

A Three-Dimensional Porous Metal-Organic Framework Based on 9,9-Dimethylfluorene-2,7-Dicarboxylic Acid (H_2 MFDA): $\{[Tb_2(MFDA)_3(DMF)_2(H_2O)_3] \cdot (H_2O)_3(DMF)_6\}_n^1$

A. Li, L. Li, T. Yang, and X.-H. Zhou*

Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023 P.R. China

*e-mail: iamxhzhou@njupt.edu.cn

Received April 29, 2014

Abstract—The title metal-organic framework, $\{[Tb_2(MFDA)_3(DMF)_2(H_2O)_3] \cdot (H_2O)_3(DMF)_6\}_n$ (**I**) (H_2 MFDA = 9,9-dimethylfluorene-2,7-dicarboxylic acid, DMF = *N,N*-dimethylformamide), has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction (CIF file CCDC no. 995892). Complex **I** crystallizes in triclinic space group *P*1 with $a = 13.0022(3)$, $b = 13.3793(3)$, $c = 25.8929(4)$ Å, $\alpha = 84.060(2)^\circ$, $\beta = 88.104(2)^\circ$, $\gamma = 66.361(2)^\circ$, $V = 4104.05(15)$ Å³, $C_{75}H_{104}N_8O_{26}Tb_2$, $M = 1851.50$, $\rho_c = 1.498$ g/cm³, $\mu(MoK_\alpha) = 1.790$ mm⁻¹, $F(000) = 1896$, GOF = 1.055, $Z = 2$, the final $R_1 = 0.0522$ and $wR_2 = 0.1380$ for $I > 2\sigma(I)$. In MOF **I**, the Tb_2 dinuclear units double-bridged by two carboxylate groups are connected together by MFDA ligands to give rise to a 3D architecture that consists in two types of 1D open channels along the y axis with about 6×8 and 9×12 Å² dimensions. The solvent accessible space for the desolvated **I** is 53.4% of the total volume. The 3D structure can also be rationalized as a six-connected (3.4¹¹.5².6) topological network by considering the Tb_2 dinuclear units as six-connected nodes and MFDA ligands as linkers, respectively.

DOI: 10.1134/S1070328414110037

INTRODUCTION

Metal-organic frameworks (MOFs), also called as coordination polymers, have attracted much interest because of their intriguing structural topologies and interesting applications as functional materials in catalysis, optics, magnetism, molecular architectures, and materials chemistry, etc. [1–5].

Reports about MOFs based trivalent lanthanides (LnMOFs) gradually increased in recent years, but still much less compared with the transition metal-organic frameworks, due to the inherently flexible coordination geometry of the trivalent lanthanide ions resulting in their structures with less predictability. Lanthanide ions possess excellent optical, electrical and magnetic properties and have been extensively contained in various materials [6–10]. For our group, the research interests are focused on the optical properties of complexes containing lanthanide ions, especially LnMOFs [11–15]. However, the lanthanide-based luminescence emission is typically weak due to low light-absorption efficiency, so it requires an antenna molecule in the framework for energy transfer. The fluorene molecule was considered as a good chromophore for developing lanthanide complexes due to its chemical, structural and optical properties.

In this work, based on the 9,9-dimethylfluorene-2,7-dicarboxylic acid (H_2 MFDA), we synthesize a three-dimensional porous lanthanide metal-organic framework **I**, $\{[Tb_2(MFDA)_3(DMF)_2(H_2O)_3] \cdot (H_2O)_3(DMF)_6\}_n$ and describe its structure in detail.

EXPERIMENTAL

The terbium(III) nitrate was converted from its oxide by nitric acid. Other reagents and solvents were purchased from commercial sources and used as received. H_2 MFDA was synthesized according to the literature [16]. Elemental analyses for C, H, and N were performed on a PerkinElmer 240C analyzer. Infrared spectra were recorded on a Vector22 Bruker Spectrophotometer with KBr pellets in the 400–4000 cm⁻¹ region. The crystal structure was determined by single-crystal X-ray diffraction and using SHELXS-97, SHELXL-97 software for structure solution and refinement correspondingly.

Synthesis of complex I. A mixture of H_2 MFDA (0.1 mmol, 28.2 mg), $Tb(NO_3)_3 \cdot 6H_2O$ (0.1 mmol, 43.5 mg), DMF (6 mL) and H_2O (3 mL) was sealed in a 15 mL Teflon-lined bomb and heated at 80°C for 3 days. The reaction mixture was slowly cooled to room temperature. Colorless rod-like crystals of **I** suit-

¹ The article is published in the original

Table 1. Crystal data and structure refinement for complex **I**

Parameter	Value
<i>F</i> _w	1851.50
Crystal system	Triclinic
Space group	<i>P</i> 1
<i>a</i> , Å	13.0022(3)
<i>b</i> , Å	13.3793(3)
<i>c</i> , Å	25.8929(4)
α, deg	84.060(2)
β, deg	88.104(2)
γ, deg	66.361(2)
<i>V</i> , Å ³	4104.05(15)
ρ _{calcd} , g cm ⁻³	1.498
<i>T</i> , K	120(2)
μ, mm ⁻¹	1.790
<i>F</i> (000)	1896
Reflections collected	43865
Unique reflections, <i>R</i> _{int}	16102 (0.0324)
GOF (<i>F</i> ²)	1.055
<i>R</i> ₁ , <i>wR</i> ₂ (<i>I</i> > 2σ(<i>I</i>))*	0.0522, 0.1380
<i>R</i> ₁ , <i>wR</i> ₂ (all data)*	0.0629, 0.1459

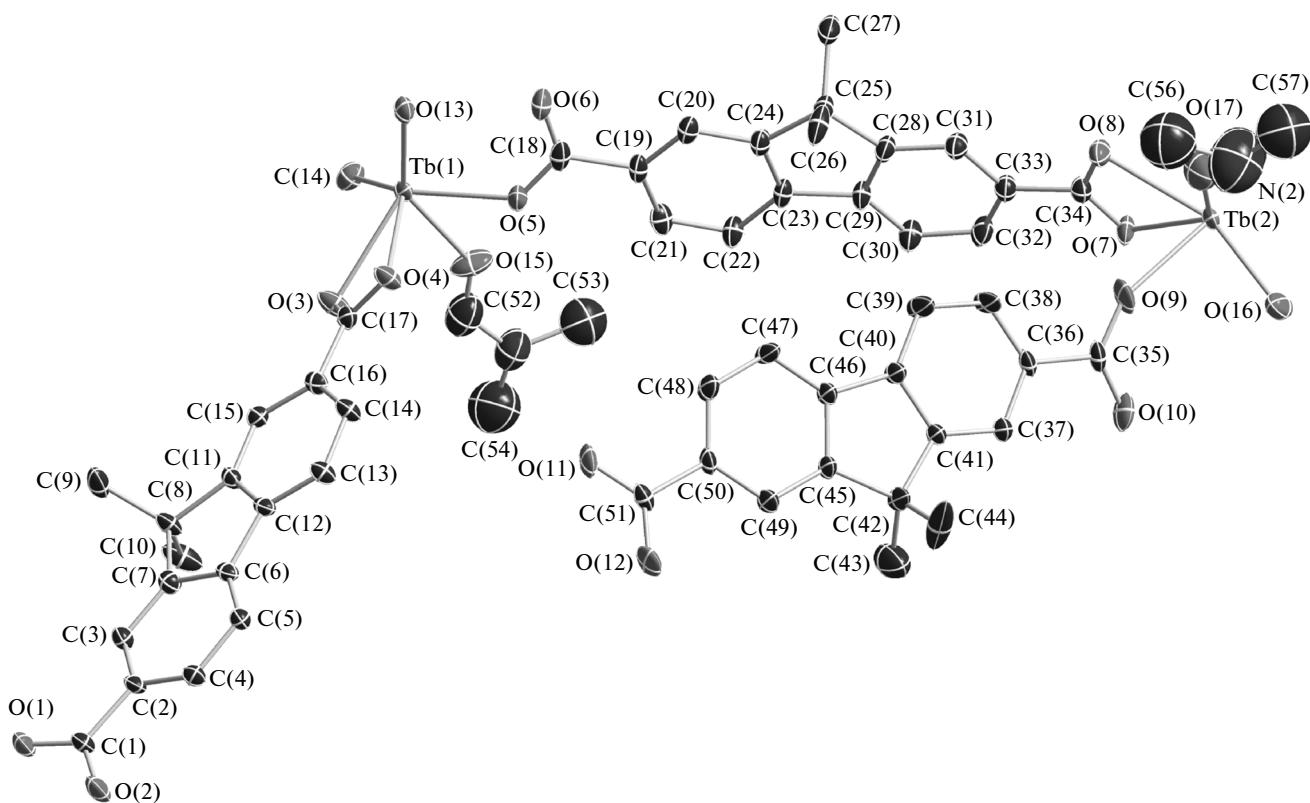
* *R*₁ = Σ||*F*_o|| - ||*F*_c||/Σ||*F*_o||; *wR*₂ = [Σ*w*(*F*_o² - *F*_c²)² / Σ*w*(*F*_o²)]^{1/2}.

able for X-ray diffraction analysis were isolated in about 15% yield.

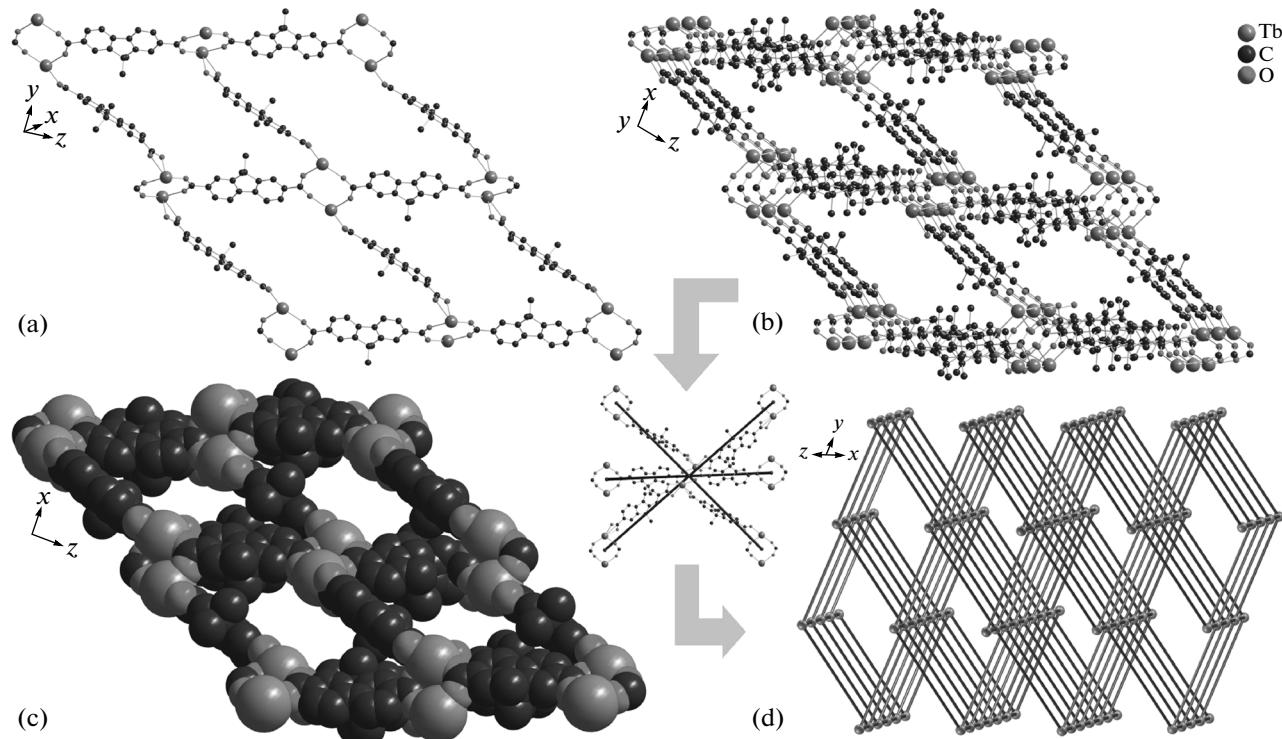
For C₇₅H₁₀₄N₈O₂₆Tb₂ (**I**)

anal. calcd., %: C, 48.65; H, 5.66; N, 6.05.
Found, %: C, 48.42; H, 5.79, N, 6.14.

X-ray structure determination. A colorless single crystal of **I** with dimensions of 0.10 × 0.11 × 0.12 mm was mounted on a Bruker Smart Apex CCD area detector diffractometer using graphite-monochromated MoK_α radiation ($\lambda = 0.71073 \text{ \AA}$) using the ω-θ scan mode in the range $2.83^\circ \leq \theta \leq 26.00^\circ$ at 120(2) K. A total of 43865 reflections were collected and 16102 were independent with *R*_{int} = 0.0324, of which 13569 were observed with *I* > 2σ(*I*). Raw frame data were integrated with the SAINT program [17]. The structure was solved by direct methods using SHELXS-97 and refined by full-matrix least-squares on *F*² using SHELXS-97 [18]. An empirical absorption correction was applied with the program SADABS [19]. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms bonded to the carbon atoms were placed in calculated positions and refined as riding mode, with C-H = 0.93 Å for *sp*² hybridized carbon atom, 0.96 Å for *sp*³ hybridized carbon atom, respectively, and *U*_{iso}(H) = 1.2*U*_{eq}(C). The H atoms of the water molecules were located in calculated positions and refined as riding mode with O-H = 0.85 Å and *U*_{iso}(H) = 1.2*U*_{eq}(O). The final *R*₁ = 0.0522 and *wR*₂ = 0.1380 for 13569 observed reflections *I* > 2σ(*I*) (*w* = 1/[σ²(*F*_o²) + (0.0655*P*)² + 34.0506*P*] where *P* = (*F*_o² + 2*F*_c²)/3). (Δρ)_{max} = 3.085 e/Å³, (Δρ)_{min} = -2.986 e/Å³ and (Δ/σ)_{max} = 0.030. Crystallographic details for **I** have been summarized in Table 1. Selected bond lengths and angles for **I** are given in Table 2. The full tables of atomic coordinates, bond lengths, and bond angles were deposited with the Cambridge Crystallographic Data Centre (no. 995892; deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk/data_request/cif) or can be obtained from the authors.


RESULTS AND DISCUSSION

The asymmetric unit of **I** contains two crystallographically independent terbium(III) ions, three MFDA ligands (the dihedral angles between two benzene rings of which are 3.585°, 4.061°, and 7.374°, respectively), two coordinated DMF molecules, three coordinated water molecules, six lattice DMF molecules and three lattice water molecules (Fig. 1). The Tb(1) ion is eight-coordinated by eight oxygen atoms, five of which from four MFDA ligands (O(3), O(4), O(5), O(11)ⁱ, and O(12)ⁱⁱ), two from two water molecules (O(13) and O(14)) and last one from DMF (O(15)) with a distorted bicapped trigonal-prism geometry. The Tb(2) ion is also eight-coordinated by


Table 2. Selected bond lengths (Å) and bond angles (deg) for **I***

Bond	<i>d</i> , Å	Bond	<i>d</i> , Å	Bond	<i>d</i> , Å
Angle	ω , deg	Angle	ω , deg	Angle	ω , deg
Tb(1)–O(3)	2.497(4)	Tb(1)–O(4)	2.391(4)	Tb(1)–O(5)	2.332(4)
Tb(1)–O(11) ⁱ	2.288(4)	Tb(1)–O(12) ⁱⁱ	2.317(4)	Tb(1)–O(13)	2.475(4)
Tb(1)–O(14)	2.422(5)	Tb(1)–O(15)	2.372(5)		
Tb(2)–O(1) ⁱⁱⁱ	2.410(4)	Tb(2)–O(2) ⁱⁱⁱ	2.418(4)	Tb(2)–O(7)	2.447(4)
Tb(2)–O(8)	2.430(4)	Tb(2)–O(9)	2.314(4)	Tb(2)–O(10) ^{iv}	2.290(4)
Tb(2)–O(16)	2.403(5)	Tb(2)–O(17)	2.336(7)		
O(11) ⁱ Tb(1)O(12) ⁱⁱ	108.73(17)	O(11) ⁱ Tb(1)O(5)	144.31(17)	O(12) ⁱⁱ Tb(1)O(5)	74.66(16)
O(11) ⁱ Tb(1)O(15)	141.64(19)	O(12) ⁱⁱ Tb(1)O(15)	85.44(19)	O(5)Tb(1)O(15)	73.14(19)
O(11) ⁱ Tb(1)O(4)	87.08(16)	O(12) ⁱⁱ Tb(1)O(4)	150.63(17)	O(5)Tb(1)O(4)	78.24(15)
O(15)Tb(1)O(4)	97.40(17)	O(11) ⁱ Tb(1)O(14)	74.96(16)	O(12) ⁱⁱ Tb(1)O(14)	75.95(17)
O(5)Tb(1)O(14)	137.37(16)	O(15)Tb(1)O(14)	74.38(17)	O(4)Tb(1)O(14)	133.05(15)
O(11) ⁱ Tb(1)O(13)	71.75(15)	O(12) ⁱⁱ Tb(1)O(13)	80.41(16)	O(5)Tb(1)O(13)	73.99(15)
O(15)Tb(1)O(13)	146.61(17)	O(4)Tb(1)O(13)	81.48(14)	O(14)Tb(1)O(13)	129.79(14)
O(11) ⁱ Tb(1)O(3)	76.46(16)	O(12) ⁱⁱ Tb(1)O(3)	152.59(17)	O(5)Tb(1)O(3)	117.41(15)
O(15)Tb(1)O(3)	75.89(18)	O(4)Tb(1)O(3)	53.73(14)	O(14)Tb(1)O(3)	79.75(15)
O(13)Tb(1)O(3)	125.68(14)	O(10) ^{iv} Tb(2)O(9)	110.28(19)	O(10) ^{iv} Tb(2)O(17)	152.5(2)
O(9)Tb(2)O(17)	83.4(2)	O(10) ^{iv} Tb(2)O(16)	79.00(18)	O(9)Tb(2)O(16)	77.00(17)
O(17)Tb(2)O(16)	81.3(2)	O(10) ^{iv} Tb(2)O(1) ⁱⁱⁱ	80.27(18)	O(9)Tb(2)O(1) ⁱⁱⁱ	152.39(17)
O(17)Tb(2)O(1) ⁱⁱⁱ	98.6(2)	O(16)Tb(2)O(1) ⁱⁱⁱ	130.59(15)	O(10) ^{iv} Tb(2)O(2) ⁱⁱⁱ	81.32(18)
O(9)Tb(2)O(2) ⁱⁱⁱ	150.09(18)	O(17)Tb(2)O(2) ⁱⁱⁱ	76.12(19)	O(16)Tb(2)O(2) ⁱⁱⁱ	78.50(15)
O(1) ⁱⁱⁱ Tb(2)O(2) ⁱⁱⁱ	54.26(15)	O(10) ^{iv} Tb(2)O(8)	125.04(17)	O(9)Tb(2)O(8)	75.90(17)
O(17)Tb(2)O(8)	80.6(2)	O(16)Tb(2)O(8)	148.87(16)	O(1) ⁱⁱⁱ Tb(2)O(8)	77.29(15)
O(2) ⁱⁱⁱ Tb(2)O(8)	120.94(15)	O(10) ^{iv} Tb(2)O(7)	74.90(16)	O(9)Tb(2)O(7)	74.30(18)
O(17)Tb(2)O(7)	132.51(19)	O(16)Tb(2)O(7)	130.96(16)	O(1) ⁱⁱⁱ Tb(2)O(7)	84.63(15)
O(2) ⁱⁱⁱ Tb(2)O(7)	135.49(16)	O(8)Tb(2)O(7)	53.67(14)		

* Symmetry codes: ⁱ–*x* + 1, –*y* + 2, –*z* + 1; ⁱⁱ*x*, *y* + 1, *z*; ⁱⁱⁱ*x*, *y*, *z* + 1; ^{iv}–*x* + 2, –*y* + 1, –*z* + 2.

Fig. 1. The structure diagram of **I**, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms, solvated DMF and water molecules have been omitted for clarity.

Fig. 2. The (4,4) 2D layer motif (a); the 3D architecture of **I** (b); space filling diagram of crystal structure of **I** (c); topological representation of the structure of **I** (d). H atoms, DMF and water molecules have been omitted for clarity.

six oxygen atoms from four MFDA ligands ($O(1)^{iii}$, $O(2)^{iii}$, $O(7)$, $O(8)$, $O(9)$, and $O(10)^{iv}$), one oxygen atom from a water molecule ($O(16)$) and one oxygen atom from a terminal DMF molecule ($O(17)$) with a distorted bicapped trigonal-prism geometry. The Tb – O bond lengths are in the range of 2.288(4)–2.497(4) Å, comparable to those reported for other Tb – O donor complexes [20, 21]. In **I**, the MFDA ligands adopt three coordination modes, namely, $\mu_2\text{-}\eta^2\text{O},\text{O}',\eta^2\text{O}''\text{,O}'''$, $\mu_2\text{-}\eta^1\text{O},\eta^2\text{O}''\text{,O}'''$, and $\mu_4\text{-}\eta^1\text{O},\eta^1\text{O}',\eta^1\text{O}''\text{,}\eta^1\text{O}'''$ fashions, respectively. In $\mu_2\text{-}\eta^2\text{O},\text{O}',\eta^2\text{O}''\text{,O}'''$ fashion, the ligand chelates to a $Tb(1)$ and a $Tb(2)$ centers by two carboxylate groups, respectively. In $\mu_2\text{-}\eta^1\text{O},\eta^2\text{O}''\text{,O}'''$ fashion, the ligand coordinates to a $Tb(1)$ center by a carboxylate oxygen atom and chelates to a $Tb(2)$ center by another a carboxylate group. In $\mu_4\text{-}\eta^1\text{O},\eta^1\text{O}',\eta^1\text{O}''\text{,}\eta^1\text{O}'''$ fashion, the ligand coordinates to two $Tb(1)$ centers by two oxygen atoms of a carboxylate group and two $Tb(2)$ centers by two oxygen atoms of another a carboxylate group. Two Tb^{3+} ions are double-bridged by two carboxylate groups from two $\mu_4\text{-}\eta^1\text{O},\eta^1\text{O}',\eta^1\text{O}''\text{,}\eta^1\text{O}'''$ MFDA ligands to form Tb_2 dinuclear unit. The Tb_2 dinuclear units are connected together by $\mu_2\text{-}\eta^1\text{O},\eta^2\text{O}''\text{,O}'''$ and $\mu_4\text{-}\eta^1\text{O},\eta^1\text{O}',\eta^1\text{O}''\text{,}\eta^1\text{O}'''$ MFDA ligands to construct the (4,4) two-dimensional (2D) layer motifs resting parallel to the (101) crystal plane (Fig. 2a). The $\mu_2\text{-}\eta^2\text{O},\text{O}',\eta^2\text{O}''\text{,O}'''$ MFDA ligands link further the (4,4) 2D layers to lead a 3D architecture with two kinds of 1D channels along the y axis having about 6×8 and 9×12 Å² dimensions in which lattice DMF and water molecules reside as guests (Figs. 2b and 2c). The solvent accessible space for the desolvated **I** is 2193.3 Å³ per unit cell or 53.4% of the total volume, calculated using the PLATON routine [22]. The 3D structure can also be rationalized as a six-connected (3.4¹¹.5².6) topological network by considering the Tb_2 dinuclear units as six-connected nodes and MFDA ligands as linkers, respectively (Fig. 2d).

ACKNOWLEDGMENTS

This work was financially supported by the National Natural Science Foundation of China (nos. 21001065, 61377019, and 61106116), Nanjing University of Posts and Telecommunications (NY213171), the Key Project of National High Technology Research of China (2011AA050526), the Nat-

ural Science Foundation of the Jiangsu Higher Education Institutions of China (12KJB150017), the Ministry of Education of China (IRT1148).

REFERENCES

1. Murray, L.J., Dinca, M., and Long, J.R., *Chem. Soc. Rev.*, 2009, vol. 38, p. 1294.
2. Getman, R.B., Bae, Y.S., Wilmer, C.E., et al., *Chem. Rev.*, 2011, vol. 112, p. 703.
3. Yoon, M., Srirambalaji, R., and Kim, K., *Chem. Rev.*, 2011, vol. 112, p. 1196.
4. Lee, J.Y., Farha, O.K., Roberts, J., et al., *Chem. Soc. Rev.*, 2009, vol. 38, p. 1450.
5. Kurmoo, M., *Chem. Soc. Rev.*, 2009, vol. 38, p. 1353.
6. Oyamada, J. and Hou, Z.M., *Angew. Chem., Int. Ed.*, 2013, vol. 51, p. 12828.
7. Nishiura, M. and Hou, Z.M., *Nat. Commun.*, 2010, vol. 2, p. 257.
8. Ruiz, J., Mota, A.J., Rodriguez-Dieguez, A., et al., *Chem. Commun.*, 2012, vol. 48, p. 7916.
9. Cardona-Serra, S., Clemente-Juan, J.M., Coronado, E., et al., *J. Am. Chem. Soc.*, 2012, vol. 134, p. 14982.
10. Taylor, K.M.L., Kim, J.S., Rieter, W.J., et al., *J. Am. Chem. Soc.*, 2008, vol. 130, p. 2154.
11. Zhou, X.H., Li, L., Li, H.H., et al., *Dalton Trans.*, 2013, vol. 42, p. 12403.
12. Zhou, X.H., Li, H.H., Xiao, H.P., et al., *Dalton Trans.*, 2013, vol. 42, p. 5718.
13. Zhou, X.H., Li, H.H., and Huang, W., *Inorg. Chim. Acta*, 2012, vol. 384, p. 184.
14. Zhou, X.H., Li, L., Li, A., et al., *Inorg. Chim. Acta*, 2014, vol. 413, p. 38.
15. Li, L., Li, A., Song, L., et al., *J. Mol. Struct.*, 2014, vol. 1067, p. 37.
16. *SAINT, Area Detector Control and Integration Software*, Madison (WI, USA): Siemens Analytical X-ray Instruments Inc., 1996.
17. Sheldrick, G.M., *SHELXL97 and SHELXTL, Software Reference Manual, Version 5.1*, Madison (WI, USA): Bruker AXS Inc., 1997.
18. Sheldrick, G.M., *SADABS, Program for Empirical Absorption Correction of Area Detector Data*, Göttingen (Germany): Univ. of Göttingen, 1996.
19. Tsuie, B., Reddinger, J.L., Sotzing, G.A., et al., *J. Mater. Chem.*, 1999, vol. 9, p. 2189.
20. Zhou, X.H., Peng, Y.H., Du, X.D., et al., *Cryst. Growth Des.*, 2009, vol. 9, p. 1028.
21. Zhou, X.H., Peng, Y.H., Gu, Z.G., et al., *Inorg. Chim. Acta*, 2009, vol. 362, p. 3447.
22. Spek, A.L., *J. Appl. Crystallogr.*, 2003, vol. 36, p. 7.