

To blessed memory of Teacher: to the 80th birthday of Prof. A.A. Pasynskii

Correlations between the Structures of Binuclear Copper(II) Tetracarboxylates with 1,4-Dioxane and the Nature of Substituent R in the Carboxylate Anion

M. A. Uvarova^a and S. E. Nefedov^{a,*}

^a Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, 119992 Russia

*e-mail: snef@igic.ras.ru

Received January 6, 2021; revised January 20, 2021; accepted January 21, 2021

Abstract—The dissolution of aqueous copper(II) acetate in coordinating bidentate 1,4-dioxane (reflux) affords anhydrous mononuclear complex $\text{Cu}_2(\mu\text{-OOCMe})_4(\text{dioxane})_2$ (**I**) ($\text{Cu}... \text{Cu} 2.5781(3) \text{ \AA}$). The crystal of complex **I** contains contacts of the α -H atom of the CH_2 fragments of coordinated dioxane with the oxygen atom of the bridging anion with the formation of the 2D metal-organic framework (MOF). The anionic exchange reactions of the acetate bridges by pivalate or trifluoroacetate groups with the corresponding acids in boiling dioxane give 1D MOF $\{\text{Cu}_2(\mu\text{-OOCR})_4(\text{dioxane})\}_n$ ($\text{R} = {}^t\text{Bu}$ (**II**), $\text{Cu}... \text{Cu} 2.5493(7) \text{ \AA}$; CF_3 (**III**), $\text{Cu}... \text{Cu} 2.6391(12) \text{ \AA}$) characterized by the step and linear geometry, respectively. A similar reaction of $\text{Cu}_2(\mu\text{-OOCMe})_4(\text{OH}_2)_2$ with HOOCCF_3 but at room temperature in the presence of crude benzene affords mononuclear complex $\text{Cu}(\text{OOCCF}_3)_2(\text{OH}_2)_3 \cdot 2$ dioxane (**IV**). Complexes **I**–**IV** are studied by elemental and X-ray diffraction analyses (CIF files CCDC nos. 2052618 (**I**), 2052619 (**II**), 2052620 (**III**), and 2052617 (**IV**)). The influence of the electronic and steric factors of substituents R on the compositions and structures of the mononuclear complexes and MOFs with 1,4-dioxane are discussed for the synthesized and known copper(II) tetracarboxylates.

Keywords: binuclear complexes, copper(II) acetate, copper(II) pivalate, copper(II) trifluoromethylacetate, bidentate O donor, metal-organic frameworks, synthesis, X-ray diffraction analysis

DOI: 10.1134/S1070328421060087

INTRODUCTION

In the absence of strong donor, copper(II) carboxylates are binuclear and have the Chinese lantern structures with four bridging ligands OOCR^- [1, 2]. These complexes, in particular, acetates, evoke increased interest as the starting compounds convenient for the synthesis of numerous derivatives with other bridging carboxylate anions or anions of molecules capable of deprotonating. They are characterized by unique magnetic properties (it is known that anti-ferromagnetism was first observed for the Cu(II) tetracarboxylate dimers with the electronic configuration d^9) and are often considered as synthetic analogs of the active part of the copper-containing proteins (with the nitrogen-containing bridging and terminal ligands) [3–5].

In addition, the copper(II) complexes containing functionalized or polydentate carboxylate anions and/or labile molecules in the axial positions of the

dimer are used for the synthesis of MOFs of various dimensionality [6–11].

The most part of 3d-metal carboxylates contains coordination and/or solvate water molecules, which substantially affects both the substitution of water by weak donors (e.g., when constructing polymers) and occurrence of further reactions due to the high polarity and coordination ability of H_2O [12]. In this case, coordinated water is tried to substitute by polar donor molecules of the solvent (e.g., acetonitrile, THF, etc.) that can easily leave the coordination sphere of the metal during the reaction to form vacant orbitals [10]. Weakly polar bidentate 1,4-dioxane also has these properties, since it has two nucleophilic centers and is capable of direct binding to the complex forming metal as a usual terminal ligand and of forming MOF to become the μ -bridging ligand also due to intermolecular hydrogen bonds in the crystal [13–18]. The formation of a water–dioxane azeotropic mixture ($T_b = 87.8^\circ\text{C}$) with allowance for the boiling point of

pure dioxane (101°C) allows one to partially or completely remove H₂O from the reaction solution [19].

In this work we report the synthesis and structures of binuclear copper(II) carboxylates bearing substituents R in the carboxylate anion with various donor and steric abilities (R = Me, ¹Bu, and CF₃; pK_a = 4.76, 5.05, and 0.23 at 25°C in H₂O, respectively [20]). The carboxylates were synthesized by the reactions of the corresponding acids with aqueous copper acetate in boiling 1,4-dioxane followed by the removal of ~1/2 solvent volume in an argon flow.

EXPERIMENTAL

The following reagents were used: Cu₂(OOCMe)₄(OH₂)₂ (high-purity grade), pivalic acid (analytical grade, ACROS), and trifluoroacetic acid and 1,4-dioxane (analytical grade, Khimmed Sintez).

Synthesis of Cu₂(μ-OOCMe)₄(dioxane)₂ (I). Anhydrous copper(II) acetate (1 g, 5 mmol) was dissolved in 1,4-dioxane (10 mL). The resulting blue solution was refluxed for 1 h and concentrated in an argon flow to 4 mL. The solution was kept in a refrigerator at 5°C for 2 days. The formed large single crystals were decanted from the mother liquor, washed consequently with cold benzene (10 mL) and hexane (10 mL), and dried in an argon flow. The yield of complex I was 1.2 g (95%) (based on the single-crystal product).

For C₁₆H₂₈O₁₂Cu₂

Anal. calcd., %	C, 35.62	H, 5.23
Found, %	C, 35.16	H, 5.44

IR (ν, cm⁻¹): 2961 w, 2928 w, 2900 w, 1667 w, 1608 s, 1420 s, 1367 w, 1352 m, 1293 m, 1256 m, 1204 w, 1112 s, 1074 s, 1045 m, 887 m, 863 s, 851 m, 826 m, 795 w, 725 w, 682 s, 628 s, 614 s, 521 w.

Synthesis of {Cu₂(μ-OOC'Bu)₄(dioxane)}_n (II). Pivalic acid (0.038 g, 0.36 mmol) was added to a solution of complex I (0.1 g, 0.18 mmol) in 1,4-dioxane (5 mL). The resulting blue solution was refluxed for 1 h, concentrated to 2 mL, and kept in a refrigerator at 5°C for 2 days. The formed blue single crystals were decanted from the solution, consequently washed with cold benzene (5 mL) and hexane (10 mL), and dried in an argon flow. The yield of complex II was 0.093 g (81%) (based on the single-crystal product).

For C₂₄H₄₄O₁₀Cu₂

Anal. calcd., %	C, 46.52	H, 7.16
Found, %	C, 46.13	H, 6.87

IR (ν, cm⁻¹): 2961 w, 2928 w, 2900 w, 1667 w, 1608 s, 1420 s, 1367 w, 1352 m, 1293 m, 1256 m,

1204 w, 1112 s, 1074 s, 1045 m, 887 m, 863 s, 851 m, 826 m, 795 w, 725 w, 682 s, 628 m, 614 s, 521 w.

Synthesis of {Cu₂(μ-OOCF₃)₄(dioxane)}_n (III). Trifluoroacetic acid (0.042 g, 0.36 mmol) was added to a solution of complex I (0.1 g, 0.18 mmol) in 1,4-dioxane (5 mL). The resulting blue solution was refluxed for 1 h, concentrated to 2 mL, and kept in a refrigerator at 5°C for 2 days. The formed blue single crystals were decanted from the solution, washed consequently with cold benzene (5 mL) and hexane (10 mL), and dried in an argon flow. The yield of complex III was 0.13 g (86%) (based on the single-crystal product).

For C₂₀H₂₄O₁₄F₁₂Cu₂

Anal. calcd., %	C, 28.48	H, 2.87
Found, %	C, 28.57	H, 2.78

IR (ν, cm⁻¹): 2962 w, 2857 w, 1665 m, 1611 s, 1575 m, 1418 s, 1379 w, 1371 w, 1351 m, 1288 w, 1259 m, 1250 m, 1203 s, 1167 m, 1111 s, 1098 m, 1075 s, 1046 m, 887 m, 860 s, 795 m, 735 m, 682 s, 628 m, 612 s, 524 w.

Synthesis of Cu(OOCF₃)₂(OH₂)₃·2 dioxane (IV). Trifluoroacetic acid (1.14 g, 10 mmol), crude (2–3% H₂O) benzene (5 mL), and 1,4-dioxane (5 mL) were added consequently to single crystals of anhydrous copper(II) acetate (1 g, 5 mmol). The resulting blue solution was stirred at room temperature and kept in a flask with open plugs for 10 days in a draft hood. The formed blue single crystals were decanted from the solution, washed consequently with cold benzene (5 mL) and hexane (10 mL), and dried in an argon flow. The yield of complex IV was 1 g (38%) (based on the single-crystal product).

For C₁₂H₂₂O₁₁F₆Cu

Anal. calcd., %	C, 27.73	H, 4.27
Found, %	C, 27.65	H, 4.14

IR (ν, cm⁻¹): 3334 br.s, 2978 w, 2941 w, 1721 s, 1693 s, 1452 w, 1392 w, 1198 s, 1157 s, 1075 w, 870 w, 797 m, 726 m, 601 w, 418 w.

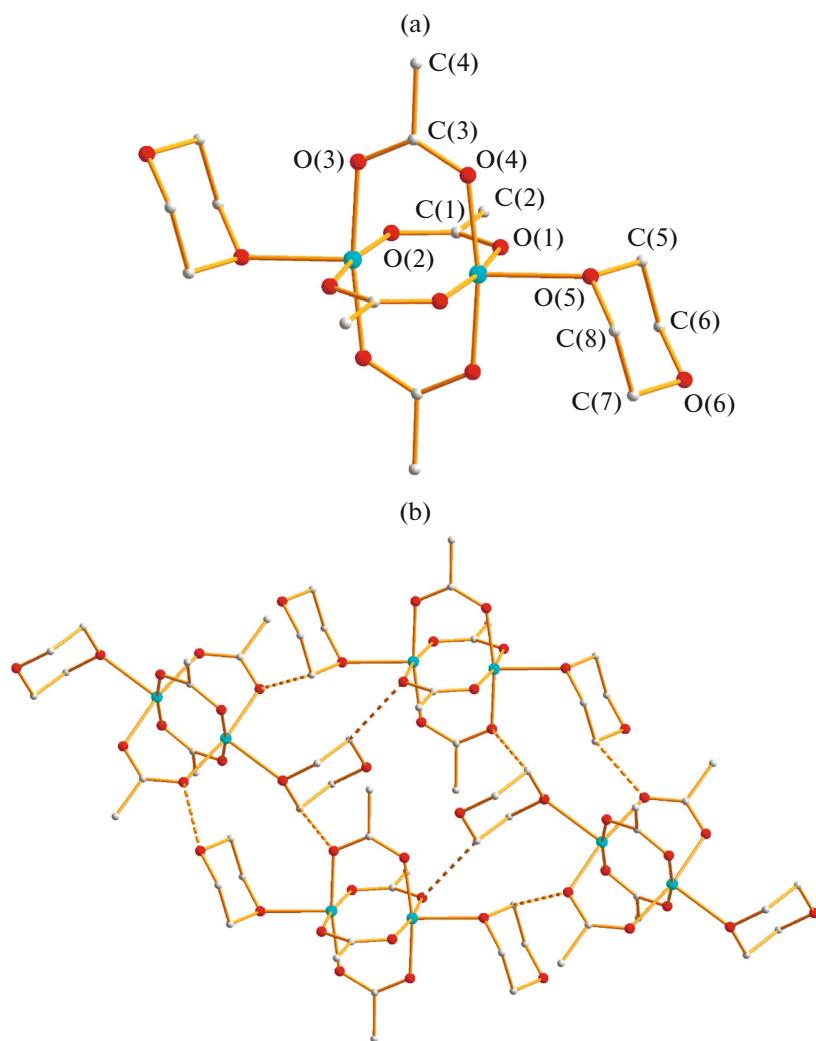
IR spectra were recorded on a Perkin-Elmer Spectrum 65 FT-IR spectrometer using the attenuated total internal reflectance (ATR) method in a frequency range of 400–4000 cm⁻¹.

X-ray diffraction (XRD) analyses of compounds I–IV were carried out using a standard procedure on a Bruker SMART Apex II automated diffractometer equipped with a CCD detector (λ_{Mo} radiation, graphite monochromator, ω scan mode). Structure refinement was performed using the SHELXTL PLUS program package (PC version) [21–24]. The structures were determined by a direct method and refined by least squares in the anisotropic approximation for

Table 1. Crystallographic data and structure refinement parameters for compounds **I–IV**

Parameter	Value			
	I	II	III	IV
Empirical formula	$C_{16}H_{28}O_{12}Cu_2$	$C_{24}H_{44}O_{10}Cu_2$	$C_{20}H_{24}O_{14}F_{12}Cu_2$	$C_{12}H_{22}O_{11}F_6Cu$
<i>FW</i>	539.46	619.67	843.47	519.84
Color	Blue	Blue	Blue	Blue
<i>T</i> , K	100(2)	100(2)	100(2)	150(2)
Crystal system	Monoclinic	Triclinic	Orthorhombic	Triclinic
Space group	$P2_1/c$	$P\bar{1}$	$Pn\bar{m}$	$P\bar{1}$
<i>a</i> , Å	8.0498(2)	8.9250(6)	10.2916(3)	5.9408(14)
<i>b</i> , Å	8.0139(2)	9.3713(6)	14.7224(3)	12.026(3)
<i>c</i> , Å	16.6094(3)	10.4172(8)	9.6652(3)	14.671(3)
α , deg	90	85.567(3)	90	101.472(10)
β , deg	101.3044(7)	68.022(3)	90	99.262(9)
γ , deg	90	70.991(3)	90	98.876(10)
<i>V</i> , Å ³	1050.69(4)	762.92(9)	1464.44(7)	994.8(4)
<i>Z</i>	2	1	2	2
ρ_{calc} , mg/m ³	1.705	1.349	1.913	1.735
μ , mm ⁻¹	2.085	1.440	1.595	1.206
<i>F</i> (000)	354	326	844	530
Crystal size, mm	0.26 × 0.24 × 0.22	0.24 × 0.22 × 0.20	0.22 × 0.20 × 0.18	0.24 × 0.22 × 0.20
Scan θ range, deg	3.57–30.52	2.60–28.00	2.41–30.00	1.76–27.00
Ranges of reflection indices	$-11 \leq h \leq 11$, $-11 \leq k \leq 11$, $-23 \leq l \leq 20$	$-11 \leq h \leq 11$, $-12 \leq k \leq 12$, $-13 \leq l \leq 12$	$-14 \leq h \leq 12$, $-20 \leq k \leq 19$, $-13 \leq l \leq 13$	$-7 \leq h \leq 7$, $-15 \leq k \leq 15$, $-18 \leq l \leq 18$
Number of reflections	13402	7406	18092	7665
Number of independent reflections (<i>R</i> _{int})	3211 (0.0245)	3473 (0.0339)	2249 (0.0507)	4271 (0.0781)
GOOF	1.005	1.142	1.068	0.982
<i>R</i> (<i>I</i> > 2σ(<i>I</i>))	$R_1 = 0.0229$, $wR_2 = 0.0586$	$R_1 = 0.0429$, $wR_2 = 0.1123$	$R_1 = 0.0731$, $wR_2 = 0.1689$	$R_1 = 0.0798$, $wR_2 = 0.1584$
<i>R</i> (for all reflections)	$R_1 = 0.0268$, $wR_2 = 0.0601$	$R_1 = 0.0502$, $wR_2 = 0.1156$	$R_1 = 0.0960$, $wR_2 = 0.1837$	$R_1 = 0.1500$, $wR_2 = 0.1867$
Residual electron density (max/min), e Å ⁻³	0.568/–0.372	0.824/–0.926	0.914/–1.232	0.810/–0.913

non-hydrogen atoms. The positions of the hydrogen atoms in complexes **I** and **IV** were revealed from the difference Fourier series and refined isotropically, whereas those for complexes **II** and **III** were determined geometrically by the riding model. The crystallographic data and structure refinement for com-


pounds **I–IV** are presented in Table 1. Selected bond lengths and bond angles are given in Table 2.

The structural data for the complexes were deposited with the Cambridge Crystallographic Data Centre (CIF files CCDC nos. 2052618 (**I**), 2052619 (**II**),

Table 2. Selected bond lengths (Å) and bond angles (deg) in complexes **I–IV***

Bond	<i>d</i> , Å	Bond	<i>d</i> , Å
Cu(1)–O(2)	1.9578(10)	Cu(1)–O(3)	1.9605(9)
Cu(1)–O(1)	1.9607(9)	Cu(1)–O(4)	1.9628(10)
Cu(1)–O(5)	2.2263(9)	Cu(1)–Cu(1) ^{#1}	2.5781(3)
Cu(1)–O(3)	1.955(3)	Cu(1)–O(1)	1.953(2)
Cu(1)–O(4)	1.962(3)	Cu(1)–O(2)	1.962(2)
Cu(1)–O(5)	2.188(2)	Cu(1)–Cu(1) ^{#1}	2.5493(7)
Cu(1)–O(2) ^{#1}	1.966(3)	Cu(1)–O(2)	1.966(3)
Cu(1)–O(1)	1.967(3)	Cu(1)–O(1) ^{#1}	1.967(3)
Cu(1)–O(3)	2.117(4)	Cu(1)–Cu(1) ^{#2}	2.6391(12)
Cu(1)–O(1)	1.930(5)	Cu(1)–O(3)	1.935(5)
Cu(1)–O(6)	1.940(5)	Cu(1)–O(5)	1.950(5)
Cu(1)–O(11)	2.190(5)		
Angle	ω , deg	Angle	ω , deg
O(2)Cu(1)O(3)	89.80(4)	O(2)Cu(1)O(1)	170.19(4)
O(3)Cu(1)O(1)	89.89(4)	O(2)Cu(1)O(4)	89.21(4)
O(3)Cu(1)O(4)	170.13(4)	O(1)Cu(1)O(4)	89.41(4)
O(2)Cu(1)O(5)	97.11(4)	O(3)Cu(1)O(5)	92.66(4)
O(1)Cu(1)O(5)	92.71(4)	O(4)Cu(1)O(5)	97.21(4)
O(2)Cu(1)Cu(1) ^{#1}	88.19(3)	O(3)Cu(1)Cu(1) ^{#1}	82.83(3)
O(1)Cu(1)Cu(1) ^{#1}	82.04(3)	O(4)Cu(1)Cu(1) ^{#1}	87.32(3)
O(5)Cu(1)Cu(1) ^{#1}	173.05(3)	C(1)O(1)Cu(1)	125.59(9)
O(3)Cu(1)O(1)	90.97(12)	O(3)Cu(1)O(4)	170.86(9)
O(1)Cu(1)O(4)	89.10(11)	O(3)Cu(1)O(2)	88.96(11)
O(1)Cu(1)O(2)	170.75(9)	O(4)Cu(1)O(2)	89.50(11)
O(3)Cu(1)O(5)	93.61(9)	O(1)Cu(1)O(5)	93.96(9)
O(4)Cu(1)O(5)	95.50(9)	O(2)Cu(1)O(5)	95.28(9)
O(3)Cu(1)Cu(1) ^{#1}	84.94(7)	O(1)Cu(1)Cu(1) ^{#1}	85.05(7)
O(4)Cu(1)Cu(1) ^{#1}	85.96(7)	O(2)Cu(1)Cu(1) ^{#1}	85.73(7)
O(5)Cu(1)Cu(1) ^{#1}	178.23(7)	C(1)O(1)Cu(1)	122.7(2)
O(2) ^{#1} Cu(1)O(2)	168.99(16)	O(2) ^{#1} Cu(1)O(1)	89.02(14)
O(2)Cu(1)O(1)	89.92(14)	O(2) ^{#1} Cu(1)O(1) ^{#1}	89.92(14)
O(2)Cu(1)O(1) ^{#1}	89.02(14)	O(1)Cu(1)O(1) ^{#1}	168.91(16)
O(2) ^{#1} Cu(1)O(3)	95.51(8)	O(2)Cu(1)O(3)	95.51(8)
O(1)Cu(1)O(3)	95.54(8)	O(1) ^{#1} Cu(1)O(3)	95.54(8)
O(2) ^{#1} Cu(1)Cu(1) ^{#2}	84.49(8)	O(2)Cu(1)Cu(1) ^{#2}	84.49(8)
O(1)Cu(1)Cu(1) ^{#2}	84.46(8)	O(1) ^{#1} Cu(1)Cu(1) ^{#2}	84.46(8)
O(3)Cu(1)Cu(1) ^{#2}	180.000(1)	C(1)O(1)Cu(1)	121.1(3)
O(1)Cu(1)O(3)	178.0(2)	O(1)Cu(1)O(6)	89.9(2)
O(3)Cu(1)O(6)	90.3(2)	O(1)Cu(1)O(5)	88.8(2)
O(3)Cu(1)O(5)	90.6(2)	O(6)Cu(1)O(5)	166.75(19)
O(1)Cu(1)O(11)	90.51(19)	O(3)Cu(1)O(11)	91.43(19)
O(6)Cu(1)O(11)	96.4(2)	O(5)Cu(1)O(11)	96.8(2)
C(1)O(1)Cu(1)	120.2(5)	C(3)O(3)Cu(1)	121.2(5)
O(1)Cu(1)O(3)	178.0(2)	O(1)Cu(1)O(6)	89.9(2)
O(3)Cu(1)O(6)	90.3(2)	O(1)Cu(1)O(5)	88.8(2)

* Symmetry transforms used for the generation of equivalent atoms: ^{#1} $-x + 1, -y + 1, -z + 1$ (**I**); ^{#1} $-x + 3, -y + 1, -z + 1$ (**II**); ^{#1} $-x + 1, -y + 1, z$; ^{#2} $-x + 1, -y + 1, -z + 1$ (**III**).

Fig. 1. (a) Structure of dimer **I** and (b) the fragment of its molecular packing in the crystal. Colors of atoms: copper is blue, oxygen is red, and carbon is gray.

2052620 (**III**), and 2052617 (**IV**); <http://www.ccdc.cam.ac.uk/>).

RESULTS AND DISCUSSION

The dissolution of binuclear anhydrous copper(II) acetate in 1,4-dioxane followed by reflux for 1 h and removal of 50% solvent was found to result in the formation of the dimer $\text{Cu}_2(\mu\text{-OOCMe})_4(\text{dioxane})_2$ (**I**). According to the XRD data, in centrosymmetric complex **I** two Cu(II) atoms are arranged at a short non-bonding distance of 2.5781(3) Å and are joined by four acetate bridges ($\text{Cu}(1)\text{-O}(1)$ 1.9607(9), $\text{Cu}(1)\text{-O}(2)$ 1.9578(10), $\text{Cu}(1)\text{-O}(3)$ 1.9605(9), and $\text{Cu}(1)\text{-O}(4)$ 1.9628(10)), and the axial positions in the dimer are occupied by the oxygen atoms of axially coordinated dioxane ($\text{Cu}(1)\text{-O}(5)$ 2.2263(9) Å) (Table 2, Fig. 1a).

The crystal packing of the molecules of complex **I** contains fairly weak contacts of the α -H atoms of the

CH_2 fragments of coordinated dioxane with the oxygen atom of the bridging acetate anion ($\text{C}(7)\dots\text{O}(4)$ 3.366 Å) forming the single crystal (Fig. 1b). Note that the procedure proposed for the synthesis of complex **I** results in the removal of coordinated water molecules that are present in the initial copper acetate.

The reaction of anhydrous complex **I** dissolved in dioxane with pivalic acid on reflux affords blue single crystals of complex **II**, which is centrosymmetric as complex **I** according to the XRD data (at 100 K). However, unlike complex **I**, complex **II** is a polymer with the bridging dioxane molecule ($\text{Cu}\text{-O}(5)$ 2.188(2), $\text{Cu}\dots\text{Cu}$ 2.5493(7), and $\text{Cu}\text{-}\mu\text{-O}_{\text{OOC'Bu}}$ 1.953(2)–1.962(2) Å) (Table 2, Fig. 2).

The copper atoms are packed in parallel to form the stepped 1D polymer in which the distances of the nearby lying metal atoms of the adjacent dimers are

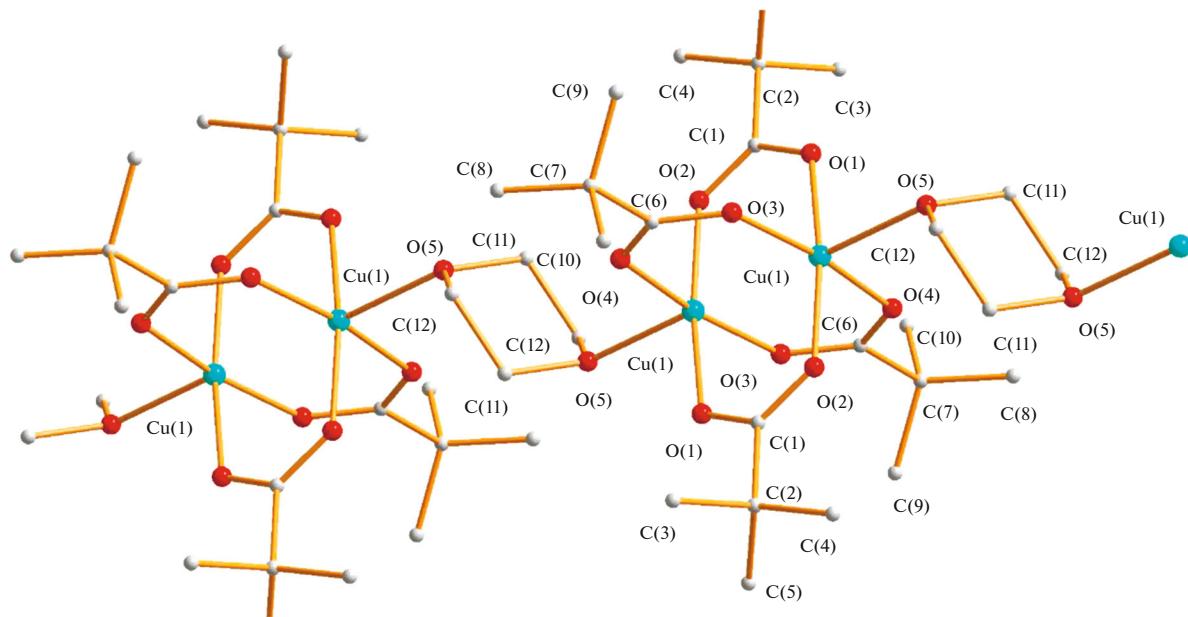
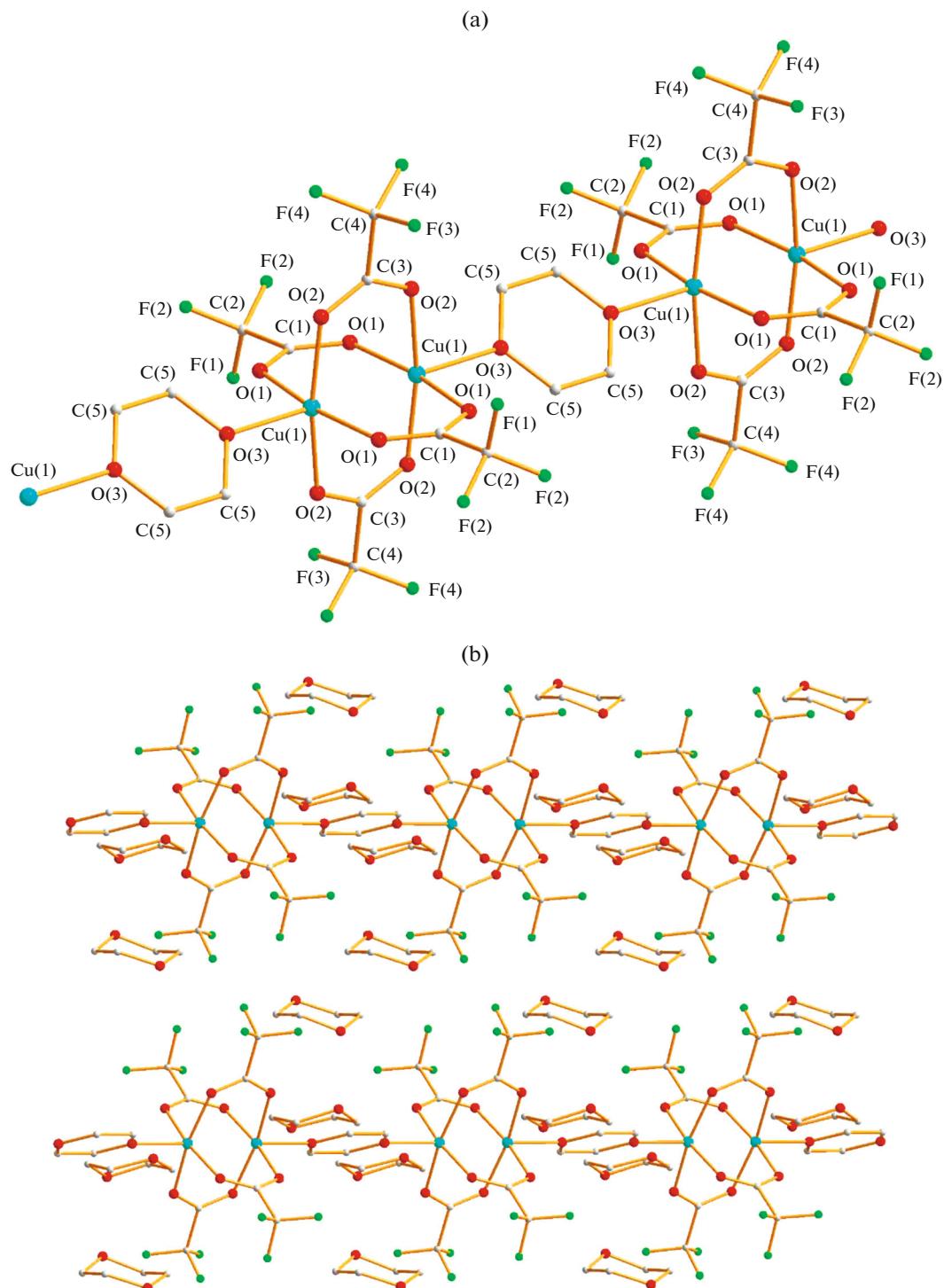


Fig. 2. Fragment of polymer II.

6.473 Å, and the angle between the lines of Cu₂ and two O(5) atoms of dioxane is 51.4° (Fig. 3).

A similar exchange reaction of bridged acetates by the anions of stronger trifluoroacetic acid gives blue single crystals of polymer **III**. According to the XRD data, compound **III** (Table 2, Fig. 3a) is a polymer in which the centrosymmetric dimers Cu₂ (Cu...Cu 2.6391(12), Cu- μ -O_{OOCCF₃} 1.966(3)–1.967(3) Å) are connected by the bidentate dioxane molecule (Cu–O(3) 2.117(4) Å). Unlike complex **II**, in polymer **III** the copper and oxygen atoms of the dioxane molecules lie on one line and the coordinated dioxane molecules are planar and form an angle with the Cu₂O(1) plane (40.8°). This change in the geometry compared to polymer **II** along with a similar steric size of substituent R in the carboxylate anion is related to a significant decrease in the donor ability of the anions of strong trifluoroacetic acid (as compared to fairly weak pivalic acid [20]), which results in a noticeable change in the M...M distances and participation of an additional electron pair in the M–O_{dioxane} binding.

Note that the closest contacts of the solvate dioxane molecules in the crystalline cell are F(4)...O(4) (3.042 Å).


Single crystals of mononuclear blue complex **IV** were obtained by the reaction of trifluoroacetic acid with single crystals of anhydrous copper acetate followed by the addition of crude benzene and dioxane at room temperature.

According to the XRD data for complex **IV** (Table 2, Fig. 4a), the metal atom has the trigonal bipyramidal environment typical of copper(II) and similar to that observed in the binuclear compounds.

Two oxygen atoms belonging to two *syn*-*syn*-coordinated anions (Cu–O 1.930(5), 1.935(5) Å) are localized in the axial positions of complex **IV**. The equatorial positions are occupied by three oxygen atoms of the water molecules, one of which forms hydrogen bonds with the oxygen atoms of the anions of the nearby lying molecule of the complex (Cu–O(7) 2.190(5), O...O 2.72, 2.74 Å), whereas two other water molecules are bound to the oxygen atoms of the solvate dioxane molecules (Cu–O 1.940(5), 1.950(5), O...O 2.65–2.81 Å). As a result, a 3D polymer is formed due to the network of intermolecular hydrogen bonds, where the metal atoms are arranged on one line at a distance of 5.941 Å (Fig. 4b).

It is noteworthy that similar reactions of anhydrous nickel(II) and cobalt(II) acetates with HOOCCF₃ in the presence of benzene and/or using crystallization at room temperature give single crystals of complexes {M(OOCCF₃)₂(OH₂)₄·[O(CH₂CH₂)₄O]₂}_n (M = Ni, Co) [25, 26].

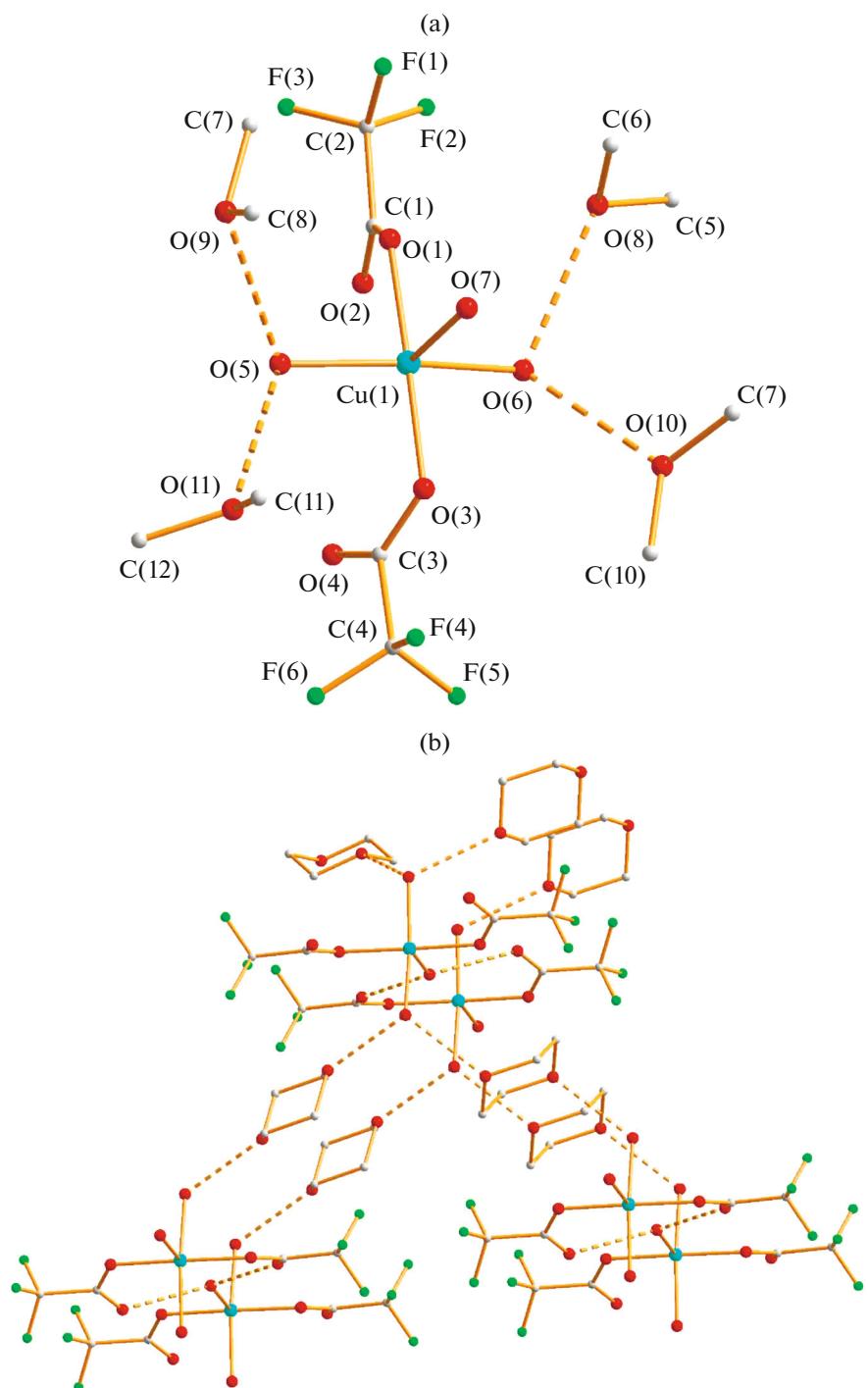

According to the CCDC data, there is a restricted number of compounds of copper(II) carboxylates with coordinated dioxane molecules, the geometry of which is determined by the steric and electronic nature of substituent R in the carboxylate anion and specific features of binding of the solvate solvent molecules in the crystal [27]. In spite of different temperatures at which XRD was carried out, it is evident that the introduction of the donor substituents R (R = Me, Et, 'Bu, and CH₂'Bu) compared to the acceptor substituents (R = Ph(3-I), CH₂O–Ph(2,4-Cl₂), C₆F₅, and CF₃) results in an appreciable elongation of the metal–metal distances accompanied by the shortening of the

Fig. 3. (a) Structure of polymer **III** and (b) the fragment of its molecular packing in the crystal. Colors of atoms: copper is blue, fluorine is green, oxygen is red, and carbon is gray.

$\text{M}-\text{O}_{\text{axial}}$ bonds of coordinated dioxane with almost equal bonds lengths of the metal with oxygen of the carboxylate anions (Table 3).

Thus, it is found that binuclear copper(II) carboxylates refluxed in dioxane lose the coordinated water molecule and their geometries correlate with specific

Fig. 4. (a) Independent part of complex IV and (b) the fragment of its molecular packing in the crystal. Colors of atoms: copper is blue, fluorine is green, oxygen is red, and carbon is gray.

features of the electronic and steric properties of substituent R in the bridging carboxylate anion.

ACKNOWLEDGMENTS

The XRD and IR spectral studies of the complexes were carried out using the equipment of the Center for Collective

Use of Physical Methods of Investigation at the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences) functioning in terms of the state assignment of the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences) in the area of basic research.

Table 3. Geometry of binuclear copper(II) tetracarboxylates with 1,4-dioxane

Compound, structure (T_{XRD} , K)	M...M, Å	M–O _{axial} , Å	M–μ–O _{OOCR} , Å	References
$\text{Cu}_2(\mu\text{-OOCMe})_4(\text{dioxane})_2$, monomer (100)	2.5781	2.226	1.958–1.963	This work
$\text{Cu}_2\{\mu\text{-OOC[Ph-(3-I)]}\}_4(\text{dioxane})_2\cdot 3$ dioxane, monomer (100)	2.609	2.206	1.950–1.972	28
$\text{Cu}_2\{\mu\text{-OOC[CH}_2\text{O-Ph(2,4-Cl}_2\text{)]}\}_4(\text{dioxane})_2\cdot 2$ dioxane, monomer (295)	2.617	2.195	1.960–1.968	29
$\{\text{Cu}_2(\mu\text{-OOC'Bu})_4(\text{dioxane})\}_n$, polymer (295)	2.560	2.204	1.946–1.959	30
$\{\text{Cu}_2(\mu\text{-OOC'Bu})_4(\text{dioxane})\}_n$, polymer (100)	2.5492	2.188	1.955–1.962	This work
$\{\text{Cu}_2[\mu\text{-OOC(CH}_2\text{'Bu)}_4(\text{dioxane})\}_n$, polymer (295)	2.553	2.198	1.953–1.964	30
$\{\text{Cu}_2(\mu\text{-OOCCEt})_4(\text{dioxane})\}_n$, polymer (295)	2.563	2.227	1.950–1.958	31
$\{\text{Cu}_2(\mu\text{-OOCC}_6\text{F}_5)_4(\text{dioxane})\cdot 2$ dioxane $\}_n$, polymer (295)	2.616	2.137	1.948–1.963	32
$\{\text{Cu}_2(\mu\text{-OOCF}_3)_4(\text{dioxane})\cdot 4$ dioxane $\}_n$, polymer (100)	2.6391	2.117	1.966–1.967	This work

FUNDING

This work was supported by the state assignment of the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences) in the area of basic research.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

1. Cotton, F.A., Wilkinson, G., Murillo, C.A., and Bochmann, M., *Advanced Inorganic Chemistry*, New York: Wiley, 1999.
2. Mehrotra, R.C. and Bohra, R., *Metal Carboxylates*, London: Academic, 1983.
3. Rakitin, Yu.V. and Kalinnikov, V.T., *Sovremennaya magnetokhimiya* (Modern Magnetic Chemistry), St. Petersburg: Nauka, 1984.
4. Lippard, S.J. and Berg, J.M., *Principles of Bioinorganic Chemistry*, Mill Valley: University Science Books, 1994, p. 199.
5. Solomon, E.I., Sundaram, U.M., and Machonkin, T.E., *Chem. Rev.*, 1996, vol. 96, p. 2563. <https://doi.org/10.1021/cr950046o>
6. Cook, T.R., Zheng, Y.-R., and Stang, P.J., *Chem. Rev.*, 2013, vol. 113, p. 734. <https://doi.org/10.1021/cr3002824>
7. Stock, N. and Biswas, S., *Chem. Rev.*, 2012, vol. 112, p. 933. <https://doi.org/10.1021/cr200304e>
8. Furukawa, H., Cordova, K.E., O'Keeffe, M., et al., *Science*, 2013, vol. 341, p. 97. <https://doi.org/10.1126/science.1230444>
9. Stavila, V., Talin, A.A., and Allendorf, M.D., *Chem. Soc. Rev.*, 2014, vol. 43, p. 5994. <https://doi.org/10.1039/C4CS00096J>
10. Uvarova, M., Sinelshchikova, A., Golubnichaya, M., et al., *Cryst. Growth Des.*, 2014, no. 11, p. 5976. <https://doi.org/10.1021/cg501157e>
11. Mitrofanov, A.Yu., Rousseli, Y., Guillard, R., et al., *New J. Chem.*, 2016, vol. 40, p. 5896. <https://doi.org/10.1039/C5NJ03572D>
12. Eremenko, I.L., Novotortsev, V.M., Sidorov, A.A., and Fomina, I.G., *Ross. Khim. Zh.*, 2004, vol. 48, no. 1, p. 49.
13. Becht, M., Gerfin, T., and Dahmen, K.-H., *Helv. Chim. Acta*, 1994, vol. 77, p. 1288. <https://doi.org/10.1002/hlca.19940770511>
14. Pratt, R.C., Mirica, L.M., and Stack, T.D.P., *Inorg. Chem.*, 2004, p. 8030. <https://doi.org/10.1021/ic048904z>
15. Tomkowicz, Z., Ostrovsky, S., Foro, S., et al., *Inorg. Chem.*, 2012, vol. 51, no. 11, p. 6046. <https://doi.org/10.1021/ic202529p>
16. Mikhaltynska, E.A., Tyurin, V.S., Nefedov, S.E., et al., *Eur. J. Inorg. Chem.*, 2012, vol. 36, p. 5979. <https://doi.org/10.1002/ejic.201200868>
17. Hiroto, S., Furukawa, K., Shinokubo, H., and Osuka, A., *J. Am. Chem. Soc.*, 2006, p. 12380. <https://doi.org/10.1021/ja062654z>
18. Sinelshchikova, A.A., Nefedov, S.E., Enakieva, Yu.Yu., et al., *Inorg. Chem.*, 2013, vol. 52, no. 2, p. 999. <https://doi.org/10.1021/ic302257g>
19. Becker, H., Domshcke, G., Fanghaenel, E., and Fischer, M., *Organikum. Organisch-Chemisches Grundpraktikum*, Berlin: Deutscher Verlag für Wissenschaften, 1992, vol. 1.
20. Ingold, C.K. *Structure and Mechanism in Organic Chemistry*, Ithaca: Cornell University, 1969.

21. *SMART (control) and SAINT (integration) Software. Version 5.0*, Madison: Bruker AXS Inc., 1997.
22. *SAINT. Area-Detector Integration Software*, Madison: Bruker AXS Inc., 2012.
23. Sheldrick, G.M., *SADABS. Program for Scaling and Correction of Area Detector Data*, Göttingen: Univ. of Göttingen, 1997.
24. Sheldrick, G.M., *Acta Crystallogr., Sect. C: Struct. Chem.*, 2015, vol. 71, p. 3.
<https://doi.org/10.1107/S2053229614024218>
25. Uvarova, M.A. and Nefedov, S.E., *Russ. J. Coord. Chem.*, 2020, vol. 46, p. 608.
<https://doi.org/10.1134/S1070328420090079>
26. Uvarova, M.A. and Nefedov, S.E., *Russ. J. Inorg. Chem.*, 2021, vol. 66, no. 6.
<https://doi.org/10.31857/S0044457X21060209>
27. CSD. Version 5.42 (November 2020).
28. Smart, P., Espallargas, G.M., and Brammer, L., *Cryst. EngComm*, 2008, p. 1335.
<https://doi.org/10.1039/b806765a>
29. Reck, G., Jahnig, W., and Prakt, J., *Chem. Chem. Zeitung*, 1979, vol. 321, p. 549.
<https://doi.org/10.1002/prac.19793210406>
30. Kani, Y., Tsuchimoto, M., Ohba, S., and Tokii, T., *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.*, 2000, vol. 56, p. e80.
<https://doi.org/10.1107/S0108270100002304>
31. Borel, M.M. and Leclaire, A., *Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.*, 1976, vol. 32, p. 1275.
32. Larionov, S.V., Glinskaya, L.A., Klevtsova, R.F., et al., *Russ. J. Inorg. Chem.*, 1991, vol. 36, p. 2514.

Translated by E. Yablonskaya