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Bromoantimonates(III) vs. Bromobismuthates(III): Differences
in the Tendency for the Formation of Polynuclear Complexes
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Abstract—Pyridine-based Sb(III) bromide complexes with doubly charged cations, (PyC3)3[Sb2Br9]2 (I),
(PyC4)[Sb2Br8] (II), (PyC5)2[α-Sb4Br16] (III), (PyC6)2[Sb2Br10] (IV), (4-MePyC2)2[Sb2Br10] (V),
(4-MePyC3)2[α-Sb4Br16] (VI), and (4-MePyC5)2[α-Sb4Br16] (VII), were synthesized and characterized by
X-ray diffraction (CCDC nos. 2204718–2204724). The structures of these compounds were compared with
the structures of related bromobismuthates(III).
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INTRODUCTION
The homoligand halide complexes, or halometal-

lates (HMs) form an extensive class of coordination
compounds. These compounds have been known for
many decades and remain objects of keen interest to
inorganic chemists [1, 2]. Their potential applications
include photocatalysis (especially for Cu [3, 4] and Ag
[5, 6] derivatives), piezoelectric materials [7–9], and
other fields. Particular attention is attracted by Pb(II)
iodide complexes, which can be used [10–18] as light-
absorbing components of solar cells and photodetec-
tors.

The greatest crystal chemical diversity is inherent
in HMs formed by Group 14 and 15 elements: there
are anions of various composition and geometry (up to
8- and 18-nuclear structures for Bi(III) [19, 20] and
Pb(II) [21], respectively) and 1D, 2D, and 3D (for
Pb(II) and Sn(II)) metal-organic frameworks. More
than 40 structural types of HMs are known for Bi(III),
and it may be expected that this is not the final
number [22].

The question of why HM of type X is formed in
reaction Y is still unanswered. It is believed that frag-
ments of low nuclearity exist in solutions, and they are
self-assembled to give more complex structures only
when crystalline phases are formed [23]. It was proved
that the outcome of HM formation (i.e., formation of
HM of a definite type) is affected by several factors, in
particular, the used solvent and the reactant ratio.
However, the most important factor is the nature of
the cation the salt of which is used for the synthesis
[24]. Unfortunately, numerous attempts to find cor-
relations between the nature of cation–anion non-
covalent interactions and the preferred formation of

one or another type of HM [23, 25] have not yet met
with success. It cannot be ruled out that there is no
general answer to this question. Nevertheless, it is
clear that new studies in this area require a larger
amount of experimental data on the structures of var-
ious HMs.

Previously, it was noted [26] that haloantimonates
(HAs) and halobismuthates (HBs) often have struc-
tural similarity (this seems reasonable, considering
positions of these elements in the Periodic Table). Our
goal was to evaluate the similarity of HA and HB
structures formed under analogous conditions in the
presence of the same organic cations. For our experi-
ments, we chose 1,1'-(alkane-1,ω-diyl)-bis(pyridin-
ium) dibromides. A considerable advantage of these
salts is the possibility of obtaining series of target com-
pounds in nearly quantitative yields by reactions of
specified substituted pyridines with 1,ω-dibromoal-
kanes (both types of reagents are relatively cheap and
available) [27–30]. In what follows, these compounds

are designated as  (Py is substituted pyridine, n
is the number of methylene groups).

In this study, we obtained seven new bromoanti-
monates(III): (PyC3)3[Sb2Br9]2 (I), (PyC4)[Sb2Br8]
(II), (PyC5)2[α-Sb4Br16] (III), (PyC6)2[Sb2Br10] (IV),
(4-MePyC2)2[Sb2Br10] (V), (4-MePyC4)2[α-Sb4Br16]
(VI), and (4-MePyC5)2[α-Sb4Br16] (VII). The crystal
structures of the products are discussed, and compar-
ison with relevant Bi(III) complexes prepared and dis-
cussed previously is presented.
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Fig. 1. (a) [Sb2Br10]4– and (b) [Sb2Br9]3– anions. Hereinafter, Sb atoms are shown in black and Br is colored olive green. 

(а) (b)
EXPERIMENTAL

The synthesis was performed in air. The starting
compounds were received from commercial sources.
1,1'-(Alkane-1,ω-diyl)-bis(pyridinium) dibromides
were prepared using the general procedure described
in the literature [31]: the specified pyridine and 1,
ω-dibromoalkane (2.1 : 1) were dissolved in boiling
acetonitrile and refluxed for 12 h. This gave products
as white powders in nearly quantitative yields.

Synthesis of I–VII. In initial experiments, Sb2O3
(100 mg, 0.34 mmol) was dissolved in HBr (4 mL),
and a solution of an equimolar amount of PyCnBr2 in
HBr (4 mL) was added. In all cases, pale yellow crys-
tals suitable for X-ray diffraction formed after some
period of time (from a few tens of minutes to 12 h).
After structure determination, the reactant ratio in the
subsequent syntheses was appropriately changed,
which resulted in a higher yield (73–87%).

X-ray diffraction. The experimental details are
given in Supplementary Information. The single-crys-
tal X-ray diffraction data were collected at 130 K on an
Agilent Xcalibur diffractometer with an AtlasS2 array
detector (MoKα radiation, λ = 0.71073 Å, ω-scan
mode) at T = 140 K. The integration, application of
absorption corrections, and determination of unit cell
parameters were carried out using the CrysAlisPro
program package. The crystal structures were solved
using the SHELXT program package and refined by
the full-matrix least-squares method in the anisotro-
RUSSIAN JOURNAL OF C

Table 1. Sb–Brterm and Sb–μ2-Br bond lengths in I, IV, and V

Complex Sb–Brterm, Å Sb–μ2-Br, Å

I 2.567–2.670 2.988–3.216
IV 2.668–2.792 2.953–3.064
V 2.602–2.809 3.138–3.208
pic (except for hydrogen atoms) approximation using
the SHELX 2014/7 [32] and ShelXle [33] software.

The full tables of interatomic distances and bond
angles, atom coordinates, and atomic displacement
parameters were deposited with the Cambridge Crys-
tallographic Data Center (CCDC no. 2204718–
2204724; https://www.ccdc.cam.ac.uk/structures/).

Powder X-ray diffraction study was carried out on
a Shimadzu XRD-7000 diffractometer. The X-ray dif-
fraction patterns were constructed and the data were
processed using the X'Pert Plus program package.

RESULTS AND DISCUSSION
Structures I–VII correspond to four types. Struc-

tures I, IV, and V contain binuclear [Sb2Br10]4– and
[Sb2Br9]3– anions, respectively, which consist of two
{SbBr6} octahedra sharing a face or an edge (Fig. 1).
These motifs are fairly typical of HMs of Group 15 ele-
ments [26], but not Sb(III): according to CCDC, only
4 and 15 structures with the [Sb2Br10]4– [34–36] and
[Sb2Br9]3– [35, 37–45] anions, respectively, are
known.

The Sb–Brterm and Sb–μ2-Br bond lengths in I, IV,
and V are summarized in Table 1. Their comparison
with the published data for the corresponding bromo-
bismuthates(III) shows that the M–Brterm distances
are similar, while M–μ2-Br distances are markedly
longer for Sb(III) compounds. According to CCDC
data, the longest Bi–μ2-Br distances for [Bi2Br10]4–

and [Bi2Br9]3– are 3.172 [46] and 3.229 Å [25]. The
most probable cause is the effect of lone pair, which
should be much more pronounced for Sb(III).

The alpha-isomers (according to classification that
we proposed previously [2]) of the [M4X16]4– anions
are not unusual for Bi(III) [2]. For Sb(III), they have
been described in several iodoantimonates [47, 48]
and two bromoantimonates [49, 50]. Among I–VII,
OORDINATION CHEMISTRY  Vol. 49  No. 6  2023
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Fig. 2. [α-Sb4Br16]4– anion.

Fig. 3. [α-Sb2Br8]2– anion.
there are three compounds with these types of anions
(III, VI, and VII) (Fig. 2).

Complex II contains binuclear [Sb2Br8]2– anions,
in which the Sb atoms are five-coordinate (Fig. 3).
Structures of this type are very rare for Bi(III) [51, 52],
which most often forms an octahedral coordination
environment in halide complexes. The Sb–Brterm and
Sb–μ2-Br bond lengths are 2.524–2.659 and 2.940–
3.156 Å, respectively.

Table 2 summarizes the currently available data on
the structures of bromoantimonates(III) and bromo-
bismuthates(III) with 1,1'-(alkane-1,ω-diyl)-bis(pyri-
dinium) dications including both the results described
in this study and those reported previously (some of
RUSSIAN JOURNAL OF COORDINATION CHEMISTRY

Table 2. Bromoantimonates(III) and bromobismuthates(III)
grated data)

Cation Sb(III) R

PyC2 [Sb2Br10]4–/[SbBr5]2–  [5

PyC3 [Sb2Br9]3– (I) This 

PyC4 [Sb2Br8]2– (II) '

PyC5 [α-Sb4Br16]4– (III) '

PyC6 [Sb2Br10]4– (IV) '

(4-MePy)C2 [Sb2Br10]4– (V) '

(4-MePy)C3 [α-Sb4Br16]4– (VI) '

(4-MePy)C4 [Sb2Br8]2–/[α-Sb4Br16]4–  [5

(4-MePy)C5 [α-Sb4Br16]4– (VII) This 

(3-MePy)C2 [Sb2Br9]3–  [5

(3-MePy)C3 [β-Sb4Br16]4–  [5

(3-MePy)C4 [α-Sb4Br16]4–  [5
which were obtained in our previous studies). As fol-
lows from original publications, virtually all of these
compounds were prepared by the same (or, at least, a
similar) route (reaction of acidic Sb(III) solutions
with an excess of the bromide ligand). This fact allows
a direct comparison of the data.

A few interesting points deserve mentioning. First,
in the case of Sb(III), there are six cases in which
the structure contains discrete tetranuclear anions
([α-Sb4Br16]4– almost in all cases), whereas there are
no such bromobismuthates(III) (compounds with
similar cations contain binuclear anions almost in all
cases). Second, in none of the cases, complexes with
mononuclear [SbBr6]3– are formed. In the cases where
Bi(III) forms [BiBr6]3–, Sb(III) forms bi- or even tri-
nuclear anions (a case of unusual polymorphism with
the (4-MePy)  cation was described in our previous
study [57] and appears especially interesting). These
observations can be summarized as follows: under

2
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 with 1,1'-(alkane-1,ω-diyl)-bis(pyridinium) dications (inte-

ef. Bi(III) Ref.

3] [Bi2Br10]4– [54]

work [Bi2Br9]3– [55]

' [BiBr6]3– [56]

' [Bi2Br9]3– [56]

' [BiBr6]3– [28]

' [Bi2Br10]4– [27]

' n/a n/a

7] [BiBr6]3– [27]

work [Bi2Br10]4– [27]

5] [Bi2Br11]5–/[BiBr6]3– [58]

5] [Bi2Br9]3– [55]

5] n/a n/a
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similar conditions, bismuth tends to form discrete HM
anions with lower nuclearity than antimony.
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