in an upcoming chapter that requires you to do something in Lens. This means

that the following chapters with exercises are not unnecessarily large and you can sim-

ply look them up again if necessary.

Creating Resources

You can easily create new resources in Lens. Regardless of which menu item you are on,

you will see a + button in the bottom line, as shown in Figure 1.19. If you click that but-

ton and select Create Resource, an editor opens to write YAML manifests. In the Select

Template ... dropdown menu, you will find a selection of resources and templates that

you can use and expand. This is very convenient if you want to familiarize yourself

with Kubernetes or get to know new resources. Of course, you can also use your own

manifests here or use the examples from this book.

Finally, click Create and the manifest will be transferred to Kubernetes and set up. If

you have errors in the manifest, Lens will point them out and you can correct them.
86 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.6 Lens: The IDE for Kubernetes
Figure 1.19  Creating Resources and Opening Terminals in Lens

Terminal within Lens

In Figure 1.19, you can also see the Terminal Session option, which allows you to open

your own command line in Lens. This is very helpful as you can then simply use

kubectl within Lens.

This integration makes your work even easier because you don't need to switch

between the different windows.

Good to Know

Especially since OpenLens has removed some functions, such as exec or logs, the termi-

nal is worth its weight in gold.

The Pod Action Bar

With kubectl, you have already learned some commands to perform actions with pods.

At this point, I want to show you how you can use Lens to perform actions on pods.

To do this, go to the pod overview under Workloads • Pods and click the pod you want

to use. This opens the pod overview on the right, and at the top you will see the action

bar, which looks like the one shown in Figure 1.20.

Figure 1.20  Action Bar for Pods in Lens

Note

The action bar is slightly smaller in OpenLens. Unfortunately, you can perform only edit

and delete actions here. I have nevertheless covered the complete action bar to give

you a full overview.

Let's go from left to right and try the options out directly:

1. The first icon is the equivalent of kubectl attach. It allows you to connect to the run-

ning container, and you are in the running process. This enables you to receive all
87Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



1 Introduction to Kubernetes
log messages directly on the console. In my daily work, I don't use this as I prefer

using the logs.

2. You can use the second icon to run kubectl exec. In Lens, this function is called pod

shell because you can use it to open a new command line in the corresponding

container and execute commands there. This is useful if you want to debug some-

thing or search for files in the file system.

3. You can view the pod's logs by clicking the third icon. It does the same thing as

kubectl logs and shows you the current logs of the container in a new window.

4. Icon number 4 performs a deletion by eviction. Eviction is a special way of “expel-

ling” pods from nodes. I do not use this option either and instead recommend the

normal delete function. Eviction can lead to problems as it does not delete the pod

cleanly from the etcd database.

5. The pen icon is intended for editing the pod. When you click it, a window opens and

displays the YAML manifest, which you can edit and save.

6. The sixth icon performs the normal deletion of the pod via kubectl delete. The pod

is then terminated and the pod manifest is deleted from etcd. However, if it is part of

a deployment with a ReplicaSet, for example, Kubernetes will create a new pod

again.

Custom Resources and Custom Resource Definitions

You will learn about the concept of custom resources (CRs) and custom resource defini-

tions (CRDs) in Chapter 4. Here, I'll show you where you can find them later in Lens.

At the bottom of the left-hand menu, you will find the custom resources menu, as

shown in Figure 1.21. As soon as you start creating CRs and CRDs, these will also be dis-

played in the left-hand menu in dropdowns corresponding to the CRD group. You

therefore have the option of navigating either via the left-hand menu or via the Defini-

tions menu item. As usual, all CRDs are then displayed in the main window, which you

can select to display the corresponding CRs.

Figure 1.21  Custom Resources Menu in Lens

Adding a New Cluster

Usually, Lens simply retrieves the information about your Kubernetes clusters from all

Kubeconfig files in your home directory under ~/.kube. You can therefore simply
88 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



1.7 The Kubernetes Cluster from Raspberry Pis
extend your Kubeconfig file with a new cluster or store another Kubeconfig file there

and thus also have access to it in Lens.

In addition, Lens provides the option of adding a new Kubeconfig file and thus a new

cluster without having to adapt the Kubeconfig file in your home directory. To do this,

you need to go to the catalog in Lens and click Clusters in the categories. As shown in

Figure 1.22, you will find the + button there; click it and select Add from Kubeconfig. This

opens a text window into which you can copy the Kubeconfig file. Then, click Add Clus-

ter.

Figure 1.22  Adding New Kubeconfig File to Lens

The second option shown in Figure 1.22 is to use Sync Kubeconfig(s), which allows you

to select a folder or a Kubeconfig file. The folder is then searched for Kubeconfig files in

the same way as the ~/.kube path. You can also manage the Kubeconfig syncs later

under General • Preferences • Kubernetes and remove or add folders.

In the catalog, you can click Settings via the button with three dots and adjust the name

of the cluster. In addition, you can add a Pi cluster to the hotbar.

Note

Remember: If you do not store the Kubeconfig file in the ~/.kube directory, you cannot

control the new cluster via kubectl. Another option is to merge two Kubeconfig files. I

will describe this in Section 1.7.3.

1.7    The Kubernetes Cluster from Raspberry Pis

You have already taken your first steps with Kubernetes in Minikube in the previous

sections. In this section, I will introduce a simple and inexpensive way of setting up a

real cluster. Minikube itself is virtualized in a Docker container and therefore quickly

reaches its limits, especially with network demos.

You are also welcome to use this section at a later stage and set up a cluster if you need

it in an exercise. The hardware requirements of a “real” Kubernetes cluster naturally
89Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



1 Introduction to Kubernetes
depend on the number of containers you want to manage and can become very large.

Our test environment is much more modest in this respect; a few small Raspberry Pis

are sufficient for the examples in this book. However, if you want to run a large number

of different containers at the same time, the cluster will reach its limits. But that is pre-

cisely the strength of Kubernetes: you have two nodes and can try out networks such

as a service and an ingress, which we’ll discuss in Chapter 2, Section 2.5. If that's not

enough, you can simply add more devices and let your cluster grow.

In this section, we will go through the following steps:

1. I will introduce the hardware I use.

2. You will set up the Raspberry Pis.

3. We will install Kubernetes together.

Note

I followed various instructions on the internet to set up the Raspberry Pis. A good web-

site to consult if you have problems is https://tutorials-raspberrypi.com/.

1.7.1    Choosing the Right Raspberry Pis

At the beginning, I was a little undecided about which Raspberry Pis would work best

for this use case. There are different models and versions available, which of course also

cost different amounts of money. In the end, I decided on the following setup, and am

more than happy with it:

� 2 × Raspberry Pi 4s, 4 GB memory ($61.75 each)

� 2 × SD cards, 64 GB each ($15.00 for two)

� 2 × official Raspberry Pi power supply units ($7.99 each)

� Five-port switch + network cable ($17.99)

� Stackable acrylic case ($6.50)

In my experience, the longer I research, the more expensive it gets, because the tin-

kerer in me becomes active. There are many possibilities to buy even better housings

for the Pis or to install fans in the housings. I have been running the cluster for several

days in a row now and do not see any sign of overheating. You will find a small example

of temperature monitoring later in Chapter 7, Section 7.4.2. I also bought a heat sink set.

This lowers the temperature by a few degrees—but in the end, this is all optional and

not necessary for a Kubernetes test cluster.

Of course, you can also use memory cards and power supply units that you still have at

home, and a 32 GB memory card will probably suffice. In this case, I have opted for a

setup that can also withstand larger requirements, but you can also start a little smaller.
90 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

https://tutorials-raspberrypi.com/


1.7 The Kubernetes Cluster from Raspberry Pis
The great thing about Kubernetes is that if you push your cluster to the limit, you can

simply add another Pi.

Note

The Pis all have a built-in Wi-Fi module. However, I immediately added the switch so

that I have a more stable connection between the master and the worker. A Wi-Fi con-

nection would of course be sufficient for your test cluster, and you can save yourself

the switch.

The Pis arrive without anything loaded. To be able to use the Raspberry Pis, you must

install an operating system on an SD card. There are specially developed operating sys-

tems available, which are based on Debian. To record to SD card, you can use Raspberry

Pi Imager, which you can find at https://www.raspberrypi.com/software/; select the

download for your computer.

Once you have installed the imager, you can select your suitable Raspberry Pi version,

as shown in Figure 1.23. You’ll want to use Raspberry Pi OS Lite (64 bit) as the operating

system, as this comes without a desktop, which you won't need anyway. You can find it

in the selections under Raspberry Pi OS (Other). Then select the SD card and click Next.

You will be asked if you want to make OS customizations; click Edit Settings to set some

important elements.

Figure 1.23  Raspberry Pi Imager

I have chosen raspberrypi1 as the host name for the master and raspberrypi2 for the

worker. The user's name is kevinwelter. I have stored my public key in the Services tab

so that I can later access the Pis via SSH. Next, click Save, then select Yes to apply the

customizations.
91Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

https://www.raspberrypi.com/software/


1 Introduction to Kubernetes
Once you have installed the image on both SD cards, you can insert them into the Pis

and connect them with a power supply unit. The Pis will then start automatically. To

log in, I use two command line windows and the commands from Listing 1.5.

You have now set up the Pis initially. In the next step, you will install Kubernetes.

ssh -i .ssh/pi_key kevinwelter@raspberrypi1.local
ssh -i .ssh/pi_key kevinwelter@raspberrypi2.local

Listing 1.5  Login to Pis via SSH

1.7.2    Installation of Kubernetes

We suggest K3S (https://docs.k3s.io) as your Kubernetes installation. This is a slightly

adapted version that is very lightweight and therefore perfect for your Pi cluster. How-

ever, you must first make small adjustments to the hosts.

Commands You Need to Execute on Both Raspberry Pis

Open the cmdline.txt file by using the sudo nano /boot/cmdline.txt command, then

insert a space and the following values at the end:

cgroup_enable=cpuset cgroup_memory=1 cgroup_enable=memory

If you have not used Nano previously, note that you can save and close the changes via

(Ctrl)+(X).

Then you must change iptables to legacy, because there is a small problem with the

Debian of the Pis. Finally, restart the devices:

sudo update-alternatives --set iptables /usr/sbin/iptables-legacy
sudo update-alternatives --set ip6tables /usr/sbin/ip6tables-legacy
sudo reboot

Commands for raspberrypi1

The first Pi will be the K3s master. For this purpose, you need to run the following com-

mands:

export K3S_KUBECONFIG_MODE="644"
curl -sfL https://get.k3s.io | sh –

This command downloads the script for installation and executes it directly. At the

end, you will receive the information that K3s has been started. You can also check the

current status via the sudo systemctl status k3s command.

Now you still need the node token with which worker nodes can register with the mas-

ter. You can display it via sudo cat /var/lib/rancher/k3s/server/node-token.
92 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

https://docs.k3s.io


1.7 The Kubernetes Cluster from Raspberry Pis
Commands for raspberrypi2

You can now install the worker and register it with the master. You also need two other

environmental parameters. The first one is the URL for the master, which in this case is

simply the host name. The second one is the node token that you issued in the previous

step. Run the commands as follows and adjust the values for your setup if necessary:

export K3S_KUBECONFIG_MODE="644"
export K3S_URL="https://raspberrypi1:6443"
export K3S_TOKEN="K101a…560"
curl -sfL https://get.k3s.io | sh -

You can then check on the master whether the worker has been installed correctly. Run

sudo k3s kubectl get node and you should get an output similar to the one shown in Lis-

ting 1.6. You have now installed Kubernetes on your Raspberry Pis.

NAME           STATUS   ROLES                  AGE
raspberrypi2   Ready    <none>                 18d
raspberrypi1   Ready    control-plane,master   18d

Listing 1.6  Displaying Nodes of Raspberry Pi Cluster

Note

These instructions make sure that you will always install the latest version of K3s.

However, this should not be a problem for the examples in this book.

1.7.3    Using the Kubeconfig File of the Pi Cluster

So long as you are logged in on the master, you can use the kubectl installed there, but

in the next step you need to get access to the Pi cluster with Lens and with kubectl on

your machine. To enable this, you need the Kubeconfig file, which you can obtain using

the cat /etc/rancher/k3s/k3s.yaml command on the master. It is best to first copy the

file into an editor of your choice, as you must change the server: https://127.0.0.1: 

6443 parameter to the name of the master—in this case, server: https://raspberry-
pi1:6443. You can now use the customized Kubeconfig file and add it to your system in

three ways:

1. You can add the Kubeconfig file only in Lens, as described in Section 1.6.3.

2. If you store the Kubeconfig file under the ~/.kube path and adjust the environment

parameters as described in Section 1.5.3, you can access it via both Lens and kubectl.

3. Alternatively, you can transfer both Kubeconfig files to a single file under ~/.kube/

config; this means that you do not have to set any environment parameters.
93Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



1 Introduction to Kubernetes
If you have selected option 2 or 3, you can use kubectx to switch clusters. I introduced

this tool in Section 1.5.6.

Example

There are several ways to merge Kubeconfigs. I want to describe the most elegant one

now. For PowerShell, you have to adapt the commands slightly:

1. First, you need to make a backup of your Kubeconfig file:

cp ~/.kube/config ~/.kube/config-backup
2. Add all Kubeconfig files to the KUBECONFIG environment variable so that they can be

found by kubectl:

export KUBECONFIG=~/.kube/config:/path/one:/path/two
3. You can merge the Kubeconfig files using kubectl:

kubectl config view --flatten > config
4. Then replace the old Kubeconfig file with the new one:

mv config ~/.kube/config
5. You can now check in a new terminal window whether all clusters are found:

kubectl config get-clusters

Once you have integrated the Kubeconfig file, you should carry out a short test to check

whether you also have access to the cluster. If everything works, you are ready to carry

out the exercises from the book on your own Raspberry Pi cluster.

Good to Know

You can switch the Raspberry Pis on and off without any problems. The cluster should

rebuild itself correctly as you are only using one master.

If you remember Section 1.3, you will know that a connection failure with more than

one master would be fatal. By breaking the connection, the etcd quorum would no lon-

ger know which dataset is the correct one. In that case, you would have to perform a

recovery or rebuild the cluster.
94 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



Chapter 2 

Basic Objects and Concepts in 
Kubernetes

I never dreamed about success. I worked for it.

—Estée Lauder

In the preceding chapter, you got to know Kubernetes at a high level. You now know the

architecture and have your own test cluster. Along the way, you became familiar with

some resources and executed your first commands in the cluster. Let's now take a look

at the theory and the concepts behind it. The theory is usually the hardest part of a

book, but I will provide some practical examples that you can try out using Lens and

Minikube.

In the first step, you will get an overview of the most important objects, which are also

referred to as API objects, and then I will introduce them in more detail thereafter. The

sections build on each other.

Note

I recommend that you really try out everything. Every exercise, no matter how small it

may seem, will help you to anchor your new knowledge. You will see how your brain

links the knowledge directly to your own use cases and how this gives you new ideas.

Let's start by looking at which components are active in Kubernetes when you make a

request to a website that gets its data from a backend. You will get to know all these

components in this chapter.

Figure 2.1 shows how a user sends a request that is accepted by an ingress. The ingress

redirects the request to a service that has the frontend as a selector. The request then

gets redirected from the service to a frontend pod, which in turn retrieves the data

from the backend via a service.

This looks like a lot of communication effort at first, but you will see that each of the

objects fulfills a purpose, especially for a distributed system.
95Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
Figure 2.1  Sequence of Request in Kubernetes

Note

Feel free to take a look at the overall picture from time to time during the course of the

chapter. Think about how what you have learned fits into this picture. By the end of the

chapter, you will understand how everything fits together.

Let’s walk through the components:

� Let's start with the pod, which can contain and manage one or more containers.

When you use Kubernetes, you always create and manage pods and cannot manage

the containers they contain by yourself. This is why the pod is the smallest unit in

Kubernetes. So when you roll out your application in Kubernetes, it always runs

under the control of a pod. The pod is responsible for the execution of containers,

provides resources such as network configurations and storage, and can share these

between several containers within the pod.

Pods form the basis for other resources, such as deployments or StatefulSets, and are

generally not created in production systems without them because they manage

and monitor the individual pods.

Pod
Label=Frontend

Ingress

Service
Selector=Frontend

Request

Node Node

Pod
Label=Frontend

Pod
Label=Backend

Pod
Label=Backend

Service
Selector=Backend

ConfigMap ConfigMapConfigMap SecretSecretSecret

Node
96 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



Basic Objects and Concepts in Kubernetes
� One of the most important concepts in Kubernetes is that of labels and annotations.

These are not only there to identify Kubernetes resources; you can also use them to

control the entire cluster as you wish. You can link resources to each other, group

objects, or assign pods to specific nodes. Although simple, this concept represents a

very strong implementation.

� You already used a Kubernetes deployment in Chapter 1, Section 1.5.5. I have not

included the deployment in Figure 2.1 as it is more of an object in the background.

You can consider deployments to be a higher-level abstraction for the provision of

applications. They allow you to update your applications, perform rollbacks, and

scale your pods. A deployment always creates a ReplicaSet, which in turn creates and

manages the pods. A deployment is the perfect resource if your application is state-

less.

� The ReplicaSet ensures that you always have the number of pods available that you

actually need. Like the deployment, it is not contained in Figure 2.1 as it manages

your pods in the background. For example, if your application is supposed to have

two pods for reasons of reliability, the ReplicaSet takes over the monitoring. If it

detects that a pod has been terminated, it will scale a new one. At the same time, it

will terminate a pod if you manually scale a third one. This means that it continu-

ously monitors the number of pods running and automatically creates or deletes

pods to reach the desired number.

ReplicaSets are actually used only in combination with deployments. Like pods, you

can also create ReplicaSets individually, but this is not useful in practice as you

would lose the additional rollout mechanisms of the deployment.

� Now let’s move to ConfigMaps and secrets. These two objects allow you to configure

your applications externally, which enables you to separate the configuration data

and sensitive data from the pods. As its name suggests, sensitive data such as pass-

words or API keys are provided in a secret, and you can provide any configurations

for your applications in ConfigMaps.

� The Kubernetes service enables network communication with pods and takes care of

load balancing. It provides stable IP addresses and DNS names to reach your pods.

Thanks to load balancing, the service makes it easier for you to scale your applica-

tions. It always directs the requests to the right pods. Services are a crucial compo-

nent for the communication of your applications.

� Using ingress resources, you can implement external access to your application.

These allow you to route HTTP and HTTPS requests to the service, which then redi-

rects the traffic to your pods. This can be done on the basis of host or path rules,

which we will look at in more detail later. To apply the rules, Kubernetes uses the so-

called ingress controller, which is usually Nginx. The controller then redirects the

traffic based on the ingress rules.
97Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
2.1    Pod and Container Management

Let's now take a closer look at the concept of the Kubernetes pod. The pod is the small-

est unit that you can create and manage using Kubernetes, and its task is to manage

one or multiple containers. Kubernetes calls this unit a pod and thus remains true to

Docker's whale metaphor as in the world of whales, a pod is a unit made up of several

whales that live together.

Think of the pod as a small team of employees working together to accomplish a spe-

cific task. Each member of the team has a distinct role, but they share resources and

communicate with each other to achieve their common goals. Each employee on the

team corresponds to a container.

If you work according to the separation of concerns principle discussed in Chapter 1,

then a container has a specific task that is mapped and executed in a single process. In

addition, the container with your application only executes exactly this application. If

your application requires additional logging or proxy functionalities, then it makes

sense to outsource these to separate containers in order to keep your application lean.

However, this additional functionality is necessary for your application and belongs to

it, which is why it makes sense to link these two containers in a logical unit.

The question you need to answer as a developer is as follows: When do containers

belong together in a pod and when do they not?

The advantages of a single container per pod are as follows:

� More flexible deployments

� More granular scaling

� Higher degree of decoupling

The advantages of multiple containers per pod are as follows:

� Faster communication between containers

� Improved separation of tasks

� Further development of the individual containers independently of each other

The team metaphor for a pod makes the concept a little more tangible, but the addi-

tional pods are actually mostly little helpers that support the main application. Table

2.1 describes typical use cases for these helpers. This may make some decisions easier

for you.

The important thing here is that the little helper must be decoupled from the main

application. For example, if adding a sidecar limits scalability, then you need to move

this functionality to a separate pod.
98 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.1 Pod and Container Management
Note

Here’s a little help to decide whether your containers belong in the same pod. Simply

ask yourself the following questions:

� Do the containers have to share a common resource?

For example, if you have two containers that share a common file system, then

they belong in a pod. A use case could look as follows: A container makes files avail-

able to users. Another container is responsible for updating this data. According to

the separation of concerns concept, this would be a separation that makes sense,

and yet the two containers belong inseparably together.

� Do the pods have different scaling requirements?

For example, if you have a database and a web server, both applications have dif-

ferent scaling requirements. While the web server is stateless, the database is

stateful and cannot be replaced that easily. Accordingly, you must move these two

containers to individual pods.

In addition, a high load on the web server does not directly mean that you also

need more database instances. The goal is to have a good utilization for each pod

so that you don't waste any resources.

� Can the containers run on separate machines?

If your answer to this question is yes, then you can move the containers to different

pods with a clear conscience.

Figure 2.2 illustrates the inner workings of a pod. In this example, the pod has

� two containers,

� two volumes, and

� a pause container.

Name Function

Ambassador These little helpers perform proxy tasks, which allows you to outsource the 

authentication to an API, for example. Your application simply sends the 

data to the ambassador, which in turn takes care of setting up the HTTPS 

connection and managing the access tokens.

Adapter An adapter modifies data that goes into or out of the main application. This 

is useful if you need to convert data into a specific format but do not want 

to implement this in the main application. This is a perfect use case for leg-

acy applications.

Sidecar A sidecar adds additional functionality to your application. Monitoring or 

logging is usually implemented via a sidecar.

Table 2.1  Terminology of Helper Containers within Pods
99Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
Figure 2.2  Structure of Pod

If a pod is created, the pause container starts first. It initializes the IP address, the name-

space, and the cgroups and holds them until the pod gets terminated. Each additional

container within the pod can rely on the initialized resources and receive incoming

traffic via the IP address, for example. The pause container is useful because even if

your application containers are restarted, the IP address remains.

Good to Know

The pause container is invisible and is never displayed in the Kubernetes CLI. However,

it runs on the node and you can see it via the container runtime.

The volumes can also be used by both containers. You can even access it at the same

time and use it to exchange data, for example. However, you must be aware that this

can cause conflicts that Kubernetes does not prevent or monitor for you. For this rea-

son, you should pay close attention to which container can write and read during

implementation. It is best if one container writes and the other is read-only. However,

we will return to the topic of shared storage in Section 2.1.3, and you will learn about a

use case that illustrates how you can use it.

Good to Know

As Kubernetes manages only the pod object, all containers within a pod are of course

started on the same node. This is the only way that the containers within a pod can

also share resources such as network and storage.

Pod

Application Helper
Container

/var/app/ /var/log

Pause

Container
Pod-IP

192.168.0.21
100 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.1 Pod and Container Management
2.1.1    Container Engines

When you first came into contact with containers, you probably used Docker. At least

that was what I did, and for me Docker is still synonymous with containers today.

Docker may not be the first one, but it is currently one of the best-known container

engines on the market. But Docker is much more than a simple container runtime. It

provides an easy way to develop containers, and with Docker Swarm it has developed a

competitor product to Kubernetes.

Good to Know

Docker is a container engine that runs the Docker containers via a container runtime.

To distinguish between these two terms, remember the following: A container engine

processes the user requests, interprets them and commands the container runtime.

The container runtime only takes care of the execution of the containers and what is

necessary for this.

As Kubernetes wanted to define a more open and independent standard, Docker was

marked as deprecated in Kubernetes version 1.20 and can no longer be used as a run-

time in the newer versions as before. This was not a decision that was made overnight.

Container Runtime Interface (CRI) was developed so that Kubernetes could open up to

other runtimes in addition to Docker.

Good to Know

CRI is a plug-in interface that can be implemented by container runtimes. It defines the

communication between Kubelet and the container runtime, which is implemented

using the gRPC protocol. This interface allows Kubernetes to communicate with any

runtime that has implemented the interface.

A lot has happened on the market in recent years, and driven by Docker, an industry

standard for containers was defined in 2015. The standard of the Open Container Initia-

tive (OCI) comprises three specifications that can be used as a guide for projects and

developers. The specifications describe what containers are and how they should be

used, and from this what a runtime must look like or how images can be saved in a reg-

istry is derived. You can find an overview of the specifications in Table 2.2. The OCI stan-

dard allows you to build your application with Docker, Buildah, or Podman and still be

able to deploy it on Kubernetes. It is therefore definitely worth taking a look at the OCI

website at https://opencontainers.org/.
101Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

https://opencontainers.org/


2 Basic Objects and Concepts in Kubernetes
Docker has contributed a lot to the independence and openness of containers. For

example, Docker has extracted its own runtime and transferred it to an independent

project called containerd. Another component called libcontainer was also donated,

from which runC was developed.

That should be enough history. Now, how is a runtime structured?

If you search for container runtimes, you will always find a division into

� low-level runtimes, and

� high-level runtimes.

runC, for example, is a low-level runtime that creates and executes containers. How-

ever, it is controlled by a high-level runtime such as containerd.

containerd takes care of everything as a high-level runtime. It downloads the image

from the repository, manages the storage, and passes runC the container specification

it needs to start the container. It also monitors runC during the execution of the con-

tainers. In Kubernetes, starting a container would be similar to Figure 2.3.

The CRI interface allows you to exchange containerd and runC with any other runtime.

In addition to containerd, there is another runtime that currently plays an important

role in the Kubernetes context. CRI-O is a runtime that is specifically developed for

Kubernetes. CRI-O also uses runC to execute the container, but like containerd, it has

the option of using other low-level runtimes.

Note

CRI-O is sometimes also referred to as the container engine. According to my research,

however, it is only a container runtime. The terms are often used interchangeably on

the internet, which sometimes makes it difficult to determine what is right or wrong.

For questions like this, I prefer to look at the GitHub repo, because that's where you'll

find the truth: https://github.com/cri-o/cri-o.

Specification Description

runtime-spec Describes what a runtime must be able to do and what it should 

look like

image-spec Describes the standard of a container image and what its manifest 

should look like

distribution-spec Is closely related to runtime-spec and image-spec and describes, 

for example, how the images are to be uploaded to a registry

Table 2.2  Overview of OCI Specifications
102 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

https://github.com/cri-o/cri-o


2.1 Pod and Container Management
Figure 2.3  Communication of Runtimes

Ultimately, which runtime you want to use under the hood of Kubernetes is a matter of

taste. But let me be honest with you: I have never dealt with the runtime as intensively

as I did for this book, and it will make no difference to you as a developer. For some

basic understanding, it's good that you know how containers are executed, but you

don't need to dive much deeper.

Good to Know

Let’s have a brief digression on how Kubernetes starts a container through CRI-O.

As you learned in Chapter 1, Section 1.3.3 about the API flow, Kubernetes passes the pod

manifest to the kubelet. Here’s what happens next:

1. The kubelet forwards the request to CRI-O via the CRI interface of Kubernetes.

2. CRI-O extracts the container image from the specified registry, unpacks it, and cre-

ates a root file system.

3. CRI-O then generates an OCI runtime specification that describes how the con-

tainer must run.

4. It transfers these to the low-level runtime runC.

5. The container is then monitored via a separate conmon process. This is a monitor-

ing process that ensures communication between CRI-O and runC. It redirects logs

and exit codes and thus passes on the status to the top.

push Container Spec

kubelet

get Image

starts
Container

containerd

runC

Image
Repo

Container

runs
103Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
2.1.2    Your First Own Pod

That’s enough theory! Let’s now deploy your own first container in a pod. We will use a

simple example and extend an Nginx web server. To do this, you can use the Dockerfile

from Listing 2.1. In Chapter 1, Section 1.4.7, I described how you can create a container

registry using Minikube. We need that container registry now, and if you haven't acti-

vated it yet, you can do so now.

Note

I use Docker here for the build. You can of course also use any other tool for this pur-

pose.

If your command line is located in the same folder as your Dockerfile, you can use the

docker build -t localhost:5000/my-nginx . command to build your image. The docker
push localhost:5000/my-nginx command allows you to load the image into the registry.

FROM nginx
RUN echo '<!DOCTYPE html><html><body><h1>Hello, World!</h1></body></html>'
    >/usr/share/nginx/html/index.html

Listing 2.1  Dockerfile for Nginx Container

Note

If pushing the image causes problems, you should compare the respective error mes-

sage with the following:

Get "http://localhost:5000/v2/": dial tcp [::1]:5000:
connect: connection refused

This is an indication that you need to run the eval $(minikube docker-env) command

again. You must execute this in every new command line so that Minikube uses the

correct Docker environment. Only then will you reach the registry.

Now that your Nginx image is already available in the registry, you can use it to start

the pod in Kubernetes. To do this, you can use the manifest from Listing 2.2 and gener-

ate it via Lens. Take another look at the Lens reference guide (Chapter 1, Section 1.6.3),

where you will find the instructions for creating resources. Under Image, you enter the

container image that you have built and pushed into the registry.

Good to Know

The apiVersion in the manifest references the version of the corresponding Kuber-

netes object. In Chapter 4, Section 4.6, you will learn how objects are versioned in

Kubernetes.
104 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.1 Pod and Container Management
apiVersion: v1
kind: Pod
metadata:
  name: my-nginx
spec:
  containers:
  - name: my-container
    image: localhost:5000/my-nginx
    ports:
    - containerPort: 80

Listing 2.2  Pod Manifest for Your Own Nginx

To check, open Lens and look at your pod under Workloads • Pods. This should look like

Figure 2.4. Activate port forwarding as described in Chapter 1, Section 1.6.2, and open

the Nginx page in the browser. You should now be greeted by a Hello World message.

Note

You are not dependent on Lens in these examples. You can also use kubectl. In this

case, you can see the following output via kubectl get pod:

NAME       READY   STATUS    RESTARTS   AGE
my-nginx   1/1     Running   0          12s

Then you can use the kubectl describe pod my-nginx command to obtain detailed

information. Here’s the abridged version:

Name:             my-nginx
Namespace:        default
Priority:         0
Service Account:  default
Node:             minikube/192.168.49.2
Start Time:       Tue, 13 Feb 2024 23:34:32 +0100
Labels:           <none>
Annotations:      <none>
Status:           Running
IP:               10.244.1.6
…

Even if I don't always use both tools in the book, you can simply try it out with both. It

will help you to familiarize yourself with Lens and kubectl.

Congratulations! You have your first container running on your Kubernetes cluster.

Let's be honest, it's actually not that complicated. Try it out with one of your own appli-

cations: the quicker you take what you have learned into your own projects, the better

it will anchor itself in your subconscious.
105Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
Figure 2.4  First Pod in Lens

2.1.3    Multiple Containers within a Pod

You have already learned that a pod can contain more than one container. Let's take a

look at this concept in practice.

You now have your own nginx web server that delivers your Hello, World page. As a lit-

tle helper, we want to provide the web server with a sidecar container that collects and

processes the logs. This means that the main container does not also have to take care

of redirecting logs to a central server; instead, we swap this task out to the sidecar con-

tainer. You can see the target image of the pod in Figure 2.5.

Figure 2.5  Nginx with Log Collector

Use the Dockerfile from Listing 2.3 to create your own log collector. The Dockerfile con-

tains a small shell script that accesses the access.log file of Nginx in an endless loop and

transfers it to a separate file named sidecaraccess.log. Once you have adopted the code,

Pod

my-nginx my-log-
collector

/var/log/nginx

readwrite
106 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.1 Pod and Container Management
build an image again and store it in the registry. I have named the image localhost: 

5000/my-log-collector.

Note

Don't be surprised by the example. Of course, it is not thought through to the end, and

lines that have already been transferred are simply bluntly transferred to the file again.

However, the example gives you a good first impression of how a sidecar container

should function.

FROM busybox
RUN echo -e '#!/bin/sh\nwhile true; do cat /var/log/nginx/access.log >>
    /var/log/nginx/sidecaraccess.log; sleep 5; done' > /bin/log-collector.sh
    && chmod +x /bin/log-collector.sh
ENTRYPOINT ["/bin/log-collector.sh"]

Listing 2.3  Dockerfile for Log CollectorSidecar Container

Good to Know

You will come across the busybox image often in the Kubernetes world. It is known as

the Swiss Army knife of embedded Linux because it contains most of the standard

Linux tools. At the same time, the image is very compact and extremely lightweight at

less than 5 MB. So if you want to do something with Linux tools, think of the busybox

image.

Now you can expand the pod manifest from Listing 2.2 as shown in Listing 2.4. You can

see that two containers are now specified, and the same log volume has been assigned

to both. This is also the transfer point of the data at the end. Both containers can access

the volume. Nginx writes its logs to this path, and the log collector picks them up and

processes them further.

Deploy the manifest via Lens and set up port forwarding again. Now open the Nginx

page so that the log collector also has logs to collect. You can now use kubectl exec to

open a shell in one of the containers. You can find the command in Chapter 1, Section

1.5.5. In the /var/log/nginx path, you need to check whether the log collector extracts

the logs correctly and writes them to its own file.

Note

Use an emptyDir as the volume in Listing 2.4. This is an empty folder that you mount

under /var/log/nginx. The lifecycle of this volume ends after the pod is terminated. We

will look at volumes in more detail in Chapter 5.
107Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
apiVersion: v1
kind: Pod
metadata:
  name: my-nginx
spec:
  containers:
  - name: my-container
    image: localhost:5000/my-nginx
    ports:
    - containerPort: 80
    volumeMounts:
    - name: log-volume
      mountPath: /var/log/nginx
  - name: my-log-collector
    image: localhost:5000/my-log-collector
    volumeMounts:
    - name: log-volume
      mountPath: /var/log/nginx
  volumes:
  - name: log-volume
    emptyDir: {}

Listing 2.4  Pod Manifest for Log Collector as Sidecar

Note

In case something does not work as it should, I would like to point out the possibilities

for error analysis. I always proceed according to a similar pattern.

In this example, it would be as follows:

1. Check in Lens or kubectl whether the containers are running and, if not, analyze

the error messages. Possible issues include the following:

– The image name is incorrect.

– The image is not in the registry.

2. Check the manifest:

– Are the indentations correct?

– Is the volume stored on the same path on both containers?

3. Check the logs of the individual containers:

– Perhaps one of the paths is not correct.

– The script has an error.
108 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.1 Pod and Container Management
2.1.4    Communication between Containers

You have now developed and deployed your first pod with a sidecar container. Perhaps

you are now asking yourself the following question: Do the containers always have to

talk to each other via the file system?

There are different strategies for how the containers can interact with each other. You

can select the appropriate strategy depending on the function of the second container.

You have familiarized yourself with the standard helper containers and their functions

in Table 2.1. You can see the corresponding communication channels in Figure 2.6.

Figure 2.6  How Helper Containers Communicate with Each Other

The classic sidecar container communicates via the file system, just like your log collec-

tor. A log collector is even the typical use case for this: your main application produces

data, and the helper container processes it further.

The second option is the ambassador, which is used as a proxy to the outside world.

Because the containers within a pod share an IP address, the main application can

Pod

File System

Other Service

Application Sidecar

Pod

Application Proxy
Ambassador

Other Service

Pod

Application Adapter
109Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
easily access the ambassador container via localhost and send data. Possible tasks for

the ambassador are as follows:

� Act as a service broker to other services

� Apply authentication to APIs

In each of these cases, your main application does not have to take care of a certain part

of the logic itself. It knows only the ambassador container, sends its requests to it, and

the rest is done by the ambassador.

The third strategy is the adapter container, which provides communication from the

outside to the inside. Here too the communication is established via localhost, but in

the other direction. Possible use cases can include the following:

� Validation of incoming data

� Transformation of data before it reaches the main application

� Transformation of communication protocols

Here the incoming traffic is simply transformed or prepared for the main application,

and only then does it go into the main application.

Good to Know

The containers in a pod all start at the same time. It is therefore impossible to predict

which container will be the first to boot up. This means that in your applications, you

cannot rely on the sidecar container being started after the application.

2.1.5    Init Container

The more complex an application in a pod is, the more demanding deployment

becomes. When you deploy the pod, you have little control over the speed of the

startup. Sometimes this can be a little frustrating because the database is not yet ready

or other prerequisites are missing. You could of course implement such checks in your

application, but there is a much nicer method: the init container.

Each pod can define one or more init containers, which are always started before the

main application. The sequence is strict, and one init container starts after the other.

Your application container can only start once all of them have been successful. This

means you can always be sure that your main application will not start until all init

containers have successfully completed their tasks. The following use cases for this

could be conceivable:

� The init container checks whether interfaces such as databases are accessible.

� Init containers can prepare the file system and assign or restrict rights.

� An init container can start on the basis of a different image with other tools that do

not belong in the main application but are needed for preparation.
110 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.1 Pod and Container Management
A major advantage of the init container is that you can assign your own authorizations

to it. This allows you to assign secrets to the init container that are not required by the

main application, which allows you, for example, to assign rights that enable you to

access resources or APIs during initialization that you do not need during the execu-

tion. This increases the degree of security, as you assign rights according to the least

privilege principle.

Let’s now extend your pod with an init container in Listing 2.5, which creates two files

in the file system for preparation. First it initializes the sidecaraccess.log file, and so that

you can see that it is actually creating something, it also creates the initcontainer.log

file. In the end, the pod will look as shown in Figure 2.7.

Figure 2.7  Pod Extension with Init Container

Note

You can already see that the pods will fill up with many containers over time, but they

are inseparable. This is why Kubernetes manages pods and not the individual contain-

ers.

You can now roll out the new pod manifest via Lens and see how the containers behave.

The pod now contains three containers: it successfully completes the init container

first and then starts the other two containers. In the end, the pod in the Lens overview

should look as shown in Figure 2.8. As the init container has been successfully com-

pleted, it is only displayed as an empty box at the end. Now use the pod shell to check

whether the two files have been created correctly.

Pod

my-nginx
my-log-

collector

/var/log/nginx

readwrite

Init

Container

initialize
111Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
Figure 2.8  Pod with Init Container in Lens

As you can see, the concept of the init container is also easy to use. Can you think of an

example from your company that is perfect for init containers? Try it out for yourself.

Note

You have a great deal of freedom when you develop an init container. You can use your

own code of your choice, whether Python, Java, or other. The only important thing is

that the container must complete successfully at the end; otherwise, the main applica-

tion won’t be able to start.

Note

If the init container fails, Kubernetes will start it again and again by default until the

attempt is successful. In Section 2.1.7, you will learn how to set the restart policy.

apiVersion: v1
kind: Pod
metadata:
  name: my-nginx
spec:
  initContainers:
  - name: init-my-log-collector
    image: busybox
    command: ['sh', '-c', 'touch /var/log/nginx/sidecaraccess.log && touch
/var/log/nginx/initcontainer.log']
    volumeMounts:
    - name: log-volume
      mountPath: /var/log/nginx
  containers:
  - name: my-container
    image: localhost:5000/my-nginx
    ports:
    - containerPort: 80
    volumeMounts:
    - name: log-volume
      mountPath: /var/log/nginx
  - name: my-log-collector
    image: localhost:5000/my-log-collector
    volumeMounts:
112 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.1 Pod and Container Management
    - name: log-volume
      mountPath: /var/log/nginx
  volumes:
  - name: log-volume
    emptyDir: {}

Listing 2.5  Log Collector Pod Manifest with Init Container

2.1.6    Pod Phases and Container Statuses

You have already started and run several containers on Kubernetes. Finally, I would like

to introduce you to the different phases that containers or pods can be in.

Let's start with the phases of a pod that are listed in Table 2.3. You can already see the

phases in Lens in the pod overview in the Status column. These are a good indication of

the current state of your pod. For example, if you have a pod that has been in the pend-

ing phase for a long time, then you should take action and see why it cannot switch to

running.

Good to Know

The statuses of pods do not always indicate existing issues. A pod in pending status

may have problems pulling the image or mounting a volume. A pod in running status

Phase Description

Running The pod is running on a node and all containers have been successfully cre-

ated. At least one container is running or is in the start process.

Succeeded All containers in a pod have been successfully terminated and will not be 

restarted. This is particularly visible in Kubernetes jobs, which you will learn 

more about in Chapter 4, Section 4.2.

Pending This status indicates that the pod is currently being created. During this time, 

Kubernetes loads the images, it gives the pod access to resources such as vol-

umes and secrets, and the containers are waiting to be started.

If any of these cannot be provided to the pod or the scheduler cannot find a 

suitable node, the pod remains in this status. It waits until all preconditions 

have been met.

Failed All containers of a pod are terminated and at least one of them is faulty. This 

can happen through the system or through a status code that is not 0.

Unknown Kubernetes cannot determine the state of the pod. This happens, for example, 

if the node on which the pod is running is no longer accessible.

Table 2.3  Possible Pod Phases
113Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
may be in a crash loop where the container in the pod is constantly restarting due to a

problem.

In most cases, you will need to take a closer look at the pod to understand how it is

doing.

In addition to the pod phases, there are also the container statuses, which you can find

in Table 2.4. These are not always so obvious, but are very meaningful, especially in the

case of errors.

In Lens, you can either see these in the pod overview as in Figure 2.9, or you can click a

pod to see more information under Containers, including exit codes. This will help you

with debugging, because sometimes you can only find the decisive clue as to why a

container is not starting or has been terminated in the "last state."

Figure 2.9  Container Status Display in Lens

You can also output this information by using the kubectl describe pod command.

2.1.7    The Restart Policy of Pods

For init containers, I stated that they start again and again until they complete success-

fully. However, this is only half the truth, as you have the option of configuring this

behavior. The setting for this is called the restart policy and applies to all containers in

a pod.

Status Description

Running A container that is in this phase was able to start without any problems and 

is currently being executed.

Terminated A container is terminated when it has either been successfully completed or 

something has gone wrong for some reason. You can use the exit code to 

find out why the container was terminated.

Waiting If a container is not running or terminated, it is in the waiting phase. Here, 

for example, it waits for a secret or for the container image to be down-

loaded.

Table 2.4  Possible Container Phases
114 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.1 Pod and Container Management
The default setting ensures that containers that fail are always restarted. This is suitable

in most cases, but sometimes there are applications where this is not the best option.

Via the restart policy, you can determine under which circumstances a pod should be

restarted. You can choose from the three options listed in Table 2.5.

In Listing 2.6, you can see the extension of the pod manifest from Listing 2.2 with a

restart policy. You can see that this policy is defined at the pod level, which is why it

applies to all containers within the pod. For example, if you define restartPolicy:
Never, the init container will not restart if it fails.

apiVersion: v1
kind: Pod
metadata:
  name: my-nginx
spec:
  containers:
  - name: my-container
    image: localhost:5000/my-nginx
  restartPolicy: Always

Listing 2.6  Setting Restart Policy in Pod Manifest

2.1.8    When the Pod Comes to an End

An important process that you should know as a developer is the scheduling of pods. In

Kubernetes, pods should be scaled according to requirements, which means that pods

are constantly being started and terminated. This is part of your daily work, which is

why it is important that your application can be shut down properly (a graceful shut-

down).

Option Description Area of Use

Always This is the default value and always 

restarts a container, regardless of 

why it was terminated.

This is suitable for applications that 

need to run continuously.

OnFailure Only restarts the container if the exit 

code is not equal to 0. This means 

that the container has not been suc-

cessfully completed.

This is useful, for example, for batch 

jobs that are not restarted until they 

have completed successfully.

Never The container is never restarted, 

regardless of why it was terminated.

If you need full control over the run-

ning of the container, then this 

option is the best.

Table 2.5  Restart Policy Options
115Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
Good to Know

A graceful shutdown includes, for example,

� the conclusion of current transactions,

� closing a database session, and

� exiting your application via exit code 0.

For your application to even realize that the pod is supposed to be terminated, it must

respond to signals sent by the kubelet. The kubelet gives your application a certain

amount of time to shut down. This is referred to as the grace period and is set to 30 sec-

onds by default. If your application cannot respond to signals or takes longer than the

grace period, the container is simply terminated by means of a hard shutdown. This

must be avoided so that it does not lead to unwanted inconsistencies in the data or dis-

connections for your users.

Let's take a look at how scheduling works with Kubernetes. It does not matter whether

you have triggered the scheduling manually using kubectl or whether Kubernetes does

it itself for some reason:

1. In the first step, the pod is updated in the API server with the time at which the pod

should be deleted. For this to happen, the grace period is simply added to the current

time.

2. If a preStop hook has been defined, it will now be executed.

3. The kubelet will then send a TERM signal to each container in the pod. Only the pro-

cess with ID 1 receives the signal.

4. If all containers have been terminated, the pod can also be completely terminated.

While the signals are being sent to your application, the kubelet will start to shut down

the pod properly. For example, it must be removed from connected objects such as

ReplicaSets or services.

If the grace period expires at any point in the process, the pod and all containers in it

are forcibly deleted (force delete). For this purpose, the following is true:

� Each process in a container receives the SIGKILL signal and is thus simply terminated

hard.

� The pod object is immediately deleted from the API server by setting the grace

period to 0, which means that the pod can no longer be found by any client.

Finally, the final remnants such as the pause container are tidied up.
116 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.1 Pod and Container Management
Good to Know

There are two container hooks that you can define:

1. postStart
2. preStop

Here you can either use exec to execute a command or a script in the container or call

another endpoint via HTTP. You can find out more about this at http://s-prs.co/

v596414.

Note

The terminating status is not one of the classic phases of a pod that you learned about

in Section 2.1.6. This status is displayed in some kubectl commands if the pod is cur-

rently in the scheduling process but is still waiting for the grace period.

The grace period is the most important option in the scheduling process. You should

consider whether the default value of 30 is sufficient for your application. The grace

period is defined via the terminationGracePeriodSeconds option, as you can see in Lis-

ting 2.7.

apiVersion: v1
kind: Pod
metadata:
  name: my-nginx
spec:
  containers:
  - name: my-container
    image: localhost:5000/my-nginx
  terminationGracePeriodSeconds: 60

Listing 2.7  Grace Period Set in Pod Manifesto

You always have the option to override the grace period using kubectl and force the

deletion of a pod via kubectl delete --force or kubectl delete --grace-period=0.

Good to Know

If the grace period is set to 0, the termination will be forced immediately.

Now that you know how scheduling works in Kubernetes, you need to prepare your

application for a graceful shutdown. For this to work, two things must be fulfilled:
117Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596414
http://s-prs.co/v596414


2 Basic Objects and Concepts in Kubernetes
� Your application runs on PID 1 of the container.

� Your application should be able to handle signals.

To get your application to PID 1, there are several ways to structure your Dockerfile. You

can take a look at the following article, for example, which explains this in detail: http://

s-prs.co/v596415.

How your application can handle signals depends on the programming language.

You’ll have to see how this can be implemented in your application or framework. Con-

sider which steps are necessary for your application in the signal handler in order to be

switched off without negative side effects.

2.2    Annotations and Labels

Each object in Kubernetes is initially independent of all others. However, each one has

specific functions that help you to operate your application, although there are some

objects that can support and manage others. Pods can, for example, be managed by

other objects, such as deployments. There must be a simple way to link these more or

less independent objects together.

Another challenge is the number of objects in a cluster. The more objects are running

in a cluster, the more important it is to keep an overview of them.

But it's not just the technical components that need clarity about individual objects.

Precisely because there is a lot going on in a cluster, you also want to be able to quickly

see which pods belong together and how you need to handle them.

For this reason, the concept of labels and annotations was introduced:

� Labels are like labels on a folder in your office cabinet that provide information

about the contents of the folder. They make it easier for you to find the right folder

or group of folders. Labels are flexible key-value pairs, and you can customize them

according to your needs to add context-related information.

� Annotations are, as the name suggests, notes that provide additional information

about an object. They are also key-value pairs, but are not used to group or identify

objects. An annotation could be a table of contents in a folder. You cannot use it to

find the right folder, but it gives you more information about the contents of the

folder.

But not only pods are organized with labels. Kubernetes nodes also have labels, and

scheduling decisions are made based on these labels. The principle is very simple, and

yet you can set up complex rules that allow you to organize your entire cluster.
118 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596415
http://s-prs.co/v596415


2.2 Annotations and Labels
Good to Know

There are always matching selectors for the labels, which allow you to select and filter

resources based on the labels.

2.2.1    Using Labels and Selectors

Let's jump straight into an example. In Kubernetes, labels are a way of adding metadata

to your resources. This metadata can contain various information about an object. In

the simplest case, this is the name of a group or the environment. But it can also be any-

thing else that helps you organize your resources, such as

� the assignment to a larger application,

� the version of your application, or

� the owner of your application.

Listing 2.8 offers an example. You can see an Nginx pod to which the app and

environment labels are assigned. You can use those labels now to select this pod.

The concept of selectors is not new. You refer to a specific label and can thus make it

clear which resources you want to use. In the example, you could display the group of

all production resources. Or you can display all resources that belong to the nginx appli-

cation.

apiVersion: v1
kind: Pod
metadata:
  name: nginx example
  namespace: default
  labels:
    environment: production
    app: nginx
spec:
  containers:
  - name: nginx
    image: nginx:1.14.2
    ports:
    - containerPort: 80

Listing 2.8  Labels on Pod

There are different ways to write a selector. For example, there are the equality-based

selectors:
119Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
� Equality = or == selects resources whose labels correspond exactly to the specified

value:

kubectl get pods -l app=nginx

� Inequality != selects resources whose labels do not correspond to the specified

value:

kubectl get pods -l app!=nginx

You can also use set-based selectors. These can be filtered using a set of values, whereby

only one of these values needs to apply:

� In selects resources whose labels are contained in a specified list of values:

kubectl get pods -l 'environment In (production,test)'

� NotIn selects resources whose labels are not contained in a specified list of values,

whereby resources that have not set the label at all are also output:

kubectl get pods -l 'environment NotIn (test)'

� Exists selects resources that have a specific label, regardless of value:

kubectl get pods -l 'environment'

There are also selectors that you define for Kubernetes objects. The Kubernetes service,

which you will learn about in Section 2.5, uses the selectors to distribute the network

traffic to the correct pods. You can see an adequate example in Listing 2.9.

apiVersion: v1
kind: Service
metadata:
  name: nginx example
  namespace: default
  labels:
    app: nginx
    environment: production
spec:
  ports:
    - protocol: TCP
      port: 80
      targetPort: 80
  selector:
    app: nginx
    environment: production

Listing 2.9  Selector in Service
120 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.2 Annotations and Labels
You are completely free to choose your labels. Kubernetes does not provide any speci-

fications; there are only recommended labels that you can use. Some of these are also

used by third-party tools such as Helm. An overview is shown in Table 2.6.

Good to Know

In general, all labels without a prefix are private, which means there are no specifica-

tions. However, Kubernetes uses certain prefixes to mark system resources. You can

separate a prefix from the actual label by using a / character.

All labels starting with kubernetes.io and k8s.io are created and managed by Kuber-

netes. You can find a complete overview at http://s-prs.co/v596416.

2.2.2    Field Selectors

Field selectors are a nice addition to select resources based on specific field values. They

make it possible to make precise queries on objects based on the values of their fields,

such as metadata.namespace or metadata.name. You could query the pod in Listing 2.8, for

example, using kubectl get pods --field-selector metadata.name=nginx-example.

Thus, not only are you not limited to labels, but you can also make more interesting

queries, such as to view all pods with a certain status. Using a command like kubectl get
pods --field-selector status.phase=Running, you can query all running pods.

Key Description Example

app.kubernetes.io/name Name of your application nginx

app.kubernetes.io/instance Unique name that can identify a single 

instance of your application

Nginx-1337

app.kubernetes.io/version Version of your application; you are free 

to use whatever version you like

1.0.5

app.kubernetes.io/component Which component takes up the resource 

in the context of a large application

Web server

app.kubernetes.io/part-of Where you can add the name of the 

larger application

Sales platform

app.kubernetes.io/managed-by Set automatically if you use a tool such 

as Helm

helm

Table 2.6  Recommended Default Labels
121Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596416


2 Basic Objects and Concepts in Kubernetes
Note

The field selectors also have their limits, and you cannot query each and every field. The

available fields vary depending on the resource. For more information on this, refer to

the documentation at http://s-prs.co/v596417.

The field selectors only support the = and != operators. You can also connect several

selectors together to make more complex queries—for example:

kubectl get pods --field-selector= \
  status.phase!=Running,spec.restartPolicy=Always

Field selectors are a nice extension that can help you to quickly query certain resources,

especially on the command line.

2.2.3    NodeSelector

As you know, one of the purposes of Kubernetes is to make server management easier

for you. Usually, you don't want to have to worry about where your application is cur-

rently running. However, there are times when it is important to be able to control the

scheduling, such as in the following cases:

� Your pods require certain resources.

� Not all replications of a pod should run on the same node.

� Certain pods such as the backend and frontend should run on the same node.

For this purpose, you have three settings available that you can adjust in your pod

manifests:

� NodeSelector

You select the node on which you want your pod to run.

� Node affinity and antiaffinity

You provide your pod with rules that tell it which node it should run on.

� Pod affinity and antiaffinity:

You provide your pod with rules for which pods may or may not run on the same

node.

All of these adjustments are also based on labels. You can assign labels to each node,

which can then be processed with selectors to create such rules. But let's start with

NodeSelector.

Let's take an application that needs an Nvidia GPU. It should only be trained on a node

that also has an Nvidia GPU; otherwise, the application will not run. Listing 2.10 shows

an example in which the nodeSelector option is used.
122 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596417


2.2 Annotations and Labels
apiVersion: v1
kind: Pod
metadata:
  name: cuda-test
spec:
  containers:
    - name: cuda-test
      image: "registry.k8s.io/cuda-vector-add:v0.1"
      resources:
        limits:
          nvidia.com/gpu: 1
  nodeSelector:
    graphic: nvidia

Listing 2.10  NodeSelector Example

The pod will then only run on nodes that have the graphic: nvidia label assigned. If

there is no node with this requirement, Kubernetes will not be able to start the pod.

Good to Know

NodeSelector is the easiest way to assign pods to specific nodes. If a node with the

desired label is available in the cluster, the pod can start. If there is none, the container

remains in pending status until a corresponding node is available.

Figure 2.10  Function of NodeSelector

Node 1

graphic=nvidia

Node 2

graphic=""

nodeSelector:
graphic=nvidia nodeSelector: nodeSelector:

graphic=amd
123Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
Figure 2.10 shows how the scheduler would distribute pods:

� The first pod has the graphic=nvidia NodeSelector defined and can therefore only be

trained on node 1.

� The second pod does not have a NodeSelector and can be trained on both node 1 and

node 2.

� The third pod has a NodeSelector on graphic=amd and does not find a node.

In Lens, you can easily display the labels of the nodes. To do this, go to your cluster, click

Nodes, and then click the name of the node you want to use. You should be able to see

the labels, as shown in Figure 2.11. On the Raspberry Pi master, for example, you can see

the node-role.kubernetes.io/master=true tag, which you can use to identify the master

nodes. As always, however, you are free to add more labels.

Figure 2.11  Labels of Raspberry Pi Master Node

Good to Know

Depending on the infrastructure on which the cluster is based, you will also see other

useful labels. For example, a cluster in AWS should also have the availability zones or

the region as a label. This allows you to make very fine-grained decisions about where

your pods should run.

2.2.4    Node Affinity and Antiaffinity

An extension to NodeSelector is the node affinity and node antiaffinity concept. It al-

lows you to define significantly better specifications and more complex rules. For
124 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.2 Annotations and Labels
example, you can formulate an affinity so that the pod would rather run on a specific

node. However, if there is no space on the node, the pod can also start on another node.

Where the NodeSelector simply decides that "the pod will not be started," with affinity,

you can say that it’s "better to be on the wrong node than on no node at all."

Good to Know

Affinity is particularly interesting if you have clusters with many nodes where you need

to be able to control very precisely how the scheduling should work. For production sys-

tems, you should at least be familiar with the concept.

You are welcome to read this section and come back to it if it is of interest to your appli-

cation.

You can configure affinity in the manifest as follows:

� requiredDuringSchedulingIgnoredDuringExecution
The rule must be fulfilled. As with NodeSelector, this forces the default setting.

� preferredDuringSchedulingIgnoredDuringExecution
The scheduler tries to comply with the rule, but can also schedule if it cannot adhere

to it.

Note

The names of the two affinity options give the impression that there should also be a

requiredDuringExecution option due to the IgnoredDuringExecution part. However,

this option is not currently available. The topic has been discussed in the community

for some time, but there is no longer any reference to it in the official Kubernetes docu-

mentation.

From my point of view, it would be a special case anyway. The option would only

become active if the label of a node were to change at runtime, and I can't think of any

use case in which this happens.

An example could look like the one shown in Listing 2.11.

apiVersion: v1
kind: Pod
metadata:
  name: region-pod
spec:
  affinity:
    nodeAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
        nodeSelectorTerms:
        - matchExpressions:
125Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
          - key: "region"
            operator: "In"
            values:
            - "USA"
            - "Europe"
  containers:
  - name: example-container
    image: nginx

Listing 2.11  Pod with Necessary Node Affinity

Here you have a cluster with nodes in different regions, and you want a pod to be

allowed to launch only in Europe or the USA. By using the requiredDuringScheduling
option you can enforce the rule and the pod cannot be started in China by mistake.

The rules can be extended in two ways:

� You can add another condition in matchExpressions. In that case, a pod can only be

scheduled on the node if all rules apply. For example, in the affinity in Listing 2.12,

you enter the hard disk type as an additional condition. This means that only nodes

from Europe or the USA that use SSDs can be used by the pod.

� However, you can also add another condition in nodeSelectorTerms. This means that

the node must fulfill either one or the other in order to be eligible for the pod. In Lis-

ting 2.13, this rule means that the node must either be located in the USA or Europe

or have the production tag as its environment.

nodeAffinity:
  requiredDuringSchedulingIgnoredDuringExecution:
    nodeSelectorTerms:
    - matchExpressions:
      - key: "region"
        operator: "In"
        values:
        - "USA"
        - "Europe"
      - key: "disktype"
        operator: "In"
        values:
        - "ssd"

Listing 2.12  Additional AND Condition within Affinity

Note

You can use In, NotIn, Exists, DoesNotExist, Gt, and Lt as operators for affinities.
126 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.2 Annotations and Labels
nodeAffinity:
  requiredDuringSchedulingIgnoredDuringExecution:
    nodeSelectorTerms:
    - matchExpressions:
      - key: "region"
        operator: "In"
        values:
        - "USA"
        - "Europe"
    - matchExpressions:
      - key: "environment"
        operator: "In"
        values:
        - "production"

Listing 2.13  Additional OR Condition within Affinity

The syntax for preferredDuringScheduling is slightly different. You can also assign a

weighting for each rule, which helps to decide where the pod should prefer to run. For

this purpose, Kubernetes will check each node for the rules, and if one of them applies,

the node is assigned the weighting in terms of points. At the end, the pod on the node

with the most points is scheduled. In Listing 2.14, the pod prefers a node from the USA.

apiVersion: v1
kind: Pod
metadata:
  name: region-pod
spec:
  affinity:
    nodeAffinity:
      preferredDuringSchedulingIgnoredDuringExecution:
      - weight: 2
        preference:
          matchExpressions:
            - key: "region"
              operator: "In"
              values:
              - "USA"
      - weight: 1
        preference:
          matchExpressions:
            - key: "region"
              operator: "In"
127Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
              values:
              - "Europe"
  containers:
  - name: example-container
    image: nginx

Listing 2.14  Pod with Preferred Node Affinity

In comparison, Listing 2.15 prefers a node in Europe with an SSD over a node in the USA

without an SSD. However, a node in the USA with an SSD beats all others because it has

the highest number of points.

nodeAffinity:
  preferredDuringSchedulingIgnoredDuringExecution:
  - weight: 2
    preference:
      matchExpressions:
        - key: "region"
          operator: "In"
          values:
          - "USA"
  - weight: 1
    preference:
      matchExpressions:
        - key: "region"
          operator: "In"
          values:
          - "Europe"
  - weight: 2
    preference:
      matchExpressions:
        - key: "disktype"
          operator: "In"
          values:
          - "ssd"

Listing 2.15  Pod with Another Node Affinity Rule

2.2.5    Pod Affinity and Antiaffinity

Another way to tell the pod where it should prefer to run is pod affinity and pod antiaf-

finity. You can use this to tell a pod which other pods should run on a node and which

should not run there. Use cases for this include the following:
128 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.2 Annotations and Labels
� One of your applications should run on the same node as the database in order to

speed up communication.

� Two replications of the same pod should not run on the same node to ensure reli-

ability.

If you look at Figure 2.12, you will see three pods from Nginx and three pods from the

backend. The distribution is poor: if a node fails, either all backend pods or all Nginx

pods are gone. In addition, requests from Nginx to the backend must always be routed

to another node.

Figure 2.12  Pod Distribution without Pod Affinity

You can see a much nicer distribution in Figure 2.13. There is one Nginx pod and one

backend pod on each node, but there is another node, and the utilization of the other

nodes may be lower than before.

Note

Higher reliability and availability can lead to higher costs.

Note

As is the case with many other settings, you should also proceed iteratively with affini-

ties. Set a hypothesis such as "I want to reduce latency," then try to verify it. Try to

approach the sweet spot bit by bit.

Node

app=nginx

app=nginx

app=nginx

Node

app=backend

app=backend

app=backend
129Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
Figure 2.13  Pod Distribution with Pod Affinity

As with node affinity, you have the following options:

� requiredDuringSchedulingIgnoredDuringExecution

� preferredDuringSchedulingIgnoredDuringExecution

In Listing 2.16, an Nginx pod is forced by pod affinity to be deployed on a node with a

backend pod. If you roll out this manifest via Lens, you will see that the status simply

remains set to Pending. Kubernetes cannot schedule the pod until you roll out a pod

with the app=backend label.

apiVersion: v1
kind: Pod
metadata:
  name: nginx-pod
spec:
  affinity:
    podAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
        - labelSelector:
            matchLabels:
              app: backend
          topologyKey: "kubernetes.io/hostname"
  containers:
  - name: example-container
    image: nginx

Listing 2.16  Pod Affinity: app=backend

Node

app=nginx

app=backend

Node

app=nginx

app=backend

Node

app=nginx

app=backend
130 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.2 Annotations and Labels
You can see an example of antiaffinity in Listing 2.17. There you force Nginx not to run

on nodes on which another Nginx pod is already running. If you only have two nodes

but want to deploy three pods, Kubernetes cannot roll out the third pod. On the Rasp-

berry Pi cluster, it then looks as shown in Figure 2.14.

apiVersion: v1
kind: Pod
metadata:
  name: nginx-pod
  labels:
    app: nginx
spec:
  affinity:
    podAntiAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
        - labelSelector:
            matchLabels:
              app: nginx
          topologyKey: "kubernetes.io/hostname"
  containers:
  - name: example-container
    image: nginx

Listing 2.17  Pod Antiaffinity to Itself

Figure 2.14  Pod Antiaffinity on Raspberry Pi Cluster

If you want to make the rules a little less strict, you can do this in the same way as with

the node affinities. Listing 2.18 shows the syntax for a preferredDuringScheduling rule.

Just try it out!

affinity:
  podAntiAffinity:
    preferredDuringSchedulingIgnoredDuringExecution:
      - weight: 100
        podAffinityTerm:
          labelSelector:
131Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
            matchLabels:
              app: nginx
          topologyKey: "kubernetes.io/hostname"

Listing 2.18  Pod Antiaffinity with preferredDuringScheduling Rule

Good to Know

You can also use matchExpressions as with the node affinities.

You have probably already noticed the topologyKey option. This option defines the

label according to which the nodes are grouped. For example, if you have nodes in dif-

ferent data centers or in the cloud in different availability zones, your nodes should be

marked with the topology.kubernetes.io/zone label.

If you then write an antiaffinity rule, you can specify the following: "The pod should not

run in a zone where a pod of the same application is already running." This will remove

all nodes that are running in the same zone as the node on which one of your pods is

already running. I have recorded this for you in Figure 2.15. The second pod selects the

node from zone B because one is already running in zone A.

Figure 2.15  Grouping Nodes by topologyKey

Node

Zone: A

Node Node

Zone: A Zone: B
132 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.2 Annotations and Labels
This gives you even more control over where your pods should run and can increase

reliability.

Note

Depending on the number of nodes in a cluster, pod affinities require a high comput-

ing effort. Kubernetes recommends not using pod affinity for clusters with several

hundred nodes.

2.2.6    Taints and Tolerations

You now know how to use NodeSelector and affinities to make pods favor specific

nodes. However, there are situations in which you will also want to allow the node to

reject certain pods. The reasons for this include the following:

� Reservation of nodes

Certain nodes should be reserved for special purposes or special groups of pods,

such as the masters.

� Dealing with special hardware

In clusters where some nodes have specialized hardware such as GPUs, you want to

prevent ordinary pods from blocking these resources.

� Controlled pod management

During maintenance work or upgrades of a node, you want to prevent new pods

from being started there.

� Error handling

In the event of node errors such as network issues or resource bottlenecks, you want

to prevent new pods from being started on the faulty nodes.

For this purpose, you can use the concept of taints and tolerations. You assign a taint to

a node, and any pod that does not tolerate this taint will be rejected. You set the tolera-

tions on the pods that you want to allow to run on these nodes.

For example, if your master has set a taint and you want to run one of your applications

on it, then it only needs the toleration and can thus be deployed by the scheduler on

the master. Taints and tolerations work together in this way to ensure that pods are not

placed on unsuitable nodes.

You can assign one or more taints to a node. Kubernetes also uses taints automatically

to control the scheduling of pods. For example, if a node is not yet ready, a taint pre-

vents pods from being started on the node.

You can assign three effects to your taints, with which you can control how Kubernetes

should handle pods. A detailed list is provided in Table 2.7.
133Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
Good to Know

The eviction of pods is the process by which a pod on a node must be deleted. If possi-

ble, it will then get restarted on another node. There are different scenarios when this

is advantageous. The node controller automatically sets taints if, for example, the node

is no longer accessible or has other problems.

You can find more about this topic at http://s-prs.co/v596418.

To set a taint, you need a key, a value, and an effect. For example, if you want to define

a NoSchedule taint for the master, you could run the following command:

kubectl taint nodes node1 nodeType=master:NoSchedule

nodeType is the key, while master is the value. To remove a taint, you simply need to add

a hyphen (-) after the command:

kubectl taint nodes node1 nodeType=master:NoSchedule-

On the other hand, you need to assign tolerations to your pods if you want them to

accept taints. The tolerations look similar to affinities, and you can use the Exists and

Equal operators. Listing 2.19 shows a toleration that accepts a taint with the nodeType
key. The value of the taint is irrelevant to this toleration.

Taint Effect Effects on Running Pods Effects on New Pods

NoExecute � Pods without toleration are 

evicted immediately.

� Pods with toleration, but 

without tolerationSeconds, 

remain on the node indefi-

nitely.

� Pods with toleration and tol-
erationSeconds are evicted 

after the specified time has 

elapsed.

The pod cannot start without 

toleration.

NoSchedule No eviction of existing pods. The pod cannot start without 

toleration.

PreferNoSchedule No eviction of existing pods. New pods without toleration are 

avoided if possible, but that is 

not guaranteed.

Table 2.7  Taints and Their Effects
134 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596418


2.2 Annotations and Labels
apiVersion: v1
kind: Pod
metadata:
  name: nginx
spec:
  containers:
  - name: nginx
    image: nginx
  tolerations:
  - key: "nodeType"
    operator: "Exists"
    effect: "NoSchedule"

Listing 2.19  Pod with Toleration Operator "Exists"

In Listing 2.20, however, only one taint is tolerated where the nodeType has the master
value. Consequently, if you have a node with the worker value, the pod will not be able

to start there.

Of course, you can also add multiple tolerations to a pod, such as to tolerate other

effects or completely different taints.

Good to Know

An empty value for key with operator: Exists matches all keys, values and effects.

This means that your pod will simply tolerate all taints.

An empty value for effect can be used with all effects.

The term empty value simply refers to passing an empty string with "".

apiVersion: v1
kind: Pod
metadata:
  name: nginx
spec:
  containers:
  - name: nginx
    image: nginx
  tolerations:
  - key: "nodeType"
    operator: "Equal"
    value: "master"
    effect: "NoSchedule"

Listing 2.20  Pod with Toleration Operator "Equal"
135Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
2.2.7    Annotations

Like labels, annotations are an essential component of Kubernetes. They provide a

flexible method for enriching objects with additional information. While labels are

used to identify and organize objects within Kubernetes, annotations allow you to

store additional information that goes beyond the core functionality of Kubernetes.

Classic use cases include the following:

� Storage of complex data

For example, this includes data that can contain entire JSON objects.

� Additional information

You can include contact information, release notes, or auditing information. For

example, one of my customers has stored the application's protection requirements

there.

� Extensions and integrations

Kubernetes tools and extensions use annotations to enable specific functions or

provide information.

You can view examples of annotations and what is saved there in each object that you

have created. Take a look at an Nginx pod that you created in the previous sections.

There you will find the kubectl.kubernetes.io/last-applied-configuration annotation

and, as a value, a JSON object with the complete manifest that you rolled out last.

You will also find annotations in other objects. In Section 2.3, you will learn about

deployments. The revision of the deployment is counted under the deployment. 

kubernetes.io/revision value. With each new rollout, Kubernetes counts up by one,

and you can see which deployment is currently active.

Good to Know

An annotation can store data of up to 256 KB.

Let's take a look at how you can add annotations to a pod yourself. In Listing 2.21, we

give the pod a JSON object under the build annotation.

apiVersion: v1
kind: Pod
metadata:
  name: nginx-example
  namespace: default
  annotations:
    build: |
      {
        "repo": "nginx-example"
        "hash": "afj34iweo",
        "timestamp": "2023-12-12T14:38:23Z"
136 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.2 Annotations and Labels
      }
spec:
  containers:
  - name: nginx
    image: nginx:1.14.2
    ports:
    - containerPort: 80

Listing 2.21  Pod with Annotations

The nice thing about this is that you can pass a multiline string in YAML, which makes

it very easy to read in the code. We will go deeper into the YAML syntax in Chapter 3,

Section 3.2.

The advantage of JSON is that you can easily see the current status of your application's

code yourself. You can also have the data read automatically and process it further. The

options for using this are enormous, and this can make it easier for you to manage your

applications.

Figure 2.16 shows how the annotations are displayed in Lens. Simply click your pod, and

you will see the annotations directly in the menu that pops up.

Figure 2.16  Displaying Annotations in Lens

An example of how the Prometheus annotations-monitoring application uses annota-

tions is shown in Listing 2.22. The tool you will learn about in Chapter 7, Section 7.4 uses

the annotations to detect whether a pod provides metrics and, if so, on which port. In

Chapter 8, you will learn that Helm also uses annotations to store and read information

about objects.

metadata:
  annotations:
    prometheus.io/scrape: "true"
    prometheus.io/port: "8080"

Listing 2.22  Annotation for Prometheus
137Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
2.3    Deployments and ReplicaSets

At this point, you know how to run your application in Kubernetes as a pod. You

already know the label concepts and how the Kubernetes resources can be controlled

and coupled. But now we come to the real magic of Kubernetes.

As you know, Kubernetes is primarily designed for managing a large number of pods.

In a production environment, you will want to create multiple pods of the same type so

that you can distribute the load or increase reliability. Now you don't need to manually

create and deploy multiple pod manifests, because this is exactly what the deployment

and ReplicaSet Kubernetes objects are responsible for.

You can imagine these as the manager and the foreman of a craft business. The man-

ager (deployment) knows the plan of the project and its goals, and they can also make

strategic decisions to replace workers in a project. The manager always sees the big pic-

ture. The manager instructs the foreman (ReplicaSet) to supervise the workers. The

foreman ensures that the work is carried out in accordance with the manager's instruc-

tions and that there is always a sufficient number of workers on the project. If a worker

is absent due to illness, the foreman takes care of a replacement.

Note

Although you can also use ReplicaSet without a deployment, the two objects simply

belong together. Kubernetes recommends never using ReplicaSet without a deploy-

ment, as the additional features make running your application much easier. However,

we will take a close look at both properties.

Figure 2.17 shows how the objects are connected. The deployment is the top-level

object, manages a ReplicaSet, and instructs the ReplicaSet to manage and monitor the

pods.

The deployment

� manages the lifecycle of pods and ReplicaSets,

� enables controlled updates through rolling updates, and

� enables rollbacks to previous versions.

The ReplicaSet

� ensures that the specified number of pods are running and

� monitors the pods and replaces faulty ones.

Both objects always check the current status with regard to the desired status. If some-

thing is not as desired, the objects try to restore the state.
138 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.3 Deployments and ReplicaSets
Figure 2.17  Architecture of Deployments and ReplicaSets

2.3.1    The Role of ReplicaSets

ReplicaSet is one of the key objects for running your application stably in Kubernetes.

It makes sure that a certain number of pods of your container are always running. To

ensure this, the ReplicaSet also uses labels and selectors, which you learned about in

Section 2.2. These are also referred to as MatchLabels in the ReplicaSet and serve as a

selector. This is how the ReplicaSet knows which pods belong to it and will manage

them accordingly. MatchLabels are also key-value pairs that you define in the specifica-

tions of a ReplicaSet and the pods.

Listing 2.23 shows the extension of your Nginx pod from Section 2.1. Under template,

the ReplicaSet finds everything it needs to know to create the pods. In addition, we

have added the app: nginx label, and under selector.matchLabels you can see the selec-

tor used to select the set label. Another difference from the pod manifest is the replicas
option. There you tell ReplicaSet how many pods you want to run.

Now you can roll out the manifest from Listing 2.23 and view the pods created in Lens.

apiVersion: apps/v1
kind: ReplicaSet
metadata:
  name: my-nginx-replicaset
  labels:
    app: nginx
spec:
  replicas: 2
  selector:
    matchLabels:
      app: nginx
  template:
    metadata:
      labels:
        app: nginx

Deployment ReplicaSet

Pod Pod
139Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
    spec:
      containers:
      - name: my-container
        image: localhost:5000/my-nginx
        ports:
        - containerPort: 80

Listing 2.23  ReplicaSet Manifest

As shown in Figure 2.18, you can see that ReplicaSet creates two pods as desired. For

each pod, ReplicaSet will add a unique ID to the name so that there is no name conflict.

You can also see in the overview that the pod is controlled by a ReplicaSet.

Figure 2.18  Pods Generated by ReplicaSet

You can view the ReplicaSet itself in Lens under Workloads • ReplicaSets. In the detail

view, you can then see which pods are managed by the ReplicaSet and what the status

of the pods is, as shown in Figure 2.19.

Figure 2.19  Detail View of ReplicaSet in Lens

Good to Know

I mentioned that ReplicaSet will generate the pod manifest. This makes ReplicaSet the

owner of the pods. In Kubernetes, this concept is referred to as owners and dependents.

In this case, the ReplicaSet is the owner of the pods, and the pods are the dependents

of the ReplicaSet.
140 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.3 Deployments and ReplicaSets
In the deployed pod manifesto, this looks as follows:

ownerReferences:
  - apiVersion: apps/v1
    kind: ReplicaSet
    name: my-nginx-replicaset
    uid: b6238a34-7656-45e4-a377-e864e8ad99f9
    controller: true
    blockOwnerDeletion: true

The nice thing about this approach is that you do not need to specify and link each

resource individually because Kubernetes is smart enough to generate the pods from

the ReplicaSet manifest. There is also a kind of garbage collection: if you delete the

owner, Kubernetes will delete its dependents first. You can control this option using

blockOwnerDeletion.

There are other owner and dependency connections that you will get to know. For

example, the deployment will be the owner of the ReplicaSet. You can find more infor-

mation about this topic at the following address: http://s-prs.co/v596419.

Take some time to play around with ReplicaSet:

� Delete one of the pods.

� Increase the replicas using kubectl scale.

� Try to reduce the number of replicas using Lens.

Try it out and see how ReplicaSet reacts. The principle behind ReplicaSet is very simple

and yet extremely powerful. By regularly comparing the desired and current status, it

always keeps the number of pods at the right level. This is the first step toward a system

that is able to perform a self-healing process. A very interesting extension is autoscal-

ing, which allows Kubernetes to increase or decrease the number of replicas itself

depending on the load. We will look at this in more detail in Chapter 7, Section 7.3.

Note

If you also want to start a single pod in addition to ReplicaSet with the app: nginx
MatchLabel, you should make sure that the pod does not have the same label. Replica-

Set will immediately see the pod as its task and include it in its management process.

Try rolling out the following manifest and see what ReplicaSet does to the pod:

apiVersion: v1
kind: Pod
metadata:
  name: my-nginx
  labels:
    app: nginx
141Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596419


2 Basic Objects and Concepts in Kubernetes
spec:
  containers:
- name: my-container

    image: localhost:5000/my-nginx
    ports:

- containerPort: 80

The pod is terminated immediately, as ReplicaSet already has the required number of

pods running.

2.3.2    Creating Deployments

You now know how ReplicaSet works and how it monitors pods and keeps them stable

at a desired number of replications. The functionality of ReplicaSet is kept simple, but

it needs a little more logic, especially when it comes to new rollouts. You can use the

Kubernetes deployment object for this purpose.

While ReplicaSet takes care of the pods, the deployment takes care of ReplicaSet, mon-

itors its status, and provides additional logic. A deployment can

� create, monitor, and clean up ReplicaSets;

� roll out a new version of pods by creating a new ReplicaSet; and

� monitor and pause rollouts and perform rollbacks.

If you look at the manifest in Listing 2.24, you can see that it is almost exactly the same

as Listing 2.23. You provide the pod template, the replications, and the MatchLabels. Of

course, the deployment manifest needs this information because it has to use it to cre-

ate the ReplicaSet and the pods.

apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-nginx-deployment
  labels:
    app: nginx
spec:
  replicas: 2
  selector:
    matchLabels:

app: nginx
  template:
    metadata:

labels:
app: nginx
142 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.3 Deployments and ReplicaSets
    spec:
      containers:
      - name: my-container
        image: localhost:5000/my-nginx
        ports:
        - containerPort: 80

Listing 2.24  Deployment Manifest

Now try to roll out the manifest and take a look at the deployment in Lens. To do this,

select Workloads • Deployments and click the my-nginx-deployment you have created.

Compared to ReplicaSet, you can see two special features, as shown in Figure 2.20: the

strategy type and the deploy revisions. These properties allow you to control the roll-

out and perform a rollback. Let us take a closer look at this in an example.

Figure 2.20  Detailed View of Deployment in Lens

Take a look at what exactly the deployment has generated. If you click the ReplicaSet

and the pods, you can see that the pods still belong to the ReplicaSet. However, the Rep-

licaSet now has an owner reference to your deployment. The structure is therefore

exactly the same as you saw in Figure 2.17. The deployment takes care of the ReplicaSet,

and the ReplicaSet takes care of the pods.

Good to Know

As the deployment manages the ReplicaSet, any changes you make to the ReplicaSet

will be overwritten by the deployment. Try changing the number of replicas in the Rep-

licaSet. The change will not take effect because the deployment will overwrite your

value again.

The deployment is the single point of truth. In this way, Kubernetes avoids inconsisten-

cies.
143Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
2.3.3    Rolling Updates via the Deployment Object

There are two update strategies you can choose between:

� Recreate
All existing pods are first deleted and then replaced by new ones.

� RollingUpdate
You can control pod replacement and thus minimize downtime.

A use case for the recreate option could be a development cluster where you have few

resources available. If new pods cannot be trained, the old pods must first be deleted.

However, this strategy leads to failures in any case. You should therefore do without it

in production clusters.

The second strategy represents the standard for Kubernetes. The RollingUpdate option

replaces one pod after the other for you. This allows you to avoid application down-

times. Ideally, your application should have the following features to support rolling

updates:

� Horizontal scaling

Your application should be able to run multiple instances simultaneously.

� Statelessness

Your application should be stateless or save the state externally to enable seamless

updates.

� Readiness checks

You should implement readiness checks as described in Chapter 7, Section 7.2 to

ensure that new pods are healthy before they start managing the traffic.

Note

Kubernetes can also perform a rolling update without a readiness check. However, the

problem with this is that Kubernetes does not know when the new pods will be avail-

able and able to process requests. This is why you need readiness checks, because this

is the only way you can be sure that your application is fully up and running before

Kubernetes replaces the next pod.

Another advantage is that you can cancel the update of your application if the new ver-

sion has a problem and cannot be started up. Without a readiness check, Kubernetes

would not notice the problem.

Figure 2.21 shows what it will look like when you install an update. The deployment has

the following tasks during an update:

1. Creating a new ReplicaSet with a new pod specification

2. Upscaling pods in the new ReplicaSet

3. Downscaling pods in the old ReplicaSet
144 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.3 Deployments and ReplicaSets
A rollout is successful if all pods are running in the new ReplicaSet and the old Replica-

Set is set to 0. But let's just give it a try. If you have not yet rolled out the deployment

from Listing 2.24, please do so now. The next step will be to update the image. To do

this, swap your own Nginx image image: localhost:5000/my-nginx with the official one.

Set the value to image: nginx and roll out the update.

Figure 2.21  Rolling Update Managed by Deployment

Observe the rollout process. This will happen very quickly in this case, as the Nginx

pods do not need long to report that they are ready. In Lens, click Workloads • Replica-

Sets, then take a look at the way the deployment works. You now have two ReplicaSets

there, and the pods are terminated on the old one and scaled on the new one.

If you compare the old ReplicaSet with the new one, you can see that your old image is

still stored in the old one. This makes it easy to roll back. In the deployment itself, you

can find the ReplicaSets under Deploy Revisions, as shown in Figure 2.22.

Good to Know

When you update a deployment, the old ReplicaSet remains in place. You can use the

.spec.revisionHistoryLimit option to control the maximum number of ReplicaSets

that can be kept. The default value is 10, but if you set the value to 0, you can no longer

perform a rollback.

Good to Know

Imagine the deployment is currently in the update process and you want to make a

quick change. Kubernetes can handle this use case without any problems. When you

Deployment

ReplicaSet
Pod Pod

ReplicaSet
Pod Pod

Old Pods

New Pods
145Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
install the new update, the deployment will create another ReplicaSet, scale up pods

there, and scale down all old ReplicaSets.

Figure 2.22  ReplicaSets as Deploy Revisions in Deployment

There is another nice option that allows you to see how the deployment proceeds. Run

the kubectl get events command. Your output will look similar to Listing 2.25, where

you will find it in a very abridged version. It is nice to see how the new pods are started

by the new ReplicaSet and how the old pods are terminated at the end. In our Nginx

example, the process completes within just a few seconds. You can use one of your

applications here, implement the readiness check from Chapter 7, Section 7.2, and then

observe the rolling update process.

Good to Know

You can pause and resume a rollout using the kubectl rollout pause and kubectl
rollout resume commands. This can be particularly useful for larger deployments with

a large number of replicas—for example, if you see an error in the new version that you

want to analyze or resolve.

While the rollout is paused, you can make updates to the deployment. However, these

updates do not become active until the rollout is reactivated.

REASON        OBJECT       MESSAGE
Scheduled     pod/799      Successfully assigned default/799
Pulling       pod/799      Pulling image "nginx"
Pulled        pod/799      Successfully pulled image "nginx" in 1.13s
Created       pod/799      Created container my-container
Started       pod/799      Started container my-container
Scheduled     pod/7zm      Successfully assigned default/7zm
Pulling       pod/7zm      Pulling image "nginx"
Pulled        pod/7zm      Successfully pulled image "nginx" in 1.2s
Created       pod/7zm      Created container my-container
Started       pod/7zm      Started container my-container
Succ…te       rs/8d        Created pod: 7zm
Succ…te       rs/8d        Created pod: 8d-brvnt
146 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.3 Deployments and ReplicaSets
Killing       pod/c7       Stopping container my-container
Killing       pod/s6       Stopping container my-container
Suc…Delete    rs/94        Deleted pod: s6
Suc…Delete    rs/94        Deleted pod: c7
ScalingRS     deployment   Scaled up replica set 8d to 1
ScalingRS     deployment   Scaled down replica set 94 to 1
ScalingRS     deployment   Scaled up replica set 8d to 2
ScalingRS     deployment   Scaled down replica set 94 to 0

Listing 2.25  Procedure of Rolling Update

For rolling updates, you have two setting levers, maxUnavailable and maxSurge, which

you can use for configuration.

maxUnavailable

� What it does

It determines the maximum number of pods that may not be available during the

update.

� How it works

It can be a fixed number or a percentage, such as 5 pods or 10% of the pods. When

calculating the integer from the percentages, Kubernetes rounds down.

� Default value

25%

� Example

If you set the value to 30%, then at least 70% of the pods must be running during

the update. New pods start, old ones are terminated, but Kubernetes makes sure

that at least 70% of the pods are always available and can answer requests.

maxSurge

� What it does

It determines how many additional pods can be created during the update.

� How it works

It can also be a fixed number or a percentage. When calculating the integer from

the percentages, Kubernetes rounds up.

� Default value

25%

� Example

With the 30% setting, 30% more pods can be started during the update than you

specified in the manifest. Once old pods have terminated, Kubernetes can continue

to scale, but never more than 130% of the desired pods in total.
147Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
Let's start with an example that illustrates these two levers. Listing 2.26 uses a deploy-

ment that runs with three replicas of busybox. The busybox container is called via sev-

eral simple commands:

� First it waits for 20 seconds.

� Then it creates the /tmp/ready file.

� After that, it waits for another 3,600 seconds so that it does not terminate.

A readiness check is set for the /tmp/ready file, which checks whether the file exists.

Thus, the readiness check will run successfully after about 20 seconds and mark the

pod as ready. This will give you some time to watch the rolling update.

We have configured 1 for maxUnavailable and maxSurge. In this case, this means that at

least two pods should always be available and a maximum of four pods may run simul-

taneously. Before you get started with the demo: How do you think the deployment

will proceed with a rolling update?

Roll out the deployment manifest in Kubernetes. Observe the pods and how much

time it takes them to get ready. You can also see in the deployment itself, as in Figure

2.23, that it takes a while for 0/3 to become 3/3. This is due to the readiness check, which

is only successful after 20 seconds. To enable you to now trigger a rolling update, you

need to change sleep 20; to sleep 30; and roll out the manifest again. Observe exactly

what happens.

Figure 2.23  Deployment after Creation

As you can see in Figure 2.24, the pod display jumps to 2/4. If you display the pods, you

will see that a pod switches directly to Terminating status and two new pods are scaled

at the same time. The two remaining pods remain untouched for the time being. Not

until one of the new pods is ready will the next pod switch to Terminating status. The

third of the new pods is started immediately. At about the same time, the second pod is

ready and the last of the old pods is terminated.

Figure 2.24  Deployment after Start of Rolling Update

We were therefore able to observe that at least two of the pods were always available

and a maximum of four pods were running at the same time. The pods in Terminating

status were not included here.
148 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.3 Deployments and ReplicaSets
Try out the rolling update a few more times and observe the process. You can try out

the following exercises:

� Use kubectl get events to take a look at the individual steps performed by Kuber-

netes.

� Update the deployment twice in quick succession with different values.

� Try pausing and resuming the rollout.

� Finally, you can play around with the replicas, maxUnavailable, and maxSurge values.

You should really take some time for this, because this is a core process in a production

system. You should be able to roll out your application with every release without any

downtime. The better you understand this process and the levers, the better you can

adapt Kubernetes to your application.

Good to Know

Kubernetes only distinguishes between the rolling update and recreate rollout strate-

gies in the deployment. There are a few other strategies such as blue-green or canary

deployment. These types of rollout are also possible with Kubernetes, but sometimes

require a little more effort. You can find a good article on this here: http://s-prs.co/

v596420.

apiVersion: apps/v1
kind: Deployment
metadata:
  name: rolling-deployment
spec:
  replicas: 3
  strategy:
    type: RollingUpdate
    rollingUpdate:
      maxUnavailable: 1
      maxSurge: 1
  selector:
    matchLabels:
      app: rolling
  template:
    metadata:
      labels:
        app: rolling
    spec:
      containers:
      - name: busybox
        image: busybox
149Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596420
http://s-prs.co/v596420


2 Basic Objects and Concepts in Kubernetes
        args:
          - /bin/sh
          - -c
          - >
            sleep 20;
            touch /tmp/ready;
            sleep 3600;
        readinessProbe:
          exec:
            command:
            - cat
            - /tmp/ready
          initialDelaySeconds: 5
          periodSeconds: 5

Listing 2.26  Example of Rolling Update

2.3.4    Rollback via Deployment

As described previously, the deployment provides a rollback mechanism. In addition,

ReplicaSets from previous versions simply remain and continue to hold the old pod

manifest. Accordingly, you still have all the manifests you need for a rollback in the

etcd database.

For our sample rollback, let’s extend the example from Section 2.3.3. If you have exper-

imented a lot, your ReplicaSet overview could look exactly like Figure 2.25. Now you’ll

use kubectl to roll back to the desired version.

Figure 2.25  Overview of ReplicaSets from Previous Versions

Good to Know

If you have played a lot with the rolling updates, you will have noticed the following:

Kubernetes recognizes when you import the same YAML manifest from a previous ver-

sion and will not create a new ReplicaSet for it. The old ReplicaSet then becomes the

current one again, and the pods are scaled there.
150 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.3 Deployments and ReplicaSets
To get an idea of the latest versions, you can use the kubectl rollout history
deployment/rolling-deployment command. Depending on how much you have tried,

your output should look similar to that shown in Listing 2.27. Unfortunately, we have

not provided a change cause, which is why it is somewhat more difficult to recognize

which version we want to go back to. You can display the exact details via kubectl
rollout history deployment/rolling-deployment --revision 2. The entire pod template

is displayed, and you can choose which one you want. In this example, the changes

were only minor.

Good to Know

The change cause from Listing 2.27 is taken from the kubernetes.io/change-cause
deployment annotation. This means that if you set this annotation during the rollout

with info that indicates what has been changed, you can better recognize this in the

history.

Think carefully about whether you want to use this type of information. I personally do

not use the change cause, as the change is usually always available via a CI/CD pipeline

release and is contained in the Git commit. It must fit your processes because duplicate

maintenance is unnecessary.

Once you have decided on a revision, you can use either kubectl rollout undo
deployment/rolling-deployment to return to the last revision or kubectl rollout undo
deployment/rolling-deployment --to-revision=2 to return to revision 2. When you run

the command, you will see that Kubernetes performs the same procedure as with the

normal rolling update.

Take another look at the history. In my case, I rolled back to revision 2. This is no longer

displayed in the history, but is now the latest one—in my case, revision 5. Kubernetes

is smart enough to recognize that both revisions have the same manifest, so it will only

display one of them.

REVISION     CHANGE-CAUSE
1            <none>
2            <none>
3            <none>
4            <none>

Listing 2.27  Deployment History

Finally, I want to show you a good way of easily recognizing differences between the

revisions. Especially if no change cause is provided and you need to debug quickly, you

can simply redirect the output of the revision details to a file and then compare it via a

diff—for example:
151Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
kubectl rollout history deployment/rolling-deployment --revision 1 \
  > first.out
kubectl rollout history deployment/rolling-deployment --revision 3 \
  > second.out
diff one.out two.out

The output of the diff command should look similar to Listing 2.28. In the example,

you can see that we have switched from 30 seconds to 20 seconds and that the pod

template hash has changed as a result. Even major changes can be analyzed very well.

1c1
< deployment.apps/rolling-deployment with revision #1
---
> deployment.apps/rolling-deployment with revision #3
4c4
<       pod-template-hash=76588598d6
---
>       pod-template-hash=55d6687d47
13c13
<       sleep 30; touch /tmp/ready; sleep 3600;
---
>       sleep 20; touch /tmp/ready; sleep 3600;

Listing 2.28  Diff of Two Revision Details

Note

Deployment rollbacks are a great tool for responding quickly to problems. However, I

hardly ever use them in production systems. The problem with this is the traceability of

changes because if you perform a rollback, your manifests in the Git repository are no

longer up to date, and other team members will find it more difficult to track the

changes.

In the repo, you have the history and can also directly see the changes to the code. Suit-

able CI/CD pipelines will also enable you to roll back quickly, and you will have tracked

all changes to your production system.

2.4    ConfigMaps and Secrets

When you develop and build containers, everything your application needs belongs in

the container, with a few exceptions. One of them is secrets such as passwords or certif-

icates, and the other is configurations. The reason is that you don't want to build a sep-

arate image for each environment, but you want to be able to deploy a container in
152 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.4 ConfigMaps and Secrets
different environments and configure it as in Figure 2.26 using environment-specific

configuration.

Figure 2.26  Configurations per Environment

Kubernetes provides the ConfigMap and secret objects for this purpose. These two

objects are like notebooks that you have on your desk. Anyone from your company can

take a look inside, but the notebook is locked with your passwords and can only be read

by you.

Secrets in etcd

Even if secrets provide a higher level of security, they can be found unencrypted in the

etcd database by default. This means that anyone with API access can read them. Every

cluster admin also has access to your secrets. It is therefore important that you think in

advance about the secrets you want to store there and how you want to restrict access

to them. Of course, you have options to increase security:

� Setting encryption at rest

� Implementing role-based access control (RBAC) rules

� Restricting secret access to specific containers

Keep these points in mind when using Kubernetes secrets. It is best to discuss them

with your cluster admins. Instructions for activating encryption at rest can be found at

the following address: http://s-prs.co/v596421.

Pods
(2 replicas)

Creates
ConfigMap

Dev

Config
Map

QA

Config
Map

Prod

Config
Map

Configuration

App App

Mount volume
or env vars

Kubernetes

Cluster
153Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596421


2 Basic Objects and Concepts in Kubernetes
2.4.1    What Are ConfigMaps?

You can use the ConfigMap object to implement the configuration of your applications

using Kubernetes. This decouples the configuration and the container image. Config-

Map primarily stores data as key-value pairs, which you can then inject into your con-

tainer and use in your application. In addition to the classic key-value pairs, you can

also store an entire file, such as a configuration in JSON, in a ConfigMap. This is very

useful for larger configurations and can be easily integrated into an application.

Secrets instead of ConfigMaps

ConfigMaps provide no protection at all for sensitive data; it is better to use the Kuber-

netes secrets object for this.

A ConfigMap has a very simple structure. In Listing 2.29, you can see that the relevant

fields for your data are data and binaryData. Normal key-value pairs are stored under

data, and binaryData was developed for Base64-encoded strings.

But to really understand what ConfigMap can do, we will try it out in different ways.

There are a total of four ways to make data from ConfigMap available for your applica-

tion. The content of ConfigMaps can be

� mounted by pods as a file system so that the application can read the file,

� set as environment parameters for the application within the pod manifest,

� passed as a command line argument for the container, or

� read within your application using the Kubernetes API.

As always, there is no perfect way to integrate ConfigMaps. Depending on the use case

and the type of data you need in your application, one of these four approaches will

make the most sense. In the following sections, I will describe each of the four ap-

proaches so that you can then choose the right one for your application.

apiVersion: v1
kind: ConfigMap
metadata:
  name: example-configmap
data:
  simpleKey: simpleValue
binaryData:
  binaryKey: dGVzdCBiaW5hcnkgZGF0YQ==

Listing 2.29  Simple ConfigMap Manifest
154 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.4 ConfigMaps and Secrets
Good to Know

You cannot import an infinite amount of data via ConfigMap. A ConfigMap must not

exceed the maximum size of 1 MiB.

Integrating ConfigMaps as a Volume

Let's start with a ConfigMap that you will integrate as a volume. To do this, you need to

create the ConfigMap from Listing 2.30. In it, we have defined a complete JSON object

under the config.json key. If you roll out this ConfigMap and display it in Lens, it

should look like the one shown in Figure 2.27. You can see that the JSON object has been

imported correctly.

Figure 2.27  Displaying ConfigMap in Lens

apiVersion: v1
kind: ConfigMap
metadata:
  name: example-configmap
data:
  config.json: |
    {
155Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
        "key1": "value1",
        "key2": "value2"
    }

Listing 2.30  ConfigMap Manifest with One File

You will learn more about the topic of volumes in Chapter 5, but at this point I want to

explain what you need to know about ConfigMaps. You can use the pod manifest from

Listing 2.31 for the example.

Here we define a volume named config-volume under volumes and link to the Config-

Map from Listing 2.30 and the config.json item. This volume is mounted under

volumeMounts in the mountPath: /etc/config, and you should then find the config.json
item in the container under this path.

apiVersion: v1
kind: Pod
metadata:
  name: example-pod
spec:
  containers:
    - name: example-container
      image: nginx
      volumeMounts:
      - name: config-volume
        mountPath: /etc/config
  volumes:
    - name: config-volume
      configMap:
        name: example-configmap
        items:
        - key: "config.json"
          path: "config.json"

Listing 2.31  Pod Manifest with ConfigMap Volume

In Figure 2.28, you can see how the volume is created by the kubelet using the Config-

Map. The volume contains the data you have defined in ConfigMap.

Roll out the pod manifest and connect to the pod via kubectl exec. Now you can check

the contents of the volume. The nice thing about integrating as a volume is that a sep-

arate file containing the value is stored for each key in the ConfigMap. This means that

you will find the file in the /etc/config/config.json path. You can also use cat to check

whether the content is correct.
156 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.4 ConfigMaps and Secrets
Figure 2.28  ConfigMap Provided as Volume

Note

As you can see in Listing 2.30, you can also design the values in multiple lines. You can

use the full range of YAML. You will learn more about YAML in Chapter 3, Section 3.2.

Next, let's add another key-value pair to the ConfigMap from Listing 2.30. I have added

test: "next one" underneath and rolled out the update in Lens. It will take a little time,

but then you will find a new file named test with the content next one in the volume

mount.

Good to Know

When you update a ConfigMap, the values in a volume mount get updated as well. The

kubelet periodically checks whether anything has changed and will then also import

the update into the volume mount. It can therefore take a few seconds for the update

to arrive in the pod.

When you integrate ConfigMaps as environment parameters, you will not receive an

update. In this case, you must restart the pod.

In the current pod definition, the kubelet will also mount each new parameter of the

ConfigMap in the volume as soon as it recognizes an update. However, you can already

restrict which items you want to provide for your application in the pod manifest. You

can find the corresponding extension in Listing 2.32. This gives you significantly more

control over the mount, for example, if you share a ConfigMap between multiple appli-

cations.

ConfigMap
inserts

/etc/config

searches for

pod

config.json

Volume

creates based on
 ConfigMap

get

Kubelet
157Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
volumes:
  - name: config-volume
    configMap:
      name: example-configmap
      items:
      - key: "config.json"
        path: "config.json"

Listing 2.32  Special Selection of Keys in ConfigMap

Note

If you want to prevent an update of ConfigMap, you can achieve this by using an

immutable tag as in the following example:

apiVersion: v1
kind: ConfigMap
metadata:
  name: example-configmap
immutable: true
data:
  config.json: |
    {
        "key1": "value1",
        "key2": "value2"
    }
  test: "next one"

Integrating ConfigMaps as Environment Parameters

Another common method of carrying out configurations in an application is to set

environment parameters. The values of a ConfigMap can also be used to set environ-

ment parameters. I would not pass an entire JSON object as a parameter in this case, but

it is perfect for classic configurations such as the log level or the host name of a data-

base.

For the example, we have prepared the ConfigMap from Listing 2.33 and the pod mani-

fest from Listing 2.34 for you. In the pod manifest, a reference to the ConfigMap is

transferred via envFrom. Kubernetes will then set all key-value pairs as environment

parameters.

Just try it out and log in to the pod via kubectl exec. You can use the env command to

view all environment parameters and also find LOG_LEVEL and DB_HOST there. You can

now also have the environment parameters imported by your application.
158 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.4 ConfigMaps and Secrets
apiVersion: v1
kind: ConfigMap
metadata:
  name: example-env-configmap
data:
  LOG_LEVEL: "debug"
  DB_HOST: "localhost"

Listing 2.33  ConfigMap Example for Environment Parameters

apiVersion: v1
kind: Pod
metadata:
  name: example-pod-env
spec:
  containers:
    - name: example-container
      image: nginx
      envFrom:
      - configMapRef:
          name: example-env-configmap

Listing 2.34  Pod Uses ConfigMap as Environment Parameter

This is a good example if you have a ConfigMap for an application. As with mounting as

a volume, you can specify the selection of environment parameters even more pre-

cisely. For example, you can load the log level from a different ConfigMap than the

database host. This allows you to design your ConfigMaps more freely.

In Listing 2.35, we have turned one ConfigMap into two, and in Listing 2.36 you can see

the update of the pod manifest. In this example, you use valueFrom to reference an

explicit value that is to be taken from a specific ConfigMap, and as you do not need the

value of PORT from the database ConfigMap in Listing 2.35, you do not have to drag it

along unnecessarily.

Good to Know

You can only define string values in ConfigMap. For this reason, the PORT parameter

from Listing 2.35 is not an integer.

apiVersion: v1
kind: ConfigMap
metadata:
  name: example-env-configmap-log
159Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
data:
  LOG_LEVEL: "debug"
---
apiVersion: v1
kind: ConfigMap
metadata:
  name: example-env-configmap-db
data:
  DB_HOST: "localhost"
  PORT: "1234"

Listing 2.35  Split Environment Parameter ConfigMaps

apiVersion: v1
kind: Pod
metadata:
  name: example-pod-env
spec:
  containers:
    - name: example-container
      image: nginx
      env:
        - name: DB_HOST
          valueFrom:
            configMapKeyRef:
              name: example-env-configmap-db
              key: DB_HOST
        - name: LOG_LEVEL
          valueFrom:
            configMapKeyRef:
              name: example-env-configmap-log
              key: LOG_LEVEL

Listing 2.36  Pod Manifest with Selected Parameters from Various ConfigMaps

Note

In addition, you can always include a ConfigMap as an option. If the ConfigMap or the

parameter does not exist, the mounted volume or the environment parameters remain

empty. See Listing 2.37 and Listing 2.38 for these examples.

- name: LOG_LEVEL
  valueFrom:
    configMapKeyRef:
      name: example-env-configmap-log
160 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.4 ConfigMaps and Secrets
      key: LOG_LEVEL
      optional: true

Listing 2.37  Example from Listing 2.36

volumes:
  - name: config-volume
    configMap:
      name: example-configmap
      optional: true

Listing 2.38  Example from Listing 2.31

Transferring a Container Command via a ConfigMap

I am showing you this option for the sake of completeness. There are probably use

cases where you want to transfer a command to a pod that can be configured by a Con-

figMap. But so far, I have never come across this in real life.

You can also parameterize the command for the container by setting an environment

parameter as in the previous section. For the example, we use the ConfigMap from Lis-

ting 2.33 and pass an echo on the parameter to a busybox image as a command in Lis-

ting 2.39. Kubernetes will start the pod, run the echo, and then the pod will terminate.

The kubectl logs example-pod command enables you to see that localhost gets output.

This is exactly the content you have defined in the ConfigMap under the DB_HOST
parameter.

apiVersion: v1
kind: Pod
metadata:
  name: example-pod
spec:
  containers:
    - name: example-container
      image: busybox
      command: ["/bin/sh", "-c", "echo $HOST"]
      env:
        - name: HOST
          valueFrom:
            configMapKeyRef:
              name: example-env-configmap
              key: DB_HOST
  restartPolicy: Never

Listing 2.39  Transferring Container Command as ConfigMap Parameter
161Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
Querying ConfigMaps via Kubernetes API

Finally, I want to describe a brief example of how you can query a ConfigMap via the

Kubernetes API. You could do this directly in your application or implement it as a side-

car.

Note

If you want to use the Kubernetes API directly from the application, you also need to

think about authorizations and access data in a production environment. The applica-

tion then requires a technical user who is authorized to read the ConfigMap.

For this purpose, we have prepared a Python script for you in Listing 2.40.

from kubernetes import client, config
config.load_kube_config()
v1 = client.CoreV1Api()
configmap_name = 'example-configmap'
namespace = 'default'
config_map = v1.read_namespaced_config_map(configmap_name, namespace)
print(config_map)

Listing 2.40  Python Script for Reading ConfigMap

The script uses the Kubernetes Python package, which you can download either using

pip install kubernetes or within your IDE, for example. The script does the following:

1. It loads your Kubeconfig file.

2. It creates an API client.

3. It tries to load the ConfigMap from Listing 2.30 from the default namespace.

4. It displays the ConfigMap.

As a result, you receive the entire ConfigMap as a JSON payload, which you can now

continue to use and load the data from it.

2.4.2    What Are Secrets?

Kubernetes provides additional protection for secrets compared to ConfigMaps, as

secrets often contain sensitive data such as passwords, tokens, or certificates. However,

as we get into the examples, you will see that the YAML syntax is very similar to Config-

Maps, which makes it very easy to use. To ensure that the data in secrets is well pro-

tected, Kubernetes handles it very carefully. For example, the secret

� is sent only to the node on which a pod that relies on it is running;

� is stored by the kubelet in a temporary file system to prevent confidential data from

being stored permanently;
162 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.4 ConfigMaps and Secrets
� is deleted from the node as soon as the pod no longer needs the secret; and

� is only assigned to the containers in a pod to which you grant explicit access.

You can also contribute to the security of a secret's data by treating it as a secret in your

application even after it has been read. When writing a manifest, you should make sure

that only the container that needs the secret has access.

Good to Know

In addition to Kubernetes secrets, there are also other products available that make

managing secrets easier for you. For example, I've worked with customers who used

AWS Secrets Manager or HashiCorp Vault. Every product has its justification, and here

too I can only say: it needs to fit in with your process.

However, if you want to use a vault cluster to merely inject passwords, then this would

be a case of overengineering. It is best to talk to your cluster admins to find a suitable

solution.

Full Access through Privileged Containers

Usually, a secret can only be read by a pod to which you have explicitly granted access.

However, every container that is started with the privileged: true option can read all

the secrets that are stored on its Kubernetes node.

If you look at the manifest from Listing 2.41, you will see that the structure is the same

as for ConfigMaps.

apiVersion: v1
kind: Secret
metadata:
  name: example-secret
type: Opaque
data:
  username: YWRtaW4=
  password: cGFzc3dvcmQ=

Listing 2.41  Kubernetes Secret Manifest

However, there are three small differences:

1. As you can see in the overview in Table 2.8, there are different types of secrets.

2. The values under data must always be Base64 encoded.

3. If you want to transfer strings, you must store them under stringData.

In general, like ConfigMaps, you can also use secrets in multiple ways and inject them

into your pods. Secrets can be
163Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
� set as an environment parameter in a pod,

� mounted as a volume, and

� used as a pull secret for private container registries.

Good to Know

Like ConfigMaps, secrets can also be

� optionally integrated,

� created as immutable, and

� created with a maximum size of 1 MiB.

Secrets in the Repo

You should never check unencrypted secret manifests into a version management sys-

tem such as Git. Tools such as sops (https://github.com/getsops/sops) allow you to

encrypt the data beforehand and decrypt it during deployment. Clarify these proce-

dures with your company or your cluster admins in advance.

Type Description

Opaque Default type for your data. Not subject to any specifi-

cations.

kubernetes.io/dockercfg Contains the serialized ~/.dockercfg.

kubernetes.io/dockerconfigjson Contains the serialized ~/.docker/config.json.

kubernetes.io/tls Here you can save TLS certificates. A common use 

case is to store the certificates for an ingress.

kubernetes.io/ssh-auth Contains access data required for an SSH connection.

bootstrap.kubernetes.io/token Secrets that are used when setting up new Kuber-

netes nodes.

kubernetes.io/basic-auth Kubernetes checks whether the username and pass-
word keys are set during creation; otherwise, there 

are no further advantages over the opaque type. It 

makes it immediately clear to other developers what 

the secret is intended for.

kubernetes.io/service-account-token Tokens from service accounts are stored here. This 

token can be used by a pod to authenticate itself to 

the Kubernetes API.

Table 2.8  Types of Secrets
164 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

https://github.com/getsops/sops


2.4 ConfigMaps and Secrets
Integrating a Secret as an Environment Parameter

Setting secrets as environment parameters works in the same way as with ConfigMaps

except that the syntax is slightly different. Let’s look at a small example. For the exam-

ple, we’ll use the secret from Listing 2.41 and the pod manifest from Listing 2.42. I have

highlighted the changes to ConfigMap in bold.

apiVersion: v1
kind: Pod
metadata:
  name: example-pod
spec:
  containers:
  - name: example-container
    image: nginx
    env:
      - name: USERNAME
        valueFrom:
          secretKeyRef:
            name: example-secret
            key: username
      - name: PASSWORD
        valueFrom:
          secretKeyRef:
            name: example-secret
            key: password

Listing 2.42  Pod Uses Secret as Environment Parameter

When you roll out the two manifests using Lens and look at the pod, you can also see

the environment parameters that are set in the container overview, as shown in Figure

2.29. In addition, you can see which secret the parameter comes from and can even dis-

play the decrypted value.

Good to Know

As with a ConfigMap, you can set all values of a secret as environment parameters. The

syntax reads as follows:

envFrom:
  - secretRef:
    name: example-secret
165Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
Figure 2.29  Secret Parameters in Pod Overview

Integrating a Secret as a Volume

The integration of secrets as a volume also works in the same way as with ConfigMaps.

It is a useful option if you create the secrets as a dot file. The name of the file starts with

a period (.) and is thus hidden. In Listing 2.43, you can see a corresponding secret man-

ifest, and in Listing 2.44 is the matching pod manifest.

When you roll out the pod and log into it using kubectl exec, you should find a file

named .secret-file under /etc/secret-volume. Because it is a hidden file, you need the

ls -a command to be able to see the file.

apiVersion: v1
kind: Secret
metadata:
  name: my-secret
type: Opaque
data:
  .secret-file: SGVsbG8gV29ybGQh

Listing 2.43  Dot File Secret
166 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.4 ConfigMaps and Secrets
apiVersion: v1
kind: Pod
metadata:
  name: dotfile-test-pod
spec:
  containers:
    - name: dotfile-test-container
      image: nginx
      volumeMounts:
      - name: secret-volume
        mountPath: /etc/secret-volume
  volumes:
    - name: secret-volume
      secret:
        secretName: my-secret

Listing 2.44  Pod Manifest with Secret Volume

Good to Know

You can also select specific keys to be integrated when you integrate the secrets as a

volume. To do this, you must simply adapt the manifest as follows:

secret:
  secretName: my-secret
  items:
  - key: ".secret-file"
    path: ".secret-file"

Creating Secrets Using kubectl

Like most other Kubernetes objects, you do not necessarily have to create secrets

declaratively. You can also use kubectl to create secrets. In this case, it may even make

sense to execute the commands within a pipeline because you want to decrypt pass-

words there at runtime and create them in Kubernetes. For this reason, I am presenting

this option here.

Note

I would always prefer an encoded YAML file to imperative commands, but there are sit-

uations where you might need the commands.
167Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
The kubectl commands vary slightly depending on the type from Table 2.8 you want to

create. But the basic structure remains the same. You can create the standard type

Opaque, for example, as in Listing 2.45. Simply enter the key and value directly there.

kubectl create secret generic my-secret \
    --from-literal=username=admin \
    --from-literal=password=secret

Listing 2.45  kubectl create secret from-literal

However, you can also refer to files containing the value as in Listing 2.46. The file name

is then used as the key.

kubectl create secret generic my-secret \
    --from-file=/path/to/username \
    --from-file=/path/to/password

Listing 2.46  kubectl create secret from-file

Secrets for Private Container Registry

In Kubernetes, you cannot deploy containers directly from your computer. You always

need a container registry that manages your images and can use Kubernetes to down-

load images. Docker Hub is a public registry that we use in many examples. As long as

your Kubernetes cluster can access it via the network, you can also use Docker Hub

images in your cluster.

If you develop software in a company and want to store container images, you will not

want to make them publicly accessible. With the Minikube registry, you have already

gained a first impression of how a private registry works. It is perfectly tailored to Mini-

kube, and you don't need to worry about anything else in this context. Operating a pri-

vate registry in a company is a little more challenging, but necessary, because in a

private registry you can manage a company's images much better and have more con-

trol. Many registries also provide additional features, such as image scans. Products I

have used in recent years include the following:

� Artifactory by JFrog

� Nexus

� Amazon ECR

But there are many others that fit more or less well into a company, depending on the

tech stack. The important thing about a registry is that it must be well integrated into

the development process, because if it is complicated to use, passwords will be stored

in text files again.
168 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.4 ConfigMaps and Secrets
Good to Know

Container registries from cloud providers such as Amazon ECR can be set up quickly

and easily within an account. In some companies, this means that the containers are

managed decentrally; that is, each team stores the containers separately. This is nei-

ther good nor bad in the first instance, but it should be a conscious decision as to

whether the containers are stored centrally or decentrally.

Personally, I think central storage is better for production images because you have

much more control over them. This way, rules such as these cannot simply be ignored:

� Images must not be overwritten.

� Images must not be deleted.

� Images must be scanned for known security issues.

In most cases, private registries are also not accessible without authentication, and

Kubernetes cannot simply retrieve images. For this reason, you must teach Kubernetes

to authenticate itself. With Docker, you would simply use the docker login command

and use your user name and password. Based on that, Docker generates a configuration

file in JSON where it then saves the access data according to the schema shown in Lis-

ting 2.47. For each registry, this JSON file holds a string consisting of user name and

password, which is Base64 encoded.

{
    "auths": {
        "https://index.docker.io/v1/": {
            "auth": "g4s...3rda"
        }
    }
}

Listing 2.47  docker/config.json

Good to Know

In Docker Desktop, the config.json file looks slightly different. There, the auth login is

not stored in the file, and in the JSON file you will only find the reference to "credsS-
tore": "desktop".

Kubernetes is based on this authentication, and you can store the access data from the

configuration file as a Kubernetes secret and reference it in the deployment manifest.

For this purpose, you can generate the secret from the config.json file by using the fol-

lowing command:
169Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
kubectl create secret generic regcred \
    --from-file=.dockerconfigjson=<path/to/.docker/config.json> \
    --type=kubernetes.io/dockerconfigjson

Alternatively, you can create a secret and enter all the necessary parameters in the

command:

kubectl create secret docker-registry regcred \
    --docker-server=<url> \
    --docker-username=<username> \
    --docker-password=<password> \
    --docker-email=<emailadress>

In my opinion, the second option is the better one, because you create the secret explic-

itly with the values you need. You can also run this command in a deployment pipe-

line. In addition, you can create a manifest as in Listing 2.48 and store the config.json
file there, Base64 encoded. Choose the option that suits you best.

apiVersion: v1
data:
  .dockerconfigjson: eyJh…X0=
kind: Secret
metadata:
  name: regcred
type: kubernetes.io/dockerconfigjson

Listing 2.48  docker/config.json as Kubernetes Secret

Note

At this point, I want to point out once again that secrets should not be stored unen-

crypted in version management. You can run the command to create the secret in a CI/

CD pipeline and insert passwords at runtime, or you can use an additional tool to

encrypt secret manifests before checking them into Git.

In a deployment manifest, you want to enter the secret as imagePullSecret. In Listing

2.49, you can see the option marked in bold. Set the name to the name you have given

the secret, and Kubernetes then can use the secret to retrieve images from a private

registry.

apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-nginx-deployment
170 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.5 Establishing a Communication with Services and an Ingress
  labels:
    app: nginx
spec:
…
    spec:
      imagePullSecrets:
      - name: regcred
      containers:
      - name: my-container
        image: localhost:5000/my-nginx
        ports:
        - containerPort: 80

Listing 2.49  imagePullSecret in Deployment

Information in the Secret

Outside of your test cluster, you should never store your private access data in a Kuber-

netes secret. Anyone who has access to the secret can also read your passwords.

Use a technical user whose authorizations are only limited to what is necessary for the

application. A technical user is specifically there to give a system access to other sys-

tems.

The method to create one differs from registry to registry. It is best to read the relevant

documentation to find out how the authorization concept works.

Note

Managing secrets is never easy. One of my clients operates their Kubernetes clusters in

AWS and uses AWS Secrets Manager to store secrets. At the same time, they use sops

to encrypt secrets in GitLab, which they then create as a Kubernetes secret.

As soon as it becomes complex and confusing, you need to think about how you could

simplify things, especially when there is no longer a single point of truth. At the follow-

ing link, you will find a Kubernetes operator that enables you to easily tap into external

secret stores: http://s-prs.co/v596422. This could make management a little easier for

you.

2.5    Establishing a Communication with Services and an Ingress

You have now learned a lot about individual pods and how you can run your applica-

tion in Kubernetes. But a pod seldom comes alone, and in a world of microservices
171Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596422


2 Basic Objects and Concepts in Kubernetes
there can quickly be several hundred of them. The challenge here is that the applica-

tions want to communicate with each other. Because the pods in Kubernetes are very

volatile and you do not know on which node a pod is currently running, you need a

functioning service discovery.

Kubernetes provides the service object for this purpose. This object stores the informa-

tion about your pods and serves as a load balancer. For the communication from out-

side into the cluster, there is the ingress object, which allows you to control the data

traffic. Both objects are important and work together, because what would your appli-

cation be if no one could find it or reach it?

Imagine your application as a store in a city. They even have several stores with the

same product range at different locations. Your customers appreciate this because

your stores are packed on a Saturday afternoon and customers can spread out between

the stores. The service is your smart customer guidance system. It knows all your stores

and keeps a precise record of where one can find them. If a new store opens, it also

directs your customers to that new store.

If the service is a customer guidance system, then you can think of the ingress as a

smart parking guidance system that guides your customers from outside the city to the

right parking lot, where the customer guidance system (service) then takes over and

guides the customer to your store. The parking guidance system asks for the cus-

tomer's destination at the beginning and can even request the A38 permit and check

whether the customer is authorized to drive into the city at all.

This means that the ingress

� enables access from outside the cluster,

� checks for authorization, and

� redirects the packages to the service.

The service

� knows all pod replicas and their location in the cluster,

� takes over the load balancing on the available pods, and

� redirects the requests to a pod.

Figure 2.30 shows the connections as the communication usually takes place. A pod

located in the same cluster can address the service directly to reach other pods. Com-

munication from outside the cluster can take place in two ways:

� Via the ingress, which accepts the packages on OSI layer 7 and redirects them to the

corresponding pod via the service

� Via a special NodePort service that works on layer 4 and simply redirects communi-

cation arriving on a specific port to the service
172 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.5 Establishing a Communication with Services and an Ingress
Figure 2.30  Communication with Service and Ingress

The way via NodePort is simple, but you have more control options by using an ingress.

I definitely recommend using an ingress for HTTP applications, but we'll take a closer

look at both.

2.5.1    Communication between Pods

A key feature of the Kubernetes design is network communication without the need

for network address translation (NAT). In Kubernetes, every pod can communicate

directly with every other pod, and all nodes can also communicate with all pods with-

out the need for NAT. This is made possible by the use of real IP addresses for pods and

efficient routing within the cluster. The IP address you see in a pod is also the IP address

that other pods can use to reach that pod. This design reduces network complexity and

ensures transparent communication within a cluster.

This means that if, for example, your frontend application is running on the same clus-

ter as your backend application, the two can communicate with each other via the IP

address. But just because something works doesn't mean it should be done that way. As

you know, pods are fast-moving and transient, so normally you would never want to

communicate with a single pod. You need a fixed end point that always directs you to

the right pod. This is why the service object exists.

Cluster

Pod

Pod

Ingress Service

Pod

NodePort
173Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
Good to Know

Interestingly, pods are also assigned a DNS address that has the following structure:

[PodIP].[Namespace].pod.cluster.local.

It remains to be seen whether this DNS address is useful. If you need the IP address to

create the DNS name, you can also use it directly.

2.5.2    Communication via a Service

Try to think of one of your applications in production: What is the workload like there

throughout the day?

In most cases, there is no constant load. Data traffic is different in the morning than in

the evening, and in the evening it is different than during the night. In Kubernetes,

your application scales different numbers of pods to either match the load or to avoid

tying up resources unnecessarily. In addition, it can sometimes happen that your

Kubernetes deployment has to replace a nonfunctioning pod.

If the communication partner changes constantly, there needs to be a constant at one

point that is the gateway for requests. To meet the requirements, you need something

that monitors changes and helps you maintain communication channels. The Kuber-

netes service takes over these tasks for you and takes care of the following:

� Service discovery

The service knows all replicas and redirects incoming data traffic to them.

� Load balancing

It distributes the data traffic to all available pods.

� A fixed end point

With a fixed IP address and DNS name, the service is a reliable end point.

The correct way to communicate between pods within a Kubernetes cluster is therefore

always via a service. To determine which pods it should redirect the data traffic to, the

service uses the concept of labels and selectors for service discovery.

One component of Kubernetes that plays a key role in this process is the kube-proxy,

which takes care of handling the virtual cluster IPs of pods and services. For this pur-

pose, it listens for changes on apiserver and enters these in the routing tables of the

node. This allows traffic to be routed to the correct end points.

Good to Know

The DNS address of a service always has the same structure:

� Within a namespace, the name of the service is sufficient.

� Within the cluster, its structure is [ServiceName].[Namespace].svc.cluster.local.
174 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.5 Establishing a Communication with Services and an Ingress
For example, if the name of your service is nginx-service and it is deployed in the

default namespace, you can always reach it via the following DNS address: nginx-
service.default.svc.cluster.local.

The service object is multifaceted, and there are five different types listed in Table 2.9.

Let’s look at the most important of these in more detail.

The ClusterIP Service

Let's start with the most commonly used Kubernetes service. The ClusterIP service is

the default service; when someone talks about a service, they usually mean this type. In

the next example, you will create a service for the deployment in Listing 2.50.

apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx-deployment
  labels:
    app: nginx
spec:
  replicas: 2
  selector:
    matchLabels:
      app: nginx

Service Type Description

ClusterIP This is the default service type. This type makes it possible to address an 

application within the cluster via an internal IP address.

NodePort You can use this type to provide a ClusterIP service that gets mapped to a 

port on each node in the cluster, which enables access from outside the 

cluster via [NodeIP]:[NodePort].

LoadBalancer This type allows you to link the service to an external load balancer. If your 

cluster is integrated with a cloud provider, this can also create a load bal-

ancer.

ExternalName You can use this service to refer to external host names via a CNAME 

record. For example, you could make an external database accessible via 

the Kubernetes service.

Headless You should use the headless service if you do not need load balancing or 

ClusterIP. This allows you to connect a single pod to the service. (Note that 

this is a special case, and I've never come across it in the real world.)

Table 2.9  Kubernetes Service Types
175Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: nginx:1.14.2
        ports:
        - containerPort: 80

Listing 2.50  Example of Nginx Deployment Manifest Service

In the simplest case, you can use the imperative kubectl expose deployment nginx-
deployment command, and Kubernetes will create a suitable service for your deploy-

ment. To do this, Kubernetes looks at the deployment manifest and defines what the

service should look like based on the container ports. If you look at this in Lens, the ser-

vice has the same name as the deployment, has been assigned an IP address, and can be

reached via port 80. It should look like Figure 2.31.

Figure 2.31  Kubernetes Service in Lens

As a YAML manifest, a service looks like the example in Listing 2.51. Under spec.selec-
tor, you specify the labels that the service uses to identify the pods to which it should

redirect. Under ports, you define the port which the service opens and the destination

port to which it redirects. You can also roll out this manifest and compare the two. The

two have different IP addresses and a different name. But the function is the same. Both

redirect to the pods of your deployment.

apiVersion: v1
kind: Service
metadata:
  name: nginx-service
spec:
  selector:
    app: nginx
  ports:
    - protocol: TCP
      port: 80
      targetPort: 80

Listing 2.51  ClusterIP Type Service
176 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.5 Establishing a Communication with Services and an Ingress
Good to Know

You can also define multiple ports in a service and assign names to the ports. This

allows you to open multiple ports in your application if you allow HTTP and HTTPS, for

example. To do this, simply add another entry to your list:

ports:
    - name: http
      protocol: TCP
      port: 80
      targetPort: 8080
    - name: https
      protocol: TCP
      port: 443
      targetPort: 8443

Good to Know

It is also possible to define a fixed ClusterIP for the service. However, it must be in the

CIDR range of the cluster and must not have been assigned yet. To do this, you want to

set the clusterIP option as in the following example:

apiVersion: v1
kind: Service
metadata:
  name: nginx-service-fixed-ip
spec:
  clusterIP: 10.98.37.199
  selector:
    app: nginx
  ports:
    - protocol: TCP
      port: 80
      targetPort: 80

Let’s now test the service briefly. As the ClusterIP service is only available within the

cluster, you need a container from which you can start a query. Use the busybox con-

tainer for this. In Listing 2.52, you will find a simple pod manifest to start the pod in the

cluster and keep it running. Now use the kubectl exec command to connect to the pod.

After that, you can send a query to Nginx via the service in the pod's command line.

Run the query using wget -qO- nginx-service or wget -qO- nginx-service.default. 

svc.cluster.local.
177Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
apiVersion: v1
kind: Pod
metadata:
  name: busybox
spec:
  containers:
    - name: busybox
      image: busybox
      command: ["sh", "-c", "while true; do sleep 3600; done"]

Listing 2.52  Busybox Pod Manifest

You can see that you simply need the name of the service within the same namespace,

but of course the full DNS name also works. Why don't you try the opposite and deploy

the busybox to a different namespace?

The NodePort Service

Most of the applications you develop are not only used within the cluster. Users or

applications from outside also want to reach and use your applications. A simple way

to make this possible is to extend the ClusterIP service.

If you assign a NodePort to the service, every node in your cluster will forward the data

traffic arriving on this port to your service. The entire thing is based on layer 4 of the

OSI model and therefore gives you few options for controlling the data traffic. Node-

Port services are the right choice, especially for applications that do not communicate

via HTTP.

Listing 2.53 shows the manifest for a NodePort service. The only difference is that you

need to pass type: NodePort, and Kubernetes then will select a port and redirect it to the

service. Figure 2.32 shows what the NodePort service in Lens looks like. In this case, it

redirects port 30586 to port 80 of the service, which in turn redirects the traffic to port

80 of the pod.

Figure 2.32  NodePort Service in Lens

apiVersion: v1
kind: Service
metadata:
  name: nginx-service
spec:
  type: NodePort
  selector:
    app: nginx
178 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.5 Establishing a Communication with Services and an Ingress
  ports:
    - protocol: TCP
      port: 80
      targetPort: 80

Listing 2.53  NodePort Type Service

Good to Know

If you do not want to activate a random port, you can also define a fixed port to be

opened by your nodes. To do this, expand the port definition of your NodePort service

as follows:

ports:
  - name: http
    protocol: TCP
    port: 80
    targetPort: 8080
    nodePort: 30586

The NodePort service is somewhat difficult to test using Minikube. As Kubernetes runs

in the Docker container, it is not really accessible from the outside. As a small work-

around, you can use the docker exec -it [CONTAINER_ID] bash command to connect to

your container. There, you need to use the curl 127.0.0.1:[NODE_PORT] command to

test whether you receive the Nginx welcome page.

A much nicer test would be to use the Raspberry Pi setup from Chapter 1, Section 1.7,

because then you could also see that the NodePort is redirected from each node to your

service.

The ExternalName Service

This service is a little more specific. In this case, you need to enter an external DNS

name as shown in Listing 2.54. Requests that you send to the service will be redirected

to the external address.

apiVersion: v1
kind: Service
metadata:
  name: external-dns-service
spec:
  type: ExternalName
  externalName: myservice.humanity-it.com

Listing 2.54  ExternalName Type Service
179Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
But what may seem a little confusing at first makes working with external services very

charming. For example, if you are running a Postgres database in production on the

AWS RDS service, you can still have your pods communicate with a Kubernetes service.

You just add another abstraction to the database. This allows you to turn the RDS ser-

vice into a simple pod in a development environment that is sufficient for develop-

ment.

Note

If you need to use external services such as databases, the ExternalName service can

give you more flexibility and perhaps also save costs. Why don't you check in your com-

pany where you could use a service of the ExternalName type and simply bring data-

bases in development environments into Kubernetes?

2.5.3    Communication via Ingress

You have gotten to know and tried out the NodePort service—a simple way to open

your application to the outside world by activating a port. Unfortunately, this option

leaves very little scope for analyzing and routing data traffic. The alternative for your

HTTP application is an ingress.

Note

You can activate and deploy an ingress, but you can only use an ingress via a Minikube

CLI tunnel. This doesn't really make testing any different than a direct tunnel to the ser-

vice or pod.

However, the problem here is that Minikube itself runs in a Docker container and the

cluster IP address is not accessible from your host computer. Unfortunately, I have not

found an easy way around this problem.

I have used the Raspberry Pi cluster from Chapter 1, Section 1.7 for the examples here. A

test cluster from your company would be even better at this point.

The ingress object works on layer 7 of the OSI model and offers to redirect incoming

traffic to Kubernetes services based on rules. For example, you can

� decide to which service the traffic should be redirected based on the URL or path

called;

� change the path using rewriting rules; or

� support TLS certificates to allow HTTPS traffic.

An ingress is typically a load balancer. However, the technical implementation

depends on the ingress controller. The ingress controller provides a load balancer that

takes over the task of the ingress as you define it in an ingress manifest.
180 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.5 Establishing a Communication with Services and an Ingress
The split between the ingress manifest and the actual implementation by the Ingress

controller has a major advantage: you can decide individually which technology suits

you and your cluster best. A cluster based on AWS infrastructure can rely on the AWS

Load Balancer Controller, which sets up an application load balancer (ALB) in the cloud

based on your manifest. For an on-premise cluster, for example, you can use the

ingress Nginx controller, which builds Nginx from the manifest within your cluster.

You are completely free to do this and can also use multiple ingress controllers at the

same time.

Good to Know

Depending on the ingress controller, you have more or fewer options for using addi-

tional features. For example, one of my clients uses an Nginx ingress and uses the

authentication feature there. An annotation sets an endpoint to the Authelia tool, the

user is redirected there and authenticates themselves, and they can then use the appli-

cation.

For an example of how you can customize the Nginx ingress, visit http://s-prs.co/

v596423.

Note

To be able to use multiple ingress controllers, you must define ingress classes, which

you can then reference in a manifest so that Kubernetes knows which controller is sup-

posed to generate the ingress. You can find out more about this topic at http://

s-prs.co/v596424.

Typically, when setting up a cluster, you need to think about which ingress controllers

you want to install. In your company, the cluster admins will have already done this.

You do not need to worry about the ingress controller in your test clusters.

On Minikube, you can activate the ingress controller using the minikube addons enable
ingress command. The Raspberry Pi cluster runs the Traefik ingress controller, which is

supplied directly with K3s.

Good to Know

Usually, all ingress controllers should have the same functions, but there are slight dif-

ferences from controller to controller. You can get an idea of the available selection of

controllers at the following link: http://s-prs.co/v596425.

Let's first take a look at the default backend. A default backend is often already config-

ured in the ingress controller. This Ingress should take over all requests that cannot be

assigned to any other ingress. If you do not want to rely on the implementation of the
181Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596423
http://s-prs.co/v596423
http://s-prs.co/v596424
http://s-prs.co/v596424
http://s-prs.co/v596425


2 Basic Objects and Concepts in Kubernetes
ingress controller or want to define your own default backend, you can do this by using

the manifest from Listing 2.55.

For the example, we will again use the simple deployment with Nginx pods, which are

made accessible via a service, from Listing 2.50 and Listing 2.51. The default backend

extends the example and will redirect all HTTP requests that reach the cluster to the

nginx service on port 80. The ingress does not care which Kubernetes node the request

hits. Kubernetes checks the ingress rule and then redirects it accordingly.

Note

If you want to try the ingress on Minikube, you need to enable the ingress add-on via

the minikube addons enable ingress command, then use the minikube tunnel com-

mand after rolling out the ingress.

Note

You can use the default backend configuration for an error page—for example, to

inform your users of errors.

Note that you should always define an ingress with rules for your application.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: nginx-ingress
spec:
  defaultBackend:
    service:
      name: nginx-service
      port:
        number: 80

Listing 2.55  Default Backend Ingress Manifest

An ingress gives you two options for defining rules so that you can control incoming

HTTP traffic:

� Path based

� Host based

A path-based rule looks at everything after the / in the calling URL. For example, you

can redirect the user who calls /test to Nginx and the user who calls /test/db to a data-

base.
182 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



2.5 Establishing a Communication with Services and an Ingress
Note

The ingress will also redirect the complete path to your application. So if /test is redi-

rected to Nginx, then Nginx must also be able to handle the /test path.

You could work around this by using rewrite rules so that the ingress controller adjusts

the path before it goes to the application.

Good to Know

If there are multiple similar paths, the one that is the longest wins. The /test/db path

could also be a subpath of Nginx, but Kubernetes will then redirect the traffic to the

database.

The host can make the rules even more precise. Kubernetes looks at the URL of the host

that the user calls. For example, if you call raspberry1.local/test in the browser, the

ingress can redirect using the URL before the /. The rule for the /test path then only

applies if the host matches as well. The host is optional, and if it is not set, then the rule

applies to every HTTP request.

Let's try this out by creating a path-based ingress that points to the service. For this pur-

pose, you should use the manifest from Listing 2.56. This ingress is very simple because

it merely forwards everything from / to Nginx. This means that you do not need a

rewrite rule to redirect the correct path in the URL to your web server.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: nginx-ingress
spec:
  rules:
  - http:
      paths:
      - path: /
        pathType: Prefix
        backend:
          service:
            name: nginx-service
            port:
              number: 80

Listing 2.56  Ingress Manifest for Nginx

If you create the ingress in Lens and look at it, it should look similar to Figure 2.33.
183Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
Figure 2.33  Ingress Created in Lens

In the overview, you can see the rule according to which this ingress redirects the data

traffic, and you can also see the IP addresses at which the ingress is active. When you

click the ingress, you should see the IPs of the Raspberry Pis there.

You can now access Nginx via your browser. You can either use the IP address of a Rasp-

berry Pi or the host name. It does not matter which of the nodes in the cluster you call.

Everyone accepts the calls and redirects them according to the ingress rules. We have

used Prefix for pathType, but there is also the Exact type. You can read exactly how both

work in Table 2.10.

A good way to define an ingress more specifically is to set a host name. By tightening

the rule, you could, for example, use the / path more frequently and thus continue to

operate multiple web servers in your cluster without a rewrite rule. The only thing you

need to make sure is that the DNS points to the Kubernetes cluster, preferably via a load

balancer.

You can see the change in bold in Listing 2.57. Here we use the host name of one of the

Raspberry Pis, which is resolved within the local network. If you import this change,

you will also see in the ingress overview that the rule for redirecting has changed. If you

now try to call the IP address, you will receive a 404 page not found error unless you

have defined a default backend.

You cannot access Nginx via the URL of the second Pi either. Only if you call up http://

raspberrypi1.local/ will ingress redirect you to Nginx.

pathType Description

Prefix The called path must start with the defined path. The use of uppercase and 

lowercase letters is important, but the final / is ignored. Examples of how the 

ingress would decide can be found in the documentation at the following 

address:

http://s-prs.co/v596426

Exact The complete path must be called in exactly the same way and is case sensi-

tive. The Exact type is preferred over the Prefix type in the event of a match.

Table 2.10  Ingress pathTypes
184 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596426


2.5 Establishing a Communication with Services and an Ingress
Good to Know

In the example, you can of course only access Nginx via raspberrypi1 because the DNS

points to it. Nevertheless, the second node would also redirect the traffic if you arrived

there with the URL.

In a real environment, the DNS would point to a load balancer in front of the Kuber-

netes cluster, which then redirects the traffic to any instance of the cluster. This means

you do not overload a single instance.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: nginx-ingress
spec:
  rules:
  - host: raspberry1.local
    http:
      paths:
      - path: /
        pathType: Prefix
        backend:
          service:
            name: nginx-service
            port:
              number: 80

Listing 2.57  Ingress Manifest with Host Name

As you already know, you can also define multiple rules in an ingress. We have pro-

vided the preceding example as a manifest in Listing 2.58. Finally, try deploying

another application and making it accessible via the ingress. It doesn't have to be a

database either, but it will get you into trial and error, and the ingress concept will end

up being logical and easy for you.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: nginx-ingress
spec:
  rules:
  - host: raspberry1.local
    http:
185Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



2 Basic Objects and Concepts in Kubernetes
      paths:
      - path: /
        pathType: Prefix
        backend:
          service:
            name: nginx-service
            port:
              number: 80
      - path: /test/db
        pathType: Prefix
        backend:
          service:
            name: nginx-db
            port:
              number: 5432

Listing 2.58  Multiple Paths within Ingress
186 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



Chapter 3 

Everything as Code: Tools and 
Principles for Kubernetes Operations

The best instruction is one that gets by with as few words as possible.

—Maria Montessori

The quote from Maria Montessori that opens this chapter refers to pedagogy. The fewer

words we use to formulate an instruction, the easier it is to understand and the easier

it is to absorb. But I also think the idea is perfect for IT. The clearer your instructions to

the computer, the more likely it will do what you want.

Giving instructions to a machine is a common practice—for example:

1. You click the Outlook icon to open your email program.

2. You type text into the editor using your keyboard.

3. You instruct the program to send an email.

In Chapter 1, Section 1.5.5, you learned about the most common kubectl commands and

saw how you can use them to issue instructions to Kubernetes:

� Show me my pods!

� Create a deployment for me!

� Scale up from two to three pods!

This approach is referred to as an imperative one: you give the machine instructions it

must carry out, step by step. The challenge with instructions is to make them sustain-

able so that they can be repeated and executed with little effort, ideally even automat-

ically.

Of course, you can write a script and execute it in any environment. However, impera-

tive instructions always harbor the risk of being misinterpreted, because not every sys-

tem is always in the same state. The production environment could respond very

differently to the command sequence than the test environment. What if your deploy-

ment on the production environment already consists of three pods? Depending on

how you formulate the last instruction, a fourth pod is then created, which does not

correspond to the order; actually, nothing should have happened.

To avoid such misunderstandings, the status of the infrastructure must already be

known in such a way that your instructions can access it directly. This is referred to

as everything as code, and the approach is designed to solve precisely this type of
187Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



3 Everything as Code: Tools and Principles for Kubernetes Operations
problem: All objects are structured as text in a readable format for humans and com-

puters. These objects are then interpreted by the computer itself, which attempts to

achieve the desired state independently. You no longer work imperatively, but declara-

tively (Section 3.1).

This idea is not an invention of Kubernetes; it is also pursued by other configuration

management tools such as Terraform or Ansible. Infrastructure as code (IaC) is a

modern and widely used paradigm that allows you to define infrastructure compo-

nents such as servers, routers, and also Kubernetes resources as code:

� Once created, you can import a manifest again and again. It does not matter whether

the resources are no longer working due to an error or a new environment is to be

set up. You save time because the configuration is already available and all you have

to do is roll it out.

� IaC promotes the uniformity of the IT infrastructure, as you can use the same code

multiple times to create identical environments. Writing it down as code always

helps me to think about standardization. I inevitably ask myself which processes

and setups can be simplified or improved.

� You save yourself work because you don't have to perform the same steps manually

for every environment. This reduces human error, saves time and nerves, and sim-

plifies repeatability.

� Using IaC, you can store your infrastructures in your version management system,

which allows you to track changes quickly and easily and carry out rollbacks. In addi-

tion, the infrastructure is directly documented and collaboration within a team is

easier. You can use your review processes for changes, and the history of infrastruc-

ture changes is worth its weight in gold when it comes to debugging.

� You can fully automate your infrastructure with CI/CD pipelines.

Everything as code is the basis for stable and simple IT operations. So let's delve deeper

into the topic together in this chapter.

3.1    Declarative Configurations

Are you familiar with declarative programming using languages such as Haskell or

Lisp? The difference from widely used languages such as Java or Python is the type of

programming. With an imperative language such as Java, you tell the system step by

step how to achieve the desired result. In Haskell, you describe what the result should

be, and the way to get there remains open to the system. These are two completely dif-

ferent paradigms. If you are used to imperative programming, the declarative para-

digm will take some getting used to.

To understand the difference between imperative and declarative programming,

imagine that you want to plan a meeting with a business partner. According to the
188 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



3.1 Declarative Configurations
imperative paradigm, you would have to divide this task into many different steps: Call

Frank. If he doesn't answer his cell phone, send him a text message. If he hasn't

answered after two hours, call him again. If there is no confirmation by tonight, remove

the meeting from your calendar.

These steps must be processed in the correct order, and all logical conditions must be

formulated correctly; otherwise, Frank will still receive a reminder text message after

his call.

For better clarity, I have shown you a simplified imperative process in Figure 3.1. You

have a desired state in mind and want to get the system there by using commands. You

run a command and then check whether the system has reached the desired state. If

not, you must send another command to bring the state closer to the desired state. Not

until your check shows that the status has been reached can you end the process.

Figure 3.1  Simplified Imperative Approach

A declarative approach is much simpler: You tell your cell phone by voice control: “I'm

planning a meeting with Frank this afternoon.” Your cell phone then automatically

tries to call Frank in the background and arrange a meeting with him. Unfortunately, he

doesn't answer the phone. Your cell phone will then send a text message and a few min-

utes later you will receive confirmation that the appointment has been made.

You do not need to formulate and structure this process in detail each time; you are

no longer involved at all. You “only” specify the result, while your cell phone inde-

pendently finds a solution to receive confirmation from Frank. That sounds like a real

AI assistant. Unfortunately, a voice assistant does not currently think ahead on its own

and only executes one command.

The declarative paradigm is not only used in programming. It is also used in Kuber-

netes to provide a more abstract and flexible handling of resources and services. Take

the ReplicaSet, for example. You create the ReplicaSet and define that your application

should run on three pods. The ReplicaSet must then take care of achieving the desired

status and creates three new pods. At the same time, it constantly monitors the current

status and checks whether the desired number has been reached. If a pod fails, the Rep-

licaSet will start a new one. If—for whatever reason—there are already four pods, it will

scale down the number without you ever explicitly requesting this.

Executes
Command

Desired
Result

Checks
the Result
189Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



3 Everything as Code: Tools and Principles for Kubernetes Operations
As a developer, you do not want to worry about how the ReplicaSet fulfills its task. You

leave it entirely up to the system what needs to be done to achieve the desired state.

Figure 3.2 shows a simplified representation of the declarative procedure. This time,

you not only have the desired status in your head, but also define it so that the system

can recognize it. In Kubernetes, you would declare this in the YAML language, which we

will take a look at in Section 3.2. The system now understands which state is to be

achieved and works on it independently until the state is reached. This procedure is

referred to as a reconciliation loop as the current state is repeatedly compared with the

desired state.

Figure 3.2  Simplified Declarative Approach

Note

It would be desirable to have Kubernetes always achieve the intended result when we

declare it. Unfortunately, however, the system cannot solve all problems on its own

and will of course produce error messages if a precondition is not met. For example,

Kubernetes cannot deploy a pod if the declared image is not available.

The approach reminds me of the test, operate, test, and exit (TOTE) model from my nat-

ural language processing (NLP) training. This is a cognitive model that originates from

psychology and is used to explain feedback and control processes in human action.

You have a current state and a desired state and must do something to achieve the

desired state.

Let's take brushing your teeth as an example. You get up in the morning and want to

have clean teeth. Your procedure would be as follows according to the TOTE model:

1. Test

You check whether your teeth are clean and realize that you need to brush them.

2. Operate

You brush your teeth.

System works
until the result

has been achieved

Desired
Result

Defines
190 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



3.1 Declarative Configurations
3. Test (repetition)

After performing the operations, you check again whether your teeth are clean. If so,

stop cleaning. If not, go back to the operate stage.

4. Exit

You terminate the process.

In our case, this is how it works: In the imperative paradigm, you have to check the state

yourself and execute commands until you have reached the desired state. In the declar-

ative paradigm, it is always the system that works and checks until the desired state is

reached. The TOTE model therefore applies in both cases. The only question is: Who has

to do the work? You or the system?

If you remember Chapter 1, Section 1.5.5, there is one more thing you might be asking

yourself. In that section, you tried out your first kubectl commands. Thus, Kubernetes

also provides direct imperative commands to create or adapt resources. But why do

they exist if the declarative paradigm is so much better?

In Kubernetes, the imperative approach can be used for

� simple, small, and quick changes;

� one-off operations that are rarely performed;

� debugging or troubleshooting; and

� development environments.

Let's be honest: there is no system that is perfect, and we need good developers who

know what they are doing. There will always be times when you have to do it yourself,

especially when something has to be done quickly. That's why it's important to me that

you find your way around both kubectl and Lens and become confident in using them.

That is your tool to be able to intervene in an emergency.

With Kubernetes, however, I recommend that you always use the declarative paradigm

if possible, as this will make your life much easier. At the latest when you are working

with production systems, you cannot avoid it if you want to provide reliable applica-

tions and have all changes to the system precisely logged and monitored.

Good to Know

One of the main advantages of the declarative paradigm is the ability to map complex

systems simply and effectively as code. By defining the desired state, Kubernetes can

automatically perform the necessary steps to achieve and maintain this state. This

gives you advantages such as the following:

� Idempotence

The same configuration always leads to the same end state, regardless of the cur-

rent state of the system.
191Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



3 Everything as Code: Tools and Principles for Kubernetes Operations
� Scalability

You can quickly and easily make adjustments to system resources by making

changes to the configuration file.

� Repeatability

You can easily reproduce identical environments by using the same configuration files.

� Self-healing

Kubernetes continuously monitors its status and independently takes steps to cor-

rect any deviations from the desired status.

3.2    YAML: The Language for Kubernetes

To make your intended result clear to Kubernetes, you need a language in which you

can specify your resources declaratively. Kubernetes uses the YAML markup language

for this purpose. In software development, you have certainly already become familiar

with markup languages such as XML or JSON, and perhaps you have even used YAML in

a different context. I want to take this opportunity to go into more detail about YAML,

because Kubernetes uses YAML to describe all resources and states of the cluster.

YAML is a recursive acronym and stands for YAML Ain't Markup Language. It is cur-

rently very popular alongside JSON and impresses with its significantly better readabil-

ity for humans. But what are markup languages actually used for?

Good to Know

YAML was actually only intended to be a simple markup language, which is why the

acronym was originally for Yet Another Markup Language. However, YAML has grown

considerably and is, of course, a markup language despite its name.

If you search for markup languages, you will find different types of them. The best

known is HTML, which allows you to structure and format text in such a way that a

machine can read and interpret it. YAML provides a format to put data into a structure

that is easy to read for both machines and humans.

YAML files have the extension .yaml, and sometimes you will also see .yml. Both are

fine, but according to the documentation the .yaml extension should be used.

3.2.1    Basics of YAML Syntax

If you look at YAML files, you can break each of them down to three basic elements:

� Key-value pairs

� Lists

� Nested structures
192 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



3.2 YAML: The Language for Kubernetes
Key-value pairs are the simplest form of data organization. Each pair consists of a key

and an associated value. In the following example, you can map a person's data in this

way:

name: "Kevin Welter"
company: "HumanITy GmbH."

You can use lists to define collections of elements. These are then grouped under a key.

Each list element is indicated by a - sign. The following example shows a list of cus-

tomer names.

customers:
  - "Kevin Welter"
  - "Sean Smith"
  - "John Doe"

Sometimes you have more complex structures where individual lists and key-value

pairs are not enough. You now have a list of names, but there is much more informa-

tion about a customer. To map this information, you can use nested structures to

define entire objects. For this purpose, you use key-value pairs and lists that are

arranged in hierarchies.

Good to Know

You can create multiple YAML documents in one YAML file. These are separated by

three dashes (---):

---
name: Kevin Welter
---
name: Sean Smith

In the first line of a YAML file, the dashes are optional, but they explicitly indicate that a

new YAML document is starting.

In the following example, you have a list of customers who in turn have a company

assigned to them. Both the customer and the company have a name, and there is fur-

ther information about the company that can be entered in the substructure:

customers:
  - name: "Kevin Welter"
    company:
      name: "HumanITy GmbH."
      city: "Tucson"
      zip: "85706"
  - name: "Sean Smith"
    company:
193Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



3 Everything as Code: Tools and Principles for Kubernetes Operations
      name: "Smith Inc."
      city: "Fort Worth"
      zip: "76040"

If you think in terms of objects, then you have the company object and you have the cus-
tomer object. In this structure, the company belongs to the customer. In other cases, the

customer could also be specified as a list of employees in the company:

company:
  name: "HumanITy GmbH."
  employees:
    - "Kevin Welter"
    - "Fabian Schaub"

As you can see, you have complete freedom to map your data as you or your system

need it.

Indentations are of crucial importance in YAML. They define the hierarchy and struc-

ture of the data. In comparison, indentations are optional in JSON because the struc-

ture is defined by parentheses.

Indentations in YAML

� must be consistent within a document,

� define the hierarchy of an element,

� often lead to errors or misinterpretations, and

� make the file easier to read.

In the examples, I have used an indentation of two spaces in each case. Most YAML

parsers and editors support an indentation depth of two or four spaces by default.

There is no right or wrong here, but you should remain consistent within a document.

However, this is easier said than done with large YAML files. It has often happened to

me that a key-value pair was not assigned to the correct object due to an incorrect

indentation and I had to debug forever to find the error. An incorrect assignment is not

a syntax error and therefore your editor will not directly point out the problem.

Note

Never use tabs to structure the indentations of a YAML file! YAML requires the use of

spaces instead of tabs for indentation. The interpretation of tabs between different

editors and environments can vary and therefore result in conflicts.

3.2.2    Data Types in YAML

In YAML, you can find all the classic data types that you also use in other programming

languages:
194 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



3.2 YAML: The Language for Kubernetes
string: "This is a string"
number: 123
float: 12.34
boolean: true
null value: null

With strings, you have several options for defining them. You can typically write a

string without the quotation marks. YAML always tries to interpret the values correctly.

However, if you want to use special characters such as :, ", or ' in the string, which are

also used by YAML, then you absolutely need the quotation marks, as shown in Listing

3.1. It does not matter whether you use single (' ') or double (" ") quotation marks. The

characters used in each case must not appear in the string itself, of course.

Note

You should follow a uniform convention within a YAML file. I always try to write a

string in quotation marks because that makes it clearer for me.

YAML also provides the option of defining strings that run across several lines. By using

the pipe (|) character, YAML retains the exact formatting, while > converts every line

break into a space.

name: Kevin Welter
info: "Kevin says: 'Sometimes quotation marks are needed'"
simpleString: 'C:\Users\Kevin'
doubleString: "Line 1\nLine 2"
blockText: |
  Text in multiple lines
  Line 2
foldedText: >
  This is a long
  text broken across multiple lines for better
  legibility, but separated by spaces

Listing 3.1  Different String Syntax

Good to Know

Like Kubernetes, I use camel case as a convention for the keys in YAML. However, YAML

does not make any specifications here. You can even use spaces in a key. I recommend

that you use the programming language for which you are using YAML as a guide. For

example, use camelCase for Kubernetes, snake_case for Python, and so on.
195Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



3 Everything as Code: Tools and Principles for Kubernetes Operations
3.2.3    Anchors and Aliases

Imagine a YAML file in which you define data that is repeated frequently. Suddenly

your file has more than 1,000 lines. No matter how well structured YAML is, the file

becomes more unreadable the larger it gets. For this purpose, YAML provides anchors

and aliases that allow you to define objects or parameters once and use them again

within the file according to the don't repeat yourself (DRY) principle.

An anchor is set using an &anchorName, and an alias references the anchor using *anchor-
Name. You can see a simple example of this in Listing 3.2.

favoriteNumber: &number 42
myFavoriteNumber: *number

Listing 3.2  Simple Anchor and Alias

You can also anchor the key-value pairs of an entire object and include them in another

object. To do this, you need to use the syntax <<: *anchor, as shown in Listing 3.3. The

data from basicAuthor is transferred to specificAuthor. In this case, the subject area will

remain in the specificAuthor Kubernetes, but the name will be transferred.

basicAutor: &author
  name: "Kevin Welter"
  specialty: YAML
specificAuthor:
  <<: *author
  specialty: Kubernetes

Listing 3.3  Anchor of Entire Object

A useful real-life example where I use anchors again and again is in the GitLab pipeline

tool. GitLab CI uses YAML to define pipelines, and there are many lines that are

repeated over and over again. In Listing 3.4, you can see a manifest as an example. The

&script anchor is set here after the .launch key. In the devJob and prdJob objects, the

anchor is referenced by <<: *script_launch references, and all key-value pairs are

inserted at this point.

This has the following advantage: ykou only need to define the script once, and the

environments are differentiated by parameterization.

.launch: &script
  stage: launch
  script:
    - ./deploy.sh $ENV
devJob:
  <<: *script
  variables:
    ENV: dev
196 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



3.2 YAML: The Language for Kubernetes
prdJob:
  <<: *script
  variables:
    ENV: prd
  when: manual

Listing 3.4  Pipeline Manifest in YAML

3.2.4    Single-Line YAML Notation in Documentation

If you deal with the Kubernetes documentation, you will be confronted with a YAML

notation from time to time, which I would like to briefly introduce here. Not only

Kubernetes’s but also other documentation uses it, and I will also use it in this book on

occasion: it is the single-line YAML notation.

You have already come across several manifests. The structure with lines and indenta-

tions makes a document easy to read, but if you want to refer to a specific key-value

pair and include the complete hierarchy, you need a solution that saves space. An

example of this is spec.containers[].resources.limits.cpu to reference the CPU limit

from Listing 3.5.

Each . separates the levels of the hierarchy. This is similar to accessing nested object

properties in many programming languages. The square brackets ([]) after containers
indicate that it is a list. If you want to reference a specific entry in the list, you could also

add an index in the parentheses.

apiVersion: v1
kind: Pod
metadata:
  name: my-pod
spec:
  containers:
    - name: my-container
      image: my-image
      resources:
        limits:
          cpu: "1"

Listing 3.5  Counterexample for Single-Line YAML Notation

3.2.5    Weaknesses of YAML

One of the main criticisms of YAML is the extensive specification, which covers a wide

range of data types. This is very convenient in some situations because you don't nec-

essarily have to put strings in quotation marks, for example, but it can lead to incorrect

interpretations.
197Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



3 Everything as Code: Tools and Principles for Kubernetes Operations
A well-known example of this is the Norway problem. The Norway problem is caused

by a type inference weakness in YAML when processing character strings: the country

code for Norway, NO, is incorrectly interpreted as a Boolean value. An example of this

is shown in Listing 3.6. If the country code NO is written in YAML without quotation

marks, YAML will interpret it as False instead of the intended string, “NO”.

countries:
  Sweden: SE
  Norway: NO # This is interpreted as Boolean false
  Finland: FI
  Germany: DE

Listing 3.6  Norway Problem

In Listing 3.7, you will find further values that are interpreted by YAML as Booleans. The

interesting thing is that in the latest YAML specification, 1.2, which was published in

2009, the Boolean values have been restricted to True and False. Nevertheless, the old

specification remains in the libraries, and the Norway problem persists.

yes_value: yes  # Is interpreted as True
no_value: no    # Is interpreted as False
on_value: on    # Is interpreted as True
off_value: off  # Is interpreted as False
yes: y          # Is interpreted as True
no: n           # Is interpreted as False

Listing 3.7  Boolean Example

Warning

Although the new YAML specification 1.2 only interprets the True or False values as

Boolean, it can happen that libraries still use the old specification for parsing. For

example, Kubernetes uses the go-yaml library to parse YAML manifests.

You will find an issue posting in which this topic has been discussed for years at the fol-

lowing address: http://s-prs.co/v596427.

To avoid this problem, you can always enclose strings in quotation marks. This means

that there is no room for interpretation.

In addition to the Boolean problem, there are also other misinterpretations. You can

see two examples of this in Listing 3.8. The first is about port forwarding. For example,

if you use the SSH port, YAML will turn the value 22:22 into a time. Of course, it has no

problem with 80:80, as there is no corresponding time.
198 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596427


3.2 YAML: The Language for Kubernetes
port-forwarding-ssh: 22:22 # Incorrectly interpreted as time
port-forwarding-nginx: 80:80 # Correctly interpreted as a character string
software-version: 1.1.0 # Correctly interpreted as a character string
database-version: 2.1 # Incorrectly interpreted as a floating point number

Listing 3.8  Other YAML Misinterpretations

Version numbers can also cause problems. If you stick to semantic versioning and use

three numbers in each case, you won't have a problem. However, it’s different if you

only use two numbers, as with the database version in Listing 3.8. In that case, the num-

ber is interpreted as a float.

In general, it is best to write strings in quotation marks. This way you avoid any prob-

lems of misinterpretation. However, such a conflict occurs very rarely, and I have not

yet had any critical issues because of it. If you do not import your YAML manifests

directly in production, then in the worst case it could cost you some time in debugging.

But as you have read this section, you will certainly remember the problem at this

point.

3.2.6    Tips for Practical Use

I now want to give you a few useful tips that will hopefully make it easier for you to

work with Kubernetes resources. In real life, you will be using YAML files all the time, so

a good IDE or an editor with an appropriate add-on will save you a lot of headaches and

time-consuming troubleshooting:

� Comments

The best thing about YAML compared to JSON is that you have the option to write

comments. Especially with complex manifests, commentary is worth its weight in

gold. You mark a comment using #, as in the following example:

name: "Kevin Welter" # Name of the author

� Linting tools

In addition to comments, I recommend using a linting tool that checks the syntax of

the YAML manifest. It is best to check which one is recommended for your develop-

ment environment, as there are several on the market, but in the end they all do

what they are supposed to. The most important thing is that you don't have to

search forever for an incorrect indentation as the linter points it out to you.

� Splitting files

As you know, you can integrate multiple documents into one YAML file. The recom-

mendation is that you create one file per resource. For small applications, I some-

times use a single file. For larger applications, I always create a separate file for each

Kubernetes object. There is no right or wrong here. Just see how it works best for you

and how you can best keep an overview.
199Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



3 Everything as Code: Tools and Principles for Kubernetes Operations
When developing, you should always make sure that you use a uniform indentation,

a consistent naming convention, and anchors, because then even larger manifests

will remain readable and you will enjoy writing them.

3.3    Version Management of Kubernetes Manifests

Now you have already written and seen a whole lot of different YAML files, and these

need to be managed somehow. Managing Kubernetes manifests is a fundamental chal-

lenge, especially as your team grows or projects become more complex. At some point,

the following question arises: How can the manifests be managed efficiently and effec-

tively? This is where version management comes into play, an essential practice to pro-

mote order, traceability, and collaboration, which you are no doubt also familiar with

from the development of your software.

The YAML manifests are at the heart of the Kubernetes architecture as they define how

applications run, which resources they require, how they communicate with each

other, and what status they have. In a dynamic environment where changes are made

frequently and by different team members, version control is essential to maintain an

overview. Without version management, you and your team could easily lose track of

changes. Versioning the manifests helps you because you can

� track changes,

� quickly recognize and correct errors in new changes, and

� more easily perform rollbacks.

In software development, you have hopefully been working with version management

for a long time. Nevertheless, I would like to go into this briefly, because practical

knowledge is almost more important than being good at programming languages. We

want to clarify the following questions:

� What is Git?

� What is the best way to manage many Kubernetes manifests?

� What branching strategies are there, and what are your experiences with them?

Note

If you are already familiar with Git and version control, you can read the section cross-

wise anyway. Sometimes a keyword is enough to give you a new impetus for your own

work.

Before we get started, I would like to talk about a universal law that influences the pro-

cesses and their structure in every company. It does not matter whether it is the struc-

ture for repositories, the structure of the CI/CD pipelines, or the structure of entire IT

systems.
200 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



3.3 Version Management of Kubernetes Manifests
The law is referred to as Conway's law. It is a fundamental principle in software devel-

opment and organizational structure that was first formulated by Melvin E. Conway in

the 1960s. It states that the architecture of a software system reflects the communica-

tion structures of the organization that develops this system. In other words, the way

teams communicate and interact is directly reflected in the structure and design of the

software they create.

In the simplest case, this means:

� If you work in a DevOps team, you are more likely to use a monorepo and manage

your application and infrastructure as code there.

� If dev and ops are separated in your company, then there is certainly also a separa-

tion in the repositories.

If you keep Conway's law in mind, you will better understand the influence of the orga-

nizational structure on the design of software systems. Try to observe the law in your

company. This will help you to structure your projects.

Good to Know

This kind of separation also has something to do with responsibility and associated

authorizations. For a while, I worked for a team that was only responsible for running

the Kubernetes clusters. I supported the development of the team and the clusters. The

team wanted to work according to DevOps principles. They wanted to grant the devel-

opers the greatest possible freedom.

Unfortunately, this only worked as long as the developers took their responsibilities

seriously—but in the end it was the members of the ops team who were on call at

night and had to correct some of the developer's mistakes.

This repeatedly caused trouble and ultimately led to rights being restricted and the

pipeline and release structures being adapted.

3.3.1    Using Git

Git is a decentralized version control system that allows developers and teams to track

every change to files and directories in a Git project. It was initially developed by Linus

Torvalds in 2005 and has since become the standard for version management.

I can still remember the centralized version control system SVN. The biggest difference

is that with Git, all team members have a complete copy of the repository locally and

edit it there. You are therefore not dependent on the central server but can also use the

Git repository locally. I haven't seen a company that still uses SVN in a long time,

because the advantages of Git simply make SVN obsolete.
201Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



3 Everything as Code: Tools and Principles for Kubernetes Operations
The most important advantages of Git are as follows:

� Flexibility

Git can support you in a variety of nonlinear development workflows, allowing you

to map projects of any size.

� High performance

You can quickly switch between different code versions and commit new changes.

Git is designed to manage code efficiently.

� Security

The integrity of the source code is guaranteed in Git by means of the cryptographic

hashing algorithm SHA1, which protects your code and your change history against

unintentional or malicious changes.

One of the disadvantages of Git is learning how to use it. Although you can get into it

very quickly, even I sometimes have a knot in my head when I have to carry out work-

flows that I rarely use.

There are basic terms in Git that you should know:

� Repository (repo)

A repository is a storage location that contains the complete history of all file

changes and the associated metadata. Each developer has a local copy of the repo,

develops changes there, and can synchronize them with the remote repo.

� Commit

A commit is a summary of a series of changes in the repository. Each commit con-

tains a unique ID (the commit hash), the author of the changes, a commit message

describing the changes, and a reference to the previous commit(s).

� Branch

A branch in Git makes it possible to branch off from the main development line and

work in a separate environment without affecting the main line. This is useful, for

example, for developing new features or mapping specific environments. More on

this will follow in Section 3.3.3.

� Merge

The merge is the process of merging changes. Typically, this is the merging of two

branches. Git provides various merging strategies to simplify the integration of changes.

� Tag

Tags are references that are used to mark certain points in the version history of a

repo, typically to mark release versions.

Good to Know

Git distinguishes between remote and local repositories. The remote repository is

located on a central server and can be used by any developer in your team.
202 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



3.3 Version Management of Kubernetes Manifests
The development process looks as follows:

� You first clone a remote repository to your local computer. This is then a complete

local repository with a copy of the entire project history.

� After you have made local commits, you can push these changes to the remote

repository to share them with the team.

� Conversely, you can retrieve changes made by others from the remote repository to

keep your local copy up to date.

Only the remote repository allows you to collaborate with others.

Git is designed to facilitate collaboration among developers, especially when it comes

to working on the same project or even the same branch at the same time. However,

despite its sophisticated merging and branching mechanisms, conflicts can arise

during the merging of changes.

A merge conflict occurs when two developers have made changes to the same parts of

one or more files and Git cannot automatically decide which version is the correct one.

Git clearly marks the areas in the files that contain conflicts. You need to open these

files, find the conflict areas, and manually decide which changes you want to keep,

change, or combine.

Note

There are many graphical tools for resolving merge conflicts that make your life easier.

I use my IDE, which shows me the differences. I can then simply choose what I want to

transfer.

At the following address, you will find a good tutorial for getting started, in which you

will learn how to use Git locally, what commands are available, and how to use a remote

repository, using GitHub as an example: http://s-prs.co/v596428.

But that’s enough theory for now. Next, let's take a concrete look at managing Kuber-

netes manifests.

3.3.2    Managing Numerous Kubernetes Manifests

If you use Kubernetes more intensively and write manifests for multiple environ-

ments, then you may be asking yourself the question: What is the best way to store

manifests in Git?

A good directory structure is important. Without it, projects will end up in chaos.

Important elements of the structure include the following:
203Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596428


3 Everything as Code: Tools and Principles for Kubernetes Operations
� Clarity and consistency

The structure should be intuitive and easy to understand so that new team members

can quickly get to grips with it.

� Scalability

The structure must be flexible enough to scale with the growth of applications and

services.

� Separation of concerns

Different environments and applications should be clearly separated to avoid over-

laps and conflicts.

A major challenge is that you cannot easily parameterize manifests. This leads to prob-

lems at the latest when you want to use different manifests in the production environ-

ment than in the development environment.

In Git, there are two options that you can use in this case. Both have their advantages

and disadvantages:

� Folder structure within a branch

� One branch per environment

Let's take a look at two examples of a folder structure.

In an application-oriented structure, you can create a separate directory for each appli-

cation or service. Within each application directory, subfolders are created for the vari-

ous environments (e.g., dev, staging, prod). Thus, the structure could look like the one

shown in Listing 3.9.

kubernetes /
├── app1/
│   ├── dev/
│   │   ├── deployment.yaml
│   │   └── service.yaml
│   ├── staging/
│   │   ├── deployment.yaml
│   │   └── service.yaml
│   └── prod/
│       ├── deployment.yaml
│       └── service.yaml
└── app2/
    ├── dev/
    │   ├── deployment.yaml
    │   └── service.yaml
    ├── staging/
    │   ├── deployment.yaml
    │   └── service.yaml
204 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



3.3 Version Management of Kubernetes Manifests
    └── prod/
        ├── deployment.yaml
        └── service.yaml

Listing 3.9  Application-Oriented Structure

I recommend this structure in the following cases:

� Each application stands alone.

� Different developers are working on the applications.

� You want to emphasize the modularity of the individual applications.

This structure also makes it easier to write the CI/CD pipelines if you want to release the

applications individually.

Note

You should take inspiration from the examples in this section, but use the structure

that works best for you and modify it if necessary.

If you use Helm (see Chapter 8) or Kustomize (Section 3.5), then you can also select

other structures thanks to the parameterization of your templates. It is important to

me that you get an idea of what is possible.

The environment-oriented structuring of your Kubernetes projects focuses on organiz-

ing your directories by environment. Within these environment directories, you create

subfolders for each of your applications or services. Listing 3.10 shows an example of

this.

kubernetes /
├── dev/
│   ├── app1/
│   │   ├── deployment.yaml
│   │   └── service.yaml
│   └── app2/
│       ├── deployment.yaml
│       └── service.yaml
├── staging/
│   ├── app1/
│   │   ├── deployment.yaml
│   │   └── service.yaml
└── prod/
    ├── app1/
    │   ├── deployment.yaml
    │   └── service.yaml
205Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



3 Everything as Code: Tools and Principles for Kubernetes Operations
    └── app2/
        ├── deployment.yaml
        └── service.yaml

Listing 3.10  Environment-Oriented Structure

This structure is perfect in the following cases:

� The applications belong together, such as the backend and database.

� You always roll out the applications in a package.

� The clear separation of environments makes it easier for you to move applications

through the various stages of the development cycle.

This also facilitates the implementation of the CI/CD pipelines for rolling out a package.

For example, you can go to the environment folder and roll out all applications.

Note

In these structures, you must also transfer changes made to a manifest to other envi-

ronments. So you have more typing work to do, and the whole thing is more error-

prone because you are copying and pasting.

Thus, before you decide on a structure, you should read this entire section, in particular

Section 3.3.3.

The organization and naming of your manifests in Git play a decisive role in the clarity

and understanding of your configurations. A consistent naming convention helps you

and your team to quickly understand the content and purpose of each file. This is par-

ticularly important in complex projects with a large number of resources.

You should define the convention depending on the repository structure. An example

of this is <application>-<resourcetype>.yaml. For a frontend, this would be frontend-
deployment.yaml. If you imagine this in the environment-oriented structure, then

frontend would be found in the folder and in the name, as shown in Listing 3.11; in this

case, there is no gain in information.

kubernetes /
├── dev/
│   ├── frontend/
│   │   ├── frontend-deployment.yaml
│   │   └── frontend-service.yaml

Listing 3.11  Naming Convention in Environment-Oriented Structure
206 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



3.3 Version Management of Kubernetes Manifests
Good to Know

Using the naming convention with the application in the name, you can also simply do

without the subfolders for applications that should always be deployed together. Sim-

ply check your use case to see what gives you a good overview without too much over-

head.

Another option is to add a version number—for example, if you want to develop the

manifests further. This allows you to see at a glance which version is active in which

environment.

What I have seen more often and what is important in some constellations is number-

ing manifests so that they are rolled out in the desired order. If you use kubectl apply -
f . to roll out all files in a folder, kubectl will work its way from top to bottom. With the

following naming, you can be sure that the correct sequence is adhered to during

deployment:

01-namespace.yaml
02-deployment.yaml
…

In most cases, it is not important, because a deployment simply waits for missing

resources such as ConfigMaps. However, if you want to deploy to a namespace, you

should create that first.

Note

You can write multiple resources in a YAML file and separate them using ---, but I rec-

ommend that you separate the resources. This allows you to create an overview of the

available resources in the folder structure.

Choosing the right naming convention and folder structure for your Kubernetes man-

ifests depends on the specific requirements of your project. Whether you choose one or

the other is secondary. It is important that you choose a well thought-out convention,

as this contributes significantly to the clarity, manageability, and efficiency of your

project. I recommend that you take inspiration from the examples, choose a conven-

tion that meets your team's needs, and apply and optimize it consistently over time.

3.3.3    Branching Strategies

The management of manifests and the definition of naming conventions is also

affected by the selected branching strategy. What you should definitely avoid is dupli-

cating too much code and copying it back and forth. A good branching strategy can
207Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



3 Everything as Code: Tools and Principles for Kubernetes Operations
help you in this regard. I want to introduce you to approaches that I have already used

in projects, whereby these approaches are also related to the division of your reposito-

ries, which we will look at in Section 3.3.4.

Good to Know

The way you organize your manifests, choose your branching strategy, and structure

your repositories has a profound impact on your development process, your team col-

laboration, and ultimately the efficiency and scalability of your projects.

If you have been using Git for some time, you will certainly be familiar with the classic

branching concepts and development workflows. Let me shed some light on the topic

from the perspective of Kubernetes. Over the years, various branching flows have

emerged, some of which you will no doubt already be using.

Git Flow

Git flow is the best-known workflow and was developed by Vincent Driessen in 2010. It

is based on two main branches with an unlimited lifetime: main (or master) for produc-

tion code and develop for preproduction code. Additional branches such as feature-*,

hotfix-*, and release-* support the development cycle. Sometimes there is still a release

branch in some projects that can be used in preparation for a new release. An example

of this workflow is illustrated in Figure 3.3.

Figure 3.3  Git Flow

Git flow keeps branches clean at every stage of the project, follows a systematic naming

scheme, provides extensions and support in most Git tools, and is ideal for projects

feature

feature

develop

release

hotfix

main v0.2 v1.0v0.1
208 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



3.3 Version Management of Kubernetes Manifests
that need to manage complex software versions or have long release cycles. Disadvan-

tages include the fact that Git histories are often difficult to read and that the CI/CD

pipeline is pretty complex due to the separation of the main and develop branches.

Good to Know

I've seen a few variations on this branching strategy, but in the end the principles were

always the same. The more heterogeneous the repository is and the more developers

are working on a repository, the more likely it is that this complex strategy will be used.

GitHub Flow

GitHub flow is a simpler workflow introduced by GitHub in 2011. It has six principles,

including the permanent deployability of the main branch and the creation of feature

branches directly from the main branch. GitHub flow promotes CI/CD, is simpler than

Git flow, and is ideal for projects that are not tied to release cycles.

Figure 3.4 illustrates a representation of the flow. A branch of the main branch is opened

for a change and should find its way back into the main branch very quickly.

Figure 3.4  GitHub Flow

Disadvantages include potentially unstable production code and unsuitability for

release planning. The development teams also need a certain amount of discipline

during development, but this strategy is the best, especially if you want to implement

changes directly with CI/CD.

Note

You can find the GitHub flow principles at the following address: http://s-prs.co/

v596429.

main

change

change

change
209Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596429
http://s-prs.co/v596429


3 Everything as Code: Tools and Principles for Kubernetes Operations
GitLab Flow

GitLab flow, which was created by GitLab in 2014, differs from GitHub flow in its envi-

ronment branches, such as preproduction and production. It is based on eleven rules

that help you implement CI/CD and leads to a cleaner, less messy Git history.

GitLab flow is ideal for projects that need to adapt to release cycles or that require more

control over deployment. Before you deploy to production, you have to go through the

intermediate step again and merge into the production branch. An example of this is

shown in Figure 3.5.

Figure 3.5  GitLab Flow

A major disadvantage is the overhead of merging into the surrounding branches. This

can often lead to merge conflicts in projects because some developers have developed

directly on the environment branches. This also requires discipline within the team

and enforcing the rules.

Note

The rules of GitLab flow can be found at the following address: http://s-prs.co/

v596430.

Depending on the setup of your repository, I would advise you to use a particular work-

flow. I often preferred GitLab flow in ops teams because the release cycles were of dif-

ferent lengths. Sometimes it took weeks before a deployment was brought from

preproduction to production. The surrounding branches give you a good overview.

If you develop your manifests in a repository together with your code, then you should

also use this branching strategy. I have often used Git flow for larger applications with

long release cycles.

production

master

pre-production

deployed on staging

deploy deploy

deploy
210 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596430
http://s-prs.co/v596430


3.3 Version Management of Kubernetes Manifests
In my opinion, the ideal solution is GitHub flow. However, due to the direct integration

of the automatic deployment into the main branch, it is the most difficult to master

and is therefore feared by many.

Note

Even if GitHub flow is advertised, you should not simply switch to it. A few preliminary

steps are necessary to get there. Don't forget that every merge into the main branch

must be of high quality because it is rolled out directly to production.

GitLab flow is much more user-friendly and more controlled.

3.3.4    Division of the Repositories

Structuring your repository is a fundamental decision that has far-reaching effects on

team collaboration, development efficiency, and code maintainability. This decision is

closely linked to Conway's law, which I presented at the beginning of this section.

There are two classic models for structuring repositories and, as always, many gray

areas in between. There is no right or wrong here either. The important thing is that

you consciously decide on a division and that you are aware that it has an influence on

the branching strategy and the CI/CD pipelines.

Monorepo: One Repository for Everything

In a monorepo, the entire code is stored in a single repository. This supports close col-

laboration and simplifies the process of code sharing within the team. This approach

makes it easier for all developers to track changes throughout the project and effi-

ciently manage dependencies between different parts of the project. You would also

integrate the Kubernetes manifests into the repository using this approach. A mon-

orepo approach has advantages and disadvantages:

� Pros

– Improved transparency and traceability of changes throughout the entire project

– Simplified dependency management through central administration

– Supports uniform development culture and practices

– Changes to the software and manifests can be mapped in a commit or pull

request

� Drawbacks

– Can be a challenge in terms of performance and manageability for very large proj-

ects

– Difficult with shared responsibility between teams
211Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



3 Everything as Code: Tools and Principles for Kubernetes Operations
Good to Know

A monorepo is particularly suitable for DevOps teams that have full responsibility for

the entire lifecycle of the application.

Multiple Smaller Repositories: Modularity and Independence

The use of separate repositories for different modules or services provides a clear sepa-

ration of responsibilities and can increase the clarity of the project. This approach

makes it easier to develop, test, and deploy independent parts of the system separately.

In addition, different teams can develop the individual modules without affecting the

other development processes. This approach too has advantages and disadvantages:

� Pros

– Increased modularity and independence of the various project parts

– Lower risk of merge conflicts due to isolated work areas

– Enables specific access rights and security policies for different repositories

� Drawbacks

– Can increase the complexity of integration and version management

– Requires additional effort for coordination and communication between the

teams

– Changes that belong together must be synchronized in several pull requests and

repositories

Good to Know

Multiple repositories are very suitable for teams with shared responsibility or when

developers from different teams are working on specific modules.

The ideal lies somewhere in between the two approaches. I've seen excellent monore-

pos where the development teams had a very fast and clear development process

thanks to good processes. On the other hand, I am used to splitting the repositories, as

it is often clearer and responsibility often has to be shared between teams, especially in

large companies.

You should therefore choose the repository structure that is best for your project and

be open to adapting the structures at a later date. My experience shows me that there

is always some movement in everything, which keeps things flexible.
212 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



3.4 Continuous Integration and Continuous Delivery
3.4    Continuous Integration and Continuous Delivery

Continuous integration and continuous delivery (CI/CD) have become indispensable

strategies not only for accelerating development and deployment processes, but also

for improving quality. CI/CD pipelines play a central role in the automation of the

build, test, and deployment processes and are indispensable in many companies today.

This section focuses on how you can set up and optimize CI/CD pipelines specifically

for handling Kubernetes manifests. We deliberately disregard the pipeline for pure

application development and focus on the deployment aspect.

By implementing CI/CD for your Kubernetes manifests, you benefit from several major

advantages:

� Faster deployment cycles

Automation minimizes delays and enables you to transfer changes to production

more quickly. The biggest advantage is that you always run through the same pipe-

line and avoid manual errors.

� Improved code quality

Regular integration, tests, and quality scans reveal problems at an early stage. You

are forced to improve code quality at an early stage. This can sometimes be annoy-

ing, but it makes a lot of sense in the long term.

� Improved collaboration

A centralized repository and automated workflows help you to work better together

as a team. In a code review, a successfully completed pipeline is the first indication

of a good level of maturity of the code.

� Increased reliability

Automated tests and deployments reduce the risk of human error and lead to more

stable releases. The release process is also faster, more reliable, and less error-prone.

In addition, your stress level is lower during a rollout in production than if you have

to carry out manual steps.

3.4.1    Pipeline Steps for Kubernetes

If you imagine a pipeline for your application, the steps to be carried out prior to

deployment are often pretty clear. This usually includes steps such as the following:

� Static code analysis

� Vulnerability checks of the libraries

� Unit tests including a verification of the test coverage

But what are the steps for Kubernetes manifests? When can you be sure that a deploy-

ment will not lead to errors?
213Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



3 Everything as Code: Tools and Principles for Kubernetes Operations
The answer lies in the integration of specific testing and validation steps that are tai-

lored to the special features of Kubernetes. I will introduce two possible pipeline steps

you can use.

Linting

When you develop and deploy applications in Kubernetes environments, the question

often arises as to how the quality and consistency of manifests can be efficiently

ensured. The linting process makes a decisive contribution to this. Linting tools ana-

lyze your YAML files to ensure syntactical correctness and check for compliance with

best practices.

One tool you can use for this is Kubeconform. Such static code analyses or linting tools

are particularly useful in a pull request pipeline. They give a direct indication of the

quality of the new code.

Let's take a look at how Kubeconform works. To begin, follow the installation instruc-

tions at the following address: http://s-prs.co/v596431.

I have prepared a deployment from Chapter 2, Section 2.3 with a syntax error for you in

Listing 3.12.

apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-nginx-deployment
  labels:
    app: nginx
spec:
  replicas: "2"
  selector:
    matchLabels:
      app: nginx
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
        - name: my-container
          image: localhost:5000/my-nginx
          ports:
            - containerPort: 80

Listing 3.12  invalid-deployment.yaml
214 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596431


3.4 Continuous Integration and Continuous Delivery
To make Kubeconform analyze this deployment, simply execute the following com-

mand:

kubeconform invalid-deployment.yaml

The result will then indicate the errors—in this case:

invalid-deployment.yaml - Deployment my-nginx-deployment is invalid: problem 
validating schema. Check JSON formatting: jsonschema: '/spec/replicas' does not 
validate … expected integer or null, but got string

In this deployment, the value for replicas is a string, but it should be an integer.

Of course, you can analyze not only individual files, but also entire folders. You should

implement a linter in each of your pipelines. In GitLab CI, a simple step for linting could

look as shown in Listing 3.13. This can be installed quickly, and the linter hardly needs

any time for scanning.

lint_kubernetes_manifests:
  stage: validate
  image: docker.io/yannh/kubeconform:latest
  script:
    - kubeconform /pfad/zu/manifest

Listing 3.13  Example of Pipeline Linting Step in GitLab CI

Good to Know

What looks so simple now has already helped me a lot in some cases. Especially when

things have to be done quickly, I sometimes make careless mistakes that are detected

by the linter.

I find a linter very important after running a templating engine like Helm (see Chapter 8).

Test or Validation after Deployment

Imagine you have now written Kubernetes manifests for your application and have

painstakingly checked whether everything works as it should. You will continue to

develop the manifests in the near future and want to avoid the manual effort of future

testing. You also want to be sure that all possible contingencies have been checked. You

can only achieve this through test automation, and there are also tools for Kubernetes

that support you in this respect.

This is where the Kubernetes Test Tool (KUTTL) comes into play. KUTTL is a powerful

framework that was developed specifically for testing Kubernetes clusters. It allows
215Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



3 Everything as Code: Tools and Principles for Kubernetes Operations
you to perform end-to-end tests that check not only the configuration, but also the

actual behavior of your applications in the cluster. KUTTL helps you with the following

actions:

� Ensuring functionality

Postdeployment tests validate that the application works as intended and that all

services communicate correctly with each other.

� Early error detection

By detecting issues immediately after deployment, errors can be troubleshot

quickly before they affect operations.

� Automation and reliability

Automated tests increase the reliability of deployments by reducing manual checks

and ensuring consistent test procedures.

KUTTL uses the strengths of Kubernetes to run tests in the same environment in which

your applications run. It allows you to define test cases as Kubernetes manifests. KUTTL

takes care of the setup, running the tests, and cleaning up afterward. This simplifies the

testing process. Let's start with a small example. For this purpose, you need to install

KUTTL for your system using the instructions provided at https://kuttl.dev/docs/

cli.html.

Now set up a simple test suite with the folder structure from Listing 3.14.

.
├── kuttl-test.yaml
└── tests
    └── test-nginx
        ├── 00-assert.yaml
        └── 00-install-nginx.yaml

Listing 3.14  KUTTL Folder Structure

If you run this test suite, the following will happen:

1. KUTTL will roll out a deployment with Nginx in Minikube.

2. As a test, KUTTL will check whether the status of the pod is Running.

3. KUTTL will delete the deployment again.

4. KUTTL will issue a report on the tests.

The kuttl-test.yaml file in Listing 3.15 is located in the root directory. It defines the start-

ing point of KUTTL and references the folder with the tests. The tests folder then con-

tains the tests, which you can bundle into folders. We have a test-nginx folder

containing two files.
216 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

https://kuttl.dev/docs/cli.html
https://kuttl.dev/docs/cli.html


3.4 Continuous Integration and Continuous Delivery
apiVersion: kuttl.dev/v1beta1
kind: TestSuite
testDirs:
  - ./tests

Listing 3.15  kuttl-test.yaml

00-assert.yaml in Listing 3.16 describes the actual test, which will run after the deploy-

ment. 00-install-nginx.yaml is the usual Nginx deployment in Listing 3.17. KUTTL will

use it later to deploy it in Minikube and then run the test. KUTTL will check whether the

status of the pod labeled app: nginx is Running.

apiVersion: v1
kind: Pod
metadata:
  labels:
    app: nginx
status:
  phase: Running

Listing 3.16  00-assert.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx-deployment
  labels:
    app: nginx
spec:
  replicas: 1
  selector:
    matchLabels:
      app: nginx
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: nginx:latest
        ports:
        - containerPort: 80

Listing 3.17  00-install-nginx.yaml
217Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



3 Everything as Code: Tools and Principles for Kubernetes Operations
Now run the test suite using the following command:

kubectl kuttl test

At the end, KUTTL should provide a report on the tests.

Good to Know

In this way, you can test and verify various setups of your application using KUTTL.

As already mentioned, KUTTL can also carry out various verifications in addition to the

tests we have just tried out. This is ingenious because it allows you to check whether

your rollout was successful in the CI/CD pipeline after deployment.

The options for verifications are unlimited as you can run Kubernetes commands and

check the results, as shown in Listing 3.18.

In this example, the command checks whether the deployment from Listing 3.17 has

been rolled out in the default namespace and whether a pod that has the Running status

can be found.

apiVersion: kuttl.dev/v1beta1
kind: TestStep
commands:
  - command: kubectl get pod -l app=nginx -o jsonpath=
             "{.items[0].status.phase}" -n default
    expect:
      stdout: Running

Listing 3.18  00-check-nginx.yaml

As you can see, KUTTL is extremely powerful for verifying rollouts or even writing tests

for your manifests. I can only recommend that you take a closer look at the tool and

implement it in your CI/CD pipeline.

3.4.2    Pipeline Architectures

In this section, we’ll take a look at the different architectures of CI/CD pipelines that can

be used in Kubernetes environments. Choosing the right architecture depends on sev-

eral factors, including the complexity of the application, the team size, security

requirements, the desired speed of deployment, and, most importantly, the Git reposi-

tory structure, which we discussed in Section 3.3.4.

There are different approaches to developing pipelines. You always have to decide

between a monolithic pipeline or functional pipelines and whether you want to define

the pipelines in a centralized or decentralized way:
218 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



3.4 Continuous Integration and Continuous Delivery
� Monolithic pipelines

In a monolithic architecture, all steps such as build, test, and deployment are han-

dled as a single, comprehensive process. This can be useful for simple projects or

small teams. However, it can slow you down in larger projects if you have to carry

out each previous step every time before a deployment.

� Functional pipelines

With this architecture, the CI/CD process is divided into smaller, independent parts.

This promotes modularity and enables faster pipelines that can still build on each

other, which allows you to separate the deployment from the build pipeline or use

your own test pipelines and run them independently of each other.

� Centralized pipelines

A central pipeline manages all aspects of CI/CD for multiple projects or services. This

can simplify the administration, but also restrict flexibility.

� Decentralized pipelines

Here, each project or repository has its own CI/CD pipeline, which provides more

flexibility and allows for the adaptation to specific requirements.

Good to Know

As always, the world is not just black and white; the truth lies somewhere in the mid-

dle. Instead of centralizing everything, using pipeline templates that are integrated

into other projects could also make sense. This gives you standardized pipeline steps

that you can import. A good CI/CD pipeline is always found in several iterations.

I now want to introduce two pipeline concepts that I have developed for clients. Both

have their charms and fulfill their purpose in the project context. But I will also show

you the weaknesses of the pipelines at the end so that you can find some inspiration for

your own pipelines.

Build and Deployment Separated

In the introduction to Section 3.3, I presented Conway's law.

In this example, exactly what is stated in the law applies: the build and deployment

pipelines were separated because the development team should not have direct access

to deployments on Kubernetes clusters that are managed by an ops team.

Take a look at the pipeline in Figure 3.6. I have simplified the pipeline steps there:

� Build pipeline

– Maven build

Starts the build process with Maven, compiles the code, and executes tests.
219Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



3 Everything as Code: Tools and Principles for Kubernetes Operations
– Docker build and push

Creates a Docker image from the Maven build. Uploads the finished Docker image

to a Docker registry.

– Trigger deployment

Triggers the deployment of the new Docker image and transfers the new version

number.

�  Deployment pipeline

– Change of the image tag in the Helm chart

Updates the Helm chart with the new version number.

– Helm deploy

Runs the deployment process using Helm.

Figure 3.6  CI/CD Pipeline: Build and Deployment Separated

What you cannot see here is that the two pipelines could run independently of each

other, with the deployment pipeline caching the last version number. As a result, the

deployment pipeline was always able to redeploy the latest version. Upon the trigger-

ing of the deployment pipeline through the build pipeline, the process had to be

approved for the production environment by an ops employee. Otherwise, the execu-

tion was blocked.

Maven Build Docker
Build and Push

Replaces the
Image Tag

in the Helm Chart
Helm Deploy

Deployment
Trigger

Kubernetes
220 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



3.4 Continuous Integration and Continuous Delivery
Good to Know

The pipeline had many more steps, such as a static code analysis by SonarQube, but

here we will only deal with the general structure of a pipeline.

The strengths of this approach are as follows:

� Not only does the division into build and deployment pipelines reflect the organiza-

tional structures between development and operations, but it also increases flexibil-

ity and control over the release process. By separating the functions into

independent pipelines, the two teams can make changes faster and more securely

without impacting each other.

� The independence of the deployment pipeline, which makes it possible to redeploy

the latest stable version if required, underlines the reliability of this approach. In

addition, the required manual approval by the ops team for production deploy-

ments provides an additional level of security that fulfills compliance requirements

in this case.

Although the separation of build and deployment pipelines offers some advantages,

there are also aspects to view critically:

� The strict separation can lead to silos that make communication and collaboration

between development and operations teams difficult.

� Managing multiple pipelines can increase the complexity of the overall system. For

my clients, I was always involved in the coordination with the two teams in order to

have a common view.

� Triggering and transferring information from one pipeline to another must be care-

fully considered. In this case, I implemented a web hook and passed parameters.

Monolithic Pipeline with Central Templates

In this case too, the pipeline has adapted to Conway's law, as the application is devel-

oped and operated by a DevOps team. There is a single pipeline for the Java application

that processes all steps in sequence. It uses central templates, which means that I didn't

have to develop every step from scratch, but instead adopted the company standard.

Such templates define the steps that your pipeline goes through and ensure consis-

tency and reusability within your CI/CD processes. The templates are then customized

using parameters.

You can find a representation of the pipeline in Figure 3.7.
221Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



3 Everything as Code: Tools and Principles for Kubernetes Operations
Figure 3.7  CI/CD Pipeline: Monolithic Pipeline with Central Templates

The steps of the pipeline are as follows:

� Get templates

Templates and configuration files are retrieved from a central template repository.

� Java build

The Java code is compiled, and tests and quality checks are also carried out.

� Docker build

A Docker image is created based on the compiled Java code.

� Image push

The newly created Docker image is uploaded to a Docker registry.

� Helm deploy

This runs the deployment process using Helm.

Good to Know

I developed this pipeline with Azure DevOps. In my opinion, this is a very special pipe-

line tool, but very suitable for modularization. However, you can also implement cen-

tral templates with other tools such as GitLab CI.

The strengths of this approach are as follows:

� Using a dedicated template repository as a source for pipeline templates takes some

getting used to, but it’s very powerful. This makes it easier for you to maintain and

update your pipelines as changes can be made in one central location. The templates

Get Templates Maven Build Docker Build Image Push

Helm Deploy

Kubernetes

Templates Repo
222 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



3.4 Continuous Integration and Continuous Delivery
also ensure that all projects benefit from proven standards and do not have to keep

reinventing the wheel.

� By consolidating the entire process into one pipeline, you minimize the need to syn-

chronize multiple pipelines and develop handover points. With a shared pipeline,

everyone on the team also feels responsible for the entire process. This also prevents

the creation of small silos within a DevOps team.

The weaknesses of this approach are as follows:

� As all steps are carried out in a single pipeline, this quickly leads to long runtimes. If

an error occurs in one of the final steps, such as deployment, this can be very annoy-

ing and slow down the development process.

� Dependence on central templates does not only bring advantages. A central tem-

plate has to be maintained, and if another team is involved, this can quickly lead to

conflicts. Updating to a newer template version must always be cross-checked to

ensure that the pipeline continues to do what it is supposed to do. These are similar

challenges in updating Java libraries.

All in all, there are many great ways in which you can structure and build your pipe-

lines. Each structure has advantages and disadvantages, but if you follow Conway's law,

you will find the right pipeline for the existing company structure.

3.4.3    GitOps

GitOps is a modern practice of software development and deployment in which Git

serves as a single source of truth for the entire infrastructure and application configu-

ration. GitOps relies on the principle of declarative configuration and allows you to

deploy in Kubernetes in a different way.

I have seen with many customers that deployment is typically carried out via the CI

pipeline. This means that imperative commands are executed by Jenkins, GitLab CI, or

a similar tool to roll out Kubernetes manifests. The biggest difference is that you no

longer use a CI tool to import new changes into Kubernetes.

The cluster itself regularly checks for changes in order to adjust the status if necessary.

The process is referred to as the reconciliation loop and is also used by Kubernetes

resources themselves to compare the current state with the expected state. The Repli-

caSet pays attention to the number of pods, for example, and makes adjustments if

necessary. For example, if you delete a pod, the ReplicaSet will immediately start a new

one to maintain the desired state. GitOps maximizes the self-healing capabilities of

Kubernetes by ensuring that the cluster state matches the desired state defined in the

Git repository at all times. Whenever there is a discrepancy, the GitOps tool automati-

cally makes corrections to restore the target state.
223Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



3 Everything as Code: Tools and Principles for Kubernetes Operations
Good to Know

Compared to ordinary CI/CD pipelines, I see the following advantages with GitOps:

� Declarative instead of imperative

GitOps uses a declarative approach in which the desired state of the infrastructure

and applications is defined in Git. The tools ensure that this state is achieved and

maintained. CI/CD is more imperative and focuses on the steps required to achieve

a certain state.

� Easier compliance

You can rely entirely on the strengths of Git. Code reviews and the dual control

principle before merging to main are usually well-established processes.

� Increased level of security

There is no additional tool that requires a technical user as the cluster itself

retrieves the changes from Git.

� Improved auditability

You only have one place to look for changes. Pipeline logs, for example, are no lon-

ger required.

� Drift detection

As the reconciliation loop is run through regularly, GitOps quickly detects devia-

tions and reports or reverses them.

In a pipeline, you would typically execute kubectl commands to deploy your mani-

fests. With GitOps, the process looks more like the one shown in Figure 3.8. Instead of

using imperative commands to adjust the cluster state, a GitOps tool continuously

monitors the Git repository for changes and automatically applies them to the Kuber-

netes cluster. This approach enables a seamless integration of the reconciliation loop

with the version control and collaboration features of Git.

Figure 3.8  GitOps Controller

Note

There are many different GitOps tools that you should take a look at. I have often read

about Flux in connection with GitLab, and I have also come across Argo CD several

times. But make up your own mind, because it always depends on the tech stack you

use.

Git-Repo

git fetch/git pull
GitOps Controller

Kubernetes
224 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



3.5 Templating Using Kustomize
You can find the repos at the following URLs:

� https://github.com/argoproj/argo-cd

� https://github.com/fluxcd/flux2

If you have the opportunity in your company, then you should talk about and evaluate

GitOps tools. Unfortunately, the biggest advantage is also a disadvantage: you are more

or less forced to make all changes via your Git repository. This sometimes requires a lot

of getting used to, but you will see that you and your team will achieve a higher quality

in your rollout through self-discipline and the methods of Git.

3.5    Templating Using Kustomize

Up to this point, you have written Kubernetes manifests and installed them on Mini-

kube, which you have hard-coded with values. But what can you do if you want the

manifest to look different for the production environment than for the development

environment? This could be the case, for example, if you

� have different resource requirements;

� want to use a different image in the production environment;

� want to have fewer replicas in the development environment; or

� want to assign other labels or annotations.

The simplest approach is this: You copy the manifest and change the values. Then you

would have a deployment-dev.yaml file and a deployment-prd.yaml file. I hope your

alarm bells are already ringing. Unfortunately, I have experienced this all too often in

companies that have made life difficult for themselves as duplication means that a

developer has to make the same changes in multiple files. Sooner or later, this will lead

to errors or incongruities.

But how can you proceed? The most important thing is that a manifest should be

parameterized. In the simplest case, you could work in a pipeline using the sed or yq
Linux tool to use the manifest as a template and replace placeholders. That's much bet-

ter, but it's best not to build anything yourself and instead to rely on existing tools. In

my view, there are currently two tools on the market that are highly relevant:

1. Helm

– Helm is a package manager for Kubernetes that can provide Kubernetes mani-

fests as a chart (package).

– It offers functions for versioning and managing dependencies.

– It also uses a templating syntax to dynamically fill a manifest with values.
225Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

https://github.com/argoproj/argo-cd
https://github.com/fluxcd/flux2


3 Everything as Code: Tools and Principles for Kubernetes Operations
2. Kustomize

– Kustomize is a tool for customizing Kubernetes manifests and thus works more

directly and easily.

– Instead of templating, it uses an overlay structure to apply changes to basic YAML

files.

– Thanks to the integration in kubectl, you do not need any additional syntax.

Helm goes one step further as a package manager, but we will go into this in more detail

in Chapter 8. For now, I would like to introduce Kustomize and the advantages that it

can bring to your project:

� Kustomize allows you to make configuration adjustments without changing the

original files. This means you have the flexibility to customize your configurations

as needed without worrying about the integrity of your basic manifests.

� A big advantage you enjoy with Kustomize is the use of pure YAML without having

to resort to template parameters. In contrast to other tools such as Helm, which

require an additional processing step, you can validate and process manifests cre-

ated with Kustomize directly as YAML. This makes handling easier and more trans-

parent for you.

� You also benefit from the independence of templating engines. Kustomize uses sim-

ple editing of YAML files, so you don't need to learn any additional templating syn-

tax.

� The reusability and modularity provided by Kustomize allow you to create basic

configurations that you can reuse in different projects or contexts.

� The clear and comprehensible overlay structure of Kustomize enables you to clearly

separate basic configurations from environment-specific adjustments. This makes

managing different configurations for different environments clear and feasible.

� Finally, the seamless integration into Kubernetes is a decisive advantage. As Kus-

tomize is integrated directly into kubectl, you do not need any additional software

to use it.

Simply put, Kustomize offers you a good opportunity to provide your manifests for

several environments with little effort, without having to spend a lot of time familiar-

izing yourself with a new tool.

3.5.1    Basic Principles of Kustomize

Let's start directly with a simple example in which a production and a development

environment are defined and where different rules and requirements apply. The folder

structure for the example should look as shown in Listing 3.19. We will now set up the

files step by step.
226 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



3.5 Templating Using Kustomize
kustomize/
├── base/
│   ├── deployment.yaml
│   ├── service.yaml
│   └── kustomization.yaml
└── overlays/
    ├── dev/
    │   ├── patch-dev.yaml
    │   └── kustomization.yaml
    └── prod/
        ├── patch-prod.yaml
        ├── service-patch-prod.yaml
        └── kustomization.yaml

Listing 3.19  Folder Structure for Kustomize Example

First, define the basic configuration of the application. This includes a deployment with

Nginx as in Listing 3.20 and a service as in Listing 3.21. Place both in the base folder.

apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-nginx
spec:
  replicas: 1
  selector:
    matchLabels:
      app: my-nginx
  template:
    metadata:
      labels:
        app: my-nginx
    spec:
      containers:
        - name: my-nginx-container
          image: nginx:latest
          ports:
            - containerPort: 80

Listing 3.20  base/deployment.yaml

apiVersion: v1
kind: Service
metadata:
  name: my-nginx-service
227Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



3 Everything as Code: Tools and Principles for Kubernetes Operations
spec:
  type: ClusterIP
  selector:
    app: my-nginx
  ports:
    - port: 80
      targetPort: 80

Listing 3.21  base/service.yaml

In addition, there is a kustomization.yaml file, provided in Listing 3.22, that contains a

reference to all basic manifests.

resources:
  - deployment.yaml
  - service.yaml

Listing 3.22  base/kustomization.yaml

Now let’s continue with the overlays. For the development environment, you want to

increase the number of replicas and use a different image, which is a version that has

not yet been released for production. There is a separate folder for the overlays and a

subfolder for each environment. For the development environment, that is overlay/

dev. Use the patch from Listing 3.23, and integrate it with kustomization.yaml from Lis-

ting 3.24.

apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-nginx-app
spec:
  replicas: 2
  template:
    spec:
      containers:
      - name: my-nginx-container
        image: nginx:dev

Listing 3.23  overlay/dev/patch-dev.yaml

resources:
  - ../../base
patches:
  - path: patch-dev.yaml
228 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



3.5 Templating Using Kustomize
    target:
      kind: Deployment
      name: my-nginx

Listing 3.24  overlay/dev/kustomization.yaml

As you can see, you only include the fields in the patch file that are supposed to be

adapted in the basic file. For Kustomize to display the final result, you need to run the

following command in the folder:

kubectl kustomize overlays/dev

In the output, you should see the unchanged service and the complete deployment

from Listing 3.20 with the changes from Listing 3.23.

Good to Know

The kustomization.yaml file in Listing 3.24 describes which resources should receive the

patch. For this purpose, you can specify the following selectors under target, which

must all match:

� group
� version
� kind
� name
� labelSelector
� annotationSelector

You do not need to specify every one, and can therefore control well what the change

should be applied to.

For production, you can also implement a change for the service, which you can see in

Listing 3.25.

apiVersion: v1
kind: Service
metadata:
  name: my-nginx-service
spec:
  type: LoadBalancer

Listing 3.25  overlay/prod/service-patch-prod.yaml

Also change the deployment to three replicas and to a stable image, as you can see in

Listing 3.26.
229Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



3 Everything as Code: Tools and Principles for Kubernetes Operations
apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-nginx-app
spec:
  replicas: 3
  template:
    spec:
      containers:
      - name: my-nginx-container
        image: nginx:stable

Listing 3.26  overlay/prod/patch-prod.yaml

In kustomization.yaml in Listing 3.27, you will now find two patches with the respective

selectors. Try outputting this manifest as well and check whether the changes are

applied as you want.

If you are satisfied with the adjustments, you can roll out the cluster using the follow-

ing command: kubectl apply -k overlays/dev.

 resources:
  - ../../base
patches:
  - path: patch-prod.yaml
    target:
      group: apps
      version: v1
      kind: Deployment
      name: my-nginx
  - path: service-patch-prod.yaml
    target:
      version: v1
      kind: Service
      name: my-nginx-service

Listing 3.27  overlay/prod/kustomization.yaml

Congratulations! You have written your first manifests, which you can roll out to dif-

ferent environments using Kustomize patches. From my point of view, the syntax for

the basic process is simple and easy to understand. In the following sections, we will

look at a few more features that will make life easier for you.
230 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



3.5 Templating Using Kustomize
3.5.2    Resource Generator

Kustomize provides powerful generators that allow you to dynamically create re-

sources such as ConfigMaps and secrets. These generators extract and process informa-

tion directly from files, literal values, or other sources to automatically generate Kuber-

netes resources.

Good to Know

The generators are particularly useful because you do not need to maintain configura-

tion files in a ConfigMap manifest, as you learned in Chapter 2, Section 2.4. This allows

you to simply reference existing configuration files, which are then inserted into Con-

figMap.

Suppose you have two configuration files that you want to include in your ConfigMap:

1. app.properties
Configurations for your application

2. logger.conf
A configuration file for logging your application

These files are located in the config/dev directory and are intended for your develop-

ment environment. The structure should look as shown in Listing 3.28. The contents of

the sample configurations can be found in Listing 3.29 and Listing 3.30.

.
├── config
│   └── dev
│       ├── app.properties
│       └── logger.conf
└── kustomization.yaml

Listing 3.28  Folder Structure of configMapGenerator

Note

The folder structure is not necessarily predefined by Kustomize; you have the freedom

to design it as you see fit.

app.name=MyApp
app.version=1.0.0
app.environment=dev

Listing 3.29  app.properties
231Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



3 Everything as Code: Tools and Principles for Kubernetes Operations
log.level=INFO
log.pattern=%d{yyyy-MM-dd HH:mm:ss} %-5level %logger{36} - %msg%n
log.directory=/var/log/myApp

Listing 3.30  logger.conf

In the root directory, you have the kustomization.yaml file for the generator, which ref-

erences both files and also sets an additional TEST=true parameter, as shown in Listing

3.31.

configMapGenerator:
  - name: my-config
    files:
      - config/dev/app.properties
      - config/dev/logger.conf
    literals:
      - TEST=true

Listing 3.31  kustomization.yaml - configMapGenerator

If you now run Kustomize using kubectl kustomize ., your result should look like Lis-

ting 3.32.

apiVersion: v1
data:
  TEST: "true"
  app.properties: |
    app.name=MyApp
    app.version=1.0.0
    app.environment=dev
  logger.conf: |
    log.level=INFO
    log.pattern=%d{yyyy-MM-dd HH:mm:ss} %-5level %logger{36} - %msg%n
    log.directory=/var/log/myApp
kind: ConfigMap
metadata:
  name: my-config-9htd2ck66g

Listing 3.32  Generated ConfigMap

As you can see, the generator is very appealing and easy to use. With a generator, you

can simply reference existing configuration files and save yourself double mainte-

nance. In addition to configMapGenerator, there is also secretGenerator. You can find

information on this topic at http://s-prs.co/v596432.
232 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596432


3.5 Templating Using Kustomize
3.5.3    More Kustomize Built-Ins

The generators are referred to as built-ins for Kustomize. In addition to the generators,

there are a few others that allow you to make in-depth customizations to your Kuber-

netes manifests. I now want to introduce a few selected ones here; these will help you

standardize your resources and prevent unnecessary paperwork.

Note

You can find the entire selection of built-ins at http://s-prs.co/v596433.

One useful built-in is the AnnotationTransformer which you can use to define standard

annotations that are attached to each resource by Kustomize. Imagine, for example,

that you have the compliance guideline that certain annotations must be attached to

the resources. Information about the responsible project or a cost center is necessary

for some business processes, but maintaining the annotations on each resource is

cumbersome.

Listing 3.33 shows how the AnnotationTransformer is activated. You only need to enter

the required annotations under the commonAnnotations object in a kustomization.yaml

file. Just try it out using the example from Listing 3.33.

commonAnnotations:
  owner: kevinwelter

Listing 3.33  AnnotationTransformer

The generated ConfigMap should then contain the annotation, as in Listing 3.34.

…
kind: ConfigMap
metadata:
  annotations:
    owner: kevinwelter
  name: my-config-9htd2ck66g

Listing 3.34  Generated Annotations

The same applies to labels, as you can see in Listing 3.35. Just like the AnnotationTrans-

former, the LabelTransformer adds the labels to each resource that’s generated by Kus-

tomize.

commonLabels:
  owner: kevinwelter
  app: nginx

Listing 3.35  LabelTransformer
233Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596433


3 Everything as Code: Tools and Principles for Kubernetes Operations
Another useful feature is the prefix and suffix for names. This is particularly useful if

you roll out the same application more frequently, such as in a development cluster.

For this, you only need the lines shown in Listing 3.36.

namePrefix: kevin-
nameSuffix: -dev

Listing 3.36  PrefixSuffixTransformer

3.5.4    Conclusion on Kustomize

You can see how easy it is to make adjustments with Kustomize. It is a wonderfully sim-

ple tool that can be used quickly thanks to its integration in kubectl. You have also seen

that you don't need a lot of new knowledge to be able to carry out transformations or

use built-ins, but the gain is huge. You save typing work and can use manifests for

multiple environments and only change the fields that need to be changed by using

the patches.

Note

Before you start using Kustomize in your company, I recommend that you read Chap-

ter 8 on Helm. You should then decide which tool is best for you depending on the

application.
234 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



Chapter 4 

Advanced Objects and Concepts 
in Kubernetes

The only general principle that does not hinder progress is: anything 

goes.

—Paul Feyerabend

Kubernetes provides a rich set of objects and concepts that allow you to efficiently

manage and scale complex applications. In Chapter 2, you got to know the basic princi-

ples of Kubernetes, which are essential for getting started and which you will use over

and over again. In this chapter, we will look at concepts and objects that will allow you

to delve even deeper into Kubernetes. This includes concepts such as custom resources

that allow you to extend the Kubernetes API and thus open up a world in which any-

thing is possible.

In the following sections, we will look at the following:

� DaemonSets

Allow you to run a pod on any node in the cluster. Particularly useful for collecting

logs, monitoring, or other services required at system level.

� Kubernetes jobs

Provide an easy way to perform tasks such as batch jobs. Kubernetes jobs start, run a

specific task, and end.

� Custom resource definitions

Allow you to create custom resources that exist alongside the standard Kubernetes

objects. This allows you to extend the Kubernetes API, which enables you to create

customized solutions for specific use cases.

� Downward API

Provides a way for you to inject metadata from the pod or cluster into the pod so

that your application can access information without the Kubernetes API.

� Pod priority and preemption

This concept enables you to assign priorities to the pods that influence scheduling.
235Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



4 Advanced Objects and Concepts in Kubernetes
Note

You should use this chapter as a reference guide. Some objects may not be important

or interesting to you right now, but if you come across them in the future, you can

return to this chapter.

4.1    DaemonSets

A DaemonSet ensures that exactly one instance of a pod is executed on each node in

your cluster. Even if new nodes are added to the cluster, the DaemonSet will start the

pods there. DaemonSets are particularly useful for system pods that have to be exe-

cuted on each node, or applications for logging and monitoring. The kube-proxy, for

example, is a system pod that runs on every node.

Examples and use cases include the following:

� Log and data aggregation

A pod could collect logs and other data on each node, aggregate it, and send it to a

central server.

� Monitoring

Monitoring agents that collect system and application metrics from each node can

be rolled out via a DaemonSet.

� Network services

Like the kube-proxy, you can deploy pods that add functionality to your network.

� Security scans

Applications such as Falco can be deployed on any node and perform security scans

there.

Note

We will look at a simple example in this chapter to help you understand the principle.

On Minikube, of course, you only have a single node, which makes it somewhat more

difficult to observe the principle of DaemonSets.

Chapter 7, Section 7.4.2 contains a real use case with the Pi cluster, in which a Daemon-

Set is also used to collect metrics.

Let's start with the simple example in Listing 4.1. If you compare the manifest with the 
deployment manifest from Chapter 2, Listing 2.24, you will hardly see any differences. 
The syntax remains the same, which makes developing and reading the manifests easy.

apiVersion: apps/v1
kind: DaemonSet
236 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



4.1 DaemonSets
metadata:
  name: my-nginx-Daemon
  labels:
    app: nginx
spec:
  selector:
    matchLabels:
      app: nginx
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: my-container
        image: nginx
        ports:
        - containerPort: 80

Listing 4.1  Nginx DaemonSet

Unroll the manifest and observe what happens. In Lens, you will find the generated

DaemonSet under Workloads • DaemonSets. In Minikube, you can see that a pod is

being created. On other cluster setups like the Pi cluster from Chapter 1, Section 1.7, you

would see multiple pods.

When you deploy a DaemonSet, you should ask yourself the following question: On

which nodes should a pod run?

Depending on the cluster setup, there will be taints on nodes that will prevent the pods

from being deployed, typically on the master nodes. You should therefore think about

tolerations, which you got to know in Chapter 2, Section 2.2.6. If you look at the exam-

ple of the masters, then you need the tolerations from Listing 4.2 in a real cluster setup.

Good to Know

The DaemonSet controller automatically adds a few tolerations when it is created.

Take a look at the pod created from the example in Listing 4.1.

These tolerations are also useful, for example, to prevent kube-proxy from being

evicted if the node's load is simply too high. Without kube-proxy, the node would lack

functions, which in turn would result in other problems. DaemonSet pods are usually

important for the node, and therefore DaemonSets must be treated differently.

You can find a complete overview of the automatic tolerations at http://s-prs.co/

v596434.
237Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596434
http://s-prs.co/v596434


4 Advanced Objects and Concepts in Kubernetes
tolerations:
  - key: node-role.kubernetes.io/control-plane
    operator: Exists
    effect: NoSchedule
  - key: node-role.kubernetes.io/master
    operator: Exists
    effect: NoSchedule

Listing 4.2  Tolerations to Run on Master Nodes

Good to Know

As an alternative to the DaemonSet, you could also use systemd or something similar

directly on the nodes. However, you will then lose the ability to manage the daemons

using Kubernetes. With Kubernetes, you have a better overview of the pods, can access

logs and monitoring metrics just like your applications, and you can also use YAML

manifests to generate them.

As DaemonSets are usually system pods, special features exist for their communica-

tion as well. Typically, it is an application that is not used by users, as we have used it in

the preceding example. Depending on the use case, you would use one of the following

communication patterns:

� Push

Your pods in the DaemonSet are set up to send updates to another service and are

not reachable from the outside at all. An example could be a log collector that for-

wards the logs.

� NodeIP and port

Your pods in the DaemonSet can use a host port. This makes them accessible via the

IP addresses of the nodes and would allow another application to send requests to

the pods—for example, to retrieve metrics.

� Service

You can of course also use Kubernetes services as in Chapter 2, Section 2.5 and make

the pods accessible from the outside. This is not unusual, but you must note that no

specific pod can be addressed by load balancing.

� DNS

An alternative would be the headless service, which takes over the service discovery.

You can use it to query the DNS records of the pods.

Depending on the application, it is important to consider how the pod should be acces-

sible.
238 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



4.2 Jobs in Kubernetes
Good to Know

Because the pods of the DaemonSet are more important for a node than other pods, it

makes sense to set PriorityClass to a higher level. This way, you can make sure that

the other pods are displaced and the DaemonSet pods remain on the node.

We will take a closer look at the priority classes in Section 4.5.

4.2    Jobs in Kubernetes

Up to this point, you have learned about Kubernetes objects that ensure that pods run

permanently. But sometimes there are tasks such as batch jobs that have a defined end,

and this is where Kubernetes jobs come into play. The best way to imagine this is as fol-

lows:

A job in Kubernetes is like an external employee who is hired for a specific task in a

company. That person has a clear project assignment and remains with the company

until it has been successfully completed. The contract then ends, and the employee

leaves the company. An internal employee, on the other hand, is with the company for

the long term. The employee carries out work continuously and there is no defined

end.

This means that jobs

� work on one-off, limited tasks;

� end after the completion of their task; and

� start pods until the task has been completed.

Deployments, on the other hand, must

� work on ongoing tasks;

� monitor pods and ensure their functionality; and

� scale as required.

Table 4.1 presents three job types that you can use. Each type has specific use cases. You

could use the one-off job for database migration. The parallel jobs are useful for pro-

cessing large amounts of data. For example, you could convert images or retrieve data

from external services. The queue worker job is perfectly suited for processing a mes-

sage queue.

Type Description

One-off job A single pod is started and works through a task. If it fails, a new one will 

be started until the pod completes successfully.

Table 4.1  Job Types in Kubernetes
239Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



4 Advanced Objects and Concepts in Kubernetes
4.2.1    Real-Life Kubernetes Jobs

Let's get into practice now so that you can create your first job. Listing 4.3 shows a sim-

ple job manifest. As you can see in the container specification, the job starts a busybox

container, executes sleep 3, and then terminates.

apiVersion: batch/v1
kind: Job
metadata:
  name: my-job
spec:
  completions: 5
  parallelism: 2
  activeDeadlineSeconds: 60
  template:
    spec:
      containers:
      - name: sleep-container
        image: busybox
        command: ["/bin/sleep"]
        args: ["3"]
      restartPolicy: Never

Listing 4.3  Manifest of Kubernetes Job

You can see the new completions and parallelism options. These are the parameters

that allow you to choose between the job types from Table 4.1:

� completions defines the number of containers that must be successfully completed

for the job to be successful.

� parallelism defines how many pods are started simultaneously.

Good to Know

completions and parallelism can be set as follows:

Parallel jobs Work continues until a defined number of pods have been successfully 

completed. You can run multiple pods in parallel.

Queue worker One or more pods process a queue. If one of them completes successfully 

because the queue is empty, for example, then the job is completed suc-

cessfully, and no new pod is started.

Type Description

Table 4.1  Job Types in Kubernetes (Cont.)
240 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



4.2 Jobs in Kubernetes
� You do not need to make any additional settings for the one-off job, as both values

must be set to 1, which is the default.

� Use both options for parallel jobs. You decide how many pods should be success-

fully completed and how many may run simultaneously.

� For a queue worker job, you should leave the default value set for completions. This

is because the job should terminate when the queue is empty. However, you can

set the number of jobs that should run in parallel.

Use Lens to go to the Workloads • Jobs menu and create your first job using the mani-

fest. Take a look at what Kubernetes does and how it behaves. A job named my-job
should be started in the job overview. Because the manifest starts two pods at the same

time, you should see in the table under Completions how first 2/5, then 4/5, and then

5/5 have been successfully completed, as shown in Figure 4.1. When you click the job,

you will see in the information window that five pods have completed with the Suc-

ceeded status. You can also see in the events when the respective pod was started. If

your pods were to output logs, you could view all logs from all pods in the top-right cor-

ner of the action bar with the Log icon. This will be important at a later stage.

If you go to the pod overview under Workloads • Pods, you will also see each of the five

pods there. The job itself starts the pods as you have defined them in the manifest and

monitors them in a way similar to a deployment. However, the job has a different goal

when it comes to monitoring. As already mentioned, it should be possible to complete

the pod in a Kubernetes job and terminate it after its task.

Figure 4.1  Job Overview in Lens

Note

Once your jobs have completed, they still remain in the overview, and the pods also

remain visible. Not only does this disturb the overview, it also prevents you from

importing the same job manifest again—but you can simply delete them by using Lens

or kubectl. Information on how to automate the cleanup can be found at the following

address: http://s-prs.co/v596435.
241Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596435


4 Advanced Objects and Concepts in Kubernetes
4.2.2    Queue Worker with RabbitMQ

Now let's move on to a real-life example. Let’s set up RabbitMQ as a message queue in

Kubernetes and publish and consume messages with Kubernetes jobs there. The archi-

tecture is deliberately kept simple. You can find an illustration of this in Figure 4.2.

For this example, we will

� deploy RabbitMQ from Bitnami as a Helm chart,

� set up a queue,

� create a container that can send and consume messages,

� create a job that sends messages, and

� create a job that consumes the messages.

Figure 4.2  Filling and Reading RabbitMQ

Let's get started with the most important things. First, let’s create a RabbitMQ instance

based on the Bitnami Helm chart. Refer to Chapter 8, Section 8.1.2 to read in advance

how Helm charts can be deployed via Lens. However, you do not need to have any prior

experience with Helm for this exercise.

Look for the RabbitMQ chart in Lens under Helm • Charts (I use version 12.3.0) and

install it. A StatefulSet is now created for you and a RabbitMQ pod is started. It may take

a few minutes for the pod to boot up properly.

In the meantime, you can get the password for RabbitMQ from the release notes in

Helm. You can also find more detailed instructions for this in Chapter 8, Section 8.1.2.

If the pod is green, go to Network • Service. There you will see that two services have

been created. Use the “normal” service, not the headless service. If you look at the ser-

vice, you will see that it provides multiple ports. The management UI is based on port

15672. For this purpose, you need to set up port forwarding, open the corresponding

page in the browser, and log in with the data from the release notes.

I won't go into RabbitMQ in detail, as this is not necessary for the example. For the test,

you’ll simply create a queue that you can write to and read from.

To do this, click Queues and Streams. There you can create a new queue named test-
queue under Add a New Queue. This should look similar to Figure 4.3. Once you have

clicked Add Queue, the new queue appears directly in the overview. Then you can click

RabbitMQ
send Messages

Job

job

get Messages

Job

job
242 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



4.2 Jobs in Kubernetes
the name of the queue to get more information. You will later be able to see the mes-

sages you write and read there.

Figure 4.3  Creating Test Queue in RabbitMQ

To get messages in and out of the queue, examine Listing 4.4. There you will find a Bash

script with two functions:

� The publish function writes a message with the content “Hello World!” to RabbitMQ.

� The consume function reads messages from the queue in a loop and outputs them

until no more messages are available.

#!/bin/bash
RABBITMQ_HOST="rabbitmq-1698791687.default.svc.cluster.local"
RABBITMQ_PORT="15672"
RABBITMQ_USER="user"
RABBITMQ_PASSWORD="7DHPGoseHedmCUHu"
QUEUENAME="testqueue"
function publish {
    /usr/local/bin/rabbitmqadmin -H $RABBITMQ_HOST -P $RABBITMQ_PORT
    -u $RABBITMQ_USER -p $RABBITMQ_PASSWORD publish routing_key=$QUEUENAME
    payload="Hello World!"
}
function consume {
    while :
    do
        MESSAGE=$(/usr/local/bin/rabbitmqadmin -H $RABBITMQ_HOST -P
                  $RABBITMQ_PORT -u $RABBITMQ_USER -p $RABBITMQ_PASSWORD
                  get queue=$QUEUENAME ackmode=ack_requeue_false)
        if [[ $MESSAGE != "No items" ]]; then
            echo "Received message: $MESSAGE"
243Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



4 Advanced Objects and Concepts in Kubernetes
        else
            echo "No more messages in queue."
            break
        fi
    done
}
if [[ $1 == "publish" ]]; then
    publish
elif [[ $1 == "consume" ]]; then
    consume
else
    echo "Unknown command. Use 'publish' or 'consume'."
fi

Listing 4.4  Script for Consume and Publish Functions

The functions use parameters in lines 2 to 6, which you must replace with your val-

ues—namely, the password, the name of your created queue, and the host. The host

contains the DNS name of the service. Remember the naming conventions from Chap-

ter 2, Section 2.5.2, and use the DNS of your service.

Save the script as rabbitmq-script.sh, and then place it on the same level as the Docker-

file from Listing 4.5. To build the image, use the name localhost:5000/rabbitmq-manager
to place it on the Minikube registry with docker push. If you encounter problems, refer

back to Chapter 2, Section 2.1.2.

The Dockerfile in Listing 4.5 is kept simple. We use a special RabbitMQ tag as the

base image, which is specifically designed for management. This image contains the

rabbitmqadmin tool that you use in the script. The script is then copied into the con-

tainer, made executable, and set as the entry point.

FROM rabbitmq:3-management
COPY rabbitmq-script.sh /rabbitmq-script.sh
RUN chmod +x /rabbitmq-script.sh
ENTRYPOINT ["/rabbitmq-script.sh"]

Listing 4.5  Dockerfile for Rabbit Management Container

Once you have pushed the container image to the registry, you can start the Kuber-

netes job that is to write messages to the queue. Use the manifest from Listing 4.6 for

this purpose.

apiVersion: batch/v1
kind: Job
metadata:
  name: rabbitmq-publisher-job
244 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



4.2 Jobs in Kubernetes
spec:
  completions: 10
  template:
    spec:
      containers:
      - name: rabbitmq-manager
        image: localhost:5000/rabbitmq-manager
        args:
        - publish
      restartPolicy: OnFailure

Listing 4.6  Manifest for "Message Publisher" Job

As you can see, the job is based on the image and transfers publish as an argument. The

container will therefore generate a message and then exit. This means that you have to

increase the completions in order to write more messages, as this will generate more

pods. In the example, 10 pods are started, so 10 messages are written.

Now create the job in Lens and watch as the job scales one pod at a time and writes mes-

sages to the queue.

In the RabbitMQ management interface, you can also see how the messages are written

and ready to be picked up. In Figure 4.4, you can see the graphs created after the system

has written and read out the messages. You should now have 10 messages set to Ready.

Figure 4.4  Movements on Message Graph of Queue

Now the news is ready to be consumed and processed. You will use a queue worker job

to process the queue. The script is prepared accordingly, works in a loop until the queue
245Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



4 Advanced Objects and Concepts in Kubernetes
is empty, and then terminates successfully. This is a mandatory requirement, because

otherwise the job does not know when the queue is empty and cannot complete itself

successfully.

Listing 4.7 shows the manifest for the queue worker job.

apiVersion: batch/v1
kind: Job
metadata:
  name: rabbitmq-consumer-job
spec:
  template:
    spec:
      containers:
      - name: rabbitmq-manager
        image: localhost:5000/rabbitmq-manager
        args:
        - consume
      restartPolicy: OnFailure

Listing 4.7  Manifest for "Message Consumer" Job

The script is given consume as an argument, and it leaves out completions so that it is set

to the default value, 1. Now create the job via Lens and watch what happens here too.

Kubernetes creates a pod that processes all messages and outputs the message in the

logs. As you can see in Figure 4.4, in RabbitMQ the messages should drop to 0 again.

Congratulations! You have now created your first queue worker job and at the same

time used a job to create messages. You should now use the existing manifests and play

a little with the completions and parallelism values.

Try writing a total of 100 messages with two pods. Or run two queue workers that pro-

cess the messages. The more you try it out, the clearer the function will become, and

the better you will be able to call it when you need it.

Note

Here is a small task to complete this section: Can you find out what happens when the

number of completions is reached but some pods are still working? Have fun experi-

menting!

4.2.3    Kubernetes CronJobs

The CronJob is perfectly suited for tasks such as the monthly billing run. It is clear that

a task must be completed at a certain time, and similar to the cron jobs you know from

Linux, you can use the cron format to set a time at which a Kubernetes job should be
246 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



4.2 Jobs in Kubernetes
started. This means you do not need to create the job manually or via a pipeline but can

leave everything to the Kubernetes CronJob, as shown in Figure 4.5. The CronJob creates

a Kubernetes job at the relevant time using a template.

If you look at the manifest from Listing 4.8, you will recognize the job definition.

apiVersion: batch/v1
kind: CronJob
metadata:
  name: my-cronjob
spec:
  schedule: "*/5 * * * *"
  jobTemplate:
    spec:
      completions: 5
      parallelism: 2
      activeDeadlineSeconds: 60
      template:
        spec:
          containers:
          - name: sleep-container
            image: busybox
            command: ["/bin/sleep"]
            args: ["3"]
          restartPolicy: Never

Listing 4.8  Manifest of Kubernetes CronJob

Figure 4.5  CronJob Process

You also have the schedule option, which enables you to transfer the cron expression.

You can find your CronJobs in Lens under Workloads • CronJobs. If you then open the

Developer

CronJob Job

cronjob
controller

Pod
Container

ConfigMap PVC

secrets2

1

4

3

247Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



4 Advanced Objects and Concepts in Kubernetes
CronJob menu by clicking on the particular CronJob, it looks like the one shown in

Figure 4.6.

Figure 4.6  CronJob View in Lens

For CronJobs in particular, you have two additional options, which you can also see in

the figure:

� You can pause CronJobs; no jobs will then be created until you unpause them.

� You can use the Play button to trigger a manual trigger that immediately creates a

new job.

All jobs that are created by a CronJob can still be found under Workloads • Jobs. One

advantage you have is that the CronJob names the jobs independently and you do not

have to worry about name conflicts. Automatic cleanup would be advisable at this

point.

Note

The manual Trigger button of the CronJob provides another advantage. You can use it

to map processes that are to be controlled manually.

If possible, you should avoid such manual processes, but I know that often you cannot

do without them. Perhaps it will help you at some point.

4.3    Custom Resources and Custom Resource Definitions

In Kubernetes, custom resources (CRs) and custom resource definitions (CRDs) represent

individual extensions of the Kubernetes API. These extensions allow you to modify the

Kubernetes system according to your specific requirements.

Imagine Kubernetes as a conductor coordinating a large number of musical instru-

ments (resources) in an orchestra (cluster). For some pieces of music, the normal

instruments alone are not enough, and the orchestra needs to be enlarged. CRs are like

additional, unique instruments that you add to your orchestra to create new melodies

or achieve specific timbres. CRDs are like the construction and operating instructions
248 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



4.3 Custom Resources and Custom Resource Definitions
for these instruments. You define what these new resources look like and how they

should be played. Once defined, these CRDs can be used to create specific instances of

the CRs—similar to a composer writing a new symphony that is then performed by the

orchestra.

A CR is an elegant way to extend the Kubernetes API by defining your own resource

types. It allows you to integrate your specific data structures and types into the Kuber-

netes system, have them validated by Kubernetes, and use them in one of your applica-

tions.

Good to Know

You could also map all the information you put in a CR with a ConfigMap, but then you

would lose the following:

� Validation

CRDs provide schema validation.

� Specific APIs

For example, you use a CR with kubectl like a pod. ConfigMaps are "only" generic

key-value stores.

� Controller integration

You cannot monitor ConfigMaps with Kubernetes controllers and integrate them

into automated processes.

We will take a closer look at these individual topics in this section.

The CRD plays a central role in the creation of new resource types. Without a definition

that describes what a CR should look like, there can be no CR. When you create a CRD,

the Kubernetes API server responds by generating a new RESTful resource path for each

version you specify. Once specified, the CRs behave like “regular” Kubernetes objects.

You can query them using kubectl, for example.

4.3.1    Example: A Monitoring CR

The CR concept is sometimes a little complicated to understand—especially when

there is no good use case available. Let's use an example to work out when a CR could

make your life easier and how an application uses the CR.

Imagine you have developed an advanced application monitoring system specifically

designed to provide detailed insight and analysis of the performance of applications

within a Kubernetes cluster. Your aim now is to make this system accessible to other

developers in the cluster so that they can create dashboards for their own applications.

To make this possible, you want to introduce a custom resource (CR) that allows devel-

opers to define specific metrics and the application to be monitored.
249Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



4 Advanced Objects and Concepts in Kubernetes
Let’s call this CR AppMonitoringDashboard. A manifest for it could look like the one

shown in Listing 4.9. You give it the name of the application to be monitored, the

desired metrics, and an update rate.

Note

You can find out how to view CRs and CRDs in Lens in the reference part of Chapter 1,

Section 1.6.3.

apiVersion: monitoring.example.com/v1
kind: AppMonitoringDashboard
metadata:
  name: my-app-dashboard
spec:
  monitoredApplication: "MyApp"
  metrics:
    - "cpu_usage"
    - "memory_usage"
    - "disk_io"
  refreshRate: 60

Listing 4.9  "AppMonitoringDashboard" Custom Resource

But before you can create the CR, you first need a CRD. The CRD must describe the new

API object. At the same time, it gives you the opportunity to validate the desired CR.

The validation is necessary because you want to outsource the creation of dashboards

to other developers, but your application can only create dashboards if all the import-

ant information is available.

In Listing 4.10, you can see the appropriate CRD for AppMonitoringDashboard. The

structure of the CR you need can be found in the schema section. In the CRD, you also

specify the names of the CRs in plural, singular, and short form. You can use the names

later, such as via kubectl, to select the CRs. For example, you can reference the pod

object by using the plural pods, singular pod, and short name po.

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
  name: appmonitoringdashboards.monitoring.example.com
spec:
  group: monitoring.example.com
  names:
    kind: AppMonitoringDashboard
    listKind: AppMonitoringDashboardList
250 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



4.3 Custom Resources and Custom Resource Definitions
    plural: appmonitoringdashboards
    singular: appmonitoringdashboard
  scope: Namespaced
  versions:
    - name: v1
      served: true
      storage: true
      schema:
        openAPIV3Schema:
          type: object
          properties:
            spec:
              type: object
              properties:
                monitoredApplication:
                  type: string
                metrics:
                  type: array
                  items:
                    type: string
                refreshRate:
                  type: integer
              required:
                - monitoredApplication
                - metrics

Listing 4.10  Custom Resource Definition for "AppMonitoringDashboard"

If you want to create your own CRD, you must make sure that the names match. Thus

metadata.name is a composite of the plural and the group. And names.kind is the singular

in camel case.

You will find a list of versions under the versions object. In the example, only v1 is avail-

able, but you could also create other versions. This allows you to develop the object fur-

ther and still support older versions.

Note

More information on versioning Kubernetes objects is provided in Section 4.6.

You have now created the CRD and can create CRs as in Listing 4.9. However, the moni-

toring system that the CRs are supposed to use is still missing. As always, there are sev-

eral possible options. To give you an idea, I will present one possible process:
251Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



4 Advanced Objects and Concepts in Kubernetes
1. Monitoring the custom resources

You can activate a watcher in the Kubernetes API server on the CR. This watcher will

inform you when changes are made or a CR is created.

2. Extracting data from the CR

As soon as the monitoring app receives a notification about a new or changed CR, it

extracts the relevant configuration data from the CR.

3. Creating or updating the dashboard

The monitoring app then uses the extracted configuration data to create or update

the corresponding dashboard.

4. Integrating metrics data sources

The app configures a job to retrieve the metrics from the application.

Finally, I have provided an overview in Figure 4.7 so that you can see how the compo-

nents interact.

Figure 4.7  Overview of "AppMonitoringDashboard" CR and CRD

The developer responsible for monitoring develops the monitoring application and

defines a CRD. The monitoring application monitors the CRs and responds to changes.

A developer who wants to create a dashboard for their application in the monitoring

tool creates a CR with the necessary information. Your monitoring tool accesses the CR

and will use the information from the CR to monitor the application and generate a

dashboard.

4.3.2    Validation in CRD

When you create a CRD, you should have given it very clear thought and answered

questions such as these:

Kubernetes

develops

creates

Monitoring

validates
CRD

AppMonitoringDashboard

develops

creates

Developer

Application
monitors

watches

MonitoringApplication

CR
AppMonitoringDashboard
252 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



4.3 Custom Resources and Custom Resource Definitions
� What is the object needed for?

� What should the object be able to do?

� What properties should the objects have?

� What data type does a particular property have?

� What are the thresholds a property should have?

� Where does the object's responsibility end?

You certainly don't want to create a jack-of-all-trades object, which is why it makes

sense to also consider what the object is not. A good way to control this is to use rules

for the properties that validate the values entered.

In addition to validating the data type—that is, whether an integer is actually an

integer—a more detailed validation has also been possible since Kubernetes version

1.25. This allows you to set certain limits while you are still developing a CRD, which

means that the developer who ultimately creates the CRs knows what is possible—and

what is not.

In Listing 4.11, a simple extension of the data type validation is marked, which in this

example provides an upper and lower limit for integers or defines an enumeration in

our list. In the example, it protects against incorrect configurations of the metrics and

against overloading due to excessively fast update cycles.

…
schema:
  openAPIV3Schema:
    type: object
    properties:
      spec:
        type: object
        properties:
          monitoredApplication:
            type: string
          metrics:
            type: array
            items:
              type: string
              enum: [ "cpu_usage", "memory_usage", "disk_io",
 "network_traffic", "http_requests" ]
            minItems: 1
          refreshRate:
            type: integer
            minimum: 30
            maximum: 3600
253Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



4 Advanced Objects and Concepts in Kubernetes
        required:
          - monitoredApplication
          - metrics

Listing 4.11  Validation in CRDs

Good to Know

There are other validation options available, which you can find at the following

address: http://s-prs.co/v596436.

Listing 4.12 contains a somewhat more complex validation. Common Expression Lan-

guage (CEL) is used there to compare values with each other. This gives you even more

freedom to carry out validations. You can find very detailed instructions for this at

http://s-prs.co/v596437.

schema:
  openAPIV3Schema:
    type: object
    properties:
      spec:
        type: object
        properties:
          monitoredApplication:
            type: string
          metrics:
            type: array
            items:
              type: string
            x-kubernetes-validations:
              - rule: "size(self) > 0"
                message: "At least one metric must be specified."
          refreshRate:
            type: integer
            x-kubernetes-validations:
              - rule: "self >= 30 && self <= 3600"
                message: "must be between 30 and 3600 seconds."
        required:
          - monitoredApplication
          - metrics

Listing 4.12  Validation Using CEL
254 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596436
http://s-prs.co/v596437


4.3 Custom Resources and Custom Resource Definitions
Note

During my tests, I noticed that Lens has some difficulties when it comes to deleting

CRDs. For such problems, I always refer to kubectl. Using a simple kubectl get crd
statement, you get your CRDs, and via a quick kubectl delete crd [CRD-NAME], you can

delete them.

As useful as the UI of Lens is, sometimes you need the simplicity of the command line.

4.3.3    Operators

You certainly are familiar with this situation: There is a new configuration for your

application, and now the application must be restarted. Or you are once again ordered

by the operations team to roll out a new version of your database. Or you need to

import a recovery because a problem has occurred in your database.

Even as a developer, you can't avoid taking care of repetitive tasks, especially those that

require your expertise. Kubernetes can do a lot for you, but at some points even Kuber-

netes reaches its limits.

What if you had a little helper to support you in such tasks and make your life easier?

Operators are just the thing.

In my opinion, the operator concept is one of the most important ideas in Kubernetes.

Operators allow you to customize Kubernetes so that you can solve and automate any

problem.

An operator is an extension of Kubernetes based on CRs. In the example from Section

4.3.1, the monitoring application listened to the CRs independently. If a CR is created or

changed, the controller makes sure that what is specified will also be implemented.

Operators can provide support for tasks such as the following:

� Rolling updates

� Updates to new versions

� Backup and recovery

� Monitoring and importing configuration changes

Where previously a person had to intervene to complete repetitive tasks, these can now

be automated and simplified by an operator.

And moreover, this concept also allows you to swap out the watch functionality from

your actual application, which makes it even more streamlined. You encapsulate the

typical Kubernetes logic in the operator and do not need to keep it in your application.
255Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



4 Advanced Objects and Concepts in Kubernetes
Architecture of the Operator

An operator works by constantly monitoring the Kubernetes API for certain custom

resources. As soon as a new custom resource is added or an existing one is changed, the

operator will be activated. Its aim is to adjust the current state of the cluster so that it

matches the desired state that you have defined in the custom resource. Figure 4.8

illustrates this process.

Figure 4.8  How Operators Work

Deployments and ReplicaSets work in a similar way to operators. A deployment opera-

tor monitors the definitions of deployments and, for example, adjusts the number of

running pods to ensure that the desired number of replicas will be reached. Similarly, a

ReplicaSet ensures that a specified number of replicas run continuously. You may rec-

ognize the pattern of the reconciliation loops we talked about in Chapter 3, Section 3.1.

If you develop your own operator, you can use it to extend the functions of Kubernetes.

The operator then takes care of your own custom resource and keeps Kubernetes in the

desired state.

The controller is the heart of every operator. It listens to one or more custom resources

and can perform actions according to the definition in order to achieve or maintain the

desired state. The controller uses the Kubernetes API to monitor the current state of

the cluster, compares it with the desired state defined in the custom resource, and

takes the necessary steps to resolve any discrepancies. You can imagine the procedure

as follows:

� Monitoring

The controller registers an event listener with the Kubernetes API in order to be

informed about the creation, update, and deletion of custom resources.

Developer

Custom Resource Controller

informs

modifies the state

Kubernetes

creates/
processes

executes
commands
256 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



4.3 Custom Resources and Custom Resource Definitions
� Reconciliation

Each time a change is made, the controller retrieves the current state of the relevant

resources, compares it with the desired state specified in the custom resource, and

determines the actions required to correct any differences.

� Adaptations

These actions can include creating, updating, or deleting Kubernetes resources to

create the desired state. The controller can also call external services or adapt config-

urations.

Note

You can find out how to develop your own operators at the following address: http://s-

prs.co/v596438.

Zalando’s PostgreSQL Operator

Finally, I want to present a useful example that will give you an understanding of the

operator. If you have ever dealt with databases, then you know that the following bullet

points are important to consider in production:

� Data must not be lost.

� Data must be protected.

� Data must always be available.

This simply makes life more complicated, and a single database instance does not suf-

fice. Remember Chapter 1, Section 1.1.4: A database is (of course) stateful, and from my

point of view, operating a database in Kubernetes is the supreme discipline.

You will learn about the StatefulSet in Chapter 5, but the StatefulSet capabilities did not

meet the expectations at Zalando, a company that was probably facing some opera-

tional challenges when it considered developing a PostgreSQL operator.

The operator allows you to easily deploy and manage Postgres clusters. In Listing 4.13,

you can see an example of the Postgres manifest that is created as a CR. The CR has

properties that the operator controller later uses to implement different things. In

addition to the number of instances, you also specify the users and databases that are

to be created. You can also simply pass the version of Postgres.

apiVersion: "acid.zalan.do/v1"
kind: postgresql
metadata:
  name: my-postgres-cluster
  namespace: default
257Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596438
http://s-prs.co/v596438


4 Advanced Objects and Concepts in Kubernetes
spec:
  teamId: "myteam"
  volume:
    size: 10Gi
  numberOfInstances: 2
  users:
    admin:
      - superuser
      - createdb
    user: []
  databases:
    testdatenbank: admin
  postgresql:
    version: "13"

Listing 4.13  Postgres Manifest of Zalando Operator

In comparison, if you were to set up Postgres as a StatefulSet, you would have to write

your own scripts to create the users, manage the rights, and take care of the database.

The controller takes care of this and makes your work easier.

This is just a simple example of the Postgres manifest. The Zalando operator provides a

wide range of functions, from storage extensions, backup, and recovery to a connec-

tion pool. It is definitely worth keeping an eye out for open-source operators for your

use cases.

4.4    Downward API

In some cases, it is useful to access information from the pod or Kubernetes within

your application. You can of course use the regular Kubernetes API to query data. How-

ever, there is another solution that provides data to your application without you hav-

ing to access the regular API.

The downward API allows you to provide fields from pods and containers, similar to

secrets and ConfigMaps. As you can see in Figure 4.9, you have two options for deploy-

ment:

� Environment parameters

� Volume

Good to Know

By making the information available via the downward API, you do not have to link

your application to Kubernetes but can have it injected just like other configurations.
258 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



4.4 Downward API
Figure 4.9  Integrating Downward API

Let's look at how you can make the fields available via environment parameters. Listing

4.14 gives an example of this, in which we set the name of the node, the pod, and the

namespace as environment parameters.

apiVersion: v1
kind: Pod
metadata:
  name: my-nginx
  labels:
    app: nginx
spec:
  containers:
  - name: my-nginx
    image: nginx
    ports:
    - containerPort: 80
    env:
      - name: NODENAME
        valueFrom:
          fieldRef:
            fieldPath: spec.nodeName
      - name: PODNAME
        valueFrom:
          fieldRef:

Kubernetes API

Pod-Objekt

kind: Pod
metadata:
    name: my-pod
spec:
    nodeName: node1
status:
    podIP: 1.2.3.4
    hostIP: 5.6.7.8

Pod

POD_Name=my-pod
NODE_Name=node1

downwardAPI
Volume

pod-name.txt

Container

my-pod
259Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



4 Advanced Objects and Concepts in Kubernetes
            fieldPath: metadata.name
      - name: NAMESPACE
        valueFrom:
          fieldRef:
            fieldPath: metadata.namespace

Listing 4.14  Integrating Downward API as Environment Parameter

Unroll the manifest and connect to the pod via kubectl exec. If you now look at the

environment parameters via env, you should also find the following entries:

NAMESPACE=default
PODNAME=my-nginx
NODENAME=minikube

Good to Know

A complete overview of the fields that you can make available via the downward API

can be found at http://s-prs.co/v596439.

The second option is to integrate it as a volume. You may remember the syntax from

the ConfigMaps and secrets in Chapter 2, Section 2.4. In Listing 4.15, you can see the

manifest with the pod name and namespace. If you roll this out, you will find a separate

file with the corresponding values as content for each entry under the /etc/kubeinfo

path.

Note

Not all information is available via integration as a volume. The name of the node is an

example of this. For a complete overview, refer to the Kubernetes documentation.

apiVersion: v1
kind: Pod
metadata:
  name: my-nginx
  labels:
    app: nginx
spec:
  containers:
  - name: my-nginx
    image: nginx
    ports:
    - containerPort: 80
260 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596439


4.5 Pod Priority and Preemption
    volumeMounts:
        - name: kubeinfo
          mountPath: /etc/kubeinfo
  volumes:
    - name: kubeinfo
      downwardAPI:
        items:
          - path: "podname"
            fieldRef:
              fieldPath: metadata.name
          - path: "namespace"
            fieldRef:
              fieldPath: metadata.namespace

Listing 4.15  Integrating Downward API as Volume

4.5    Pod Priority and Preemption

There is another concept that allows you to control how the scheduler handles your

pods and which ones it prefers. Pod priority and preemption allow you to prioritize crit-

ical workloads and thereby displace less important pods in favor of higher priority

pods.

Good to Know

The displacement of low-priority pods is referred to as preemption.

Imagine, for example, that you have an on-premise cluster that is currently running

under full load so that a new node cannot be scaled up quickly. If you now have a job

that absolutely has to go through, but there is no space on the nodes, then you have a

problem. The scheduler cannot place the pod, and the pod remains in the pending sta-

tus. However, you could use a higher priority to tell the scheduler to distribute other

pods so that the job can start.

To assign priorities to your pods, you must use the PriorityClass object. Listing 4.16

shows an example with the name high-prio.

apiVersion: scheduling.k8s.io/v1
kind: PriorityClass
metadata:
  name: high-prio
261Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



4 Advanced Objects and Concepts in Kubernetes
value: 1000
globalDefault: false
description: "Use this Class for High Prio Pods"

Listing 4.16  PriorityClass Manifest

The higher the value of PriorityClass, the higher the priority of the pod. The Priority-
Class objects can be found in Lens under Config • Priority Classes. After rolling out the

example, you should see three priority classes, as shown in Figure 4.10.

Figure 4.10  Priority Classes in Lens

In the pod manifest, you can specify PriorityClass via the name. An example of this is

shown in Listing 4.17.

…
spec:
  containers:
  - name: nginx
    image: nginx
  priorityClassName: high-priority

Listing 4.17  Integrating PriorityClass into Pod

Good to Know

Since Kubernetes version 1.24, you can add a preemptionPolicy to the priority class. If

you set the value to never, then the pods can have a higher priority and are only dis-

placed later by even higher priorities, but they themselves cannot displace any other

pods.

This is useful if you have a pod that does not need to start immediately and therefore

should not interfere with other pods. But when it runs, it should also finish its work. An

example of this could be a long-running batch job.
262 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



4.6 Versioning Objects in Kubernetes
4.6    Versioning Objects in Kubernetes

Kubernetes is also evolving, and the objects have different development cycles. You

will always find these in the YAML manifests under apiVersion. Especially with regard

to Kubernetes updates, it is important to check the API versions and update them if

necessary.

Good to Know

All alpha and beta objects that are part of Kubernetes must be explicitly activated in

kube-apiserver beforehand.

Kubernetes carries out versioning according to the following scheme:

� Alpha level

This API version contains the designation alpha, as in v1alpha1, for example.

The object is still in its infancy. There is no guarantee of further development or a

regulated upgrade process. Its use is not recommended in production environ-

ments.

� Beta level

This API version contains the designation beta, as in v1beta2, for example.

The object is expected to become a stable object in one of the next versions. How-

ever, the definition of the object may still change. The object can also be tested with

caution in a production environment.

� Stable level

This API version is simply v1, v2, and so on.

The object is fully developed, tested, and approved. The object is guaranteed to be

supported in many further Kubernetes versions, and there are clear rules to ensure

compatibility in further versions.

Good to Know

The introduction of API groups should make it easier to extend the API. The developers

of Kubernetes had the following ideas:

� The monolithic v1 API is organized in modular groups in order to be able to activate

or deactivate entire groups. This is the cornerstone for being able to break down

the monolithic API server into smaller components.

� Groups can develop separately in the future.

� Identically named types can be supported in different groups. Such a structure pro-

motes innovation while ensuring stability.

� The groups serve as the basis for extending the API with CRDs.
263Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



4 Advanced Objects and Concepts in Kubernetes
Despite the division into groups, it was important to the developers that interaction

with tools such as kubectl remains simple. For example, you do not need to know the

group name to display your pods.
264 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



Chapter 5 

Stateful Applications and Storage

You can have data without information, but you cannot have 

information without data.

—Daniel Keys Moran

I can still remember how invaluable my first MP3 player with 512 MB was to me. I often

had to decide which music I could keep on it and which I had to delete in order to listen

to new songs again. Music streaming has completely changed our lives in that respect.

Saving and backing up images has also changed. I used to make regular backups to my

external hard disk. That was tedious, and I didn't want to pay for a NAS. Today, I have

distributed my data in cloud storage. It's easier and cheaper than I could ever have

imagined.

Storage is getting cheaper and cheaper. This sometimes means that we no longer think

about what we are saving and whether it makes sense at all. The storage of data for our

applications has changed as well. With modern systems that work according to the

principle of software-defined storages, an upper limit is almost no longer visible. This

is tempting, but data from which we do not extract information is nothing more than

data waste that we should not allow to be created in the first place.

But in this chapter, I am not at all concerned with the meaningfulness of data. Instead,

we are going to talk about how you can

� store data in Kubernetes in the best possible way, and

� operate applications that require and manage data.

You can't do without data, and you need applications to process it. However, the oper-

ation of a stateful application is always somewhat more complicated than a stateless

application. With the StatefulSet, Kubernetes provides an object that is designed to run

stateful applications. There are small but subtle differences from the other objects you

have already seen, and we will take a closer look at these.

Kubernetes makes life very easy for us developers thanks to its abstractions, regardless

of whether we are dealing with storage in our own data center or in the cloud. Due to

abstraction, you can always allocate storage space to your application in the same way,

regardless of what exactly it is. In Kubernetes, you can define a wide variety of storage

classes, which are then mounted and used by the containers. In the end, the container
265Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



5 Stateful Applications and Storage
does not care whether it is an Amazon EBS volume or an NFS volume in your own data

center.

If the cluster is set up properly and the storage classes are defined, then it is easy for you

to use the corresponding storage. This is a significant simplification of the develop-

ment process, more freedom for developers, and a reduction in the workload for IT

operations.

If you develop your application in a container, then sooner or later you will ask yourself

questions such as these:

� Where do I store my data?

� What do I do if I lose data?

� How fast is the storage medium?

� What storage requirements does my application have?

This chapter is intended to get you thinking about these questions, and of course show

how you can make storage available to your applications in Kubernetes.

If you have already worked with containers, then you are certainly already familiar

with volumes. The concept of volumes also exists in Kubernetes. Essentially, volumes

are directories that are accessible in one or more containers and simplify data manage-

ment. The object abstracts the actual management of hard disks, and as a developer

you (almost) no longer need to worry about the actual storage.

There are two main categories of volumes: ephemeral and persistent. While ephemeral

volumes only exist during the lifetime of the associated pod and are suitable for tem-

porary data, persistent volumes retain their state even after the pod has been termi-

nated and are therefore ideal for long-term storage. With a web server such as Nginx,

for example, you use an ephemeral volume to store cache data. For a database, on the

other hand, you use a persistent volume to store the data securely even after a pod

restart or failure.

5.1    Stateful Applications in Kubernetes through StatefulSets

Do you remember Chapter 1, Section 1.1.4, where we talked about the differences

between stateful and stateless? The Kubernetes deployment from Chapter 2, Section 2.3

is intended for stateless applications.

But what do you do if you want to run a database in Kubernetes, for example? Let's take

a look at the StatefulSet.

StatefulSets were specifically developed for the management of stateful applications.

They differ from deployments in their ability to maintain and manage the state and

identity of individual pods within the set. This makes them interesting not only for

databases. You also can also use them if you
266 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



5.1 Stateful Applications in Kubernetes through StatefulSets
� have special requirements for the network and need stable identifiers, for example;

� require an orderly scaling;

� require an orderly rolling update process; or

� need stable and persistent storage.

Compared to deployment, the StatefulSet handles the pods more carefully. Order and

stability are important to the StatefulSet, as this is the only way to update a database

without losing data, for example. While deployments start or shut down new pods

simultaneously and in no particular order, StatefulSets handle the deployment and

scaling of pods in a strictly defined order and in a predictable manner.

Good to Know

StatefulSets work together with persistent volumes. The data is stored there for the

runtime of an individual pod and can be mounted and used again by another pod. The

structured naming of the pods makes it easier and more predictable to reuse the vol-

umes.

In Section 5.2, we will take a closer look at the topic of persistent volumes.

Each pod in a StatefulSet is given a unique and persistent identity. This identity is

retained across pod restarts and even across recreations. The StatefulSet assigns the

pods an ordinal index starting with the number 0. Contrary to a pod from a deploy-

ment, which has the structure my-pod-hq3w8f, the StatefulSet name has the following

structure: my-pod-0.

The network name of the pods is also predictable and stable. For this purpose, the pod

name and the index are used; in the example, that’s my-pod-0. With a headless service,

you can always refer to a specific pod in combination with the pod name.

Probably the most important difference from deployments is the behavior during roll-

outs and scaling. Pods in a StatefulSet are created and deleted in a strict, predictable

order. This sequence is retained when scaling up or down. The first pod is not deleted

until the last one has been successfully deployed, which is critical and very important

in many stateful applications such as databases.

Good to Know

The pods in a StatefulSet are also not bound to a node. During an update or reschedul-

ing, Kubernetes only needs to make sure that the corresponding pod also gets its vol-

ume. However, depending on the infrastructure on which the cluster is running and

the volume type, the choice of nodes may be limited. For example, if you operate a clus-

ter in AWS and use an EBS volume as a persistent volume, only nodes in the same avail-

ability zone can mount this EBS volume.
267Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



5 Stateful Applications and Storage
Let's start with a simple StatefulSet from Listing 5.1. Roll it out and watch the pods

launch. You can observe the rollout behavior very well. The StatefulSet starts one pod

after the other and waits until the pod is ready. In the example, this is only a few sec-

onds, but even if an application takes minutes to initialize, the sequence will be main-

tained.

apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: mysql
spec:
  serviceName: "mysql"
  replicas: 3
  selector:
    matchLabels:
      app: mysql
  template:
    metadata:
      labels:
        app: mysql
    spec:
      containers:
      - name: mysql
        image: mysql
        ports:
        - containerPort: 3306
        env:
        - name: MYSQL_ROOT_PASSWORD
          value: "secretPassword"
        volumeMounts:
        - name: mysql-persistent-storage
          mountPath: /var/lib/mysql
  volumeClaimTemplates:
    - metadata:
        name: mysql-persistent-storage
      spec:
        accessModes: ["ReadWriteOnce"]
        storageClassName: "standard"
        resources:
          requests:
            storage: 1Gi

Listing 5.1  Manifest for StatefulSet
268 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



5.1 Stateful Applications in Kubernetes through StatefulSets
To make sure you can observe the update behavior, you need to update a small thing in

the template, such as the password, and roll it out again. You can see that the Stateful-

Set starts with the mysql-2 pod, then updates mysql-1, and finally mysql-0. This sequence

is always the same. The StatefulSet starts with the highest index and works its way to

the lowest index.

Note

The StatefulSet relies on the readiness check to know when your application is ready.

The readiness check reports the pod as ready as soon as your application is fully initial-

ized. We will take a closer look at how to configure this check in Chapter 7, Section 7.2.

5.1.1    Pod Management Policy

As with the deployment, you also have options for the StatefulSet, which enables you

to control the behavior. The pod management policy allows you to set the way the

StatefulSet should handle the pods. You can configure this under podManagementPolicy
in the manifest and choose from two options:

� OrderedReady
With OrderedReady, your pods are managed in a strictly sequential order. This means

that the next pod in the series is only started or stopped once the preceding pod in

the StatefulSet has successfully transitioned to the ready state. You could already

observe this process in the previous example as this is the default value.

This policy is typically used for applications where the start sequence is important—

for example, if a pod depends on the data or status of another pod. It is also useful in

scenarios where a step-by-step initialization is required.

Good to Know

If you use OrderedReady, conditions may arise that require a manual intervention. If

you update the pod template to a configuration that never reaches the running and

ready state, the StatefulSet will stop the update and wait for your intervention.

Unfortunately, it is currently not sufficient to simply update the template due to an

open issue. You must then manually delete the pods the StatefulSet tried to update.

You can find the open issue here: http://s-prs.co/v596440.

� Parallel
With Parallel, you instruct the StatefulSet to start and stop pods in parallel. This

means that, similar to deployments, no specific order is adhered to when the pods

are managed. This option has no effect on the updates, which are still carried out

sequentially.
269Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596440


5 Stateful Applications and Storage
The policy is suitable for applications where the start sequence of the pods is not

critical. You can use it when a fast upscaling and downscaling is required, as all pods

can be started or stopped at the same time.

Note

You cannot change the pod management policy at a later date. To activate the policy,

you must delete the StatefulSet and create a new one. At the latest, you should be

aware of this the moment you want to use a StatefulSets for production purposes.

Listing 5.2 show an extension of the StatefulSet manifest with podManagementPolicy:

"Parallel". Try out the change and observe the startup of the pods. You will see that all

three pods are started at the same time. If you then check the update behavior again

with another password change, you can continue to monitor the sequential updates.

apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: mysql
spec:
  serviceName: "mysql"
  replicas: 3
  selector:
    matchLabels:
      app: mysql
  podManagementPolicy: "Parallel"
  template:
  …

Listing 5.2  StatefulSet with Pod Management Policy

5.1.2    Strategies for Updates

You can also influence the way in which a StatefulSet handles updates. There are two

update strategies you can choose from:

� The default option is RollingUpdate, which works in a similar way as deployment.

� The second option is OnDelete, where the StatefulSet does not automatically replace

the existing pods during an update. You must then delete a pod from the StatefulSet

yourself for an update so that the StatefulSet creates a new pod. This gives you much

more control over the update process, but of course you have to do it yourself. Your

aim should be to ensure that your application can survive an automated rolling

update without any problems.
270 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



5.1 Stateful Applications in Kubernetes through StatefulSets
Note

Of course, your application must support rolling updates.

As you know from the rolling update of the deployment, the StatefulSet also replaces

one pod after the other. This involves waiting until the new pod has fully booted up and

the readiness check has been successfully completed. It is only then that the next pod

will be replaced. However, there are small differences:

� Only one pod is updated at a time, and you cannot currently configure the number.

� The updates start with the pod that has the largest index and continue down to the

smallest index.

� You have an additional partition option that allows you to define from which index

the updates may be carried out.

Note

With Kubernetes version 1.24, the maxUnavailable option was introduced in an alpha

stage. If you want to use it, you can activate it in the API server.

You can use the partition option to specify the index from which the updates should

be carried out. The partition is an integer that specifies the starting point for the

update within the StatefulSet. Pods in the StatefulSet with an index equal to or higher

than partition are updated. Pods with a lower index remain unchanged even if you ter-

minate the pod. This provides you with more granular control over the update process

and more stability in your application.

Here is a small sample program. Suppose your StatefulSet has five pods, and you set the

partition to 2 and update the container image to a new version. In this case, the pods

with indexes 2, 3, and 4 will be updated. The first two pods with indexes 0 and 1 remain

unchanged. This allows you to carry out the version update slowly and in a controlled

manner. To update the other two pods, you want to set the partition back to 0 or delete

the line from the manifest, as the default value is also 0.

Let's try this out to observe the behavior of the StatefulSet. To do this, you need to use

the extension of the StatefulSet from Listing 5.3 and roll it out. As soon as all pods are

initialized, you can make another small change to the template. You can observe how

the StatefulSet sequentially updates the pods but leaves mysql-0 unchanged. Thus, the

last pod that is updated has the index that you specify in partition. Now you theoreti-

cally have time to test and check the new version of your application. If you also want

to update the last pod to the new version, simply change partition to 0. The StatefulSet

immediately starts replacing mysql-0.
271Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



5 Stateful Applications and Storage
apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: mysql
spec:
  serviceName: "mysql"
  replicas: 3
  selector:
    matchLabels:
      app: mysql
  updateStrategy:
    type: RollingUpdate
    rollingUpdate:
      partition: 1
  template:
  …

Listing 5.3  StatefulSet with Update Strategy

5.1.3    Retention Policy for Persistent Volume Claims

Kubernetes provides a new feature that allows you to control the retention of PVCs.

Note

Section 5.2 contains information about PVs and PVCs. However, I would like to mention

a new feature that has been available in beta stage since Kubernetes v1.27. Keep in

mind that the feature must be activated in the API server if you want to use it.

In the example from Listing 5.1, the pods also use PVs and PVCs. If you now scale down

the StatefulSet from three to two pods or even delete it, the PVC will simply remain. If

you scale it up again, the new pod will take over the PVC and thus the same PV. At first,

this makes sense, as it allows the pod to continue using the same data.

However, there are situations where you may want to assign a fresh PV to a pod, such

as in a test environment. For this purpose, you would currently have to delete the old

PVC so that a new rollout also creates a new PVC.

Listing 5.4 shows the extension of StatefulSet with the retention policy.

apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: mysql
spec:
  serviceName: "mysql"
272 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



5.2 Persistent Volumes and Persistent Volume Claims
  replicas: 3
  selector:
    matchLabels:
      app: mysql
  persistentVolumeClaimRetentionPolicy:
    whenDeleted: Retain
    whenScaled: Delete
  template:
  …

Listing 5.4  StatefulSet with PVC Retention Policy

As you can see, you can define the policy for the following:

� whenDeleted
Here you define what happens if the StatefulSet is deleted in its entirety.

� whenScaled
This setting configures what the StatefulSet does to the PVC when you scale down

the pods.

Good to Know

If a pod is replaced by the StatefulSet due to an error, the PVC will be retained, and the

new pod can continue using it. It is therefore only deleted if you actively downscale or

delete the StatefulSet.

You can select the following options for both cases:

� Retain
This is the default value, and here the PVC is retained. This is how the StatefulSet

would behave even without the new feature.

� Delete
Deletes the PVC of the respective pod.

Note

If the PVC is deleted, the PV is not automatically deleted as well. However, the Stateful-

Set creates a new PVC and therefore a fresh PV. More on this follows in Section 5.2.

5.2    Persistent Volumes and Persistent Volume Claims

In a Kubernetes environment, persistent volumes and persistent volume claims are

crucial when it comes to managing persistent storage. These two resources form the

backbone for handling storage requirements in your cluster.
273Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



5 Stateful Applications and Storage
Imagine a PV as a highly flexible hard disk. The PV represents an abstraction of the

actual storage medium. The data stored in the PV can be stored on an NFS, iSCSI, or a

cloud hard disk such as in AWS EBS.

You can therefore think in advance about the underlying storage and how securely or

quickly data needs to be accessed. In the end, however, your application does not care

where the data is stored because access to the PV is always the same.

The good thing about a PV is that it outlasts the lifecycle of the pod, allowing you to

store data permanently. There are of course a few pitfalls that I will go into, but if you’re

aware of them, then you will be able to store your data safely on PVs.

Good to Know

A PV does not necessarily have to be assigned to a StatefulSet. You can also use it in a

deployment. However, a StatefulSet should store the data in a PV so that the data out-

lasts the lifecycle of the pod.

Listing 5.5 contains a simple PV manifest. As with every Kubernetes object, you define

the name and labels in the metadata. In the actual manifest, you define the size of the

storage, the way it can be accessed, and what type of storage it is.

apiVersion: v1
kind: PersistentVolume
metadata:
  name: test-pv
  labels:
    app: my-pv-app
spec:
  capacity:
    storage: 5Gi
  accessModes:
    - ReadWriteOnce
  hostPath:
    path: /tmp/test

Listing 5.5  Simple Manifest for Persistent Volume

Note

The security of your data depends on the underlying storage medium. It's like the data

on your computer: if you don't have a backup and the hard disk is damaged, the data is

also gone.
274 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



5.2 Persistent Volumes and Persistent Volume Claims
In Listing 5.5, you can see a simple example with hostPath as the storage type, which

places the data on a path in the file system of the worker. If this worker is terminated,

the data will be lost.

For this reason, you should think carefully about what data you want to store and what

your availability requirements are.

The PV itself can only be requested via the PVC. An exclusive connection is created

between the PV and PVC that lasts for the lifetime of the product. No other PVC can eas-

ily claim the PV. However, depending on the storage type and the access mode, multi-

ple pods can access a PVC. We will take a closer look at this in Section 5.2.1.

In Figure 5.1, you can see a simplified illustration of how a PV and PVC interact. Assume

here that a pod is supposed to use an AWS EBS volume. This is done as follows:

1. The pod uses a PVC to write to the desired volume.

2. The PVC incorporates a matching PV.

3. The PV takes over responsibility for the communication to the actual EBS volume.

Figure 5.1  How a Pod Uses a PV

You can see the PVC as a list of requirements that a pod has for a PV. Listing 5.6 shows a

simple manifest of a PVC. The requirements you describe in the PVC must be fully met

by the PV; otherwise, the PV will not be claimed. The PVC waits until a suitable PV is

available.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: test-pvc
spec:
  storageClassName: ""

uses

connects

PVC

uses
PVAmazon

EBS

Pod
Volume
275Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



5 Stateful Applications and Storage
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 5Gi

Listing 5.6  Simple Persistent Volume Claim

If you compare the two manifests from Listing 5.5 and Listing 5.6, you will see that the

PVC requests 5 Gi of storage space, that the same access mode is used, and that no spe-

cific storage class is required in the PVC. The configuration must be exactly the same;

otherwise, the two objects will not find each other.

Just try it yourself. Copy the listings and use Lens to create a PV and then the PVC. Once

you have created the PV, you can see your PV in the menu under Storage • Persistent

Volumes, as in Figure 5.2.

Figure 5.2  New Static PV Created

The status is Available, which indicates that no PVC has claimed the volume yet. Next,

when you create the PVC, Kubernetes will search for a matching PV and connect the

two. The PV then has the status Bound, as in Figure 5.3.

Figure 5.3  PV Claimed by PVC

The connection between the PV and PVC is fixed for the entire lifecycle. No other PVC

may claim the volume just like that. However, if you delete the PVC, the PV will be

retained, but its status changes to Released, as shown in Figure 5.4.

The advantage of this is that the data is not lost, and no other PVC can take over the PV

and use the data. The disadvantage is that you have to intervene manually to release

the PV again, back up the data, or delete it.
276 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



5.2 Persistent Volumes and Persistent Volume Claims
Figure 5.4  PV in "Released" status after PVC Has Been Deleted

Let's look at how you can release the PV again. Delete your created PVC and then click

the PV that has the Released status. A context window opens on the right-hand side

with information about the PV. There you can see under Claim which PVC is connected

to the PV, as shown in Figure 5.5. You now want to terminate this connection, as the

PVC no longer exists.

To do this, click the Edit (pencil) icon at the top to open the YAML manifest of the PV,

and search there for claimRef, as shown in Listing 5.7.

spec:
  claimRef:
    kind: PersistentVolumeClaim
    namespace: default
    name: test-pvc
    uid: 180ef6fb-3703-40e3-a2ca-073f11ed89ec
    apiVersion: v1
    resourceVersion: '781131'

Listing 5.7  Claim Reference in YAML Manifest of PV

Here you can see in more detail which PVC is connected to the PV. Due to the unique

uid, it is also not sufficient to recreate the PVC. Kubernetes recognizes that this is a new

resource and will not connect the two (even if the PVC is virtually the same). Now delete

claimRef from the manifest and click Save.

The PV will now return to the Available status and can be claimed again by a PVC.

Figure 5.5  Claim Reference of PVC on PV
277Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



5 Stateful Applications and Storage
5.2.1    Storage Types for PVs

Kubernetes provides an abstraction to different storage media through the PVs. You

learned about the hostPath in Listing 5.5. In this section, you will get to know some of

the storage types Kubernetes supports out of the box. The good thing about this is that

in the end, your application does not care where the data is located: regardless of

whether the data is saved in a path in the host system or on a network drive, the appli-

cation always saves in the same way.

Table 5.1 provides a list of the storage types Kubernetes supports out of the box in ver-

sion v1.27. If you use earlier Kubernetes versions, you may also come across other types

such as awsElasticBlockStore. However, these were gradually removed and switched to

the CSI driver.

One prerequisite for using a specific storage type for Kubernetes is, of course, that the

corresponding storage is also connected. As a developer, you usually have little influ-

ence on which storage types can be used. However, it is important to know the options

so that you can talk to the cluster admins, if necessary, and place your requirements.

This enables you to understand how and where data can be stored and to communicate

your storage requirements. As you can imagine, saving data on type nfs is slower than

fc or scsi.

Good to Know

The clearer your application's requirements for the volume, the easier it is to select the

right storage type.

Type Description

csi The container storage interface supports a range of plug-ins that have been 

developed in accordance with the standard.

fc The plug-in for fiber channel storage can implement storage solutions that are 

connected via fiber optics.

hostPath The hostPath defines a path on the file system of a single node as storage. This 

approach is not recommended in production environments as there are secu-

rity problems and availability is reduced.

iscsi This plug-in is for storage that is connected via SCSI over IP.

local The local plug-in is preferable over the hostPath. A local hard disk is 

mounted, so access is more secure than with hostPath. However, the availabil-

ity is also reduced here because the PV is dependent on a node.

nfs This plug-in is used to connect a network file system.

Table 5.1  Storage Plug-ins Supported by Kubernetes
278 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



5.2 Persistent Volumes and Persistent Volume Claims
Let’s now take a closer look at some manifests. Listing 5.8 shows an example in which a

network file system (NFS) is used. Under nfs in the manifest, you specify the IP through

which the storage can be accessed and the path to which the data can be written. This is

the path on the NFS. You can also specify NFS-specific mountOptions.

apiVersion: v1
kind: PersistentVolume
metadata:
  name: nfs-pv
spec:
  capacity:
    storage: 5Gi
  accessModes:
    - ReadWriteOnce
  mountOptions:
    - hard
    - nfsvers=4.1
  nfs:
    path: /nfs-pfad
    server: 192.168.0.5

Listing 5.8  Manifest of NFS Volume

I also want to show you the local volume in more detail, as you will be using simple

storage solutions, especially for quick tests or during development. The local volume is

preferable to hostPath. You can find a more detailed comparison in Table 5.2. You

should think of the local volumes as being similar to a Docker volume that is managed

by Kubernetes.

hostPath Local

Scheduling The scheduler does not monitor the 

connection between pod and PV. 

The pod can be started on a differ-

ent host when restarting and thus 

lose the data.

The scheduler takes the local PV 

into account and will always exe-

cute the pod on the corresponding 

node.

Security The access to the host involves a 

certain risk as paths can be 

described that are not specifically 

intended for Kubernetes.

In addition, it is difficult to control 

who else has access to the path.

This is a specially created and pre-

pared volume with clear boundar-

ies. The authorization is under the 

control of Kubernetes.

Table 5.2  Comparison of hostPath and Local Volumes
279Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



5 Stateful Applications and Storage
Listing 5.9 shows the manifest of a local volume. In addition to the path and local, node-
Affinity must also be defined. The affinity defines which node the PV is “attracted” to.

In the example, we defined that the PV is only generated on a node with the host name,

minikube. We explained and tested affinities in more detail in Chapter 2, Section 2.2.4.

apiVersion: v1
kind: PersistentVolume
metadata:
  name: local-pv
spec:
  capacity:
    storage: 5Gi
  volumeMode: Filesystem
  accessModes:
  - ReadWriteOnce
  local:
    path: /tmp/test
  nodeAffinity:
    required:
      nodeSelectorTerms:
      - matchExpressions:
        - key: kubernetes.io/hostname
          operator: In
          values:
          - minikube

Listing 5.9  Manifest of Local Volume

Good to Know

You have probably already noticed the accessMode setting in the listings. There are four

access modes, but you cannot choose from all access modes for each storage, as these

are dependent on the storage itself:

Lifecycle The lifecycle is linked to the node. 

This creates an additional risk as 

the hostPath can also be written to 

or deleted by other locations.

The lifecycle is linked to the lifecy-

cle of the node.

Suitability for 

Production

Is only suitable for production sys-

tems in exceptional cases (e.g., a 

system pod within a DaemonSet).

Suitable for productive use with 

caution, as the data is bound to a 

node.

hostPath Local

Table 5.2  Comparison of hostPath and Local Volumes (Cont.)
280 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



5.2 Persistent Volumes and Persistent Volume Claims
� ReadWriteOnce
Enables reading and writing from a single node simultaneously. If you use host-
Path, for example, you are forced to use this access mode. No other node can access

the path. However, you can allow multiple pods on the same node to access the PV.

� ReadOnlyMany
The PV can be mounted by several nodes with read-only access. This allows you to

make data available to multiple pods, but they are not allowed to change it.

� ReadWriteMany
If pods want to read and write data at the same time, they can use this access

mode. One use case is a website to which customers can upload images that store

your pods in an NFS.

� ReadWriteOncePod
This is a beta feature in version 1.27. The access mode ensures that only one pod

within the cluster can access the PV.

The documentation explains in full which storage you can use with which access

mode: http://s-prs.co/v596441.

5.2.2    CSI Drivers for External Storage Media

Similar to the container engine, which you learned about in Chapter 2, Section 2.1.1,

Kubernetes has become increasingly open in recent versions. The container storage

interface (CSI) provides an interface that can be implemented by plug-ins. While you

could still use types such as awsElasticBlockStore, azureDisk, or gcePersistenDisk
directly in versions prior to Kubernetes v1.27, these were successively removed and

reimplemented via their own CSI drivers. This makes Kubernetes more lightweight at

its core.

The idea behind the CSI drivers is as simple as it is powerful: a wide variety of storage

types should be supported, which must be flexibly connected. The answer to this is a

standardized API that provides storage and cloud providers with an interface to pro-

vide storage for Kubernetes. As a developer, you then have the option of provisioning

and using this storage simply by generating PVs and PVCs. This facilitates your work

considerably because with one parameter you can decide whether the data should be

stored on a single volume such as AWS EBS or in a distributed storage system such as

AWS EFS.

Good to Know

Most drivers are also being further developed as open-source projects. You can find an

overview of the official repositories at the following URL if you search for "Driver":

http://s-prs.co/v596442.
281Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596441
http://s-prs.co/v596442


5 Stateful Applications and Storage
The drivers are installed as operators in Kubernetes, which are then contacted by api-
server as soon as a manifest uses the corresponding driver; after that, they provision

the storage.

Listing 5.10 shows the configuration for aws-ebs-csi-driver under csi.driver. This

parameter determines which storage solution is to be used.

apiVersion: v1
kind: PersistentVolume
metadata:
  name: test-pv
spec:
  accessModes:
  - ReadWriteOnce
  capacity:
    storage: 5Gi
  csi:
    driver: ebs.csi.aws.com
    fsType: ext4
    volumeHandle: {EBS volume ID}
  nodeAffinity:
    required:
      nodeSelectorTerms:
        - matchExpressions:
            - key: topology.ebs.csi.aws.com/zone
              operator: In
              values:
                - {availability zone}

Listing 5.10  Static Persistent Volume Created on Amazon EBS

Good to Know

In production environments, the drivers are installed by cluster admins as the configu-

rations are special in each case. However, I want to give you a better feel for the drivers

and will make a brief digression here, using aws-ebs-csi-driver as an example.

Your starting point is always the driver repository because you will find everything you

need there: http://s-prs.co/v596443.

In this case, the driver first needs certain AWS authorizations. Then the operator with

Helm is installed on Kubernetes. (Helm charts are discussed in more detail in Chapter

8.) The Helm package contains everything the operator needs to recognize a configura-

tiona as in Listing 5.10 and to provide the storage, including the operator containers as

a deployment and the Kubernetes policies.
282 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596443


5.2 Persistent Volumes and Persistent Volume Claims
The most important thing is that you check which settings can be made for the driver

prior to the installation. For example, you have the option of activating a snapshotter

that allows you to make backups. These settings are also provided via Helm during

installation.

In essence, that’s all that needs to be done. The operator takes over the work and

extends the Kubernetes API. You can use the documentation to see which specific ser-

vices or configurations the driver provides and sets. Provisioning then works via the PV

and PVC manifest, which the driver recognizes and executes.

5.2.3    Storage Classes and Dynamic PVs

You have now learned how to generate PVs independently. These types of PVs are also

referred to as static PVs because you have to create and manage them yourself. How-

ever, Kubernetes can also create volumes dynamically on the basis of storage classes.

As shown in Figure 5.6, this allows the system to automatically respond to requests

from a PVC by providing the required PV, which means that a PVC does not wait until a

suitable PV is available, but simply creates its own.

Figure 5.6  PVC Creates PV Based on StorageClass

Note

Not every storage type can be created dynamically. For example, you must create the

local volume statically.

The storage classes provide an opportunity to bring more structure to the various stor-

age offerings. You have already gotten to know some of them and know that they differ

in terms of performance, availability, or manageability. In your corporate environ-

ment, you may even be given a handful of storage classes by the cluster admins as

uses

creates and
accesses

PVC

PV

Pod Volume

StorageClass
283Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



5 Stateful Applications and Storage
these are directly dependent on the infrastructure. Clusters running on Azure require

different CSI drivers than clusters in an on-premise environment.

Listing 5.11 gives an example of how StorageClass is defined.

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: cloud-storage
provisioner: ebs.csi.aws.com
volumeBindingMode: WaitForFirstConsumer
allowVolumeExpansion: true
parameters:
  type: gp2
  encrypted: "true"

Listing 5.11  Example of StorageClass Manifest

In this example, Amazon EBS is used as the provisioner, as you already know from Lis-

ting 5.10.

There are two options to consider. First, by using allowVolumeExpansion, the storage

class gives you the option of allowing the PVC to subsequently expand the memory.

This is not supported by every storage type, but makes handling PVs much easier. You

can simply add more storage if required and start with less at the beginning if it is still

unclear how much storage is actually needed.

Another important option is volumeBindingMode. Table 5.3 compares the two options.

volumeBindingMode Function Usage

Immediate The default mode, which 

ensures that a PV is generated 

and claimed directly when the 

PVC is created.

Used if a volume can be used 

by several nodes.

WaitForFirstConsumer In this mode, the binding 

between the PVC and the PV is 

delayed until a pod uses the 

PVC as a storage request.

This prevents the PV from 

being generated on a node 

that is not intended for the 

pod by the scheduler.

Particularly useful if the PV 

node is specific, as is the case 

with local volumes.

Can be the solution if a pod 

does not start because the 

node on which the volume is 

running has no capacity.

Table 5.3  Comparison of Options for volumeBindingMode
284 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



5.2 Persistent Volumes and Persistent Volume Claims
Good to Know

In Listing 5.11, you will not see an explicitly set reclaimPolicy. It is important to

note that the lifecycle of dynamically generated PVs corresponds to the PVC, and

reclaimPolicy: Delete is the default. This means that the PV will be deleted as soon as

the PVC is deleted.

The opposite is true for static PVs. This may be useful and sufficient for some use cases,

but you should make a conscious decision in favor of a reclaim policy.

The reclaim policy provides an answer to the following question: What happens to the

volume when the PVC's lifecycle ends?

You can choose from these three options:

� Retain
The PV remains and ends up in the released status. You can then restore the PV

using manual steps.

� Recycle
This is a deprecated function that empties the PV. Kubernetes recommends using

dynamic PVs instead.

� Delete
The PV is deleted and all data is lost.

The dynamic requirement of the PV is set by the PVC. In Listing 5.12, you can see the

PVC used by the StorageClass from Listing 5.11. You are free to choose any name for it.

For example, you could also assign the names according to speed or availability so that

it is immediately clear which type of storage is to be used when the PVC is created.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: ebs-pvc
spec:
  accessModes:
    - ReadWriteOnce
  storageClassName: cloud-storage
  resources:
    requests:
      storage: 20Gi

Listing 5.12  PVC that Dynamically Generates PV via StorageClass

Unfortunately, you cannot test the EBS storage class on Minikube, but Minikube itself

comes with its own hostPath provisioner, which we will now try out to create dynamic

PVs.
285Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



5 Stateful Applications and Storage
When you click Storage • Storage Classes in Lens, you will find a predefined class

named standard. This storage class is set as the default, which also explains why you

had to set the storageClassName: "" in Listing 5.6, as otherwise a PV is automatically

generated. If you look at the details, you will also find all the settings you are familiar

with from Listing 5.11.

For testing purposes, you can now adapt the code from Listing 5.6 and set

StorageClassName: standard. The PVC generates a PV directly and is connected to it.

Because the reclaim policy is set to Delete, you can now delete the PVC and the PV will

also be deleted.

The dynamic creation of PVs on the basis of the storage classes is very simple and saves

us from explicit specification of the PV. If you still have storage that can be expanded at

runtime, then why and when should you use a static PV at all? There are a few reasons:

� As with local volumes, it is not always possible to generate the PV dynamically.

� As a cluster admin in particular, you have more control over the storage. This some-

times makes sense in production environments as the storage requirements are

usually already clearly defined in production.

� By manually assigning the PVs to a storage, you have better options for optimizing

performance.

Otherwise, you are well served with dynamic PVs, and these are more flexible, espe-

cially in development environments.

5.2.4    PostgreSQL as StatefulSet with Persistent Volume

Let’s now run through a use case to put into practice what you have learned. In this con-

text, you will

� deploy a PostgreSQL database as a StatefulSet, and then

� create a hostPath PV for the StatefulSet.

In Listing 5.13, you can see a StatefulSet manifest that already has everything you need.

Try it yourself and roll it out on Minikube. I have marked the interesting parts for you.

apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: pgsql
spec:
  serviceName: "pgsql"
  replicas: 1
  selector:
    matchLabels:
      app: pgsql
286 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



5.2 Persistent Volumes and Persistent Volume Claims
  template:
    metadata:
      labels:
        app: pgsql
    spec:
      containers:
      - name: pgsql
        image: postgres:latest
        env:
        - name: POSTGRES_PASSWORD
          value: "examplepassword"
        ports:
        - containerPort: 5432
          name: pgsql
        volumeMounts:
        - name: pgsql-storage
          mountPath: /var/lib/postgresql/data
  volumeClaimTemplates:
  - metadata:
      name: pgsql-storage
    spec:
      accessModes: ["ReadWriteOnce"]
      storageClassName: "standard"
      resources:
        requests:
          storage: 10Gi

Listing 5.13  StatefulSet Manifest of PostgreSQL

The StatefulSet is generated, which starts a pod. This pod will create a PVC based on

volumeClaimTemplate. This means that you do not have to create a PVC in order to trans-

fer it to the pod. This has the advantage for you that you do not need to create a sepa-

rate PVC for each new replica. The advantage of dynamic PVs also comes into play here.

Due to the standard StorageClass, Kubernetes recognizes that the PV should be created

via the hostPath provisioner of Minikube and executes this. So you don't have to do

anything else: the PVC claims the PV and is mounted in the pod.

Under volumeMounts, the PVC is placed on a path within the pod, which is then used by

the application.

Take a look at the resources created in Lens. There you will find the StatefulSet and the

pod named pgsql-0, as shown in Figure 5.7. You can also see whether the PVC and PV

have been generated.
287Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



5 Stateful Applications and Storage
Figure 5.7  StatefulSet in Lens

Let’s do a small test and see whether the data under the mount path is really stored on

the PV:

1. Open the shell of the pgsql-0 pod.

2. Log onto PostgreSQL by using the psql -U postgres command.

3. Run the following commands to create a table and insert a test dataset:

CREATE TABLE test (id SERIAL PRIMARY KEY, name VARCHAR(255));

INSERT INTO test (name) VALUES ('data1'), ('data2');

4. Terminate the pod and wait until the StatefulSet creates a new pod. The pod will also

be named pgsql-0.

5. Open the command line in this pod and log into PostgreSQL.

6. Use the SELECT * FROM test; command to check whether the dataset still exists.

The table and dataset are also available in the new pod. This means that the data is

stored correctly on the PV.

Note

Up to this point, we have only mounted PVs as a file system in applications. But Kuber-

netes offers yet another option that you might come across.

The volumeMode option lets you choose between two modes. The default mode is

Filesystem. Kubernetes mounts the volume and will create a file system the first time.

So you don't have to worry about the file system, and your application can simply read

and write data.

You can also set the volumeMode to Block. This mounts the volume as a block device and

does not automatically install a file system. However, the pod must be able to handle a
288 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



5.3 Ephemeral Volumes
block device. Access to the volume should then be faster than with an additional file

system layer.

In practice, I have only come across the file system option so far, and this option will

also be sufficient for most applications in your case.

You have successfully used a PV as storage for a database. In a production environ-

ment, it would be appropriate to turn one PostgreSQL replica into several, depending

on the availability requirements. Of course, you can set your StatefulSet to deploy

multiple pods, but the data between the instances will not be replicated. Depending on

the application, this may require a little more development work, but it is worth it in

the end.

Finally, the following question may arise: Is a PV necessarily dependent on a Stateful-

Set?

The answer is no. You can of course also let your pods that are managed by a deploy-

ment use PVs. This can sometimes be useful if, for example, you are building a cache

that should still be available for the next pod when the pod is scheduled. But be careful!

Always keep the concepts from Chapter 1, Section 1.1.4 in mind, and then consciously

decide on a solution that suits you and your company.

5.3    Ephemeral Volumes

Ephemeral volumes are temporary and exist only as long as the pod that creates the vol-

ume exists. They can be used for data that does not need to persist beyond the life of

the pod, such as cache data or session information. This is ideal for temporary work-

loads, test environments, and stateless applications.

The advantages of ephemeral volumes are as follows:

� Performance

They can usually offer higher I/O performance rates as they are often stored directly

on the local node and have no network latency.

� Easier management

They are easier to manage because they are automatically created and deleted with

the pod.

� Lower costs

As the data does not need to be stored persistently, ephemeral volumes do not

require complex storage solutions such as network storage, cloud storage, or back-

ups. This significantly reduces costs and complexity.
289Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



5 Stateful Applications and Storage
Table 5.4 lists the types of ephemeral volumes. In general, you can keep in mind the fol-

lowing: if the data is no longer needed after exiting the pod, you should use an ephem-

eral volume.

Note

PVs of the hostPath type are of course also located directly on the node. This means

that their performance hardly makes a difference compared to an ephemeral volume.

Let's look at a few examples. You have already used emptyDir in Chapter 2, Section 2.1.3

in the log collector example. In Listing 5.14, you will find the syntax you can use to cre-

ate a simple emptyDir. Kubernetes will then create your volume in the default storage.

volumes:
- name: empty-dir
  emptyDir: {}

Listing 5.14  Simple emptyDir

An emptyDir provides two options. You can limit the size, and you can create the vol-

ume directly in the RAM. The latter option is particularly appealing because access to it

is significantly faster than to a normal hard disk. However, you must keep in mind that

the data stored on it is also limited by the pod's resource limit, which you will learn

about in Chapter 7, Section 7.1. An example of this is shown in Listing 5.15.

Type Description

emptyDir An empty folder that is mounted at pod startup. The 

kubelet creates the storage locally on the root disk or 

even in the RAM.

configMap, secret, downwardAPI You have already become familiar with these types in 

Chapter 2, Section 2.4 and Chapter 4, Section 4.4. You 

can use them to inject configurations as files in a vol-

ume.

CSI ephemeral volumes This allows you to make a volume available via a CSI 

driver. Works in a similar way to persistent volumes.

Generic ephemeral volumes Works like emptyDir volumes, but provides even more 

options, such as volumes on a network storage.

Table 5.4  Types of Ephemeral Volumes
290 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



5.4 Other Features of Volumes
volumes:
- name: empty-dir
  emptyDir:
    sizeLimit: 500Mi
    medium: Memory

Listing 5.15  emptyDir in RAM

As for CSI ephemeral volumes, you also need a CSI driver for generic ephemeral vol-

umes, which will provision the volume for you. They function in a way that’s similar to

an emptyDir volume and are linked to the lifecycle of a pod. Depending on the driver,

however, they have more options:

� You can also create the volume on a NAS.

� Depending on the driver, volumes may contain initial data. This is useful, for exam-

ple, if your application is supposed to start with a standard set of data.

� You can set functions such as snapshots, resizing, or monitoring the storage space.

However, you are dependent on a driver that supports these functions.

Note

Aside from emptyDir, the other ephemeral volumes are difficult to reproduce on Mini-

kube. However, you are already well equipped with emptyDir volumes; if you need

more, you should talk to your cluster admins in advance anyway. Perhaps they already

offer corresponding storage classes.

5.4    Other Features of Volumes

In this section, we’ll introduce you to two features that are worth mentioning and that

you might find useful in the future:

� Volume snapshots

� Projected volumes

Volume snapshots are particularly interesting if you have not yet developed a backup

strategy for persistent volumes in your company. They can provide a simple variant

that simplifies backup and recovery for you.

Projected volumes are useful if you want to use a large number of different configura-

tions in your pod. This concept allows you to group the configurations all together and

mount them under a single path.
291Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



5 Stateful Applications and Storage
5.4.1    Volume Snapshots

You can add a snapshot to volumes that are created using the CSI driver. In Kubernetes,

a volume snapshot is a snapshot of the status of a storage volume; you may already be

familiar with this principle from other services. AWS also offers snapshots for your EBS

volumes.

Typically, you can use a snapshot much like a backup for a volume, or you can use it to

copy an existing volume to use with another pod.

Use cases for snapshots include

� general backups for disaster recovery,

� backups made before updating the database, and

� creating a copy to perform an error analysis on a system other than the live system.

Note

Before you use volume snapshots, you should work out a backup strategy. At one of my

clients, for example, we use the AWS backup, which takes automated EBS snapshots.

For this reason, the company does not need additional volume snapshots.

Backup Is Easy: Recovery Is Tough!

You will only know whether a backup works when you want to restore it. So if you want

to use volume snapshots as a backup strategy, you should test the procedure exten-

sively.

Let's first look at the three objects you should know about:

� VolumeSnapshotContent
This object represents the snapshot that was taken of a volume in the cluster. It con-

tains the data copy of a volume at a specific point in time and serves as a basic com-

ponent for data backup.

� VolumeSnapshot
This object is a user's request for a snapshot. It is similar to the principle of a per-

sistent volume claim. You can use VolumeSnapshot to initiate the snapshot process.

� VolumeSnapshotClass
Similar to the StorageClass, you use this object to define the various attributes that

belong to a volume snapshot.

Good to Know

VolumeSnapshot, VolumeSnapshotContent, and VolumeSnapshotClass are CRDs and not

part of the core API.
292 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



5.4 Other Features of Volumes
As is usual with CRDs, there is an operator who takes care of the snapshots and listens

to the CRDs (see Chapter 4, Section 4.3.3). You may need to activate the volume snap-

shots in your cluster before you can use them. We can simply use add-ons for the Mini-

kube cluster. To do this, run the following commands in your command line:

minikube addons enable volumesnapshots
minikube addons enable csi-hostpath-driver

Note

Activating the csi-hostpath-driver add-on caused problems on my side. As is so often

the case, stopping and restarting the Minikube cluster helped.

Activating the add-ons automatically creates a new storage class named csi-hostpath-
sc for you, which you can find in Lens under Storage • Storage Classes. The three corre-

sponding CRDs for the volume snapshot are also created and can be found under Cus-

tom Resources • Definitions and should look as shown in Figure 5.8.

If you click VolumeSnapshotClass, you will see that a SnapshotClass named csi-
hostpath-snapclass has also been created.

Figure 5.8  Volume Snapshot CRDs in Lens

For the example, we now need a volume that is based on the new storage class. I have

prepared a PVC manifest in Listing 5.16. When you roll it out, a PV will be created auto-

matically.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: my-pvc
293Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



5 Stateful Applications and Storage
spec:
  accessModes:
  - ReadWriteOnce
  resources:
    requests:
      storage: 1Gi
  storageClassName: csi-hostpath-sc

Listing 5.16  PVC with CSI Storage Class

Listing 5.17 shows an example of a VolumeSnapshot manifest. When you import it, the

snapshot controller will take a snapshot of your volume. Try it out and then take a look

at the VolumeSnapshotContent objects. You can now find a fresh snapshot there, as

shown in Figure 5.9.

apiVersion: snapshot.storage.k8s.io/v1
kind: VolumeSnapshot
metadata:
  name: my-pv-snapshot
spec:
  volumeSnapshotClassName: csi-hostpath-snapclass
  source:
    persistentVolumeClaimName: my-pvc

Listing 5.17  VolumeSnapshot Manifest

Figure 5.9  SnapshotVolumeContent
294 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



5.4 Other Features of Volumes
Now, of course, we also should try a restore. To do this, you must create a new PVC and

link it to the backup, as shown in Listing 5.18. When you roll it out and observe the PVC,

you will see that the PV generation takes a little longer than usual. The snapshot con-

troller must restore the backup in the background.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: my-pvc-restore
spec:
  storageClassName: csi-hostpath-sc
  dataSource:
    name: my-pv-snapshot
    kind: VolumeSnapshot
    apiGroup: snapshot.storage.k8s.io
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 1Gi

Listing 5.18  Restoring PVC from Backup

That was the snapshot and restore process in fast-forward mode. If you want to use the

snapshot function in a cluster in your company, you must install the CRDs. You can

find instructions on how to do this in the corresponding GitHub repo at http://s-prs.co/

v596444.

Note

In this example, we have not even checked whether all the data has actually been

restored. You can perform another test according to the following scheme:

1. Mount the PVC in a pod.

2. Place a file on the PV.

3. Perform the snapshot and restore processes.

4. Mount the new PVC in a pod.

5. Check whether the file is available.

5.4.2    Projected Volumes

Kubernetes provides projected volumes for certain volume types. These are used to

combine multiple existing volume sources into a single shared volume, which is

particularly useful if an application needs to access different types of configurable
295Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596444
http://s-prs.co/v596444


5 Stateful Applications and Storage
information, but you want to manage this information centrally. Your YAML manifest

will also be a little smaller and clearer.

Supported types are as follows:

� secrets

� ConfigMaps

� downwardAPI

� serviceAccountToken

If you remember Chapter 2, Section 2.4, then you know that you can integrate Config-

Maps and secrets as volumes. A separate file is then created for each parameter under

the mount path. However, as in Listing 5.19, you must perform a separate mount for

each ConfigMap.

…
spec:
  containers:
    - name: example-container
      image: nginx
      volumeMounts:
      - name: config-volume
        mountPath: /etc/config
      - name: config-volume2
        mountPath: /etc/config2
  volumes:
    - name: config-volume
      configMap:
        name: example-configmap
        items:
        - key: "config.json"
          path: "config.json"
    - name: config-volume2
      configMap:
        name: example-configmap2
        items:
        - key: "config2.json"
          path: "config2.json"

Listing 5.19  ConfigMaps as Normal Volumes
296 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



5.4 Other Features of Volumes
The folder structure then looks as follows:

etc
├── config
│   └─── config.json
└─── config2
    └─── config2.json

The idea behind projected volumes is to bring together all types that contain configu-

ration information so that you can mount them under a single path. Listing 5.20 shows

the syntax for the projected volume. You only mount one volume and add all Config-

Maps below it.

…
spec:
  containers:
    - name: example-container
      image: nginx
      volumeMounts:
      - name: projected-volume
        mountPath: /etc/config
  volumes:
  - name: projected-volume
    projected:
      sources:
      - configMap:
          name: example-configmap
          items:
          - key: "config.json"
            path: "config.json"
      - configMap:
          name: example-configmap2
          items:
          - key: "config2.json"
            path: "config2.json"

Listing 5.20  ConfigMaps in Projected Volume

After that, the folder structure in your pod will look as follows:

etc
└── config
   ├─── config.json
   └─── config2.json
297Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



5 Stateful Applications and Storage
Just try it out for yourself; use the ConfigMap and secret examples from Chapter 2, Sec-

tion 2.4. The projected volume makes it easier to find the configurations, especially for

your application, because there is only one folder for them.
298 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



Chapter 6 

Kubernetes Governance and Security: 
Prepare for Production

The greatest enemy of knowledge is not ignorance, but the illusion of 

being knowledgeable.

—Daniel J. Boorstin

IT is characterized by constant change. Complex technologies such as Kubernetes,

continuous innovation, and ever-increasing abstraction mean that it is becoming

increasingly difficult to recognize any danger in advance and make appropriate prepa-

rations—which, in IT, are known as mitigations.

For software to be secure, many small gears have to mesh together. From your develop-

ment projects, you are no doubt familiar with tools that perform vulnerability scans to

alert you to weaknesses in software libraries. Or perhaps you are already using

SonarQube for static code analysis, which can point out certain problems in your code.

In addition, there are areas such as network security, authentication, and—if we are

really precise—security in data centers. However, you don't just want to protect your-

self from hackers who deliberately want to damage your company; you also want to

protect your software or data from internal errors.

Assuming that a Kubernetes cluster is inherently secure or that the existing security

measures are sufficient can be dangerous. I know it's hard to deal with the security con-

cepts of Kubernetes, networks, and servers in addition to developing software. Never-

theless, a basic understanding is essential.

I first became really aware of the topic of container security in a customer project when

we were presented with a catalog of specifications. It contained easy-to-apply guide-

lines, such as carrying out vulnerability scans of the container images or using stan-

dardized images. Then it got more complicated with rules such as the following:

� Containers must not run as root.

� Containers must not write to the root file system.

� Containers must not have any privileges.

These requirements meant that many applications had to be redesigned and rebuilt

because no one had thought of these possibilities beforehand and therefore no one

used them.
299Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



6 Kubernetes Governance and Security: Prepare for Production
In this chapter, I want to introduce security and governance topics so that you are pre-

pared for the use of Kubernetes in production and can prepare your applications for

this at an early stage. I want to make the start as easy as possible for you. The aim is for

you to be able to have a say with the cluster admins; fully securing and operating a clus-

ter setup is of course much more complex.

The concepts you learn will ensure not only that the infrastructure is robust and resil-

ient to threats, but also that you adhere to organizational policies and compliance

requirements.

By security in Kubernetes, we mean all measures and mechanisms that serve to protect

the clusters and the applications running in them from unauthorized access, misuse,

and other potential security threats. This includes various aspects:

� Authentication and authorization, for ensuring that only authorized users and ser-

vices have access to cluster resources

� Data security, for encryption of data both at rest and in transit to prevent data theft

or loss

� Vulnerability management, for regular scans and updates to identify and close secu-

rity gaps in applications and infrastructure

Governance refers to the policies, procedures, and controls used to manage and moni-

tor the administration and operation of Kubernetes clusters. Good governance ensures

that the infrastructure and applications are consistent with the business objectives,

standards, and compliance requirements of the company or project. For example, you

must ensure that the rules for releases are adhered to so that no code is used in produc-

tion that has not been tested and checked. Or you must ensure that the personal data

of customers is protected accordingly or that the company's IT resources are handled

responsibly.

The requirements are as complex as they are multilayered and look slightly different in

every company and often also in every project. Accordingly, it is important that you

check and consider very carefully which guidelines and restrictions should apply. This

is of course a completely separate work step and should not be done “on the side.”

The core elements of governance include the following:

� Policy management

The definition and enforcement of guidelines for the configuration and use of

resources in the cluster

� Compliance monitoring

Checking and ensuring that the cluster and the applications running on it comply

with regulatory requirements and internal standards
300 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



6.1 Pod Security
� Resource management

Control over the allocation and utilization of resources within the cluster to ensure

efficiency and cost control

� Audit and logging

The recording and analysis of activities in the cluster to investigate security inci-

dents and check compliance with guidelines

In real life, security and governance in Kubernetes are closely linked and complement

each other to create a secure, efficient, and compliant Kubernetes environment. The

implementation of security measures protects the infrastructure from external and

internal threats, while governance practices ensure that the use of this infrastructure

complies with organizational guidelines. Both are essential for the secure and respon-

sible operation of Kubernetes clusters in an enterprise environment.

6.1    Pod Security

For pods, there are several adjusting screws that influence their safety. The rights of a

pod are also referred to as privileges. Privileges affect what a pod or container can do

within a Kubernetes cluster.

Access to Secrets

If an attacker takes control of a privileged pod, they have far-reaching access to the

node.

Do you remember Chapter 2, Section 2.4, where we talked about secrets? A pod that

has privileged access can, for example, read all the secrets that are on the node.

Pods and the containers they contain can be given specific security restrictions to limit

what processes are allowed to do in the containers. For example, the user ID (UID) of the

process, the Linux capabilities, and the file system group can be restricted.

Linux Capabilities

Linux capabilities are often only required during startup. You can swap this functional-

ity out to the init container and thus prevent your application container from running

with the capabilities.

An overview of all Linux capabilities can be found at the following address: http://s-

prs.co/v596445.

Without this restriction, a pod could control the node's network configuration, over-

write the root directory, and do many other things that you want to prevent. These
301Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596445
http://s-prs.co/v596445


6 Kubernetes Governance and Security: Prepare for Production
capabilities are usually deactivated, but as always, there are exceptions. Some tools

require extended access—for example, the following:

� Network operations

Network tools need direct access to network interfaces.

� Debugging and monitoring

Some monitoring tools must perform debugging at the kernel level and require cor-

respondingly extensive privileges.

� Storage and volume management

Some disk or file system management operations may require extended permis-

sions, especially if they are outside the standard Kubernetes volume APIs.

The restrictions that you can set are referred to as the security context. They can be

defined for the entire pod or per container and entered in the manifest, as in Listing 6.1.

The policy at container level is only valid for this container and overrides rules you

have set at the pod level. In the example, the container is prevented from starting the

process as root.

apiVersion: v1
kind: Pod
metadata:
  name: nginx
spec:
  securityContext:
    runAsNonRoot: true
  containers:
  - image: nginx
    name: nginx
    securityContext:
      runAsNonRoot: true

Listing 6.1  Example of Set Security Context

Good to Know

Not every rule at the pod level can also be set at the container level and vice versa.

If you set rules in the security context, this can result in your containers no longer

starting. Unfortunately, simply telling the pod that it is not allowed to start as root does

not suffice. The container must also behave accordingly; otherwise errors will occur, as

in Figure 6.1.

The challenge is therefore to set the appropriate security context for each pod so that

the pod has as many rights as it needs, but no more. This is referred to as the least priv-

ileged principle.
302 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



6.1 Pod Security
Figure 6.1  Container Must Not Start as Root

Good to Know

You can also set SELinux labels via the security context. However, changing the SELinux

labels for a container can potentially allow the containerized process to break out of

the container image and access the host file system. You should therefore handle them

with care.

Your cluster admins in your company may already have given you specifications for

the security contexts. We’ll look at the most important ones so that you can get a feel

for what you can set. You probably won't need all the rules, but you should think about

what rights your pod needs.

You can set the following options at the pod level:

� runAsNonRoot

If you set this value to true, the container must not be started as the root user.

� runAsUser

Here you define the user ID with which the containers are executed. This means you

can restrict the container to the authorizations of a specific user.

� runAsGroup

You can use this option to set the group ID with which your container is executed.

� fsGroup

Sets the group ID for all volumes used by the pod to set file permissions.

Good to Know

A complete overview of the options for the pod security context can be found in the API

documentation at the following address: http://s-prs.co/v596446.
303Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596446


6 Kubernetes Governance and Security: Prepare for Production
You can set the following options at the container level:

� privileged

Specifies whether the container is running in privileged mode. This gives the con-

tainer extensive access to the host.

� readOnlyRootFilesystem

Here you specify whether the root file system of the container should be write-

protected. This forces you to use volumes to store data.

� allowPrivilegeEscalation

This allows you to control whether processes in the container are allowed to increase

their privileges, such as by using setuid or setgid.

� capabilities

You can use this information to add or remove Linux capabilities from the con-

tainer. This allows you to assign necessary root user capabilities such as CHMOD to

your container.

Good to Know

A complete overview of the container security context options can be found in the API

documentation at http://s-prs.co/v596447.

6.2    Pod Security Admission

With the introduction of pod security admission (PSA), Kubernetes provides you with a

powerful tool to define and enforce security policies for pods.

Good to Know

Previously, pod security admission was referred to as pod security policy. You can still

find the old name in some documentation today.

PSA works on the basis of pod security standards, which are divided into three levels:

� Privileged

� Baseline

� Restricted

The pod security standards are applied to namespaces. Each of these levels specifies

certain guidelines for what the security context of a pod in a particular namespace

should look like.

The degree of security of the individual levels ranges from very permissive to highly

restrictive. You can imagine it like an onion, as in Figure 6.2. The more layers are added,
304 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596447


6.2 Pod Security Admission
the more rights the pod has. The policies cover a wide range of security requirements

so that you can control at the namespace level what the pods can and cannot do.

Figure 6.2  Pod Security Standards

Of course, the safest thing to do would be to give each pod restricted guidelines, but not

every application can handle this.

Good to Know

Keep in mind that privileges reduce the isolation of container and host. This can lead to

an application "breaking out" of the container and manipulating host resources or

accessing sensitive data.

The privileged policy is the least restrictive policy and offers the widest possible autho-

rizations. It is intended for system and infrastructure workloads. Under this policy, no

restrictions exist, and all operations are allowed. This mode is useful for workloads that

require access to system resources.

You can easily add the PSA to a namespace. An example of this is shown in Listing 6.2.

apiVersion: v1
kind: Namespace
metadata:
  name: example-namespace
  labels:
    pod-security.kubernetes.io/enforce: baseline

Listing 6.2  Namespace with PSA

Privileged

Baseline

Restricted
305Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



6 Kubernetes Governance and Security: Prepare for Production
Do Not Lock Yourself Out!

As you have also seen in Section 6.1, enforcing security context rules can cause your

pods to fail to start. You should therefore ensure that all pods comply with the guide-

lines when introducing them into existing namespaces; otherwise, your application

may fail.

6.3    Admission Controller

Say that you have a cluster that is home to many developers. Every developer knows

the security requirements, but you also want to check or ensure these. You could now

regularly scan all resources in the cluster and check whether the rules are being

adhered to. A far more effective method is to check each resource before it even moves

to the etcd database and thus becomes active in Kubernetes. To do this, you can simply

hook into each API request and check or change the requests.

The admission controllers are an essential part of the process of an API request in

Kubernetes. Their main functions include the modification (mutate) or validation of

the content of objects. For this purpose, you can define the rules an admission control-

ler can check.

Validating controllers look at a YAML manifest based on the rules and return the result

with regard to whether the rule is complied with or whether the manifest violates it.

The modifying controller will adapt the YAML manifest using a rule—for example, to

set a specified CPU limit—and returns the manifest.

Every request to Kubernetes also passes through the admission controller. Figure 6.3

illustrates the process each request goes through before an object finally moves to the

etcd database and becomes active in Kubernetes.

Figure 6.3  Sequence of API Request

Let's play this through with an example. When you as a user try to run a pod manifest

using kubectl in your Kubernetes cluster, the corresponding API request goes through

this process before the pod is actually created in the cluster:

1. Authentication

First, the Kubernetes API server checks the identity of the user or service executing

the request. If you remember Chapter 1, Section 1.5.3, then you know that kubectl
uses the certificate in your Kubeconfig file for this purpose.

 
Kubernetes

API
Endpoint

Authentication
Authorization

Mutating
Admission

Object
Schema

Validation
Validating
Admission etcdRequest
306 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



6.3 Admission Controller
2. Authorization

Once the user has been successfully authenticated, the API server checks whether

the user is authorized to create a pod. This is decided, for example, on the basis of

role-based access control (RBAC) guidelines.

3. Mutating admission

If configured, mutating rules are applied at this point. These can manipulate the pod

manifest in order to set certain labels, for example.

4. Schema validation

Kubernetes checks whether the schema of the YAML manifest is correct. This step

only takes place after the mutating step, as these rules could still change the mani-

fest.

5. Validating admission

In this step, you can define your own rules in addition to the schema validation. You

can use them to check whether the manifests comply with your security or compli-

ance guidelines.

6. Persistence in etcd

Only now is the manifest stored in the etcd database and then processed further by

Kubernetes, and the pod is generated.

If your request does not successfully pass one of these steps, then your pod will not

launch in Kubernetes in the end. In my opinion, the greatest strength lies in the valida-

tion step. If a manifest does not comply with the rules, it will be rejected prior to the

start. This allows you to enforce specific rules and thus ensure that security require-

ments are met, for example.

Good to Know

Kubernetes provides some standard admission controllers that you can use out of

the box. For example, you can set default values by using the DefaultIngressClass
controller or the DefaultStorageClass controller. Alternatively, you can use the

LimitRanger controller to check the requests and limits of pods.

A complete list and description of the standard controllers can be found at the follow-

ing address: http://s-prs.co/v596448.

Note

Admission controllers must be activated and deactivated in the API server. They are

transferred as parameters at the start. You should involve the cluster admins for the

clusters in your company. For example:
307Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596448


6 Kubernetes Governance and Security: Prepare for Production
� For activation

--enable-admission-plugins=NamespaceLifecycle,LimitRanger
� For deactivation

--disable-admission-plugins=PodNodeSelector

The MutatingAdmissionWebhook and ValidatingAdmissionWebhook webhook controllers

are particularly interesting. These allow for an unlimited expansion of the mutation

and validation logic, as you can either develop code for this yourself or use one of the

many available tools.

Good to Know

Tools that use the webhook controller include Gatekeeper and Kyverno.

As you can see, admission controllers, and especially webhook controllers, provide a

flexible way to check and enforce governance, security, and compliance in the Kuber-

netes cluster. By implementing custom checks and logic, you can exercise fine-grained

control over the resources in your clusters and ensure that only secure and compliant

configurations are applied.

6.4    Kubernetes Policies

Policies are essential in the Kubernetes ecosystem in order to control and optimize the

management of resources. These go hand in hand with the admission controllers dis-

cussed in Section 6.3, as the policies are typically validated by external tools. By using

policies, you can introduce finely tuned control mechanisms to ensure that cluster

usage meets your organizational requirements and best practices.

To give you a feel for the policies, I want to show you a few examples of the Kyverno

tool.

Note

We will not go into the installation of Kyverno, but if you want to try out the tool, you

can find more information at https://kyverno.io.

By using Kyverno, you have the option of writing policies that can run in either audit

or enforce mode. Using audit, the resources are only checked, and even if they do not

comply with the rules, they are deployed. However, you can view a report to get an

overview of your cluster's processes. With enforce, the resources are blocked and are

not deployed.
308 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

https://kyverno.io


6.4 Kubernetes Policies
Good to Know

If you do not want to enforce the rules, you can use Kyverno for reporting. I set up a

central reporting system for this at a client. This meant that no policies had to be rolled

out in the cluster for enforcement, but there was a central overview of compliance

with the security rules.

Let’s now look at some examples so that you can see how you might use a policy. Lis-

ting 6.3 shows a policy that prohibits the creation of pods whose images do not origi-

nate from a permitted registry. You can use this policy, for example, to enforce that

containers from the public—and therefore quite insecure—Docker Hub may not be

used. As you can see, Kyverno is given a manifest snippet under validate.pattern that

is supposed to be checked. In this case, the rule checks the image of the container. It is

also defined that this policy only applies to pods.

Monitor First, Then Block

You should be careful when enforcing rules with Kyverno because doing so means that

resources that do not comply with the policies may no longer be deployed. Even

resources that are already deployed in the cluster can have problems, and in the worst

case even system pods can be blocked. We had to rebuild an entire development clus-

ter for one customer because Kyverno had blocked everything.

It is best to start with audit policies and read the generated reports carefully. In the

next step, you can switch to automatically enforcing the rules.

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
  name: ensure-trusted-registry
spec:
  validationFailureAction: enforce
  rules:
    - name: trusted-registries-only
      match:
        resources:
          kinds:
            - Pod
      validate:
        message: "Only images from trusted registries are allowed."
        pattern:
309Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



6 Kubernetes Governance and Security: Prepare for Production
          spec:
            containers:
              - image: "docker.io/trusted/*"

Listing 6.3  Kyverno Policy for Trusted Registries

You can find another policy in Listing 6.4. To control resource utilization within the

cluster, you can use Kyverno to make sure that each pod complies with resource limits.

We will take a closer look at the resources in Chapter 7, Section 7.1, but you can probably

already imagine that monitoring them is important for the stability of the cluster. Pods

without limits could otherwise paralyze the entire system, so it is important that no

pod is started without the appropriate information.

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
  name: require-resources-limits
spec:
  validationFailureAction: enforce
  rules:
    - name: check-resources
      match:
        resources:
          kinds:
            - Pod
      validate:
        message: "CPU and memory limits are required."
        pattern:
          spec:
            containers:
              - resources:
                  limits:
                    memory: "?*"
                    cpu: "?*"

Listing 6.4  Enforcing Resource Limits

We talked about the security context in Section 6.1. These rules can also be checked and

enforced via Kyverno. An example of this is shown in Listing 6.5. If you do not already

specify the rules via the pod security standards, an explicit rule in Kyverno can be use-

ful.

apiVersion: kyverno.io/v1
kind: ClusterPolicy
310 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



6.5 Policy Objects
metadata:
  name: disallow-root-user
spec:
  validationFailureAction: enforce
  rules:
    - name: root-user-not-allowed
      match:
        resources:
          kinds:
            - Pod
      validate:
        message: "Execution as root user is prohibited."
        pattern:
          spec:
            securityContext:
              runAsNonRoot: true

Listing 6.5  Enforcing RunAsNonRoot Option

6.5    Policy Objects

There are objects that act as a type of Kubernetes policy but are different from it. I want

to present two of these in more detail, as they are particularly useful in larger clusters:

� Resource quotas

� Limit ranges

Resource quotas enable you to specifically control and limit the resource consumption

in your Kubernetes cluster. These powerful policies allow you to set limits for resource

consumption at the namespace level. By defining resource quotas, you ensure that no

namespace allocates too many resources and that the availability of resources for the

entire cluster remains fair and balanced. This is particularly important in larger clusters

with different clients.

Good to Know

You can use resource quotas and limit ranges to protect your cluster from accidental or

deliberate resource theft. What would happen if you simply started pods that block an

entire node with your request requirements?

Either you have a cluster autoscaler that starts up new instances, or other pods cannot

start or, in the worst case, are even displaced.
311Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



6 Kubernetes Governance and Security: Prepare for Production
You can find an example of a resource quota in Listing 6.6. It defines that

� a maximum of 10 pods may be created in this namespace;

� a maximum of four CPU requests may be made;

� a maximum of five gigabytes of memory requests may be made;

� 10 CPUs is the limit for this namespace; and

� 10 gigabytes of memory is the limit for this namespace.

apiVersion: v1
kind: ResourceQuota
metadata:
  name: example-quota
  namespace: my-namespace
spec:
  hard:
    pods: "10"
    requests.cpu: "4"
    requests.memory: 5Gi
    limits.cpu: "10"
    limits.memory: 10Gi

Listing 6.6  Sample ResourceQuota Manifest

If you define a resource quota, then it makes sense that requests and limits are also set

for each pod and, if necessary, a default is enforced. This is where the LimitRange object

comes into play. With resource quotas, you set a maximum for the namespace, while

by using LimitRange, you can define the minimum and maximum for a single pod or

container.

An example of this is shown in Listing 6.7. There you can see how to specify values for

pods and containers. Limit ranges help you to ensure balanced and fair resource con-

sumption so that all applications can run smoothly.

apiVersion: v1
kind: LimitRange
metadata:
  name: example-limits
  namespace: my-namespace
spec:
  limits:
  - type: Pod
    max:
      cpu: "2"
      memory: 1Gi
312 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



6.6 Role-Based Access Control in Kubernetes
  - type: Container
    max:
      cpu: "1"
      memory: 500Mi
    default:
      cpu: "500m"
      memory: 256Mi
    defaultRequest:
      cpu: "250m"
      memory: 128Mi

Listing 6.7  Sample LimitRange Manifest

6.6    Role-Based Access Control in Kubernetes

In most cases, a role and authorization concept will already exist in a company cluster,

which means there is a plan for how users log in and how they are assigned authoriza-

tions. This also depends on how the cluster is structured and managed. A large cluster

will most likely have more restrictive policies than a small one as there are more users

and different teams on it. Nevertheless, I would like to give an introduction in this

chapter so that you can have your say and understand what is happening in the back-

ground.

RBAC in Kubernetes is a tool for defining who is allowed to do what in the cluster. It is

based on a combination of roles and authorizations that determine which actions

users, services, or applications are allowed to perform. RBAC enables you to precisely

control access to resources in the cluster.

In the Kubernetes RBAC process, several key objects play a central role in enabling fine-

grained access controls within a cluster. These objects include the following:

� ClusterRole

Defines authorizations at the cluster level that can go beyond individual name-

spaces. One example of this is the cluster admin, who has access to all namespaces.

� ClusterRoleBinding

Assigns a ClusterRole to users, groups, or service accounts. Only the binding enables

the assigned entities to exercise the defined authorizations.

� Role

Similar to a ClusterRole, but limited to a specific namespace. Roles define what can

be done within the namespace.

� RoleBinding

Binds a role to users, groups, or service accounts. This determines who has which

authorizations in the namespace.
313Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



6 Kubernetes Governance and Security: Prepare for Production
� ServiceAccount

Special accounts used by pods to interact with the Kubernetes API server. They

enable applications to access Kubernetes resources.

� Users and groups

External users or groups that are not directly managed by Kubernetes but can be

identified by external authentication mechanisms.

Good to Know

You are familiar with Kubeconfig as an authentication mechanism for the cluster.

Kubernetes uses the CN field (common name), which contains the user name. This allows

a role to be bound to the user via RBAC.

You can find out more about user authentication at http://s-prs.co/v596449.

The RBAC process is relatively simple, and you may already be familiar with the princi-

ple from other tools. Figure 6.4 contains an overview of the process. You have a name-

space, and the roles and RoleBindings are defined in the namespace. The RoleBindings
are assigned to the users. The principle is also reminiscent of persistent volumes and

persistent volume claims. The same applies to ClusterRoles and ClusterRoleBindings.

Let’s now take a closer look at what exactly the individual resources do.

Figure 6.4  Overview of RBAC

crb

cluster
role

cluster
role

binding

user group sa

role

crb role
binding

ns
314 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596449


6.6 Role-Based Access Control in Kubernetes
6.6.1    Subjects: Users, Groups, and Service Accounts

Roles can be assigned to so-called subjects in Kubernetes. Subjects are actors that can

use the Kubernetes API with the rights of the role. As mentioned previously, there are

three categories of actors: users, groups, and service accounts.

In Kubernetes, users represent individual actors who require access to the system.

These can be developers or administrators, for example. User authentication is a criti-

cal step to ensure that only authorized persons or processes have access to the re-

sources and functions of the cluster.

A group in Kubernetes is a collection of users that are grouped together under a com-

mon name. Groups simplify the management of authorizations by making it possible

to assign roles and access rights collectively. Instead of assigning specific authoriza-

tions to individual users, you can assign roles to a group, which makes the administra-

tion of authorizations in large environments more efficient.

Note

Typically, users and groups are not managed directly via Kubernetes. For example, if

you want to establish a connection between your company's Active Directory and

Kubernetes, you will need a little more configuration work, depending on the cluster

structure. For one customer, for example, we used Rancher, which was also responsible

for user management. OpenShift also provides a more comprehensive user manage-

ment functionality than Kubernetes provides out of the box.

Roughly speaking, Rancher takes over the authentication in this case and then creates

an individual Kubeconfig file for your user, which you can then use to access Kuber-

netes.

It is best to talk to your cluster admins about this. You can also read more about this at

the following address: http://s-prs.co/v596450.

Because we want to take a more technical look at RBAC, we will leave out the users and

groups and take a closer look at the service account. Service accounts are special

accounts that are used for applications and services within a Kubernetes cluster. They

provide an identity for processes running inside pods and allow these processes to

interact with the Kubernetes API server. Service accounts are essential for automation

within the cluster, as they enable applications and services to access cluster resources

securely and without manual intervention.

The biggest difference from a normal user is that the service account is tied to a name-

space. A default service account is automatically created when a new namespace is cre-

ated. The main function of a default service account is to provide basic authentication

and identity within the Kubernetes cluster. However, these accounts have no further

authorizations, which means that they cannot really be used to interact with the

Kubernetes API server.
315Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596450


6 Kubernetes Governance and Security: Prepare for Production
Let's take a look at how you can make requests to the Kubernetes API within a pod using

the service account. To do this, roll out the pod from Listing 6.8 and log into it using

kubectl exec.

apiVersion: v1
kind: Pod
metadata:
  name: test-pod
spec:
  containers:
  - name: test-container
    image: curlimages/curl:latest
    command: ["sleep", "3600"]

Listing 6.8  Test Pod with Default Service Account

You can use the following command to read the service account token and send a

query to the API server using curl:

curl -sSk -H "Authorization: Bearer \
  $(cat /var/run/secrets/kubernetes.io/serviceaccount/token)" \
  https://kubernetes.default.svc/api/v1/namespaces/default/pods

The token is mounted in the pod as a secret, and you will always find it on this path. If

you execute the command, you will receive the following error:

"message": "pods is forbidden: User \"system:serviceaccount:default:default\" 
cannot list resource \"pods\"

Using the request, you are trying to read the pods from the default namespace, but the

service account is not authorized to do so.

Given the limited capabilities of default service accounts, it is necessary to create dedi-

cated service accounts for most real-world applications. These dedicated accounts can

be equipped with specific roles and authorizations that are precisely tailored to the

needs of the respective application or service. You can find an example of a service

account manifest in Listing 6.9. We will assign a role to it straight away and then use it

for the query.

apiVersion: v1
kind: ServiceAccount
metadata:
  name: my-serviceaccount

Listing 6.9  Service Account Manifest
316 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



6.6 Role-Based Access Control in Kubernetes
6.6.2    Roles and Role Bindings

Let's move on to the objects that enable you to define rights and assign them to an

account. A role in Kubernetes defines a set of permissions that specify which actions a

user, group, or service account can perform within a specific namespace. These autho-

rizations include reading, writing, or deleting Kubernetes resources such as pods,

deployments, and services.

You can find an example of a role in Listing 6.10. As you can see, a policy has three sub-

objects:

� apiGroups

� resources

� verbs

apiGroups group the various API resources in Kubernetes. These are divided into groups

to make it easier to expand the system. Each API group contains related resources. For

example, the apps API group contains resources that have to do with applications, such

as deployments, ReplicaSets, and StatefulSets.

resources are the specific objects to which a role has access. When you define a role or

ClusterRole, you list the resources for which the role is to grant authorizations. For

example, the resources could be pods, services, or deployments.

verbs define the operations that may be performed on the specified resources. You can

adjust these to a very detailed extent, as there are several of them. Verbs that you can

control using RBAC are as follows:

� create

� delete

� deletecollection

� get

� list

� patch

� update

� watch

Good to Know

You can use the following command to view all API objects and their verbs:

kubectl api-resources --sort-by name -o wide

As you can see, these three settings allow you to define very precisely which authoriza-

tions are set for which resources.
317Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



6 Kubernetes Governance and Security: Prepare for Production
Note

Always remember the least privileged principle when designing roles. Assign users or

service accounts only the minimum necessary authorizations that they need for their

tasks.

Let’s now continue the example from the previous section. To do this, roll out the role

from Listing 6.10 in your cluster. This will allow the service account to access pods in

the default namespace with get, watch, and list.

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
  namespace: default
  name: pod-reader
rules:
- apiGroups: [""]
  resources: ["pods"]
  verbs: ["get", "watch", "list"]

Listing 6.10  Manifest of Role

Now bind this role to the service account from Listing 6.9 using RoleBinding from Lis-

ting 6.11. If you roll this out now, this role will be assigned to the service account.

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: read-pods
  namespace: default
subjects:
- kind: ServiceAccount
  name: my-serviceaccount
  namespace: default
roleRef:
  kind: Role
  name: pod-reader
  apiGroup: rbac.authorization.k8s.io

Listing 6.11  RoleBinding Manifest

Now that you have assigned the role to the service account, you still need to assign the

service account to the test pod so that it can use it. Adapt the manifest as in Listing 6.12.

Roll out the new pod, log back in to it using kubectl exec, and run the curl command

from the previous section.
318 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



6.6 Role-Based Access Control in Kubernetes
You should now receive a JSON object with all pods of the namespace.

apiVersion: v1
kind: Pod
metadata:
  name: test-pod
spec:
  serviceAccountName: my-serviceaccount
  containers:
  - name: test-container
    image: curlimages/curl:latest
    command: ["sleep", "3600"]

Listing 6.12  Test Pod with Its Own Service Account

6.6.3    Conclusion

As you have seen in the example, creating and assigning roles and authorizations with

RBAC is very simple. You only need to know in advance which accesses the pod requires

to the Kubernetes API. You can then create the role accordingly and assign the rights

via a service account.

Of course, the simplicity of RBAC also harbors a danger. The more complex and detailed

the roles become, the more likely it is that an error will creep in and pods will gain

access that they should not have. This can be particularly dangerous if a pod is granted

admin access. In the end, assigning authorizations is always like a balancing act: overly

permissive roles can pose unintended security risks, while overly restrictive roles can

limit the functionality of your applications. It is therefore important to check the

authorizations regularly and ensure that they still meet the current requirements.
319Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



© 2025 by Rheinwerk Publishing Inc., Boston (MA)



Chapter 7 

Developing Applications for 
Kubernetes: Ready for Production

Failures are the norm in large-scale systems.

—Google

In Google's white paper on Borg, this is the first sentence in the chapter on availability.

And even today, we can only agree with this statement: the larger the system, the

higher the probability that an error will occur somewhere. However, the aim of a dis-

tributed system is not to make the individual components more fail-safe, but to build

the system itself in such a way that a failure can be tolerated.

This starts with the hardware level, for example. Hard disks have long been intercon-

nected in so-called redundant arrays of independent disks (RAIDs) to ensure data avail-

ability in the event of a single disk failure. Kubernetes is also designed and developed

in such a way that the failure of an individual component, such as a master or worker,

is manageable and can be compensated for. However, your applications must also be

prepared accordingly.

A big mistake that I unfortunately see far too often is to believe that a traditional appli-

cation can simply be packaged like a present using lift and shift, and with a new pink rib-

bon on the container, the application runs with all the benefits of a cluster system. But

there are other concepts and assumptions behind old applications, some of which were

developed several decades ago. Take, for example, a classic Java EE application that runs

on a JBoss application server. Such applications are usually implemented monolithi-

cally, have to perform many tasks, and are scaled vertically. If more power is required,

you simply add more CPU and memory.

One assumption in such an application is that stability prevails and that we are dealing

with long-running processes. A few years ago, for example, I experienced a JBoss appli-

cation at a customer that took about 30 minutes to start up. The application first filled

its storage with data from a database in order to be able to work afterward. You can cer-

tainly imagine how unpleasant the failure of a machine is on which this application is

running.

Kubernetes, on the other hand, follows the concept that errors are the rule. An applica-

tion must be able to cope with a failure without the overall system suffering as a result,
321Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



7 Developing Applications for Kubernetes: Ready for Production
requiring a decoupled software architecture based on the separation of concerns prin-

ciple from Chapter 1, Section 1.1.5. This makes it possible to replace or redevelop parts of

the overall system without any problems or major dependencies.

Note

An important concept is the transience of components and containers. Where updates

were installed on a server in traditional environments, today a new container is built to

replace the old one. The components are not built to last forever, so they are transient

and ephemeral. Remember the pets and cattle example from Chapter 1.

The new concepts alone do not make a good application, and they bring other chal-

lenges with them. In this chapter, I want to provide some tools that will enable you to

make your application ready for production for Kubernetes.

7.1    Managing Pod Resources

If many pods share the resources on a server, then these must also be managed. This

typically involves the two resources of CPU and memory. When you deploy a pod, it

will consume as many resources as it needs without any further settings. This can lead

to other pods not receiving sufficient CPU and becoming correspondingly slower. If

there is no memory available, this even leads to an “out of memory” error and the pod

terminates.

In the manifest of your pods, you can enter two pieces of information about your

resources that Kubernetes should take into account: requests and limits.

Requests allow you to transfer the “normal” consumption of your pod. This value is

used by Kubernetes to assign the pod to a node that can still provide sufficient

resources. Limits can be used to set the maximum amount of resources the pod can

receive.

Good to Know

Several versions of Kubernetes now also offer the management of ephemeral storage.

You can find more information on this in Chapter 5, Section 5.3.

Let's assume you have an application that typically requires 512 MiB of memory and 0.5

core CPU. Kubernetes wants to run it on a node that has a total of two core CPUs and 4

GiB of memory. Kubernetes checks all pods running on this node and adds the requests

together. Four pods of your application can therefore run simultaneously on this node.

If your pod requests more than is available, Kubernetes will try to run it on another

node.
322 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



7.1 Managing Pod Resources
Let's assume that four pods are now running on the node, thus filling that machine to

capacity. However, the requests do not say anything about how much the pods actually

consume. If your application has nothing to do, then it is possible that the node as a

whole has nothing to do either. This should be avoided as far as possible in order to

make optimal use of resources, which is why setting the right requests is so important.

What you can decide, however, is the maximum that a pod may use.

If you set a limit of one core CPU and 1 GiB of memory for the pods, then the individual

pods can double their resources. This can be useful, for example, if you have an applica-

tion that has a load peak from time to time. This allows the peak to be intercepted, but

the pod does not block resources unnecessarily. However, there is a risk that more

resources will be allocated than are available. This then leads to throttled pods or, in the

worst case, to out of memory errors.

You can find a graphical representation of this in Figure 7.1.

Figure 7.1  Overcommitment of Resources

You can see that the limit is above the node size at a certain time. This procedure is

referred to as overcommitment. If the actual consumption exceeds this threshold, then

out of memory errors will occur. However, Kubernetes sets a limit beforehand, which

leads to the expulsion of pods in order to mitigate out of memory issues. Unfortu-

nately, this does not always work.

Memory

Time

pod

A new Pod gets deployed

pod

A new Pod gets deployed

Requests of all Pods on the Node

Limits of all Pods on the Node

Actually utilized Memory

Memory of the Node Out of
Memory

Overcommitment
323Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



7 Developing Applications for Kubernetes: Ready for Production
Note

If your limits are higher than your requests, then you have an increased risk of running

into a resource bottleneck. If you do not yet know exactly how many resources your

application needs, then you should try out several iterations and observe your applica-

tion. You can then slowly refine the values.

Be Careful when Setting Limits and Requests

Especially in a production cluster, you should be careful when setting requests and lim-

its. An incorrect value can not only affect your application, but also steal resources

from other containers on the same host.

The best solution to start with is to set requests and limits to the same value as this

prevents a node from being overcommitted.

Let's take a look at the definition of resources in the manifest. You will find different

terms in the documentation, such as millicore or millicpu, which both have the same

meaning. They come from the Latin word mille, meaning thousand. So if you request

500 millicore, this is equivalent to 0.5 CPU. The requirement of 1 CPU means that one

CPU core of the computer is actually used.

You typically specify the size of the memory in the Mi (mebibytes) or Gi (gibibytes)

unit. You could theoretically also specify this in bytes, but that would make the mani-

fest unreadable. In Listing 7.1, you can see what a YAML manifest for an Nginx pod

could look like. You can also use the resource specification in your deployment config-

urations. Just try it out right away!

apiVersion: v1
kind: Pod
metadata:
  name: nginx
spec:
  containers:
    - name: nginx
      image: nginx
      resources:
        limits:
          cpu: 200m
          memory: 256Mi
        requests:
          cpu: 200m
          memory: 256Mi

Listing 7.1  Resource Definition in YAML
324 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



7.2 Readiness, Liveness, and Startup Probes
To conclude this section, I invite you to try something out again. What happens if you

set the limits too low? And how can you even recognize this?

You can simply use the example from Listing 7.1 and set the memory limit and the

memory request to memory: 256Ki. To do this, open Lens and create a new resource. It is

even better if you test it on one of your deployments. After saving, you will see the new

pod trying to start but running into an error. In Figure 7.2, you can see the out of mem-

ory error (OOM-killed), which occurred of course because 256 kilobytes of RAM is a bit

meager.

Figure 7.2  Error when Starting Pod with Insufficient Memory

In this case, you have clearly given the pod too little memory. There will be other cases

where this is not quite so clear. If your application wants to allocate memory during

operation but is not allowed to do so, then out of memory errors will occur as well. For

this reason, it is important that you check your application with a load test and adjust

the resources according to the findings.

Good to Know

As you now know, it is very dangerous to have no resource limits set at all. For this rea-

son, it is common for cluster admins to set default values. These are implemented via

so-called limit ranges, which we discussed in Chapter 6, Section 6.5. The administrator

can set default values as well as minimum and maximum values here.

There is also the option of limiting an entire namespace with the resource quotas. For

example, the administrator can specify that the total of the memory limit in your

namespace may not exceed 10 Gi.

You should therefore pay attention to such specifications in your company as they can

get in the way of your resource requirements.

7.2    Readiness, Liveness, and Startup Probes

When was the last time you had to call your internet provider because your DSL

stopped working? Did the support person there also ask you first of all whether you had
325Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



7 Developing Applications for Kubernetes: Ready for Production
restarted your router? It's probably the same for you as it is for me, and you've already

restarted everything before you even think of calling anywhere.

Even when operating our applications, a restart is sometimes worth its weight in gold.

But neither you nor a colleague from IT operations wants to be called on the weekend

or at night to restart the pod in Kubernetes. The good news is that Kubernetes can do

this on its own. You just have to teach it to do so.

For the self-healing functionality to work, Kubernetes provides three different testing

mechanisms to test how your application is doing. These so-called probes monitor the

health of the application and derive actions from this monitoring if, for example, your

application no longer works. You can define the following probes:

� Liveness probe

This probe allows you to check whether your application is working properly. Kuber-

netes can automatically restart your application if the liveness probe fails for a

defined period of time. In everyday language, the liveness probe is also simply

referred to as a health check.

� Readiness probe

This probe checks whether your application is ready to accept and process requests,

which enables you to ensure that your application is fully operational before it

receives requests. The Kubernetes service removes pods from load balancing if the

readiness probe fails. Not only is this useful for initialization, but you can also use

this function to remove pods from load balancing that are currently experiencing

problems.

� Startup probe

The startup probe is like a first check to see if everything in your container has

started up correctly. If you define a startup probe, all other probes are deactivated

until the startup probe is successful. You can use the startup probe if the initializa-

tion of one of your applications takes a very long time. If the startup probe fails, the

kubelet will restart the pod.

The action performed by the liveness or startup probe depends on the restart policy,

which you learned about in Chapter 2, Section 2.1.7. For example, if the policy is config-

ured to Never, the liveness probe will not restart the container.

Good to Know

I personally have never used the startup probe as most modern applications boot up

very quickly. However, if you have a legacy application that can take several minutes to

complete its startup, then you should use the startup probe.

Its advantage lies in the temporary deactivation of the liveness and readiness probes.

This prevents the pod from being recognized as unhealthy and restarting before it has

even fully booted up.
326 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



7.2 Readiness, Liveness, and Startup Probes
The probes represent a useful tool for improving the self-healing of your applications.

However, the implementation of probes is not recommended for every application.

The following questions will help you decide whether you should implement one of

the probes:

� Liveness probe

– Can the application get into a state from which it cannot recover itself?

– Could an automated restart solve the problem?

– Could you define the probe in such a way that no unnecessary restarts have to be

accepted?

� Readiness probe

– Do conditions have to be met before the applications can process requests?

– Could you check these conditions?

– Does it make sense to remove the pod from the load balancing if the probe fails?

�  Startup probe

– Do you use one of the other two probes?

– Does your application have a long startup process?

– Could the other two probes ensure a restart before the application is fully booted?

In Section 7.2.1, we’ll look at how probes can be defined and what options you have for

implementing them. You can then answer one or two additional questions for which

you may not yet have an ideal answer.

Good to Know

If the application in your container can itself ensure that the container terminates with

an error, you do not need a liveness probe. In that case, you can use the restart policy to

define how the kubelet should react.

With a liveness probe, however, you are more flexible and can tell the kubelet when it

should take action according to the restart policy.

Avoid Endless Restarts

A warning at this point: make sure that the liveness probe only really becomes active if

� the application cannot rectify the error independently, and

� restarting the pod can help.

Incorrect implementation leads to repeated restarts of the pods, and the application

will no longer be usable.

Take, for example, an application that requires a database but can also respond to

requests without the database via a caching mechanism. This liveness probe should
327Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



7 Developing Applications for Kubernetes: Ready for Production
not include the database because otherwise the self-healing attempts of Kubernetes

would lead to a total failure.

7.2.1    How to Define Probes

You can design a probe in many different ways—for example, as follows:

� By executing a command in the container using exec

� By checking a TCP connection on a specific port

� By sending an HTTP request

Good to Know

Since Kubernetes v1.27, a liveness probe can also be used with the gRPC protocol. You

can find out more on this in the documentation at http://s-prs.co/v596451.

Let's start with the HTTP probes as you will probably need them most often. In Listing

7.2, you can see how the probes are defined in YAML under the spec.tem-
plate.spec.containers[] object. You can create separate probes for each container

within the pod. In Table 7.1, you can find the available options for configuring the

probes.

readinessProbe:
  httpGet:
    path: /health
    port: 8080
  initialDelaySeconds: 5
  failureThreshold: 1
  periodSeconds: 5
livenessProbe:
  httpGet:
    path: /health
    port: 8080
  initialDelaySeconds: 10
  failureThreshold: 3
  periodSeconds: 10
startupProbe:
  httpGet:
    path: /health
    port: 8080
  failureThreshold: 30
  periodSeconds: 10

Listing 7.2  Example of HTTP Liveness, Readiness, and Startup Probes
328 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596451


7.2 Readiness, Liveness, and Startup Probes
For an HTTP probe, you need to let Kubernetes know through which port and on which

path an HTTP GET request should be sent. All response codes in the range >=200 && < 400
are considered a success, whereas everything else is an error.

The appeal of an HTTP probe is that you can customize the health check of your appli-

cation. There are no limits, and you can implement anything from a simple check to a

complicated query. You are also free to decide whether you want to implement one

path for all probes or a separate path for each probe. We will run through an example of

this in Section 7.2.2.

Good to Know

Kubernetes recommends using the same API endpoint for the readiness and liveness

probes, but with different values for failureThreshold. This causes the pod to switch

to the not ready status before it gets restarted by the kubelet. This has the advantage

that the pod is removed from the load balancing of the service. However, you are free

to decide how you define the API endpoints.

Another option is to check a TCP port. An example of this is shown in Listing 7.3. The

kubelet attempts to open a socket on the container and the corresponding port. If that

does not work, the probe will fail.

Option Function Default Value

initialDelaySeconds Use this option to tell the kubelet how 

long it will wait before executing the first 

probe.

0

failureThreshold Here you define how often a check must 

fail in succession before the entire probe 

fails.

3

periodSeconds Defines how often the probe will be exe-

cuted. With a value of 15, for example, the 

kubelet checks every 15 seconds.

10

successThreshold For the readiness probe, you can define 

how often the check must run successfully 

before the pod status gets set to ready.

This value must be set to 1 for the liveness 

and startup probes.

1

terminationGracePeriod-
Seconds

Here you can tell the kubelet how long it 

should wait after scheduling the pod 

before forcing the deletion.

30

Table 7.1  Configuration Options
329Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



7 Developing Applications for Kubernetes: Ready for Production
As not every application can respond to HTTP requests, this is a good option for moni-

toring databases or queues, for example.

livenessProbe:
  tcpSocket:
    port: 8080
  initialDelaySeconds: 5
  periodSeconds: 5

Listing 7.3  Sample TCP Liveness Probe

The third option for a probe is to run a command on the container using exec. Listing

7.4 shows an example in which the cat /tmp/health command is executed in the con-

tainer. If this file does not exist, the probe will fail.

livenessProbe:
  exec:
    command:
    - cat
    - /tmp/health
  initialDelaySeconds: 5
  periodSeconds: 5

Listing 7.4  Sample Exec Liveness Probe

You can also run more complex commands. However, I only recommend such types of

probes if an HTTP probe or a TCP probe is not possible or useful.

7.2.2    Testing Probes Using an Example

I have prepared an example so that you can try out the readiness and liveness probes.

In this section, we will

� create a Python application that responds to HTTP probes;

� build a Docker image using the Python application;

� deploy the application as a deployment on Minikube; and

� test the probes with the application to see how Kubernetes responds.

We will make the Python application configurable using environment parameters. This

makes it much easier to test later by making simple configuration changes.

Let's start with the Python application that you can find in Listing 7.5. We use the Flask

web framework to provide a web server that listens for the /ready and /health paths.

The application expects READY_TIME and UNHEALTHY_TIME as environment parameters,

which you can set later in the deployment. The READY_TIME parameter allows you to

define how many seconds the application needs to tell Kubernetes that it is ready,
330 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



7.2 Readiness, Liveness, and Startup Probes
while you can use the UNHEALTHY_TIME parameter to define after how many seconds

after starting the application the unhealthy status will be returned.

You can immediately observe how Kubernetes will behave thanks to the way it works.

Note

You are welcome to add log messages to the application. This also allows you to check

the container logs to see when and how often Kubernetes performs the checks.

from flask import Flask
import os
import time
app = Flask(__name__)
# Start time of the application
start_time = time.time()
# Read environment variables
ready_time = int(os.environ.get('READY_TIME', 5))
unhealthy_time = int(os.environ.get('UNHEALTHY_TIME', 15))
@app.route('/ready')
def ready():
    # Returns OK if the application runs longer
    # than 'ready_time' runs in terms of seconds
    if time.time() - start_time > ready_time:
        return 'OK', 200
    else:
        return 'Not Ready', 503
@app.route('/health')
def health():
    # Returns OK as long as the application runs less
    # seconds than 'unhealthy_time'
    if time.time() - start_time < unhealthy_time:
        return 'OK', 200
    else:
        return 'Unhealthy', 503
if __name__ == '__main__':
    app.run(host='0.0.0.0', port=8080)

Listing 7.5  "app.py" for Health Checker Application

In the next step, we will prepare everything so that you can package the application in

a container image and store it in the Minikube registry from Chapter 1, Section 1.4.7. For

this purpose, you need the (very simple and straightforward) requirements.txt file from

Listing 7.6 and the Dockerfile from Listing 7.7.
331Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



7 Developing Applications for Kubernetes: Ready for Production
flask

Listing 7.6  requirements.txt File for Health Checker Application

FROM python:3.9-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY app.py .
EXPOSE 8080
CMD ["python", "./app.py"]

Listing 7.7  Dockerfile for Health Checker Application

The files should be located in a folder on the same level, as shown in Listing 7.8.

.
├── Dockerfile
├── app.py
└── requirements.txt

Listing 7.8  File Structure of Health Checker Application

The Dockerfile is based on the official Python image, installs the dependencies from the

requirements.txt file in the subsequent step, and then copies the application into the

image. Use the following commands to build the image and store it in the Minikube

registry:

docker build -t localhost:5000/health-checker .
docker push localhost:5000/health-checker

Note

Remember to activate the Docker host of Minikube so that you can also reach the regis-

try. If you encounter problems, take another look at Chapter 1, Section 1.4.7.

Now everything is ready to deploy the application on Minikube. You can use the

deployment manifest from Listing 7.9 for this purpose.

apiVersion: apps/v1
kind: Deployment
metadata:
  name: health-checker
spec:
  replicas: 1
  selector:
332 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



7.2 Readiness, Liveness, and Startup Probes
    matchLabels:
      app: health-checker
  template:
    metadata:
      labels:
        app: health-checker
    spec:
      containers:
        - name: health-checker
          image: localhost:5000/health-checker
          ports:
            - containerPort: 8080
          env:
            - name: READY_TIME
              value: "5"
            - name: UNHEALTHY_TIME
              value: "15"
          readinessProbe:
            httpGet:
              path: /ready
              port: 8080
            initialDelaySeconds: 3
            periodSeconds: 3
          livenessProbe:
            httpGet:
              path: /health
              port: 8080
            initialDelaySeconds: 5
            periodSeconds: 5

Listing 7.9  Deployment.yaml for Health Checker Application

Under spec.template.spec.containers[].env, you give the container the environment

parameters that are defined in the application. Roll out the deployment using Lens and

observe the pod that is created.

You will see the pod start and the container in it go through the following statuses:

1. The container is initially in Not Ready status. You can recognize this by the orange

box in Lens.

2. After five seconds, the container switches to Ready.

3. After approximately another 20 seconds, the container turns orange again because

the health check has failed.

4. Kubernetes restarts the pod.
333Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



7 Developing Applications for Kubernetes: Ready for Production
The pod will get stuck in this cycle. Kubernetes keeps trying to restart the pod if the

health check fails. In Figure 7.3, you can see what the pod looks like after some time.

Kubernetes counts the number of restarts, and the application becomes set to

Unhealthy again shortly after it has reported Ready.

Figure 7.3  Pod in Restart Circuit

Note

You may notice that the container does not switch to the Not Healthy state immedi-

ately after the UNHEALTHY_TIME has expired. This is due to the livenessProbe settings in

our deployment. The kubelet only checks whether the application is still alive every five

seconds. Because we did not define a failureThreshold, Kubernetes takes the default

value of 3. It therefore takes up to 19 seconds for the container to be considered

unhealthy.

You will also find the following message in the pod's events, which will give you an indi-

cation of the problem (here you will see the status code that you have defined in the

application):

Liveness probe failed: HTTP probe failed with statuscode: 503

Now you should try out the different setting options for the probes. You can also adjust

the environment parameters and test the behavior of Kubernetes. If you want to go

one step further, then extend the example with a startup probe.

Note

Try to implement the probes for one of your own applications. Find out which values

are best for the probes. Try to answer the following questions:

� How long does your application need to be ready?

� When is your application considered unhealthy?

� How long should Kubernetes wait before restarting your application?

You will find that there is no one-size-fits-all answer. Use a few iterations to test the

behavior.
334 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



7.3 Scaling and Load Balancing
7.3    Scaling and Load Balancing

In Chapter 1, Section 1.1, we talked about the concepts behind Kubernetes. Along with

self-healing, horizontal scaling is one of the best features of Kubernetes that signifi-

cantly simplifies IT operations. The idea behind this is to simply scale another con-

tainer when the load increases, and to do so fully automatically. A metric monitors the

load on the container based on the CPU or the number of messages in a queue, for

example. If the metric rises above a defined threshold value, then a new container is set

up and the load will be distributed to all existing containers via a load distributor. Of

course, the number of containers will be reduced again when the load decreases. As

shown in Figure 7.4, this principle allows you to consume only what you need. In the

cloud, that means that you save money, and that’s in line with the pay-as-you-go prin-

ciple.

Figure 7.4  Automatic Scaling Based on Consumption

In my first job after graduating, I worked for a company that was right in the middle of

a cloud migration. The old sales platform ran 24/7 on a powerful server system from HP

in the company's own data center. It was a huge server rack full of computing power.

This server needed plenty of capacity to cope with the rush of buyers at a sales event.

But most of the time, the server was only running at 40% capacity (and that's a good

utilization!) and was unnecessarily heating up the data center.

However, not every application is designed for horizontal scaling. As described in

Chapter 1, Section 1.1.4, stateless applications are predestined for this. Horizontal scal-

ing is a requirement that must be taken into account in the software architecture. But

if everything fits, then you and the operations team will be able to sleep soundly.

7.3.1    Horizontal Pod Autoscaling

For horizontal pod scaling, the horizontal pod autoscaler (HPA) object is available. The

HPA enables your applications to respond dynamically to changes in the load by auto-

matically increasing or decreasing the number of pods, as shown in Figure 7.5. It can

Capacity

Automatic
Scaling Adjusts

the Capacity
335Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



7 Developing Applications for Kubernetes: Ready for Production
monitor certain metrics such as CPU utilization and scale automatically if threshold

values are exceeded or not reached.

Figure 7.5  Horizontal Scaling

Horizontal in this context means that the number of pods is increased; that is, the clus-

ter grows in width. The counterpart to this is vertical scaling, which is discussed in Sec-

tion 7.3.2.

Good to Know

The HPA process is a control loop that runs and checks regularly. The standard value is

15 seconds. This means that scaling does not take effect immediately if the threshold

value of a metric is exceeded.

Let's jump straight into an example. For Minikube, you want to run the minikube addons
enable metrics-server command in preparation. The metrics server then collects the

metrics from the kubelets for the pods that are needed for the HPA.

I had to stop and restart Minikube after activating the add-on so that the HPA could get

the metrics.

Note

If you want to install the metrics server on an "ordinary" cluster such as the sample

Raspberry Pi cluster, you can find more information at the following address: http://s-

prs.co/v596452.

Pod 1

Pod 1

Scaling

Pod 2

Pod 1 Pod 2
336 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596452
http://s-prs.co/v596452


7.3 Scaling and Load Balancing
For this example, we are using the Apache pod, which Kubernetes provides specifically

for this use case. You can find the manifest in Listing 7.10.

apiVersion: apps/v1
kind: Deployment
metadata:
  name: apache-hpa
spec:
  selector:
    matchLabels:
      run: apache-hpa
  template:
    metadata:
      labels:
        run: apache-hpa
    spec:
      containers:
      - name: apache-hpa
        image: registry.k8s.io/hpa-example
        ports:
        - containerPort: 80
        resources:
          limits:
            cpu: 300m
          requests:
            cpu: 300m
---
apiVersion: v1
kind: Service
metadata:
  name: apache-hpa
  labels:
    run: apache-hpa
spec:
  ports:
  - port: 80
  selector:
    run: apache-hpa

Listing 7.10  HPA Example: Apache Deployment with Matching Service

Roll out the manifests for the deployment and the service. You can then roll out the

HPA object from Listing 7.11. There you define that the monitored metric is the CPU and

that the autoscaler can scale between a minimum of one pod and a maximum of three

pods.
337Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



7 Developing Applications for Kubernetes: Ready for Production
Note

You can find the HPA example from the Kubernetes documentation at the following

address: http://s-prs.co/v596453.

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
  name: apache-hpa
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: apache-hpa
  minReplicas: 1
  maxReplicas: 3
  targetCPUUtilizationPercentage: 50

Listing 7.11  Manifest of Horizontal Pod Autoscaler

Good to Know

The HPA expects the definition of requests and limits from Section 7.1. This makes

sense because if the pod can simply use the entire CPU during your load test, then it is

difficult to see a result.

We now need to put the application under load in order to experience the HPA in

action. You can use the kubectl command from Listing 7.12 for this purpose. Make sure

that you create the load generator pod in the same namespace as the Apache pod. This

is the only way it can reach Apache with the command provided as we use the name of

the service. If your load generator is in a different namespace, you must adapt the URL.

kubectl run -i --tty load-generator --rm --image=busybox:1.28 \
   --restart=Never -- /bin/sh -c "while sleep 0.01; do wget \
   -q -O- http://apache-hpa; done"

Listing 7.12  Generating Load Generator

Now observe the behavior of the HPA and the deployment. As in Figure 7.6, you can see

that the load on the pods increases and the HPA scales new pods.
338 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596453


7.3 Scaling and Load Balancing
Figure 7.6  HPA during Load Phase

Note

Regarding the command from Listing 7.12, it is important that you write the command

in your console in one line. Simply copying and pasting the multiline command caused

problems for me.

You have now created a very simple HPA and seen it in action. The HPA becomes par-

ticularly interesting when you use custom metrics. If you have a suitable application,

you will find more information on the following page: http://s-prs.co/v596454.

7.3.2    Vertical Pod Autoscaling

While the HPA adjusts the number of pods to handle the load, the vertical pod auto-

scaler (VPA) focuses on the resource allocation of the individual pods. The VPA opti-

mizes the CPU and memory requirements of the pods running in your Kubernetes

cluster. This enlarges or reduces the size of the pod as required, as you can see in Figure

7.7.

Figure 7.7  Vertical Scaling

Pod 1

Pod 1

Memory: "64Mi"

Scaling

Memory: "128Mi"
339Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596454


7 Developing Applications for Kubernetes: Ready for Production
The VPA continuously monitors the resource utilization of the pods and compares it

with the defined requests and limits. If it determines that the resource requirements

are not ideal, then it adjusts the requirements.

Note

I used the VPA in a project for Prometheus, which you can read about in Section 7.4.

This was a good way to make Prometheus scalable without having to synchronize

multiple replicas. What I found very critical about it is that the requests and limits are

not recognizable at a glance. In addition, the pod behaves in a different way than the

manifest in version management suggests.

For me, the VPA was an invisible magic hand that I found difficult to understand. The

HPA is much easier because you can quickly see how many replicas of a pod are cur-

rently running.

If you have the option, it is best to develop your application in such a way that it can

scale horizontally.

Let's briefly go through an example. We use the Apache pod from Listing 7.10 again, but

now we use a VPA. For this reason, make sure to delete the HPA for this example if you

have not already done so.

To install the VPA, you first need a set of CRDs. You can install them using the following

commands:

kubectl apply -f https://raw.githubusercontent.com/kubernetes/autoscaler/vpa-
release-1.0/vertical-pod-autoscaler/deploy/vpa-v1-crd-gen.yaml
kubectl apply -f https://raw.githubusercontent.com/kubernetes/autoscaler/vpa-
release-1.0/vertical-pod-autoscaler/deploy/vpa-rbac.yaml

Then you can import the VPA object from Listing 7.13 and start the load generator again

as in the previous example (see Listing 7.12). Observe the pod and the way the VPA han-

dles it.

apiVersion: autoscaling.k8s.io/v1
kind: VerticalPodAutoscaler
metadata:
  name: my-vpa
spec:
  targetRef:
    apiVersion: "apps/v1"
    kind: Deployment
    name: apache-hpa
  updatePolicy:
    updateMode: "Auto"

Listing 7.13  VPA Manifest
340 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



7.3 Scaling and Load Balancing
You have now become familiar with both options for the automatic scaling of Kuber-

netes. I always prefer horizontal scaling to vertical scaling. First, it allows you to create

multiple pods that run on different nodes, which ensures greater reliability. Second,

the requests and limits of a single pod are set in such a way that it can still find space

even on well-utilized nodes. This increases the capacity utilization and thus the effi-

ciency of your cluster.

In addition, applications that can scale horizontally are usually more robust. But that

also means that scaling is already part of the application, and in the development phase

you already need to think about how the shutdown of a pod works and how the overall

application can survive it. This way, you can make sure that your application survives

an unintentional failure of a pod and can be scaled accordingly. Of course, scaling

during operation can help, but it does not save poorly programmed apps whose archi-

tecture has a bottleneck.

In real life, you must select the scaling type that best suits your application. For exam-

ple, applications that depend on a stable state are difficult to scale horizontally: data-

bases are a prime example in this respect. With a web server like Apache, the result

depends on whether the requests can be distributed well to different pods via a load

balancer.

7.3.3    Cluster Autoscaler

For the sake of completeness, I also want to mention the cluster autoscaler. This tool is

particularly interesting if you have a very volatile load on your applications, but it is

usually the responsibility of the cluster admins. It allows you to automatically start

new nodes and delete old nodes. Especially in public cloud environments, you can save

money immediately. Figure 7.8 shows a graphical representation of the scaling.

Figure 7.8  Cluster Autoscaling

Scaling

Node 1 Node 1 Node N

Pod 3

Pod 2

Pod 1

Pod 3

Pod 2

Pod 1

Pod 4

Pod 4
341Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



7 Developing Applications for Kubernetes: Ready for Production
Good to Know

In my opinion, the cluster autoscaler provides several advantages:

� Cost efficiency

By adapting the cluster size to the actual load, you avoid the costs of unused

resources.

� Scalability

The cluster autoscaler allows your cluster to grow and shrink with the require-

ments of your applications, which is essential for scalable, cloud-native applica-

tions.

� Improved developer experience

You need to worry very little about capacity. If you want to carry out a quick load

test, the cluster can simply map that independently.

How does the cluster autoscaler work? It continuously monitors the utilization of the

pods and nodes in your cluster and detects when pods cannot be started because not

enough resources such as CPU or memory are available on the existing nodes. Based on

this knowledge, the autoscaler then initiates the addition of new nodes to provide the

required resources. At the same time, it also recognizes when nodes are underutilized

and removes these nodes to save resources and costs. Remaining pods are evicted and

started on other nodes. This empties the node, and then it can be switched off.

You need the cluster autoscaler in particular if you want to manage Kubernetes clusters

in large, dynamic environments and have to think about geographical scaling in the

cloud. If you are not yet using it and are looking for more information, you can find the

GitHub repository at the following address: http://s-prs.co/v596455.

7.4    Monitoring

One key to stable operations is monitoring. Especially in the volatile world of Kuber-

netes, you need a good toolset to collect metrics, send alerts, and assist with debugging

when necessary. Not only do these tools give you insight into the performance and

health of your applications, but they also allow you to proactively respond to issues

before they become critical.

The complexity and dynamics of Kubernetes clusters with their numerous pods, ser-

vices, and other resources place special demands on monitoring. You need to be able to

collect and analyze the right data quickly in order to make informed decisions.

Good to Know

I will introduce specific tools that I have frequently used in companies. However, there

are also competing products for each of these tools that work according to similar
342 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596455


7.4 Monitoring
principles. I will mention these at one point or another, but you will see that if you

know one, you know them all.

You can always apply this basic knowledge to other tools.

If you already feel confident with the basic principles, you can go directly to Section

7.4.2. There we will bring all the tools together in a demo.

7.4.1    Introduction: Prometheus, Grafana, and Alertmanager

The Prometheus ecosystem is used for monitoring. When it comes to monitoring

applications in a Kubernetes cluster, this tool stack is widely used and has a corre-

spondingly large community. The stack includes the following tools:

� Prometheus

� Grafana

� Alertmanager

As a powerful open-source tool for monitoring and alerting, Prometheus has estab-

lished itself as the de facto standard for monitoring Kubernetes clusters. At its core,

Prometheus is a time series database, collects metrics from endpoints, and stores

them. With its powerful query language, you can create complex queries to get exactly

the insights you need. In addition, Prometheus supports alert rules that notify you as

soon as certain thresholds are exceeded.

Grafana is often the first choice to visualize the data collected by Prometheus. It pro-

vides a flexible platform for creating dashboards that provide a clear view of metrics.

Grafana also supports data from many other sources, making it a versatile tool for

monitoring.

The Alertmanager tool that is part of the Prometheus ecosystem is often used for alert-

ing purposes. It allows you to send notifications via various channels such as email,

Slack, or webhook, based on the alert rules you have defined in Prometheus.

Figure 7.9 shows the architecture of the components and how they interact with each

other.

But why is Prometheus the first choice when it comes to Kubernetes?

Prometheus was specifically developed to work in modern, dynamic environments

such as Kubernetes. It collects metrics via a pull mechanism in which it regularly que-

ries endpoints (targets) to collect relevant data. In a Kubernetes environment, these

targets can be pods, services, or node instances.

A key aspect of the integration is the service discovery of Prometheus within Kuber-

netes. Due to this feature, Prometheus automatically discovers new pods or services

that provide metrics. Monitoring would not be possible otherwise as Kubernetes
343Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



7 Developing Applications for Kubernetes: Ready for Production
resources are started up and shut down dynamically. This automatic detection is there-

fore crucial to ensure that Prometheus always collects up-to-date data as you cannot

possibly introduce new pods and nodes to your monitoring system “manually” after

each automatic scaling.

Figure 7.9  Monitoring Architecture with Prometheus, Grafana, and Alertmanager

To recognize the pods it should query, Prometheus uses the Kubernetes API and checks

for certain annotations. An example of this is shown in Listing 7.14.

apiVersion: v1
kind: Pod
metadata:
  name: my-app-pod
  annotations:
    prometheus.io/scrape: "true"
    prometheus.io/path: "/metrics"
    prometheus.io/port: "8080"
…

Listing 7.14  Configuration of Prometheus Scraping

Collects Metrics

Sends Alerts

Data gets stored
persistently

Data Source
for Grafana

Webhooks

Notifications
344 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



7.4 Monitoring
Another point in Prometheus's favor is its many custom exporters developed by the

community. This gives you a direct interface for many tools to provide metrics for Pro-

metheus. Exporters act as bridges between Prometheus and the systems or applications

to be monitored. You collect metrics from these sources, convert them into the format

expected by Prometheus, and make them available via an HTTP endpoint.

Examples of this include the following:

� Node exporter

This collects hardware and operating system metrics from the host. The node

exporter is essential for gaining insight into the resource utilization and perfor-

mance of the physical or virtual machines running your Kubernetes cluster.

� Kube-state-metrics

This extends the metrics provided by Kubernetes by collecting detailed information

about the state of Kubernetes objects such as deployments, pods, and nodes.

� Grok exporter

This allows you to convert log files into metrics through queries and export them for

Prometheus.

The exporters are generally very easy to implement, and you can use them to have Pro-

metheus monitor almost everything. An example of how to use the node exporter can

be found in Section 7.4.2.

The extensibility and flexibility of Prometheus make it a good monitoring tool, which

is why it is so widely used. It's best to try it out for yourself to get a feel for it. You can

find the instructions for this in Section 7.4.2.

7.4.2    Monitoring on the Pi Cluster

Now let's get everything into the application and use Prometheus to monitor the Rasp-

berry Pi cluster. The goal is to see at a glance how the Pis are doing. Here, I am particu-

larly interested in the temperature, as I run the small computers without a fan. At the

same time, I also want to see how much RAM is still available.

The sequence of our work steps will be as follows:

1. Install the node exporter on Kubernetes.

2. Install Prometheus via a Helm chart.

3. Configure Prometheus so that the node exporter queries metrics.

4. Install the Raspberry Pi exporter.

5. Extend the configuration of the node exporter.

6. Install Grafana via a Helm chart.

7. Create a dashboard to create the temperature display.
345Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



7 Developing Applications for Kubernetes: Ready for Production
We will use the node exporter for this purpose. It already has a lot to offer, but for the

sample use case, we’ll need to add more metrics for the Pis.

The node exporter can be installed in various ways. It typically runs directly on a server

and provides the metrics for Prometheus via a REST interface. For this example, let’s try

out the node exporter as a DaemonSet. Kubernetes then ensures that the service runs

on every node.

Access to the hostPath Volume

The node exporter pod accesses the host's file system through the hostPath volume.

This can be a danger in production environments, and you should be aware of this. For

this reason, you should clarify such a setup with the cluster admins beforehand.

Installing the Node Exporter on Kubernetes

First you need to create the monitoring namespace if you do not already have it. You can

find the manifest for the DaemonSet in Listing 7.15.

apiVersion: apps/v1
kind: DaemonSet
metadata:
  labels:
    app.kubernetes.io/component: exporter
    app.kubernetes.io/name: node-exporter
  name: node-exporter
  namespace: monitoring
spec:
  selector:
    matchLabels:
      app.kubernetes.io/component: exporter
      app.kubernetes.io/name: node-exporter
  template:
    metadata:
      labels:
        app.kubernetes.io/component: exporter
        app.kubernetes.io/name: node-exporter
    spec:
      containers:
      - args:
        - --path.sysfs=/host/sys
        - --path.rootfs=/host/root
        - --no-collector.wifi
        - --no-collector.hwmon
346 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



7.4 Monitoring
        - --collector.filesystem.ignored-mount-points=^/(dev|proc|sys|var
            /lib/docker/.+|var/lib/kubelet/pods/.+)($|/)
        - --collector.netclass.ignored-devices=^(veth.*)$
        name: node-exporter
        image: prom/node-exporter
        ports:
          - containerPort: 9100
            protocol: TCP
        resources:
          limits:
            cpu: 250m
            memory: 180Mi
          requests:
            cpu: 102m
            memory: 180Mi
        volumeMounts:
        - mountPath: /host/sys
          mountPropagation: HostToContainer
          name: sys
          readOnly: true
        - mountPath: /host/root
          mountPropagation: HostToContainer
          name: root
          readOnly: true
      volumes:
      - hostPath:
          path: /sys
        name: sys
      - hostPath:
          path: /
        name: root

Listing 7.15  Manifest for DaemonSet of Node Exporter

You will see that the node exporter will be accessible on port 9100. Provide the pods

with hostPath volumes so that the node exporter can also access the corresponding

paths in order to obtain metrics. Under spec.template.spec.containers[].args, you

can see the configurations specific to the node exporter. You will expand these later.

You can find the right service for the DaemonSet in Listing 7.16. Roll out both Listing

7.15 and Listing 7.16 in your cluster.

kind: Service
apiVersion: v1
metadata:
  name: node-exporter
347Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



7 Developing Applications for Kubernetes: Ready for Production
  namespace: monitoring
  annotations:
      prometheus.io/scrape: 'true'
      prometheus.io/port:   '9100'
spec:
  selector:
      app.kubernetes.io/component: exporter
      app.kubernetes.io/name: node-exporter
  ports:
  - name: node-exporter
    protocol: TCP
    port: 9100
    targetPort: 9100

Listing 7.16  Manifest for Node Exporter Service

Installing Prometheus via a Helm Chart

Now let’s roll out Prometheus in your cluster. You’ll use the Helm chart from Bitnami

for this purpose. To do this, use Lens to search for Prometheus in your cluster under

Helm • Charts. The Helm chart should look like the one shown in Figure 7.10. Now click

Install. The Helm chart opens as a file. Select the monitoring namespace here and click

Install.

Figure 7.10  Prometheus Helm Chart in Lens

After a few minutes, Prometheus should have started successfully. The Helm chart also

includes the alert manager, which is not relevant in this case. If you now set up port for-

warding for the Prometheus service and open the page, you will see the fresh UI of Pro-

metheus.
348 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



7.4 Monitoring
Next, you need to get Prometheus to fetch the data from the node exporter so that you

can also query it in Prometheus.

The configuration of Prometheus is created as a ConfigMap. Let’s expand this so that it

knows where to fetch the data from the node exporter. To do this, go to the Prometheus

ConfigMap in Lens under Config • ConfigMaps, which should have a name similar to

prometheus-1702161396-server.

Click Edit and the YAML manifest will open. Listing 7.17 shows a section of it. The

changes you need to add are marked in bold. Then save the ConfigMap, switch to the

pod overview, and delete the current Prometheus pod so that the ReplicaSet builds a

new pod that pulls the new ConfigMap.

…
data:
  prometheus.yaml: |
    global:
      external_labels:
        monitor: prometheus-1702161396
    scrape_configs:
      - job_name: 'node-exporter'
        kubernetes_sd_configs:
          - role: endpoints
        relabel_configs:
        - source_labels: [__meta_kubernetes_endpoints_name]
          regex: 'node-exporter'
          action: keep
      - job_name: prometheus
        kubernetes_sd_configs:
          - role: endpoints
            namespaces:
              names:
              - monitoring
        metrics_path: /metrics
        relabel_configs:
…

Listing 7.17  Extension of Prometheus Scrape Configuration

Good to Know

The better option for activating a new ConfigMap would be to use an operator. There is

also an operator for Prometheus that takes over the responsibility for managing Con-

figMaps. This means that you do not need to restart the pods if you change the config-

uration. I have skipped this for our example as it focuses on monitoring. In production
349Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



7 Developing Applications for Kubernetes: Ready for Production
environments where you cannot simply restart services for a configuration change, you

should definitely use operators.

To check whether the configuration is effective and Prometheus queries the metrics of

the node exporter, you can check under Status • Targets in the Prometheus UI whether

the metrics appear accordingly. It should look like Figure 7.11.

Figure 7.11  Node Exporter as Target of Prometheus

Extending the Node Exporter with Metrics from the Raspberry Pi

Now Prometheus can query the metrics of the node exporter, and we want to extend it

in such a way that we get specific metrics for the Raspberry Pis. I found the following

GitHub repository for this: http://s-prs.co/v596456. It may be a little older, but it is

clearly programmed and works perfectly. The way it works is simple:

� You install a timer on the Pi that regularly triggers a shell script.

� The shell script runs simple commands to obtain the data, which is then provided as

a metric for Prometheus.

� The data is stored in a file on the Pi's file system.

For the installation, you need to run the following command on each of your Raspberry

Pis:

curl -fsSL "https://raw.githubusercontent.com/fahlke/raspberrypi_exporter/
master/installer.sh" | sudo bash

This command loads the installer.sh file from the repository and executes it. You prob-

ably know that the concept of executing content from the internet directly into the

shell is fundamentally insecure, so take a quick look at the code before you carry out

the installation that provides the script and the timer.

You can then use the commands from Listing 7.18 to check whether the service is run-

ning and if the metrics are written to the file under the /var/lib/node_exporter/textfile_

collector path.
350 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596456


7.4 Monitoring
# Check if the service is running
systemctl status raspberrypi_exporter.timer
# Check if the metrics are written to disk
grep -E "^rpi" /var/lib/node_exporter/textfile_collector/raspberrypi-
metrics.prom

Listing 7.18  Commands for Checking Raspberry Pi Exporter

The next step is to extend the node exporter so that it can read the metrics in the file.

For this purpose, let’s extend the DaemonSet from Listing 7.15. To do this, go to the

Workloads • DaemonSets overview in Lens and edit the YAML manifest of the node

exporter. In Listing 7.19, the changes you need to make are printed in bold. For the pod

to be able to access the host's file, a hostPath volume must be created that releases this

exact path. The volume is then mounted in the pod so that the node exporter can

access the file. As a further argument, we give the application the path to the file under

the --collector.textfile.directory option so that the node exporter can read the file.

As soon as you save the manifest of the DaemonSet via the Save option, the pods will

automatically be replaced.

…
  spec:
      volumes:
        - name: sys
          hostPath:
            path: /sys
            type: ''
        - name: root
          hostPath:
            path: /
            type: ''
        - name: pi
          hostPath:
            path: /var/lib/node_exporter/textfile_collector
            type: ''
      containers:
        - name: node-exporter
          image: prom/node-exporter
          args:
            - '--path.sysfs=/host/sys'
            - '--path.rootfs=/host/root'
            - '--no-collector.wifi'
            - '--no-collector.hwmon'
            - '--collector.textfile.directory=/var/lib/
node_exporter/textfile_collector'
            …
351Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



7 Developing Applications for Kubernetes: Ready for Production
          volumeMounts:
            - name: sys
              readOnly: true
              mountPath: /host/sys
              mountPropagation: HostToContainer
            - name: root
              readOnly: true
              mountPath: /host/root
              mountPropagation: HostToContainer
            - name: pi
              readOnly: true
              mountPath: /var/lib/node_exporter/textfile_collector
              mountPropagation: HostToContainer
…

Listing 7.19  Extension of Node Exporter Configuration for Pi Exporter

It may now take some time for the first data to be displayed in Prometheus. You should

then be able to query them as shown in Figure 7.12.

Figure 7.12  Querying Temperature Metrics in Prometheus
352 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



7.4 Monitoring
Note

If no metrics appear, you should check the logs of the node exporter. This will show you

if it cannot access the file. You should also check the volume configuration again

because if the path is not mounted correctly in the pod, the application within the pod

will not be able to access it.

Installing and Configuring Grafana via a Helm Chart

Now let’s install Grafana to display the metrics in a more appealing way and organize

them in a dashboard. To do this, you want to search for Grafana in the Helm charts of

Bitnami and deploy the chart via Lens as with Prometheus. Make sure that you use the

same namespace. Then set up port forwarding and open the graphical user interface of

Grafana. The user name and password for the login can be found in the Helm release, as

described in Chapter 8, Section 8.1.2, Listing 8.4.

The first step you need to take now is to link Prometheus and Grafana. To do this, you

can specify Prometheus as the data source in the menu under Connections • Data

Sources. Click Add Data Source and then Prometheus. If you have deployed the two

applications in the same namespace, you can enter the service as a URL, as shown in

Figure 7.13. If they are deployed in different namespaces, you should look again for the

DNS naming convention described in Chapter 2, Section 2.5.2 and enter the URL accord-

ingly. Otherwise, you do not need to change anything in the configuration. Scroll down

and click Save & Test.

Figure 7.13  Kubernetes Service as Prometheus URL

Once the data source has been set up, you can start creating a dashboard. We’ll load a

standard dashboard for the node exporter so that you don't have to start from scratch.

Grafana provides several standards that you can load very easily. The node exporter

dashboard can be found at the following address: http://s-prs.co/v59457.

You only need the ID of the dashboard to load it; in this case, that’s 1860. Then you can

click Create Dashboard under Home • Dashboards and then Import a Dashboard. Enter

the ID there, as in Figure 7.14; select Prometheus as the data source in the subsequent

step; and then click Import.
353Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v59457


7 Developing Applications for Kubernetes: Ready for Production
Figure 7.14  Entering Dashboard ID for Import

Next, let’s expand the Grafana board to include the new Raspberry Pi metrics. To do

this, you can simply add a new visualization via Add. The new window should then look

like Figure 7.15.

Figure 7.15  Creating Your Own Visualization in Grafana
354 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



7.4 Monitoring
Note

Now you can experiment with the dashboard and view the various metrics. It is import-

ant that you also select your correct Raspberry Pi as the host in the dropdown menu as

in Figure 7.15 3; otherwise, Grafana will not display any data.

Select the metric you want to display 1. In the dropdown menu, you will find all met-

rics known to Prometheus. There you should also find the new Raspberry Pi metrics

starting with rpi. In this example, use the temperature to see how high it currently is.

Now you can select the type of visualization, depending on how you want to use the

data 2. A time series is a nice tool to see the progression, but I use the gauge type for

this display because I'm only interested in the current temperature. Under Operations

4, you can manipulate the data even further. For example, aggregation makes sense

for the gauge. Try a max aggregation, and select the instance as the label. You can save

the new metric to the dashboard via Apply.

As you can see, there are many ways to visualize your data. Feel free to play around with

it some more.
355Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



© 2025 by Rheinwerk Publishing Inc., Boston (MA)



Chapter 8 

Orchestrating Kubernetes Using Helm

Modularity in programming is like putting together a jigsaw puzzle: 

every part has its place, and when everything comes together, a master-

piece is created.

Using Kubernetes comes with a number of challenges, especially when it comes to effi-

ciently managing, deploying, and scaling applications. As you have learned throughout

this book, each application entails a variety of manifests for deployments, services, vol-

umes, and more. Managing these manifests can quickly become confusing, especially if

you are trying to keep your applications consistent across multiple environments. In

addition, there are questions such as the following to consider:

� How can you ensure that your Kubernetes manifests are reusable and easy to up-

date?

� How can you efficiently manage complex applications with many dependent re-

sources?

� How can you ensure a uniform configuration across development, staging, and pro-

duction?

These and similar questions lead us to the search for a solution that not only simplifies

the provision and management of applications, but also emphasizes modularity and

reusability. This is where Helm comes into play.

Helm is based on the philosophies of modularity and don’t repeat yourself (DRY). Tasks

should therefore be divided into the simplest possible substeps and be reusable. Not

only is Helm a templating tool, but it also serves as a package manager for Kubernetes

manifests and supports you in deploying, managing, and orchestrating applications. It

is therefore obvious why it has become an indispensable tool in the Kubernetes world.

The answer lies in the numerous advantages Helm provides to you:

� Reusability of manifests through parameterization

� Deployment of complex Kubernetes applications as a simple and configurable pack-

age

� Simple centralization and standardization within your company

� Extensive ecosystem of predefined charts for numerous applications
357Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



8 Orchestrating Kubernetes Using Helm
In the course of this chapter, we will delve deep into the world of Helm. You will learn

how Helm overcomes the challenges of managing Kubernetes applications and how

you can use it to make your deployments more efficient and modular. Prepare yourself

to discover the possibilities Helm opens up for your Kubernetes management.

Note

The examples in this chapter are all based on Helm version 3.

8.1    Helm: The Kubernetes Package Manager

Helm is much more than a tool for parameterizing Kubernetes manifests. It is similar

to the Homebrew package manager for macOS or the corresponding Linux tools. You

select your software, specify where the package comes from, and can then install it on

Kubernetes. A Helm package includes all the manifests the application needs to run.

In Helm, there are three key terms you need to know:

� A Helm package is referred to as a chart and contains all the manifests and configu-

rations you need to deploy an application in Kubernetes.

� If you deploy a Helm chart in Kubernetes, it is referred to as a release. You can usually

deploy a chart multiple times in a cluster, and each instance is a separate release.

� As with other package managers, charts can be stored and distributed in a repository.

The parallels to containers and management by images, which are stored in reposito-

ries and instantiated to running containers, are obvious. However, there is a significant

difference in terms of flexibility: while a container image is unchangeable, you can

deeply customize Helm charts with specific configurations for each release. This gives

you the freedom to adapt and optimize applications exactly as required.

You can imagine the development process as shown in Figure 8.1. You work locally on a

chart and develop the Kubernetes manifests. You can either deploy these directly to

Kubernetes or store them in a Helm repository. From there, you can also access other

Helm charts, configure them, and then transfer them to Kubernetes.

But let’s do one thing at a time.

Let's first take a look at what is contained in a Helm chart. As you will see later, a Helm

chart usually contains multiple Kubernetes manifests. Let's take a web application that

uses a database as an example. The Helm chart contains the deployment, the service,

and the ingress manifest of the web application as well as the StatefulSet and service

manifest of the database. So you get everything Kubernetes needs to start the applica-

tion in one chart.
358 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



8.1 Helm: The Kubernetes Package Manager
Figure 8.1  Architecture of Helm

The difference from ordinary Kubernetes manifests is the templating of Helm. Helm

comes with a templating engine based on Go so that you can adapt the manifests to dif-

ferent environments or requirements using configurations.

Take a look at the release process in Figure 8.2. You can see that you need a values.yaml

file in addition to the Helm chart, which contains the parameters needed by your chart.

The magic of Helm lies in these values.

Figure 8.2  Process for Releasing Helm Chart in K8s

Each finished chart comes with a values.yaml file that sets all the necessary parameters.

You can view this as a kind of default value that enables you to easily roll out the chart.

Things start getting magical when you start to overwrite the values in different situa-

tions, such as to replace the default values with environment-specific values. You do

not need to adapt the existing values.yaml file for that, but simply give Helm another

values.yaml during the templating process.

Let's take the values.yaml file from Listing 8.1, which is provided in a Helm chart, as an

example.

Push & Pull

Repository

Chart

uses
Helm

Chart

Kubernetes

Release

Release
deploys

Helm Chart

values.yaml

createsHelm releaseKubernetes
Manifests
359Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



8 Orchestrating Kubernetes Using Helm
name: humanity-backend
version: 1.0.0

Listing 8.1  Default "values.yaml" File

The name of the application and the version to be rolled out are set there. You now

want to customize the chart for your development environment and roll out a more

recent version. To do this, simply give Helm the values-dev.yaml file from Listing 8.2.

version: 1.2.0

Listing 8.2  Environment-Specific "values-dev.yaml" File

The values you set in this values file will replace the values from the default values file.

The great thing about this merging process is that you can define the values in different

ways and bring them into your charts. You can split your values into different files such

as the following:

� Company-specific values

� Environment-specific values

� Cluster-specific values

We will go into more detail about the options you have with values and how best to

structure them in Section 8.2.2.

Note

The way Helm charts are packaged and provided gives you the opportunity to develop

standards for applications in your company. Imagine a SaaS agency that operates the

same software for multiple customers. Of course, the configuration has to be slightly

different for all customers, but this can be easily adjusted using charts. Instead of

maintaining a separate application for each customer, you can work in a standardized

way and only address the differences during deployment.

But enough theory for now. You will need Helm on your computer for the following

sections. The installation instructions for the Helm CLI for your system can be found at

http://s-prs.co/v596458.

You can find the appropriate shell completions for your command line at http://s-

prs.co/v596459.

Concerning the Helm CLI, it works similar to kubectl. You can use helm -h to display all

commands. The completion feature is very helpful in everyday life because nobody

needs to know all the calls in detail. You will become familiar with the most important

commands in the following sections.
360 © 2025 by Rheinwerk Publishing Inc., Boston (MA)

http://s-prs.co/v596458
http://s-prs.co/v596459
http://s-prs.co/v596459


8.1 Helm: The Kubernetes Package Manager
8.1.1    Creating a First Helm Chart

To get started, let’s have Helm generate the default chart for us. To do this, you want

to run the helm create humanity-backend command in your command line, where

humanity-backend is the name of the chart. Your folder structure should then look as

shown in Listing 8.3. Helm uses this command to create all the necessary files and even

provides you with a few sample manifests.

.
├── Chart.yaml
├── charts
├── templates
│   ├── NOTES.txt
│   ├── _helpers.tpl
│   ├── deployment.yaml
│   ├── hpa.yaml
│   ├─ ingress.yaml
│   ├── service.yaml
│   ├── serviceaccount.yaml
│   └─ tests
│       └── test-connection.yaml
└── values.yaml

Listing 8.3  Folder Structure of Default Helm Chart

You can now get an impression of the structure you have created:

� What does a Helm manifest look like?

� What is different from what you already know?

� Where do you find parallels to what you already know?

We will return to this sample chart again and again in the following sections. It already

contains a lot of what you need to know and what Helm enables you to do.

Note

You should install a Helm plugin for your IDE. I use IntelliJ and have installed the sug-

gested Go template plugin.

This makes your work a little easier, as you can jump directly from the template to the

value and generate the manifest in the IDE.

8.1.2    Deploying a Helm Chart via the Command Line Interface

Let's look at how to roll out a chart using the Helm CLI and at the sample humanity-
backend Helm chart.
361Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



8 Orchestrating Kubernetes Using Helm
If you are in the chart folder, you can roll out the chart via one of two commands:

� helm install -f values.yaml humanity-backend .

� helm upgrade --install -f values.yaml humanity-backend .

As mentioned previously, in these commands, humanity-backend is the name of the

release, and the final period (.) references the folder with the Helm chart.

You can use both commands to release the Helm chart in Minikube for the first time. In

this case, note that you must add the --install option to helm upgrade; otherwise, Helm

will throw an error as there is no release for upgrading yet. The --install option checks

if there is already a release, and if not, it will roll out the release like helm install. You

can use the same helm upgrade command when rolling out an update. The helm install
command would then throw an error because the release has already been rolled out in

the cluster.

Good to Know

Typically, I just use the upgrade command in a CI/CD pipeline because then I don't need

to distinguish whether a Helm chart has already been released or not.

However, the install command is useful if you want to make sure that there is not yet a

release with the corresponding name and do not want to overwrite an old version.

You can use the -f option to specify the values file to be used for templating. You can

enter as many values files as you like, and the last entry always overwrites the previous

one. This allows you to overwrite default values with environment-specific values, for

example. An example could look as follows:

helm upgrade --install -f values.yaml -f values-dev.yaml humanity-backend .

We’ll take a closer look at exactly how to use values in Section 8.2.2.

As you know from the introduction, Helm also has repositories in which the charts are

stored. Here, we have deployed the chart directly from the folder. In Figure 8.3, you can

see that both methods are possible. You can deploy directly from the repository as well

as from the folder. Then you can install the Jenkins chart from the Bitnami repository

via the following command, for example:

helm install jenkins bitnami/jenkins

Instead of specifying the path to the Helm chart as before, you want to enter bitnami/
jenkins—that is, [reponame]/[chartname]. We’ll look at how you can use a repository in

Section 8.1.3, while Section 8.1.4 provides more insight into the Jenkins chart itself.
362 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



8.1 Helm: The Kubernetes Package Manager
Figure 8.3  Helm Chart in Repositories or as Folder Structure

Good to Know

Whether you store your chart in a Helm repository is a question of your development

process. A chart in the repository is ultimately just a packed archive with all files such

as templates and values. In Section 8.3.2, you will learn how to package a chart and

store it in a repository.

8.1.3    Setting Up and Managing a Helm Repository

One of the advantages of Helm is that you can use numerous open-source charts that

are available in public repositories. All you have to do is familiarize your Helm CLI or

Lens with the corresponding repositories. Now let’s discuss how to integrate new Helm

repositories to access these Helm charts.

Let's start with Lens. For this purpose, you need to open Lens and go to the settings.

Under the Kubernetes menu item, there is a Helm area that should look like Figure 8.4.

There you can select any known Helm repository via the dropdown menu. Lens uses

Artifact Hub as the official site to display the repositories.

Note

You can find Artifact Hub at https://artifacthub.io/.

There you can also search for Helm charts and find many open-source applications that

you can install directly via Helm.

Push & Pull

Repository

Chart

uses
Helm

./humanity-backend

Folder

Chart
363Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

https://artifacthub.io/


8 Orchestrating Kubernetes Using Helm
Figure 8.4  Helm Repositories in Lens

As you can see, the Bitnami repository is already selected, and you can add more from

the dropdown menu if required.

Good to Know

Bitnami is a library of ready-made software packages. You will find the most popular

open-source applications from Bitnami already configured and easy to use. Especially

when I want to set something up quickly or try out a new tool, I look for Bitnami pack-

ages first.

Bitnami in Production Environments

Note that the Helm charts from Bitnami and other providers are not necessarily suit-

able for your production environments. They are usually designed to be "developer-

friendly," so I like to use them for testing. However, there is no guarantee that vulnera-

bilities, for example, will be patched regularly. In addition, the charts are very large, dif-

ficult to understand, and not (only) tailored to your use case. Sometimes it is better to

simply write your own chart and follow the KISS principle.

Thus, you should take a closer look if you want to use one of these packages in produc-

tion and discuss it with your IT department. Helm charts from the internet are very

suitable for initial tests on your own playground, but when it gets serious, you should

create your own deployments and check exactly what is needed.

If you want to manage Helm repositories in the CLI, you should use the helm repo com-

mands. For example, you can use the following command to add the repo for the Har-

bor tool:

helm repo add harbor https://helm.goharbor.io

You can use harbor to specify the name of the repo in your list and add the URL under

which the repo can be reached.
364 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



8.1 Helm: The Kubernetes Package Manager
The helm repo list command enables you to display your added repos, while helm repo
remove allows you to remove repos, and helm repo update updates your local index of the

repository. You need the updated index so that you can also pull Helm charts that have

been newly added.

Note

If you have your own Helm repositories in your company, you can also add them via the

Helm CLI. Unfortunately, Lens has some difficulties adding it on its own, but once you

have added the repo, Lens can also access it.

8.1.4    Deploying a Helm Chart via Lens

Now that you know how to use the Helm repositories, let's look at how you can roll out

one of these charts through Lens. We’ll use the Jenkins chart from the Bitnami reposi-

tory for this purpose. To do this, click Helm • Charts in your cluster menu in Lens and

enter “Jenkins” in the search field. When you click the chart, you will see more informa-

tion about the chart on the right-hand side, as shown in Figure 8.5—for example:

� The version

� How to install the chart

� How to configure the chart

Figure 8.5  Selecting Jenkins Chart in Lens

Good to Know

The difference from the Helm CLI is that you can only use Lens to deploy charts that are

stored in a repository. For example, you do not have access to the humanity backend
365Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



8 Orchestrating Kubernetes Using Helm
chart that is already on your computer. However, we will look at how you can use your

own Helm repository in Section 8.3.2.

I use chart version 12.4.0 as this is currently the latest version. If necessary, you can sim-

ply use older versions of the software. Now click Install in the top-right-hand corner.

The values file of the Helm chart opens at the bottom, which you can use to customize

charts (Section 8.2.2). Confirm the settings in the values file by clicking Install. That’s it.

Jenkins will now be rolled out in your cluster.

To be able to access your new Jenkins server, you will of course need more information

about it. Helm provides the option of outputting notes that are necessary for the devel-

oper. To retrieve these notes, click Helm • Releases in Lens and then on your Jenkins

release. This will open another window in which you will find the information you need

under Notes. The notes should look similar to those shown in Listing 8.4.

1st Get the Jenkins URL by running:
…
2nd Login with the following credentials
echo Username: user
echo Password: $(kubectl get secret --namespace default jenkins-1698790333
       -o jsonpath="{.data.jenkins-password}" | base64 -d)

Listing 8.4  Release Notes of Jenkins Installation

You don't need the URL for now, because you can use simple port forwarding to access

Jenkins. However, what you will need is the password that was stored fully automati-

cally as a Kubernetes secret. Bitnami already provides you with the corresponding

kubectl command. (Remember: Your command will look slightly different because

your secret has a different name. This means that you cannot copy it directly from the

book.) Now check whether you can access the Jenkins GUI.

Warning

When I use the command to retrieve the secret in my Mac command line, the system

appends a percent sign (%) to the password. This could also be the case for you. Pay

attention to this and leave it out when copying.

8.1.5    Updating and Deleting Helm Releases

You have already seen the helm upgrade command. This command can also be used to

import a new version of the chart. There are generally two reasons that you want to

install updates: either the chart version has changed because you have made changes

to the templates, or you want to import new values.
366 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



8.1 Helm: The Kubernetes Package Manager
For both options, simply run the following command and reference the new chart or

enter the latest values.yaml file:

helm upgrade --install -f values.yaml humanity-backend .

In Lens, you can also simply select the release under Helm • Releases and then click

Upgrade as in Figure 8.6 to select a newer version in the window that opens. There,

adjust the values.

Figure 8.6  Helm Release Upgrade in Lens

You can select the version using the dropdown window as in Figure 8.7.

Figure 8.7  Selecting Upgrade Version

If you only want to change the values, you can do this under Values, as shown in Figure

8.6. There you will see the current values. You can adjust them and then click Save.

Once you have performed an upgrade, Helm will take care of the rollout. For example,

if you have customized a deployment, Helm will make the changes and, if necessary,

swap the pods. Helm increments the revision of the release by one with each upgrade.

You can see the revision in the release overview.

If you want to delete all Kubernetes resources of a Helm release, this is very simple.

Helm remembers which resources belong to a release and can therefore easily update
367Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



8 Orchestrating Kubernetes Using Helm
or delete them. You may have already seen this in Section 8.1.2. You can access the

releases in Lens under Helm • Releases and also delete them there if you click the Helm

release and then click Delete. If the Helm release is deleted, all Kubernetes resources

that were managed by the release are also deleted.

The Helm CLI enables you to view the releases via helm ls, and the response should look

like Listing 8.5 in a shortened version. Use helm uninstall jenkins-170 to delete the

release.

NAME            NAMESPACE    REVISION    STATUS      CHART
jenkins-170     default      1           deployed    jenkins-12.4.0

Listing 8.5  Output of "helm ls" Command

8.1.6    Downloading Helm Charts from a Repository

Not only can you install Helm charts directly, but you can also download them. This is

very useful, for example, if you want to get a specific inspiration or understand a chart

in detail. The command for the download is composed as follows:

helm pull [reponame]/[chartname]

For example, if you want to download the Jenkins chart from Bitnami, you can use the

helm pull bitnami/jenkins command. In Section 8.3, we’ll take a look at how such a

Helm chart is structured.

Note

If you are unsure about the name of the repo, you can use helm repo ls to check how

the name is defined.

Note

The --untar option makes sure that the chart is unpacked directly.

8.2    Reading and Developing Helm Charts

You have now been introduced to the basic principles of Helm, have used the CLI,

and have already deployed your first chart. In this section, we’ll dive into the basics of

developing Helm charts. If you have looked at the Helm templates from the sample

humanity-backend chart, you will find a new syntax that differs fundamentally from the

previous YAML manifests.

First, we’ll look at the templating engine of Helm. You will learn how to use the Go tem-

plating engine to create flexible and reusable manifests that you can easily adapt to
368 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



8.2 Reading and Developing Helm Charts
different environments. You will then learn more about the principle of values in order

to fill the templates with values. Then you will be introduced to various template func-

tions, which I have divided into three sections for you. Finally, we’ll look at the Helm

diff plugin, which helps you to display differences between the current and planned

states of your Helm releases.

After reading this section, you will have solid knowledge of how to read and develop

Helm charts.

8.2.1    The Templating Engine and the Language of the Charts

You have already written several manifests in the course of the book and deployed

them in Kubernetes. If you look at the deployment manifest from the default Helm

chart, it looks very strange at first glance. You can find an excerpt of it in Listing 8.6.

Even if the syntax seems a little strange at first, the aim of Helm is to create a YAML

manifest at the end, as you already know. This is the only way Kubernetes can do any-

thing with the manifest.

apiVersion: apps/v1
kind: Deployment
metadata:
  name: {{ include "humanity-backend.fullname" . }}
  labels:
    {{- include "humanity-backend.labels" . | nindent 4 }}
spec:
  {{- if not .Values.autoscaling.enabled }}
  replicas: {{ .Values.replicaCount }}
  {{- end }}
  selector:
    matchLabels:
      {{- include "humanity-backend.selectorLabels" . | nindent 6 }}
  template:
    metadata:
      {{- with .Values.podAnnotations }}
      annotations:
        {{- toYaml . | nindent 8 }}
      {{- end }}
      labels:
        {{- include "humanity-backend.labels" . | nindent 8 }}
        {{- with .Values.podLabels }}
        {{- toYaml . | nindent 8 }}
        {{- end }}
…

Listing 8.6  "deployment.yaml" from Default Helm Chart
369Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



8 Orchestrating Kubernetes Using Helm
At the heart of the Helm engine is the templating syntax, which is based on Go tem-

plates and is supplemented by some Helm-specific extensions. A major goal is to

ensure the reusability of a manifest by means of parameterization. For example,

{{ .Values.replicaCount }} refers to a value in values.yaml called replicaCount.

Helm uses double curly brackets ({{ }}) as placeholders within the YAML files of Kuber-

netes to insert dynamic values or execute logic. Everything inside these brackets is

evaluated by Helm before the final manifest is passed to Kubernetes. As shown in

Figure 8.8, the Helm templating engine will take all templates, import one or more

value files, and then process each of the template commands. Helm not only can use

values, but also has a wide range of options, which we will now look at in more detail.

Figure 8.8  Helm Templating Engine

Before we start with the examples, I want to show you how you can carry out templat-

ing using Helm. This allows you to track the impact of your changes during the devel-

opment process. If you are in the folder of the Helm chart, such as in humanity backend,

then you can run the helm template . command. Then you will receive the generated

manifests as output on the console.

Note

Templating is even easier with plugins for your IDE. I use the Kubernetes plugin for

IntelliJ, which also supports Helm.

Template
Engine

values.yaml

templates/

service.yaml

secret.yaml

deployment.yaml

YAML File for
Kubernetes
370 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



8.2 Reading and Developing Helm Charts
Built-In Functions

Helm provides a variety of built-in functions that you can use within the templates to

manipulate values or evaluate conditions. You connect a function with a | (like the pipe

character in Linux) after the value, as shown in Listing 8.7. There I have extended

deployment.yaml and added the upper and quote functions after the names. This reads

the value from the humanity-backend.fullname parameter, then converts everything to

uppercase and places it in quotation marks.

…
name: {{ include "humanity-backend.fullname" . | upper | quote }}
…
replicas: {{ .Values.replicaCount | default 3 }}

Listing 8.7  "deployment.yaml" Extended by Helm Functions

Note

If you look at where exactly some values come from, you will find the _helpers.tlp file in

the humanity-backend example. This is an advanced way to define and prepare param-

eters to keep the manifests "clean" and readable.

You can learn more about this at http://s-prs.co/v596460.

Try it out for yourself and carry out the templating to see the result. Another example

in Listing 8.7 has the default value, which you can define in the template.

One frequently used function is indent or nindent. As an example, take a look at the

excerpt from Listing 8.8 of the deployment.yaml file. The function inserts a certain

number of spaces before the values. This is particularly useful to keep the indentations

in generated YAML files correct; doing otherwise will lead to misinterpretations. In our

example, four spaces are inserted before each label so that the labels are arranged

under the labels object.

…
  labels:
    {{- include "humanity-backend.labels" . | nindent 4 }}
…

Listing 8.8  Indent Example from "deployment.yaml" File

If you render the template, the result looks like Listing 8.9.

Good to Know

The nindent function differs from indent only in that it also inserts a new line.
371Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596460


8 Orchestrating Kubernetes Using Helm
apiVersion: apps/v1
kind: Deployment
metadata:
  name: release-name-humanity-backend
  labels:
    helm.sh/chart: humanity-backend-0.1.0
    app.kubernetes.io/name: humanity-backend
    app.kubernetes.io/instance: release-name
    app.kubernetes.io/version: "1.16.0"
    app.kubernetes.io/managed-by: Helm
…

Listing 8.9  Indent Example Rendered

Another function that you will need often is the conversion to Base64, which is used to

encode values in Helm templates. The typical use case is a secret, where the values are

expected as a Base64 string.

Good to Know

You can use these functions anywhere in Helm. For example, you could encode the

name of the deployment from Listing 8.8 using Base64, but this makes no sense in this

case.

In the humanity-backend sample chart, create the new secret file from Listing 8.10 under

templates. Add the new password: test1234 key-value pair to values.yaml.

apiVersion: v1
kind: Secret
metadata:
  name: my-secret
type: Opaque
data:
  password: {{ .Values.password | b64enc }}

Listing 8.10  Secrets with Base64 Template

After calling helm template ., the generated secret will look as shown in Listing 8.11.

apiVersion: v1
kind: Secret
metadata:
  name: my-secret
type: Opaque
372 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



8.2 Reading and Developing Helm Charts
data:
  password: dGVzdDEyMzQ=

Listing 8.11  Generated Secret

You have now become familiar with a few of the most common functions and have

seen how you can use them. There are many others you can look up if you need them.

An overview of this is shown at the following URL: http://s-prs.co/v596461.

Built-In Objects

Helm contains so-called built-in objects that you can also reference within the tem-

plate. For example, these objects contain important information about the chart itself

or the current release, which is useful for the configuration and deployment of

resources in Kubernetes. The most frequently used built-in objects include the chart

and the release.

You can use the values of these objects in the same way as the normal values. In Listing

8.12, you will find an example of the charts object.

apiVersion: v1
kind: ConfigMap
metadata:
  name: {{ .Chart.Name }}-config
data:
  chartName: {{ .Chart.Name }}
  chartVersion: {{ .Chart.Version }}

Listing 8.12  Sample Chart Object

You can store the information in a ConfigMap there, for example. Alternatively, you

can use the chart version within your deployment template. You could use the release

as in Listing 8.13, for example, to name your deployment. This is very useful and used

often.

Note

An overview of all built-in objects and their parameters can be found at http://s-prs.co/

v596462.

apiVersion: apps/v1
kind: Deployment
metadata:
  name: {{ .Release.Name }}

Listing 8.13  Sample Release Object
373Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

http://s-prs.co/v596461
http://s-prs.co/v596462
http://s-prs.co/v596462


8 Orchestrating Kubernetes Using Helm
8.2.2    Configuring Charts with Values

Let's move on to the Helm values. The values files are at the heart of every chart

because this is where the values are stored that turn the template into a real Kuber-

netes manifest. As mentioned previously, the main reason for using values files in

Helm charts is the separation of configuration and code. Instead of writing hard-coded

settings directly in the Kubernetes manifests, values allow settings such as image ver-

sions, resource limits, and other configurations to be injected dynamically.

The values are also written in YAML. You can apply everything you have learned in

Chapter 3, Section 3.2 here. However, depending on the structure, you may need to

access the values differently in the templates. Helm distinguishes between a flat struc-

ture and a nested structure.

Listing 8.14 shows a flat structure. The values are arranged directly under the root ele-

ment and are ideal for simple configurations. They are easy to understand and easy to

change.

name: nginx-app
imageName: nginx
imageTag: stable

Listing 8.14  Flat "values.yaml" File

The template in Listing 8.15 is also easy to read. It is immediately clear which parameter

is being used.

spec:
  template:
    spec:
      containers:
      - name: {{ .Values.name }}
        image: "{{ .Values.imageName }}:{{ .Values.imageTag }}"

Listing 8.15  Template for Flat "values.yaml"

The nested structure in Listing 8.16 is well-suited for more complex charts if you want to

group configurations logically. This makes it easier to read the values.yaml file, but

quickly compromises the readability of the entire template.

application:
  name: nginx-app
  image:
    repository: nginx
    tag: stable

Listing 8.16  Nested "values.yaml" File
374 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



8.2 Reading and Developing Helm Charts
In Listing 8.17, you can already see that the link grows with each nesting level. .Val-
ues.imageTag becomes .Values.application.image.tag.

spec:
  template:
    spec:
      containers:
      - name: {{ .Values.application.name }}
        image: "{{ .Values.application.image.repository }}:{{ 
.Values.application.image.tag }}"

Listing 8.17  Template for Nested "values.yaml" File

Note

For nested values, Helm recommends that an "existence check" be carried out for each

level. You should therefore check that the value is set at all. This also inflates the tem-

plates and makes them more difficult to read.

We’ll look at the existence check in Section 8.2.3.

Overwriting Values during Rollout

One of the strengths of Helm is the flexibility it offers in configuring deployments by

overwriting values in the values.yaml file. This allows you to make adjustments to the

configuration without having to edit the Helm chart or the default values yourself. This

is particularly useful for third-party charts. It gives you two options for setting new val-

ues. You can enter the values directly via the command line, or you can enter an addi-

tional values.yaml file.

By using the --set flag, you can overwrite individual values or nested values. For exam-

ple, if you want to activate autoscaling in the humanity-backend example, you can do

this as follows:

helm upgrade --install -f values.yaml
             --set autoscaling.enabled=true humanity-backend .

Use this command to overwrite the default value in values.yaml, which is set to false.

Good to Know

This variant is a good way of setting secrets such as passwords, especially in CI/CD

pipelines. This means that you do not have to check them in as code in your Git repo,

but can inject them into the pipeline at runtime.
375Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



8 Orchestrating Kubernetes Using Helm
Note

You can also use --set to overwrite a value in a list, but this is not recommended and

can be error-prone if the order of the list changes unexpectedly. Let's assume the fol-

lowing:

containers:
  - name: nginx
  - name: database

In this case, you could adjust the name of the database by using --set containers[
1].name=postgres.

The second option would be to pass another values.yaml file. This is particularly useful

if you want to adjust a large number of values and version them via Git. A classic use

case is when you have different configurations for each environment. For example, if

you want to activate autoscaling in the development environment, simply create a val-

ues-dev.yaml file as in Listing 8.18.

autoscaling:
  enabled: true

Listing 8.18  Example of "values-dev.yaml" File

You can then simply extend the command as follows:

helm upgrade --install -f values.yaml -f values-dev.yaml \
   humanity-backend .

Good to Know

You can extend the list of values files as per your requirements. The file that you specify

last in the command has the highest priority and overwrites all values of the previous

files and so on.

Other use cases for additional values files include, for example, specific configurations

according to regions, AWS accounts, teams, or other criteria. Using different value

specifications, you can easily provide the individualized setups of a standardized

deployment.

Structure of a Values File

If you develop charts yourself, then a well-structured values file is the be-all and end-all.

However, as is so often the case, there is no one true structure. Depending on the size

of the chart, the values file will be different or even change in the course of develop-
376 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



8.2 Reading and Developing Helm Charts
ment. An example is shown in Listing 8.19. There we have divided the file into applica-
tion settings, service configuration, and advanced settings.

# Application settings
application:
  name: "nginx-app"
  image:
    repository: "nginx"
    tag: "latest"
  replicaCount: 2
# Service configuration
service:
  type: "LoadBalancer"
  port: 80
# Advanced settings
advanced:
  loggingLevel: "INFO"

Listing 8.19  Possible Structure of Values File

You could also define the log level at the root level or generally create a grouping for

your application's environment parameters. Also think about other members of your

team who may need to use your charts. What could they want to change in the chart

without having to touch the templates?

Note

Define appropriate default values for all configuration options. These values should be

selected in such a way that the chart works out of the box, but at the same time can be

easily adapted to specific requirements. This may save you one or two configuration

files.

If you look at the values.yaml file of humanity-backend, you will find various related

blocks and sometimes individual key-value pairs. Most of them are provided with com-

ments so that it is clear what you are configuring. At first glance, the file is clean and

easy to understand.

You can find a beautiful values design there under resources. I have inserted the

excerpt again in Listing 8.20.

resources: {}
…
  # limits:
  #   cpu: 100m
  #   memory: 128Mi
377Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



8 Orchestrating Kubernetes Using Helm
  # requests:
  #   cpu: 100m
  #   memory: 128Mi

Listing 8.20  Resource Configuration in humanity-backend

There is even a commented example of how you can set the configuration. The author

of the chart has left it up to you whether you want to include limits and requests. This

type of value is perfect if you want to make an entire part of the manifest configurable,

which means that you do not have to set each value individually in the template but

can swap out the template part to the values file.

In the deployment, exactly what is defined in values.yaml is simply inserted at the end.

Here is the command from deployment.yaml:

resources:
  {{- toYaml .Values.resources | nindent 12 }}

You can find even more values of this type in values.yaml. During development, you

should also consider whether you want to swap out entire parts of the template to the

values file in order to give the user more flexibility later on.

8.2.3    Conditions in Helm Templates

Conditions in Helm allow you to show or hide parts of a template based on certain val-

ues or configurations. A condition checks a value or expression and only executes the

template instructions contained therein if the condition is evaluated as true.

Possible application scenarios include the following:

� Feature flags

Activate or deactivate certain components of a chart based on flags in the val-

ues.yaml file. This is ideal for a step-by-step introduction.

� Environment-specific configuration

Customize configurations depending on the environment in which you are deploy-

ing.

� Dependencies between resources

Control the configuration of resources based on the creation of another resource in

the same chart. This allows you, for example, to change the replicas of a deployment

when you activate a horizontal pod autoscaler.

Let’s now take a closer look at the latter example.

In humanity-backend, you will find the hpa.yaml file in the templates. The entire object

is surrounded by an if statement, as you can see in Listing 8.21. This statement checks
378 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



8.2 Reading and Developing Helm Charts
whether the autoscaling.enabled value is set to true, which means that the horizontal

pod autoscaler is only generated if you set this value to true.

{{- if .Values.autoscaling.enabled }}
…
{{- end }}

Listing 8.21  Conditions in "hpa.yaml" File

The default values in values.yaml can be found in Listing 8.22. Activate the flag there

and run the helm template . command. Helm should now also display the HPA object.

autoscaling:
  enabled: false
  minReplicas: 1
  maxReplicas: 100
  targetCPUUtilizationPercentage: 80

Listing 8.22  Autoscaling Values

The hpa.yaml file is not the only template in this chart that uses this flag. In deploy-

ment.yaml, you will find the code from Listing 8.23 because the configuration of the

replicas is deactivated in the deployment as soon as an HPA object is created. This

makes sense in this case, because you no longer want to define a fixed number of repli-

cas but instead want to use autoscaling.

Note

If an object is not activated by a flag, then the remaining values used under this object

are not actually necessary. You should still set default values in values.yaml during

development so that the user of a chart simply needs to set the flag to true.

{{- if not .Values.autoscaling.enabled }}
replicas: {{ .Values.replicaCount }}
{{- end }}

Listing 8.23  Dependence of Flag for "deployment.yaml"

As in every programming language, you also have the option of defining an else for

every if. An example of this is shown in Listing 8.24. This is very useful if, for example,

you want to implement a new API version of the object and use a flag to control which

option is active.
379Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



8 Orchestrating Kubernetes Using Helm
{{- if .Values.autoscaling.enabled }}
# Manifests for autoscaling
{{- else }}
# Alternative setup if autoscaling is not activated
{{- end }}

Listing 8.24  Example of Else Statement

The if statement is also an existence check. In the hpa.yaml file, you will find the code

from Listing 8.25. This code is inserted into the manifest only if the autoscaling.tar-
getCPUUtilizationPercentage parameter is set.

{{- if .Values.autoscaling.targetCPUUtilizationPercentage }}
- type: Resource
  resource:
    name: cpu
    target:
      type: Utilization
      averageUtilization: {{ .Values.autoscaling
          .targetCPUUtilizationPercentage }}
{{- end }}

Listing 8.25  Sample Existence Check

Just try it out! Set some different values, think about what the end result should look

like, and check it using the helm template . command. Conditions are a powerful tool to

make your Helm charts more flexible and reusable.

8.2.4    Other Operations and Control Structures

In addition to the basic if statements, Helm templates provide a variety of advanced

operations and control structures that further increase flexibility. In this section, we’ll

look at some of these advanced techniques and how they can be applied in real life.

With Statement

The need to repeatedly specify long or complex paths to access certain object proper-

ties can impair the readability of configuration files and make them more confusing.

The with statement allows you to set the context for the block in which it is used to a

specific value. By defining a local context using the with statement, you can refer to the

immediate properties of the context object without specifying the full path.

Let's assume you have a deployment and want to structure the values as in Listing 8.26.
380 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



8.2 Reading and Developing Helm Charts
application:
  name: "nginx-app"
  image:
    repository: "nginx"
    tag: "latest"
  replicaCount: 2

Listing 8.26  Values for Deployment

Your deployment will look like Listing 8.27 without the with statement. In each param-

eter, you use application repeatedly to refer to the corresponding object in the values

file.

apiVersion: apps/v1
kind: Deployment
metadata:
  name: {{ .Values.application.name }}
spec:
  replicas: {{ .Values.application.replicaCount }}
  template:
    metadata:
      labels:
        app: {{ .Values.application.name }}
    spec:
      containers:
      - name: {{ .Values.application.name }}
        image: "{{ .Values.application.image.repository }}:{{ 
.Values.application.image.tag }}"

Listing 8.27  "deployment.yaml" File without "with" Statement

If you use with to set the context for the deployment to application, your deploy-

ment.yaml file will look like Listing 8.28. As you can see, this makes the lines clearer and

avoids unnecessary repetition.

{{- with .Values.application }}
apiVersion: apps/v1
kind: Deployment
metadata:
  name: {{ .name }}
spec:
  replicas: {{ .replicaCount }}
  template:
    metadata:
381Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



8 Orchestrating Kubernetes Using Helm
      labels:
        app: {{ .name }}
    spec:
      containers:
      - name: {{ .name }}
        image: "{{ .image.repository }}:{{ .image.tag }}"
{{- end }}

Listing 8.28  "deployment.yaml" Including "with" Statement

Range Statement

When developing and managing Kubernetes applications, developers are often faced

with the challenge of dynamically configuring and creating multiple resources. The

task becomes particularly complex if the number or configuration of these resources is

supposed to be variable and depends directly on the values in values.yaml. A typical

example is the task of flexibly designing the number of containers within a pod.

You can use the range statement to iterate over lists or maps. Imagine you want to cre-

ate a pod manifest but make the number of containers configurable via the values.yaml

file. Listing 8.29 contains an example that allows you to create three containers within

the pod, using values.yaml from Listing 8.30.

apiVersion: v1
kind: Pod
metadata:
  name: multi-container-pod
spec:
  containers:
  {{- range .Values.containers }}
  - name: {{ .name }}
    image: {{ .image }}
  {{- end }}

Listing 8.29  Pod Manifest with "range" Function

containers:
  - name: web-server
    image: nginx:latest
  - name: app-server
    image: myapp:1.2.3
  - name: helper
    image: helper:latest

Listing 8.30  "values.yaml" for "range" Statement
382 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



8.2 Reading and Developing Helm Charts
Logical Operators and Comparison Operators

Sometimes a simple if statement is not enough. Helm templates also support the use

of logical operators such as and, or, and not to evaluate complex conditions. Helm also

supports a range of comparison operators such as eq (equal to), ne (not equal to), lt (less

than), le (less than or equal to), gt (greater than), and ge (greater than or equal to) for

comparing values.

These operators behave as they do in any other programming language. Listing 8.31

contains a few examples to get a feel for this.

{{- if and .Values.enabled .Values.production }}
# enabled and production are both true
{{- if or .Values.beta .Values.preview }}
# beta or preview is true
{{- if not .Values.disabled }}
{{- if eq .Values.environment "production" }}
{{- if lt .Values.replicas 3 }}

Listing 8.31  Example of Operators

8.2.5    Helm Diff for Checking Changes

Helm charts can quickly become complex and confusing due to templating. Especially

when you are working on charts in a team, it is sometimes difficult to see in advance

what the adjustment of a particular value will change. You could then use helm template
to generate and check the result, but there is a nice function that simplifies the compar-

ison for you.

The Helm diff plugin easily shows you the differences between two Helm releases. You

can use it in various scenarios, for example to

� compare what would change when a release gets updated;

� see the differences between the deployed version and the version of a chart available

in the repository; or

� see the effects of changes in values.

Good to Know

For one customer, I outsourced the Helm diff plugin to a separate pipeline step that

requires manual approval for certain environments. This helped to identify errors in

advance and to carry out a final review of the changes.

To install the plugin, you need to run the following command:

helm plugin install https://github.com/databus23/helm-diff
383Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



8 Orchestrating Kubernetes Using Helm
For this example, let’s again use humanity-backend from Section 8.1.1. It’s best to deploy

the release again. Now let's activate the horizontal pod autoscaler. Open values.yaml

and change the value of autoscaling.enabled to true. Now you can use Helm diff to see

how the manifests change. To do this, run the following command:

helm diff upgrade humanity-backend . --values values.yaml

Listing 8.32 shows an excerpt from the output of Helm diff. On your console, the lines

that are added should be displayed in green, and those that are removed are marked in

red. You can see that the horizontal pod autoscaler object is added and the replicas
option is removed from the deployment.

…
default, humanity-backend, HorizontalPodAutoscaler (autoscaling) has been 
added:
-
+ # Source: humanity-backend/templates/hpa.yaml
+ apiVersion: autoscaling/v2
+ kind: HorizontalPodAutoscaler
+ metadata:
+   name: humanity-backend
…

Listing 8.32  Helm Diff after Activation of Autoscaling

If you are happy with the changes, you can then release the chart as usual.

Note

The use of Helm diff is perfect for precisely such cases. You change a value and as a

result, the templates within several files change as well. Without these tools, such an

interaction can easily be overlooked.

Not only can you use Helm diff to check the changes before a release, but you can also

compare two revisions of a release with each other. This allows you to check what has

changed since the last release during debugging, for example. If you have installed the

update with autoscaling and a second revision of the humanity-backend release is avail-

able, you can use the following command:

helm diff revision humanity-backend 1 2

This command compares revision 1 with revision 2.
384 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



8.3 Developing Custom Charts
8.3    Developing Custom Charts

You have now already dealt with Helm and deployed your first Helm charts in Kuber-

netes. Let’s now look at how you can develop a Helm chart for your own application

and what you should pay attention to.

As you know, you can also use a Helm chart without a repository and simply check it

into the Git repo and roll it out in Kubernetes. This allows you to make use of parame-

terization, but you will lose a major advantage: the reusability of your chart in your

company.

The actual development process for Helm charts is illustrated in Figure 8.9.

Figure 8.9  Development Process of Helm Charts

Let's assume you’re developing a Helm chart for a Postgres database. This database is

not only used by yourself; it could also be used in other projects within your company.

Instead of thinking about a perfect Postgres setup for each project, you could think

about it once and provide a Helm chart for everyone else. This chart could also be pro-

moted as an inner-sourcing project in which several teams in your company can partic-

ipate.

Helm Developer

Helm Chart

apiVersion: apps/v1

kind: Deployment

metadata:
Chart gets

created

Chart gets stored in
repository

Application
Developer

accesses the
chart

Chart gets
downloaded

Helm performs the
installation

Repository
385Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



8 Orchestrating Kubernetes Using Helm
If you store the chart in a repository, other developers can easily use it and customize

it with values. In this section, we want to take a closer look at the development process,

which means you will learn what you need to develop a Helm chart that can be used by

others as well. Finally, we will look at the modularity of Helm and how you can write

even better charts using dependencies.

8.3.1    The Framework of Your Helm Chart

To develop a chart that other developers also want to use, you need a good framework.

Two things are important in this respect:

� A well-maintained Chart.yaml file

� Helpful release notes

The Chart.yaml file contains all the essential metadata about the chart. If you develop a

chart yourself, you should also maintain it. Here are some useful values you should fill

in:

� apiVersion
The API version of the chart that Helm uses to interpret the format and functionality

of the chart. In the examples here, it is v2 for Helm 3 charts.

� name
The name of the Helm chart. This name must be unique within a Helm repository.

� version
The version of the chart that must follow the semantic versioning schema (SemVer).

� description
A brief description of your chart and its function.

� keywords
A list of keywords associated with the chart. This can help to find the chart in

searches.

� home
A URL pointing to the homepage of the project.

� sources
A list of URLs that reference the source code of the software project packaged in the

chart.

� dependencies
A list of dependencies on other charts. Here you can specify which other charts are

required for this chart to work. We’ll take a closer look at the dependencies in Section

8.3.3.

� maintainers
A list of responsible developers so that the user of the chart knows who to contact.
386 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



8.3 Developing Custom Charts
Note

There are other options for the Chart.yaml file. The complete overview can be found at

the following address: https://helm.sh/docs/topics/charts/.

You have already seen the release notes for other charts such as Jenkins. In the release

notes, you should include information such as

� Notes on user guidance

Clear instructions on how the user can interact with the deployed application.

� Postdeployment steps

Inform your users about the necessary steps after installation.

� Important notes

Share information that is relevant to the security, configuration, or usage of the

chart.

In the case of Jenkins, this was the output of the default password; in your case, it might

be something else.

Release notes are defined in a special file called NOTES.txt within the templates direc-

tory of your Helm chart. The syntax supports the templating engine of Helm, so you

can dynamically insert information based on the values of the installation.

Just download the Jenkins chart and open the release notes to get inspired. Listing 8.33

shows an excerpt from the release notes.

CHART NAME: {{ .Chart.Name }}
CHART VERSION: {{ .Chart.Version }}
APP VERSION: {{ .Chart.AppVersion }}
** Please be patient while the chart is being deployed **
{{- if .Values.ingress.enabled }}
1st Get the Jenkins URL and associate its hostname to your cluster external 
IP:

Listing 8.33  Excerpt from NOTES.txt File for Bitnami Jenkins

8.3.2    Packaging Charts and Storing Them in the Repository

Once you have developed and tested your own Helm chart, the next step is to prepare

it for distribution and use. An essential part of this process is packaging your chart and

storing it in a Helm repository. This makes your chart easy to find, versioned, and

accessible to other users or teams within your organization. For our example, we use

ChartMuseum, a lightweight, easy-to-use tool that serves as a repository for the Helm

charts.
387Personal Copy for Jaleel Hussain, alex76alex43@gmail.com

https://helm.sh/docs/topics/charts/


8 Orchestrating Kubernetes Using Helm
A Helm repository has a very simple structure. You can think of it as a collection of

packages that contain Helm charts. These repositories allow you to share and publish

charts, similar to code in a Git repository. By storing your chart in a repository, you

ensure the following:

� Simple versioning

Each version of your chart can be saved in the repository, allowing users to access

specific versions.

� A simple distribution

Development teams from your company can easily find and use your charts.

� A clear dependency management

Charts can build on each other. Helm pulls the dependencies from the repositories

and takes care of the individual steps.

Installing ChartMuseum

Let's start with the installation of ChartMuseum on Minikube. To install the tool, you

must first add the Helm repository of ChartMuseum:

helm repo add chartmuseum https://chartmuseum.github.io/charts
helm repo update

Then you can install the Helm chart via Lens. To do this, proceed as described in Section

8.1.4. You should be able to find and install the chart as shown in Figure 8.10. It is essen-

tial that you set the DISABLE_API parameter to false in the ChartMuseum values. This is

the only way you can upload Helm charts later via the API.

Figure 8.10  Installing ChartMuseum via Lens
388 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



8.3 Developing Custom Charts
Note

After adding the tool via helm repo, you may need to restart Lens so that it also scans

the new Helm repos and displays ChartMuseum.

Once the installation has completed, you’ll want to forward a port to the ChartMuseum

service via Lens. I have forwarded port 8080 from my computer for this purpose. Now

you are ready to file Helm charts in ChartMuseum.

Packaging and Uploading a Helm Chart

In this example, we’ll use humanity-backend to package the chart immediately and load

it into ChartMuseum. For this purpose, you need to go to the chart folder and run the

following two commands:

helm package .
curl --data-binary "@humanity-backend-0.1.0.tgz" \
    http://localhost:8080/api/charts

The first command creates the humanity-backend-0.1.0.tgz archive from your Helm

chart. The curl command uploads the chart to ChartMuseum.

Note

Helm will take all files in the folder with it when helm package is executed. Similar to

Git, however, Helm takes the .helmignore file into account. Here you can add all folders

and files Helm is supposed to ignore when creating the package.

Using a Chart from ChartMuseum

Finally, you’ll want to check whether the chart really exists in ChartMuseum and

whether you can use it. To do this, you first need to add your ChartMuseum as a repos-

itory for Helm. Simply use the following command:

helm repo add my-chartmuseum http://localhost:8080/

Now you should be able to find your chart among the Helm charts in Lens, as shown in

Figure 8.11. You have now successfully stored your own Helm chart in a private reposi-

tory and you can try to install it.

Note

We have created and used ChartMuseum without authentication. However, you

should control access to it in your company. Talk to your cluster admins about this as
389Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



8 Orchestrating Kubernetes Using Helm
they may already have another repository solution in use that is connected to an

identity management system and therefore provides rights management, because

it should be obvious that anyone who can access the Helm charts can carry out far-

reaching manipulations. Adequate protection is absolutely essential, aside from test

setups and private computers.

Figure 8.11  “humanity-backend” Chart in ChartMuseum

8.3.3    Managing Dependencies in Helm Charts

Using Helm, you have the option of having your charts build on each other. By defining

a dependency on another chart, you can create modular Helm charts. This approach

makes it possible to create reusable components that can be used in different projects

or under different conditions. It promotes the reuse of code, reduces redundancies, and

facilitates the maintenance of complex Kubernetes applications. In this section, we’ll

look at how Helm handles the management of dependencies between charts.

Figure 8.12 shows what such a dependency can look like. You have stored a versioned

chart of your application in a repository. From there, other charts can reference it and

use your application in your chart. Use cases for this include the following:

� Multichart projects

These projects have a large chart that you can use to deploy all components of an

application. The backend, frontend, and database are completely managed and orga-

nized in one chart.

� Customizing

In these cases, you want to customize a chart according to your needs and add addi-

tional Kubernetes resources.

We’ll take a closer look at both use cases in the course of this section.
390 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



8.3 Developing Custom Charts
Figure 8.12  Dependencies on Charts

Good to Know

Charts that use other dependencies are often referred to as umbrella charts.

Adding and Updating Dependencies

As an example of a dependency, let’s now extend humanity-backend with a Postgres

database. We’ll use the ready-made chart from Bitnami and enter the dependency in

Chart.yaml, as shown in Listing 8.34.

dependencies:
  - name: postgresql
    version: "14.1.2"
    repository: "https://charts.bitnami.com/bitnami/"

Listing 8.34  Dependency in "Chart.yaml" File

Then you need to run the following command:

helm dependency update

Helm will now carry out several steps. First, it downloads the Helm chart of the Post-

gres database and stores it in the charts path. Helm will then create a file named

Chart.lock, which looks like the one shown in Listing 8.35.

dependencies:
- name: postgresql
  repository: https://charts.bitnami.com/bitnami/

Dependence

Application
Chart

Umbrella Chart

Application
391Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



8 Orchestrating Kubernetes Using Helm
  version: 14.1.2
digest: sha256:9133c60dc762bdd233266d780db912857f04f6033503fc4032ac43be17d18f
generated: "2024-02-21T09:58:03.050996+01:00"

Listing 8.35  Chart.lock

This file saves the installed dependency with a hash value that you can use later, such

as in the pipeline, to reinstall the dependencies with the same version. Using the helm
dependency build command, you can install exactly the version that was recorded in the

Chart.lock file. This means that you do not need to check the subchart into the Git repo,

but you can be sure that the wrong version is not installed.

If you want to update the chart now, you have to increase the version of Postgres in

Chart.yaml file. In this case, I increase the value to version 14.1.3 and run the helm
dependency update command again. The old Helm chart will be replaced with the new

version, and the Chart.lock file will be updated.

You should update the dependencies regularly so that you also receive security

updates. Unfortunately, every subchart update process is a little time-consuming as

you have to look at the changes and check whether anything has changed in the config-

uration. This can be very time-consuming for large version jumps.

Good to Know

The URL of the repository is the same as the one you find when using helm repo ls,

because we have entered it there as a local repo. Helm needs the correct URL to the

repository here, as the name of the local repo can vary from developer to developer.

Configuring Subcharts

The subcharts are primarily configured using the values.yaml file of the main chart.

Each subchart has its own values.yaml file that defines default values for the subchart.

To overwrite or adjust these default values, you need to define values for the subcharts

in your own values.yaml file in the main chart. To do this, you want to use the name of

the subchart as the key.

In this example with the Postgres database, you can add the configuration from Listing

8.36 in values.yaml to customize the user name, the password, and the name of the

database. The top postgresql key references the subchart, while the underlying keys

can be found in the values.yaml file of the postgres deployment.

postgresql:
  global:
    postgresql:
      auth:
        username: "kevinwelter"
392 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



8.3 Developing Custom Charts
        password: "test1234"
        database: "database"

Listing 8.36  Subchart Configuration in "values.yaml"

If you now roll out your chart, you can see in the Postgres pod that the parameters have

been adopted, as shown in Figure 8.13.

Figure 8.13  Postgres Environment Parameter

Note

Installing the dependency places the subchart under charts. There you can simply look

at the values.yaml file and determine which configurations you want to adjust.

Multichart Project

For a real-life example of the use of dependencies, let’s look at a Helm chart that serves

as a wrapper for several subcharts. This allows you to deploy and manage an applica-

tion consisting of multiple independent components as a whole. The structure could

then look like Listing 8.37. In this example, my-application consists of two subcharts—

frontend and backend—which are defined as dependencies in the Chart.yaml file of my-
application. Users can install my-application and Helm takes care of the deployment of

the frontend and backend subcharts based on their configurations.

my-application/
├── Chart.yaml
├── values.yaml
└── charts/
    ├── frontend/
    │   └── Chart.yaml
    │   ...
    └── backend/
        └── Chart.yaml
        ...

Listing 8.37  Sample Structure of Multichart Project
393Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



8 Orchestrating Kubernetes Using Helm
Customizing Charts

In addition to using subcharts and multichart projects, there are situations in which

you’ll want to customize a Helm chart to your specific needs. This may be the case if

you need to integrate additional Kubernetes resources or adapt existing configura-

tions that are not directly covered by the default chart.

For one customer, for example, we enriched the default chart of the Kyverno tool with

policies that are to be checked globally for the company. Individual projects then built

on this “corporate Kyverno” and implemented additional policy extensions, which

were then rolled out in the clusters.

Another example is the extension of an application with ConfigMaps for monitoring

purposes. To do this, you can use a default chart as a dependency and create additional

ConfigMaps for the Prometheus operator. This means that the default chart can be

delivered directly with metrics and alerts.

Listing 8.38 shows an example of what such a setup can look like.

my-kyverno/
├── Chart.yaml
├── values.yaml
├── charts/
│   └── kyverno/
│       ├── Chart.yaml
│       └── ... # More files and folders of the Kyverno chart
└── templates/
    ├── policies.yaml # Your individual policies
    └── prometheus-metrics.yaml  # Your ConfigMap for Prometheus

Listing 8.38  Folder Structure for Chart Customization

8.4    Conclusion

Now you are familiar with Helm charts and their dependencies and have the tools you

need to manage your Kubernetes applications effectively. The ability to define depen-

dencies in your Helm charts helps you to make your applications modular and main-

tainable. You do not have to reinvent the charts; you can rely on other projects and

supplement and adapt your configuration through customizations.

Based on the skills you have now learned, you can approach your Kubernetes applica-

tions with a new perspective. When doing so, you should place your focus on modular-

ity, reusability, and easy manageability. Use these options to better structure and

manage your applications. Using Helm, you have the control and flexibility to design

your deployments exactly as you want them. Happy Helming!
394 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



 The Author

Kevin Welter is the co-founder and managing director of

HumanITy GmbH, which supports large corporations such as

Deutsche Bahn, EnBW, and Deutsche Telekom with software

development and associated processes. Kevin’s goal is to make

digitalization simple and attractive for medium-sized busi-

nesses.
395Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



© 2025 by Rheinwerk Publishing Inc., Boston (MA)



Index

A

Access control ........................................................ 313

accessMode

ReadOnlyMany ................................................. 281

ReadWriteMany ................................................ 281

ReadWriteOnce ................................................. 281

ReadWriteOncePod ......................................... 281

Adapter ........................................................................ 99

Admission controller .......................................... 306

Affinity ...................................................................... 124

Alertmanager ......................................................... 343

Ambassador ..................................................... 99, 109

Annotation ............................................. 97, 118, 136

Antiaffinity .................................................... 124, 128

API ............................................................................... 248

API call flow ................................................................ 51

apiVersion ................................................................ 104

Architecture ............................................................... 45

Atomic .......................................................................... 33

Audit .......................................................................... 301

Authelia .................................................................... 181

Authentication ...................................................... 300

Authorization ......................................................... 300

B

Backend ........................................................................ 32

Batch execution ........................................................ 42

Borg ............................................................................... 22

Buildah ...................................................................... 101

Busybox .................................................................... 107

C

Capabilities .............................................................. 301

Chaos monkey .......................................................... 29

ChartMuseum ........................................................ 387

cloud-controller-manager .................................... 48

Cloud Native Computing Foundation ............. 23

Cluster autoscaler ................................................. 341

ClusterIP ................................................................... 175

ClusterRole .............................................................. 313

ClusterRoleBinding .............................................. 313

Common Expression Language (CEL) ........... 254

Compliance ............................................................. 300

Components .............................................................. 45

Config management ............................................... 42

ConfigMap ............................................... 97, 152, 249

environment parameters ............................. 158

Kubernetes API ................................................. 162

volume ................................................................. 155

Container .................................................................... 23

containerd ............................................................... 102

Container engines ................................................ 101

Container Runtime Interface (CRI) ................ 101

Container status

running ................................................................ 114

terminated ......................................................... 114

waiting ................................................................. 114

Container storage interface (CSI) .......... 278, 281

Continuous deployment (CD) ......................... 213

Control plane ............................................................ 45

Conway’s law ................................................... 38, 201

CRI-O .......................................................................... 102

Cron job .................................................................... 246

Custom resource (CR) ......................................... 248

Custom resource definition (CRD) ....... 235, 248

D

DaemonSet .................................................... 235, 236

Dashboard .................................................................. 78

Data center ................................................................. 23

Data security .......................................................... 300

default (namespace) ............................................... 68

Dependents ............................................................ 140

Deployment .................................................... 97, 138

creating ............................................................... 142

rollback ................................................................ 150

rolling updates ................................................. 144

DevOps ........................................................................ 28

distribution-spec .................................................. 102

Docker ....................................................................... 101

Docker Desktop ........................................................ 54

Dockerfile ................................................................ 104

Downward API .............................................. 235, 258

Drift detection ....................................................... 224

E

Endpoints controller .............................................. 49

Ephemeral volume .............................................. 289

Error handling .......................................................... 22

etcd ................................................................................ 47
397Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



Index
Eviction ..................................................................... 134

ExternalName .............................................. 175, 179

F

Falco ........................................................................... 236

Feature flags ............................................................ 378

Field selectors ......................................................... 121

Flask ............................................................................ 330

Folder structure ..................................................... 204

Frontend ...................................................................... 32

fzf .................................................................................... 78

G

Git

branch ................................................................... 202

branching ............................................................ 207

commit ................................................................. 202

Kubernetes manifests ..................................... 203

merge .................................................................... 202

repository ............................................................ 202

tag .......................................................................... 202

Git flow ...................................................................... 208

GitHub flow ............................................................. 209

GitLab flow .............................................................. 210

GitOps ........................................................................ 223

Google .......................................................................... 22

Governance ............................................................. 300

Graceful shutdown ............................................... 115

Grace period .................................................. 116, 117

Grafana ............................................................ 343, 353

gRPC ........................................................................... 101

H

Headless ................................................................... 175

Health check ........................................................... 326

Helm

chart ...................................................................... 358

ChartMuseum .................................................... 387

dependencies ..................................................... 378

environment-specific configuration ........ 378

feature flags ....................................................... 378

Lens ........................................................................... 85

release ................................................................... 358

repository ............................................................ 358

templating .......................................................... 225

values.yaml ........................................................ 359

High availability ....................................................... 43

History ......................................................................... 21

Homebrew .................................................................. 54

Horizontal pod autoscaler (HPA) .................... 335

Horizontal scaling ................................................... 42

Hub and spoke .......................................................... 52

I

Idempotence ........................................................... 191

Image ............................................................................ 61

image-spec ............................................................... 102

Ingress ....................................................... 97, 171, 180

Init container .......................................................... 110

J

Job ...................................................................... 235, 239

JSON object .............................................................. 136

K

kube-apiserver .......................................................... 47

Kubeconfig file ......................................................... 65

kube-controller-manager ..................................... 48

kubectl

alias .......................................................................... 70

autocompletion .................................................. 64

commands ............................................................. 68

configuration ....................................................... 65

installing ................................................................ 61

Linux ........................................................................ 62

macOS ..................................................................... 62

Minikube ................................................................ 61

secrets .................................................................... 167

versions ................................................................... 62

Windows ................................................................. 63

kubectl api-resources ............................................. 76

kubectl apply ............................................................. 73

kubectl create ............................................................ 71

kubectl delete ............................................................ 73

kubectl describe ....................................................... 74

kubectl exec ............................................................... 75

kubectl get .................................................................. 70

kubectl logs ................................................................ 74

kubectl port-forward .............................................. 75

kubectl replace ......................................................... 72

kubectx ........................................................................ 77

Kubelet ........................................................................ 50

kube-node-lease ....................................................... 68

kubens ......................................................................... 77

Kube proxy ................................................................ 50

kube-public ................................................................ 68

Kubernetes

advantages ........................................................... 42
398 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



Index
Kubernetes (Cont.)

dashboard .............................................................. 61

disadvantages ...................................................... 44

features ................................................................... 41

promise ................................................................... 37

Kubernetes Test Tool (KUTTL) ......................... 215

kube-scheduler ......................................................... 47

kube-system ............................................................... 68

Kustomize ................................................................ 225

Kyverno .................................................................... 308

L

Label .................................................................... 97, 118

Least privileged ...................................................... 302

Lens

adding clusters ..................................................... 88

cluster metrics ...................................................... 83

custom resource definitions ........................... 88

custom resources ................................................ 88

Helm ......................................................................... 85

licensing terms ..................................................... 81

pod action bar ...................................................... 87

port forwarding ................................................... 83

resources ................................................................. 86

terminal .................................................................. 87

libcontainer ............................................................. 102

Lift and shift ............................................................ 321

Limit range .................................................... 312, 325

Liveness probe ............................................. 326, 327

LoadBalancer .......................................................... 175

Load balancing .......................................................... 41

Log collector ............................................................ 107

Logging ..................................................................... 301

M

Masters ......................................................................... 45

maxSurge ................................................................. 147

maxUnavailable .................................................... 147

Minikube

container registry ............................................... 59

controlling ............................................................. 58

dashboard .............................................................. 78

kubectl ..................................................................... 61

launching ............................................................... 58

Linux ........................................................................ 55

macOS ...................................................................... 54

Windows ................................................................. 57

Mitigations .............................................................. 299

Monitoring .............................................................. 342

Monorepo ................................................................ 211

N

Namespace .......................................................... 67, 77

Naming convention ............................................ 207

Network address translation (NAT) .............. 173

Network file system (NFS) ................................. 279

Never Outgrow ......................................................... 39

Node affinity .......................................................... 124

Node controller ........................................................ 49

NodePort ......................................................... 175, 178

NodeSelector .......................................................... 122

NoOps .......................................................................... 39

O

Open Container Initiative (OCI) ..................... 101

OpenLens .................................................................... 81

Operators ................................................................. 255

architecture ........................................................ 256

PostgreSQL ......................................................... 257

Overcommitment ................................................ 323

Owners ...................................................................... 140

P

Pause container .................................................... 100

Persistence ................................................................. 32

Persistent volume ................................................ 273

csi ........................................................................... 278

fc ............................................................................. 278

hostPath .............................................................. 278

iscsi ........................................................................ 278

local ....................................................................... 278

nfs .......................................................................... 278

storage types ..................................................... 278

Persistent volume claim ................................... 273

Pets and cattle ........................................................... 28

Pi cluster ..................................................................... 89

hardware ................................................................ 90

installation ............................................................ 92

Kubeconfig file ..................................................... 93

SSH ........................................................................... 92

Wi-Fi ......................................................................... 91

Pipeline

architecture ........................................................ 218

Kubernetes ......................................................... 213

linting ................................................................... 214

Planet Scale ................................................................ 37

Pod ............................................................... 96, 98, 104

communication ................................................ 173

Pod affinity ............................................................. 128

Podman .................................................................... 101
399Personal Copy for Jaleel Hussain, alex76alex43@gmail.com



Index
Pod management policy

OrderedReady .................................................... 269

Parallel ................................................................. 269

Pod phases

Failed ..................................................................... 113

Pending ................................................................ 113

Running ............................................................... 113

Succeeded ............................................................ 113

Unknown ............................................................. 113

Pod priority ................................................... 235, 261

Pod resources ......................................................... 322

Pod security admission ...................................... 304

Pod security policy ............................................... 304

Pod shell ...................................................................... 88

Policies ...................................................................... 308

Policy management ............................................. 300

Port forwarding ................................................ 75, 83

Preemption ................................................... 235, 261

PriorityClass ............................................................ 261

Privileges .................................................................. 301

Projected volume ........................................ 291, 295

Prometheus ............................................................. 343

Q

Queue worker ......................................................... 239

Quorum ....................................................................... 47

R

RabbitMQ ................................................................. 242

Raft ................................................................................. 47

Raspberry Pi ............................................................... 89

Readiness probe .......................................... 326, 327

Reconciliation loop .............................................. 190

ReplicaSet ................................................ 97, 138, 140

Replication controller ............................................ 49

Resource management ............................... 22, 301

Resource quota ............................................ 311, 325

Restart policy .......................................................... 114

Retention policy .................................................... 272

Role .......................................................... 313, 315, 317

RoleBinding ................................................... 313, 317

Rollback ............................................................. 41, 150

Rolling updates ...................................................... 144

Rollout .......................................................................... 41

runC ............................................................................ 102

Run K8s Anywhere .................................................. 40

runtime-spec .......................................................... 102

S

Scalability ................................................................... 43

Secret management ............................................... 42

Secrets ................................................................ 97, 152

container registry ............................................. 168

environment parameters .............................. 165

kubectl ................................................................... 167

volume .................................................................. 166

Security context .................................................... 302

sed ............................................................................... 225

Selectors .................................................................... 119

Self-healing ...................................................... 42, 326

Separation of concerns ......................................... 31

Service .......................................................................... 97

communication ................................................. 174

end point .............................................................. 174

load balancing ................................................... 174

service discovery ............................................... 174

Service account ...................................................... 315

Service account controller ................................... 49

Service discovery ..................................................... 41

Sidecar ...................................................... 99, 106, 109

Single point of failure ............................................ 26

Single source of truth .......................................... 223

Software-defined storage ................................... 265

SonarQube ............................................................... 299

Startup probe ................................................ 326, 327

Stateful ........................................................................ 29

StatefulSet ................................................................ 266

OnDelete .............................................................. 270

RollingUpdate .................................................... 270

Stateless ...................................................................... 29

Storage ....................................................................... 278

Storage orchestration ............................................ 42

Subjects ..................................................................... 315

systemd ..................................................................... 238

T

Taint ............................................................................ 133

NoExecute ............................................................ 134

NoSchedule ......................................................... 134

PreferNoSchedule ............................................. 134

Templating

Helm ...................................................................... 225

Kustomize ............................................................ 225

Tolerations ............................................................... 133
400 © 2025 by Rheinwerk Publishing Inc., Boston (MA)



Index
U

UID .............................................................................. 301

V

Versioning ............................................................... 263

Version management ......................................... 200

Vertical pod autoscaler (VPA) .......................... 339

Virtual machine ........................................................ 24

volumeBindingMode .......................................... 284

Volume snapshot .................................................. 291

Vulnerability management .............................. 300

W

Winget .......................................................................... 57

Workers ................................................................ 45, 49

Y

YAML

alias ....................................................................... 196

anchor .................................................................. 196

comments ........................................................... 199

data types ........................................................... 194

indentations ...................................................... 194

linting ................................................................... 199

single-line ........................................................... 197

syntax ................................................................... 192

weaknesses ......................................................... 197

yq ................................................................................ 225
401Personal Copy for Jaleel Hussain, alex76alex43@gmail.com





Service Pages

The following sections contain notes on how you can contact us.

Praise and Criticism

We hope that you enjoyed reading this book. If it met your expectations, please do recom-
mend it. If you think there is room for improvement, please get in touch with the editor of 
the book: rachelg@rheinwerk-publishing.com. We welcome every suggestion for improve-
ment but, of course, also any praise!

You can also share your reading experience via Twitter, Facebook, or email.

Supplements

If there are supplements available (sample code, exercise materials, lists, and so on), they 
will be provided in your online library and on the web catalog page for this book. You can 
directly navigate to this page using the following link: http://www.rheinwerk-computing.
com/5556. Should we learn about typos that alter the meaning or content errors, we will 
provide a list with corrections there, too.

Technical Issues

If you experience technical issues with your e-book or e-book account at Rheinwerk Com-
puting, please feel free to contact our reader service: support@rheinwerk-publishing.com.

About Us and Our Program

The website http://www.rheinwerk-computing.com provides detailed and first-hand  
information on our current publishing program. Here, you can also easily order all of our 
books and e-books. Information on Rheinwerk Publishing Inc. and additional contact options 
can also be found at http://www.rheinwerk-computing.com.

i

mailto:rachelg@rheinwerk-publishing.com
mailto:support%40rheinwerk-publishing.com?subject=
http://www.rheinwerk-computing.com
http://www.rheinwerk-computing.com


Legal Notes

This section contains the detailed and legally binding usage conditions for this e-book.

Copyright Note

This publication is protected by copyright in its entirety. All usage and exploitation rights 
are reserved by the author and Rheinwerk Publishing; in particular the right of reproduction 
and the right of distribution, be it in printed or electronic form.

© 2025 by Rheinwerk Publishing, Inc., Boston (MA)

Your Rights as a User

You are entitled to use this e-book for personal purposes only. In particular, you may print 
the e-book for personal use or copy it as long as you store this copy on a device that is solely 
and personally used by yourself. You are not entitled to any other usage or exploitation.

In particular, it is not permitted to forward electronic or printed copies to third parties. 
Furthermore, it is not permitted to distribute the e-book on the Internet, in intranets, or 
in any other way or make it available to third parties. Any public exhibition, other publica-
tion, or any reproduction of the e-book beyond personal use are expressly prohibited. The 
aforementioned does not only apply to the e-book in its entirety but also to parts thereof 
(e.g., charts, pictures, tables, sections of text).

Copyright notes, brands, and other legal reservations as well as the digital watermark may 
not be removed from the e-book.

Digital Watermark

This e-book copy contains a digital watermark, a signature that indicates which person 
may use this copy. If you, dear reader, are not this person, you are violating the copyright. 
So please refrain from using this e-book and inform us about this violation. A brief email to 
info@rheinwerk-publishing.com is sufficient. Thank you!

Trademarks

The common names, trade names, descriptions of goods, and so on used in this publication 
may be trademarks without special identification and subject to legal regulations as such.

All products mentioned in this book are registered or unregistered trademarks of their 
respective companies.

ii

mailto:info%40rheinwerk-publishing.com?subject=


Limitation of Liability

Regardless of the care that has been taken in creating texts, figures, and programs, neither 
the publisher nor the author, editor, or translator assume any legal responsibility or any 
liability for possible errors and their consequences.

iii 


	Cover
	Contents
	Preface
	Structure
	What You Should Already Know Now
	What You Will Learn
	Important to Know

	Book Resources

	1: Introduction to Kubernetes
	1.1 Basic Principles and Concepts: Why Use Container Clusters at All?
	1.1.1 Why Use Containers at All?
	1.1.2 Why You Need a Container Management Tool
	1.1.3 Of Pets and Cattle
	1.1.4 Stateless and Stateful Applications
	1.1.5 Separation of Concerns

	1.2 Kubernetes, the Tool of Choice
	1.2.1 Why Do Companies Want to Use Kubernetes?
	1.2.2 The Promise of Kubernetes
	1.2.3 Major Features
	1.2.4 For Which Companies Is Kubernetes Useful?
	1.2.5 Which Companies Should Not Use Kubernetes?

	1.3 Architecture and Components
	1.3.1 Master Nodes
	1.3.2 Worker Nodes
	1.3.3 API Call Flow

	1.4 A Kubernetes Cluster on Your Computer
	1.4.1 Minikube on macOS
	1.4.2 Minikube on Linux
	1.4.3 Minikube on Windows
	1.4.4 Launching Minikube
	1.4.5 Controlling Minikube
	1.4.6 Possible Errors when Starting Minikube
	1.4.7 Container Registry of Minikube

	1.5 Interaction with Kubernetes via the Command Line and Dashboard
	1.5.1 Minikube Comes With kubectl
	1.5.2 Installing kubectl
	1.5.3 Accessing the Cluster Using Kubeconfig
	1.5.4 Namespaces
	1.5.5 kubectl Commands
	1.5.6 Switching Clusters and Namespaces Easily
	1.5.7 The Kubernetes Dashboard

	1.6 Lens: The IDE for Kubernetes
	1.6.1 Overview of Lens
	1.6.2 Advantages over the Kubernetes Dashboard
	1.6.3 The Lens Reference

	1.7 The Kubernetes Cluster from Raspberry Pis
	1.7.1 Choosing the Right Raspberry Pis
	1.7.2 Installation of Kubernetes
	1.7.3 Using the Kubeconfig File of the Pi Cluster


	2: Basic Objects and Concepts in Kubernetes
	2.1 Pod and Container Management
	2.1.1 Container Engines
	2.1.2 Your First Own Pod
	2.1.3 Multiple Containers within a Pod
	2.1.4 Communication between Containers
	2.1.5 Init Container
	2.1.6 Pod Phases and Container Statuses
	2.1.7 The Restart Policy of Pods
	2.1.8 When the Pod Comes to an End

	2.2 Annotations and Labels
	2.2.1 Using Labels and Selectors
	2.2.2 Field Selectors
	2.2.3 NodeSelector
	2.2.4 Node Affinity and Antiaffinity
	2.2.5 Pod Affinity and Antiaffinity
	2.2.6 Taints and Tolerations
	2.2.7 Annotations

	2.3 Deployments and ReplicaSets
	2.3.1 The Role of ReplicaSets
	2.3.2 Creating Deployments
	2.3.3 Rolling Updates via the Deployment Object
	2.3.4 Rollback via Deployment

	2.4 ConfigMaps and Secrets
	2.4.1 What Are ConfigMaps?
	2.4.2 What Are Secrets?

	2.5 Establishing a Communication with Services and an Ingress
	2.5.1 Communication between Pods
	2.5.2 Communication via a Service
	2.5.3 Communication via Ingress


	3: Everything as Code: Tools and Principles for Kubernetes Operations
	3.1 Declarative Configurations
	3.2 YAML: The Language for Kubernetes
	3.2.1 Basics of YAML Syntax
	3.2.2 Data Types in YAML
	3.2.3 Anchors and Aliases
	3.2.4 Single-Line YAML Notation in Documentation
	3.2.5 Weaknesses of YAML
	3.2.6 Tips for Practical Use

	3.3 Version Management of Kubernetes Manifests
	3.3.1 Using Git
	3.3.2 Managing Numerous Kubernetes Manifests
	3.3.3 Branching Strategies
	3.3.4 Division of the Repositories

	3.4 Continuous Integration and Continuous Delivery
	3.4.1 Pipeline Steps for Kubernetes
	3.4.2 Pipeline Architectures
	3.4.3 GitOps

	3.5 Templating Using Kustomize
	3.5.1 Basic Principles of Kustomize
	3.5.2 Resource Generator
	3.5.3 More Kustomize Built-Ins
	3.5.4 Conclusion on Kustomize


	4: Advanced Objects and Concepts in Kubernetes
	4.1 DaemonSets
	4.2 Jobs in Kubernetes
	4.2.1 Real-Life Kubernetes Jobs
	4.2.2 Queue Worker with RabbitMQ
	4.2.3 Kubernetes CronJobs

	4.3 Custom Resources and Custom Resource Definitions
	4.3.1 Example: A Monitoring CR
	4.3.2 Validation in CRD
	4.3.3 Operators

	4.4 Downward API
	4.5 Pod Priority and Preemption
	4.6 Versioning Objects in Kubernetes

	5: Stateful Applications and Storage
	5.1 Stateful Applications in Kubernetes through StatefulSets
	5.1.1 Pod Management Policy
	5.1.2 Strategies for Updates
	5.1.3 Retention Policy for Persistent Volume Claims

	5.2 Persistent Volumes and Persistent Volume Claims
	5.2.1 Storage Types for PVs
	5.2.2 CSI Drivers for External Storage Media
	5.2.3 Storage Classes and Dynamic PVs
	5.2.4 PostgreSQL as StatefulSet with Persistent Volume

	5.3 Ephemeral Volumes
	5.4 Other Features of Volumes
	5.4.1 Volume Snapshots
	5.4.2 Projected Volumes


	6: Kubernetes Governance and Security: Prepare for Production
	6.1 Pod Security
	6.2 Pod Security Admission
	6.3 Admission Controller
	6.4 Kubernetes Policies
	6.5 Policy Objects
	6.6 Role-Based Access Control in Kubernetes
	6.6.1 Subjects: Users, Groups, and Service Accounts
	6.6.2 Roles and Role Bindings
	6.6.3 Conclusion


	7: Developing Applications for Kubernetes: Ready for Production
	7.1 Managing Pod Resources
	7.2 Readiness, Liveness, and Startup Probes
	7.2.1 How to Define Probes
	7.2.2 Testing Probes Using an Example

	7.3 Scaling and Load Balancing
	7.3.1 Horizontal Pod Autoscaling
	7.3.2 Vertical Pod Autoscaling
	7.3.3 Cluster Autoscaler

	7.4 Monitoring
	7.4.1 Introduction: Prometheus, Grafana, and Alertmanager
	7.4.2 Monitoring on the Pi Cluster


	8: Orchestrating Kubernetes Using Helm
	8.1 Helm: The Kubernetes Package Manager
	8.1.1 Creating a First Helm Chart
	8.1.2 Deploying a Helm Chart via the Command Line Interface
	8.1.3 Setting Up and Managing a Helm Repository
	8.1.4 Deploying a Helm Chart via Lens
	8.1.5 Updating and Deleting Helm Releases
	8.1.6 Downloading Helm Charts from a Repository

	8.2 Reading and Developing Helm Charts
	8.2.1 The Templating Engine and the Language of the Charts
	8.2.2 Configuring Charts with Values
	8.2.3 Conditions in Helm Templates
	8.2.4 Other Operations and Control Structures
	8.2.5 Helm Diff for Checking Changes

	8.3 Developing Custom Charts
	8.3.1 The Framework of Your Helm Chart
	8.3.2 Packaging Charts and Storing Them in the Repository
	8.3.3 Managing Dependencies in Helm Charts

	8.4 Conclusion

	The Author
	Index



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (coated_FOGRA39_GCR_bas.icc)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (ISO Uncoated)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /DEU <FEFF005b004200610073006900650072007400200061007500660020002200670061006c0069006c0065006f005f00650062006f006f006b005f007600340022005d0020007a00750072002000450072007300740065006c006c0075006e0067002000650069006e00650072002000660069006e0061006c0065006e0020005000440046002d004400610074006500690020006600fc0072002000640065006e00200045002d0042006f006f006b002d0057006f0072006b0066006c006f0077002e0020005a00690065006c0020006900730074002000650073002c00200064006900650020004400610074006500690067007200f600df00650020006d00f60067006c006900630068007300740020006b006c00650069006e0020007a0075002000680061006c00740065006e00200028006400750072006300680020005200470042002d0046006100720062006500200075006e0064002000420069006c0064006b006f006d007000720069006d0069006500720075006e00670029002c0020006400690065002000420069006c0064007100750061006c0069007400e40074002000610062006500720020006700750074002000650072006b0065006e006e0062006100720020007a0075002000680061006c00740065006e002e00200073005200470042002d004600610072006200700072006f00660069006c00200077006900720064002000650069006e00670065006200650074007400650074002e002000480079007000650072006c0069006e006b0073002000770065007200640065006e0020006700670066002e0020006d0069007400670065006e006f006d006d0065006e002e0020004b006f006d007000610074006900620069006c0069007400e400740020006100750066002000500044004600200031002e0036002000650072006800f600680074002e0020004b006f006d007000720069006d0069006500720075006e006700200061007500660020004f0062006a0065006b0074006500620065006e00650020004d006100780069006d0061006c002e0020004100750066006c00f600730075006e0067002000610075006600200034003500300020006400700069002e00200053006500690074002000760035003a0020005300740061006e00640061007200640070006100700069006500720066006f0072006d006100740020006b006f00720072006900670069006500720074002e>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [450 450]
  /PageSize [595.276 841.890]
>> setpagedevice




