

Anion-Dependent Copper(II) Coordination Polymers Based on 1,3-Di-(1,2,4-Triazole-4-yl)benzene: Syntheses and Crystal Structures¹

S. B. Miao^{a, b}, B. M. Ji^{a, *}, and L. Zhou^{b, **}

^a College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471022 P.R. China

^b College of Science, Northwest A&F University, Yangling, 712100 P.R. China

e-mail: lyhxxjbm@126.com*; zhoulechem@yahoo.com.cn**

Received September 9, 2014

Abstract—Three Cu(II) coordination polymers, namely $\{[\text{Cu}(\text{Dtb})(\text{H}_2\text{O})](\text{SO}_4)(\text{H}_2\text{O})\}_n$ (**I**), $\{[\text{Cu}(\text{Dtb})(\text{C}_2\text{O}_4)(\text{H}_2\text{O})](\text{H}_2\text{O})_2\}_n$ (**II**), and $\{[\text{Cu}(\text{Dtb})(\text{NO}_3)](\text{NO}_3)(\text{H}_2\text{O})_2\}_n$ (**III**) ($\text{Dtb} = 1,3\text{-di-(1,2,4-triazole-4-yl)benzene}$), have been synthesized under hydrothermal conditions and characterized by elemental analyses, IR spectra, and single-crystal X-ray diffraction (CIF file CCDC nos. 1001347 (**I**); 1001348 (**II**); 1001349 (**III**)). Complex **I** is a 1D double-chain structure, Dtb acts as $\mu_{1,1'}$ -bridging ligand and SO_4^{2-} does not participate in coordination. In contrast, complex **II** shows a 1D single-chain, in which Dtb shows $\mu_{1,2'}$ -bridges mode and $\text{C}_2\text{O}_4^{2-}$ occupies two coordination positions. In complex **III**, NO_3^- shortens the distance of two Cu(II) centers by bridging coordination interaction, so Dtb becomes $\mu_{1,1',2,2'}$ -bridges linker to extend the Cu(II) centers to the resulting 2D layer.

DOI: 10.1134/S107032841505005X

INTRODUCTION

Coordination polymers (CPs) have attracted considerable research interest in the past two decades, not only because of their intriguing variety of structures but also owing to their potential applications as functional materials [1–4]. It is well known that the structures and properties of the CPs are mainly dependent on two facts, organic ligands and metal atoms, which are main constructing elements of CPs. The reaction conditions used such as the temperature, solvent, pH, also usually result in completely different framework structures in the assemble process of CPs [5–7]. Moreover, counter anions in the crystal can also significantly influence the final structure by coordination or intermolecular interactions [8–10]. 1,2,4-Triazole and its derivatives are of particular interest in coordination chemistry [11–15], since they are effective bridging ligands combining the coordination modes of imidazoles and pyrazoles. As a double 1,2,4-triazole ligand, 1,3-di-(1,2,4-triazole-4-yl)benzene (Dtb) has been paid attention due to its multiple coordination modes [16–18]. In this work, we have chosen SO_4^{2-} , $\text{C}_2\text{O}_4^{2-}$, and NO_3^- as the anions to construct different coordination polymers with Dtb. As a result, three Cu(II) coordination polymers, $\{[\text{Cu}(\text{Dtb})(\text{H}_2\text{O})](\text{SO}_4)(\text{H}_2\text{O})\}_n$ (**I**),

$\{[\text{Cu}(\text{Dtb})(\text{C}_2\text{O}_4)(\text{H}_2\text{O})](\text{H}_2\text{O})_2\}_n$ (**II**), and $\{[\text{Cu}(\text{Dtb})(\text{NO}_3)](\text{NO}_3)(\text{H}_2\text{O})_2\}_n$ (**III**), have been synthesized and characterized.

EXPERIMENTAL

Materials and methods. Dtb was prepared according to the literature method [18]. The other reagents for syntheses and analyses were obtained from commercial sources and used without further purification. IR spectra were recorded on a Nicolet Avatar-360 spectrometer. ^1H NMR spectrum was measured using a Bruker DPX-400 spectrometer. Elemental analyses were carried out on a Flash 1112 analyzer.

Synthesis of I. A mixture of $\text{CuSO}_4 \cdot 5\text{H}_2\text{O}$ (49.9 mg, 0.2 mmol), Dtb (21.2 mg, 0.1 mmol), and 10 mL water was sealed in a 25 mL Teflon-lined stainless steel vessel, which was heated at 120°C for 72 h and then cooled to room temperature at a rate of 5°C h⁻¹. The blue block crystals of **I** were obtained with yield of 33%.

IR (KBr; ν , cm^{-1}): 3089, 2989, 1650, 1534, 1236, 1104, 968, 799, 681.

For $\text{C}_{20}\text{H}_{24}\text{N}_{12}\text{O}_8\text{SCu}$

anal. calcd., %: C, 36.61; H, 3.69; N, 25.62.

Found, %: C, 36.43; H, 3.75; N, 25.38.

¹ The article is published in the original.

Table 1. Crystallographic data and structure refinement for complexes **I–III**

Parameter	Value		
	I	II	III
Formula weight	656.11	417.83	435.82
Crystal system	Monoclinic	Triclinic	Monoclinic
Space group	<i>C</i> 2/ <i>c</i>	<i>P</i> 1̄	<i>P</i> 2 ₁ / <i>c</i>
<i>a</i> , Å	12.5018(17)	7.5775(10)	11.023(3)
<i>b</i> , Å	14.629(2)	9.9701(13)	7.039(2)
<i>c</i> , Å	15.259(2)	10.8440(14)	20.662(6)
α, deg	90	88.4030(10)	90
β, deg	93.077(2)	78.7990(10)	101.707(4)
γ, deg	90	77.0810(10)	90
<i>V</i> , Å ³	2786.7(7)	783.20(18)	1569.8(8)
<i>Z</i>	4	2	4
ρ _{calcd} , mg/m ³	1.564	1.772	1.844
μ, mm ⁻¹	0.926	1.448	1.457
<i>F</i> (000)	1348	426	884
θ Range, deg	2.48–25.50	2.81–25.50	2.46–25.00
Reflections collected	9278	5880	5225
Independent reflections (<i>R</i> _{int})	2572 (0.0343)	2901 (0.0152)	2700 (0.0468)
Goodness of fit on <i>F</i> ²	1.055	1.061	1.068
<i>R</i> ₁ , <i>wR</i> ₂ (<i>I</i> > 2σ(<i>I</i>))	0.0403, 0.1015	0.0307, 0.0816	0.0768, 0.2258
<i>R</i> ₁ , <i>wR</i> ₂ (all data)	0.0570, 0.1086	0.0363, 0.0858	0.1088, 0.2467
Δρ _{max} /Δρ _{min} , e Å ⁻³	0.417/–0.357	0.366/–0.330	1.742/–1.986

Synthesis of II was carried out by the same procedure as **I**, except adding Na₂C₂O₄ (13.4 mg, 0.1 mmol) in the reaction mixture. The blue block crystals of **II** were obtained with yield of 21%.

IR (KBr; ν , cm⁻¹): 3100, 2987, 1674, 1605, 1402, 1240, 1058, 788, 686.

For C₁₂H₁₄N₆O₇Cu

anal. calcd., %: C, 34.50; H, 3.38; N, 20.11.
Found, %: C, 34.33; H, 3.52; N, 19.93.

Synthesis of III was carried out by the same procedure as **I**, except using of Cu(NO₃)₂ · 3H₂O (48.2 mg, 0.2 mmol) instead of CuSO₄ · 5H₂O. The blue block crystals of **III** were obtained with yield of 25%.

IR (KBr; ν , cm⁻¹): 3146, 3065, 1617, 1504, 1424, 1367, 1293, 1056, 887, 685.

For C₁₀H₁₂N₈O₈Cu

anal. calcd., %: C, 27.56; H, 2.78; N, 25.71.
Found, %: C, 27.33; H, 2.85; N, 25.91.

X-ray diffraction analysis. Diffraction data for **I–III** were collected on a Bruker SMART APEX II CCD

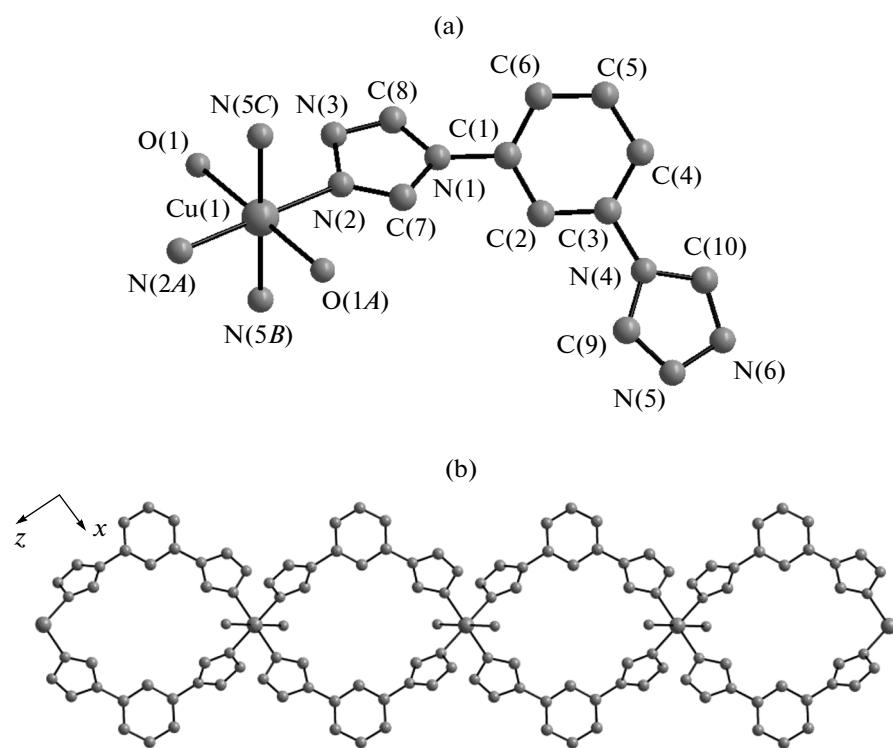
diffractometer equipped with a graphite-monochromated MoK_α radiation (λ = 0.71073 Å). The structures were solved by direct methods with SHELXS-97 [19] and refined by the least-squared method with SHELXL-97 program [20]. Most hydrogen atoms were assigned with common isotropic displacement factors and included in the final refinement by use of geometrical restraints. The crystallographic data for compound **I–III** are listed in Table 1, and the selected bond lengths and bond angles are given in Table 2.

Supplementary material for structures **I–III** has been deposited with the Cambridge Crystallographic Data Centre (nos. 1001347 (**I**); 1001348 (**II**); 1001349 (**III**); deposit@ccdc.cam.ac.uk or <http://www.ccdc.cam.ac.uk>).

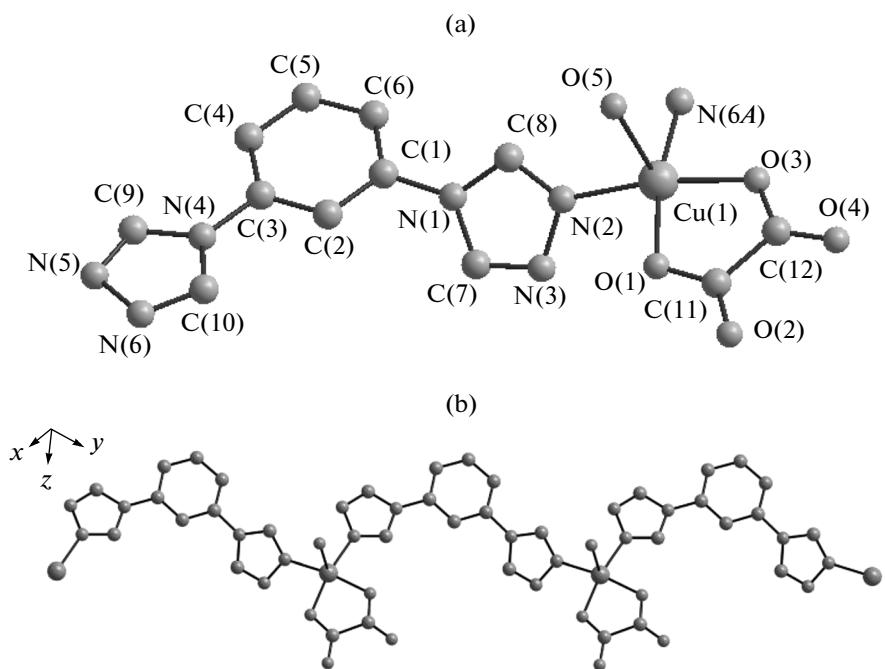
RESULTS AND DISCUSSION

Three Cu(II) coordination polymers based on 1,3-di-(1,2,4-triazole-4-yl)benzene (Dtb) with different counter anions have been synthesized through hydrothermal reactions of the similar precursors. Complexes **I–III** exhibit different 1D, 1D, and 2D structures, respectively. The structures depend on the nature of the anions (SO₄²⁻, C₂O₄²⁻, and NO₃⁻), which

Table 2. Selected bond distances (Å) and angles (deg) for complexes **I**–**III**


I			
Bond	<i>d</i> , Å	Bond	<i>d</i> , Å
Cu(1)–N(2)	2.022(3)	Cu(1)–O(1)	2.339(3)
Cu(1)–N(5B) ^{#1}	2.031(3)		
Angle	ω, deg	Angle	ω, deg
N(2)Cu(1)N(5B) ^{#1}	89.30(14)	N(5B) ^{#1} Cu(1)O(1)	90.69(15)
N(2)Cu(1)O(1)	87.91(13)		
II			
Bond	<i>d</i> , Å	Bond	<i>d</i> , Å
Cu(1)–O(3)	1.9297(18)	Cu(1)–N(6A) ^{#2}	2.000(2)
Cu(1)–O(1)	1.9690(18)	Cu(1)–O(5)	2.311(2)
Cu(1)–N(2)	1.9752(19)		
Angle	ω, deg	Angle	ω, deg
O(3)Cu(1)O(1)	83.33(8)	N(2)Cu(1)N(6A) ^{#2}	96.87(8)
O(3)Cu(1)N(2)	168.75(10)	O(3)Cu(1)O(5)	100.45(10)
O(1)Cu(1)N(2)	91.15(8)	O(1)Cu(1)O(5)	95.96(9)
O(3)Cu(1)N(6A) ^{#2}	87.24(8)	N(2)Cu(1)O(5)	89.84(9)
O(1)Cu(1)N(6A) ^{#2}	168.16(8)	N(6A) ^{#2} Cu(1)O(5)	92.78(9)
III			
Bond	<i>d</i> , Å	Bond	<i>d</i> , Å
Cu(1)–N(6C) ^{#3}	1.986(7)	Cu(1)–N(3A) ^{#4}	2.015(7)
Cu(1)–N(5B) ^{#4}	1.997(7)	Cu(1)–O(1') ^{#4}	2.39(3)
Cu(1)–N(2)	2.007(7)	Cu(1)–O(1)	2.299(16)
Angle	ω, deg	Angle	ω, deg
N(6C) ^{#3} Cu(1)N(5B) ^{#4}	176.8(3)	N(5B) ^{#4} Cu(1)O(1')	99.8(8)
N(6C) ^{#3} Cu(1)N(2)	88.5(3)	N(2)Cu(1)O(1')	86.7(8)
N(5B) ^{#4} Cu(1)N(2)	90.2(3)	N(3A) ^{#5} Cu(1)O(1')	97.6(8)
N(6C) ^{#3} Cu(1)N(3A) ^{#5}	91.0(3)	O(1)Cu(1)O(1')	11.6(9)
N(5B) ^{#4} Cu(1)N(3A) ^{#5}	90.0(3)	N(6C) ^{#3} Cu(1)O(1') ^{#5}	93.5(8)
N(2)Cu(1)N(3A) ^{#5}	175.6(3)	N(5B) ^{#4} Cu(1)O(1') ^{#5}	83.5(9)
N(6C) ^{#3} Cu(1)O(1)	91.7(4)	N(2)Cu(1)O(1') ^{#5}	89.2(7)
N(5B) ^{#4} Cu(1)O(1)	90.9(4)	N(3A) ^{#5} Cu(1)O(1') ^{#5}	86.5(7)
N(2)Cu(1)O(1)	79.3(4)	O(1)Cu(1)O(1') ^{#5}	167.2(8)
N(3A) ^{#5} Cu(1)O(1)	105.1(4)	O(1')Cu(1)O(1') ^{#5}	174.7(11)
N(6C) ^{#3} Cu(1)O(1)	83.0(8)		

* Symmetry codes: ^{#1} $x - 1/2, -y + 1/2, z + 1/2$; ^{#2} $x + 1, y - 1, z$; ^{#3} $x + 1, y, z$; ^{#4} $-x + 1, y - 1/2, -z + 1/2$; ^{#5} $-x + 2, y - 1/2, -z + 1/2$.


present during the synthesis. In complex **III**, the bridging NO_3^- shorten the distance between Cu^{2+} ions, so Dtb can bridging four Cu^{2+} ions as $\mu_{1,1',2,2'}$ mode to generate the final 2D layer. As far as complexes **I** and **II**, uncoordinated SO_4^{2-} or terminal ligand $\text{C}_2\text{O}_2^{2-}$ can

not help Dtb to generate higher dimensional structures. Moreover, the geometry of Dtb in **I**, **II**, and **III** are greatly different, which can be seen from the dihedral angles between triazole ring and benzene ring.

The asymmetric unit of **I** contains one Cu^{2+} ion, two Dtb ligands, two coordinated water molecules, two

Fig. 1. Coordination environment of Cu(II) atom (a) and the view of 1D double chain (b) in crystal of **I**.

Fig. 2. Coordination environment of Cu(II) atom (a) and the view of 1D single chain (b) in crystal of **II**.

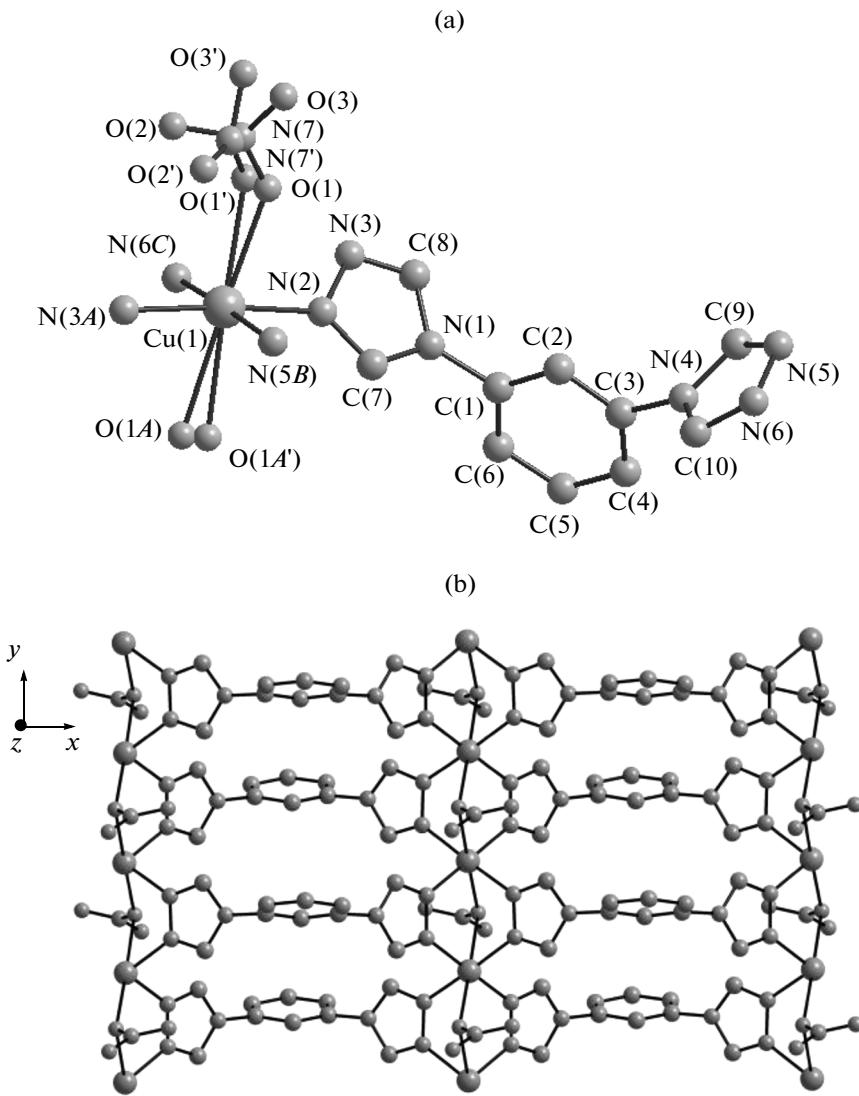


Fig. 3. Coordination environment of Cu(II) atom (a) and the view of 2D layer (b) in crystal of III.

lattice water molecules, and one SO_4^{2-} anion (Fig. 1). The Cu(1) center is six-coordinated and has an elongated tetragonal bipyramidal (4 + 2) coordination environment. The equatorial plane is completed by four nitrogen atoms (N(2), N(2A), N(5B), and N(6C)) from four Dtb ligands, while the axial positions are occupied by two oxygen atoms (O(1) and O(1A)) from two water molecules. All Cu–N bond distances of Cu(1) (Table 2) are similar to those reported values for the Cu(II)/triazole complexes [21, 22]. In complex I, Dtb acts as $\mu_{1,1'}$ -bridging ligand, and the dihedral angles between triazole ring and benzene ring are $19.98(8)^\circ$ and $42.17(5)^\circ$, respectively. Each Cu(II) center connects with four Dtb ligands and each Dtb ligand connects with two Cu(II) centers, and therefore the 1D double-chains are formed with a Cu…Cu distance of $10.119(1)$ Å (Fig. 1). It should be pointed out that the

1D chain is centrosymmetric with Cu atom as its inversion center.

The asymmetric unit of II contains one Cu^{2+} ion, one Dtb ligand, one coordinated $\text{C}_2\text{O}_4^{2-}$ anion, one coordinated water molecule, and two lattice water molecules (Fig. 2). Each Cu^{2+} ion shows a distorted tetragonal pyramidal geometry (4 + 1), two nitrogen atoms (N(2) and N(6A)) from two Dtb ligands and two oxygen atoms (O(1) and O(3)) from a $\text{C}_2\text{O}_4^{2-}$ anion form the basal plane, and the apical position is occupied by one water oxygen atom (O(5)). All Cu–N bond distances of Cu(1) (Table 2) are in accord with those reported values for the Cu(II)/triazole complexes [23, 24]. In complex II, each Dtb ligand shows $\mu_{1,2'}$ -bridges mode, and the dihedral angles between triazole ring and benzene ring are $6.39(9)^\circ$ and $41.30(8)^\circ$, respec-

tively. Adjacent Cu^{2+} ions are linked into 1D chain by Dtb , and the $\text{C}_2\text{O}_4^{2-}$ anion only acts as terminal ligand (Fig. 2). The $\text{Cu}\cdots\text{Cu}$ distance is $11.092(1)$ Å.

The asymmetric unit of **III** contains one Cu^{2+} ion, one Dtb ligand, one disorder coordinated NO_3^- anion, one uncoordinated NO_3^- anion, and two lattice water molecules (Fig. 3). The $\text{Cu}(1)$ center is six-coordinated in an elongated tetragonal bipyramidal ($4+2$) by four nitrogen atoms ($\text{N}(2)$, $\text{N}(3A)$, $\text{N}(5B)$, and $\text{N}(6C)$) from four Dtb ligands and two oxygen atoms ($\text{O}(1)$ and $\text{O}(1A)$) from two NO_3^- anions. All $\text{Cu}-\text{N}$ bond distances of $\text{Cu}(1)$ (Table 2) are comparable to those observed in other $\text{Cu}(\text{II})$ /triazole complexes [25, 26]. In complex **III**, each Dtb ligand adopts $\mu_{1,1',2,2'}$ -bridges mode to connect four Cu^{2+} ions, leading to the formation of a 2D layered structure (Fig. 3). The dihedral angles between triazole ring and benzene ring are $79.65(9)^\circ$ and $82.46(3)^\circ$, respectively. The NO_3^- acts as an auxiliary ligand in a monodentate coordination mode to bridge two Cu^{2+} ions. The $\text{Cu}\cdots\text{Cu}$ distance is $3.525(1)$ Å.

ACKNOWLEDGMENTS

This work was supported by the Natural Science Foundation of China (grant no. 21372112) and the science and technology innovation team support programs of Henan Province University (no. 2012IRTSTHN019).

REFERENCES

- Allendorf, M.D., Bauer, C.A., Bhakta, R.K., et al., *Chem. Soc. Rev.*, 2009, vol. 38, p. 1330.
- Kurmoo, M., *Chem. Soc. Rev.*, 2009, vol. 38, p. 1353.
- Wu, C.D., Hu, A., Zhang, L., et al., *J. Am. Chem. Soc.*, 2005, vol. 127, p. 8940.
- Düren, T., Bae, Y.S., and Snurr, R.Q., *Chem. Soc. Rev.*, 2009, vol. 38, p. 1237.
- Chen, Y., Li, H.X., Liu, D., et al., *Cryst. Growth Des.*, 2008, vol. 8, p. 3810.
- Sun, D., Wei, Z.H., Yang, C.F., et al., *CrystEngComm.*, 2011, vol. 13, p. 1591.
- Masaoka, S., Tanaka, D., Nakanishi, Y., et al., *Angew. Chem. Int. Ed.*, 2004, vol. 43, p. 2530.
- Feng, Y., Wang, D.B., Wan, B., et al., *Inorg. Chim. Acta.*, 2014, vol. 413, p. 187.
- Yang, X., Schipper, D., Liao, A., et al., *Polyhedron.*, 2013, vol. 52, p. 165.
- Wei, R.J., Tao, J., Huang, R.B., et al., *Eur. J. Inorg. Chem.*, 2013, p. 916.
- Haasnoot, J.G., *Coord. Chem. Rev.*, 2000, vols. 200–202, p. 131.
- Yang, C., Wang, X., and Omary, M.A., *J. Am. Chem. Soc.*, 2007, vol. 129, p. 15454.
- Zhou, X.H., Du, X.D., Li, G.N., et al., *Cryst. Growth Des.*, 2009, vol. 9, p. 4487.
- Xu, Q.F., Ge, J.F., Zhou, Q.X., et al., *Dalton Trans.*, 2011, vol. 40, p. 2805.
- Aznar, E., Ferrer, S., Borrás, J., et al., *Eur. J. Inorg. Chem.*, 2006, p. 5115.
- Yang, P., Wu, X.X., Huo, J.Z., et al., *CrystEngComm.*, 2013, vol. 15, p. 8097.
- Qin, X., Fan, Z., Xu, Y.Y., et al., *Inorg. Chem. Commun.*, 2013, vol. 37, p. 166.
- Miao, S.B., Li, Z.H., Ji, B.M., et al., *J. Clust. Sci.*, 2014, vol. 25, p. 1137.
- Sheldrick, G.M., *SHELXS-97, Program for the Solution of Crystal Structures*, Göttingen (Germany): Univ. of Göttingen, 1997.
- Sheldrick, G.M., *SHELXL-97, Program for the Refinement of Crystal Structures*, Göttingen (Germany): Univ. of Göttingen, 1997.
- Liu, J., Song, Y., Yu, Z., et al., *Polyhedron.*, 1999, vol. 18, p. 1491.
- Bondar, O.A., Lukashuk, L.V., Lysenko, A.B., et al., *CrystEngComm.*, vol. 10, p. 1216.
- Song, J.F., Zhou, R.S., Zhang, J., et al., *Z. Anorg. Allg. Chem.*, 2011, vol. 637, p. 589.
- Pedrido, R., Romero, M.J., Bermejo, M.R., et al., *Chem. Eur. J.*, 2008, vol. 14, p. 500.
- Liu, Y., Zhao, Z.G., Fang, Z.L., et al., *Inorg. Chem. Commun.*, 2009, vol. 12, p. 599.
- Wang, Y., Zhao, X.Q., Shi, W., et al., *Cryst. Growth Des.*, 2009, vol. 9, p. 2137.