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Abstract—The heteroligand complexes [(2-Br-5-MePy)2ZnX2] (X = Cl (I), Br (II)) were prepared by the
reaction of zinc(II) chloride or bromide with 2-bromo-5-methylpyridine and studied by X-ray diffraction
(CCDC nos. 2204966 (I) and 2204967 (II)). The crystals of I and II contain Cl···Br and Br···Br halogen
bonds, which connect the [MX2L2] moieties into supramolecular chains. The energies of these noncovalent
interactions were estimated using quantum chemical calculations.
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INTRODUCTION
Halogen bond (XB) is a specific type of noncova-

lent interactions [1]. Currently, study of halogen
bonds is a hot issue of supramolecular chemistry [2–
8], which is related, to a high extent, to materials sci-
ence, because the ability to form XBs can affect vari-
ous properties, including magnetic [9–11], lumines-
cence [12–14], and other.

The search for new building blocks able to form
XBs is a relevant issue. Quite a few studies are devoted
to the use of perfluorinated iodo- and bromoarenes for
this purpose [15–18]; other promising candidates are
haloalkanes [19, 20], haloalkenes [21, 22], polyhalides
[23–25], high-valence iodine derivatives [26–29], etc.
In addition, there are a number of studies addressing
characteristic features of XBs in neutral complexes
such as [MIIL2X2], where L is a monodentate halogen-
substituted N-donor ligand (halogenated pyridines,
quinolines, etc.), X is Cl, Br, or I. These complexes are
known for most d-elements [30–33], with Cu(II)
complexes being studied most comprehensively [10,
34–36]. As a rule, XBs are formed between halide
ligands and the halogen atoms of N-donor ligands in
the solid state. It is noteworthy that the first publica-
tion devoted to Zn(II) complexes of [(2-XPy)2ZnY2]
type (X and Y = Cl, Br, and I) appeared only a year ago
[37] (a series comprising nine compounds was
obtained). In continuation of these studies, we
obtained two new Zn(II) complexes with 2-bromo-5-
methylpyridine, [(2-Br-5-MePy)2ZnX2] (X = Cl (I)

and Br (II)), which were characterized by X-ray dif-
fraction; halogen bonds were studied using quantum
chemical calculations.

EXPERIMENTAL
The synthesis was carried out in air. The initial

reagents were obtained from commercial sources; eth-
anol was purified according to the standard procedure.

Synthesis of [(2-Br-5-MePy)2ZnX2] (X = Cl (I),
Br (II)). A weighed portion of ZnCl2·4H2O (52 mg,
0.25 mmol for I) or ZnBr2·2H2O (65 mg, 0.25 mmol
for II) was dissolved in ethanol (6 mL), then 2-Br-5-
MePy (86 mg, 0.5 mmol) was added. The gradual
evaporation of solutions to ~1/4 of the initial volume
gave colorless crystals of I and II. The yields were 88%
(I) and 90% (II).

Single-crystal X-ray diffraction study of I and II
was carried out at 150 K using an Agilent Xcalibur dif-
fractometer with an AtlasS2 X-ray detector

For C12H12N2Cl2Br2Zn (I)
Anal. calcd., % C, 30.26 H, 2.54 N, 5.87
Found, % C, 30.37 H, 2.62 N, 5.99

For C12H12N2Br4Zn (II)
Anal. calcd., % C, 25.54 H, 2.15 N, 4.97
Found, % C, 25.60 H, 2.27 N, 5.09
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Table 1. Crystallographic data, X-ray experiment parameters, and structure refinement details for I and II

Parameter
Value

I II

Molecular formula C12H12N2Cl2Br2Zn C12H12N2Br4Zn

M 480.33 569.25

System, space group Monoclinic, P21/n Monoclinic, P21/n

a, Å 8.6821(4) 8.8120(11)

b, Å 14.5854(6) 14.7299(16)

c, Å 12.8533(6) 12.9352(13)

β, deg 101.820(5) 100.798(4)

V, Å3 1593.13(13) 1649.3(3)

Z 4 4

ρ(calcd.), g/cm3 2.003 2.293

μ, mm−1 6.88 11.17

F(000) 928 1072

Scanning range of θ, deg 2.6–28.1 2.6–32.6

Range of hkl indices −10 ≤ h ≤ 8, 
−14 ≤ k ≤ 17, 
−13 ≤ l ≤ 15

−10 ≤ h ≤ 10, 
−17 ≤ k ≤ 17, 
−15 ≤ l ≤ 14

Nhkl measured/unique 6518/3031 17304/3126

Rint 0.028 0.048

Nhkl with I > 2σ(I) 2560 2759

R (F 2 > 2σ(F 2)), wR (F 2), S 0.041, 0.108, 1.03 0.032, 0.079, 1.05

Residual electron density (max/min), e/Å3 1.38/−0.96 0.94/−0.44
(λ(MoKα) = 0.71073 Å, ω-scan mode) for I and a
Bruker D8 Venture diffractometer with a CMOS
PHOTON III detector (ϕ- and ω-scan modes) for II.
The integration, application of absorption corrections,
and determination of unit cell parameters were carried
out using the CrysAlisPro and SADABS program
packages for I and II, respectively. The crystal struc-
tures were solved using the SHELXT program and
refined by full-matrix least squares method in the
anisotropic (except for hydrogen atoms) approxima-
tion using the SHELXL program [38]. The hydrogen
atom positions in organic ligands were calculated geo-
metrically and refined by the riding model. The crys-
tallographic data and X-ray diffraction experiment
parameters are given in Table 1.

The full tables of interatomic distances and bond
angles, atom coordinates, and atomic displacement
parameters were deposited with the Cambridge Crys-
RUSSIAN JOURNAL OF COORDINATION CHEMISTRY
tallographic Data Centre (CCDC nos. 2204966 (I)
and 2204967 (II); https://www.ccdc.cam.ac.uk/
structures/).

Quantum chemical calculations were carried out
using the Gaussian-09 program package (M.J. Frisch
et al., Gaussian 09, Revision C.01, Gaussian, Inc.,
Wallingford, CT, 2010). The ωB97XD functional [39],
second-order Douglas–Kroll–Hess relativistic Ham-
iltonian, and DZP-DKH basis sets were used for all
atoms [40, 41]. The topological analysis of electron
density distribution by the QTAIM method [42] was
performed using the Multiwfn program (version 3.7)
[43].

RESULTS AND DISCUSSION
The Zn(II) coordination environment in the struc-

ture of I and II (Fig. 1) is tetrahedral. The Zn–N bond
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Fig. 1. Structure of I. Here and below: Zn is black, Cl is light green, Br is olive-colored, C and H are gray, and N is blue.

Fig. 2. Supramolecular associates in I (the halogen bond is shown by a dashed line).
lengths in I and II are 2.073–2.082 and 2.084–
2.091 Å, respectively, and the Zn–Cl and Zn–Br
bond lengths are 2.220–2.230 and 2.362–2.374 Å,
respectively; these values are in line with published
data for complexes of this type [37]. Compounds I and
II are isostructural.

Analysis of the interatomic distances in the crystals
of I and II and their comparison with the sums of the
corresponding Bondi van der Waals radii (3.58 Å for
Cl and Br and 3.66 Å for two Br atoms, respectively
[44, 45]) suggest the presence of noncovalent interac-
tions. The system of contacts between Br atoms of
2-Br-5MePy and chloride (Cl···Br, 3.309–3.292 Å) or
bromide (Br···Br, 3.418–3.466 Å) ligands connects the
[ML2X2] moieties into infinite supramolecular chains
(Fig. 2). The corresponding angles (ZnClBr, 128.3°–
136.2°; CBrCl, 170.6°–173.2°; ZnBrBr, 126.1°–
134.6°; and CBrBr, 169.5°–173.0°) indicate that these
contacts can be classified as true halogen bonds
(type II contacts) [46].
RUSSIAN JOURNAL OF C
The energies of the above noncovalent interactions
were estimated using the approach that was success-
fully employed previously to study similar systems [7,
8, 27, 28, 47]. Quantum chemical calculations were
performed for model dimeric associates, the atomic
coordinates for which were taken directly from X-ray
diffraction data without geometry optimization. As
follows from Table 2, halogen bond energies are in the
1.8–2.2 kcal/mol range, which is typical of com-
pounds of this class.
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Table 2. Values of electron density, ρ(r); electron density Laplacian, ∇2ρ(r); total energy density, Hb; potential energy den-
sity, V(r); kinetic energy Lagrangian G(r) (atomic units) at the (3, –1) bond critical points corresponding to noncovalent
Cl···Br and Br···Br contacts in the crystal structures of I and II, and bond energies E (kcal/mol) of these contacts

* Eint = 0.58(−V(r)) (the correlation was specially developed to estimate the energy of noncovalent interactions involving bromine
atoms) [48].

Contact ρ(r) ∇2ρ(r) λ2 Hb V(r) G(r) Eint*

I

Br···Cl, 3.309 Å 0.011 0.037 –0.011 0.002 –0.006 0.008 2.2

Br···Cl, 3.392 Å 0.009 0.030 –0.009 0.001 –0.005 0.006 1.8

II

Br···Br, 3.418 Å 0.011 0.031 –0.011 0.001 –0.006 0.007 2.2

Br···Br, 3.466 Å 0.010 0.028 –0.010 0.000 –0.006 0.006 2.2
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