

Synthesis and Structure of Different-Metal Different-Ligand Germanium(IV) and Cobalt(II) or Copper(II) Complexes with 1-Hydroxyethylidenediphosphonic Acid and 1,10-Phenanthroline

E. E. Martsinko^a, *^a, I. I. Seifullina^a, E. A. Chebanenko^a, V. V. Dyakonenko^b,
S. V. Shishkina^{b, c}, and N. M. Khristova^a

^aOdessa Mechnikov National University, Odessa, 65082 Ukraine

^bState Scientific Institution Institute for Single Crystals, National Academy of Sciences of Ukraine, Kharkiv, 61001 Ukraine

^cKarazin Kharkiv National University, Kharkiv, 61022 Ukraine

*e-mail: lborn@ukr.net

Received October 20, 2017

Abstract—Different-metal different-ligand complexes $[\{Co(Phen)_3\}_2\{Co(Phen)(H_2O)_4\}_2][\{Ge(\mu-OH)(\mu-Hedp)\}_6Cl_2]$ (**I**), $[\{Cu(Phen)_2(H_2O)\}_2(HPhen)_2][Ge(\mu-OH)(\mu-Hedp)]_6 \cdot 20H_2O$ (**II**) (H_4Hedp = 1-hydroxyethylidenediphosphonic acid, $Phen$ = 1,10-phenanthroline) were synthesized and studied by X-ray diffraction. According to X-ray diffraction data (CIF files CCDC nos. 1573112 (**I**), 1573113 (**II**)), compounds **I** and **II** are cation–anion type complexes in which the anions are represented by $[\{Ge(\mu-OH)(\mu-Hedp)\}_6]^{6-}$ and, in the case of **I**, two additional Cl^- ions, while the cations are $[Co(Phen)_3]^{2+}$, $[Co(Phen)(H_2O)_4]^{2+}$ in **I** and $[Cu(Phen)_2(H_2O)]^{2+}$, $HPhen^+$ in **II**. In the crystals of compounds **I** and **II**, the cations, anions, and water molecules are combined by numerous intermolecular hydrogen bonds, giving rise to a 3D network.

Keywords: germanium 1-hydroxyethylidenediphosphonate, 1,10-phenanthroline, 3d-metal complexes, coordination compounds, molecular and crystal structure

DOI: 10.1134/S1070328418060039

INTRODUCTION

1-Hydroxyethylidenediphosphonic acid (H_4Hedp) refers to moderately toxic compounds, possessing no sensitizing or cumulative effects, which accounts for the use of this acid as a medication [1]. The coordination compounds of metals with H_4Hedp were found to be highly efficient as agents for metastases pain relief ($186Re$) and bone cancer diagnosis ($99mTc$, $188Re$) [2, 3].

Previously, we prepared a number of 1-hydroxyethylidenediphosphonate diphosphonate germanates with a structurally unique hexanuclear anion: $(HNic)_6[Ge(\mu-OH)(\mu-Hedp)]_6 \cdot 12H_2O$ (Nic = nicotinic acid) [4], $Mg_2[Ge_6(\mu-OH)_6(\mu-Hedp)_4(\mu-HHedp)_2] \cdot 40H_2O$ [4], $Ba_3[Ge(\mu-OH)(\mu-Hedp)]_6 \cdot 25H_2O$ [5], and $Zn_4[Ge_6(\mu-OH)_4(\mu-O)_2(\mu-Hedp)_6] \cdot 38H_2O$ [6]. Some of them were found to have cardio-tropic, hepatoprotective, hypotensive, and cerebro-protective action [7, 8]. Subsequently, a group of English and French researchers synthesized organic-

inorganic hybrid materials based on a supramolecular salt containing the same anion and a protonated 1,10-phenanthroline ($Phen$) molecule as the cation [9]. In the authors' opinion [9], these materials could find use in catalysis, medicine, and optics.

The purpose of this study was to develop a procedure for the synthesis of different-metal different-ligand complexes in the GeO_2 – H_4Hedp – $CoCl_2$ ($CuCl_2$)– $Phen$ systems and to establish their structures and dependence of structural features on the second metal.

EXPERIMENTAL

The complexes were prepared using commercial 1-hydroxyethylidenediphosphonic acid (H_4Hedp , $\geq 97\%$, Fluka) and GeO_2 (99.99%), $Phen$ (99%), $CuCl_2 \cdot 2H_2O$ (99.99%), and $CoCl_2 \cdot 6H_2O$ ($\geq 98\%$) (Sigma-Aldrich).

Elemental analysis was carried out on a semiautomated C, N, H-analyzer. The contents of germanium,

copper, cobalt, and phosphorus were determined by inductively coupled plasma atomic emission spectroscopy on a Perkin Elmer Optima 2000 DV instrument and chlorine was quantified by mercurometric titration [10]. The IR absorption spectra (400–4000 cm⁻¹) of the complexes as KBr pellets were measured on a Frontier Perkin Elmer spectrophotometer.

Synthesis of complex I. Water (100 mL) was added to a mixture of dry GeO₂ (0.1046 g, 1 mmol) and H₄Hedp (0.206 g, 1 mmol) and the mixture was heated to boiling. The solution thus obtained was concentrated at 80°C for 4 h to 10 mL and cooled at room temperature (working solution). A solution containing CoCl₂ · 6H₂O (0.119 g, 0.5 mmol) and Phen (0.18 g, 1 mmol) in 10 mL of 95% ethanol was prepared separately, added to the working solution, and stirred. After 2 days, a light blue crystalline solid containing single crystals suitable for X-ray diffraction precipitated from the reaction mixture. The yield was 62%.

IR (ν, cm⁻¹): 3379 ν(OH), 3000 ν(C–H_{arom}), 1625 δ(H₂O), 1583, 1518 ν(C–C_{arom}), 1448, 1427 δ_{as}(CH₃), 1342 δ_s(CH₃), 1306 ν(C–N), 1176 ν(P=O), 1052, 976 ν(P–O), 850 δ(C–H), 814 δ(Ge–OH), 643 ν(Ge–O_{phosph}), 488 ν(Co–O), 402 ν(Co–N).

For C₁₀₈H₁₅₄N₁₆O₇₈P₁₂Cl₂Co₄Ge₆ (**I**)

Anal. calcd., %	C, 32.09	H, 3.81	N, 5.55
P, 9.21	Cl, 1.76	Co, 5.84	Ge, 10.79
Found, %	C, 31.92	H, 3.77	N, 5.48
P, 9.18	Cl, 1.70	Co, 5.90	Ge, 10.69

Synthesis of complex II was carried out similarly to the synthesis of **I** by adding 10 mL of an ethanol solution containing CuCl₂ · 2H₂O (0.085 g, 0.5 mmol) and Phen (0.18 g, 1 mmol) to the working solution. The yellow precipitate containing single crystals was formed in 24 h. The yield was 60%.

IR (ν, cm⁻¹): 3356 ν(OH), 3005 ν(C–H_{arom}), 1629 δ(H₂O), 1585, 1520 ν(C–C_{arom}), 1493, 1430 δ_{as}(CH₃), 1332 δ_s(CH₃), 1312 ν(C–N), 1178 ν(P=O), 1055, 979 ν(P–O), 853 δ(C–H), 814 δ(Ge–OH), 649 ν(Ge–O_{phosph}), 430 ν(Cu–O), 404 ν(Cu–N).

For C₈₄H₁₂₄N₁₂O₇₀P₁₂Cu₂Ge₆ (**II**)

Anal. calcd., %	C, 32.09	H, 3.81	N, 5.55	P, 9.21
Cl, 1.76	Co, 5.84			
Found, %	C, 39.97	H, 3.60	N, 5.00	P, 11.01
Cu, 3.77	Ge, 12.86			

X-ray diffraction. The unit cell parameters and reflection intensities for structures **I** and **II** were measured on an Xcalibur-3 diffractometer (MoK_α radiation, CCD detector, graphite monochromator, ω-scan

mode). The structures were solved by the direct method using the SHELXTL program package [11, 12]. The hydrogen atom positions were found from the difference electron density map and refined by the riding model with $U_{\text{iso}} = nU_{\text{equiv}}$ of the non-hydrogen atom bonded to the given hydrogen atom ($n = 1.5$ for methyl and hydroxyl groups and for water molecules and $n = 1.2$ for other hydrogen atoms). The structures were refined on F^2 by full-matrix least-squares method in the anisotropic approximation for non-hydrogen atoms. The crystal data and X-ray experiment details are summarized in Table 1 and selected interatomic distances are in Table 2.

The atom coordinates and full tables of bond lengths and bond angles are deposited with the Cambridge Crystallographic Data Centre (nos. 1573112 (**I**), 1573113 (**II**); deposit@ccdc.cam.ac.uk or <http://www.ccdc.cam.ac.uk>).

RESULTS AND DISCUSSION

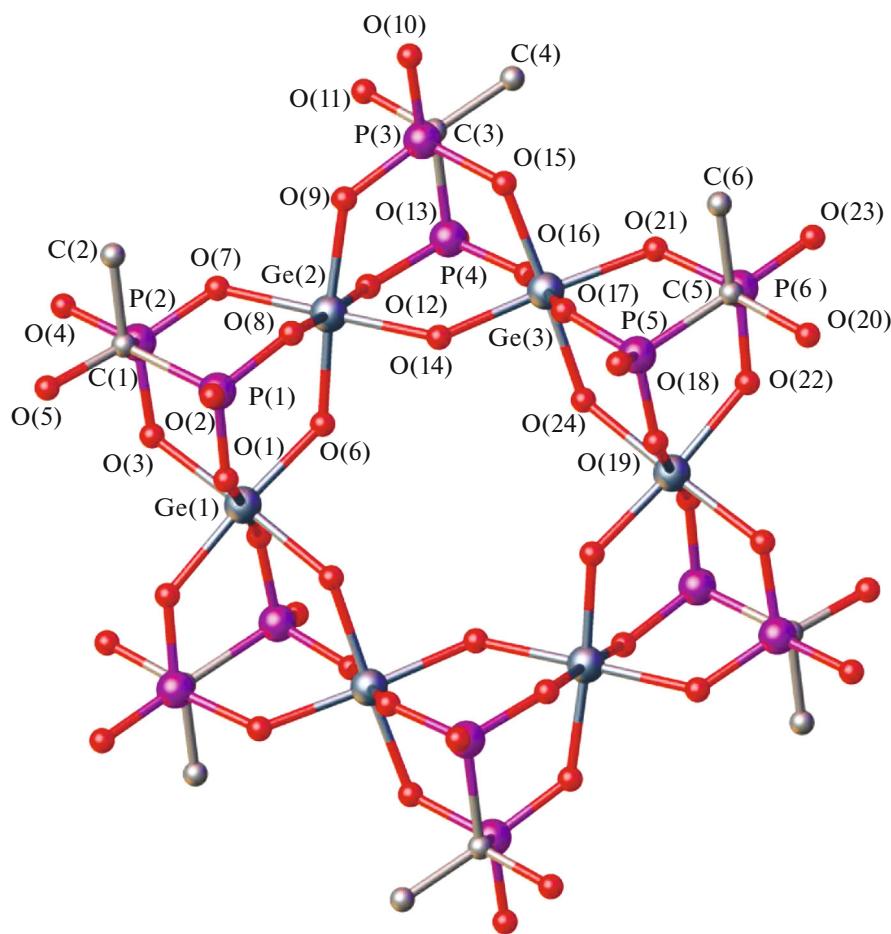
According to elemental analysis data, the element ratios for compounds **I** and **II** are as follows: Ge : P : Co : N = 3 : 6 : 2 : 8 and Ge : P : Cu : N = 3 : 6 : 1 : 6. Hence, the molar ratios in these compounds are different: Ge : Hedp : Co : Phen = 3 : 3 : 2 : 4 and Ge : Hedp : Cu : Phen = 3 : 3 : 1 : 3.

The IR spectra of complexes **I** and **II** are similar. They show the P–O stretching bands at ~1055 and ~979 cm⁻¹, which implies the presence of only fully deprotonated PO₃²⁻ groups in their molecules [7]. The spectra also exhibit vibrational bands for germanium bonds with hydroxyl and phosphonic groups, δ(GeOH) and ν(Ge–O_{phosph}), and *d*-metal bonds with oxygen and nitrogen, ν(M–O) and ν(M–N) [7, 13]. The δ(HOH) bending modes at 1630 cm⁻¹ indicate that both complexes contain coordinated water molecules. The set of bands in the region of characteristic frequencies for heterocyclic aromatic molecules confirms the presence of 1,10-phenanthroline [14].

According to X-ray diffraction data, compounds **I** and **II** are cation–anion type complexes in which the anions are represented by {[Ge(μ-OH)(μ-Hedp)]₆}⁶⁻ and two additional Cl⁻ ions in the case of **I**, while the cations are [Co(Phen)₃]²⁺ and [Co(Phen)(H₂O)₄]²⁺ in **I** and [Cu(Phen)₂(H₂O)]²⁺ and HPhen⁺ in **II**. Both intricate complex compounds occur in the crystal in special positions relative to the center of symmetry.

In structures **I** and **II**, {[Ge(μ-OH)(μ-Hedp)]₆}⁶⁻ (Fig. 1) is a centrosymmetric hexanuclear complex anion in which the Ge atoms are connected by two types of bridging ligands, namely, hydroxy and hydroxyethylidene diphosphonate ones. The coordi-

Table 1. Crystallographic data, X-ray experiment details for structures **I** and **II**


Parameter	Value	
	I	II
<i>M</i>	4038.26	3356.20
Temperature, K	294	
System	Triclinic	
Space group	<i>P</i> 1̄	
<i>a</i> , Å	13.8439(5)	14.2861(7)
<i>b</i> , Å	17.3943(7)	15.6396(8)
<i>c</i> , Å	18.6844(6)	16.5106(8)
α , deg	66.074(4)	79.393(4)
β , deg	82.626(3)	65.375(5)
γ , deg	82.173(3)	69.670(5)
<i>V</i> , Å ³	4061.1(3)	3141.2(3)
<i>Z</i>	1	1
ρ (calcd), g/cm ³	1.651	1.774
μ , mm ⁻¹	1.743	2.009
Crystal size, mm	0.5 × 0.3 × 0.2	0.6 × 0.4 × 0.3
Number of reflections measured/unique	37199/15890	25816/12323
<i>R</i> _{int}	0.074	0.080
Number of parameters	1067	850
<i>S</i>	1.042	1.011
<i>R</i> factor (reflections with <i>I</i> > 2 σ (<i>I</i>))	<i>R</i> ₁ = 0.078, <i>wR</i> ₂ = 0.199	<i>R</i> ₁ = 0.079, <i>wR</i> ₂ = 0.200
<i>R</i> factor (all reflections)	<i>R</i> ₁ = 0.115, <i>wR</i> ₂ = 0.222	<i>R</i> ₁ = 0.133, <i>wR</i> ₂ = 0.232
$\Delta\rho_{\text{max}}/\Delta\rho_{\text{min}}$, e Å ⁻³	2.83/−1.09	2.50/−0.58

nation polyhedron of the germanium atoms is a distorted octahedron formed by four oxygen atoms of four phosphonate groups of two Hedp⁴⁻ ligands and by two hydroxy anions. The Ge–O(Hedp) bond lengths are 1.863(4)–1.891(3) Å in **I** and 1.865(5)–1.902(5) Å in **II**; the Ge–O(OH) bond lengths are 1.824(4)–1.887(3) Å in **I** and 1.865(5)–1.902(5) Å in **II** (Table 2). The OGeO bond angles vary in the 86.98(3)°–95.57(3)° (**I**) and 86.4(2)°–94.3(3)° (**II**) ranges. Generally, the structure of the {[Ge(μ-OH)(μ-Hedp)]₆}⁶⁻ anion is similar to the structure of the germanium hydroxyethylidenediphosphonate complexes considered previously [4, 5].

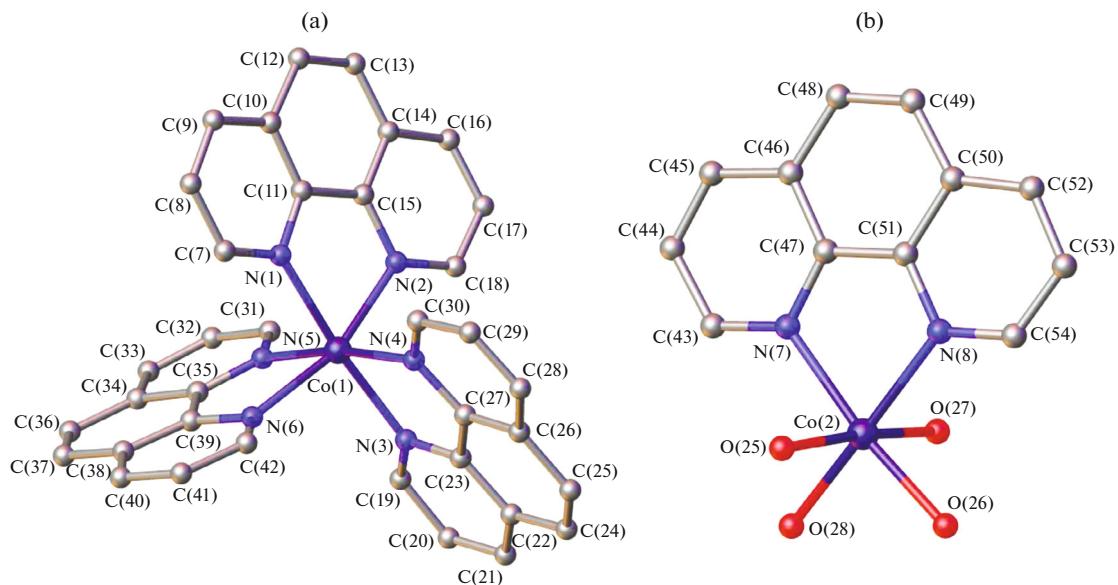

The Co polyhedra in the [Co(Phen)₃]²⁺ and [Co(Phen)(H₂O)₄]²⁺ cations of structure **I** are octahedra. In [Co(Phen)₃]²⁺ (Fig. 2a), the metal atom is connected to six nitrogen atoms of phenanthroline molecules. The Co(1)–N bond lengths are 2.127(5)–2.153(4) Å and the NCo(1)N bond angles are 78.2(2)°–96.1(2)°. In the [Co(Phen)(H₂O)₄]²⁺ cation (Fig. 2b), the inner coordination sphere of Co(2) is formed by four aqua ligands and the bidentately coordinated phenanthroline molecule. The Co(2)–N bond lengths are 2.127(5)–2.137(5) Å and the Co(2)–O bond lengths are 2.068(4)–2.108(4) Å (Table 2); the

Table 2. Selected bond lengths (Å) in compounds **I** and **II**

Bond	<i>d</i> , Å	Bond	<i>d</i> , Å
I			
Ge(1)–O(1)	1.870(4)	Ge(3)–O(21)	1.864(4)
Ge(1)–O(3)	1.875(3)	Ge(3)–O(24)	1.881(3)
Ge(1)–O(6)	1.822(3)	Co(1)–N(1)	2.153(5)
Ge(2)–O(6)	1.824(3)	Co(1)–N(2)	2.124(5)
Ge(2)–O(7)	1.896(4)	Co(1)–N(3)	2.144(5)
Ge(2)–O(8)	1.896(4)	Co(1)–N(4)	2.124(5)
Ge(2)–O(9)	1.892(4)	Co(1)–N(5)	2.132(5)
Ge(2)–O(12)	1.904(4)	Co(1)–N(6)	2.127(5)
Ge(2)–O(14)	1.887(4)	Co(2)–O(26)	2.068(4)
Ge(3)–O(14)	1.860(4)	Co(2)–O(27)	2.128(4)
Ge(3)–O(15)	1.870(3)	Co(2)–O(28)	2.108(4)
Ge(3)–O(16)	1.871(4)	Co(2)–N(7)	2.127(5)
Ge(3)–O(17)	1.888(4)	Co(2)–N(8)	2.137(5)
II			
Ge(1)–O(6)	1.854(5)	Ge(3)–O(14)	1.874(5)
Ge(1)–O(24)	1.875(5)	Ge(3)–O(15)	1.882(5)
Ge(2)–O(14)	1.856(5)	Ge(3)–O(16)	1.886(5)
Ge(2)–O(12)	1.902(5)	Cu(1)–O(25)	2.028(7)
Ge(2)–O(9)	1.883(6)	Cu(1)–N(3)	1.985(7)
Ge(2)–O(6)	1.859(5)	O(4)–Cu(1)	2.770(6)
Ge(2)–O(8)	1.884(5)	Cu(1)–N(4)	2.056(7)
Ge(2)–O(7)	1.896(6)	Cu(1)–N(5)	2.231(8)
Ge(3)–O(17)	1.895(5)	Cu(1)–N(6)	1.987(7)
Ge(3)–O(21)	1.889(5)		

Fig. 1. Molecular structure of the $\{[\text{Ge}(\mu\text{-OH})(\mu\text{-Hedp})]\}_6^{6-}$ complex anion in **I** and **II**. The atom numbering is given for symmetrically independent part of the complex anion. The thermal vibration ellipsoids are shown at 50% probability level.

Fig. 2. Molecular structure of the (a) $[\text{Co}(\text{Phen})_3]^{2+}$ and (b) $[\text{Co}(\text{Phen})(\text{H}_2\text{O})_4]^{2+}$ cations in **I**.

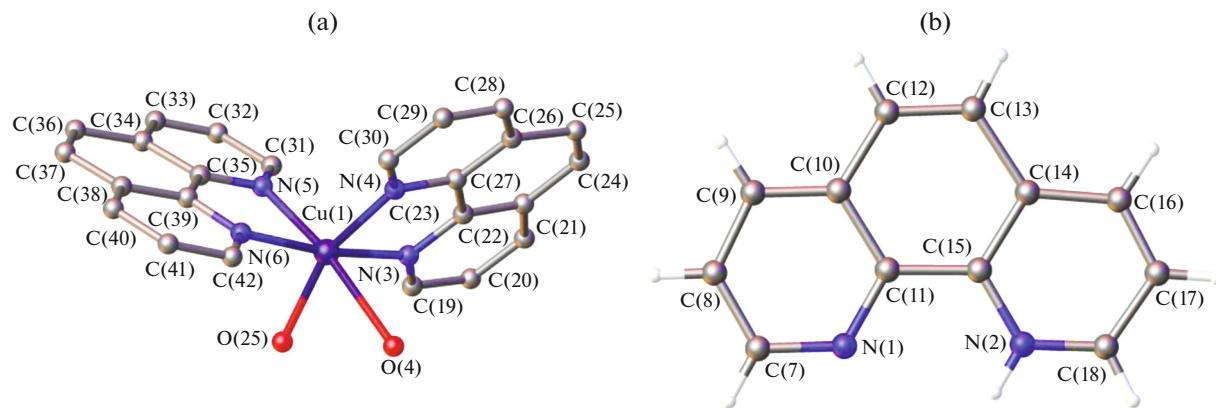


Fig. 3. Molecular structure of the (a) $[\text{Cu}(\text{Phen})_2(\text{H}_2\text{O})]^{2+}$ and (b) HPhen^+ cations in **II**.

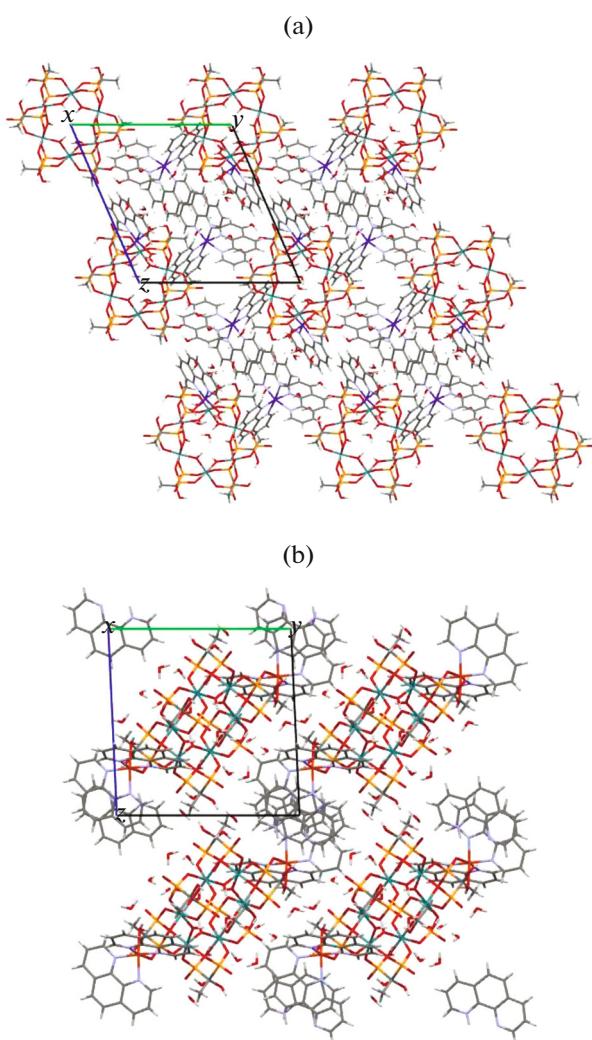


Fig. 4. Crystal structure of compounds (a) **I** and (b) **II** (view along the [100] crystallographic direction).

NCo(2)N , OCo(2)N , and OCo(2)O bond angles are $78.3(2)^\circ$ – $97.02(2)^\circ$.

In the structure of **II**, the hexanuclear $\{[\text{Ge}(\mu-\text{OH})(\mu-\text{Hedp})]_6\}^{6-}$ anion is directly bonded to the $\text{Cu}(1)$ atom via $\text{O}(4)$. The $\text{Cu}(1)$ coordination octahedron is completed by two phenanthroline molecules and one aqua ligand. The $\text{Cu}-\text{N}$ lengths are $1.985(7)$ – $2.231(7)$ Å and the $\text{Cu}-\text{O}(\text{H}_2\text{O})$ and $\text{Cu}-\text{O}(\text{Hedp})$ lengths are 2.028 and $2.770(6)$ Å, respectively. The NCuN , OCuO , and OCuN bond angles vary in the range of $79.1(3)^\circ$ – $98.1(3)^\circ$ (Table 2). The non-coordinated phenanthroline is protonated at $\text{N}(2)$ (Fig. 3b), as indicated by the hydrogen atom revealed in the difference Fourier maps. Thus, in the case of compound **II**, the charge of the $\{[\text{Ge}(\mu-\text{OH})(\mu-\text{Hedp})]_6\}^{6-}$ anion is counterbalanced by different-type HPhen^+ cations and the complex cation $[\text{Cu}(\text{Phen})_2(\text{H}_2\text{O})]^{2+}$.

In the crystals of compounds **I** and **II**, the cations, anions, and water molecules are connected by numerous intermolecular hydrogen bonds (Table 3), which give rise to a 3D network (Figs. 4a, 4b).

A distinction of the coordination compounds **I** and **II** from the previously studied germanium hydroxyethyldene diphosphonate complexes [4–7] is the formation of supramolecular assemblies based on simple and complex cations and anions, which mutually counterbalance their charges. This is caused by both the replacement of Co^{2+} by Cu^{2+} and the incorporation of 1,10-phenanthroline, which is able to function simultaneously as a bidentate chelating ligand and an outer-sphere cation in the HPhen^+ monoprotonated form.

Table 3. Geometric characteristics of hydrogen bonds in structures **I** and **II**

D—H···A	Distance, Å		D—H···A angle, deg
	H···A	D···A	
I			
O(5)—H(5)···O(36)	2.01	2.773(11)	154
O(6)—H(6)···C(11)	1.91	2.690(4)	150
O(14)—H(14)···C(11) ¹	1.87	2.709(5)	163
O(24)—H(24A)···C(11)	1.89	2.724(6)	162
O(25)—H(25A)···O(38)	1.89	2.751(6)	166
O(26)—H(26A)···O(19) ²	2.42	2.787(5)	107
O(26)—H(26B)···O(12) ³	2.15	2.788(6)	132
O(27)—H(27A)···O(34) ³	1.82	2.660(6)	164
O(28)—H(28A)···O(39) ²	1.85	2.728(5)	168
O(28)—H(28B)···O(13) ³	2.00	2.864(6)	164
O(29)—H(29A)···O(36) ⁴	1.90	2.739(15)	170
O(30)—H(30A)···C(12)	1.90	2.744(7)	170
O(31)—H(31B)···O(10)	2.07	2.887(7)	161
O(32)—H(32A)···O(29) ⁵	1.98	2.701(9)	141
O(33)—H(33A)···O(4)	1.82	2.658(6)	170
O(33)—H(33B)···O(32) ⁶	1.86	2.695(7)	167
O(34)—H(34A)···O(33)	1.86	2.708(8)	175
O(36)—H(36B)···O(22) ¹	2.09	2.932(10)	170
O(37)—H(37A)···O(17)	2.09	2.919(6)	165
O(37)—H(37B)···O(8)	1.99	2.834(6)	170
O(38)—H(38A)···O(37)	1.92	2.747(6)	165
O(38)—H(38B)···O(2)	1.85	2.684(6)	164
O(39)—H(39A)···O(38)	2.05	2.896(5)	171
O(39)—H(39B)···O(18)	2.03	2.844(6)	161
O(35)A—H(35A)···O(33)	1.86	2.676(12)	160
O(35)A—H(35B)···O(31)	1.91	2.754(13)	169
O(35)B—H(35C)···O(33)	1.94	2.724(19)	152
O(35)B—H(35D)···O(31)	1.67	2.362(19)	137
II			
O(20)—H(20)···O(30) ⁷	2.04	2.829(12)	162
O(14)—H(14)···O(35) ⁸	1.90	2.704(8)	166
O(11)—H(11)···O(13) ⁹	2.01	2.794(9)	159
O(6)—H(6)···O(35)	1.99	2.767(8)	158
O(24)—H(24)···O(35) ⁸	1.93	2.717(8)	162
O(5)—H(5)···N(1)	2.36	3.129(13)	156
O(25)—H(25A)···O(7)	2.21	3.023(9)	174
O(25)—H(25B)···O(33)	2.00	2.655(9)	137
O(31)—H(31B)···O(13) ⁹	1.92	2.748(10)	165
O(29)—H(29A)···O(18) ¹⁰	2.05	2.767(10)	142

Table 3. (Contd.)

D—H···A	Distance, Å		D—H···A angle, deg
	H···A	D···A	
O(29)—H(29B)···O(30)	2.01	2.672(12)	135
O(32)—H(32A)···O(31)	2.09	2.897(12)	166
O(32)—H(32B)···O(10)	1.94	2.724(9)	159
O(26)—H(26A)···O(12)	2.39	2.907(10)	120
O(26)—H(26B)···O(19) ⁸	2.18	2.895(9)	142
O(30)—H(30B)···O(23) ⁹	1.96	2.581(11)	132
O(35)—H(35A)···O(34) ⁸	2.04	2.761(9)	146
O(27)—H(27A)···O(28)	2.09	2.880(15)	153
O(34)—H(34A)···O(31) ¹¹	2.00	2.780(12)	160
O(34)—H(34B)···O(2)	2.01	2.814(9)	165
O(33)—H(33A)···O(2) ¹²	2.11	2.782(8)	139
O(33)—H(33B)···O(32)	2.04	2.836(11)	163
O(28)—H(28A)···O(34) ²	1.98	2.802(11)	175
O(28)—H(28B)···O(18) ²	2.02	2.742(9)	147
N(2)—H(2)···O(4)	1.96	2.727(10)	147

Symmetry codes: ¹1 - x, 2 - y, -z; ²-x, 2 - y, -z; ³-1 + x, y, z; ⁴x, -1 + y, z; ⁵x, 1 + y, z; ⁶1 - x, 2 - y, 1 - z; ⁷-1 + x, y, 1 + z; ⁸1 - x, 1 - y, 1 - z; ⁹2 - x, 1 - y, 1 - z; ¹⁰1 + x, y, -1 + z; ¹¹-1 + x, y, z; ¹²1 - x, 2 - y, 1 - z.

REFERENCES

1. Zolotukhina, M.M., Krutikov, V.I., and Lavrent'ev, A.N., *Rus. Chem. Rev.*, 1993, vol. 62, p. 647.
2. Saji, H., Ogawa, K., Kitamura, Y., et al., *Biomed. Res. Trace Elements*, 2007, vol. 18, p. 255.
3. Shiryaeva, V.K., Petriev, V.M., Bryukhanova, A.A., et al., *Pharm. Chem. J.*, 2011, vol. 45, no. 6, p. 333.
4. Seifullina, I.I., Martsinko, E.E., Aleksandrov, G.G., and Sergienko, V.S., *Russ. J. Inorg. Chem.*, 2004, vol. 49, no. 6, p. 844.
5. Sergienko, V.S., Seifullina, I.I., Martsinko, E.E., and Ilyukhin, A.B., *Cryst. Rep.*, 2013, vol. 58, no. 2, p. 237.
6. Martsinko, E.E., Seifullina, I.I., Sergienko, V.S., and Churakov, A.V., *Russ. J. Inorg. Chem.*, 2005, vol. 50, no. 6, p. 874.
7. Seifullina, I.I. and Martsinko, E.E., *Gomo- i geterometallicheskie kompleksy germaniya(IV)* (Homo- and Heterometallic Germanium(IV) Chelates), Odessa: Feniks, 2011.
8. Seifullina, I.I., Martsinko, E.E., and Afanaseenko, E.V., *Visn. Odes. Nac. Univ., Him*, 2015, vol. 20, no. 4, p. 6.
9. Mafra, L., Paz, F.A., Shi, F.-N., et al., *Eur. J. Inorg. Chem.*, 2006, vol. 23, p. 4741.
10. Klyuchnikov, N.G. *Rukovodstvo po neorganicheskому sintezu* (Guidelines on Inorganic Synthesis), Moscow: Khimiya, 1965.
11. Sheldrick, G.M., *Acta Crystallogr., Sect. A: Found. Adv.*, 2015, vol. 71, p. 3.
12. Sheldrick, G.M., *Acta Crystallogr., Sect. C: Struct. Chem.*, 2015, vol. 71, p. 3.
13. Nakamoto, K., *Infrared Spectra and Raman Spectra of Inorganic and Coordination Compounds*, New York: Wiley, 1986.
14. Tarasevich, B.N., *IK spektry osnovnykh klassov organicheskikh soedinenii* (IR Spectra of Main Classes of Coordination Compounds), Moscow: MGU, 2012.

Translated by Z. Svitanko