

Synthesis, Structures, and Properties of Two Coordination Polymers with Chelating Carboxylic and Triazolyl Derivatives

Y. F. Wang^{a, b, *}, J. J. Wei^{a, b}, M. M. Zhang^{a, b}, and L. Y. Wang^c, *

^aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934 P.R. China

^bHenan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934 P.R. China

^cCollege of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061 P.R. China

*e-mail: wangyf78@163.com

Received June 15, 2018; revised January 18, 2019; accepted January 30, 2019

Abstract—Two coordination polymers, $[\text{Zn}(\text{Btec})_{0.5}(\text{H}_2\text{L})]_n$ (**I**) and $[\text{Cd}_{0.5}(\text{Tp})_{0.5}(\text{H}_2\text{L})(\text{H}_2\text{O})]_n \cdot n\text{H}_2\text{O}$ (**II**) ($\text{H}_2\text{L} = 3\text{-}(1\text{H-pyrazol-4-yl})\text{-}5\text{-}(pyridin-2-yl)\text{-}1,2,4\text{-triazole}$; $\text{H}_4\text{Btec} = 1,2,4,5\text{-benzenetetracarboxylic acid}$; $\text{H}_2\text{L}' = 3\text{-}(1\text{H-pyrazol-4-yl})\text{-}5\text{-}(pyridin-3-yl)\text{-}1,2,4\text{-triazole}$; $\text{H}_2\text{Tp} = \text{terephthalic acid}$), have been synthesized under hydrothermal conditions. The title compounds were structurally characterized by elemental analysis, single crystal X-ray diffraction analysis, infrared spectra. Compounds **I** and **II** crystallize in the orthorhombic and triclinic, space group $Pbca$ and $P\bar{1}$, respectively. Compound **I** displays a two-dimensional plane structure, those are connected by $\text{N}\cdots\text{H}\cdots\text{O}$ hydrogen bonds to generate 3D frameworks. Compound **II** is constructed a 1D chain structure by Tp^{2-} ligands, which are connected into 2D structure by the hydrogen bonds. In addition, the fluorescent property of **I** has been studied in the solid state at room temperature. The thermal analysis of **I** has also been investigated.

Keywords: coordination polymers, structure, fluorescent property

DOI: 10.1134/S107032841907008X

INTRODUCTION

Recently, coordination polymers (CPs), as solid-state materials, have been widely explored in luminescence, gas storage/separations, heterogeneous catalysis, and magnetic and electronic applications, due to their fascinating structures and molecular topologies [1–4]. Various new ligands and their combinations are being exploited for the design and construct of novel CPs. The variety of metal ions, organic linkers, and structural motifs affords an essentially infinite number of possible combinations in which the structures of CPs are controlled by the geometries of organic ligands. Among the plenty of ligands employed in the construction of CPs, the multidentate N- and/or O-donor building blocks have received extensive attention [5–7]. The use of asymmetrical triazole derivatives ligands containing various spacers in combination with several aromatic polycarboxylic acid and transition metals is one of the well exploited strategies that resulted in many CP-based functional materials [8–10].

Recently, we have focused on coordination assemblies of a family of pyrazol/pyrazine/pyridyl-substi-

tuted triazolyl ligands [11–13], which can be considered as excellent building blocks for their multiple binding sites and diverse conformations upon complexation. Our initial results show that a mixed ligand is a good choice for the construction of new frameworks. However, it is accompanied with even more uncertain elements. Thus, the prediction of mixed-ligand architectures is a challenging scientific striving.

With this concept in mind, to expand our research on coordination polymers, we successfully obtained two new coordination polymers based on triazolyl derivatives and carboxylic ligands, namely, $[\text{Zn}(\text{Btec})_{0.5}(\text{H}_2\text{L})]_n$ (**I**) and $[\text{Cd}_{0.5}(\text{Tp})_{0.5}(\text{H}_2\text{L})(\text{H}_2\text{O})]_n \cdot n\text{H}_2\text{O}$ (**II**).

EXPERIMENTAL

Materials and methods. All reagents used in the syntheses were of analytical grade. Elemental analyses for carbon, hydrogen and nitrogen were performed on a Vario EL III elemental analyzer. Infrared spectra (IR) were obtained by a Nicolet 6700 FT-IR spectrophotometer over a range of 4000–600 cm^{-1} . Fluorescence measurements were recorded with a Hitachi F4500 fluorescence spectrophotometer. Thermograv-

imetric analyses (TGA) were carried out in nitrogen at a heating rate of $10^{\circ}\text{C min}^{-1}$ using a TG/DTA 6300 integration thermal analyzer.

Synthesis of compound I. A mixture of $\text{Zn}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$ (0.2 mmol, 59.4 mg), H_2L (0.1 mmol, 21.2 mg) and H_4Btec (0.2 mmol, 50.8 mg) was dissolved in a solution of $\text{CH}_3\text{CN}-\text{H}_2\text{O}$ ($v:v = 1:3$), dissolved in a glass vial (8 mL), then sealed in a 25 mL teflon-lined stainless steel vessel and heated at 150°C for 72 h. After cooling to room temperature, the colourless block crystals were obtained and then washed with distilled water for several times and filtered to give pure crystals of **I**.

For $\text{C}_{15}\text{H}_9\text{N}_6\text{O}_4\text{Zn}$

Anal. calcd., %	C, 44.74	H, 2.25	N, 20.87
Found, %	C, 44.57	H, 2.35	N, 20.71

IR spectrum (KBr; ν, cm^{-1}): 2986, 2910, 2357, 1750, 1710, 1552, 1510, 1470, 1348, 1042, 885, 808, 735, 674.

Synthesis of compound II. A mixture of $\text{H}_2\text{L}'$ (21.2 mg, 0.10 mmol), H_2Tp (16.6 mg, 0.10 mmol) and $\text{Cd}(\text{NO}_3)_2 \cdot 4\text{H}_2\text{O}$ (92.5 mg, 0.30 mmol) was stirred in the mixture of $\text{DMF}-\text{H}_2\text{O}$ ($v:v = 1:4$). After that, the solution was placed in a bottle (10 mL), then sealed in a 25 mL Teflon reactor and heated at 140°C for 72 h, cooled to room temperature at a rate of 5°C h^{-1} . Light yellow block-shaped crystals of **II** were obtained.

For $\text{C}_{14}\text{H}_{14}\text{N}_6\text{O}_4\text{Cd}_{0.5}$

Anal. calcd., %	C, 43.51	H, 3.65	N, 21.74
Found, %	C, 43.70	H, 3.61	N, 21.76

IR spectrum (KBr; ν, cm^{-1}): 3351, 2882, 2984, 2363, 1760, 1715, 1550, 1390, 1055, 920, 810, 756, 670.

X-ray crystallography. Diffraction intensity data of the single crystals of **I** and **II** were collected on a Rigaku Oxford diffraction equipped with a graphite monochromated MoK_{α} radiation ($\lambda = 0.71073 \text{ \AA}$) by using the X-scan technique at $293(2) \text{ K}$. The structures were solved by direct methods and refined F^2 by full matrix least squares using SHELLXTL [14]. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were located by geometrically calculations, and their positions and thermal parameters were fixed during the structure refinement. Crystallographic data and details of refinement for compounds **I** and **II** are reported in Table 1. Selected bond distances and angles are given in Table 2.

Supplementary material for structures has been deposited with the Cambridge Crystallographic Data Centre (CCDC nos. 1559420 (**I**), 1849275 (**II**)).

deposit@ccdc.cam.ac.uk or <http://www.ccdc.cam.ac.uk>).

RESULTS AND DISCUSSION

As shown in Fig. 1a, the asymmetry unit contains one $\text{Zn}(\text{II})$ atom, half Btec^{4-} ligand, and one H_2L ligand. Each $\text{Zn}(\text{II})$ center is penta-coordinated by three N atoms from two different H_2L ligands ($\text{Zn}(1)-\text{N}(1) 2.148(6)$, $\text{Zn}(1)-\text{N}(6)^{\#2} 2.164(7)$, and $\text{Zn}(1)-\text{N}(2) 2.174(6) \text{ \AA}$) and two O atoms from two different Btec^{4-} ligands ($\text{Zn}(1)-\text{O}(1) 2.009(6)$, $\text{Zn}(1)-\text{O}(3)^{\#1} 2.027(5) \text{ \AA}$) showing a distorted trigonal bipyramidal coordination geometry. The OZnN bond angles vary from $88.9(2)^\circ$ to $128.3(3)^\circ$. The bond angles of $\text{N}(2)\text{Zn}(1)\text{N}(6)^{\#2}$ and $\text{O}(1)\text{Zn}(1)\text{O}(3)^{\#1}$ are $168.0(3)^\circ$ and $116.7(2)^\circ$, respectively, which are similar to other Zn-based complexes [15].

It is noteworthy that the H_4Btec is completely deprotonated in the formation of the compound **I**. The four carboxyl groups of H_4Btec ligand in compound **I** exhibit the same coordination modes ($\mu_1-\eta^1:\eta^0, \mu_1-\eta^1:\eta^0, \mu_1-\eta^1:\eta^0, \mu_1-\eta^1:\eta^0$) and link neighboring four Zn^{2+} ions forming two-dimensional $[\text{Zn}_4(\text{Btec})]^{4-}$ unit with the $\text{Zn}\cdots\text{Zn}$ distances of 6.422 and 9.200 \AA , respectively (Fig. 2a). On the other hand, H_2L ligands bind neighbouring $\text{Zn}(\text{II})$ ions forming 1D chain with the $\text{Zn}\cdots\text{Zn}$ separation of 6.422 \AA . The H_2L ligands link the two-dimensional $[\text{Zn}_4(\text{Btec})]^{4-}$ plane through $\text{Zn}-\text{N}$ coordination interactions to give a two-dimensional network as illustrated in Fig. 2a. In the crystal packing, there are H-bonding interactions between triazole nitrogen atom and carboxyl groups of H_4Btec ligand: ($\text{N}(4)-\text{H}(4)\cdots\text{O}(4)^{\#1}$ ($\text{H}\cdots\text{O}/\text{N}\cdots\text{O}$ distance = $1.92/2.742(9) \text{ \AA}$; angle $\text{NHO} = 160^\circ$, ${}^{\#1}1/2 - x, 2 - y, 1/2 + z$) and ($\text{N}(5)-\text{H}(5)\cdots\text{O}(2)^{\#2}$ ($\text{H}\cdots\text{O}/\text{N}\cdots\text{O}$ distance = $1.82/2.638(10) \text{ \AA}$; angle $\text{NHO} = 157^\circ$, ${}^{\#1}1 - x, 1/2 + y, 3/2 - z$). As a result, the 2D coordination layers are further interlinked via such secondary interactions to form a 3D supramolecular lattice (Fig. 2b).

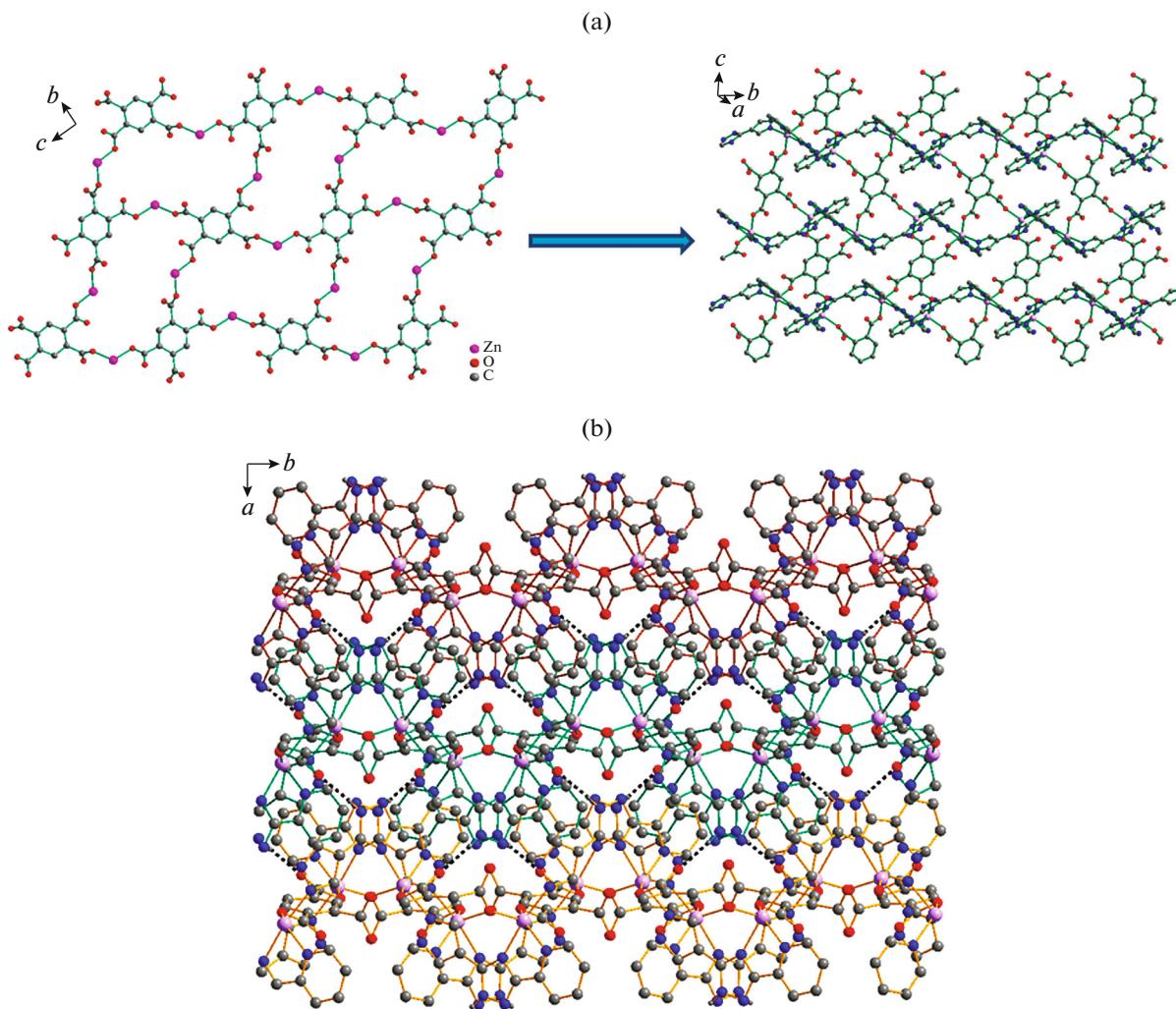
As illustrated in Fig. 1b, every $\text{Cd}(\text{II})$ located at the inversion center reproduces the whole molecule through the asymmetric unit consisting of half of cadmium ion, one $\text{H}_2\text{L}'$ ligand, a half Tp^{2-} ligand, one coordinated water molecule and one lattice water molecule. Each Cd^{2+} ions is a slightly distorted octahedron ligated by two N atoms from two different $\text{H}_2\text{L}'$ ligands, two O atoms from two coordinated water molecules and two O atoms from two different Tp^{2-} ligands. Four O atoms ($\text{Cd}(1)-\text{O}(1) 2.289(3)$, $\text{Cd}(1)-\text{O}(3) 2.335(3) \text{ \AA}$) form the equatorial plane.

Table 1. Crystallographic data and structure refinement details for compounds **I** and **II**

Parameter	Value	
	I	II
Formula weight	402.65	386.51
Crystal system	Orthorhombic	Triclinic
Space group	<i>Pbca</i>	<i>P</i> 1
<i>a</i> , Å	15.6614(16)	7.9930(4)
<i>b</i> , Å	11.7303(15)	8.9033(6)
<i>c</i> , Å	17.3327(15)	11.6219(8)
α , deg	90	111.222(6)
β , deg	90	92.771(5)
γ , deg	90	98.703(5)
Volume, Å ³	3184.3(6)	757.30(9)
<i>Z</i>	8	2
ρ_{calcd} , g/cm ³	1.680	1.695
Absorption coefficient, mm ⁻¹	1.579	0.794
<i>F</i> (000)	1624.0	392
2θ Range for data collection, deg	6.684–56.22	6.516–50.896
Index ranges	$-20 \leq h \leq 18$, $-15 \leq k \leq 9$, $-15 \leq l \leq 22$	$-9 \leq h \leq 7$, $-9 \leq k \leq 10$, $-13 \leq l \leq 11$
Reflections collected	9507	2674
Independent reflections (<i>R</i> _{int})	3343 (0.1555)	1861 (0.0242)
Data/restraints/parameters	3343/0/235	1861/0/236
Goodness-of-fit on <i>F</i> ²	1.031	1.065
Final <i>R</i> indexes (<i>I</i> > 2σ(<i>I</i>))	<i>R</i> ₁ = 0.0990, <i>wR</i> ₂ = 0.2333	<i>R</i> ₁ = 0.0357, <i>wR</i> ₂ = 0.0805
Final <i>R</i> indexes (all data)	<i>R</i> ₁ = 0.1625, <i>wR</i> ₂ = 0.2738	<i>R</i> ₁ = 0.0381, <i>wR</i> ₂ = 0.0816
Largest diff. peak and hole, e Å ⁻³	2.02 and -1.31	0.47 and -0.48

Fig. 1. Coordination environments of the Zn^{2+} ion in I (a) and Cd^{2+} ion in II (b).

The two N atoms ($\text{Cd}(1)-\text{N}(1)$ 2.307(3) Å) at the axial sites are almost perpendicular to the equatorial plane. The OCdO bond angles vary from $81.93(12)^\circ$ to 180.0° . The OCdN bond angles vary from $86.71(11)^\circ$ to $93.29(11)^\circ$. The bond angles of $\text{N}(1)\text{Cd}(1)\text{N}(1)^{\#1}$ are 180.0° , which are similar to other Cd-based complexes [16, 17]. The two carboxyl groups of H_2Tp ligand in compound II are completely deprotonated and link adjacent Cd^{2+} ions with coordination modes ($\mu_1-\eta^1:\eta^0$, $\mu_1-\eta^1:\eta^0$). The adjacent Cd^{2+} ions are bridged into one dimensional chain structure by oxygen atoms coming from Tp^{2-} ligands (Fig. 3a). The terminal $\text{H}_2\text{L}'$ ligands suspend on the chains. Some


hydrogen-bonding interactions such as $\text{O}(\text{water})\cdots\text{O}(\text{water})$ and $\text{O}(\text{water})\cdots\text{O}(\text{carboxyl})$, connect the adjacent chains into two-dimensional network (Fig. 3b).

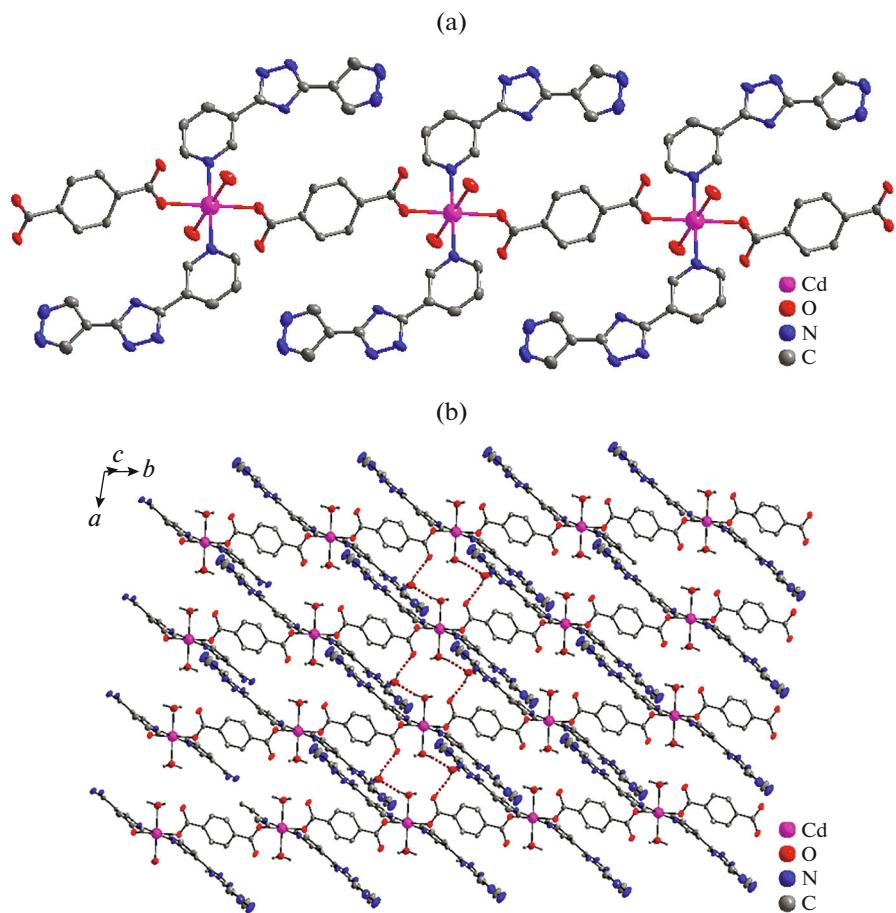
Considering the excellent luminescent properties of coordination polymers with d^{10} transition metal ions, the luminescent properties of compound I and ligands have been determined in the solid state at room temperature. As shown in Fig. 4. The free ligands H_2L and H_4Btec display photoluminescence with emission maxima at 430 nm ($\lambda_{\text{ex}} = 390$ nm) and 390 nm ($\lambda_{\text{ex}} = 360$ nm), respectively, which are assigned to a $\pi^* \rightarrow \pi$ or $\pi^* \rightarrow n$ transition

Table 2. Selected bond distances and angles for **I** and **II***

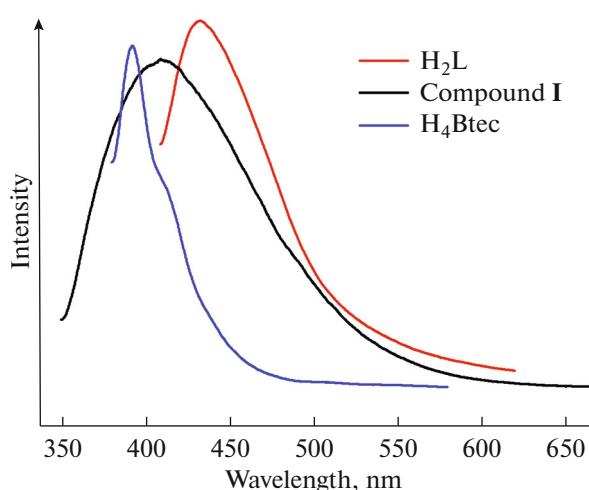
Bond	<i>d</i> , Å	Bond	<i>d</i> , Å
I			
Angle	ω , deg	Angle	ω , deg
Zn(1)–O(1)	2.009(6)	Zn(1)–N(2)	2.174(6)
Zn(1)–O(3) ¹	2.027(5)	Zn(1)–N(6) ²	2.164(7)
Zn(1)–N(1)	2.148(6)		
II			
Cd(1)–O(1)	2.289(3)	Cd(1)–N(1)	2.307(3)
Cd(1)–O(3)	2.335(3)		
I			
O(3) ¹ Zn(1)N(2)	88.9(2)	O(1)Zn(1)O(3) ¹	116.7(2)
O(3) ¹ Zn(1)N(6) ²	90.0(3)	O(1)Zn(1)N(1)	113.0(2)
N(1)Zn(1)N(2)	78.0(2)	O(1)Zn(1)N(2)	89.4(2)
O(3) ¹ Zn(1)N(1)	128.3(3)	O(1)Zn(1)N(6) ²	101.8(2)
N(6) ² Zn(1)N(2)	168.0(3)	N(1)Zn(1)N(6) ²	93.3(3)
II			
O(1) ¹ Cd(1)O(1)	180.0	O(1)Cd(1)N(1)	92.78(12)
O(1)Cd(1)O(3) ¹	81.93(12)	O(3)Cd(1)O(3) ¹	180.0
O(1)Cd(1)O(3)	98.07(12)	O(3)Cd(1)N(1) ¹	93.29(11)
O(1) ¹ Cd(1)O(3)	81.93(12)	N(1)Cd(1)O(3)	86.71(11)
O(1) ¹ Cd(1)N(1)	87.22(12)	N(1)Cd(1)N(1) ¹	180.0

* Symmetry transformations used to generate equivalent atoms: ¹ $x, 3/2 - y, 1/2 + z$; ² $1 - x, -1/2 + y, 3/2 - z$ (**I**); ¹ $-x, 1 - y, 1 - z$ (**II**).

Fig. 2. The 2D layer $[Zn_4(Btec)]^{4-}$ and 2D network of **I** (a); the 3D supermolecule structure of **I** (b).


[18]. It was reported that the emission of aromatic dicarboxylate ligands belongs to $\pi^* \rightarrow n$ transitions, which is very weak compared to that of the $\pi^* \rightarrow \pi$ transition of H_2L , so the dicarboxylates almost have no contribution to the fluorescent emission of as-synthesized complexes [19]. The photoluminescent spectra of compound **I** shows the emission maxima at 410 nm ($\lambda_{ex} = 340$ nm). The Zn(II) atom is known to be difficult to oxidize or reduce because of its d^{10} configuration. As a result, the emissions of compound **I** is neither metal-to-ligand charge transfer (MLCT) nor ligand-to-metal charge transfer (LMCT), which are ascribed to a mixture character of intraligand and ligand-to-ligand charge transition (LLCT) [20]. The shift of the band in comparison to those of the free ligands may originate from

coordination interactions between Zn(II) and ligands.


For the sake of discovering the thermal stability of the compound **I**, the thermal weight measurement was carried out in the range of 30–900°C under flowing air atmosphere (Fig. 5). The title compound is robust and stable from room temperature to 380°C. Then, a sharp continual weight loss occurred, which is attributed to the decomposition of the framework. The result shows that the compound **I** has high thermal stability.

FUNDING

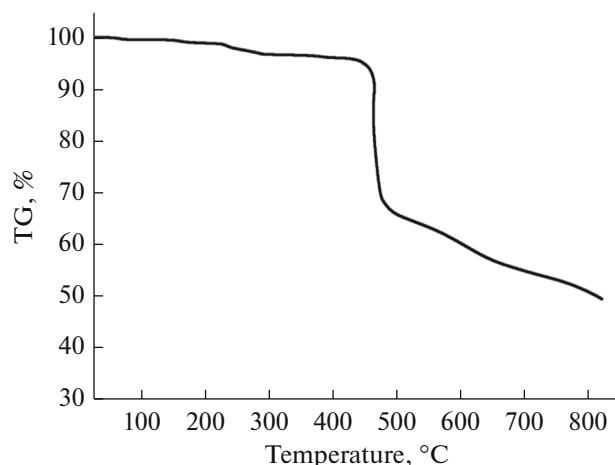

This work was supported by the National Natural Science Foundation of China (no. 21671114) and the Science and Technology Project of Henan Province (no. 162106000025).

Fig. 3. The 1D chain structure of compound II (a) and the 2D network formed through the hydrogen bonds in II viewed along *c* axis (b).

Fig. 4. The photoluminescent spectra of I and free ligand.

Fig. 5. The TGA curve of compound I.

REFERENCES

1. Gonh, L.L., Yao, W.T., Liu, Z.Q., et al., *J. Mater. Chem., A*, 2017, vol. 5, p. 7961.
2. Blake, A., Champness, N., Hubberstey, P., et al., *Coord. Chem. Rev.*, 1999, vol. 183, p. 117.
3. Yao, Z.J., Yu, W.B., Huang, S.L., et al., *J. Am. Chem. Soc.*, 2014, vol. 136, p. 2825.
4. Brunet, G., Safin, D.A., Jover, J., et al., *J. Mater. Chem., C*, 2017, vol. 5, p. 835.
5. Ke, C.H., Lin, G.R., Kuo, B.C., and Lee, H.M., *Cryst. Growth Des.*, 2012, vol. 12, p. 3758.
6. Li, M.X., Zhang, Y.F., He, X., et al., *Cryst. Growth Des.*, 2016, vol. 16, p. 2912.
7. Hu, J.S., Yao, X.Q., Zhang, M.D., et al., *Cryst. Growth Des.*, 2012, vol. 12, p. 3426.
8. Zhang, J.P., Zhang, Y.B., Lin, J.B., and Chen, X.M., *Chem. Rev.*, 2012, vol. 112, p. 1001.
9. Zhu, Z., Xu, C.G., Wang, M., et al., *Cryst. Growth Des.*, 2017, vol. 17, p. 5533.
10. Li, Y.P., Ju, F.Y., Li, G.L., et al., *Russ. J. Coord. Chem.*, 2018, vol. 44, p. 214.
<https://doi.org/10.1134/S1070328418030028>
11. Wang, Y.F., Li, Z., Sun, Y.C., Zhao, J.S., and Wang, L.Y., *CrystEngComm*, 2013, vol. 15, p. 9980.
12. Wang, Y.F., Li, Z., Sun, Y.C., et al., *Inorg. Chem. Commun.*, 2014, vol. 44, p. 25.
13. Wang, Y.F., Sun, X.Y., and Geng, J.L., *Russ. J. Coord. Chem.*, 2016, vol. 42, p. 143.
<https://doi.org/10.1134/S1070328416020081>
14. Sheldrick, G.M., *SHELXL-97, Program for the Refinement of Crystal Structures*, Göttingen: Univ. of Göttingen, 1997.
15. Ju, F.Y., Li, Y.P., Li, G.L., et al., *Chin. J. Inorg. Chem.*, 2016, vol. 32, p. 1876.
16. Wang, Y.F. and He, C.J., *Chin. J. Struct. Chem.*, 2018, vol. 37, p. 481.
17. Wang, Y.F., Li, Z., Li, Y.Y., et al., *J. Coord. Chem.*, 2013, vol. 66, p. 501.
18. Sun, D., Xu, M.Z., Liu, S.S., et al., *Dalton Trans.*, 2013, vol. 42, p. 12324.
19. Li, X.J., Yu, Z.J., Guan, T.N., et al., *Cryst. Growth Des.*, 2015, vol. 15, p. 278.
20. Su, Z., Fan, J., Okamura, T., et al., *Cryst. Growth Des.*, 2010, vol. 10, p. 1911.