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Abstract—A new compound {[Cu(En),],V,05} - 4H,O (I) (En = ethanediamine) has been synthesized by the
combination of hydrothermal and solvent evaporation method and characterized by single-crystal X-ray dif-
fraction (CIF file CCDC no. 1450218), IR, UV-Vis spectra, thermogravimetric analysis, powder X-ray dif-
fraction, and fluorescence analysis. Crystal data for I: CgH4oCu,N3O,,V,, Mr= 653.44, orthorhombic, space
group Cmeca, a = 18.559(11), b = 17.583(11), ¢ = 7.600(6) A, V' = 2480(3) A3, and Z = 4. Interestingly, two
[Cu(En)z]zJr coordination cations are bridged by the [V207]4_ unit to build up a neutral framework com-

pound.
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INTRODUCTION

The inorganic-organic hybrid materials have been
developed enormously owing to their potential appli-
cations in the fields of medicine, catalysis, liquid crys-
tals, proton conductivity, and photochemistry [1—7].
The important feature of these hybrid assemblies is
combination of the merit from inorganic and organic
building blocks, which endows them with new struc-
tures and composite properties [8, 9]. Polyoxometa-
lates with definite sizes and shapes are unmatched
inorganic components. Polyoxovanadates (POVs), as
an important subclass of polyoxometalates, can form a
large variety of high- or low-nuclearity cluster struc-
tures, due to the various coordination geometries of
vanadium ion (including VO, tetrahedra, VO5 square
pyramid, and VO¢ octahedra), therefore becoming
one of the best candidates for the inorganic compo-
nent of such hybrid materials [10]. In this field, diva-
nadate, as the simplest polyoxovanadate, exists in the
form of [V,05]7, [V,04]> and [V,0,]*". Amongst
them, [V,05]~ and [V,0O¢]?> can be linked into two-
dimensional vanadium oxide layers and one-dimen-
sional vanadium oxide chains through interlinking
{VOs} and {VO,} polyhedrons, respectively, or further
linked into three-dimensional structure via metal-
organoamine complexes [ 11—13]. In the past 15 years,

! The article is published in the original.
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several compounds based on [V,0,]*" such as M,V,0,
(with M = Mg, Ca, Zn, Cd, Ba, and Cu) [14, 15],
(CsCl)Mn,(V,0,) [16], and AgFeV,0, [17] have been
synthesized by high temperature solid-phase reaction
method, which were mainly used as the cathode mate-
rial of lithium-ion batteries. In addition, the other
{V,0,}-based compound [Cu,F,(C,,H;,N3),|[V,0,]
[18] was obtained under hydrothermal condition.
Although divanadates have been investigated inten-
sively, however, to our knowledge, {V,0,}-containing
inorganic-organic hybrid materials have not been
reported except the compound [Cu,F,(C,yH(N;),]-
[V,0,] [18]. Herein, we launch the exploration of
inorganic-organic hybrid polyoxovanadate and pres-
ent the synthesis and structure characterization of
divanadate compound {[Cu(En),],V,05} - 4H,O (I). It
represents a new example of the divanadate [V,0,]*~
cluster modified by copper complexes [Cu(En),]**.

EXPERIMENTAL

Methods and instruments. All reagents were used as
purchased without further purification. Elemental
analyses (C, H, and N) were performed by a Perkin-
Elmer 2400-11 CHNS/O analyzer. IR spectrum was
recorded on a Bruker VERTEX 70 IR spectrometer
using KBr as pellets in the range of 4000—450 cm™!
region. UV absorption spectrum was obtained with a
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Table 1. Selected bond lengths (A) and bond angles (deg) for I*

Bond d, A Bond d,A Bond d,A
V(1)—0(1) 1.7889(17) V(1)—04) 1.669(6) Cu(1)—N(2) 2.001(6)
V(1)—0(Q?) 1.690(5) Cu(1)—N(1) 2.029(6) Cu(1)—0(4) 2.210(6)

Angle ®, deg Angle ®, deg Angle ®, deg
oQ)V(1HO(1) 110.81(18) O4)V(1)O(2) 109.3(2) NCu(1)N 84.9(3)
o)'V(1)O(2) 109.3(4) V(1)04)Cu(l) 127.3(4) NCu(1)O 92.8(2)
O)V(HO(1) 107.3(2)

* Symmetry transformation: I, Y, 2

U-4100 spectrometer in 200—400 nm at room tem-
perature. Thermogravimetric (TG) analysis was car-
ried out under N, flow with a Mettler-Toledo
TGA/SDTA 851 instrument at a heating rate of
10°C/min from 25 up to 500°C. Powder X-ray diffrac-
tion (PXRD) was performed on a Bruker AXS D8
Advance diffractometer using Cuk, radiation (A =
1.54056 A) in the range 20 = 5°—45° at 293 K.
Fluorescence spectrum was performed on a
HITACHI F-7000 fluorescence spectrophotometer
with a Xe lamp as the light source at room tempera-
ture.

Synthesis of I. NH,VO; (0.25 g, 2.14 mmol),
CuCl, - 2H,0 (0.15 g, 0.88 mmol) and Sb,0; (0.23 g,
0.79 mmol) were stirred in a mixed solution of 4 mL
distilled water and 4 mL En for 10 min, forming a
brown suspension solution. The pH was adjusted to
13.0 with 2 mol/L NaOH solution. The resulting solu-
tion was sealed in 25 mL Teflon lined stainless steel
autoclave and heated at 130°C for 6 days, then cooled
to room temperature. The clear violet filtrate was kept
in an open beaker at room temperature to allow slow
evaporation. Subsequent crystallization about one
week yielded a blue block with the yield of 15% (based
on vanadium).

IR (v, cm™"): 3369, 3309, 3218, 3139, 2965, 2194,
2886, 1583, 1452, 1384, 1319, 1164, 1106, 1044, 975,
921, 840, 673, 525, 404.

For C8H40N8011V2Cu2
Anal. caled., %: C, 14.70;
Found, % : C, 14.91;

H, 6.17;
H, 6.44;

N, 17.15.
N, 17.48.

X-ray crystal determination. Single crystal X-ray
diffraction data collections for I were performed on a
Bruker APEX-II CCD diffractometer with graphite
monochromated MoK, radiation (A = 0.71073 g.) at
293(2) K. All of the absorption corrections were per-
formed with the SADABS program. The structures
were solved by direct methods and non-hydrogen
atoms were refined by full-matrix least-squares meth-
ods on F? using the SHELX program suite [19]. The
hydrogen atoms of the organoamine groups were
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placed in calculated positions and then refined using a
riding model with a uniform value of U, = 1.2 U,,. All
H atoms on water molecules were directly included in
the molecular formula. Crystal data and structure
refinement for I: CgH,,Cu,N;O,,V,, Mr = 653.44;
blue block crystal, 0.28 X 0.16 X 0.08 mm; 7= 293(2)
K; orthorhombic, space group Cmca; a = 18.559(11),
b =17.583(11), c = 7.600(6) A; V'=2480(3) A’; Z=4;
U = 2.482 mm~!; F(000) = 1312.0; 5848 reflections
measured, of which 1141 were independent; R, =
0.0853, and wR, = 0.2181; peyeq = 1.728 g/cm?.

The selected bond lengths and band angles are
shown in Table 1. Supplementary crystallographic
data for the structure of I has been deposited with the
Cambridge Crystallographic Data Centre (CCDC
no. 1450218; deposit@ccdc.cam.ac.uk or http://www.
ccdc.cam.ac.uk).

RESULTS AND DISCUSSION

Single crystal X-ray diffraction analysis reveals that
compound I is composed of two [Cu(En),]*>* coordi-
nation cations, one [V,0,]*" polyanion, and four lat-
tice water molecules. Interestingly, the {V,0} unit can
be seen as two {VO,} tetrahedron via sharing a corner,
in which three |,-O atoms and two vanadium atoms
connect together forming a folded-line-shaped skele-
ton (Fig. 1). This kind of connection mode is quite
unusual in the divanadate. In addition, the two copper
ions are five-coordinated square pyramid configura-
tion with four nitrogen atoms from two En molecules
and an oxygen atom from {V,0,} group residing both
sides of {V,0,} fragment, thus they function as coun-
terions decorating the whole cluster (Fig. 1). Within
all four oxygen atoms, the O(2), O(3) atoms are termi-
nal type and the other oxygen atoms O(4) and O(1) are
W,-O type. Band-valence sum (BVS) calculation val-
ues for V atoms and Cu atoms are +5 and +2, respec-
tively, which indicates vanadium atoms are in fully
oxidized state. The anion of I has the same [V,0,]*"
core reported previously for [AgFeV,0,] and
[(CsCI)Mn,(V,0,)]. However, in [AgFeV,0,], four of
the six terminal oxygens of the {V,0,} unit are shared
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Fig. 1. The ball and stick view of the neutral cluster {{Cu(En),],V,07} (a); the polyhedron graphics of the coordination cation

[Cu(En)z]2+ (b). H atoms are omitted for clarity.
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Fig. 2. The ball and stick view of the different {V,} units and their VOV angles: {V,05} unit [8] (a); {V,0¢} unit [9] (b); {V,07}

unit in our works (c).

with four Fe,0,; octahedron dimers along [100], and
the fifth oxygen is shared with another dimer to extend
the lattice along the (011) plane, leading to the forma-
tion of three-dimensional structure [17]. In
[(CsCl)Mn,(V,0,)] [16], six terminal O atoms of the
{V,0,} cluster bind to eight MnO,Cl, octahedron,
forming a three-dimensional network.

It should be noted that the [V,0,]*" group with D,
symmetry is different from the other two [V,05]~ [11]
and [V,04]*~ [12] asymmetric units. As shown in
Fig. 2, the bond angle of VOV is 159.8°, 160.2°, 180° in
{V,05}, {V,0¢} and {V,05}, respectively. Additionally,
from the viewpoint of copper complex ion, the Cu?*
ion in [Cu(En),H,0]*" fragment of
[Cu(En),(H,0)],[H,V,004] - 12H,0 [20] is six coor-
dinated by four nitrogen atoms from two en molecules
(Cu(1)—N(1) 2.009 A, Cu(1)—N(2) 2.012 A, Cu(1)—
N(@3) 2.001 A, Cu(1)=N(4) 2.004 A), two oxygen
atoms from the [H,V,,0,]* anion (Cu(1)—O(8)
2.530 A) and one water molecule (Cu(1)—O(15)
2.668 A). In contrast, the Cu—O bond length in
[Cu(En),]** fragments of I (Table 1) is obviously less
than those of [Cu(En),(H,0)]?*. This may be
attributed to the difference of coordination configura-
tion of the two fragments.

The thermogravimetric analysis (TG) of I is per-
formed in the temperature range of 25—500°C in
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nitrogen gas. The total weight loss value of 48.60%
(calcd. 47.82%) between 25 and 500°C are attributed
to the removal of the four lattice water molecules and
four ethanediamine molecules. The first weight loss of
11.77% (calcd. 11.03%) corresponding to the four lat-
tice water molecules is in the region of 25—175°C. The
last mass loss in the regions of 175—500°C can be
assigned to the sublimation of four ethanediamine
molecules (exptl 36.83%, calcd. 36.79%). The TG
curve of compound I is shown in Fig. 3.

The IR spectrum of I is shown in Fig. 3. The char-
acteristic symmetric stretch vibration V(V=0 mina) 1S
located at 921 cm™!' and a number of bands in
the range 840 to 525 cm~! are associated with v (V—
0O,—V). The band at 3369 cm™! can be attributed to
O—H stretching of lattice water molecules. Addition-
ally, the stretching bands of NH, and CH, groups are
observed at v = 3139 to 3309 cm~! and 2886 to
2965 cm™!, respectively, and their bending bands at
v = 1583 to 1452 cm~! and 1318 to 1384 cm™!, respec-
tively, which confirm the presence of En in 1. The
assignment of the vibration modes is in accordance
with the published results [20—23]. In addition, the
peak positions of the simulated and experimental
PXRD patterns match well with each other (Fig. 3),
which indicates the phase purity of the title com-
pound.
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Fig. 3. The TG curve of I (a); the IR spectrum of I (b); the experiment and simulation PXRD patterns of I (c).
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Fig. 4. The UV spectrum of I (a); the fluorescence spectrum of I at room temperature in aqueous solution (b).

The UV-Vis spectrum of I in aqueous solution dis-
plays three absorption peaks at 210, 258 nm (sh) and
313 nm (Fig. 4), corresponding to oxide-to-vanadium
charge transfer (LMCT) [7, 24—26]. The fluorescent
spectrum of I at room temperature in aqueous solution
is depicted in Fig. 4. The compound I shows one peak
at 341 nm upon excitation at 305 nm corresponding to
oxide-to-vanadium charge transfer (O?~ to V>*) which
is comparable with the UV absorption spectrum. It
can be considered that the emissive state of I is likely
derived from the O?~ to V>* charge transfer as the lit-
erature reported by Hong [7].

Thus, a new cluster compound {[Cu(En),],V,0;} -
4H,0 has been synthesized by the combination of
hydrothermal and solvent evaporation method. The
binuclear [V,0,]* vanadate decorated by transition
metal complex [Cu(En),]?>" cations features a discrete
neutral-framework structure. In addition, the fluores-
cent properties of the compound I were investigated in
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detail, electron transition transferred from O%* to V>*
produce the fluorescence-emission of 341 nm.
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