

Cadmium(II) Metal-Organic Frameworks Based on Iodine-Substituted Terephthalic Acid Derivatives and 1,1'-(1,4-Butanediyl)-bis-imidazole

M. A. Bondarenko^{a, b}, A. S. Zaguzin^{a, b}, P. A. Abramov^a, I. V. Korol'kov^a,
D. A. Zherebtsov^b, V. P. Fedin^a, and S. A. Adonin^{a, b, c, *}

^a Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

^b South Ural State University, Chelyabinsk, Russia

^c Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia

*e-mail: adonin@niic.nsc.ru

Received April 25, 2023; revised May 23, 2023; accepted May 24, 2023

Abstract—Two metal-organic frameworks based on Cd(II) and 2-iodo-(2-I-Bdc) and 2,5-diodo-(2,5-I-Bdc)terephthalate were obtained: $\{[\text{Cd}(2\text{-I-Bdc})(\text{Bbi})]\}$ (**I**) and $\{[\text{Cd}2(2,5\text{-I-Bdc})2(\text{DMF})2(\text{Bbi})]\}$ (**II**) ($\text{Bbi} = 1,1'-(1,4\text{-butanediyl})\text{bis(imidazole)}$). The structures of both complexes were established by X-ray diffraction (CCDC no. 2258217 (**I**) and 2257566 (**II**)).

Keywords: cadmium, metal-organic frameworks, carboxylates, X-ray diffraction analysis

DOI: 10.1134/S1070328423700689

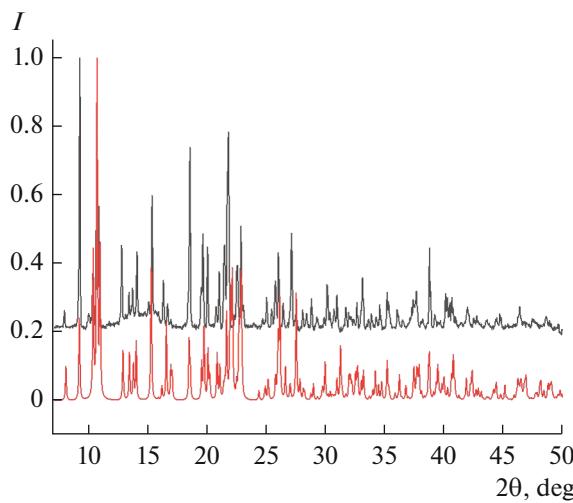
INTRODUCTION

Metal-organic frameworks (MOFs) have been actively studied during the last decades [1–7]. This is due to the broad scope of their applicability in various fields of both chemistry and materials science, including, to mention only some of them, selective separation of gases [8–10] and other substrates, most often, organic compounds [11–13], luminescence sensors [14–16], etc. A greater part of MOFs are metal carboxylates (most often, aromatic) [17–19]. A key factor is the design of linker ligands, as they are largely responsible for various types of non-covalent interactions with guest molecules located in the pores and, hence, for the selectivity (of sorption, recognition, etc.). Hydrogen bonds play the most important role in these processes [20]. Nevertheless, there are recent studies describing MOFs that contain building blocks capable of forming also other types of supramolecular contacts. An example of these contacts is halogen bond (HalB) [21–29]. Although the number of papers devoted to HalBs in MOFs is still moderate [30, 31], we believe that this area has great potential for development.

Here we prepared two MOFs based on Cd(II) and iodo-substituted terephthalic acid derivatives, $\{[\text{Cd}(2\text{-I-Bdc})(\text{Bbi})]\}$ (**I**) and $\{[\text{Cd}2(2,5\text{-I-Bdc})2(\text{DMF})2(\text{Bbi})]\}$ (**II**) (2-I-Bdc = 2-iodoterephthalate, 2,5-I-Bdc = 2,5-diodoterephthalate, $\text{Bbi} = 1,1'-(1,4\text{-butanediyl})\text{bis(imidazole)}$), and studied them by X-ray diffraction.

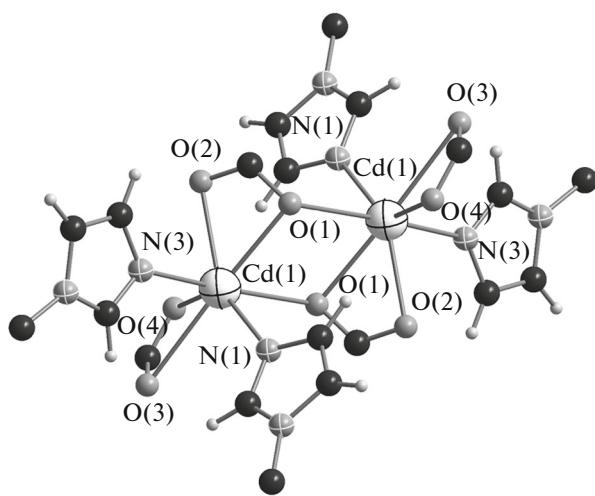
EXPERIMENTAL

The starting reagents were received from commercial sources. 2-Iodo- [32] and 2,5-diodoterephthalic [33] acids and 1,1'-(1,4-Butanediyl)-bis(imidazole) [34] were prepared by published procedures.


Synthesis of $\{[\text{Cd}(2\text{-I-Bdc})(\text{Bbi})]\}$ (I**)**. $\text{Cd}(\text{NO}_3)_2 \cdot 4\text{H}_2\text{O}$ (31 mg), 2-iodoterephthalic acid ($\text{H}_2(2\text{-I-Bdc})$) (29 mg), Bbi (19 mg), and DMF (7.5 mL) were placed into a tube, which was sealed, treated with ultrasound (10 min), kept at 125°C for 48 h, and slowly cooled down. Colorless crystals of **I** were deposited on the tube wall. The yield was 85%.

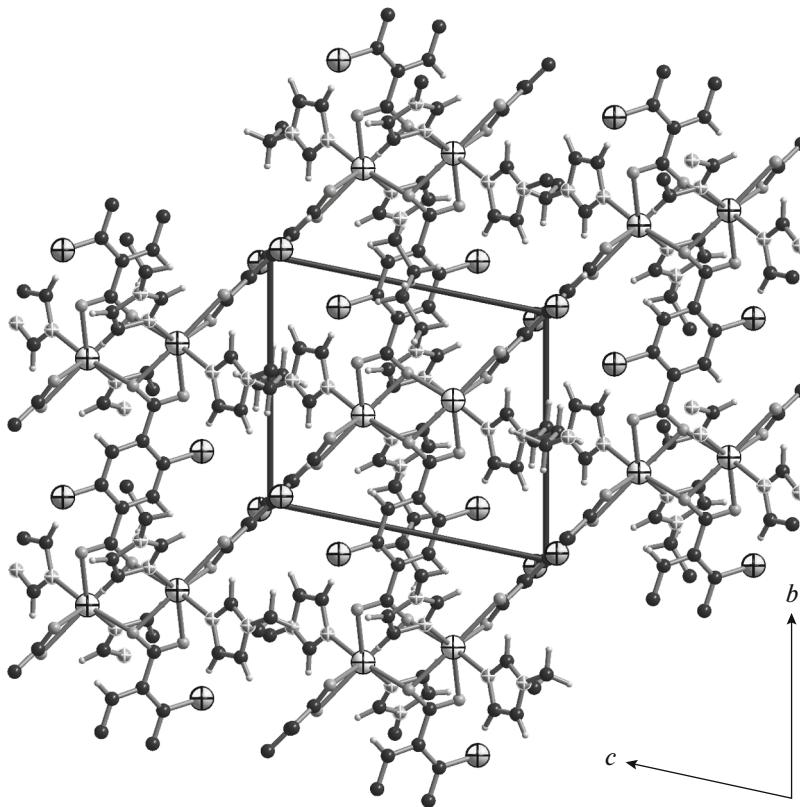
Synthesis of $\{[\text{Cd}2(2,5\text{-I-Bdc})2(\text{DMF})2(\text{Bbi})]\}$ (II**)** was performed similarly to **I** using 2,5-diodoterephthalic acid (42 mg). Compound **II** was formed as colorless crystals.

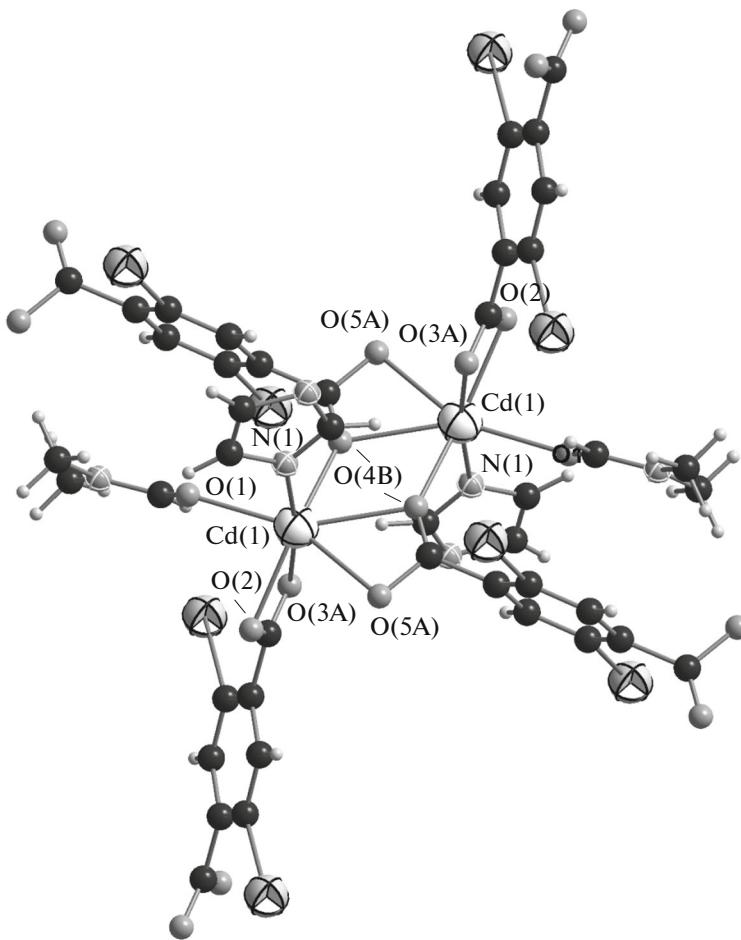
X-ray diffraction study of complexes **I** and **II** was carried out on a Bruker D8 Venture diffractometer (MoK_α -radiation, $\lambda = 0.71073 \text{ \AA}$) at 150 K. The reflection intensities were measured by ω - and φ -scanning of narrow (0.5°) frames. The absorption corrections were applied empirically using SADABS software. The structures were solved by the direct method using the SHELXT program [35] and refined by the least-squares method in the anisotropic approximation for non-hydrogen atoms using the SHELXL 2017\1 algorithm [36] in the ShelXle program [37]. The crystal data and structure refinement details are summarized in Table 1.


Table 1. Crystallographic data and structure refinement details for complexes **I** and **II**

Parameter	Value	
	I	II
Formula	C ₃₆ H ₃₄ N ₈ O ₈ I ₂ Cd ₂	C ₃₂ H ₃₂ N ₆ O ₁₀ I ₄ Cd ₂
<i>M</i>	1185.31	1393.03
System	Triclinic	Triclinic
Space group	<i>P</i> 	<i>P</i> 
<i>a</i> , Å	9.1371(2)	9.7866(2)
<i>b</i> , Å	9.8545(2)	10.0262(2)
<i>c</i> , Å	11.9888(3)	12.3614(3)
α, deg	77.148(1)	75.222(1)
β, deg	68.926(1)	67.237(1)
γ, deg	84.510(1)	66.939(1)
<i>V</i> , Å ³	981.91(4)	1021.39(4)
<i>Z</i>	1	1
μ, mm ⁻¹	2.72	4.12
<i>T</i> _{min} , <i>T</i> _{max}	0.668, 0.747	0.632, 0.746
Number of reflections measured/unique	12680/3709	9474/3804
Number of reflections with (<i>I</i> > 2σ(<i>I</i>))	3617	3540
<i>R</i> _{int}	0.025	0.020
(sin θ/λ) _{max} , Å ⁻¹	0.610	0.610
Ranges of indices <i>h</i> , <i>k</i> , <i>l</i>	-11 ≤ <i>h</i> ≤ 11, -12 ≤ <i>k</i> ≤ 11, -14 ≤ <i>l</i> ≤ 14	-11 ≤ <i>h</i> ≤ 11, -12 ≤ <i>k</i> ≤ 12, -15 ≤ <i>l</i> ≤ 15
<i>R</i> [<i>F</i> ² > 2σ(<i>F</i> ²)], <i>wR</i> (<i>F</i> ²), <i>S</i>	0.072, 0.186, 1.17	0.050, 0.148, 1.09
Residual electron density (max/min), e Å ⁻³	1.11/-2.51	2.31/-2.88

Fig. 1. Powder X-ray diffraction patterns of **I**: (above) experimental and (below) calculated from X-ray diffraction data.


The atom coordinates and other X-ray experiment details were deposited with the Cambridge Crystallographic Data Centre (CCDC no. 2258217 (**I**) and 2257566 (**II**); deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk/data_request/cif).


Fig. 2. Structure of the binuclear building blocks in **I**.

RESULTS AND DISCUSSION

Compounds **I** and **II** were prepared by solvothermal synthesis, which is widely used in MOF chemistry [38–42]. According to powder X-ray diffraction data (Fig. 1), complex **I** was formed a single-phase sample,

Fig. 3. 3D structure of **I**.

Fig. 4. Binuclear building block $\{\text{Cd}_2(2,5\text{-I-Bdc})\text{Bbi}(\text{DMF})_2\}$ in the crystal structure of **II**.

whereas all attempts to obtain **II** as a single phase failed (additional experiments with variable temperature, solvent volume, etc. were carried out).

In the structure of **I**, Cd(II) forms binuclear building blocks (Fig. 2). The coordination environment of each Cd atom is composed of two nitrogen atoms of the Bbi linker ($\text{Cd}-\text{N} = 2.245\text{--}2.340\text{ \AA}$) and three carboxylate groups of the 2-iodoterephthalate ligands. One ligand is coordinated in the pseudo-bidentate mode: the $\text{Cd}-\text{O}$ distances are 2.233 and 2.690 \AA ; most likely, the latter corresponds to seven-coordination. The second and third 2-iodoterephthalate ligands are bridging: one O atom binds to only one Cd atom ($\text{Cd}-\text{O} = 2.369\text{ \AA}$), while the second one occupies a μ_2 -bridging position ($\text{Cd}-\text{O} = 2.448\text{--}2.523\text{ \AA}$). The iodine atoms of the 2-iodoterephthalate linkers are disordered over two sites with equal occupancy. The three-dimensional structure of **I** is shown in Fig. 3.

The structure of **II** differs considerably from that of **I**. Although the building blocks in **II** are also binu-

clear (Fig. 4), the coordination sphere of each Cd atom contains only one Bbi ligand ($\text{Cd}-\text{N} = 2.241\text{ \AA}$). Each methylene group of Bbi ligands is disordered over two sites with 0.6 : 0.4 occupancy ratio. The binding motif of carboxylate linkers is identical to that in **I**, but they are partly disordered ($\text{Cd}-\text{O} = 2.265\text{--}2.52\text{ \AA}$). In addition, each Cd atom is bound to one DMF molecule ($\text{Cd}-\text{O} = 2.347\text{ \AA}$). The crystal packing of **II** is shown in Fig. 5.

Although both compounds have a three-dimensional structure, according to calculations, there is no free space available for the entry of guest molecules.

ACKNOWLEDGEMENTS

The authors are grateful to the Center for Collective Use of the Saint Petersburg State University for the help in conducting primary X-ray diffraction experiments (the additional experiments were carried out at the Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences).

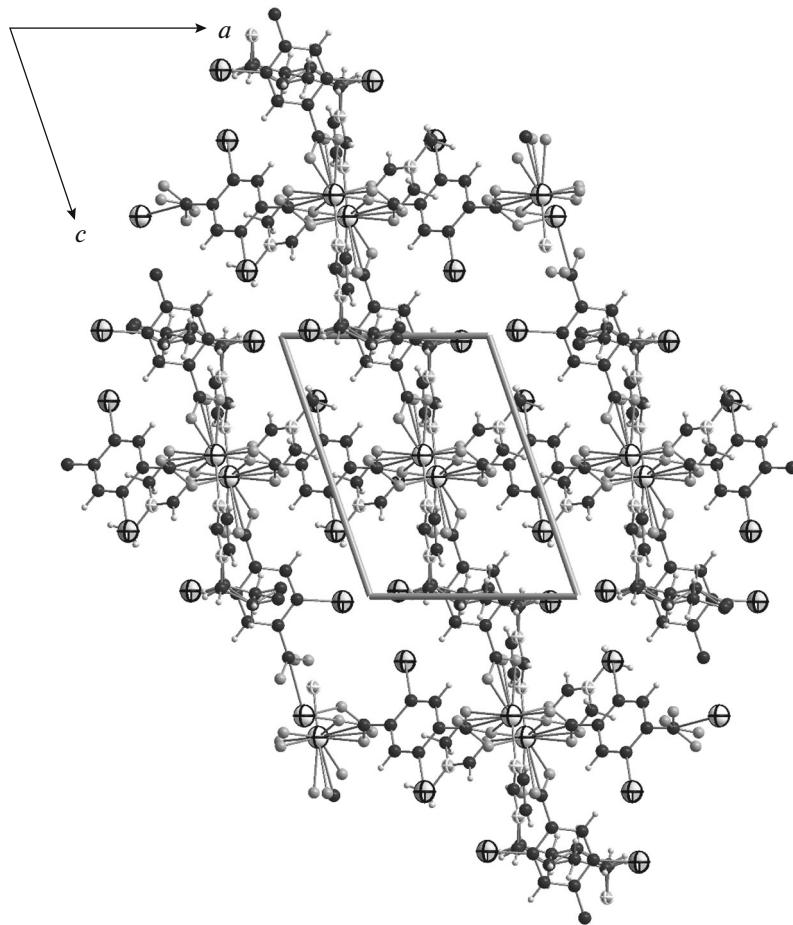


Fig. 5. Crystal packing of complex II.

FUNDING

This study was supported by the Russian Science Foundation (grant no. 21-73-20019) and in part by the Ministry of Education and Science of the Russian Federation (Structure Characterization of Samples, no. 121031700313-8).

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

REFERENCES

1. Cheplakova, A.M., Gusarov, V.S., Samsonenko, D.G., et al., *J. Struct. Chem.*, 2022, vol. 63, no. 6, p. 895. <https://doi.org/10.1134/S0022476622060063>
2. Andreichenko, A.A., Burlak, P.V., Kovalenko, K.A., et al., *J. Struct. Chem.*, 2022, vol. 63, no. 3, p. 378. <https://doi.org/10.1134/S0022476622030052>
3. Dubskikh, V.A., Lysova, A.A., Samsonenko, D.G., et al., *J. Struct. Chem.*, 2022, vol. 63, no. 2, p. 227. <https://doi.org/10.1134/S0022476622020032>
4. Kiraev, S.R., Nikolaevskii, S.A., Kiskin, M.A., et al., *Inorg. Chim. Acta*, 2018, vol. 477, p. 15. <https://doi.org/10.1016/J.ICA.2018.02.011>
5. Primakov, P.V., Denisov, G.L., Novikov, V.V., et al., *Mendeleev Commun.*, 2022, vol. 32, no. 1, p. 105. <https://doi.org/10.1016/j.mencom.2022.01.034>
6. Li, G.-L., Yin, W.-D., Zhang, J.-Y., et al., *Russ. J. Inorg. Chem.*, 2022, vol. 67, no. 11, p. 1745. <https://doi.org/10.1134/S0036023622600800>
7. Guo, L.-D., Zhao, X.-H., Liu, Y.-Y., et al., *Russ. J. Inorg. Chem.*, 2022, vol. 67, no. 13, p. 2140. <https://doi.org/10.1134/S0036023622700097>
8. Sapijanik, A.A., Dudko, E.R., Kovalenko, K.A., et al., *ACS Appl. Mater. Interfaces*, 2021, vol. 13, no. 12, p. 14768. <https://doi.org/10.1021/acsami.1c02812>
9. Zhan, C.-H., Huang, D.-P., Wang, Y., et al., *CrystEngComm*, 2021, vol. 23, no. 15, p. 2788. <https://doi.org/10.1039/d1ce00235j>
10. Wang, X., Zou, Y., Zhang, Y., et al., *J. Colloid Interface Sci.*, 2022, vol. 626, p. 836. <https://doi.org/10.1016/j.jcis.2022.07.008>

11. Sapijanik, A.A., Kovalenko, K.A., Samsonenko, D.G., et al., *Chem. Commun.*, 2020, vol. 56, no. 59, p. 8241. <https://doi.org/10.1039/d0cc03227a>
12. Ye, C.-R., Wang, W.-J., Chen, W., et al., *Angew. Chem., Int. Ed. Engl.*, 2021, vol. 60, no. 44, p. 23590. <https://doi.org/10.1002/anie.202109964>
13. Mukherjee, S., Sensharma, D., Qazvini, O.T., et al., *Coord. Chem. Rev.*, 2021, vol. 437, p. 213852. <https://doi.org/10.1016/j.ccr.2021.213852>
14. Pavlov, D.I., Sukhikh, T.S., Ryadun, A.A., et al., *J. Mater. Chem.*, 2010, vol. 10, no. 14, p. 5567. <https://doi.org/10.1039/d1tc05488k>
15. Yang, Z., Zhang, W., Yin, Y., et al., *Food Control*, 2022, vol. 133, p. 108684. <https://doi.org/10.1016/j.foodcont.2021.108684>
16. Cook, T.R., Zheng, Y.-R., and Stang, P.J., *Chem. Rev.*, 2013, vol. 113, no. 1, p. 734. <https://doi.org/10.1021/cr3002824>
17. Zorina-Tikhonova, E.N., Yambulatov, D.S., Kiskin, M.A., et al., *Russ. J. Coord. Chem.*, 2020, vol. 46, no. 2, p. 75. <https://doi.org/10.1134/S1070328420020104>
18. Yashkova, K.A., Mel'nikov, S.N., Nikolaevskii, S.A., et al., *J. Struct. Chem.*, 2021, vol. 62, no. 9, p. 1378. <https://doi.org/10.1134/S0022476621090067>
19. Kolokolov, F.A., Kulyasov, A.N., Magomadova, M.A., et al., *Russ. J. Gen. Chem.*, 2016, vol. 86, no. 5, p. 1209. <https://doi.org/10.1134/S1070363216050418>
20. Ahmed, I. and Jhung, S.H., *Chem. Eng. J.*, 2017, vol. 310, p. 197. <https://doi.org/10.1016/j.cej.2016.10.115>
21. Bartashevich, E. and Tsirelson, V., *J. Comput. Chem.*, 2018, vol. 39, no. 10, p. 573. <https://doi.org/10.1002/jcc.25112>
22. Yushina, I.D., Masunov, A.E., Lopez, D., et al., *Cryst. Growth Des.*, 2018, vol. 18, no. 9, p. 5069. <https://doi.org/10.1021/acs.cgd.8b00529>
23. Eliseeva, A.A., Ivanov, D.M., Novikov, A.S., et al., *CrystEngComm*, 2019, vol. 21, no. 4, p. 616. <https://doi.org/10.1039/c8ce01851k>
24. Eliseeva, A.A., Ivanov, D.M., Novikov, A.S., et al., *Dalton Trans.*, 2020, vol. 49, no. 2, p. 356. <https://doi.org/10.1039/c9dt04221k>
25. Aliyarova, I.S., Tupikina, E.Y., Soldatova, N.S., et al., *Inorg. Chem.*, 2022, vol. 61, no. 39, p. 15398. <https://doi.org/10.1021/acs.inorgchem.2c01858>
26. Soldatova, N.S., Postnikov, P.S., Suslonov, V.V., et al., *Org. Chem. Front.*, 2020, vol. 7, no. 16, p. 2230. <https://doi.org/10.1039/d0qo00678e>
27. Aliyarova, I.S., Ivanov, D.M., Soldatova, N.S., et al., *Cryst. Growth Des.*, 2021, vol. 21, no. 2, p. 1136. <https://doi.org/10.1021/acs.cgd.0c01463>
28. Rozhkov, A.V., Novikov, A.S., Ivanov, D.M., et al., *Cryst. Growth Des.*, 2018, vol. 18, no. 6, p. 3626. <https://doi.org/10.1021/acs.cgd.8b00408>
29. Melekhova, A.A., Novikov, A.S., Dubovtsev, A.Y., et al., *Inorg. Chim. Acta*, 2019, vol. 484, p. 69. <https://doi.org/10.1016/j.ica.2018.09.024>
30. Kalaj, M., Momeni, M.R., Bentz, K.C., et al., *Chem. Commun.*, 2019, vol. 55, no. 24, p. 3481. <https://doi.org/10.1039/C9CC00642G>
31. Li, B., Dong, M.-M., Fan, H.-T., et al., *Cryst. Growth Des.*, 2014, vol. 14, no. 12, p. 6325. <https://doi.org/10.1021/cg501073e>
32. Christine, T., Tabey, A., Cornilleau, T., et al., *Tetrahedron*, 2019, vol. 75, no. 52, p. 130765. <https://doi.org/10.1016/j.tet.2019.130765>
33. Perry, R.J., Wilson, B.D., Turner, S.R., et al., *Macromolecules*, 1995, vol. 28, no. 10, p. 3509. <https://doi.org/10.1021/ma00114a003>
34. Barsukova, M.O., Samsonenko, D.G., Goncharova, T.V., et al., *Russ. Chem. Bull.*, 2016, vol. 65, no. 12, p. 2914. <https://doi.org/10.1007/s11172-016-1677-4>
35. Sheldrick, G.M., *Acta Crystallogr., Sect. A: Found. Crystallogr.*, 2008, vol. 64, no. 1, p. 112. <https://doi.org/10.1107/S0108767307043930>
36. Sheldrick, G.M., *Acta Crystallogr., Sect. C: Struct. Chem.*, 2015, vol. 71, no. 1, p. 3. <https://doi.org/10.1107/S2053229614024218>
37. Hübschle, C.B., Sheldrick, G.M., and Dittrich, B., *J. Appl. Crystallogr.*, 2011, vol. 44, no. 6, p. 1281. <https://doi.org/10.1107/S0021889811043202>
38. Dubskikh, V.A., Lysova, A.A., Samsonenko, D.G., et al., *Russ. J. Coord. Chem.*, 2021, vol. 47, no. 10, p. 664. <https://doi.org/10.1134/S107032842110002X>
39. Dubskikh, V.A., Lysova, A.A., Samsonenko, D.G., et al., *J. Struct. Chem.*, 2020, vol. 61, no. 11, p. 1800. <https://doi.org/10.1134/S002247662011013X>
40. Ghosh, S., Steinke, F., Rana, A., et al., *Inorg. Chem. Front.*, 2022, vol. 9, no. 5, p. 859. <https://doi.org/10.1039/d1qi01190a>
41. Rana, A., Nandi, S., and Biswas, S., *New J. Chem.*, 2022, vol. 46, no. 21, p. 10477. <https://doi.org/10.1039/d2nj01068b>
42. Ghosh, S., Steinke, F., Rana, A., et al., *Eur. J. Inorg. Chem.*, 2021, vol. 2021, no. 37, p. 3846. <https://doi.org/10.1002/ejic.202100568>

Translated by Z. Svitanko

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.