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Abstract—The reaction of tetra(para-tolyl)stibonium chloride p-Tol4SbCl (I) with benzenesulfonic acid in
water affords tetra(para-tolyl)stibonium benzenesulfonate p-Tol4SbOSO2Ph (II). According to the X-ray dif-
fraction (XRD) data (CIF files CCDC nos. 2167562 and 2126493, respectively), compounds I and II have
molecular structures with the distorted trigonal bipyramidal coordination of the antimony atom. The geo-
metric characteristics for molecules of compound I: angles CSbC 96.12(8)°−124.83(8)°, axial angle CSbCl
174.91(6)°, distances Sb–C and Sb−Cl 2.107(2)–2.170(2) and 2.7230(13) Å, respectively; for molecules of
compound II angles CSbC 97.72(14)°−118.77(15)°, axial angle CSbCl 174.91(6)°, distances Sb–C and
Sb−Cl 2.107(2)–2.170(2) and 2.7230(13) Å, respectively.
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INTRODUCTION

Increasing interest in organic antimony com-
pounds is caused, in many respects, by a growing
potential of their use in diverse areas of practical activ-
ity: as drugs, biocides, and fungicides; as reagents and
components of catalytic systems of polymerization; in
fine organic synthesis; as antioxidants; and others [1].
The phenyl derivatives of pentavalent antimony of the
general formula Ph4SbX (Х is an electronegative
group) are among the most studied organostibium
compounds [2]. Similar tolyl derivatives are studied to
less extent [3–24].

The reaction of tetra(para-tolyl)stibonium (I) with
benzenesulfonic acid, the single organostibium prod-
uct of which was tetra(para-tolyl)stibonium benzene-
sulfonate (II), was studied in order to extend an exper-
imental material in this field. The refined XRD results
are presented for complexes I and II.

EXPERIMENTAL

Synthesis of tetra(para-tolyl)stibonium benzenesul-
fonate p-Tol4SbOSO2Ph (II). A solution of benzene-
sulfonic acid (79 mg) in water (5 mL) was added with
stirring to a solution of compound I (261 mg,
0.50 mmol) in water (15 mL). After water was evapo-
rated from the filtrate, colorless crystals of complex II

with Тm = 146°С were obtained in a yield of 310 mg
(97%). IR (ν, cm–1): 1280 m, 1170 vs, 1130 s (SO2).

The IR spectrum of compound II was recorded on
a Shimadzu IRAffinity-1S FT-IR spectrometer for a
sample pelleted with KBr in an absorption range of
4000−400 cm−1.

XRD was carried out on a Bruker D8 QUEST auto-
mated four-circle diffractometer (MoKα radiation,
λ = 0.71073 Å, graphite monochromator). Data were
collected and edited, unit cell parameters were
refined, and an absorption correction was applied
using the SMART and SAINT-Plus programs [25].
All calculations on structure determination and
refinement were performed using the SHELXL/PC
[26] and OLEX2 [27] programs. The structures were
solved by a direct method and refined by least squares
in the anisotropic approximation for non-hydrogen
atoms. The crystallographic data and structure refine-
ment results are listed in Table 1.

The full tables of atomic coordinates, bond lengths,
and bond angles for compounds I and II were depos-
ited with the Cambridge Crystallographic Data Centre
(CIF files CCDC nos. 2167562 and 2126493, respec-

For C34H33O3SSb
Anal. calcd., % C, 63.45 H, 5.13
Found, % C, 63.26 H, 5.20
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Table 1. Crystallographic data and experimental and structure refinement parameters for compounds I and II

Parameter I II

Empirical formula C28H28ClSb C34H33O3SSb
FW 521.70 643.41
Crystal system Monoclinic Orthorhombic
Space group P21/n Pbca

a, Å 9.786(3) 9.923(8)
b, Å 23.168(8) 18.932(16)
c, Å 12.026(5) 32.72(3)
α, deg 9000 90.00
β, deg 113.689(16) 90.00
γ, deg 90.00 90.00

V, Å3 2496.6(16) 6146(9)

Z 4 8

ρcalc, g/cm3 1.388 1.391

μ, mm–1 1.224 0.997

F(000) 1056.0 2624.0
Crystal size, mm 0.47 × 0.32 × 0.1 0.21 × 0.2 × 0.13
Range of data collection over 2θ, deg 6.44–56.72 5.954–56.644
Ranges of reflection indices –13 ≤ h ≤ 13,

–30 ≤ k ≤ 30,
–15 ≤ l ≤ 15

–8 ≤ h ≤ 12,
–25 ≤ k ≤ 25,
–43 ≤ l ≤ 43

Measured reflections 59454 73682
Independent reflections (Rint) 6189 (0.0394) 7553 (0.0589)
Reflections with I > 2σ(I) 5133 4775
Refinement variables 275 359
GOOF 1.055 1.076

R factors for F 2 > 2σ(F 2) R1 = 0.0272, wR2 = 0.0581 R1 = 0.0493, wR2 = 0.0981

R factors for all reflections R1 = 0.0383, wR2 = 0.0620 R1 = 0.0955, wR2 = 0.1148

Residual electron density (min/max), e/Å3 –0.52/0.23 –0.58/0.60
tively; deposit@ccdc.cam.ac.uk; http://www.ccdc.
cam.ac.uk).

RESULTS AND DISCUSSION
It is known that the exchange reactions of a halide

anion in tetraarylstibonium halides are used for the
preparation of various metal complexes [2]. An inter-
esting substitution of the halide anion by the stronger
acid residue was described [28]: the reactions of
organyltriphenylphosphonium halides with arenesul-

fonic acids in water lead to the formation of organylt-
riphenylphosphonium arenesulfonates.

Continuing the studies of the substitution reactions
of a halide anion in aryl derivatives of antimony, we
studied the reaction of tetra(para-tolyl)stibonium
chloride (I) with benzenesulfonic acid. Tetra(para-
tolyl)stibonium benzenesulfonate p-Tol4SbOSO2Ph
(II) was shown to be the single product of this reac-
tion.

+ → +4 2 4 2-Tol SbCl HOSO Ph -Tol SbOSO Ph HCl.
( )

p p
II
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Fig. 1. Structure of tetra(para-tolyl)stibonium chloride p-Tol4SbCl.
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The structure of compound I (Fig. 1) has previ-
ously been described [3, 4], and in the present work its
structure was refined to R = 2.7%.
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Fig. 2. Structure of tetra(para-tolyl)stibon
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96.12(8)°−124.83(8)°, the axial CSbCl angle is
174.91(6)°, and the Sb–C and Sb−Cl distances are
2.107(2)–2.170(2) and 2.7230(13) Å, respectively).

The structure of complex II (Fig. 2) was reported
[7, 9]. According to the XRD data, molecules of com-
pound II have the trigonal bipyramidal structure. The
sulfonate group is in the axial position, which is com-
pletely consistent with the theory of repulsion of elec-
tron pairs of valence orbitals, and the observed Sb–О
bond length (2.409(3) Å) exceeds the sum of covalent
radii of the atoms bound to each other (2.14 Å [29]).
The CSbC angles vary in a range of
97.72(14)°−118.77(15)°, the axial CSbO angle is
176.44(13)°, and the Sb–C distances are 2.105(4)–
2.150(4) Å.

Thus, tetra(para-tolyl)stibonium benzenesulfonate (II)
was synthesized for the first time by the substitution reaction
from tetra(para-tolyl)stibonium chloride (I) and benzene-
sulfonic acid in a yield of 97%. The structures of com-
plexes I and II were refined by XRD.
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