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Preface

The book covers topics ranging from Intel x64 assembly language
instructions and writing programs in assembly language to pointers, live
debugging, and static binary analysis of compiled C and C++ code.

Diagnostics of core memory dumps, live and postmortem debugging
of Linux applications, services, and systems, memory forensics, malware,
and vulnerability analysis require an understanding of x64 Intel assembly
language and how C and C++ compilers generate code, including
memory layout and pointers. This book is about background knowledge
and practical foundations that are needed to understand internal Linux
program structure and behavior, start working with the GDB debugger, and
use it for disassembly and reversing. It consists of practical step-by-step
exercises of increasing complexity with explanations and many diagrams,
including some necessary background topics.

By the end of the book, you will have a solid understanding of how
Linux C and C++ compilers generate binary code. In addition, you will be
able to analyze such code confidently, understand stack memory usage,
and reconstruct original C/C++ code.

The book will be useful for

o Software technical support and escalation engineers
e Software engineers coming from JVM background
o Software testers

o Engineers coming from non-Linux environments, for
example, Windows or Mac OS X

xiii
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e Linux C/C++ software engineers without assembly
language background

e Security researchers without assembly language
background

o Beginners learning Linux software reverse engineering
techniques

This book can also be used as an x64 assembly language and Linux
debugging supplement for relevant undergraduate-level courses.

Source Code

All source code used in this book can be downloaded from github.com/
apress/linux-debugging-disassembling-reversing.
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CHAPTER 1

Memory, Registers,
and Simple Arithmetic

Memory and Registers Inside
an ldealized Computer

Computer memory consists of a sequence of memory cells, and each cell
has a unique address (location). Every cell contains a “number.” We refer
to these “numbers” as contents at addresses (locations). Because memory
access is slower than arithmetic instructions, there are so-called registers
to speed up complex operations that require memory to store temporary
results. We can also think about them as stand-alone memory cells. The
name of a register is its address. Figure 1-1 illustrates this concept.

© Dmitry Vostokov 2023
D. Vostokov, Foundations of Linux Debugging, Disassembling, and Reversing
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CHAPTER 1 MEMORY, REGISTERS, AND SIMPLE ARITHMETIC

Register 1
Address (Location): 100 O
Address (Location): 101 0

Register 2
Address (Location): 102 1 1 0
Address (Location): 103 1
Address (Location): 104 2
Address (Location): 105 O

Figure 1-1. Computer memory represented as a sequence of memory
cells and locations

Memory and Registers Inside Intel
64-Bit PC

Figure 1-2 shows addresses for memory locations containing integer
values usually differ by four or eight, and we also show two registers called
%RAX and %RDX. The first halves of them are called %EAX and %EDX.
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Register % RAX

Address (Location): 100 0
Address (Location): 104 0 0
%WEAX
Address (Location): 108 1
Register %RDX
Address (Location): 112 1
Address (Location): 116 2 1 O
%EDX
Address (Location): 120 0

Figure 1-2. Typical Intel x64 memory and register layout

Because memory cells contain “numbers,” we start with simple
arithmetic and ask a PC to compute the sum of two numbers to see how
memory and registers change their values.

“Arithmetic” Project: Memory Layout
and Registers

For our project, we have two memory addresses (locations) that we call
“a” and “b” We can think about “a” and “b” as names of their respective
addresses (locations). Now we introduce a special notation where (a) means
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contents at the memory address (location) “a”” If we use the C or C++

language to write our project, we declare and define memory locations “a
and “b” as

static int a, b;

By default, when we load a program, static memory locations are filled
with zeroes, and we can depict our initial memory layout after loading the
program, as shown in Figure 1-3.

Register % RAX

Location: a 0 0
(Address 000055555555802¢)
%EAX
Location: b 0
(Address 0000555555558030)
Address (Location): 0 Register % RDX
00005555556558034 ﬁ
%EDX

Figure 1-3. Initial memory layout after loading the program
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“Arithmetic” Project: A Computer Program

We can think of a computer program as a sequence of instructions for
the manipulation of contents of memory cells and registers. For example,
addition operation: add the contents of memory cell Ne12 to the contents
of memory cell Ne14. In our pseudo-code, we can write

(14) + (12) -> (14)

Our first program in pseudo-code is shown on the left of the table:

1 -> (a) Here, we put assembly instructions corresponding
1 -> (b) to pseudo-code.

(b) + (a) -> (b)

(@) +1 -> (a)

(b) * (a) -> (b)

“->” means moving (assigning) the new value to the contents of a

“,n

memory location (address). “;” is a comment sign, and the rest of the line is
a comment. “=” shows the current value at a memory location (address).
To remind, a code written in a high-level programming language is
translated to a machine language by a compiler. However, the machine
language can be readable if its digital codes are represented in some
mnemonic system called assembly language. For example, INC a is

increment by one of what is stored at a memory location “a””

“Arithmetic” Project: Assigning Numbers
to Memory Locations

We remind that “a” means location (address) of the memory cell, and it is
also the name of the location (address) 000055555555802c (see Figure 1-3).

u_”n

(a) means the contents (number) stored at the address “a!



CHAPTER 1 MEMORY, REGISTERS, AND SIMPLE ARITHMETIC

wu_n

If we use the C or C++ language, “a” is called “the variable a,” and we
write the assignment as

a=1;
In the Intel assembly language, we write
mov $1, a

In the GDB disassembly output, we see the following code where the
variable “a” and address are shown in comments:

movl  $0x1,0x2ef2(%rip) # 0x55555555802¢ <a>

We show the translation of our pseudo-code into assembly language in
the right column:

1-> (a) ;5 (a) =1 movl $1, a
1 -> (b) s (b) = 1 movl $1, b
(b) + (a) -> (b)

(@) +1 -> (a)

(b) * (a) -> (b)

Notice movl instructions instead of mow. This is because “a” and “b”
can point to both 32-bit (like %EAX or %EDX registers) and 64-bit memory
cells (like %RAX and %RDX registers). In the registers’ case, it is clear from
their names whether we use 64-bit %RAX or 32-bit %EAX. But in the case
of memory addresses “a” and “b,” it is not clear whether they refer to 64-bit
or 32-bit cells. We use movl to disambiguate and show that we use 32-bit
memory cells that are enough to hold integers from 0 to 4294967295.

ox2ef2(%rip) is how the compiler generates code to calculate the

address “a” instead of specifying it directly. Such code requires less
memory space. We explain this in later chapters.
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Literal constants have the $ prefix, for example, $0x1. The 0x prefix
means the following number is hexadecimal. The leading four zeroes of
the address are also omitted in the comment. We explain such numbers in
Chapter 3. Please also notice that the movement direction is the same in
both the disassembly output and the pseudo-code: from left to right.

After executing the first two assembly language instructions, we have
the memory layout shown in Figure 1-4.

Register % RAX
Location: a 1 0
(Address 000055555555802c¢)
%EAX
Location: b 1
(Address 0000555555558030)
Address (Location): 0 Register % RDX
0000555555558034 e
%EDX

Figure 1-4. Memory layout after executing the first two assembly
language instructions
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Assigning Numbers to Registers

This is similar to memory assignments. We can write in pseudo-code:

1 -> register
(a) -> register

Note that we do not use brackets when we refer to register contents.
The latter instruction means assigning (copying) the number at the

u_n

location (address) “a” to a register.

In assembly language, we write

mov $1, %eax # 1 is copied to the first half of %RAX
register

mov $1, %rax # full contents of %RAX register are
replaced with 1

mov a, %eax

mov a, %rax

In the GDB disassembly output, we may see the following code:

mov $0x0, %eax

“Arithmetic” Project: Adding Numbers
to Memory Cells

Now let’s look at the following pseudo-code statement in more detail:

(b) + (a) -> (b)

To recall, “a” and “b” mean the names of locations (addresses)
000055555555802c and 0000555555558030, respectively (see Figure 1-4).
(a) and (b) mean contents at addresses “a” and “b,” respectively, simply
some numbers stored there.
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In the C or C++ language, we write the following statement:

b=>b+ a;
b += a;

In assembly language, we use the instruction ADD. Because of AMD64
and Intel EM64T architecture’s limitations, we cannot use both memory
addresses in one step (instruction), for example, add a, b. We can only use
the add register, b instruction to add the value stored in the register to
the contents of the memory cell b. Recall that a register is like a temporary
memory cell itself here:

(a) -> register
(b) + register -> (b)
Alternatively, we can use two registers:
(a) -> registeri
(b) -> register2

register2 + registerl -> register2
register2 -> (b)

In assembly language, we write

mov a, %eax
add %eax, b

or we can add two registers and move the result to the memory cell b:

mov b, %edx
mov a, %eax
add %edx, %eax

mov %eax, b
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In the GDB disassembly output, we may see the following code:

mov 0x2eeb(%rip),%edx # 0x555555558030 <b>
mov ox2edc(%rip),%eax # 0x55555555802C <a>
add %edx,%eax

mov %eax,0x2ed8(%rip) # 0x555555558030 <b>

Now we can translate our pseudo-code into assembly language:

1 -> (a) ; (@) = movl $1, a

1 -> (b) ; (b) =1 movl $1, b

(b) + (a) -> (b) ; %eax =1  mov a, %eax
;3 %edx =1 mov b, Zedx
3 %eax = 2 add %edx, %eax
; (b) = 2 mov %eax, b

(@) +1 -> (a)
(b) * (a) -> (b)

After the execution of ADD and MOV instructions, we have the
memory layout illustrated in Figure 1-5.

10
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Register %RAX

Location: a 1 2
(Address 000055555555802c¢)
%EAX
Location: b 2
(Address 0000555555558030)
Address (Location): 0 Register %RDX
0000555555558034 A
%EDX

Figure 1-5. Memory layout after executing ADD and MOV
instructions

Incrementing/Decrementing Numbers
in Memory and Registers

In pseudo-code, it looks simple and means increment (decrement) a
number stored at the location (address) “a”:

(@) +1 -> (a)
(a) - 1-> (a)

11
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In the C or C++ language, we can write this using three possible ways:

a=a+t1l;
++3;
a++;
b=">b-1;
--b;
b--;

In assembly language, we use instructions INC and DEC and write

incl a
inc %heax
decl a
dec %heax

We use incl when we need to specify the 32-bit memory cell. It is
ambiguous when we use “a” However, using %eax implies using 32-bit
values, so inc is unambiguous.

In the GDB disassembly output, we may see the same instruction:

inc %eax
or

add $ox1,%eax # a compiler may decide to use ADD
instead of INC

12



CHAPTER 1  MEMORY, REGISTERS, AND SIMPLE ARITHMETIC

Now we add the assembly language translation of increment:

1 -> (a) ; (@) =1 movl $1, a
1 -> (b) ; (b) =1 movl $1, b
(b) + (a) -> (b) ; %eax=1 mov a, %eax
; %edx = 1 mov b, %edx
; %eax = 2 add %edx, %eax
; (b) =2 mov %eax, b
(a) + 1 -> (a) 3 %eax= 1 mov a, %eax
3 %eax = 2 add $1, %eax
;3 (@) = 2 mov %eax, a

(b) * (a) -> (b)

After the execution of INC or ADD instruction, we have the memory
layout illustrated in Figure 1-6.

13
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Register %RAX
Location: a 2 2
(Address 000055555555802¢)
%EAX
Location: b 2
(Address 0000555555558030)
Address (Location): 0 Register %RDX
0000555555558034
%EDX

Figure 1-6. Memory layout after the execution of INC or ADD
instruction

Multiplying Numbers

In pseudo-code, we write

(b) * (a) -> (b)

It means that we multiply the number at the location (address) “b” by
the number at the location (address) “a.”
In the C or C++ language, we can write that using two ways:



CHAPTER 1  MEMORY, REGISTERS, AND SIMPLE ARITHMETIC

In assembly language, we use instruction IMUL (Integer MULtiply)
and write

mov a, %eax
imul b, %eax
mov %eax, b

The multiplication instruction means (b) * %eax -> %eax, and we
must put the contents of “a” into %EAX. The multiplication result is put
into the register %EAX, and its contents are saved at the location (address)
“b.” Alternatively, we may put all multiplication operands into registers:

mov a, %eax
mov b, %edx
imul %edx, %eax
mov %eax, b

In the GDB disassembly output, we may see the following code:

mov ox2ec3(%rip),%edx # 0x555555558030 <b>
mov 0x2eb9(%rip),%eax # 0x55555555802¢C <a>
imul  %edx,%eax

mov %eax,0x2eb4 (%rip) # 0x555555558030 <b>

15
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Now we add two additional assembly instructions to our pseudo-code
assembly language translation:

1 -> (a) ; (@) =1 movl $1, a
1 -> (b) ; (b) =1 movl $1, b
(b) + (a) -> (b) ; %eax=1 mov a, %eax
; %edx = 1 mov b, %edx
; %eax = 2 add %edx, %eax
; (b) =2 mov %eax, b
(@) +1 -> (a) ; %eax = 1 mov a, %eax
; %eax = 2 add $1, %eax
; () =2 mov %eax, a
(b) * (a) -> (b) ; %edx = 2 mov b, %edx
3 %eax = 2 mov a, %eax
3 %eax = 4 imul %edx, %eax
;s (b) =4 mov %eax, b

After the execution of IMUL and MOV instructions, we have the
memory layout illustrated in Figure 1-7.

16



CHAPTER 1  MEMORY, REGISTERS, AND SIMPLE ARITHMETIC

Register %RAX
Location: a 2 4
(Address 000055555555802c¢)
%EAX
Location: b 4
(Address 0000555555558030)
Address (Location): 0 Register %RDX
0000555555558034
%EDX

Figure 1-7. Memory layout after the execution of IMUL and MOV
instructions

Summary

This chapter introduced CPU registers and explained the memory layout
of a simple arithmetic program. We learned basic x64 instructions and
manually translated simple C and C++ code to assembly language.

The next chapter looks at assembly language code produced by a
debugger via disassembling binary code. Then, we reverse it to C and C++
code. We also compare the disassembly output of nonoptimized code to
optimized code.

17



CHAPTER 2

Code Optimization

“Arithmetic” Project: C/C++ Program

Let’s rewrite our “Arithmetic” program in C/C++. Corresponding assembly

language instructions are put in comments:

int a, b;

int main(int argc, char* argv[])

{

a=1; // movl $1, a
b =1; // movl $1, b
b=>b+ a; // mov a, %eax
// mov b, %edx
// add %edx, %eax
// mov %eax, b
++a; // mov a, %eax
// add $1, %eax
// mov %eax, a

© Dmitry Vostokov 2023
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b=>b* a; // mov b, %edx
// mov a, %eax
// imul %edx, %eax
// mov %eax, b

// results: (a) = 2 and (b) = 4
return O;

Downloading GDB

We used WSL2 and "Debian GNU/Linux 10 (buster)" as a working
environment. We chose Debian because we used it for the “Accelerated
Linux Core Dump Analysis” training course.' After installing Debian, we
need to install essential build tools and GDB:

sudo apt install build-essential
sudo apt install gdb

You may also need to download git to clone source code:

sudo apt install git

cd ~

git clone github.com/apress/linux-debugging-disassembling-
reversing .

GDB Disassembly Output — No Optimization

The source code can be downloaded from the following location:
github.com/apress/linux-debugging-disassembling-reversing/
Chapter2/

"www.dumpanalysis.org/accelerated-linux-core-dump-analysis-book

20
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CHAPTER 2  CODE OPTIMIZATION
If we compile and link the program in no optimization mode (default):

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter2$ gcc
ArithmeticProjectC.cpp -o ArithmeticProjectC

we get the binary executable module we can load in GDB and inspect
assembly code.
First, we run GDB with the program as a parameter:

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter2$ gdb ./

ArithmeticProjectC

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/

licenses/gpl.html>

This is free software: you are free to change and

redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources

online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from ./ArithmeticProjectC...(no debugging
symbols found)...done.

(gdb)
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Next, we put a breakpoint at our main C/C++ function to allow the
program execution to stop at that point and give us a chance to inspect
memory and registers. Symbolic names/function names like "main" can be
used instead of code memory locations:

(gdb) break main
Breakpoint 1 at 0x1129

Then we start execution of the program (let it run). The program then
stops at the previously set breakpoint:

(gdb) run
Starting program: /home/coredump/pflddr/x64/Chapter2/
ArithmeticProjectC

Breakpoint 1, 0x0000555555555129 in main ()
Now we disassemble the main function:

(gdb) disass main
Dump of assembler code for function main:

0x0000555555555125 <+0>: push  %rbp
0x0000555555555126 <+1>: mov %rsp,%rbp

=> 0X0000555555555129 <+4>: mov %edi, -0x4(%rbp)
0x000055555555512C <+7>: mov %rsi,-0x10(%rbp)

0x0000555555555130 <+115: movl  $0x1,0x2ef2(%rip)
# 0x55555555802¢c <a>

0x000055555555513a <+21>: movl  $0x1,0x2eec(%rip)
# 0x555555558030 <b>

0x0000555555555144 <+31>: mov Ox2ee6(%rip),%edx
# 0x555555558030 <b>

0x000055555555514a <+37>: mov  Ox2edc(%rip),%eax
# 0x55555555802¢c <a>

0x0000555555555150 <+43»: add %edx, %eax
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0x0000555555555152 <+455:
# 0x555555558030 <b>
0x0000555555555158 <+51>:
# 0x55555555802¢c <a»
0x000055555555515e <+57>:
0x0000555555555161 <+60>:
# 0x55555555802¢c <a»
0x0000555555555167 <+66> :
# 0x555555558030 <b>
0x000055555555516d <+72>:
# 0x55555555802¢c <a>
0x0000555555555173 <+78>:
0x0000555555555176 <+81>:
# 0x555555558030 <b>
0x000055555555517C <+87>:
0x0000555555555181 <+92>:
0x0000555555555182 <+93>:

End of assembler dump.

mov

mov

add
mov

mov

mov

imul
mov

mov

pop
retq

CHAPTER 2  CODE OPTIMIZATION

%eax,0x2ed8(%rip)
ox2ece(%rip),%eax

$0x1, %eax
%eax,0x2ec5(%rip)

ox2ec3(%rip),%edx
ox2eb9(%rip),%eax

%edx, %eax
%eax,0x2ebg(%rip)

$0x0, %eax
%rbp

We repeat the part of the formatted disassembly output here that

corresponds to our C/C++ code:

0x0000555555555130 <+11>:
# 0x55555555802¢ <a>
0x000055555555513a <+21>:
# 0x555555558030 <b>
0x0000555555555144 <+31>:
# 0x555555558030 <b>
0x000055555555514a <+37>:
# 0x55555555802¢c <a>
0x0000555555555150 <+43>:

mov1l

mov1l

mov

mov

add

$ox1,0x2ef2(%rip)
$0x1,0x2eec(%rip)
ox2eeb(%rip),%edx
ox2edc(%rip),%eax

%edx, heax
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0x0000555555555152 <+45>: mov %eax,0x2ed8(%rip)
# 0x555555558030 <b>

0x0000555555555158 <+51>: mov ox2ece(%rip),%eax
# 0x55555555802c <a>

0x000055555555515e <+57>: add $0x1,%eax
0x0000555555555161 <+60>: mov %eax,0x2ec5(%rip)
# 0x55555555802¢ <a>

0x0000555555555167 <+66>: mov ox2ec3(%rip),%edx
# 0x555555558030 <b>

0x000055555555516d <+72>: mov 0x2eb9(%rip),%eax
# 0x55555555802¢C <a>

0x0000555555555173 <+78>: imul  %edx,%eax
0x0000555555555176 <+81>: mov %eax,0x2eb4 (%rip)
# 0x555555558030 <b>

We can directly translate it to bare assembly code we used in the
previous chapter and put corresponding pseudo-code in comments:

movl $1, a #1 -> (a)
movl $1, b #1-> (b)
mov b, %edx # (b) + (a) -> (b)

mov a, keax

add hedx, %eax

mov %eax, b

mov a, %eax # (a) +1 -> (a)
add $1, %eax

mov %eax, a

mov b, %edx # (b) * (a) -> (b)
mov a, keax

imul  %edx, %eax

mov %eax, b

24



CHAPTER 2  CODE OPTIMIZATION

Now we can exit GDB:

(gdb) g
A debugging session is active.

Inferior 1 [process 2249] will be killed.

Quit anyway? (y or n) y
coredump@ESKTOP-IS6V2L0:~/pflddr/x64/Chapter2$

GDB Disassembly Output — Optimization

If we compile and link the program in optimization mode:

coredump@ESKTOP-IS6V2L0:~/pflddr/x64/Chapter2$ gcc
ArithmeticProjectC.cpp -01 -o ArithmeticProjectC

and after repeating the same steps in GDB, we get the following output:

(gdb) disass main
Dump of assembler code for function main:
=» 0x0000555555555125 <+0>: movl  $0x2,0x2fo01(%rip)
# 0x555555558030 <a>
0x000055555555512F <+10>: movl  $0x4,0x2ef3(%rip)
# 0x55555555802c <b>
0x0000555555555139 <+20>: mov $0x0, %eax
0x000055555555513e <+25>: retq
End of assembler dump.

This corresponds to the following pseudo-code:

mov $2, a # 2 -> (a)
mov $4, b # 4 -> (b)

Please note that the compiler also chose to put memory cell “b” first
(000055555555802¢) and then memory cell “a” (0000555555558030).
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What happened to all our assembly code in this executable? This code
seems to be directly placing the end result into the “b” memory cell if we
observe. Why is this happening? The answer lies in compiler optimization.
When the code is compiled in optimization mode, the compiler can
calculate the final result from the simple C/C++ source code itself and
generate only the necessary code to update corresponding memory

locations.

Summary

In this chapter, we looked at assembly language code produced by a
debugger via disassembling binary code. Then, we reversed it to C and C++
code. We also compared the disassembly output of nonoptimized code to
optimized code and understood why.

The next chapter refreshes number representations, especially the
hexadecimal one.
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CHAPTER 3

Number
Representations

Numbers and Their Representations

Imagine a herder in ancient times trying to count his sheep. He has a
certain number of stones (twelve):

However, he can only count up to three and arranges the total into
groups of three:

© Dmitry Vostokov 2023
D. Vostokov, Foundations of Linux Debugging, Disassembling, and Reversing
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The last picture is a representation (a kind of notation) of the number
of stones. We have one group of three groups of three stones plus a
separate group of three stones. If he could count up to ten, we would see a
different representation of the same number of stones. We would have one
group of ten stones and another group of two stones.

Decimal Representation (Base Ten)

Let’s now see how twelve stones are represented in arithmetic notation if
we can count up to ten. We have one group of ten numbers plus two:

120c=1%10+20r1*10' + 2 * 10°

Here is another exercise with 123 stones. We have 1 group of ten by
ten stones, another group of 2 groups of ten stones, and the last group
of 3 stones:

1234, =1%10*10+2*10+3 or 1 *10*+2*10' + 3 * 10°
We can formalize it in the following summation notation:

Ngee = a,10" + @,,*10™! + ... + a,¥10% + a,*10" + a,*10°

O<=a<=9
Using the summation symbol, we have this formula:

n
Ndec = Z ai*l()i
i=0
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Ternary Representation (Base Three)

Now we come back to our herder’s example of twelve stones. We have 1
group of three by three stones, 1 group of three stones, and an empty (0)
group (which is not empty if we have one stone only or have thirteen
stones instead of twelve). We can write down the number of groups
sequentially: 110. Therefore, 110 is a ternary representation (notation) of
twelve stones, and it is equivalent to 12 written in decimal notation:

124 = 1*3% + 1*3' + 0*3°

Ngee = a,*3" + 2, ¥ 3™ + ... + 2,*3% + 2,3 + a,*3°

a;=0orlor2

n
Ndec = z ai*31
i=0

Binary Representation (Base Two)

In the case of counting up to two, we have more groups for twelve stones:
1100. Therefore, 1100 is a binary representation (notation) for 12 in
decimal notation:

1240 = 1¥23 + 122 + 02! + 0*2°

1234ec = 1726 4 1%2° + 1%2% + 1%2% + 0%22 + 1*2' + 1*2% or
1111011,

Ngec = a,%2% + @, %2 + ... + 2,*2% + 2,%2! + a,*2°

a;=0or1l
n

Ndec = Z ai*2i
i=0
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Hexadecimal Representation (Base Sixteen)

If we can count up to sixteen, twelve stones fit in one group, but we
need more symbols: A, B, C, D, E, and F for ten, eleven, twelve, thirteen,
fourteen, and fifteen, respectively:

124.. = C in hexadecimal representation (notation)
123dec = 7Bhex
12340 = 7*16" + 11*16°

n
Ndec = z 31*161
i=0

Why Are Hexadecimals Used?

Consider this number written in binary notation: 110001010011,. Its
equivalent in decimal notation is 3155:

31554 = 1¥211 + 1¥210 4 0%29 + 0*28 4 0*27 + 1¥26 4 0*25
+ 1#24 4+ 0%23 + 0%22 + 1*21 4 1*2°

Now we divide the binary number digits into groups of four and write
them down in decimal and hexadecimal notation:

110001010011
lzdec édec 3dec
Chex éhex 3hex

We see that hexadecimal notation is more compact because every
four binary digit group number corresponds to one hexadecimal number.
Table 3-1 lists hexadecimal equivalents for every four binary digit
combination.
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Table 3-1. Hexadecimal Equivalents for Every Four
Binary Digit Combination

Binary Decimal Hexadecimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

In GDB and other debuggers, memory addresses are displayed in
hexadecimal notation.
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Summary

This chapter refreshed different representations of a number, including
hexadecimal notation.

The next chapter introduces pointers. We rewrite our arithmetic
program from Chapter 1 using pointers to memory and use the GDB
debugger to execute instructions one by one and watch changes
to memory.
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CHAPTER 4

Pointers

A Definition

The concept of a pointer is one of the most important to understand
thoroughly to master Linux debugging. By definition, a pointer is a
memory cell or a processor register that contains the address of another
memory cell, as shown in Figure 4-1. It has its own address as any memory
cell. Sometimes, a pointer is called an indirect address (vs. a direct address,
the address of a memory cell). Iteratively, we can define another level

of indirection and introduce a pointer to a pointer as a memory cell or a
processor register that contains the address of another memory cell that
contains the address of another memory cell and so on.
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Register %RAX

Location: a 4 le 00000000
(Address 0000000000402000) 00402000
Location: b 1 le
(Address 0000000000402004)
Address (Location): N O Register %RBX
0000000000402008 : .
O 00000000
00402004
0000000000402008

Figure 4-1. Example pointers and memory layout

“Pointers” Project: Memory Layout
and Registers

In our debugging project, we have two memory addresses (locations), “a”
and “b.” We can think about “a” and “b” as names of addresses (locations).
We remind that notation (a) means contents at the memory address
(location) “a”
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We also have registers %RAX and %RBX as pointers to “a” and “b.”
These registers contain addresses of “a” and “b,” respectively. The notation
(%RAX) means the contents of a memory cell whose address is in the
register %RAX.

In C and C++ languages, we declare and define pointers to “a”
and “b” as

int *a, *b;

Our project memory layout before program execution is shown in
Figure 4-2. Addresses always occupy 64-bit memory cells or full 64-bit
registers like %RAX or %RBX (they cannot fit in %EAX or %EBX or a 32-bit
memory cell).

Register %RAX

Location: a O 0
(Address 0000000000402000)
Location: b 0
(Address 0000000000402004)
Register % RBX

Figure 4-2. Project memory layout before program execution
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“Pointers” Project: Calculations

In order to understand pointers better from a low-level assembly language
perspective, we perform our old arithmetic calculations from Chapter 1
using pointers to memory instead of direct memory addresses:

address a -> rax

1 -> (rax)
address b -> rbx
1 -> (rbx)

(rbx) + (rax) -> (rbx)
(rax) + 1 -> (rax)
(rbx) * (rax) -> (rbx)

Using Pointers to Assign Numbers
to Memory Cells

First, the following sequence of pseudo-code instructions means that we
interpret the contents of %RAX register as the address of a memory cell
and then assign a value to that memory cell:

address a -> rax
1 -> (rax)

In C and C++ languages, it is called “dereferencing a pointer,” and

we write
int a;
int *pa = &a; // declaration and definition of a pointer

*pa = 1; // get a memory cell (dereference a pointer)
// and assign a value to it
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In assembly language, we write

lea a, %rax # load the address "a" into %rax
movl $1, (%rax) # use %rax as a pointer

Again, we see movl instead of mov because integers occupy 32-bit
memory cells, and we want to address only a 32-bit memory cell. This is
how it is on x64 Linux: memory cells to contain integers are half the size of
memory cells to contain addresses (32-bit vs. 64-bit).

In the GDB disassembly output, we see something like this:

0x0000000000401000 <+0>: lea 0x402000, %rax
0x0000000000401008 <+8>: movl  $0x1, (%rax)

The source code for this chapter can be downloaded from

github.com/apress/linux-debugging-disassembling-reversing/
Chapter4/

To illustrate some instructions and not to be dependent on how
the compiler translates C/C++ code, we wrote the program in assembly
language. We need to compile and link it first before loading it into GDB
and disassemble its main function as described in Chapter 2.

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapterd$ as
PointersProject.asm -o PointersProject.o

coredump@ESKTOP-IS6V2L0:~/pflddr/x64/Chapters$ 1ld
PointersProject.o -o PointersProject

coredump@ESKTOP-IS6V2L0:~/pflddr/x64/Chapters$ gdb
./PointersProject

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/
licenses/gpl.html>
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This is free software: you are free to change and

redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources

online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to

‘word"...
Reading symbols from ./PointersProject...(no debugging symbols
found)...done.

(gdb)

We put a breakpoint on the main function, run the program until GDB
breaks in, and then disassemble the main function:

(gdb) break main
Breakpoint 1 at 0x401000

(gdb) run
Starting program: /home/coredump/pflddr/x64/Chapters/
PointersProject

Breakpoint 1, 0x0000000000401000 in _start ()

(gdb) disass main

Dump of assembler code for function start:

=> 0x0000000000401000 <+0>: lea 0x402000, %rax
0x0000000000401008 <+8>: movl  $0x1, (%rax)
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0x000000000040100e <+14>: lea 0x402004, %rbx
0x0000000000401016 <+22>: movl  $0x1, (%rbx)
0x000000000040101¢C <+28>: mov (%rax),%edx
0x000000000040101e <+30>: add %edx, (%rbx)
0x0000000000401020 <+32>: incl  (%rax)
0x0000000000401022 <+34>: mov (%rax),%eax
0x0000000000401024 <+36>: imul  (%rbx),%eax
0x0000000000401027 <+39>: mov %eax, (%rbx)
0x0000000000401029 <+41>: mov $0x3c,%rax
0x0000000000401030 <+48>: mov $0x0,%rdi
0x0000000000401037 <+55>: syscall

End of assembler dump.

Now we examine variables “a” and “b” to verify the memory layout
shown previously in Figure 4-2 using the info variables GDB command:

(gdb) info variables
All defined variables:

Non-debugging symbols:
0x0000000000402000 a
0x0000000000402004 b
0x0000000000402008 _ bss start
0x0000000000402008 _edata
0x0000000000402008 _end

We also verify that the values of %RAX and %RBX registers are in
accordance with Figure 4-2:

(gdb) info registers rax rbx
rax 0x0
rbx 0x0
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We instruct GDB to automatically display the current instruction to
be executed, the values of registers %RAX and %RBX, and the contents of
variables “a” and “b”:

(gdb) display/i $rip
1: x/1 $rip
=> 0x401000 <_start>: lea 0x402000, %rax

(gdb) display/x $rax
2: /x $rax = 0x0

(gdb) display/x $rbx
3: /x $rbx = 0x0

(gdb) display/x (int)a
4: /x (int)a = ox0

(gdb) display/x (int)b
5: /x (int)b = 0x0

Now we execute the first four instructions that correspond to our
pseudo-code using the stepi GDB command or si (shorter command

version):

address a -> rax lea a, %rax

1 -> (rax) 5 (@) =1 movl $1, (%rax)
address b -» rbx lea b, %rbx

1 -> (rbx) ;3 (b) =1 movl $1, (%rbx)

(rbx) + (rax) -> (rbx)
(rax) + 1 -> (rax)
(rbx) * (rax) -> (rbx)
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(gdb) si

0x0000000000401008 in _start ()

1: x/1 $rip

=> 0x401008 < start+8>: movl  $0x1, (%rax)
2: /x $rax = 0x402000

3: /x $rbx = 0x0

4: /x (int)a = ox0

5: /x (int)b = 0x0

(gdb) si

0x000000000040100e in _start ()

1: x/1 $rip

=> 0x40100e <_start+14>: lea 0x402004, %rbx
2: /x $rax = 0x402000

3: /x $rbx = 0x0

4: /x (int)a = ox1

5: /x (int)b = 0x0

(gdb) si

0x0000000000401016 in _start ()

1: x/1 $rip

=> 0x401016 <_start+22>: movl  $0x1, (%rbx)
2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x (int)a = ox1

5: /x (int)b = ox0

(gdb) si

0x000000000040101c in _start ()

1: x/i $rip

=> 0x40101c <_start+28>: mov (%rax),%edx
2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x (int)a = ox1

5: /x (int)b = oxa
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All this corresponds to a memory layout shown in Figure 4-3.

Register “%RAX

00000000
Location: a 1 § | 00402000
(Address 0000000000402000)
Location: b 1
(Address 0000000000402004) *
Register %RBX
00000000
00402004

Figure 4-3. Memory layout after executing the first four instructions

Adding Numbers Using Pointers

Now we look at the next pseudo-code statement:
(rbx) + (rax) -> (rbx)

Recall that (rax) and (rbx) mean contents of memory cells whose
addresses (locations) are stored in %RAX and %RBX CPU registers. The
preceding statement is equivalent to the following C or C++ language

Usgen

expression where the “*” operator means to get memory contents pointed

to by the pa or pb pointer (also called pointer dereference):

*pb = *pb + *pa;
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w o

In assembly language, we use the instruction ADD for the “+” operator,
but we cannot use both memory addresses in one step instruction (addl is
used to add 32-bit integers):

addl (%rax), (%rbx) # invalid instruction

We can only use one memory reference, and, therefore, we need to
employ another register as a temporary variable:

(rax) -> register
(rbx) + register -> (rbx)

In assembly language, we write this sequence of instructions:

mov (%rax), %edx
add %edx, (%rbx)

We use add instead of addl because using %EDX instead of %RDX
implies adding a 32-bit integer.
In the GDB disassembly output, we see these instructions indeed:

0x000000000040101C <+28>: mov (%rax),%edx
0x000000000040101e <+30>: add %edx, (%rbx)

We add them to our pseudo-code table:

address a -> rax lea a, %rax

1 -> (rax) ; (@) =1 movl $1, (%rax)

address b -> rbx lea b, %rbx

1 -> (rbx) ; (b) =1 movl $1, (%rbx)

(rbx) + (rax) -» (rbx) ; %edx = 1 mov (%rax), %edx
;5 (b) =2 add %edx, (%rbx)

(rax) + 1 -> (rax)
(rbx) * (rax) -> (rbx)

43



CHAPTER 4  POINTERS

Now we execute these two instructions (we remind that the output of
the si command shows the next instruction to be executed when we use
the si command again):

[From the previous output]

1: x/1 $rip

=> 0x40101c <_start+28>: mov (%rax),%edx
2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x (int)a = ox1

5: /x (int)b = ox1

(gdb) si

0x000000000040101e in _start ()

1: x/1 $rip

=> 0x40101e <_start+30>: add %edx, (%rbx)
2: /x $rax = 0x402000
3: /x $rbx = 0x402004
4: /x (int)a = ox1

5: /x (int)b = ox1

(gdb) info reg $rdx

rdx 0ox1 1

(gdb) si

0x0000000000401020 in _start ()

1: x/1 $rip

=> 0x401020 <_start+32>: incl  (%rax)

2: /x $rax = 0x402000
3: /x $rbx = 0x402004
4: /x (int)a = ox1
5: /x (int)b = ox2
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All this corresponds to a memory layout shown in Figure 4-4.

Register %RAX

00000000
Location: a 1 e . 00402000
(Address 0000000000402000)
Location: b 2 B
(Address 0000000000402004)
Register “%RBX
Register %RDX
00000000
00402004

%EDX
Figure 4-4. Memory layout after executing the next two instructions

Incrementing Numbers Using Pointers

In pseudo-code, it means increment (decrement) a number stored at the
memory location which address is stored in %RAX:

(rax) + 1 -> (rax)
In the C or C++ language, we can write this using three possible ways:

*a = *a + 1;
++(*a);

(*a)++;
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In assembly language, we use instruction INC and write
incl (%rax)

We use incl when we need to specify the 32-bit memory cell to
increment.
In the GDB disassembly output, we see the same instruction:

incl (%rax)
or

addl $ox1,(%rax) # a compiler may decide to use ADD
instead of INC

Now we add the assembly language translation of increment:

address a -> rax lea a, %rax

1 -> (rax) ; (@) =1 movl $1, (%rax)

address b -> rbx lea b, %rbx

1 -> (rbx) ; (b) =1 movl $1, (%rbx)

(rbx) + (rax) -> (rbx) ; %edx = 1 mov (%rax), %edx
; (b) =2 add %edx, (%rbx)

(rax) + 1 -» (rax) ;5 () = 2 incl (%rax)

(rbx) * (rax) -> (rbx)

Now we execute this instruction (we remind that the output of the si
command shows the next instruction to be executed when we use the si

command again):

[From the previous output]

1: x/1 $rip

=> 0x401020 <_start+32>: incl  (%rax)
2: /x $rax = 0x402000

3: /x $rbx = 0x402004
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4: /x (int)a = ox1

5: /x (int)b = ox2

(gdb) si

0x0000000000401022 in _start ()

1: x/1 $rip

=> 0x401022 <_start+34>: mov (%rax),%eax
2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x (int)a = ox2
5: /x (int)b = 0x2

After the execution of the INC instruction, we have the memory layout
illustrated in Figure 4-5.

Register %RAX

00000000
Location: a 9 § C 00402000
(Address 0000000000402000)
Location: b 2
(Address 0000000000402004) -
| Register %RBX
' 00000000
' 00402004

Figure 4-5. Memory layout after the execution of the INC instruction
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Multiplying Numbers Using Pointers

Our next pseudo-code statement does a multiplication:
(rbx) * (rax) -> (rbx)

This statement means that we multiply the contents of the memory
cell whose address is stored in the %RBX register by the value stored in
the memory cell whose address is in the %RAX register. In the C or C++
language, we write a similar expression as the addition statement we have
seen in the previous sections (note that we have two distinct meanings of
the “*” operator: pointer dereference and multiplication):

*pb = *pb * *pa;
*pb *= *pa;

The latter is a shorthand notation. In assembly language, we use
instruction IMUL (Integer MULtiply):

mov (%rax), %eax
imul (%rbx), %eax

mov %eax, (%rbx)

Since the imul instruction cannot reference two memory locations,
we need to put the contents of one location into a register. We reuse
%RAX since we do not need its current value after that. This instruction is
equivalent to the following pseudo-code:

(rax) -> rax
(rbx) * rax -> rax
rax -> (rbx)

In the GDB disassembly output, we see this:

0x0000000000401022 <+34>: mov (%rax),%eax
0x0000000000401024 <+36>: imul  (%rbx),%eax
0x0000000000401027 <+39>: mov %eax, (%rbx)
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We add instructions to our pseudo-code table:

address a -> rax lea a, %rax

1 -> (rax) ; (@) =1 movl $1, (%rax)

address b -> rbx lea b, %rbx

1 -> (rbx) ; (b) =1 movl $1, (%rbx)

(rbx) + (rax) -> (rbx) ; %edx = 1 mov (%rax), %edx
; (b) =2 add %edx, (%rbx)

(rax) + 1 -> (rax) ; (@) =2 incl (%rax)

(rbx) * (rax) -» (rbx) ; %eax = 2 mov (%rax), %eax
3 %eax = 4 imul (%rbx), %eax
;s (b) = 4 mov %eax, (%rbx)

Now we execute these three instructions (we remind that the output
of the si command shows the next instruction to be executed when we use
the si command again):

[From the previous output]

1: x/i $rip

=> 0x401022 <_start+34>: mov (%rax),%eax
2: /x $rax = 0x402000
3: /x $rbx = 0x402004
4: /x (int)a = ox2

5: /x (int)b = ox2

(gdb) si

0x0000000000401024 in start ()

1: x/i $rip

=> 0x401024 < start+36>: imul  (%rbx),%eax
2: /x $rax = Ox2

3: /x $rbx = 0x402004
4: /x (int)a = ox2

5: /x (int)b = ox2
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(gdb) si

0x0000000000401027 in _start ()

1: x/1 $rip

=> 0x401027 <_start+39>: mov %eax, (%rbx)
2: /x $rax = 0x4

3: /x $rbx = 0x402004

4: /x (int)a = ox2

5: /x (int)b = ox2

(gdb) si

0x0000000000401029 in _start ()

1: x/1 $rip

=> 0x401029 <_start+41>: mov $0x3c, %rax
2: /x $rax = 0x4

3: /x $rbx = 0x402004

4: /x (int)a = ox2

5: /x (int)b = ox4
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All this corresponds to a memory layout shown in Figure 4-6.

Register “%RAX

Location: a 2 4
(Address 0000000000402000)
Location: b 4
(Address 0000000000402004)
Register “%WRBX
00000000
00402004

Figure 4-6. Memory layout after execution of the last three
instructions

Summary

This chapter introduced pointers. We rewrote our arithmetic program from
Chapter 1 using pointers, used the GDB debugger to execute instructions
individually, and watched changes to memory. We also learned GDB
commands to show the contents of registers and variables.

The next chapter introduces the bit- and byte-level memory
granularity, corresponding layout, and integral C and C++ types.
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Bytes, Words, Double,
and Quad Words

Using Hexadecimal Numbers

If we want to use hexadecimal numbers in the C/C++ language, we prefix
them with 0x, for example:

a = 12; /] 124

oxC; /7 Chex

a

In the GDB disassembly output, and when entering commands,
numbers are interpreted as decimals by default. If we want a number to be
interpreted as hexadecimal, we prefix it with 0x, for example:

mov 12, a
mov 0xC, a

Byte Granularity

Figure 5-1 shows the difference between bytes, words, doublewords, and
quadwords in terms of byte granularity. We see that each successive size is
double the previous.
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Byte Byte

Word | Byte | Byte

Doubleword  Byte = Byte = Byte | Byte

Quadword Byte | Byte | Byte | Byte = Byte | Byte @ Byte | Byte

Figure 5-1. Difference between bytes, words, doublewords, and
quadwords

Bit Granularity

Every byte consists of eight bits. Every bit has a value of zero or one. Here
are some examples of bytes, words, doublewords and quadwords shown
as bit strings (we can also clearly see the correspondence between 4-bit
sequences and hexadecimal numbers, Table 3-1):

o Byte

C/C++: unsigned char

8 bits

Values 04ec~255¢ec OF Opex—FFhex
Example: 124.. 00001100, 0Cyc

e Word

C/C++: unsigned short

16 bits

Values 04655354 O Opex—FFFF} o
Example: 0000000000001100,,;, 000C,,,
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¢ Doubleword

C/C++: unsigned int, unsigned

32 bits

Values 04..-4294967295.. o1 0y,.,~ FFFFFFFF,,
Example: 00000000000000000000000000001100,,;,,
0000000C;,

¢ Quadword

C/C++: long, unsigned long long

64 bits

Values 04..~184467440737095516154, Oor

0y,ex- FFFFEFFFFFFFFFFE, .,

Example: 000000000000000000000000000000000
0000000000000000000000000001100,;,
000000000000000C;,«

Memory Layout

The minimum addressable element of memory is a byte. The maximum
addressable element is a doubleword on 32-bit machines and a quadword
on 64-bit machines. All general registers are 32-bit on 32-bit CPUs and can
contain doubleword values. On 64-bit CPUs, all general registers are 64-bit
and can contain quadword values. Figure 5-2 shows a typical memory
layout, and Figure 5-3 shows the byte layout of some general CPU registers.
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Address 0000000000402000 Byte

Address 0000000000402001 Byte

Byte

Byte

Address 0000000000402004 Byte

Byte

Byte

Byte

Address 0000000000402008 Byte

Figure 5-2. Typical memory layout

56

QUADWORD



CHAPTER 5
%RAX §> g, §° §=
2 2 2 3
%RBX | % £ £ £
%RCX g g, E. 2
%RDX ;i é ;5’ g

Figure 5-3. Typical registry layout

BYTES, WORDS, DOUBLE, AND QUAD WORDS

%EAX
o] Q o) Q
£ £, £, I
23] [=2) [=2) aa]

%EBX
2 2 2 2
g | & | & | &
%ECX
3 8 8 e
] ) ) )
[as] [as] as] a8
%EDX
@ D @ o
t i =, B
/m /m M /M

Remember that memory addresses are always 64-bit, and memory

addresses to 32-bit memory cells like integers are also 64-bit.

57



CHAPTER 5  BYTES, WORDS, DOUBLE, AND QUAD WORDS

Summary

This chapter discussed the bit- and byte-level memory granularity,
corresponding layout, and integral C and C++ types.

The next chapter looks at pointers in greater detail, considering
different byte memory granularity. We also discuss issues related to
abnormal defects, such as uninitialized, invalid, and NULL pointers.
Finally, we disassemble and trace a program that uses variables as
pointers.
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Pointers to Memory

Pointers Revisited

The pointer is a memory cell or a register that contains the address of
another memory cell. Memory pointers have their own addresses because
they are memory cells too. On 32-bit Linux, pointers are 32-bit, and on 64-
bit Linux, pointers are 64-bit.

Addressing Types

As we have seen in Chapter 5, memory cells can be of one byte, word,
doubleword, or quadword size. Therefore, we can have a pointer to a
byte, a pointer to a word, a pointer to a doubleword, and a pointer to a
quadword. The GDB disassembly output in Chapter 4 has 1 suffixes in
instructions involving pointers to memory that hold 32-bit (doubleword
size) values.

Here are some illustrated examples:

movb $OxFF, (%rax)
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The layout of memory before mowvb instruction execution is shown
in Figure 6-1, and the layout of memory after execution is shown in
Figure 6-2.

movw $OXFF, (%rax)
movl $OxFF, (%rax)
movq $OxFF, (%rax)

We need to prefix OxFF with $ to differentiate it from 0xFF as a memory
address.

The layout of memory after the execution of the movl instruction is
shown in Figure 6-3. We can see that, although we specify just a byte value
OxFF as a source operand to the movl instruction, it replaces all other 3
bytes of a doubleword in memory because we specify the destination as a
pointer to 4 bytes, and 0xFF is 0x000000FF as a doubleword. So we need
to specify the 1 suffix to disambiguate moving a doubleword value from
moving a byte value. The compiler complains if we forget and use mov:

Error: no instruction mnemonic suffix given and no register
operands; can't size instruction

Because 64-bit (quadword) registers may point to quadword memory
cells, we need to specify q to disambiguate moving a quadword value from
moving a byte value even if we specify a constant with all leading zeroes:

movq $0x00000000000000FF, (%rax)

However, if we want to move a word value only, we need to specify the
w suffix:

movw $OxFF, (%rax)
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This is equivalent to
movw $0XO00FF, (%rax)

Figure 6-4 shows a summary of various addressing modes.

Register "%RAX

Address 0000000000402000 0x00 “« i 0000000000402000

Address 0000000000402001 0x01
0x02
0x03

Address 0000000000402004 Byte

Figure 6-1. The layout of memory before mowb instruction execution
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Byte Register %RAX

Byte
movh

Address 0000000000402000 0xFF « 1 0000000000402000

Address 0000000000402001 0x01
0x02
0x03

Address 0000000000402004 B)-'te
Byte

Figure 6-2. The layout of memory after mowb instruction execution
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Byte Register "RAX

Byte
movl

Address 0000000000402000 0xFF « 0000000000402000

Address 0000000000402001 0x00
0x00
0x00

Address 0000000000402004 Byte

Byte

Figure 6-3. The layout of memory after the execution of movl
instruction
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Register %RDX

0000000000402000
Register %RAX
move mavh
> -
|
Address 0000000000402000 T | Byte 0000000000402000
movw
Address 0000000000402001 Byte B —
Byte
Byte Register %RBX
movl
Address 0000000000402004 Byte <
| Register %RCX 0000000000402001
Byte ' '
Byte
Byte 0000000000402004
Address 0000000000402008 I Byte

Figure 6-4. A summary of various addressing modes
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Registers Revisited

%RAX, %RBX, %RCX, and %RDX 64-bit registers can be used as pointers

to memory. They contain x86 32-bit registers %EAX, %EBX, %ECX, and
%EDX. These 32-bit parts contain old 16-bit registers %AX, %BX, %CX, and
%DX (each can hold a word). The %CX register was often used as a loop
counter, (Counter)X, in the assembly language corresponding to simple
loops in C and C++ code:

for (int i = 0; i < N ; ++i)

but modern C and C++ compilers may choose to use any other register or
even a memory location for such a purpose.

NULL Pointers

Addresses 0x0000000000000000-0x000000000000FFFF are specifically
made inaccessible on Linux. The following code will force an application
crash or kernel panic if executed inside a driver:

mov $0xF, %rax
movb $1, (%rax) # Access violation

Invalid Pointers

There are different kinds of invalid pointers that cause an access violation
when we try to dereference them:

o NULL pointers
o Pointers to inaccessible memory

o Pointers to read-only memory when writing
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Other pointers may or may not cause an access violation, and some of
them are discussed in subsequent chapters:

o Pointers pointing to “random” memory

o Uninitialized pointers having random value inherited

from past code execution
e Dangling pointers

The latter pointers are similar to pointers pointing to “random”
memory locations and arise when we forget to set pointer variables to zero
(NULL) after disposing of the memory they point to. By nullifying pointers,
we indicate that they no longer point to memory.

Variables As Pointers

Suppose we have two memory addresses (locations) “a” and “b” declared
and defined in C and C++ as

int a, b;

These are normal variables “a” and “b.” Also, we can have another two
memory addresses (locations) “pa” and “pb” declared and defined in C
and C++ as
int *pa, *pb;

Here, pa is a pointer to an int, or, in other words, the memory
cell pa contains the address of another memory cell that contains an
integer value.
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Pointer Initialization

In order to have pointers to point to memory, we need to initialize them
with corresponding memory addresses. Here is typical C or C++ code that
does what we need:

int a; // uninitialized variable

int *pa; // uninitialized pointer

pa = &a; // (pa) now contains the address a
int b = 12; // initialized variable

int *pb = &b; // initialized pointer

We see that pointers are also variables and can change their values
effectively pointing to different memory locations during program
execution.

Initialized and Uninitialized Data

Here is a bit of additional information about initialized and uninitialized
variables that is useful to know: an executable program in Linux is divided
into different sections. One is called .data, where all global and static
variables (including pointers) are put.

Consider this C or C++ data definition:

int array[1000000]; // size 4,000,000 bytes or 3.8Mb

We would expect the size of an executable file to be about 4Mb.
However, the program size on a disk is only 16Kb. It is because the
uninitialized array contains only information about its size. When we
launch the program, this array is recreated from its size information and
filled with zeroes. The size of the program in memory becomes about 4Mb.
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In the case of the initialized array, the program size on disk is 4.01Mb:
int array[1000000] = { 12 };

This is because the array was put into a .data section and contains the
following sequence of integers { 12,0, 0, 0,0 ... }.

More Pseudo Notation

We remind that (a) means contents of memory at the address a, and (rax)
means contents of a 64-bit memory cell at the address stored in the %RAX
register (here, %RAX is a pointer).

We also introduce an additional notation to employ in this and
subsequent chapters: *(pa) means contents at the address stored at the
address pa and is called dereferencing a pointer whose address is pa. The
corresponding C/C++ code is similar:

int *pa = &a;
int b = *pa;

“MemoryPointers” Project: Memory Layout

This project is very similar to the “Pointers” project from Chapter 4. We
have this data declaration and definition in the C or C++ language:

int a, b;
int *pa, *pb = 8b;
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The project code corresponds to the following pseudo-code and

assembly language:

address a -> (pa) lea a, %rax
1 -> *(pa) ; (@) = mov %rax, pa
1 -> *(pb) ; (b) = mov pa, %rax

*(pb) + *(pa) -> *(pb) ; (b)

movl $1, (%rax)
mov pb, %rbx
movl $1, (%rbx)
mov (%rax), %ecx
add (%rbx), %ecx
mov %ecx, (%rbx)

The source code for this chapter can be downloaded from

github.com/apress/linux-debugging-disassembling-reversing/
Chapter6/

We compile and link it and load the executable into GDB as described
in Chapter 4. We get the following output:

coredump@ESKTOP-IS6V2L0:~/pflddr/x64/Chapter6$ as
MemoryPointers.asm -o MemoryPointers.o

coredump@ESKTOP-IS6V2L0:~/pflddr/x64/Chapter6$ 1ld
MemoryPointers.o -o MemoryPointers

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter6$ gdb
./MemoryPointers

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/
licenses/gpl.html>

This is free software: you are free to change and
redistribute it.
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There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_ 64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources

online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from ./MemoryPointers...(no debugging symbols
found)...done.

(gdb)

Then we put a breakpoint on the main function and run the program
until GDB breaks in:

(gdb) break main
Breakpoint 1 at 0x401000

(gdb) run
Starting program: /home/coredump/pflddr/x64/Chapter6/
MemoryPointers

Breakpoint 1, 0x0000000000401000 in _start ()
We disassemble the main function:

(gdb) disass main

Dump of assembler code for function start:

=> 0x0000000000401000 <+0>: lea 0x402000, %rax
0x0000000000401008 <+8>: mov %rax,0x402008
0x0000000000401010 <+16>: mov 0x402008, %rax
0x0000000000401018 <+24>: movl  $0x1, (%rax)

70



CHAPTER6  POINTERS TO MEMORY

0x000000000040101e <+30>: mov 0x402010, %rbx
0x0000000000401026 <+38>: movl  $0x1, (%rbx)
0x000000000040102C <+44>: mov (%rax),%ecx
0x000000000040102e <+46>: add (%rbx),%ecx
0x0000000000401030 <+48>: mov %ecx, (%rbx)
0x0000000000401032 <+50>: mov $0x3c,%rax
0x0000000000401039 <+57>: mov $0x0,%rdi
0x0000000000401040 <+64>: syscall

End of assembler dump.

Then we clear %RAX, %RBX, and %RCX registers to set up a memory
layout that is easy to follow:

(gdb) set $rax = 0
(gdb) set $rbx = 0
(gdb) set $rcx = 0

(gdb) info registers $rax $rbx $rcx

rax 0x0
rbx 0x0
rcxX 0x0

We also instruct GDB to automatically display the current instruction
to be executed; the values of registers %RAX, %RBX, and %RCX; and the

»

contents of variables “a,” “b,” “pa,” and “pb”:

(gdb) display/i $rip

1: x/1 $rip

=> 0x401000 <_start>: lea 0x402000, %rax
(gdb) display/x $rax

2: /x $rax = Ox0
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(gdb) display/x $rbx
3: /x $rbx = 0x0

(gdb) display/x $rcx
4: /x $rcx = 0x0

(gdb) display/x (int)a
5: /x (int)a = 0x0

(gdb) display/x (int)b
6: /x (int)b = oxo

(gdb) display/x (long)pa
7: /x (long)pa = 0x0

(gdb) display/x (long)pb
8: /x (long)pb = 0x402004

We see that the pb variable contains the address 0x402004. We
then check the addresses of (variables) memory locations “a,” “b,” “pa,”
and “pb”:

(gdb) print 8a
$1 = (<data variable, no debug info> *) 0x402000

(gdb) print 8b
$2 = (<data variable, no debug info> *) 0x402004

(gdb) print 8pa
$3 = (<data variable, no debug info> *) 0x402008

(gdb) print 8&pb
$4 = (<data variable, no debug info> *) 0x402010
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We also check the value stored at the address 0x402004 (value of pb
that is the address of b):

(gdb) x 0x402004
0x402004: 0x00000000

This corresponds to the memory layout before executing the first LEA
instruction, and it is shown in Figure 6-5.

Reg‘ister B RAX
Location : a
(Address 0000000000402000) 0
Location : b
(Address 0000000000402004) > 0

Register % RBX

Location: pa 0
(Address 0000000000402008)
00000000 Register %RCX
Location: pb
Address 0000000000402010) !
( 00402004 !
|
|
|
I
0

Figure 6-5. Memory layout before executing the first LEA instruction
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We then execute our code step by step (changes are in bold):

(gdb) si

0x0000000000401008 in _start ()
1: x/i $rip

=> 0x401008 <_start+8>: mov %rax,0x402008
2: /x $rax = 0x402000

/x $rbx = 0x0

/x $rcx = 0x0

/x (int)a = 0x0

/x (int)b = ox0

/x (long)pa = 0x0

/x (long)pb = 0x402004

0 N O U1 B~ W

(gdb) si

0x0000000000401010 in _start ()
1: x/1 $rip

=> 0x401010 < _start+16>: mov 0x402008, %rax
/x $rax = 0x402000

/x $rbx = 0x0

/x $rcx = 0x0

/x (int)a = ox0

/x (int)b = 0x0

7: /x (long)pa = 0x402000

8: /x (long)pb = 0x402004

S U1 B W N

(gdb) si

0x0000000000401018 in _start ()

1: x/1 $rip

=> 0x401018 <_start+24>: movl  $0x1, (%rax)
2: /x $rax = 0x402000

3: /x $rbx = 0x0

4: /x $rcx = 0x0
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: /x (int)a
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0x0
0x0

/x (int)b

: /x (long)pa = 0x402000
: /x (long)pb = 0x402004

(gdb) si
0x000000000040101e in _start ()

1:
=>

B~ W N

o N O

x/1i $rip
0x40101e < start+30>: mov 0x402010, %rbx

: /X $rax = 0x402000

/x $rbx = 0x0

/x $rcx = 0x0

/x (int)a = ox1

/x (int)b = 0x0

/x (long)pa = 0x402000
/x (long)pb = 0x402004

(gdb) si
0x0000000000401026 in _start ()

: x/1 $rip

0x401026 <_start+38>: movl  $0x1, (%rbx)

: /X $rax = 0x402000

/x $xbx = 0x402004

/x $rcx = 0x0

/x (int)a = ox1

/x (int)b = 0x0

/x (long)pa = 0x402000
/x (long)pb = 0x402004

(gdb) si
0x000000000040102¢ in _start ()

1:
=>

x/1 $rip
0x40102c <_start+44>: mov (%rax),%ecx
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2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x $rcx = 0x0

5: /x (int)a = ox1

6: /x (int)b = ox1

7: /x (long)pa = 0x402000
8: /x (long)pb = 0x402004

(gdb) si

0x000000000040102e in _start ()
1: x/1 $rip

=> 0x40102e < start+46>: add (%rbx),%ecx
2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x $rcx = Ox1

: /x (int)a = ox1

: /x (int)b = ox1

/x (long)pa = 0x402000

/x (long)pb = 0x402004

O N O WU

(gdb) si

0x0000000000401030 in _start ()
1: x/1 $rip

=> 0x401030 <_start+48>: mov %ecx, (%rbx)
2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x $rcx = 0x2

/x (int)a = ox1

/x (int)b = ox1

/x (long)pa = 0x402000

/x (long)pb = 0x402004

o N o Ui
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(gdb) si

0x0000000000401032 in _start ()
1: x/1 $rip

=> 0x401032 <_start+50>: mov $0x3c,%rax
: /x $rax = 0x402000

: /x $rbx = 0x402004

/X $rcx = 0x2

/x (int)a = ox1

/x (int)b = ox2

/x (long)pa = 0x402000

: /x (long)pb = 0x402004

The final memory layout and registers are shown in Figure 6-6.

S U1 B~ W N
00 ee e
n

I

[o <IN
x
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Figure 6-6. The final memory layout and registers

78

Location : a
(Address 0000000000402000)

Location : b
(Address 0000000000402004)

Location: pa
(Address 0000000000402008)

Location: pbh
(Address 0000000000402010)

00000000
00402000

00000000
00402004

Register % RAX

00000000

00402000

Register “%RBX

00000000
00402004

Register %RCX
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Summary

This chapter looked at pointers in greater detail, considering different byte
memory granularity. We also discussed issues related to abnormal defects,
such as uninitialized, invalid, and NULL pointers. Finally, in the GDB
debugger, we disassembled and traced a program that used variables as
pointers and learned additional commands to display memory addresses
and contents.

The next chapter introduces logical instructions, zeroing memory,
and the instruction pointer register. We also learn an additional GDB
command to get program code and data section addresses.
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CHAPTER 7

Logical Instructions
and RIP

Instruction Format

We have seen that assembly language instructions have uniform format:

Opcode operand
Opcode source operand, destination operand

Operands can be registers (reg), memory references (mem), or some
numbers, called immediate values (imm). Typical notational examples:

inc mem/reg

dec mem/reg

add reg/imm, mem/reg
add mem/imm, reg

and some concrete assembly language examples:

inc (%rax)

decl a

addl $ox10, (%rax)
addq a, (%rax)

© Dmitry Vostokov 2023
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Logical Shift Instructions

In addition to arithmetic instructions, there are so-called logical shift
instructions that just shift a bit string to the left or the right.
Shift to the left:

11111111 -> 11111110 ; shift by 1
11111110  -> 11110000 ; shift by 3
shl imm/reg, mem/reg

shl $1, %rax

shlb $2, (%rax)

Shift to the right:

11111111 -> 01111111 ; shift by 1
01111111  -> 00001111 ; shift by 3
shr imm/reg, mem/reg

shr $1, %rax

shr $2, (%rax)

Logical Operations

Here, we recall logical operations and corresponding truth tables. We
abbreviate True as T and False as F.

AND
land 1 =1 Tand T=T
l1and 0=0 Tand F=F
Oand 1 =0 FandT-=F
Oand 0 =0 Fand F =F

82



CHAPTER 7  LOGICAL INSTRUCTIONS AND RIP

OR
l1oril1=1 TorT=T
10r0=1 Tor F=T
Oor1-=1 ForT=T
Oor0=0 ForF=F

Zeroing Memory or Registers

There are several ways to put a zero value into a register or a memory
location:

1. Move avalue:

mov $0, a
mov $0, %rax
mov $0, %eax

2. Use the XOR (Exclusive OR) logical operation:

X0T %rax, %rax
X0r %eax, keax

XOR
1xor 1 =0 Txox T=F
1 xor 0 =1 Txor F=T
0 xor 1 =1 Fxor T=T
0 xor 0 =0 F xor F = F

This operation clears its destination operand because the source
operand is the same, and the same bits are cleared.
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LOGICAL INSTRUCTIONS AND RIP

Instruction Pointer

Consider these two execution steps from the previous chapter project:

(gdb)

si

0x000000000040102¢ in _start ()
1: x/1 $rip
=> 0x40102c <_start+44>: mov

/x
/X
/X
/x
/X
/X
/x

(gdb)

0O N O U1 bW N

$rax =
$rbx =
$rcx =
(int)a
(int)b

(Long)pa
(Long)pb

si

0x402000
0x402004

0x0

= 0x1

0ox1
0x402000
0x402004

0x000000000040102e in _start ()
1: x/i $rip
=> 0x40102e <_start+46>: add

: /X
: /X
/x
/X
/X
/x
/X

0 N O L1 B~ W N

$rax =
$rbx =
$rcx =
(int)a
(int)b

(1ong)pa
(long)pb

0x402000
0x402004

0ox1

= 0x1

0x1
0x402000
0x402004

(%rax),%ecx

(%xbx) ,%ecx

When the MOV instruction at the 000000000040102c¢ address is being
executed, another CPU register %RIP points to the next instruction at the
000000000040102e address to be executed. It is shown in Figure 7-1.
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RIP

00000000
0040102e

LOGICAL INSTRUCTIONS AND RIP

Current executing instruction: mov  (“erax),’secx

Next instruction:

add ("erbx),cecx

Figure 7-1. Memory layout and %RIP when executing MOV

instruction

Code Section

Recall that in Chapter 6, we discussed the .data section where program

data is put. The program code is put into the .text section.

The following GDB command lists various program sections and their

information:

(gdb) maintenance info sections

Exec file:

" /home/coredump/pflddr/x64/Chapter6/MemoryPointers', file

type elf64-x86-64.

[0] 0x00400120->0x00400140 at 0x00000120: .note.gnu.
property ALLOC LOAD READONLY DATA HAS CONTENTS

[1] 0x00401000->0x00401042 at 0x00001000: .text ALLOC LOAD
READONLY CODE HAS CONTENTS

[2] 0x00402000->0x00402018 at 0x00002000: .data ALLOC LOAD

DATA HAS_CONTENTS
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Summary

In this chapter, we learned logical operations and instructions, how to zero
memory, the instruction pointer, and an additional GDB command to get
program code and data section addresses.

In the next chapter, we use our assembly language knowledge and
reconstruct C and C++ code that uses pointers.
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Reconstructing a
Program with Pointers

Example of Disassembly Output:
No Optimization

The ability to reconstruct approximate C or C++ code from code
disassembly is essential in memory dump analysis and debugging.
The project for this chapter can be downloaded from
github.com/apress/linux-debugging-disassembling-reversing/
Chapter8/
We compile and link it, load executable into GDB, put a breakpoint
on the main function, and run the program until GDB breaks in, then
disassemble its main function:

coredump@ESKTOP-IS6V2L0:~/pflddr/x64/Chapter8$ gcc
PointersAsVariables.cpp -o PointersAsVariables

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter8% gdb
./PointersAsVariables

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

© Dmitry Vostokov 2023 87
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License GPLv3+: GNU GPL version 3 or later <http://gnu.org/

licenses/gpl.html>

This is free software: you are free to change and

redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources

online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from ./PointersAsVariables...(no debugging
symbols found)...done.

(gdb) break main
Breakpoint 1 at 0x1129

(gdb) run
Starting program: /home/coredump/pflddr/x64/Chapter8/
PointersAsVariables

Breakpoint 1, 0x0000555555555129 in main ()
(gdb) disass main
Dump of assembler code for function main:

0x0000555555555125 <+0>: push  %rbp
0x0000555555555126 <+1>: mov %rsp,%rbp

=> 0X0000555555555129 <+4>: mov %edi, -0x4(%rbp)
0x000055555555512C <+7>: mov %rsi,-0x10(%rbp)
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0x0000555555555130 <+115:
# 0x555555558030 <a>
0x0000555555555137 <+18>:
# 0x555555558038 <pa>
0x000055555555513e <+25>:
# 0x555555558034 <b>
0x0000555555555145 <+325:
# 0x555555558040 <pb>
0x000055555555514¢c <+39>:
# 0x555555558038 <pa>
0x0000555555555153 <+46>:
0x0000555555555159 <+52>:
# 0x555555558040 <pb>
0x0000555555555160 <+59>:
0x0000555555555166 <+65>:
# 0x555555558040 <pb>
0%000055555555516d <+72>:
0x000055555555516F <+74>:
# 0x555555558038 <pa>
0x0000555555555176 <+81>:
0x0000555555555178 <+83>:
# 0x555555558040 <pb>
0x000055555555517F <+90>:
0x0000555555555181 <+92>:
0x0000555555555183 <+94>:
# 0x555555558038 <pa>
0x000055555555518a <+101>:
0x000055555555518¢c <+103>:
0x000055555555518F <+106>:
0x0000555555555191 <+108>:
# 0x555555558040 <pb>

lea

mov

lea

mov

mov

movl
mov

movl
mov

mov
mov

mov
mov

add
mov
mov

mov
add
mov
mov

ox2ef9(%rip),%rax
%rax,ox2efa(%rip)
ox2eef (%rip),%rax
%rax,ox2ef4(%rip)
ox2ee5(%rip),%rax

$ox1, (%rax)
Ox2ee0(%rip),%rax

$ox1, (%rax)
ox2ed3(%rip),%rax

(%rax),%ecx
ox2ec2(%rip),%rax

(%rax),%edx
ox2ec1(%rip),%rax

%ecx, edx
%edx, (%rax)
Ox2eae(%rip),%rax

(%rax),%edx
$0x1,%edx

%edx, (%rax)
Ox2ea8(%rip),%rax
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0x0000555555555198 <+115:  mov (%rax),%ecx
0x000055555555519a <+117>: mov  O0x2e97(%rip),%rax
# 0x555555558038 <pa>
0x00005555555551a1 <+124»: mov (%rax),%edx
0x00005555555551a3 <+126>: mov  0x2e96(%rip),%rax
# 0x555555558040 <pb>
0x00005555555551aa <+133»: imul Z%ecx,%edx
0x00005555555551ad <+136>: mov %edx, (%rax)
0x00005555555551af <+138>: mov $0x0, %eax
0Xx00005555555551b4 <+143>:  pop  %rbp
0x00005555555551b5 <+144>:  retq

End of assembler dump.

Reconstructing C/C++ Code: Part 1

Now we go from instruction to instruction highlighted in bold on the
previous page and try to reconstruct pseudo-code which is shown as
comments to assembly language code.

lea ox2ef9(%rip),%rax # 0x555555558030 <a>
# address a -» rax

mov %rax,ox2efa(%rip) # 0x555555558038 <pa>
# rax -» (pa)

lea  ox2eef(%rip),%rax # 0x555555558034 <b>
# address b -» rax

mov  %rax,0x2ef4(%rip) # 0x555555558040 <pb>
# rax -» (pb)

mov ox2ee5(%rip),%rax # 0x555555558038 <pa>
# (pa) -» rax

movl  $ox1, (%rax)

#1 -> (rax)
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mov 0x2ee0(%rip),%rax # 0x555555558040 <pb>
# (pb) -» rax

movl  $ox1, (%rax)

#1 -> (rax)

mov ox2ed3(%rip),%rax # 0x555555558040 <pb>
# (pb) -> rax

mov (%rax),%ecx

# (rax) -» ecx

mov ox2ec2(%rip),%rax # 0x555555558038 <pa>
# (pa) -> rax

mov (%rax),%edx

# (rax) -> edx

mov ox2ec1(%rip),%rax # 0x555555558040 <pb>
# (pb) -» rax

add %hecx, hedx

# ecx + edx -> edx

mov %edx, (%rax)

# edx -> (rax)

mov ox2eae(%rip),%rax # 0x555555558038 <pa>
# (pa) -» rax

mov (%rax),%edx

# (rax) -» edx

add $ox1, %edx

#1 + edx -> edx

mov %edx, (%rax)

# edx -» (rax)

mov 0x2ea8(%rip),%rax # 0x555555558040 <pb>
# (pb) -> rax

mov (%rax),%ecx

# (rax) -> ecx

mov 0x2e97(%rip),%rax # 0x555555558038 <pa>
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# (pa) -» rax

mov (%rax),%edx

# (rax) -» edx

mov 0x2e96(%rip),%rax # 0x555555558040 <pb>
# (pb) -» rax

imul  %ecx,%edx

# ecx * edx -» edx

mov %edx, (%rax)

# edx -» (rax)

Reconstructing C/C++ Code: Part 2

Now we group pseudo-code together with possible mixed C/C++ and
assembly language equivalents:

address a -> rax
rax -> (pa)

int a; int *pa;
pa = &a;

we ‘oo

address b -> rax int b; int *pb;

we ‘oo

rax -> (pb) pb = &b;
(pa) -»> rax 3 *pa = 1;

1 -> (rax)

(pb) -> rax 3 *pb = 1;

1 -> (rax)

(pb) -> rax 3 ecx = *pb;
(rax) -> ecx

(pa) -»> rax 3 edx = *pa;

(rax) -> edx

(pb) -> rax
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ecx + edx -> edx
edx -> (rax)

(pa) -> rax
(rax) -> edx

1 + edx -> edx
edx -> (rax)

(pb) -> rax
(rax) -> ecx

(pa) -> rax
(rax) -> edx

(pb) -> rax
ecx * edx -> edx
edx -> (rax)

CHAPTER 8 RECONSTRUCTING A PROGRAM WITH POINTERS

edx
3 *pb

we

3 edx

edx

we ‘oo

ecx

we

3 edx

edx
3 *pb

we

ecx + edx;
edx;

*pa;
1 + edx;
edx;

*pb;

*pa;

ecx * edx;
edx;

Reconstructing C/C++ Code: Part 3

Next, we combine more mixed statements into C/C++ language code:

int a; int *pa;

pa = 8&a;

int b; int *pb;
pb = &b;

*pa = 1;

*pb = 15

ecx = *pb;

edx = *pa;

edx = ecx + edx;

3 *pb = *pb + *pa;
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*pb = edx;

edx = *pa; 3 *pa = 1 + *pa;
edx = 1 + edx;

*pa = edx;

ecx = *pb; 3 *pb = *pb * *paj
edx = *pa;

edx = ecx * edx;
*pb = edx;

Reconstructing C/C++ Code:
C/C++ Program

Finally, we have something that looks like a complete C/C++ code:

int a, b;
int *pa, *pb;

pa = 8&a;
pb = 8&b;
*pa = 1;
*pb = 15

*pb = *pb + *pa;
++*pa;
*pb = *pb * *pa;

If we look at the project source code PointersAsVariables.cpp,
we see the same code compiled into the executable file that we were
disassembling.
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Example of Disassembly Output:
Optimized Program

The optimized program (compiled with -O2) contains fewer CPU
instructions:

(gdb) disass main
Dump of assembler code for function main:
=> 0X0000555555555040 <+0>: lea ox2ffd(%rip),%rax
# 0x555555558044 <a>
0x0000555555555047 <+7>: movl  $0x2,0x2ff3(%rip)
# 0x555555558044 <a>

0x0000555555555051 <+17>: mov %rax,0ox2fe0(%rip)
# 0x555555558038 <pa>

0X0000555555555058 <+24>: lea ox2fe1(%rip),%rax
# 0x555555558040 <b>

0x000055555555505F <+31>: mov %rax,ox2fca(%rip)
# 0x555555558030 <pb>

0x0000555555555066 <+38>: X0T %heax,heax

0x0000555555555068 <+40>: movl  $0x4,0x2fce(%rip)
# 0x555555558040 <b>
0x0000555555555072 <+50>: retq

End of assembler dump.

We see that the compiler was able to figure out the result of
computation: a = 2; b = 4. However, one question remains: Why did the
compiler not optimize away the first instructions initializing pa and pb
variables? The answer lies in the nature of a separate compilation model
in C and C++. We can compile several compilation unit (.c or .cpp) files
separately and independently. Therefore, there is no guarantee that
another compilation unit would not reference our globally declared and
defined pa and pb variables.
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We can also see that the compiler reordered instructions. It can be
seen in pseudo-code:

address a -> rax
1 -> (a)
rax -> (pa)

This is because pa initialization with the address of the variable a is
independent of assigning 1 to the memory cell the variable a points to,
and the reordered sequence of instructions could be executed faster on

modern processors.

Summary

In this chapter, we used our assembly language knowledge to reconstruct
C and C++ code that uses pointers. We also compared the disassembly of
the optimized code.

The next chapter looks at the stack memory layout and its operations,
jump instructions, and function calls. We also explore a call stack using the
GDB debugger.
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CHAPTER 9

Memory and Stacks

Stack: A Definition

A stack is a simple computational device with two operations, push and
pop, that allows us to pile up data to remember it in LIFO (Last In First
Out) manner and quickly retrieve the last piled data item as shown in

Figure 9-1.

© Dmitry Vostokov 2023
D. Vostokov, Foundations of Linux Debugging, Disassembling, and Reversing

97


https://doi.org/10.1007/978-1-4842-9153-5_9

CHAPTER9  MEMORY AND STACKS

Push operation

2
1
d 1
<Empty Stack> ||
3
3 >
2 2
1 1

Figure 9-1. Stack operations illustrated

3
> 3
2 2
1 1
Pop operation
2

1 > '
| <Empty Stack>

Stack Implementation in Memory

The CPU %RSP register (Stack Pointer) points to the top of a stack. As
shown in Figure 9-2, a stack grows toward lower memory addresses with

every push instruction, and this is implemented as the %RSP register

decrements by eight. We can read the top stack value using the following

instruction:

mov (%rsp), %rax
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%RSP

%RSP

eeea7f
ffffe53e

80007FFf
ffffes28

Figure 9-2. Memory layout during push operations

CHAPTER 9

0

3 3

2 2

1 1

0

%RSP

000071 Ff
ffffes20

MEMORY AND STACKS

pega7fffffffes18

pepe7fffffffes2e

pepe7fffffffes2s

pepe7fffffffes3e

peBe7fffffffes38

The opposite POP instruction increments the value of the %RSP

register, as shown in Figure 9-3.
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POP
0 00007 FFFFfffe518
3
3 > ! 3 0eBeTFfFF{ffe520
| | 2
2 Eamonee ——> ———— 2 00007 FFFFFFfes28
| i
1 1 ‘ 1 ‘ 1 00007FFFFFFfe530
0 POBR7FFFFFffes38
%RSP % RSP % RSP
i . .
00007FFf | eoe7fff I 00007 FFF
FFFfes20 | Ffffes2s | FFffes30
. | |

Figure 9-3. Memory layout during pop operations

Things to Remember

Here is the summary of what we have learned about stacks with the last

three points covered in the subsequent chapters of this book:
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Stack operations are LIFO - Last In First Out.
The stack grows down in memory.
The %RSP register points to the top of a stack.

Stacks are used for storing return addresses for CALL
instructions.

Stacks are used for passing additional parameters to
functions.

Stacks are used for storing function parameter values
and local and temporary variables.
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PUSH Instruction

We can push a value stored in a register, a value stored at a memory
address, or a constant (immediate operand):

PUSH x/mem/imm

Here is a PUSH simplified pseudo-code adopted from the
Intel manual:

IF OperandSize = 64
THEN
%RSP - 8 -> %RSP
OperandValue -> (%RSP) ; quadword
ELSE
%#RSP - 2 -> %RSP
OperandValue -> (%RSP) ; word
FI

Examples:

push  %rax
pushw (%rbx)
push  $0

POP Instruction

We can pop a value stored on the top of a stack to a register or a memory
address:

POP x/mem
Here is a POP simplified pseudo-code adopted from the Intel manual:

IF OperandSize = 64
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THEN
(%RSP) -> OperandValue ; quadword
%RSP + 8 -> %RSP
ELSE
(%RSP) -> OperandValue ; word
ZRSP + 2 -> %RSP
FI
Examples:
pop  %rax

popw  (%rbx)

Register Review

So far, we have seen and used general-purpose CPU registers:

e  %RAX (among its specific uses is to contain function

return values)
¢  %RBX
¢ %RCX
¢  %RDX

We also have special-purpose registers:
e  %RIP (Instruction Pointer)
e  %RSP (Stack Pointer)

AMDG64 and Intel EM64T architectures introduced additional general-
purpose registers: %R8, %R9, %R10, %R11, %R12, %R13, %R14, %R15.

These additional registers are used a lot in the x64 code. More
general-purpose registers allow faster code execution because temporary
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computation results can be stored there instead of memory locations. Here

is a disassembly from the read function:

(gdb) disass read

Dump of assembler code for function GI  libc read:

0x00007ffff7ef2450 <+0>:

lea 0xd6299(%rip),%rax

# Ox7Tfff7fc86f0 <_libc multiple threads>

0x00007ffff7ef2457 <+7>:
0x00007ffff7ef2459 <+9>:
0x00007ffff7ef245b <+11>:

0x00007ffff7ef245d <+13>:
0x00007ffff7ef245F <+15>:
0x00007ffff7ef2461 <+17>:
0x00007ffff7ef2467 <+23>:

0x00007ffff7ef2469 <+25>:
0x00007ffff7ef246a <+26>:
0x00007ffff7ef2470 <+32>:
0x00007ffff7ef2472 <+34>:
0x00007ffff7ef2475 <+37>:
0x00007ffff7ef2476 <+38>:
0x00007ffff7ef2479 <+41>:
0x00007ffff7ef247a <+42>:
0x00007ffff7ef247c <+44>:
0x00007ffff7ef2480 <+48>:

0x00007ffff7ef2485 <+53>:
0x00007ffff7ef2488 <+56>:
0x00007ffff7ef248b <+59>:
0x00007ffff7ef248d <+61>:
0x00007ffff7ef2490 <+64>:

mov (%rax),%eax

test  %eax,%eax

jne ox7ffff7ef2470 <_GI___
libc_read+32>

Xor %eax,heax

syscall

cmp $oxfHfffffffffffoo0,%rax

ja ox7ffff7ef24co < GI___
libc_read+112>

retq
nopw  0x0(%rax,%rax,1)
push  %ri2

mov %rdx,%ri2

push  %rbp

mov %rsi,%rbp

push  %rbx

mov %edi,%ebx

sub $0x10,%rsp

callg ox7ffff7foe750 <_ libc_

enable_asynccancel>

mov %x12,%rdx

mov %rbp,%rsi

mov %ebx, %edi

mov %eax,%xr8d

Xor %heax,heax
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0x00007ffff7ef2492 <+66>: syscall

0x00007ffff7ef2494 <+68>: cmp $oxffffHffffffff000,%rax

0x00007ffff7ef249a <+74>: ja ox7ffff7ef24d4 < GCI
libc_read+132>

0x00007ffff7ef249c <+76>: mov %x8d,%edi

0x00007ffff7ef249f <+79>: mov %rax,ox8(%rsp)

0x00007ffff7ef24a4 <+84>: callg ox7ffff7foe7bo < libc
disable_asynccancel>

0x00007ffff7ef24a9 <+89>: mov 0x8(%rsp),%rax

0x00007ffff7ef24ae <+94>: add $0x10,%rsp

0x00007ffff7ef24b2 <+98>: pop %rbx

0x00007ffff7ef24b3 <+99>: pop %rbp

0x00007ffff7ef24b4 <+100>:  pop %r12

0x00007ffff7ef24b6 <+102>: retq

0x00007ffff7ef24b7 <+103>: nopw  OxO(%rax,%rax,1)

0Xx00007ffff7ef24c0 <+112>: mov 0xd09a9(%rip),%rdx

# ox7ffff7fc2e70

0x00007ffff7ef24c7 <+119>: neg %eax

0x00007ffff7ef24c9 <+121>: mov  %eax,%fs: (%rdx)

0x00007ffff7ef24cc <+124>:  mov $oxffHfHffffffffffff,%rax

0x00007ffff7ef24d3 <+131>: retq

0x00007ffff7ef24d4 <+132>: mov  0xd0995(%rip),%rdx

# ox7ffff7fc2e70

0x00007ffff7ef24db <+139>: neg %eax

0x00007ffff7ef24dd <+141>: mov  %eax,%fs: (%rdx)

0x00007ffff7ef24e0 <+144>:  mov $oxffHfHffffffffffff,%rax

0x00007ffff7ef24e7 <+151>:  jmp ox7ffff7ef249c < GI
libc_read+76>

End of assembler dump.
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Application Memory Simplified

When an executable file is loaded into memory, its header and sections are
mapped to memory pages. Some data and code are copied unmodified,
but some data is initialized and expanded. The first stack is also created at
this stage. The %RIP register is set to point to the first program instruction,
and %RSP points to the top of the stack. This simplified process is shown in

Figure 9-4.
ELF64 Header I . Header

| «< %RIP

text » Code

data »

Data

Stack
« %RSP

Figure 9-4. Application memory layout

Stack Overflow

By default, the stack size is limited (system and limit dependent, and
on our system, it is 8192Kb or 8388608 bytes). If a stack grows beyond
the reserved limit, a stack overflow occurs (segmentation fault). It can
be caused by an unlimited recursion, deep recursion, or very large local
variables:
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int func()

{
func();

return 0;

}

int func2()

{

int array[10000000] = { 1 };
printf("%d", array[10000000-1]);

Jumps

Another instruction we need to know and understand before we look
deeper into C/C++ functions is called JMP (Jump). Figure 9-5 shows
instructions in memory and corresponding values of the %RIP register.
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%RIP

Some code

JMP
0x0000555555558020 | | 0005555555560 1¢ —» D000555555558020

Some code

Some code -«

T 0x0000555555556010

JMP

000055555555802¢ » DO00555555556010

Some code

Figure 9-5. Example memory and register layout for JMP instruction

execution

We see that the JMP instruction changes %RIP to point to another

memory address, and the program execution continues from that location.

The code shown in Figure 9-5 loops indefinitely: this can be considered a
hang and CPU spike.
Here is a pseudo-code for absolute JMP instructions adopted from

Intel manuals and some examples:

; Format and arguments:

JMP 1r/mem64
; Pseudo-code:
DEST -> RIP

; Examples:

; new destination address for execution

JMP 0x555555558020

IMP *%RAX
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The jump is called absolute because we specify full memory addresses
and not a relative +/- number to the current %RIP value. The latter jump
is called relative. *%RAX means an indirect jump to the address located in
the %RAX register. It is illustrated in Figure 9-6.

MOV
= Ox0000555

bt

%RIP

000055

35560 1a

JMP #RAX

000055555555601¢ — O000555555558020
0005555550560 1 Some code
e
MOV
0x0000555555556010, ¢ 000055
%RAX
D00055555555802a JMP #%RAX 000D55555555802¢ » 000055555555G010

Some code

Figure 9-6. Example memory and register layout for relative JMP

instruction execution

Calls

We discuss two essential instructions that make the implementation of C
and C++ function calls. They are called CALL and RET. Figure 9-7 shows
instructions in memory and corresponding values of %RIP and %RSP

registers.
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Stack

0 "
%RIP RSP BR3IDAVDFFO

0 B230009FF8
OO0 1000 p | 0110000000 | 2930001808

g 0030000FF8

BEREEA55E01a CALL *%RAX 55565555601 ¢ - 555555558020 OB00FFS p | BASEBSSSEOIC | pazpppeFFs
01 1 OO0 2230001000

0 2030002FFO
o a BE3D0RFFB

i 000001000 | —p | O 8233801808

2 0 B038080FF3
0l | DOIOO0OFFE
BA5SIAAIE020 Some code -« MIRGGS0G8022 EEELEEN G
0030800FFO
G01c | BO300ADFFE

HHHHHLH58022 RET HEHSH5G58023 »> HHGH5655601c

DOZO00 1000 » | 0110000000 | e@30ea1ea8

H56555558023 Some code

Figure 9-7. Example memory and register layout for CALL and RET
instruction execution

We see that the CALL instruction pushes the current value of %RIP to
the stack and changes %RIP to point to another memory address. Then the
program execution continues from the new location. The RET instruction
pops the saved %RIP value from the stack to the %RIP register. Then
the program execution resumes at the memory location after the CALL
instruction.

Here is a pseudo-code for CALL instructions and some examples
adopted from Intel manuals:

; Format and arguments:
CALL r/mem64

; Pseudo-code:
PUSH RIP
DEST -> RIP
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; Examples:
CALL 0x555555558020
CALL *%RAX

Here is a pseudo-code for the RET instruction adopted from Intel
manuals:

; Format:
RET

; Pseudo-code:
POP() -> RIP

Call Stack

If one function (the caller) calls another function (the callee) in C and C++,
the resulting code is implemented using the CALL instruction, and during
its execution, the return address is saved on the stack. If the callee calls
another function, the return address is also saved on the stack, and so on.
Therefore, we have the so-called call stack of return addresses. Let us see
this with a simple but trimmed-down example.

Suppose we have three functions with their code occupying the
following addresses:

func 0000000140001000 - 0000000140001100
func2 0000000140001101 - 0000000140001200
func3 0000000140001201 - 0000000140001300

We also have the following code where func calls func2, and func2
calls func3:

void func()

{

func2();
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}

void func2()

{
func3();

When func calls func2, the caller's return address is
pushed to the stack, and %RSP points to some value in the
0000000140001000-0000000140001100 range, say 0000000140001020.
When func2 calls func3, the caller's return address is also
pushed to the stack, and %RSP points to some value in the
0000000140001101-0000000140001200 range, say 0000000140001180.
If we interrupt func3 with a debugger and inspect %RIP, we would find
its value in the range of 0000000140001201-0000000140001300, say
0000000140001250. Therefore, we have the memory and register layout
shown in Figure 9-8 (the usual function prolog is not shown; we will learn
about it in the next chapter).

%RSP —» | 0000000140001180 %RIP | 0000000140001250

0000000140001020

0

Figure 9-8. Example memory and register layout for call stack

The debugger examines the value of the %RIP register and the values
on top of the stack and then reconstructs this call stack:

func3
func2
func
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The debugger gets address ranges corresponding to func, func2, and
func3 from the so-called symbolic information, which may be either
stored inside an executable file or in some external file that needs to be
referenced explicitly.

Exploring Stack in GDB

To see the call stack in real action, we have a project called “SimpleStack,”
and it can be downloaded from
github.com/apress/linux-debugging-disassembling-reversing/
Chapter9/
We compile the files and load the executable into GDB:

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter9$ gcc
SimpleStack.c func.c func2.c func3.c -o SimpleStack

coredump@ESKTOP-IS6V2L0:~/pflddr/x64/Chapter9$ gdb
./SimpleStack

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/
licenses/gpl.html>

This is free software: you are free to change and
redistribute it.

There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
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Find the GDB manual and other documentation resources
online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from ./SimpleStack...(no debugging symbols
found)...done.

Then we put a breakpoint on the main function and run the program
until GDB breaks in:

(gdb) run
Starting program: /home/coredump/pflddr/x64/Chapter9/
SimpleStack

Breakpoint 1, 0x0000555555555129 in main ()

The function func3 has a breakpoint instruction inside that allows a
debugger to break in and stop the program execution to inspect its state.
We resume our program execution from our breakpoint in the main
function to allow the main function to call func, func to call func2, func2 to

call func3, and inside func3 to execute the explicit breakpoint:

(gdb) continue
Continuing.

Program received signal SIGTRAP, Trace/breakpoint trap.
0X000055555555516¢ in func3 ()

(gdb) info registers $rip $rsp
rip 0x55555555516¢ 0x55555555516¢C <func3+5>
rsp ox7fffffffe500 ox7fffffffe500

(gdb) x/i $rip
=> 0x55555555516C <func3+5>: nop
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(gdb) x/i $rip-

1

0x55555555516b <func3+4>:

int3

We dump the $rip-1 value because, when execution stops at the int3

instruction, %RIP points at the next instruction (nop).

Now we can inspect the top of the stack:

(gdb) x/10g $rsp

ox7fffffffe500:
ox7fffffffe510:
ox7fffffffe520:
ox7fffffffe530:
ox7fffffffes540:

0x00007fffffffe510 0x0000555555555164
0x00007fffffffes520 0x0000555555555153
0x00007fffffffe540 0x000055555555513¢e
0x00007fffffffe628 0x0000000100000000
0x0000555555555170 0x00007ffff7e2c09b

The data is meaningless for us, and we use another command variant

to dump memory with corresponding symbols:

(gdb) x/10a $rsp

ox7fffffffe500:
ox7fffffffe510:
ox7fffffffe520:
ox7fffffffe530:
ox7fffffffes540:

ox7ffff7e2c09b

ox7fffffffe510
ox7fffffffes520
ox7fffffffe540
ox7fffffffe628
0x555555555170

0x555555555164 <func2+14>
0x555555555153 <func+14>
0x55555555513e <main+25>
0x100000000
<__libc_csu_init>

<__libc_start main+235>

The current value of %RIP points to func3, and return addresses on the

stack are shown in bold. GDB is able to reconstruct the following call stack,

stack trace, or backtrace (bt):

(gdb) bt
#0
#1
#2
#3
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Summary

In this chapter, we looked at the stack memory layout and stack operations,
jump and call instructions, and function call memory layout. We also
explored a call stack using the GDB debugger commands.

In the next chapter, we look into further details of the stack layout
of the more complex code, for example, arrays, local variables, function
prolog, and epilog. Finally, we disassemble and analyze code that uses
local variables.
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Frame Pointer and
Local Variables

Stack Usage

In addition to storage for return addresses of CALL instructions, a stack is
used to pass additional parameters to functions and store local variables.
The stack is also used to save and restore values held in registers when
we want to preserve them during some computation or across function
calls. For example, suppose we want to do multiplication, but at the same
time, we have other valuable data in registers %RAX and %RDX. The
multiplication result will overwrite %RAX and %RDX values, and we
temporarily put their values on stack:

mov $10, %rax
mov $20, %rdx

cee ; now we want to preserve %RAX and %RDX
push  %rax
push  %rdx
imul %rdx ; %RDX and %RAX contain the result of
ZRAX*%RDX
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mov %rax, result
pop  %rdx ; pop in reverse order
pop  %rax ; stack is LIFO

Register Review

So far, we have encountered these general-purpose registers:

e  %RAX (among its specific uses are to contain
function return values and the lower part of a
multiplication result)

e  %RBX
e %RCX (among its specific uses is a loop counter)

e %RDX (among its specific uses is to contain the
higher part of a multiplication result if it exceeds the
maximum 64-bit value)

e  %RIP (Instruction Pointer, points to the next instruction
to be executed)

e  %RSP (Stack Pointer, points to the top of the stack)

We come to the next important register on Linux platforms called Base
Pointer register or sometimes as Stack Frame Pointer register %RBP.

Addressing Array Elements

We can also consider stack memory as an array of memory cells, and often
the %RBP register is used to address stack memory elements in the way
shown in Figure 10-1, where it slides into the frame of stack memory called
a stack frame. The first diagram depicts 64-bit (quadword) memory cells,
and the second depicts 32-bit (doubleword) memory cells.
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0010001000

0010001008

0010001010

0010001018

0010001020

0010001028

0010001030

0010001038

0010001018
001000101C
0010001020
0010001024
0010001028
001000102C
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Address of the

element

%RBP-0x20

%RBP-0x18

Y%RBP-0x10

%RBP-0x8

%RBP

%RBP+0x8

%RBP+0x10

%RBP+0x18

%RBP-0x8
Y% RBP-0x4
%RBP
%RBP+0x1
%RBP+0x8
% RBP+0xC

Value of the
element

-0x20(%RBP)

-0x18(%RBP)

-0x10(%RBP)

-0x8(%RBP)

(»oRBP)

0x8(%RBP)

Ox10(%RBP)

0x18(%RBP)

-0x8(%REBP)
0x4(%REBP)
(%REP)
Dx1(%RBP)
0x8(%RBP)
0xC(%RBP)

Figure 10-1. Example memory layout when addressing array

elements

Stack Structure (No Function Parameters)

Suppose the following function is called:

void func()

{

int vari, var2;
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// body code

/] ...
}
Before the function body code is executed, the following pointers
are set up:

e (%RBP) contains the previous %RBP value.
o -0x4(%RBP) contains local variable varl (doubleword).

e -0x8(%RBP) contains local variable var2 (doubleword).

It is illustrated in Figure 10-2.

Saved
register

%RSP —»

i Local variable 2

Local variable 1

Previous

0
“RBP —» %REP

Return
address

LU I.’E.'ll

variable

Previous

%RBP

Return
address

Figure 10-2. Stack memory layout without function parameters
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Function Prolog

The sequence of instructions resulting in the initialization of the %RBP
register and making room for local variables is called the function prolog.
One example of it is Figure 10-3, where func calls func2, which has one
local variable var. Sometimes, saving necessary registers is also considered
as part of a function prolog.

func() { func2(); } func2() { long var; }

. push %rbp : .
call func2 mov %rsp,%rbp sub $0x8, %rsp

0 i 0 ‘}\’:._\l) > 0

%RSP Previous e T
wrpp ” | %rep | “RBP = | Sippp

Return Return Return
0 %RSP —» address to address to address to
func() func() func(

%WRSP —» 0x10001000 0x10001000 0x10001000 0x10001000

Figure 10-3. Example memory layout for function prolog

Raw Stack (No Local Variables
and Function Parameters)

Now we can understand additional data (the previous %RBP that was
equal to the previous %RSP before the function call) that appear on the
raw stack together with function return addresses that we saw in Chapter 9
project “SimpleStack”:

(gdb) info registers $rsp $rbp
rsp ox7fffffffe500 ox7fffffffe500
rbp ox7fffffffes500 ox7fffffffe500

(gdb) x/10a $rsp
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ox7fffffffe500: ox7fffffffes510
ox7fffffffes510: ox7fffffffes520
ox7fffffffe520: ox7fffffffes540
ox7fffffffe530: ox7fffffffe628
ox7fffffffe540: 0x555555555170

0x555555555164 <func2+14>
0x555555555153 <func+14»
0x55555555513e <main+25»
0x100000000
<__libc_csu_init>

ox7ffff7e2co09b <_ libc_start main+235>

(gdb) disass func2

Dump of assembler code for function func2:

0x0000555555555156 <+0>:
0x0000555555555157 <+1>:
0x000055555555515a <+4>:
0x000055555555515F <+9>:
0x0000555555555164 <+14>:
0x0000555555555165 <+15>:
0x0000555555555166 <+16>:
End of assembler dump.

(gdb) disass func

push  %xbp

mov %xsp,%xbp

mov $0x0, %eax

callg 0x555555555167 <func3>
nop

pop %rbp

retq

Dump of assembler code for function func:

0x0000555555555145 <+0>:
0x0000555555555146 <+1>:
0x0000555555555149 <+4>:
0x000055555555514e <+9>:
0x0000555555555153 <+14>:
0x0000555555555154 <+15>:
0x0000555555555155 <+16>:
End of assembler dump.

(gdb) disass main

push  %xbp

mov %xsp,%xbp

mov $0x0, %eax

callg 0x555555555156 <func2>
nop

pop %rbp

retq

Dump of assembler code for function main:

0x0000555555555125 <+0>:
0x0000555555555126 <+1>:
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0x0000555555555129 <+4>:
0x000055555555512d <+8>:

0x0000555555555130 <+11>:
0x0000555555555134 <+15>:
0x0000555555555139 <+20>:
0x000055555555513e <+25>:
0x0000555555555143 <+30>:
0x0000555555555144 <+31>:

End of assembler dump.

Function Epilog

FRAME POINTER AND LOCAL VARIABLES

sub $0x10,%xsp

mov %edi, -0x4(%rbp)

mov %rsi,-0x10(%rbp)

mov $0x0, %eax

callg 0x555555555145 <func>
mov $0x0, %eax

leaveq

retq

Before the function code returns to the caller, it must restore the previous

values of %RSP and %RBP registers to allow the caller to resume its

execution from the correct address, previously saved on the stack, and

to continue addressing its own stack frame properly. This sequence of

instructions is called the function epilog, and it is shown in Figure 10-4.

~mov %rbp %rsp

%RSP > 0 0

%REBP » Previous

Ox 10001000 Ox 10001000

%RBEP o Previous
%REFP W RSP %REP
Return Return

address to address to
fune() fune()

pop Yerbp

RSP

ret
0 4
Previous Previous
%REP %WREP
Returm Hemm
» address to address to
funci) fune()
0x 10001000 %RSP —» | 0x10001000

Figure 10-4. Example memory layout for function epilog

Instead of the mov %rbp,%rsp and pop %rbp sequence of

instructions, we may see the leave instruction, which does the same but

occupies less code space.
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“Local Variables” Project

The project for this chapter can be downloaded from
github.com/apress/linux-debugging-disassembling-reversing/
Chapter10/
We compile the file and load the executable into GDB:

coredump@ESKTOP-IS6V2L0:~/pflddr/x64/Chapter10$ gcc
LocalVariables.cpp -o LocalVariables

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter10$ gdb

./LocalVariables

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/

licenses/gpl.html>

This is free software: you are free to change and

redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources

online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from ./LocalVariables...(no debugging symbols
found)...done.
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Then we put a breakpoint to the main function and run the program
until GDB breaks in:

(gdb) break main
Breakpoint 1 at 0x1129

(gdb) run
Starting program: /home/coredump/pflddr/x64/Chapter10/
LocalVariables

Breakpoint 1, 0x0000555555555129 in main ()
Next, we disassemble our main function:

(gdb) disass main
Dump of assembler code for function main:

0x0000555555555125 <+0>: push  %rbp
0x0000555555555126 <+1>: mov %rsp,%rbp
=> 0x0000555555555130 <+11>: movl  $0x1,-0x4(%rbp)

0x0000555555555137 <+18>: movl  $0x1,-0x8(%rbp)
0x000055555555513€e <+25>: mov -0x4(%rbp) ,%eax
0x0000555555555141 <+28>: add %eax, -0x8(%rbp)
0x0000555555555144 <+31>: addl  $0x1,-0x4(%rbp)
0X0000555555555148 <+35>: mov -0x8(%rbp) ,%eax
0x000055555555514b <+38>: imul  -ox4(%rbp),%eax
0x000055555555514F <+42>: mov %eax, -0x8(%rbp)
0X0000555555555152 <+45>: mov  $0x0,%eax
0x0000555555555157 <+50>: pop %rbp
0x0000555555555158 <+51>: retq

End of assembler dump.
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Its source code is the following:

int main()
{
int a, b;
=1;
=1;
b=">b+a;
++a;
b=>b*a;
return O;
}

The following is the same assembly language code but with comments
showing operations in pseudo-code and highlighting the function prolog
and epilog:

0x0000555555555125 <+0>: push  %rbp
# establishing stack frame

0x0000555555555126 <+15: mov %xsp,%xrbp
=> 0x0000555555555130 <+11>: movl  $0x1,-0x4(%rbp)
#t1->(a)

0x0000555555555137 <+18>: movl  $0x1,-0x8(%rbp)
#1-> (b)

0X000055555555513€e <+25>: mov -0x4(%rbp) ,%eax
# (a) -> eax

0x0000555555555141 <+28>: add %eax, -0x8(%rbp)
# eax + (b) -> (b)

0x0000555555555144 <+31>: addl  $0x1,-0x4(%rbp)
# 1+ (a) -> ()

0X0000555555555148 <+35>: mov -0x8(%rbp) ,%eax
# (b) -> eax
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0x000055555555514b <+38>: imul  -ox4(%rbp),%eax
# (a) * eax -> eax

0x000055555555514f <+42>: mov %eax, -0x8(%rbp)
# eax -> (b)

0x0000555555555152 <+45>: mov $0x0, %eax
# 0 -» eax (return value)

0x0000555555555157 <+50>: pop %xbp
# restoring previous frame

0x0000555555555158 <+51>: retq
# return 0

The compiler didn’t emit the mov %rbp,%rsp instruction because
%RSP didn’t change: no functions were called, and no registers were saved.

Disassembly of Optimized Executable

If we compile LocalVariables.cpp with the -O1 option, we see a very simple

code that just returns zero:

(gdb) disass main

Dump of assembler code for function main:

=> 0X0000555555555125 <+0>: mov $0x0, %eax
0x000055555555512a <+5>: retq

End of assembler dump.

Where is all the code we have seen in the previous version? It was
optimized away by the compiler because the results of our calculation
are never used. Variables a and b are local to the main function, and their
values are not accessible outside when we return from the function.
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Summary

In this chapter, we looked into the stack layout of the more complex code:
addressing arrays, local variables, and compiler-emitted code for the
function prolog and epilog. Finally, we disassembled and analyzed code
that used local variables and compared it to the optimized version.

The next chapter looks at function parameters and their stack layout.
Finally, we disassemble and analyze another project with function
parameters and local variables.

128



CHAPTER 11

Function Parameters

“FunctionParameters” Project

This chapter teaches how a caller function passes its parameters via
registers and how a callee (the called function) accesses them. We use the
following project that can be downloaded from this link:
github.com/apress/linux-debugging-disassembling-reversing/
Chapter11/
Here is the project source code:

// FunctionParameters.cpp
int arithmetic (int a, int b);

int main(int argc, char* argv[])

{

int result = arithmetic (1, 1);
return 0;
}

// Arithmetic.cpp
int arithmetic (int a, int b)

b=0>b+ a;
++a;
© Dmitry Vostokov 2023 129
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b=>b* a;
return b;

}

Stack Structure

Recall from the previous chapter that the %RBP register is used to address
stack memory locations. It was illustrated in Figure 10-1. Here, we provide
a typical example of the stack memory layout for the following function:

void func(int Parami, int Param2)
{

int vari, var2;

// stack memory layout at this point
// -0x18(%RBP) = Param2 (doubleword)
// -0x14(%RBP) = Paraml (doubleword)
// -0x8(%RBP)
// -0x4(%RBP)

var2 (doubleword)
varl (doubleword)

// (%RBP) = previous %RBP (quadword)
// 0x8(%RBP) = return address (quadword)
/...

}

The typical stack frame memory layout for the function with two
arguments and two local variables is illustrated in Figure 11-1.
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' Savi
%RSP —» 1-92;:(.21-

Parameter
2

Parameter

1

Local
variable 2

Loeal

variable 1

%RBP —» | Forous

Return
address

Local
variable
Local

variable

Local

variable

Return
address

Figure 11-1. Stack memory layout for the function with two
arguments and two local variables
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Function Prolog and Epilog

Now, before we try to make sense of the FunctionParameters project
disassembly, we look at the simple case of one function parameter and
one local variable to illustrate the standard function prolog and epilog
sequence of instructions and corresponding stack memory changes.

The function prolog is illustrated in Figure 11-2, and the function
epilog is illustrated in Figure 11-3.

funed) § func2(1): } func2ilong i) { long var; |

push firbp sails $0x20, %rsp mav %rdi,-Ox1 8RB}
ov %ersp,Yrb
(1] (1] 0 %RSP —» 0 MRSP —» ]
0 (i} (1] 1
0 | 0 0 0 0
Local Laweal
0 0 w variable var varinhle var
! { —] |
. RSP Previous | Previous . Previous
Yot | oy 3 o, e]
g v wRBE pp | WRBP—» | Sy ppp | %RBP—» %REP
YaRBI |
k Return
0 HRSP —» ad |
WRSP —» | 0x10001000 | ox10001000 Ox10001000 0310001000 Ox 10001000

Figure 11-2. Memory layout for the prolog with one function
parameter and one local variable

Here, the function parameter is passed via the %RDI register. It is
saved on the stack because the register may be used later in calculations
or function parameter passing to other functions. Generally, the function’s
first six parameters are passed via %RDI, %RSI, %RDX, %RCX, %R8, and
%R9 registers from left to the right when parameters are quadwords like
pointers or long values and via %EDI, %ESI, %EDX, %ECX, %R8D, and
%RID registers when parameters are doublewords like integers. Additional
parameters are passed via the stack locations using the PUSH instruction.
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Previous %RBP > Previous
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Return Eeturn
address to address to
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pop %rbp

0

FUNCTION PARAMETERS

0

0

0

Previous

%REP

fune()

0x10001000

[ Return |
%RSP —» address to

Previous
WREBP
I “1{-0_“;“.\-_ |
address to
fune()

%RSP —» | 0x10001000

Figure 11-3. Memory layout for the epilog with one function

parameter and one local variable

We also see that local variables are not initialized by default when their

storage space is allocated via the SUB instruction and not cleared during

the epilog. Whatever memory contents were there before allocation, it

becomes the local variable values, the so-called garbage values.

Project Disassembled Code with Comments

Here is a commented code disassembly of main and arithmetic with

memory addresses removed for visual clarity:

main:

push
mov
sub

mov
mov

%xrbp # establishing stack frame
%rsp,%xbp
$0x20,%rsp # creating stack frame for local

variables and function parameters

%edi, -0x14(%rbp)
%rsi,-0x20(%rbp)

# saving the first main parameter
# saving the second main parameter
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mov $0x1,%esi # setting the second parameter for
# arithmetic function

mov $ox1,%edi # setting the first parameter
for arithmetic
# function

callg 0x55555555514d < _Z10arithmeticii>

mov %eax, -0x4(%rbp) # setting the result local variable

mov $0x0, %eax # main should return 0

leaveq # restoring the previous stack pointer
# and stack frame, equivalent to
# mov %rbp, %rsp
# pop %rbp

retq # return from main

arithmetic:

push  Zrbp # establishing stack frame

mov %xsp,%rbp

mov  %edi,-0x4(%rbp) # saving the first arithmetic

parameter (a)
mov  %esi,-0x8(%rbp) # saving the second arithmetic
parameter (b)

mov -0x4(%rbp) ,%eax # (a) -> eax

add %eax, -0x8(%rbp) # eax + (b) -> (b)

addl  $ox1,-0x4(%rbp) # 1+ (a) -> (a)

mov -0x8(%rbp) ,%eax # (b) -> eax

imul  -0x4(%rbp),%eax # (a) * eax -> eax

mov %eax, -0x8(%rbp) # eax -> (b)

mov -0x8(%rbp) ,%eax # (b) -> eax

pop  ’%xbp # restoring the previous stack frame
# no need to restore stack

pointer as
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# it didn't change
retq # result value is in eax

We can put a breakpoint on the first arithmetic calculation address and
examine raw stack data pointed to by the %RBP register:

coredump@ESKTOP-IS6V2L0:~/pflddr/x64/Chapter11$ gcc

FunctionParameters.cpp Arithmetic.cpp -o FunctionParameters

coredump@ESKTOP-IS6V2L0:~/pflddr/x64/Chapter11$ gdb

./FunctionParameters

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/

licenses/gpl.html>

This is free software: you are free to change and

redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86 64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources

online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from ./FunctionParameters...(no debugging
symbols found)...done.

(gdb) break main
Breakpoint 1 at 0x1129

(gdb) run
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Starting program: /home/coredump/pflddr/x64/Chapteri1/
FunctionParameters

Breakpoint 1, 0x0000555555555129 in main ()

(gdb) disass arithmetic
Dump of assembler code for function _Zi0arithmeticii:

0x000055555555514d <+0>: push  %rbp
0x000055555555514€e <+1>: mov %rsp,%rbp
0x0000555555555151 <+4>: mov %edi, -0x4(%rbp)
0x0000555555555154 <+7>: mov %esi,-0x8(%rbp)

0x0000555555555157 <+105: mov -0x4(%xbp) ,%eax
0x000055555555515a <+13>: add %eax, -0x8(%rbp)
0x000055555555515d <+16>: addl  $0x1,-0x4(%rbp)
0x0000555555555161 <+20>: mov -0x8(%rbp) ,%eax
0x0000555555555164 <+23>: imul  -ox4(%rbp),%eax
0x0000555555555168 <+27>: mov %eax, -0x8(%rbp)
0x000055555555516b <+30>: mov -0x8(%rbp) ,%eax
0x000055555555516e <+33>: pop %rbp
0x000055555555516F <+34>: retq
End of assembler dump.

(gdb) break *0x0000555555555157
Breakpoint 2 at 0x0000555555555157

(gdb) continue
Continuing.

Breakpoint 2, 0x0000555555555157 in arithmetic(int, int) ()

(gdb) info registers $rbp
rbp ox7fffffffe500 ox7fffffffe500

(gdb) x/10a $rbp-0x20
ox7fffffffeqeo: ox1 ox7ffff7eaaafs5 <handle intel+197>
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ox7fffffffeqfo: oxo 0x100000001 3 (b, a)
ox7fffffffe500: ox7fffffffe530 0x555555555143 <main+30> ;
saved $RBP, return address

ox7fffffffe510: ox7fffffffe618 0x155555040

ox7fffffffe520: ox7fffffffe610 o0x0

(gdb) x/10w $rbp-0x20

ox7fffffffeqe0: oxi 0x0 oxfffffffffreaaafs ox7fff
Ox7FFfffffeafo: 0x0o  O0x0  ox1  ox 3 (b), (a)
ox7fffffffe500: oxffffffffffffes30 ox7fff

Parameter Mismatch Problem

To illustrate the importance of understanding the stack memory layout,
consider this typical binary interface mismatch problem. The function
main calls func with two parameters:

// main.c
int main ()

{
long locVar;
func (1, 2);
return 0;

}

The caller is expecting the callee function func to see this stack
memory layout and passes 1 in %RDI and 2 in %RSI:

2
1
locvar
%RBP -> prev %RBP
return address
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However, the callee expects three parameters instead of two:

// func.c
int func (int a, int b, int c)
{
// code to use parameters
return 0;
}
The func code sees this stack memory layout:
(c)
(b)
(a)
locVar

%RBP -> prev %RBP
return address

We see that parameter ¢ on the raw stack gets its value from some
random value in %RDX that was never set by the caller. It is clearly a
software defect (bug).

Summary

This chapter looked at function parameters and their stack layout.
We disassembled and analyzed the stack structure of the project with
function parameters and local variables. Finally, we looked at a parameter
mismatch problem.

The next chapter is about CPU state flags, comparison instructions,
conditional jumps, and function return values.
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More Instructions

CPU Flags Register

In addition to registers, the CPU also contains a 64-bit %RFLAGS register
where individual bits are set or cleared in response to arithmetic and
other operations. Separate machine instructions can manipulate some bit
values, and their values affect code execution.

For example, the DF bit (Direction Flag) determines the direction
of memory copy operations and can be set by STD and cleared by CLD
instructions. It has the default value of zero, and its location is shown in
Figure 12-1, where only the first 32 bits of 64-bit %RFLAGS are shown.

31 15 T 0

Direction Flag (DF)

Figure 12-1. %RFLAGS register flags
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The Fast Way to Fill Memory

It can be done by the STOSQ instruction that stores a quadword value from
%RAX into a memory location which address is in the %RDI register (“D”
means destination). After the value from %RAX is transferred to memory,
the instruction increments %RDI by eight, and if the DF flag is zero, %RDI
now points to the next quadword in memory. If the DF flag is one, then

the %RDI value is decremented by eight, and the %RDI now points to the
previous quadword in memory. There is an equivalent STOSL instruction
that stores doublewords and increments or decrements %RDI by four.

If we prefix any instruction with REP, it causes the instruction to be
repeated until the %RCX register’s value is decremented to zero. For
example, we can write simple code that should theoretically zero “all
memory” (practically, it traps because of access violation):

X0r %rax, %rax # fill with o

mov $0, %rdi # starting address or xor
%rdi, %rdi

mov $oxffffffff / 4, %rcx # oxifffffff quad words

rep stosq

Here is REP STOSQ in pseudo-code:

WHILE (RCX != 0)

{
RAX -> (RDI)
IF DF = 0 THEN
RDI + 8 -> RDI
ELSE
RDI - 8 -> RDI
RCX - 1 -> RCX
}
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A simple example of erasing 32 bytes (4x8) is shown in Figure 12-2.

HRAN

i}

SROX YROX WROX %ROX YHROX

%RDL —» 1 0 L] 0 0

2 LRDI —» 2 0 0 0
3 3 %RDT —» 3 0 0

4 4 1 SURDI —» 4 0

i) 5] bi) B %RDI—» i)

Figure 12-2. A simple example of erasing 32 bytes

Testing for 0

A ZF bit in the %RFLAGS register is set to one if the instruction result is
zero and cleared otherwise. This bit is affected by

e Arithmetic instructions (e.g., ADD, SUB, MUL)
e Logical compare instruction (TEST)
o “Arithmetical” compare instruction (CMP)

The location of the ZF bit is shown in Figure 12-3.
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|
%BRFLAGS | D
(first 32 bits) | F

Divection Flag (13F)

Zero Flag (1)

Figure 12-3. ZF bit in %RFLAGS register

TEST - Logical Compare

This instruction computes bitwise logical AND between both operands
and sets flags (including ZF) according to the computed result (which is
discarded):

TEST reg/imm, reg/mem
Examples:
TEST %EDX, %EDX
Suppose the %EDX register contains 4 (100,):

100,;, AND 100,;, = 100y, I= 0 (ZF is cleared)

TEST $1, $EDX
Suppose %EDX contains 0 (Oy;,):
Opin AND 1piy = Opin == 0 (ZF is set)

Here is the TEST instruction in pseudo-code (details not relevant to the
ZF bit are omitted):

TEMP := OPERAND1 AND OPERAND2
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IF TEMP = O THEN
1->7ZF
ELSE
0 -> ZF

CMP - Compare Two Operands

This instruction compares the first operand with the second and sets flags
(including ZF) according to the computed result (which is discarded). The
comparison is performed by subtracting the first operand from the second
(like the SUB instruction: sub $4, %eax).

CMP reg/imm, reg/mem
CMP reg/mem/imm, reg

Examples:
CMP $0, %EDI
Suppose %EDI contains 0:

0-0 ==0 (ZF is set)

CMP $0x16, %EAX

Suppose %EAX contains 4y,

Bpex — 16pex FFFFFFEE e I= 0 (ZF is cleared)
bgec = 224ec = '18dec

Here is the CMP instruction in pseudo-code (details not relevant to the
ZF bit are omitted):

OPERAND2 - OPERAND1 -> TEMP
IF TEMP = O THEN
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1 -> ZF
ELSE
0 -> ZF

The CMP instruction is equivalent to this pseudo-code sequence:

OPERAND2 -> TEMP
SUB OPERAND1, TEMP

TEST or CMP?

Both instructions are equivalent if we want to test for zero, but the CMP
instruction affects more flags than TEST:

TEST %EAX, %EAX
CMP  $0, %EAX

The CMP instruction is used to compare for inequality (the TEST
instruction cannot be used here):

CMP $0, %EAX #>00r<o0?
The TEST instruction is used to see if individual bits are set:
TEST $2, %EAX # 2 == 0010y, or in C language: if (var & ox2)

Examples where %EAX has the value of 2:

TEST $4, %EAX  # 0010y, AND 01004;,
TEST $6, %EAX  # 00104, AND 0110y;,

0000y, (ZF is set)
0010,;, (ZF is cleared)

Conditional Jumps

Consider these two C or C++ code fragments:
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1= 0)

++a;

__a;

MORE INSTRUCTIONS

The CPU fetches instructions sequentially, so we must tell the CPU

that we want to skip some instructions if some condition is (not) met, for

example, ifa!=0.

JNZ (jump if not zero) and JZ (jump if zero) test the ZF flag and change
%RIP if the ZF bit is cleared for JNZ or set for JZ. The following assembly
language code is equivalent to the preceding C/C++ code:

CMP
INZ
INC
JMP
label1: DEC
label2:

MOV
TEST
1z
INC
JMP
DEC

$0, A

label1

A

label2

A
label1:
label2:

The Structure of Registers

Some 64-bit registers have a legacy structure that allows us to address their
lower 32-bit, 16-bit, and two 8-bit parts, as shown in Figure 12-4.

A, %EAX
%EAX, %EAX
label1
BEAX
label2
BEAX
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% RAX

Figure 12-4. A legacy structure of registers

Function Return Value

Many functions return values via the %RAX register. For example:
long func();
The return value is in %RAX.

bool func();

The return value is in %EAX.
Although bool values occupy one byte in memory, the compiler may
use %EAX instead of %AL.

Using Byte Registers

Suppose we have a byte value in the %AL register, and we want to add this
value to the %ECX register. However, we do not know what values other
parts of the full %EAX register contain. We cannot use this instruction, for
example:

MOV  %AL, %EBX # operand size conflict
The proposed solution in pseudo-code:

AL -> EBX or AL -> EAX
ECX + EBX -> ECX ECX + EAX -> ECX

146



CHAPTER 12 MORE INSTRUCTIONS

We can only use MOV instructions that have the same operand size for
both source and destination, for example:

MOV %AL, %BL
MOV  %AL, b # in C: static bool b = func();

For this task, there is a special MOVZX (Move with Zero eXtend)
instruction that replaces the contents of the second operand with the
contents of the first operand while filling the rest of the bits with zeroes:

MOVZX reg/mem, reg
Therefore, our solution for the task becomes very simple:

MOVZX %AL, %EBX
ADD  %EBX, %ECX

We can also reuse the %EAX register:

MOVZX %AL, %EAX
ADD  %EAX, %ECX

Summary

In this chapter, we learned about CPU state flags, comparison instructions,
conditional jumps, and function return values - usually present in real
binary code that we may need to disassemble to understand program logic
during debugging.

The next chapter is our “graduating” project - we disassemble and
analyze a project that uses function parameters which are pointers.
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Function Pointer
Parameters

“FunctionPointerParameters” Project

It is our final project, and it can be downloaded from
github.com/apress/linux-debugging-disassembling-reversing/
Chapter13/
A summary of the project source code:

// FunctionParameters.cpp
int main(int argc, char* argv[])

{
int a, b;
printf("Enter a and b: ");
scanf("%d %d", &a, &b);
if (arithmetic (a, &b))
{
printf("Result = %d", b);
}
return 0;
}
© Dmitry Vostokov 2023
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// Arithmetic.cpp
bool arithmetic (int a, int *b)

{
if (!'b)
{
return false;
}
*b = *b + a;
++a;
*p = *p * a;
return true;
}

Commented Disassembly

Here is the commented disassembly we get after compiling the project and
loading into GDB:

coredump@ESKTOP-IS6V2L0:~/pflddr/x64/Chapter13$ gcc
FunctionParameters.cpp Arithmetic.cpp -o FunctionParameters

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter13$ gdb
./FunctionParameters

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/
licenses/gpl.html>

This is free software: you are free to change and
redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.
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This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources

online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from ./FunctionParameters...(no debugging
symbols found)...done.

(gdb) break main
Breakpoint 1 at 0x1149

(gdb) run
Starting program: /home/coredump/pflddr/x64/Chapter13/
FunctionParameters

Breakpoint 1, 0x0000555555555149 in main ()

(gdb) disass main
Dump of assembler code for function main:

0x0000555555555145 <+0>: push  %rbp
0Xx0000555555555146 <+1>: mov %rsp,krbp

=> 0X0000555555555149 <+4>: sub $0x20,%rsp
0x000055555555514d <+8>: mov %edi, -0x14(%rbp)

0x0000555555555150 <+11>: mov %rsi,-0x20(%rbp)
0x0000555555555154 <+15>: lea oxea9(%rip),%rdi
# 0x555555556004

0x000055555555515b <+22>: mov $0x0, %eax
0X0000555555555160 <+27>: callg 0x555555555030
<printf@plt>
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End

0x0000555555555165
0x0000555555555169
0x000055555555516d
0Xx0000555555555170
# 0x555555556014

0Xx0000555555555177
0x000055555555517¢

0x0000555555555181
0x0000555555555184
0Xx0000555555555188
0x000055555555518b
0x000055555555518d

0x0000555555555192
0x0000555555555194

0x0000555555555196
0x0000555555555199
0x000055555555519b
# 0x55555555601a

0x00005555555551a2
0x00005555555551a7

0x00005555555551ac
0x00005555555551b1
0x00005555555551b2

of assembler dump.

<+32>:
<+36>:
<+40>:
<+43>:

<+50>:
<+55>:

<+60>:
<+63>:
<+67>:
<+70>:
<+72>:

<+77>:
<+79>:

<+81>:
<+84>:
<+86>:

<+93>:
<+98>:

<+103>:
<+108>:
<+109>:

(gdb) x/s 0x555555556004
0x555555556004: "Enter a and b: "
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lea
lea
mov
lea

mov
callq

mov
lea
mov
mov
callq

test
je

mov
mov
lea

mov
callq

mov
leaveq
retq

-0x8(%rbp) ,%rdx
-0x4(%rbp) ,%rax
hrax,srsi

oxe9d(%rip),%rdi

$0x0, %eax
0x555555555040
<scanf@plt>
-0x4(%xbp) ,%eax
-0x8(%rbp) ,%rdx
wrdx,%hrsi
%eax,sedi
0x5555555551b3
<_Z10arithmeticiPi>
%al,%al
0x5555555551ac
<main+103>
-0x8(%rbp) ,%eax
%eax,sesi
oxe78(%rip),%rdi

$0x0, %eax
0x555555555030
<printf@plt>
$0x0, %eax
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(gdb) x/s 0x555555556014
0X555555556014: "%d %d"

(gdb) x/s 0x55555555601a
0X55555555601a: "Result = %d"

(gdb) disass arithmetic

FUNCTION POINTER PARAMETERS

Dump of assembler code for function _Zi0arithmeticiPi:

0x00005555555551b3 <+0>: push
0x00005555555551b4 <+1>: mov
0Xx00005555555551b7 <+4>: mov
0x00005555555551ba <+7>: mov
0x00005555555551be <+11>: cmpq

0x00005555555551¢€3 <+16>: jne

0x00005555555551C5 <+18>: mov
0x00005555555551ca <+23>: jmp

0x00005555555551cC <+25>: mov
0x00005555555551d0 <+29>: mov
0x00005555555551d2 <+31>: mov
0x00005555555551d5 <+34>: add
0x00005555555551d7 <+36>: mov
0x00005555555551db <+40>: mov
0x00005555555551dd <+42>: addl
0x00005555555551e1 <+46>: mov

0x00005555555551e5 <+50>: mov
0x00005555555551e7 <+52>: imul
0x00005555555551eb <+56>: mov
0Xx00005555555551ed <+58>: mov

0X00005555555551f1 <+62>: mov
0Xx00005555555551F3 <+64>: mov

%rbp

%rsp,%rbp
%edi, -ox4 (%rbp)
%rsi,-0x10(%rbp)
$0x0, -0x10(%rbp)
0x5555555551cc
<_Z10arithmeticiPi+25>
$0x0, %eax
0x555555555118
<_Z10arithmeticiPi+69>
-0x10(%rbp) ,%rax
(%rax),%edx
-0x4(%rbp) ,%eax
%eax, sedx
-0x10(%rbp) ,%rax
%edx, (%rax)
$0x1, -0x4(%rbp)
-0x10(%rbp) ,%rax
(%rax),%eax
-0x4(%xbp) ,%eax
%eax, sredx
-0x10(%rbp) ,%rax
%edx, (%rax)
$0x1,%eax
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0x00005555555551F8 <+69>: pop %rbp
0x00005555555551f9 <+70>: retq
End of assembler dump.

main:

push  %rbp # establishing
stack frame

mov %xsp,%rbp

sub $0x20,%rsp # creating
stack frame
for locals
# and main
function
parameters

mov %edi, -0x14(%rbp) # saving the
first main
parameter

mov %rsi,-0x20(%rbp) # saving the
second main
parameter

lea oxea9(%rip),%rdi # 0x555555556004 # the address
of printf
# string
parameter

mov $0x0,%eax

callq 0x555555555030 <printf@plt> # printf
("Enter a
and b: ")

lea -0x8(%rbp) ,%rdx # address b
-> rdx (3rd
parameter)
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lea -0x4(%rbp) ,%rax # address
a -> rax
mov hrax,srsi # rax
-> rsi (2nd
parameter)
lea oxe9d(%rip),%rdi # 0x555555556014 # the
address of

scanf string
#  parameter
(1st parameter)
mov $0x0, %eax
callg 0x555555555040 <scanf@plt> # scanf("%d
%d", &a, &b)
#  parameters
are passed via
%rdi,
%rsi, %rdx
mov -0x4(%xbp) , %eax # (a) -» eax
(value of a)
lea -0x8(%rbp) ,%rdx # address
b -> rdx
mov %rdx,%xsi # rdx
-> rsi (2nd
parameter)
mov %eax,%edi # eax -»
edi ((a), 1st
parameter)
callq 0x5555555551b3 <_Z10arithmeticiPi» # arithmetic
(a, &b)
test %al,%al # tesing
for zero
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je

mov

mov

lea

mov
callq

0x00005555555551ac <+103>:

mov

leaveq
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0x5555555551ac <main+103>

-0x8(%xbp) , %eax

%eax,%esi

oxe78(%rip),%rdi

$0x0, %eax

# 0x55555555601a

0x555555555030 <printf@plt>

$0x0, %eax

# bool
result from
arithmetic
#if =0

# 0x000055555
55551ac -> rip
# (b) -» eax
(value of b)

# eax -»
esi (2nd
parameter)

# the address
of printf

# string
parameter

# printf
("Result
= %d", b)

# main should
return 0

# restoring
the previous
# stack
pointer and

# stack
frame,
equivalent to
# mov
%xrbp, %xsp

# pop %rbp
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retq
arithmetic:
push  %rbp

mov %xsp,%rbp
mov %edi, -0x4(%rbp)

mov %rsi,-0x10(%rbp)

cmpq  $0x0,-0x10(%rbp)
jne 0x5555555551cc <_Z10arithmeticiPi+25»

mov $0x0,%eax

jmp 0x5555555551f8 <_Z10arithmeticiPi+69>
0x00005555555551¢cC <+25>:

mov -0x10(%rbp) ,%rax

mov (%rax),%edx

# return
from main

# establishing
stack frame

# saving the
first
parameter (p1)
# saving

the second
parameter (p2)
#if p2!=0
# goto
0x555555
5551cc

# return
value 0

# goto epilog

# (p2) -> rax
# (rax) ->
edx (*p2)

# p2is

a pointer
since it

# contains
the address of
# variable
that we name b
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mov
add

mov

mov

addl

mov

mov
imul

mov
mov

mov

mov

0Xx00005555555551f8 <+69>:

pop
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-0x4(%rbp) ,%eax
heax, hedx

-0x10(%rbp) ,%rax

%edx, (%rax)

$0x1,-0x4(%rbp)
-0x10(%rbp) ,%rax

(%rax),%eax
-0x4(%rbp) ,%eax

%eax, hedx
-0x10(%rbp) ,%rax
%edx, (%rax)

$0x1, %eax

%xrbp

FUNCTION POINTER PARAMETERS

# we also
name pl as a
# (a) -> eax
# eax +

edx -> edx

# (a) +
(b) -> edx

# address

b -> rax

# edx -> (b)
#  (a) +
(b) -> (b)
# 14+

(a) -> (a)
# address

b -> rax

# (b) -> eax
# (a) * (b)
-> eax

# eax -> edx
# address

b -> rax

# edx -> (b)
# (a) *
(b) -> (b)
# 1 -> eax
(return value)

# restoring
the previous
stack frame
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# no need

to restore

# stack

pointer as

# it

didn't change
retq # result value

is in eax

Summary

In this chapter, we disassembled and analyzed a project that used function
parameters which are pointers.

The next, final chapter of the book summarizes various basic
disassembly patterns.
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Summary of Code
Disassembly Patterns

This final chapter summarizes the various patterns we have encountered
during the reading of this book.

Function Prolog/Epilog

Function prolog

push  %rbp
mov %rsp,%rbp

Function epilog

mov %rbp,%rsp
pop %rbp
ret

It is equivalent to

leave
ret

Some code may omit to restore %RSP if it does not change:

pop %rbp
ret
© Dmitry Vostokov 2023 161
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Knowing prolog can help identify situations when symbol files or
function start addresses are not correct. For example, suppose we have the
following backtrace:

func3+0x5F
func2+0x8F
func+0x20

If we disassemble the func2 function and see that it does not start with
prolog, we may assume that backtrace needs more attention:

(gdb) x/2i func2
0x555555555165 <main+32>: lea -0x8(%rbp) ,%rdx
0Xx555555555169 <main+36>: lea -0x4(%rbp) ,%rax

In optimized code, the %RSP register may be used to address local
variables and parameters instead of %RBP. In such a case, prolog and
epilog may be partially missing. Here is an example from the printf
function:

(gdb) disass printf

Dump of assembler code for function _ printf:
0x00007ffff7e60560 <+0>: sub $oxd8,%rsp
0x00007ffff7e60567 <+7>: mov  %rsi,ox28(%rsp)
0x00007ffff7e6056¢c <+125: mov  %rdx,0x30(%rsp)
0x00007ffff7e60571 <+17>: mov  %rcx,0x38(%xsp)
0x00007ffff7e60576 <+225: mov  %r8,0x40(%rsp)
0x00007ffff7e6057b <+27>: mov  %r9,0x48(%rsp)
0x00007Ffff7e60580 <+32>: test  %al,%al
0x00007ffff7€60582 <+34>: je ox7ffff7e605bb <

printf+91>

0Xx00007ffff7€60584 <+36>: movaps %xmmo,0x50(%xrsp)
0x00007ffff7€60589 <+41>: movaps %xmml,0x60(%rsp)
0x00007ffff7e6058e <+46>: movaps %xmm2,0x70(%xrsp)
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0x00007ffff7e60593
0x00007ffff7e6059b
0x00007ffff7e605a3
0x00007ffff7e605ab
0x00007ffff7e605b3
0x00007ffff7e605bb
0x00007ffff7e605c4
0x00007ffff7e605c9
0x00007ffff7e605ch
0x00007ffff7e605d3
0x00007ffff7e605d6
0x00007ffff7e605d9
0x00007ffff7e605de
0x00007ffff7e605e3
0x00007ffff7e605e8

CHAPTER 14  SUMMARY OF CODE DISASSEMBLY PATTERNS

<+51>:
<+59>:
<+67>:
<+75>:
<+83>:
<+91>:

<+100>:
<+105>:
<+107>:
<+115>:
<+118>:
<+121>:
<+126>:
<+131>:
<+136>:

# ox7ffff7fc2f48

0x00007ffff7e605ef
0x00007ffff7e605f6
0x00007ffff7e605f9
0x00007ffff7e60601

0x00007ffff7e60606
0x00007ffff7e6060b
0x00007ffff7e60614

0x00007ffff7e60616
0x00007ffff7e6061d
0x00007ffff7e6061e

End of assembler dump.

<+143>:
<+150>:
<+153>:
<+161>:

<+166>:
<+171>:
<+180>:

<+182>:
<+189>:
<+190>:

movaps
movaps
movaps
movaps
movaps
mov
mov
Xor
lea
mov
mov
mov
lea
mov
mov

mov1l
mov
movl
callq

mov
X0r
jne

add
retq
callq

%xmm3,0x80(%xrsp)
%xmm4 , 0x90 (%xrsp)
%xmm5 ,0xa0 (%xrsp)
%xmm6 , 0xb0 (%xrsp)
%xmm7 ,0xcOo(%rsp)
%fs:0x28,%rax
%rax,0x18(%rsp)
%heax,heax
oxe0(%rsp),%rax
%rdi,%rsi
%rsp,%rdx
%rax,0x8(%rsp)
0x20(%xsp),%rax
%rax,0x10(%rsp)
0x162959(%rip),%rax

$0x8, (%rsp)
(%rax),%rdi
$0x30,0x4 (%rsp)
ox7ffff7e579f0 <_I0_
vfprintf_internal>
0x18(%rsp),%rcx
%fs:0x28,%rcx
ox7ffff7e6061e <
printf+190>
$oxd8,%rsp

Ox7ffff7f127b0 < stack_
chk_fail>
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LEA (Load Effective Address)

The following instruction
lea -0x8(%rbp) ,%rdx
is equivalent to the following arithmetic sequence:

mov  %rbp, %rdx
add  -0x8, %rdx

The following instruction
lea oxea9(%rip),%rdi
is equivalent to the following arithmetic sequence:

mov  %rip, %rdi
add o0xea9, %rdi

Passing Parameters

The first six function parameters from left to right

%RDI, %RSI, %RDX, %RCX, %R8, and %R9

Note Although we haven’t seen examples for more than six
function parameters, they are passed via the stack, for example, via
the PUSH instruction.

Static/global variable address (or string constant)

mov  $0x555555556004, reg
lea oxe9d(%rip), reg
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Local variable value vs. local variable address

mov -XXX(%xrbp), reg ; local variable value
call func

lea -XXX(%rbp), reg ; local variable address
call func

Accessing Parameters and Local Variables

Local variable value

mov -XXX(%rbp), reg
mov XXX(%rsp), reg # optimized code

Local variable address

lea -XXX(%rbp), reg
lea XXX(%rsp), reg # optimized code

Accessing a doubleword value

mov -0x8(%rbp), %eax
add $1, %eax
addl $1, %rax

Accessing a quadword value

mov -0x8(%rbp), %rax
add $1, %rax

Accessing and dereferencing a pointer to a doubleword value

mov -0x10(%rbp), %rax
mov (%rax), %eax
add $1, %eax
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Accessing and dereferencing a pointer to a quadword value

mov -0x10(%rbp), %rax
mov (%rax), %rax
add $1, %rax

Optimized code may not use stack locations to address function
parameters (use only registers through which the parameters were
passed) as can be seen in the previous chapter’s example compiled with
the -O1 switch:

(gdb) disass arithmetic
Dump of assembler code for function _Zi0arithmeticiPi:

0x00005555555551ab <+0>: test %rsi,%rsi
0x00005555555551ae <+3>: je 0x5555555551c2
<_Z10arithmeticiPi+23>
0x00005555555551b0 <+5>: mov %edi, %eax
0x00005555555551b2 <+7>: add (%xsi),%eax
0x00005555555551b4 <+9>: add $0x1,%edi
0x00005555555551b7 <+12>: imul  %eax,%edi
0x00005555555551ba <+15>: mov %edi, (%rsi)
0x00005555555551bc <+17>: mov $0x1,%eax
0x00005555555551¢1 <+22>: retq
0x00005555555551C2 <+23>: mov $0x0, %eax

0x00005555555551C7 <+28>: retq
End of assembler dump.

Summary

This chapter can be used as a reference to basic disassembly patterns.
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Index

A

Access violation, 65, 66, 140
ADD, 5,9-11, 13, 16, 43, 46, 49, 81,
141, 146, 147, 165, 166
ADDL, 43, 81
ADDQ, 81
AL, 146, 147
AND, 82, 142, 144
Application crash, 65
Application memory, 105
Arithmetic project
adding numbers to memory
cells, 8,10, 11
assigning numbers to memory
locations, 5-7
C/C** program, 19, 20
computer program, 5
contents at memory address, 4
increment by one, 5
memory layout and
registers, 3, 4
Assembly language
instructions, 81
Assignment, 6

© Dmitry Vostokov 2023

Backtrace, 114, 162
Base pointer, 118
Binary notation, 30
Binary representation, 29
Bit granularity
unsigned char, 54
unsigned int, 55
unsigned long, 55
unsigned long long, 55
unsigned short, 54
Breakpoint, 22, 38, 113, 125, 135
break command, 22, 38, 70, 88, 125,
135, 136, 151
bt command, 114
Byte granularity, 53, 54

C

CALL, 100, 108-110, 117
Callee, 110, 129, 137

Caller, 110, 111, 123,137,138
Call stack, 110, 111

C and C++ compilers, 65
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INDEX

C/C++ code
assembly language
equivalents, 92, 93
C/C++ program, 94
comments to assembly
language code, 90, 91
statements, 93, 94
CLD, 139
CMP, 141, 143-145
Compiler optimization, 26
Computer memory, 1
Conditional jumps, 144, 145

D

Dangling pointer, 66
.data, 67, 85
DEC, 12, 81, 145
Decimal notation, 29, 30
Decimal representation, 28
DECL, 81
Decrement, 11, 45
Dereferencing, 68
Dereferencing pointer, 36
Direct address, 33
Direction flag (DF), 139, 140
Disass command, 22, 25, 38, 70, 88,
95,103, 122, 125, 127, 136,
151, 153, 162, 166
Disassembly output
no optimization, 87-89
optimized program, 95, 96
Disassembly patterns
accessing parameters, 165, 166
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function epilog, 161-163
function parameters, 164
function prolog, 161-163
LEA, 164
local variables, 165, 166
display command, 40, 71, 72
Disposing of memory, 66
Double words, 53, 54
Driver, 65
DWORD, 120, 130, 140, 165, 166

E

EAX, 8-10, 12, 13, 15, 16, 19, 20, 24,
65, 143-147, 164, 165

EBX, 65, 146, 147

ECX, 65, 146, 147

EDI, 143

EDX, 65, 117, 142

F

Function epilog, 123, 132,
133,161-163
Function parameters, 164
FunctionParameters project, 129,
132, 149
disassembly code,
comments, 133-136
FunctionPointerParameters project
commented disassembly, 150,
151, 153, 154, 157, 158
downloading, 149
source code, 149, 150



Function prolog, 121, 132,
133,161-163
Functions return values, 146

G

GDB

disassembly output
assembly code, 21, 24, 26
no optimization, 20, 22-25
optimization, 25, 26

downloading, 20

program sections, 85

unassemble, 22

H

Hexadecimal
equivalents, 30, 31
notation, 30, 31
number, 30, 53
representation, 30

IMUL, 15, 16, 48, 117

Inaccessible addresses, 65

info registers command, 39, 71,
113,121,136

info variables command, 39

INC, 5, 12-14, 46, 47, 81, 145

INCL, 46

Increment, 5, 11, 45

INDEX

Indirect address, 33

Initialized and uninitialized
variables, 67

Instruction pointer, 84, 85, 102, 118

Intel x64 assembly language, 3

Invalid pointer, 65

J, K

JMP, 106-108, 145
JNZ, 145

1Z, 145

L

Last In First Out (LIFO), 97,
100, 118
Load Effective Address
(LEA), 73, 164
Linux applications, 65
Local variables, 117, 121, 130, 133
LocalVariables project
breakpoint, 125
compiler, 127
disassembly output, 127
downloading, 124
function prolog and epilog, 126
GDB, 124
main function, 125
source code, 126
Logical operations, 82
Logical shift instructions, 82
Loop counter, 65, 118
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INDEX

main, 19, 22, 37, 38, 70, 87, 113,
125-127, 129, 133, 137, 149
maintenance info sections
command, 85
Memory and registers
assigning numbers, 8
computer memory, 1, 2
increment/decrement,
11,13, 14
Intel x64, 2, 3
multiplying numbers, 14, 16
Memory layout, 4, 7, 10, 13, 16, 35,
39, 42, 45,47, 51, 55-57, 71,
73,77,78,130, 131, 137, 138
MemoryPointers project
breakpoint, 70
code execution, 74-77
data declaration and
definition, 68
GDB, 71
LEA, 73
memory layout, 71, 77, 78
pseudo-code, 69
source code, 69
MOV, 6, 8-10, 13, 15-17, 25, 53, 65,
83,98, 117, 118, 140,
164, 165
MOVB, 59, 65
MOVL, 37, 60
MOVQ, 60
MOVW, 60, 61
MOVZX, 147
Multiplication, 15, 48, 117, 118
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N

NULL pointer, 65
Number representations, 27, 28

O

Opcode, 81
OR, 83

P

Panic, 65
Pointers, 33, 36, 37, 42, 48, 59, 60,
66-68, 165, 166
addressing modes, 61, 64
address of another memory cell,
33,59, 66
assigning numbers,
memory cell
assembly language, 37
assigning value, 36
Cand C*, 36
commands, 40
GDB, 37
info variables, 39
main function, 38
memory layout, 42
movl, 37
registers, 40
calculations, 36
contents at memory address, 34
initialization, 67
invalid, 65, 66
memory, 59



memory layout, 33-35
movb, 60-62
movl, 60, 63
next instruction to be
executed, 44, 46, 49, 118
NULL, 65
numbers
adding, 42, 44, 45
incrementing, 45-47
multiplication, 48, 49, 51
pointer to pointer, 33
read-only memory, 65
register as temporary
variable, 43
registers, 34, 35, 60
uninitialized variable, 67
variables, 66
w suffix, 60
POP, 99, 101, 102, 110
print command, 72
printf, 106, 149, 156, 162, 163
Program sections, 67
Pseudo-code, 5, 8, 11, 16, 24, 25, 36,
40, 42, 43, 45, 48, 49, 90, 92,
101, 107,109, 110, 126, 140,
142-144, 146
Pseudo notation, 68
PUSH, 101, 109

Q

Quad words (QWORD), 53-60, 118,
132, 140, 165, 166

INDEX

R

Random memory, 66
[RAX], 36, 40, 42, 43, 45, 46, 48, 49,
68, 90-93, 157
RAX, 2, 35-37, 39, 40, 42-44, 46, 48,
49, 65, 68, 71, 81, 83, 84,
90-92, 99, 101, 102, 107,
110, 117, 118, 140, 146, 165
RBP, 118, 120, 121, 123, 130, 135,
137,138
RBX, 35, 39, 42, 48, 65,71, 102, 118
RCX, 65, 71,102, 118, 140
RDI, 140
RDX, 2, 65,102, 117,118
Registers
32-bit, 65
64-bit, 65
byte registers, 146, 147
contents, 8
CPU flags register, 139
decrement, 98
general purpose CPU
register, 102
general-purpose registers, 118
memory, 140, 141
preservation, 117
special purpose registers, 102
structure, 145
testing, 141, 142
zero value, 83
REP, 140
RET, 108-110
RFLAGS, 139, 141, 142
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RIP, 81-85, 102, 105-109, 111, 114,
118, 145

RSP, 98-100, 102, 105, 108, 111,
118, 123

run command, 22, 38, 70, 87, 88,
113,125,135, 151

S

scanf, 149, 155
set command, 71
SHL, 82
SHLB, 82
SHR, 82
SimpleStack project, 112, 121
Stack, 98, 100, 101, 105, 109-111,
114,117,118, 121, 123, 126,
130-135, 137, 138, 154, 157
array elements, 118, 119
deep recursion, 105
definition, 97
GDB, 112-114
implementation, 98, 99
memory layout, 137
memory locations, 130
operations, 97, 98
overflow, 105, 106
parameter mismatch
problem, 137, 138
parameters to functions, 100, 117
points, 100
POP instruction, 99, 100
push instruction, 98, 99
raw stack, 121, 122
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reconstruction, 114
register preservation, 117
return address, 100, 110, 111,
117,130
size, 105
structure, 119, 120, 130, 131
unlimited recursion, 105
usage, 117,118
Stack frame, 118, 123, 126, 130, 133,
134, 154, 156-158
Stack frame pointer, 118
Stack pointer, 98, 102, 118
Stack reconstruction, 87, 90
Stack trace, 114
Static memory locations, 4
STD, 139
STOSD, 140
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Summation notation, 28
Summation symbol, 28
Symbolic names, 22
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Temporary memory cell, 9
Ternary representation, 29
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Uninitialized pointers, 66, 67
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