
Foundations of Linux
Debugging, Disassembling,
and Reversing

Analyze Binary Code, Understand
Stack Memory Usage, and Reconstruct
C/C++ Code with Intel x64
—
Dmitry Vostokov

Foundations of Linux
Debugging,

Disassembling, and
Reversing

Analyze Binary Code,
Understand Stack Memory

Usage, and Reconstruct C/C++
Code with Intel x64

Dmitry Vostokov

Foundations of Linux Debugging, Disassembling, and Reversing: Analyze
Binary Code, Understand Stack Memory Usage, and Reconstruct C/C++
Code with Intel x64

ISBN-13 (pbk): 978-1-4842-9152-8 ISBN-13 (electronic): 978-1-4842-9153-5

Copyright © 2023 by Dmitry Vostokov

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Eugene Golovesov on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit http://www.apress.com/source-code.

Printed on acid-free paper

Dmitry Vostokov
Dublin, Ireland

https://doi.org/10.1007/978-1-4842-9153-5

iii

��

About the Author ���ix

About the Technical Reviewer ���xi

Preface ��xiii

Chapter 1: Memory, Registers, and Simple Arithmetic �������������������������1

Memory and Registers Inside an Idealized Computer ��1

Memory and Registers Inside Intel 64-Bit PC ���2

“Arithmetic” Project: Memory Layout and Registers ��3

“Arithmetic” Project: A Computer Program ���5

“Arithmetic” Project: Assigning Numbers to Memory Locations ���������������������������5

Assigning Numbers to Registers ���8

“Arithmetic” Project: Adding Numbers to Memory Cells ���������������������������������������8

Incrementing/Decrementing Numbers in Memory and Registers �����������������������11

Multiplying Numbers ���14

Summary���17

Chapter 2: Code Optimization ���19

“Arithmetic” Project: C/C++ Program ���19

Downloading GDB ���20

GDB Disassembly Output – No Optimization ���20

GDB Disassembly Output – Optimization ��25

Summary���26

Table of Contents

iv

��

Chapter 3: Number Representations���27

Numbers and Their Representations ���27

Decimal Representation (Base Ten) ��28

Ternary Representation (Base Three) ��29

Binary Representation (Base Two) ��29

Hexadecimal Representation (Base Sixteen) ��30

Why Are Hexadecimals Used? ���30

Summary���32

Chapter 4: Pointers ���33

A Definition��33

“Pointers” Project: Memory Layout and Registers ��34

“Pointers” Project: Calculations ��36

Using Pointers to Assign Numbers to Memory Cells ���36

Adding Numbers Using Pointers ���42

Incrementing Numbers Using Pointers ���45

Multiplying Numbers Using Pointers ���48

Summary���51

Chapter 5: Bytes, Words, Double, and Quad Words �����������������������������53

Using Hexadecimal Numbers ��53

Byte Granularity ��53

Bit Granularity ���54

Memory Layout ���55

Summary���58

Chapter 6: Pointers to Memory ���59

Pointers Revisited ���59

Addressing Types ��59

Table of Contents

v

��

��

Registers Revisited ���65

NULL Pointers ���65

Invalid Pointers ���65

Variables As Pointers ��66

Pointer Initialization ��67

Initialized and Uninitialized Data ���67

More Pseudo Notation ���68

“MemoryPointers” Project: Memory Layout��68

Summary���79

Chapter 7: Logical Instructions and RIP ���81

Instruction Format���81

Logical Shift Instructions ��82

Logical Operations ��82

Zeroing Memory or Registers��83

Instruction Pointer ���84

Code Section ���85

Summary���86

Chapter 8: Reconstructing a Program with Pointers ��������������������������87

Example of Disassembly Output: No Optimization ��87

Reconstructing C/C++ Code: Part 1 ��90

Reconstructing C/C++ Code: Part 2 ��92

Reconstructing C/C++ Code: Part 3 ��93

Reconstructing C/C++ Code: C/C++ Program ��94

Example of Disassembly Output: Optimized Program ���95

Summary���96

Table of Contents

vi

��

��

Chapter 9: Memory and Stacks ��97

Stack: A Definition ���97

Stack Implementation in Memory ���98

Things to Remember ���100

PUSH Instruction ���101

POP Instruction ���101

Register Review ��102

Application Memory Simplified ���105

Stack Overflow ��105

Jumps ���106

Calls ��108

Call Stack ��110

Exploring Stack in GDB ���112

Summary���115

Chapter 10: Frame Pointer and Local Variables �������������������������������117

Stack Usage ��117

Register Review ��118

Addressing Array Elements ���118

Stack Structure (No Function Parameters) ���119

Function Prolog ���121

Raw Stack (No Local Variables and Function Parameters) �������������������������������121

Function Epilog ���123

“Local Variables” Project ��124

Disassembly of Optimized Executable ��127

Summary���128

Table of Contents

vii

Chapter 11: Function Parameters ���129

“FunctionParameters” Project ��129

Stack Structure ���130

Function Prolog and Epilog ���132

Project Disassembled Code with Comments ��133

Parameter Mismatch Problem ��137

Summary���138

Chapter 12: More Instructions ��139

CPU Flags Register ��139

The Fast Way to Fill Memory ���140

Testing for 0 ��141

TEST – Logical Compare ���142

CMP – Compare Two Operands ���143

TEST or CMP? ���144

Conditional Jumps ��144

The Structure of Registers ��145

Function Return Value ���146

Using Byte Registers ���146

Summary���147

Chapter 13: Function Pointer Parameters ��149

“FunctionPointerParameters” Project ���149

Commented Disassembly ���150

Summary���159

Table of Contents

viii

��Chapter 14: Summary of Code Disassembly Patterns ����������������������161

Function Prolog/Epilog ��161

LEA (Load Effective Address) ��164

Passing Parameters ��164

Accessing Parameters and Local Variables ��165

Summary���166

Index ���167

Table of Contents

ix

About the Author

Dmitry Vostokov is an internationally

recognized expert, speaker, educator, scientist,

and author. He is the founder of the pattern-

oriented software diagnostics, forensics,

and prognostics discipline and Software

Diagnostics Institute (DA+TA: DumpAnalysis.

org + TraceAnalysis.org). Vostokov has also

authored more than 50 books on software

diagnostics, anomaly detection and analysis,

software and memory forensics, root cause analysis and problem solving,

memory dump analysis, debugging, software trace and log analysis,

reverse engineering, and malware analysis. He has more than 25 years

of experience in software architecture, design, development, and

maintenance in various industries, including leadership, technical, and

people management roles. Dmitry also founded Syndromatix, Anolog.

io, BriteTrace, DiaThings, Logtellect, OpenTask Iterative and Incremental

Publishing (OpenTask.com), Software Diagnostics Technology and

Services (former Memory Dump Analysis Services; PatternDiagnostics.

com), and Software Prognostics. In his spare time, he presents various

topics on Debugging TV and explores Software Narratology, its further

development as Narratology of Things and Diagnostics of Things (DoT),

and Software Pathology. His current areas of interest are theoretical

software diagnostics and its mathematical and computer science

foundations, application of artificial intelligence, machine learning and

x

data mining to diagnostics and anomaly detection, software diagnostics

engineering and diagnostics-driven development, and diagnostics

workflow and interaction. Recent areas of interest also include cloud

native computing, security, automation, functional programming, and

applications of category theory to software development and big data.  

About the Author

xi

About the Technical Reviewer

Vikas Talan is a senior engineer at Qualcomm

(an American multinational corporation). He is

the founder of S.M.A.R.T Solutions, a technical

company. He also worked at MediaTek and

Cadence in core technical domains. He has

in-depth experience in Linux kernel

programming, Linux device drivers, ARM 64,

ARM, and porting of Android OS and Linux

drivers on chipsets. He hails from Delhi

NCR, India.

xiii

Preface

The book covers topics ranging from Intel x64 assembly language

instructions and writing programs in assembly language to pointers, live

debugging, and static binary analysis of compiled C and C++ code.

Diagnostics of core memory dumps, live and postmortem debugging

of Linux applications, services, and systems, memory forensics, malware,

and vulnerability analysis require an understanding of x64 Intel assembly

language and how C and C++ compilers generate code, including

memory layout and pointers. This book is about background knowledge

and practical foundations that are needed to understand internal Linux

program structure and behavior, start working with the GDB debugger, and

use it for disassembly and reversing. It consists of practical step-by-step

exercises of increasing complexity with explanations and many diagrams,

including some necessary background topics.

By the end of the book, you will have a solid understanding of how

Linux C and C++ compilers generate binary code. In addition, you will be

able to analyze such code confidently, understand stack memory usage,

and reconstruct original C/C++ code.

The book will be useful for

•	 Software technical support and escalation engineers

•	 Software engineers coming from JVM background

•	 Software testers

•	 Engineers coming from non-Linux environments, for

example, Windows or Mac OS X

xiv

•	 Linux C/C++ software engineers without assembly

language background

•	 Security researchers without assembly language

background

•	 Beginners learning Linux software reverse engineering

techniques

This book can also be used as an x64 assembly language and Linux

debugging supplement for relevant undergraduate-level courses.

�Source Code
All source code used in this book can be downloaded from github.com/

apress/linux-debugging-disassembling-reversing.

Preface

1

CHAPTER 1

Memory, Registers,
and Simple Arithmetic

�Memory and Registers Inside
an Idealized Computer
Computer memory consists of a sequence of memory cells, and each cell

has a unique address (location). Every cell contains a “number.” We refer

to these “numbers” as contents at addresses (locations). Because memory

access is slower than arithmetic instructions, there are so-called registers

to speed up complex operations that require memory to store temporary

results. We can also think about them as stand-alone memory cells. The

name of a register is its address. Figure 1-1 illustrates this concept.

© Dmitry Vostokov 2023
D. Vostokov, Foundations of Linux Debugging, Disassembling, and Reversing

https://doi.org/10.1007/978-1-4842-9153-5_1

2

Figure 1-1.  Computer memory represented as a sequence of memory
cells and locations

�Memory and Registers Inside Intel
64-Bit PC
Figure 1-2 shows addresses for memory locations containing integer

values usually differ by four or eight, and we also show two registers called

%RAX and %RDX. The first halves of them are called %EAX and %EDX.

Chapter 1 Memory, Registers, and Simple Arithmetic

3

Figure 1-2.  Typical Intel x64 memory and register layout

Because memory cells contain “numbers,” we start with simple

arithmetic and ask a PC to compute the sum of two numbers to see how

memory and registers change their values.

�“Arithmetic” Project: Memory Layout
and Registers
For our project, we have two memory addresses (locations) that we call

“a” and “b.” We can think about “a” and “b” as names of their respective

addresses (locations). Now we introduce a special notation where (a) means

Chapter 1 Memory, Registers, and Simple Arithmetic

4

contents at the memory address (location) “a.” If we use the C or C++

language to write our project, we declare and define memory locations “a”

and “b” as

static int a, b;

By default, when we load a program, static memory locations are filled

with zeroes, and we can depict our initial memory layout after loading the

program, as shown in Figure 1-3.

Figure 1-3.  Initial memory layout after loading the program

Chapter 1 Memory, Registers, and Simple Arithmetic

5

�“Arithmetic” Project: A Computer Program
We can think of a computer program as a sequence of instructions for

the manipulation of contents of memory cells and registers. For example,

addition operation: add the contents of memory cell №12 to the contents

of memory cell №14. In our pseudo-code, we can write

(14) + (12) -> (14)

Our first program in pseudo-code is shown on the left of the table:

1 -> (a)

1 -> (b)

(b) + (a) -> (b)

(a) + 1 -> (a)

(b) * (a) -> (b)

Here, we put assembly instructions corresponding

to pseudo-code.

“->” means moving (assigning) the new value to the contents of a

memory location (address). “;” is a comment sign, and the rest of the line is

a comment. “=” shows the current value at a memory location (address).

To remind, a code written in a high-level programming language is

translated to a machine language by a compiler. However, the machine

language can be readable if its digital codes are represented in some

mnemonic system called assembly language. For example, INC a is

increment by one of what is stored at a memory location “a.”

�“Arithmetic” Project: Assigning Numbers
to Memory Locations
We remind that “a” means location (address) of the memory cell, and it is

also the name of the location (address) 000055555555802c (see Figure 1-3).

(a) means the contents (number) stored at the address “a.”

Chapter 1 Memory, Registers, and Simple Arithmetic

6

If we use the C or C++ language, “a” is called “the variable a,” and we

write the assignment as

a = 1;

In the Intel assembly language, we write

mov $1, a

In the GDB disassembly output, we see the following code where the

variable “a” and address are shown in comments:

movl $0x1,0x2ef2(%rip) # 0x55555555802c <a>

We show the translation of our pseudo-code into assembly language in

the right column:

1 -> (a) ; (a) = 1

1 -> (b) ; (b) = 1

(b) + (a) -> (b)

(a) + 1 -> (a)

(b) * (a) -> (b)

movl $1, a

movl $1, b

Notice movl instructions instead of mov. This is because “a” and “b”

can point to both 32-bit (like %EAX or %EDX registers) and 64-bit memory

cells (like %RAX and %RDX registers). In the registers’ case, it is clear from

their names whether we use 64-bit %RAX or 32-bit %EAX. But in the case

of memory addresses “a” and “b,” it is not clear whether they refer to 64-bit

or 32-bit cells. We use movl to disambiguate and show that we use 32-bit

memory cells that are enough to hold integers from 0 to 4294967295.

0x2ef2(%rip) is how the compiler generates code to calculate the

address “a” instead of specifying it directly. Such code requires less

memory space. We explain this in later chapters.

Chapter 1 Memory, Registers, and Simple Arithmetic

7

Literal constants have the $ prefix, for example, $0x1. The 0x prefix

means the following number is hexadecimal. The leading four zeroes of

the address are also omitted in the comment. We explain such numbers in

Chapter 3. Please also notice that the movement direction is the same in

both the disassembly output and the pseudo-code: from left to right.

After executing the first two assembly language instructions, we have

the memory layout shown in Figure 1-4.

Figure 1-4.  Memory layout after executing the first two assembly
language instructions

Chapter 1 Memory, Registers, and Simple Arithmetic

8

�Assigning Numbers to Registers
This is similar to memory assignments. We can write in pseudo-code:

1 -> register

(a) -> register

Note that we do not use brackets when we refer to register contents.

The latter instruction means assigning (copying) the number at the

location (address) “a” to a register.

In assembly language, we write

mov $1, %eax # �1 is copied to the first half of %RAX

register

mov $1, %rax # �full contents of %RAX register are

replaced with 1

mov a, %eax

mov a, %rax

In the GDB disassembly output, we may see the following code:

mov $0x0,%eax

�“Arithmetic” Project: Adding Numbers
to Memory Cells
Now let’s look at the following pseudo-code statement in more detail:

(b) + (a) -> (b)

To recall, “a” and “b” mean the names of locations (addresses)

000055555555802c and 0000555555558030, respectively (see Figure 1-4).

(a) and (b) mean contents at addresses “a” and “b,” respectively, simply

some numbers stored there.

Chapter 1 Memory, Registers, and Simple Arithmetic

9

In the C or C++ language, we write the following statement:

b = b + a;

b += a;

In assembly language, we use the instruction ADD. Because of AMD64

and Intel EM64T architecture’s limitations, we cannot use both memory

addresses in one step (instruction), for example, add a, b. We can only use

the add register, b instruction to add the value stored in the register to

the contents of the memory cell b. Recall that a register is like a temporary

memory cell itself here:

(a) -> register

(b) + register -> (b)

Alternatively, we can use two registers:

(a) -> register1

(b) -> register2

register2 + register1 -> register2

register2 -> (b)

In assembly language, we write

mov a, %eax

add %eax, b

or we can add two registers and move the result to the memory cell b:

mov b, %edx

mov a, %eax

add %edx, %eax

mov %eax, b

Chapter 1 Memory, Registers, and Simple Arithmetic

10

In the GDB disassembly output, we may see the following code:

mov 0x2ee6(%rip),%edx # 0x555555558030

mov 0x2edc(%rip),%eax # 0x55555555802c <a>

add %edx,%eax

mov %eax,0x2ed8(%rip) # 0x555555558030

Now we can translate our pseudo-code into assembly language:

1 -> (a) ; (a) = 1

1 -> (b) ; (b) = 1

(b) + (a) -> (b) ; %eax = 1

      ; %edx = 1

     ; %eax = 2

     ; (b) = 2

(a) + 1 -> (a)

(b) * (a) -> (b)

movl $1, a

movl $1, b

mov a, %eax

mov b, %edx

add %edx, %eax

mov %eax, b

After the execution of ADD and MOV instructions, we have the

memory layout illustrated in Figure 1-5.

Chapter 1 Memory, Registers, and Simple Arithmetic

11

Figure 1-5.  Memory layout after executing ADD and MOV
instructions

�Incrementing/Decrementing Numbers
in Memory and Registers
In pseudo-code, it looks simple and means increment (decrement) a

number stored at the location (address) “a”:

(a) + 1 -> (a)

(a) – 1 -> (a)

Chapter 1 Memory, Registers, and Simple Arithmetic

12

In the C or C++ language, we can write this using three possible ways:

a = a + 1;

++a;

a++;

b = b – 1;

--b;

b--;

In assembly language, we use instructions INC and DEC and write

incl a

inc %eax

decl a

dec %eax

We use incl when we need to specify the 32-bit memory cell. It is

ambiguous when we use “a.” However, using %eax implies using 32-bit

values, so inc is unambiguous.

In the GDB disassembly output, we may see the same instruction:

inc %eax

or

add $0x1,%eax # �a compiler may decide to use ADD

instead of INC

Chapter 1 Memory, Registers, and Simple Arithmetic

13

Now we add the assembly language translation of increment:

1 -> (a) ; (a) = 1

1 -> (b) ; (b) = 1

(b) + (a) -> (b) ; %eax = 1

  ; %edx = 1

  ; %eax = 2

  ; (b) = 2

(a) + 1 -> (a) ; %eax = 1

  ; %eax = 2

  ; (a) = 2

(b) * (a) -> (b)

movl $1, a

movl $1, b

mov a, %eax

mov b, %edx

add %edx, %eax

mov %eax, b

mov a, %eax

add $1, %eax

mov %eax, a

After the execution of INC or ADD instruction, we have the memory

layout illustrated in Figure 1-6.

Chapter 1 Memory, Registers, and Simple Arithmetic

14

Figure 1-6.  Memory layout after the execution of INC or ADD
instruction

�Multiplying Numbers
In pseudo-code, we write

(b) * (a) -> (b)

It means that we multiply the number at the location (address) “b” by

the number at the location (address) “a.”

In the C or C++ language, we can write that using two ways:

b = b * a;

b *= a;

Chapter 1 Memory, Registers, and Simple Arithmetic

15

In assembly language, we use instruction IMUL (Integer MULtiply)

and write

mov a, %eax

imul b, %eax

mov %eax, b

The multiplication instruction means (b) * %eax -> %eax, and we

must put the contents of “a” into %EAX. The multiplication result is put

into the register %EAX, and its contents are saved at the location (address)

“b.” Alternatively, we may put all multiplication operands into registers:

mov a, %eax

mov b, %edx

imul %edx, %eax

mov %eax, b

In the GDB disassembly output, we may see the following code:

mov 0x2ec3(%rip),%edx # 0x555555558030

mov 0x2eb9(%rip),%eax # 0x55555555802c <a>

imul %edx,%eax

mov %eax,0x2eb4(%rip) # 0x555555558030

Chapter 1 Memory, Registers, and Simple Arithmetic

16

Now we add two additional assembly instructions to our pseudo-code

assembly language translation:

1 -> (a) ; (a) = 1

1 -> (b) ; (b) = 1

(b) + (a) -> (b) ; %eax = 1

  ; %edx = 1

  ; %eax = 2

  ; (b) = 2

(a) + 1 -> (a) ; %eax = 1

   ; %eax = 2

   ; (a) = 2

(b) * (a) -> (b) ; %edx = 2

  ; %eax = 2

  ; %eax = 4

  ; (b) = 4

movl $1, a

movl $1, b

mov a, %eax

mov b, %edx

add %edx, %eax

mov %eax, b

mov a, %eax

add $1, %eax

mov %eax, a

mov b, %edx

mov a, %eax

imul %edx, %eax

mov %eax, b

After the execution of IMUL and MOV instructions, we have the

memory layout illustrated in Figure 1-7.

Chapter 1 Memory, Registers, and Simple Arithmetic

17

Figure 1-7.  Memory layout after the execution of IMUL and MOV
instructions

�Summary
This chapter introduced CPU registers and explained the memory layout

of a simple arithmetic program. We learned basic x64 instructions and

manually translated simple C and C++ code to assembly language.

The next chapter looks at assembly language code produced by a

debugger via disassembling binary code. Then, we reverse it to C and C++

code. We also compare the disassembly output of nonoptimized code to

optimized code.

Chapter 1 Memory, Registers, and Simple Arithmetic

19

CHAPTER 2

Code Optimization

�“Arithmetic” Project: C/C++ Program
Let’s rewrite our “Arithmetic” program in C/C++. Corresponding assembly

language instructions are put in comments:

int a, b;

int main(int argc, char* argv[])

{

 a = 1; // movl $1, a

 b = 1; // movl $1, b

 b = b + a; // mov a, %eax

 // mov b, %edx

 // add %edx, %eax

 // mov %eax, b

 ++a; // mov a, %eax

 // add $1, %eax

 // mov %eax, a

© Dmitry Vostokov 2023
D. Vostokov, Foundations of Linux Debugging, Disassembling, and Reversing

https://doi.org/10.1007/978-1-4842-9153-5_2

20

 b = b * a; // mov b, %edx

 // mov a, %eax

 // imul %edx, %eax

 // mov %eax, b

 // results: (a) = 2 and (b) = 4

 return 0;

}

�Downloading GDB
We used WSL2 and "Debian GNU/Linux 10 (buster)" as a working

environment. We chose Debian because we used it for the “Accelerated

Linux Core Dump Analysis” training course.1 After installing Debian, we

need to install essential build tools and GDB:

sudo apt install build-essential

sudo apt install gdb

You may also need to download git to clone source code:

sudo apt install git

cd ~

git clone github.com/apress/linux-debugging-disassembling-

reversing .

�GDB Disassembly Output – No Optimization
The source code can be downloaded from the following location:

github.com/apress/linux-debugging-disassembling-reversing/

Chapter2/

1 www.dumpanalysis.org/accelerated-linux-core-dump-analysis-book

Chapter 2 Code Optimization

http://www.dumpanalysis.org/accelerated-linux-core-dump-analysis-book

21

If we compile and link the program in no optimization mode (default):

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter2$ gcc

ArithmeticProjectC.cpp -o ArithmeticProjectC

we get the binary executable module we can load in GDB and inspect

assembly code.

First, we run GDB with the program as a parameter:

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter2$ gdb ./

ArithmeticProjectC

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/

licenses/gpl.html>

This is free software: you are free to change and

redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources

online at:

 <http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from ./ArithmeticProjectC...(no debugging

symbols found)...done.

(gdb)

Chapter 2 Code Optimization

22

Next, we put a breakpoint at our main C/C++ function to allow the

program execution to stop at that point and give us a chance to inspect

memory and registers. Symbolic names/function names like "main" can be

used instead of code memory locations:

(gdb) break main

Breakpoint 1 at 0x1129

Then we start execution of the program (let it run). The program then

stops at the previously set breakpoint:

(gdb) run

Starting program: /home/coredump/pflddr/x64/Chapter2/

ArithmeticProjectC

Breakpoint 1, 0x0000555555555129 in main ()

Now we disassemble the main function:

(gdb) disass main

Dump of assembler code for function main:

 0x0000555555555125 <+0>: push %rbp

 0x0000555555555126 <+1>: mov %rsp,%rbp

=> 0x0000555555555129 <+4>: mov %edi,-0x4(%rbp)

 0x000055555555512c <+7>: mov %rsi,-0x10(%rbp)

 �0x0000555555555130 <+11>: movl $0x1,0x2ef2(%rip)

0x55555555802c <a>

 �0x000055555555513a <+21>: movl $0x1,0x2eec(%rip)

0x555555558030

 �0x0000555555555144 <+31>: mov 0x2ee6(%rip),%edx

0x555555558030

 �0x000055555555514a <+37>: mov 0x2edc(%rip),%eax

0x55555555802c <a>

 0x0000555555555150 <+43>: add %edx,%eax

Chapter 2 Code Optimization

23

 �0x0000555555555152 <+45>: mov %eax,0x2ed8(%rip)

0x555555558030

 �0x0000555555555158 <+51>: mov 0x2ece(%rip),%eax

0x55555555802c <a>

 0x000055555555515e <+57>: add $0x1,%eax

 �0x0000555555555161 <+60>: mov %eax,0x2ec5(%rip)

0x55555555802c <a>

 �0x0000555555555167 <+66>: mov 0x2ec3(%rip),%edx

0x555555558030

 �0x000055555555516d <+72>: mov 0x2eb9(%rip),%eax

0x55555555802c <a>

 0x0000555555555173 <+78>: imul %edx,%eax

 �0x0000555555555176 <+81>: mov %eax,0x2eb4(%rip)

0x555555558030

 0x000055555555517c <+87>: mov $0x0,%eax

 0x0000555555555181 <+92>: pop %rbp

 0x0000555555555182 <+93>: retq

End of assembler dump.

We repeat the part of the formatted disassembly output here that

corresponds to our C/C++ code:

 �0x0000555555555130 <+11>: movl $0x1,0x2ef2(%rip)

0x55555555802c <a>

 �0x000055555555513a <+21>: movl $0x1,0x2eec(%rip)

0x555555558030

 �0x0000555555555144 <+31>: mov 0x2ee6(%rip),%edx

0x555555558030

 �0x000055555555514a <+37>: mov 0x2edc(%rip),%eax

0x55555555802c <a>

 0x0000555555555150 <+43>: add %edx,%eax

Chapter 2 Code Optimization

24

 �0x0000555555555152 <+45>: mov %eax,0x2ed8(%rip)

0x555555558030

 �0x0000555555555158 <+51>: mov 0x2ece(%rip),%eax

0x55555555802c <a>

 0x000055555555515e <+57>: add $0x1,%eax

 �0x0000555555555161 <+60>: mov %eax,0x2ec5(%rip)

0x55555555802c <a>

 �0x0000555555555167 <+66>: mov 0x2ec3(%rip),%edx

0x555555558030

 �0x000055555555516d <+72>: mov 0x2eb9(%rip),%eax

0x55555555802c <a>

 0x0000555555555173 <+78>: imul %edx,%eax

 �0x0000555555555176 <+81>: mov %eax,0x2eb4(%rip)

0x555555558030

We can directly translate it to bare assembly code we used in the

previous chapter and put corresponding pseudo-code in comments:

movl $1, a # 1 -> (a)

movl $1, b # 1 -> (b)

mov b, %edx # (b) + (a) -> (b)

mov a, %eax

add %edx, %eax

mov %eax, b

mov a, %eax # (a) + 1 -> (a)

add $1, %eax

mov %eax, a

mov b, %edx # (b) * (a) -> (b)

mov a, %eax

imul %edx, %eax

mov %eax, b

Chapter 2 Code Optimization

25

Now we can exit GDB:

(gdb) q

A debugging session is active.

 Inferior 1 [process 2249] will be killed.

Quit anyway? (y or n) y

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter2$

�GDB Disassembly Output – Optimization
If we compile and link the program in optimization mode:

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter2$ gcc

ArithmeticProjectC.cpp -O1 -o ArithmeticProjectC

and after repeating the same steps in GDB, we get the following output:

(gdb) disass main

Dump of assembler code for function main:

=> 0x0000555555555125 <+0>: movl $0x2,0x2f01(%rip)

0x555555558030 <a>

 �0x000055555555512f <+10>: movl $0x4,0x2ef3(%rip)

0x55555555802c

 0x0000555555555139 <+20>: mov $0x0,%eax

 0x000055555555513e <+25>: retq

End of assembler dump.

This corresponds to the following pseudo-code:

mov $2, a # 2 -> (a)

mov $4, b # 4 -> (b)

Please note that the compiler also chose to put memory cell “b” first

(000055555555802c) and then memory cell “a” (0000555555558030).

Chapter 2 Code Optimization

26

What happened to all our assembly code in this executable? This code

seems to be directly placing the end result into the “b” memory cell if we

observe. Why is this happening? The answer lies in compiler optimization.

When the code is compiled in optimization mode, the compiler can

calculate the final result from the simple C/C++ source code itself and

generate only the necessary code to update corresponding memory

locations.

�Summary
In this chapter, we looked at assembly language code produced by a

debugger via disassembling binary code. Then, we reversed it to C and C++

code. We also compared the disassembly output of nonoptimized code to

optimized code and understood why.

The next chapter refreshes number representations, especially the

hexadecimal one.

Chapter 2 Code Optimization

27

CHAPTER 3

Number
Representations

�Numbers and Their Representations
Imagine a herder in ancient times trying to count his sheep. He has a

certain number of stones (twelve):

However, he can only count up to three and arranges the total into

groups of three:

© Dmitry Vostokov 2023
D. Vostokov, Foundations of Linux Debugging, Disassembling, and Reversing

https://doi.org/10.1007/978-1-4842-9153-5_3

28

The last picture is a representation (a kind of notation) of the number

of stones. We have one group of three groups of three stones plus a

separate group of three stones. If he could count up to ten, we would see a

different representation of the same number of stones. We would have one

group of ten stones and another group of two stones.

�Decimal Representation (Base Ten)
Let’s now see how twelve stones are represented in arithmetic notation if

we can count up to ten. We have one group of ten numbers plus two:

12dec = 1 * 10 + 2 or 1 * 101 + 2 * 100

Here is another exercise with 123 stones. We have 1 group of ten by

ten stones, another group of 2 groups of ten stones, and the last group

of 3 stones:

123dec = 1 * 10*10 + 2 * 10 + 3 or 1 * 102 + 2 * 101 + 3 * 100

We can formalize it in the following summation notation:

Ndec = an*10n + an-1*10n-1 + … + a2*102 + a1*101 + a0*100

0 <= ai <= 9

Using the summation symbol, we have this formula:

n

Ndec = ∑ ai*10i

i=0

Chapter 3 Number Representations

29

�Ternary Representation (Base Three)
Now we come back to our herder’s example of twelve stones. We have 1

group of three by three stones, 1 group of three stones, and an empty (0)

group (which is not empty if we have one stone only or have thirteen

stones instead of twelve). We can write down the number of groups

sequentially: 110. Therefore, 110 is a ternary representation (notation) of

twelve stones, and it is equivalent to 12 written in decimal notation:

12dec = 1*32 + 1*31 + 0*30

Ndec = an*3n + an-1*3n-1 + … + a2*32 + a1*31 + a0*30

ai = 0 or 1 or 2

n

Ndec = ∑ ai*3i

i=0

�Binary Representation (Base Two)
In the case of counting up to two, we have more groups for twelve stones:

1100. Therefore, 1100 is a binary representation (notation) for 12 in

decimal notation:

12dec = 1*23 + 1*22 + 0*21 + 0*20

123dec = 1*26 + 1*25 + 1*24 + 1*23 + 0*22 + 1*21 + 1*20 or

11110112

Ndec = an*2n + an-1*2n-1 + … + a2*22 + a1*21 + a0*20

ai = 0 or 1

n

Ndec = ∑ ai*2i

i=0

Chapter 3 Number Representations

30

�Hexadecimal Representation (Base Sixteen)
If we can count up to sixteen, twelve stones fit in one group, but we

need more symbols: A, B, C, D, E, and F for ten, eleven, twelve, thirteen,

fourteen, and fifteen, respectively:

12dec = C in hexadecimal representation (notation)

123dec = 7Bhex

123dec = 7*161 + 11*160

n

Ndec = ∑ ai*16i

i=0

�Why Are Hexadecimals Used?
Consider this number written in binary notation: 1100010100112. Its

equivalent in decimal notation is 3155:

3155dec = 1*211 + 1*210 + 0*29 + 0*28 + 0*27 + 1*26 + 0*25

+ 1*24 + 0*23 + 0*22 + 1*21 + 1*20

Now we divide the binary number digits into groups of four and write

them down in decimal and hexadecimal notation:

110001010011

12dec 5dec 3dec

Chex 5hex 3hex

We see that hexadecimal notation is more compact because every

four binary digit group number corresponds to one hexadecimal number.

Table 3-1 lists hexadecimal equivalents for every four binary digit

combination.

Chapter 3 Number Representations

31

Table 3-1.  Hexadecimal Equivalents for Every Four

Binary Digit Combination

Binary Decimal Hexadecimal

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 10 A

1011 11 B

1100 12 C

1101 13 D

1110 14 E

1111 15 F

In GDB and other debuggers, memory addresses are displayed in

hexadecimal notation.

Chapter 3 Number Representations

32

�Summary
This chapter refreshed different representations of a number, including

hexadecimal notation.

The next chapter introduces pointers. We rewrite our arithmetic

program from Chapter 1 using pointers to memory and use the GDB

debugger to execute instructions one by one and watch changes

to memory.

Chapter 3 Number Representations

33

CHAPTER 4

Pointers

�A Definition
The concept of a pointer is one of the most important to understand

thoroughly to master Linux debugging. By definition, a pointer is a

memory cell or a processor register that contains the address of another

memory cell, as shown in Figure 4-1. It has its own address as any memory

cell. Sometimes, a pointer is called an indirect address (vs. a direct address,

the address of a memory cell). Iteratively, we can define another level

of indirection and introduce a pointer to a pointer as a memory cell or a

processor register that contains the address of another memory cell that

contains the address of another memory cell and so on.

© Dmitry Vostokov 2023
D. Vostokov, Foundations of Linux Debugging, Disassembling, and Reversing

https://doi.org/10.1007/978-1-4842-9153-5_4

34

Figure 4-1.  Example pointers and memory layout

�“Pointers” Project: Memory Layout
and Registers
In our debugging project, we have two memory addresses (locations), “a”

and “b.” We can think about “a” and “b” as names of addresses (locations).

We remind that notation (a) means contents at the memory address

(location) “a.”

Chapter 4 Pointers

35

We also have registers %RAX and %RBX as pointers to “a” and “b.”

These registers contain addresses of “a” and “b,” respectively. The notation

(%RAX) means the contents of a memory cell whose address is in the

register %RAX.

In C and C++ languages, we declare and define pointers to “a”

and “b” as

int *a, *b;

Our project memory layout before program execution is shown in

Figure 4-2. Addresses always occupy 64-bit memory cells or full 64-bit

registers like %RAX or %RBX (they cannot fit in %EAX or %EBX or a 32-bit

memory cell).

Figure 4-2.  Project memory layout before program execution

Chapter 4 Pointers

36

�“Pointers” Project: Calculations
In order to understand pointers better from a low-level assembly language

perspective, we perform our old arithmetic calculations from Chapter 1

using pointers to memory instead of direct memory addresses:

address a -> rax

1 -> (rax)

address b -> rbx

1 -> (rbx)

(rbx) + (rax) -> (rbx)

(rax) + 1 -> (rax)

(rbx) * (rax) -> (rbx)

�Using Pointers to Assign Numbers
to Memory Cells
First, the following sequence of pseudo-code instructions means that we

interpret the contents of %RAX register as the address of a memory cell

and then assign a value to that memory cell:

address a -> rax

1 -> (rax)

In C and C++ languages, it is called “dereferencing a pointer,” and

we write

int a;

int *pa = &a; // declaration and definition of a pointer

*pa = 1; // get a memory cell (dereference a pointer)

 // and assign a value to it

Chapter 4 Pointers

37

In assembly language, we write

lea a, %rax # �load the address "a" into %rax

movl $1, (%rax) # use %rax as a pointer

Again, we see movl instead of mov because integers occupy 32-bit

memory cells, and we want to address only a 32-bit memory cell. This is

how it is on x64 Linux: memory cells to contain integers are half the size of

memory cells to contain addresses (32-bit vs. 64-bit).

In the GDB disassembly output, we see something like this:

0x0000000000401000 <+0>: lea 0x402000,%rax

0x0000000000401008 <+8>: movl $0x1,(%rax)

The source code for this chapter can be downloaded from

github.com/apress/linux-debugging-disassembling-reversing/

Chapter4/

To illustrate some instructions and not to be dependent on how

the compiler translates C/C++ code, we wrote the program in assembly

language. We need to compile and link it first before loading it into GDB

and disassemble its main function as described in Chapter 2.

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter4$ as

PointersProject.asm -o PointersProject.o

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter4$ ld

PointersProject.o -o PointersProject

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter4$ gdb

./PointersProject

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/

licenses/gpl.html>

Chapter 4 Pointers

38

This is free software: you are free to change and

redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources

online at:

 <http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from ./PointersProject...(no debugging symbols

found)...done.

(gdb)

We put a breakpoint on the main function, run the program until GDB

breaks in, and then disassemble the main function:

(gdb) break main

Breakpoint 1 at 0x401000

(gdb) run

Starting program: /home/coredump/pflddr/x64/Chapter4/

PointersProject

Breakpoint 1, 0x0000000000401000 in _start ()

(gdb) disass main

Dump of assembler code for function _start:

=> 0x0000000000401000 <+0>: lea 0x402000,%rax

 0x0000000000401008 <+8>: movl $0x1,(%rax)

Chapter 4 Pointers

39

 0x000000000040100e <+14>: lea 0x402004,%rbx

 0x0000000000401016 <+22>: movl $0x1,(%rbx)

 0x000000000040101c <+28>: mov (%rax),%edx

 0x000000000040101e <+30>: add %edx,(%rbx)

 0x0000000000401020 <+32>: incl (%rax)

 0x0000000000401022 <+34>: mov (%rax),%eax

 0x0000000000401024 <+36>: imul (%rbx),%eax

 0x0000000000401027 <+39>: mov %eax,(%rbx)

 0x0000000000401029 <+41>: mov $0x3c,%rax

 0x0000000000401030 <+48>: mov $0x0,%rdi

 0x0000000000401037 <+55>: syscall

End of assembler dump.

Now we examine variables “a” and “b” to verify the memory layout

shown previously in Figure 4-2 using the info variables GDB command:

(gdb) info variables

All defined variables:

Non-debugging symbols:

0x0000000000402000 a

0x0000000000402004 b

0x0000000000402008 __bss_start

0x0000000000402008 _edata

0x0000000000402008 _end

We also verify that the values of %RAX and %RBX registers are in

accordance with Figure 4-2:

(gdb) info registers rax rbx

rax 0x0 0

rbx 0x0 0

Chapter 4 Pointers

40

We instruct GDB to automatically display the current instruction to

be executed, the values of registers %RAX and %RBX, and the contents of

variables “a” and “b”:

(gdb) display/i $rip

1: x/i $rip

=> 0x401000 <_start>: lea 0x402000,%rax

(gdb) display/x $rax

2: /x $rax = 0x0

(gdb) display/x $rbx

3: /x $rbx = 0x0

(gdb) display/x (int)a

4: /x (int)a = 0x0

(gdb) display/x (int)b

5: /x (int)b = 0x0

Now we execute the first four instructions that correspond to our

pseudo-code using the stepi GDB command or si (shorter command

version):

address a -> rax

1 -> (rax) ; (a) = 1

address b -> rbx

1 -> (rbx) ; (b) = 1

(rbx) + (rax) -> (rbx)

(rax) + 1 -> (rax)

(rbx) * (rax) -> (rbx)

lea a, %rax

movl $1, (%rax)

lea b, %rbx

movl $1, (%rbx)

Chapter 4 Pointers

41

(gdb) si

0x0000000000401008 in _start ()

1: x/i $rip

=> 0x401008 <_start+8>: movl $0x1,(%rax)

2: /x $rax = 0x402000
3: /x $rbx = 0x0

4: /x (int)a = 0x0

5: /x (int)b = 0x0

(gdb) si

0x000000000040100e in _start ()

1: x/i $rip

=> 0x40100e <_start+14>: lea 0x402004,%rbx

2: /x $rax = 0x402000

3: /x $rbx = 0x0

4: /x (int)a = 0x1
5: /x (int)b = 0x0

(gdb) si

0x0000000000401016 in _start ()

1: x/i $rip

=> 0x401016 <_start+22>: movl $0x1,(%rbx)

2: /x $rax = 0x402000

3: /x $rbx = 0x402004
4: /x (int)a = 0x1

5: /x (int)b = 0x0

(gdb) si

0x000000000040101c in _start ()

1: x/i $rip

=> 0x40101c <_start+28>: mov (%rax),%edx

2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x (int)a = 0x1

5: /x (int)b = 0x1

Chapter 4 Pointers

42

All this corresponds to a memory layout shown in Figure 4-3.

Figure 4-3.  Memory layout after executing the first four instructions

�Adding Numbers Using Pointers
Now we look at the next pseudo-code statement:

(rbx) + (rax) -> (rbx)

Recall that (rax) and (rbx) mean contents of memory cells whose

addresses (locations) are stored in %RAX and %RBX CPU registers. The

preceding statement is equivalent to the following C or C++ language

expression where the “*” operator means to get memory contents pointed

to by the pa or pb pointer (also called pointer dereference):

*pb = *pb + *pa;

Chapter 4 Pointers

43

In assembly language, we use the instruction ADD for the “+” operator,

but we cannot use both memory addresses in one step instruction (addl is

used to add 32-bit integers):

addl (%rax), (%rbx) # invalid instruction

We can only use one memory reference, and, therefore, we need to

employ another register as a temporary variable:

(rax) -> register

(rbx) + register -> (rbx)

In assembly language, we write this sequence of instructions:

mov (%rax), %edx

add %edx, (%rbx)

We use add instead of addl because using %EDX instead of %RDX

implies adding a 32-bit integer.

In the GDB disassembly output, we see these instructions indeed:

0x000000000040101c <+28>: mov (%rax),%edx

0x000000000040101e <+30>: add %edx,(%rbx)

We add them to our pseudo-code table:

address a -> rax

1 -> (rax) ; (a) = 1

address b -> rbx

1 -> (rbx) ; (b) = 1

(rbx) + (rax) -> (rbx) ; %edx = 1

 ; (b) = 2

(rax) + 1 -> (rax)

(rbx) * (rax) -> (rbx)

lea a, %rax

movl $1, (%rax)

lea b, %rbx

movl $1, (%rbx)

mov (%rax), %edx

add %edx, (%rbx)

Chapter 4 Pointers

44

Now we execute these two instructions (we remind that the output of

the si command shows the next instruction to be executed when we use

the si command again):

[From the previous output]

1: x/i $rip

=> 0x40101c <_start+28>: mov (%rax),%edx

2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x (int)a = 0x1

5: /x (int)b = 0x1

(gdb) si

0x000000000040101e in _start ()

1: x/i $rip

=> 0x40101e <_start+30>: add %edx,(%rbx)

2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x (int)a = 0x1

5: /x (int)b = 0x1

(gdb) info reg $rdx

rdx 0x1 1

(gdb) si

0x0000000000401020 in _start ()

1: x/i $rip

=> 0x401020 <_start+32>: incl (%rax)

2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x (int)a = 0x1

5: /x (int)b = 0x2

Chapter 4 Pointers

45

All this corresponds to a memory layout shown in Figure 4-4.

Figure 4-4.  Memory layout after executing the next two instructions

�Incrementing Numbers Using Pointers
In pseudo-code, it means increment (decrement) a number stored at the

memory location which address is stored in %RAX:

(rax) + 1 -> (rax)

In the C or C++ language, we can write this using three possible ways:

*a = *a + 1;

++(*a);

(*a)++;

Chapter 4 Pointers

46

In assembly language, we use instruction INC and write

incl (%rax)

We use incl when we need to specify the 32-bit memory cell to

increment.

In the GDB disassembly output, we see the same instruction:

incl (%rax)

or

addl $0x1,(%rax) # a compiler may decide to use ADD

instead of INC

Now we add the assembly language translation of increment:

address a -> rax

1 -> (rax) ; (a) = 1

address b -> rbx

1 -> (rbx) ; (b) = 1

(rbx) + (rax) -> (rbx) ; %edx = 1

 ; (b) = 2

(rax) + 1 -> (rax) ; (a) = 2

(rbx) * (rax) -> (rbx)

lea a, %rax

movl $1, (%rax)

lea b, %rbx

movl $1, (%rbx)

mov (%rax), %edx

add %edx, (%rbx)

incl (%rax)

Now we execute this instruction (we remind that the output of the si
command shows the next instruction to be executed when we use the si
command again):

[From the previous output]

1: x/i $rip

=> 0x401020 <_start+32>: incl (%rax)

2: /x $rax = 0x402000

3: /x $rbx = 0x402004

Chapter 4 Pointers

47

4: /x (int)a = 0x1

5: /x (int)b = 0x2

(gdb) si

0x0000000000401022 in _start ()

1: x/i $rip

=> 0x401022 <_start+34>: mov (%rax),%eax

2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x (int)a = 0x2

5: /x (int)b = 0x2

After the execution of the INC instruction, we have the memory layout

illustrated in Figure 4-5.

Figure 4-5.  Memory layout after the execution of the INC instruction

Chapter 4 Pointers

48

�Multiplying Numbers Using Pointers
Our next pseudo-code statement does a multiplication:

(rbx) * (rax) -> (rbx)

This statement means that we multiply the contents of the memory

cell whose address is stored in the %RBX register by the value stored in

the memory cell whose address is in the %RAX register. In the C or C++

language, we write a similar expression as the addition statement we have

seen in the previous sections (note that we have two distinct meanings of

the “*” operator: pointer dereference and multiplication):

*pb = *pb * *pa;

*pb *= *pa;

The latter is a shorthand notation. In assembly language, we use

instruction IMUL (Integer MULtiply):

mov (%rax), %eax

imul (%rbx), %eax

mov %eax, (%rbx)

Since the imul instruction cannot reference two memory locations,

we need to put the contents of one location into a register. We reuse

%RAX since we do not need its current value after that. This instruction is

equivalent to the following pseudo-code:

(rax) -> rax

(rbx) * rax -> rax

rax -> (rbx)

In the GDB disassembly output, we see this:

0x0000000000401022 <+34>: mov (%rax),%eax

0x0000000000401024 <+36>: imul (%rbx),%eax

0x0000000000401027 <+39>: mov %eax,(%rbx)

Chapter 4 Pointers

49

We add instructions to our pseudo-code table:

address a -> rax

1 -> (rax) ; (a) = 1

address b -> rbx

1 -> (rbx) ; (b) = 1

(rbx) + (rax) -> (rbx) ; %edx = 1

 ; (b) = 2

(rax) + 1 -> (rax) ; (a) = 2

(rbx) * (rax) -> (rbx) ; %eax = 2

 ; %eax = 4

 ; (b) = 4

lea a, %rax

movl $1, (%rax)

lea b, %rbx

movl $1, (%rbx)

mov (%rax), %edx

add %edx, (%rbx)

incl (%rax)

mov (%rax), %eax

imul (%rbx), %eax

mov %eax, (%rbx)

Now we execute these three instructions (we remind that the output

of the si command shows the next instruction to be executed when we use

the si command again):

[From the previous output]

1: x/i $rip

=> 0x401022 <_start+34>: mov (%rax),%eax

2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x (int)a = 0x2

5: /x (int)b = 0x2

(gdb) si

0x0000000000401024 in _start ()

1: x/i $rip

=> 0x401024 <_start+36>: imul (%rbx),%eax

2: /x $rax = 0x2

3: /x $rbx = 0x402004

4: /x (int)a = 0x2

5: /x (int)b = 0x2

Chapter 4 Pointers

50

(gdb) si

0x0000000000401027 in _start ()

1: x/i $rip

=> 0x401027 <_start+39>: mov %eax,(%rbx)

2: /x $rax = 0x4

3: /x $rbx = 0x402004

4: /x (int)a = 0x2

5: /x (int)b = 0x2

(gdb) si

0x0000000000401029 in _start ()

1: x/i $rip

=> 0x401029 <_start+41>: mov $0x3c,%rax

2: /x $rax = 0x4

3: /x $rbx = 0x402004

4: /x (int)a = 0x2

5: /x (int)b = 0x4

Chapter 4 Pointers

51

All this corresponds to a memory layout shown in Figure 4-6.

Figure 4-6.  Memory layout after execution of the last three
instructions

�Summary
This chapter introduced pointers. We rewrote our arithmetic program from

Chapter 1 using pointers, used the GDB debugger to execute instructions

individually, and watched changes to memory. We also learned GDB

commands to show the contents of registers and variables.

The next chapter introduces the bit- and byte-level memory

granularity, corresponding layout, and integral C and C++ types.

Chapter 4 Pointers

53

CHAPTER 5

Bytes, Words, Double,
and Quad Words

�Using Hexadecimal Numbers
If we want to use hexadecimal numbers in the C/C++ language, we prefix

them with 0x, for example:

a = 12; // 12dec
a = 0xC; // Chex

In the GDB disassembly output, and when entering commands,

numbers are interpreted as decimals by default. If we want a number to be

interpreted as hexadecimal, we prefix it with 0x, for example:

mov 12, a

mov 0xC, a

�Byte Granularity
Figure 5-1 shows the difference between bytes, words, doublewords, and

quadwords in terms of byte granularity. We see that each successive size is

double the previous.

© Dmitry Vostokov 2023
D. Vostokov, Foundations of Linux Debugging, Disassembling, and Reversing

https://doi.org/10.1007/978-1-4842-9153-5_5

54

Figure 5-1.  Difference between bytes, words, doublewords, and
quadwords

�Bit Granularity
Every byte consists of eight bits. Every bit has a value of zero or one. Here

are some examples of bytes, words, doublewords and quadwords shown

as bit strings (we can also clearly see the correspondence between 4-bit

sequences and hexadecimal numbers, Table 3-1):

•	 Byte

C/C++: unsigned char

8 bits

Values 0dec–255dec or 0hex–FFhex

Example: 12dec 00001100bin 0Chex

•	 Word

C/C++: unsigned short

16 bits

Values 0dec–65535dec or 0hex–FFFFhex

Example: 0000000000001100bin 000Chex

Chapter 5 Bytes, Words, Double, and Quad Words

55

•	 Doubleword

C/C++: unsigned int, unsigned

32 bits

Values 0dec–4294967295dec or 0hex–FFFFFFFFhex

Example: 00000000000000000000000000001100bin

0000000Chex

•	 Quadword

C/C++: long, unsigned long long

64 bits

Values 0dec–18446744073709551615dec or

0hex–FFFFFFFFFFFFFFFFhex

Example: 000000000000000000000000000000000

0000000000000000000000000001100bin

000000000000000Chex

�Memory Layout
The minimum addressable element of memory is a byte. The maximum

addressable element is a doubleword on 32-bit machines and a quadword

on 64-bit machines. All general registers are 32-bit on 32-bit CPUs and can

contain doubleword values. On 64-bit CPUs, all general registers are 64-bit

and can contain quadword values. Figure 5-2 shows a typical memory

layout, and Figure 5-3 shows the byte layout of some general CPU registers.

Chapter 5 Bytes, Words, Double, and Quad Words

56

Figure 5-2.  Typical memory layout

Chapter 5 Bytes, Words, Double, and Quad Words

57

Figure 5-3.  Typical registry layout

Remember that memory addresses are always 64-bit, and memory

addresses to 32-bit memory cells like integers are also 64-bit.

Chapter 5 Bytes, Words, Double, and Quad Words

58

�Summary
This chapter discussed the bit- and byte-level memory granularity,

corresponding layout, and integral C and C++ types.

The next chapter looks at pointers in greater detail, considering

different byte memory granularity. We also discuss issues related to

abnormal defects, such as uninitialized, invalid, and NULL pointers.

Finally, we disassemble and trace a program that uses variables as

pointers.

Chapter 5 Bytes, Words, Double, and Quad Words

59

CHAPTER 6

Pointers to Memory

�Pointers Revisited
The pointer is a memory cell or a register that contains the address of

another memory cell. Memory pointers have their own addresses because

they are memory cells too. On 32-bit Linux, pointers are 32-bit, and on 64-

bit Linux, pointers are 64-bit.

�Addressing Types
As we have seen in Chapter 5, memory cells can be of one byte, word,

doubleword, or quadword size. Therefore, we can have a pointer to a

byte, a pointer to a word, a pointer to a doubleword, and a pointer to a

quadword. The GDB disassembly output in Chapter 4 has l suffixes in

instructions involving pointers to memory that hold 32-bit (doubleword

size) values.

Here are some illustrated examples:

movb $0xFF, (%rax)

© Dmitry Vostokov 2023
D. Vostokov, Foundations of Linux Debugging, Disassembling, and Reversing

https://doi.org/10.1007/978-1-4842-9153-5_6

60

The layout of memory before movb instruction execution is shown

in Figure 6-1, and the layout of memory after execution is shown in

Figure 6-2.

movw $0xFF, (%rax)

movl $0xFF, (%rax)

movq $0xFF, (%rax)

We need to prefix 0xFF with $ to differentiate it from 0xFF as a memory

address.

The layout of memory after the execution of the movl instruction is

shown in Figure 6-3. We can see that, although we specify just a byte value

0xFF as a source operand to the movl instruction, it replaces all other 3

bytes of a doubleword in memory because we specify the destination as a

pointer to 4 bytes, and 0xFF is 0x000000FF as a doubleword. So we need

to specify the l suffix to disambiguate moving a doubleword value from

moving a byte value. The compiler complains if we forget and use mov:

Error: no instruction mnemonic suffix given and no register

operands; can't size instruction

Because 64-bit (quadword) registers may point to quadword memory

cells, we need to specify q to disambiguate moving a quadword value from

moving a byte value even if we specify a constant with all leading zeroes:

movq $0x00000000000000FF, (%rax)

However, if we want to move a word value only, we need to specify the

w suffix:

movw $0xFF, (%rax)

Chapter 6 Pointers to Memory

61

This is equivalent to

movw $0x00FF, (%rax)

Figure 6-4 shows a summary of various addressing modes.

Figure 6-1.  The layout of memory before movb instruction execution

Chapter 6 Pointers to Memory

62

Figure 6-2.  The layout of memory after movb instruction execution

Chapter 6 Pointers to Memory

63

Figure 6-3.  The layout of memory after the execution of movl
instruction

Chapter 6 Pointers to Memory

64

Figure 6-4.  A summary of various addressing modes

Chapter 6 Pointers to Memory

65

�Registers Revisited
%RAX, %RBX, %RCX, and %RDX 64-bit registers can be used as pointers

to memory. They contain x86 32-bit registers %EAX, %EBX, %ECX, and

%EDX. These 32-bit parts contain old 16-bit registers %AX, %BX, %CX, and

%DX (each can hold a word). The %CX register was often used as a loop

counter, (Counter)X, in the assembly language corresponding to simple

loops in C and C++ code:

for (int i = 0; i < N ; ++i)

but modern C and C++ compilers may choose to use any other register or

even a memory location for such a purpose.

�NULL Pointers
Addresses 0x0000000000000000–0x000000000000FFFF are specifically

made inaccessible on Linux. The following code will force an application

crash or kernel panic if executed inside a driver:

mov $0xF, %rax

movb $1, (%rax) # Access violation

�Invalid Pointers
There are different kinds of invalid pointers that cause an access violation

when we try to dereference them:

•	 NULL pointers

•	 Pointers to inaccessible memory

•	 Pointers to read-only memory when writing

Chapter 6 Pointers to Memory

66

Other pointers may or may not cause an access violation, and some of

them are discussed in subsequent chapters:

•	 Pointers pointing to “random” memory

•	 Uninitialized pointers having random value inherited

from past code execution

•	 Dangling pointers

The latter pointers are similar to pointers pointing to “random”

memory locations and arise when we forget to set pointer variables to zero

(NULL) after disposing of the memory they point to. By nullifying pointers,

we indicate that they no longer point to memory.

�Variables As Pointers
Suppose we have two memory addresses (locations) “a” and “b” declared

and defined in C and C++ as

int a, b;

These are normal variables “a” and “b.” Also, we can have another two

memory addresses (locations) “pa” and “pb” declared and defined in C

and C++ as

int *pa, *pb;

Here, pa is a pointer to an int, or, in other words, the memory

cell pa contains the address of another memory cell that contains an

integer value.

Chapter 6 Pointers to Memory

67

�Pointer Initialization
In order to have pointers to point to memory, we need to initialize them

with corresponding memory addresses. Here is typical C or C++ code that

does what we need:

int a; // uninitialized variable

int *pa; // uninitialized pointer

pa = &a; // (pa) now contains the address a

int b = 12; // initialized variable

int *pb = &b; // initialized pointer

We see that pointers are also variables and can change their values

effectively pointing to different memory locations during program

execution.

�Initialized and Uninitialized Data
Here is a bit of additional information about initialized and uninitialized

variables that is useful to know: an executable program in Linux is divided

into different sections. One is called .data, where all global and static

variables (including pointers) are put.

Consider this C or C++ data definition:

int array[1000000]; // size 4,000,000 bytes or 3.8Mb

We would expect the size of an executable file to be about 4Mb.

However, the program size on a disk is only 16Kb. It is because the

uninitialized array contains only information about its size. When we

launch the program, this array is recreated from its size information and

filled with zeroes. The size of the program in memory becomes about 4Mb.

Chapter 6 Pointers to Memory

68

In the case of the initialized array, the program size on disk is 4.01Mb:

int array[1000000] = { 12 };

This is because the array was put into a .data section and contains the

following sequence of integers { 12, 0, 0, 0, 0 … }.

�More Pseudo Notation
We remind that (a) means contents of memory at the address a, and (rax)

means contents of a 64-bit memory cell at the address stored in the %RAX

register (here, %RAX is a pointer).

We also introduce an additional notation to employ in this and

subsequent chapters: *(pa) means contents at the address stored at the

address pa and is called dereferencing a pointer whose address is pa. The

corresponding C/C++ code is similar:

int *pa = &a;

int b = *pa;

�“MemoryPointers” Project: Memory Layout
This project is very similar to the “Pointers” project from Chapter 4. We

have this data declaration and definition in the C or C++ language:

int a, b;

int *pa, *pb = &b;

Chapter 6 Pointers to Memory

69

The project code corresponds to the following pseudo-code and

assembly language:

address a -> (pa)

1 -> *(pa) ; (a) = 1

1 -> *(pb) ; (b) = 1

*(pb) + *(pa) -> *(pb) ; (b) = 2

lea a, %rax

mov %rax, pa

mov pa, %rax

movl $1, (%rax)

mov pb, %rbx

movl $1, (%rbx)

mov (%rax), %ecx

add (%rbx), %ecx

mov %ecx, (%rbx)

The source code for this chapter can be downloaded from

github.com/apress/linux-debugging-disassembling-reversing/

Chapter6/

We compile and link it and load the executable into GDB as described

in Chapter 4. We get the following output:

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter6$ as

MemoryPointers.asm -o MemoryPointers.o

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter6$ ld

MemoryPointers.o -o MemoryPointers

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter6$ gdb

./MemoryPointers

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/

licenses/gpl.html>

This is free software: you are free to change and

redistribute it.

Chapter 6 Pointers to Memory

70

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources

online at:

 <http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from ./MemoryPointers...(no debugging symbols

found)...done.

(gdb)

Then we put a breakpoint on the main function and run the program

until GDB breaks in:

(gdb) break main

Breakpoint 1 at 0x401000

(gdb) run

Starting program: /home/coredump/pflddr/x64/Chapter6/

MemoryPointers

Breakpoint 1, 0x0000000000401000 in _start ()

We disassemble the main function:

(gdb) disass main

Dump of assembler code for function _start:

=> 0x0000000000401000 <+0>: lea 0x402000,%rax

 0x0000000000401008 <+8>: mov %rax,0x402008

 0x0000000000401010 <+16>: mov 0x402008,%rax

 0x0000000000401018 <+24>: movl $0x1,(%rax)

Chapter 6 Pointers to Memory

71

 0x000000000040101e <+30>: mov 0x402010,%rbx

 0x0000000000401026 <+38>: movl $0x1,(%rbx)

 0x000000000040102c <+44>: mov (%rax),%ecx

 0x000000000040102e <+46>: add (%rbx),%ecx

 0x0000000000401030 <+48>: mov %ecx,(%rbx)

 0x0000000000401032 <+50>: mov $0x3c,%rax

 0x0000000000401039 <+57>: mov $0x0,%rdi

 0x0000000000401040 <+64>: syscall

End of assembler dump.

Then we clear %RAX, %RBX, and %RCX registers to set up a memory

layout that is easy to follow:

(gdb) set $rax = 0

(gdb) set $rbx = 0

(gdb) set $rcx = 0

(gdb) info registers $rax $rbx $rcx

rax 0x0 0

rbx 0x0 0

rcx 0x0 0

We also instruct GDB to automatically display the current instruction

to be executed; the values of registers %RAX, %RBX, and %RCX; and the

contents of variables “a,” “b,” “pa,” and “pb”:

(gdb) display/i $rip

1: x/i $rip

=> 0x401000 <_start>: lea 0x402000,%rax

(gdb) display/x $rax

2: /x $rax = 0x0

Chapter 6 Pointers to Memory

72

(gdb) display/x $rbx

3: /x $rbx = 0x0

(gdb) display/x $rcx

4: /x $rcx = 0x0

(gdb) display/x (int)a

5: /x (int)a = 0x0

(gdb) display/x (int)b

6: /x (int)b = 0x0

(gdb) display/x (long)pa

7: /x (long)pa = 0x0

(gdb) display/x (long)pb

8: /x (long)pb = 0x402004

We see that the pb variable contains the address 0x402004. We

then check the addresses of (variables) memory locations “a,” “b,” “pa,”

and “pb”:

(gdb) print &a

$1 = (<data variable, no debug info> *) 0x402000

(gdb) print &b

$2 = (<data variable, no debug info> *) 0x402004

(gdb) print &pa

$3 = (<data variable, no debug info> *) 0x402008

(gdb) print &pb

$4 = (<data variable, no debug info> *) 0x402010

Chapter 6 Pointers to Memory

73

We also check the value stored at the address 0x402004 (value of pb

that is the address of b):

(gdb) x 0x402004

0x402004: 0x00000000

This corresponds to the memory layout before executing the first LEA

instruction, and it is shown in Figure 6-5.

Figure 6-5.  Memory layout before executing the first LEA instruction

Chapter 6 Pointers to Memory

74

We then execute our code step by step (changes are in bold):

(gdb) si

0x0000000000401008 in _start ()

1: x/i $rip

=> 0x401008 <_start+8>: mov %rax,0x402008

2: /x $rax = 0x402000

3: /x $rbx = 0x0

4: /x $rcx = 0x0

5: /x (int)a = 0x0

6: /x (int)b = 0x0

7: /x (long)pa = 0x0

8: /x (long)pb = 0x402004

(gdb) si

0x0000000000401010 in _start ()

1: x/i $rip

=> 0x401010 <_start+16>: mov 0x402008,%rax

2: /x $rax = 0x402000

3: /x $rbx = 0x0

4: /x $rcx = 0x0

5: /x (int)a = 0x0

6: /x (int)b = 0x0

7: /x (long)pa = 0x402000

8: /x (long)pb = 0x402004

(gdb) si

0x0000000000401018 in _start ()

1: x/i $rip

=> 0x401018 <_start+24>: movl $0x1,(%rax)

2: /x $rax = 0x402000

3: /x $rbx = 0x0

4: /x $rcx = 0x0

Chapter 6 Pointers to Memory

75

5: /x (int)a = 0x0

6: /x (int)b = 0x0

7: /x (long)pa = 0x402000

8: /x (long)pb = 0x402004

(gdb) si

0x000000000040101e in _start ()

1: x/i $rip

=> 0x40101e <_start+30>: mov 0x402010,%rbx

2: /x $rax = 0x402000

3: /x $rbx = 0x0

4: /x $rcx = 0x0

5: /x (int)a = 0x1

6: /x (int)b = 0x0

7: /x (long)pa = 0x402000

8: /x (long)pb = 0x402004

(gdb) si

0x0000000000401026 in _start ()

1: x/i $rip

=> 0x401026 <_start+38>: movl $0x1,(%rbx)

2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x $rcx = 0x0

5: /x (int)a = 0x1

6: /x (int)b = 0x0

7: /x (long)pa = 0x402000

8: /x (long)pb = 0x402004

(gdb) si

0x000000000040102c in _start ()

1: x/i $rip

=> 0x40102c <_start+44>: mov (%rax),%ecx

Chapter 6 Pointers to Memory

76

2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x $rcx = 0x0

5: /x (int)a = 0x1

6: /x (int)b = 0x1

7: /x (long)pa = 0x402000

8: /x (long)pb = 0x402004

(gdb) si

0x000000000040102e in _start ()

1: x/i $rip

=> 0x40102e <_start+46>: add (%rbx),%ecx

2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x $rcx = 0x1

5: /x (int)a = 0x1

6: /x (int)b = 0x1

7: /x (long)pa = 0x402000

8: /x (long)pb = 0x402004

(gdb) si

0x0000000000401030 in _start ()

1: x/i $rip

=> 0x401030 <_start+48>: mov %ecx,(%rbx)

2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x $rcx = 0x2

5: /x (int)a = 0x1

6: /x (int)b = 0x1

7: /x (long)pa = 0x402000

8: /x (long)pb = 0x402004

Chapter 6 Pointers to Memory

77

(gdb) si

0x0000000000401032 in _start ()

1: x/i $rip

=> 0x401032 <_start+50>: mov $0x3c,%rax

2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x $rcx = 0x2

5: /x (int)a = 0x1

6: /x (int)b = 0x2

7: /x (long)pa = 0x402000

8: /x (long)pb = 0x402004

The final memory layout and registers are shown in Figure 6-6.

Chapter 6 Pointers to Memory

78

Figure 6-6.  The final memory layout and registers

Chapter 6 Pointers to Memory

79

�Summary
This chapter looked at pointers in greater detail, considering different byte

memory granularity. We also discussed issues related to abnormal defects,

such as uninitialized, invalid, and NULL pointers. Finally, in the GDB

debugger, we disassembled and traced a program that used variables as

pointers and learned additional commands to display memory addresses

and contents.

The next chapter introduces logical instructions, zeroing memory,

and the instruction pointer register. We also learn an additional GDB

command to get program code and data section addresses.

Chapter 6 Pointers to Memory

81

CHAPTER 7

Logical Instructions
and RIP

�Instruction Format
We have seen that assembly language instructions have uniform format:

Opcode operand

Opcode source_operand, destination_operand

Operands can be registers (reg), memory references (mem), or some

numbers, called immediate values (imm). Typical notational examples:

inc mem/reg

dec mem/reg

add reg/imm, mem/reg

add mem/imm, reg

and some concrete assembly language examples:

inc (%rax)

decl a

addl $0x10, (%rax)

addq a, (%rax)

© Dmitry Vostokov 2023
D. Vostokov, Foundations of Linux Debugging, Disassembling, and Reversing

https://doi.org/10.1007/978-1-4842-9153-5_7

82

�Logical Shift Instructions
In addition to arithmetic instructions, there are so-called logical shift

instructions that just shift a bit string to the left or the right.

Shift to the left:

11111111 -> 11111110 ; shift by 1

11111110 -> 11110000 ; shift by 3

shl imm/reg, mem/reg

shl $1, %rax

shlb $2, (%rax)

Shift to the right:

11111111 -> 01111111 ; shift by 1

01111111 -> 00001111 ; shift by 3

shr imm/reg, mem/reg

shr $1, %rax

shr $2, (%rax)

�Logical Operations
Here, we recall logical operations and corresponding truth tables. We

abbreviate True as T and False as F.

AND

1 and 1 = 1 T and T = T

1 and 0 = 0 T and F = F

0 and 1 = 0 F and T = F

0 and 0 = 0 F and F = F

Chapter 7 Logical Instructions and RIP

83

OR

1 or 1 = 1 T or T = T

1 or 0 = 1 T or F = T

0 or 1 = 1 F or T = T

0 or 0 = 0 F or F = F

�Zeroing Memory or Registers
There are several ways to put a zero value into a register or a memory

location:

	 1.	 Move a value:

mov $0, a

mov $0, %rax

mov $0, %eax

	 2.	 Use the XOR (Exclusive OR) logical operation:

xor %rax, %rax

xor %eax, %eax

XOR

1 xor 1 = 0 T xor T = F

1 xor 0 = 1 T xor F = T

0 xor 1 = 1 F xor T = T

0 xor 0 = 0 F xor F = F

This operation clears its destination operand because the source

operand is the same, and the same bits are cleared.

Chapter 7 Logical Instructions and RIP

84

�Instruction Pointer
Consider these two execution steps from the previous chapter project:

(gdb) si

0x000000000040102c in _start ()

1: x/i $rip

=> 0x40102c <_start+44>: mov (%rax),%ecx

2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x $rcx = 0x0

5: /x (int)a = 0x1

6: /x (int)b = 0x1

7: /x (long)pa = 0x402000

8: /x (long)pb = 0x402004

(gdb) si

0x000000000040102e in _start ()

1: x/i $rip

=> 0x40102e <_start+46>: add (%rbx),%ecx

2: /x $rax = 0x402000

3: /x $rbx = 0x402004

4: /x $rcx = 0x1

5: /x (int)a = 0x1

6: /x (int)b = 0x1

7: /x (long)pa = 0x402000

8: /x (long)pb = 0x402004

When the MOV instruction at the 000000000040102c address is being

executed, another CPU register %RIP points to the next instruction at the

000000000040102e address to be executed. It is shown in Figure 7-1.

Chapter 7 Logical Instructions and RIP

85

Figure 7-1.  Memory layout and %RIP when executing MOV
instruction

�Code Section
Recall that in Chapter 6, we discussed the .data section where program

data is put. The program code is put into the .text section.

The following GDB command lists various program sections and their

information:

(gdb) maintenance info sections

Exec file:

 �/home/coredump/pflddr/x64/Chapter6/MemoryPointers', file

type elf64-x86-64.

 [0] �0x00400120->0x00400140 at 0x00000120: .note.gnu.

property ALLOC LOAD READONLY DATA HAS_CONTENTS

 [1] �0x00401000->0x00401042 at 0x00001000: .text ALLOC LOAD

READONLY CODE HAS_CONTENTS

 [2] �0x00402000->0x00402018 at 0x00002000: .data ALLOC LOAD

DATA HAS_CONTENTS

Chapter 7 Logical Instructions and RIP

86

�Summary
In this chapter, we learned logical operations and instructions, how to zero

memory, the instruction pointer, and an additional GDB command to get

program code and data section addresses.

In the next chapter, we use our assembly language knowledge and

reconstruct C and C++ code that uses pointers.

Chapter 7 Logical Instructions and RIP

87

CHAPTER 8

Reconstructing a
Program with Pointers

�Example of Disassembly Output:
No Optimization
The ability to reconstruct approximate C or C++ code from code

disassembly is essential in memory dump analysis and debugging.

The project for this chapter can be downloaded from

github.com/apress/linux-debugging-disassembling-reversing/

Chapter8/

We compile and link it, load executable into GDB, put a breakpoint

on the main function, and run the program until GDB breaks in, then

disassemble its main function:

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter8$ gcc

PointersAsVariables.cpp -o PointersAsVariables

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter8$ gdb

./PointersAsVariables

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

© Dmitry Vostokov 2023
D. Vostokov, Foundations of Linux Debugging, Disassembling, and Reversing

https://doi.org/10.1007/978-1-4842-9153-5_8

88

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/

licenses/gpl.html>

This is free software: you are free to change and

redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources

online at:

 <http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from ./PointersAsVariables...(no debugging

symbols found)...done.

(gdb) break main

Breakpoint 1 at 0x1129

(gdb) run

Starting program: /home/coredump/pflddr/x64/Chapter8/

PointersAsVariables

Breakpoint 1, 0x0000555555555129 in main ()

(gdb) disass main

Dump of assembler code for function main:

 0x0000555555555125 <+0>: push %rbp

 0x0000555555555126 <+1>: mov %rsp,%rbp

=> 0x0000555555555129 <+4>: mov %edi,-0x4(%rbp)

 0x000055555555512c <+7>: mov %rsi,-0x10(%rbp)

Chapter 8 Reconstructing a Program with Pointers

89

 �0x0000555555555130 <+11>: lea 0x2ef9(%rip),%rax

0x555555558030 <a>

 �0x0000555555555137 <+18>: mov %rax,0x2efa(%rip)

0x555555558038 <pa>

 �0x000055555555513e <+25>: lea 0x2eef(%rip),%rax

0x555555558034

 �0x0000555555555145 <+32>: mov %rax,0x2ef4(%rip)

0x555555558040 <pb>

 �0x000055555555514c <+39>: mov 0x2ee5(%rip),%rax

0x555555558038 <pa>

 �0x0000555555555153 <+46>: movl $0x1,(%rax)

 �0x0000555555555159 <+52>: mov 0x2ee0(%rip),%rax

0x555555558040 <pb>

 0x0000555555555160 <+59>: movl $0x1,(%rax)

 �0x0000555555555166 <+65>: mov 0x2ed3(%rip),%rax

0x555555558040 <pb>

 0x000055555555516d <+72>: mov (%rax),%ecx

 �0x000055555555516f <+74>: mov 0x2ec2(%rip),%rax

0x555555558038 <pa>

 0x0000555555555176 <+81>: mov (%rax),%edx

 �0x0000555555555178 <+83>: mov 0x2ec1(%rip),%rax

0x555555558040 <pb>

 0x000055555555517f <+90>: add %ecx,%edx

 0x0000555555555181 <+92>: mov %edx,(%rax)

 �0x0000555555555183 <+94>: mov 0x2eae(%rip),%rax

0x555555558038 <pa>

 0x000055555555518a <+101>: mov (%rax),%edx

 0x000055555555518c <+103>: add $0x1,%edx

 0x000055555555518f <+106>: mov %edx,(%rax)

 �0x0000555555555191 <+108>: mov 0x2ea8(%rip),%rax

0x555555558040 <pb>

Chapter 8 Reconstructing a Program with Pointers

90

 0x0000555555555198 <+115>: mov (%rax),%ecx

 �0x000055555555519a <+117>: mov 0x2e97(%rip),%rax

0x555555558038 <pa>

 0x00005555555551a1 <+124>: mov (%rax),%edx

 �0x00005555555551a3 <+126>: mov 0x2e96(%rip),%rax

0x555555558040 <pb>

 0x00005555555551aa <+133>: imul %ecx,%edx

 0x00005555555551ad <+136>: mov %edx,(%rax)

 0x00005555555551af <+138>: mov $0x0,%eax

 0x00005555555551b4 <+143>: pop %rbp

 0x00005555555551b5 <+144>: retq

End of assembler dump.

�Reconstructing C/C++ Code: Part 1
Now we go from instruction to instruction highlighted in bold on the

previous page and try to reconstruct pseudo-code which is shown as

comments to assembly language code.

lea 0x2ef9(%rip),%rax # 0x555555558030 <a>

address a -> rax

mov %rax,0x2efa(%rip) # 0x555555558038 <pa>

rax -> (pa)

lea 0x2eef(%rip),%rax # 0x555555558034

address b -> rax

mov %rax,0x2ef4(%rip) # 0x555555558040 <pb>

rax -> (pb)

mov 0x2ee5(%rip),%rax # 0x555555558038 <pa>

(pa) -> rax

movl $0x1,(%rax)

1 -> (rax)

Chapter 8 Reconstructing a Program with Pointers

91

mov 0x2ee0(%rip),%rax # 0x555555558040 <pb>

(pb) -> rax

movl $0x1,(%rax)

1 -> (rax)

mov 0x2ed3(%rip),%rax # 0x555555558040 <pb>

(pb) -> rax

mov (%rax),%ecx

(rax) -> ecx

mov 0x2ec2(%rip),%rax # 0x555555558038 <pa>

(pa) -> rax

mov (%rax),%edx

(rax) -> edx

mov 0x2ec1(%rip),%rax # 0x555555558040 <pb>

(pb) -> rax

add %ecx,%edx

ecx + edx -> edx

mov %edx,(%rax)

edx -> (rax)

mov 0x2eae(%rip),%rax # 0x555555558038 <pa>

(pa) -> rax

mov (%rax),%edx

(rax) -> edx

add $0x1,%edx

1 + edx -> edx

mov %edx,(%rax)

edx -> (rax)

mov 0x2ea8(%rip),%rax # 0x555555558040 <pb>

(pb) -> rax

mov (%rax),%ecx

(rax) -> ecx

mov 0x2e97(%rip),%rax # 0x555555558038 <pa>

Chapter 8 Reconstructing a Program with Pointers

92

(pa) -> rax

mov (%rax),%edx

(rax) -> edx

mov 0x2e96(%rip),%rax # 0x555555558040 <pb>

(pb) -> rax

imul %ecx,%edx

ecx * edx -> edx

mov %edx,(%rax)

edx -> (rax)

�Reconstructing C/C++ Code: Part 2
Now we group pseudo-code together with possible mixed C/C++ and

assembly language equivalents:

address a -> rax ; int a; int *pa;

rax -> (pa) ; pa = &a;

address b -> rax ; int b; int *pb;

rax -> (pb) ; pb = &b;

(pa) -> rax ; *pa = 1;

1 -> (rax)

(pb) -> rax ; *pb = 1;

1 -> (rax)

(pb) -> rax ; ecx = *pb;

(rax) -> ecx

(pa) -> rax ; edx = *pa;

(rax) -> edx

(pb) -> rax

Chapter 8 Reconstructing a Program with Pointers

93

ecx + edx -> edx ; edx = ecx + edx;

edx -> (rax) ; *pb = edx;

(pa) -> rax ; edx = *pa;

(rax) -> edx

1 + edx -> edx ; edx = 1 + edx;

edx -> (rax) ; *pa = edx;

(pb) -> rax ; ecx = *pb;

(rax) -> ecx

(pa) -> rax ; edx = *pa;

(rax) -> edx

(pb) -> rax

ecx * edx -> edx ; edx = ecx * edx;

edx -> (rax) ; *pb = edx;

�Reconstructing C/C++ Code: Part 3
Next, we combine more mixed statements into C/C++ language code:

int a; int *pa;

pa = &a;

int b; int *pb;

pb = &b;

*pa = 1;

*pb = 1;

ecx = *pb; ; *pb = *pb + *pa;

edx = *pa;

edx = ecx + edx;

Chapter 8 Reconstructing a Program with Pointers

94

*pb = edx;

edx = *pa; ; *pa = 1 + *pa;

edx = 1 + edx;

*pa = edx;

ecx = *pb; ; *pb = *pb * *pa;

edx = *pa;

edx = ecx * edx;

*pb = edx;

�Reconstructing C/C++ Code:
C/C++ Program
Finally, we have something that looks like a complete C/C++ code:

int a, b;

int *pa, *pb;

pa = &a;

pb = &b;

*pa = 1;

*pb = 1;

*pb = *pb + *pa;

++*pa;

*pb = *pb * *pa;

If we look at the project source code PointersAsVariables.cpp,

we see the same code compiled into the executable file that we were

disassembling.

Chapter 8 Reconstructing a Program with Pointers

95

�Example of Disassembly Output:
Optimized Program
The optimized program (compiled with -O2) contains fewer CPU

instructions:

(gdb) disass main

Dump of assembler code for function main:

=> 0x0000555555555040 <+0>: lea 0x2ffd(%rip),%rax

0x555555558044 <a>

 �0x0000555555555047 <+7>: movl $0x2,0x2ff3(%rip)

0x555555558044 <a>

 �0x0000555555555051 <+17>: mov %rax,0x2fe0(%rip)

0x555555558038 <pa>

 �0x0000555555555058 <+24>: lea 0x2fe1(%rip),%rax

0x555555558040

 �0x000055555555505f <+31>: mov %rax,0x2fca(%rip)

0x555555558030 <pb>

 0x0000555555555066 <+38>: xor %eax,%eax

 �0x0000555555555068 <+40>: movl $0x4,0x2fce(%rip)

0x555555558040

 0x0000555555555072 <+50>: retq

End of assembler dump.

We see that the compiler was able to figure out the result of

computation: a = 2; b = 4. However, one question remains: Why did the

compiler not optimize away the first instructions initializing pa and pb

variables? The answer lies in the nature of a separate compilation model

in C and C++. We can compile several compilation unit (.c or .cpp) files

separately and independently. Therefore, there is no guarantee that

another compilation unit would not reference our globally declared and

defined pa and pb variables.

Chapter 8 Reconstructing a Program with Pointers

96

We can also see that the compiler reordered instructions. It can be

seen in pseudo-code:

address a -> rax

1 -> (a)

rax -> (pa)

This is because pa initialization with the address of the variable a is

independent of assigning 1 to the memory cell the variable a points to,

and the reordered sequence of instructions could be executed faster on

modern processors.

�Summary
In this chapter, we used our assembly language knowledge to reconstruct

C and C++ code that uses pointers. We also compared the disassembly of

the optimized code.

The next chapter looks at the stack memory layout and its operations,

jump instructions, and function calls. We also explore a call stack using the

GDB debugger.

Chapter 8 Reconstructing a Program with Pointers

97

CHAPTER 9

Memory and Stacks

�Stack: A Definition
A stack is a simple computational device with two operations, push and

pop, that allows us to pile up data to remember it in LIFO (Last In First

Out) manner and quickly retrieve the last piled data item as shown in

Figure 9-1.

© Dmitry Vostokov 2023
D. Vostokov, Foundations of Linux Debugging, Disassembling, and Reversing

https://doi.org/10.1007/978-1-4842-9153-5_9

98

Figure 9-1.  Stack operations illustrated

�Stack Implementation in Memory
The CPU %RSP register (Stack Pointer) points to the top of a stack. As

shown in Figure 9-2, a stack grows toward lower memory addresses with

every push instruction, and this is implemented as the %RSP register

decrements by eight. We can read the top stack value using the following

instruction:

mov (%rsp), %rax

Chapter 9 Memory and Stacks

99

Figure 9-2.  Memory layout during push operations

The opposite POP instruction increments the value of the %RSP

register, as shown in Figure 9-3.

Chapter 9 Memory and Stacks

100

Figure 9-3.  Memory layout during pop operations

�Things to Remember
Here is the summary of what we have learned about stacks with the last

three points covered in the subsequent chapters of this book:

•	 Stack operations are LIFO – Last In First Out.

•	 The stack grows down in memory.

•	 The %RSP register points to the top of a stack.

•	 Stacks are used for storing return addresses for CALL

instructions.

•	 Stacks are used for passing additional parameters to

functions.

•	 Stacks are used for storing function parameter values

and local and temporary variables.

Chapter 9 Memory and Stacks

101

�PUSH Instruction
We can push a value stored in a register, a value stored at a memory

address, or a constant (immediate operand):

PUSH r/mem/imm

Here is a PUSH simplified pseudo-code adopted from the

Intel manual:

IF OperandSize = 64

 THEN

 %RSP – 8 -> %RSP

 OperandValue -> (%RSP) ; quadword

 ELSE

 %RSP – 2 -> %RSP

 OperandValue -> (%RSP) ; word

FI

Examples:

push %rax

pushw (%rbx)

push $0

�POP Instruction
We can pop a value stored on the top of a stack to a register or a memory

address:

POP r/mem

Here is a POP simplified pseudo-code adopted from the Intel manual:

IF OperandSize = 64

Chapter 9 Memory and Stacks

102

 THEN

 (%RSP) -> OperandValue ; quadword

 %RSP + 8 -> %RSP

 ELSE

 (%RSP) -> OperandValue ; word

 %RSP + 2 -> %RSP

FI

Examples:

pop %rax

popw (%rbx)

�Register Review
So far, we have seen and used general-purpose CPU registers:

•	 %RAX (among its specific uses is to contain function

return values)

•	 %RBX

•	 %RCX

•	 %RDX

We also have special-purpose registers:

•	 %RIP (Instruction Pointer)

•	 %RSP (Stack Pointer)

AMD64 and Intel EM64T architectures introduced additional general-

purpose registers: %R8, %R9, %R10, %R11, %R12, %R13, %R14, %R15.

These additional registers are used a lot in the x64 code. More

general-purpose registers allow faster code execution because temporary

Chapter 9 Memory and Stacks

103

computation results can be stored there instead of memory locations. Here

is a disassembly from the read function:

(gdb) disass read

Dump of assembler code for function __GI___libc_read:

 �0x00007ffff7ef2450 <+0>: lea 0xd6299(%rip),%rax

0x7ffff7fc86f0 <__libc_multiple_threads>

 0x00007ffff7ef2457 <+7>: mov (%rax),%eax

 0x00007ffff7ef2459 <+9>: test %eax,%eax

 0x00007ffff7ef245b <+11>: jne �0x7ffff7ef2470 <__GI___

libc_read+32>

 0x00007ffff7ef245d <+13>: xor %eax,%eax

 0x00007ffff7ef245f <+15>: syscall

 0x00007ffff7ef2461 <+17>: cmp $0xfffffffffffff000,%rax

 0x00007ffff7ef2467 <+23>: ja �0x7ffff7ef24c0 <__GI___

libc_read+112>

 0x00007ffff7ef2469 <+25>: retq

 0x00007ffff7ef246a <+26>: nopw 0x0(%rax,%rax,1)

 0x00007ffff7ef2470 <+32>: push %r12

 0x00007ffff7ef2472 <+34>: mov %rdx,%r12

 0x00007ffff7ef2475 <+37>: push %rbp

 0x00007ffff7ef2476 <+38>: mov %rsi,%rbp

 0x00007ffff7ef2479 <+41>: push %rbx

 0x00007ffff7ef247a <+42>: mov %edi,%ebx

 0x00007ffff7ef247c <+44>: sub $0x10,%rsp

 0x00007ffff7ef2480 <+48>: callq �0x7ffff7f0e750 <__libc_

enable_asynccancel>

 0x00007ffff7ef2485 <+53>: mov %r12,%rdx

 0x00007ffff7ef2488 <+56>: mov %rbp,%rsi

 0x00007ffff7ef248b <+59>: mov %ebx,%edi

 0x00007ffff7ef248d <+61>: mov %eax,%r8d

 0x00007ffff7ef2490 <+64>: xor %eax,%eax

Chapter 9 Memory and Stacks

104

 0x00007ffff7ef2492 <+66>: syscall

 0x00007ffff7ef2494 <+68>: cmp $0xfffffffffffff000,%rax

 0x00007ffff7ef249a <+74>: ja �0x7ffff7ef24d4 <__GI___

libc_read+132>

 0x00007ffff7ef249c <+76>: mov %r8d,%edi

 0x00007ffff7ef249f <+79>: mov %rax,0x8(%rsp)

 0x00007ffff7ef24a4 <+84>: callq �0x7ffff7f0e7b0 <__libc_

disable_asynccancel>

 0x00007ffff7ef24a9 <+89>: mov 0x8(%rsp),%rax

 0x00007ffff7ef24ae <+94>: add $0x10,%rsp

 0x00007ffff7ef24b2 <+98>: pop %rbx

 0x00007ffff7ef24b3 <+99>: pop %rbp

 0x00007ffff7ef24b4 <+100>: pop %r12

 0x00007ffff7ef24b6 <+102>: retq

 0x00007ffff7ef24b7 <+103>: nopw �0x0(%rax,%rax,1)

 �0x00007ffff7ef24c0 <+112>: mov 0xd09a9(%rip),%rdx

0x7ffff7fc2e70

 0x00007ffff7ef24c7 <+119>: neg %eax

 0x00007ffff7ef24c9 <+121>: mov %eax,%fs:(%rdx)

 0x00007ffff7ef24cc <+124>: mov $0xffffffffffffffff,%rax

 0x00007ffff7ef24d3 <+131>: retq

 �0x00007ffff7ef24d4 <+132>: mov 0xd0995(%rip),%rdx

0x7ffff7fc2e70

 0x00007ffff7ef24db <+139>: neg %eax

 0x00007ffff7ef24dd <+141>: mov %eax,%fs:(%rdx)

 0x00007ffff7ef24e0 <+144>: mov $0xffffffffffffffff,%rax

 0x00007ffff7ef24e7 <+151>: jmp �0x7ffff7ef249c <__GI___

libc_read+76>

End of assembler dump.

Chapter 9 Memory and Stacks

105

�Application Memory Simplified
When an executable file is loaded into memory, its header and sections are

mapped to memory pages. Some data and code are copied unmodified,

but some data is initialized and expanded. The first stack is also created at

this stage. The %RIP register is set to point to the first program instruction,

and %RSP points to the top of the stack. This simplified process is shown in

Figure 9-4.

Figure 9-4.  Application memory layout

�Stack Overflow
By default, the stack size is limited (system and limit dependent, and

on our system, it is 8192Kb or 8388608 bytes). If a stack grows beyond

the reserved limit, a stack overflow occurs (segmentation fault). It can

be caused by an unlimited recursion, deep recursion, or very large local

variables:

Chapter 9 Memory and Stacks

106

int func()

{

 func();

 return 0;

}

int func2()

{

 int array[10000000] = { 1 };

 printf("%d", array[10000000-1]);

}

�Jumps
Another instruction we need to know and understand before we look

deeper into C/C++ functions is called JMP (Jump). Figure 9-5 shows

instructions in memory and corresponding values of the %RIP register.

Chapter 9 Memory and Stacks

107

Figure 9-5.  Example memory and register layout for JMP instruction
execution

We see that the JMP instruction changes %RIP to point to another

memory address, and the program execution continues from that location.

The code shown in Figure 9-5 loops indefinitely: this can be considered a

hang and CPU spike.

Here is a pseudo-code for absolute JMP instructions adopted from

Intel manuals and some examples:

; Format and arguments:

 JMP r/mem64

; Pseudo-code:

 DEST -> RIP ; new destination address for execution

; Examples:

 JMP 0x555555558020

 JMP *%RAX

Chapter 9 Memory and Stacks

108

The jump is called absolute because we specify full memory addresses

and not a relative +/– number to the current %RIP value. The latter jump

is called relative. *%RAX means an indirect jump to the address located in

the %RAX register. It is illustrated in Figure 9-6.

Figure 9-6.  Example memory and register layout for relative JMP
instruction execution

�Calls
We discuss two essential instructions that make the implementation of C

and C++ function calls. They are called CALL and RET. Figure 9-7 shows

instructions in memory and corresponding values of %RIP and %RSP

registers.

Chapter 9 Memory and Stacks

109

Figure 9-7.  Example memory and register layout for CALL and RET
instruction execution

We see that the CALL instruction pushes the current value of %RIP to

the stack and changes %RIP to point to another memory address. Then the

program execution continues from the new location. The RET instruction

pops the saved %RIP value from the stack to the %RIP register. Then

the program execution resumes at the memory location after the CALL

instruction.

Here is a pseudo-code for CALL instructions and some examples

adopted from Intel manuals:

; Format and arguments:

 CALL r/mem64

; Pseudo-code:

 PUSH RIP

 DEST -> RIP

Chapter 9 Memory and Stacks

110

; Examples:

 CALL 0x555555558020

 CALL *%RAX

Here is a pseudo-code for the RET instruction adopted from Intel

manuals:

; Format:

 RET

; Pseudo-code:

 POP() -> RIP

�Call Stack
If one function (the caller) calls another function (the callee) in C and C++,

the resulting code is implemented using the CALL instruction, and during

its execution, the return address is saved on the stack. If the callee calls

another function, the return address is also saved on the stack, and so on.

Therefore, we have the so-called call stack of return addresses. Let us see

this with a simple but trimmed-down example.

Suppose we have three functions with their code occupying the

following addresses:

func 0000000140001000 – 0000000140001100

func2 0000000140001101 – 0000000140001200

func3 0000000140001201 – 0000000140001300

We also have the following code where func calls func2, and func2

calls func3:

void func()

{

 func2();

Chapter 9 Memory and Stacks

111

}

void func2()

{

 func3();

}

When func calls func2, the caller's return address is

pushed to the stack, and %RSP points to some value in the

0000000140001000–0000000140001100 range, say 0000000140001020.

When func2 calls func3, the caller's return address is also

pushed to the stack, and %RSP points to some value in the

0000000140001101–0000000140001200 range, say 0000000140001180.

If we interrupt func3 with a debugger and inspect %RIP, we would find

its value in the range of 0000000140001201–0000000140001300, say

0000000140001250. Therefore, we have the memory and register layout

shown in Figure 9-8 (the usual function prolog is not shown; we will learn

about it in the next chapter).

Figure 9-8.  Example memory and register layout for call stack

The debugger examines the value of the %RIP register and the values

on top of the stack and then reconstructs this call stack:

func3

func2

func

Chapter 9 Memory and Stacks

112

The debugger gets address ranges corresponding to func, func2, and

func3 from the so-called symbolic information, which may be either

stored inside an executable file or in some external file that needs to be

referenced explicitly.

�Exploring Stack in GDB
To see the call stack in real action, we have a project called “SimpleStack,”

and it can be downloaded from

github.com/apress/linux-debugging-disassembling-reversing/

Chapter9/

We compile the files and load the executable into GDB:

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter9$ gcc

SimpleStack.c func.c func2.c func3.c -o SimpleStack

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter9$ gdb

./SimpleStack

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/

licenses/gpl.html>

This is free software: you are free to change and

redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Chapter 9 Memory and Stacks

113

Find the GDB manual and other documentation resources

online at:

 <http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from ./SimpleStack...(no debugging symbols

found)...done.

Then we put a breakpoint on the main function and run the program

until GDB breaks in:

(gdb) run

Starting program: /home/coredump/pflddr/x64/Chapter9/

SimpleStack

Breakpoint 1, 0x0000555555555129 in main ()

The function func3 has a breakpoint instruction inside that allows a

debugger to break in and stop the program execution to inspect its state.

We resume our program execution from our breakpoint in the main

function to allow the main function to call func, func to call func2, func2 to

call func3, and inside func3 to execute the explicit breakpoint:

(gdb) continue

Continuing.

Program received signal SIGTRAP, Trace/breakpoint trap.

0x000055555555516c in func3 ()

(gdb) info registers $rip $rsp

rip 0x55555555516c 0x55555555516c <func3+5>

rsp 0x7fffffffe500 0x7fffffffe500

(gdb) x/i $rip

=> 0x55555555516c <func3+5>: nop

Chapter 9 Memory and Stacks

114

(gdb) x/i $rip-1

 0x55555555516b <func3+4>: int3

We dump the $rip-1 value because, when execution stops at the int3

instruction, %RIP points at the next instruction (nop).

Now we can inspect the top of the stack:

(gdb) x/10g $rsp

0x7fffffffe500: 0x00007fffffffe510 0x0000555555555164

0x7fffffffe510: 0x00007fffffffe520 0x0000555555555153

0x7fffffffe520: 0x00007fffffffe540 0x000055555555513e

0x7fffffffe530: 0x00007fffffffe628 0x0000000100000000

0x7fffffffe540: 0x0000555555555170 0x00007ffff7e2c09b

The data is meaningless for us, and we use another command variant

to dump memory with corresponding symbols:

(gdb) x/10a $rsp

0x7fffffffe500: 0x7fffffffe510 0x555555555164 <func2+14>

0x7fffffffe510: 0x7fffffffe520 0x555555555153 <func+14>

0x7fffffffe520: 0x7fffffffe540 0x55555555513e <main+25>

0x7fffffffe530: 0x7fffffffe628 0x100000000

0x7fffffffe540: 0x555555555170 <__libc_csu_init>

0x7ffff7e2c09b <__libc_start_main+235>

The current value of %RIP points to func3, and return addresses on the

stack are shown in bold. GDB is able to reconstruct the following call stack,

stack trace, or backtrace (bt):

(gdb) bt

#0 0x000055555555516c in func3 ()

#1 0x0000555555555164 in func2 ()

#2 0x0000555555555153 in func ()

#3 0x000055555555513e in main ()

Chapter 9 Memory and Stacks

115

�Summary
In this chapter, we looked at the stack memory layout and stack operations,

jump and call instructions, and function call memory layout. We also

explored a call stack using the GDB debugger commands.

In the next chapter, we look into further details of the stack layout

of the more complex code, for example, arrays, local variables, function

prolog, and epilog. Finally, we disassemble and analyze code that uses

local variables.

Chapter 9 Memory and Stacks

117

CHAPTER 10

Frame Pointer and
Local Variables

�Stack Usage
In addition to storage for return addresses of CALL instructions, a stack is

used to pass additional parameters to functions and store local variables.

The stack is also used to save and restore values held in registers when

we want to preserve them during some computation or across function

calls. For example, suppose we want to do multiplication, but at the same

time, we have other valuable data in registers %RAX and %RDX. The

multiplication result will overwrite %RAX and %RDX values, and we

temporarily put their values on stack:

mov $10, %rax

mov $20, %rdx

...

...

... ; now we want to preserve %RAX and %RDX

push %rax

push %rdx

imul %rdx ; %RDX and %RAX contain the result of

%RAX*%RDX

© Dmitry Vostokov 2023
D. Vostokov, Foundations of Linux Debugging, Disassembling, and Reversing

https://doi.org/10.1007/978-1-4842-9153-5_10

118

mov %rax, result

pop %rdx ; pop in reverse order

pop %rax ; stack is LIFO

�Register Review
So far, we have encountered these general-purpose registers:

•	 %RAX (among its specific uses are to contain

function return values and the lower part of a

multiplication result)

•	 %RBX

•	 %RCX (among its specific uses is a loop counter)

•	 %RDX (among its specific uses is to contain the

higher part of a multiplication result if it exceeds the

maximum 64-bit value)

•	 %RIP (Instruction Pointer, points to the next instruction

to be executed)

•	 %RSP (Stack Pointer, points to the top of the stack)

We come to the next important register on Linux platforms called Base

Pointer register or sometimes as Stack Frame Pointer register %RBP.

�Addressing Array Elements
We can also consider stack memory as an array of memory cells, and often

the %RBP register is used to address stack memory elements in the way

shown in Figure 10-1, where it slides into the frame of stack memory called

a stack frame. The first diagram depicts 64-bit (quadword) memory cells,

and the second depicts 32-bit (doubleword) memory cells.

Chapter 10 Frame Pointer and Local Variables

119

Figure 10-1.  Example memory layout when addressing array
elements

�Stack Structure (No Function Parameters)
Suppose the following function is called:

void func()

{

 int var1, var2;

Chapter 10 Frame Pointer and Local Variables

120

 // body code

 // ...

}

Before the function body code is executed, the following pointers

are set up:

•	 (%RBP) contains the previous %RBP value.

•	 -0x4(%RBP) contains local variable var1 (doubleword).

•	 -0x8(%RBP) contains local variable var2 (doubleword).

It is illustrated in Figure 10-2.

Figure 10-2.  Stack memory layout without function parameters

Chapter 10 Frame Pointer and Local Variables

121

�Function Prolog
The sequence of instructions resulting in the initialization of the %RBP

register and making room for local variables is called the function prolog.

One example of it is Figure 10-3, where func calls func2, which has one

local variable var. Sometimes, saving necessary registers is also considered

as part of a function prolog.

Figure 10-3.  Example memory layout for function prolog

�Raw Stack (No Local Variables
and Function Parameters)
Now we can understand additional data (the previous %RBP that was

equal to the previous %RSP before the function call) that appear on the

raw stack together with function return addresses that we saw in Chapter 9

project “SimpleStack”:

(gdb) info registers $rsp $rbp

rsp 0x7fffffffe500 0x7fffffffe500

rbp 0x7fffffffe500 0x7fffffffe500

(gdb) x/10a $rsp

Chapter 10 Frame Pointer and Local Variables

122

0x7fffffffe500: 0x7fffffffe510 0x555555555164 <func2+14>

0x7fffffffe510: 0x7fffffffe520 0x555555555153 <func+14>

0x7fffffffe520: 0x7fffffffe540 0x55555555513e <main+25>

0x7fffffffe530: 0x7fffffffe628 0x100000000

0x7fffffffe540: 0x555555555170 <__libc_csu_init>

0x7ffff7e2c09b <__libc_start_main+235>

(gdb) disass func2

Dump of assembler code for function func2:

 0x0000555555555156 <+0>: push %rbp

 0x0000555555555157 <+1>: mov %rsp,%rbp

 0x000055555555515a <+4>: mov $0x0,%eax

 0x000055555555515f <+9>: callq 0x555555555167 <func3>

 0x0000555555555164 <+14>: nop

 0x0000555555555165 <+15>: pop %rbp

 0x0000555555555166 <+16>: retq

End of assembler dump.

(gdb) disass func

Dump of assembler code for function func:

 0x0000555555555145 <+0>: push %rbp

 0x0000555555555146 <+1>: mov %rsp,%rbp

 0x0000555555555149 <+4>: mov $0x0,%eax

 0x000055555555514e <+9>: callq 0x555555555156 <func2>

 0x0000555555555153 <+14>: nop

 0x0000555555555154 <+15>: pop %rbp

 0x0000555555555155 <+16>: retq

End of assembler dump.

(gdb) disass main

Dump of assembler code for function main:

 0x0000555555555125 <+0>: push %rbp

 0x0000555555555126 <+1>: mov %rsp,%rbp

Chapter 10 Frame Pointer and Local Variables

123

 0x0000555555555129 <+4>: sub $0x10,%rsp

 0x000055555555512d <+8>: mov %edi,-0x4(%rbp)

 0x0000555555555130 <+11>: mov %rsi,-0x10(%rbp)

 0x0000555555555134 <+15>: mov $0x0,%eax

 0x0000555555555139 <+20>: callq 0x555555555145 <func>

 0x000055555555513e <+25>: mov $0x0,%eax

 0x0000555555555143 <+30>: leaveq

 0x0000555555555144 <+31>: retq

End of assembler dump.

�Function Epilog
Before the function code returns to the caller, it must restore the previous

values of %RSP and %RBP registers to allow the caller to resume its

execution from the correct address, previously saved on the stack, and

to continue addressing its own stack frame properly. This sequence of

instructions is called the function epilog, and it is shown in Figure 10-4.

Figure 10-4.  Example memory layout for function epilog

Instead of the mov %rbp,%rsp and pop %rbp sequence of

instructions, we may see the leave instruction, which does the same but

occupies less code space.

Chapter 10 Frame Pointer and Local Variables

124

�“Local Variables” Project
The project for this chapter can be downloaded from

github.com/apress/linux-debugging-disassembling-reversing/

Chapter10/

We compile the file and load the executable into GDB:

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter10$ gcc

LocalVariables.cpp -o LocalVariables

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter10$ gdb

./LocalVariables

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/

licenses/gpl.html>

This is free software: you are free to change and

redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources

online at:

 <http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from ./LocalVariables...(no debugging symbols

found)...done.

Chapter 10 Frame Pointer and Local Variables

125

Then we put a breakpoint to the main function and run the program

until GDB breaks in:

(gdb) break main

Breakpoint 1 at 0x1129

(gdb) run

Starting program: /home/coredump/pflddr/x64/Chapter10/

LocalVariables

Breakpoint 1, 0x0000555555555129 in main ()

Next, we disassemble our main function:

(gdb) disass main

Dump of assembler code for function main:

 0x0000555555555125 <+0>: push %rbp

 0x0000555555555126 <+1>: mov %rsp,%rbp

=> 0x0000555555555130 <+11>: movl $0x1,-0x4(%rbp)

 0x0000555555555137 <+18>: movl $0x1,-0x8(%rbp)

 0x000055555555513e <+25>: mov -0x4(%rbp),%eax

 0x0000555555555141 <+28>: add %eax,-0x8(%rbp)

 0x0000555555555144 <+31>: addl $0x1,-0x4(%rbp)

 0x0000555555555148 <+35>: mov -0x8(%rbp),%eax

 0x000055555555514b <+38>: imul -0x4(%rbp),%eax

 0x000055555555514f <+42>: mov %eax,-0x8(%rbp)

 0x0000555555555152 <+45>: mov $0x0,%eax

 0x0000555555555157 <+50>: pop %rbp

 0x0000555555555158 <+51>: retq

End of assembler dump.

Chapter 10 Frame Pointer and Local Variables

126

Its source code is the following:

int main()

{

 int a, b;

a = 1;

 b = 1;

b = b + a;

 ++a;

 b = b * a;

return 0;

}

The following is the same assembly language code but with comments

showing operations in pseudo-code and highlighting the function prolog

and epilog:

 0x0000555555555125 <+0>: push %rbp

 # establishing stack frame

 0x0000555555555126 <+1>: mov %rsp,%rbp

=> 0x0000555555555130 <+11>: movl $0x1,-0x4(%rbp)

 # 1 -> (a)

 0x0000555555555137 <+18>: movl $0x1,-0x8(%rbp)

 # 1 -> (b)

 0x000055555555513e <+25>: mov -0x4(%rbp),%eax

 # (a) -> eax

 0x0000555555555141 <+28>: add %eax,-0x8(%rbp)

 # eax + (b) -> (b)

 0x0000555555555144 <+31>: addl $0x1,-0x4(%rbp)

 # 1 + (a) -> (a)

 0x0000555555555148 <+35>: mov -0x8(%rbp),%eax

 # (b) -> eax

Chapter 10 Frame Pointer and Local Variables

127

 0x000055555555514b <+38>: imul -0x4(%rbp),%eax

 # (a) * eax -> eax

 0x000055555555514f <+42>: mov %eax,-0x8(%rbp)

 # eax -> (b)

 0x0000555555555152 <+45>: mov $0x0,%eax

 # 0 -> eax (return value)

 0x0000555555555157 <+50>: pop %rbp

 # restoring previous frame

 0x0000555555555158 <+51>: retq

 # return 0

The compiler didn’t emit the mov %rbp,%rsp instruction because

%RSP didn’t change: no functions were called, and no registers were saved.

�Disassembly of Optimized Executable
If we compile LocalVariables.cpp with the -O1 option, we see a very simple

code that just returns zero:

(gdb) disass main

Dump of assembler code for function main:

=> 0x0000555555555125 <+0>: mov $0x0,%eax

 0x000055555555512a <+5>: retq

End of assembler dump.

Where is all the code we have seen in the previous version? It was

optimized away by the compiler because the results of our calculation

are never used. Variables a and b are local to the main function, and their

values are not accessible outside when we return from the function.

Chapter 10 Frame Pointer and Local Variables

128

�Summary
In this chapter, we looked into the stack layout of the more complex code:

addressing arrays, local variables, and compiler-emitted code for the

function prolog and epilog. Finally, we disassembled and analyzed code

that used local variables and compared it to the optimized version.

The next chapter looks at function parameters and their stack layout.

Finally, we disassemble and analyze another project with function

parameters and local variables.

Chapter 10 Frame Pointer and Local Variables

129

CHAPTER 11

Function Parameters

�“FunctionParameters” Project
This chapter teaches how a caller function passes its parameters via

registers and how a callee (the called function) accesses them. We use the

following project that can be downloaded from this link:

github.com/apress/linux-debugging-disassembling-reversing/

Chapter11/

Here is the project source code:

// FunctionParameters.cpp

int arithmetic (int a, int b);

int main(int argc, char* argv[])

{

 int result = arithmetic (1, 1);

return 0;

}

// Arithmetic.cpp

int arithmetic (int a, int b)

{

 b = b + a;

 ++a;

© Dmitry Vostokov 2023
D. Vostokov, Foundations of Linux Debugging, Disassembling, and Reversing

https://doi.org/10.1007/978-1-4842-9153-5_11

130

 b = b * a;

 return b;

}

�Stack Structure
Recall from the previous chapter that the %RBP register is used to address

stack memory locations. It was illustrated in Figure 10-1. Here, we provide

a typical example of the stack memory layout for the following function:

void func(int Param1, int Param2)

{

 int var1, var2;

 // stack memory layout at this point

// -0x18(%RBP) = Param2 (doubleword)

// -0x14(%RBP) = Param1 (doubleword)

// -0x8(%RBP) = var2 (doubleword)

// -0x4(%RBP) = var1 (doubleword)

// (%RBP) = previous %RBP (quadword)

// 0x8(%RBP) = return address (quadword)

// ...

}

The typical stack frame memory layout for the function with two

arguments and two local variables is illustrated in Figure 11-1.

Chapter 11 Function Parameters

131

Figure 11-1.  Stack memory layout for the function with two
arguments and two local variables

Chapter 11 Function Parameters

132

�Function Prolog and Epilog
Now, before we try to make sense of the FunctionParameters project

disassembly, we look at the simple case of one function parameter and

one local variable to illustrate the standard function prolog and epilog

sequence of instructions and corresponding stack memory changes.

The function prolog is illustrated in Figure 11-2, and the function

epilog is illustrated in Figure 11-3.

Figure 11-2.  Memory layout for the prolog with one function
parameter and one local variable

Here, the function parameter is passed via the %RDI register. It is

saved on the stack because the register may be used later in calculations

or function parameter passing to other functions. Generally, the function’s

first six parameters are passed via %RDI, %RSI, %RDX, %RCX, %R8, and

%R9 registers from left to the right when parameters are quadwords like

pointers or long values and via %EDI, %ESI, %EDX, %ECX, %R8D, and

%R9D registers when parameters are doublewords like integers. Additional

parameters are passed via the stack locations using the PUSH instruction.

Chapter 11 Function Parameters

133

Figure 11-3.  Memory layout for the epilog with one function
parameter and one local variable

We also see that local variables are not initialized by default when their

storage space is allocated via the SUB instruction and not cleared during

the epilog. Whatever memory contents were there before allocation, it

becomes the local variable values, the so-called garbage values.

�Project Disassembled Code with Comments
Here is a commented code disassembly of main and arithmetic with

memory addresses removed for visual clarity:

main:

push %rbp # establishing stack frame

mov %rsp,%rbp

sub $0x20,%rsp �# creating stack frame for local

variables and function parameters

mov %edi,-0x14(%rbp) # saving the first main parameter

mov %rsi,-0x20(%rbp) # saving the second main parameter

Chapter 11 Function Parameters

134

mov $0x1,%esi # setting the second parameter for

 # arithmetic function

mov $0x1,%edi �# setting the first parameter

for arithmetic

 # function

callq 0x55555555514d <_Z10arithmeticii>

mov %eax,-0x4(%rbp) # setting the result local variable

mov $0x0,%eax # main should return 0

leaveq # restoring the previous stack pointer

 # and stack frame, equivalent to

 # mov %rbp, %rsp

 # pop %rbp

retq # return from main

arithmetic:

push %rbp # establishing stack frame

mov %rsp,%rbp

mov %edi,-0x4(%rbp) # �saving the first arithmetic

parameter (a)

mov %esi,-0x8(%rbp) # �saving the second arithmetic

parameter (b)

mov -0x4(%rbp),%eax # (a) -> eax

add %eax,-0x8(%rbp) # eax + (b) -> (b)

addl $0x1,-0x4(%rbp) # 1 + (a) -> (a)

mov -0x8(%rbp),%eax # (b) -> eax

imul -0x4(%rbp),%eax # (a) * eax -> eax

mov %eax,-0x8(%rbp) # eax -> (b)

mov -0x8(%rbp),%eax # (b) -> eax

pop %rbp # �restoring the previous stack frame

 # �no need to restore stack

pointer as

Chapter 11 Function Parameters

135

 # it didn't change

retq # result value is in eax

We can put a breakpoint on the first arithmetic calculation address and

examine raw stack data pointed to by the %RBP register:

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter11$ gcc

FunctionParameters.cpp Arithmetic.cpp -o FunctionParameters

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter11$ gdb

./FunctionParameters

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/

licenses/gpl.html>

This is free software: you are free to change and

redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources

online at:

 <http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from ./FunctionParameters...(no debugging

symbols found)...done.

(gdb) break main

Breakpoint 1 at 0x1129

(gdb) run

Chapter 11 Function Parameters

136

Starting program: /home/coredump/pflddr/x64/Chapter11/

FunctionParameters

Breakpoint 1, 0x0000555555555129 in main ()

(gdb) disass arithmetic

Dump of assembler code for function _Z10arithmeticii:

 0x000055555555514d <+0>: push %rbp

 0x000055555555514e <+1>: mov %rsp,%rbp

 0x0000555555555151 <+4>: mov %edi,-0x4(%rbp)

 0x0000555555555154 <+7>: mov %esi,-0x8(%rbp)

 0x0000555555555157 <+10>: mov -0x4(%rbp),%eax

 0x000055555555515a <+13>: add %eax,-0x8(%rbp)

 0x000055555555515d <+16>: addl $0x1,-0x4(%rbp)

 0x0000555555555161 <+20>: mov -0x8(%rbp),%eax

 0x0000555555555164 <+23>: imul -0x4(%rbp),%eax

 0x0000555555555168 <+27>: mov %eax,-0x8(%rbp)

 0x000055555555516b <+30>: mov -0x8(%rbp),%eax

 0x000055555555516e <+33>: pop %rbp

 0x000055555555516f <+34>: retq

End of assembler dump.

(gdb) break *0x0000555555555157

Breakpoint 2 at 0x0000555555555157

(gdb) continue

Continuing.

Breakpoint 2, 0x0000555555555157 in arithmetic(int, int) ()

(gdb) info registers $rbp

rbp 0x7fffffffe500 0x7fffffffe500

(gdb) x/10a $rbp-0x20

0x7fffffffe4e0: 0x1 0x7ffff7eaaaf5 <handle_intel+197>

Chapter 11 Function Parameters

137

0x7fffffffe4f0: 0x0 0x100000001 ; (b, a)

0x7fffffffe500: 0x7fffffffe530 0x555555555143 <main+30> ;

saved $RBP, return address

0x7fffffffe510: 0x7fffffffe618 0x155555040

0x7fffffffe520: 0x7fffffffe610 0x0

(gdb) x/10w $rbp-0x20

0x7fffffffe4e0: 0x1 0x0 0xfffffffff7eaaaf5 0x7fff

0x7fffffffe4f0: 0x0 0x0 0x1 0x1 ; (b), (a)

0x7fffffffe500: 0xffffffffffffe530 0x7fff

�Parameter Mismatch Problem
To illustrate the importance of understanding the stack memory layout,

consider this typical binary interface mismatch problem. The function

main calls func with two parameters:

// main.c

int main ()

{

 long locVar;

 func (1, 2);

 return 0;

}

The caller is expecting the callee function func to see this stack

memory layout and passes 1 in %RDI and 2 in %RSI:

 2

 1

 locVar

%RBP -> prev %RBP

 return address

Chapter 11 Function Parameters

138

However, the callee expects three parameters instead of two:

// func.c

int func (int a, int b, int c)

{

 // code to use parameters

 return 0;

}

The func code sees this stack memory layout:

 (c)

 (b)

 (a)

 locVar

%RBP -> prev %RBP

 return address

We see that parameter c on the raw stack gets its value from some

random value in %RDX that was never set by the caller. It is clearly a

software defect (bug).

�Summary
This chapter looked at function parameters and their stack layout.

We disassembled and analyzed the stack structure of the project with

function parameters and local variables. Finally, we looked at a parameter

mismatch problem.

The next chapter is about CPU state flags, comparison instructions,

conditional jumps, and function return values.

Chapter 11 Function Parameters

139

CHAPTER 12

More Instructions

�CPU Flags Register
In addition to registers, the CPU also contains a 64-bit %RFLAGS register

where individual bits are set or cleared in response to arithmetic and

other operations. Separate machine instructions can manipulate some bit

values, and their values affect code execution.

For example, the DF bit (Direction Flag) determines the direction

of memory copy operations and can be set by STD and cleared by CLD

instructions. It has the default value of zero, and its location is shown in

Figure 12-1, where only the first 32 bits of 64-bit %RFLAGS are shown.

Figure 12-1.  %RFLAGS register flags

© Dmitry Vostokov 2023
D. Vostokov, Foundations of Linux Debugging, Disassembling, and Reversing

https://doi.org/10.1007/978-1-4842-9153-5_12

140

�The Fast Way to Fill Memory
It can be done by the STOSQ instruction that stores a quadword value from

%RAX into a memory location which address is in the %RDI register (“D”

means destination). After the value from %RAX is transferred to memory,

the instruction increments %RDI by eight, and if the DF flag is zero, %RDI

now points to the next quadword in memory. If the DF flag is one, then

the %RDI value is decremented by eight, and the %RDI now points to the

previous quadword in memory. There is an equivalent STOSL instruction

that stores doublewords and increments or decrements %RDI by four.

If we prefix any instruction with REP, it causes the instruction to be

repeated until the %RCX register’s value is decremented to zero. For

example, we can write simple code that should theoretically zero “all

memory” (practically, it traps because of access violation):

xor %rax, %rax # fill with 0

mov $0, %rdi # �starting address or xor

%rdi, %rdi

mov $0xffffffff / 4, %rcx # 0x1fffffff quad words

rep stosq

Here is REP STOSQ in pseudo-code:

WHILE (RCX != 0)

{

 RAX -> (RDI)

 IF DF = 0 THEN

 RDI + 8 -> RDI

 ELSE

 RDI – 8 -> RDI

 RCX – 1 -> RCX

}

Chapter 12 More Instructions

141

A simple example of erasing 32 bytes (4x8) is shown in Figure 12-2.

Figure 12-2.  A simple example of erasing 32 bytes

�Testing for 0
A ZF bit in the %RFLAGS register is set to one if the instruction result is

zero and cleared otherwise. This bit is affected by

•	 Arithmetic instructions (e.g., ADD, SUB, MUL)

•	 Logical compare instruction (TEST)

•	 “Arithmetical” compare instruction (CMP)

The location of the ZF bit is shown in Figure 12-3.

Chapter 12 More Instructions

142

Figure 12-3.  ZF bit in %RFLAGS register

�TEST – Logical Compare
This instruction computes bitwise logical AND between both operands

and sets flags (including ZF) according to the computed result (which is

discarded):

TEST reg/imm, reg/mem

Examples:

TEST %EDX, %EDX

Suppose the %EDX register contains 4 (100bin):

100bin AND 100bin = 100bin != 0 (ZF is cleared)

TEST $1, $EDX

Suppose %EDX contains 0 (0bin):

0bin AND 1bin = 0bin == 0 (ZF is set)

Here is the TEST instruction in pseudo-code (details not relevant to the

ZF bit are omitted):

TEMP := OPERAND1 AND OPERAND2

Chapter 12 More Instructions

143

IF TEMP = 0 THEN

 1 -> ZF

ELSE

 0 -> ZF

�CMP – Compare Two Operands
This instruction compares the first operand with the second and sets flags

(including ZF) according to the computed result (which is discarded). The

comparison is performed by subtracting the first operand from the second

(like the SUB instruction: sub $4, %eax).

CMP reg/imm, reg/mem

CMP reg/mem/imm, reg

Examples:

CMP $0, %EDI

Suppose %EDI contains 0:

0 – 0 == 0 (ZF is set)

CMP $0x16, %EAX

Suppose %EAX contains 4hex:

4hex – 16hex = FFFFFFEEhex != 0 (ZF is cleared)

4dec – 22dec = -18dec

Here is the CMP instruction in pseudo-code (details not relevant to the

ZF bit are omitted):

OPERAND2 - OPERAND1 -> TEMP

IF TEMP = 0 THEN

Chapter 12 More Instructions

144

 1 -> ZF

ELSE

 0 -> ZF

The CMP instruction is equivalent to this pseudo-code sequence:

OPERAND2 -> TEMP

SUB OPERAND1, TEMP

�TEST or CMP?
Both instructions are equivalent if we want to test for zero, but the CMP

instruction affects more flags than TEST:

TEST %EAX, %EAX

CMP $0, %EAX

The CMP instruction is used to compare for inequality (the TEST

instruction cannot be used here):

CMP $0, %EAX # > 0 or < 0 ?

The TEST instruction is used to see if individual bits are set:

TEST $2, %EAX # 2 == 0010bin or in C language: if (var & 0x2)

Examples where %EAX has the value of 2:

TEST $4, %EAX # 0010bin AND 0100bin = 0000bin (ZF is set)

TEST $6, %EAX # 0010bin AND 0110bin = 0010bin (ZF is cleared)

�Conditional Jumps
Consider these two C or C++ code fragments:

Chapter 12 More Instructions

145

if (a == 0) if (a != 0)

{ {

 ++a; ++a;

} }

else else

{ {

 --a; --a;

} }

The CPU fetches instructions sequentially, so we must tell the CPU

that we want to skip some instructions if some condition is (not) met, for

example, if a != 0.

JNZ (jump if not zero) and JZ (jump if zero) test the ZF flag and change

%RIP if the ZF bit is cleared for JNZ or set for JZ. The following assembly

language code is equivalent to the preceding C/C++ code:

 CMP $0, A MOV A, %EAX

 JNZ label1 TEST %EAX, %EAX

 INC A JZ label1

 JMP label2 INC %EAX

label1: DEC A JMP label2

label2: label1: DEC %EAX

 label2:

�The Structure of Registers
Some 64-bit registers have a legacy structure that allows us to address their

lower 32-bit, 16-bit, and two 8-bit parts, as shown in Figure 12-4.

Chapter 12 More Instructions

146

Figure 12-4.  A legacy structure of registers

�Function Return Value
Many functions return values via the %RAX register. For example:

long func();

The return value is in %RAX.

bool func();

The return value is in %EAX.

Although bool values occupy one byte in memory, the compiler may

use %EAX instead of %AL.

�Using Byte Registers
Suppose we have a byte value in the %AL register, and we want to add this

value to the %ECX register. However, we do not know what values other

parts of the full %EAX register contain. We cannot use this instruction, for

example:

MOV %AL, %EBX # operand size conflict

The proposed solution in pseudo-code:

AL -> EBX or AL -> EAX

ECX + EBX -> ECX ECX + EAX -> ECX

Chapter 12 More Instructions

147

We can only use MOV instructions that have the same operand size for

both source and destination, for example:

MOV %AL, %BL

MOV %AL, b # in C: static bool b = func();

For this task, there is a special MOVZX (Move with Zero eXtend)

instruction that replaces the contents of the second operand with the

contents of the first operand while filling the rest of the bits with zeroes:

MOVZX reg/mem, reg

Therefore, our solution for the task becomes very simple:

MOVZX %AL, %EBX

ADD %EBX, %ECX

We can also reuse the %EAX register:

MOVZX %AL, %EAX

ADD %EAX, %ECX

�Summary
In this chapter, we learned about CPU state flags, comparison instructions,

conditional jumps, and function return values – usually present in real

binary code that we may need to disassemble to understand program logic

during debugging.

The next chapter is our “graduating” project – we disassemble and

analyze a project that uses function parameters which are pointers.

Chapter 12 More Instructions

149

�

CHAPTER 13

Function Pointer
Parameters

“FunctionPointerParameters” Project
It is our final project, and it can be downloaded from

github.com/apress/linux-debugging-disassembling-reversing/

Chapter13/

A summary of the project source code:

// FunctionParameters.cpp

int main(int argc, char* argv[])

{

 int a, b;

 printf("Enter a and b: ");

 scanf("%d %d", &a, &b);

 if (arithmetic (a, &b))

 {

 printf("Result = %d", b);

 }

 return 0;

}

© Dmitry Vostokov 2023
D. Vostokov, Foundations of Linux Debugging, Disassembling, and Reversing

https://doi.org/10.1007/978-1-4842-9153-5_13

150

// Arithmetic.cpp

bool arithmetic (int a, int *b)

{

 if (!b)

 {

 return false;

 }

 *b = *b + a;

 ++a;

 *b = *b * a;

 return true;

}

�Commented Disassembly
Here is the commented disassembly we get after compiling the project and

loading into GDB:

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter13$ gcc

FunctionParameters.cpp Arithmetic.cpp -o FunctionParameters

coredump@DESKTOP-IS6V2L0:~/pflddr/x64/Chapter13$ gdb

./FunctionParameters

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/

licenses/gpl.html>

This is free software: you are free to change and

redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

Chapter 13 Function Pointer Parameters

151

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources

online at:

 <http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from ./FunctionParameters...(no debugging

symbols found)...done.

(gdb) break main

Breakpoint 1 at 0x1149

(gdb) run

Starting program: /home/coredump/pflddr/x64/Chapter13/

FunctionParameters

Breakpoint 1, 0x0000555555555149 in main ()

(gdb) disass main

Dump of assembler code for function main:

 0x0000555555555145 <+0>: push %rbp

 0x0000555555555146 <+1>: mov %rsp,%rbp

=> 0x0000555555555149 <+4>: sub $0x20,%rsp

 0x000055555555514d <+8>: mov %edi,-0x14(%rbp)

 0x0000555555555150 <+11>: mov %rsi,-0x20(%rbp)

 �0x0000555555555154 <+15>: lea 0xea9(%rip),%rdi

0x555555556004

 0x000055555555515b <+22>: mov $0x0,%eax

 �0x0000555555555160 <+27>: callq �0x555555555030

<printf@plt>

Chapter 13 Function Pointer Parameters

152

 0x0000555555555165 <+32>: lea -0x8(%rbp),%rdx

 0x0000555555555169 <+36>: lea -0x4(%rbp),%rax

 0x000055555555516d <+40>: mov %rax,%rsi

 �0x0000555555555170 <+43>: lea 0xe9d(%rip),%rdi

0x555555556014

 0x0000555555555177 <+50>: mov $0x0,%eax

 �0x000055555555517c <+55>: callq �0x555555555040

<scanf@plt>

 0x0000555555555181 <+60>: mov -0x4(%rbp),%eax

 0x0000555555555184 <+63>: lea -0x8(%rbp),%rdx

 0x0000555555555188 <+67>: mov %rdx,%rsi

 0x000055555555518b <+70>: mov %eax,%edi

 0x000055555555518d <+72>: callq �0x5555555551b3

<_Z10arithmeticiPi>

 0x0000555555555192 <+77>: test %al,%al

 0x0000555555555194 <+79>: je �0x5555555551ac

<main+103>

 0x0000555555555196 <+81>: mov -0x8(%rbp),%eax

 0x0000555555555199 <+84>: mov %eax,%esi

 �0x000055555555519b <+86>: lea 0xe78(%rip),%rdi

0x55555555601a

 0x00005555555551a2 <+93>: mov $0x0,%eax

 0x00005555555551a7 <+98>: callq �0x555555555030

<printf@plt>

 0x00005555555551ac <+103>: mov $0x0,%eax

 0x00005555555551b1 <+108>: leaveq

 0x00005555555551b2 <+109>: retq

End of assembler dump.

(gdb) x/s 0x555555556004

0x555555556004: "Enter a and b: "

Chapter 13 Function Pointer Parameters

153

(gdb) x/s 0x555555556014

0x555555556014: "%d %d"

(gdb) x/s 0x55555555601a

0x55555555601a: "Result = %d"

(gdb) disass arithmetic

Dump of assembler code for function _Z10arithmeticiPi:

 0x00005555555551b3 <+0>: push %rbp

 0x00005555555551b4 <+1>: mov %rsp,%rbp

 0x00005555555551b7 <+4>: mov %edi,-0x4(%rbp)

 0x00005555555551ba <+7>: mov %rsi,-0x10(%rbp)

 0x00005555555551be <+11>: cmpq $0x0,-0x10(%rbp)

 0x00005555555551c3 <+16>: jne �0x5555555551cc

<_Z10arithmeticiPi+25>

 0x00005555555551c5 <+18>: mov $0x0,%eax

 0x00005555555551ca <+23>: jmp �0x5555555551f8

<_Z10arithmeticiPi+69>

 0x00005555555551cc <+25>: mov -0x10(%rbp),%rax

 0x00005555555551d0 <+29>: mov (%rax),%edx

 0x00005555555551d2 <+31>: mov -0x4(%rbp),%eax

 0x00005555555551d5 <+34>: add %eax,%edx

 0x00005555555551d7 <+36>: mov -0x10(%rbp),%rax

 0x00005555555551db <+40>: mov %edx,(%rax)

 0x00005555555551dd <+42>: addl $0x1,-0x4(%rbp)

 0x00005555555551e1 <+46>: mov -0x10(%rbp),%rax

 0x00005555555551e5 <+50>: mov (%rax),%eax

 0x00005555555551e7 <+52>: imul -0x4(%rbp),%eax

 0x00005555555551eb <+56>: mov %eax,%edx

 0x00005555555551ed <+58>: mov -0x10(%rbp),%rax

 0x00005555555551f1 <+62>: mov %edx,(%rax)

 0x00005555555551f3 <+64>: mov $0x1,%eax

Chapter 13 Function Pointer Parameters

154

 0x00005555555551f8 <+69>: pop %rbp

 0x00005555555551f9 <+70>: retq

End of assembler dump.

main:

push %rbp �# establishing

stack frame

mov %rsp,%rbp

sub $0x20,%rsp �# creating

stack frame

for locals

 �# and main

function

parameters

mov %edi,-0x14(%rbp) �# saving the

first main

parameter

mov %rsi,-0x20(%rbp) �# saving the

second main

parameter

lea 0xea9(%rip),%rdi # 0x555555556004 �# the address

of printf

 �# string

parameter

mov $0x0,%eax

callq 0x555555555030 <printf@plt> �# printf

("Enter a

and b: ")

lea -0x8(%rbp),%rdx �# address b

-> rdx (3rd

parameter)

Chapter 13 Function Pointer Parameters

155

lea -0x4(%rbp),%rax �# address

a -> rax

mov %rax,%rsi �# rax

-> rsi (2nd

parameter)

lea 0xe9d(%rip),%rdi # 0x555555556014 �# the

address of

scanf string

 �# parameter

(1st parameter)

mov $0x0,%eax

callq 0x555555555040 <scanf@plt> �# scanf("%d

%d", &a, &b)

 �# parameters

are passed via

 �%rdi,

%rsi, %rdx

mov -0x4(%rbp),%eax �# (a) -> eax

(value of a)

lea -0x8(%rbp),%rdx �# address

b -> rdx

mov %rdx,%rsi �# rdx

-> rsi (2nd

parameter)

mov %eax,%edi �# eax ->

edi ((a), 1st

parameter)

callq 0x5555555551b3 <_Z10arithmeticiPi> �# arithmetic

(a, &b)

test %al,%al �# tesing

for zero

Chapter 13 Function Pointer Parameters

156

 �# bool

result from

arithmetic

je 0x5555555551ac <main+103> # if = 0

 �# 0x000055555

55551ac -> rip

mov -0x8(%rbp),%eax �# (b) -> eax

(value of b)

mov %eax,%esi �# eax ->

esi (2nd

parameter)

lea 0xe78(%rip),%rdi # 0x55555555601a �# the address

of printf

 �# string

parameter

mov $0x0,%eax

callq 0x555555555030 <printf@plt> �# printf

("Result

= %d", b)

0x00005555555551ac <+103>:

mov $0x0,%eax �# main should

return 0

leaveq �# restoring

the previous

 �# stack

pointer and

 �# stack

frame,

equivalent to

 �# mov

%rbp, %rsp

 # pop %rbp

Chapter 13 Function Pointer Parameters

157

retq �# return

from main

arithmetic:

push %rbp �# establishing

stack frame

mov %rsp,%rbp

mov %edi,-0x4(%rbp) �# saving the

first

parameter (p1)

mov %rsi,-0x10(%rbp) �# saving

the second

parameter (p2)

cmpq $0x0,-0x10(%rbp) # if p2 != 0

jne 0x5555555551cc <_Z10arithmeticiPi+25> �# goto

0x555555

5551cc

mov $0x0,%eax �# return

value 0

jmp 0x5555555551f8 <_Z10arithmeticiPi+69> # goto epilog

0x00005555555551cc <+25>:

mov -0x10(%rbp),%rax # (p2) -> rax

mov (%rax),%edx �# (rax) ->

edx (*p2)

 �# p2 is

a pointer

since it

 �# contains

the address of

 �# variable

that we name b

Chapter 13 Function Pointer Parameters

158

 �# we also

name p1 as a

mov -0x4(%rbp),%eax �# (a) -> eax

add %eax,%edx �# eax +

edx -> edx

 �# (a) +

(b) -> edx

mov -0x10(%rbp),%rax �# address

b -> rax

mov %edx,(%rax) # edx -> (b)

 �# (a) +

(b) -> (b)

addl $0x1,-0x4(%rbp) �# 1 +

(a) -> (a)

mov -0x10(%rbp),%rax �# address

b -> rax

mov (%rax),%eax # (b) -> eax

imul -0x4(%rbp),%eax �# (a) * (b)

-> eax

mov %eax,%edx # eax -> edx

mov -0x10(%rbp),%rax �# address

b -> rax

mov %edx,(%rax) # edx -> (b)

 �# (a) *

(b) -> (b)

mov $0x1,%eax �# 1 -> eax

(return value)

0x00005555555551f8 <+69>:

pop %rbp �# restoring

the previous

stack frame

Chapter 13 Function Pointer Parameters

159

 �# no need

to restore

 �# stack

pointer as

 �# it

didn't change

retq �# result value

is in eax

�Summary
In this chapter, we disassembled and analyzed a project that used function

parameters which are pointers.

The next, final chapter of the book summarizes various basic

disassembly patterns.

Chapter 13 Function Pointer Parameters

161

�

CHAPTER 14

Summary of Code
Disassembly Patterns
This final chapter summarizes the various patterns we have encountered

during the reading of this book.

Function Prolog/Epilog
Function prolog

push %rbp

mov %rsp,%rbp

Function epilog

mov %rbp,%rsp

pop %rbp

ret

It is equivalent to

leave

ret

Some code may omit to restore %RSP if it does not change:

pop %rbp

ret

© Dmitry Vostokov 2023
D. Vostokov, Foundations of Linux Debugging, Disassembling, and Reversing

https://doi.org/10.1007/978-1-4842-9153-5_14

162

Knowing prolog can help identify situations when symbol files or

function start addresses are not correct. For example, suppose we have the

following backtrace:

func3+0x5F

func2+0x8F

func+0x20

If we disassemble the func2 function and see that it does not start with

prolog, we may assume that backtrace needs more attention:

(gdb) x/2i func2

0x555555555165 <main+32>: lea -0x8(%rbp),%rdx

0x555555555169 <main+36>: lea -0x4(%rbp),%rax

In optimized code, the %RSP register may be used to address local

variables and parameters instead of %RBP. In such a case, prolog and

epilog may be partially missing. Here is an example from the printf

function:

(gdb) disass printf

Dump of assembler code for function __printf:

 0x00007ffff7e60560 <+0>: sub $0xd8,%rsp

 0x00007ffff7e60567 <+7>: mov %rsi,0x28(%rsp)

 0x00007ffff7e6056c <+12>: mov %rdx,0x30(%rsp)

 0x00007ffff7e60571 <+17>: mov %rcx,0x38(%rsp)

 0x00007ffff7e60576 <+22>: mov %r8,0x40(%rsp)

 0x00007ffff7e6057b <+27>: mov %r9,0x48(%rsp)

 0x00007ffff7e60580 <+32>: test %al,%al

 0x00007ffff7e60582 <+34>: je �0x7ffff7e605bb <__

printf+91>

 0x00007ffff7e60584 <+36>: movaps %xmm0,0x50(%rsp)

 0x00007ffff7e60589 <+41>: movaps %xmm1,0x60(%rsp)

 0x00007ffff7e6058e <+46>: movaps %xmm2,0x70(%rsp)

Chapter 14 Summary of Code Disassembly Patterns

163

 0x00007ffff7e60593 <+51>: movaps %xmm3,0x80(%rsp)

 0x00007ffff7e6059b <+59>: movaps %xmm4,0x90(%rsp)

 0x00007ffff7e605a3 <+67>: movaps %xmm5,0xa0(%rsp)

 0x00007ffff7e605ab <+75>: movaps %xmm6,0xb0(%rsp)

 0x00007ffff7e605b3 <+83>: movaps %xmm7,0xc0(%rsp)

 0x00007ffff7e605bb <+91>: mov %fs:0x28,%rax

 0x00007ffff7e605c4 <+100>: mov %rax,0x18(%rsp)

 0x00007ffff7e605c9 <+105>: xor %eax,%eax

 0x00007ffff7e605cb <+107>: lea 0xe0(%rsp),%rax

 0x00007ffff7e605d3 <+115>: mov %rdi,%rsi

 0x00007ffff7e605d6 <+118>: mov %rsp,%rdx

 0x00007ffff7e605d9 <+121>: mov %rax,0x8(%rsp)

 0x00007ffff7e605de <+126>: lea 0x20(%rsp),%rax

 0x00007ffff7e605e3 <+131>: mov %rax,0x10(%rsp)

 0x00007ffff7e605e8 <+136>: mov 0x162959(%rip),%rax

 # 0x7ffff7fc2f48

 0x00007ffff7e605ef <+143>: movl $0x8,(%rsp)

 0x00007ffff7e605f6 <+150>: mov (%rax),%rdi

 0x00007ffff7e605f9 <+153>: movl $0x30,0x4(%rsp)

 0x00007ffff7e60601 <+161>: callq �0x7ffff7e579f0 <_IO_

vfprintf_internal>

 0x00007ffff7e60606 <+166>: mov 0x18(%rsp),%rcx

 0x00007ffff7e6060b <+171>: xor %fs:0x28,%rcx

 0x00007ffff7e60614 <+180>: jne �0x7ffff7e6061e <__

printf+190>

 0x00007ffff7e60616 <+182>: add $0xd8,%rsp

 0x00007ffff7e6061d <+189>: retq

 0x00007ffff7e6061e <+190>: callq �0x7ffff7f127b0 <__stack_

chk_fail>

End of assembler dump.

Chapter 14 Summary of Code Disassembly Patterns

164

�LEA (Load Effective Address)
The following instruction

lea -0x8(%rbp),%rdx

is equivalent to the following arithmetic sequence:

mov %rbp, %rdx

add -0x8, %rdx

The following instruction

lea 0xea9(%rip),%rdi

is equivalent to the following arithmetic sequence:

mov %rip, %rdi

add 0xea9, %rdi

�Passing Parameters
The first six function parameters from left to right

%RDI, %RSI, %RDX, %RCX, %R8, and %R9

Note A lthough we haven’t seen examples for more than six
function parameters, they are passed via the stack, for example, via
the PUSH instruction.

Static/global variable address (or string constant)

mov $0x555555556004, reg

lea 0xe9d(%rip), reg

Chapter 14 Summary of Code Disassembly Patterns

165

Local variable value vs. local variable address

mov -XXX(%rbp), reg ; local variable value

call func

lea -XXX(%rbp), reg ; local variable address

call func

�Accessing Parameters and Local Variables
Local variable value

mov -XXX(%rbp), reg

mov XXX(%rsp), reg # optimized code

Local variable address

lea -XXX(%rbp), reg

lea XXX(%rsp), reg # optimized code

Accessing a doubleword value

mov -0x8(%rbp), %eax

add $1, %eax

addl $1, %rax

Accessing a quadword value

mov -0x8(%rbp), %rax

add $1, %rax

Accessing and dereferencing a pointer to a doubleword value

mov -0x10(%rbp), %rax

mov (%rax), %eax

add $1, %eax

Chapter 14 Summary of Code Disassembly Patterns

166

Accessing and dereferencing a pointer to a quadword value

mov -0x10(%rbp), %rax

mov (%rax), %rax

add $1, %rax

Optimized code may not use stack locations to address function

parameters (use only registers through which the parameters were

passed) as can be seen in the previous chapter’s example compiled with

the -O1 switch:

(gdb) disass arithmetic

Dump of assembler code for function _Z10arithmeticiPi:

 0x00005555555551ab <+0>: test %rsi,%rsi

 0x00005555555551ae <+3>: je �0x5555555551c2

<_Z10arithmeticiPi+23>

 0x00005555555551b0 <+5>: mov %edi,%eax

 0x00005555555551b2 <+7>: add (%rsi),%eax

 0x00005555555551b4 <+9>: add $0x1,%edi

 0x00005555555551b7 <+12>: imul %eax,%edi

 0x00005555555551ba <+15>: mov %edi,(%rsi)

 0x00005555555551bc <+17>: mov $0x1,%eax

 0x00005555555551c1 <+22>: retq

 0x00005555555551c2 <+23>: mov $0x0,%eax

 0x00005555555551c7 <+28>: retq

End of assembler dump.

�Summary
This chapter can be used as a reference to basic disassembly patterns.

Chapter 14 Summary of Code Disassembly Patterns

167

Index

A
Access violation, 65, 66, 140
ADD, 5, 9–11, 13, 16, 43, 46, 49, 81,

141, 146, 147, 165, 166
ADDL, 43, 81
ADDQ, 81
AL, 146, 147
AND, 82, 142, 144
Application crash, 65
Application memory, 105
Arithmetic project

adding numbers to memory
cells, 8, 10, 11

assigning numbers to memory
locations, 5–7

C/C++ program, 19, 20
computer program, 5
contents at memory address, 4
increment by one, 5
memory layout and

registers, 3, 4
Assembly language

instructions, 81
Assignment, 6

B
Backtrace, 114, 162
Base pointer, 118
Binary notation, 30
Binary representation, 29
Bit granularity

unsigned char, 54
unsigned int, 55
unsigned long, 55
unsigned long long, 55
unsigned short, 54

Breakpoint, 22, 38, 113, 125, 135
break command, 22, 38, 70, 88, 125,

135, 136, 151
bt command, 114
Byte granularity, 53, 54

C
CALL, 100, 108–110, 117
Callee, 110, 129, 137
Caller, 110, 111, 123, 137, 138
Call stack, 110, 111
C and C++ compilers, 65

© Dmitry Vostokov 2023
D. Vostokov, Foundations of Linux Debugging, Disassembling, and Reversing

https://doi.org/10.1007/978-1-4842-9153-5

168

C/C++ code
assembly language

equivalents, 92, 93
C/C++ program, 94
comments to assembly

language code, 90, 91
statements, 93, 94

CLD, 139
CMP, 141, 143–145
Compiler optimization, 26
Computer memory, 1
Conditional jumps, 144, 145

D
Dangling pointer, 66
.data, 67, 85
DEC, 12, 81, 145
Decimal notation, 29, 30
Decimal representation, 28
DECL, 81
Decrement, 11, 45
Dereferencing, 68
Dereferencing pointer, 36
Direct address, 33
Direction flag (DF), 139, 140
Disass command, 22, 25, 38, 70, 88,

95, 103, 122, 125, 127, 136,
151, 153, 162, 166

Disassembly output
no optimization, 87–89
optimized program, 95, 96

Disassembly patterns
accessing parameters, 165, 166

function epilog, 161–163
function parameters, 164
function prolog, 161–163
LEA, 164
local variables, 165, 166

display command, 40, 71, 72
Disposing of memory, 66
Double words, 53, 54
Driver, 65
DWORD, 120, 130, 140, 165, 166

E
EAX, 8–10, 12, 13, 15, 16, 19, 20, 24,

65, 143–147, 164, 165
EBX, 65, 146, 147
ECX, 65, 146, 147
EDI, 143
EDX, 65, 117, 142

F
Function epilog, 123, 132,

133, 161–163
Function parameters, 164
FunctionParameters project, 129,

132, 149
disassembly code,

comments, 133–136
FunctionPointerParameters project

commented disassembly, 150,
151, 153, 154, 157, 158

downloading, 149
source code, 149, 150

INDEX

169

Function prolog, 121, 132,
133, 161–163

Functions return values, 146

G
GDB

disassembly output
assembly code, 21, 24, 26
no optimization, 20, 22–25
optimization, 25, 26

downloading, 20
program sections, 85
unassemble, 22

H
Hexadecimal

equivalents, 30, 31
notation, 30, 31
number, 30, 53
representation, 30

I
IMUL, 15, 16, 48, 117
Inaccessible addresses, 65
info registers command, 39, 71,

113, 121, 136
info variables command, 39
INC, 5, 12–14, 46, 47, 81, 145
INCL, 46
Increment, 5, 11, 45

Indirect address, 33
Initialized and uninitialized

variables, 67
Instruction pointer, 84, 85, 102, 118
Intel x64 assembly language, 3
Invalid pointer, 65

J, K
JMP, 106–108, 145
JNZ, 145
JZ, 145

L
Last In First Out (LIFO), 97,

100, 118
Load Effective Address

(LEA), 73, 164
Linux applications, 65
Local variables, 117, 121, 130, 133
LocalVariables project

breakpoint, 125
compiler, 127
disassembly output, 127
downloading, 124
function prolog and epilog, 126
GDB, 124
main function, 125
source code, 126

Logical operations, 82
Logical shift instructions, 82
Loop counter, 65, 118

INDEX

170

M
main, 19, 22, 37, 38, 70, 87, 113,

125–127, 129, 133, 137, 149
maintenance info sections

command, 85
Memory and registers

assigning numbers, 8
computer memory, 1, 2
increment/decrement,

11, 13, 14
Intel x64, 2, 3
multiplying numbers, 14, 16

Memory layout, 4, 7, 10, 13, 16, 35,
39, 42, 45, 47, 51, 55–57, 71,
73, 77, 78, 130, 131, 137, 138

MemoryPointers project
breakpoint, 70
code execution, 74–77
data declaration and

definition, 68
GDB, 71
LEA, 73
memory layout, 71, 77, 78
pseudo-code, 69
source code, 69

MOV, 6, 8–10, 13, 15–17, 25, 53, 65,
83, 98, 117, 118, 140,
164, 165

MOVB, 59, 65
MOVL, 37, 60
MOVQ, 60
MOVW, 60, 61
MOVZX, 147
Multiplication, 15, 48, 117, 118

N
NULL pointer, 65
Number representations, 27, 28

O
Opcode, 81
OR, 83

P
Panic, 65
Pointers, 33, 36, 37, 42, 48, 59, 60,

66–68, 165, 166
addressing modes, 61, 64
address of another memory cell,

33, 59, 66
assigning numbers,

memory cell
assembly language, 37
assigning value, 36
C and C++, 36
commands, 40
GDB, 37
info variables, 39
main function, 38
memory layout, 42
movl, 37
registers, 40

calculations, 36
contents at memory address, 34
initialization, 67
invalid, 65, 66
memory, 59

INDEX

171

memory layout, 33–35
movb, 60–62
movl, 60, 63

next instruction to be
executed, 44, 46, 49, 118

NULL, 65
numbers

adding, 42, 44, 45
incrementing, 45–47
multiplication, 48, 49, 51

pointer to pointer, 33
read-only memory, 65
register as temporary

variable, 43
registers, 34, 35, 60
uninitialized variable, 67
variables, 66
w suffix, 60

POP, 99, 101, 102, 110
print command, 72
printf, 106, 149, 156, 162, 163
Program sections, 67
Pseudo-code, 5, 8, 11, 16, 24, 25, 36,

40, 42, 43, 45, 48, 49, 90, 92,
101, 107, 109, 110, 126, 140,
142–144, 146

Pseudo notation, 68
PUSH, 101, 109

Q
Quad words (QWORD), 53–60, 118,

132, 140, 165, 166

R
Random memory, 66
[RAX], 36, 40, 42, 43, 45, 46, 48, 49,

68, 90–93, 157
RAX, 2, 35–37, 39, 40, 42–44, 46, 48,

49, 65, 68, 71, 81, 83, 84,
90–92, 99, 101, 102, 107,
110, 117, 118, 140, 146, 165

RBP, 118, 120, 121, 123, 130, 135,
137, 138

RBX, 35, 39, 42, 48, 65, 71, 102, 118
RCX, 65, 71, 102, 118, 140
RDI, 140
RDX, 2, 65, 102, 117, 118
Registers

32-bit, 65
64-bit, 65
byte registers, 146, 147
contents, 8
CPU flags register, 139
decrement, 98
general purpose CPU

register, 102
general-purpose registers, 118
memory, 140, 141
preservation, 117
special purpose registers, 102
structure, 145
testing, 141, 142
zero value, 83

REP, 140
RET, 108–110
RFLAGS, 139, 141, 142

INDEX

172

RIP, 81–85, 102, 105–109, 111, 114,
118, 145

RSP, 98–100, 102, 105, 108, 111,
118, 123

run command, 22, 38, 70, 87, 88,
113, 125, 135, 151

S
scanf, 149, 155
set command, 71
SHL, 82
SHLB, 82
SHR, 82
SimpleStack project, 112, 121
Stack, 98, 100, 101, 105, 109–111,

114, 117, 118, 121, 123, 126,
130–135, 137, 138, 154, 157

array elements, 118, 119
deep recursion, 105
definition, 97
GDB, 112–114
implementation, 98, 99
memory layout, 137
memory locations, 130
operations, 97, 98
overflow, 105, 106
parameter mismatch

problem, 137, 138
parameters to functions, 100, 117
points, 100
POP instruction, 99, 100
push instruction, 98, 99
raw stack, 121, 122

reconstruction, 114
register preservation, 117
return address, 100, 110, 111,

117, 130
size, 105
structure, 119, 120, 130, 131
unlimited recursion, 105
usage, 117, 118

Stack frame, 118, 123, 126, 130, 133,
134, 154, 156–158

Stack frame pointer, 118
Stack pointer, 98, 102, 118
Stack reconstruction, 87, 90
Stack trace, 114
Static memory locations, 4
STD, 139
STOSD, 140
SUB, 141, 143, 144
Summation notation, 28
Summation symbol, 28
Symbolic names, 22
si command, 40, 41, 44, 46, 47, 49,

50, 74–77, 84

T
Temporary memory cell, 9
Ternary representation, 29
TEST, 141, 142, 144, 145
.text, 85

U, V, W
Uninitialized pointers, 66, 67

INDEX

173

X, Y
x command, 40, 41, 44, 46, 47,

49, 50, 71–77, 84, 113,
114, 121, 136, 137, 152,
153, 162

XOR, 83, 95, 103, 140, 163
0x prefix, 7

Z
ZF, 141–145

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Preface
	Chapter 1: Memory, Registers, and Simple Arithmetic
	Memory and Registers Inside an Idealized Computer
	Memory and Registers Inside Intel 64-Bit PC
	“Arithmetic” Project: Memory Layout and Registers
	“Arithmetic” Project: A Computer Program
	“Arithmetic” Project: Assigning Numbers to Memory Locations
	Assigning Numbers to Registers
	“Arithmetic” Project: Adding Numbers to Memory Cells
	Incrementing/Decrementing Numbers in Memory and Registers
	Multiplying Numbers
	Summary

	Chapter 2: Code Optimization
	“Arithmetic” Project: C/C++ Program
	Downloading GDB
	GDB Disassembly Output – No Optimization
	GDB Disassembly Output – Optimization
	Summary

	Chapter 3: Number Representations
	Numbers and Their Representations
	Decimal Representation (Base Ten)
	Ternary Representation (Base Three)
	Binary Representation (Base Two)
	Hexadecimal Representation (Base Sixteen)
	Why Are Hexadecimals Used?
	Summary

	Chapter 4: Pointers
	A Definition
	“Pointers” Project: Memory Layout and Registers
	“Pointers” Project: Calculations
	Using Pointers to Assign Numbers to Memory Cells
	Adding Numbers Using Pointers
	Incrementing Numbers Using Pointers
	Multiplying Numbers Using Pointers
	Summary

	Chapter 5: Bytes, Words, Double, and Quad Words
	Using Hexadecimal Numbers
	Byte Granularity
	Bit Granularity
	Memory Layout
	Summary

	Chapter 6: Pointers to Memory
	Pointers Revisited
	Addressing Types
	Registers Revisited
	NULL Pointers
	Invalid Pointers
	Variables As Pointers
	Pointer Initialization
	Initialized and Uninitialized Data
	More Pseudo Notation
	“MemoryPointers” Project: Memory Layout
	Summary

	Chapter 7: Logical Instructions and RIP
	Instruction Format
	Logical Shift Instructions
	Logical Operations
	Zeroing Memory or Registers
	Instruction Pointer
	Code Section
	Summary

	Chapter 8: Reconstructing a Program with Pointers
	Example of Disassembly Output: No Optimization
	Reconstructing C/C++ Code: Part 1
	Reconstructing C/C++ Code: Part 2
	Reconstructing C/C++ Code: Part 3
	Reconstructing C/C++ Code: C/C++ Program
	Example of Disassembly Output: Optimized Program
	Summary

	Chapter 9: Memory and Stacks
	Stack: A Definition
	Stack Implementation in Memory
	Things to Remember
	PUSH Instruction
	POP Instruction
	Register Review
	Application Memory Simplified
	Stack Overflow
	Jumps
	Calls
	Call Stack
	Exploring Stack in GDB
	Summary

	Chapter 10: Frame Pointer and Local Variables
	Stack Usage
	Register Review
	Addressing Array Elements
	Stack Structure (No Function Parameters)
	Function Prolog
	Raw Stack (No Local Variables and Function Parameters)
	Function Epilog
	“Local Variables” Project
	Disassembly of Optimized Executable
	Summary

	Chapter 11: Function Parameters
	“FunctionParameters” Project
	Stack Structure
	Function Prolog and Epilog
	Project Disassembled Code with Comments
	Parameter Mismatch Problem
	Summary

	Chapter 12: More Instructions
	CPU Flags Register
	The Fast Way to Fill Memory
	Testing for 0
	TEST – Logical Compare
	CMP – Compare Two Operands
	TEST or CMP?
	Conditional Jumps
	The Structure of Registers
	Function Return Value
	Using Byte Registers
	Summary

	Chapter 13: Function Pointer Parameters
	“FunctionPointerParameters” Project
	Commented Disassembly
	Summary

	Chapter 14: Summary of Code Disassembly Patterns
	Function Prolog/Epilog
	LEA (Load Effective Address)
	Passing Parameters
	Accessing Parameters and Local Variables
	Summary

	Index

