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Abstract—The reaction of manganese(II) acetate hydrate with cymantrenecarboxylic acid under inert atmo-
sphere gave the complex [Mn(Thf)2(OH2)4][OOCC5H4Mn(CO)3]2 (I), which was highly unstable to air oxy-
gen and temperature of the adduct, in which the anions occupy the outer-sphere positions. The oxidation of
the mother liquor after isolation of the single crystals of I afforded the complex Mn6(μ4-O)2[μ,η2-OOC-
C5H4Mn(CO)3]2[μ-OOCC5H4Mn(CO)3]8(OH2)4·5C6H6·THF·3H2O (II). According to X-ray diffraction

data, the metal core of II was a hexanuclear cluster  containing mixed-valence metal atoms. Apart
from X-ray diffraction, the obtained unstable complexes were characterized by elemental analysis and IR
spectroscopy (powders).
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INTRODUCTION
Organic peroxides formed upon the reactions of

some solvents (tetrahydrofuran, ethers, etc.) with air
oxygen in the light may act, similarly to hydrogen per-
oxide, as convenient oxidants for metal complexes,
giving rise to oxo- and hydroxo-bridged polynuclear
compounds and clusters [1, 2].

For example, in the case of cobalt(II) pivalates, oxida-
tion with air oxygen was found for a dibenzyl ether
solution of (μ-OOCtBu)6(NEt3)2 to give the cluster

[ (μ4-O)2(μ3-O)2(μ-OOCtBu)9(OH)2(HOOCtBu)]-
(HNEt3) and for a THF solution of the violet product of
the thermal reaction of cobalt(II) acetate with pivalic acid
to give the clusters [ (μ4-O)2(μ3-OH)2(OH)2(μ-

OOCtBu)9]+(OOCtBu)–(HOOCtBu) and (μ5-
O)2(μ3-O)2(μ3-OH)12(OH)4(μ-OOCtBu)8-(OOCtBu)10⋅
2[OC(=O)C3H6][OC(H)(OH)C3H6] [3, 4]. The crystal
cell of the latter compound contains two butyrolactone
and two 2-hydroxytetrahydrofuran solvate molecules,
resulting from decomposition of 2-hydroperoxytetrahy-
drofuran, which is formed upon conjugate reaction of air
oxygen with THF in the presence of Co(II) atoms.

Similar polynuclear manganese carboxylates and
oxo and hydroxo carboxylates are well known (by
November, 2020, the Cambridge Crystallographic

Data Centre contained approximately 7000 structur-
ally characterized manganese carboxylate compounds
[5]). The obvious interest in these complexes is related
to their use in many fundamental fields of modern
chemistry, including single-molecule magnets (prepa-
ration of polynuclear complexes and clusters with
high-spin metal atoms [6–15]), catalysis [16–19], bio-
inorganic chemistry (modeling of the active part of
natural enzymes [20–26]), and so on.

Previously, we showed that the reaction of manga-
nese(II) acetate hydrate with cymantrenecarboxylic
acid in methanol results in the formation of the com-
plex Mn[OOCC5H4Mn(CO)3]2[O(H)Me]4 [27]. In
this communication, we report the structure of prod-
ucts of a similar reaction, but carried out in THF.

EXPERIMENTAL
Commercial Mn2(OOCMe)4(OH2)4 (Acros) was

used; cymantrenecarboxylic acid was synthesized by
the procedure reported in [28].

Synthesis of the complex [Mn(Thf)2(OH2)4][OOC-
C5H4Mn(CO)3]2 (I) and the cluster Mn6(μ4-O)2[μ,η2-
OOCC5H4Mn(CO)3]2[μ-OOCC5H4Mn(CO)3]8(OH2)4·
5C6H6·THF·3H2O (II). A solution of HOOC-
C5H4Mn(CO)3 (0.4 g, 1.6 mmol) in THF (10 mL) was
added to Mn(CH3COO)2⋅4H2O (0.2 g, 0.8 mmol),
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and the mixture was refluxed in an inert atmosphere
(argon) for 2 h. The resulting homogeneous solution
was concentrated to ~4 mL and left to cool down to
room temperature in an oil bath. The colorless crystals
of complex I, highly unstable at room temperature,
which were formed within 24 h, were separated from
the mother liquor by decanting, washed successively
with cold benzene (10 mL) and hexane (10 mL), and
dried in an argon flow. After 10–15 min in argon, the
crystals decomposed being converted to a powder. In
air, the mother liquor rapidly (after ~30 min) changed
its color. Benzene (5 mL) was added to the resulting
brown solution, and the mixture was left overnight
under an exhaust hood in an open flask. The resulting
brown crystals of cluster II were separated from the
solution by decanting, washed successively with cold
benzene (10 mL) and hexane (10 mL), and dried in an
argon flow. The single crystals of II also proved to be
unstable at room temperature.

The yield of I was 0.09 g (15%).

Since compound I was unstable and elemental
analysis was performed for a powder, the calculated
and experimental data were in poor agreement. How-
ever, according to calculations, some of coordinated
THF seems to be evaporated during decomposition of
the complex (this is reflected in the results of elemen-
tal analysis).

IR (powder): 2016 s, 1911 s, 1682 w, 1567 m, 1480 s,
1388 s, 1363 s, 1200 m, 1015 m, 924 w, 837 w, 796 m,
663 s, 627 s, 535 s, 489 m, 465 m, 440 w, 414 w, 405 w.

The yield of II was 0.25 g (38%).

IR (powder): 2018 s, 1919 s, 1539 m, 1481 s, 1391 s,
1361 s, 1260 w, 1199 w, 1029 m, 926 w, 838 w, 790 m,
665 s, 628 s, 538 s, 489 m, 471 m, 453 m, 433 w, 418 w.

For C26H32O16Mn3
Anal calcd., % C, 40.80 H, 4.21
For C26H32O16Mn3–THF
C22H24Mn3O15
Anal. calcd., % C, 38.11 H, 3.49
For C26H32O16Mn3–2 THF
C18H16O14Mn3
Anal. calcd., % C, 34.81 H, 2.59
Found (powder), % C, 38.12 H, 2.87

For C90H48O56Mn16
Anal. calcd., % C, 37.22 H, 1.66
For C90H54O59Mn16
(C90H48Mn16O56·3H2O)
Anal. calcd., % C, 36.54 H, 1.84
Found (powder), % C, 36.18 H, 2.04
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Due to the extremely low stability of compounds I
and II, no satisfactory results of chemical analysis
could be obtained.

The IR spectra of the compounds were measured
on a Perkin-Elmer Spectrum 65 Fourier Transform IR
spectrometer in the attenuated total reflectance (ATR)
mode in the frequency range of 400–4000 cm–1.

The single crystals for X-ray diffraction were taken
out directly from the mother liquor and rapidly trans-
ferred into the f low of evaporating liquid nitrogen.

X-ray diffraction study of I and II was carried out by
the standard procedure on a Bruker SMART Apex II
automated diffractometer equipped with a CCD array
detector (MoKα radiation, λ = 0.71073 Å, graphite
monochromator, ω-scan mode). The structures were
refined using the SHELXTL PLUS program package
(PC version) [29–32]. The structures were solved by
direct methods and refined by the least squares
method in the anisotropic approximation for all non-
hydrogen atoms. The positions of hydrogen atoms of
the coordinated water molecules in I were derived
from difference Fourier maps and refined isotropi-
cally, and the other hydrogen atoms of I and II were
located geometrically and refined in the riding model.

The crystallographic data and structure refinement
details for I and II are summarized in Table 1, and
bond lengths and bond angles are in Tables 2 and 3,
respectively.

The structural data were deposited with the Crys-
tallographic Data Centre (CCDC nos. 2059074 (I)
and 2059075 (II); http://www.ccdc.cam.ac.uk/).

RESULTS AND DISCUSSION
It was found that, unlike the reaction of manga-

nese(II) acetate hydrate with cymantrenecarboxylic
acid in methanol, this reaction in donor polar THF
affords extremely unstable colorless complex
[Mn(OH2)4(Thf)2][OOCC5H4Mn(CO)3]2 (I, 15%
yield). According to X-ray diffraction data, the metal
atom in the centrosymmetric mononuclear complex I
(Tables 1, 2, Fig. 1) has a distorted octahedral environ-
ment composed of four oxygen atoms of equatorially
coordinated water molecules (Mn(1)–O, 2.066(3)–
2.089(3) Å) and two oxygen atoms of axially coordi-
nated THF molecules (Mn(1)–O, 2.130(4) Å). The
oxygen atoms of two outer-sphere cymantrenecarbox-
ylate anions form short bonds with water hydrogen
atoms, thus giving a 2D polymer (Fig. 2) (O(4)…O(2)
(O(2A), 2.658 Å (2.714 Å)); O(5)…O(3) (O(3A),
2.671 Å (2.714 Å)). Note that all cyclopentadienyl
moieties in the polymer are parallel.

Previously, it was found that a similar reaction carried
out in THF on heating to 50°C, with addition of hexane
and keeping of the obtained solution in a refrigerator at 5°C
results in the formation of crystals of the heterocarbox-
ylate 1D-polymer {Mn2[μ-OOCC5H4Mn(CO)3]2(μ-
OOCMe)(μ-OOCC5H4Mn(CO)3)(Thf)2}n (A) [33]. Pre-
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Table 1. Crystallographic data and structure refinement details of complexes I and II

Parameter
Value

I II

Molecular formula C26H32O16Mn3 C90H48O56Mn16·5C6H6·C4H8O·3H2O
M 765.34 3421.01
Color Colorless Brown
T, K 150(2) 150(2)
System Triclinic Triclinic
Space group P1 P1
a, Å 7.912(3) 14.098(4)
b, Å 8.033(4) 15.235(4)
c, Å 12.932(5) 34.435(9)
α, deg 74.638(6) 89.949(4)
β, deg 88.430(7) 87.331(4)
γ, deg 79.108(7) 89.906(4)

V, Å3 778.0(6) 7388(3)

Z 1 2

ρ(calcd.), mg/m3 1.633 1.538

μ, mm–1 1.272 1.401

F(000) 391 3432
Crystal size, mm 0.24 × 0.22 × 0.20 0.16 × 0.18 × 0.20
Scanning range of θ, deg 2.62–27.99 1.44–27.57
Ranges of reflection indices –7 ≤ h ≤ 10,

–10 ≤ k ≤ 10,
–17 ≤ l ≤ 13

–18 ≤ h ≤ 18,
–19 ≤ k ≤ 19,
–43 ≤ l ≤ 43

Number of ref lections 5164 32047
Number of unique reflections (Rint) 3540 (0.0389) 22374 (0.0747)
GOOF 0.979 1.079
R (I > 2σ(I)) R1 = 0.0530,

wR2 = 0.1288
R1 = 0.0957,
wR2 = 0.2471

R (for all reflections) R1 = 0.0948,
wR2 = 0.1559

R1 = 0.1301,
wR2 = 0.2739

Residual electron density (max/min), e Å–3 1.452/–0.615 2.220/–1.070
sumably, the following main equilibria may occur in the
reaction mixture in polar THF at a temperature where
there is no obvious removal of one of the reactants:
Mn(OOCMe)2(OH2)4 + HOOCC5H4Mn(CO)3 ↔ (I) +
2HOOCMe ↔ (A) + HOOCMe + 4H2O + HOOC-
C5H4Mn(CO)3 ↔ Mn[OOCC5H4Mn(CO)3]2(Thf)4 (B)
+ 2HOOCMe + 4H2O.

It cannot be ruled out that the formation of single
crystals of one of the complexes present in the solution
is determined by the crystallization conditions, but the
presumed adduct B has not yet been isolated in the
single crystalline state.

It is noteworthy that similar equilibria occur in the
solution formed upon the reaction of manganese ace-
RUSSIAN JOURNAL OF CO
tate hydrate with benzoic acid in hot toluene, resulting
in the formation of the polymer {Mn5-(OO-
CMe)6(OOCPh)4}n [34], and the reaction of
Zn(OOCMe)2(OH2)2 with cymantrenecarboxylic acid
in acetonitrile at 50°C, giving 1D polymer {Zn[OOC-
C5H4Mn(CO)3](μ-OOCMe)(OH2)}n [35].

In the presence of air oxygen, the colorless mother
liquor of this reaction rapidly turns brown, and addition
of benzene induces crystallization of the hexanuclear
cluster Mn6(μ4-O)2(μ,η2-OOCC5H4Mn(CO)3)2-(μ-
OOCC5H4Mn(CO)3)8(OH2)4·5C6H6·THF·3H2O (II,
35% yield).
ORDINATION CHEMISTRY  Vol. 47  No. 11  2021
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Table 2. Selected bond lengths (Å) and bond angles (deg) in complex I*

* Symmetric codes used to generate the equivalent atoms: #1 –x, –y, –z.

Bond d, Å Bond d, Å

Mn(1)–O(2) 2.066(3) Mn(1)–O(2)#1 2.066(3)

Mn(1)–O(3)#1 2.089(3) Mn(1)–O(3) 2.089(3)

Mn(1)–O(1)#1 2.130(4) Mn(1)–O(1) 2.130(4)

Angle ω, deg Angle ω, deg

O(2)Mn(1)O(2)#1 180.0 O(2)Mn(1)O(3)#1 93.76(13)

O(2)#1Mn(1)O(3)#1 86.24(13) O(2)Mn(1)O(3) 86.24(13)

O(2)#1Mn(1)O(3) 93.76(13) O(3)#1Mn(1)O(3) 180.0

O(2)Mn(1)O(1)#1 88.96(14) O(2)#1Mn(1)O(1)#1 91.04(14)

O(3)#1Mn(1)O(1)#1 91.56(13) O(3)Mn(1)O(1)#1 88.44(13)

O(2)Mn(1)O(1) 91.04(14) O(2)#1Mn(1)O(1) 88.96(14)

O(3)#1Mn(1)O(1) 88.44(13) O(3)Mn(1)O(1) 91.56(13)

O(1)#1Mn(1)O(1) 180.0 C(4)O(1)Mn(1) 122.6(3)

C(1)O(1)Mn(1) 128.2(3)
According to X-ray diffraction data, six manganese
atoms in II (Table 3, Figs. 3, 4) are connected by two
tetradentate bridging oxygen atoms (O(1)–Mn(1),
2.180(6); O(1)–Mn(2), 1.896(6); O(1)–Mn(3),
1.869(6); O(1)–Mn(6), 2.209(6) Å; O(2)–Mn(2),
1.873(6); O(2)–Mn(3), 1.910(6); O(2)–Mn(4),
2.177(7); O(2)–Mn(5), 2.192(6) Å). The distribution
of M–O bond lengths suggests that the Mn(2) and
Mn(3) atoms are in the +3 oxidation state (stronger
Lewis acids), while the oxidation state of the other
RUSSIAN JOURNAL OF COORDINATION CHEMISTRY

Fig. 1. Independent part of complex I.
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metal atoms is +2. This assumption is confirmed by
the considerable difference between the “metal–
bridging anion oxygen” bond lengths (MnII(1)–O,
2.113(7)–2.339(7); MnIII(2)–O, 1.954(7)–2.235(7);
MnIII(3)–O, 1.957(7)–2.235(7); MnII(4)–O, 2.120(8)–
2.362(7); MnII(5)–O, 2.158(7)–2.278(7); MnII(6)–
O, 2.110(7)–2.271(7) Å) and, hence, M…M distances
  Vol. 47  No. 11  2021

Fig. 2. Fragment of the packing of molecules of I in the
crystal. Colors of atoms: manganese is violet, oxygen is
red, and carbon is gray.
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Table 3. Selected bond lengths (Å) and bond angles (deg) in complex II

Bond d, Å Bond d, Å

Mn(1)–O(5) 2.113(7) Mn(1)–O(4) 2.136(7)
Mn(1)–O(6) 2.144(7) Mn(1)–O(1) 2.180(6)
Mn(1)–O(7) 2.215(8) Mn(1)–O(3) 2.339(7)
Mn(1)–Mn(2) 3.177(2) Mn(2)–O(2) 1.873(6)
Mn(2)–O(1) 1.896(6) Mn(2)–O(9) 1.954(7)
Mn(2)–O(8) 1.972(7) Mn(2)–O(3) 2.228(7)
Mn(2)–O(13) 2.235(7) Mn(2)–Mn(3) 2.8220(17)
Mn(2)–Mn(4) 3.162(2) Mn(3)–O(1) 1.869(6)
Mn(3)–O(2) 1.910(6) Mn(3)–O(11) 1.957(7)
Mn(3)–O(12) 1.978(7) Mn(3)–O(10) 2.220(7)
Mn(3)–O(22) 2.235(7) Mn(3)–Mn(6) 3.160(2)
Mn(3)–Mn(5) 3.161(2) Mn(6)–O(26) 2.110(7)
Mn(6)–O(24) 2.113(7) Mn(6)–O(23) 2.168(7)
Mn(6)–O(1) 2.209(6) Mn(6)–O(25) 2.226(8)
Mn(6)–O(22) 2.271(7) Mn(5)–O(19) 2.075(7)
Mn(5)–O(18) 2.158(7) Mn(5)–O(2) 2.192(6)
Mn(5)–O(20) 2.197(7) Mn(5)–O(21) 2.201(7)
Mn(5)–O(10) 2.278(7) Mn(4)–O(14) 2.120(8)
Mn(4)–O(16) 2.125(7) Mn(4)–O(15) 2.131(7)
Mn(4)–O(2) 2.177(7) Mn(4)–O(17) 2.230(8)
Mn(4)–O(13) 2.362(7)

Angle ω, deg Angle ω, deg

O(5)Mn(1)O(4) 90.9(3) O(5)Mn(1)O(6) 99.5(3)
O(4)Mn(1)O(6) 162.4(3) O(5)Mn(1)O(1) 91.6(3)
O(4)Mn(1)O(1) 93.0(3) O(6)Mn(1)O(1) 100.9(3)
O(5)Mn(1)O(7) 90.1(3) O(4)Mn(1)O(7) 83.7(3)
O(6)Mn(1)O(7) 82.1(3) O(1)Mn(1)O(7) 176.2(3)
O(5)Mn(1)O(3) 166.0(3) O(4)Mn(1)O(3) 82.3(3)
O(6)Mn(1)O(3) 90.3(3) O(1)Mn(1)O(3) 76.6(2)
O(7)Mn(1)O(3) 101.2(3) O(2)Mn(2)O(1) 83.4(2)
O(2)Mn(2)O(9) 95.1(3) O(1)Mn(2)O(9) 172.7(3)
O(2)Mn(2)O(8) 173.7(3) O(1)Mn(2)O(8) 95.0(3)
O(9)Mn(2)O(8) 87.3(2) O(2)Mn(2)O(3) 96.0(3)
O(1)Mn(2)O(3) 85.2(3) O(9)Mn(2)O(3) 87.8(3)
O(8)Mn(2)O(3) 89.9(3) O(2)Mn(2)O(13) 86.6(3)
O(1)Mn(2)O(13) 97.4(3) O(9)Mn(2)O(13) 89.6(3)
O(8)Mn(2)O(13) 87.6(3) O(3)Mn(2)O(13) 176.5(2)
O(1)Mn(3)O(11) 171.6(3) O(2)Mn(3)O(11) 95.9(3)
O(1)Mn(3)O(12) 93.8(3) O(2)Mn(3)O(12) 171.8(3)
O(11)Mn(3)O(12) 88.3(3) O(1)Mn(3)O(10) 98.8(3)
O(2)Mn(3)O(10) 85.3(3) O(11)Mn(3)O(10) 89.4(3)
O(12)Mn(3)O(10) 87.6(3) O(1)Mn(3)O(22) 85.8(3)
O(2)Mn(3)O(22) 96.8(3) O(11)Mn(3)O(22) 86.1(3)
O(12)Mn(3)O(22) 90.5(3) O(10)Mn(3)O(22) 175.2(2)
RUSSIAN JOURNAL OF COORDINATION CHEMISTRY  Vol. 47  No. 11  2021
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(MnIII(2)…MnIII(3), 2.8220(17); MnIII(2),(3)…MnII,
3.160(2)–3.502(3); MnII…MnII, 3.781(3)–
4.709(3) Å).

Finally, each MnIII atom has a distorted octahedral
environment composed of the oxygen atoms of the
bridging anions, while the environment of MnII atoms
is completed by the oxygen atoms of coordinated water
molecules (Mn–O, 2.215(8)–2.230(8) Å) (Table 3,
Fig. 4).

It is worth noting that three identified solvate water
molecules are hydrogen-bonded to one another and to
oxygen atoms of coordinated H2O and the bridging
anion, while the other solvate molecules have no
noticeable contacts with the atoms of cluster II.

The hexanuclear mixed-valence manganese car-
boxylates (µ4-O)2 (OOCR)10 (L = man-
ganese(II)-coordinated two-electron donor) are well
known [36]; they have been prepared by a variety of

II
4 4Mn L III

2Mn
RUSSIAN JOURNAL OF COORDINATION CHEMISTRY
methods: reactions of manganese(II) salts (chlorides,
carbonates) with sodium or potassium carboxylates;
ligand exchange of anions in the manganese acetate
with anions of the acid followed by oxidation with air
oxygen in polar solvents (H2O, MeCN, THF), hydro-
gen peroxide, or manganese compounds with high
oxidation states (MnO ) [37–52].

Thus, this study demonstrated that, unlike the
reaction of manganese(II) acetate hydrate with
cymantrenecarboxylic acid in methanol, which gives
the adduct Mn[OOCC5H4Mn(CO)3]2[O(H)Me]4,
stable to air oxygen, with four coordinated methanol
molecules, a similar reaction in THF affords the
mononuclear complex [Mn(OH2)4(Thf)2][OOC-
C5H4Mn(CO)3]2, in which the anions occupy the
outer-sphere positions. This complex is readily oxi-
dized in THF in air, giving rise to a hexanuclear cluster
containing manganese atoms in different oxidation

–
4

Angle ω, deg Angle ω, deg

O(1)Mn(3)O(2) 83.1(2) O(26)Mn(6)O(24) 167.5(3)

O(26)Mn(6)O(23) 98.1(3) O(24)Mn(6)O(23) 84.3(3)

O(26)Mn(6)O(1) 101.0(3) O(24)Mn(6)O(1) 91.2(3)

O(23)Mn(6)O(1) 89.7(3) O(26)Mn(6)O(25) 85.6(3)

O(24)Mn(6)O(25) 82.0(3) O(23)Mn(6)O(25) 93.7(3)

O(1)Mn(6)O(25) 172.1(3) O(26)Mn(6)O(22) 98.1(3)

O(24)Mn(6)O(22) 82.0(3) O(23)Mn(6)O(22) 161.0(3)

O(1)Mn(6)O(22) 77.6(2) O(25)Mn(6)O(22) 97.3(3)

O(19)Mn(5)O(18) 170.6(3) O(19)Mn(5)O(2) 98.0(3)

O(18)Mn(5)O(2) 91.3(3) O(19)Mn(5)O(20) 86.7(3)

O(18)Mn(5)O(20) 83.9(3) O(2)Mn(5)O(20) 174.0(3)

O(19)Mn(5)O(21) 97.1(3) O(18)Mn(5)O(21) 84.1(3)

O(2)Mn(5)O(21) 90.4(3) O(20)Mn(5)O(21) 92.6(3)

O(19)Mn(5)O(10) 97.4(3) O(18)Mn(5)O(10) 83.3(3)

O(2)Mn(5)O(10) 77.9(2) O(20)Mn(5)O(10) 98.0(3)

O(21)Mn(5)O(10) 162.5(3) O(14)Mn(4)O(15) 164.6(3)

O(14)Mn(4)O(13) 93.5(3) O(16)Mn(4)O(15) 90.8(3)
O(14)Mn(4)O(2) 100.1(3) O(16)Mn(4)O(2) 93.9(3)
O(15)Mn(4)O(2) 92.7(3) O(14)Mn(4)O(17) 84.5(3)
O(16)Mn(4)O(17) 90.3(3) O(15)Mn(4)O(17) 82.1(3)
O(2)Mn(4)O(17) 173.4(3) O(2)Mn(4)O(13) 77.0(2)
O(16)Mn(4)O(13) 167.4(3) O(15)Mn(4)O(13) 81.1(3)
O(17)Mn(4)O(13) 98.0(3)

Table 3. (Contd.)
  Vol. 47  No. 11  2021
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Fig. 3. General view of cluster II with benzene and THF solvate molecules (the disordered water molecules are omitted). The
Mn(CO)3 groups are omitted for clarity. Colors of atoms: manganese is violet, oxygen is red, and carbon is gray.
states. Note that the metal atoms located in the
organometallic part of the molecule are not oxidized.
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