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Abstract—Two metal-organic frameworks based on Cd(II) and 2-iodo-(2-I-Bdc) and 2,5-diodo-(2,5-I-
Bdc)terephthalate were obtained: {[Cd(2-I-Bdc)(Bbi)]} (I) and {[Cd2(2,5-I-Bdc)2(DMF)2(Bbi)]} (II)
(Bbi = 1,1'-(1,4-butanediyl)bis(imidazole)). The structures of both complexes were established by X-ray dif-
fraction (CCDC no. 2258217 (I) and 2257566 (II)).
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INTRODUCTION
Metal-organic frameworks (MOFs) have been

actively studied during the last decades [1–7]. This is
due to the broad scope of their applicability in various
fields of both chemistry and materials science, includ-
ing, to mention only some of them, selective separa-
tion of gases [8–10] and other substrates, most often,
organic compounds [11–13], luminescence sensors
[14–16], etc. A greater part of MOFs are metal car-
boxylates (most often, aromatic) [17–19]. A key factor
is the design of linker ligands, as they are largely
responsible for various types of non-covalent interac-
tions with guest molecules located in the pores and,
hence, for the selectivity (of sorption, recognition,
etc.). Hydrogen bonds play the most important role in
these processes [20]. Nevertheless, there are recent
studies describing MOFs that contain building blocks
capable of forming also other types of supramolecular
contacts. An example of these contacts is halogen
bond (HalB) [21–29]. Although the number of papers
devoted to HalBs in MOFs is still moderate [30, 31],
we believe that this area has great potential for devel-
opment.

Here we prepared two MOFs based on Cd(II)
and iodo-substituted terephthalic acid derivatives,
{[Cd(2-I-Bdc)(Bbi)]} (I) and {[Cd2(2,5-I-Bdc)2-
(DMF)2(Bbi)]} (II) (2-I-Bdc = 2-iodoterephthalate,
2,5-I-Bdc = 2,5-diodoterephthalate, Bbi = 1,1'-(1,4-
butanediyl)bis(imidazole)), and studied them by
X-ray diffraction.

EXPERIMENTAL
The starting reagents were received from commer-

cial sources. 2-Iodo- [32] and 2,5-diiodoterephthalic
[33] acids and 1,1'-(1,4-Butanediyl)-bis(imidazole)
[34] were prepared by published procedures.

Synthesis of {[Cd(2-I-Bdc)(Bbi)]} (I).
Cd(NO3)2·4H2O (31 mg), 2-iodoterephthalic acid
(H2(2-I-Bdc)) (29 mg), Bbi (19 mg), and DMF
(7.5 mL) were placed into a tube, which was sealed,
treated with ultrasound (10 min), kept at 125°C for
48 h, and slowly cooled down. Colorless crystals of I
were deposited on the tube wall. The yield was 85%.

Synthesis of {[Cd2(2,5-I-Bdc)2(DMF)2(Bbi)]}
(II) was performed similarly to I using 2,5-diiodotere-
phthalic acid (42 mg). Compound II was formed as
colorless crystals.

X-ray diffraction study of complexes I and II was
carried out on a Bruker D8 Venture diffractometer
(MoKα-radiation, λ = 0.71073 Å) at 150 K. The reflec-
tion intensities were measured by ω- and ϕ-scanning
of narrow (0.5°) frames. The absorption corrections
were applied empirically using SADABS software.
The structures were solved by the direct method using
the SHELXT program [35] and refined by the least-
squares method in the anisotropic approximation for
non-hydrogen atoms using the SHELXL 2017\1 algo-
rithm [36] in the ShelXle program [37]. The crystal
data and structure refinement details are summarized
in Table 1.
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Table 1. Crystallographic data and structure refinement details for complexes I and II

Parameter
Value

I II

Formula C36H34N8O8I2Cd2 C32H32N6O10I4Cd2

M 1185.31 1393.03

System Triclinic Triclinic

Space group

a, Å 9.1371(2) 9.7866(2)

b, Å 9.8545(2) 10.0262(2)

c, Å 11.9888(3) 12.3614(3)

α, deg 77.148(1) 75.222(1)

β, deg 68.926(1) 67.237(1)

γ, deg 84.510(1) 66.939(1)

V, Å3 981.91(4) 1021.39(4)

Z 1 1

μ, mm–1 2.72 4.12

Tmin, Tmax 0.668, 0.747 0.632, 0.746

Number of ref lections measured/unique 12680/3709 9474/3804

Number of ref lections with (I > 2σ(I)) 3617 3540

Rint 0.025 0.020

(sin θ/λ)max, Å–1 0.610 0.610

Ranges of indices h, k, l –11 ≤ h ≤ 11,
–12 ≤ k ≤ 11,
–14 ≤ l ≤ 14

–11 ≤ h ≤ 11,
–12 ≤ k ≤ 12, 
–15 ≤ l ≤ 15

R[F 2 > 2σ(F 2)], wR(F 2), S 0.072, 0.186, 1.17 0.050, 0.148, 1.09

Residual electron density (max/min), e Å–3 1.11/–2.51 2.31/–2.88

1P 1P
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Fig. 1. Powder X-ray diffraction patterns of I: (above)
experimental and (below) calculated from X-ray diffrac-
tion data.
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Fig. 2. Structure of the binuclear building blocks in I.
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The atom coordinates and other X-ray experiment
details were deposited with the Cambridge Crystallo-
graphic Data Centre (CCDC no. 2258217 (I) and
2257566 (II); deposit@ccdc.cam.ac.uk or http://
www.ccdc.cam.ac.uk/data_request/cif).
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Fig. 3. 3D st
RESULTS AND DISCUSSION
Compounds I and II were prepared by solvother-

mal synthesis, which is widely used in MOF chemistry
[38–42]. According to powder X-ray diffraction data
(Fig. 1), complex I was formed a single-phase sample,
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Fig. 4. Binuclear building block {Cd2(2,5-I-Bdc)Bbi(DMF)2} in the crystal structure of II.
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whereas all attempts to obtain II as a single phase
failed (additional experiments with variable tempera-
ture, solvent volume, etc. were carried out).

In the structure of I, Cd(II) forms binuclear build-
ing blocks (Fig. 2). The coordination environment of
each Cd atom is composed of two nitrogen atoms
of the Bbi linker (Cd–N = 2.245–2.340 Å) and three
carboxylate groups of the 2-iodoterephthalate ligands.
One ligand is coordinated in the pseudo-bidentate
mode: the Cd–O distances are 2.233 and 2.690 Å;
most likely, the latter corresponds to seven-coordina-
tion. The second and third 2-iodoterephthalate
ligands are bridging: one O atom binds to only one Cd
atom (Cd–O = 2.369 Å), while the second one occu-
pies a μ2-bridging position (Cd–O = 2.448–2.523 Å).

The iodine atoms of the 2-iodoterephthalate linkers
are disordered over two sites with equal occupancy.
The three-dimensional structure of I is shown in
Fig. 3.

The structure of II differs considerably from that
of I. Although the building blocks in II are also binu-
RUSSIAN JOURNAL OF C
clear (Fig. 4), the coordination sphere of each Cd
atom contains only one Bbi ligand (Cd–N = 2.241 Å).
Each methylene group of Bbi ligands is disordered
over two sites with 0.6 : 0.4 occupancy ratio. The bind-
ing motif of carboxylate linkers is identical to that in I,
but they are partly disordered (Cd–O = 2.265–
2.52 Å). In addition, each Cd atom is bound to one
DMF molecule (Cd–O = 2.347 Å). The crystal pack-
ing of II is shown in Fig. 5.

Although both compounds have a three-dimen-
sional structure, according to calculations, there is no
free space available for the entry of guest molecules.
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Fig. 5. Crystal packing of complex II.
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