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Preface

The book covers topics ranging from Intel x64 assembly language 

instructions and writing programs in assembly language to pointers, live 

debugging, and static binary analysis of compiled C and C++ code.

Diagnostics of core memory dumps, live and postmortem debugging 

of Linux applications, services, and systems, memory forensics, malware, 

and vulnerability analysis require an understanding of x64 Intel assembly 

language and how C and C++ compilers generate code, including 

memory layout and pointers. This book is about background knowledge 

and practical foundations that are needed to understand internal Linux 

program structure and behavior, start working with the GDB debugger, and 

use it for disassembly and reversing. It consists of practical step-by-step 

exercises of increasing complexity with explanations and many diagrams, 

including some necessary background topics.

By the end of the book, you will have a solid understanding of how 

Linux C and C++ compilers generate binary code. In addition, you will be 

able to analyze such code confidently, understand stack memory usage, 

and reconstruct original C/C++ code.

The book will be useful for

•	 Software technical support and escalation engineers

•	 Software engineers coming from JVM background

•	 Software testers

•	 Engineers coming from non-Linux environments, for 

example, Windows or Mac OS X



xiv

•	 Linux C/C++ software engineers without assembly 

language background

•	 Security researchers without assembly language 

background

•	 Beginners learning Linux software reverse engineering 

techniques

This book can also be used as an x64 assembly language and Linux 

debugging supplement for relevant undergraduate-level courses.

�Source Code
All source code used in this book can be downloaded from github.com/

apress/linux-debugging-disassembling-reversing.
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CHAPTER 1

Memory, Registers, 
and Simple Arithmetic

�Memory and Registers Inside 
an Idealized Computer
Computer memory consists of a sequence of memory cells, and each cell 

has a unique address (location). Every cell contains a “number.” We refer 

to these “numbers” as contents at addresses (locations). Because memory 

access is slower than arithmetic instructions, there are so-called registers 

to speed up complex operations that require memory to store temporary 

results. We can also think about them as stand-alone memory cells. The 

name of a register is its address. Figure 1-1 illustrates this concept.
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Figure 1-1.  Computer memory represented as a sequence of memory 
cells and locations

�Memory and Registers Inside Intel 
64-Bit PC
Figure 1-2 shows addresses for memory locations containing integer 

values usually differ by four or eight, and we also show two registers called 

%RAX and %RDX. The first halves of them are called %EAX and %EDX.
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Figure 1-2.  Typical Intel x64 memory and register layout

Because memory cells contain “numbers,” we start with simple 

arithmetic and ask a PC to compute the sum of two numbers to see how 

memory and registers change their values.

�“Arithmetic” Project: Memory Layout 
and Registers
For our project, we have two memory addresses (locations) that we call 

“a” and “b.” We can think about “a” and “b” as names of their respective 

addresses (locations). Now we introduce a special notation where (a) means  
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contents at the memory address (location) “a.” If we use the C or C++ 

language to write our project, we declare and define memory locations “a” 

and “b” as

static int a, b;

By default, when we load a program, static memory locations are filled 

with zeroes, and we can depict our initial memory layout after loading the 

program, as shown in Figure 1-3.

Figure 1-3.  Initial memory layout after loading the program
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�“Arithmetic” Project: A Computer Program
We can think of a computer program as a sequence of instructions for 

the manipulation of contents of memory cells and registers. For example, 

addition operation: add the contents of memory cell №12 to the contents 

of memory cell №14. In our pseudo-code, we can write

(14) + (12) -> (14)

Our first program in pseudo-code is shown on the left of the table:

1 -> (a)

1 -> (b)

(b) + (a) -> (b)

(a) + 1 -> (a)

(b) * (a) -> (b)

Here, we put assembly instructions corresponding 

to pseudo-code.

“->” means moving (assigning) the new value to the contents of a 

memory location (address). “;” is a comment sign, and the rest of the line is 

a comment. “=” shows the current value at a memory location (address).

To remind, a code written in a high-level programming language is 

translated to a machine language by a compiler. However, the machine 

language can be readable if its digital codes are represented in some 

mnemonic system called assembly language. For example, INC a is 

increment by one of what is stored at a memory location “a.”

�“Arithmetic” Project: Assigning Numbers 
to Memory Locations
We remind that “a” means location (address) of the memory cell, and it is 

also the name of the location (address) 000055555555802c (see Figure 1-3). 

(a) means the contents (number) stored at the address “a.”
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If we use the C or C++ language, “a” is called “the variable a,” and we 

write the assignment as

a = 1;

In the Intel assembly language, we write

mov $1, a

In the GDB disassembly output, we see the following code where the 

variable “a” and address are shown in comments:

movl   $0x1,0x2ef2(%rip)        # 0x55555555802c <a>

We show the translation of our pseudo-code into assembly language in 

the right column:

1 -> (a)          ; (a) = 1

1 -> (b)          ; (b) = 1

(b) + (a) -> (b)

(a) + 1 -> (a)

(b) * (a) -> (b)

movl $1, a

movl $1, b

Notice movl instructions instead of mov. This is because “a” and “b” 

can point to both 32-bit (like %EAX or %EDX registers) and 64-bit memory 

cells (like %RAX and %RDX registers). In the registers’ case, it is clear from 

their names whether we use 64-bit %RAX or 32-bit %EAX. But in the case 

of memory addresses “a” and “b,” it is not clear whether they refer to 64-bit 

or 32-bit cells. We use movl to disambiguate and show that we use 32-bit 

memory cells that are enough to hold integers from 0 to 4294967295.

0x2ef2(%rip) is how the compiler generates code to calculate the 

address “a” instead of specifying it directly. Such code requires less 

memory space. We explain this in later chapters.
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Literal constants have the $ prefix, for example, $0x1. The 0x prefix 

means the following number is hexadecimal. The leading four zeroes of 

the address are also omitted in the comment. We explain such numbers in 

Chapter 3. Please also notice that the movement direction is the same in 

both the disassembly output and the pseudo-code: from left to right.

After executing the first two assembly language instructions, we have 

the memory layout shown in Figure 1-4.

Figure 1-4.  Memory layout after executing the first two assembly 
language instructions
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�Assigning Numbers to Registers
This is similar to memory assignments. We can write in pseudo-code:

1 -> register

(a) -> register

Note that we do not use brackets when we refer to register contents. 

The latter instruction means assigning (copying) the number at the 

location (address) “a” to a register.

In assembly language, we write

mov  $1, %eax   # �1 is copied to the first half of %RAX 

register

mov  $1, %rax   # �full contents of %RAX register are 

replaced with 1

mov  a, %eax

mov  a, %rax

In the GDB disassembly output, we may see the following code:

mov    $0x0,%eax

�“Arithmetic” Project: Adding Numbers 
to Memory Cells
Now let’s look at the following pseudo-code statement in more detail:

(b) + (a) -> (b)

To recall, “a” and “b” mean the names of locations (addresses) 

000055555555802c and 0000555555558030, respectively (see Figure 1-4). 

(a) and (b) mean contents at addresses “a” and “b,” respectively, simply 

some numbers stored there.
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In the C or C++ language, we write the following statement:

b = b + a;

b += a;

In assembly language, we use the instruction ADD. Because of AMD64 

and Intel EM64T architecture’s limitations, we cannot use both memory 

addresses in one step (instruction), for example, add a, b. We can only use 

the add register, b instruction to add the value stored in the register to 

the contents of the memory cell b. Recall that a register is like a temporary 

memory cell itself here:

(a) -> register

(b) + register -> (b)

Alternatively, we can use two registers:

(a) -> register1

(b) -> register2

register2 + register1 -> register2

register2 -> (b)

In assembly language, we write

mov a, %eax

add %eax, b 

or we can add two registers and move the result to the memory cell b:

mov b, %edx

mov a, %eax

add %edx, %eax

mov %eax, b 
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In the GDB disassembly output, we may see the following code:

mov    0x2ee6(%rip),%edx        # 0x555555558030 <b>

mov    0x2edc(%rip),%eax        # 0x55555555802c <a>

add    %edx,%eax

mov    %eax,0x2ed8(%rip)        # 0x555555558030 <b>

Now we can translate our pseudo-code into assembly language:

1 -> (a)          ; (a) = 1

1 -> (b)          ; (b) = 1

(b) + (a) -> (b)  ; %eax = 1

                                         ; %edx = 1

                                        ; %eax = 2

                                        ; (b) = 2

(a) + 1 -> (a)

(b) * (a) -> (b)

movl $1, a

movl $1, b

mov a, %eax

mov  b, %edx

add  %edx, %eax

mov %eax, b

After the execution of ADD and MOV instructions, we have the 

memory layout illustrated in Figure 1-5.
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Figure 1-5.  Memory layout after executing ADD and MOV 
instructions

�Incrementing/Decrementing Numbers 
in Memory and Registers
In pseudo-code, it looks simple and means increment (decrement) a 

number stored at the location (address) “a”:

(a) + 1 -> (a)

(a) – 1 -> (a)
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In the C or C++ language, we can write this using three possible ways:

a = a + 1;

++a;

a++;

b = b – 1;

--b;

b--;

In assembly language, we use instructions INC and DEC and write

incl    a

inc     %eax

decl    a

dec     %eax

We use incl when we need to specify the 32-bit memory cell. It is 

ambiguous when we use “a.” However, using %eax implies using 32-bit 

values, so inc is unambiguous.

In the GDB disassembly output, we may see the same instruction:

inc    %eax

or

add    $0x1,%eax   # �a compiler may decide to use ADD 

instead of INC

Chapter 1  Memory, Registers, and Simple Arithmetic
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Now we add the assembly language translation of increment:

1 -> (a)          ; (a) = 1

1 -> (b)          ; (b) = 1

(b) + (a) -> (b)  ; %eax = 1

                                      ; %edx = 1

                                      ; %eax = 2

                                      ; (b) = 2

(a) + 1 -> (a)    ; %eax = 1

                                      ; %eax = 2

                                      ; (a) = 2

(b) * (a) -> (b)

movl $1, a

movl $1, b

mov a, %eax

mov  b, %edx

add  %edx, %eax

mov %eax, b 

mov  a, %eax

add  $1, %eax

mov  %eax, a

After the execution of INC or ADD instruction, we have the memory 

layout illustrated in Figure 1-6.
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Figure 1-6.  Memory layout after the execution of INC or ADD 
instruction

�Multiplying Numbers
In pseudo-code, we write

(b) * (a) -> (b)

It means that we multiply the number at the location (address) “b” by 

the number at the location (address) “a.”

In the C or C++ language, we can write that using two ways:

b =  b * a;

b *= a;
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In assembly language, we use instruction IMUL (Integer MULtiply) 

and write

mov  a, %eax

imul b, %eax

mov  %eax, b

The multiplication instruction means (b) * %eax -> %eax, and we 

must put the contents of “a” into %EAX. The multiplication result is put 

into the register %EAX, and its contents are saved at the location (address) 

“b.” Alternatively, we may put all multiplication operands into registers:

mov  a, %eax

mov  b, %edx

imul %edx, %eax

mov  %eax, b

In the GDB disassembly output, we may see the following code:

mov    0x2ec3(%rip),%edx        # 0x555555558030 <b>

mov    0x2eb9(%rip),%eax        # 0x55555555802c <a>

imul   %edx,%eax

mov    %eax,0x2eb4(%rip)        # 0x555555558030 <b>
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Now we add two additional assembly instructions to our pseudo-code 

assembly language translation:

1 -> (a)          ; (a) = 1

1 -> (b)          ; (b) = 1

(b) + (a) -> (b)  ; %eax = 1

                                      ; %edx = 1

                                      ; %eax = 2

                                      ; (b) = 2

(a) + 1 -> (a)    ; %eax = 1

                                      ; %eax = 2

                                      ; (a) = 2

(b) * (a) -> (b)  ; %edx = 2

                                      ; %eax = 2

                                      ; %eax = 4

                                      ; (b) = 4

movl $1, a

movl $1, b

mov a, %eax

mov  b, %edx

add  %edx, %eax

mov %eax, b 

mov  a, %eax

add  $1, %eax

mov  %eax, a

mov  b, %edx

mov  a, %eax

imul %edx, %eax

mov  %eax, b

After the execution of IMUL and MOV instructions, we have the 

memory layout illustrated in Figure 1-7.
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Figure 1-7.  Memory layout after the execution of IMUL and MOV 
instructions

�Summary
This chapter introduced CPU registers and explained the memory layout 

of a simple arithmetic program. We learned basic x64 instructions and 

manually translated simple C and C++ code to assembly language.

The next chapter looks at assembly language code produced by a 

debugger via disassembling binary code. Then, we reverse it to C and C++ 

code. We also compare the disassembly output of nonoptimized code to 

optimized code.
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CHAPTER 2

Code Optimization

�“Arithmetic” Project: C/C++ Program
Let’s rewrite our “Arithmetic” program in C/C++. Corresponding assembly 

language instructions are put in comments:

int a, b;

int main(int argc, char* argv[])

{

      a = 1;               // movl $1, a

      b = 1;               // movl $1, b

      b = b + a;           // mov  a, %eax

                           // mov  b, %edx

                           // add  %edx, %eax

                           // mov  %eax, b

      ++a;                 // mov  a, %eax

                           // add  $1, %eax

                           // mov  %eax, a

© Dmitry Vostokov 2023
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      b = b * a;           // mov  b, %edx

                           // mov  a, %eax

                           // imul %edx, %eax

                           // mov  %eax, b

                           // results: (a) = 2 and (b) = 4

      return 0;

}

�Downloading GDB
We used WSL2 and "Debian GNU/Linux 10 (buster)" as a working 

environment. We chose Debian because we used it for the “Accelerated 

Linux Core Dump Analysis” training course.1 After installing Debian, we 

need to install essential build tools and GDB:

sudo apt install build-essential

sudo apt install gdb

You may also need to download git to clone source code:

sudo apt install git

cd ~

git clone github.com/apress/linux-debugging-disassembling-

reversing .

�GDB Disassembly Output – No Optimization
The source code can be downloaded from the following location:

github.com/apress/linux-debugging-disassembling-reversing/

Chapter2/

1 www.dumpanalysis.org/accelerated-linux-core-dump-analysis-book
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If we compile and link the program in no optimization mode (default):

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter2$ gcc 

ArithmeticProjectC.cpp -o ArithmeticProjectC

we get the binary executable module we can load in GDB and inspect 

assembly code.

First, we run GDB with the program as a parameter:

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter2$ gdb ./

ArithmeticProjectC

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/

licenses/gpl.html>

This is free software: you are free to change and 

redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources 

online at:

    <http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from ./ArithmeticProjectC...(no debugging 

symbols found)...done.

(gdb)

Chapter 2  Code Optimization



22

Next, we put a breakpoint at our main C/C++ function to allow the 

program execution to stop at that point and give us a chance to inspect 

memory and registers. Symbolic names/function names like "main" can be 

used instead of code memory locations:

(gdb) break main

Breakpoint 1 at 0x1129

Then we start execution of the program (let it run). The program then 

stops at the previously set breakpoint:

(gdb) run

Starting program: /home/coredump/pflddr/x64/Chapter2/

ArithmeticProjectC

Breakpoint 1, 0x0000555555555129 in main ()

Now we disassemble the main function:

(gdb) disass main

Dump of assembler code for function main:

   0x0000555555555125 <+0>:     push   %rbp

   0x0000555555555126 <+1>:     mov    %rsp,%rbp

=> 0x0000555555555129 <+4>:     mov    %edi,-0x4(%rbp)

   0x000055555555512c <+7>:     mov    %rsi,-0x10(%rbp)

   �0x0000555555555130 <+11>:    movl   $0x1,0x2ef2(%rip)         

# 0x55555555802c <a>

   �0x000055555555513a <+21>:    movl   $0x1,0x2eec(%rip)         

# 0x555555558030 <b>

   �0x0000555555555144 <+31>:    mov    0x2ee6(%rip),%edx         

# 0x555555558030 <b>

   �0x000055555555514a <+37>:    mov    0x2edc(%rip),%eax         

# 0x55555555802c <a>

   0x0000555555555150 <+43>:    add    %edx,%eax
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   �0x0000555555555152 <+45>:    mov    %eax,0x2ed8(%rip)         

# 0x555555558030 <b>

   �0x0000555555555158 <+51>:    mov    0x2ece(%rip),%eax         

# 0x55555555802c <a>

   0x000055555555515e <+57>:    add    $0x1,%eax

   �0x0000555555555161 <+60>:    mov    %eax,0x2ec5(%rip)         

# 0x55555555802c <a>

   �0x0000555555555167 <+66>:    mov    0x2ec3(%rip),%edx         

# 0x555555558030 <b>

   �0x000055555555516d <+72>:    mov    0x2eb9(%rip),%eax         

# 0x55555555802c <a>

   0x0000555555555173 <+78>:    imul   %edx,%eax

   �0x0000555555555176 <+81>:    mov    %eax,0x2eb4(%rip)         

# 0x555555558030 <b>

   0x000055555555517c <+87>:    mov    $0x0,%eax

   0x0000555555555181 <+92>:    pop    %rbp

   0x0000555555555182 <+93>:    retq

End of assembler dump.

We repeat the part of the formatted disassembly output here that 

corresponds to our C/C++ code:

   �0x0000555555555130 <+11>:    movl   $0x1,0x2ef2(%rip)         

# 0x55555555802c <a>

   �0x000055555555513a <+21>:    movl   $0x1,0x2eec(%rip)         

# 0x555555558030 <b>

   �0x0000555555555144 <+31>:    mov    0x2ee6(%rip),%edx         

# 0x555555558030 <b>

   �0x000055555555514a <+37>:    mov    0x2edc(%rip),%eax         

# 0x55555555802c <a>

   0x0000555555555150 <+43>:    add    %edx,%eax
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   �0x0000555555555152 <+45>:    mov    %eax,0x2ed8(%rip)         

# 0x555555558030 <b>

   �0x0000555555555158 <+51>:    mov    0x2ece(%rip),%eax         

# 0x55555555802c <a>

   0x000055555555515e <+57>:    add    $0x1,%eax

   �0x0000555555555161 <+60>:    mov    %eax,0x2ec5(%rip)         

# 0x55555555802c <a>

   �0x0000555555555167 <+66>:    mov    0x2ec3(%rip),%edx         

# 0x555555558030 <b>

   �0x000055555555516d <+72>:    mov    0x2eb9(%rip),%eax         

# 0x55555555802c <a>

   0x0000555555555173 <+78>:    imul   %edx,%eax

   �0x0000555555555176 <+81>:    mov    %eax,0x2eb4(%rip)         

# 0x555555558030 <b> 

We can directly translate it to bare assembly code we used in the 

previous chapter and put corresponding pseudo-code in comments:

movl   $1, a              # 1 -> (a)

movl   $1, b              # 1 -> (b)

mov    b, %edx            # (b) + (a) -> (b)

mov    a, %eax

add    %edx, %eax

mov    %eax, b

mov    a, %eax            # (a) + 1 -> (a)

add    $1, %eax

mov    %eax, a

mov    b, %edx            # (b) * (a) -> (b)

mov    a, %eax

imul   %edx, %eax

mov    %eax, b
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Now we can exit GDB:

(gdb) q

A debugging session is active.

        Inferior 1 [process 2249] will be killed.

Quit anyway? (y or n) y

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter2$

�GDB Disassembly Output – Optimization
If we compile and link the program in optimization mode:

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter2$ gcc 

ArithmeticProjectC.cpp -O1 -o ArithmeticProjectC

and after repeating the same steps in GDB, we get the following output:

(gdb) disass main

Dump of assembler code for function main:

=> 0x0000555555555125 <+0>:     movl   $0x2,0x2f01(%rip)         

# 0x555555558030 <a>

   �0x000055555555512f <+10>:    movl   $0x4,0x2ef3(%rip)         

# 0x55555555802c <b>

   0x0000555555555139 <+20>:    mov    $0x0,%eax

   0x000055555555513e <+25>:    retq

End of assembler dump.

This corresponds to the following pseudo-code:

mov $2, a   # 2 -> (a)

mov $4, b   # 4 -> (b)

Please note that the compiler also chose to put memory cell “b” first 

(000055555555802c) and then memory cell “a” (0000555555558030).
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What happened to all our assembly code in this executable? This code 

seems to be directly placing the end result into the “b” memory cell if we 

observe. Why is this happening? The answer lies in compiler optimization. 

When the code is compiled in optimization mode, the compiler can 

calculate the final result from the simple C/C++ source code itself and 

generate only the necessary code to update corresponding memory 

locations.

�Summary
In this chapter, we looked at assembly language code produced by a 

debugger via disassembling binary code. Then, we reversed it to C and C++ 

code. We also compared the disassembly output of nonoptimized code to 

optimized code and understood why.

The next chapter refreshes number representations, especially the 

hexadecimal one.
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CHAPTER 3

Number 
Representations

�Numbers and Their Representations
Imagine a herder in ancient times trying to count his sheep. He has a 

certain number of stones (twelve):

 

However, he can only count up to three and arranges the total into 

groups of three:
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The last picture is a representation (a kind of notation) of the number 

of stones. We have one group of three groups of three stones plus a 

separate group of three stones. If he could count up to ten, we would see a 

different representation of the same number of stones. We would have one 

group of ten stones and another group of two stones.

�Decimal Representation (Base Ten)
Let’s now see how twelve stones are represented in arithmetic notation if 

we can count up to ten. We have one group of ten numbers plus two:

12dec = 1 * 10 + 2 or 1 * 101 + 2 * 100

Here is another exercise with 123 stones. We have 1 group of ten by 

ten stones, another group of 2 groups of ten stones, and the last group 

of 3 stones:

123dec = 1 * 10*10 + 2 * 10 + 3 or 1 * 102 + 2 * 101 + 3 * 100

We can formalize it in the following summation notation:

Ndec = an*10n + an-1*10n-1 + … + a2*102 + a1*101 + a0*100 

0 <= ai <= 9

Using the summation symbol, we have this formula:

n

Ndec = ∑ ai*10i

i=0
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�Ternary Representation (Base Three)
Now we come back to our herder’s example of twelve stones. We have 1 

group of three by three stones, 1 group of three stones, and an empty (0)  

group (which is not empty if we have one stone only or have thirteen 

stones instead of twelve). We can write down the number of groups 

sequentially: 110. Therefore, 110 is a ternary representation (notation) of 

twelve stones, and it is equivalent to 12 written in decimal notation:

12dec = 1*32 + 1*31 + 0*30

Ndec = an*3n + an-1*3n-1 + … + a2*32 + a1*31 + a0*30  

ai = 0 or 1 or 2

n

Ndec = ∑ ai*3i

i=0

�Binary Representation (Base Two)
In the case of counting up to two, we have more groups for twelve stones: 

1100. Therefore, 1100 is a binary representation (notation) for 12 in 

decimal notation:

12dec = 1*23 + 1*22 + 0*21 + 0*20

123dec = 1*26 + 1*25 + 1*24 + 1*23 + 0*22 + 1*21 + 1*20 or 

11110112

Ndec = an*2n + an-1*2n-1 + … + a2*22 + a1*21 + a0*20  

ai = 0 or 1

n

Ndec = ∑ ai*2i

i=0
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�Hexadecimal Representation (Base Sixteen)
If we can count up to sixteen, twelve stones fit in one group, but we 

need more symbols: A, B, C, D, E, and F for ten, eleven, twelve, thirteen, 

fourteen, and fifteen, respectively:

12dec = C in hexadecimal representation (notation)

123dec = 7Bhex

123dec = 7*161 + 11*160

n

Ndec = ∑ ai*16i

i=0

�Why Are Hexadecimals Used?
Consider this number written in binary notation: 1100010100112. Its 

equivalent in decimal notation is 3155:

3155dec = 1*211 + 1*210 + 0*29 + 0*28 + 0*27 + 1*26 + 0*25 

+ 1*24 + 0*23 + 0*22 + 1*21 + 1*20

Now we divide the binary number digits into groups of four and write 

them down in decimal and hexadecimal notation:

110001010011

12dec 5dec 3dec

Chex 5hex 3hex

We see that hexadecimal notation is more compact because every 

four binary digit group number corresponds to one hexadecimal number. 

Table 3-1 lists hexadecimal equivalents for every four binary digit 

combination.
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Table 3-1.  Hexadecimal Equivalents for Every Four 

Binary Digit Combination

Binary Decimal Hexadecimal

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 10 A

1011 11 B

1100 12 C

1101 13 D

1110 14 E

1111 15 F

In GDB and other debuggers, memory addresses are displayed in 

hexadecimal notation.

Chapter 3  Number Representations



32

�Summary
This chapter refreshed different representations of a number, including 

hexadecimal notation.

The next chapter introduces pointers. We rewrite our arithmetic 

program from Chapter 1 using pointers to memory and use the GDB 

debugger to execute instructions one by one and watch changes 

to memory.
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CHAPTER 4

Pointers

�A Definition
The concept of a pointer is one of the most important to understand 

thoroughly to master Linux debugging. By definition, a pointer is a 

memory cell or a processor register that contains the address of another 

memory cell, as shown in Figure 4-1. It has its own address as any memory 

cell. Sometimes, a pointer is called an indirect address (vs. a direct address, 

the address of a memory cell). Iteratively, we can define another level 

of indirection and introduce a pointer to a pointer as a memory cell or a 

processor register that contains the address of another memory cell that 

contains the address of another memory cell and so on.

© Dmitry Vostokov 2023
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Figure 4-1.  Example pointers and memory layout

�“Pointers” Project: Memory Layout 
and Registers
In our debugging project, we have two memory addresses (locations), “a” 

and “b.” We can think about “a” and “b” as names of addresses (locations). 

We remind that notation (a) means contents at the memory address 

(location) “a.”
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We also have registers %RAX and %RBX as pointers to “a” and “b.” 

These registers contain addresses of “a” and “b,” respectively. The notation 

(%RAX) means the contents of a memory cell whose address is in the 

register %RAX.

In C and C++ languages, we declare and define pointers to “a” 

and “b” as

int *a, *b;

Our project memory layout before program execution is shown in 

Figure 4-2. Addresses always occupy 64-bit memory cells or full 64-bit 

registers like %RAX or %RBX (they cannot fit in %EAX or %EBX or a 32-bit 

memory cell).

Figure 4-2.  Project memory layout before program execution
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�“Pointers” Project: Calculations
In order to understand pointers better from a low-level assembly language 

perspective, we perform our old arithmetic calculations from Chapter 1 

using pointers to memory instead of direct memory addresses:

address a -> rax

1 -> (rax)

address b -> rbx

1 -> (rbx)

(rbx) + (rax) -> (rbx)

(rax) + 1 -> (rax)

(rbx) * (rax) -> (rbx)

�Using Pointers to Assign Numbers 
to Memory Cells
First, the following sequence of pseudo-code instructions means that we 

interpret the contents of %RAX register as the address of a memory cell 

and then assign a value to that memory cell:

address a -> rax

1 -> (rax)

In C and C++ languages, it is called “dereferencing a pointer,” and 

we write

int a;

int *pa = &a; // declaration and definition of a pointer

*pa = 1;      // get a memory cell (dereference a pointer)

              // and assign a value to it
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In assembly language, we write

lea   a, %rax        # �load the address "a" into %rax

movl  $1, (%rax)     # use %rax as a pointer

Again, we see movl instead of mov because integers occupy 32-bit 

memory cells, and we want to address only a 32-bit memory cell. This is 

how it is on x64 Linux: memory cells to contain integers are half the size of 

memory cells to contain addresses (32-bit vs. 64-bit).

In the GDB disassembly output, we see something like this:

0x0000000000401000 <+0>:     lea    0x402000,%rax

0x0000000000401008 <+8>:     movl   $0x1,(%rax)

The source code for this chapter can be downloaded from

github.com/apress/linux-debugging-disassembling-reversing/

Chapter4/

To illustrate some instructions and not to be dependent on how 

the compiler translates C/C++ code, we wrote the program in assembly 

language. We need to compile and link it first before loading it into GDB 

and disassemble its main function as described in Chapter 2.

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter4$ as 

PointersProject.asm -o PointersProject.o

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter4$ ld 

PointersProject.o -o PointersProject

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter4$ gdb  

./PointersProject

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/

licenses/gpl.html>
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This is free software: you are free to change and 

redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources 

online at:

    <http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from ./PointersProject...(no debugging symbols 

found)...done.

(gdb)

We put a breakpoint on the main function, run the program until GDB 

breaks in, and then disassemble the main function:

(gdb) break main

Breakpoint 1 at 0x401000

(gdb) run

Starting program: /home/coredump/pflddr/x64/Chapter4/

PointersProject

Breakpoint 1, 0x0000000000401000 in _start ()

(gdb) disass main

Dump of assembler code for function _start:

=> 0x0000000000401000 <+0>:     lea    0x402000,%rax

   0x0000000000401008 <+8>:     movl   $0x1,(%rax)
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   0x000000000040100e <+14>:    lea    0x402004,%rbx

   0x0000000000401016 <+22>:    movl   $0x1,(%rbx)

   0x000000000040101c <+28>:    mov    (%rax),%edx

   0x000000000040101e <+30>:    add    %edx,(%rbx)

   0x0000000000401020 <+32>:    incl   (%rax)

   0x0000000000401022 <+34>:    mov    (%rax),%eax

   0x0000000000401024 <+36>:    imul   (%rbx),%eax

   0x0000000000401027 <+39>:    mov    %eax,(%rbx)

   0x0000000000401029 <+41>:    mov    $0x3c,%rax

   0x0000000000401030 <+48>:    mov    $0x0,%rdi

   0x0000000000401037 <+55>:    syscall

End of assembler dump.

Now we examine variables “a” and “b” to verify the memory layout 

shown previously in Figure 4-2 using the info variables GDB command:

(gdb) info variables

All defined variables:

Non-debugging symbols:

0x0000000000402000  a

0x0000000000402004  b

0x0000000000402008  __bss_start

0x0000000000402008  _edata

0x0000000000402008  _end

We also verify that the values of %RAX and %RBX registers are in 

accordance with Figure 4-2:

(gdb) info registers rax rbx

rax            0x0                 0

rbx            0x0                 0
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We instruct GDB to automatically display the current instruction to 

be executed, the values of registers %RAX and %RBX, and the contents of 

variables “a” and “b”:

(gdb) display/i $rip

1: x/i $rip

=> 0x401000 <_start>:   lea    0x402000,%rax

(gdb) display/x $rax

2: /x $rax = 0x0

(gdb) display/x $rbx

3: /x $rbx = 0x0

(gdb) display/x (int)a

4: /x (int)a = 0x0

(gdb) display/x (int)b

5: /x (int)b = 0x0

Now we execute the first four instructions that correspond to our 

pseudo-code using the stepi GDB command or si (shorter command 

version):

address a -> rax

1 -> (rax)               ; (a) = 1

address b -> rbx

1 -> (rbx)              ; (b) = 1

(rbx) + (rax) -> (rbx)

(rax) + 1 -> (rax)

(rbx) * (rax) -> (rbx)

lea a, %rax

movl $1, (%rax)

lea b, %rbx

movl $1, (%rbx)
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(gdb) si

0x0000000000401008 in _start ()

1: x/i $rip

=> 0x401008 <_start+8>: movl   $0x1,(%rax)

2: /x $rax = 0x402000
3: /x $rbx = 0x0

4: /x (int)a = 0x0

5: /x (int)b = 0x0

(gdb) si

0x000000000040100e in _start ()

1: x/i $rip

=> 0x40100e <_start+14>:        lea    0x402004,%rbx

2: /x $rax = 0x402000

3: /x $rbx = 0x0

4: /x (int)a = 0x1
5: /x (int)b = 0x0

(gdb) si

0x0000000000401016 in _start ()

1: x/i $rip

=> 0x401016 <_start+22>:        movl   $0x1,(%rbx)

2: /x $rax = 0x402000

3: /x $rbx = 0x402004
4: /x (int)a = 0x1

5: /x (int)b = 0x0

(gdb) si

0x000000000040101c in _start ()

1: x/i $rip

=> 0x40101c <_start+28>:        mov    (%rax),%edx

2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x (int)a = 0x1

5: /x (int)b = 0x1
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All this corresponds to a memory layout shown in Figure 4-3.

Figure 4-3.  Memory layout after executing the first four instructions

�Adding Numbers Using Pointers
Now we look at the next pseudo-code statement:

(rbx) + (rax) -> (rbx)

Recall that (rax) and (rbx) mean contents of memory cells whose 

addresses (locations) are stored in %RAX and %RBX CPU registers. The 

preceding statement is equivalent to the following C or C++ language 

expression where the “*” operator means to get memory contents pointed 

to by the pa or pb pointer (also called pointer dereference):

*pb = *pb + *pa;
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In assembly language, we use the instruction ADD for the “+” operator, 

but we cannot use both memory addresses in one step instruction (addl is 

used to add 32-bit integers):

addl (%rax), (%rbx)     # invalid instruction

We can only use one memory reference, and, therefore, we need to 

employ another register as a temporary variable:

(rax) -> register

(rbx) + register -> (rbx)

In assembly language, we write this sequence of instructions:

mov (%rax), %edx

add %edx, (%rbx)

We use add instead of addl because using %EDX instead of %RDX 

implies adding a 32-bit integer.

In the GDB disassembly output, we see these instructions indeed:

0x000000000040101c <+28>:    mov    (%rax),%edx

0x000000000040101e <+30>:    add    %edx,(%rbx)

We add them to our pseudo-code table:

address a -> rax

1 -> (rax)               ; (a) = 1

address b -> rbx

1 -> (rbx)               ; (b) = 1

(rbx) + (rax) -> (rbx)   ; %edx = 1

                                                    ; (b) = 2

(rax) + 1 -> (rax)

(rbx) * (rax) -> (rbx)

lea a, %rax

movl $1, (%rax)

lea b, %rbx

movl $1, (%rbx)

mov (%rax), %edx

add %edx, (%rbx)
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Now we execute these two instructions (we remind that the output of 

the si command shows the next instruction to be executed when we use 

the si command again):

[From the previous output]

1: x/i $rip

=> 0x40101c <_start+28>:        mov    (%rax),%edx

2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x (int)a = 0x1

5: /x (int)b = 0x1

(gdb) si

0x000000000040101e in _start ()

1: x/i $rip

=> 0x40101e <_start+30>:        add    %edx,(%rbx)

2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x (int)a = 0x1

5: /x (int)b = 0x1

(gdb) info reg $rdx

rdx            0x1                 1

(gdb) si

0x0000000000401020 in _start ()

1: x/i $rip

=> 0x401020 <_start+32>:        incl   (%rax)

2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x (int)a = 0x1

5: /x (int)b = 0x2
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All this corresponds to a memory layout shown in Figure 4-4.

Figure 4-4.  Memory layout after executing the next two instructions

�Incrementing Numbers Using Pointers
In pseudo-code, it means increment (decrement) a number stored at the 

memory location which address is stored in %RAX:

(rax) + 1 -> (rax)

In the C or C++ language, we can write this using three possible ways:

*a = *a + 1;

++(*a);

(*a)++;
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In assembly language, we use instruction INC and write

incl     (%rax)

We use incl when we need to specify the 32-bit memory cell to 

increment.

In the GDB disassembly output, we see the same instruction:

incl (%rax)

or

addl $0x1,(%rax)   # a compiler may decide to use ADD 

instead of INC

Now we add the assembly language translation of increment:

address a -> rax

1 -> (rax)               ; (a) = 1

address b -> rbx

1 -> (rbx)               ; (b) = 1

(rbx) + (rax) -> (rbx)   ; %edx = 1

                                                    ; (b) = 2

(rax) + 1 -> (rax)       ; (a) = 2

(rbx) * (rax) -> (rbx)

lea a, %rax

movl $1, (%rax)

lea b, %rbx

movl $1, (%rbx)

mov (%rax), %edx

add %edx, (%rbx)

incl (%rax)

Now we execute this instruction (we remind that the output of the si 
command shows the next instruction to be executed when we use the si 
command again):

[From the previous output]

1: x/i $rip

=> 0x401020 <_start+32>:        incl   (%rax)

2: /x $rax = 0x402000

3: /x $rbx = 0x402004
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4: /x (int)a = 0x1

5: /x (int)b = 0x2

(gdb) si

0x0000000000401022 in _start ()

1: x/i $rip

=> 0x401022 <_start+34>:        mov    (%rax),%eax

2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x (int)a = 0x2

5: /x (int)b = 0x2

After the execution of the INC instruction, we have the memory layout 

illustrated in Figure 4-5.

Figure 4-5.  Memory layout after the execution of the INC instruction
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�Multiplying Numbers Using Pointers
Our next pseudo-code statement does a multiplication:

(rbx) * (rax) -> (rbx)

This statement means that we multiply the contents of the memory 

cell whose address is stored in the %RBX register by the value stored in 

the memory cell whose address is in the %RAX register. In the C or C++ 

language, we write a similar expression as the addition statement we have 

seen in the previous sections (note that we have two distinct meanings of 

the “*” operator: pointer dereference and multiplication):

*pb = *pb * *pa;

*pb *= *pa;

The latter is a shorthand notation. In assembly language, we use 

instruction IMUL (Integer MULtiply):

mov (%rax), %eax

imul (%rbx), %eax

mov %eax, (%rbx)

Since the imul instruction cannot reference two memory locations, 

we need to put the contents of one location into a register. We reuse 

%RAX since we do not need its current value after that. This instruction is 

equivalent to the following pseudo-code:

(rax) -> rax

(rbx) * rax -> rax

rax -> (rbx)

In the GDB disassembly output, we see this:

0x0000000000401022 <+34>:    mov    (%rax),%eax

0x0000000000401024 <+36>:    imul   (%rbx),%eax

0x0000000000401027 <+39>:    mov    %eax,(%rbx)
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We add instructions to our pseudo-code table:

address a -> rax

1 -> (rax)               ; (a) = 1

address b -> rbx

1 -> (rbx)               ; (b) = 1

(rbx) + (rax) -> (rbx)   ; %edx = 1

                                                    ; (b) = 2

(rax) + 1 -> (rax)       ; (a) = 2

(rbx) * (rax) -> (rbx)   ; %eax = 2

                                                    ; %eax = 4

                                                    ; (b) = 4

lea a, %rax

movl $1, (%rax)

lea b, %rbx

movl $1, (%rbx)

mov (%rax), %edx

add %edx, (%rbx)

incl (%rax)

mov (%rax), %eax

imul (%rbx), %eax

mov %eax, (%rbx)

Now we execute these three instructions (we remind that the output 

of the si command shows the next instruction to be executed when we use 

the si command again):

[From the previous output]

1: x/i $rip

=> 0x401022 <_start+34>:        mov    (%rax),%eax

2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x (int)a = 0x2

5: /x (int)b = 0x2 

(gdb) si

0x0000000000401024 in _start ()

1: x/i $rip

=> 0x401024 <_start+36>:        imul   (%rbx),%eax

2: /x $rax = 0x2

3: /x $rbx = 0x402004

4: /x (int)a = 0x2

5: /x (int)b = 0x2
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(gdb) si

0x0000000000401027 in _start ()

1: x/i $rip

=> 0x401027 <_start+39>:        mov    %eax,(%rbx)

2: /x $rax = 0x4

3: /x $rbx = 0x402004

4: /x (int)a = 0x2

5: /x (int)b = 0x2

(gdb) si

0x0000000000401029 in _start ()

1: x/i $rip

=> 0x401029 <_start+41>:        mov    $0x3c,%rax

2: /x $rax = 0x4

3: /x $rbx = 0x402004

4: /x (int)a = 0x2

5: /x (int)b = 0x4
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All this corresponds to a memory layout shown in Figure 4-6.

Figure 4-6.  Memory layout after execution of the last three 
instructions

�Summary
This chapter introduced pointers. We rewrote our arithmetic program from 

Chapter 1 using pointers, used the GDB debugger to execute instructions 

individually, and watched changes to memory. We also learned GDB 

commands to show the contents of registers and variables.

The next chapter introduces the bit- and byte-level memory 

granularity, corresponding layout, and integral C and C++ types.
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CHAPTER 5

Bytes, Words, Double, 
and Quad Words

�Using Hexadecimal Numbers
If we want to use hexadecimal numbers in the C/C++ language, we prefix 

them with 0x, for example:

a = 12;    // 12dec
a = 0xC;   // Chex

In the GDB disassembly output, and when entering commands, 

numbers are interpreted as decimals by default. If we want a number to be 

interpreted as hexadecimal, we prefix it with 0x, for example:

mov 12, a

mov 0xC, a

�Byte Granularity
Figure 5-1 shows the difference between bytes, words, doublewords, and 

quadwords in terms of byte granularity. We see that each successive size is 

double the previous.
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Figure 5-1.  Difference between bytes, words, doublewords, and 
quadwords

�Bit Granularity
Every byte consists of eight bits. Every bit has a value of zero or one. Here 

are some examples of bytes, words, doublewords and quadwords shown 

as bit strings (we can also clearly see the correspondence between 4-bit 

sequences and hexadecimal numbers, Table 3-1):

•	 Byte

C/C++: unsigned char

8 bits

Values 0dec–255dec or 0hex–FFhex

Example: 12dec 00001100bin 0Chex

•	 Word

C/C++: unsigned short

16 bits

Values 0dec–65535dec or 0hex–FFFFhex

Example: 0000000000001100bin 000Chex
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•	 Doubleword

C/C++: unsigned int, unsigned 

32 bits

Values 0dec–4294967295dec or 0hex–FFFFFFFFhex

Example: 00000000000000000000000000001100bin

0000000Chex

•	 Quadword

C/C++: long, unsigned long long

64 bits

Values 0dec–18446744073709551615dec or

0hex–FFFFFFFFFFFFFFFFhex

Example: 000000000000000000000000000000000 

0000000000000000000000000001100bin

000000000000000Chex

�Memory Layout
The minimum addressable element of memory is a byte. The maximum 

addressable element is a doubleword on 32-bit machines and a quadword 

on 64-bit machines. All general registers are 32-bit on 32-bit CPUs and can 

contain doubleword values. On 64-bit CPUs, all general registers are 64-bit 

and can contain quadword values. Figure 5-2 shows a typical memory 

layout, and Figure 5-3 shows the byte layout of some general CPU registers.
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Figure 5-2.  Typical memory layout
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Figure 5-3.  Typical registry layout

Remember that memory addresses are always 64-bit, and memory 

addresses to 32-bit memory cells like integers are also 64-bit.
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�Summary
This chapter discussed the bit- and byte-level memory granularity, 

corresponding layout, and integral C and C++ types.

The next chapter looks at pointers in greater detail, considering 

different byte memory granularity. We also discuss issues related to 

abnormal defects, such as uninitialized, invalid, and NULL pointers. 

Finally, we disassemble and trace a program that uses variables as 

pointers.
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CHAPTER 6

Pointers to Memory

�Pointers Revisited
The pointer is a memory cell or a register that contains the address of 

another memory cell. Memory pointers have their own addresses because 

they are memory cells too. On 32-bit Linux, pointers are 32-bit, and on 64-

bit Linux, pointers are 64-bit.

�Addressing Types
As we have seen in Chapter 5, memory cells can be of one byte, word, 

doubleword, or quadword size. Therefore, we can have a pointer to a 

byte, a pointer to a word, a pointer to a doubleword, and a pointer to a 

quadword. The GDB disassembly output in Chapter 4 has l suffixes in 

instructions involving pointers to memory that hold 32-bit (doubleword 

size) values.

Here are some illustrated examples:

movb $0xFF, (%rax)
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The layout of memory before movb instruction execution is shown 

in Figure 6-1, and the layout of memory after execution is shown in 

Figure 6-2.

movw $0xFF, (%rax)

movl $0xFF, (%rax)

movq $0xFF, (%rax)

We need to prefix 0xFF with $ to differentiate it from 0xFF as a memory 

address.

The layout of memory after the execution of the movl instruction is 

shown in Figure 6-3. We can see that, although we specify just a byte value 

0xFF as a source operand to the movl instruction, it replaces all other 3 

bytes of a doubleword in memory because we specify the destination as a 

pointer to 4 bytes, and 0xFF is 0x000000FF as a doubleword. So we need 

to specify the l suffix to disambiguate moving a doubleword value from 

moving a byte value. The compiler complains if we forget and use mov:

Error: no instruction mnemonic suffix given and no register 

operands; can't size instruction

Because 64-bit (quadword) registers may point to quadword memory 

cells, we need to specify q to disambiguate moving a quadword value from 

moving a byte value even if we specify a constant with all leading zeroes:

movq $0x00000000000000FF, (%rax)

However, if we want to move a word value only, we need to specify the 

w suffix:

movw $0xFF, (%rax)
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This is equivalent to

movw $0x00FF, (%rax)

Figure 6-4 shows a summary of various addressing modes.

Figure 6-1.  The layout of memory before movb instruction execution
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Figure 6-2.  The layout of memory after movb instruction execution
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Figure 6-3.  The layout of memory after the execution of movl 
instruction
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Figure 6-4.  A summary of various addressing modes
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�Registers Revisited
%RAX, %RBX, %RCX, and %RDX 64-bit registers can be used as pointers 

to memory. They contain x86 32-bit registers %EAX, %EBX, %ECX, and 

%EDX. These 32-bit parts contain old 16-bit registers %AX, %BX, %CX, and 

%DX (each can hold a word). The %CX register was often used as a loop 

counter, (Counter)X, in the assembly language corresponding to simple 

loops in C and C++ code:

for (int i = 0; i < N ; ++i)

but modern C and C++ compilers may choose to use any other register or 

even a memory location for such a purpose.

�NULL Pointers
Addresses 0x0000000000000000–0x000000000000FFFF are specifically 

made inaccessible on Linux. The following code will force an application 

crash or kernel panic if executed inside a driver:

mov $0xF, %rax

movb $1, (%rax)  # Access violation

�Invalid Pointers
There are different kinds of invalid pointers that cause an access violation 

when we try to dereference them:

•	 NULL pointers

•	 Pointers to inaccessible memory

•	 Pointers to read-only memory when writing
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Other pointers may or may not cause an access violation, and some of 

them are discussed in subsequent chapters:

•	 Pointers pointing to “random” memory

•	 Uninitialized pointers having random value inherited 

from past code execution

•	 Dangling pointers

The latter pointers are similar to pointers pointing to “random” 

memory locations and arise when we forget to set pointer variables to zero 

(NULL) after disposing of the memory they point to. By nullifying pointers, 

we indicate that they no longer point to memory.

�Variables As Pointers
Suppose we have two memory addresses (locations) “a” and “b” declared 

and defined in C and C++ as

int a, b;

These are normal variables “a” and “b.” Also, we can have another two 

memory addresses (locations) “pa” and “pb” declared and defined in C 

and C++ as

int *pa, *pb;

Here, pa is a pointer to an int, or, in other words, the memory 

cell pa contains the address of another memory cell that contains an 

integer value.
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�Pointer Initialization
In order to have pointers to point to memory, we need to initialize them 

with corresponding memory addresses. Here is typical C or C++ code that 

does what we need:

int a;              // uninitialized variable

int *pa;            // uninitialized pointer

pa = &a;            // (pa) now contains the address a

int b = 12;         // initialized variable

int *pb = &b;       // initialized pointer

We see that pointers are also variables and can change their values 

effectively pointing to different memory locations during program 

execution.

�Initialized and Uninitialized Data
Here is a bit of additional information about initialized and uninitialized 

variables that is useful to know: an executable program in Linux is divided 

into different sections. One is called .data, where all global and static 

variables (including pointers) are put.

Consider this C or C++ data definition:

int array[1000000]; // size 4,000,000 bytes or 3.8Mb

We would expect the size of an executable file to be about 4Mb. 

However, the program size on a disk is only 16Kb. It is because the 

uninitialized array contains only information about its size. When we 

launch the program, this array is recreated from its size information and 

filled with zeroes. The size of the program in memory becomes about 4Mb.
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In the case of the initialized array, the program size on disk is 4.01Mb:

int array[1000000] = { 12 };

This is because the array was put into a .data section and contains the 

following sequence of integers { 12, 0, 0, 0, 0 … }.

�More Pseudo Notation
We remind that (a) means contents of memory at the address a, and (rax) 

means contents of a 64-bit memory cell at the address stored in the %RAX 

register (here, %RAX is a pointer).

We also introduce an additional notation to employ in this and 

subsequent chapters: *(pa) means contents at the address stored at the 

address pa and is called dereferencing a pointer whose address is pa. The 

corresponding C/C++ code is similar:

int *pa = &a;

int b = *pa;

�“MemoryPointers” Project: Memory Layout
This project is very similar to the “Pointers” project from Chapter 4. We 

have this data declaration and definition in the C or C++ language:

int a, b;

int *pa, *pb = &b;
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The project code corresponds to the following pseudo-code and 

assembly language:

address a -> (pa)

1 -> *(pa)               ; (a) = 1

1 -> *(pb)               ; (b) = 1

*(pb) + *(pa) -> *(pb)   ; (b) = 2

lea  a, %rax

mov  %rax, pa

mov  pa, %rax

movl $1, (%rax)

mov  pb, %rbx

movl $1, (%rbx)

mov (%rax), %ecx

add (%rbx), %ecx

mov %ecx, (%rbx)

The source code for this chapter can be downloaded from

github.com/apress/linux-debugging-disassembling-reversing/

Chapter6/

We compile and link it and load the executable into GDB as described 

in Chapter 4. We get the following output:

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter6$ as 

MemoryPointers.asm -o MemoryPointers.o

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter6$ ld 

MemoryPointers.o -o MemoryPointers

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter6$ gdb  

./MemoryPointers

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/

licenses/gpl.html>

This is free software: you are free to change and 

redistribute it.
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There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources 

online at:

    <http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from ./MemoryPointers...(no debugging symbols 

found)...done.

(gdb)

Then we put a breakpoint on the main function and run the program 

until GDB breaks in:

(gdb) break main

Breakpoint 1 at 0x401000

(gdb) run

Starting program: /home/coredump/pflddr/x64/Chapter6/

MemoryPointers

Breakpoint 1, 0x0000000000401000 in _start ()

We disassemble the main function:

(gdb) disass main

Dump of assembler code for function _start:

=> 0x0000000000401000 <+0>:     lea    0x402000,%rax

   0x0000000000401008 <+8>:     mov    %rax,0x402008

   0x0000000000401010 <+16>:    mov    0x402008,%rax

   0x0000000000401018 <+24>:    movl   $0x1,(%rax)
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   0x000000000040101e <+30>:    mov    0x402010,%rbx

   0x0000000000401026 <+38>:    movl   $0x1,(%rbx)

   0x000000000040102c <+44>:    mov    (%rax),%ecx

   0x000000000040102e <+46>:    add    (%rbx),%ecx

   0x0000000000401030 <+48>:    mov    %ecx,(%rbx)

   0x0000000000401032 <+50>:    mov    $0x3c,%rax

   0x0000000000401039 <+57>:    mov    $0x0,%rdi

   0x0000000000401040 <+64>:    syscall

End of assembler dump.

Then we clear %RAX, %RBX, and %RCX registers to set up a memory 

layout that is easy to follow:

(gdb) set $rax = 0

(gdb) set $rbx = 0

(gdb) set $rcx = 0

(gdb) info registers $rax $rbx $rcx

rax            0x0                 0

rbx            0x0                 0

rcx            0x0                 0

We also instruct GDB to automatically display the current instruction 

to be executed; the values of registers %RAX, %RBX, and %RCX; and the 

contents of variables “a,” “b,” “pa,” and “pb”:

(gdb) display/i $rip

1: x/i $rip

=> 0x401000 <_start>:   lea    0x402000,%rax

(gdb) display/x $rax

2: /x $rax = 0x0
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(gdb) display/x $rbx

3: /x $rbx = 0x0

(gdb) display/x $rcx

4: /x $rcx = 0x0

(gdb) display/x (int)a

5: /x (int)a = 0x0

(gdb) display/x (int)b

6: /x (int)b = 0x0

(gdb) display/x (long)pa

7: /x (long)pa = 0x0

(gdb) display/x (long)pb

8: /x (long)pb = 0x402004

We see that the pb variable contains the address 0x402004. We 

then check the addresses of (variables) memory locations “a,” “b,” “pa,” 

and “pb”:

(gdb) print &a

$1 = (<data variable, no debug info> *) 0x402000

(gdb) print &b

$2 = (<data variable, no debug info> *) 0x402004

(gdb) print &pa

$3 = (<data variable, no debug info> *) 0x402008

(gdb) print &pb

$4 = (<data variable, no debug info> *) 0x402010
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We also check the value stored at the address 0x402004 (value of pb 

that is the address of b):

(gdb) x 0x402004

0x402004:       0x00000000

This corresponds to the memory layout before executing the first LEA 

instruction, and it is shown in Figure 6-5.

Figure 6-5.  Memory layout before executing the first LEA instruction
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We then execute our code step by step (changes are in bold):

(gdb) si

0x0000000000401008 in _start ()

1: x/i $rip

=> 0x401008 <_start+8>: mov    %rax,0x402008

2: /x $rax = 0x402000

3: /x $rbx = 0x0

4: /x $rcx = 0x0

5: /x (int)a = 0x0

6: /x (int)b = 0x0

7: /x (long)pa = 0x0

8: /x (long)pb = 0x402004

(gdb) si

0x0000000000401010 in _start ()

1: x/i $rip

=> 0x401010 <_start+16>:        mov    0x402008,%rax

2: /x $rax = 0x402000

3: /x $rbx = 0x0

4: /x $rcx = 0x0

5: /x (int)a = 0x0

6: /x (int)b = 0x0

7: /x (long)pa = 0x402000

8: /x (long)pb = 0x402004

(gdb) si

0x0000000000401018 in _start ()

1: x/i $rip

=> 0x401018 <_start+24>:        movl   $0x1,(%rax)

2: /x $rax = 0x402000

3: /x $rbx = 0x0

4: /x $rcx = 0x0
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5: /x (int)a = 0x0

6: /x (int)b = 0x0

7: /x (long)pa = 0x402000

8: /x (long)pb = 0x402004

(gdb) si

0x000000000040101e in _start ()

1: x/i $rip

=> 0x40101e <_start+30>:        mov    0x402010,%rbx

2: /x $rax = 0x402000

3: /x $rbx = 0x0

4: /x $rcx = 0x0

5: /x (int)a = 0x1

6: /x (int)b = 0x0

7: /x (long)pa = 0x402000

8: /x (long)pb = 0x402004

(gdb) si

0x0000000000401026 in _start ()

1: x/i $rip

=> 0x401026 <_start+38>:        movl   $0x1,(%rbx)

2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x $rcx = 0x0

5: /x (int)a = 0x1

6: /x (int)b = 0x0

7: /x (long)pa = 0x402000

8: /x (long)pb = 0x402004

(gdb) si

0x000000000040102c in _start ()

1: x/i $rip

=> 0x40102c <_start+44>:        mov    (%rax),%ecx
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2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x $rcx = 0x0

5: /x (int)a = 0x1

6: /x (int)b = 0x1

7: /x (long)pa = 0x402000

8: /x (long)pb = 0x402004

(gdb) si

0x000000000040102e in _start ()

1: x/i $rip

=> 0x40102e <_start+46>:        add    (%rbx),%ecx

2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x $rcx = 0x1

5: /x (int)a = 0x1

6: /x (int)b = 0x1

7: /x (long)pa = 0x402000

8: /x (long)pb = 0x402004

(gdb) si

0x0000000000401030 in _start ()

1: x/i $rip

=> 0x401030 <_start+48>:        mov    %ecx,(%rbx)

2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x $rcx = 0x2

5: /x (int)a = 0x1

6: /x (int)b = 0x1

7: /x (long)pa = 0x402000

8: /x (long)pb = 0x402004
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(gdb) si

0x0000000000401032 in _start ()

1: x/i $rip

=> 0x401032 <_start+50>:        mov    $0x3c,%rax

2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x $rcx = 0x2

5: /x (int)a = 0x1

6: /x (int)b = 0x2

7: /x (long)pa = 0x402000

8: /x (long)pb = 0x402004

The final memory layout and registers are shown in Figure 6-6.
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Figure 6-6.  The final memory layout and registers
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�Summary
This chapter looked at pointers in greater detail, considering different byte 

memory granularity. We also discussed issues related to abnormal defects, 

such as uninitialized, invalid, and NULL pointers. Finally, in the GDB 

debugger, we disassembled and traced a program that used variables as 

pointers and learned additional commands to display memory addresses 

and contents.

The next chapter introduces logical instructions, zeroing memory, 

and the instruction pointer register. We also learn an additional GDB 

command to get program code and data section addresses.
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CHAPTER 7

Logical Instructions 
and RIP

�Instruction Format
We have seen that assembly language instructions have uniform format:

Opcode operand

Opcode source_operand, destination_operand

Operands can be registers (reg), memory references (mem), or some 

numbers, called immediate values (imm). Typical notational examples:

inc mem/reg

dec mem/reg

add reg/imm, mem/reg

add mem/imm, reg

and some concrete assembly language examples:

inc (%rax)

decl a

addl $0x10, (%rax)

addq a, (%rax)
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�Logical Shift Instructions
In addition to arithmetic instructions, there are so-called logical shift 

instructions that just shift a bit string to the left or the right.

Shift to the left:

11111111   ->   11111110   ; shift by 1

11111110   ->   11110000   ; shift by 3

shl imm/reg, mem/reg

shl $1, %rax

shlb $2, (%rax)

Shift to the right:

11111111   ->   01111111   ; shift by 1

01111111   ->   00001111   ; shift by 3

shr imm/reg, mem/reg

shr $1, %rax

shr $2, (%rax)

�Logical Operations
Here, we recall logical operations and corresponding truth tables. We 

abbreviate True as T and False as F.

AND

1 and 1 = 1   T and T = T

1 and 0 = 0   T and F = F

0 and 1 = 0   F and T = F

0 and 0 = 0   F and F = F
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OR

1 or 1 = 1    T or T = T

1 or 0 = 1    T or F = T

0 or 1 = 1    F or T = T

0 or 0 = 0    F or F = F

�Zeroing Memory or Registers
There are several ways to put a zero value into a register or a memory 

location:

	 1.	 Move a value:

mov $0, a

mov $0, %rax

mov $0, %eax

	 2.	 Use the XOR (Exclusive OR) logical operation:

xor %rax, %rax

xor %eax, %eax

XOR

1 xor 1 = 0    T xor T = F

1 xor 0 = 1    T xor F = T

0 xor 1 = 1    F xor T = T

0 xor 0 = 0    F xor F = F

This operation clears its destination operand because the source 

operand is the same, and the same bits are cleared.
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�Instruction Pointer
Consider these two execution steps from the previous chapter project:

(gdb) si

0x000000000040102c in _start ()

1: x/i $rip

=> 0x40102c <_start+44>:        mov    (%rax),%ecx

2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x $rcx = 0x0

5: /x (int)a = 0x1

6: /x (int)b = 0x1

7: /x (long)pa = 0x402000

8: /x (long)pb = 0x402004

(gdb) si

0x000000000040102e in _start ()

1: x/i $rip

=> 0x40102e <_start+46>:        add    (%rbx),%ecx

2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x $rcx = 0x1

5: /x (int)a = 0x1

6: /x (int)b = 0x1

7: /x (long)pa = 0x402000

8: /x (long)pb = 0x402004

When the MOV instruction at the 000000000040102c address is being 

executed, another CPU register %RIP points to the next instruction at the 

000000000040102e address to be executed. It is shown in Figure 7-1.
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Figure 7-1.  Memory layout and %RIP when executing MOV 
instruction

�Code Section
Recall that in Chapter 6, we discussed the .data section where program 

data is put. The program code is put into the .text section.

The following GDB command lists various program sections and their 

information:

(gdb) maintenance info sections

Exec file:

    �/home/coredump/pflddr/x64/Chapter6/MemoryPointers', file 

type elf64-x86-64.

 [0]     �0x00400120->0x00400140 at 0x00000120: .note.gnu.

property ALLOC LOAD READONLY DATA HAS_CONTENTS

 [1]     �0x00401000->0x00401042 at 0x00001000: .text ALLOC LOAD 

READONLY CODE HAS_CONTENTS

 [2]     �0x00402000->0x00402018 at 0x00002000: .data ALLOC LOAD 

DATA HAS_CONTENTS
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�Summary
In this chapter, we learned logical operations and instructions, how to zero 

memory, the instruction pointer, and an additional GDB command to get 

program code and data section addresses.

In the next chapter, we use our assembly language knowledge and 

reconstruct C and C++ code that uses pointers.
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CHAPTER 8

Reconstructing a 
Program with Pointers

�Example of Disassembly Output: 
No Optimization
The ability to reconstruct approximate C or C++ code from code 

disassembly is essential in memory dump analysis and debugging.

The project for this chapter can be downloaded from

github.com/apress/linux-debugging-disassembling-reversing/

Chapter8/

We compile and link it, load executable into GDB, put a breakpoint 

on the main function, and run the program until GDB breaks in, then 

disassemble its main function:

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter8$ gcc 

PointersAsVariables.cpp -o PointersAsVariables

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter8$ gdb  

./PointersAsVariables

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

© Dmitry Vostokov 2023
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License GPLv3+: GNU GPL version 3 or later <http://gnu.org/

licenses/gpl.html>

This is free software: you are free to change and 

redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources 

online at:

    <http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from ./PointersAsVariables...(no debugging 

symbols found)...done.

(gdb) break main

Breakpoint 1 at 0x1129

(gdb) run

Starting program: /home/coredump/pflddr/x64/Chapter8/

PointersAsVariables

Breakpoint 1, 0x0000555555555129 in main ()

(gdb) disass main

Dump of assembler code for function main:

   0x0000555555555125 <+0>:     push   %rbp

   0x0000555555555126 <+1>:     mov    %rsp,%rbp

=> 0x0000555555555129 <+4>:     mov    %edi,-0x4(%rbp)

   0x000055555555512c <+7>:     mov    %rsi,-0x10(%rbp)
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   �0x0000555555555130 <+11>:    lea    0x2ef9(%rip),%rax         

# 0x555555558030 <a>

   �0x0000555555555137 <+18>:    mov    %rax,0x2efa(%rip)         

# 0x555555558038 <pa>

   �0x000055555555513e <+25>:    lea    0x2eef(%rip),%rax         

# 0x555555558034 <b>

   �0x0000555555555145 <+32>:    mov    %rax,0x2ef4(%rip)         

# 0x555555558040 <pb>

   �0x000055555555514c <+39>:    mov    0x2ee5(%rip),%rax         

# 0x555555558038 <pa>

   �0x0000555555555153 <+46>:    movl   $0x1,(%rax)

   �0x0000555555555159 <+52>:    mov    0x2ee0(%rip),%rax         

# 0x555555558040 <pb>

   0x0000555555555160 <+59>:    movl   $0x1,(%rax)

   �0x0000555555555166 <+65>:    mov    0x2ed3(%rip),%rax         

# 0x555555558040 <pb>

   0x000055555555516d <+72>:    mov    (%rax),%ecx

   �0x000055555555516f <+74>:    mov    0x2ec2(%rip),%rax         

# 0x555555558038 <pa>

   0x0000555555555176 <+81>:    mov    (%rax),%edx

   �0x0000555555555178 <+83>:    mov    0x2ec1(%rip),%rax         

# 0x555555558040 <pb>

   0x000055555555517f <+90>:    add    %ecx,%edx

   0x0000555555555181 <+92>:    mov    %edx,(%rax)

   �0x0000555555555183 <+94>:    mov    0x2eae(%rip),%rax         

# 0x555555558038 <pa>

   0x000055555555518a <+101>:   mov    (%rax),%edx

   0x000055555555518c <+103>:   add    $0x1,%edx

   0x000055555555518f <+106>:   mov    %edx,(%rax)

   �0x0000555555555191 <+108>:   mov    0x2ea8(%rip),%rax         

# 0x555555558040 <pb>

Chapter 8  Reconstructing a Program with Pointers



90

   0x0000555555555198 <+115>:   mov    (%rax),%ecx

   �0x000055555555519a <+117>:   mov    0x2e97(%rip),%rax         

# 0x555555558038 <pa>

   0x00005555555551a1 <+124>:   mov    (%rax),%edx

   �0x00005555555551a3 <+126>:   mov    0x2e96(%rip),%rax         

# 0x555555558040 <pb>

   0x00005555555551aa <+133>:   imul   %ecx,%edx

   0x00005555555551ad <+136>:   mov    %edx,(%rax)

   0x00005555555551af <+138>:   mov    $0x0,%eax

   0x00005555555551b4 <+143>:   pop    %rbp

   0x00005555555551b5 <+144>:   retq

End of assembler dump.

�Reconstructing C/C++ Code: Part 1
Now we go from instruction to instruction highlighted in bold on the 

previous page and try to reconstruct pseudo-code which is shown as 

comments to assembly language code.

lea    0x2ef9(%rip),%rax        # 0x555555558030 <a>

# address a -> rax

mov    %rax,0x2efa(%rip)        # 0x555555558038 <pa>

# rax -> (pa)

lea    0x2eef(%rip),%rax        # 0x555555558034 <b>

# address b -> rax

mov    %rax,0x2ef4(%rip)        # 0x555555558040 <pb>

# rax -> (pb)

mov    0x2ee5(%rip),%rax        # 0x555555558038 <pa>

# (pa) -> rax

movl   $0x1,(%rax)

# 1 -> (rax)
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mov    0x2ee0(%rip),%rax        # 0x555555558040 <pb>

# (pb) -> rax

movl   $0x1,(%rax)

# 1 -> (rax)

mov    0x2ed3(%rip),%rax        # 0x555555558040 <pb>

# (pb) -> rax

mov    (%rax),%ecx

# (rax) -> ecx

mov    0x2ec2(%rip),%rax        # 0x555555558038 <pa>

# (pa) -> rax

mov    (%rax),%edx

# (rax) -> edx

mov    0x2ec1(%rip),%rax        # 0x555555558040 <pb>

# (pb) -> rax

add    %ecx,%edx

# ecx + edx -> edx

mov    %edx,(%rax)

# edx -> (rax)

mov    0x2eae(%rip),%rax        # 0x555555558038 <pa>

# (pa) -> rax

mov    (%rax),%edx

# (rax) -> edx

add    $0x1,%edx

# 1 + edx -> edx

mov    %edx,(%rax)

# edx -> (rax)

mov    0x2ea8(%rip),%rax        # 0x555555558040 <pb>

# (pb) -> rax

mov    (%rax),%ecx

# (rax) -> ecx

mov    0x2e97(%rip),%rax        # 0x555555558038 <pa>
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# (pa) -> rax

mov    (%rax),%edx

# (rax) -> edx

mov    0x2e96(%rip),%rax        # 0x555555558040 <pb>

# (pb) -> rax

imul   %ecx,%edx

# ecx * edx -> edx

mov    %edx,(%rax)

# edx -> (rax)

�Reconstructing C/C++ Code: Part 2
Now we group pseudo-code together with possible mixed C/C++ and 

assembly language equivalents:

address a -> rax          ; int a; int *pa;

rax -> (pa)               ; pa = &a;

address b -> rax          ; int b; int *pb;

rax -> (pb)               ; pb = &b;

(pa) -> rax               ; *pa = 1;

1 -> (rax)

(pb) -> rax               ; *pb = 1;

1 -> (rax)

(pb) -> rax               ; ecx = *pb;

(rax) -> ecx

(pa) -> rax               ; edx = *pa;

(rax) -> edx

(pb) -> rax
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ecx + edx -> edx          ; edx = ecx + edx;

edx -> (rax)              ; *pb = edx;

(pa) -> rax               ; edx = *pa;

(rax) -> edx

1 + edx -> edx            ; edx = 1 + edx;

edx -> (rax)              ; *pa = edx;

(pb) -> rax               ; ecx = *pb;

(rax) -> ecx

(pa) -> rax               ; edx = *pa;

(rax) -> edx

(pb) -> rax

ecx * edx -> edx          ; edx = ecx * edx;

edx -> (rax)              ; *pb = edx;

�Reconstructing C/C++ Code: Part 3
Next, we combine more mixed statements into C/C++ language code:

int a; int *pa;

pa = &a;

int b; int *pb;

pb = &b;

*pa = 1;

*pb = 1;

ecx = *pb;               ; *pb = *pb + *pa;

edx = *pa;

edx = ecx + edx;
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*pb = edx;

edx = *pa;                ; *pa = 1 + *pa;

edx = 1 + edx;

*pa = edx;

ecx = *pb;                ; *pb = *pb * *pa;

edx = *pa;

edx = ecx * edx;

*pb = edx;

�Reconstructing C/C++ Code:  
C/C++ Program
Finally, we have something that looks like a complete C/C++ code:

int a, b;

int *pa, *pb;

pa = &a;

pb = &b;

*pa = 1;

*pb = 1;

*pb = *pb + *pa;

++*pa;

*pb = *pb * *pa;

If we look at the project source code PointersAsVariables.cpp, 

we see the same code compiled into the executable file that we were 

disassembling.
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�Example of Disassembly Output: 
Optimized Program
The optimized program (compiled with -O2) contains fewer CPU 

instructions:

(gdb) disass main

Dump of assembler code for function main:

=> 0x0000555555555040 <+0>:     lea    0x2ffd(%rip),%rax         

# 0x555555558044 <a>

   �0x0000555555555047 <+7>:     movl   $0x2,0x2ff3(%rip)         

# 0x555555558044 <a>

   �0x0000555555555051 <+17>:    mov    %rax,0x2fe0(%rip)         

# 0x555555558038 <pa>

   �0x0000555555555058 <+24>:    lea    0x2fe1(%rip),%rax         

# 0x555555558040 <b>

   �0x000055555555505f <+31>:    mov    %rax,0x2fca(%rip)         

# 0x555555558030 <pb>

   0x0000555555555066 <+38>:    xor    %eax,%eax

   �0x0000555555555068 <+40>:    movl   $0x4,0x2fce(%rip)         

# 0x555555558040 <b>

   0x0000555555555072 <+50>:    retq

End of assembler dump.

We see that the compiler was able to figure out the result of 

computation: a = 2; b = 4. However, one question remains: Why did the 

compiler not optimize away the first instructions initializing pa and pb 

variables? The answer lies in the nature of a separate compilation model 

in C and C++. We can compile several compilation unit (.c or .cpp) files 

separately and independently. Therefore, there is no guarantee that 

another compilation unit would not reference our globally declared and 

defined pa and pb variables.
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We can also see that the compiler reordered instructions. It can be 

seen in pseudo-code:

address a -> rax

1 -> (a)

rax -> (pa)

This is because pa initialization with the address of the variable a is 

independent of assigning 1 to the memory cell the variable a points to, 

and the reordered sequence of instructions could be executed faster on 

modern processors.

�Summary
In this chapter, we used our assembly language knowledge to reconstruct 

C and C++ code that uses pointers. We also compared the disassembly of 

the optimized code.

The next chapter looks at the stack memory layout and its operations, 

jump instructions, and function calls. We also explore a call stack using the 

GDB debugger.
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CHAPTER 9

Memory and Stacks

�Stack: A Definition
A stack is a simple computational device with two operations, push and 

pop, that allows us to pile up data to remember it in LIFO (Last In First 

Out) manner and quickly retrieve the last piled data item as shown in 

Figure 9-1.
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Figure 9-1.  Stack operations illustrated

�Stack Implementation in Memory
The CPU %RSP register (Stack Pointer) points to the top of a stack. As 

shown in Figure 9-2, a stack grows toward lower memory addresses with 

every push instruction, and this is implemented as the %RSP register 

decrements by eight. We can read the top stack value using the following 

instruction:

mov (%rsp), %rax
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Figure 9-2.  Memory layout during push operations

The opposite POP instruction increments the value of the %RSP 

register, as shown in Figure 9-3.

Chapter 9  Memory and Stacks



100

Figure 9-3.  Memory layout during pop operations

�Things to Remember
Here is the summary of what we have learned about stacks with the last 

three points covered in the subsequent chapters of this book:

•	 Stack operations are LIFO – Last In First Out.

•	 The stack grows down in memory.

•	 The %RSP register points to the top of a stack.

•	 Stacks are used for storing return addresses for CALL 

instructions.

•	 Stacks are used for passing additional parameters to 

functions.

•	 Stacks are used for storing function parameter values 

and local and temporary variables.
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�PUSH Instruction
We can push a value stored in a register, a value stored at a memory 

address, or a constant (immediate operand):

PUSH r/mem/imm

Here is a PUSH simplified pseudo-code adopted from the 

Intel manual:

IF OperandSize = 64

      THEN

            %RSP – 8 -> %RSP

            OperandValue -> (%RSP)  ; quadword

      ELSE

            %RSP – 2 -> %RSP

            OperandValue -> (%RSP)  ; word

FI

Examples:

push   %rax

pushw  (%rbx)

push   $0

�POP Instruction
We can pop a value stored on the top of a stack to a register or a memory 

address:

POP r/mem

Here is a POP simplified pseudo-code adopted from the Intel manual:

IF OperandSize = 64
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      THEN

            (%RSP) -> OperandValue  ; quadword

            %RSP + 8 -> %RSP

      ELSE

            (%RSP) -> OperandValue  ; word

            %RSP + 2 -> %RSP

FI

Examples:

pop   %rax

popw  (%rbx)

�Register Review
So far, we have seen and used general-purpose CPU registers:

•	 %RAX (among its specific uses is to contain function 

return values)

•	 %RBX

•	 %RCX

•	 %RDX

We also have special-purpose registers:

•	 %RIP (Instruction Pointer)

•	 %RSP (Stack Pointer)

AMD64 and Intel EM64T architectures introduced additional general-

purpose registers: %R8, %R9, %R10, %R11, %R12, %R13, %R14, %R15.

These additional registers are used a lot in the x64 code. More 

general-purpose registers allow faster code execution because temporary 

Chapter 9  Memory and Stacks



103

computation results can be stored there instead of memory locations. Here 

is a disassembly from the read function:

(gdb) disass read

Dump of assembler code for function __GI___libc_read:

   �0x00007ffff7ef2450 <+0>:     lea    0xd6299(%rip),%rax         

# 0x7ffff7fc86f0 <__libc_multiple_threads>

   0x00007ffff7ef2457 <+7>:     mov    (%rax),%eax

   0x00007ffff7ef2459 <+9>:     test   %eax,%eax

   0x00007ffff7ef245b <+11>:    jne    �0x7ffff7ef2470 <__GI___

libc_read+32>

   0x00007ffff7ef245d <+13>:    xor    %eax,%eax

   0x00007ffff7ef245f <+15>:    syscall

   0x00007ffff7ef2461 <+17>:    cmp    $0xfffffffffffff000,%rax

   0x00007ffff7ef2467 <+23>:    ja     �0x7ffff7ef24c0 <__GI___

libc_read+112>

   0x00007ffff7ef2469 <+25>:    retq

   0x00007ffff7ef246a <+26>:    nopw   0x0(%rax,%rax,1)

   0x00007ffff7ef2470 <+32>:    push   %r12

   0x00007ffff7ef2472 <+34>:    mov    %rdx,%r12

   0x00007ffff7ef2475 <+37>:    push   %rbp

   0x00007ffff7ef2476 <+38>:    mov    %rsi,%rbp

   0x00007ffff7ef2479 <+41>:    push   %rbx

   0x00007ffff7ef247a <+42>:    mov    %edi,%ebx

   0x00007ffff7ef247c <+44>:    sub    $0x10,%rsp

   0x00007ffff7ef2480 <+48>:    callq  �0x7ffff7f0e750 <__libc_

enable_asynccancel>

   0x00007ffff7ef2485 <+53>:    mov    %r12,%rdx

   0x00007ffff7ef2488 <+56>:    mov    %rbp,%rsi

   0x00007ffff7ef248b <+59>:    mov    %ebx,%edi

   0x00007ffff7ef248d <+61>:    mov    %eax,%r8d

   0x00007ffff7ef2490 <+64>:    xor    %eax,%eax
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   0x00007ffff7ef2492 <+66>:    syscall

   0x00007ffff7ef2494 <+68>:    cmp    $0xfffffffffffff000,%rax

   0x00007ffff7ef249a <+74>:    ja     �0x7ffff7ef24d4 <__GI___

libc_read+132>

   0x00007ffff7ef249c <+76>:    mov    %r8d,%edi

   0x00007ffff7ef249f <+79>:    mov    %rax,0x8(%rsp)

   0x00007ffff7ef24a4 <+84>:    callq  �0x7ffff7f0e7b0 <__libc_

disable_asynccancel>

   0x00007ffff7ef24a9 <+89>:    mov    0x8(%rsp),%rax

   0x00007ffff7ef24ae <+94>:    add    $0x10,%rsp

   0x00007ffff7ef24b2 <+98>:    pop    %rbx

   0x00007ffff7ef24b3 <+99>:    pop    %rbp

   0x00007ffff7ef24b4 <+100>:   pop    %r12

   0x00007ffff7ef24b6 <+102>:   retq

   0x00007ffff7ef24b7 <+103>:   nopw   �0x0(%rax,%rax,1)

   �0x00007ffff7ef24c0 <+112>:   mov    0xd09a9(%rip),%rdx         

# 0x7ffff7fc2e70

   0x00007ffff7ef24c7 <+119>:   neg    %eax

   0x00007ffff7ef24c9 <+121>:   mov    %eax,%fs:(%rdx)

   0x00007ffff7ef24cc <+124>:   mov    $0xffffffffffffffff,%rax

   0x00007ffff7ef24d3 <+131>:   retq

   �0x00007ffff7ef24d4 <+132>:   mov    0xd0995(%rip),%rdx         

# 0x7ffff7fc2e70

   0x00007ffff7ef24db <+139>:   neg    %eax

   0x00007ffff7ef24dd <+141>:   mov    %eax,%fs:(%rdx)

   0x00007ffff7ef24e0 <+144>:   mov    $0xffffffffffffffff,%rax

   0x00007ffff7ef24e7 <+151>:   jmp    �0x7ffff7ef249c <__GI___

libc_read+76>

End of assembler dump.
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�Application Memory Simplified
When an executable file is loaded into memory, its header and sections are 

mapped to memory pages. Some data and code are copied unmodified, 

but some data is initialized and expanded. The first stack is also created at 

this stage. The %RIP register is set to point to the first program instruction, 

and %RSP points to the top of the stack. This simplified process is shown in 

Figure 9-4.

Figure 9-4.  Application memory layout

�Stack Overflow
By default, the stack size is limited (system and limit dependent, and 

on our system, it is 8192Kb or 8388608 bytes). If a stack grows beyond 

the reserved limit, a stack overflow occurs (segmentation fault). It can 

be caused by an unlimited recursion, deep recursion, or very large local 

variables:
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int func()

{

      func();

      return 0;

}

int func2()

{

      int array[10000000] = { 1 };

      printf("%d", array[10000000-1]);

}

�Jumps
Another instruction we need to know and understand before we look 

deeper into C/C++ functions is called JMP (Jump). Figure 9-5 shows 

instructions in memory and corresponding values of the %RIP register.
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Figure 9-5.  Example memory and register layout for JMP instruction 
execution

We see that the JMP instruction changes %RIP to point to another 

memory address, and the program execution continues from that location. 

The code shown in Figure 9-5 loops indefinitely: this can be considered a 

hang and CPU spike.

Here is a pseudo-code for absolute JMP instructions adopted from 

Intel manuals and some examples:

; Format and arguments:

  JMP r/mem64

; Pseudo-code:

  DEST -> RIP       ; new destination address for execution

; Examples:

  JMP 0x555555558020

  JMP *%RAX
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The jump is called absolute because we specify full memory addresses 

and not a relative +/– number to the current %RIP value. The latter jump 

is called relative. *%RAX means an indirect jump to the address located in 

the %RAX register. It is illustrated in Figure 9-6.

Figure 9-6.  Example memory and register layout for relative JMP 
instruction execution

�Calls
We discuss two essential instructions that make the implementation of C 

and C++ function calls. They are called CALL and RET. Figure 9-7 shows 

instructions in memory and corresponding values of %RIP and %RSP 

registers.
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Figure 9-7.  Example memory and register layout for CALL and RET 
instruction execution

We see that the CALL instruction pushes the current value of %RIP to 

the stack and changes %RIP to point to another memory address. Then the 

program execution continues from the new location. The RET instruction 

pops the saved %RIP value from the stack to the %RIP register. Then 

the program execution resumes at the memory location after the CALL 

instruction.

Here is a pseudo-code for CALL instructions and some examples 

adopted from Intel manuals:

; Format and arguments:

  CALL r/mem64

; Pseudo-code:

  PUSH RIP

  DEST -> RIP
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; Examples:

  CALL 0x555555558020

  CALL *%RAX

Here is a pseudo-code for the RET instruction adopted from Intel 

manuals:

; Format:

  RET

; Pseudo-code:

  POP() -> RIP

�Call Stack
If one function (the caller) calls another function (the callee) in C and C++, 

the resulting code is implemented using the CALL instruction, and during 

its execution, the return address is saved on the stack. If the callee calls 

another function, the return address is also saved on the stack, and so on. 

Therefore, we have the so-called call stack of return addresses. Let us see 

this with a simple but trimmed-down example.

Suppose we have three functions with their code occupying the 

following addresses:

func  0000000140001000 – 0000000140001100

func2 0000000140001101 – 0000000140001200

func3 0000000140001201 – 0000000140001300

We also have the following code where func calls func2, and func2 

calls func3:

void func()

{

   func2();
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}

void func2()

{

   func3();

}

When func calls func2, the caller's return address is 

pushed to the stack, and %RSP points to some value in the 

0000000140001000–0000000140001100 range, say 0000000140001020. 

When func2 calls func3, the caller's return address is also 

pushed to the stack, and %RSP points to some value in the 

0000000140001101–0000000140001200 range, say 0000000140001180. 

If we interrupt func3 with a debugger and inspect %RIP, we would find 

its value in the range of 0000000140001201–0000000140001300, say 

0000000140001250. Therefore, we have the memory and register layout 

shown in Figure 9-8 (the usual function prolog is not shown; we will learn 

about it in the next chapter).

Figure 9-8.  Example memory and register layout for call stack

The debugger examines the value of the %RIP register and the values 

on top of the stack and then reconstructs this call stack:

func3

func2

func
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The debugger gets address ranges corresponding to func, func2, and 

func3 from the so-called symbolic information, which may be either 

stored inside an executable file or in some external file that needs to be 

referenced explicitly.

�Exploring Stack in GDB
To see the call stack in real action, we have a project called “SimpleStack,” 

and it can be downloaded from

github.com/apress/linux-debugging-disassembling-reversing/

Chapter9/

We compile the files and load the executable into GDB:

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter9$ gcc 

SimpleStack.c func.c func2.c func3.c -o SimpleStack

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter9$ gdb  

./SimpleStack

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/

licenses/gpl.html>

This is free software: you are free to change and 

redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.
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Find the GDB manual and other documentation resources 

online at:

    <http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from ./SimpleStack...(no debugging symbols 

found)...done.

Then we put a breakpoint on the main function and run the program 

until GDB breaks in:

(gdb) run

Starting program: /home/coredump/pflddr/x64/Chapter9/

SimpleStack

Breakpoint 1, 0x0000555555555129 in main ()

The function func3 has a breakpoint instruction inside that allows a 

debugger to break in and stop the program execution to inspect its state. 

We resume our program execution from our breakpoint in the main 

function to allow the main function to call func, func to call func2, func2 to 

call func3, and inside func3 to execute the explicit breakpoint:

(gdb) continue

Continuing.

Program received signal SIGTRAP, Trace/breakpoint trap.

0x000055555555516c in func3 ()

(gdb) info registers $rip $rsp

rip            0x55555555516c      0x55555555516c <func3+5>

rsp            0x7fffffffe500      0x7fffffffe500

(gdb) x/i $rip

=> 0x55555555516c <func3+5>:    nop
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(gdb) x/i $rip-1

   0x55555555516b <func3+4>:    int3

We dump the $rip-1 value because, when execution stops at the int3 

instruction, %RIP points at the next instruction (nop).

Now we can inspect the top of the stack:

(gdb) x/10g $rsp

0x7fffffffe500: 0x00007fffffffe510      0x0000555555555164

0x7fffffffe510: 0x00007fffffffe520      0x0000555555555153

0x7fffffffe520: 0x00007fffffffe540      0x000055555555513e

0x7fffffffe530: 0x00007fffffffe628      0x0000000100000000

0x7fffffffe540: 0x0000555555555170      0x00007ffff7e2c09b

The data is meaningless for us, and we use another command variant 

to dump memory with corresponding symbols:

(gdb) x/10a $rsp

0x7fffffffe500: 0x7fffffffe510  0x555555555164 <func2+14>

0x7fffffffe510: 0x7fffffffe520  0x555555555153 <func+14>

0x7fffffffe520: 0x7fffffffe540  0x55555555513e <main+25>

0x7fffffffe530: 0x7fffffffe628  0x100000000

0x7fffffffe540: 0x555555555170 <__libc_csu_init>         

0x7ffff7e2c09b <__libc_start_main+235>

The current value of %RIP points to func3, and return addresses on the 

stack are shown in bold. GDB is able to reconstruct the following call stack, 

stack trace, or backtrace (bt):

(gdb) bt

#0  0x000055555555516c in func3 ()

#1  0x0000555555555164 in func2 ()

#2  0x0000555555555153 in func ()

#3  0x000055555555513e in main ()
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�Summary
In this chapter, we looked at the stack memory layout and stack operations, 

jump and call instructions, and function call memory layout. We also 

explored a call stack using the GDB debugger commands.

In the next chapter, we look into further details of the stack layout 

of the more complex code, for example, arrays, local variables, function 

prolog, and epilog. Finally, we disassemble and analyze code that uses 

local variables.
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CHAPTER 10

Frame Pointer and 
Local Variables

�Stack Usage
In addition to storage for return addresses of CALL instructions, a stack is 

used to pass additional parameters to functions and store local variables. 

The stack is also used to save and restore values held in registers when 

we want to preserve them during some computation or across function 

calls. For example, suppose we want to do multiplication, but at the same 

time, we have other valuable data in registers %RAX and %RDX. The 

multiplication result will overwrite %RAX and %RDX values, and we 

temporarily put their values on stack:

mov     $10, %rax

mov     $20, %rdx

...

...

...                ; now we want to preserve %RAX and %RDX

push   %rax

push   %rdx

imul %rdx          ; %RDX and %RAX contain the result of 

%RAX*%RDX
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mov    %rax, result

pop   %rdx           ; pop in reverse order

pop   %rax           ; stack is LIFO

�Register Review
So far, we have encountered these general-purpose registers:

•	 %RAX (among its specific uses are to contain 

function return values and the lower part of a 

multiplication result)

•	 %RBX

•	 %RCX (among its specific uses is a loop counter)

•	 %RDX (among its specific uses is to contain the 

higher part of a multiplication result if it exceeds the 

maximum 64-bit value)

•	 %RIP (Instruction Pointer, points to the next instruction 

to be executed)

•	 %RSP (Stack Pointer, points to the top of the stack)

We come to the next important register on Linux platforms called Base 

Pointer register or sometimes as Stack Frame Pointer register %RBP.

�Addressing Array Elements
We can also consider stack memory as an array of memory cells, and often 

the %RBP register is used to address stack memory elements in the way 

shown in Figure 10-1, where it slides into the frame of stack memory called 

a stack frame. The first diagram depicts 64-bit (quadword) memory cells, 

and the second depicts 32-bit (doubleword) memory cells.

Chapter 10  Frame Pointer and Local Variables



119

Figure 10-1.  Example memory layout when addressing array 
elements

�Stack Structure (No Function Parameters)
Suppose the following function is called:

void func()

{

      int var1, var2;
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      // body code

      // ...

}

Before the function body code is executed, the following pointers 

are set up:

•	 (%RBP) contains the previous %RBP value.

•	 -0x4(%RBP) contains local variable var1 (doubleword).

•	 -0x8(%RBP) contains local variable var2 (doubleword).

It is illustrated in Figure 10-2.

Figure 10-2.  Stack memory layout without function parameters
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�Function Prolog
The sequence of instructions resulting in the initialization of the %RBP 

register and making room for local variables is called the function prolog. 

One example of it is Figure 10-3, where func calls func2, which has one 

local variable var. Sometimes, saving necessary registers is also considered 

as part of a function prolog.

Figure 10-3.  Example memory layout for function prolog

�Raw Stack (No Local Variables 
and Function Parameters)
Now we can understand additional data (the previous %RBP that was 

equal to the previous %RSP before the function call) that appear on the 

raw stack together with function return addresses that we saw in Chapter 9 

project “SimpleStack”:

(gdb) info registers $rsp $rbp

rsp            0x7fffffffe500      0x7fffffffe500

rbp            0x7fffffffe500      0x7fffffffe500

(gdb) x/10a $rsp
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0x7fffffffe500: 0x7fffffffe510  0x555555555164 <func2+14>

0x7fffffffe510: 0x7fffffffe520  0x555555555153 <func+14>

0x7fffffffe520: 0x7fffffffe540  0x55555555513e <main+25>

0x7fffffffe530: 0x7fffffffe628  0x100000000

0x7fffffffe540: 0x555555555170 <__libc_csu_init>         

0x7ffff7e2c09b <__libc_start_main+235>

(gdb) disass func2

Dump of assembler code for function func2:

   0x0000555555555156 <+0>:     push   %rbp

   0x0000555555555157 <+1>:     mov    %rsp,%rbp

   0x000055555555515a <+4>:     mov    $0x0,%eax

   0x000055555555515f <+9>:     callq  0x555555555167 <func3>

   0x0000555555555164 <+14>:    nop

   0x0000555555555165 <+15>:    pop    %rbp

   0x0000555555555166 <+16>:    retq

End of assembler dump.

(gdb) disass func

Dump of assembler code for function func:

   0x0000555555555145 <+0>:     push   %rbp

   0x0000555555555146 <+1>:     mov    %rsp,%rbp

   0x0000555555555149 <+4>:     mov    $0x0,%eax

   0x000055555555514e <+9>:     callq  0x555555555156 <func2>

   0x0000555555555153 <+14>:    nop

   0x0000555555555154 <+15>:    pop    %rbp

   0x0000555555555155 <+16>:    retq

End of assembler dump.

(gdb) disass main

Dump of assembler code for function main:

   0x0000555555555125 <+0>:     push   %rbp

   0x0000555555555126 <+1>:     mov    %rsp,%rbp
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   0x0000555555555129 <+4>:     sub    $0x10,%rsp

   0x000055555555512d <+8>:     mov    %edi,-0x4(%rbp)

   0x0000555555555130 <+11>:    mov    %rsi,-0x10(%rbp)

   0x0000555555555134 <+15>:    mov    $0x0,%eax

   0x0000555555555139 <+20>:    callq  0x555555555145 <func>

   0x000055555555513e <+25>:    mov    $0x0,%eax

   0x0000555555555143 <+30>:    leaveq

   0x0000555555555144 <+31>:    retq

End of assembler dump.

�Function Epilog
Before the function code returns to the caller, it must restore the previous 

values of %RSP and %RBP registers to allow the caller to resume its 

execution from the correct address, previously saved on the stack, and 

to continue addressing its own stack frame properly. This sequence of 

instructions is called the function epilog, and it is shown in Figure 10-4.

Figure 10-4.  Example memory layout for function epilog

Instead of the mov %rbp,%rsp and pop %rbp sequence of 

instructions, we may see the leave instruction, which does the same but 

occupies less code space.
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�“Local Variables” Project
The project for this chapter can be downloaded from

github.com/apress/linux-debugging-disassembling-reversing/

Chapter10/

We compile the file and load the executable into GDB:

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter10$ gcc 

LocalVariables.cpp -o LocalVariables

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter10$ gdb  

./LocalVariables

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/

licenses/gpl.html>

This is free software: you are free to change and 

redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources 

online at:

    <http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from ./LocalVariables...(no debugging symbols 

found)...done.
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Then we put a breakpoint to the main function and run the program 

until GDB breaks in:

(gdb) break main

Breakpoint 1 at 0x1129

(gdb) run

Starting program: /home/coredump/pflddr/x64/Chapter10/

LocalVariables

Breakpoint 1, 0x0000555555555129 in main ()

Next, we disassemble our main function:

(gdb) disass main

Dump of assembler code for function main:

   0x0000555555555125 <+0>:     push   %rbp

   0x0000555555555126 <+1>:     mov    %rsp,%rbp

=> 0x0000555555555130 <+11>:    movl   $0x1,-0x4(%rbp)

   0x0000555555555137 <+18>:    movl   $0x1,-0x8(%rbp)

   0x000055555555513e <+25>:    mov    -0x4(%rbp),%eax

   0x0000555555555141 <+28>:    add    %eax,-0x8(%rbp)

   0x0000555555555144 <+31>:    addl   $0x1,-0x4(%rbp)

   0x0000555555555148 <+35>:    mov    -0x8(%rbp),%eax

   0x000055555555514b <+38>:    imul   -0x4(%rbp),%eax

   0x000055555555514f <+42>:    mov    %eax,-0x8(%rbp)

   0x0000555555555152 <+45>:    mov    $0x0,%eax

   0x0000555555555157 <+50>:    pop    %rbp

   0x0000555555555158 <+51>:    retq

End of assembler dump.
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Its source code is the following:

int main()

{

      int a, b;

a = 1;

      b = 1;

b = b + a;

      ++a;

      b = b * a;

return 0;

}

The following is the same assembly language code but with comments 

showing operations in pseudo-code and highlighting the function prolog 

and epilog:

   0x0000555555555125 <+0>:     push   %rbp            

  # establishing stack frame

   0x0000555555555126 <+1>:     mov    %rsp,%rbp

=> 0x0000555555555130 <+11>:    movl   $0x1,-0x4(%rbp) 

  # 1 -> (a)

   0x0000555555555137 <+18>:    movl   $0x1,-0x8(%rbp) 

  # 1 -> (b)

   0x000055555555513e <+25>:    mov    -0x4(%rbp),%eax 

  # (a) -> eax

   0x0000555555555141 <+28>:    add    %eax,-0x8(%rbp) 

  # eax + (b) -> (b)

   0x0000555555555144 <+31>:    addl   $0x1,-0x4(%rbp) 

  # 1 + (a) -> (a)

   0x0000555555555148 <+35>:    mov    -0x8(%rbp),%eax 

  # (b) -> eax
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   0x000055555555514b <+38>:    imul   -0x4(%rbp),%eax 

  # (a) * eax -> eax

   0x000055555555514f <+42>:    mov    %eax,-0x8(%rbp) 

  # eax -> (b)

   0x0000555555555152 <+45>:    mov    $0x0,%eax       

  # 0 -> eax (return value)

   0x0000555555555157 <+50>:    pop    %rbp           

  # restoring previous frame

   0x0000555555555158 <+51>:    retq                   

  # return 0

The compiler didn’t emit the mov %rbp,%rsp instruction because 

%RSP didn’t change: no functions were called, and no registers were saved.

�Disassembly of Optimized Executable
If we compile LocalVariables.cpp with the -O1 option, we see a very simple 

code that just returns zero:

(gdb) disass main

Dump of assembler code for function main:

=> 0x0000555555555125 <+0>:     mov    $0x0,%eax

   0x000055555555512a <+5>:     retq

End of assembler dump.

Where is all the code we have seen in the previous version? It was 

optimized away by the compiler because the results of our calculation 

are never used. Variables a and b are local to the main function, and their 

values are not accessible outside when we return from the function.
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�Summary
In this chapter, we looked into the stack layout of the more complex code: 

addressing arrays, local variables, and compiler-emitted code for the 

function prolog and epilog. Finally, we disassembled and analyzed code 

that used local variables and compared it to the optimized version.

The next chapter looks at function parameters and their stack layout. 

Finally, we disassemble and analyze another project with function 

parameters and local variables.
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CHAPTER 11

Function Parameters

�“FunctionParameters” Project
This chapter teaches how a caller function passes its parameters via 

registers and how a callee (the called function) accesses them. We use the 

following project that can be downloaded from this link:

github.com/apress/linux-debugging-disassembling-reversing/

Chapter11/

Here is the project source code:

// FunctionParameters.cpp

int arithmetic (int a, int b);

int main(int argc, char* argv[])

{

      int result = arithmetic (1, 1);

return 0;

}

// Arithmetic.cpp

int arithmetic (int a, int b)

{

      b = b + a;

      ++a;
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      b = b * a;

      return b;

}

�Stack Structure
Recall from the previous chapter that the %RBP register is used to address 

stack memory locations. It was illustrated in Figure 10-1. Here, we provide 

a typical example of the stack memory layout for the following function:

void func(int Param1, int Param2)

{

      int var1, var2;

      // stack memory layout at this point

// -0x18(%RBP) = Param2 (doubleword)

// -0x14(%RBP) = Param1 (doubleword)

// -0x8(%RBP) = var2 (doubleword)

// -0x4(%RBP) = var1 (doubleword)

// (%RBP)      = previous %RBP (quadword)

// 0x8(%RBP)   = return address (quadword)

// ...

}

The typical stack frame memory layout for the function with two 

arguments and two local variables is illustrated in Figure 11-1.
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Figure 11-1.  Stack memory layout for the function with two 
arguments and two local variables
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�Function Prolog and Epilog
Now, before we try to make sense of the FunctionParameters project 

disassembly, we look at the simple case of one function parameter and 

one local variable to illustrate the standard function prolog and epilog 

sequence of instructions and corresponding stack memory changes.

The function prolog is illustrated in Figure 11-2, and the function 

epilog is illustrated in Figure 11-3.

Figure 11-2.  Memory layout for the prolog with one function 
parameter and one local variable

Here, the function parameter is passed via the %RDI register. It is 

saved on the stack because the register may be used later in calculations 

or function parameter passing to other functions. Generally, the function’s 

first six parameters are passed via %RDI, %RSI, %RDX, %RCX, %R8, and 

%R9 registers from left to the right when parameters are quadwords like 

pointers or long values and via %EDI, %ESI, %EDX, %ECX, %R8D, and 

%R9D registers when parameters are doublewords like integers. Additional 

parameters are passed via the stack locations using the PUSH instruction.
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Figure 11-3.  Memory layout for the epilog with one function 
parameter and one local variable

We also see that local variables are not initialized by default when their 

storage space is allocated via the SUB instruction and not cleared during 

the epilog. Whatever memory contents were there before allocation, it 

becomes the local variable values, the so-called garbage values.

�Project Disassembled Code with Comments
Here is a commented code disassembly of main and arithmetic with 

memory addresses removed for visual clarity:

main:

push   %rbp                  # establishing stack frame

mov    %rsp,%rbp

sub    $0x20,%rsp            �# creating stack frame for local 

variables and function parameters

mov    %edi,-0x14(%rbp)      # saving the first main parameter

mov    %rsi,-0x20(%rbp)      # saving the second main parameter
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mov    $0x1,%esi            # setting the second parameter for

                            # arithmetic function

mov    $0x1,%edi            �# setting the first parameter  

for arithmetic

                            # function

callq  0x55555555514d <_Z10arithmeticii>

mov    %eax,-0x4(%rbp)      # setting the result local variable

mov    $0x0,%eax            # main should return 0

leaveq                       # restoring the previous stack pointer

                            #    and stack frame, equivalent to

                            #        mov %rbp, %rsp

                            #        pop %rbp

retq        # return from main

arithmetic:

push   %rbp                 # establishing stack frame

mov    %rsp,%rbp

mov    %edi,-0x4(%rbp)      # �saving the first arithmetic 

parameter (a)

mov    %esi,-0x8(%rbp)      # �saving the second arithmetic 

parameter (b)

mov    -0x4(%rbp),%eax      # (a) -> eax

add    %eax,-0x8(%rbp)      # eax + (b) -> (b)

addl   $0x1,-0x4(%rbp)      # 1 + (a) -> (a)

mov    -0x8(%rbp),%eax      # (b) -> eax

imul   -0x4(%rbp),%eax      # (a) * eax -> eax

mov    %eax,-0x8(%rbp)      # eax -> (b)

mov    -0x8(%rbp),%eax      # (b) -> eax

pop    %rbp                  # �restoring the previous stack frame

                            #     �no need to restore stack 

pointer as
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                            #     it didn't change

retq                         # result value is in eax

We can put a breakpoint on the first arithmetic calculation address and 

examine raw stack data pointed to by the %RBP register:

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter11$ gcc 

FunctionParameters.cpp Arithmetic.cpp -o FunctionParameters

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter11$ gdb  

./FunctionParameters

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/

licenses/gpl.html>

This is free software: you are free to change and 

redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources 

online at:

    <http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from ./FunctionParameters...(no debugging 

symbols found)...done.

(gdb) break main

Breakpoint 1 at 0x1129

(gdb) run
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Starting program: /home/coredump/pflddr/x64/Chapter11/

FunctionParameters

Breakpoint 1, 0x0000555555555129 in main ()

(gdb) disass arithmetic

Dump of assembler code for function _Z10arithmeticii:

   0x000055555555514d <+0>:     push   %rbp

   0x000055555555514e <+1>:     mov    %rsp,%rbp

   0x0000555555555151 <+4>:     mov    %edi,-0x4(%rbp)

   0x0000555555555154 <+7>:     mov    %esi,-0x8(%rbp)

   0x0000555555555157 <+10>:    mov    -0x4(%rbp),%eax

   0x000055555555515a <+13>:    add    %eax,-0x8(%rbp)

   0x000055555555515d <+16>:    addl   $0x1,-0x4(%rbp)

   0x0000555555555161 <+20>:    mov    -0x8(%rbp),%eax

   0x0000555555555164 <+23>:    imul   -0x4(%rbp),%eax

   0x0000555555555168 <+27>:    mov    %eax,-0x8(%rbp)

   0x000055555555516b <+30>:    mov    -0x8(%rbp),%eax

   0x000055555555516e <+33>:    pop    %rbp

   0x000055555555516f <+34>:    retq

End of assembler dump.

(gdb) break *0x0000555555555157

Breakpoint 2 at 0x0000555555555157

(gdb) continue

Continuing.

Breakpoint 2, 0x0000555555555157 in arithmetic(int, int) ()

(gdb) info registers $rbp

rbp            0x7fffffffe500      0x7fffffffe500

(gdb) x/10a $rbp-0x20

0x7fffffffe4e0: 0x1     0x7ffff7eaaaf5 <handle_intel+197>
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0x7fffffffe4f0: 0x0     0x100000001                    ; (b, a)

0x7fffffffe500: 0x7fffffffe530  0x555555555143 <main+30> ; 

saved $RBP, return address

0x7fffffffe510: 0x7fffffffe618  0x155555040

0x7fffffffe520: 0x7fffffffe610  0x0

(gdb) x/10w $rbp-0x20

0x7fffffffe4e0: 0x1     0x0     0xfffffffff7eaaaf5   0x7fff

0x7fffffffe4f0: 0x0     0x0     0x1     0x1          ; (b), (a)

0x7fffffffe500: 0xffffffffffffe530      0x7fff

�Parameter Mismatch Problem
To illustrate the importance of understanding the stack memory layout, 

consider this typical binary interface mismatch problem. The function 

main calls func with two parameters:

// main.c

int main ()

{

      long locVar;

      func (1, 2);

      return 0;

}

The caller is expecting the callee function func to see this stack 

memory layout and passes 1 in %RDI and 2 in %RSI:

        2

        1

        locVar

%RBP -> prev %RBP

        return address
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However, the callee expects three parameters instead of two:

// func.c

int func (int a, int b, int c)

{

    // code to use parameters

    return 0;

}

The func code sees this stack memory layout:

        (c)

        (b)

        (a)

        locVar

%RBP -> prev %RBP

        return address

We see that parameter c on the raw stack gets its value from some 

random value in %RDX that was never set by the caller. It is clearly a 

software defect (bug).

�Summary
This chapter looked at function parameters and their stack layout. 

We disassembled and analyzed the stack structure of the project with 

function parameters and local variables. Finally, we looked at a parameter 

mismatch problem.

The next chapter is about CPU state flags, comparison instructions, 

conditional jumps, and function return values.
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CHAPTER 12

More Instructions

�CPU Flags Register
In addition to registers, the CPU also contains a 64-bit %RFLAGS register 

where individual bits are set or cleared in response to arithmetic and 

other operations. Separate machine instructions can manipulate some bit 

values, and their values affect code execution.

For example, the DF bit (Direction Flag) determines the direction 

of memory copy operations and can be set by STD and cleared by CLD 

instructions. It has the default value of zero, and its location is shown in 

Figure 12-1, where only the first 32 bits of 64-bit %RFLAGS are shown.

Figure 12-1.  %RFLAGS register flags
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�The Fast Way to Fill Memory
It can be done by the STOSQ instruction that stores a quadword value from 

%RAX into a memory location which address is in the %RDI register (“D” 

means destination). After the value from %RAX is transferred to memory, 

the instruction increments %RDI by eight, and if the DF flag is zero, %RDI 

now points to the next quadword in memory. If the DF flag is one, then 

the %RDI value is decremented by eight, and the %RDI now points to the 

previous quadword in memory. There is an equivalent STOSL instruction 

that stores doublewords and increments or decrements %RDI by four.

If we prefix any instruction with REP, it causes the instruction to be 

repeated until the %RCX register’s value is decremented to zero. For 

example, we can write simple code that should theoretically zero “all 

memory” (practically, it traps because of access violation):

xor %rax, %rax                 # fill with 0

mov $0, %rdi                   # �starting address or xor 

%rdi, %rdi

mov $0xffffffff / 4, %rcx      # 0x1fffffff quad words

rep stosq

Here is REP STOSQ in pseudo-code:

WHILE (RCX != 0)

{

      RAX -> (RDI)

      IF DF = 0 THEN

            RDI + 8 -> RDI

      ELSE

            RDI – 8 -> RDI

      RCX – 1 -> RCX

}
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A simple example of erasing 32 bytes (4x8) is shown in Figure 12-2.

Figure 12-2.  A simple example of erasing 32 bytes

�Testing for 0
A ZF bit in the %RFLAGS register is set to one if the instruction result is 

zero and cleared otherwise. This bit is affected by

•	 Arithmetic instructions (e.g., ADD, SUB, MUL)

•	 Logical compare instruction (TEST)

•	 “Arithmetical” compare instruction (CMP)

The location of the ZF bit is shown in Figure 12-3.
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Figure 12-3.  ZF bit in %RFLAGS register

�TEST – Logical Compare
This instruction computes bitwise logical AND between both operands 

and sets flags (including ZF) according to the computed result (which is 

discarded):

TEST reg/imm, reg/mem

Examples:

TEST %EDX, %EDX

Suppose the %EDX register contains 4 (100bin):

100bin AND 100bin = 100bin      != 0 (ZF is cleared)

TEST $1, $EDX

Suppose %EDX contains 0 (0bin):

0bin AND 1bin = 0bin      == 0 (ZF is set)

Here is the TEST instruction in pseudo-code (details not relevant to the 

ZF bit are omitted):

TEMP := OPERAND1 AND OPERAND2
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IF TEMP = 0 THEN

      1 -> ZF

ELSE

      0 -> ZF

�CMP – Compare Two Operands
This instruction compares the first operand with the second and sets flags 

(including ZF) according to the computed result (which is discarded). The 

comparison is performed by subtracting the first operand from the second 

(like the SUB instruction: sub $4, %eax).

CMP reg/imm, reg/mem

CMP reg/mem/imm, reg

Examples:

CMP $0, %EDI

Suppose %EDI contains 0:

0 – 0   == 0 (ZF is set)

CMP $0x16, %EAX

Suppose %EAX contains 4hex:

4hex – 16hex   = FFFFFFEEhex    != 0 (ZF is cleared)

4dec – 22dec   = -18dec

Here is the CMP instruction in pseudo-code (details not relevant to the 

ZF bit are omitted):

OPERAND2 - OPERAND1 -> TEMP

IF TEMP = 0 THEN
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      1 -> ZF

ELSE

      0 -> ZF

The CMP instruction is equivalent to this pseudo-code sequence:

OPERAND2 -> TEMP

SUB OPERAND1, TEMP

�TEST or CMP?
Both instructions are equivalent if we want to test for zero, but the CMP 

instruction affects more flags than TEST:

TEST %EAX, %EAX

CMP  $0, %EAX

The CMP instruction is used to compare for inequality (the TEST 

instruction cannot be used here):

CMP $0, %EAX    # > 0 or < 0 ?

The TEST instruction is used to see if individual bits are set:

TEST $2, %EAX   # 2 == 0010bin  or in C language: if (var & 0x2)

Examples where %EAX has the value of 2:

TEST $4, %EAX   # 0010bin AND 0100bin = 0000bin (ZF is set)

TEST $6, %EAX   # 0010bin AND 0110bin = 0010bin (ZF is cleared)

�Conditional Jumps
Consider these two C or C++ code fragments:
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if (a == 0)                      if (a != 0)

{                                {

    ++a;                               ++a;

}                                }

else                             else

{                                {

    --a;                               --a;

}                                }

The CPU fetches instructions sequentially, so we must tell the CPU 

that we want to skip some instructions if some condition is (not) met, for 

example, if a != 0.

JNZ (jump if not zero) and JZ (jump if zero) test the ZF flag and change 

%RIP if the ZF bit is cleared for JNZ or set for JZ. The following assembly 

language code is equivalent to the preceding C/C++ code:

         CMP   $0, A                     MOV    A, %EAX

         JNZ   label1                    TEST   %EAX, %EAX

         INC   A                         JZ     label1

         JMP   label2                    INC    %EAX

label1:  DEC   A                         JMP    label2

label2:                         label1:  DEC    %EAX

                                label2:

�The Structure of Registers
Some 64-bit registers have a legacy structure that allows us to address their 

lower 32-bit, 16-bit, and two 8-bit parts, as shown in Figure 12-4.
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Figure 12-4.  A legacy structure of registers

�Function Return Value
Many functions return values via the %RAX register. For example:

long func();

The return value is in %RAX.

bool func();

The return value is in %EAX.

Although bool values occupy one byte in memory, the compiler may 

use %EAX instead of %AL.

�Using Byte Registers
Suppose we have a byte value in the %AL register, and we want to add this 

value to the %ECX register. However, we do not know what values other 

parts of the full %EAX register contain. We cannot use this instruction, for 

example:

MOV   %AL, %EBX      # operand size conflict

The proposed solution in pseudo-code:

AL -> EBX        or   AL -> EAX

ECX + EBX -> ECX      ECX + EAX -> ECX
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We can only use MOV instructions that have the same operand size for 

both source and destination, for example:

MOV   %AL, %BL

MOV   %AL, b      # in C: static bool b = func();

For this task, there is a special MOVZX (Move with Zero eXtend) 

instruction that replaces the contents of the second operand with the 

contents of the first operand while filling the rest of the bits with zeroes:

MOVZX reg/mem, reg

Therefore, our solution for the task becomes very simple:

MOVZX %AL, %EBX

ADD   %EBX, %ECX

We can also reuse the %EAX register:

MOVZX %AL, %EAX

ADD   %EAX, %ECX

�Summary
In this chapter, we learned about CPU state flags, comparison instructions, 

conditional jumps, and function return values – usually present in real 

binary code that we may need to disassemble to understand program logic 

during debugging.

The next chapter is our “graduating” project – we disassemble and 

analyze a project that uses function parameters which are pointers.
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�

CHAPTER 13

Function Pointer 
Parameters

“FunctionPointerParameters” Project
It is our final project, and it can be downloaded from 

github.com/apress/linux-debugging-disassembling-reversing/

Chapter13/

A summary of the project source code:

// FunctionParameters.cpp

int main(int argc, char* argv[])

{

      int a, b;

      printf("Enter a and b: "); 

      scanf("%d %d", &a, &b);

      if (arithmetic (a, &b))

      {

            printf("Result = %d", b); 

      }

      return 0;

}

© Dmitry Vostokov 2023
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// Arithmetic.cpp

bool arithmetic (int a, int *b)

{

      if (!b)

      {

            return false;

      }

      *b = *b + a;

      ++a;

      *b = *b * a;

      return true;

}

�Commented Disassembly
Here is the commented disassembly we get after compiling the project and 

loading into GDB:

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter13$ gcc 

FunctionParameters.cpp Arithmetic.cpp -o FunctionParameters

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter13$ gdb  

./FunctionParameters

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/

licenses/gpl.html>

This is free software: you are free to change and 

redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.
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This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources 

online at:

    <http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from ./FunctionParameters...(no debugging 

symbols found)...done.

(gdb) break main

Breakpoint 1 at 0x1149

(gdb) run

Starting program: /home/coredump/pflddr/x64/Chapter13/

FunctionParameters

Breakpoint 1, 0x0000555555555149 in main ()

(gdb) disass main

Dump of assembler code for function main:

   0x0000555555555145 <+0>:     push   %rbp

   0x0000555555555146 <+1>:     mov    %rsp,%rbp

=> 0x0000555555555149 <+4>:     sub    $0x20,%rsp

   0x000055555555514d <+8>:     mov    %edi,-0x14(%rbp)

   0x0000555555555150 <+11>:    mov    %rsi,-0x20(%rbp)

   �0x0000555555555154 <+15>:    lea    0xea9(%rip),%rdi         

# 0x555555556004

   0x000055555555515b <+22>:    mov    $0x0,%eax

   �0x0000555555555160 <+27>:    callq  �0x555555555030 

<printf@plt>
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   0x0000555555555165 <+32>:    lea    -0x8(%rbp),%rdx

   0x0000555555555169 <+36>:    lea    -0x4(%rbp),%rax

   0x000055555555516d <+40>:    mov    %rax,%rsi

   �0x0000555555555170 <+43>:    lea    0xe9d(%rip),%rdi         

# 0x555555556014

   0x0000555555555177 <+50>:    mov    $0x0,%eax

   �0x000055555555517c <+55>:    callq  �0x555555555040 

<scanf@plt>

   0x0000555555555181 <+60>:    mov    -0x4(%rbp),%eax

   0x0000555555555184 <+63>:    lea    -0x8(%rbp),%rdx

   0x0000555555555188 <+67>:    mov    %rdx,%rsi

   0x000055555555518b <+70>:    mov    %eax,%edi

   0x000055555555518d <+72>:    callq  �0x5555555551b3  

<_Z10arithmeticiPi>

   0x0000555555555192 <+77>:    test   %al,%al

   0x0000555555555194 <+79>:    je     �0x5555555551ac 

<main+103>

   0x0000555555555196 <+81>:    mov    -0x8(%rbp),%eax

   0x0000555555555199 <+84>:    mov    %eax,%esi

   �0x000055555555519b <+86>:    lea    0xe78(%rip),%rdi         

# 0x55555555601a

   0x00005555555551a2 <+93>:    mov    $0x0,%eax

   0x00005555555551a7 <+98>:    callq  �0x555555555030 

<printf@plt>

   0x00005555555551ac <+103>:   mov    $0x0,%eax

   0x00005555555551b1 <+108>:   leaveq

   0x00005555555551b2 <+109>:   retq

End of assembler dump.

(gdb) x/s 0x555555556004

0x555555556004: "Enter a and b: "
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(gdb) x/s 0x555555556014

0x555555556014: "%d %d"

(gdb) x/s 0x55555555601a

0x55555555601a: "Result = %d"

(gdb) disass arithmetic

Dump of assembler code for function _Z10arithmeticiPi:

   0x00005555555551b3 <+0>:     push   %rbp

   0x00005555555551b4 <+1>:     mov    %rsp,%rbp

   0x00005555555551b7 <+4>:     mov    %edi,-0x4(%rbp)

   0x00005555555551ba <+7>:     mov    %rsi,-0x10(%rbp)

   0x00005555555551be <+11>:    cmpq   $0x0,-0x10(%rbp)

   0x00005555555551c3 <+16>:    jne    �0x5555555551cc  

<_Z10arithmeticiPi+25>

   0x00005555555551c5 <+18>:    mov    $0x0,%eax

   0x00005555555551ca <+23>:    jmp    �0x5555555551f8  

<_Z10arithmeticiPi+69>

   0x00005555555551cc <+25>:    mov    -0x10(%rbp),%rax

   0x00005555555551d0 <+29>:    mov    (%rax),%edx

   0x00005555555551d2 <+31>:    mov    -0x4(%rbp),%eax

   0x00005555555551d5 <+34>:    add    %eax,%edx

   0x00005555555551d7 <+36>:    mov    -0x10(%rbp),%rax

   0x00005555555551db <+40>:    mov    %edx,(%rax)

   0x00005555555551dd <+42>:    addl   $0x1,-0x4(%rbp)

   0x00005555555551e1 <+46>:    mov    -0x10(%rbp),%rax

   0x00005555555551e5 <+50>:    mov    (%rax),%eax

   0x00005555555551e7 <+52>:    imul   -0x4(%rbp),%eax

   0x00005555555551eb <+56>:    mov    %eax,%edx

   0x00005555555551ed <+58>:    mov    -0x10(%rbp),%rax

   0x00005555555551f1 <+62>:    mov    %edx,(%rax)

   0x00005555555551f3 <+64>:    mov    $0x1,%eax
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   0x00005555555551f8 <+69>:    pop    %rbp

   0x00005555555551f9 <+70>:    retq

End of assembler dump.

main:

push   %rbp                                      �# establishing 

stack frame

mov    %rsp,%rbp

sub    $0x20,%rsp                                �# creating 

stack frame 

for locals

                                                 �#   and main 

function 

parameters

mov    %edi,-0x14(%rbp)                          �# saving the 

first main 

parameter

mov    %rsi,-0x20(%rbp)                          �# saving the 

second main 

parameter

lea    0xea9(%rip),%rdi        # 0x555555556004  �# the address 

of printf

                                                 �#    string 

parameter

mov    $0x0,%eax

callq  0x555555555030 <printf@plt>               �# printf 

("Enter a 

and b: ")

lea    -0x8(%rbp),%rdx                           �# address b  

-> rdx (3rd 

parameter)
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lea    -0x4(%rbp),%rax                           �# address 

a -> rax

mov    %rax,%rsi                                 �#       rax  

-> rsi (2nd 

parameter)

lea    0xe9d(%rip),%rdi        # 0x555555556014  �# the 

address of 

scanf string

                                                 �#   parameter       

(1st parameter)

mov    $0x0,%eax

callq  0x555555555040 <scanf@plt>                �# scanf("%d 

%d", &a, &b)

                                                 �#   parameters 

are passed via

                                                 �%rdi, 

%rsi, %rdx

mov    -0x4(%rbp),%eax                           �# (a) -> eax 

(value of a)

lea    -0x8(%rbp),%rdx                           �# address 

b -> rdx

mov    %rdx,%rsi                                 �#       rdx  

-> rsi (2nd 

parameter)

mov    %eax,%edi                                 �# eax -> 

edi  ((a), 1st 

parameter)

callq  0x5555555551b3 <_Z10arithmeticiPi>        �# arithmetic  

(a, &b)

test   %al,%al                                   �# tesing 

for zero
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                                                 �#    bool 

result from 

arithmetic

je     0x5555555551ac <main+103>                 # if = 0

                                                 �#    0x000055555 

55551ac -> rip

mov    -0x8(%rbp),%eax                           �# (b) -> eax 

(value of b)

mov    %eax,%esi                                 �#     eax -> 

esi  (2nd 

parameter)

lea    0xe78(%rip),%rdi        # 0x55555555601a  �# the address 

of printf

                                                 �#    string 

parameter

mov    $0x0,%eax

callq  0x555555555030 <printf@plt>               �# printf 

("Result 

= %d", b)

0x00005555555551ac <+103>:

mov    $0x0,%eax                                 �# main should 

return 0

leaveq                                           �# restoring 

the previous

                                                 �#    stack 

pointer and

                                                 �#    stack 

frame, 

equivalent to

                                                 �#        mov 

%rbp, %rsp

                                                 #     pop %rbp
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retq                                             �# return 

from main

arithmetic:

push   %rbp                                       �# establishing 

stack frame

mov    %rsp,%rbp

mov    %edi,-0x4(%rbp)                            �# saving the  

first  

parameter  (p1)

mov    %rsi,-0x10(%rbp)                           �# saving 

the second  

parameter (p2)

cmpq   $0x0,-0x10(%rbp)                           # if p2 != 0

jne    0x5555555551cc <_Z10arithmeticiPi+25>      �#   goto 

0x555555 

5551cc

mov    $0x0,%eax                                  �# return  

value 0

jmp    0x5555555551f8 <_Z10arithmeticiPi+69>      # goto epilog

0x00005555555551cc <+25>:

mov    -0x10(%rbp),%rax                           # (p2) -> rax

mov    (%rax),%edx                                �# (rax) -> 

edx (*p2)

                                                  �#   p2 is 

a pointer 

since it

                                                  �#   contains 

the address of

                                                  �#   variable 

that we name b
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                                                 �# we also 

name p1 as a

mov    -0x4(%rbp),%eax                           �# (a) -> eax

add    %eax,%edx                                 �# eax + 

edx -> edx

                                                 �#   (a) + 

(b) -> edx

mov    -0x10(%rbp),%rax                          �# address 

b -> rax

mov    %edx,(%rax)                               # edx -> (b)

                                                 �#   (a) + 

(b) -> (b)

addl   $0x1,-0x4(%rbp)                           �# 1 + 

(a) -> (a)

mov    -0x10(%rbp),%rax                          �# address 

b -> rax

mov    (%rax),%eax                               # (b) -> eax

imul   -0x4(%rbp),%eax                           �# (a) * (b)  

-> eax

mov    %eax,%edx                                 # eax -> edx

mov    -0x10(%rbp),%rax                          �# address 

b -> rax

mov    %edx,(%rax)                               # edx -> (b)

                                                 �#   (a) * 

(b) -> (b)

mov    $0x1,%eax                                 �# 1 -> eax 

(return value)

0x00005555555551f8 <+69>:

pop    %rbp                                      �# restoring 

the previous 

stack frame
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                                                 �#     no need 

to restore

                                                 �#     stack   

pointer as

                                                 �#     it 

didn't change

retq                                             �# result value 

is in eax

�Summary
In this chapter, we disassembled and analyzed a project that used function 

parameters which are pointers.

The next, final chapter of the book summarizes various basic 

disassembly patterns.

Chapter 13  Function Pointer Parameters



161

�

CHAPTER 14

Summary of Code 
Disassembly Patterns
This final chapter summarizes the various patterns we have encountered 

during the reading of this book.

Function Prolog/Epilog
Function prolog 

push   %rbp

mov    %rsp,%rbp

Function epilog 

mov    %rbp,%rsp 

pop    %rbp

ret

It is equivalent to

leave 

ret

Some code may omit to restore %RSP if it does not change: 

pop    %rbp

ret

© Dmitry Vostokov 2023
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Knowing prolog can help identify situations when symbol files or 

function start addresses are not correct. For example, suppose we have the 

following backtrace:

func3+0x5F

func2+0x8F

func+0x20

If we disassemble the func2 function and see that it does not start with 

prolog, we may assume that backtrace needs more attention:

(gdb) x/2i func2

0x555555555165 <main+32>:    lea    -0x8(%rbp),%rdx

0x555555555169 <main+36>:    lea    -0x4(%rbp),%rax

In optimized code, the %RSP register may be used to address local 

variables and parameters instead of %RBP. In such a case, prolog and 

epilog may be partially missing. Here is an example from the printf 

function:

(gdb) disass printf

Dump of assembler code for function __printf:

   0x00007ffff7e60560 <+0>:     sub    $0xd8,%rsp

   0x00007ffff7e60567 <+7>:     mov    %rsi,0x28(%rsp)

   0x00007ffff7e6056c <+12>:    mov    %rdx,0x30(%rsp)

   0x00007ffff7e60571 <+17>:    mov    %rcx,0x38(%rsp)

   0x00007ffff7e60576 <+22>:    mov    %r8,0x40(%rsp)

   0x00007ffff7e6057b <+27>:    mov    %r9,0x48(%rsp)

   0x00007ffff7e60580 <+32>:    test   %al,%al

   0x00007ffff7e60582 <+34>:    je     �0x7ffff7e605bb <__

printf+91>

   0x00007ffff7e60584 <+36>:    movaps %xmm0,0x50(%rsp)

   0x00007ffff7e60589 <+41>:    movaps %xmm1,0x60(%rsp)

   0x00007ffff7e6058e <+46>:    movaps %xmm2,0x70(%rsp)
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   0x00007ffff7e60593 <+51>:    movaps %xmm3,0x80(%rsp)

   0x00007ffff7e6059b <+59>:    movaps %xmm4,0x90(%rsp)

   0x00007ffff7e605a3 <+67>:    movaps %xmm5,0xa0(%rsp)

   0x00007ffff7e605ab <+75>:    movaps %xmm6,0xb0(%rsp)

   0x00007ffff7e605b3 <+83>:    movaps %xmm7,0xc0(%rsp)

   0x00007ffff7e605bb <+91>:    mov    %fs:0x28,%rax

   0x00007ffff7e605c4 <+100>:   mov    %rax,0x18(%rsp)

   0x00007ffff7e605c9 <+105>:   xor    %eax,%eax

   0x00007ffff7e605cb <+107>:   lea    0xe0(%rsp),%rax

   0x00007ffff7e605d3 <+115>:   mov    %rdi,%rsi

   0x00007ffff7e605d6 <+118>:   mov    %rsp,%rdx

   0x00007ffff7e605d9 <+121>:   mov    %rax,0x8(%rsp)

   0x00007ffff7e605de <+126>:   lea    0x20(%rsp),%rax

   0x00007ffff7e605e3 <+131>:   mov    %rax,0x10(%rsp)

   0x00007ffff7e605e8 <+136>:   mov    0x162959(%rip),%rax 

        # 0x7ffff7fc2f48

   0x00007ffff7e605ef <+143>:   movl   $0x8,(%rsp)

   0x00007ffff7e605f6 <+150>:   mov    (%rax),%rdi

   0x00007ffff7e605f9 <+153>:   movl   $0x30,0x4(%rsp)

   0x00007ffff7e60601 <+161>:   callq  �0x7ffff7e579f0 <_IO_

vfprintf_internal>

   0x00007ffff7e60606 <+166>:   mov    0x18(%rsp),%rcx

   0x00007ffff7e6060b <+171>:   xor    %fs:0x28,%rcx

   0x00007ffff7e60614 <+180>:   jne    �0x7ffff7e6061e <__

printf+190>

   0x00007ffff7e60616 <+182>:   add    $0xd8,%rsp

   0x00007ffff7e6061d <+189>:   retq

   0x00007ffff7e6061e <+190>:   callq  �0x7ffff7f127b0 <__stack_

chk_fail>

End of assembler dump.
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�LEA (Load Effective Address)
The following instruction

lea    -0x8(%rbp),%rdx

is equivalent to the following arithmetic sequence:

mov   %rbp, %rdx

add   -0x8, %rdx

The following instruction

lea    0xea9(%rip),%rdi

is equivalent to the following arithmetic sequence:

mov   %rip, %rdi

add   0xea9, %rdi

�Passing Parameters
The first six function parameters from left to right

%RDI, %RSI, %RDX, %RCX, %R8, and %R9

Note A lthough we haven’t seen examples for more than six 
function parameters, they are passed via the stack, for example, via 
the PUSH instruction.

Static/global variable address (or string constant)

mov    $0x555555556004, reg

lea    0xe9d(%rip), reg
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Local variable value vs. local variable address

mov     -XXX(%rbp), reg      ; local variable value

call    func

lea     -XXX(%rbp), reg      ; local variable address

call    func

�Accessing Parameters and Local Variables
Local variable value

mov -XXX(%rbp), reg

mov XXX(%rsp), reg        # optimized code

Local variable address

lea -XXX(%rbp), reg

lea XXX(%rsp), reg        # optimized code

Accessing a doubleword value

mov    -0x8(%rbp), %eax

add     $1, %eax

addl    $1, %rax

Accessing a quadword value

mov    -0x8(%rbp), %rax

add     $1, %rax

Accessing and dereferencing a pointer to a doubleword value

mov     -0x10(%rbp), %rax

mov     (%rax), %eax

add     $1, %eax
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Accessing and dereferencing a pointer to a quadword value

mov     -0x10(%rbp), %rax

mov     (%rax), %rax

add     $1, %rax

Optimized code may not use stack locations to address function 

parameters (use only registers through which the parameters were 

passed) as can be seen in the previous chapter’s example compiled with 

the -O1 switch:

(gdb) disass arithmetic

Dump of assembler code for function _Z10arithmeticiPi:

   0x00005555555551ab <+0>:     test   %rsi,%rsi

   0x00005555555551ae <+3>:     je     �0x5555555551c2  

<_Z10arithmeticiPi+23>

   0x00005555555551b0 <+5>:     mov    %edi,%eax

   0x00005555555551b2 <+7>:     add    (%rsi),%eax

   0x00005555555551b4 <+9>:     add    $0x1,%edi

   0x00005555555551b7 <+12>:    imul   %eax,%edi

   0x00005555555551ba <+15>:    mov    %edi,(%rsi)

   0x00005555555551bc <+17>:    mov    $0x1,%eax

   0x00005555555551c1 <+22>:    retq

   0x00005555555551c2 <+23>:    mov    $0x0,%eax

   0x00005555555551c7 <+28>:    retq

End of assembler dump.

�Summary
This chapter can be used as a reference to basic disassembly patterns.
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