

The Structure of Monomeric Octahedral d^2 -Rhenium(V) Monooxo Complexes $[\text{ReO}(\text{L}_{\text{tri}}^m)(\text{L}_{\text{bi}}^n)]$, $[\text{ReO}(\text{L}_{\text{tri}}^m)\text{Cl}_2]$ with Oxygen Atoms of Tridentate Chelating (O,S,O and S,O,S) Ligands

V. S. Sergienko^{a, b, *} and A. V. Churakov^a

^aKurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Moscow, 119991 Russia

^bAll-Russian Institute for Scientific and Technical Information, Russian Academy of Sciences
Moscow, 125190 Russia

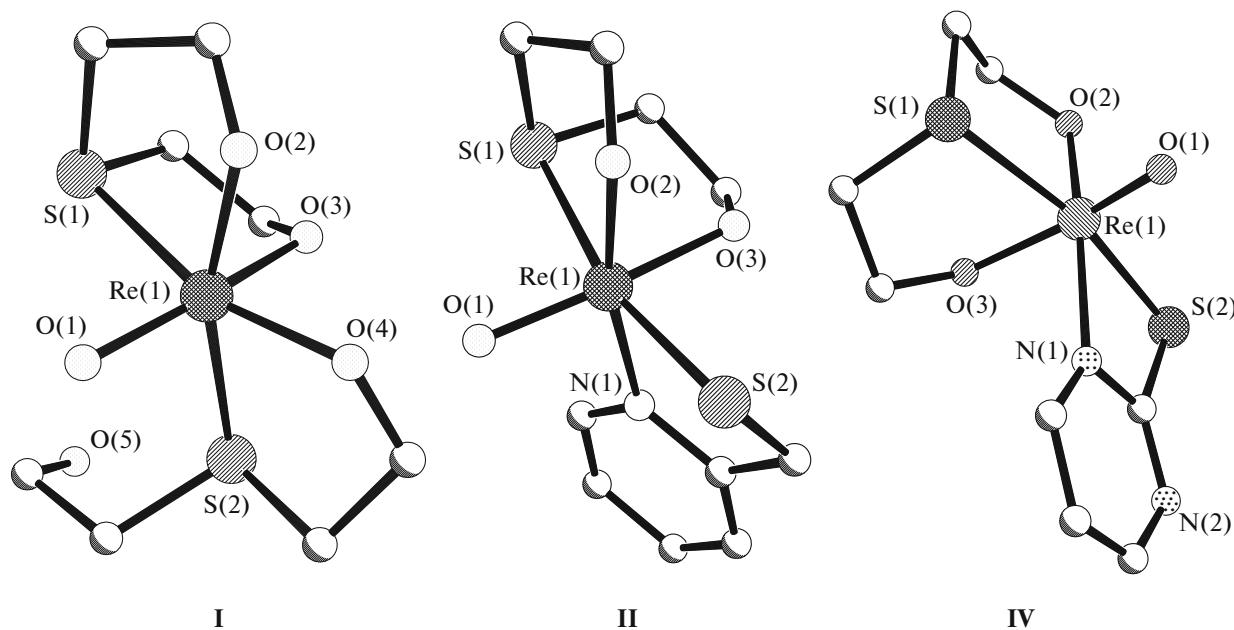
*e-mail: sergienko@igic.ras.ru

Received June 20, 2018; revised August 16, 2018; accepted September 15, 2018

Abstract—The structural features of eleven mononuclear octahedral d^2 -Re(V) monooxo complexes with tridentate chelating (O,S,O and S,O,S) ligands, $[\text{ReO}(\text{L}_{\text{tri}}^m)(\text{L}_{\text{bi}}^n)]$, $[\text{ReO}(\text{L}_{\text{tri}}^m)\text{Cl}_2]$, are discussed. The $\text{Re}—\text{O}(\text{L}_{\text{tri}}^m)_{\text{trans}}$ bond lengths (except for two cases) were shown to be similar to (or somewhat shorter than), the $\text{Re}—\text{O}(\text{L})_{\text{cis}}$ or $\text{Re}—\text{O}(\text{ST})$ bond lengths, which is indicative of the presence of pseudo-dioxo ReO_2 groups with increased bond orders for both *trans*-arranged Re—O bonds. In the structures of two compounds, the $\text{Re}—\text{O}(\text{L}_{\text{tri}}^m)_{\text{trans}}$ bonds are, on average, 0.093 Å longer than the $\text{Re}—\text{O}(\text{ST})$ bonds, which is consistent with the structural requirements of the *trans*-effect of a multiply bonded oxo ligand.

Keywords: crystal structure, X-ray diffraction analysis, six-coordinate d^2 -Re monooxo compounds, tridentate chelating (O,S,O and S,O,S) ligands

DOI: 10.1134/S1070328419030072


INTRODUCTION

The structures of monomeric octahedral complexes of Group 5–7 d^0 - and d^2 -metals (Nb, V, Mo, W, Re, Tc) with multiply bonded O(oxo) ligands are considered in detail in [1–7]. More than five hundred d^2 -Re(V) compounds were studied by X-ray diffraction (see Cambridge Crystallographic Data Centre (CCDC), version 5.39, August 2018 [8]). Most of these complexes, $\text{ReO}_{\text{oxo}}\text{O}(\text{Lig})_{\text{trans}}$, contain oxygen atoms of mono- and polydentate ligands in the *trans*-positions to the oxo ligands. Previously, we published a number of integrating papers dealing with d^2 -Re(V) monomeric octahedral complexes with ligands being represented by halogen, nitrogen, sulfur, or hydrogen atoms; oxygen atoms of monodentate anionic ligands (hydroxy, alkoxy (methoxy, ethoxy, propoxy), OR^{n-} ($n = 1, 2$; R = Ph, Cy, $\text{C}_6\text{H}_4\text{OH}$, $\text{C}_6\text{H}_4\text{OMe}$, $\text{P}(\text{O})(\text{OMe})_2$, $\text{C}(\text{O})(\text{CF}_3)$, $\text{OCMe}(\text{CF}_3)_2$, BF_3), OER^{n-} ($n = 1, 2$; E = Si, B, S; R = Me_3 , F_3 , O_2CF_3)); bidentate chelating (O,O), (O,S), (O,C), (O,P), and (O,N) singly charged ligands; singly and doubly charged tridentate chelating (O,N,O) [9] and (O,O,O) [10] ligands; and neutral oxygen-containing ligands

(water molecules, phosphine oxide and arsine oxides OER_3 (E = P, As; R_3 = Ph_3 , PhEt_2), OR' molecules: DMF, $\text{R}'\text{OH}$ (R' = Me, Et, Pr), L ($\text{ON}_4\text{C}_6 \cdot \text{C}_6\text{H}_{10}$, $\text{O}^-(\text{C}_6\text{H}_3\text{MeCH}_2\text{NH}^+\text{Et}_2)$, $\text{O}^-(\text{NH}^+\text{C}_5\text{H}_4)$) located in the *trans*-position relative to the multiply bonded O(oxo) ligands. We also published reviews dealing with the structural details of d^0 -Re(VII) [11] and d^0 -, d^2 -technetium(V, VII) [12] complexes.

A structural consequence of the *trans*-effect of the multiply bonded O(oxo) ligand, namely, elongation of the opposing $\text{Re}—\text{L}_{\text{trans}}$ bond, is characterized by the parameter Δ (the difference between the like bonds $\{[\text{Re}—\text{L}_{\text{trans}}] - [\text{Re}—\text{L}_{\text{cis}}]\}$). If the structure contains no ligands of the same sort in both *trans* and *cis* positions relative to O(oxo), we used the parameter $\{[\text{Re}—\text{L}_{\text{trans}}] - [\text{Re}—\text{L}(\text{ST})]\}$, where ST is the statistical mean standard length of the Re(V) bond with the ligand of the same sort as L_{trans} . As the $\text{Re}—\text{O}(\text{ST})$ value, we took (as previously [4]) 2.04 Å.

This communication discusses the structure of the monomeric octahedral monooxo complexes $[\text{ReO}(\text{L}_{\text{tri}}^m)(\text{L}_{\text{bi}}^n)]$, and $[\text{ReO}(\text{L}_{\text{tri}}^m)\text{Cl}_2]$, containing

Fig. 1. Structures of the complexes: $[\text{ReO}(\text{L}_{\text{tri}}^1)(\text{L}_{\text{bi}}^1)]$ (I); $[\text{ReO}(\text{L}_{\text{tri}}^1)(\text{L}_{\text{bi}}^2)]$ (II); $[\text{ReO}(\text{L}_{\text{tri}}^1)(\text{L}_{\text{bi}}^4)]$ (IV).

tridentate chelating (O,S,O or S,O,S), bidentate chelating, or two monodentate (Cl) ligands.

Selected bond lengths for the eleven structurally studied complexes of the above-indicated types are summarized in Table 1.

I. STRUCTURE OF $[\text{ReO}(\text{L}_{\text{tri}}^m)(\text{L}_{\text{bi}}^n)](\text{L}_{\text{tri}}^m)$ TRIDENTATE CHELATING (O,S,O) LIGAND

Each of the six $3 + 2$ type complexes considered in this chapter is based on doubly charged tridentate chelating bis(2-oxyethyl) sulfide ligand $\text{S}(\text{CH}_2\text{CH}_2\text{O})_2^2-$ (L_{tri}^1), in which all three atoms (O,S,O) are located in the common face of the rhenium octahedron (*fac*-isomer). The *trans*-position relative to the multiply bonded oxo ligand is always occupied by either of the two alkoxy oxygen atoms of L_{tri}^1 . The coordination of L_{tri}^1 to rhenium is accompanied by closure of two similar five-membered ReOC_2S rings fused by the Re–S bond. The structure is completed by the bidentate chelating heteroatomic ligands that may have three different compositions (see below). All of the L_{bi}^n ligands are singly charged.

Structure of the $[\text{ReO}(\text{L}_{\text{tri}}^1)(\text{L}_{\text{bi}}^1)]$ complex with the bidentate chelating (O,S) ligand L_{bi}^1 . The crystal structure of $[\text{ReO}(\text{L}_{\text{tri}}^1)(\text{L}_{\text{bi}}^1)]$ (I) [13] (Fig. 1a) comprises two ligands of the same type: the tridentate che-

lating (L_{tri}^1)²⁻ and singly charged bidentate chelating (O,S) 2-hydroxyethyl(2-oxyethyl)thiolato ligand $\text{OCH}_2\text{CH}_2\text{SCH}_2\text{CH}_2\text{OH}^-$ (L_{bi}^1) containing one pending branch with a terminal hydroxy group. The pending $\text{CH}_2\text{CH}_2\text{OH}$ branch has a *syn*-orientation.

The L_{bi}^1 coordination to the metal atom is accompanied by closure of the five-membered chelate ring ReOC_2S . As usual, the rhenium atom is shifted from the equatorial plane of the ONS₂ atoms towards the oxo ligand: $\Delta_{\text{Re}} = 0.259 \text{ \AA}$.

Structure of the complex $[\text{ReO}(\text{L}_{\text{tri}}^1)(\text{L}_{\text{bi}}^2)]$ with a bidentate chelating (NS) ligand. In the structure of $[\text{ReO}(\text{L}_{\text{tri}}^1)(\text{L}_{\text{bi}}^2)]$ (II) [14] (Fig. 1b), the mercapro-methylpyridyl ligand $\text{SCH}_2\text{C}_5\text{H}_4\text{N}$ (L_{bi}^2) is coordinated to Re to give a five-membered ReNC_2S ring. Note that two bonds, $\text{Re}–\text{S}(1)(\text{L}_{\text{tri}}^1)$ (2.530(2) Å) and $\text{Re}–\text{S}(2)(\text{L}_{\text{bi}}^2)$ (2.313(2) Å), with the sulfide and thiolate sulfur atoms, respectively, substantially differ in the length (for details, see below).

Structure of the complexes $[\text{ReO}(\text{L}_{\text{tri}}^1)(\text{L}_{\text{bi}}^n)]$ ($n = 3–6$) with bidentate chelating (N,S) ligands. There are four known complexes similar in the composition $[\text{ReO}(\text{L}_{\text{tri}}^1)(\text{L}_{\text{bi}}^n)]$ ($n = 3–6$) [13], but somewhat differing in the bidentate chelating (S,N) R-2-thiolato

Table 1. Selected geometric parameters (Å) in the monomeric octahedral complexes $[\text{ReO}(\text{L}_{\text{tri}})(\text{L}_{\text{bi}}^n)]$ with tridentate chelating (O,S,O and S,O,S) ligands*

No.	Complex	Re=O	Re—L _{cis}	Re—O(L _{tri}) _{trans}	Δ	Refs
I	$[\text{ReO}(\text{L}_{\text{tri}}^1)(\text{L}_{\text{bi}}^1)]$	1.703(5)	1.951(5) O(L_{tri}^1) 1.964(5) O(L_{bi}^1) 2.477(2) S(L_{tri}^1) 2.465(2) S(L_{bi}^1)	2.007(5)	0.056	[13]
II	$[\text{ReO}(\text{L}_{\text{tri}}^1)(\text{L}_{\text{bi}}^2)]$	1.711(4)	1.965(5) O(L_{tri}^1) 2.530(2) S(L_{tri}^1) 2.312(2) S(L_{bi}^2) 2.158(6) N(L_{bi}^2)	1.966(4)	0.001	[14]
III	$[\text{ReO}(\text{L}_{\text{tri}}^1)(\text{L}_{\text{bi}}^3)]$	1.700(6)	1.977(6) O(L_{tri}^1) 2.502(2) S(L_{tri}^1) 2.397(2) S(L_{bi}^3) 2.167(7) N(L_{bi}^3)	1.968(6)	-0.009	[13]
IV	$[\text{ReO}(\text{L}_{\text{tri}}^1)(\text{L}_{\text{bi}}^4)]$	1.698(5)	1.974(4) O(L_{tri}^1) 2.496(2) S(L_{tri}^1) 2.391(2) S(L_{bi}^4) 2.158(5) N(L_{bi}^4)	1.971(4)	-0.003	[13]
V	$[\text{ReO}(\text{L}_{\text{tri}}^1)(\text{L}_{\text{bi}}^5)]$	1.702(5)	1.965(4) O(L_{tri}^1) 2.492(2) S(L_{tri}^1) 2.374(2) S(L_{bi}^5) 2.164(5) N(L_{bi}^5)	1.963(4)	-0.002	[13]
VI	$[\text{ReO}(\text{L}_{\text{tri}}^1)(\text{L}_{\text{bi}}^6)]$	1.710(3)	1.957(3) O(L_{tri}^1) 2.471(1) S(L_{tri}^1) 2.384(1) S(L_{bi}^6) 2.186(3) N(L_{bi}^6)	1.963(3)	0.006	[13]
VII	$[\text{ReO}(\text{L}_{\text{tri}}^2)(\text{HL}_{\text{bi}}^2)]$	1.680(3)	2.287(1) S(L_{tri}^2) 2.440(1) S(L_{tri}^2) 2.304(1) S(HL_{bi}^2) 2.532(1) S(HL_{bi}^2)	2.134(3)	0.094	[15]

Table 1. (Contd.)

No.	Complex	Re=O	Re—L _{cis}	Re—O(L _{tri}) _{trans}	Δ	Refs
VIII	$[\text{ReO}(\text{L}_{\text{tri}}^2)(\text{L}_{\text{bi}}^7)]$	1.693(4)	2.276(2) S(L_{tri}^2) 2.427(1) S(L_{tri}^2) 2.313(2) S(L_{bi}^7) 2.554(1) S(L_{bi}^7)	2.132(3)	0.092	[15]
IX	$[\text{ReO}(\text{L}_{\text{tri}}^3)\text{Cl}_2]$	1.692(9)	2.472(3) \pm 0.010 S(L_{tri}^3) 2.367(4) \pm 0.040 Cl	1.953(8)	-0.087	[16]
X	$[\text{ReO}(\text{L}_{\text{tri}}^4)\text{Cl}_2]$	1.71(2)	2.434(7) \pm 0.006 S(L_{tri}^4) 2.431(6) \pm 0.025 Cl	1.92(2)	-0.12	[16]
XI	$[\text{ReO}(\text{L}_{\text{tri}}^5)\text{Cl}_2]$	1.686(6)	2.425(3) \pm 0.003 S(L_{tri}^5) 2.383(3) \pm 0.023 Cl	1.917(6)	-0.123	[16]

* Designations of the ligands: $(\text{L}_{\text{tri}}^1)^{2-}$ = S(CH₂CH₂O)₂; $(\text{L}_{\text{tri}}^2)^{2-}$ = SCH₂CH₂SCH₂COO; $(\text{L}_{\text{tri}}^3)^{-}$ = OCH(CH₂S-Bu^t)₂; $(\text{L}_{\text{tri}}^n)^{-}$ = O(CH₂)₂S(CH₂)₂C(CH₂)R, R = OH (n = 4), OEt (n = 5); $(\text{L}_{\text{bi}}^1)^{-}$ = OCH₂CH₂SCH₂CH₂OH; $(\text{L}_{\text{bi}}^2)^{-}$ = SCH₂C₅H₄N; $(\text{L}_{\text{bi}}^3)^{-}$ = SC₅H₄N; $(\text{L}_{\text{bi}}^4)^{-}$ = SC₄H₃N₂; $(\text{L}_{\text{bi}}^5)^{-}$ = SC₄H₂N₂-4-CH₃; $(\text{L}_{\text{bi}}^6)^{-}$ = SC₉H₆N; $(\text{L}_{\text{bi}}^7)^{-}$ = S(CH₂)₂SCH₂C(=O)OMe.

ligand SR: R = pyridine C₅H₄N (III, n = 3); R = pyrimidine C₄H₃N₂ (IV, n = 4; Fig. 1c); R = methylypyrimidine C₄H₂N₂CH₃ (V, n = 5); and R = quinoline C₉H₆N (VI, n = 6). The coordination of $(\text{L}_{\text{tri}}^n)$ to rhenium in III–VI is accompanied by closure of the four-membered chelate rings ReNCS. The parameters Δ_{Re} in III–VI are in the range of 0.204–0.224 Å.

II. STRUCTURE OF COMPLEXES

$[\text{ReO}(\text{L}_{\text{tri}}^m)(\text{L}_{\text{bi}}^n)]$, $[\text{ReO}(\text{L}_{\text{tri}}^m)\text{Cl}_2]$ (L_{tri}^m) = TRIDENTATE CHELATING (S,O,S) LIGAND

In the five title complexes, all three S,O,S atoms in each tridentate bis(chelating) ligand have a *fac* (facial) configuration in the coordination octahedra of rhenium. The *trans*-position relative to the multiply bonded oxo ligand is always occupied by the alkoxy oxygen atom of L_{tri}^m .

Structure of the complexes $[\text{ReO}(\text{L}_{\text{tri}}^2)(\text{L}_{\text{bi}}^n)]$ with bidentate chelating (S,S) ligands. In the two complexes indicated in the subheading, the octahedral coordination of the metal atoms is completed by bidentate chelating singly charged (S,S) ligands. In the structure of $[\text{ReO}(\text{L}_{\text{tri}}^2)(\text{HL}_{\text{bi}}^2)]$ (VII) [15] (Fig. 2a), the bidentate-chelating 2-dithiacyclohexanecarboxylic acid ligand SCH₂CH₂SCH₂COOH (HL_{bi}^2) is analogous to the

doubly charged 2-dithiacyclohexanecarboxylate tridentate chelating L_{tri}^2 ligand. In the latter case, the carboxylate group is deprotonated, while in the former case, the COOH group is terminal (does not coordinate rhenium).

The crystal structure of $[\text{ReO}(\text{L}_{\text{tri}}^2)(\text{L}_{\text{bi}}^7)]$ (VIII) [15] resembles that of VII, differing by the terminal ester (rather than carboxylate) group of the bidentate chelating methyl 3,6-dithiahexanoate ligand SCH₂CH₂SCH₂C(=O)OMe (L_{bi}^7). In both structures, the O(carbonyl) atoms of the uncoordinated carboxylate or ester group are in the *anti*-conformation relative to O(oxo). The coordination of L_{tri}^2 to rhenium in both compounds leads to closure of five-membered rings fused by the Re–S bond, which have different compositions: ReOC₂S and ReSC₂S.

The Re—O(L_{tri}^2)_{trans} bonds in VII and VIII are elongated to 2.132 and 2.134 Å due to the *trans*-effect of the multiply bonded oxo ligand. Note that in VII and VIII, two bond lengths in each Re—S(L_{tri}^2) and Re—S(L_{bi}^7) pair are considerably different (Table 1; for details of this difference, see chapter III).

In VI, the oxygen atoms of the coordinated and uncoordinated carboxylate groups are connected by a short O(3)–H…O(4) hydrogen bond (O(3)–H, 0.78; H…O, 1.88; O(3)…O(4), 2.605 Å; OHO angle, 155°).

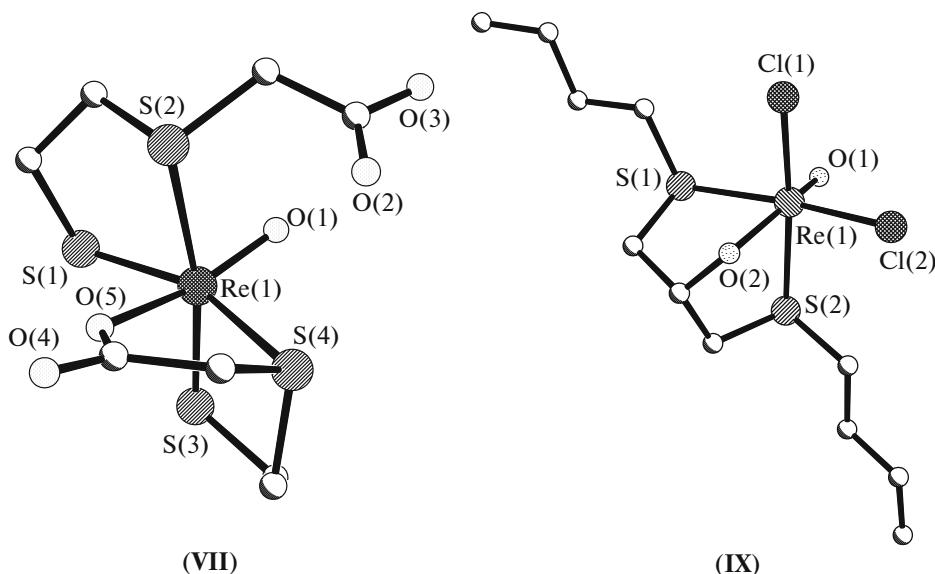


Fig. 2. Structures of the complexes: $[\text{ReO}(\text{L}_{\text{tri}}^2)(\text{HL}_{\text{bi}}^2)]$ (VII); $[\text{ReO}(\text{L}_{\text{tri}}^4)\text{Cl}_2]$ (IX).

Structure of the complexes $[\text{ReO}(\text{L}_{\text{tri}}^m)\text{Cl}_2]$. The crystal structure was determined for three complexes with singly charged tridentate chelating L_{tri}^m ligands. The general formula of the complexes is $[\text{ReO}(\text{L}_{\text{tri}}^m)-\text{Cl}_2]$ [16]; $\text{L}_{\text{tri}}^m = 5,9\text{-dithiotridecan-7-olato}$, $\text{OCH}(\text{CH}_2\text{S}-\text{Bu}')_2$ ($m = 3$) (IX) (Fig. 2b); 8-hydroxy-3,6-dithiaoctan-1-olato $\text{O}(\text{CH}_2)_2\text{S}(\text{CH}_2)_2\text{C}(\text{CH}_2)\text{OH}$ ($m = 4$) (X); and 3,6-dithia-9-oxaundecan-1-olato $\text{O}(\text{CH}_2)_2\text{S}(\text{CH}_2)_2\text{C}(\text{CH}_2)\text{OEt}$ ($m = 5$) (XI). The two last-mentioned structures are equivalent, differing only in the terminal groups in the pending $\text{SCH}_2\text{CH}_2\text{R}$ branches: $\text{R} = \text{OH}$ in X and Et in XI.

In all three structures, the $\text{Re}-\text{O}(\text{L}_{\text{tri}}^m)$ bonds (1.917–1.953 Å) are markedly shorter than the standard single $\text{Re}-\text{O}(\text{ST})$ bond (2.04 Å), while all $\text{Re}-\text{S}$ bonds (average, 2.472, 2.434, and 2.425 Å in IX, X, and XI, respectively) have commensurable and expected lengths (see, for example, [17–19]). The L_{tri}^m ligands are coordinated to rhenium atoms, each closing two five-membered metallacycles fused by the $\text{Re}-\text{S}$ bonds, symmetrical rings ReSC_2O in IX and asymmetrical rings ReSC_2S and ReSC_2O in X and XI.

In structure IX, the Re atom is shifted from the equatorial S_2Cl_2 plane towards the oxo ligand by 0.198 Å. The chloro ligands in all three compounds are located in the *cis*-positions relative to each other.

III. STRUCTURAL FEATURES OF MONOMERIC OCTAHEDRAL RHENIUM(V) MONOOXO COMPLEXES $[\text{ReO}(\text{L}_{\text{tri}}^m)(\text{L}_{\text{bi}}^n)]$, $[\text{ReO}(\text{L}_{\text{tri}}^m)\text{Cl}_2]$ WITH TRIDENTATE CHELATING (O,S,O AND S,O,S) LIGANDS

Table 2 summarizes the average values for the key geometric parameters of I–IX.

Note two stereochemical features of octahedral monooxo complexes of Group 5–7 metals (in particular, rhenium):

(1) choice of the *trans*-partner (in the presence of competing ligands) is determined by the “self-consistency rule” [2]: the *trans*-position relative to the multiply bonded O(oxo) ligand is usually occupied by the least polarizable neutral σ -donor ligand (atom), the bond to which is weakened more easily, rather than by a negatively charged ligand (atom);

(2) the $\text{Re}-\text{L}$ bonds in the *trans* position to O(oxo) are elongated because of the *trans*-effect of the multiply bonded oxo ligand.

The first rule does not hold in any of the eleven complexes considered in the paper: in compounds I–XI, the *trans*-positions to O(oxo) are occupied by anionic oxygen atoms of the L_{tri} ligands. The $\text{Re}-\text{O}(\text{L}_{\text{tri}}^m)_{\text{trans}}$ bond lengths (1.917–2.007 Å; average, 1.959 Å) in nine of the eleven complexes (except for VII and VIII) are commensurable with the $\text{Re}-\text{O}(\text{L}_{\text{tri}}^m)_{\text{cis}}$ bond lengths in I–VI (1.951–1.977 Å; average, 1.965 Å), but they are not longer (due to the *trans*-

Table 2. Selected geometric parameters (Å) of the monomeric octahedral d^2 -Re(V) monooxo complexes with tridentate chelating (O,S,O and S,O,S) ligands*

Parameter	Value (Å)
Re–O(oxo)	1.680–1.711 {11} (1.699 ± 0.019)
Re–O(L_{tri}^m) _{trans}	1.917–2.007 {9} (1.959 ± 0.048) 2.132, 2.134 {2} (2.133 ± 0.001)
Re–O(L_{tri}^m) _{cis}	1.951–1.977 {6} (1.965 ± 0.014)
$\Delta\{\text{Re–O}(\mathcal{L}_{\text{tri}}^m)\}$	–0.009...+0.056 {6} (0.008 ± 0.048)
$\Delta\{\text{Re–O}(\mathcal{L}_{\text{tri}}^m)\}$	–0.087...–0.123 {3} (–0.110 ± 0.023) 0.092–0.094 {2} (0.093 ± 0.001)
Re–O(L_{bi}^n) _{cis}	1.964 {1}
$\Delta\{\text{Re–O}(\mathcal{L}_{\text{bi}}^n)\}$	0.009
Re–N(L_{bi}^n) _{cis}	2.158–2.186 {5} (2.164 ± 0.022)
Re–Cl	2.367–2.413 {3} (2.388 ± 0.025)

* The presented data include the ranges of values, the number of examples (in braces), and the average values with the scatter (in parentheses).

effect), as for most octahedral d^2 -Re(V) monooxo complexes. It may seem that this fact is at variance with the “self-consistency rule” [2]. However, actually, the Re–O(L_{tri}) bond lengths in the *trans*-positions relative to the oxo ligands in **I**–**VI**, **IX**–**XI** can be considered as having a higher order, as they are markedly shorter than the Re–O(ST) value (2.04 Å) [4]. In this case, one deals with pseudo-dioxo complexes containing two multiply bonded ligands (O(oxo) and O(L_{trans})). Recall that in the Group 5–7 d^2 metal dioxo complexes, two multiply bonded ligands are always located in *trans*-positions to each other. As opposed to the nine compounds mentioned above, in the two complexes **VII** and **VIII**, the Re–O(L_{tri}^m)_{trans} bonds (2.132 and 2.134 Å) are markedly elongated (average $\Delta = 0.093$ Å) because of the *trans*-effect.

In **II**–**VI**, two types of rhenium–sulfur bonds with the sulfide (L_{tri}^m) and thiolate (L_{bi}^n) sulfur atoms have substantially different lengths. The former type bonds, (Re–S(L_{tri}^m), 2.471–2.530 Å; average, 2.496 Å) are noticeably (on average, by 0.108 Å) shorter than the latter type bonds (Re–S(L_{bi}^n), 2.312–2.465 Å; average, 2.387 Å). In structure **I**, these bonds are commensurable in the length (2.477 and 2.465 Å, respectively, see Table 1). A different situation is observed for **VII** and **VIII**. In these compounds, the tridentate chelating ligands L_{tri}^m , like the bidentate chelating ligands L_{bi}^n , form two substantially nonequivalent Re–S

bonds, one long bond (Re–S(L_{tri}^m), 2.434 ± 0.007; Re–S(L_{bi}^n), 2.543 ± 0.011 Å) and one short bond (Re–S(L_{tri}^m), 2.296 ± 0.009; Re–S(L_{bi}^n), 2.295 ± 0.019 Å). The authors of [15] attributed the presence of longer Re–S(L_{bi}^n) bonds to the absence of chelation of the carboxylic group. Meanwhile, two Re–S(L_{tri}^m) bonds in each of the three complexes **IX**–**XI** have commensurable lengths (average, 2.434–2.472 Å to within ±0.003–0.010 Å). Because of large scatter of the Re–S distances in the crystal structures of the compounds, we do not give the data for these bonds in Table 2.

In all of the discussed structures, the Re–O(oxo), Re–N(L_{bi}^n), and Re–Cl bond lengths are commensurable in the length, the average values being 1.704 ± 0.007, 2.164 ± 0.022, and 2.388 ± 0.025 Å, respectively (Table 2).

REFERENCES

1. Porai-Koshits, M.A. and Gilinskaya, E.A., *Kristallokhimiya* (Crystallochemistry), Moscow: VINITI, 1966, p. 126.
2. Porai-Koshits, M.A. and Atovmyan, L.O., *Koord. Khim.*, 1975, vol. 1, p. 1271.
3. Griffith, F. and Wicing, C., *J. Chem. Soc. A*, 1968, p. 379.
4. Porai-Koshits, M.A., *Izv. Jugoslav. Kristallogr. Tsentr*, 1974, vol. 9, p. 19.

5. Porai-Koshits, M.A. and Atovmyan L.O., *Kristallo-khimiya koordinatsionnykh soedinenii molibdena* (Crystal Chemistry of Coordination Compounds of Molybdenum), Moscow: Nauka, 1974.
6. Shustorovich, E.M., Porai-Koshits, M.A., and Buslaev, Yu.A., *Coord. Chem. Rev.*, 1975, vol. 17, p. 1.
7. Porai-Koshits, M.A. and Sergienko, V.S., *Usp. Khim.*, 1990, vol. 59, p. 86.
8. Allen, F.H., *Acta Crystallogr., Sect. B: Struct. Sci.*, 2002, vol. 58, p. 380.
9. Sergienko, V.S., *Russ. J. Inorg. Chem.*, 2018, vol. 63, no. 14, p. 1757. doi 10.1134/S0036023618140048
10. Sergienko, V.S., *Russ. J. Inorg. Chem.*, 2016, vol. 61, p. 1408. doi 10.1134/S0036023616110188
11. Sergienko, V.S. and Churakov, A.V., *Crystallogr. Rep.*, 2014, vol. 59, no. 3, p. 300. doi 10.1134/S10637745140301711
12. Sergienko, V.S. and Churakov, A.V., *Crystallogr. Rep.*, 2013, vol. 58 no. 1, p. 5. doi 10.1134/S1063774513010112
13. Femia, F.J., Babich, J.W., and Zubietta, J., *Inorg. Chim. Acta*, 2000, vols. 300–302, p. 462.
14. Babich, J.W., Graham, W., Femia, F.J., et al., *Inorg. Chim. Acta*, 2001, vol. 323, p. 23.
15. Al-Jeboori, M.J., Dilworth, J.R., and Hiller, W., *Inorg. Chim. Acta*, 1999, vol. 285, p. 76.
16. Pietzsch, H.-J., Reisgys, M., Spis, H., et al., *Chem. Ber.*, 1997, vol. 130, p. 357.
17. Pietzsch, H.T., *Polyhedron*, 1995, vol. 14, p. 1849.
18. Reo, T.N., Adhikesaval, D., Camerman, A., and Fitzkerg, A.R., *J. Chem. Soc.*, 1990, vol. 112, p. 5798.
19. Powell, J.L., *Inorg. Chim. Acta*, 1995, vol. 229, p. 241.

Translated by Z. Svitanko