

Triphenylantimony and Pentaphenylantimony as the Starting Compounds for the Synthesis of Antimony(V) Phenyl Derivatives. Structure of Triphenylantimony, Bis(3,4-difluorobenzoato)triphenylantimony and Tetraphenylantimony Carbonate

A. N. Efremov^a, * and V. V. Sharutin^a, **

^aSouth Ural State University, Chelyabinsk, Russia

*e-mail: efremov_an94@mail.ru

**e-mail: sharutin50@mail.ru

Received November 11, 2022; revised November 16, 2022; accepted November 19, 2022

Abstract—The structure of triphenylantimony (**I**) was determined more accurately. Bis(3,4-difluorobenzoato)triphenylantimony $\text{Ph}_3\text{Sb}[\text{OC}(\text{O})\text{C}_6\text{H}_3\text{F}_2-3,4]_2$ (**III**) was obtained by the reaction of equimolar amounts of pentaphenylantimony solvate ($\text{Ph}_5\text{Sb}\cdot 0.5\text{PhH}$) (**II**) with 3,4-difluorobenzoic acid in benzene and characterized. The structure of the triclinic tetraphenylantimony carbonate (**IV**) was also determined more accurately. According to X-ray diffraction data (CCDC nos. 2117872 (**I**), 121388 (**III**), 2121833 (**IV**)), the crystals were characterized as follows. $\text{C}_{36}\text{H}_{30}\text{Sb}_2$ (**I**): $a = 10.941(11)$, $b = 11.825(16)$, $c = 13.747(13)$ Å; $\alpha = 102.57(5)^\circ$, $\beta = 104.22(5)^\circ$, $\gamma = 108.35(6)^\circ$; $V = 1550(3)$ Å³; $Z = 2$. $\text{C}_{32}\text{H}_{21}\text{O}_4\text{F}_4\text{Sb}$ (**III**): $a = 12.652(5)$, $b = 22.466(10)$, $c = 11.561(5)$ Å; $\beta = 120.027(15)^\circ$; $V = 2845(2)$ Å³; $Z = 4$. $\text{C}_{49}\text{H}_{40}\text{O}_3\text{Sb}_2$ (**IV**): $a = 10.093(4)$, $b = 13.994(5)$, $c = 15.665(6)$ Å; $\alpha = 73.917(15)^\circ$, $\beta = 79.76(2)^\circ$, $\gamma = 74.312(15)^\circ$; $V = 2034.0(13)$ Å³; $Z = 2$. The antimony atoms in **III** have a distorted trigonal-bipyramidal coordination, with the oxygen atoms being located in axial positions (OSbO , $174.13(12)^\circ$; Sb—C , $2.101(3)$ – $2.118(4)$ Å; Sb—O , $2.118(3)$ Å). The structural organization in the crystals of **III** and **IV** is formed by weak $\text{O}\cdots\text{H—C}$ intermolecular contacts (2.49 and 2.56 Å, respectively).

Keywords: solvate, pentaphenylantimony, benzene, bis(3,4-difluorobenzoato)triphenylantimony, synthesis, structure, triphenylantimony, tetraphenylantimony carbonate, X-ray diffraction

DOI: 10.1134/S1070328422700324

INTRODUCTION

An efficient method for the synthesis of pentavalent antimony compounds is the oxidative addition reactions in which aryl derivatives of pentavalent antimony Ar_3SbX_2 are formed from antimony triaryl compounds, acid HX , and a peroxide. This reaction was performed for the first time to prepare triphenylantimony diacetate from triphenylantimony, acetic acid, and H_2O_2 [1]. This approach was also utilized to obtain triphenylantimony dicarboxylates [2], triphenylantimony dioximates [3], and other pentavalent antimony derivatives Ph_3SbX_2 [4].

The structure of the basic reagent for the preparation of phenyl derivatives of pentavalent antimony has been studied previously [5]; however, only in this study, we were able to more accurately determine structural features of triphenylantimony (**I**). According to X-ray diffraction data, the antimony atoms in two crystallographically independent triphenylanti-

mony molecules have a tetragonal coordination, with the phenyl carbon atoms and the lone pair of electrons being located at the tetrahedron vertices (Fig. 1, Table 1). The Sb—C bond lengths and CSbC angles are $2.148(3)$ – $2.166(3)$ Å and $95.12(13)^\circ$ – $97.87(11)^\circ$, respectively.

An equally important phenyl derivative of antimony is pentaphenylantimony (**II**), the first synthesis of which was reported in 1952 [6], while its structural features were studied somewhat later [7–10]. It is known that pentaphenylantimony is a precursor for the preparation of numerous phenyl derivatives of Sb(V) [4]. As a rule, monocarboxylic acids easily detach one phenyl group from **II** [11–15] to give tetraphenylantimony carboxylates, which, in turn, form adducts $\text{Ph}_4\text{SbOC(O)R}\cdot\text{HOC(O)R}$ with the acids [16]. Depending on the reactant ratio, the reactions of dicarboxylic acids may be accompanied by replace-

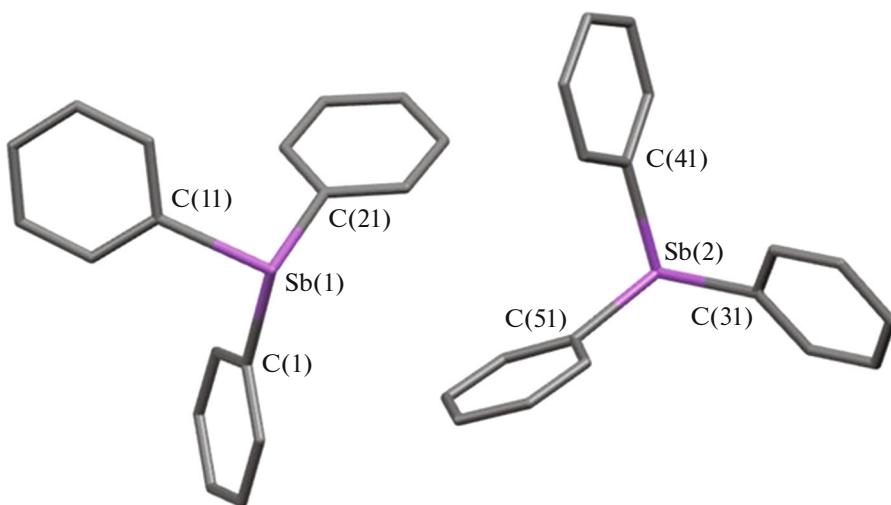
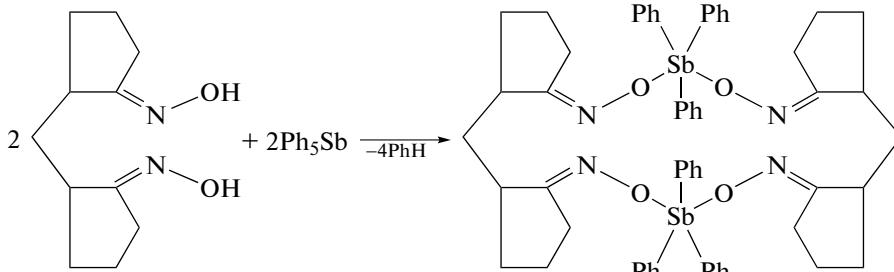
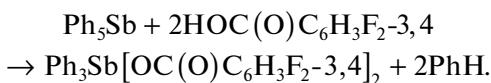



Fig. 1. Structure of compound I.


ment of one or two active hydrogen atoms in carboxyl groups [17–19].

It was shown that methylene-2,2'-dicyclopentanone dioxime reacts with pentaphenylantimony under drastic conditions (90°C, 5 h) at a reactant molar ratio

of 1 : 2, respectively, to give a macrocyclic organoantimony compound, bis- μ -[(methylene-2,2'-dicyclopentanonedioximato)triphenylantimony], in which symmetrical dioxime radicals alternate with triphenylantimony structural blocks [20].

Here we describe a similar case of elimination of two phenyl substituents from pentaphenylantimony on treatment with 3,4-difluorobenzoic acid, giving bis(3,4-difluorobenzoato)triphenylantimony (**III**), despite the equimolar ratio of the starting reactants.

The IR spectrum of compound **III** exhibits a medium-intensity absorption band at 428 cm⁻¹ corresponding to the Sb–C stretching modes. The presence of the carbonyl group is manifested as a strong C=O stretching band at 1634 cm⁻¹. The bands corresponding to the $\nu(\text{C–O})$ vibrations in carboxylate ligands occur at 1333 cm⁻¹. The IR spectrum of **III** also shows characteristic stretching bands for the carbon skeleton of aromatic moieties at 1508, 1481, and 1425 cm⁻¹. The C_{Ar}–H stretching mode is manifested as a medium-

intensity band at 3022 cm⁻¹; the out-of-plane C_{Ar}–H bending mode gives rise to bands at 823, 794, and 758 cm⁻¹; the in-plane bending mode of the same bond is responsible for the bands at 1113, 1065, and 1022 cm⁻¹ [21–23].

According to X-ray diffraction data, the antimony atoms in the centrosymmetric molecules of **III** have a distorted trigonal-bipyramidal coordination in which the carboxylate oxygen atoms occupy axial positions (Fig. 2).


The sum of the CSbC angles in the equatorial plane of the molecule is 359.96(11)°, while the axial OSbO angle is 174.13(12)°; the antimony atom does not deviate from the equatorial plane. The aryl ligands have a propeller-like conformation relative to the [C₃] equatorial plane. The dihedral angles between the benzene ring planes and the equatorial plane are 20.20° [C(1)–C(6)] and 78.01° [C(7)–C(10)]. The Sb–C bonds have similar lengths, 2.101(3) Å and 2.118(4) Å, while

Table 1. Crystallographic data and X-ray experiment and structure refinement details for the structures of **I**, **III**, **IV**

Parameter	Value		
	I	III	IV
Formula	C ₃₆ H ₃₀ Sb ₂	C ₃₂ H ₂₁ O ₄ F ₄ Sb	C ₄₉ H ₄₀ O ₃ Sb ₂
<i>M</i>	706.10	667.24	920.31
<i>T</i> , K	293	293	293
System	Triclinic	Monoclinic	Triclinic
Space group	<i>P</i> 	<i>C</i> 2/c	<i>P</i> 
<i>a</i> , Å	10.941(11)	12.652(5)	10.093(4)
<i>b</i> , Å	11.825(16)	22.466(10)	13.994(5)
<i>c</i> , Å	13.747(13)	11.561(5)	15.665(6)
α, deg	102.57(5)	90.00	73.917(15)
β, deg	104.22(5)	120.027(15)	79.76(2)
γ, deg	108.35(6)	90.00	74.312(15)
<i>V</i> , Å ³	1550(3)	2845(2)	2034.0(13)
<i>Z</i>	2	4	2
ρ(calcd.), g/cm ³	1.513	1.558	1.503
μ, mm ⁻¹	1.764	1.032	1.369
<i>F</i> (000)	696.0	1328.0	920.0
Crystal size, mm	0.5 × 0.44 × 0.11	0.5 × 0.45 × 0.12	0.26 × 0.22 × 0.05
Data collection range of 2θ, deg	5.74–54.42	6.6–54.32	5.802–54.44
Ranges of reflection indices	−13 ≤ <i>h</i> ≤ 14, −15 ≤ <i>k</i> ≤ 15, −17 ≤ <i>l</i> ≤ 17	−16 ≤ <i>h</i> ≤ 16, −28 ≤ <i>k</i> ≤ 28, −14 ≤ <i>l</i> ≤ 14	−12 ≤ <i>h</i> ≤ 12, −17 ≤ <i>k</i> ≤ 17, −20 ≤ <i>l</i> ≤ 20
Number of measured reflections	37455	27275	50553
Number of unique reflections	6837	3163	9006
<i>R</i> _{int}	0.0252	0.0291	0.0333
Number of refinement variables	343	187	477
GOOF	1.121	1.107	1.066
<i>R</i> -factors on <i>F</i> ² > 2σ(<i>F</i> ²)	<i>R</i> ₁ = 0.0257, w <i>R</i> ₂ = 0.0605	<i>R</i> ₁ = 0.0372, w <i>R</i> ₂ = 0.1058	<i>R</i> ₁ = 0.0239, w <i>R</i> ₂ = 0.0522
<i>R</i> -factors for all reflections	<i>R</i> ₁ = 0.0330, w <i>R</i> ₂ = 0.0652	<i>R</i> ₁ = 0.0425, w <i>R</i> ₂ = 0.1124	<i>R</i> ₁ = 0.0349, w <i>R</i> ₂ = 0.0572
Residual electron density (min/max), e/Å ³	−0.84/0.23	−0.53/1.61	−0.43/0.77

the Sb–O distances (2.118(3) Å) are comparable with the Sb–O covalent bond lengths (2.05 Å [24]). The carboxyl group planes are virtually coplanar (the angle between them is 5.24°), while the carboxylate ligands in **III** are arranged in such a way that the intramolecular Sb···O(=C) contacts are formed within the greatest equatorial CSbC angle (137.6(2)°); this is typical of most structurally characterized triarylantimony dicarboxylates [5]. The bidentate carboxylate ligands are symmetrically coordinated to the metal, with the intramolecular Sb···O(=C) distances being 3.014(5) Å, which is smaller than the sum of the Sb and O van der Waals radii (3.58 Å [25]).

Pentaphenylantimony reacts with oxygen [26] and carbon dioxide [27]. Bis(tetraphenylantimony) carbonate isolated in the latter study can react with tetraphenylstibonium salts by adding one more cation via the change in the structural function of the carbonate group from μ₂-chelating bridging to μ₃-bridging one, thus giving ionic complexes with tris(tetraphenylstiboxy)methylum cation [28]. Indeed, crystallization of the products formed in the reaction between pentaphenylantimony and 2,4-dinitrobenzenesulfonic acid from a benzene–octane mixture in air gives not only the target tetraphenylantimony 2,4-dinitrobenzenesulfonate (formed in 32% yield), but also the sol-

Fig. 2. Structure of compound **III** (the hydrogen atoms are omitted).

vate of the ionic antimony complex containing a three-coordinate carbon atom in the cation, $[(\text{Ph}_4\text{SbO})_3\text{Cl}]^+[\text{OSO}_2\text{C}_6\text{H}_3(\text{NO}_2)_2\text{-2,4}]^- \cdot 3\text{PhH}$. The cation has a nearly planar CO_3Sb_3 central moiety. The OCO and COSb angles are close to 120° , the $\text{C}-\text{O}$ bonds vary in the $1.277(4)$ – $1.290(3)$ Å range, and the $\text{Sb}-\text{O}$ distances ($2.266(2)$ – $2.299(2)$ Å) are longer than the sum of the Sb and O covalent radii. A minor product is bis(tetraphenylantimony) carbonate (**IV**); in the authors' opinion, particularly this compound is converted to the ionic complex; therefore, it was of interest to study the structure of tetraphenylantimony carbonate in more detail.

Here we determined more accurately the structure of triclinic tetraphenylantimony carbonate **IV**, which was solved previously to the accuracy $R = 4.9\%$ [29]. The results of our study of **IV** were more accurate ($R = 3.7\%$) than in [28]. The coordination polyhedra of the two antimony atoms in **IV** are different: one antimony atom has a trigonal bipyramidal environment ($\text{OSb}-\text{C}_{\text{ax}}$, $176.38(8)^\circ$), while the other atom has a distorted octahedral environment (*trans*-angles: CSbO , $154.59(8)^\circ$; $157.47(8)^\circ$ (Fig. 3)).

The variation range of the $\text{Sb}-\text{C}$ bond lengths in **IV** is $2.0992(15)$ – $2.634(2)$ Å, and the $\text{Sb}-\text{O}$ distances vary in the $2.1844(17)$ – $2.3104(17)$ Å range; this is greater than the sum of the covalent radii of these elements [27]. The $\text{C}-\text{O}$ bond lengths in the carbonate groups are $1.281(3)$ Å, $1.277(3)$ Å, and $1.296(3)$ Å, with a shorter $\text{Sb}-\text{O}$ bond corresponding to longer $\text{C}-\text{O}$ bond.

EXPERIMENTAL

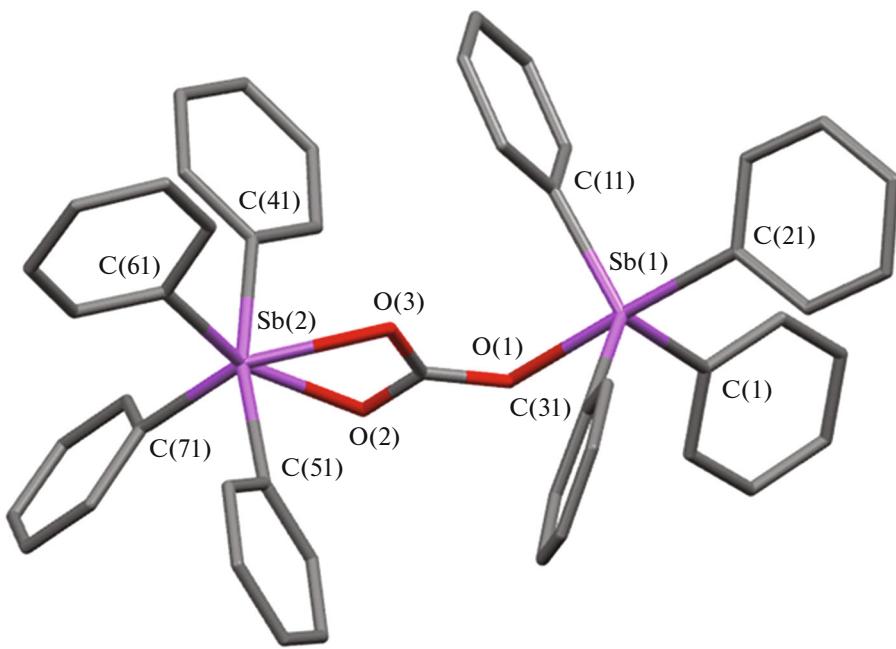
Synthesis of the benzene solvate $\text{Ph}_5\text{Sb} \cdot 0.5\text{PhH}$ (II) was performed by recrystallization of pentaphenylan-

timony from benzene. The product was formed as colorless crystals with $T_{\text{dec}} = 135.5$ °C.

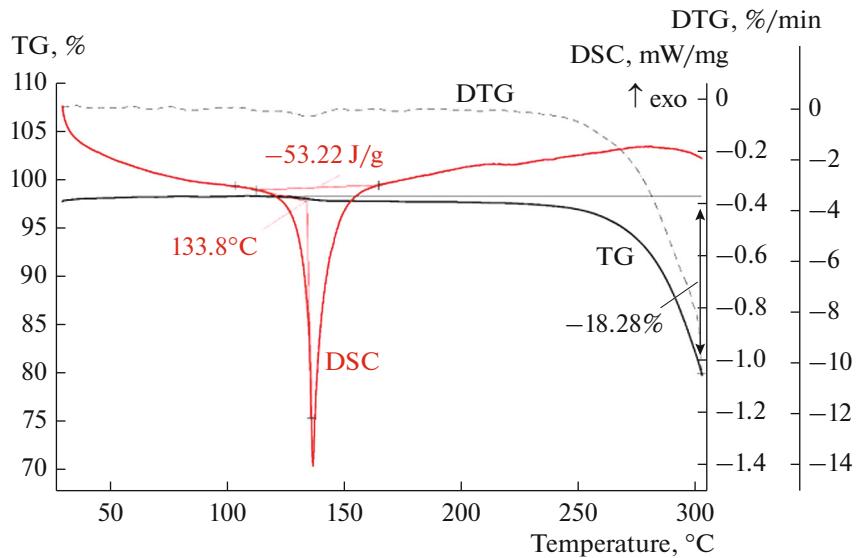
For $\text{C}_{32}\text{H}_{21}\text{O}_4\text{F}_4\text{Sb}$

Anal. calcd., %	C, 72.49	H, 5.13
Found, %	C, 72.41	H, 5.19

Synthesis of bis(3,4-difluorobenzoato)triphenylantimony $\text{Ph}_3\text{Sb}[\text{OC}(\text{O})\text{C}_6\text{H}_3\text{F}_2\text{-3,4}]_2$ (III). A mixture of pentaphenylantimony benzene solvate (0.150 g, 0.27 mmol) and 3,4-difluorobenzoic acid (0.043 g, 0.27 mmol) in benzene (10 mL) was heated for 5 min at 80°C and cooled down to room temperature; then octane (2 mL) was added. After 24 h, colorless crystals of **III** were isolated in 0.06 g (41%). $T_{\text{dec}} = 134$ °C.


IR (ν , cm^{-1}): 3022, 2953, 1634, 1599, 1508, 1481, 1425, 1333, 1273, 1227, 1200, 1113, 1065, 1023, 997, 937, 901, 839, 802, 779, 770, 733, 692, 638, 546, 489, 451, 428.

For $\text{C}_{32}\text{H}_{21}\text{O}_4\text{F}_4\text{Sb}$


Anal. calcd., %	C, 57.55	H, 3.15
Found, %	C, 57.37	H, 3.21

Elemental analysis for C and H was carried out on a Carlo Erba CHNS-O EA 1108 analyzer. The IR spectrum of compound **III** was recorded on a Shimadzu IRAffinity-1S FT IR spectrometer in KBr pellets in the 4000–400 cm^{-1} range. The melting points were measured on a Netzsch 449C Jupiter simultaneous thermal analyzer. The DTG and DSC curves for sample **III** are shown in Fig. 4.

X-ray diffraction analysis of the crystals was carried out on a D8 QUEST Bruker four-circle automated diffractometer (MoK_α radiation, $\lambda = 0.71073$ Å,

Fig. 3. Structure of compound **IV** (the hydrogen atoms are omitted).

Fig. 4. DTG and DSC curves for sample **III**.

graphite monochromator). The data collection and editing and refinement of unit cell parameters were performed and the absorption corrections were applied using the SMART and SAINT-Plus software [30]. All calculations for structure determination and refinement were carried out using the SHELXL/PC [31] and OLEX2 [32] programs. The structures were solved by the direct methods and refined by the least-squares method in the anisotropic approximation for non-hydrogen atoms. The hydrogen atom positions

were refined by the riding model ($U_{\text{iso}}(\text{H}) = 1.2U_{\text{equiv}}(\text{C})$). The crystal data and structure refinement details are summarized in Table 1, and geometrical characteristics of the antimony coordination polyhedron are given in Table 2.

Thus, bis(3,4-difluorobenzoato)triphenylantimony (**III**) was obtained by the reaction of equimolar amounts of the solvate ($\text{Ph}_5\text{Sb}\cdot 0.5\text{PhH}$) and 3,4-difluorobenzoic acid in benzene and structurally characterized. The structures of triphenylantimony and

Table 2. Bond lengths and bond angles of compounds **I**, **III**, and **IV**

Bond	<i>d</i> , Å	Angle	ω , deg
I			
Sb(1)–C(1)	2.163(3)	C(11)Sb(1)C(1)	95.87(11)
Sb(1)–C(11)	2.155(3)	C(11)Sb(1)C(21)	95.55(11)
Sb(1)–C(21)	2.158(4)	C(21)Sb(1)C(1)	97.46(14)
Sb(2)–C(51)	2.148(3)	C(51)Sb(2)C(31)	97.65(12)
Sb(2)–C(31)	2.165(3)	C(51)Sb(2)C(41)	95.12(13)
Sb(2)–C(41)	2.166(3)	C(31)Sb(2)C(41)	95.43(12)
III			
Sb(1)–O(1)	2.118(3)	O(1)Sb(1)O(1) ¹	174.13(12)
Sb(1)–O(1) ¹	2.118(3)	C(1) ¹ Sb(1)C(7)	111.18(11)
Sb(1)–C(7)	2.118(4)	C(1)Sb(1)C(7)	111.18(11)
Sb(1)–C(1)	2.101(3)	C(1) ¹ Sb(1)C(1)	137.6(2)
Sb(1)…O(2)	3.014(5)	C(1)Sb(1)O(1) ¹	91.87(13)

Symmetry codes: ¹ 2 – *x*, *y*, 3/2 – *z*.

IV			
Sb(1)–C(31)	2.117(3)	C(31)Sb(1)C(1)	115.22(11)
Sb(1)–O(1)	2.2505(17)	C(11)Sb(1)C(1)	116.55(9)
Sb(1)–C(1)	2.119(2)	C(21)Sb(1)O(1)	176.38(8)
Sb(1)–C(11)	2.0992(15)	C(51)Sb(2)C(41)	167.09(9)
Sb(1)–C(21)	2.168(3)	C(71)Sb(2)O(3)	154.59(8)
Sb(2)–O(3)	2.3104(17)	C(71)Sb(2)C(7)	125.66(8)
Sb(2)–O(2)	2.1844(17)	C(61)Sb(2)O(2)	157.47(8)
Sb(2)–C(51)	2.169(2)	C(61)Sb(2)C(51)	92.76(10)
Sb(2)–C(71)	2.162(2)	C(61)Sb(2)C(71)	106.18(10)
Sb(2)–C(7)	2.634(2)	C(61)Sb(2)C(7)	128.14(9)
Sb(2)–C(61)	2.162(3)	C(61)Sb(2)C(41)	91.79(10)
Sb(2)–C(41)	2.173(2)	C(41)Sb(2)C(7)	84.92(8)

triclinic tetraphenylantimony carbonate were determined more accurately.

FUNDING

This work was supported by the Russian Foundation for Basic Research (project no. 20-33-90099).

CONFLICT OF INTERESTS

The authors declare that they have no conflicts of interest.

REFERENCES

1. Thepe, T.C., Garascia, R.J., Selvoski, M.A., and Patel, A.N., *Ohio J. Sci.*, 1977, vol. 77, no. 3, p. 134.
2. Sharutin, V.V., Sharutina, O.K., Pakusina, A.P., et al., *Russ. J. Inorg. Chem.*, 2008, vol. 53, no. 9, p. 1242. <https://doi.org/10.1134/s0036023608080160>
3. Sharutin, V.V., Sharutina, O.K., and Molokova, O.V., *Russ. J. Inorg. Chem.*, 2012, vol. 57, no. 6, p. 832. <https://doi.org/10.1134/s0036023612010226>
4. Sharutin, V.V., Poddel'sky, A.I., and Sharutina, O.K., *Russ. J. Coord. Chem.*, 2020, vol. 46, no. 10, p. 663. <https://doi.org/10.1134/S1070328420100012>
5. *Cambridge Crystallographic Database. Release 2020*, Cambridge. <http://www.ccdc.cam.ac.uk>.
6. Wittig, G., *Eur. J. Org. Chem.*, 1952, vol. 577, p. 26. <https://doi.org/10.1002/JLAC.19525770104>
7. Wheatley, P.J., *J. Chem. Soc.*, 1964, no. 718, p. 3718. <https://doi.org/10.1039/JR9640003718>
8. Beauchamp, A.L., Bennett, M.J., and Cotton, F.A., *J. Am. Chem. Soc.*, 1968, vol. 90, p. 6675. <https://doi.org/10.1021/ja01026a020>
9. Brabant, C., Blanck, B., and Beauchamp, A.L., *J. Organomet. Chem.*, 1974, vol. 82, p. 231. [https://doi.org/10.1016/S0022-328X\(00\)90360-7](https://doi.org/10.1016/S0022-328X(00)90360-7)

10. Lindquist-Kleissler, B., Weng, M., Le Magueres P., et al., *Inorg. Chem.*, 2021, vol. 60, p. 8566.
<https://doi.org/10.1021/acs.inorgchem.1c00496>
11. Sharutin, V.V., Senchurin, V.S., Sharutina, O.K., et al., *Russ. J. Gen. Chem.*, 2009, vol. 79, no. 10, p. 2131.
<https://doi.org/10.1134/S1070363209100107>
12. Sharutin, V.V., Sharutina, O.K., and Khnykina, K.A., *Russ. J. Inorg. Chem.*, 2016, vol. 61, no. 2, p. 180.
<https://doi.org/10.1134/s0036023616020194>
13. Sharutin, V.V., Sharutina, O.K., and Kotlyarov, A.R., *Russ. J. Inorg. Chem.*, 2015, vol. 60, no. 4, p. 465.
<https://doi.org/10.1134/s0036023615040221>
14. Sharutin, V.V., Sharutina, O.K., and Senchurin, S.V., *Russ. J. Inorg. Chem.*, 2014, vol. 59, no. 9, p. 951.
<https://doi.org/10.1134/s0036023614090174>
15. Sharutin, V.V., Sharutina, O.K., Mel'nikova, L.G., et al., *Russ. Chem. Bull.*, 1996, vol. 45, no. 8, p. 1977.
<https://doi.org/10.1007/bf01457791>
16. Sharutin, V.V., Senchurin, V.S., Sharutina, O.K., and Panova, L.P., *Russ. J. Inorg. Chem.*, 2008, vol. 53, no. 7, p. 1110.
<https://doi.org/10.1134/S0036023608070206>
17. Sharutin, V.V., Senchurin, V.S., and Sharutina, O.K., *Russ. J. Inorg. Chem.*, 2014, vol. 59, no. 2, p. 115.
<https://doi.org/10.1134/s003602361402017x>
18. Sharutin, V.V. and Sharutina, O.K., *Russ. J. Coord. Chem.*, 2014, vol. 40, no. 9, p. 643.
<https://doi.org/10.1134/s1070328414090073>
19. Sharutin, V.V., Sharutina, O.K., and Gubanova, Yu.O., *Bull. SUSU. Ser. Chem.*, 2015, vol. 7, no. 4, p. 17.
<https://doi.org/10.14529/chem150403>
20. Sharutin, V.V., Sharutina, O.K., Alyab'eva, E.A., et al., *Russ. J. Coord. Chem.*, 2005, vol. 31, no. 3, p. 159.
<https://doi.org/10.1007/s11173-005-0068-4>
21. Tarasevich, B.N., *IK spektry osnovnykh klassov organicheskikh soedineniy* (IR Spectra of the Main Classes of Organic Compounds), Moscow: MGU, 2012.
22. Vasil'ev, A.V., Grinenko, E.V., and Fedulina, T.G., *Infrakrasnaya spektroskopiya organicheskikh i prirodnykh soedineniy* (Infrared Spectroscopy of Organic and Natural Compounds), St.-Petersburg, SPbSFTU, 2007, p. 54.
23. *Spectral Database for Organic Compounds, SDDBS. Release 2021*. National Institute of Advanced Industrial Science and Technology, 2021.
24. Cordero, B., Gomez, V., and Platero-Prats, A.E., *Dalton Trans.*, 2008, vol. 21, p. 2832.
<https://doi.org/10.1039/B801115J>
25. Mantina, M., Chamberlin, A.C., Valero, R., et al., *J. Phys. Chem., A*, 2009, vol. 113, no. 19, p. 5806.
<https://doi.org/10.1021/jp8111556>
26. Sharutin, V.V., Sharutina, O.K., Senchurin, V.S., et al., *Russ. J. Coord. Chem.*, 2001, vol. 27, no. 9, p. 669.
<https://doi.org/10.1023/A:1017909824029>
27. Sharutin, V.V., Sharutina, O.K., Platonova, T.P., et al., *Russ. J. Gen. Chem.*, 2001, vol. 71, no. 10, p. 1550.
<https://doi.org/10.1023/a:1013938600798>
28. Sharutin, V.V., Sharutina, O.K., and Efremov, A.N., *Russ. J. Inorg. Chem.*, 2020, vol. 65, no. 1, p. 45.
<https://doi.org/10.1134/S0036023620010155>
29. Ferguson, G. and Hawley, D.M., *Acta Cryst., Sect. B: Struct. Crystallogr. Cryst. Chem.*, 1974, vol. 30, p. 103.
<https://doi.org/10.1107/S0567740874002299>
30. *SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System*, Madison: Bruker AXS Inc., 1998.
31. *SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining, and Displaying Crystal Structures from Diffraction Data*, Madison: Bruker AXS Inc., 1998.
32. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., and Howard, J.A.K., *J. Appl. Cryst.*, 2009, vol. 42, p. 339.
<https://doi.org/10.1107/S0021889808042726>

Translated by Z. Svitanko