

Cadmium(II) and Nickel(II) 1-Oxypyridyl-2-Selenolates: Synthesis and Molecular and Crystal Structures

R. K. Askerov^{a, *}, A. M. Magerramov^a, Zh. V. Matsulevich^b, V. K. Osmanov^b, G. N. Borisova^b, V. N. Khrustalev^c, S. A. Zalepkina^d, V. F. Smirnov^d, and A. V. Borisov^b

^aBaku State University, Baku, Azerbaijan

^bNizhny Novgorod State Technical University, Nizhny Novgorod, Russia

^cPeoples' Friendship University of Russia, Moscow, Russia

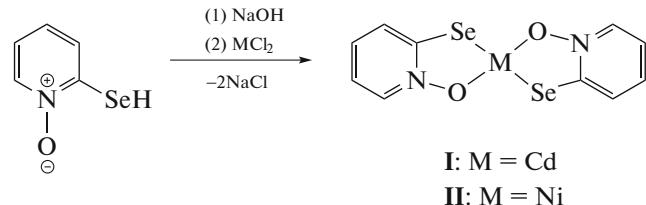
^dLobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia

*e-mail: rizvankam@bk.ru

Received June 20, 2018; revised August 2, 2018; accepted September 5, 2018

Abstract—Cadmium ($C_{20}H_{16}Cd_2N_4O_4Se_4$) (**I**) and nickel ($C_{10}H_8N_2NiO_2Se_2$) (**II**) selenolates are synthesized by the exchange reactions of sodium 1-oxypyridyl-2-selenolate and cadmium(II) and nickel(II) chlorides. The molecular and crystal structures of the complexes are determined by X-ray structure analysis (CIF files CCDC nos. 1585246 (**I**) and 1585251 (**II**)). Complex **I** forms a centrosymmetric dimer in which the coordination polyhedron of the cadmium atom is a distorted trigonal bipyramidal and the selenium atoms take the *trans* configuration. Complex **II** containing the solvate C_2H_5OH molecule has a square structure and is a monomer. Unlike complex **I**, in complex **II** the selenium atoms of the ligands take the *cis* configuration. The crystal packings in complexes **I** and **II** are formed by weak intermolecular hydrogen bonds $C-H\cdots O$ and $C-H\cdots Se$.

Keywords: 2-selenopyridine-1-oxide, crystal packing, X-ray structure analysis


DOI: 10.1134/S1070328419030011

INTRODUCTION

It is known that complexes based on 2-mercaptopypyridine-1-oxide, such as zinc and copper pyrithiones, are characterized by a broad range of biological activity and find commercial use as industrial fungicides and biocides in cutting fluids and manufacturing of paintwork materials and makeup preparations [1–5]. Increased interest has been given in the recent years to studying organoselenium compounds due to their high synthetic potential and practical value [5, 6]. In particular, it is found that the selenium-containing analog of zinc pyridinethione, bis(2-selenopyridine-1-oxide)zinc(II), and the corresponding nickel, copper, and cadmium salts are characterized by significant fungicidal and bactericidal activity [7–11]. The syntheses and X-ray structure analysis data for bis(2-selenopyridine-1-oxide)zinc(II) and bis(2-selenopyridine-1-oxide)nickel(II) solvate with acetone were described earlier [12, 13].

In this work, we present the results of X-ray structure analyses of new complexes based on 2-selenopyridine-1-oxide (HL): bis(2-selenopyridine-1-oxide)cadmium(II) ($C_{20}H_{16}Cd_2N_4O_4Se_4$) (**I**) and nickel(II) (solvate) ($C_{10}H_8N_2NiO_2Se_2$) (**II** · $0.5C_2H_5OH$).

Complexes **I** and **II** were synthesized via the following scheme:

EXPERIMENTAL

Synthesis of complex I. A solution of NaOH (0.08 g, 2 mmol) in water (5 mL) and a solution of $CdCl_2$ (0.183 g, 1 mmol) in water (10 mL) were added to a solution of HL (0.348 g, 2 mmol) in ethanol (5 mL) at room temperature. A white precipitate that formed in 10 min was filtered off. The product was washed with water, ethanol, and diethyl ether and dried in air. The yield was 0.43 g (94%), $mp = 263\text{--}265^\circ C$. Colorless crystals of compound **I** suitable for X-ray structure analysis were obtained by the slow crystallization of a

solution of the compound in ethanol at room temperature.

For $C_{20}H_{16}N_4O_4Se_4Cd_2$

Anal. calcd., %	C, 26.19	H, 1.76	N, 6.11
Found, %	C, 26.09	H, 1.72	N, 6.05

Synthesis of complex II. A solution of NaOH (0.08 g, 2 mmol) in water (5 mL) and a solution of $NiCl_2$ (0.129 g, 1 mmol) in water (10 mL) were added to a solution of HL (0.348 g, 2 mmol) in ethanol (5 mL) at room temperature. A brown precipitate that formed in 10 min was filtered off. The product was washed with water, ethanol, and diethyl ether and dried in air. The yield was 0.39 g (91%), $mp = 282-283^\circ C$. Green crystals of compound **II** used for X-ray structure analysis were obtained by the slow crystallization of a solution of the compound in ethanol at room temperature.

For $C_{11}H_{11}N_2O_{2.5}Se_2Ni$

Anal. calcd., %	C, 30.88	H, 2.59	N, 6.55
Found, %	C, 30.79	H, 2.51	N, 6.47

X-ray structure analysis. The crystallographic data for compounds **I** and **II** were obtained on a Bruker Smart Apex diffractometer (ω scan mode, MoK_α radiation, $\lambda = 0.71073 \text{ \AA}$, $T = 100$ and 296 K). Experimental sets of reflection intensities were collected and integrated using the SMART [14] and SAINT [15] programs, respectively. The structures were solved by a direct method and refined by full-matrix least

squares for F_{hkl}^2 in the anisotropic approximation for non-hydrogen atoms. The hydrogen atom of the solvate molecule involved in the formation of the intermolecular hydrogen bond $O(3)-H(3)\cdots O(1)$ in compound **II** was localized from the difference electron density synthesis and refined in the isotropic approximation. Other hydrogen atoms in compounds **I** and **II** were placed in the geometrically calculated positions and refined isotropically with the fixed thermal parameters $U_{iso}(H) = 1.2U_{iso}(C)$. The structures were refined and absorption corrections were applied using the SHELXTL [16] and SADABS [17] program packages. The crystallographic data and parameters of X-ray structure experiments are presented in Table 1.

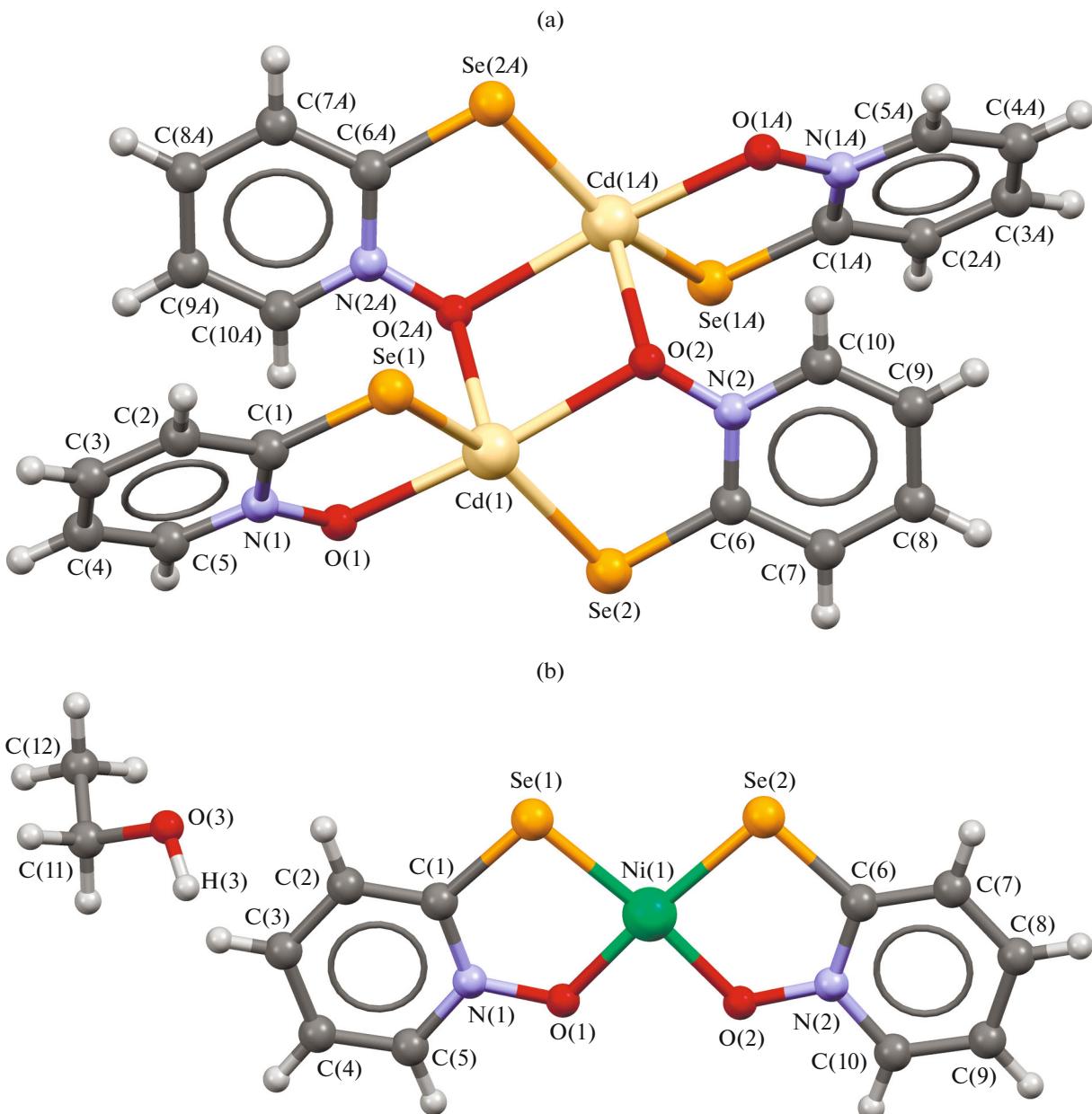
The structures were deposited with the Cambridge Crystallographic Data Centre (CIF files CCDC nos. 1585246 (**I**) and 1585251 (**II**); <http://ccdc.cam.ac.uk/getstructures>).

RESULTS AND DISCUSSION

Compounds **I** and **II** represent two basically different structural types. Complex **I** is a centrosymmetric dimer $[M_2(SeOPy)_4]$ (Fig. 1a). The coordination polyhedron of the cadmium(II) atom in complex **I** is a

distorted trigonal bipyramidal with the $Se(1)$, $Se(2)$, and $O(2A)$ atoms in the equatorial plane, the $O(1)$ and $O(2)$ atoms in the axial positions, and the $O(1)Cd(1)O(2)$ angle equal to $167.2(1)^\circ$. A molecule of compound **I** has intrinsic symmetry C_2 , and the 2-fold axis passes through the center of a rhombus consisting of the $O(2)$, $O(2A)$, $Cd(1)$, and $Cd(1A)$ atoms. The $Cd(1)-Cd(1A)$ distance in dimeric complex **I** is $3.680(4) \text{ \AA}$, the $Cd-O$ distance is $2.269(3)-2.383(3) \text{ \AA}$, the average $Cd\cdots O$ distance is $2.341(3) \text{ \AA}$, and the deviation of individual values from an average value does not exceed 3σ . The $Cd-Se(1,2)$ distances are $2.559(5)$ and $2.563(5) \text{ \AA}$, respectively. The $Se(1)-C(1,6)$ and $Se(2)-C(6)$ bond lengths ($1.879(4)$ and 1.871 \AA , respectively) are comparable with the sum of covalent radii of Se and C atoms (1.95 \AA) [18]. The dihedral angle between the plane of the $Cd(1)-Se(1)-C(1)-N(1)-O(1)$ and $Cd(1)-Se(2)-C(6)-N(2)-O(2)$ cycles is $32.0(8)^\circ$. The selenium atoms of two ligands in complex **I** take the *trans* configuration.

In crystal the dimers of compound **I** form piles along the a crystallographic axis. Intermolecular hydrogen bonds $Se\cdots H$ and $O\cdots H$ are observed between the adjacent molecules of complex **I** along the direction of the a axis. The $Se(2)\cdots H(4A)$ and $Se(2)\cdots H(5A)$ distances ($-x + 2, y + 1/2, -z + 3/2$) are 3.01 and 3.04 \AA , respectively, which is somewhat less than the sum of the van der Waals radii of Se and H atoms (3.15 \AA) [17]. The $O(2)\cdots H(9A)$ distance ($-x + 1, y - 1/2, -z + 1/2$) equal to 2.43 \AA lies in a range of $2.15-2.45 \text{ \AA}$ between the average van der Waals contact and specific (shortened) $O\cdots H$ interaction [19] (Fig. 2).

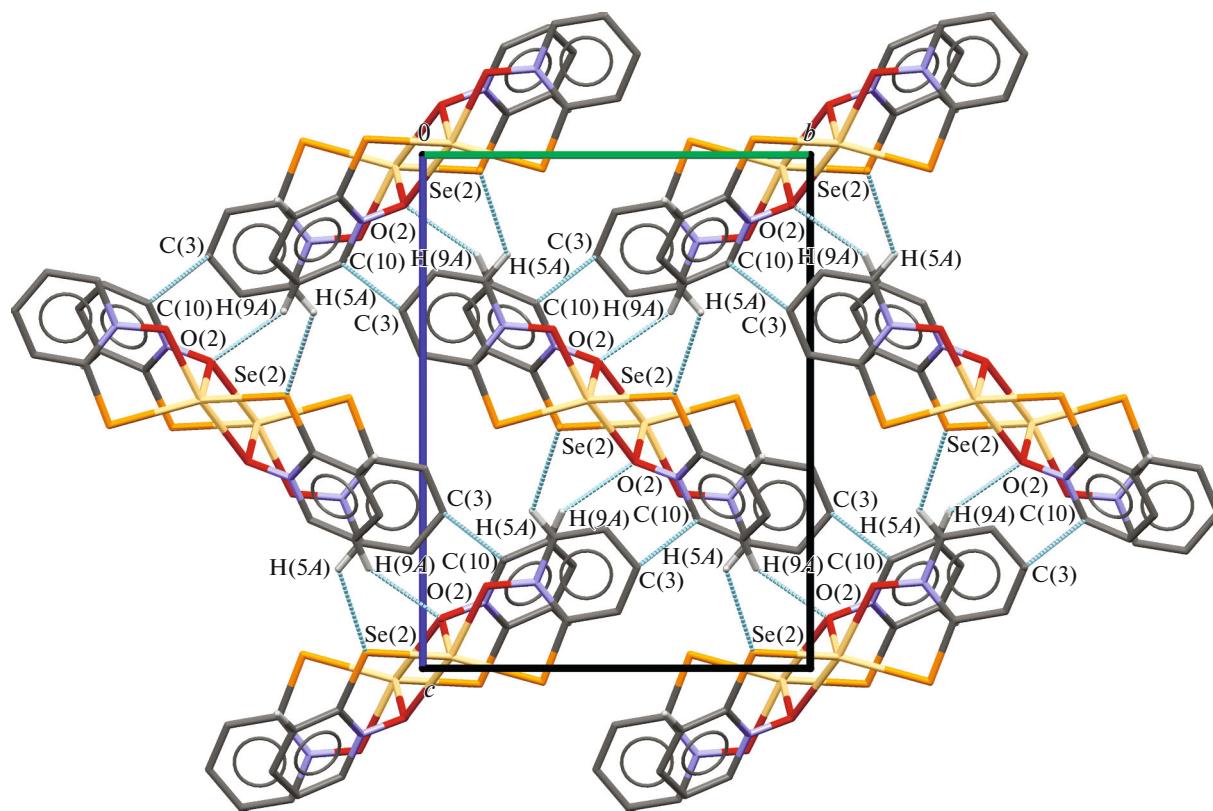

In addition, a short intermolecular contact $C(3)\cdots C(10)$ is observed between the adjacent molecules along the a axis. The $C\cdots C$ distance ($3.309(6) \text{ \AA}$) corresponds to the weak secondary interaction $C\cdots C$ (between 3.27 and 3.42 \AA [19]).

Selected bond lengths and bond angles in compound **I** are presented in Table 2.

The monomer of compound **II** has the composition $[M(SeOPy)_2]$ and contains the solvate molecule C_2H_5OH (in a ratio of $1 : 0.5$) (Fig. 1b). The nickel atom has a distorted square coordination mode by the $Se(1)$ and $Se(2)$ selenium atoms and the $O(1)$ and $O(2)$ atoms of two ligands. The average deviation from the square plane of four atoms coordinated to the nickel(II) atom is 0.038 \AA . The $ONiO$ ($85.4(1)^\circ$) and $SeNiSe$ ($94.61(3)^\circ$) angles characterize the deviations from the ideal square arrangement of the donor atoms. A molecule of complex **II** is nearly planar: the average deviations of all atoms from the root-mean-square plane are 0.039 \AA . The $Ni(1)-O(1,2)$ and $Ni(1)-Se(1,2)$ bond lengths ($1.863(3)$, $1.875(3)$ and $2.2473(7)$, $2.2495(7) \text{ \AA}$, respectively) are close to similar distances in the isostructural nickel complex [12]. The $Se(1)-C(1)$ and $Se(2)-C(6)$ distances in complex **II** ($1.894(5)$ and $1.888(4) \text{ \AA}$) are comparable with

Table 1. Main crystallographic data and refinement parameters for compounds **I** and **II**

Parameters	Value	
	I	II
<i>FW</i>	917.01	427.85
Crystal sizes, mm	0.620 × 0.340 × 0.210	0.150 × 0.090 × 0.060
Crystal system	Monoclinic	Monoclinic
Space group	<i>P</i> 2 ₁ / <i>c</i>	<i>C</i> 2/ <i>c</i>
<i>a</i> , Å	8.3134(5)	16.4116(11)
<i>b</i> , Å	10.3852(6)	7.7854(5)
<i>c</i> , Å	13.8060(8)	21.8567(15)
β, deg	94.2860(10)	92.4954(11)
<i>V</i> , Å ³	1188.63(12)	2790.0(3)
<i>Z</i>	2	8
ρ _{calcd} , g/cm ³	2.562	2.037
μ, mm ⁻¹	7.950	6.608
<i>F</i> (000)	856	1656
<i>T</i> _{min} ; <i>T</i> _{max}	0.0073; 0.0524	0.7457; 0.3398
Data collection range over θ, deg	2.5–33.0	1.9–28.0
Measured reflections	18447	13949
Independent reflections	4510	3446
Number of reflected parameters	154	181
GOOF	1.072	1.007
<i>R</i> ₁ (<i>I</i> > 2σ(<i>I</i>))	0.0486	0.0518
<i>wR</i> ₂ (all data)	0.1432	0.1128
Residual electron density (Δρ _{min} /Δρ _{max}), e Å ⁻³	−2.059/2.975	−1.224/1.457


Fig. 1. Molecular structures of compounds (a) I and (b) II.

the sum of covalent radii of Se and C atoms (1.95 Å) [18]. The dihedral angle between the Ni(1)–O(1)–Se(1)–N(1)–C(1) and Ni(1)–O(2)–Se(2)–N(6)–C(6) planes is 3.54(9)°.

Unlike complex **I**, in compound **II** the selenium atoms of the ligands take the *cis* configuration.

In crystal the planar molecules of compound **II** form pairwise linked dimers due to weak contacts O···H-C (O(2)···H(10*A*) ($-x, y, -z + 1/2$)) (C-H 0.93, H···O 2.40 Å, angle C-H···O 162°) (Fig. 3a).

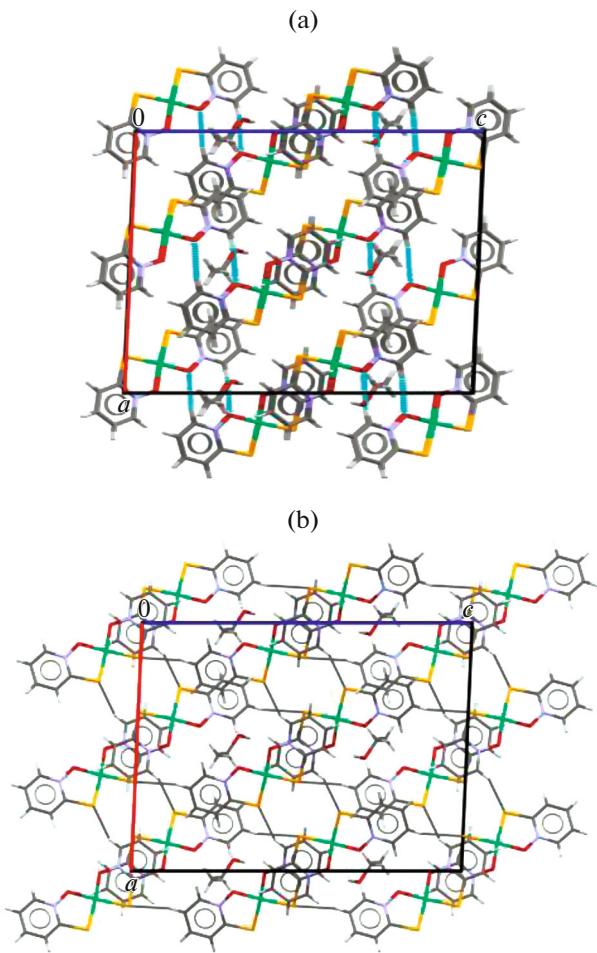

Additional hydrogen bonds $\text{Se}\cdots\text{H}$ and $\text{O}\cdots\text{H}$ with the distances at a level of shortened and van der Waals interactions are observed in the crystal of complex **II** along with the listed above intermolecular contacts. The $\text{Se}(2)\cdots\text{H}(5A)$ ($x = 1/2$, $y = 1/2$, z) and $(\text{Se}(1)\cdots\text{H}(9A)$ (x , $-y + 2$, $z - 1/2$) distances (2.92 and 3.13 Å, respectively) are less than the sum of the van der Waals radii of Se and H atoms (3.15 Å) [17] (Fig. 3b). The $\text{O}\cdots\text{H}$ distances between the solvate molecule of ethanol and the molecule of complex **II** ($\text{O}(1)\cdots\text{H}(3A)$ ($-x$, $-y + 1$, $-z + 1$)) and ($\text{O}(3)\cdots\text{H}(7A)$

Fig. 2. Fragment of the crystal packing of compound I in the projection onto the $b0c$ plane. Contacts $\text{Se}\cdots\text{H}$, $\text{O}\cdots\text{H}$, and $\text{C}\cdots\text{C}$ are shown by dash. Hydrogen atoms that are not involved in intermolecular hydrogen contacts are omitted for clarity.

Table 2. Selective bond lengths and bond angles in compounds I and II

Bond	d , Å	Bond	d , Å
I	2.269(3)	Se(1)–C(1)	1.879(4)
	2.373(3)	Se(2)–C(6)	1.872(4)
	2.383(3)	O(1)–N(1)	1.333(4)
	2.5586(5)	O(2)–N(2)	1.343(4)
	2.5629(5)		
II	1.863(3)	Se(2)–C(6)	1.887(5)
	1.875(3)	O(1)–N(1)	1.359(4)
	2.2473(7)	O(2)–N(2)	1.346(5)
	2.2495(7)	O(3)–C(11)	1.426(3)
	2.5629(5)	C(11)–C(12)	1.503(3)
Angle	ω , deg	Angle	ω , deg
I	98.56(7)	O(1)Cd(1)O(2)	167.17(11)
	99.96(7)	O(1)Cd(1)O(2A)	90.23(11)
	77.65(7)	O(2)Cd(1)O(2A)	78.58(10)
	106.85(7)	O(1)Cd(1)Se(1)	81.26(7)
	154.536(17)	O(2)Cd(1)Se(1)	106.41(7)
	101.42(10)		
II	85.36(13)	Se(2)Ni(1)Se(1)	94.61(2)
	175.07(9)	C(1)Se(1)Ni(1)	92.85(12)
	89.91(10)	C(6)Se(2)Ni(1)	93.21(13)
	90.19(9)	N(1)O(1)Ni(1)	119.5(2)
	174.58(10)	N(2)O(2)Ni(1)	119.4(2)

Fig. 3. Fragment of the crystal packing of compound **II** in the projection onto the $a0c$ plane. Contacts (a) $O\cdots H$ and (b) $Se\cdots H$ are shown by dash.

$(-x + 1/2, -y + 3/2, -z + 1)$) are 2.15 and 2.42 Å, respectively, and lie in a range of 2.15–2.45 Å between the specific (shortened) contact and the average van der Waals $O\cdots H$ interaction [19].

Selected bond lengths and bond angles in compound **II** are presented in Table 2.

REFERENCES

- Barnett, B.L., Kretschmar, H.C., and Hartman, F.A., *Inorg. Chem.*, 1977, vol. 16, no. 8, p. 1834.
- Chandler, C.J. and Segel, I.H., *Antimicrob. Agents Chemother.*, 1978, vol. 14, no. 1, p. 60.
- Ermolayeva, E. and Sanders, D., *Appl. Environ. Microbiol.*, 1995, vol. 61, no. 9, p. 3385.
- Solomon, T., Sinkler-Dei, D.D., and Finni, A.E., RF Patent 2415168, *Byul. Izobret.* 2011, no. 9, p. 250.
- Dahllöf, I., Grunnet, K., Haller, R., et al., *Tema Nord. Nordic Council of Ministers*, Copenhagen, 2005, p. 33.
- Reeder, N.L., Xu, J., and Youngquist, R.S., *Brit. J. Dermatol.*, 2011, vol. 165, no. 2, p. 9.
- Banerjee, B. and Koketsu, M., *Coord. Chem. Rev.*, 2017, vol. 339, p. 1047.
- Handbook of Chalcogen Chemistry*, Devillanova, F., Ed., Cambridge: RSC, 2007.
- Henderson, R., Rothgery, E.F., and Schnieder, H.A., US Patent 4496559, *Patent and Trademark Office*, 1985.
- Zalepkina, S.A., Smirnov, V.F., Borisov, V.A., et al., *Fundam. Issled.: Khim. Nauki*, 2015, no. 10, p. 25.
- Zalepkina, S.A., Artem'eva, M.M., Bezrukov, M.E., et al., *Ekol. Prom-st. Ross.*, 2018, vol. 22, no. 1, p. 56.
- Ma, D.-L., Zhang, H.-J., Shen, Z., and Niu, D.-Z., *Z. Kristallogr.*, 2009, vol. 224, p. 327.
- Niu, D.-Z., Ma, D.-L., Gao, F., and Xie, L.-Y., *Z. Kristallogr.*, 2009, vol. 224, p. 283.
- SMART. Bruker Molecular Analysis Research Tool. Version 5.632*, Madison: Bruker AXS, 2005.
- SAINT. Data Reduction and Correction Program. Version 8.344*, Madison: Bruker AXS Inc., 2014.
- Sheldrick, G.M., *SADABS. Program for Absorption Correction*, Göttingen: Univ. of Göttingen, 1996.
- Sheldrick, G.M., *Acta Crystallogr., Sect. C: Struct. Chem.*, 2015, vol. 71, p. 3.
- Batsanov, S.S., *Zh. Neorg. Khim.*, 1991, vol. 36, no. 12, p. 3015.
- Zefirov, Yu.V. and Zorkii, P.M., *Usp. Khim.*, 1995, vol. 64, no. 4, p. 446.

Translated by E. Yablonskaya