

¹H NMR Spectra and Crystal Structure of the Nickel(II) Complex with Ethyl 5,5-Dimethyl-2,4-Dioxohexanoate Aroylhydrazones

M. A. Tursunov*, K. G. Avezov, B. B. Umarov, and N. A. Parpiev

Bukhara State University, Bukhara, Uzbekistan

*e-mail: tursunovma@mail.ru

Received January 21, 2016

Abstract—Nickel(II) complexes $\text{NiL}^n \cdot \text{NH}_3$ ($n = 1–5$) with the products of condensation of ethyl 5,5-dimethyl-2,4-dioxohexanoate with aromatic acid hydrazides ($\text{H}_2\text{L}^1–\text{H}_2\text{L}^5$) were synthesized. The complexes were studied by elemental analysis and IR and ¹H NMR spectroscopy. The structure of the complex $\text{NiL}^1 \cdot \text{NH}_3$ was determined by X-ray diffraction (CIF file CCDC no. 1057268).

Keywords: benzoylhydrazone, β -diketone, ketoaldehydes, ketoesters, prototropy, acylhydrazines

DOI: [10.1134/S1070328417020087](https://doi.org/10.1134/S1070328417020087)

INTRODUCTION

Derivatives of acylhydrazones of 1,3-dicarbonyl compounds such as ketoaldehydes and ketoesters have proved themselves as promising compounds for investigation of prototropic, ring-chain, and ring–ring equilibria [1–5]. Therefore, acylhydrazines were chosen as nucleophiles in the present study. The Ni(II) complexes $\text{NiL}^n \cdot \text{NH}_3$ ($n = 1–5$) were synthesized from ethyl 5,5-dimethyl-2,4-dioxohexanoate benzoylhydrazones ($\text{H}_2\text{L}^1–\text{H}_2\text{L}^5$). All of the synthesized compounds were diamagnetic, readily soluble in chloroform and benzene, partly soluble in ethanol, and almost insoluble in water. The IR and ¹H NMR spectroscopy data attested to a square structure, similar to that of nickel(II) complexes of a similar composition with the condensation products of β -diketones.

EXPERIMENTAL

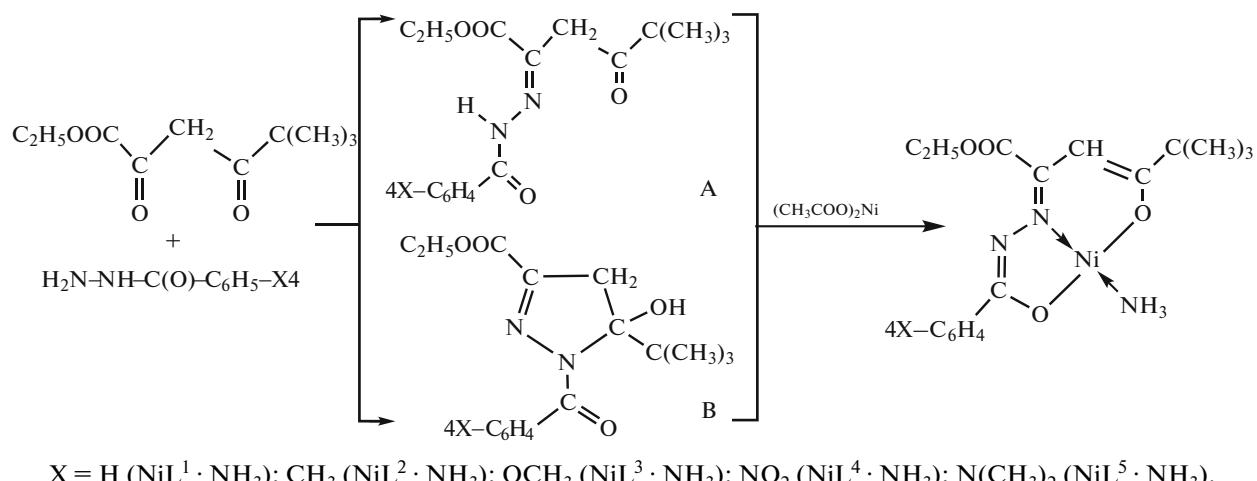
The complexes $\text{NiL}^1 \cdot \text{NH}_3$ – $\text{NiL}^5 \cdot \text{NH}_3$ (**I**–**V**) were prepared by the reaction of ethanol solutions of the ligands with metal acetate solutions in aqueous ammonia [1, 2, 6, 7].

Synthesis of $\text{NiL}^1 \cdot \text{NH}_3$. A hot solution of nickel(II) acetate (1.25 g, 0.005 mol) in concentrated aqueous ammonia (15 mL) was gradually added to a solution of H_2L^1 (1.59 g, 0.005 mol) (prepared by procedures reported in [1, 6]) in 25 mL of ethanol. After 5–10 min, red crystals precipitated from the red solution thus obtained. The crystals were filtered off, repeatedly washed with water and ethanol, and dried in a vacuum desiccator over P_2O_5 . The yield of $\text{NiL}^1 \cdot \text{NH}_3$ was 1.35 g (69%).

The yields, melting points, and elemental analysis data of the complexes are summarized in Table 1.

The monoclinic single crystals of $\text{C}_{17}\text{H}_{23}\text{N}_3\text{O}_4\text{Ni}$ suitable for X-ray diffraction were obtained by recrystallization of $\text{NiL}^1 \cdot \text{NH}_3$ from an ethanol–chloroform (1 : 1) mixture.

X-ray diffraction analysis was carried out on an Xcalibur automated diffractometer (CuK_α radiation, $\lambda = 1.54 \text{ \AA}$, graphite monochromator, ω -scan mode, $2\theta_{\max} = 50^\circ$). The structure of the complex was solved by the direct method. The solution and refinement (least-squares method in the anisotropic approximation to $R = 0.054$ and $R_w = 0.118$) were performed using 2568 independent reflections with $F^2 > 2\sigma$.


The main crystallographic data and structure refinement details for $\text{NiL}^1 \cdot \text{NH}_3$ are summarized in Table 2. The atom coordinates and other parameters of the crystals of **I** are deposited with the Cambridge Crystallographic Data Centre (CCDC no. 1057268; deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk/data_request/cif).

RESULTS AND DISCUSSION

The study is devoted to the structure and properties of complexes obtained from the products of condensation of ethyl 5,5-dimethyl-2,4-dioxohexanoate with *para*-substituted aromatic acid hydrazides. The reaction of nickel(II) acetate with an ethanol solution of ethyl 5,5-dimethyl-2,4-dioxohexanoate benzoylhydrazone (H_2L^1) in an equimolar ratio results in the precipitation of red crystals of compound **I**. The composition and structure of the complexes $\text{NiL}^n \cdot \text{NH}_3$ ($n = 1–5$) were established by elemental analysis (Table 1) and IR and ¹H NMR spectroscopy:

Table 1. Yields, melting points, and elemental analysis data of nickel(II) complexes with ethyl 5,5-dimethyl-2,4-dioxohexanoate arylhydrazones

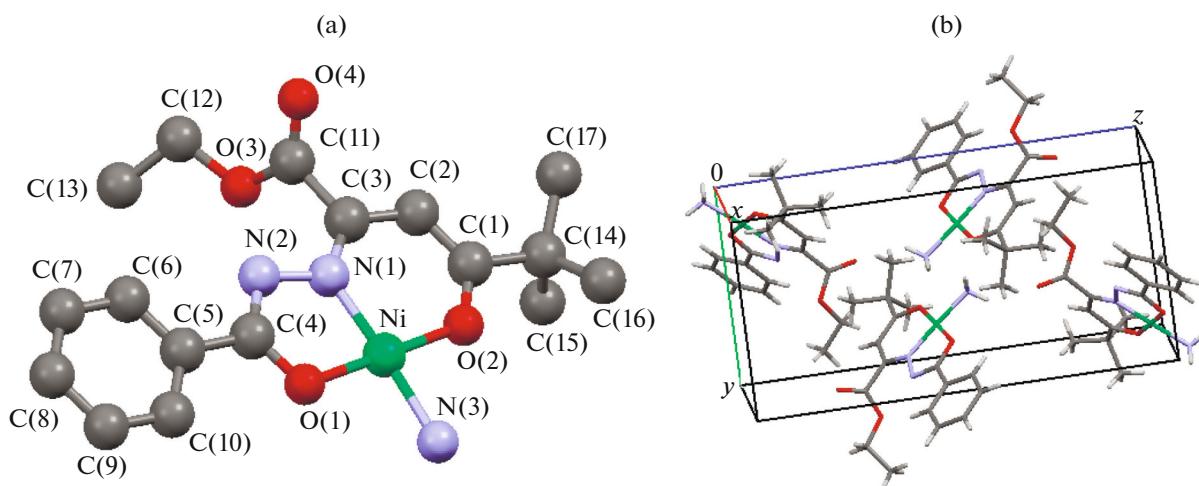
Compound	Molecular formula	Yield, %	T_m , °C	Content (found/calculated), %			
				Ni	C	H	N
$\text{NiL}^1 \cdot \text{NH}_3$	$\text{C}_{17}\text{H}_{23}\text{N}_3\text{O}_4\text{Ni}$	73	158	14.92/14.97	52.01/52.08	5.87/5.91	10.82/10.72
$\text{NiL}^2 \cdot \text{NH}_3$	$\text{C}_{18}\text{H}_{25}\text{N}_3\text{O}_4\text{Ni}$	63	165	14.41/14.45	53.20/53.24	6.17/6.20	10.43/10.35
$\text{NiL}^3 \cdot \text{NH}_3$	$\text{C}_{18}\text{H}_{25}\text{N}_3\text{O}_5\text{Ni}$	56	178	13.86/13.91	51.17/51.22	5.93/5.97	10.01/9.95
$\text{NiL}^4 \cdot \text{NH}_3$	$\text{C}_{17}\text{H}_{22}\text{N}_4\text{O}_6\text{Ni}$	54	182	13.39/13.43	46.67/46.72	5.01/5.07	12.89/12.82
$\text{NiL}^5 \cdot \text{NH}_3$	$\text{C}_{19}\text{H}_{28}\text{N}_4\text{O}_4\text{Ni}$	71	197	13.43/13.49	52.40/52.44	6.46/6.49	12.94/12.88

The IR spectra of $\text{NiL}^n \cdot \text{NH}_3$ ($n = 1-5$) exhibit absorption bands at 3375, 3337, 3280, and 3170 cm^{-1} , corresponding to symmetric and antisymmetric stretching vibrations of the coordinated ammonia molecule. The strong band at $\sim 1730 \text{ cm}^{-1}$ corresponds to the ester $\text{C}=\text{O}$ -group stretching mode. In the IR spectra of the initial free ligands in the hydrazone form A, this band occurs at 1740–1750 cm^{-1} [8, 9]. The low-frequency shift of the $\nu(\text{C}=\text{O})$ mode in the complexes relative to that of free ligands may indicate inclusion of the electron-withdrawing COOC_2H_5 group into the six-membered conjugation chain of the complex. Several strong and medium bands in the range of 1400–1620 cm^{-1} of the IR spectra of the complexes are attributable to the predominantly stretching and bending modes of the conjugation system formed by one-and-a-half bonds in the five- and six-membered metallacycles [10].

The conclusion about the planar structure of the complex with tridentate coordination of the ligand dianion (L^n) $^{2-}$ drawn from the IR data was confirmed by X-ray diffraction study of the grown single crystal of the complex $\text{NiL}^1 \cdot \text{NH}_3$.

The crystals of $\text{C}_{17}\text{H}_{23}\text{N}_3\text{O}_4\text{Ni}$ are monoclinic, $a = 12.0019(5)$, $b = 8.5823(4)$, $c = 18.1664(6) \text{ \AA}$, $\beta = 92.161(4)^\circ$, $V = 1869.87(13) \text{ \AA}^3$, $\rho(\text{calcd.}) = 1.659 \text{ g/cm}^3$, $Z = 2$, space group $P2_1/c$. The molecule of complex **I** contains virtually planar coupled five- and six-membered metallacycles (figure).

The doubly deprotonated residue of H_2L^1 is coordinated to nickel via two oxygen atoms and the hydrazone nitrogen atom. The fourth site in the planar square of the *trans*- N_2O_2 coordination unit is occupied by the ammonia nitrogen atom. The $\text{Ni}-\text{O}(1)$ (1.852(2) \AA) and $\text{Ni}-\text{O}(2)$ (1.835(2) \AA) bond lengths in the crystal of this complex are close to analogous values in the nickel complexes of the same type with


Table 2. Main crystallographic data and structure refinement details for $\text{NiL}^1 \cdot \text{NH}_3$

Parameter	Value
<i>M</i>	392.09
Temperature, K	293
Crystal system	Monoclinic
Space group	<i>P</i> 2 ₁ / <i>c</i>
<i>a</i> , Å	11.9969(8)
<i>b</i> , Å	8.5818(4)
<i>c</i> , Å	18.1740(13)
β , deg	92.209(6)
<i>V</i> , Å ³	1869.7(2)
<i>Z</i>	4
ρ (calcd.), g/cm ³	1.206
μ , mm ⁻¹	1.72
Crystal size, mm	0.2 × 0.3 × 0.7
θ Range, deg	3.7–76.0
<i>h</i> , <i>k</i> , <i>l</i> range	−4 ≤ <i>h</i> ≤ 10, −10 ≤ <i>k</i> ≤ 9, −22 ≤ <i>l</i> ≤ 21
Measured reflections	6954
Unique reflections	3768
<i>R</i> _{int}	0.054
Reflections with <i>I</i> > 2σ(<i>I</i>)	2568
Number of refined parameters	243
GOOF (<i>F</i> ²)	1.00
<i>R</i> ₁ , <i>wR</i> ₂ (<i>I</i> > 2σ(<i>I</i>))	0.048, 0.120
<i>R</i> ₁ , <i>wR</i> ₂ (all reflections)	0.047, 0.118
$\Delta\rho_{\text{max}}/\Delta\rho_{\text{min}}$, e/Å ³	0.29/−0.27

the $[\text{N}_2\text{O}_2]$ coordination unit. The Ni–N(1) bond (1.818(8) Å) is markedly shorter than the analogous values, and the Ni–N(3) bond length (1.933(3) Å) agrees with the literature data [6, 11, 12].

The central nickel atom slightly deviates from the mean plane through the coordinated O(1), O(2), N(1), and N(3) atoms. The nearly planar coupled five- and six-membered metallacycles are not strictly coplanar. The dihedral angle between the ring planes differs somewhat from these angles in analogous complexes. This distortion of the coplanar arrangement of the two rings is attributable, in our opinion, to the presence of two bulky groups, $\text{C}_2\text{H}_5\text{COOC}$ and $(\text{CH}_3)_3\text{C}$, in the β-diketone moiety of the ligand L^1 .

The ¹H NMR spectrum (in CCl_4 –DMSO-*d*₆) of the complex $\text{NiL}^1 \cdot \text{NH}_3$ with substituted β-ketoester arylhydrazone resembles the spectra of nickel complexes with various acyl- and arylhydrazones of β-diketones, β-ketoaldehydes, and β-ketoesters [12]. The spectrum exhibits signals for the ethoxycarbonyl $\text{C}_2\text{H}_5\text{COOC}$ protons and for other terminal protons. The triplet from three CH_3 -group protons was detected at δ 1.36 ppm. The CH_2 protons give rise to a quadruplet at δ 4.28 ppm, with a 3 : 2 integrated intensity ratio and spin–spin coupling constant $J_{\text{AB}} = 7$ Hz. The single vinylic proton resonates at δ 5.03 ppm, and the nine protons of the *tert*- C_4H_9 butyl groups are responsible for an intense singlet at δ 1.00 ppm. The multiplets centered at δ 7.14 and 7.67 ppm are due to the aromatic protons (5H) of the hydrazone moiety. The signal pattern is somewhat complicated because the signals overlap. The proton signal of the coordinated ammonia molecule was detected at δ 2.07 ppm.

(a) Crystal structure of $\text{NiL}^1 \cdot \text{NH}_3$ and (b) packing of molecules in the crystal.

ACKNOWLEDGMENTS

This work was supported by the Uzbekistan Foundation for Basic Research (grant F7-20).

REFERENCES

1. Parpiev, N.A., Yusupov, S.I., Yakimovich, S.I., and Sharipov, Kh.T., *Atsilgidrazony i ikh kompleksy s perekhodnymi metallami* (Acylyhydrazones and Their Complexes with Transition Metals), Tashkent: Fan, 1988.
2. *Sovremennye problemy sinteza i issledovaniya organicheskikh soedinenii* (Modern Problems of Synthesis and Study of Organic Compounds), Kostikov, R.R., Ed., Leningrad: Leningrad. Gos. Univ., 1990.
3. Yakimovich, S.I. and Zerova, I.V., *Zh. Org. Khim.*, 1991, vol. 27, no. 5, p. 959.
4. Yakimovich, S.I. and Nikolaev, V.N., *Zh. Org. Khim.*, 1981, vol. 17, no. 2, p. 284.
5. Yakimovich, S.I., Nikolaev, V.N., and Zerova, I.V., *Zh. Org. Khim.*, 1986, vol. 22, no. 2, p. 286.
6. Umarov, B.B., *Doctoral (Chem.) Dissertation*, Tashkent: IU AN RUZ, 1996.
7. Tursunov, M.A., Avezov, K.G., Abdurakhmonov, S.F., et al., *Materialy Respublikanskoi nauchno-prakticheskoi konferentsii "Aktual'nye problemy khimicheskoi tekhnologii"* (Proc. Republican Sci. Pract. Conf. "Modern Problems of Chemical Engineering"), Bukhara: BukhITI, 2014, p. 34.
8. Tursunov, M.A., Umarov, B.B., Avezov, K.G., et al., *Trudy Mezhdunar. simpoziuma po fundamental'nym i prikladnym problemam nauki* (Proc. Int. Symp. on Fundamental and Applied Problems of Science), Moscow, 2013, vol. 1, ch. 8., p. 158.
9. Tursunov, M.A., Umarov, B.B., Avezov, K.G., et al., *Sb. materialov XVIII Mezhdunar. nauch.-prakt. konf. "Fundamental'nye i prikladnye issledovaniya: problemy i rezul'taty"* (Proc. XVIII Int. Sci. Pract. Conf. "Fundamental and Applied Research: Problems and Results") Novosibirsk, 2015, p. 151.
10. Tursunov, M.A., Umarov, B.B., Minin, V.V., et al., Abstracts of Papers, *Respubl. nauch.-tekhn. konf. "Sovremennye tekhnologii i innovatsii gorno-metallurgicheskoi otrassli"* (Republ. Sci. and Technol. Conf. "Modern Technologies and Innovations of Ore Mining and Smelting Industry"), Navoi: NavGGI, 2012, p. 350.
11. Umarov, B.B., Toshev, M.T., Yakimovich, S.I., et al., *Koord. Khim.*, 1992, vol. 18, no. 9, p. 980.
12. Tursunov, M.A., Avezov, K.G., Umarov, B.B., and Parpiev, N.A., *Materialy Mezhdunar. nauch.-prakt. konf. "Aktual'nye problemy otrassei khimicheskoi tekhnologii"* (Proc. Int. Sci. and Pract. Conf. "Modern Problems of Chemical Engineering Branches") Bukhara: BukhITI, 2015, p. 237.

Translated by Z. Svitanko