

Synthesis and Structure of Silver Complexes: $[\text{Ph}_3\text{PC}_3\text{H}_5\text{-cyclo}]_2^+[\text{AgBr}_3]^{2-}$, $[\text{Ph}_3\text{PC}_3\text{H}_5\text{-cyclo}]_n^+[\text{Ag}_2\text{Br}_3]_n^{n-}$

V. V. Sharutin*, O. K. Sharutina, V. S. Senchurin, and A. N. Neudachina

National Research Southern Ural State University, Chelyabinsk, Russia

*e-mail: vvsharutin@rambler.ru

Received April 22, 2015

Abstract—The reaction of triphenylcyclopropylphosphonium bromide with silver bromide (2 : 1 or 1 : 2 molar ratio) gave the complexes $[\text{Ph}_3\text{PC}_3\text{H}_5\text{-cyclo}]_2^+[\text{AgBr}_3]^{2-}$ (**I**) and $[\text{Ph}_3\text{PC}_3\text{H}_5\text{-cyclo}]_n^+[\text{Ag}_2\text{Br}_3]_n^{n-}$ (**II**). According to X-ray diffraction data (CIF files CCDC no. 1010694 (**I**), 999903 (**II**)), the complexes consist of tetrahedral triphenylcyclopropylphosphonium cations and monomeric $[\text{AgBr}_3]^{2-}$ (**I**) or polymeric $[\text{Ag}_2\text{Br}_3]_n^{n-}$ anions (**II**). The C.N. (Ag^+) in **I** is 3 and that in **II** is 4; The C.N. (Br^-) in the polymeric anion is 4 or 2. The structural organization of the crystals is formed by weak hydrogen bonds.

DOI: 10.1134/S107032841602007X

INTRODUCTION

Quite a number of silver complexes with ammonium cations and mono-, bi-, or polynuclear Ag -, Cl^- -containing anions have been structurally characterized [1]. Meanwhile, complexes with phosphonium cations and Br^- -containing anions have been barely studied [2, 3].

This paper presents a study of the reactions of triphenylcyclopropylphosphonium bromide with silver bromide in various molar ratios and determination of the structures of the resulting addition complexes $[\text{Ph}_3\text{PC}_3\text{H}_5\text{-cyclo}]_2^+[\text{AgBr}_3]^{2-}$ (**I**) and $[\text{Ph}_3\text{PC}_3\text{H}_5\text{-cyclo}]_n^+[\text{Ag}_2\text{Br}_3]_n^{n-}$ (**II**).

EXPERIMENTAL

Synthesis of I. A mixture of triphenylcyclopropylphosphonium bromide (0.208 g, 0.54 mmol) and silver bromide (0.051 g, 0.27 mmol) was dissolved with stirring in 2 mL of dimethyl sulfoxide. After solvent evaporation to a volume of 0.5 mL, colorless crystals were formed. The yield of complex **I** was 0.166 g (64%); T_m 119°C.

For $\text{C}_{42}\text{H}_{40}\text{P}_2\text{Br}_3\text{Ag}$

anal. calcd., %: C, 52.85; H, 4.19.
Found, %: C, 52.69; H, 4.28.

IR (ν , cm^{-1}): 3055, 2996, 1632, 1585, 1479, 1435, 1338, 1316, 1292, 1196, 1180, 1113, 1073, 1050, 1024, 996, 939, 897, 867, 833, 798, 753, 719, 692, 661, 531, 499, 458, 438.

Synthesis of II. A mixture of triphenylcyclopropylphosphonium bromide (0.104 g, 0.27 mmol) and silver bromide (0.102 g, 0.54 mmol) was dissolved with stirring in 3 mL of dimethyl sulfoxide. After solvent evaporation to a volume of 0.5 mL, colorless crystals were formed. The yield of complex **II** was 0.148 g (72%); T_{decomp} = 65°C.

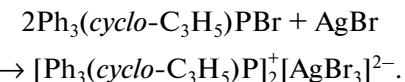
For $\text{C}_{21}\text{H}_{20}\text{PBr}_3\text{Ag}_2$

anal. calcd., %: C, 33.20; H, 2.64.
Found, %: C, 33.07; H, 2.75.

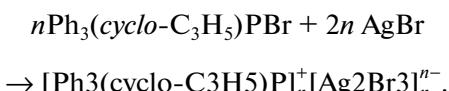
IR (ν , cm^{-1}): 3052, 2990, 2968, 1667, 1632, 1585, 1483, 1437, 1338, 1314, 1299, 1198, 1113, 1069, 1022, 996, 953, 897, 867, 837, 792, 751, 725, 690, 661, 528, 496, 448.

The IR spectra of compounds **I** and **II** were recorded on a Bruker Tensor 27 IR spectrometer in the 4000–400 cm^{-1} range (KBr pellets).

X-ray diffraction study of the crystals **I** and **II** was carried out on a D8 QUEST Bruker diffractometer (MoK_α radiation, $\alpha = 0.71073 \text{ \AA}$, graphite monochromator). The data were collected and edited, the unit cell parameters were refined, and absorption corrections were applied using SMART and SAINT-Plus software [4]. All calculations for structure solution and refinement were carried out using SHELXL/PC [5] and OLEX2 software [6]. The structures were solved by direct method and refined by the least squares method in the anisotropic approximation for non-hydrogen atoms. The crystal characteristics and refinement details for structures **I** and **II** are summarized in Table 1; selected bond lengths and bond angles are presented in Table 2.


Table 1. Crystal characteristics and X-ray data collection and refinement details for **I** and **II**

Parameter	Value	
	I	II
<i>M</i>	477.14	758.81
<i>T</i> , K	296(2)	296(2)
System	Monoclinic	Orthorhombic
Space group	<i>Cc</i>	<i>P2₁2₁2₁</i>
<i>a</i> , Å	10.0134(6)	7.1239(2)
<i>b</i> , Å	23.7364(15)	15.4112(6)
<i>c</i> , Å	17.2157(11)	20.6800(7)
β, deg	101.712(2)	90.00
<i>V</i> , Å ³	4006.7(4)	2270.41(13)
<i>Z</i>	8	4
ρ(calcd.), g/cm ³	1.582	2.220
μ, mm ⁻¹	3.603	7.080
<i>F</i> (000)	1896.0	1440.0
Crystal size, mm	0.67 × 0.32 × 0.3	1.01 × 0.38 × 0.36
Range of θ, deg	5.952–52.842	6.04–52.8
Ranges of reflection indices	−12 ≤ <i>h</i> ≤ 11, −29 ≤ <i>k</i> ≤ 29, −21 ≤ <i>l</i> ≤ 21	−8 ≤ <i>h</i> ≤ 8, −18 ≤ <i>k</i> ≤ 19, −25 ≤ <i>l</i> ≤ 25
Number of measured reflections	40976	21223
Number of unique reflections (<i>R</i> _{int})	8004 (0.0544)	4626 (0.0361)
Reflections with <i>F</i> ² > 2σ(<i>F</i> ²)	4012	2406
Number of parameters refined	433	245
GOOF	1.017	1.025
<i>R</i> -factors for <i>F</i> ² > 2σ(<i>F</i> ²)	<i>R</i> ₁ = 0.0431, <i>wR</i> ₂ = 0.0976	<i>R</i> ₁ = 0.0288, <i>wR</i> ₂ = 0.0613
<i>R</i> -factors for all reflections	<i>R</i> ₁ = 0.0692, <i>wR</i> ₂ = 0.1077	<i>R</i> ₁ = 0.0395, <i>wR</i> ₂ = 0.0658
Residual electron density (max/min), <i>e</i> /Å ³	0.65/−0.44	0.65/−0.77


The full tables of atomic coordinates, bond lengths, and bond angles are deposited with the Cambridge Crystallographic Data Centre (no. 1010694 (**I**), 999903 (**II**); deposit@ccdc.cam.ac.uk; <http://www.ccdc.cam.ac.uk>).

RESULTS AND DISCUSSION

We studied the reaction between silver bromide and triphenylcyclopropylphosphonium bromide in different molar ratios in a dimethyl sulfoxide solution. The reaction at 2 : 1 molar ratio was found to afford addition complex **I** with the [AgBr₃]^{2−} anion:

When the molar ratio is 1 : 2, the reaction gives complex **II** with anion of a different structure:

The structures of complexes **I** and **II** were determined by X-ray diffraction. The crystal of complex **I** consists of two types of crystallographically independent triphenylcyclopropylphosphonium cations and [AgBr₃]^{2−} anions (Fig. 1a).

In the tetrahedral cations, the CPC angles vary in the range of 107.3(2)°–111.3(2)°. The P–C distances (1.766(4)–1.800(5) Å) are somewhat shorter than the sum of the covalent radii of phosphorus and carbon atoms (1.88 Å [7]). In the nearly planar [AgBr₃]^{2−} anion (the silver atom deviates from the [Br₃] plane by 0.076 Å), the BrAgBr angles are 114.31(3)°, 119.66(3)°, and 125.77(4)°, while the Ag–Br bond length varies in the 2.5542(13)–2.6064(9) Å range. Tight H···Ag contacts (2.68 Å) and weak H···Br hydrogen bonds (2.88–2.98 Å) are present in the crystal of **I** (Fig. 2).

The geometric characteristics of the cations (CPC, 107.4(2)°–111.99(19)°; P–C, 1.766(5)–1.800(4) Å) in **II** are similar to those in **I**. The polymeric anion has an unusual design (Fig. 1b). The silver atoms are four-

Table 2. Bond lengths (*d*) and bond angles (ω) in structures I and II*

Bond	<i>d</i> , Å	Angle	ω , deg
I			
Br(1)–Ag(1)	2.5929(9)	Br(1)Ag(1)Br(3)	114.31(3)
Ag(1)–Br(2)	2.5542(13)	Br(2)Ag(1)Br(1)	119.66(3)
Ag(1)–Br(3)	2.6064(9)	Br(2)Ag(1)Br(3)	125.77(4)
P(1)–C(1)	1.789(4)	C(11)P(1)C(1)	111.1(2)
P(1)–C(41)	1.771(5)	C(21)P(1)C(1)	107.3(2)
P(1)–C(11)	1.785(4)	C(21)P(1)C(11)	109.8(2)
P(1)–C(21)	1.785(5)	C(71)P(2)C(61)	109.7(2)
P(2)–C(61)	1.798(4)	C(71)P(2)C(51)	108.5(2)
P(2)–C(71)	1.793(4)	C(81)P(2)C(61)	107.4(2)
P(2)–C(81)	1.766(4)	C(81)P(2)C(71)	110.6(2)
P(2)–C(51)	1.800(5)	C(81)P(2)C(51)	111.3(2)
II			
Ag(1)–Br(1)	2.6292(7)	Br(1)Ag(1)Br(2a)	118.12(2)
Ag(1)–Br(2)	2.8355(7)	Br(1)Ag(1)Br(2)	99.03(2)
Ag(1)–Br(2a)	2.8964(7)	Br(1)Ag(1)Br(3)	130.17(3)
Ag(1)–Br(3)	2.6364(7)	Br(2)Ag(1)Br(2a)	99.916(19)
Br(1)–Ag(2)	2.6644(7)	Br(3)Ag(1)Br(2)	112.01(2)
Ag(2)–Br(2b)	2.7855(7)	Br(3)Ag(1)Br(2a)	94.43(2)
Ag(2)–Br(2)	2.8052(7)	Ag(1)Br(1)Ag(2)	82.888(19)
Ag(2)–Br(3d)	2.6799(7)	Br(1)Ag(2)Br(2b)	116.48(2)
P(1)–C(21)	1.792(4)	Br(1)Ag(2)Br(2)	98.95(2)
P(1)–C(1)	1.784(4)	Br(1)Ag(2)Br(3c)	125.71(3)
P(1)–C(7)	1.766(5)	Br(2b)Ag(2)Br(2)	103.427(18)
P(1)–C(11)	1.800(4)	Br(3c)Ag(2)Br(2)	115.01(2)
Br(2)–Ag(1b)	2.8964(7)	Br(3c)Ag(2)Br(2b)	96.07(2)
Br(2)–Ag(2a)	2.7855(7)	Ag(1)Br(2)Ag(1b)	126.794(17)
Br(3)–Ag(2d)	2.6800(7)	Ag(2a)Br(2)Ag(1)	78.98(2)
C(1)–C(6)	1.380(6)	Ag(2)Br(2)Ag(1)	76.803(16)
C(1)–C(2)	1.383(6)	Ag(2a)Br(2)Ag(1b)	79.225(17)
C(6)–C(5)	1.397(6)	Ag(2)Br(2)Ag(1b)	77.638(19)
C(5)–C(4)	1.354(6)	Ag(2a)Br(2)Ag(2)	125.423(18)
C(4)–C(3)	1.363(7)	Ag(1)Br(3)Ag(2d)	85.936(18)
C(7)–C(9)	1.495(6)	C(21)P(1)C(11)	109.2(2)
C(7)–C(8)	1.493(6)	C(1)P(1)C(21)	111.99(19)
C(9)–C(8)	1.456(8)	C(1)P(1)C(11)	107.4(2)
C(11)–C(12)	1.383(6)	C(7)P(1)C(21)	108.7(2)
C(11)–C(16)	1.386(6)	C(7)P(1)C(1)	110.6(2)
C(12)–C(13)	1.388(6)	C(7)P(1)C11	109.0(2)

* Symmetry codes: (a) $1/2 + x, -5/2 - y, -z$; (b) $-1/2 + x, -5/2 - y, -z$; (c) $-1 + x, y, z$; (d) $1 + x, y, z$.

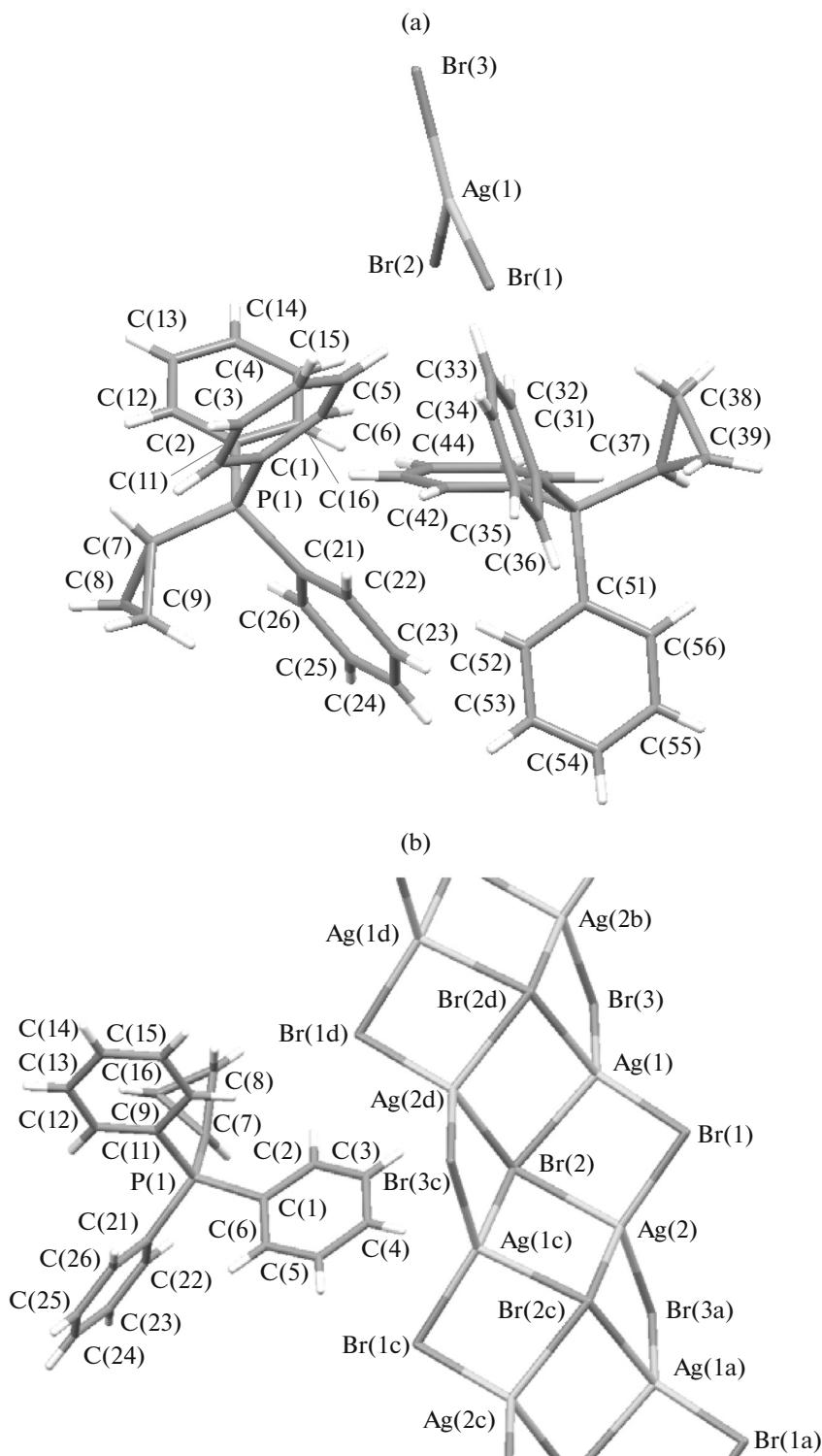


Fig. 1. Structure of complexes (a) I and (b) II.

coordinate. The $\text{BrAg}(1)\text{Br}$ and $\text{BrAg}(2)\text{Br}$ angles vary in the ranges of $94.43(2)^\circ$ – $130.17(3)^\circ$ and $96.07(2)^\circ$ – $127.71(3)^\circ$, which is indicative of pronounced distortion. The $\text{Ag}(1)\text{—Br}(1,2,2a,3)$ distances are $2.6292(7)$, $2.8355(7)$, $2.8964(7)$, and $2.6367(7)$ Å, and the

$\text{Ag}(2)\text{—Br}(1,2,2b,3d)$ distances are $2.6644(7)$, $2.8052(7)$, $2.7855(7)$, and $2.6799(7)$ Å.

The bromine atoms are in contact with four (two) neighboring atoms (the $\text{AgBr}(2)\text{Ag}$ angles are

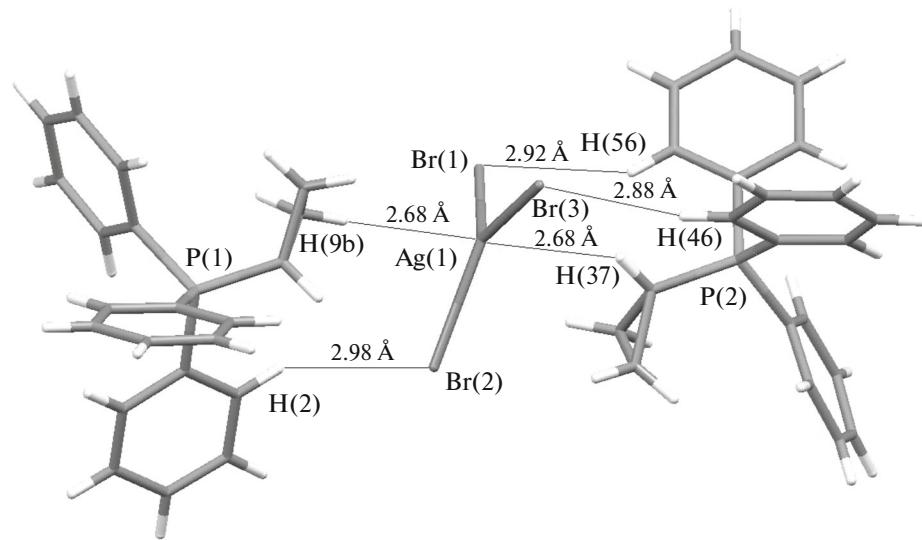


Fig. 2. Ion–ion contacts in the crystal of complex I.

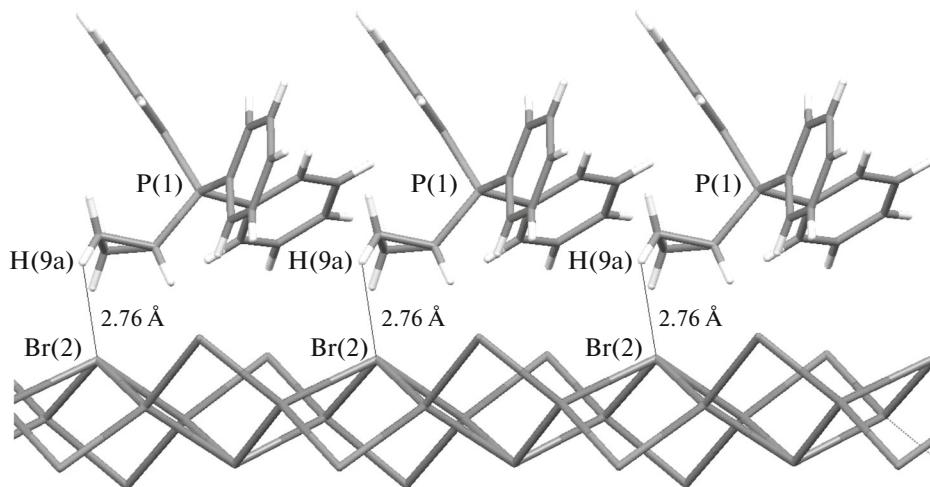


Fig. 3. Hydrogen bonds in the crystal of complex II.

76.80(2) $^\circ$, 77.64(2) $^\circ$, 78.98(2) $^\circ$, and 79.23(2) $^\circ$, while the Ag(1)Br(1)Ag(2) and Ag(1)Br(3)Ag(2b) angles are 82.89(2) $^\circ$ and 85.94(2) $^\circ$, respectively. As was to be expected, the Ag–Br(1,3) distances are shorter than Ag–Br(2).

The structural organization of complex II is formed by H \cdots Br hydrogen bonds (2.76 Å) (Fig. 3).

REFERENCES

1. Cambridge Crystallographic Database. Release 2015.
2. Sharutin, V.V., Sharutina, O.K., Senchurin, V.S., and Neudachina, A.N., *Butlerovskie Soobshcheniya*, 2014, vol. 39, no. 10, p. 54.
3. Helgesson, G. and Jagner, S., *J. Chem. Soc., Dalton Trans.* (1972–1999), 1988, p. 2117.
4. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System, Madison: Bruker AXS Inc., 1998.
5. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data, Madison: Bruker AXS Inc., 1998.
6. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., *J. Appl. Crystallogr.*, 2009, vol. 42, p. 339.
7. Batsanov, S.S., *Zh. Neorg. Khim.*, 1991, vol. 36, no. 12, p. 3015.

Translated by Z. Svitanko