

Na₄[*trans*-{Cp*Rh}₂Ta₆O₁₉] · 24H₂O: Synthesis, Structure, Solution Studies¹

P. A. Abramov^{a, b, *}, N. B. Kompankov^a, and M. N. Sokolov^{a, b}

^a Nikolaev Institute of Inorganic Chemistry Siberian Branch, Russian Academy of Sciences, Novosibirsk

^b Novosibirsk State University

*e-mail: abramov@niic.nsc.ru

Received August 19, 2015

Abstract—Reaction of [Cp*RhCl₂]₂ (Cp* = η⁵-C₅(CH₃)₅) with Na₈[Ta₆O₁₉] · 24.5H₂O, taken in {Cp*Rh}²⁺/[Ta₆O₁₉]⁸⁻ 2 : 1 molar ratio, in water leads to a new noble-metal-POM complex Na₄[*trans*-{Cp*Rh}₂Ta₆O₁₉] · 24H₂O (**I**), which was isolated and characterized by XRD (CIF file CCDC no. 1416810), elemental analysis, NMR and IR spectroscopy.

DOI: 10.1134/S1070328416050018

INTRODUCTION

In aqueous solutions at pH 8–12 Nb and Ta in their highest oxidation states (V) form stable hexanuclear anionic oxo-complexes [M₆O₁₉]⁸⁻ with so-called Lindqvist structure. Their stability in a high pH range coupled with high negative charge may be of interest when these complexes are used as tridentate non-flexible O-donors with fixed geometry. For example, [M₆O₁₉]⁸⁻ can coordinate various transition [1–3] and noble [4] metals as well as cationic organometallic fragments [5–7]. The study of these complexes can provide insight in the processes which might occur at pH ≤ 8, when parent [M₆O₁₉]⁸⁻ are unstable towards precipitating of hydrated M₂O₅. Since the number of experimental tools that can be used for solution studies of niobates and tantalates, is very limited (¹⁷O NMR, mass-spectrometry [8], and small-angle X-ray scattering (SAXS) [9]), direct structural information is of utmost importance. Unfortunately, attempts to obtain single crystals from niobate and tantalate solutions under pH close to the stability limit yield only gels or amorphous precipitates. However, this problem can be circumvented by coordinating {(C₆H₆)Ru}²⁺ or {Cp*Rh}²⁺ to [M₆O₁₉]⁸⁻ [6, 7]. In this way it was possible to catch and structurally characterize a new dimeric oxo-bridged bis(Lindqvist) moiety {[Ta₆O₁₈]₂(μ-O)}¹⁴⁻, isolated as Na₁₀{[(C₆H₆)RuTa₆O₁₈]₂(μ-O)} · 39.4H₂O [6].

In the present work we have studied reaction between [Cp*RhCl₂]₂ (Cp* = η⁵-C₅(CH₃)₅) and Na₈[Ta₆O₁₉] · 24.5H₂O in {Cp*Rh}²⁺/[Ta₆O₁₉]⁸⁻ 2 : 1

molar ratio in water, in continuation of our research aiming at elucidation of the influence of the nature of counter cation (here Na⁺) on the composition and structure of the complexation products. We also report tantalate transfer between [Cp₂*Rh₂(OH)₃](NO₃) and in situ generated [Mn(Ta₆O₁₉)₂]¹²⁻.

EXPERIMENTAL

Starting materials and techniques: Starting Na₈[Ta₆O₁₉] · 24.5H₂O and [Cp*RhCl₂]₂ were prepared according to the published procedures [10, 11]. All other reagents were of commercial quality and used as purchased (Sigma Aldrich). IR spectra were recorded on a Specord IR 75 spectrometer. NMR spectra of **I** in D₂O were recorded with a Bruker Avance 500 spectrometer at room temperature.

Preparation of [Cp₂*Rh₂(OH)₃](NO₃) (stock solution): 0.20 g (0.3 mmol) [Cp*RhCl₂]₂ was dissolved in 20 mL of water by stirring at 80–90°C. To the resulting red-orange solution, 0.25 g (1.5 mmol) of AgNO₃ was added, and the mixture was further heated at 80°C for 2 h in the dark. Then the reaction mixture was allowed to cool down, and AgCl was removed by filtration, leaving orange solution of [Cp₂*Rh₂(OH)₃](NO₃) (c = 0.016 M, pH = 3) which was used in further experiments.

Synthesis of Na₄[*trans*-{Cp*Rh}₂Ta₆O₁₉] · 24H₂O (I**):** 0.10 g (50 μmol) of Na₈[Ta₆O₁₉] · 24.5H₂O was dissolved under stirring and heating at 80°C in 5 mL of water. Final pH was 12. The solution was put in a vial (V = 25 mL) with a tight screw-cap, and 0.03 g (50 μmol) of solid [Cp*RhCl₂]₂ was added. The closed

¹ The article was translated by the authors.

Crystallographic characteristics and details of XRD experiment for the complex **I**

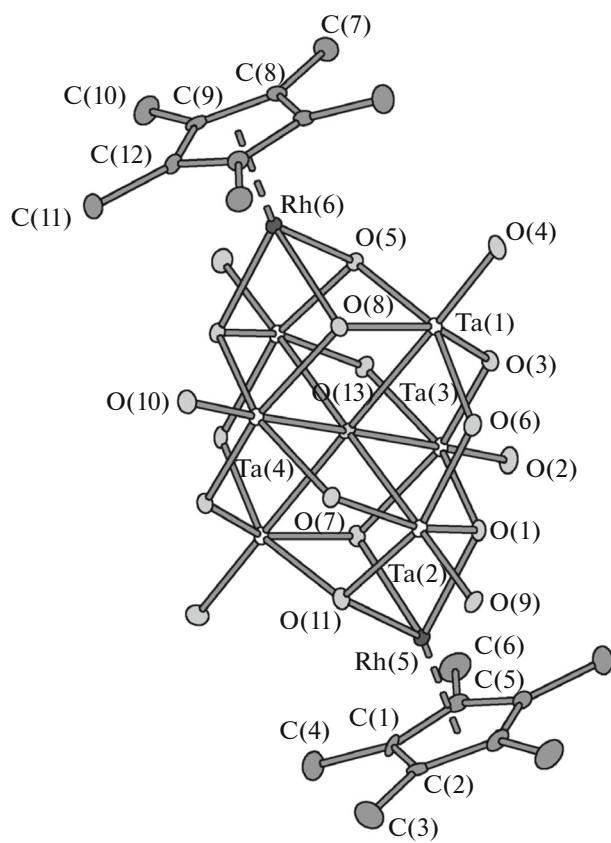
Parameter	Value
CCDC	1416810
Chemical formula	C ₂₀ H ₁₂ Na ₄ O ₄₃ Rh ₂ Ta ₆
<i>M</i>	2323.78
Crystal system	Monoclinic
Space group	<i>P</i> 2 ₁ / <i>m</i>
<i>a</i> , <i>b</i> , <i>c</i> , Å	13.5029(3), 15.1512(3), 14.8046(3)
β (deg)	110.653(3)
<i>V</i> , Å ³	2834.15(12)
<i>Z</i>	2
ρ(calc), g/cm ³	2.723
μ, mm ⁻¹	12.23
<i>F</i> (000)	2096
Crystal dimensions, mm	0.07 × 0.06 × 0.03
θ Ranges, deg	3.32–31.04
<i>h</i> , <i>k</i> , <i>l</i> ranges	−18 ≤ <i>h</i> ≤ 19 −20 ≤ <i>k</i> ≤ 21 −21 ≤ <i>l</i> ≤ 21
Measured reflections	16877
Independent reflections (<i>R</i> _{int})	8164 (0.022)
Observed reflections <i>I</i> > 2σ(<i>I</i>)	6593
No. of parameters	367
GOOF	1.05
<i>R</i> ₁ (<i>I</i> > 2σ(<i>I</i>))	0.027
<i>wR</i> ₂ (all reflections)	0.061
Δ ρ _{min} /Δρ _{max} , e/Å ³	−1.15/1.69

vial was kept under stirring 80°C for 24 h, and the final pH dropped to 9. After cooling the opened vial with reaction solution was placed in a jar filled with acetone. Acetone vapor diffusion at 2°C yielded single crystals of complex **I** as yellow plates. The chemical composition and structure of **I** were determined by X-ray analysis. Yield 70%.

¹H NMR (δ, ppm, room temperature): 1.754 s., 1.731 s.; ¹³C NMR (δ, ppm, room temperature): 8.553 s., 8.501 s., 94.2 d. (*J*_{C–Rh}² 10 Hz), 94 d. (*J*_{C–Rh}² 10 Hz).

IR (KBr; *v*, cm^{−1}): 3430 s, 2967 w, 2938 w, 1636 m, 1473 w, 1380 w, 1082 w, 1024 w, 863 s, 845 s, 786 s, 680 s.

Reaction of [Cp^{*}₂Rh₂(OH)₃](NO₃) with in situ generated [Mn(Ta₆O₁₉)₂]^{12−}: 0.10 g (50 μmol) of Na₈[Ta₆O₁₉] · 24.5H₂O were dissolved (80°C) in 5 mL of water in a vial (*V* = 25 mL) with a tight screw-cap.

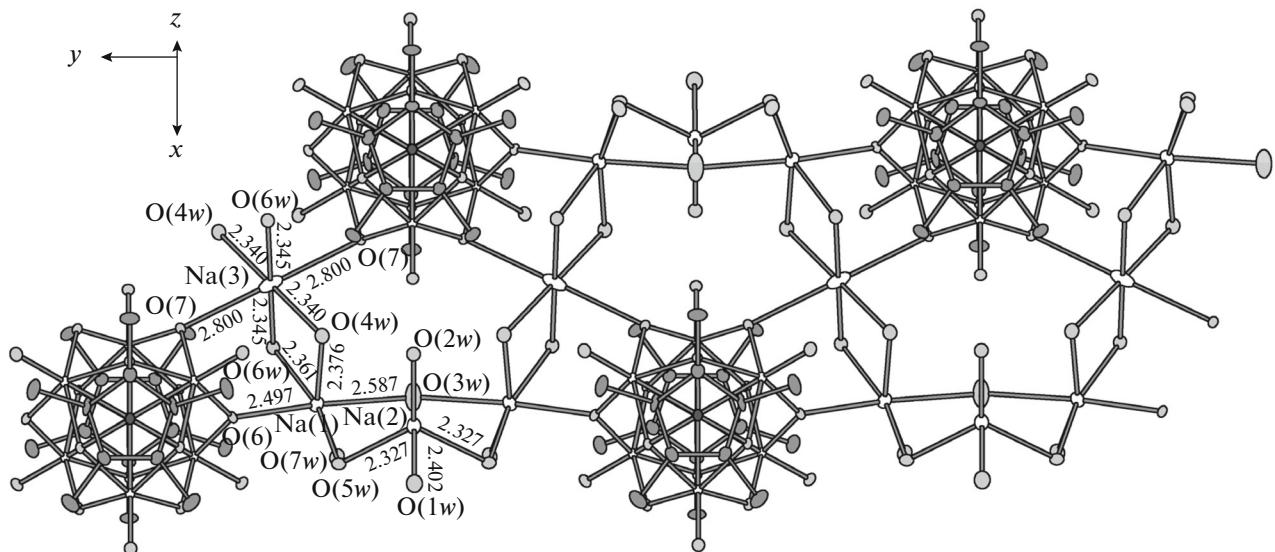

To the freshly prepared hot solution of tantalate, a solution of 6 mg (25 μmol) of Mn(O₂CCH₃)₂ · 4H₂O in 1 mL of water was added. A white precipitate appears which gradually dissolves with the formation of a brown solution of [Mn(Ta₆O₁₉)₂]^{12−}. To this solution, 1.6 mL of stock solution of [Cp^{*}₂Rh₂(OH)₃](NO₃) (*c* = 0.016 M, pH = 3) was added. The reaction mixture was kept for 24 h at 80°C. After cooling the brown solution was placed in acetone vapors at 2°C, producing a dark-red precipitate and orange solution. Gradually yellow single crystals of **I** appear on the surface of the precipitate.

X-ray structure determination. The crystal structure of **I** was determined by X-ray analysis in an essentially routine way on an Xcalibur (Agilent Technologies) single crystals diffractometer, at 130 K, using graphite-monochromated MoK_α (λ = 0.71073 Å) radiation. The reflections intensities were measured φ-scanning of narrow (0.5°) frames. Empirical absorption correction was applied with SCALE3 ABSPACK program [12]. The structure was solved by direct method and refined with full-matrix least-squares treatment, anisotropically for non-hydrogen atoms using SHELXLe program [13]. No disorder was found for Na⁺ cations and H₂O molecules. The hydrogen atoms were hot localized. Crystallographic data, refinement details and CCDC deposition code for **I** are listed in table.

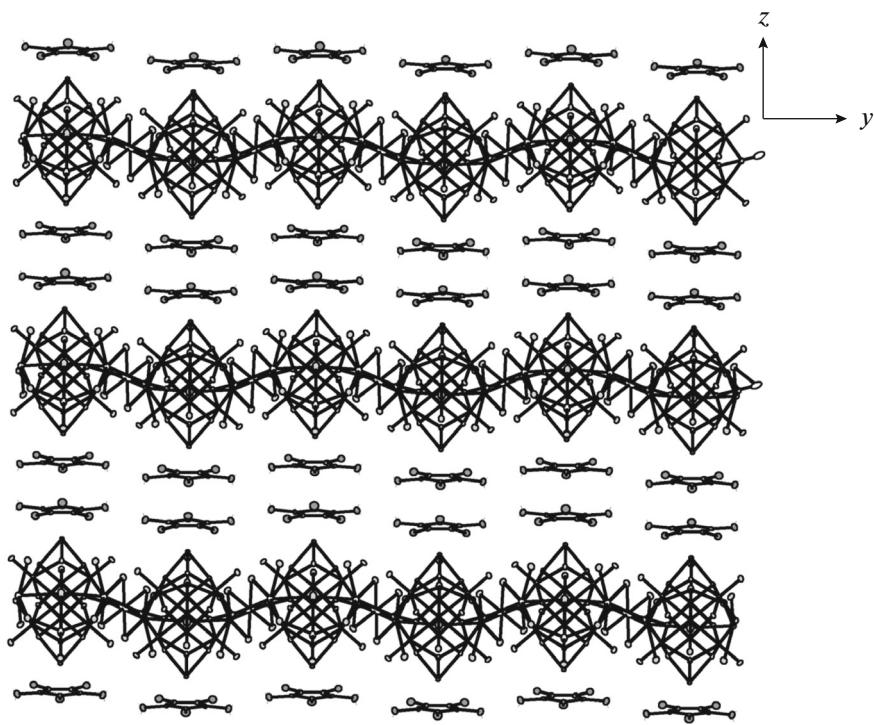
RESULTS AND DISCUSSION

The structure of Lindqvist anions [M₆O₁₉]^{8−} (M = Mo, W, Nb, Ta) can be described as a superoctahedron, built of six equivalent {MO₆} octahedra, each of which shares five of its oxo-ligands with other octahedra. This way of joining six MO₆ octahedra together gives on μ₆-O, twelve μ₂-O, and six terminal M=O groups. Each triangular face {M₃O₃} can be regarded as a metallomacrocycle capable of coordination to various metal cations [1–3] or cationic organometallic fragments [5–7].

Previously we reported on the reactions between [M₆O₁₉]^{8−} (M = Nb, Ta) and [Cp^{*}RhCl₂]₂ (Cp^{*} = η⁵-C₅(CH₃)₅) in [M₆O₁₉]^{8−}/[Cp^{*}Rh]²⁺ = 2 : 1 molar ratio [7]. In all cases they produced [*trans*-{Cp^{*}Rh}₂M₆O₁₉]^{4−} hybrid organometallic-POM complexes, which were isolated and characterized as K₄[{Cp^{*}Rh}₂Nb₆O₁₉][−] · 17H₂O and Cs₄[{Cp^{*}Rh}₂Ta₆O₁₉][−] · 18H₂O. By using ¹H DOSY NMR technique for the first time in the chemistry of niobates and tantalates, we were able to estimate the diffusion coefficients, hydrodynamic radii and molecular mass of [{Cp^{*}Rh}₂M₆O₁₉]^{4−} in water solution, and rule out any association or condensation processes. By following temperature dependence of ¹H NMR spectra we have also ruled out equilibration of [*trans*-


Fig. 1. View of $[\text{trans-}\{\text{Cp}^*\text{Rh}\}_2\text{Ta}_6\text{O}_{19}]^{4-}$. Hydrogen atoms form the CH_3 groups in Cp^* are omitted for clarity (with 50% probability ellipsoids).

$\{\text{Cp}^*\text{Rh}\}_2\text{M}_6\text{O}_{19}]^{4-}$ with their hypothetical *cis*-isomers. In the crystal structure both $\text{K}_4[\{\text{Cp}^*\text{Rh}\}_2\text{Nb}_6\text{O}_{19}] \cdot 17\text{H}_2\text{O}$ and


$\text{Cs}_4[\{\text{Cp}^*\text{Rh}\}_2\text{Ta}_6\text{O}_{19}] \cdot 18\text{H}_2\text{O}$ have, despite difference in the cationic composition and different symmetry of the elementary cells, the same layered structure. The $[\text{trans-}\{\text{Cp}^*\text{Rh}\}_2\text{M}_6\text{O}_{19}]^{4-}$ anions are connected by their respective K^+ or Cs^+ counter-ions into layers (the coordination around K^+ and Cs^+ is completed by water molecules). The layers are mutually arranged in way as to permit $\pi-\pi$ stacking interactions between the Cp^* ligands.

In this work we ran reaction of sodium hexatantalate with $[\text{Cp}^*\text{RhCl}_2]_2$ in molar ratio $[\text{Ta}_6\text{O}_{19}]^{8-}/[\text{Cp}^*\text{Rh}]^{2+} = 1 : 2$, which also yielded *trans*-complex $[\{\text{Cp}^*\text{Rh}\}_2\text{Ta}_6\text{O}_{19}]^{4-}$, isolated and structurally characterized as $\text{Na}_4[\{\text{Cp}^*\text{Rh}\}_2\text{Ta}_6\text{O}_{19}] \cdot 24\text{H}_2\text{O}$ (**I**) (Fig. 1).

In the structure of **I**, half-sandwich organometallic fragments $\{\text{Cp}^*\text{Rh}\}^{2+}$ are coordinated at two mutually opposing $\{\text{Ta}_3\text{O}_3\}$ faces of the Ta_6 octahedron (which can be described as *anti-trans* coordination mode [14]). Average $\text{Rh}-\text{O}$ bond length (2.150(3) Å) is close to the values found in $\text{K}_4[\{\text{Cp}^*\text{Rh}\}_2\text{Nb}_6\text{O}_{19}] \cdot 17\text{H}_2\text{O}$ (2.149(5) Å) and $\text{Cs}_4[\{\text{Cp}^*\text{Rh}\}_2\text{Ta}_6\text{O}_{19}] \cdot 18\text{H}_2\text{O}$ (2.138(8) Å). In the crystal structure of **I** there are three sorts of Na^+ ions, which differ in their coordination environment. $\text{Na}(1)$ has coordination number six, with five water molecules and a μ_2 -O atom of the anion ($\text{Na}(1)-\text{O}(6)$ 2.497(4) Å). The coordination sphere around $\text{Na}(2)$ is built exclusively of six H_2O molecules. The coordination polyhedra of both types of Na^+ ions are severely distorted and resemble little regular octahedra. These distortions are most probably due to the packing effects. $\text{Na}(3)$ coordinates only four water molecules, while bonding two μ_2 -O atoms from neighboring anions ($\text{Na}(3)-\text{O}(7)$ 2.800(3) Å), which are mutually *trans* in the coordination sphere. The

Fig. 2. Cation-anionic zig-zag chains formed in the structure of **I**. The hydrogen atoms are omitted for clarity.

Fig. 3. Crystal packing of **I**. Rh–C bonds, hydrogen atoms, and interlayer water of crystallization are omitted for clarity.

coordination polyhedron around Na3 has point symmetry D_{4h} and is more close to idealized octahedral geometry than in the case of Na(1) and Na(2) (Fig. 2).

In the crystal structure of **I** the cations, water molecules, and anions, form layers spreading along the [110] crystallographic direction, which form contacts with each other through π – π stacking interactions between the Cp^* ligands (Fig. 3). Similar packing mode was reported for $\text{K}_4[\{\text{Cp}^*\text{Rh}\}_2\text{Nb}_6\text{O}_{19}] \cdot 17\text{H}_2\text{O}$, $\text{Cs}_4[\{\text{Cp}^*\text{Rh}\}_2\text{Ta}_6\text{O}_{19}] \cdot 18\text{H}_2\text{O}$ [7] and $\text{K}_4[\{(p\text{-Cym})\text{Ru}\}_2\text{Nb}_6\text{O}_{19}] \cdot 4\text{H}_2\text{O}$ (*p*-Cym = *p*-Cymene) [5]. Thus, despite dramatic variation in the ionic radii between Na^+ and Cs^+ , the tendency to form layered structures persists, probably supported by the presence of η^5 or η^6 aromatic ligands grafted to POM.

In aqueous solution **I** does not show tendency to lose the $\{\text{Cp}^*\text{Rh}\}^{2+}$ units, which was confirmed by temperature-independent ^1H NMR spectra. At room temperature the methyl groups of the Cp^* ligand appear as two singlets of equal intensity, because free rotation around $\text{C}_{(\text{ring})}\text{—C}_{(\text{CH}_3)}$ bond is hindered in order to avoid $\text{H}_{(\text{CH}_3)}\cdots\text{O}_{(\text{POM})}$ repulsions. That these signals come from differently oriented protons of the same *cis-trans* isomer, and not from *cis-trans* isomerization, is evident from the absence of temperature or time dependence of their intensities. The same effect was observed for solutions of $\text{K}_4[\{\text{Cp}^*\text{Rh}\}_2\text{Nb}_6\text{O}_{19}] \cdot 17\text{H}_2\text{O}$ and $\text{Cs}_4[\{\text{Cp}^*\text{Rh}\}_2\text{Ta}_6\text{O}_{19}] \cdot 18\text{H}_2\text{O}$. However,

in solutions of $\text{K}_4[\{(p\text{-Cym})\text{Ru}\}_2\text{Nb}_6\text{O}_{19}]$ *cis-trans* isomerization was detected, which demonstrates lability of the $\text{Ru}^{II}\text{—O}$ bonding with respect to $\text{Rh}^{III}\text{—O}$ bonding. Accordingly, ^{13}C NMR spectra show four signals, each conformer giving two signals. The doublets at 94.0 and 94.2 ppm with $^{2}\text{J}_{\text{C}\text{—}\text{Rh}} = 10$ Hz come from the cyclopentadienyl rings, and the singlets at 8.553 and 8.501 ppm from the carbon atoms of the CH_3 groups.

As mentioned above, grafting organometallic fragments can provide convenient markers for study of polyoxometalates. For example, no exact information exists about the complex which is formed by rapid oxidation of Mn^{2+} with air in hot sodium tantalate solutions. In the case of niobate the formation of a Mn(IV) sandwich-type complex $[\text{Mn}(\text{Nb}_6\text{O}_{19})_2]^{12-}$ was convincingly proven already in late 1960s [1, 2]. For hexatantalate no crystalline product could be isolated, even though $[\text{Mn}(\text{Ta}_6\text{O}_{19})_2]^{12-}$ is the most probable formulation of the resulting complex. In this work we attempted to coordinate $\{\text{Cp}^*\text{Rh}\}^{2+}$ to the putative $[\text{Mn}(\text{Ta}_6\text{O}_{19})_2]^{12-}$, generated *in situ*, in order to facilitate its crystallization. For this purpose we reacted it with solution of $[\text{Cp}_2^*\text{Rh}_2(\mu\text{-OH})_3]^+$, which had been obtained from $[\text{Cp}^*\text{RhCl}_2]_2$ and AgNO_3 in water. Mixing the solutions of $[\text{Cp}_2^*\text{Rh}_2(\mu\text{-OH})_3]^+$ and $[\text{Mn}(\text{Ta}_6\text{O}_{19})_2]^{12-}$ produces a clear solution without

any opalescence or precipitation. Acetone vapor diffusion into this solution produces a dark-red precipitate, which gradually becomes overgrown with yellow plates. X-ray analysis has shown that the plates are identical with complex **I**. We have to assume that under given experimental conditions, [Mn(Ta₆O₁₉)₂]¹²⁻ is gradually transformed into [*trans*-{Cp*Rh}₂Ta₆O₁₉]⁴⁻ and Mn is lost (i.e., [Ta₆O₁₉]⁸⁻ is transferred from Mn⁴⁺ to {Cp*Rh}²⁺).

We are continuing experiments in polyoxotantalate chemistry.

The work has been supported by RFBR grant no. 13-03-00012 to MNS and the Presidential Fellowship for PAA. Support from Russian Government Grant NSh-516.2014.3 and grant of the President of the Russian Federation for P.A. Abramov is gratefully acknowledged.

REFERENCES

1. Flynn, C.M. and Stucky, G.D., *Inorg. Chem.*, 1969, vol. 8, p. 332.
2. Flynn, C.M. and Stucky, G.D., *Inorg. Chem.*, 1969, vol. 8, p. 335.
3. Ma, P.T., Chen, G., Wang, G., and Wang, J.P., *Rus. J. Coord. Chem.*, 2011, vol. 37, p. 772.
4. Abramov, P.A., Vicent, C., Kompankov, N.B., et al., *Chem. Commun.*, 2015, vol. 51, p. 4021.
5. Laurencin, D., Thouvenot, R., Boubekeur, K., et al., *Dalton Trans.*, 2007, p. 1334.
6. Abramov, P.A., Sokolov, M.N., Floquet, S., et al., *Inorg. Chem.*, 2014, vol. 53, p. 12791.
7. Abramov, P.A., Sokolov, M.N., Virovets, A.V., et al., *Dalton Trans.*, 2015, vol. 44, p. 2234.
8. Tsunashima, R., Long, D.-L., Miras, H.N., et al., *Angew. Chem., Int. Ed. Engl.*, 2010, vol. 49, p. 113.
9. Fullmer, L.B., Molina, P.I., Antonio, M.R., and Nyman, M., *Dalton Trans.*, 2014, vol. 43, p. 15295.
10. Abramov, P.A., Abramova, A.M., Peresypkina, E.V., et al., *J. Struct. Chem.* 2011, vol. 52, no. 5, p. 1012.
11. Kang, J.W., Moseley, K., and Maitlis, P.M., *J. Am. Chem. Soc.*, 1969, vol. 91, p. 5970.
12. CrysAlisPro, Agilent Technologies, Version 1.171.37.35 (release 13-08-2014 CrysAlis171. NET).
13. Hübschle, C.B., Sheldrick, G.M., and Dittrich, B., *J. Appl. Crystallogr.*, 2011, vol. 44, p. 1281.
14. Zemerova, T.P. and Abramov, P.A., *Shkola-konferentsiya "Neorganicheskie soedineniya i funktsional'nye materialy" (ICFM-2015)* (Proc. Conf. Workshop Inorganic Compounds and Functional Materials (ICFM-2015)), Novosibirsk, 2015.