

Synthesis, Thermal Stability, and Structure of Bis(citrato)germanates: $[\text{Co}(\text{Phen})_3][\text{Ge}(\text{HCit})_2] \cdot 2\text{H}_2\text{O}$, $[\text{Fe}(\text{Phen})_3][\text{Ge}(\text{HCit})_2] \cdot 4\text{H}_2\text{O}$ (H_4Cit = Citric Acid, Phen = 1,10-Phenanthroline)

I. I. Seifullina^a, E. E. Martsinko^{a, *}, E. A. Chebanenko^a, O. V. Pirozhok^a,
V. V. Dyakonenko^b, and S. V. Shihkina^{b, c}

^a Mechnikov Odessa National University, Odessa, 65082 Ukraine

^b State Scientific Institution “Institute for Single Crystals”, National Academy of Sciences of Ukraine, Kharkiv, 61001 Ukraine

^c Karazin Kharkiv National University, Kharkiv, 61022 Ukraine

*e-mail: lborn@ukr.net

Received December 6, 2016

Abstract—Synthetic procedures were developed and the complexes $[\text{Fe}(\text{Phen})_3][\text{Ge}(\text{HCit})_2] \cdot 4\text{H}_2\text{O}$ (**I**) and $[\text{Co}(\text{Phen})_3][\text{Ge}(\text{HCit})_2] \cdot 2\text{H}_2\text{O}$ (**II**) (Phen is 1,10-phenanthroline, H_4Cit is citric acid) were obtained. The identity, composition, and thermal stability of the complexes were established by elemental analysis, thermogravimetry, and IR spectroscopy. According to X-ray diffraction data (CIF files CCDC nos. 1515837 (**I**) and 1515838 (**II**)), complexes **I** and **II** are different-metal cation–anion complexes with the same bis(citrato)germanate anion $\text{Ge}(\text{HCit})_2^{2-}$. The charge of the complex anions is counterbalanced by the octahedral complex cations, $[\text{Fe}(\text{Phen})_3]^{2+}$ (**I**) or $[\text{Co}(\text{Phen})_3]^{2+}$ (**II**).

Keywords: germanium dioxide, citric acid, 1,10-phenanthroline, iron(II), cobalt(II), coordination compounds, molecular structure, X-ray diffraction

DOI: 10.1134/S1070328417080061

INTRODUCTION

The preparation and study of the structure and properties of the complexes of biogenic metals with citric acid is of interest for their potential use in medicine [1–6]. Quite a number of different-ligand citrate metal complexes have been synthesized to date [7–9].

Attention is attracted by the fact that 1,10-phenanthroline (Phen) and 2,2'-bipyridine (Bipy) have been often used in combination with citric acid in recent publications. In particular, mononuclear $[\text{GeCl}(\text{Bipy})(\text{HCit})] \cdot 2.5\text{CH}_3\text{CN}$ [10] and $[\text{Ni}(\text{H}_2\text{Cit})(\text{Phen})(\text{H}_2\text{O})] \cdot 3\text{H}_2\text{O}$ [11], binuclear $[\text{Zn}_2(\text{H}_2\text{Cit})_2(\text{Bipy})_2] \cdot \text{H}_2\text{O}$, $[\text{Zn}_2(\text{H}_2\text{Cit})_2(\text{Phen})_2] \cdot 1.5\text{H}_2\text{O}$, $[\text{Zn}_2(\text{HCit})(\text{Bipy})\text{Cl}]$, and $[\text{Zn}_2(\text{HCit})(\text{Phen})\text{Cl}] \cdot \text{H}_2\text{O}$ [12], and heterometallic $[\text{Ni}(\text{Phen})_3]_2\text{V}_2\text{O}_4(\text{R}-\text{HCit})(\text{OC}_2\text{H}_5)][\text{V}_2\text{O}_4(\text{S}-\text{HCit})(\text{OC}_2\text{H}_5)] \cdot 4\text{H}_2\text{O}$ [13] complexes were synthesized and structurally characterized. It can be seen by these examples that by varying pH of the medium, complexing atom, reactant molar ratio, and conditions of synthesis, it is possible to deliberately prepare coordination compounds differing in

the composition, structure, and properties on the basis of these chelating ligands.

Therefore, we decided to continue our systematic research into biologically active different-metal bis(citrato)germanates(**IV**) with *d*-metal hexaaqua cations (Mn^{2+} , Fe^{2+} , Co^{2+} , Ni^{2+} , Cu^{2+} , and Zn^{2+}) [14, 15] along this line, in particular, to attempt the preparation of bis(citrato)germanates, but with phenanthroline complexes rather than hexaaqua cations of *d*-metals. This introduces one more biologically active component into the complexes, which should necessarily affect their pharmacological action.

The purpose of this study was to develop procedures, synthesize, and comprehensively characterize new bis(citrato)germanates of “metals of life,” iron(II) and cobalt(II).

EXPERIMENTAL

The complexes were prepared using GeO_2 (99.999%) (Aldrich), citric acid monohydrate (99%), 1,10-phenanthroline (99%) (Aldrich), $\text{FeSO}_4 \cdot 7\text{H}_2\text{O}$ (99%) (Merck), and $\text{Co}(\text{CH}_3\text{COO})_2 \cdot 4\text{H}_2\text{O}$ (99%) (Merck).

Elemental analysis was performed on a semiautomated C,N,H-analyzer. Germanium, iron, and cobalt were quantified using inductive coupled plasma atomic emission spectroscopy on a Perkin Elmer Optima 2000 DV instrument.

The IR absorption spectra (400–4000 cm^{−1}) of the complexes as KBr pellets were measured on a Frontier Perkin Elmer spectrophotometer. Thermogravimetric analysis (TGA) was carried out on a Q-1500D derivatograph (air, temperature range of 20–1000°C, heating rate of 10 K/min).

Synthesis [Fe(Phen)₃][Ge(HCit)₂] · 4H₂O (I). Weighed portions of germanium dioxide (0.5 mmol) and citric acid (1 mmol) were dissolved at reflux in 100 mL of water and evaporated at 50°C to a 20 mL volume. After cooling to room temperature, 20 mL of a 95% ethanol solution containing 1,10-phenanthroline (1.5 mmol) and iron(II) sulfate (0.5 mmol) were added at room temperature. After 3 days, a red-colored crystalline solid precipitated. Single crystals suitable for X-ray diffraction were taken from the reaction medium. Yield, 60%.

IR spectrum of **I** (ν, cm^{−1}): 3410 ν(OH), 1700 ν(C=O), 1627 ν_{as}(COO[−]), 1582, 1521, 1425 ν(C—C_{ar}), 1400 ν_s(COO[−]), 1353 ν(C—N), 1080 ν(C—O), 1148, 1222, 918, 848 δ(CH), 644 ν(Ge—O).

For C₄₈H₄₂N₆O₁₈GeFe (**I**)

anal. C, 51.46; H, 3.75; N, 7.50; Fe, 4.99; Ge, 6.48. calcd., %:

Found, %: C, 51.65; H, 3.44; N, 7.85; Fe 5.20; Ge, 6.50.

Synthesis of [Co(Phen)₃][Ge(HCit)₂] · 2H₂O (II). was performed by a procedure similar to that used to prepare **I**, with a solution containing 1,10-phenanthroline (1.5 mmol) and cobalt(II) acetate in 20 mL of 95% ethanol being added at the final stage. Over a period of 24 h, a dark orange crystalline solid, containing single crystals suitable for X-ray diffraction, precipitated from the reaction medium. Yield, 70%.

IR spectrum of **II** (ν, cm^{−1}): 3411 ν(OH), 1700 ν(C=O), 1624 ν_{as}(COO[−]), 1585, 1517, 1426 ν(C—C_{ar}), 1408 ν_s(COO[−]), 1354 ν(C—N), 1082 ν(C—O), 1145, 1225, 913, 850 δ(CH), 642 ν(Ge—O).

For C₄₈H₃₈N₆O₁₆GeCo (**II**)

anal. C, 53.02; H, 3.50; N, 7.73; Co, 5.42; Ge, 6.68. calcd., %:

Found, %: C, 53.25; H, 3.44; N, 7.95; Co, 5.30; Ge, 6.50.

X-ray diffraction. The crystals of **I** are monoclinic, space group *P*2/c, *a* = 22.783(4), *b* = 11.3532(9), *c* = 18.337(4) Å, β = 94.60(1)°, *V* = 4727.7(9) Å³, *M* = 1119.31 g/mol, *Z* = 4, *T* = 100.0 K, μ(MoK_α) = 1.028 mm^{−1}, ρ(calcd.) = 1.573 g/cm³, 38106 reflec-

tions were measured, of which 8294 reflections were unique (*R*_{int} = 0.123). The final values: *R*₁ = 0.098 (*I* > 2σ(*I*)), *wR*₂ = 0.237 (for all reflections).

The crystals of **II** are monoclinic, space group *P*2/c, *a* = 23.030(3), *b* = 11.364(3), *c* = 18.675(4) Å, β = 94.735(6)°, *V* = 4879.1(6) Å³, *Z* = 4, *M* = 1086.36 g/mol, *T* = 294 K, μ(MoK_α) = 1.033 mm^{−1}, ρ(calcd.) = 1.479 g/cm³, 41071 reflections were measured, of which 9507 reflections were unique (*R*_{int} = 0.1340). The final values: *R*₁ = 0.095 (*I* > 2σ(*I*)), *wR*₂ = 0.258 (for all reflections).

X-ray diffraction data for **I** and **II** were collected on a Xcalibur-3 diffractometer (MoK_α-radiation, CCD detector, graphite monochromator, ω-scan mode). The structures were solved by direct methods and refined on *F*² by the full-matrix least-squares method in the anisotropic approximation for non-hydrogen atoms (SHELXTL) [16]. The hydrogen atoms were located from difference Fourier maps and refined in the riding model with *U*_{iso} = *nU*_{equiv} of the non-hydrogen atom bound to this H atom (*n* = 1.5 for hydroxyl groups and water molecules, *n* = 1.2 for other hydrogen atoms).

Atom coordinates and full tables of bond lengths and angles are deposited with the Cambridge Crystallographic Data Centre (nos. 1515837 (**I**), 1515838 (**II**); deposit@ccdc.cam.ac.uk or <http://www.ccdc.cam.ac.uk>).

RESULTS AND DISCUSSION

Complexes **I** and **II** are air-stable crystalline solids. Their thermal decomposition follows the same pattern, starting in the temperature range of 90–150°C (120°C↓) for **I** and 80–130°C (100°C↓) for **II** with an endotherm corresponding to removal of four (Δ*m* = 6.5%, **I**) or two (Δ*m* = 3.3%, **II**) water molecules. The fact that the complexes are crystal hydrates is also indicated by the ν(H₂O) stretching bands in their IR spectra at 3410 cm^{−1}.

The next endotherm in the 220–320°C range (280°C↓) for **I** and 240–360°C range (300°C↓) for **II** is matched by elimination to the gas phase of one 1,10-phenanthroline molecule and two CO₂ molecules formed upon decarboxylation of the free carboxyl groups of the citrate ligands (weight loss: 24% for **I** and 25% for **II**). The thermal decomposition of the complexes ends with the oxidative thermal destruction, which is accompanied by a broad exotherm in the temperature range of 450–630°C (570°C↓) for **I** and 460–650°C (550°C↑) for **II**. Considering the total weight loss (84.2% for **I** and 83.5% for **II**) and powder X-ray diffraction data, the final products at 1000°C are the metagermanates FeGeO₃ (for **I**) and CoGeO₃ (for **II**).

The IR spectra of compounds **I** and **II** were found to exhibit similar sets of absorption bands, which were assigned in line with the data obtained for

bis(citrate)germanates with outer-sphere ligands and other metals [5, 6, 14, 15] and with published data for the carboxylate complexes for various metals [17, 18].

The presence of a free carboxyl group $-\text{COOH}$ in the molecules of the obtained complexes is indicated by the $\nu(\text{C=O})$ band at 1700 cm^{-1} in their IR spectra. In comparison with the IR spectrum of the citric acid, the spectra of complexes **I** and **II** exhibit characteristic $\nu_{as}(\text{COO}^-)$ and $\nu_s(\text{COO}^-)$ bands, alkoxide type $\nu(\text{C-O})$ bands at 1080 cm^{-1} (in the absence of bending C-OH modes), and $\text{Ge}-\text{O}$ stretching bands.

Aromatic molecules, to which 1,10-phenanthroline also belongs, tend to exhibit C-C stretching skeletal modes of the aromatic ring (1300 – 1600 cm^{-1}) and in-plane (1000 – 1500 cm^{-1}) and out-of-plane (700 – 1200 cm^{-1}) C-H bending modes. The bands in these frequency ranges in the IR spectra of the complexes confirm the presence of 1,10-phenanthroline in their molecules.

It follows from X-ray diffraction data that complexes **I** and **II** are different-metal cation–anion type compounds in which the role of the anion is played by bis(citrate)germanate $[\text{Ge}(\text{HCit})_2]^{2-}$, while the cation is represented by the iron complex $[\text{Fe}(\text{Phen})_3]^{2+}$ (in **I**) or cobalt complex $[\text{Co}(\text{Phen})_3]^{2+}$ (in **II**). The cations in compounds **I** and **II** occur in special positions on 2 axis, i.e., the independent part of the unit cell comprises two halves of the cation. Complexes **I** and **II** exist in the crystal as hydrates with four (in **I**) or two (in **II**) water molecules.

The Ge polyhedron in the anions of **I** and **II** is a distorted octahedron formed by three pairs of oxygen atoms of three types of two tridentate HCit^{3-} chelating ligands: the hydroxyl ($\text{O}(3)$ and $\text{O}(10)$), α -carboxylate ($\text{O}(1)$ and $\text{O}(8)$), and β -carboxylate ($\text{O}(4)$ and $\text{O}(11)$) atoms (Fig. 1). As noted previously [14, 18], the $\text{Ge}-\text{O}$ bond lengths are non-equivalent (Table 1). The hydroxyl $\text{Ge}(1)-\text{O}(3)$ ($1.814(5) \text{ \AA}$ in **I** and $1.802(4) \text{ \AA}$ in **II**) and $\text{Ge}(1)-\text{O}(10)$ ($1.840(5) \text{ \AA}$ in **I** and $1.830(5) \text{ \AA}$ in **II**) bonds are much shorter than the carboxylate bonds. Unlike the structures reported previously [14, 15], in which the α -carboxylate $\text{Ge}-\text{O}$ bond is markedly elongated compared with the β -carboxylate bond, no such trend is noted in **I** or **II**. The $\text{Ge}(1)-\text{O}(1)$ bond with the α -carboxylate oxygen atom ($1.911(5) \text{ \AA}$ in **I** and $1.907(5) \text{ \AA}$ in **II**) in one ligand is shorter than the $\text{Ge}(1)-\text{O}(4)$ bond with the β -carboxylate oxygen atom of the same ligand ($1.939(5) \text{ \AA}$ in **I** and $1.937(5) \text{ \AA}$ in **II**). The coordination of germanium by the second ligand gives rise to the opposite relationship of bond lengths: the $\text{Ge}(1)-\text{O}(8)$ bond with the α -carboxylate atom ($1.926(5) \text{ \AA}$ in **I** and $1.924(5) \text{ \AA}$ in **II**) is longer than the $\text{Ge}(1)-\text{O}(11)$ bond with the β -carboxylate oxygen atom of the same ligand ($1.906(3) \text{ \AA}$ in **I** and $1.889(5) \text{ \AA}$ in **II**). Presumably, this trend of coordination bond lengths is a consequence of repulsion between the ligands that have their neutral

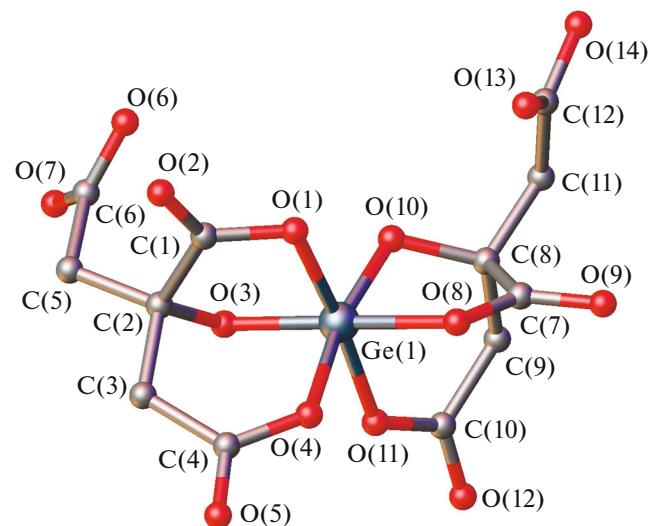


Fig. 1. Molecular structure of the $[\text{Ge}(\text{HCit})_2]^{2-}$ anion in compounds **I** and **II**.

carboxyl groups in *cis*-positions (the $\text{C}(6)\text{C}(2)\text{C}(9)\text{C}(12)$ pseudo-torsion angle is -67.9° in **I** and 67.2° in **II**).

The coordination of the organic ligand to the Ge(IV) atom gives rise to five- and six-membered metal rings. The $\text{Ge}(1)\text{O}(3)\text{C}(2)\text{C}(3)\text{C}(4)\text{O}(4)$ and $\text{Ge}(1)\text{O}(10)\text{C}(8)\text{C}(9)\text{C}(10)\text{O}(11)$ rings are in the sofa conformation (the $\text{O}(3)$ atom deviates by $0.8 \pm 0.06 \text{ \AA}$ in **I** and **II** from the root-mean-square plane through the $\text{Ge}(1)$, $\text{O}(4)$, $\text{C}(2)$, $\text{C}(3)$, and $\text{C}(4)$ atoms. The $\text{O}(10)$ atom deviates by -0.8 \AA in **I** and 0.8 \AA in **II** from the root-mean-square plane through the $\text{Ge}(1)$, $\text{O}(11)$, $\text{C}(8)$, $\text{C}(9)$, and $\text{C}(10)$ atoms to an accuracy of $\pm 0.07 \text{ \AA}$). The relevant folding parameters [19] are summarized in Table 2. The five-membered chelate rings are in the envelope conformation. The $\text{O}(3)$ atom deviates by 0.6 \AA in **I** and by -0.6 \AA in **II** from the root-mean-square plane through the $\text{Ge}(1)$, $\text{O}(1)$, $\text{C}(1)$, $\text{C}(2)$ atoms (to an accuracy of $\pm 0.02 \text{ \AA}$), while the $\text{O}(10)$ atom deviates by 0.5 \AA in **I** and by -0.6 \AA in **II** from the root-mean-square plane through the $\text{Ge}(1)$, $\text{O}(8)$, $\text{C}(7)$, and $\text{C}(8)$ atoms (to an accuracy of $\pm 0.03 \text{ \AA}$).

The cations $[\text{Fe}(\text{Phen})_3]^{2+}$ in **I** and $[\text{Co}(\text{Phen})_3]^{2+}$ in **II** are isomorphous (Fig. 2); both complexing ions are bound to three phenanthroline molecules. In the $\text{M}(1)(\text{Phen})_3$ cation (below, cation A), the positions of the 1,10-phenanthroline molecules were determined unambiguously, while in the $\text{M}(2)(\text{Phen})_3$ cation (below, cation B), the 1,10-phenanthroline molecule located on a 2 symmetry axis is disordered over two sites with equally probable occupancy.

The iron and cobalt coordination polyhedra for cations A and B in **I** and **II** are octahedra. In structure **I**, the $\text{Fe}(1)-\text{N}$ bond lengths vary in the $1.962(6)$ –

Table 1. Selected bond lengths (Å) and bond angles (deg) in structures **I** and **II***

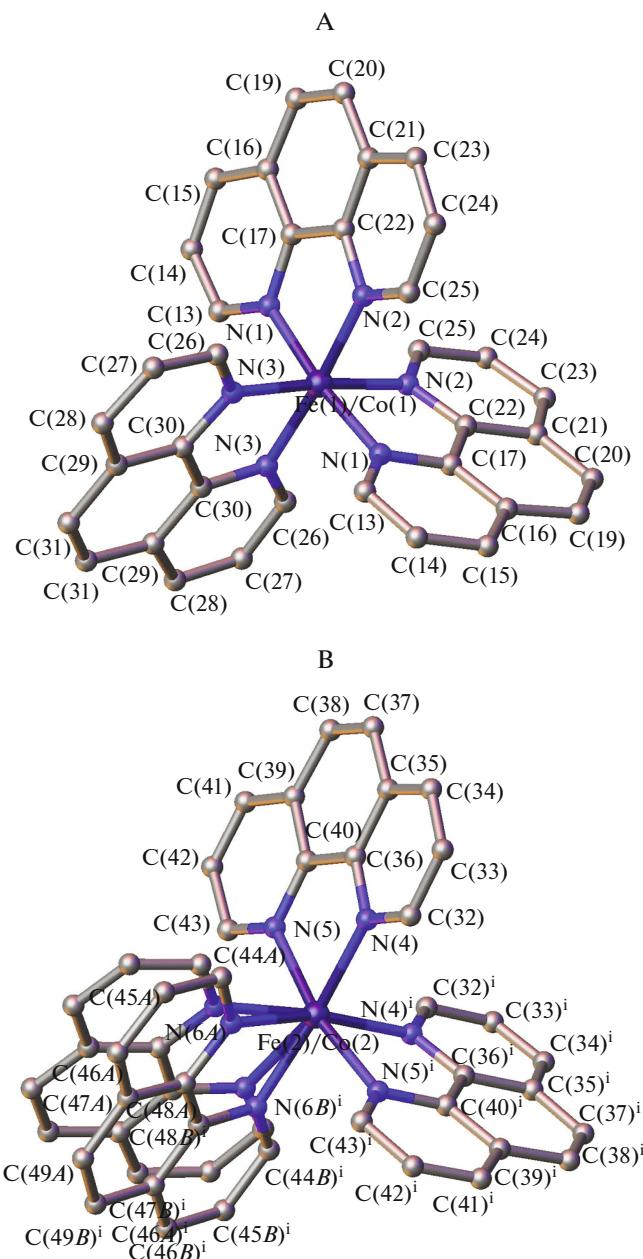
Bond	<i>d</i> , Å	Bond	<i>d</i> , Å
I		II	
Ge(1)–O(8)	1.926(5)	Ge(1)–O(8)	1.924(5)
Ge(1)–O(3)	1.814(5)	Ge(1)–O(3)	1.802(4)
Ge(1)–O(1)	1.911(5)	Ge(1)–O(1)	1.907(5)
Ge(1)–O(10)	1.840(5)	Ge(1)–O(10)	1.830(5)
Ge(1)–O(11)	1.906(5)	Ge(1)–O(11)	1.889(5)
Ge(1)–O(4)	1.939(5)	Ge(1)–O(4)	1.937(5)
Fe(1)–N(2)	1.983(6)	Co(1)–N(2)	2.135(6)
Fe(1)–N(3)	1.974(6)	Co(1)–N(3)	2.118(6)
Fe(1)–N(1)	1.962(6)	Co(1)–N(1)	2.118(6)
Fe(2)–N(4)	1.978(6)	Co(2)–N(4)	2.134(7)
Fe(2)–N(5)	1.978(8)	Co(2)–N(5)	2.144(7)
Fe(2)–N(6 <i>A</i>)	2.076(10)	Co(2)–N(6 <i>A</i>)	2.213(8)
Fe(2)–N(6 <i>B</i>)	1.924(9)	Co(2)–N(6 <i>B</i>)	2.072(8)
Angle	ω , deg	Angle	ω , deg
I		II	
O(8)Ge(1)O(4)	83.4(2)	O(8)Ge(1)O(4)	83.2(2)
O(3)Ge(1)O(1)	86.9(2)	O(3)Ge(1)O(1)	86.5(2)
O(3)Ge(1)O(10)	99.0(2)	O(3)Ge(1)O(10)	98.9(2)
O(3)Ge(1)O(11)	91.9(2)	O(3)Ge(1)O(11)	91.5(2)
O(3)Ge(1)O(4)	92.5(2)	O(3)Ge(1)O(4)	92.6(2)
O(1)Ge(1)O(8)	89.6(2)	O(1)Ge(1)O(8)	90.3(2)
O(1)Ge(1)O(4)	88.8(2)	O(1)Ge(1)O(4)	88.4(2)
O(10)Ge(1)O(8)	85.4(2)	O(10)Ge(1)O(8)	85.5(2)
O(10)Ge(1)O(1)	94.9(2)	O(10)Ge(1)O(1)	94.4(2)
O(10)Ge(1)O(11)	91.5(2)	O(10)Ge(1)O(11)	91.8(2)
O(11)Ge(1)O(8)	91.2(2)	O(11)Ge(1)O(8)	91.3(2)
O(11)Ge(1)O(4)	85.0(2)	O(11)Ge(1)O(4)	85.8(2)
N(2) ^{1#} Fe(1)N(2)	88.6(3)	N(2) ^{1#} Co(1)N(2)	90.8(3)
N(3) ^{1#} Fe(1)N(2)	94.5(2)	N(3) ^{1#} Co(1)N(2)	95.4(2)
N(3) ^{1#} Fe(1)N(3)	82.7(3)	N(3)Co(1)N(3) ^{1#}	79.2(3)
N(1)Fe(1)N(2)	83.1(2)	N(3)Co(1)N(1) ^{1#}	94.2(2)
N(1)Fe(1)N(2) ^{1#}	91.9(2)	N(1) ^{1#} Co(1)N(2)	92.9(2)
N(4)Fe(2)N(4) ^{2#}	89.1(3)	N(1)Co(1)N(2)	79.1(2)
N(4)Fe(2)N(5) ^{2#}	92.4(3)	N(4)Co(2)N(4) ^{2#}	90.5(4)
N(4)Fe(2)N(5)	82.5(3)	N(4) ^{2#} Co(2)N(5) ^{2#}	77.8(3)
N(4) ^{2#} Fe(2)N(6 <i>A</i>)	91.7(4)	N(4)Co(2)N(5) ^{2#}	94.2(3)
N(5)Fe(2)N(6 <i>A</i>) ^{2#}	98.4(5)	N(4) ^{2#} Co(2)N(6 <i>A</i>) ^{2#}	93.6(3)
N(5)Fe(2)N(6 <i>A</i>)	86.8(5)	N(5) ^{2#} Co(2)N(6 <i>A</i>)	85.2(2)

* Symmetry codes: ^{1#} 1–*x*, *y*, 1/2–*z*; ^{2#} –*x*, *y*, 1/2–*z*.

Table 2. Folding parameters in structures **I** and **II** for the rings: Ge(1)–O(3)–C(2)–C(3)–C(4)–O(4) (ring 1) and Ge(1)–O(10)–C(8)–C(9)–C(10)–O(11) (ring 2)

Structure	S		θ, deg		Ψ, deg	
	ring 1	ring 2	ring 1	ring 2	ring 1	ring 2
I	0.94	0.96	49.07	33.9	15.28	15.17
II	0.95	0.96	33.9	33.0	15.17	16.16

1.983(6) range and Fe(2)–N bond lengths are 1.924(9)–2.076(10) Å (Table 1). The NFe(1)N bond angles in cation A vary in the 82.7(3)°–92.8(3)° range and the NFe(2)N angles in cation B are 81.3(4)°–98.4(5)°. In structure **II**, the Co(1)–N bond lengths in cation A are 2.118(6)–2.135(6) Å and the Co(2)–N bond lengths in cation B are 2.072(8)–2.213(8) Å. The


NCo(1)N bond angles in cation A are 79.1(2)°–95.4(2)° and the NCo(2)N angles in cation B are 77.8(3)°–97.4(3)°.

In the crystal structures of compounds **I** and **II**, the anions, cations, and water molecules form alternating layers parallel to the crystallographic *yz* plane (Fig. 3). The layers can be classified into three sorts: (1) layers

Table 3. Geometric parameters of hydrogen bonds in structures **I** and **II***

D–H···A	Distance, Å		D–H···A, deg
	H···A	D–A	
I			
O(7)–H(7)···O(9) ^{1#}	1.77	2.582(7)	161
O(14)–H(14)···O(17) ^{2#}	2.03	2.691(10)	133
O(18)–H(18A)···O(15) ^{3#}	2.04	2.823(9)	147
O(18)–H(18B)···O(5) ^{1#}	1.99	2.836(8)	172
O(15)–H(15A)···O(10)	2.07	2.807(8)	141
O(15)–H(15B)···O(6)	2.14	2.872(10)	143
O(17)–H(17A)···O(5) ^{4#}	2.27	2.789(10)	125
O(17)–H(17B)···O(16)	2.85	2.649(13)	155
O(16)–H(16A)···O(7)	2.13	2.945(11)	159
O(16)–H(16B)···O(18)	2.08	2.883(10)	156
II			
O(7)–H(7)···O(9) ^{5#}	1.77	2.585(9)	170
O(16)–H(16A)···O(5) ^{6#}	2.02	2.869(9)	171
O(16)–H(16B)···O(17)	2.05	2.871(11)	159
O(17)–H(17B)···O(10)	2.03	2.846(9)	159
C(33)–H(33)···O(13)	2.34	3.269(13)	173

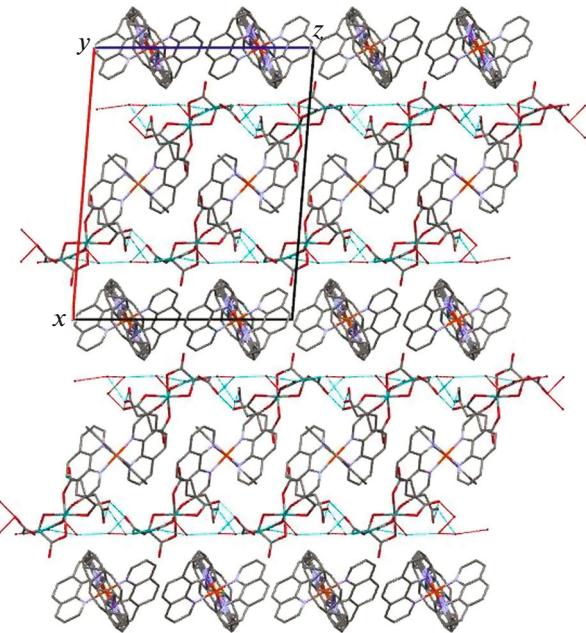

* Symmetry codes: ^{1#} $x, -3 - y, -1/2 + z$; ^{2#} $x, -2 - y, 1/2 + z$; ^{3#} $x, -2 - y, -1/2 + z$; ^{4#} $x, 1 + y, z$; ^{5#} $x, 1 - y, 1/2 + z$; ^{6#} $x, -1 + y, z$.

Fig. 2. Molecular structure of the $[\text{Fe}(\text{Phen})_3]^{2+}$ cations in **I** and the $[\text{Co}(\text{Phen})_3]^{2+}$ cations in **II** (cations A and B are shown).

containing anions; (2) layers containing cations A; and (3) layers composed of cations B. The anions in the layer are linked by intermolecular O—H···O hydrogen bonds (Table 3).

The obtained data indicate that bis(citrato)germanate anions are fairly stable in solution and are not destroyed on treatment with the phenanthroline com-

Fig. 3. Crystal structure of compounds **I** and **II** (projection along the y crystallographic axis).

plexes formed by typical complexing ions, Fe^{2+} and Co^{2+} . The structure of anions remains nearly the same as in the case of coordination compounds with the $3d$ -metal aqua cations [14, 15]. Thus, it was found that bis(citrato)germanate anions can act as building blocks, metallotectons, in hydrogen-bonded crystalline associates with chemically different cations.

REFERENCES

1. Zhou, Z.H., Lin, Y.J., Zhang, H.B., et al., *J. Coord. Chem.*, 1997, vol. 42, no. 2, p. 131.
2. Liu, S.-J., Zeng, Y.-F., Hu, X., et al., *J. Solid State Chem.*, 2013, vol. 204, p. 197.
3. Jing, S., Jia-Ning, X., Ping, Z., et al., *Chin. J. Struct. Chem.*, 2007, vol. 28, no. 9, p. 1617.
4. Wei-Chen, L., Wei-Gang, G., and Li-Hua, W., *Chin. J. Struct. Chem.*, 2014, vol. 33, no. 4, p. 591.
5. Che, P., Fang, D., Zhang, D., et al., *J. Coord. Chem.*, 2005, vol. 58, no. 17, p. 1581.
6. Seifullina, I.I., Pesaroglio, A.G., Minacheva, L.Kh., et al., *Russ. J. Inorg. Chem.*, 2006, vol. 51, no. 12, p. 1892.
7. Seifullina, I.I., Pesaroglio, A.G., Minacheva, L.Kh., et al., *Russ. J. Inorg. Chem.*, 2007, vol. 52, no. 4, p. 494.
8. Yang, Y., Yan, L.-T., Li, X., et al., *Z. Naturforsch., B: J. Chem. Sci.*, 2011, vol. 66, p. 889.

9. Atria, A.M., Parada, J., Garland, M.T., et al., *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.*, 2013, vol. 69, p. 212.
10. Willey, G.R., Somasunderam., U., Aris, D.R., and Errington, W., *Inorg. Chim. Acta*, 2001, vol. 315, no. 2, p. 191.
11. Ting, Z., Yong-Jing, W., and Zhang, L., *Chin. J. Struct. Chem.*, 2011, vol. 30, p. 587.
12. Chen, D., Wang, Y., Lin, Z., et al., *J. Mol. Struct.*, 2010, vol. 966, p. 59.
13. Chen, C.-Y., Zhou, Z.-H., Mao, S.-Y., et al., *J. Coord. Chem.*, 2007, vol. 60, no. 13, p. 1419.
14. Martsinko, E.E., Minacheva, L.Kh., Pesaroglo, A.G., et al., *Russ. J. Inorg. Chem.*, 2011, vol. 56, no. 8, p. 1243.
15. Martsinko, E.E., Minacheva, L.Kh., Chebanenko, E.A., et al., *Russ. J. Inorg. Chem.*, 2013, vol. 58, no. 5, p. 515.
16. Sheldrick, G.M., *Acta Crystallogr., Sect. A: Found. Adv.*, 2015, vol. 71, p. 3.
17. Grigor'ev, A.I. *Vvedenie v kolebatel'nyyu spektroskopiyu neorganicheskikh soedinenii* (Introduction to Vibrational Spectroscopy of Inorganic Compounds), Moscow: Nauka, 1977.
18. Tarasevich, B.N. *IK spektry osnovnykh klassov organicheskikh soedinenii* (IR Spectra of the Main Classes of Organic Compounds), Moscow: MGU, 2012.
19. Zefirov, N.S., Palyulin, V.A., and Dashevskaya, E.E., *J. Phys. Org. Chem.*, 1990, no. 3, p. 147.

Translated by Z. Svitanko