
Go Details & Tips 101

Tapir Liu

Contents

1 Acknowledgments 5

2 About Go Details & Tips 101 6
2.1 About the author . 6
2.2 About GoTV . 6
2.3 Feedback . 6

3 Syntax and Semantics Related 7
3.1 Zero-size types/values . 7
3.2 How zero-size values are allocated is compiler dependent 8
3.3 Don’t put a zero-size field as the final field of a struct type 9
3.4 Simulate for i in 0..N in some other languages 10
3.5 There are several ways to create a slice . 10
3.6 for i, v = range aContainer actually iterates a copy of aContainer . . 11
3.7 Array pointers could be used as arrays in several situations 12
3.8 Some function calls are evaluated at compile time 13
3.9 The official standard Go compiler doesn’t support declaring package-level

arrays with sizes larger than 2GB . 14
3.10 Addressabilities of slice/array/map elements and struct fields 15
3.11 Composite literals are unaddressable, but they may be taken addresses . . . 16
3.12 One-line trick to create pointers to a non-zero bool/numeric/string values . 17
3.13 Unaddressable values are not modifiable, but map elements may be modified

(in a whole) . 18
3.14 The second argument of a make call to create a map is viewed as a hint . . 18
3.15 Use maps to emulate sets . 19
3.16 Map entry iteration order is randomized . 20
3.17 If a map entry is created during iterating the map, the entry may show up

during the iteration or may be skipped . 20
3.18 The keys in a slice or array composite literal must be constants 21
3.19 The constant keys in a map/slice/array composite literal must not be duplicate 21
3.20 A compile-time assertion trick by using the fact mentioned in the last section 22
3.21 More compile-time assertion tricks . 22
3.22 The return results of a function may be modified after a return statement

is executed . 23
3.23 For a deferred function call, its arguments and the called function expression

are evaluated when the deferred call is registered 23
3.24 Method receiver arguments are also evaluated at the same time as other

arguments . 24

1

3.25 If the left operand of a non-constant bit-shift expression is untyped, then its
type is determined as the assumed type of the expression 25

3.26 aConstString[i] and aConstString[i:j] are non-constants even if
aConstString, i and j are all constants . 26

3.27 The result of a conversion to a parameter type is always viewed as a non-
constant . 27

3.28 The type deduction rule for a binary operation which operands are both
untyped . 28

3.29 An untyped constant integer may overflow its default type 29
3.30 The placement of the default branch (if it exists) in a switch code block

could be arbitrary . 30
3.31 The constant case expressions in a switch code block may be duplicate or

not, depending on compilers . 30
3.32 The switch expression is optional and its default value is a typed value true

of the built-in type bool . 31
3.33 Go compilers will automatically insert some semicolons in code 32
3.34 What are exactly byte slices (and rune slices)? 33
3.35 Prior to Go 1.22, freshly-declared iteration variables are shared between loop

iterations; since Go 1.22 freshly-declared iteration variable are instantiatied
per loop iteration . 34

3.36 Some unexpected behaviors of the new semantics of 3-clause for-loops . . . 35
3.37 Since Go 1.22, please don’t declare no-copy values as loop variables of 3-

clause for-loops . 38
3.38 int, false, nil, etc. are not keywords . 39
3.39 Selector colliding . 39
3.40 Each method corresponds a function which first parameter is the receiver

parameter of that method . 40
3.41 Normalization of method selectors . 40
3.42 The famous := trap . 43
3.43 The official Go compiler checks some potential bugs caused by the := trap

but not all of them . 44
3.44 The meaning of a nil identifier depends on specific context 45
3.45 Some expression evaluation orders are unspecified in Go 45
3.46 We can use a generic eval function to convert some non-function-call expres-

sions to function calls, to make some expression evaluation orders determined 48
3.47 We can use the min and max built-in functions (since Go 1.21) as the eval

function for ordered values . 49
3.48 Go supports loop types . 50
3.49 Almost any code element could be declared as the blank identifier _ 51
3.50 Copy slice elements without using the built-in copy function 51
3.51 A detail in const specification auto-complete 51

4 Conversions Related 53
4.1 If the underlying type of a named type is an unnamed type, then values of

one of the named types may be implicitly converted to the underlying type,
and vice versa . 53

4.2 Values of two different named pointer types may be indirectly converted
to each other’s type if the base types of the two types shares the same
underlying type . 54

4.3 Values of a named bidirectional channel type may not be converted to a
named unidirectional channel type with the same element type directly, but
may indirectly . 55

2

4.4 The capacity of the result of a conversion from string to byte slice is unspecified 56

5 Comparisons Related 58
5.1 Compare two slices which lengths are equal and known at coding time . . . 58
5.2 More ways to compare byte slices . 58
5.3 Comparing two interface values produces a panic if the dynamic type of the

two operands are identical and the identical type is an incomparable type . 59
5.4 How to make a struct type incomparable . 59
5.5 Array values are compared element by element 60
5.6 Struct values are compared field by field . 61
5.7 The _ fields are ignored in struct comparisons 61
5.8 NaN != NaN, Inf == Inf . 61
5.9 How to avoid putting entries with keys containing NaN into a map 63
5.10 Some details in using the reflect.DeepEqual function 64
5.11 The return results of the bytes.Equal and reflect.DeepEqual functions

might be different . 65
5.12 A type alias embedding bug . 66

6 Compiler and Runtime Related 67
6.1 In the official standard compiler implementation, the backing array of a map

never shrinks . 67
6.2 64-bit word alignment problem . 67
6.3 How to guarantee a struct field to be always 8-byte aligned 69
6.4 Let go vet detect not-recommended value copies 69
6.5 Values of more types in the standard packages should not be copied 70
6.6 Some zero values might contain non-zero bytes in memory 70
6.7 The address of a value might change at run time 71
6.8 The official standard Go runtime behaves badly when system memory is

exhausted . 71
6.9 Currently, a runtime.Goexit call may cancel the already happened panics 72
6.10 There might be multiple panics coexisting in a goroutine 72
6.11 The current Go specification (version 1.20) doesn’t explain the panic/recover

mechanism very well . 73

7 Standard and User Packages Related 74
7.1 Use %w format verb in fmt.Errorf calls to build error chains 74
7.2 Small differences between fmt.Println, fmt.Print and print functions . . 75
7.3 The reflect.Type/Value.NumMethodmethods will count unexported meth-

ods for interfaces . 75
7.4 Values of two slices may not be converted to each other’s type if the element

types of the two slices are different, but there is a hole to this rule 76
7.5 Don’t misuse the TrimLeft function as TrimPrefix in the strings and

bytes standard packages . 77
7.6 The json.Unmarshal function accepts case-insensitive object key matches . 77
7.7 The spaces in struct tag key-value pairs will not be trimmed 78
7.8 How to resolve cyclic package dependency problem? 78
7.9 Deferred calls will not be executed after the os.Exit function is called . . . 78
7.10 How to let the main function return an exit code? 79
7.11 Try not to use exported variables . 79
7.12 Export final error variables . 80

3

4

Chapter 1

Acknowledgments

Some of the details and tips in this book are collected from the Internet, some ones are
found by myself. I will try to list the source of a detail if it is possible. But I’m sorry that
it is impossible task to do this for every detail.

Thanks to Olexandr Shalakhin for the permission to use one of the wonderful gopher icon
designs in the cover image. And thanks to Renee French for designing the lovely gopher
cartoon character.

Thanks to the authors of the following open source software and libraries, which are used
in building this book:

• golang, https://go.dev/
• gomarkdown, https://github.com/gomarkdown/markdown
• goini, https://github.com/zieckey/goini
• go-epub, https://github.com/bmaupin/go-epub
• pandoc, https://pandoc.org
• calibre, https://calibre-ebook.com/
• GIMP, https://www.gimp.org

Thanks to all contributors for improving this book, including cortes-, Yang Yang, I Putu
Gede Wirasuta, etc.

5

https://github.com/shalakhin/gophericons
https://github.com/shalakhin/gophericons
https://reneefrench.blogspot.com/
https://reneefrench.blogspot.com/
https://go.dev/
https://github.com/gomarkdown/markdown
https://github.com/zieckey/goini
https://github.com/bmaupin/go-epub
https://pandoc.org
https://calibre-ebook.com/
https://www.gimp.org

Chapter 2

About Go Details & Tips 101

This book collects many details and provides several tips in Go programming. The details
and tips are categorized into

• syntax and semantics related
• conversions related
• comparisons related
• compiler and runtime related
• standard and user packages related

Most of the details are Go specific, but several of them are language independent.

2.1 About the author
Tapir is the author of this book. He also wrote the Go 101 book. He is planning to write
some other Go 101 series books. Please look forward to.

Tapir was ever (maybe will be again) an indie game developer. You can find his games
here: tapirgames.com.

2.2 About GoTV
During writing this book, the tool GoTV is used to manage installations of multiple Go
toolchain versions and check the behavior differences between Go toolchain versions.

2.3 Feedback
Welcome to improve this book by submitting corrections to Go 101 issue list (https://gi
thub.com/go101/go101) for all kinds of mistakes, such as typos, grammar errors, wording
inaccuracies, wrong explanations, description flaws, code bugs, etc.

It is also welcome to send your feedback to the Go 101 twitter account: @go100and1
(https://twitter.com/go100and1).

6

https://go101.org/article/101.html
https://tapirgames.com
https://go101.org/apps-and-libs/gotv.html
https://github.com/go101/go101
https://github.com/go101/go101
https://twitter.com/go100and1

Chapter 3

Syntax and Semantics Related

3.1 Zero-size types/values
The size of a struct type without non-zero-size fields is zero. The size of an array type
which length is zero or which element size is zero is also zero. These could be proved by
the following program, which prints three zeros.

package main

import "unsafe"

type A [0][256]int

type S struct {
x A
y [1<<30]A
z [1<<30]struct{}

}

type T [1<<30]S

func main() {
var a A
var s S
var t T
println(unsafe.Sizeof(a)) // 0
println(unsafe.Sizeof(s)) // 0
println(unsafe.Sizeof(t)) // 0

}

In Go, sizes are often denoted as int values. That means the largest possible length of an
array is MaxInt, which value is 2^63-1 on 64-bit OSes. However, the lengths of arrays with
non-zero element sizes are hard limited by the official standard Go compiler and runtime.

An example:

var x [1<<63-1]struct{} // okay
var y [2000000000+1]byte // compilation error

7

var z = make([]byte, 1<<49) // panic: runtime error: makeslice: len out of range

3.2 How zero-size values are allocated is compiler de-
pendent

In the current official standard Go compiler implementation (version 1.22), all local zero-
size values allocated on heap share the same address. For example, the following prints
false twice, then prints true twice.

package main

var g *[0]int
var a, b [0]int

//go:noinline
func f() *[0]int {

return new([0]int)
}

func main() {
// x and y are allocated on stack.
var x, y, z, w [0]int
// Make z and w escape to heap.
g = &z; g = &w
println(&b == &a) // false
println(&x == &y) // false
println(&z == &w) // true
println(&z == f()) // true

}

Please note that, the outputs of the above program depend on specific compilers. The
outputs might be different for future official standard Go compiler versions.

Also note that, in the current implementation (v1.22) of the official standard Go compiler,
although the two comparisons in the above example are both evaluated to false, the
addresses of a and b are actually identical (the same for x and y). The compiler just
deliberately evaluates the two comparisons to false. The fact can be verified by the
following code:

package main

var a, b [0]int
var r, t = &a, &b

func main() {
var p, q = &a, &b
println(&a == &b) // false
println(&a, &b) // (two same addresses)
println(r == t) // true
println(p == q) // false

// x and y are allocated on stack.
var x, y [0]int

8

var c, d any = &x, &y
println(&x == &y) // false
println(&x, &y) // (two same addresses)
println(c == d) // true

}

3.3 Don’t put a zero-size field as the final field of a
struct type

In the following code, the size of the type Tz is larger than the type Ty.

package main

import "unsafe"

type Ty struct {
_ [0]func()
y int64

}

type Tz struct {
z int64
_ [0]func()

}

func main() {
var y Ty
var z Tz
println(unsafe.Sizeof(y)) // 8
println(unsafe.Sizeof(z)) // 16

}

Why the size of the type Tz is larger?

In the current standard Go runtime implementation, as long as a memory block is refer-
enced by at least one alive pointer, that memory block will not be viewed as garbage and
will not be collected.

All the fields of an addressable struct value can be taken addresses. If the size of the final
field in a non-zero-size struct value is zero, then taking the address of the final field in the
struct value will return an address which is beyond the allocated memory block for the
struct value. The returned address may point to another allocated memory block which
closely follows the one allocated for the non-zero-size struct value. As long as the returned
address is stored in an alive pointer value, the other allocated memory block will not get
garbage collected, which may cause memory leaking.

To avoid the kind of memory leak problems, the standard Go compiler will ensure that
taking the address of the final field in a non-zero-size struct will never return an address
which is beyond the allocated memory block for the struct. The standard Go compiler
implements this by padding some bytes after the final zero-size field when needed.

So at least one byte is padded after the final (zero) field of the type Tz. This is why the
size of the type Tz is larger than Ty.

9

In fact, on 64-bit OSes, 8 bytes are padded after the final (zero) field of Tz. To explain
this, we should know two facts in the official standard compiler implementation:

1. The alignment guarantee of a struct type is the largest alignment guarantee of its
fields.

2. A size of a type is always a multiple of the alignment guarantee of the type.

The first fact explains why the alignment guarantee of the type Tz is 8 (which is the
alignment guarantee of the built-in int64 type). The second fact explains why the size of
the type Tz is 16.

Source: https://github.com/golang/go/issues/9401

3.4 Simulate for i in 0..N in some other languages
We could use a for-range loop to simulate for i in 0..N loops in some other languages,
like the following code shows.

package main

const N = 8
var n = 8

func main() {
for i := range [N]struct{}{} {

println(i)
}
for i := range [N][0]int{} {

println(i)
}
for i := range make([][0]int, n) {

println(i)
}

}

The steps of the first two loops must be known at compile time, whereas the last one has
not this requirement. But the last one allocates a little more memory (on stack, for the
slice header).

Note: there is a simpler way to do the same job since Go 1.22:

for i := range N {
...

}

The simpler way might be supported as early as Go 1.22.

3.5 There are several ways to create a slice
For example, each slice in the following code is created in a different way.

package main

func main() {
var s0 = make([]int, 100)

10

https://github.com/golang/go/issues/9401

var s1 = []int{99: 0}
var s2 = (&[100]int{})[:]
var s3 = new([100]int)[:]
// 100 100 100 100
println(len(s0), len(s1), len(s2), len(s3))

}

3.6 for i, v = range aContainer actually iterates a
copy of aContainer

For example, the following program will print 123 instead of 189.

package main

func main() {
var a = [...]int{1, 2, 3}
for i, n := range a {

if i == 0 {
a[1], a[2] = 8, 9

}
print(n)

}
}

If the ranged container is a large array, then the cost of making the copy will be large.

There is an exception: if the second iteration variable in a for-range is omitted or ignored,
then the ranged container will not get copied, because it is unnecessary to make the copy.
For example, in the following two loops, the array a is not copied.

func main() {
var a = [...]int{1, 2, 3}
for i := range a {

print(i)
}
for i, _ := range a {

print(i)
}

}

In Go, an array owns its elements, but a slice just references its elements. Values are copied
shallowly in Go, copying a value will not copy the values referenced by it. So copying a
slice will not copy its elements. This could be reflected in the following program. The
program prints 189.

package main

func main() {
var s = []int{1, 2, 3}
for i, n := range s {

if i == 0 {
s[1], s[2] = 8, 9

}
print(n)

11

}
}

3.7 Array pointers could be used as arrays in several
situations

For example, the following code compiles and runs okay.

package main

func main() {
var a = [128]int{3: 789}
var pa = &a
// Iterate array elements without copying array.
for i, v := range pa {

_, _ = i, v
}
// Get array length and capacity.
_, _ = len(pa), cap(pa)
// Access array elements.
_ = pa[3]
pa[3] = 555
// Derive slices from array pointers.
var _ []int = pa[:]

}

Range over a nil array pointer will not panic if the second iteration variable is omitted or
ignored. For example, the first two loops in the following code both print 01234, but the
last one causes a panic.

package main

func main() {
var pa *[5]string

// Prints 01234
for i := range pa {

print(i)
}

// Prints 01234
for i, _ := range pa {

print(i)
}

// Panics
for _, v := range pa {

_ = v
}

}

12

3.8 Some function calls are evaluated at compile time
The function calls evaluated at compile time are also called as constant calls, because their
evaluation results are constant values.

All calls to the unsafe.Sizeof, unsafe.Offsetof and unsafe.Alignof functions are
evaluated at compile time (except that the argument types are parameter types).

If the argument of a call to the built-in len or cap function is a constant string, an array
or a pointer to array, and the argument expression does not contain channel receives or
non-constant function calls, then the call will be evaluated at compile time (except that
the argument types are parameter types).

In evaluating constant calls to the just mentioned functions, only the types of involved
arguments matter (except the arguments are constant strings), even if evaluating such an
argument might cause a panic at run time.

For example, calls of the f and g functions in the following code will not panic at run time.

package main

import "unsafe"

func f() {
var v *int64 = nil
println(unsafe.Sizeof(*v)) // 8

}

func g() {
var t *struct {s [][16]int} = nil
println(len(t.s[99])) // 16

}

func main() {
f()
g()

}

On the other hand, calls of the f2 and g2 functions will cause panics at run time.

func f2() {
var v *int64 = nil
_ = *v

}

func g2() {
var t *struct {s [][16]int} = nil
_ = t.s[99]

}

Please note that the built-in len function is implicitly called in a for-range loop. Knowing
this is the key to understand why the first two loops in the following code don’t cause panics,
but the last one does.

package main

13

type T struct {
s []*[5]int

}

func main() {
var t *T
for i, _ := range t.s[99] { // not panic

print(i)
}
for i := range *t.s[99] { // not panic

print(i)
}
for i := range t.s { // panics

print(i)
}

}

Yes, the implicit len(t.s[99]) and len(*t.s[99]) calls are evaluated at compile time.
Only the length (5 here) of the array value t.s[99] matters in the evaluations. However,
the implicit call len(t.s) is evaluated at run time, so it causes a panic for t is a nil pointer.

As above mentioned, a call to the built-in len or cap function with an argument containing
channel receives or non-constant function calls will not be evaluated at compile time. For
example, the following code doesn’t compile.

var c chan int
var s []byte
const X = len([1]int{<-c}) // error: len(...) is not a constant
const Y = cap([1]int{len(s)}) // error: cap(...) is not a constant

In the following code, the expression imag(X) is a constant function call, but the expression
imag(y) is not (because X is a constant but y is not), so the expression len(A{imag(y)})
will not be evaluated at compile time, which is why the last line doesn’t compile. However,
the expression len(z) doesn’t contain non-constant function calls, so it is viewed as a
constant expression and evaluated at compile time.

const X = 1 + 2i
var y = 1 + 2i

type A [8]float64

var _ [len(A{imag(X)})]int // compiles okay
var z = A{imag(y)}
var _ [len(z)]int // compiles okay
// var _ [len(A{imag(y)})]int // not compile

3.9 The official standard Go compiler doesn’t support
declaring package-level arrays with sizes larger
than 2GB

For example, the following program fails to compile for an error main.x: symbol too
large (2000000001 bytes > 2000000000 bytes).

14

package main

var x [2000000000+1]byte

func main() {}

The size of a heap-allocated array may be larger than 2GB. For example, the following
program compiles okay, because the two arrays, x and y will be both allocated on heap at
run time.

package main

var y *[2000000000+1]byte

func main() {
var x [2000000000+1]byte
y = &x

}

Source: https://github.com/golang/go/issues/17378

3.10 Addressabilities of slice/array/map elements and
struct fields

The following are some facts about the addressabilities of slice/array/map elements:

• Elements of a slice value are always addressable, whether or not the slice value is
addressable.

• Elements of addressable array values are also addressable. Elements of unaddressable
array values are also unaddressable.

• Elements of map values are always unaddressable.

Like arrays, fields of addressable struct values are also addressable. Fields of unaddressable
struct values are also unaddressable.

For example, in the following code, the address taking operations in the function foo are
all illegal, whereas the ones in the function bar are all legal.

type T struct {
x int

}

func foo() {
// Literals are unaddressable.
_ = &([10]bool{}[1]) // error
// Map elements are unaddressable.
var mi = map[int]int{1: 0}
_ = &(mi[1]) // error
var ma = map[int][10]bool{2: [10]bool{}}
_ = &(ma[2][1]) // error
_ = &(T{}.x) // error

}

func bar() {

15

https://github.com/golang/go/issues/17378

var _ = &([]int{1: 0}[1]) // okay
// All variables are addressable.
var a [10]bool
_ = &(a[1]) // okay
var t T
_ = &(t.x) // okay

}

It is also illegal to derive slices from unaddressable arrays. So the following code also fails
to compile.

var aSlice = [10]bool{}[:]

3.11 Composite literals are unaddressable, but they
may be taken addresses

Composite literals include struct/array/slice/map value literals. They are unaddressable.
Generally speaking, unaddressable values may not be taken addresses. However, there is
an exception (a syntax sugar) made in Go: composite literals may be taken addresses.

For example, the following code compiles okay:

package main

type T struct {
x int

}

func main() {
// All the address taking operations are legal.
_ = &T{}
_ = &[8]byte{}
_ = &[]byte{7: 0}
_ = &map[int]bool{}

}

Please note that the precedences of the index operator [] and property selection operator
. are both higher than the address-taking operator &. For example, both of the two lines
in the following code don’t compile.

_ = &T{}.x // error
_ = &[8]byte{}[1] // error

The reason why they fails to compile is the above code lines are equivalent to the following
lines.

_ = &(T{}.x) // error
_ = &([8]byte{}[1]) // error

On the other hand, the following lines compile okay.

_ = (&T{}).x // okay
_ = (&[8]byte{})[1] // okay

16

3.12 One-line trick to create pointers to a non-zero
bool/numeric/string values

We may take addresses of composite literals, but we may not take addresses of other literals.
For example, all the code lines shown below are illegal.

var pb = &true
var pi = &123
var pb = &"abc"

In fact, we could achieve the similar effects, in one-line but more verbose forms:

var pb = &(&[1]bool{true})[0]
var pi = &(&[1]int{9})[0]
var ps = &(&[1]string{"Go"})[0]

// The following way is less verbose
// but a little less efficient.
var pb2 = &([]bool{true})[0]
var pi2 = &([]int{9})[0]
var ps2 = &([]string{"Go"})[0]

The trick is useful when filling a large struct value (often used as a configuration). For
example, without using this trick, the code needs to be written as:

var x = true

var cfg = mypkg.Config {
... // many other options

// Three possible values: nil, &false, &true.
OptionsX: &x,

...
}

If there are many other options, the distance from the declaration of x to its use would be
very far. This is not a big problem, but hurts code readability to some extend.

Instead, we could use the following code to avoid the far distance problem:

var cfg = mypkg.Config {
... // many other options

// Three possible values: nil, &false, &true.
OptionsX: &(&[1]bool{true})[0],

... // more options
}

A more verbose solution is to use an anonymous function call:

var cfg = mypkg.Config {
...
OptionsX: func() *bool {var x = true; return &x}(),

17

...
}

Learned from this issue thread.

3.13 Unaddressable values are not modifiable, but map
elements may be modified (in a whole)

The above sections have mentioned that map elements are unaddressable and can’t be
taken address. Generally, unaddressable values are also unmodifiable, but map elements
may be modified, though each of the modifications must be in a whole. That means a map
element can’t be modified partially.

An example:

package main

type T struct {
x int

}

func main() {
var mt = map[int]T{1: T{x: 2}}
var ma = map[int][3]bool{}
mt[1] = T{x: 3} // okay
ma[1] = [3]bool{0: true} // okay

// The two lines are viewed as partial modifications.
mt[1].x = 3 // error
ma[1][0] = true// error

}

3.14 The second argument of a make call to create a
map is viewed as a hint

Each non-nil map maintains a backing array to hold its entries. The array might grow as
needed along with more and more entries are put into that map.

A make call to create a map will allocate a large enough backing array for the created map
to hold the specified number of entries (without growing the backing array again). This
argument is optional, its default value is compiler dependent.

The argument could be a zero, even a non-constant negative. For example, the following
code runs okay (it doesn’t panic).

var n = -99
var m = make(map[string]int, n)

Note that the capacity of a map is infinite in theory.

Source: https://github.com/golang/go/issues/46909

18

https://github.com/golang/go/issues/45624#issuecomment-822619197
https://github.com/golang/go/issues/46909

3.15 Use maps to emulate sets
Go supports built-in map types, but doesn’t support set types. We could use map types
to emulate set types. If the element type T of a set type is comparable, then we could use
the type map[T]struct{} to emulate the set type.

package main

type Set map[int]struct{}

func (s Set) Put(x int) {
s[x] = struct{}{}

}

func (s Set) Has(x int) (r bool) {
_, r = s[x]
return

}

func (s Set) Remove(x int) {
delete(s, x)

}

func main() {
var s = make(Set)
s.Put(2)
s.Put(3)
println(len(s)) // 2
println(s.Has(3)) // true
println(s.Has(5)) // false
s.Remove(3)
println(len(s)) // 1
println(s.Has(3)) // false

}

If the element type T of a set type is incomparable, we could use a map type map[*byte]T
to emulate the set type, though the functionalities of the set type is reduced much.

An example:

package main

type Set map[*byte]func()

func (s Set) Put(x func()) (remove func()) {
key := new(byte)
s[key] = x
return func() {

delete(s, key)
}

}

func main() {
var s = make(Set)

19

remove1 := s.Put(func(){ println(111) })
remove2 := s.Put(func(){ println(222) })
for _, f := range s {

f()
}
println(len(s)) // 2
remove1()
println(len(s)) // 1
remove2()
println(len(s)) // 0

}

The base type of the key (pointer) type must not be a zero-size type, otherwise the pointers
created by the new function might be not unique (this is described in a previous section).

The set implementation is simple, but it is only useful for a few scenarios. The trick is
learned from the Tailscale project.

3.16 Map entry iteration order is randomized
Go built-in maps don’t maintain entry orders. So when use a for-range loop to iterate
the entries of a map, the order of the entries is randomized (at least kind-of, depends on
specific compilers).

Run the following program several times, we will find the outputs might be different.

package main

func main() {
var m = map[int]int{3:3, 1:1, 2:2}
for k, v := range m {

print(k, v)
}

}

But please note that, the print functions in the fmt standard package will sort the entries
(by their keys) of a map when printing the map. The same happens for the outputs of calls
to thejson.Marshal function.

3.17 If a map entry is created during iterating the map,
the entry may show up during the iteration or may
be skipped

For example, the outputs of the following program are not fixed between different runs:

package main

var m = map[int]bool{0: true, 1: true}

func main() {
for k, v := range m {

m[len(m)] = true
println(k, v)

20

https://github.com/tailscale/tailscale/blob/ac8e69b713a0ae99dabcb6fb6e72d34ced2798bf/wgengine/userspace.go#L1223-L1236

}
}

Some possible outputs:

$ go run main.go
0 true
1 true
2 true
3 true
$ go run main.go
0 true
1 true
$ go run main.go
0 true
1 true
2 true
$ go run main.go
1 true
2 true
3 true
4 true
5 true
6 true
7 true
0 true

Please note that, as mentioned above, the entry iteration order is randomized (kind of).

3.18 The keys in a slice or array composite literal must
be constants

For examples, the following code doesn’t compile:

var m, n = 1, 2
var s = []string{m: "Go"} // error
var a = [3]int{n: 999} // error

The keys in map composite literals have no this limit.

3.19 The constant keys in a map/slice/array composite
literal must not be duplicate

Go specification clearly specifies that the constant keys in a map/slice/array composite
literal must not be duplicate.

For example, all of the following code lines fail to compile for duplicate constant keys:

var m = map[string]bool{"Go": true, "Go": false} // error
var s = []string{0: "Go", 0: "C"} // error
var a = [3]int{2: 999, 2: 555} // error

21

Please note that non-constant duplicate keys in map literals lead to unspecified behaviors.
For example, it is okay for the following code to print 1, 2 or 3. Any of these print results
doesn’t violate the Go specification.

package main

var a = 1
func main() {

m := map[int]int{1: 1, a: 2, a: 3}
println(m[1])

}

3.20 A compile-time assertion trick by using the fact
mentioned in the last section

How to assert a constant boolean expression is true (or false) at compile time? We could
make use of the fact introduced in the last section: duplicate constant keys are not allowed
in a map composite literal.

For example, the following code assures that the constant boolean expression
aConstantBoolExpr must be true. If it is not true, then the code fails to compile.

var _ = map[bool]int{false: 0, aConstantBoolExpr: 1}

For example, the following code asserts the length of a constant string is 32.

const S = "abcdefghijklmnopqrstuvwxyz123456"
var _ = map[bool]int{false: 0, len(S)==32: 1}

The map element type could be an arbitrary type in this trick.

This trick works for the official standard Go compiler, but not for gccgo (as of version
10.2.1 20210110). There is a bug in gccgo which allows duplicate constant bool keys in a
map composite literal. The bug is expected to fixed in gccgo 12.

Source: https://twitter.com/lukechampine/status/1026695476811390976

3.21 More compile-time assertion tricks
For the specified assertion use case shown in the last section, there are some other ways to
assert a constant integer is 32:

var _ = [1]int{len(S)-32: 0}
var _ = [1]int{}[len(S)-32]

Tricks to assert a constant N is not smaller than another constant M at compile time:

const _ uint = N-M
type _ [N-M]int

Tricks to assert a constant string is not blank:

var _ = aStringConstant[0]
const _ = 1/len(aStringConstant)

Source for the last line: https://groups.google.com/g/golang-nuts/c/w1-JQMaH7c4/m/q
zBFSPImBgAJ

22

https://twitter.com/lukechampine/status/1026695476811390976
https://groups.google.com/g/golang-nuts/c/w1-JQMaH7c4/m/qzBFSPImBgAJ
https://groups.google.com/g/golang-nuts/c/w1-JQMaH7c4/m/qzBFSPImBgAJ

3.22 The return results of a function may be modified
after a return statement is executed

Yes, a deferred function call could modify the named return results of its containing func-
tion. For example, the following program prints 9 instead of 6.

package main

func triple(n int) (r int) {
defer func() {

r += n
}()

return n + n
}

func main() {
println(triple(3)) // 9

}

3.23 For a deferred function call, its arguments and the
called function expression are evaluated when the
deferred call is registered

The evaluations are not made when the deferred call is executed later, in the function
exiting phase.

For example, the following program prints 1, neither 2 nor 3.

package main

func main() {
var f = func (x int) {

println(x)
}
var n = 1
defer f(n)
f = func (x int) {

println(3)
}
n = 2

}

The following program doesn’t panic. It prints 123.

package main

func main() {
var f = func () {

println(123)
}
defer f()

23

f = nil
}

The following program prints 123, then panics.

package main

func main() {
var f func () // nil
defer f()
println(123)
f = func () {
}

}

3.24 Method receiver arguments are also evaluated at
the same time as other arguments

So the receiver argument of a deferred method call is also evaluated when the deferred call
is registered. In a method call chain v.M1().M2(), the method call v.M1() is the receiver
argument of the M2 method call, so the call v.M1() will be evaluated (a.k.a. executed)
when the deferred call defer v.M1().M2() is registered.

For example, the following program prints 132.

package main

type T struct{}

func (t T) M(n int) T {
print(n)
return t

}

func main() {
var t T
defer t.M(1).M(2)
t.M(3)

}

The following example is more natural.

import "sync"

type Counter struct{
mu sync.Mutex
n int

}

func (c *Counter) Lock() *Counter {
c.mu.Lock()
return c

}

24

func (c *Counter) Unlock() *Counter {
c.mu.Unlock()
return c

}

func (c *Counter) Add(x int) {
defer c.Lock().Unlock()
c.n += x

}

Similar usages include defer gl.PushMatrix().PopMatrix() and defer tag.Start(...).End().

3.25 If the left operand of a non-constant bit-shift ex-
pression is untyped, then its type is determined
as the assumed type of the expression

If either operand of a bit-shift expression is not constant, then the bit-shift expression is a
non-constant expression, which result will be evaluated at run time.

Currently (Go 1.22), untyped integers must be constants. So if a bit-shift expression is
non-constant and its left operand is untyped, then its right operand must be a non-constant.

The following program prints 002. The reason is the first two bit-shift expressions are both
non-constant, so the respective untyped integer 1s in them are deduced as values of the
assume type, byte, so each 1 << n is evaluated as 0 at run time (because 256 overflows
byte values).

On the other hand, the third bit-shift expression is a constant expression, so it is evaluated
at compile time. In fact the whole expression (1 << N) / 128 is evaluated at compile
time, as 2.

package main

func main() {
var n = 8
var x byte = 1 << n / 128
print(x) // 0
var y = byte(1 << n / 128)
print(y) // 0

const N = 8
var z byte = 1 << N / 128
println(z) // 2

}

Why an untyped integer in such situations is not deduced as a value of its default type
int? This could be explained by using the following example. If the untyped 1 in the
following code is deduced as an int value instead of an int64 value, then the bit-shift op-
eration will return different results between 32-bit architectures (0) and 64-bit architectures
(0x100000000), which may produce some silent bugs hard to detect in time.

var n = 32
var y = int64(1 << n)

25

The following bit-shift expressions all fail to compile, because the first three untyped integer
1s are both deduced as values of the assume type float64 and the last one is deduced as
a value of the assume type string, whereas floating-point and string values may not be
shifted.

var n = 6
var x float64 = 1 << n // error
var y = float64(1 << n) // error
var z = 1 << n + 1.0 // error
var w = string(1 << n) // error

The following program prints 0 1:

package main

var n = 8
// The assumed type is byte.
var x = 1 << n >> n + byte(0)
// The assumed type is int16.
var y = 1 << n >> n + int16(0)

func main() {
println(x, y) // 0 1

}

Without an assumed type, the untyped left operand will be deduced as its default type. So
the untyped 1 in the following code is deduced as an int value. The variable x is initialized
as 0 on 32-bit architectures (overflows), but as 0x100000000 on 64-bit architectures, which
should not be a surprise to a qualified Go programmer.

var n = 32
var x = 1 << n // an int value

The following code fails to compile, because the untyped 1.0 in the following code is
deduced as float64 value.

var n = 6
var y = 1.0 << n // error

3.26 aConstString[i] and aConstString[i:j] are non-
constants even if aConstString, i and j are all
constants

For example, the following two lines both fail to compile:

const G = "Go"[0] // error
const Go = "Golang"[:2] // error

Whereas the following two lines compile okay:

var G = "Go"[0]
var Go = "Golang"[:2]

This is a design fault in Go 1.0. It is pity that, for backwards compatibility reasons, the
fact is hard to change. Currently, the following program prints 4 0, because the expression
len(s[:]) is not a constant, whereas the expression len(s) is.

26

package main

const s = "Go101.org" // len(s) == 9
var a byte = 1 << len(s) / 128
var b byte = 1 << len(s[:]) / 128

func main() {
println(a, b) // 4 0

}

Source: https://github.com/golang/go/issues/28591

3.27 The result of a conversion to a parameter type is
always viewed as a non-constant

For example, in the following code, the expression len(string(S)) is a constant, but the
expression len(T(S)) is a non-constant.

package main

type MyString string
const S MyString = "Go101.org" // len(S) == 9

func foo() byte {
var _ [len(string(S))]int // compiles okay
return 1 << len(string(S)) >> len(string(S))

}

func bar[T string]() byte {
// var _ [len(T(S))]int // not compile
return 1 << len(T(S)) >> len(T(S))

}

func main() {
println(foo()) // 1
println(bar()) // 0

}

Another type parameters related detail: if the type of the argument of a len or cap function
call is a parameter type, then the call is always viewed as a non-constant. For example,
the following program prints 1 0.

package main

const S = "Go"

func ord(x [8]int) byte {
return 1 << len(x) >> len(x)

}

func gen[T [8]int](x T) byte {
return 1 << len(x) >> len(x)

}

27

https://github.com/golang/go/issues/28591

func main() {
var x [8]int
println(ord(x), gen(x)) // 1 0

}

The same situation happens for unsafe.Alignof, unsafe.Offsetof and unsafe.Sizeof
functions. For example, the following program prints 1 0:

package main

import "unsafe"

func f(x int64) byte {
return 1 << unsafe.Sizeof(x) >> unsafe.Sizeof(x)

}

func g[T int64](x T) byte {
return 1 << unsafe.Sizeof(x) >> unsafe.Sizeof(x)

}

func main() {
var n int64 = 0
println(f(n), g(n)) // 1 0

}

3.28 The type deduction rule for a binary operation
which operands are both untyped

The Go specification states:

If the untyped operands of a binary operation (other than a shift) are of different
kinds, the result is of the operand’s kind that appears later in this list: integer,
rune, floating-point, complex.

And the default type of an integer untyped value is int, the default type of a rune untyped
value is rune (a.k.a. int32), the default type of a floating-point untyped value is float64,
and the default type of a complex untyped value is complex128.

By the rules, the following program prints int32 (aliased by rune), then complex128, and
float64 in the end.

package main

import "fmt"

const A = 'A' // 65
const B = 66
const C = 67 + 0i
const One = B - A // 1
const Two = C - A // 2
const Three = B / 22.0

func main() {

28

fmt.Printf("%T\n", One) // int32
fmt.Printf("%T\n", Two) // complex128
fmt.Printf("%T\n", Three) // float64

}

The following program prints 01 (on 64-bit architectures), because the kind of the untyped
constant R is viewed as rune (int32).

package main

import "fmt"

const A = '\x61' // a rune literal
const B = 0x62 // default type is int
const R = B - A // default type is rune

var n = 32

func main() {
if R == 1 {

fmt.Print(R << n >> n) // 0
fmt.Print(1 << n >> n) // 1

}
}

The following program prints 2 3.

package main

import "fmt"

const X = 3 / 2 * 2.
const Y = 3 / 2. * 2
var x, y int = X, Y

func main() {
fmt.Println(x, y) // 2 3

}

3.29 An untyped constant integer may overflow its de-
fault type

The two constant declarations in the following code are legal.

const N = 1 << 200 // default type: int
const R = 'a' + 1 << 31 // default type: rune

Typed values may not overflows their respective types. The following two variable and two
constant declarations are all illegal.

const N int = 1 << 200
const R rune = 'a' + 1 << 31
var x = 1 << 200
var y = 'a' + 1 << 31

29

Whereas these following lines are all legal:

const N int = 1 << 200 >> 199
const R rune = 'a' + 1 << 31 - 'b'
var x = 1 << 200 >> 199
var y = 'a' + 1 << 31 - 'b'

3.30 The placement of the default branch (if it exists)
in a switch code block could be arbitrary

For example, the three switch code blocks in the following code are all legal.

func foo(n int) {
switch n {
case 0: println("n == 0")
case 1: println("n == 1")
default: println("n >= 2")
}

switch n {
default: println("n >= 2")
case 0: println("n == 0")
case 1: println("n == 1")
}

switch n {
case 0: println("n == 0")
default: println("n >= 2")
case 1: println("n == 1")
}

}

The same is for the default branch in a select code block.

3.31 The constant case expressions in a switch code
block may be duplicate or not, depending on com-
pilers

Currently, the official standard Go compiler and gccgo compiler both disallow duplicate
constant integer case expressions. For example, the following code fails to compile.

switch 123 {
case 123:
case 123: // error: duplicate case
}

Both compilers allow duplicate constant boolean case expressions. The following code
compilers okay.

switch false {
case false:

30

case false: // okay
}

The official standard Go compiler disallows duplicate constant string case expressions, but
gccgo allows.

3.32 The switch expression is optional and its default
value is a typed value true of the built-in type
bool

For example, the following program prints True.

package main

var x, y = false, true

func main() {
switch {
case x: println("False")
case y: println("True")
}

}

But the following code fails to compile, because MyBool values, x and y, may not compare
with bool values.

package main

type MyBool bool
var x, y MyBool = false, true

func main() {
switch {
case x: // error
case y: // error
}

}

To make it compile, the switch code block should be modified to

switch MyBool(true) {
case x: // okay
case y: // okay
}

or

switch {
case x == true: // okay
case y == true: // okay
}

31

3.33 Go compilers will automatically insert some semi-
colons in code

Let’s view a small program:

package main

func foo() bool {
return false

}

func main() {
switch foo()
{
case false: println("False")
case true: println("True")
}

}

What is the output of the above program? Let’s think for a while.

~

~

~

False? No, it prints True. Surprised? Doesn’t the function foo always return false?

Yes, the function foo always returns false, but this is unrelated here.

Compilers will automatically insert some semicolons for the above code as:

package main

func foo() bool {
return false;

};

func main() {
switch foo();
{
case false: println("False");
case true: println("True");
};

};

Now, it clearly shows that the switch expression (true) is omitted. The switch block is
actually equivalent to:

switch foo(); true
{
case false: println("False");
case true: println("True");
};

That is why the program prints True.

32

About detailed semicolon insertion rules, please read this article.

3.34 What are exactly byte slices (and rune slices)?
There are two interpretations of what are byte slices:

1. slice types which underlying types are []byte are called byte slice types.
2. slice types which element type’s underlying type is byte are called byte slice types.

The second interpretation is wider than the first one. For example, in the following code,
type Tx and Ty both fit the second interpretation, but only type Tx fits the first interpre-
tation.

type Tx []byte
type MyByte byte
type Ty []MyByte

Before version 1.18, the official standard Go compiler (gc) sometimes adopted the first
interpretation, whereas the gccgo compiler has adopted the second interpretation for a
long time. In Go, a string may be converted to a byte slice, and vice versa. Whether or
not the following code compiles okay depends on which interpretation is adopted. So the
bar function in the following code failed to compile by using gc version 1.17-.

type Tx []byte
type MyByte byte
type Ty []MyByte

var x Tx
var y Ty
var s = "Go"

func foo() {
x = Tx(s)
y = Ty(s)
s = string(x)

}

func bar() {
s = string(y) // error (by gc v1.17-)

}

Since version 1.18, gc also has fully adpoted the second interpretation, so the bar function
compiles okay by using gc version 1.18+.

The Go specification formally adopted the second interpretation since Go 1.19

Please note that, when validating the arguments passed to calls of built-in copy and append
functions, the first interpretation should be adopted. The g function in the following code
compiles okay with gccgo (a bug), but fails to compile with gc (the current implementation).

type Tx []byte
type MyByte byte
type Ty []MyByte

var x = make(Tx, 2)
var y = make(Ty, 2)

33

https://go101.org/article/line-break-rules.html
https://github.com/golang/go/commit/f1596d76f488e4d82d217418df4191f34b71d117
https://github.com/golang/go/issues/23814
https://github.com/golang/go/issues/23536#issuecomment-1165007191

var s = "Go"

func f() {
copy(x, s)
_ = append(x, s...)

}

func g() {
copy(y, s) // error (for gc)
_ = append(y, s...) // error (for gc)

}

The situations are the similar for rune slices.

3.35 Prior to Go 1.22, freshly-declared iteration vari-
ables are shared between loop iterations; since Go
1.22 freshly-declared iteration variable are instan-
tiatied per loop iteration

In the following code, * prior to Go 1.22, the two functions, loop1 and loop2, are not
equivalent to each other. In loop1, the variable v is shared between the three iterations,
whereas in loop2, each iteration instantiates one new variable v. That is why all of the
three elements of the result returned by loop1 have the same value. * since Go 1.22, the
two functions are equivalent in logic (but not in semantics), so their return results are also
equivalent.

package main

func loop1(s []int) []*int {
r := make([]*int, len(s))
for i, v := range s {

r[i] = &v
}
return r

}

func loop2(s []int) []*int {
r := make([]*int, len(s))
for i := range s {

v := s[i]
r[i] = &v

}
return r

}

func printAll(s []*int) {
for i := range s {

print(*s[i])
}
println()

}

34

func main() {
var s1 = []int{1, 2, 3}
// Prior to Go 1.22, it prints 333.
// Since Go 1.22, it prints 123.
printAll(loop1(s1))

var s2 = []int{1, 2, 3}
// It prints 123.
printAll(loop2(s2))

}

For the same reason, * prior to Go 1.22, the first loop in the following code prints 333,
whereas the second one prints 321. * since Go 1.22, they both print 321.

package main

func main() {
var s = []int{1, 2, 3}

// Prints 333
for _, v := range s {

defer func() {
print(v)

}()
}

// Prints 321
for _, v := range s {

v := v
defer func() {

print(v)
}()

}
}

3.36 Some unexpected behaviors of the new semantics
of 3-clause for-loops

Since Go 1.22, iteration variables declared in 3-clause for-loops (for ..; ..; .. {...})
are also instantiatied and implicitly copied per loop iteration. For Go programmers who
are familiar with the old semantics may be surprised by the behaviors of some Go code in
the new semantics.

The first example:

// demo-defer.go
package main

import "fmt"

func main() {
defer println()

35

for counter, n := 0, 0; n < 3; n++ {
defer func(v int) {

fmt.Print(counter)
counter++

}(n)
}

}

Run it with diffrent Go toolchain versions:

$ gotv 1.21. run demo-defer.go
[Run]: $HOME/.cache/gotv/tag_go1.21.8/bin/go run demo-defer.go
012
$ gotv 1.22. run demo-defer.go
[Run]: $HOME/.cache/gotv/tag_go1.22.1/bin/go run demo-defer.go
000

The second example:

// demo-closure.go
package main

func main() {
var printN func()
for n := 0; n < 9; {

if printN == nil {
printN = func() {

println(n)
}

}
n++
if n == 9 {

break
}

}
printN()

}

Run it with diffrent Go toolchain versions:

$ gotv 1.21. run demo-closure.go
[Run]: $HOME/.cache/gotv/tag_go1.21.8/bin/go run demo-closure.go
9
$ gotv 1.22. run demo-closure.go
[Run]: $HOME/.cache/gotv/tag_go1.22.1/bin/go run demo-closure.go
1

The third example:

// demo-largesize.go
package main

import (
"fmt"
"time"

)

36

type Large [1<<12]byte

func foo() {
for a, i := (Large{}), 0; i < len(a); i++ {

readOnly(&a, i)
}

}

func readOnly(x *Large, k int) {}

func main() {
bench := func() time.Duration {

start := time.Now()
foo()
return time.Since(start)

}
fmt.Println("elapsed time:", bench())

}

Run it with diffrent Go toolchain versions:

$ gotv 1.21. run demo-largesize.go
[Run]: $HOME/.cache/gotv/tag_go1.21.8/bin/go run demo-largesize.go
elapsed time: 1.836µs
$ gotv 1.22. run demo-largesize.go
[Run]: $HOME/.cache/gotv/tag_go1.22.1/bin/go run demo-largesize.go
elapsed time: 990.421µs

Whop! The performance degradation caused by the Go 1.22 new semantics is so huge!

The 4th example: prior Go 1.22, the code of the following program did concurrency cor-
rectly. But since Go 1.22, it becomes into bad concurrency code.

// demo-concurency.go
package main

import (
"fmt"
"sync"

)

const NumWorkers = 3

func isGold(num uint64) bool {
return num & 0xFFFFF == 0

}

func main() {
var c = make(chan uint64)
var m sync.Mutex
for n, i := 0, uint64(0); n < NumWorkers; n++ {

go func() {
for {

37

m.Lock()
i++
v := i
m.Unlock()

if isGold(v) {
c <- v

}
}

}()
}

for n := range c {
fmt.Println("Found gold", n)

}
}

Run it with diffrent Go toolchain versions:

$ CGO_ENABLED=true gotv 1.21. run -race demo-concurency.go
[Run]: $HOME/.cache/gotv/tag_go1.21.8/bin/go run -race demo-concurency.go
Found gold 1048576
Found gold 2097152
Found gold 3145728
^C
$ CGO_ENABLED=true gotv 1.22. run -race demo-concurency.go
[Run]: $HOME/.cache/gotv/tag_go1.22.1/bin/go run -race demo-concurency.go
==================
WARNING: DATA RACE
...
==================
Found gold 1048576
Found gold 1048576
Found gold 1048576
Found gold 2097152
Found gold 2097152
Found gold 2097152
^C

Do you think the semantic changes made for 3-clause for-loops in Go 1.22 is good? Per-
sonally, I think, overall, the impact of the new semantics of for;; loops is negative.

For more unexpected behaviors caused by the semantic changes made in Go 1.22, please
read for-Loop Semantic Changes in Go 1.22: Be Aware of the Impact.

3.37 Since Go 1.22, please don’t declare no-copy values
as loop variables of 3-clause for-loops

As mentioned above, since Go 1.22, each loop variable declared in a 3-clause for-loop will
get instantiated and (implicitly) copied once per loop iteration. So no-copy values, such as
sync.Mutex and strings.Builder values, should not be declared as loop variables. The
following code is viewed as dangerous (since Go 1.22):

38

https://go101.org/blog/2024-03-01-for-loop-semantic-changes-in-go-1.22.html

for mu := (sync.Mutex{}); aCondition; aPostStatement {
... // use mu

}

for b := (strings.Builder{}); aCondition; aPostStatement {
... // use b

}

3.38 int, false, nil, etc. are not keywords
They are predeclared identifiers, which may be shadowed by custom declared identifiers.

For example, the following weird program compiles and runs okay. It prints false and
123.

package main

var true = false
const byte = 123
type nil interface{}
func len(nil) int {

return byte
}

func main() {
var s = []bool{true, true, true}
println(s[0]) // false
println(len(s)) // 123

}

3.39 Selector colliding
Type embedding is an important feature in Go. Through type embedding, a type could
obtain the fields and methods of other types without much effort.

Sometimes, not all of the fields and methods of an embedded type are obtained by the
embedding type. The reason is promoted selectors (including fields and methods) might
collide with each other.

For example, in the following code, the type B embeds one more type (T2) than the type A.
However it obtains none fields and methods. The reason is B.T1.m and B.T2.m collide with
each other so that neither gets promoted. The same situation is for B.T1.n and B.T2.n.

package main

type T1 struct { m bool; n int }
type T2 struct { n int }
func (T2) m() {}

type A struct { T1 }
type B struct { T1; T2 }

func main() {

39

var a A
_ = a.m
_ = a.n
var b B
_ = b.m // error: ambiguous selector
_ = b.n // error: ambiguous selector

}

Please note that, the import path of the containing package of a non-exported selector
(either field or method) is an intrinsic property of the selector. Two unexported selectors
with the same name from two different packages will not collide with each other.

For example, in the above example, if the two types T1 and T2 are declared in two different
packages, then the type B will obtain 3 fields and one method.

3.40 Each method corresponds a function which first
parameter is the receiver parameter of that
method

For example, in the following code,

• the type T has one method M1 which corresponds a function T.M1.
• the type *T has two methods: M1 and M2, which correspond functions (*T).M1 and

(*T).M2, respectively.

package main

type T struct {
X int

}

func (t T) M1() int {
return t.X

}

func (t *T) M2() int {
return t.X

}

func main() {
var t = T{X: 3}
_ = T.M1(t)
_ = (*T).M1(&t)
_ = (*T).M2(&t)

}

3.41 Normalization of method selectors
Go allows simplified forms of some selectors.

For example, in the following program, t1.M1 is a simplified form of (*t1).M1, and t2.M2 is
a simplified form of (&t2).M2. At compile time, the compiler will normalize the simplified

40

forms to their original respective full forms.

The following program prints 0 and 9, because the modification to t1.X has no effects on
the evaluation result of *t1 during evaluating (*t1).M1.

package main

type T struct {
X int

}

func (t T) M1() int {
return t.X

}

func (t *T) M2() int {
return t.X

}

func main() {
var t1 = new(T)
var f1 = t1.M1 // <=> (*t1).M1
t1.X = 9
println(f1()) // 0

var t2 T
var f2 = t2.M2 // <=> (&t2).M2
t2.X = 9
println(f2()) // 9

}

In the following code, the function foo runs okay, but the function bar will produce a
panic. The reason is s.M is a simplified form of (*s.T).M. At compile time, the compiler
will normalize the simplified form to it original full form. At runtime, if s.T is nil, then
the evaluation of *s.T will cause a panic. The two modifications to s.T have no effects on
the evaluation result of *s.T.

package main

type T struct {
X int

}

func (t T) M() int {
return t.X

}

type S struct {
*T

}

func foo() {
var s = S{T: new(T)}
var f = s.M // <=> (*s.T).M

41

s.T = nil
f()

}

func bar() {
var s S
var f = s.M // panic
s.T = new(T)
f()

}

func main() {
foo()
bar()

}

Please note that, interface method values and method values got through reflection will
be expanded to the promoted method values with a delay. For example, in the following
program, the modification to s.T.X has effects on the return results of the method values
got through reflection and interface ways.

package main

import "reflect"

type T struct {
X int

}

func (t T) M() int {
return t.X

}

type S struct {
*T

}

func main() {
var s = S{T: new(T)}
var f = s.M // <=> (*s.T).M
var g = reflect.ValueOf(&s).Elem().

MethodByName("M").
Interface().(func() int)

var h = interface{M() int}(s).M
s.T.X = 3
println(f()) // 0
println(g()) // 3
println(h()) // 3

}

Source: https://github.com/golang/go/issues/47863

Note, there was a bug in the official standard Go compiler before version 1.20. The older
compilers de-virtualize some interface methods at compile time but the de-virtualizations

42

https://github.com/golang/go/issues/47863

are made too far to be correct. For example, the following program should print 2 2, but
it prints 1 2 if it is complied with the official standard Go compiler v1.19.

package main

type I interface{ M() }

type T struct{
x int

}

func (t T) M() {
println(t.x)

}

func main() {
var t = &T{x: 1}
var i I = t

var f = i.M
defer f() // 2 (correct)

// i.M is de-virtualized as (*t).M at compile time (bug).
defer i.M() // 1 (wrong)

t.x = 2
}

The bug was fixed in Go toolchain 1.20.

Source: https://github.com/golang/go/issues/52072

3.42 The famous := trap
Let’s view a simple program.

package main

import "fmt"
import "strconv"

func parseInt(s string) (int, error) {
n, err := strconv.Atoi(s)
if err != nil {

fmt.Println("err:", err)
b, err := strconv.ParseBool(s)
if err != nil {

return 0, err
}
fmt.Println("err:", err)

if b {
n = 123

43

https://github.com/golang/go/issues/52072

}
}
return n, err

}

func main() {
fmt.Println(parseInt("true"))

}

We know that the call strconv.Atoi(s) will return a non-nil error, but the call
strconv.ParseBool(s) will return a nil error. Then, will the call parseInt("true")
return a nil error, too? The answer is it will return a non-nil error. The outputs of the
program is shown below:

err: strconv.Atoi: parsing "true": invalid syntax
err: <nil>
123 strconv.Atoi: parsing "true": invalid syntax

Wait, isn’t the err variable is re-declared in the inner code block and its value has been
modified to nil before the parseInt("true") returns? This is a confusion many new Go
programmers, including me, ever encountered when they just started using Go.

The reason why the call parseInt("true") returns a non-nil error is a variable declared in
an inner code block is never a re-declaration of a variable declared in an outer code block.
Here, the inner declared err variable is set (initialized) as nil. It is not a re-declaration
(a.k.a. modification) of the outer declared err variable. The outer one is set (initialized)
as a non-nil value, then it is never changed later.

There is the voice to remove the ... := ... re-declaration syntax form from Go. But it
looks this is a too big change for Go. Personally, I think explicitly marking the re-declared
variables out is a more feasible solution.

3.43 The official Go compiler checks some potential
bugs caused by the := trap but not all of them

The official Go compiler doesn’t report the bug shown in the last section, but it will report
some other similar ones. For example, many people expect the following program compiles
okay, but it doesn’t.

package main

import "fmt"

func g() (int, error) {
return 0, fmt.Errorf("not implemented")

}

func f() (err error) {
if n, err := g(); err == nil { // line 10

return // line 11
} else {

return fmt.Errorf("%w: %d", err, n)
}

}

44

https://github.com/golang/go/issues/377
https://github.com/golang/go/issues/377

func main() {
fmt.Println(f())

}

The official Go compiler outputs the following error messages:

./main.go:11:3: result parameter err not in scope at return
./main.go:10:8: inner declaration of var err error

In my honest opinion, Go compilers should not do vet jobs.

3.44 The meaning of a nil identifier depends on specific
context

In Go, the zero values of many kinds of types are represented with the predeclared nil
identifier, including interface types and some non-interface types (pointers, slices. maps,
channels, functions).

A non-interface value could be boxed into an interface value if the type of the former
implements the type of the latter. Nil non-interface values are not exceptions.

An interface value boxing nothing is a nil interface value. If it is boxing a nil non-interface
value, then it doesn’t box nothing, so it is not nil. For example, the following program
prints two false lines (which is another popular confusion many new Go programmers
ever encountered), then prints one true.

package main

// The return result boxes a nil pointer.
func box(p *int) interface{} {

return p
}

func main() {
// The left nil is interpreted as a nil pointer value.
// The right nil is interpreted as a nil interface value.
println(box(nil) == nil) // false
var x interface{} = nil
var y chan int = nil
// y is converted to interface{} before comparing.
println(x == y) // false

// This nil is interpreted as a nil channel value.
println(nil == y) // true

}

3.45 Some expression evaluation orders are unspecified
in Go

In Go, when evaluating the operands of an expression, assignment, or return statement,
all function calls (including method calls, and channel communication operations) are
evaluated in lexical left-to-right order. The relative orders between non-function operands

45

https://github.com/golang/go/issues/54019

are unspecified. The relative order between a non-function operand and a function call is
also unspecified.

For example, the following program prints two different lines (with Go toolchains before
v1.20). In the first multi-value assignment (re-declaration) statement, the expression a is
evaluated after those function calls. But in the second multi-value assignment statement
(normal variable declaration), the expression a is evaluated before those function calls.
Neither is wrong. In fact, there is a third valid possibility: 3 3 6 (if the expression a is
evaluated between those function calls).

(Note: since Go toolchain v1.20, the program prints two same line: 6 3 6.)

We should not write such unprofessional code in practice.

package main

var a int

func f() int {
a++
return a

}

func g() int {
a *= 2
return a

}

func main() {
{

a = 2
x, y, z := a, f(), g()
println(x, y, z) // 6 3 6

}
{

a = 2
var x, y, z = a, f(), g()
println(x, y, z) // 2 3 6

}
}

The following is another unprofessional example, in which the CreateT call might return
a T value which x field might be 53 (gccgo version 12.2.0) or 50 (gc version 1.22).

package main

import (
"errors"
"fmt"

)

type T struct {
x int

}

46

func validate(t *T) error {
if t.x < 0 || t.x > 100 {

return errors.New("T.x out if range")
}
t.x = t.x / 10 * 10
return nil

}

func CreateT(v int) (T, error) {
var t = T{x: v}
return t, validate(&t)

}

func main() {
var t, _ = CreateT(53)
fmt.Println(t)

}

For the same reason, in the following program, both the bar function and the foo function
may either produce a panic or exit normally, depending on how compilers determine the
relative evaluation order of the f and g() sub-expressions when evaluating f(g()). The
official standard Go compiler v1.21 adopts different relative orders in the foo and bar
functions, so that the foo function will exit normally and the bar function will produce a
panic at run time (in the implementations of v1.22+ versions, both functions will produce
a panic).

package main

func foo() {
f := func(int) {}
g := func() int {

f = nil
return 1

}
defer f(g())

}

func bar() {
f := func(int) {}
g := func() int {

f = nil
return 1

}
f(g())

}

func main() {
foo()
bar()

}

47

3.46 We can use a generic eval function to convert
some non-function-call expressions to function
calls, to make some expression evaluation orders
determined

For example, by using a generic eval function shown below, the following program is
guaranteed to print 2 3 6 and not panic.

package main

// A generic function
func eval[T any](v T) T {

return v
}

var a int

func f() int {
a++
return a

}

func g() int {
a *= 2
return a

}

func bar() {
f := func(int) {}
g := func() int {

f = nil
return 1

}
eval(f)(g())

}

func main() {
{

a = 2
x, y, z := eval(a), f(), g()
println(x, y, z) // 2 3 6

}
bar()

}

48

3.47 We can use the min and max built-in functions
(since Go 1.21) as the eval function for ordered
values

Both of the built-in min and max functions can take one argument and return that argument
as the result, which is the same as the behavior of an eval function.

For example, the following program is guaranteed to print 2 3 6:

package main

var a int

func f() int {
a++
return a

}

func g() int {
a *= 2
return a

}

func main() {
{

a = 2
x, y, z := min(a), f(), g()
println(x, y, z) // 2 3 6

}
}

Similarly, we can use the append built-in function, which can take only one slice argument,
as the eval function for slice values. For example, the following program is guaranteed to
print 2. However, it may print 2 or 9 without calling the append function.

package main

func bar() int {
s := []int{1, 2}
f := func() int {

s = []int{8, 9}
return 1

}
return append(s)[f()]

}

func main() {
s := []int{1, 2}
f := func() int {

s = []int{8, 9}
return 1

}
println(append(s)[f()]) // 2

49

}

3.48 Go supports loop types
For examples, the following type declarations are all legal.

type S []S
type M map[int]M
type F func(F) F
type Ch chan Ch
type P *P

The following is an example which uses the last declared type. It compiles and runs both
okay.

package main

func main() {
type P *P
var pp = new(P)
*pp = pp
_ = ************pp

}

The following program also compiles and runs both okay.

package main

type F func() F

func f() F {
return f

}

func main() {
f()()()()()()()()()

}

Note, the print functions in the standard fmt package don’t work well for loop container
types. For example, the following program crashes (stack overflow):

package main

import "fmt"

func main() {
type S []S
var s = make(S, 1)
s[0] = s
_ = s[0][0][0][0][0][0][0]
fmt.Println(s) // panic

}

50

3.49 Almost any code element could be declared as the
blank identifier _

For example, the following code is legal.

const _ = 123
var _ = false
type _ string
func _() {
_: // a label

return
}
type T struct{

_ []int
}
func (T) _() {}

Package name and interface method names may not be blank identifiers.

3.50 Copy slice elements without using the built-in
copy function

Since Go 1.17, there is a new way to copy slice elements if the number of the copied
elements is known at coding time. The following example shows this way.

package main

const N = 128
var x = []int{N-1: 789}

func main() {
var y = make([]int, N)
([N]int)(y) = *(*[N]int)(x) // <=> copy(y, x)
println(y[N-1]) // 789

}

But please note that there was a bug when copying array/slices with overlapping elements
in this way in some Go toolchain releases (1.17 - 1.17.13, 1.18 - 1.18.5, and 1.19). The bug
has already been fixed since Go toolchain v1.19.1.

3.51 A detail in const specification auto-complete
What should the following program print?

package main

const X = 1

func main() {
const (

X = X + 1
Y

51

https://github.com/golang/go/issues/54467

)
println(X, Y)

}

No nonsense words, this program prints 2 3 when using the official standard Go com-
piler 1.18+ versions, but it prints 2 2 when using the official standard Go compiler 1.17-
versions. In other words, the official standard Go compiler 1.17- versions interpret the auto-
completion rule incorrectly (the global X is used in the complete form of the Y specification,
but the local X should be used instead).

Source: https://github.com/golang/go/issues/49157

52

https://github.com/golang/go/issues/49157

Chapter 4

Conversions Related

4.1 If the underlying type of a named type is an un-
named type, then values of one of the named types
may be implicitly converted to the underlying type,
and vice versa

In the following code, the underlying types of the two declared named types (Bytes and
MyBytes) are both []byte. Values of one of the two named types may be converted to the
other one, but the conversions must be explicit. However, values of two named types may
be implicitly converted to their underlying type, []byte, and vice versa. Because their
underlying type is an unnamed type.

package main

type Bytes []byte
type MyBytes []byte

func f(bs []byte) {}
func g(bs Bytes) {}
func h(bs MyBytes) {}

func main() {
var x []byte
var y Bytes
var z MyBytes

f(y)
f(z)

g(x)
g(z) // error: cannot use z (type MyBytes) as Bytes
g(Bytes(z))

h(x)
h(y) // error: cannot use y (type Bytes) as MyBytes

53

h(MyBytes(y))
}

4.2 Values of two different named pointer types may be
indirectly converted to each other’s type if the base
types of the two types shares the same underlying
type

Generally, the values of two pointer types may not be converted to each other if the
underlying types of the two pointer types are different. For example, the 4 conversions in
the following code are all illegal.

package main

type MyInt int
type IntPtr *int // underlying type is *int
type MyIntPtr *MyInt // underlying type is *MyInt

func main() {
var x IntPtr
var y MyIntPtr
x = IntPtr(y) // error
y = MyIntPtr(x) // error
var _ = (*int)(y) // error
var _ = (*MyInt)(x) // error

}

Although the above 4 conversions may not achieved directly, they may be achieved indi-
rectly. This benefits from the fact that the following conversions are legal.

package main

type MyInt int

func main() {
var x *int
var y *MyInt
x = (*int)(y) // okay
y = (*MyInt)(x) // okay

}

The reason why the above two conversions are legal is values of two unnamed pointers
types may be converted to each other’s type if the base types of the two types shares the
same underlying type. In the above example, the base types of the types of x and y are
int and MyInt, which share the same underlying type int, so x and y may be converted
to each other’s type.

Benefiting from the just mentioned fact, values of IntPtr and MyIntPtr may be also
converted to each other’s type, though such conversions must be indirectly, as shown in
the following code.

package main

54

type MyInt int
type IntPtr *int
type MyIntPtr *MyInt

func main() {
var x IntPtr
var y MyIntPtr
x = IntPtr((*int)((*MyInt)(y))) // okay
y = MyIntPtr(((*MyInt))((*int)(x))) // okay
var _ = (*int)((*MyInt)(y)) // okay
var _ = (*MyInt)((*int)(x)) // okay

}

4.3 Values of a named bidirectional channel type may
not be converted to a named unidirectional channel
type with the same element type directly, but may
indirectly

An example:

package main

func main() {
type C chan string
type Cw chan<- string
type Cr <-chan string

var c C
var w Cw
var r Cr

// The following two lines fail to compile.
// w = Cw(c) // error
// r = Cr(c) // error

// This line compiles okay.
_ = (chan string)(c)

// The two lines also compile okay.
w = Cw((chan string)(c)) // indirectly
r = Cr((chan string)(c)) // indirectly

_, _ = w, r
}

Such conversions are rarely used in practice, but knowing more is not a bad thing, right?

55

4.4 The capacity of the result of a conversion from
string to byte slice is unspecified

The implementation of the addPrefixes function in the following code is unprofessional.

package main

func addPrefixes(prefixStr string, bss [][]byte) {
var prefix = []byte(prefixStr)
println(len(prefix), cap(prefix))
for i, bs := range bss {

bss[i] = append(prefix, bs...)
}

}

func main() {
var bss = [][]byte {

[]byte("Java"),
[]byte("C++"),
[]byte("Go"),
[]byte("C"),

}
addPrefixes("> ", bss)
println(string(bss[0])) // > Co+a
println(string(bss[1])) // > Co+
println(string(bss[2])) // > Co
println(string(bss[3])) // > C

}

The outputs of the above program (with the official standard Go compiler 1.22 versions):

2 8
> Co+a
> Co+
> Co
> C

The outputs are not what we expect. Why? Because the capacity of the result of the
conversion []byte("> ") is 8 (which is actually compiler dependent). In the end, all of
the elements of bss share some leading bytes with the conversion result. Each append call
overwrite some bytes in the conversion result.

To fix the problem, we should clip the conversion result, so that the elements of bss doesn’t
share bytes. The fixed addPrefixes function implementation:

func addPrefixes(prefixStr string, bss [][]byte) {
var prefix = []byte(prefixStr)
prefix = prefix[:len(prefix):len(prefix)] // clip it
for i, bs := range bss {

bss[i] = append(prefix, bs...)
}

}

Then the outputs will become as expected:

56

> Java
> C++
> Go
> C

57

Chapter 5

Comparisons Related

5.1 Compare two slices which lengths are equal and
known at coding time

In Go, slices are incomparable. But, since Go 1.17, if the elements of two slices are
comparable and the lengths of the two slices are equal and known at coding time, then we
could use the following way to compare the two slices.

package main

func main() {
var x = []int{1, 2, 3, 4, 5}
var y = []int{1, 2, 3, 4, 5}
var z = []int{1, 2, 3, 4, 9}

// The following two lines fail to compile.
// _ = x == y
// _ = x == z

// The two lines compile okay (since Go 1.17).
println(*(*[5]int)(x) == *(*[5]int)(y)) // true
println(*(*[5]int)(x) == *(*[5]int)(z)) // false

// Since Go 1.20, the above two lines can even
// be shortened as:
println([5]int(x) == [5]int(y)) // true
println([5]int(x) == [5]int(z)) // false

}

5.2 More ways to compare byte slices
The above introduced way works for slices with any comparable element types. It certainly
could be used to compare byte slices (which lengths are equal and known at coding time).
Meanwhile, there are two other ways to compare byte slices x and y, even if the lengths of
the two byte slices are not known at compile time.

58

• The first way: bytes.Compare(x, y) == 0.
• The second way: string(x) == string(y). Due to an optimization made by the

official standard Go compiler, no underlying bytes will be duplicated in this way. In
fact, the bytes.Equal function uses this way to do the comparison.

The two ways have no requirements on the lengths of the two operand byte slices.

5.3 Comparing two interface values produces a panic if
the dynamic type of the two operands are identical
and the identical type is an incomparable type

For example, the following program prints three false, then panics.

package main

func main() {
var x interface{} = []int{1, 2}
var y interface{} = map[string]int{}
var z interface{} = func() {}

// The lines all print false.
println(x == y)
println(x == z)
println(x == nil)

// Each of these line could produce a panic.
println(x == x)
println(y == y)
println(z == z)

}

5.4 How to make a struct type incomparable
It is easy, just put an incomparable field in the struct type. For example, the following
struct types are all incomparable.

type T1 struct {
_ func()
x int

}

type T2 struct {
_ []int
y bool

}

type T3 struct {
_ map[int]bool
z string

}

59

Lest the _ fields waste memory, their types should be zero-size types. For example, the
size of the type Ty is smaller than the type Tx in the following code.

package main

import "unsafe"

type Tx struct {
_ func()
x int64

}

type Ty struct {
_ [0]func()
y int64

}

func main() {
var x Tx
var y Ty
println(unsafe.Sizeof(x)) // 16
println(unsafe.Sizeof(y)) // 8

}

Please try to avoid putting a zero-size field as the final field of a struct type.

5.5 Array values are compared element by element
When comparing two array values, their elements will be compared one by one. Once two
corresponding elements are found unequal, the whole comparison stops and a false result
is resulted. The whole comparison might also stop for a panic produced when comparing
two interfaces.

For example, the first comparison in the following code results in false, but the second one
causes a panic.

package main

type T [2]interface{}

func main() {
var a = T{1, func(){}}
var b = T{2, func(){}}
println(a == b) // false

var c = T{2, func(){}}
var d = T{2, func(){}}
println(c == d) // panics

}

60

5.6 Struct values are compared field by field
Similarly, when comparing two struct values, their fields will be compared one by one. Once
two corresponding fields are found unequal, the whole comparison stops and a false result
is resulted. The whole comparison might also stop for a panic produced in comparing two
interfaces.

For example, the first comparison in the following code results in false, but the second one
causes a panic.

package main

type T struct {
x interface{}
y interface{}

}

func main() {
var a = T{x: 1, y: func(){}}
var b = T{x: 2, y: func(){}}
println(a == b) // false

var c = T{x: 2, y: func(){}}
var d = T{x: 2, y: func(){}}
println(c == d) // panics

}

5.7 The _ fields are ignored in struct comparisons
For example, the following program prints true.

package main

type T struct {
_ int
x string

}

func main() {
var x = T{123, "Go"}
var y = T{789, "Go"}
println(x == y) // true

}

But please note that, as shown in a previous section, if a struct type contains a _ field of
an incomparable type, then the struct type is also incomparable.

5.8 NaN != NaN, Inf == Inf
In floating-point computations, there are some cases in which the computation results
might be infinities (Inf) or not-a-number (NaN). For example, in the following code, a
+Inf and a NaN values are produced (yes, an Inf value times zero results in a NaN value).

61

Every two +Inf (or -Inf) values are equal to each other, but every two NaN values are not
equal.

package main

var a = 0.0
var x = 1 / a // +Inf
var y = x * a // NaN

func main() {
println(x, y) // +Inf NaN
println(x == x) // true
println(y == y) // false

}

As NaN values are not equal to each other, it is always a vain to loop up an entry from a
map by using a NaN key, which could be proved from the following code.

package main

var a = 0.0
var x = 1 / a // +Inf
var y = x * a // NaN

func main() {
var m = map[float64]int{}
m[y] = 123
m[y] = 456
m[y] = 789
q, ok := m[y]
println(q, ok, len(m)) // 0 false 3

}

In fact, comparing a NaN value with any value will result a false result:

package main

var a = 0.0
var y = 1 / a * a // NaN

func main() {
println(y < y) // false
println(y == y) // false
println(y > y) // false

println(y < a) // false
println(y == a) // false
println(y > a) // false

}

The built-in delete function can’t delete a map entry which key is NaN. So putting an
entry with a NaN key into a map is like putting the entry into black hole, though entries
with NaN keys could be retrieved from a for-range loop:

package main

62

var a = 0.0
var y = 1 / a * a // NaN

func main() {
var m = map[float64]int{}
m[y] = 1
m[y] = 2
m[y] = 3
delete(m, y)
delete(m, y)
delete(m, y)
for k, v := range m {

println(k, v)
}

}

The (possible) outputs of the above program:

NaN 3
NaN 1
NaN 2

Note: Go 1.21 introduced a clear built-in function, to clear all entries in a map, including
those with keys as NaN. A demo:

package main

var a = 0.0
var y = 1 / a * a // NaN

func main() {
var m = map[float64]int{}
m[y] = 1
m[y] = 2
m[y] = 3

for k := range m {
delete(m, k)

}
println(len(m)) // 3

clear(m)
println(len(m)) // 0

}

5.9 How to avoid putting entries with keys containing
NaN into a map

If the key type of the map is float64, then we can check whether or not the key of an
entry is NaN by calling the math.IsNaN(key) function. If the function returns true, then
we should give up putting the entry into the map. But the way doesn’t work for array and

63

https://docs.go101.org/std/pkg/builtin.html#name-clear

struct keys. A universal workable way is to check the result of key != key. If the result
is true, then key must contain NaN, so we should give up putting the entry into the map.

5.10 Some details in using the reflect.DeepEqual func-
tion

A call to the reflect.DeepEqual function always return false if the types of its two
arguments are different.

When using the reflect.DeepEqual function to compare two different pointer values
(of the same type), the values referenced by them are compared instead (still using the
reflect.DeepEqual function to do the deeper comparison).

If both of the two arguments of a reflect.DeepEqual function call are in cyclic reference
chains, then, to avoid infinite looping, the call might return true. An example:

package main

import "reflect"

type Node struct{peer *Node}

func main() {
var x, y, z Node
x.peer = &x // form a cyclic reference chain
y.peer = &z // form a cyclic reference chain
z.peer = &y
println(reflect.DeepEqual(&x, &y)) // true

}

When using the reflect.DeepEqual function to compare two function values, the return
result is true only if the two functions share the identical type and they are both nil. For
example, the following program prints true then false.

package main

import "reflect"

func main() {
var x, y func()
println(reflect.DeepEqual(x, y)) // true
var z = func() {}
println(reflect.DeepEqual(z, z)) // false

}

When using the reflect.DeepEqual function to compare two slice values (of the same type
and with the same length), generally, their elements will be compared one by one. However,
if their corresponding first elements have the same address, then true is returned without
comparing their elements, even if their elements are self-unequal values (for example, non-
nil functions and NaNs).

For example, the following program also prints true then false.

package main

64

import "reflect"

func main() {
var f = func() {}
var a = [2]func(){f, f}
var x = a[:]
var y = a[:]
var z = []func(){f, f}
println(reflect.DeepEqual(x, y)) // true
println(reflect.DeepEqual(x, z)) // false

}

Similarly, if two map values are referencing the same underlying hashtable, the result is also
true if they are compared with the reflect.DeepEqual function, even if the hashtable
contains self-unequal values.

package main

import (
"math"
"reflect"

)

func main() {
nan := math.NaN()
println(reflect.DeepEqual(nan, nan)) // false

m1 := map[int]float64{1: nan}
m2 := map[int]float64{1: nan}
m3 := m1

println(reflect.DeepEqual(m1, m1)) // true
println(reflect.DeepEqual(m1, m2)) // false
println(reflect.DeepEqual(m3, m3)) // true

}

5.11 The return results of the bytes.Equal and
reflect.DeepEqual functions might be different

The reflect.DeepEqual function thinks a nil slice and a blank slice are not equal. However,
the bytes.Equal function thinks a nil byte slice and a blank byte slice are equal. This
could be proved from the following program.

package main

import (
"bytes"
"reflect"

)

func main() {
var x = []byte{}

65

var y []byte
println(bytes.Equal(x, y)) // true
println(reflect.DeepEqual(x, y)) // false

}

5.12 A type alias embedding bug
Go 1.9 introduced custom type alias declarations. However, a bug had also been introduced
since then and up to Go toolchain 1.17. It was fixed in Go toolchain 1.18.

The bug could be exposed by the following program. It should print false, but it printed
true (before Go toolchain 1.18).

package main

type Int = int

type A = struct{ int }
type B = struct{ Int }

func main() {
var x, y interface{} = A{}, B{}
println(x == y) // true (with Go toolchain 1.17-)

}

Source: https://github.com/golang/go/issues/24721

66

https://github.com/golang/go/issues/24721

Chapter 6

Compiler and Runtime Related

6.1 In the official standard compiler implementation,
the backing array of a map never shrinks

The official standard runtime maintains a backing array for a map to hold the entries of
the map. With more and more entries are put into the map, the backing array will grow
and grow. But it will never shrink. That means if a map even contained millions of entries,
then after these entries are all deleted from the map, the backing array is still capable of
holding millions of entries without growing its backing array.

Then how to release the memory occupied by the backing array of a map? Just set the
map value as nil, or create a new map and assign the new map to it.

6.2 64-bit word alignment problem
64-bit atomic operations on a 64-bit integer require the address of the 64-bit integer must
be 8-byte aligned in memory. On 64-bit architectures, 64-bit integers are always 8-byte
aligned, so the requirement is always satisfied on 64-bit architectures. This is not always
true on 32-bit architectures.

The docs of the sync/atomic standard package states that a qualified Go compiler should
make sure that the first (64-bit) word (think it as an int64 or uint64 integer) in a (declared)
variable or in an allocated struct, array, or slice can be relied upon to be 64-bit aligned.
What does the word allocated mean? We can think an allocated value as a declared
variable, a value returned the built-in make function, or the value referenced by a pointer
returned by the built-in new function.

In the following example, the first AddX method call is safe, because t.x is always 8-byte
aligned, even on 32-bit architectures. However, the second AddX method call is not safe on
32-bit architectures. It might cause a panic, because s.t.x is not guaranteed to be 8-byte
aligned.

package main

import "sync/atomic"

type T struct {

67

x uint64
}

func (t *T) AddX(dx uint64) {
atomic.AddUint64(&t.x, dx)

}

type S struct {
y int32
t T

}

func main() {
var t T
t.AddX(1) // safe, even on 32-bit architectures

var s S
s.t.AddX(1) // might panic on 32-bit architectures

}

One fact we should be aware of is that the official Go compilers (gc and gccgo) guarantee
that 32-bit and 64-bit words are always 4-byte aligned on any architectures. In fact, the
ever implementation of the sync.WaitGroup type relied upon this fact.

The sync.WaitGroup type needs two fields. Normally, it should be defined as

type WaitGroup struct {
state uint64
sema uint32

}

Here, the state field needs to participate 64-bit atomic operations. However, on 32-
bit architectures, its address is not guaranteed to be 8-byte aligned. So instead, the
sync.WaitGroup type was ever defined as

type WaitGroup struct {
state1 [3]uint32

}

At runtime, the state1 field of a sync.WaitGroup value might 4-byte aligned or 8-byte
aligned. If it is 8-byte aligned, the combination of the first two elements of the state1 field
is viewed as the original state field and the third element is viewed as the original sema
field; otherwise, the combination of the last two elements of the state1 field is viewed as
the original state field and the first element is viewed as the original sema field.

Note, since Go 1.19, two types, sync/atomic.Int64 and sync/atomic.Uint64, have been
supported. The alignments of values of the two types are always 8-byte aligned, on either
64-bit or 32-bit architectures. So since Go 1.20, the declaration of the sync.WaitGroup
type is declared as

type WaitGroup struct {
state atomic.Uint64
sema uint32

}

, to avoid checking alignments of WaitGroup values at runtime.

68

https://github.com/golang/go/blob/go1.16/src/sync/waitgroup.go#L20-L29
https://github.com/golang/go/blob/go1.16/src/sync/waitgroup.go#L20-L29

6.3 How to guarantee a struct field to be always 8-byte
aligned

Just use the trick shown below:

import "sync/atomic"

type T struct {
...
_ [0]atomic.Int64
X TypeOfX
...

}

By declaring an anonymous field of type [0]atomic.Int64 closely before the X field decla-
ration, the X field of any T value is guaranteed to be 8-byte aligned. The reason is compilers
must guarantee that the anonymous field of a T value is 8-byte aligned, even if the field
size is zero; consequently, the X field of the T value is also guaranteed to be 8-byte aligned,
whatever the type of the X field is.

6.4 Let go vet detect not-recommended value copies
The official go vet command will warn on copying values of types which values should not
be copied, such as the types in the sync standard package. We call such types as noCopy
types here.

Currently, there is no special syntax for this purpose. The go vet command determines
whether or not a type T is a noCopy type by checking whether or not the pointer type *T
has a Lock() method and an Unlock() method.

For example, The go vet command will report a warning for the assignment in the follow-
ing code.

package main

type T struct{}

func (*T) Lock() {}
func (*T) Unlock() {}

func main() {
var t T
_ = t // warning: assignment copies lock value to _

}

A struct type with a noCopy field (embedding or not) or an array type with noCopy
elements is also a noCopy type. For example:

package main

type T struct{}

func (*T) Lock() {}
func (*T) Unlock() {}

69

type S struct {
t T

}

func main() {
var s S
_ = s // warning: assignment copies lock value to _

var a [8]T
_ = a // warning: assignment copies lock value to _

}

6.5 Values of more types in the standard packages
should not be copied

Besides the types in the sync standard package, values of some other types in the standard
packages should not be copied too, such as bytes.Buffer and strings.Builder.

Generally, if a value is referencing some other values, and these referenced values should
not be referenced by multiple values, then the referencing value should not be copied.

6.6 Some zero values might contain non-zero bytes in
memory

An example:

package main

import (
"fmt"
"reflect"
u "unsafe"

)

var s = "abc"[0:0]

func main() {
header := (*reflect.StringHeader)(u.Pointer(&s))
if s == "" {

fmt.Printf("%#v\n", *header)
}

}

The reflect.StringHeader type represents the internal structure of the string type.

Run the program, the outputs are like:

reflect.StringHeader{Data:0x4957ec, Len:0}

From the outputs, we could find that the Data field of the zero string s are non-zero, which
doesn’t prevent the runtime from thinking the string s is a zero value. In fact, the zero
length is sufficient to indicate the string s is a blank string.

70

6.7 The address of a value might change at run time
In the official standard Go runtime implementation, the stack of a goroutine will grow or
shrink as needed at run time. The address of a value allocated on a stack will change when
the stack size changes.

For example, the following program very probably prints two different addresses.

package main

//go:noinline
func f(i int) byte {

var a [1 << 12]byte
return a[i]

}

func main() {
var x int
println(&x)
f(100) // make stack grow
println(&x)

}

6.8 The official standard Go runtime behaves badly
when system memory is exhausted

When system memory is exhausted and memory swapping is involved, the Go runtime
often doesn’t crash program but exhausts almost all CPU resources so that the OS UI
is often totally not responsive. An hard restart is often needed to escape such awkward
situations.

For example, sometimes, during the phase of debugging a program, if we accidentally write
a piece of code like the following shows, then the OS might hang when running a program
which uses the piece of code.

(Warning: please save your works if you would like to run this program on you machine!)

package main

var s = "1234567890"

func condition() bool {
return true // simplified for demo purpose

}

func main() {
for condition() {

s += s
println(len(s))

}
}

It is a good idea to limit the number of loop steps to a reasonable number in debugging.

71

func main() {
for range [10]struct{}{} {

if condition() {
break

}

s += s
println(len(s))

}
}

6.9 Currently, a runtime.Goexit call may cancel the al-
ready happened panics

For example, the following program will exit normally when it runs. If the lien of the
runtime.Goexit call is removed, then the program will crash.

package main

import "runtime"

func worker(c chan int) {
defer close(c)
defer runtime.Goexit() // will cancel panic "bye"

// ... do work load

panic("bye")
}

func main() {
c := make(chan int)
go worker(c)
<-c

}

Source: https://github.com/golang/go/issues/35378

6.10 There might be multiple panics coexisting in a
goroutine

Two coexisting panics must stay at two different function call depths, and a newer panic
must stay at a deeper function call. When a deeper panic spreads to a shallower function
call and there is another panic staying there, then the deeper panic will replace the shallower
panic.

For example, for the following program, at a time when it is running, there will be two
active panics coexisting. At a later time, the second panic replaces the first one and is
recovered finally.

package main

72

https://github.com/golang/go/issues/35378

func main() {
defer func() {

println("Panic", recover().(int), "is recovered.")
}()
defer println("Now, panic 2 replaces panic 1.")
defer func() {

defer println("Now, 2 panics coexist.")
panic(2)

}()
defer println("Only one panic exists now.")
panic(1)

}

The outputs of the above program:

Only one panic exists now.
Now, 2 panics coexist.
Now, panic 2 replaces panic 1.
Panic 2 is recovered.

6.11 The current Go specification (version 1.20)
doesn’t explain the panic/recover mechanism
very well

By the current specification, the line marked as ”no-op” in the following code should
recover the panic 1, but it doesn’t actually. The reason is only the latest produced panic
in a goroutine is able to be recovered.

package main

import "fmt"

func main() {
defer func() {

fmt.Print(recover())
}()
defer func() {

defer func() {
fmt.Print(recover())

}()
defer recover() // no-op
panic(2)

}()
panic(1)

}

The above program prints 21. If we change the ”no-op” line to a non-deferred call, then
2<nil> will be printed instead.

Please read the article explain panic/recover mechanism in detail for best explanations for
Go panic/recover mechanism.

73

https://go101.org/article/panic-and-recover-more.html

Chapter 7

Standard and User Packages
Related

7.1 Use %w format verb in fmt.Errorf calls to build er-
ror chains

When using the fmt.Errorf function to wrap a deeper error, it is recommended to use the
%w verb instead of %s, to avoid losing information of the wrapped error.

For example, in the following code, the Bar implementation is preferred to the Foo imple-
mentation, because the caller could judge whether or not the returned error is caused by
the specified error (here it is ErrNotImpl).

package main

import (
"errors"
"fmt"

)

var ErrNotImpl = errors.New("not implemented yet")

func doSomething() error {
return ErrNotImpl

}

func Foo() error {
if err := doSomething(); err != nil {

return fmt.Errorf("Foo: %s", err)
}
return nil

}

func Bar() error {
if err := doSomething(); err != nil {

return fmt.Errorf("Bar: %w", err)

74

}
return nil

}

func main() {
println(errors.Is(Foo(), ErrNotImpl)) // false
println(errors.Is(Bar(), ErrNotImpl)) // true

}

In user code, we should try to use the errors.Is function instead of using direct compar-
isons to judge the cause of an error.

7.2 Small differences between fmt.Println, fmt.Print
and print functions

The fmt.Println function (and println) will output a space between any two adjacent
arguments. The fmt.Print function will only do this between two adjacent arguments
which are both not strings. The print function never output spaces between arguments.

This could be proved by the following code.

package main

import "fmt"

func main() {
// 123 789 abc xyz
println(123, 789, "abc", "xyz")
// 123 789 abc xyz
fmt.Println(123, 789, "abc", "xyz")
// 123 789abcxyz
fmt.Print(123, 789, "abc", "xyz")
println()
// 123789abcxyz
print(123, 789, "abc", "xyz")
println()

}

7.3 The reflect.Type/Value.NumMethod methods will
count unexported methods for interfaces

For non-interface types and values, the reflect.Type.NumMethod and reflect.Value.NumMethod
methods don’t count unexported methods. But for interface types and values, they count.

This could be proved by the following code.

package main

import "reflect"

type I interface {
m()

75

M()
}

type T struct {}
func (T) m() {}
func (T) M() {}

func main() {
var t T
var i I = t
var vt = reflect.ValueOf(t)
var vi = reflect.ValueOf(&i).Elem()
println(vt.NumMethod()) // 1
println(vi.NumMethod()) // 2

}

7.4 Values of two slices may not be converted to each
other’s type if the element types of the two slices
are different, but there is a hole to this rule

For example, the two conversions in the following code are both illegal.

package main

type MyByte byte
var x []MyByte
var y []byte

func main() {
x = []MyByte(y) // error
y = []byte(x) // error

}

There is a hole to this rule. If the underlying type of the element type of a slice is
byte (such as the MyByte type shown in the above example), then we could use the
reflect.Value.Bytes methods to convert the (byte) slice to []byte. For example:

package main

import "reflect"

type MyByte byte
Value.Bytes
func main() {

var x = make([]MyByte, 128)
var y []byte
y = reflect.ValueOf(x).Bytes()
y[127] = 123
println(x[127]) // 123

}

Source: https://github.com/golang/go/issues/24746

76

https://github.com/golang/go/issues/24746

7.5 Don’t misuse the TrimLeft function as TrimPrefix
in the strings and bytes standard packages

The second parameter of the TrimLeft function is a cutset, any leading Unicode code points
in the first parameter contained in the cutset will be removed, which is quite different from
the TrimPrefix function.

The following program shows the differences.

package main

import "strings"

func main() {
var hw = "DoDoDo!"
println(strings.TrimLeft(hw, "Do")) // !
println(strings.TrimPrefix(hw, "Do")) // DoDo!

}

The same situation is for the TrimRight and TrimSuffix functions.

7.6 The json.Unmarshal function accepts case-insensitive
object key matches

For example, the following program prints bar, instead of foo.

package main

import (
"encoding/json"
"fmt"

)

type T struct {
HTML string `json:"HTML"`

}

var s = `{"HTML": "foo", "html": "bar"}`

func main() {
var t T
if err := json.Unmarshal([]byte(s), &t); err != nil {

fmt.Println(err)
return

}
fmt.Println(t.HTML) // bar

}

The docs of the json.Unmarshal function states ”preferring an exact match but also accept-
ing a case-insensitive match”. So personally, I think this is a bug in the json.Unmarshal
function implementation, but the Go core team don’t think so.

77

https://github.com/golang/go/issues/14750

7.7 The spaces in struct tag key-value pairs will not be
trimmed

For example, the following program will print {" foo":""}. The misspelt omitempty
option for the Foo field is different from omitempty, and the tag key of the Foo field is "
foo", instead of "foo".

package main

import (
"encoding/json"
"fmt"

)

type T struct {
Foo string `json:" foo, omitempty"`
Bar string `json:"bar,omitempty"`

}

func main() {
var t T
var s, _ = json.Marshal(t)
fmt.Printf("%s", s) // {" foo":""}

}

7.8 How to resolve cyclic package dependency prob-
lem?

Go doesn’t support cyclic package dependencies. If package foo imports package bar, then
package bar may not import package foo.

Sometimes, we might encounter the situation that two packages do need to use the exported
identifiers from each other. How should we handle such situations? There are two ways to
solve this problem.

One way is to merge the two packages into one bigger package, so that the cyclic dependency
problem will go. This way will always work.

The other way is to split the two packages into more smaller ones to remove the cyclic
dependency relations. Sometimes, this is impossible to achieve.

7.9 Deferred calls will not be executed after the
os.Exit function is called

For example, the deferred call cleanup() in the following code is totally useless.

func run() {
defer cleanup()

if err := doSomething(); err != nil {
log.Println(err)
os.Exit(1)

78

}

os.Exit(0)
}

Please note that the log.Fatal function calls the os.Exit function, so deferred calls will
also not get executed after the log.Fatal function is called.

7.10 How to let the main function return an exit code?
No way to do this. Go syntax doesn’t support this. However, we can use the following way
to simulate a main function which returns an exit code.

import "os"

func main() {
os.Exit(realMain())

}

func realMain() int {
... // do something, return non-zero on errors

return 0
}

7.11 Try not to use exported variables
We should try to avoid exporting variables (in particular error values) from the packages
we are maintaining. The standard packages contain many exported error variable values,
which is actually a bad practice. Personally, I recommend to use the following way to
declare error values.

package foo

type errType int

const (
ErrA errType = iota
ErrB
ErrC
errCount

)

func (e errType) Error() string {
if e < 0 || e >= errCount {

panic("invalid error number")
}
return errDescriptions[e]

}

var _ = [1]int{}[len(errDescriptions) - int(errCount)]

79

var errDescriptions = [...]string {
ErrA: "error A",
ErrB: "error B",
ErrC: "error C",

}

By using this way, users of the foo package couldn’t modify the declared error values.

7.12 Export final error variables
Values of zero-size types are actually final values, because a zero-size type has only one
possible value. By making use of this fact, we may declare exported error variables of
zero-size error types to prevent the error variables being modified.

An example:

var (
ErrA typeErrA
ErrB typeErrB
ErrC typeErrC

)

type (
typeErrA struct {

_ [0]*typeErrA
}

typeErrB struct {
_ [0]*typeErrB

}

typeErrC struct {
_ [0]*typeErrC

}
)

func (typeErrA) Error() string {
return "error A"

}

func (typeErrB) Error() string {
return "error B"

}

func (typeErrC) Error() string {
return "error C"

}

80

	Acknowledgments
	About Go Details & Tips 101
	About the author
	About GoTV
	Feedback

	Syntax and Semantics Related
	Zero-size types/values
	How zero-size values are allocated is compiler dependent
	Don't put a zero-size field as the final field of a struct type
	Simulate for i in 0..N in some other languages
	There are several ways to create a slice
	for i, v = range aContainer actually iterates a copy of aContainer
	Array pointers could be used as arrays in several situations
	Some function calls are evaluated at compile time
	The official standard Go compiler doesn't support declaring package-level arrays with sizes larger than 2GB
	Addressabilities of slice/array/map elements and struct fields
	Composite literals are unaddressable, but they may be taken addresses
	One-line trick to create pointers to a non-zero bool/numeric/string values
	Unaddressable values are not modifiable, but map elements may be modified (in a whole)
	The second argument of a make call to create a map is viewed as a hint
	Use maps to emulate sets
	Map entry iteration order is randomized
	If a map entry is created during iterating the map, the entry may show up during the iteration or may be skipped
	The keys in a slice or array composite literal must be constants
	The constant keys in a map/slice/array composite literal must not be duplicate
	A compile-time assertion trick by using the fact mentioned in the last section
	More compile-time assertion tricks
	The return results of a function may be modified after a return statement is executed
	For a deferred function call, its arguments and the called function expression are evaluated when the deferred call is registered
	Method receiver arguments are also evaluated at the same time as other arguments
	If the left operand of a non-constant bit-shift expression is untyped, then its type is determined as the assumed type of the expression
	aConstString[i] and aConstString[i:j] are non-constants even if aConstString, i and j are all constants
	The result of a conversion to a parameter type is always viewed as a non-constant
	The type deduction rule for a binary operation which operands are both untyped
	An untyped constant integer may overflow its default type
	The placement of the default branch (if it exists) in a switch code block could be arbitrary
	The constant case expressions in a switch code block may be duplicate or not, depending on compilers
	The switch expression is optional and its default value is a typed value true of the built-in type bool
	Go compilers will automatically insert some semicolons in code
	What are exactly byte slices (and rune slices)?
	Prior to Go 1.22, freshly-declared iteration variables are shared between loop iterations; since Go 1.22 freshly-declared iteration variable are instantiatied per loop iteration
	Some unexpected behaviors of the new semantics of 3-clause for-loops
	Since Go 1.22, please don't declare no-copy values as loop variables of 3-clause for-loops
	int, false, nil, etc. are not keywords
	Selector colliding
	Each method corresponds a function which first parameter is the receiver parameter of that method
	Normalization of method selectors
	The famous := trap
	The official Go compiler checks some potential bugs caused by the := trap but not all of them
	The meaning of a nil identifier depends on specific context
	Some expression evaluation orders are unspecified in Go
	We can use a generic eval function to convert some non-function-call expressions to function calls, to make some expression evaluation orders determined
	We can use the min and max built-in functions (since Go 1.21) as the eval function for ordered values
	Go supports loop types
	Almost any code element could be declared as the blank identifier _
	Copy slice elements without using the built-in copy function
	A detail in const specification auto-complete

	Conversions Related
	If the underlying type of a named type is an unnamed type, then values of one of the named types may be implicitly converted to the underlying type, and vice versa
	Values of two different named pointer types may be indirectly converted to each other's type if the base types of the two types shares the same underlying type
	Values of a named bidirectional channel type may not be converted to a named unidirectional channel type with the same element type directly, but may indirectly
	The capacity of the result of a conversion from string to byte slice is unspecified

	Comparisons Related
	Compare two slices which lengths are equal and known at coding time
	More ways to compare byte slices
	Comparing two interface values produces a panic if the dynamic type of the two operands are identical and the identical type is an incomparable type
	How to make a struct type incomparable
	Array values are compared element by element
	Struct values are compared field by field
	The _ fields are ignored in struct comparisons
	NaN != NaN, Inf == Inf
	How to avoid putting entries with keys containing NaN into a map
	Some details in using the reflect.DeepEqual function
	The return results of the bytes.Equal and reflect.DeepEqual functions might be different
	A type alias embedding bug

	Compiler and Runtime Related
	In the official standard compiler implementation, the backing array of a map never shrinks
	64-bit word alignment problem
	How to guarantee a struct field to be always 8-byte aligned
	Let go vet detect not-recommended value copies
	Values of more types in the standard packages should not be copied
	Some zero values might contain non-zero bytes in memory
	The address of a value might change at run time
	The official standard Go runtime behaves badly when system memory is exhausted
	Currently, a runtime.Goexit call may cancel the already happened panics
	There might be multiple panics coexisting in a goroutine
	The current Go specification (version 1.20) doesn't explain the panic/recover mechanism very well

	Standard and User Packages Related
	Use %w format verb in fmt.Errorf calls to build error chains
	Small differences between fmt.Println, fmt.Print and print functions
	The reflect.Type/Value.NumMethod methods will count unexported methods for interfaces
	Values of two slices may not be converted to each other's type if the element types of the two slices are different, but there is a hole to this rule
	Don't misuse the TrimLeft function as TrimPrefix in the strings and bytes standard packages
	The json.Unmarshal function accepts case-insensitive object key matches
	The spaces in struct tag key-value pairs will not be trimmed
	How to resolve cyclic package dependency problem?
	Deferred calls will not be executed after the os.Exit function is called
	How to let the main function return an exit code?
	Try not to use exported variables
	Export final error variables

