

Formation of a Cluster with the $Mn_4^{II}Mn_2^{III}$ Metal Core upon the Oxidation of Manganese(II) Cymantrenecarboxylate Adduct with Air Oxygen in Tetrahydrofuran

M. A. Uvarova^a and S. E. Nefedov^{a,*}

^a Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

*e-mail: snen@igic.ras.ru

Received February 13, 2021; revised March 23, 2021; accepted March 29, 2021

Abstract—The reaction of manganese(II) acetate hydrate with cymantrenecarboxylic acid under inert atmosphere gave the complex $[Mn(Thf)_2(OH_2)_4][OOC-C_5H_4Mn(CO)_3]_2$ (**I**), which was highly unstable to air oxygen and temperature of the adduct, in which the anions occupy the outer-sphere positions. The oxidation of the mother liquor after isolation of the single crystals of **I** afforded the complex $Mn_6(\mu_4-O)_2[\mu,\eta^2-OOC-C_5H_4Mn(CO)_3]_2[\mu-OOC-C_5H_4Mn(CO)_3]_8(OH_2)_4 \cdot 5C_6H_6 \cdot THF \cdot 3H_2O$ (**II**). According to X-ray diffraction data, the metal core of **II** was a hexanuclear cluster $Mn_4^{II}Mn_2^{III}$ containing mixed-valence metal atoms. Apart from X-ray diffraction, the obtained unstable complexes were characterized by elemental analysis and IR spectroscopy (powders).

Keywords: manganese carboxylates, manganese(II) and manganese(III) cymantrenecarboxylate, organic peroxides, tetrahydrofuran, oxidation, clusters, synthesis, X-ray diffraction

DOI: 10.1134/S1070328421110051

INTRODUCTION

Organic peroxides formed upon the reactions of some solvents (tetrahydrofuran, ethers, etc.) with air oxygen in the light may act, similarly to hydrogen peroxide, as convenient oxidants for metal complexes, giving rise to oxo- and hydroxo-bridged polynuclear compounds and clusters [1, 2].

For example, in the case of cobalt(II) pivalates, oxidation with air oxygen was found for a dibenzyl ether solution of $Co_3^{II}(\mu-OOC'Bu)_6(NEt_3)_2$ to give the cluster $[Co_6^{III}(\mu_4-O)_2(\mu_3-O)_2(\mu-OOC'Bu)_9(OH)_2(HOOC'Bu)] \cdot (HNEt_3)$ and for a THF solution of the violet product of the thermal reaction of cobalt(II) acetate with pivalic acid to give the clusters $[Co_6^{III}(\mu_4-O)_2(\mu_3-OH)_2(OH)_2(\mu-OOC'Bu)_9]^+(\mu-OOC'Bu)^-(HOOC'Bu)$ and $Co_{14}^{III}(\mu_5-O)_2(\mu_3-O)_2(\mu_3-OH)_{12}(OH)_4(\mu-OOC'Bu)_8-(OOC'Bu)_{10} \cdot 2[OC(=O)C_3H_6][OC(H)(OH)C_3H_6]$ [3, 4]. The crystal cell of the latter compound contains two butyrolactone and two 2-hydroxytetrahydrofuran solvate molecules, resulting from decomposition of 2-hydroperoxytetrahydrofuran, which is formed upon conjugate reaction of air oxygen with THF in the presence of Co(II) atoms.

Similar polynuclear manganese carboxylates and oxo and hydroxo carboxylates are well known (by November, 2020, the Cambridge Crystallographic

Data Centre contained approximately 7000 structurally characterized manganese carboxylate compounds [5]). The obvious interest in these complexes is related to their use in many fundamental fields of modern chemistry, including single-molecule magnets (preparation of polynuclear complexes and clusters with high-spin metal atoms [6–15]), catalysis [16–19], bio-inorganic chemistry (modeling of the active part of natural enzymes [20–26]), and so on.

Previously, we showed that the reaction of manganese(II) acetate hydrate with cymantrenecarboxylic acid in methanol results in the formation of the complex $Mn[OOC-C_5H_4Mn(CO)_3]_2[O(H)Me]_4$ [27]. In this communication, we report the structure of products of a similar reaction, but carried out in THF.

EXPERIMENTAL

Commercial $Mn_2(OOCMe)_4(OH_2)_4$ (Acros) was used; cymantrenecarboxylic acid was synthesized by the procedure reported in [28].

Synthesis of the complex $[Mn(Thf)_2(OH_2)_4][OOC-C_5H_4Mn(CO)_3]_2$ (I**) and the cluster $Mn_6(\mu_4-O)_2[\mu,\eta^2-OOC-C_5H_4Mn(CO)_3]_2[\mu-OOC-C_5H_4Mn(CO)_3]_8(OH_2)_4 \cdot 5C_6H_6 \cdot THF \cdot 3H_2O$ (**II**).** A solution of $HOOC-C_5H_4Mn(CO)_3$ (0.4 g, 1.6 mmol) in THF (10 mL) was added to $Mn(CH_3COO)_2 \cdot 4H_2O$ (0.2 g, 0.8 mmol),

and the mixture was refluxed in an inert atmosphere (argon) for 2 h. The resulting homogeneous solution was concentrated to ~4 mL and left to cool down to room temperature in an oil bath. The colorless crystals of complex **I**, highly unstable at room temperature, which were formed within 24 h, were separated from the mother liquor by decanting, washed successively with cold benzene (10 mL) and hexane (10 mL), and dried in an argon flow. After 10–15 min in argon, the crystals decomposed being converted to a powder. In air, the mother liquor rapidly (after ~30 min) changed its color. Benzene (5 mL) was added to the resulting brown solution, and the mixture was left overnight under an exhaust hood in an open flask. The resulting brown crystals of cluster **II** were separated from the solution by decanting, washed successively with cold benzene (10 mL) and hexane (10 mL), and dried in an argon flow. The single crystals of **II** also proved to be unstable at room temperature.

The yield of **I** was 0.09 g (15%).

For $C_{26}H_{32}O_{16}Mn_3$		
Anal. calcd., %	C, 40.80	H, 4.21
For $C_{26}H_{32}O_{16}Mn_3\text{-THF}$		
$C_{22}H_{24}Mn_3O_{15}$		
Anal. calcd., %	C, 38.11	H, 3.49
For $C_{26}H_{32}O_{16}Mn_3\text{-2 THF}$		
$C_{18}H_{16}O_{14}Mn_3$		
Anal. calcd., %	C, 34.81	H, 2.59
Found (powder), %	C, 38.12	H, 2.87

Since compound **I** was unstable and elemental analysis was performed for a powder, the calculated and experimental data were in poor agreement. However, according to calculations, some of coordinated THF seems to be evaporated during decomposition of the complex (this is reflected in the results of elemental analysis).

IR (powder): 2016 s, 1911 s, 1682 w, 1567 m, 1480 s, 1388 s, 1363 s, 1200 m, 1015 m, 924 w, 837 w, 796 m, 663 s, 627 s, 535 s, 489 m, 465 m, 440 w, 414 w, 405 w.

The yield of **II** was 0.25 g (38%).

For $C_{90}H_{48}O_{56}Mn_16$		
Anal. calcd., %	C, 37.22	H, 1.66
For $C_{90}H_{54}O_{59}Mn_{16}$		
$(C_{90}H_{48}Mn_{16}O_{56}\text{-}3H_2O)$		
Anal. calcd., %	C, 36.54	H, 1.84
Found (powder), %	C, 36.18	H, 2.04

IR (powder): 2018 s, 1919 s, 1539 m, 1481 s, 1391 s, 1361 s, 1260 w, 1199 w, 1029 m, 926 w, 838 w, 790 m, 665 s, 628 s, 538 s, 489 m, 471 m, 453 m, 433 w, 418 w.

Due to the extremely low stability of compounds **I** and **II**, no satisfactory results of chemical analysis could be obtained.

The IR spectra of the compounds were measured on a Perkin-Elmer Spectrum 65 Fourier Transform IR spectrometer in the attenuated total reflectance (ATR) mode in the frequency range of 400–4000 cm^{-1} .

The single crystals for X-ray diffraction were taken out directly from the mother liquor and rapidly transferred into the flow of evaporating liquid nitrogen.

X-ray diffraction study of **I** and **II** was carried out by the standard procedure on a Bruker SMART Apex II automated diffractometer equipped with a CCD array detector (MoK_α radiation, $\lambda = 0.71073 \text{ \AA}$, graphite monochromator, ω -scan mode). The structures were refined using the SHELXTL PLUS program package (PC version) [29–32]. The structures were solved by direct methods and refined by the least squares method in the anisotropic approximation for all non-hydrogen atoms. The positions of hydrogen atoms of the coordinated water molecules in **I** were derived from difference Fourier maps and refined isotropically, and the other hydrogen atoms of **I** and **II** were located geometrically and refined in the riding model.

The crystallographic data and structure refinement details for **I** and **II** are summarized in Table 1, and bond lengths and bond angles are in Tables 2 and 3, respectively.

The structural data were deposited with the Crystallographic Data Centre (CCDC nos. 2059074 (**I**) and 2059075 (**II**); <http://www.ccdc.cam.ac.uk/>).

RESULTS AND DISCUSSION

It was found that, unlike the reaction of manganese(II) acetate hydrate with cymantrenecarboxylic acid in methanol, this reaction in donor polar THF affords extremely unstable colorless complex $[\text{Mn}(\text{OH}_2)_4(\text{Thf})_2][\text{OOCC}_5\text{H}_4\text{Mn}(\text{CO})_3]_2$ (**I**, 15% yield). According to X-ray diffraction data, the metal atom in the centrosymmetric mononuclear complex **I** (Tables 1, 2, Fig. 1) has a distorted octahedral environment composed of four oxygen atoms of equatorially coordinated water molecules ($\text{Mn}(1)\text{-O}$, 2.066(3)–2.089(3) \AA) and two oxygen atoms of axially coordinated THF molecules ($\text{Mn}(1)\text{-O}$, 2.130(4) \AA). The oxygen atoms of two outer-sphere cymantrenecarboxylate anions form short bonds with water hydrogen atoms, thus giving a 2D polymer (Fig. 2) ($\text{O}(4)\dots\text{O}(2)$ ($\text{O}(2\text{A})$, 2.658 \AA (2.714 \AA)); $\text{O}(5)\dots\text{O}(3)$ ($\text{O}(3\text{A})$, 2.671 \AA (2.714 \AA)). Note that all cyclopentadienyl moieties in the polymer are parallel.

Previously, it was found that a similar reaction carried out in THF on heating to 50°C, with addition of hexane and keeping of the obtained solution in a refrigerator at 5°C results in the formation of crystals of the heterocarboxylate 1D-polymer $\{\text{Mn}_2[\mu\text{-OOCC}_5\text{H}_4\text{Mn}(\text{CO})_3]_2(\mu\text{-OOCMe})(\mu\text{-OOCC}_5\text{H}_4\text{Mn}(\text{CO})_3)(\text{Thf})_2\}_n$ (**A**) [33]. Pre-

Table 1. Crystallographic data and structure refinement details of complexes **I** and **II**

Parameter	Value	
	I	II
Molecular formula	C ₂₆ H ₃₂ O ₁₆ Mn ₃	C ₉₀ H ₄₈ O ₅₆ Mn ₁₆ ·5C ₆ H ₆ ·C ₄ H ₈ O·3H ₂ O
<i>M</i>	765.34	3421.01
Color	Colorless	Brown
<i>T</i> , K	150(2)	150(2)
System	Triclinic	Triclinic
Space group	<i>P</i> 1̄	<i>P</i> 1̄
<i>a</i> , Å	7.912(3)	14.098(4)
<i>b</i> , Å	8.033(4)	15.235(4)
<i>c</i> , Å	12.932(5)	34.435(9)
α, deg	74.638(6)	89.949(4)
β, deg	88.430(7)	87.331(4)
γ, deg	79.108(7)	89.906(4)
<i>V</i> , Å ³	778.0(6)	7388(3)
<i>Z</i>	1	2
ρ(calcd.), mg/m ³	1.633	1.538
μ, mm ⁻¹	1.272	1.401
<i>F</i> (000)	391	3432
Crystal size, mm	0.24 × 0.22 × 0.20	0.16 × 0.18 × 0.20
Scanning range of θ, deg	2.62–27.99	1.44–27.57
Ranges of reflection indices	−7 ≤ <i>h</i> ≤ 10, −10 ≤ <i>k</i> ≤ 10, −17 ≤ <i>l</i> ≤ 13	−18 ≤ <i>h</i> ≤ 18, −19 ≤ <i>k</i> ≤ 19, −43 ≤ <i>l</i> ≤ 43
Number of reflections	5164	32047
Number of unique reflections (<i>R</i> _{int})	3540 (0.0389)	22374 (0.0747)
GOOF	0.979	1.079
<i>R</i> (<i>I</i> > 2σ(<i>I</i>))	<i>R</i> ₁ = 0.0530, <i>wR</i> ₂ = 0.1288	<i>R</i> ₁ = 0.0957, <i>wR</i> ₂ = 0.2471
<i>R</i> (for all reflections)	<i>R</i> ₁ = 0.0948, <i>wR</i> ₂ = 0.1559	<i>R</i> ₁ = 0.1301, <i>wR</i> ₂ = 0.2739
Residual electron density (max/min), e Å ⁻³	1.452/−0.615	2.220/−1.070

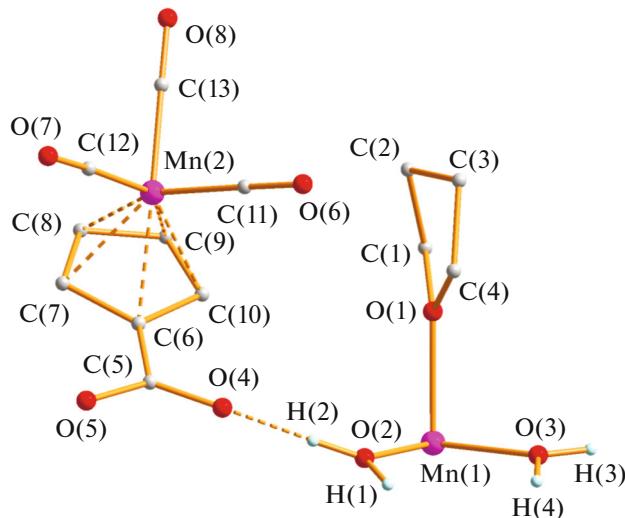
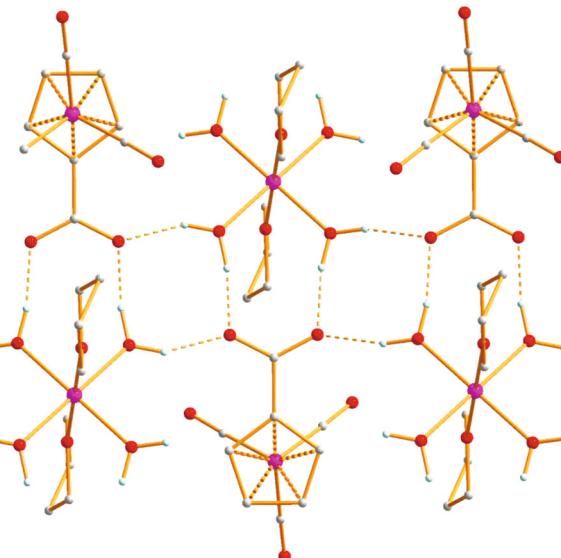
sumably, the following main equilibria may occur in the reaction mixture in polar THF at a temperature where there is no obvious removal of one of the reactants: Mn(OOCMe)₂(OH₂)₄ + HOOCC₅H₄Mn(CO)₃ ↔ **(I)** + 2HOOCHMe ↔ **(A)** + HOOCMe + 4H₂O + HOOCC₅H₄Mn(CO)₃ ↔ Mn[OOC₅H₄Mn(CO)₃]₂(THf)₄ (**B**) + 2HOOCHMe + 4H₂O.

It cannot be ruled out that the formation of single crystals of one of the complexes present in the solution is determined by the crystallization conditions, but the presumed adduct **B** has not yet been isolated in the single crystalline state.

It is noteworthy that similar equilibria occur in the solution formed upon the reaction of manganese ace-

tate hydrate with benzoic acid in hot toluene, resulting in the formation of the polymer {Mn₅-(OO-CMe)₆(OOCPh)₄}_n [34], and the reaction of Zn(OOCMe)₂(OH₂)₂ with cymantrenecarboxylic acid in acetonitrile at 50°C, giving 1D polymer {Zn[OOC-C₅H₄Mn(CO)₃](μ-OOCMe)(OH₂)₂}_n [35].

In the presence of air oxygen, the colorless mother liquor of this reaction rapidly turns brown, and addition of benzene induces crystallization of the hexanuclear cluster Mn₆(μ₄-O)₂(μ,η²-OOC₅H₄Mn(CO)₃)₂-(μ-OOC₅H₄Mn(CO)₃)₈(OH₂)₄·5C₆H₆·THF·3H₂O (**II**, 35% yield).



Table 2. Selected bond lengths (Å) and bond angles (deg) in complex **I***

Bond	<i>d</i> , Å	Bond	<i>d</i> , Å
Mn(1)–O(2)	2.066(3)	Mn(1)–O(2) ^{#1}	2.066(3)
Mn(1)–O(3) ^{#1}	2.089(3)	Mn(1)–O(3)	2.089(3)
Mn(1)–O(1) ^{#1}	2.130(4)	Mn(1)–O(1)	2.130(4)
Angle	ω , deg	Angle	ω , deg
O(2)Mn(1)O(2) ^{#1}	180.0	O(2)Mn(1)O(3) ^{#1}	93.76(13)
O(2) ^{#1} Mn(1)O(3) ^{#1}	86.24(13)	O(2)Mn(1)O(3)	86.24(13)
O(2) ^{#1} Mn(1)O(3)	93.76(13)	O(3) ^{#1} Mn(1)O(3)	180.0
O(2)Mn(1)O(1) ^{#1}	88.96(14)	O(2) ^{#1} Mn(1)O(1) ^{#1}	91.04(14)
O(3) ^{#1} Mn(1)O(1) ^{#1}	91.56(13)	O(3)Mn(1)O(1) ^{#1}	88.44(13)
O(2)Mn(1)O(1)	91.04(14)	O(2) ^{#1} Mn(1)O(1)	88.96(14)
O(3) ^{#1} Mn(1)O(1)	88.44(13)	O(3)Mn(1)O(1)	91.56(13)
O(1) ^{#1} Mn(1)O(1)	180.0	C(4)O(1)Mn(1)	122.6(3)
C(1)O(1)Mn(1)	128.2(3)		

* Symmetric codes used to generate the equivalent atoms: ^{#1} $-x, -y, -z$.

According to X-ray diffraction data, six manganese atoms in **II** (Table 3, Figs. 3, 4) are connected by two tetradeятate bridging oxygen atoms (O(1)–Mn(1), 2.180(6); O(1)–Mn(2), 1.896(6); O(1)–Mn(3), 1.869(6); O(1)–Mn(6), 2.209(6) Å; O(2)–Mn(2), 1.873(6); O(2)–Mn(3), 1.910(6); O(2)–Mn(4), 2.177(7); O(2)–Mn(5), 2.192(6) Å). The distribution of M–O bond lengths suggests that the Mn(2) and Mn(3) atoms are in the +3 oxidation state (stronger Lewis acids), while the oxidation state of the other

metal atoms is +2. This assumption is confirmed by the considerable difference between the “metal–bridging anion oxygen” bond lengths (Mn^{II}(1)–O, 2.113(7)–2.339(7); Mn^{III}(2)–O, 1.954(7)–2.235(7); Mn^{III}(3)–O, 1.957(7)–2.235(7); Mn^{II}(4)–O, 2.120(8)–2.362(7); Mn^{II}(5)–O, 2.158(7)–2.278(7); Mn^{II}(6)–O, 2.110(7)–2.271(7) Å) and, hence, M...M distances

Fig. 1. Independent part of complex **I**.**Fig. 2.** Fragment of the packing of molecules of **I** in the crystal. Colors of atoms: manganese is violet, oxygen is red, and carbon is gray.

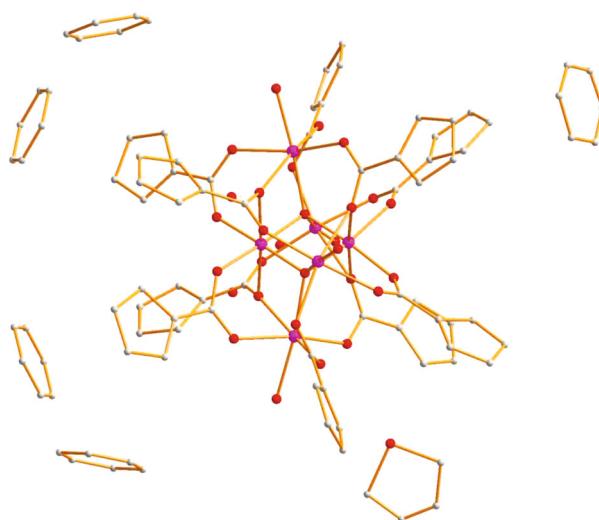
Table 3. Selected bond lengths (Å) and bond angles (deg) in complex **II**

Bond	<i>d</i> , Å	Bond	<i>d</i> , Å
Mn(1)–O(5)	2.113(7)	Mn(1)–O(4)	2.136(7)
Mn(1)–O(6)	2.144(7)	Mn(1)–O(1)	2.180(6)
Mn(1)–O(7)	2.215(8)	Mn(1)–O(3)	2.339(7)
Mn(1)–Mn(2)	3.177(2)	Mn(2)–O(2)	1.873(6)
Mn(2)–O(1)	1.896(6)	Mn(2)–O(9)	1.954(7)
Mn(2)–O(8)	1.972(7)	Mn(2)–O(3)	2.228(7)
Mn(2)–O(13)	2.235(7)	Mn(2)–Mn(3)	2.8220(17)
Mn(2)–Mn(4)	3.162(2)	Mn(3)–O(1)	1.869(6)
Mn(3)–O(2)	1.910(6)	Mn(3)–O(11)	1.957(7)
Mn(3)–O(12)	1.978(7)	Mn(3)–O(10)	2.220(7)
Mn(3)–O(22)	2.235(7)	Mn(3)–Mn(6)	3.160(2)
Mn(3)–Mn(5)	3.161(2)	Mn(6)–O(26)	2.110(7)
Mn(6)–O(24)	2.113(7)	Mn(6)–O(23)	2.168(7)
Mn(6)–O(1)	2.209(6)	Mn(6)–O(25)	2.226(8)
Mn(6)–O(22)	2.271(7)	Mn(5)–O(19)	2.075(7)
Mn(5)–O(18)	2.158(7)	Mn(5)–O(2)	2.192(6)
Mn(5)–O(20)	2.197(7)	Mn(5)–O(21)	2.201(7)
Mn(5)–O(10)	2.278(7)	Mn(4)–O(14)	2.120(8)
Mn(4)–O(16)	2.125(7)	Mn(4)–O(15)	2.131(7)
Mn(4)–O(2)	2.177(7)	Mn(4)–O(17)	2.230(8)
Mn(4)–O(13)	2.362(7)		
Angle	ω , deg	Angle	ω , deg
O(5)Mn(1)O(4)	90.9(3)	O(5)Mn(1)O(6)	99.5(3)
O(4)Mn(1)O(6)	162.4(3)	O(5)Mn(1)O(1)	91.6(3)
O(4)Mn(1)O(1)	93.0(3)	O(6)Mn(1)O(1)	100.9(3)
O(5)Mn(1)O(7)	90.1(3)	O(4)Mn(1)O(7)	83.7(3)
O(6)Mn(1)O(7)	82.1(3)	O(1)Mn(1)O(7)	176.2(3)
O(5)Mn(1)O(3)	166.0(3)	O(4)Mn(1)O(3)	82.3(3)
O(6)Mn(1)O(3)	90.3(3)	O(1)Mn(1)O(3)	76.6(2)
O(7)Mn(1)O(3)	101.2(3)	O(2)Mn(2)O(1)	83.4(2)
O(2)Mn(2)O(9)	95.1(3)	O(1)Mn(2)O(9)	172.7(3)
O(2)Mn(2)O(8)	173.7(3)	O(1)Mn(2)O(8)	95.0(3)
O(9)Mn(2)O(8)	87.3(2)	O(2)Mn(2)O(3)	96.0(3)
O(1)Mn(2)O(3)	85.2(3)	O(9)Mn(2)O(3)	87.8(3)
O(8)Mn(2)O(3)	89.9(3)	O(2)Mn(2)O(13)	86.6(3)
O(1)Mn(2)O(13)	97.4(3)	O(9)Mn(2)O(13)	89.6(3)
O(8)Mn(2)O(13)	87.6(3)	O(3)Mn(2)O(13)	176.5(2)
O(1)Mn(3)O(11)	171.6(3)	O(2)Mn(3)O(11)	95.9(3)
O(1)Mn(3)O(12)	93.8(3)	O(2)Mn(3)O(12)	171.8(3)
O(11)Mn(3)O(12)	88.3(3)	O(1)Mn(3)O(10)	98.8(3)
O(2)Mn(3)O(10)	85.3(3)	O(11)Mn(3)O(10)	89.4(3)
O(12)Mn(3)O(10)	87.6(3)	O(1)Mn(3)O(22)	85.8(3)
O(2)Mn(3)O(22)	96.8(3)	O(11)Mn(3)O(22)	86.1(3)
O(12)Mn(3)O(22)	90.5(3)	O(10)Mn(3)O(22)	175.2(2)

Table 3. (Contd.)

Angle	ω , deg	Angle	ω , deg
O(1)Mn(3)O(2)	83.1(2)	O(26)Mn(6)O(24)	167.5(3)
O(26)Mn(6)O(23)	98.1(3)	O(24)Mn(6)O(23)	84.3(3)
O(26)Mn(6)O(1)	101.0(3)	O(24)Mn(6)O(1)	91.2(3)
O(23)Mn(6)O(1)	89.7(3)	O(26)Mn(6)O(25)	85.6(3)
O(24)Mn(6)O(25)	82.0(3)	O(23)Mn(6)O(25)	93.7(3)
O(1)Mn(6)O(25)	172.1(3)	O(26)Mn(6)O(22)	98.1(3)
O(24)Mn(6)O(22)	82.0(3)	O(23)Mn(6)O(22)	161.0(3)
O(1)Mn(6)O(22)	77.6(2)	O(25)Mn(6)O(22)	97.3(3)
O(19)Mn(5)O(18)	170.6(3)	O(19)Mn(5)O(2)	98.0(3)
O(18)Mn(5)O(2)	91.3(3)	O(19)Mn(5)O(20)	86.7(3)
O(18)Mn(5)O(20)	83.9(3)	O(2)Mn(5)O(20)	174.0(3)
O(19)Mn(5)O(21)	97.1(3)	O(18)Mn(5)O(21)	84.1(3)
O(2)Mn(5)O(21)	90.4(3)	O(20)Mn(5)O(21)	92.6(3)
O(19)Mn(5)O(10)	97.4(3)	O(18)Mn(5)O(10)	83.3(3)
O(2)Mn(5)O(10)	77.9(2)	O(20)Mn(5)O(10)	98.0(3)
O(21)Mn(5)O(10)	162.5(3)	O(14)Mn(4)O(15)	164.6(3)
O(14)Mn(4)O(13)	93.5(3)	O(16)Mn(4)O(15)	90.8(3)
O(14)Mn(4)O(2)	100.1(3)	O(16)Mn(4)O(2)	93.9(3)
O(15)Mn(4)O(2)	92.7(3)	O(14)Mn(4)O(17)	84.5(3)
O(16)Mn(4)O(17)	90.3(3)	O(15)Mn(4)O(17)	82.1(3)
O(2)Mn(4)O(17)	173.4(3)	O(2)Mn(4)O(13)	77.0(2)
O(16)Mn(4)O(13)	167.4(3)	O(15)Mn(4)O(13)	81.1(3)
O(17)Mn(4)O(13)	98.0(3)		

$(Mn^{III}(2)...Mn^{III}(3), 2.8220(17); Mn^{III}(2),(3)...Mn^{II}, 3.160(2)-3.502(3); Mn^{II}...Mn^{II}, 3.781(3)-4.709(3) \text{ \AA}.$


Finally, each Mn^{III} atom has a distorted octahedral environment composed of the oxygen atoms of the bridging anions, while the environment of Mn^{II} atoms is completed by the oxygen atoms of coordinated water molecules ($Mn-O$, 2.215(8)-2.230(8) \AA) (Table 3, Fig. 4).

It is worth noting that three identified solvate water molecules are hydrogen-bonded to one another and to oxygen atoms of coordinated H_2O and the bridging anion, while the other solvate molecules have no noticeable contacts with the atoms of cluster **II**.

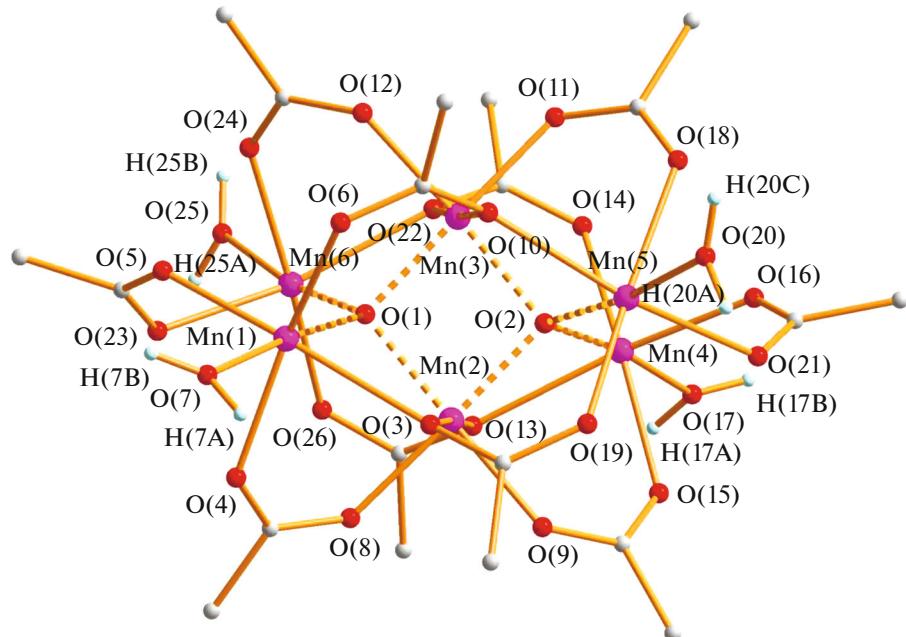
The hexanuclear mixed-valence manganese carboxylates $Mn_4^{II}L_4(\mu_4-O)_2Mn_2^{III}(OOCR)_{10}$ (L = manganese(II)-coordinated two-electron donor) are well known [36]; they have been prepared by a variety of

methods: reactions of manganese(II) salts (chlorides, carbonates) with sodium or potassium carboxylates; ligand exchange of anions in the manganese acetate with anions of the acid followed by oxidation with air oxygen in polar solvents (H_2O , MeCN, THF), hydrogen peroxide, or manganese compounds with high oxidation states (MnO_4^-) [37-52].

Thus, this study demonstrated that, unlike the reaction of manganese(II) acetate hydrate with cymantrenecarboxylic acid in methanol, which gives the adduct $Mn[OOCC_5H_4Mn(CO)_3]_2[O(H)Me]_4$, stable to air oxygen, with four coordinated methanol molecules, a similar reaction in THF affords the mononuclear complex $[Mn(OH_2)_4(Thf)_2][OOC-C_5H_4Mn(CO)_3]_2$, in which the anions occupy the outer-sphere positions. This complex is readily oxidized in THF in air, giving rise to a hexanuclear cluster containing manganese atoms in different oxidation

Fig. 3. General view of cluster **II** with benzene and THF solvate molecules (the disordered water molecules are omitted). The $\text{Mn}(\text{CO})_3$ groups are omitted for clarity. Colors of atoms: manganese is violet, oxygen is red, and carbon is gray.

states. Note that the metal atoms located in the organometallic part of the molecule are not oxidized.


ACKNOWLEDGMENTS

X-ray diffraction analysis and IR spectroscopic studies were performed using equipment of the Center for Collective Use of Physical Methods of Investigation, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, which is supported by the state

assignment for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, in the field of fundamental research.

FUNDING

This study was performed within the state assignment for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, in the field of fundamental research.

Fig. 4. Metal core of cluster **II** (only the skeleton atoms of the $\text{C}_5\text{H}_4\text{Mn}(\text{CO})_3$ moieties are shown).

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

1. Kurnojitzki, V., *Les Peroxydes Organiques*, Hermann, Paris, 1958.
2. Hawkings, E.G.E., *Organic Peroxides. Their Formation and Reactions*, London: Spon, 1961.
3. Nefedov, S.E., Uvarova, M.A., Golubichnaya, M.A., et al., *Russ. J. Coord. Chem.*, 2014, vol. 40, p. 358.
4. Nefedov, S.E. and Denisova, T.O., *Russ. J. Inorg. Chem.*, 2006, vol. 51, p. 1404.
<https://doi.org/10.1134/S0036023606090063>
5. CSD. Version 5.42 (November 2020).
6. Friedman, J.R. and Sarachik, M.P., *Annu. Rev. Cond. Mat.*, 2010, no. 1, p. 109.
<https://doi.org/10.1146/annurev-conmatphys-070909-104053>
7. Kittilstved, K.R., Liu, W.K., and Gamelin, D.R., *Nat. Mater.*, 2006, vol. 5, p. 291.
<https://doi.org/10.1038/nmat1616>
8. Wernsdorfer, W., Aliaga-Alcalde, N., Hendrickson, D.N., and Christou, G., *Nature*, 2002, vol. 416, p. 406.
<https://doi.org/10.1038/416406a>
9. Martin, J.D. and Hess, R.F., *Chem. Commun.*, 1996, vol. 288, p. 2419.
<https://doi.org/10.1039/CC9960002419>
10. Liu, S., Bremer, M.T., Lovaasen, J., et al., *Inorg. Chem.*, 2008, vol. 47, p. 1568.
<https://doi.org/10.1021/ic7020879>
11. Geier, S., Mason, J.A., Bloch, E., et al., *Chem. Sci.*, 2013, p. 2054.
<https://doi.org/10.1039/C3SC00032J>
12. Aromí, G. and Brechin, E.K., in *Structure and Bonding: Single-Molecule Magnets and Related Phenomena*, Winpenny, R., Ed., Berlin: Springer, 2006, vol. 122, p. 1.
13. Inglis, R., White, F., Piligkos, S., et al., *Chem. Commun.*, 2011, vol. 47, p. 3090.
<https://doi.org/10.1039/c0cc05750a>
14. Abasi, P., Quinn, K., Alexandropoulos, D.I., et al., *J. Am. Chem. Soc.*, 2017, vol. 139, p. 15644.
<https://doi.org/10.1021/jacs.7b10130>
15. Mishra, A., Wernsdorfer, W., Abboud, K.A., and Christou, G., *Inorg. Chem.*, 2006, vol. 45, p. 10197.
<https://doi.org/10.1021/ic061334d>
16. de Boer, J.W., Brinksma, J., Browne, W.R., et al., *J. Am. Chem. Soc.*, 2005, vol. 127, p. 7990.
<https://doi.org/10.1021/ja050990u>
17. Talsi, E.P. and Bryakov, K.P., *Coord. Chem. Rev.*, 2012, vol. 256, nos. 13–14, p. 1418.
<https://doi.org/10.1016/j.ccr.2012.04.005>
18. Castaman, S.T., Nakagaki, Sh., Ribeiro, R.R., et al., *J. Mol. Catal. A*, 2009, vol. 300, nos. 1–2, p. 89.
<https://doi.org/10.1016/j.molcata.2008.10.037>
19. Waiba, S. and Maji, B., *ChemCatChem*, 2020, vol. 12, p. 1891.
<https://doi.org/10.1002/cctc.201902180>
20. Lippard, S.J. and Berg, J.M., *Principles of Bioinorganic Chemistry*, Mill Valley: Univ. Science Books, 1994, p. 199.
21. Kanady, J.S., Tsui, E.Y., Day, M.W., and Agapie, T., *Science*, 2011, vol. 333, p. 733.
<https://doi.org/10.1126/science.1206036>
22. Larson, V.A., Battistella, B., Ray, K., et al., *Nat. Rev. Chem.*, 2020, vol. 4, p. 404.
<https://doi.org/10.1038/s41570-020-0197-9>
23. Tsui, E.Y., Kanady, J.S., and Agapie, T., *Inorg. Chem.*, 2013, vol. 52, no. 24, p. 13833.
<https://doi.org/10.1021/ic402236f>
24. Lee, H.B., Marchiori, D.A., Chatterjee, R., et al., *J. Am. Chem. Soc.*, 2020, vol. 142, no. 8, p. 3753.
<https://doi.org/10.1021/jacs.9b1037>
25. Reed, Ch.J. and Agapie, T., *J. Am. Chem. Soc.*, 2018, vol. 140, no. 34, p. 10900.
<https://doi.org/10.1021/jacs.8b06426>
26. Beal, N.J. and O’Malley, P.J., *J. Am. Chem. Soc.*, 2016, vol. 138, no. 13, p. 4358.
<https://doi.org/10.1021/jacs.6b02600>
27. Uvarova, M.A. and Nefedov, S.E., *Russ. J. Inorg. Chem.*, 2015, p. 1074.
<https://doi.org/10.1134/S003602361509020X>
28. Nesmeyanov, A.N., Anisimov, K.N., Kolobova, N.E., and Makarov, Y.V., *Bull. USSR Acad. Sci., Div. Chem. Sci.*, 1968, p. 672.
29. SMART (control) and SAINT (integration) Software. Version 5.0, Madison: Bruker AXS Inc., 1997.
30. SAINT. Area-Detector Integration Software, Madison: Bruker AXS Inc., 2012.
31. Sheldrick, G.M., SADABS. Program for Scaling and Correction of Area Detector Data, Göttingen: Univ. of Göttingen, 1997.
32. Sheldrick, G.M., *Acta Crystallogr., Sect. C: Struct. Chem.*, 2015, vol. 71, p. 3.
<https://doi.org/10.1107/S2053229614024218>
33. Uvarova, M.A. and Nefedov, S.E., *Russ. J. Inorg. Chem.*, 2015, vol. 60, no. 11, p. 1348.
<https://doi.org/10.1134/S0036023615110212>
34. Liu, Sh., Bremer, M.T., Lovaasen, J., et al., *Inorg. Chem.*, 2008, vol. 47, p. 1568.
<https://doi.org/10.1021/ic7020879>
35. Uvarova, M.A., Ageshina, A.A., Grineva, A.A., et al., *Russ. J. Inorg. Chem.*, 2015, vol. 60, no. 11, p. 566.
36. Baca, S.G., *Advances in Chemistry Research*, Taylor, J.C., Ed., New York: Nova Science, 2018, vol. 43, p. 81.
37. Wemple, M.W., Tsai, H.-L., Wang, S., et al., *Inorg. Chem.*, 1996, vol. 35, p. 6437.
<https://doi.org/10.1021/ic9603013>
38. Malaestean, I.L., Ellern, A., Leusen, J., et al., *Cryst. EngComm*, 2014, vol. 1, p. 6523.
<https://doi.org/10.1039/C4CE00504J>
39. Kornowicz, A., Komorski, S., Wrobel, Z., et al., *Dalton Trans.*, 2014, vol. 43, p. 3048.
<https://doi.org/10.1039/C3DT53211A>
40. Halcrow, M.A., Streib, W.E., Folting, K., and Christou, G., *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.*, 1995, vol. 51, p. 1263.
<https://doi.org/10.1107/S0108270194013764>

41. Kushch, L.A., Shilov, G.V., Morgunov, R.B., and Yagubskii, E.B., *Mendeleev Commun.*, 2009, vol. 19, p. 170.
<https://doi.org/10.1016/j.mencom.2009.05.021>
42. Batsanov, A.S., Struchkov, Yu.T., Timco, G.A., et al., *Russ. J. Coord. Chem.*, 1994, vol. 20, p. 604.
43. Malaestean, I.L., Kravtsov, V.Ch., Speldrich, M., et al., *Inorg. Chem.*, 2010, vol. 49, p. 7764.
<https://doi.org/10.1021/ic100541m>
44. Schake, A.R., Vincent, J.B., Li Qiaoying, et al., *Inorg. Chem.*, 1989, vol. 28, p. 1915.
45. Karsten, P. and Strähle, J., *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.*, 1998, vol. 54, p. 1403.
<https://doi.org/10.1107/S0108270198005861>
46. Kohler, K., Roesky, H.W., Noltemeyer, M., et al., *Chem. Ber.*, 1993, vol. 126, p. 921.
<https://doi.org/10.1002/cber.19931260411>
47. Stamatatos, T.C., Foguet-Albiol, D., Perlepes, S.P., et al., *Polyhedron*, 2006, vol. 25, p. 1737.
<https://doi.org/10.1016/j.poly.2005.11.019>
48. Kiskin, M.A., Sidorov, A.A., Fomina, I.G., et al., *Inorg. Chem. Commun.*, 2005, vol. 8, p. 524.
<https://doi.org/10.1016/j.inoche.2005.03.005>
49. Kar, P., Haldar, R., Gomez-Garcia, C.J., and Ghosh, A., *Inorg. Chem.*, 2012, vol. 51, p. 4265.
<https://doi.org/10.1021/ic2027362>
50. Gerbier, P., Ruiz-Molina, D., Gomez, J., et al., *Polyhedron*, 2003, vol. 22, p. 1951.
[https://doi.org/10.1016/S0277-5387\(03\)00158-X](https://doi.org/10.1016/S0277-5387(03)00158-X)
51. Darii, M., Filippova, I., Hauser, J., et al., *Crystals*, 2018, vol. 8, no. 2, p. 100.
<https://doi.org/10.3390/crust8020100>
52. Ovcharenko, V., Fursova, E., Romanenko, G., and Ikorskii, V., *Inorg. Chem.*, 2004, vol. 43, p. 3332.
<https://doi.org/10.1021/ic049859y>

Translated by Z. Svitanko