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Abstract—Tris(para-tolyl)antimony bis(2-oxybenzaldoximate) (I), tris(para-tolyl)antimony bis(2-nitro-
benzaldoximate) (II), tris(para-tolyl)antimony bis(2-bromobenzaldoximate) (III), tris(3-fluorophenyl)anti-
mony bis(2-oxybenzaldoximate) (IV), tris(4-fluorophenyl)antimony bis(2-bromobenzaldoximate) (V), and
tris(4-fluorophenyl)antimony bis(2-nitrobenzaldoximate) (VI) are synthesized by the reactions of tris(para-
tolyl)-, tris(3-fluorophenyl)-, and tris(4-fluorophenyl)antimony with 2-oxy-, 2-nitro-, and 2-bromobenzal-
doxime in diethyl ether in the presence of tert-butyl hydroperoxide. The Sb atoms in complexes I—VI have a
distorted trigonal bipyramidal coordination mode with the oximate ligands in the axial positions. CIF files
CCDC nos. 1062231 (I), 1059962 (II), 1465384 (I1I), 1465109 (IV), 1471948 (V), and 1060387 (VI).
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INTRODUCTION

As established earlier, the oxidative addition reac-
tions, where hydrogen peroxide acts as an oxidant of
the metal atom, are very efficient for the synthesis of
triphenyl- and tri-para-tolylantimony dioximates [1—
3]. The yield of the target product in these reactions
can be increased by the use of zerf-butyl hydroperoxide
as an oxidant [4]. At the same time, triarylantimony
dioximates containing heteroatoms in the aryl rings
are unknown. Continuing the investigation of the one-
pot synthesis of triarylantimony dioximates, we car-
ried out for the first time the oxidative addition reac-
tions involving tris(3-fluorophenyl)antimony, tris(4-
fluorophenyl)antimony, tri(para-tolyl)antimony, and
oximes in the presence of tert-butyl hydroperoxide and
studied the structures of tris(para-tolyl)antimony
bis(2-oxybenzaldoximate) (I), tris(para-tolyl)anti-
mony bis(2-nitrobenzaldoximate) (II), tris(para-
tolyl)antimony bis(2-bromobenzaldoximate) (III),
tris(3-fluorophenyl)antimony bis(2-oxybenzaldoxi-
mate) (IV), tris(4-fluorophenyl)antimony bis(2-bro-
mobenzaldoximate) (V), and tris(4-fluorophe-
nyl)antimony bis(2-nitrobenzaldoximate) (VI)
obtained in high yields.

EXPERIMENTAL

Synthesis of complex I. A mixture of tris(para-
tolyl)antimony (150 mg, 0.38 mmol), 2-oxybenzal-
doxime (104 mg, 0.76 mmol), and a 70% solution of

tertiary butyl hydroperoxide (49 mg, 0.38 mmol) in
diethyl ether (10 mL) was kept at 20°C for 24 h. After
the slow evaporation of the solvent, a solid residue was
recrystallized from a benzene—octane (2 : 1) system of
solvents. The yield of colorless crystals of complex I
was 0.250 g (99%), mp = 151°C. IR, v, cm™": 3086,
3061, 3046, 3030, 2984, 2949, 2918, 2864, 2357, 2164,
1684, 1674, 1668, 1653, 1645, 1595, 1564, 1493, 1476,
1456, 1418, 1396, 1335, 1310, 1290, 1261, 1211, 1190,
1153, 1113, 1072, 1036, 1018, 982, 953, 901, 800, 789,
756, 743, 725, 700, 679, 660, 552, 490, 480, 422.

FOI‘ C35H33N204Sb
anal. calcd., %: C, 62.99; H, 4.99.
Found, %: C, 62.79; H, 5.08.

Compounds ITI—-VI were synthesized similarly.

IT: 91% yield of orange crystals, mp = 202°C (with
decomp.). IR, v, cm™!: 3064, 3020, 2970, 2954, 2920,
2862, 2733, 2661, 2607, 2590, 2555, 2492, 2422, 2358,
2310, 2231, 2139, 1608, 1591, 1558, 1525, 1494, 1394,
1346, 1311, 1298, 1211, 1186, 1066, 1041, 1018, 966,
947, 929, 889, 881, 846, 800, 783, 744, 694, 640, 584,
551, 514, 486, 443, 418.

For C;oH¢,NgO,,Sb,
anal. calcd., %:
Found, %:

C, 57.95;
C, 57.86;

H, 4.32.
H, 4.47.
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III: 99% vyield of colorless crystals, mp = 184°C.
IR, v,cm™!: 3068, 3059, 3024, 2987, 2972, 2951, 2916,
2862, 2731, 2667, 2607, 2540, 2513, 2378, 2351, 2320,
2310, 2146, 2131, 2085, 2017, 1992, 1950, 1899, 1869,
1843, 1830, 1799, 1749, 1716, 1695, 1683, 1627, 1591,
1579, 1552, 1521, 1490, 1465, 1433, 1419, 1394, 1328,
1311, 1276, 1267, 1232, 1203, 1186, 1159, 1114, 1066,
1045, 1016, 954, 943, 923, 894, 871, 837, 796, 750,
694, 640, 584, 547, 528, 484, 474, 447, 418.

For C;5H;;N,0,Br,Sb
anal. calcd., %:
Found, %:

C, 56.86;
C, 56.69;

H, 3.95.
H, 4.09.

IV: 99% yield of pale orange crystals, mp = 240°C
(with decomp.). IR, v, cm™!: 3190, 3128, 3101, 3088,
3066, 3043, 3026, 2978, 2870, 2818, 2752, 2731, 2681,
2646, 2571, 2528, 2503, 2486, 2436, 2399, 2384, 2349,
2322, 2276, 2229, 2166, 2139, 2098, 2069, 2023, 1942,
1909, 1872, 1830, 1811, 1789, 1762, 1716, 1687, 1618,
1585, 1519, 1492, 1471, 1419, 1332, 1300, 1263, 1220,
1192, 1165, 1155, 1118, 1083, 1056,1035, 974, 954, 900,
883, 854, 792, 781, 758, 717, 678, 661, 559, 543, 520,
476, 439, 424.

FOr C32H23N204F4Sb
anal. calcd., %: C, 55.11; H, 3.33.
Found, %: C, 55.02; H, 3.44.

V: 98% yield of pale yellow crystals, mp = 142°C.
IR, v, cm™": 3095, 2924, 2854, 2555, 2465, 2358,
2322, 2277, 2216, 1633, 1583, 1558, 1489, 1465, 1436,
1392, 1332, 1303, 1271, 1236, 1163, 1114, 1056, 1022,
948, 931, 924, 877, 821, 810, 754, 694, 642, 549, 509,
474, 445, 418.

For C32H22N2F3Br2028b
anal. calcd., %: C, 47.74; H, 2.76.
Found, %: C, 47.63; H, 2.87.

VI: 95% yield of orange crystals, mp = 160°C. IR,
v, cm™!: 3095, 3062, 3034, 2970, 2858, 2825, 2553,
2505, 2453, 2389, 2382, 2351, 2310, 2233, 2040, 1608,
1581, 1558, 1529, 1489, 1448, 1392, 1346, 1303, 1226,
1163, 1014, 966, 941, 927, 891, 883, 848, 829, 808, 785,
742, 696, 642, 576, 559, 511, 443, 418.

For C32H21N406F3Sb
anal. calcd., %:
Found, %:

C, 52.20;
C, 52.06;

H, 2.88.
H, 2.81.

The IR spectra of compounds I-VI were recorded
on a Shimadzu IRAffinity-1S spectrometer in KBr
pellets in a range of 4000—400 cm™.
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X-ray diffraction analyses of the crystals of com-
pounds I—VI were carried out on a D8 Quest diffrac-
tometer (Bruker) (MoK, radiation, A = 0.71073 A,
graphite monochromator) at 296(2) K. Data were col-
lected and edited, unit cell parameters were refined,
and an absorption correction was applied using the
SMART and SAINT-Plus programs [5]. All calcula-
tions on structure determination and refinement were
performed using the SHELXL/PC [6] and OLEX2
programs [7]. The structures were solved by a direct
method and refined by least squares in the anisotropic
approximation for non-hydrogen atoms. The main
crystallographic data and refinement results for the
structures of compounds I-VI are presented in
Table 1. Selected bond lengths and bond angles are
listed in Table 2.

The full tables of atomic coordinates, bond lengths,
and bond angles were deposited with the Cambridge
Crystallographic Data Centre (CIF files CCDC
nos. 1062231 (I), 1059962 (II), 1465384 (III),
1465109 (1IV), 1471948 (V), and 1060387 (VI);
deposit@ccdc.cam.ac.uk; http://www.ccdc.cam.
ac.uk).

RESULTS AND DISCUSSION

Triarylantimony dioximates were synthesized by
the oxidative addition from triarylantimony and oxime
in the presence of fert-butyl peroxide in diethyl ether.

Ar;Sb + 2HON=CHAT' + fer+-BuOOH
— Ar;Sb(ON=CHAr'), + fert-BuOH + H,O

Ar=p-Tol; Ar = C,H,0H-2 (I),
C,H,NO,-2 (I), C(H,Br-2 (III),

Ar=3-FC.H,; Ar =CH,0H-2(IV),

Ar=4-FCH,; Ar =C,H,Br-2(V),
C¢H,NO,-2 (VI).

According to the X-ray diffraction data, in com-
pounds I-VI, the antimony atoms have a distorted
trigonal bipyramidal coordination mode with the oxi-
mate ligands in the axial positions (Figs. 1—6). The
crystal structure of compound II contains two types of
crystallographically independent molecules (A, B),
whose geometric parameters differ insignificantly.
The conformation of the aryl rings relative to the equa-
torial planes (C;) in molecules of compounds II—-VI is
“propeller-like”: the dihedral angles between the cor-
responding planes are C(21)—C(26) 6.66°,
C(11)—C(16) 55.82°, C(1)—C(6) 67.16° (I); C(1)—
C(6) 27.57°, C(11)-C(16) 47.55°, C(21)—C(26)
73.98° (IIA); C(51)—C(56) 27.66°, C(61)—C(66)
47.50°, C(71)—-C(76) 73.88° (IIB); C(21)—C(26)
37.33°, C(1)—C(6) 57.50°, C(11)—C(16) 71.90° (I1I);
C(11)—-C(12") 47.71°, C(1)—C(6) 64.40°, C(1)—C(6")
64.40° (IV); C(1)—C(6) 15.06°, C(21)—C(26) 69.77°,
C(11)—-C(16) 72.37° (V); and C(11)—C(16) 15.07°,
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Table 2. Selected bond lengths (d) and bond angles (®) in the structures of complexes I—VI

Bond d,A Angle o, deg
I
Sb(H)—0(1) 2.088(4) 0(1)Sb(1C(1) 87.37(19)
Sb(1)—0(3) 2.070(4) 0(1)Sb(1)C(11) 92.44(19)
Sb(1)—C(1) 2.108(6) O(1)Sb(1)C(21) 90.2(2)
Sb(1)—C(11) 2.099(5) 0(3)Sb(1)0(1) 178.53(16)
Sb(1)—C(21) 2.111(7) 0(3)Sb(1)C(1) 92.4(2)
0(4)—C(42) 1.386(10) 0(3)Sb(1)C(11) 86.42(19)
0(2)—C(32) 1.340(9) 0(3)Sb(1)C(21) 91.2(2)
O(1)—N(1) 1.381(6) C(1)Sb(1)C(21) 120.8(2)
0(3)-N(2) 1.401(6) C(11)Sb(1)C(1) 118.4(2)
N(1)—C(37) 1.262(7) C(11)Sb(1)C(21) 120.8(2)
N(2)—C(47) 1.282(7) N(1)O(1)Sb(1) 108.5(3)
C(37)—C(31) 1.457(8) N(2)0(3)Sb(1) 108.4(3)
IT1A
Sb(1)—0(1) 2.069(3) O(1)Sb(1)0(4) 177.22(14)
Sb(1)—0(4) 2.071(3) C(1)Sb(1)C(21) 116.11(18)
Sb(1)—C(1) 2.107(5) C(11)Sb(1)C(1) 123.40(19)
Sb(1)—C(11) 2.106(5) C(11)Sb(1)C(21) 120.49(19)
Sb(1)—C(21) 2.110(5) 0(1)Sb(1)C(1) 91.52(16)
N(3)-0(4) 1.394(5) 0(1)Sb(1)C(11) 92.54(16)
N(1)—O(1) 1.381(6) 0(4)Sb(1)C(1) 91.01(15)
N(1)—C(37) 1.271(7) 0(4)Sb(1)C(1) 85.76(14)
N(3)—C47) 1.266(6) O(1)Sb(1)C(21) 88.14(17)
C(14)—C(17) 1.518(10) 0(4)Sh(1)C(21) 90.97(17)
C(24)—C(27) 1.518(8) N(1)O(1)Sb(1) 102.6(3)
C(4)—C(7) 1.492(7) N(3)0(4)Sb(1) 109.2(2)
1IB
Sb(2)—0(10) 2.067(3) 0(10)Sb(2)0(7) 177.18(14)
Sb(2)—0(7) 2.072(3) C(61)Sb(2)C(71) 120.43(19)
Sb(2)—C(61) 2.100(5) C(61)Sb(2)C(51) 123.20(19)
Sb(2)—C(71) 2.105(5) C(51)Sb(2)C(71) 116.36(18)
Sb(2)—C(51) 2.105(5) 0(10)Sb(2)C(71) 88.12(17)
0(10)=N(7) 1.379(6) 0(10)Sb(2)C(61) 91.13(17)
O(7)=N(5) 1.389(5) 0(7)Sb(2)C(51) 85.76(14)
N(7)—C(97) 1.272(7) 0(7)Sb(2)C(61) 90.96(15)
N(5)—C(87) 1.265(6) 0(7)Sb(2)C(71) 92.45(16)
C(54)—C(57) 1.493(8) O(10)Sb(2)C(51) 91.51(16)
C(64)—C(67) 1.515(10) N(5)0(7)Sb(2) 109.3(2)
C(74)—C(77) 1.511(8) N(7)0(10)Sb(2) 102.9(3)
111
Sb(H)—0(1) 2.074(3) 0(2)Sb(HO(1) 174.71(16)
Sb(1)—0(2) 2.071(4) C(1)Sb(1)0(1) 93.11(18)
Sb(1)—C(1) 2.111(6) C(1)Sb(1)0(2) 91.85(18)
Sb(1)—C(11) 2.110(5) C(11)Sb(1)0(1) 93.66(18)
Sb(1)—C(21) 2.103(5) C(11)Sh(1)O(2) 85.80(17)
Br(1)—C(32) 1.899(6) C(11)Sb(1)C(1) 116.2(2)
Br(2)—C(42) 1.904(6) C21)Sh(1)O(1) 85.03(18)
O(1)=N(1) 1.376(6) C(21)Sb(1)0(2) 90.80(18)
0(2)-N(2) 1.387(6) C)Sh(1)C(1) 121.6(2)
N(1)=C(37) 1.294(7) C@1)Sh(HC(11) 122.2(2)
N(2)—C(47) 1.282(7) N(1)O(1)Sb(1) 109.3(3)
C(4)—C(7) 1.515(9) N(2)0(2)Sb(1) 109.1(3)
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Table 2. (Contd.)

SHARUTIN et al.

Bond d,A Angle o, deg
Sb(1)—0(1) 2.081(3) O(1)Sb(1)O(1) 176.14(19)
Sb(1)—0(1") 2.081(3) C(1)Sb(1)O(1") 91.58(16)
Sb(1)—C(1) 2.099(4) C(1)Sb(1)O(1) 86.47(16)
Sb(1)—C(1") 2.099(4) C(1)Sb(1)O(1") 86.47(16)
Sb(1)—C(11) 2.125(7) C(1)Sb(1)O(1) 91.58(16)

O(1)—N(1) 1.398(5) C(1")Sb(1)C(1) 119.4(2)
0(2)—C(22) 1.353(6) C(11)Sb(1)O(1) 91.93(10)
F(1)—C(3) 1.345(6) C(11)Sb(1)O(1") 91.93(10)
N(1)—C(27) 1.271(6) C(11)Sb(1)C(1) 120.30(12)
C(13)—F(2) 1.084(14) C(11)Sb(1)C(1") 120.30(12)
C(1)—C(6) 1.379(7) N(1)O(1)Sb(1) 111.4(3)
Sb(1)—0(1) 2.063(3) O(1)Sb(1)C(1) 92.44(19)
Sb(1)—C(1) 2.108(6) O(1)Sb(1)C(21) 92.63(18)
Sb(1)—C(21) 2.112(5) O(1)Sb(1)0(2) 176.43(16)
Sb(1)—0(2) 2.074(3) O(1)Sb(1)C(11) 85.94(17)
Sb(1)—C(11) 2.120(5) C(1)Sb(1)C(21) 117.5(2)
F(1)—C(4) 1.378(9) C(1)Sb(1)C(11) 122.7(2)
F(3)—C(24) 1.353(8) C(21)Sb(1)C(11) 119.9(2)
F(2)—C(14) 1.342(7) 0(2)Sb(1)C(1) 91.10(19)
0(2)—N(2) 1.384(6) 0(2)Sb(1)C(21) 86.10(18)
O(1)—N(1) 1.385(6) 0O(2)Sb(1)C(11) 91.80(17)
N(2)—C(47) 1.263(7) N(1O(1)Sb(1) 112.1(3)
N(1)—C(37) 1.267(8) N(2)O(2)Sb(1) 110.0(3)
Sb(1)—0(1) 2.0652(19) O(1)Sb(1)O(4) 177.10(9)
Sb(1)—0(4) 2.084(2) O(1)Sb(1)C(11) 85.21(9)
Sb(1)—C(11) 2.108(3) O(1)Sb(1)C(1) 93.02(11)
Sb(1)—C(1) 2.115(3) O(1)Sb(1)C(21) 91.28(10)
Sb(1)—C(21) 2.117(3) 0(4)Sb(1)C(11) 92.00(10)
O(1)—N(1) 1.391(3) 0(4)Sb(1)C(1) 87.48(12)
0(4)—N(3) 1.381(4) 0(4)Sb(1)C(21) 90.91(11)
F(1)—C(4) 1.364(5) C(11)Sb(1)C(1) 116.20(12)
F(2)—C(14) 1.351(4) C(11)Sb(1)C(21) 122.92(13)
F(3)—C(24) 1.355(5) C(1)Sb(1)C(21) 120.88(12)
N(1)—C(37) 1.258(4) N(1)O(1)Sb(1) 110.53(15)
N(3)—C(47) 1.248(4) N(3)0(4)Sb(1) 103.96(18)

C(21)—C(26) 52.53°, C(1)—-C(6) 78.88° (VI). The
sums of the angles in the equatorial planes are equal to
a theoretical value of 360° within the experimental
error. The antimony atoms do not almost shift from
the [C5] planes (0.001—0.019 A). The CSbC equatorial
angles slightly differ from an ideal value of 120° (Table
2). The CSbO angles between the equatorial and axial
bonds in the structures of complexes I—VI vary within
85.03(18)°—93.66(18)° (Table 2). The average Sb—C
bond lengths in molecules of compounds I-VI differ
slightly (2.103(5)—2.113(3) A), as well as the Sb—O
bonds (2.063(3)—2.088(4) A). In the structures of
complexes I-VI, the Sb—O axial bonds are shorter

RUSSIAN JOURNAL OF COORDINATION CHEMISTRY  Vol. 43

than the equatorial Sb—C bonds, which is characteris-
tic of other triarylantimony dioximates [8]. It can be
mentioned that some elongation of the Sb—C bonds in
molecules of the 4-fluorophenyl derivatives is
observed in pairs of the compounds (IIT and V, IT and
VI) with the same oximate ligands but different aryl
substituents at the antimony atoms having the groups
with opposite inductive effects (CH; and F) in the
para-positions, while this dependence is not observed
for the Sb—O bonds. In compounds I and IV, the
equatorial and axial bonds are nearly equal (Table 2).

Molecules of all triarylantimony dioximates con-
tain intramolecular contacts between the antimony
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Fig. 1. Molecular structure of complex I.
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Fig. 2. Molecular structure of complex II.
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Fig. 3. Molecular structure of complex III.
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Fig. 4. Molecular structure of complex IV.

and nitrogen atoms of the oximate ligands. The Sb--*N  As follows from the data presented, the strength of
distances (2.844(5), 2.844(5) A (I); 2.727(4), these contacts is independent of the Sb—O bond
2.851(4) A (I1A); 2.729(4), 2.850(4) A (IIB); 2.844(5), lengths and does not induce an expected elongation of
2.843(4) A (III); 2.900(5), 2.900(5) A (IV); 2.884(6), the N—O bonds of 1.376(6)—1.401(6) A in complexes
2.860(5) A (V); and 2.764(3), 2.866(2) A (VI)) are sub-  I—VI. In molecules of all the six triarylantimony diox-
stantially shorter than the sum of the van der Waals imates, the NOSb bond angles are close to the theoret-
radii of the antimony and nitrogen atoms (3.8 A [9]). ical value (102.6(3)°—111.4(3)°).
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Fig. 5. Molecular structure of complex V.
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Fig. 6. Molecular structure of complex VI.
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