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Synthesis and Structure of Gold Complexes [ Ph;PR][Au(CN),Cl, ]
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Abstract—The ionic complexes [Ph;PR][Au(CN),Cl,] (R = CH,CH=CHCH; (I), CH,CN (II)) were pre-
pared by the reactions of organyltriphenylphosphonium chlorides with potassium dichlorodicyanoaurate in
water followed by recrystallization from acetonitrile. Apart from the major product II, the crystals of
the molecular complex Ph;PC(H)(CN)Au(CN),Cl (III) were isolated. The products were characterized by
X-ray diffraction (CIF files CCDC nos. 1957185 (I), 2060227 (II), 2066549 (IIT)) and NMR and IR spec-
troscopy. According to X-ray diffraction data, complexes I and II consisted of organyltriphenylphosphonium
cations with a slightly distorted tetrahedral geometry of phosphorus atoms and the centrosymmetric square
anions [Au(CN),Cl,]~, which, in the case of complex II, form coordination pseudopolymer chains via the
Au-Cl interanion contacts (3.40 A). In complex III, the phosphorus and gold atoms are also coordinated in
the tetrahedral and square environments; the ylide carbon atom is located at the gold atom in the trans-posi-

tion relative to chlorine.
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INTRODUCTION

In the development of new, potentially useful com-
pounds, an important issue is the possibility for mole-
cules and other structural units to be involved in non-
covalent interactions, which play an important role in
determining the physicochemical properties and bio-
logical activities of these compounds [1—6]. In addi-
tion, considerable attention of researchers is currently
attracted by metal-organic coordination polymers
(MOCPs) [7-12].

Among the abundant building blocks for MOCPs,
an important position belongs to cyanide complexes,
in particular, monovalent and trivalent gold com-
pounds possessing properties such as luminescence
[13—16], birefringence [17—19], vapochromism [20—
22], negative thermal expansion coefficient [23, 24],
and magnetism [13, 25—27]. The strategic choice of
auxiliary ligands and counter-ions makes it possible to
modify these properties.

In order to discover new cyanoaurate MOCPs and
as a continuation of a series of studies devoted to the
structures and properties of dihalodicyanoaurate
complexes [28—33], we synthesized the complexes
[Ph;PCH,CH=CHCH;][Au(CN),Cl,] (I) and
[Ph;PCH,CN][Au(CN),CL] (IT) (as a mixture with
the Ph;PC(H)(CN)Au(CN),ClI (IIT) by-product) and
described characteristic features of their structure.

EXPERIMENTAL

The synthesis was carried out in air. Commercially
available (but-2-enyl)triphenylphosphonium chloride
(97%, Alfa Aesar), cyanomethyltriphenylphospho-
nium chloride (98%, Alfa Aesar), and acetonitrile
(special purity grade, Kriochrom) were used as
received. Potassium dichlorodicyanoaurate and triph-
enylphosphonium cyanomethylide were prepared by
procedures described previously [17, 34].

Synthesis of (but-2-enyl)triphenylphosphonium
dichlorodicyanoaurate (I). An aqueous solution of
(but-2-enyl)triphenylphosphonium chloride (0.094 g,
0.28 mmol) was added with stirring to a solution of
potassium dichlorodicyanoaurate (0.100 g,
0.28 mmol) in water (10 mL). The yellow precipitate
that formed was collected on a filter, washed with
water, and dried. Recrystallization from acetonitrile
gave light yellow crystals. The yield of complex I was
0.160 g (90%). T,, = 146°C.

IR (v, cm™"): 3065, 3053, 3030, 2990, 2945, 2905,
2851, 2216, 1638, 1616, 1585, 1485, 1435, 1398, 1377,
1339, 1315, 1180, 1159, 1111, 1055, 997, 970, 922, 839,
795, 746, 737, 723, 689, 615, 540, 503, 486, 451, 426.

For C24H22N2PC12AU
Anal. calcd., % C,45.23 H, 3.49
Found, % C, 45.05 H, 3.57
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Compound II, cyanomethyltriphenylphospho-
nium dichlorodicyanoaurate, was synthesized by a
procedure similar to that used for I. The product was
formed as light yellow crystals in 71% vyield. T,, =
121°C.

IR (v, cm™1): 3061, 3024, 2930, 2866, 2766, 2259,
1587, 1483, 1441, 1393, 1319, 1252, 1186, 1113, 995,
843,756, 743, 723, 689, 550, 503, 453, 428.

For C44H34,NgP,Cl,Au,
Anal. calcd., % C, 42.46 H, 2.76
Found, % C,42.34 H, 2.79

Molecular complex IIT was formed as a by-product
(6%) upon the synthesis of complex II and was pre-
pared by an alternative route according to the proce-
dure given below.

Synthesis of (cyanomethyltriphenylphosphonium)-
chlorodicyanogold (III). Triphenylphosphonium
cyanomethylide (0.084 g, 0.28 mmol) was added with
stirring to a solution of potassium dichlorodicyanoau-
rate (0.100 g, 0.28 mmol) in acetonitrile (10 mL). After
evaporation of the solvent, colorless crystals were iso-
lated from the filtrate. The yield of III was 0.134 g
(82%). T,, = 112°C.

IR (v, ecm™1): 3059, 3024, 2930, 2866, 2766, 2257,
2156, 2143, 1587, 1483, 1439, 1395, 1339, 1317, 1250,
1186, 1113, 997, 843, 756, 743, 723, 689, 547, 500, 428.

For C,,H sN;PClAu
Anal. caled., %
Found, %

C,45.11
C, 45.09

H, 2.76
H, 2.81

The IR spectra of compounds I—III were measured
on a Shimadzu IRAffinity-1S FTIR spectrometer; the
samples were prepared as KBr pellets (4000—400 cm™!
absorption range).

Single crystal X-ray diffraction study of I—III was
carried out on a D8 QUEST Bruker diffractometer
(MoK, radiation, A = 0.71073 A, graphite monochro-
mator). The SMART and SAINT-Plus software pro-
grams were used to collect and edit data, to refine the
unit cell parameters, and to apply absorption correc-
tions [35]. All calculations for structure solution and
refinement were performed using the SHELXL/PC
[36] and OLEX2 [37] software. The structures were
solved by direct methods and refined by the least
squares method in the anisotropic approximation for
non-hydrogen atoms. The key crystallographic data
and structure refinement details are summarized in
Table 1; selected bond lengths and bond angles are
given in Table 2.

Full tables of atom coordinates, bond lengths and
bond angles were deposited with the Cambridge Crys-
tallographic Data Centre (nos. 1957185 (I), 2060227
(II), 2066549 (III) for structures I—III, respectively,
deposit@ccdc.cam.ac.uk; http://www.ccdc.cam.ac.uk).

RESULTS AND DISCUSSION

Complexes I and II were obtained by reactions of
aqueous solutions of potassium dichlorodicyanoau-
rate with organyltriphenylphosphonium chlorides
(1 : 1 mol/mol) followed by recrystallization from ace-
tonitrile.

1.H,0

K[Au(CN),Cl,] + [Ph;PR]C1—=N 5 [Ph,PR][Au(CN),CL,] + KCI,
R = CH,CH=CHCHj; (I), CH,CN (II)

Apart from the light yellow-colored ionic complex I,
formed as the major product, a minor product was iso-
lated as colorless crystals of cyanomethyltriphenyl-
phosphonium chlorodicyanogold (III) in 6% vyield.
Apparently, triphenylphosphonium cyanomethylide
Ph,;PC(H)CN is formed in the reaction mixture under
conditions of synthesis; this compound attacks the
[Au(CN),Cl,]™ anions to give complex III.

We carried out an alternative synthesis of III by the
reaction of potassium dichlorodicyanoaurate with
triphenylphosphonium cyanomethylide, which was
specially prepared using a reported procedure [34]. In
this case, complex III was the major reaction product
isolated in 82% yield.
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It is noteworthy that, owing to high reactivity of
methylene hydrogen in cyanomethyltriphenylphos-
phonium chloride, the ylide complex can also be
formed via direct C—H auration; however, this process
is more typical for gold(I) compounds and usually
takes place in the presence of bases [38—40].

The IR spectra of compounds I—III exhibit low-
intensity C=N stretching bands at 2216 (I), 2259 (II),
2257, 2156, and 2143 (III) cm~!. The P—C;, bond
vibrations are responsible for the absorption bands at
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Table 1. Crystallographic data and X-ray experiment and structure refinement details for compounds I—1IT
Value
Parameter
I 11 I
M 637.27 1244.44 585.76
System Monoclinic Monoclinic Monoclinic
Space group P2/c P2, P2,/c
a, A 16.983(8) 8.710(5) 8.370(5)
b, A 8.483(3) 14.036(6) 14.984(8)
c, A 17.082(7) 19.376(9) 17.232(13)
a, deg 90.00 90.00 90
B, deg 91.18(2) 90.10(3) 92.63(3)
v, deg 90.00 90.00 90
v, A3 2460.4(18) 2368.7(19) 2159(2)
A 4 2 4
p(calcd.), g/cm? 1.720 1.745 1.802
u, mm-~! 6.275 6.517 7.024
F(000) 1232.0 1192.0 1120.0
Crystal size, mm 0.34 x 0.27 x 0.11 0.44 x 0.31 x 0.22 0.65 x 0.5 X 0.46
Data collection range of 6, deg 5.86—65.66 5.9-54.28 5.93—56.996
Ranges of reflection indices —25<h<25, —11 <AL, —11<h<l,
—12<k<12, —18<k<18, —20< k<20,
—25<1[<25 —24<[<24 —23<7<23
Number of measured reflections 75175 36915 43689
Number of unique reflections (R, 8951 (0.0425) 10456 (0.0313) 5463 (0.0611)
Number of reflections with 1> 26(/) 8951 10456 5463
Number of refinement parameters 274 523 254
GOOF 1.074 1.077 1.060
R-factors on F2 > 26(F?) R, =0.0357, R, =0.0395, R, =0.0460,
wR, =0.0681 wR, = 0.0959 wR, =0.1149
R-factors for all reflections R; =0.0593, R, =0.0438, R, =0.0508,
wR, =0.0775 wR, =0.0990 WwR, = 0.1192
Residual electron density (max/min), e/A3 1.42/-1.72 1.31/-2.86 2.71/-3.69

1450—1435 and 1005—995 cm~! (1435, 997 (I), 1441,
995 (II), 1439, 997 (IIT) cm™!). Also, the IR spectrum
of I exhibits absorption bands that can be assigned to
v(C=C) (1683 cm™'") and 8(HC=CH) (970 cm™)
vibrations of the but-2-enyl moiety [41].

According to X-ray diffraction data, the crystals of
I and II consist of organyltriphenylphosphonium cat-
ions and centrosymmretric square dichlorodicyano-
aurate anions (Figs. 1 and 2, respectively). The coor-
dination of phosphorus atoms is slightly distorted: the
CPC angles vary in the ranges of 108.18(15)°—
111.17(16)° (I) and 105.8(3)°—112.3(3)° (II). The but-
2-enyl substituent in complex II occurs as the trans-
isomer, in which the C(27)C(28)C(29) and
C(28)C(29)C(30) angles are 123.5(4)° and 123.8(5)°,

respectively. The gold atoms in the [Au(CN),CL ]~
anions have almost undistorted square geometry, with

the CAuC frans-angles and CAuCl cis-angles being
close to 180° and 90°.

The P—C,, bonds (1.812(3) A (I), 1.826(7) and
1.827(7) A (II)) are longer than the P—C,,, bonds
(1.793(3)—1.797(3) A (I) and 1.765(7)—1.797(6) A
(IT)). The Au—C distances (2.002(4), 2.015(4) A (I)
and 1.955(12)—2.054(12) A (II)) are shorter than the
sum of the covalent radii of gold and sp-hybridized
carbon atoms (2.05 A [42]). The Au—Cl bond
lengths (2.2808(12), 2.2947(13) A (I) and 2.275(2)—
2.286(2) A (II)) are also shorter than the sum of the
covalent radii of gold and chlorine atoms (2.38 A [42]).
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Table 2. Bond lengths (d) and bond angles (®) in compounds I—1III

29

Bond d,A Angle o, deg
Au(1)-CI(1) 2.2947(13) CI(1)Au(1)Cl(1a) 177.81(7)
Au(2)—CI(2) 2.2808(12) C(7)Au(1)C(7a) 179.0(2)
Au(1)—C(7) 2.002(4) C(7a)Au(1)Cl(1a) 90.45(12)
Au(2)—C(8) 2.015(4) C(7)Au(1)Cl(1a) 89.57(12)
P(1)—C(1) 1.793(3) CI(2)Au(2)CI(2b) 180.0
P(1)—C(11) 1.797(3) C(8)Au(2)C(8b) 179.999(1)
P(1)—C(21) 1.793(3) C(8b)Au(2)Cl(2b) 89.65(12)
P(1)—C(27) 1.812(3) C(8)Au(2)CI(2b) 90.35(12)

Symmetry codes: C(1)P(1)C(11) 108.18(15)

@ —=x,.32=5®) 1 —x 2=y 1 -2 C(1)P(1)C(27) 11.17(16)

Au(1)—CI(1) 2.281(2) CI(1)Au(1)CI(2) 178.28(10)
Au(1)—CI(2) 2.286(2) C(9)Au(1)C(10) 178.9(5)
Au(1)—C(9) 1.955(12) C(9)Au(1)CI(1) 89.6(3)
Au(1)—C(10) 2.054(12) C(9)Au(1)CIL(2) 89.8(3)
Au(2)—CI(3) 2.275(2) C(10)Au(1)CI(1) 90.0(3)
Au(2)—Cl(4) 2.280(2) C(10)Au(1)Cl1(2) 90.7(3)

Au(2)—C(39) 2.023(13) CI(3)Au(2)Cl(4) 178.49(10)
Au(2)—C(40) 2.021(12) C(39)Au(2)C(40) 178.7(4)
P(1)—C(1) 1.792(7) C(39)Au(2)CI(3) 90.8(3)
P(1)—C(11) 1.786(7) C(39)Au(2)Cl(4) 89.9(3)
P(1)—C(21) 1.792(7) C(40)Au(2)CI(3) 90.5(3)
P(1)—C(7) 1.827(7) C(40)Au(2)Cl(4) 88.9(3)
P(2)—C(31) 1.797(6) C(1)P(1)C(21) 111.7(3)
P(2)—C(41) 1.765(7) C(11)P(1)C(7) 106.1(3)
P(2)—C(51) 1.789(7) C(41)P(2)C(31) 112.3(3)
P(2)—C(37) 1.826(7) C(41)P(2)C(37) 105.8(3)

I

Au(1)—CI(1) 2.318(2) C(7)Au(1)CI(1) 177.76(15)
Au(1)—C(9) 1.997(8) C(9)Au(1)C(10) 176.3(3)
Au(1)—C(10) 2.006(7) C(9)Au(1)C(7) 93.7(2)
Au(1)—C(7) 2.121(5) C(9)Au(1)CI(1) 88.5(2)
C(7)—C(8) 1.427(9) C(10)Au(1)C(7) 88.2(2)
P(1)—C(1) 1.786(6) C(10)Au(1)CI(1) 89.7(2)
P(1)—C(11) 1.801(7) P(1)C(7)Au(1) 113.8(3)
P(1)—C(21) 1.791(7) C(8)C(7)Au(1) 111.1(4)
P(1)—C(7) 1.851(6) C(8)C(7)P(1) 112.7(4)
C(8)—N(1) 1.137(10) C(11)P(1)C(7) 105.4(3)
C(9)—N(2) 1.124(11) CQDP(1)C(7) 113.9(3)

RUSSIAN JOURNAL OF COORDINATION CHEMISTRY Vol.48 No. 1
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CI(1)

Fig. 1. General view of complex I (the thermal ellipsoids are drawn at 50% probability level).
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Fig. 2. General view of complex II (the thermal ellipsoids are drawn at 50% probability level; the hydrogen atoms are not shown).

In complex III, the phosphorus and gold atoms
have a tetrahedral and square coordinations, respec-
tively; the trans-position of gold relative to chlorine is
occupied by the ylide carbon atom (Fig. 3). The CPC
angles (105.4(3)°—113.9(3)°) differ little from those for
II and III; the P(1)C(7)Au(l), C(8)C(7)Au(l), and
C()C(7)P(1) angles are 113.8(3)°, 111.1(4)°, and
112.7(4)°, respectively. The P(1)—Cp, bonds are
shorter than P(1)—C(7) (1.851(6) A) and vary in the
range of 1.786(6)—1.801(7) A.

The sizes of the CAuC trans-angles (176.3(3)° and
177.76(15)°) indicate a minor distortion of the square
geometry of the gold atom; the CAuC and CAuCl cis-
angles are 93.7(2)°, 88.2(2)° and 88.5(2)°, 89.7(2)°,

RUSSIAN JOURNAL OF COORDINATION CHEMISTRY  Vol. 48

respectively. The Au(1)—C.y distances (1.997(8),
2.006(7) A) virtually do not differ from those in
the ionic complexes; the Au(1)—C(7) distance is
2.121(5) A, which coincides with the sum of the cova-
lent radii of gold and sp3-hybridized carbon atoms
(2.12 A [42]). The Au(1)—CI(1) bond (2.318(2) A) is
0.035 A longer than the average Au—Cl bond in I and
II (2.283 A); this is caused by the frans-effect of the
ylide ligand. It is noteworthy that in a similar, struc-
turally characterized Ph;PC(H)(CN)AuCl; complex,
analogous bond lengths between the gold atom and
carbon and chlorine atoms are shorter (Au—C
2.083(4), Au—Cl 2.3095(13) A) [43].
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Fig. 3. General view of complex III (the thermal ellipsoids
are drawn at 50% probability level).
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Fig. 4. Fragment of the coordination pseudopolymer chain
in the crystals of I1.

The structure of the crystals of I-III is formed by
the C—H-N=C (2.58, 2.64 A (I); 2.28—2.43 A (II);
2.40—2.55 A (II1)) and C—H+-Cl—Au hydrogen bonds
(2.83 A (I); 2.81,2.84 A (II); 2.81 A (III)). In the crys-
tal of II, the [Au(CN),Cl,]~ anions form the coordi-
nation pseudopolymer chains arranged along the crys-
tallographic a axis (Fig. 4) and held together via
Au(1)--CI(3) and Au(2)--Cl(1) contacts (3.40 A),
which are shorter than the sum of the van der Waals
radii of the gold and chlorine atoms (3.41 A [44]).

Thus, the reaction of (but-2-enyl)triphenylphos-
phonium chloride with potassium dichlorodicyanoau-
rate gave the monomeric ionic complex, (but-2-
enyl)triphenylphosphonium dichlorodicyanoaurate.
A similar reaction involving cyanomethyltriphenyl-
phosphonium chloride resulted in the formation of
cyanomethyltriphenylphosphonium  dichlorodicya-
noaurate, which is composed of pseudopolymer
chains of the [Au(CN),Cl,]- anions held by the
Au--Cl contacts, and a minor reaction product, the
(cyanomethyltriphenylphosphonium)chlorodicyano-
gold ylide complex.
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