

Construction of 0D to 3D Copper(II) MOFs Based on Heterocyclic Carboxylic Acid: Synthesis, Structures, Cyclic Voltammograms, and Luminescent Properties¹

H. M. Zhang, Q. Q. You, L. Z. Wu, L. Liu, and L. R. Yang*

Henan Key Laboratory of Polyoxometalate, Institute of Molecule and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004 P.R. China

*e-mail: lirongyang@163.com

Received May 16, 2013

Abstract—The crystal structures of MOFs $[\text{Cu}(\text{PDA})(\text{Phen})(\text{H}_2\text{O})]_2 \cdot 5\text{H}_2\text{O}$ (**I**) and $[\text{Cu}(\text{PZCA})_2(\text{H}_2\text{O})_2] \cdot 2\text{H}_2\text{O}$ (**II**) (H_2PDA = pyridine-2,6-dicarboxylic acid, Phen = 1,10-phenanthroline, HPZCA = pyrazine-2-carboxylic acid, H_2PZDA = pyrazine-2,3-carboxylic acid) have been prepared under hydrothermal conditions. These MOFs have been characterized by element analysis, single-crystal X-ray diffraction, thermogravimetric analyses and IR spectroscopy. 3D frameworks of MOFs **I** and **II** are fabricated from zero-dimensional (0D) motifs through hydrogen bonds and $\pi-\pi$ interactions. In MOF **II**, the PZCA ligand comes from in situ decarboxylation of the part of pyrazine-2,3-dicarboxylic acid (H_2PZDA). Luminescent emissions bands of MOF **I** in methanol have been measured at room temperature and it displays selectivity to Zn^{2+} , Cu^{2+} , Pb^{2+} , and Cd^{2+} ions. Cyclic voltammetry of MOFs **I** and **II** showed that the $\text{Cu}(\text{II}/\text{I})$ couple is irreversible.

DOI: 10.1134/S1070328414040125

INTRODUCTION

In recent years, the design and synthesis of metal-organic-frameworks (MOFs) structures have received enormous attention, because of their novel and potential applications in host guest chemistry, catalysis, electrochemical, luminescent and magnetism [1–6]. MOFs assembly based on the molecular building block method which has been introduced as a suitable method to design and construct these kinds of materials [7]. In light of that, many new organic ligands contribute to the occurrence of the varieties of novel polymers. Some multidentate carboxylic acid ligands containing N and O donor atoms have been widely used to assemble MOFs [8–10]. One feasible strategy involving the use of multicarboxylate ligands as the organic building block, such as pyridine-2,6-dicarboxylic acid (H_2PDA) and pyrazine-2,3-dicarboxylic acid (H_2PZDA) and their deprotonated anions (HPDA^- , PDA^{2-} , HPZDA^- , and PZDA^{2-} tuned under appropriate pH value) adopt flexible, multidentate coordination sites, and therefore may potentially provide various coordination modes which are in favor of the construction of higher-dimensional MOFs frameworks [8, 11–16]. Herein, we have focused on developing the rational design and synthesis of this kind of frameworks.

The present paper is to report the hydrothermal synthesis, characteristics, electrochemical results, thermal analysis and the crystal structures of the 3D coordination polymers of $\text{Cu}(\text{II})$ connected by hydrogen bonds and $\pi-\pi$ stacking— $[\text{Cu}(\text{PDA})(\text{Phen})(\text{H}_2\text{O})]_2 \cdot 5\text{H}_2\text{O}$ (**I**) and $[\text{Cu}(\text{PZCA})_2(\text{H}_2\text{O})_2] \cdot 2\text{H}_2\text{O}$ (**II**). Emission spectra of MOF **I** in the presence of Cd^{2+} , Cu^{2+} , Mg^{2+} , Pb^{2+} , and Zn^{2+} ions have been studied and compared with those of the assynthesized MOFs.

EXPERIMENTAL

Reagents and general techniques. All chemicals are analytical grade and used without further purification. Elemental analyzer was performed on a Perkin-Elmer 240C elemental analyzer. Infrared spectra were recorded in the $4000\text{--}400\text{ cm}^{-1}$ region using KBr pellets on an AVATAR 360FT-IR spectrometer, the crystal structure was determined on a Bruker Smart CCD X-ray single-crystal diffractometer. Fluorescent data were collected on F-7000 FL Spectrophotometer at room temperature. The TG and DTG experiment were performed using a PerkinElmer TGA7 thermogravimeter. The heating rate was programmed to be 10 K min^{-1} with the protecting stream of N_2 owing at 40 mL min^{-1} . Cyclic voltammograms were obtained on a CHI650 electrochemical analyzer at 25°C .

Synthesis of MOF I. A mixture of $\text{Cu}(\text{Ac})_2 \cdot \text{H}_2\text{O}$ (59.90 mg, 0.3 mmol), H_2PDA (50.11 mg, 0.3 mmol),

¹ The article is published in the original.

Phen (54.02 mg, 0.3 mmol) and water (10 mL) was homogenized by stirring for 30 min, then transferred into 25 mL Teflon-lined stainless steel autoclave under autogenous pressure at 150°C for 96 h. The reaction system was cooled to room temperature and then left at room temperature for 21 days. Blue prism crystals of MOF I suitable for X-ray diffraction analysis were obtained with a yield of 78.6%.

For $C_{38}H_{36}N_6O_{15}Cu_2$

anal. calcd., %: C, 48.31; H, 3.81; N, 8.90.
Found, %: C, 49.04; H, 3.45; N, 8.56.

IR spectrum (ν , cm^{-1}): 3424 b, 3091 w, 3013 w, 1622 s, 1590 s, 1519 m, 1426 s, 1364 s, 1275 m, 1147 w, 1110 w, 1068 w, 1033 w, 912 w, 857 m, 812 w, 778 w, 722 s, 690 w, 647 w, 448 w, 405 w.

Synthesis of MOF II. A mixture of $Cu(Ac)_2 \cdot H_2O$ (59.90 mg, 0.3 mmol), H_2PZDA (50.4 mg, 0.3 mmol), and water (10 mL) was homogenized by stirring for 30 min, then transferred into 25 mL Teflon-lined stainless steel autoclave under autogenous pressure at 150°C for 96 h. After cooling the reaction system to room temperature, blue prism crystals of II suitable for X-ray diffraction analysis were isolated with a yield of 49.1%.

For $C_{10}H_{14}N_4O_8Cu$

anal. calcd., %: C, 31.43; H, 3.66; N, 14.67.
Found, %: C, 31.02; H, 3.24; N, 14.98.

IR spectrum (ν , cm^{-1}): 3450 b, 1636 s, 1600 s, 1572 m, 1475 w, 1450 w, 1414 s, 1363 s, 1292 s, 1269 w, 1176 m, 1159 m, 1101 w, 1032 w, 863 m, 796 m, 771 w, 711 s, 699 w, 661 w, 609 w, 458 w.

X-ray crystallographic determination. Single-crystal diffraction data I and II were collected suitable single crystals of the MOF on a Bruker Smart CCD X-ray single-crystal diffractometer with graphite monochromated MoK_α -radiation ($\lambda = 0.71073 \text{ \AA}$) at 296(2) K. All independent reflections were collected in a range of 2.25°–25.00° for MOF I and 3.02°–24.98° for MOF II (determined in the subsequent refinement). Multi-scan empirical absorption corrections were applied to the data using the SADABS [17]. The crystal structure was solved by direct methods and Fourier synthesis. Positional and thermal parameters were refined by the full-matrix least-squares method on F^2 using the SHELXTL software package [18]. The final least-square cycle of refinement gave $R_1 = 0.0275$, $wR_2 = 0.0770$ for I and $R_1 = 0.0300$, $wR_2 = 0.0790$ for II, the weighting scheme $w = 1/[\sigma^2(F_o^2) + (0.0429P)^2 + 0.55P]$ for MOF I and $w = 1/[\sigma^2(F_o^2) + (0.0306P)^2 + 0.67P]$ for MOF II, where $P = (F_o^2 + 2F_c^2)/3$. A summary of the key crystallographic information is given

in Table 1. Selected bond lengths and band angles for the MOFs I and II are listed in Table 2.

Supplementary material for the MOFs I and II has been deposited with the Cambridge Crystallographic Data Centre (nos. 826477 (I), 827162 (II); deposit@ccdc.cam.ac.uk or <http://www.ccdc.cam.ac.uk>).

RESULTS AND DISCUSSION

MOFs I and II are stable in the solid state upon exposure to air and insoluble in common solvents, such as CH_3COCH_3 , CH_3CH_2OH , $CHCl_3$, $CHCl_2$, CH_3CN , THF or DMF, but they are soluble in DMSO and CH_3OH . The solid state properties of the two MOFs were examined by IR spectra and recorded in the range of 4000–400 cm^{-1} suggest that the PDA^{2-} , Phen (MOF I) and PZCA (MOF II) ligands coordinated to the central Cu^{2+} ions. The IR spectra of the MOFs show a broad band at 3424 cm^{-1} for MOF I and 3450 cm^{-1} for MOF II due to the OH groups of water molecules. Strong absorption bands in the ranges 1622–1519 cm^{-1} (I) and 1636–1572 cm^{-1} (II) correspond to COO^- vibrations groups of the PDA^{2-} and PZCA ligands [9]. Two strong bands are observed at 1426, 1364 cm^{-1} (I) and 1414, 1363 cm^{-1} (II) that corresponds to the C–O vibration of the PDA^{2-} and PZCA ligands [19, 20], respectively. The absence of the characteristic bands around 1700 cm^{-1} indicates that the H_2PDA and PZCA ligands of MOFs I and II are completely deprotonated in the form of PDA^{2-} and PZCA⁻ anions upon reaction with the metal ions. The weak bands 405 to 690 cm^{-1} (I) and 458 to 699 cm^{-1} (II) may be ascribed to Cu–N and Cu–O stretching vibrations. The conclusions above all are supported by the results obtained by X-ray diffraction measurements [21].

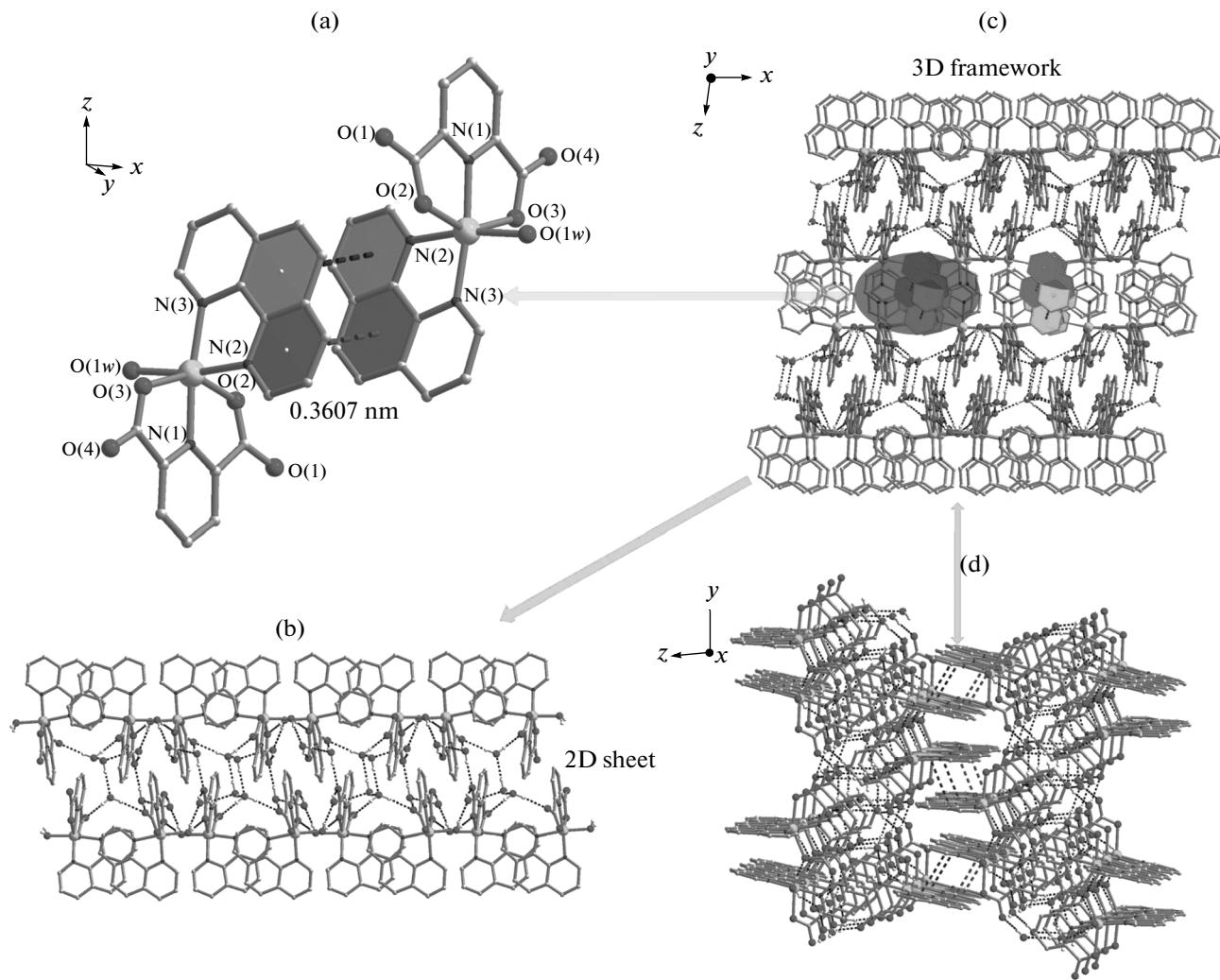

The unit of MOF I consists of two six-coordinated $Cu(II)$ atoms, two independent PDA^{2-} ligands, two Phen ligands and two coordinated water molecules (Fig. 1a). The independent Cu^{2+} ions present a distorted octahedral geometry. The equatorial sites of the polyhedron are occupied by N(1) donor sets from PDA^{2-} , N(2), N(3) from Phen donor and O(1w), while the axial vertexes are occupied by O(2) and O(3) from PDA^{2-} . The average distances of $Cu(1)$ –O(2) and $Cu(1)$ –O(3) (O(2) and O(3) belonging to PDA^{2-} ligand) is 2.312 \AA , which is markedly longer than that of $Cu(1)$ –O(1w) (2.029(15) \AA). The bond length of $Cu(1)$ –N(1) (1.988(17) \AA) is slightly shorter than the average bond length (2.028 \AA) of $Cu(1)$ –N(2) and $Cu(1)$ –N(3) (N(2) and N(3) deriving from Phen ligand), suggesting that the tridentate chelating effect of PDA^{2-} ligand is more stronger than that of Phen ligand. The lengths of Cu–N, Cu–O and Cu–O(W) are consistent with those in the similar MOFs reported [4, 5]. The adjacent 0D units are connected by the hydrogen bonds (O(5w)–H(5wB)···O(8)^{#6}, O(7w)–H(7wA)···O(5w)^{#1}, O(4w)–H(4wA)···O(7w) and

Table 1. Crystallographic data and experimental details for MOFs **I** and **II**

Parameter	Value	
	I	II
Formula weight	943.81	381.79
Crystal system	Triclinic	Monoclinic
Space group	$P\bar{1}$	$P2_1/c$
a , Å	10.0603(13)	6.9088(5)
b , Å	13.8635(18)	14.1990(11)
c , Å	14.2575(19)	8.2807(6)
α , deg	97.601(2)	90
β , deg	97.724(2)	112.435
γ , deg	98.103(2)	90
Z	2	2
Volume, Å ³	1927.5(4)	750.84(10)
ρ_{calcd} , mg m ⁻³	1.626	1.689
$F(000)$	968	390
Crystal size, mm	0.48 × 0.40 × 0.28	0.48 × 0.44 × 0.35
θ Range for data collection, deg	2.25–25.00	3.02–24.98
Limiting indices	$-8 \leq h \leq 11$, $-16 \leq k \leq 16$, $-16 \leq l \leq 16$	$-8 \leq h \leq 8$, $-15 \leq k \leq 16$, $-5 \leq l \leq 9$
Reflections collected/unique	9835/6707	3731/1314
R_{int}	0.0108	0.0118
Data/restraints/parameters	6707/0/550	1314/0/106
Goodness-of-fit on F^2	1.072	1.139
Final R indices ($I > 2\sigma(I)$)	$R_1 = 0.0275$ $wR_2 = 0.0770$	$R_1 = 0.0300$ $wR_2 = 0.0790$
R indices (all data)	$R_1 = 0.0333$ $wR_2 = 0.0788$	$R_1 = 0.0326$ $wR_2 = 0.0801$
Largest diff. peak and hole, $e \text{ Å}^{-3}$	0.257 and -0.300	0.290 and -0.277

Table 2. Selected bond lengths (Å) and band angles (deg) for the MOFs **I** and **II**

Bond	<i>d</i> , Å	Bond	<i>d</i> , Å
I			
Cu(1)–N(1)	1.9881(17)	Cu(2)–O(2w)	2.0019(14)
Cu(1)–N(3)	2.0032(18)	Cu(2)–N(4)	2.0043(17)
Cu(1)–O(1w)	2.0292(15)	Cu(2)–N(5)	2.0096(17)
Cu(1)–N(2)	2.0529(18)	Cu(2)–N(6)	2.0515(17)
Cu(1)–O(2)	2.3090(16)	Cu(2)–O(7)	2.2535(16)
Cu(1)–O(3)	2.3155(15)	Cu(2)–O(6)	2.3500(15)
II			
Cu(1)–O(1)	1.9549(17)	Cu(1)–N(1)	1.9817(19)
Cu(1)–O(1w)	2.5207(23)		
Angle	ω , deg	Angle	ω , deg
I			
N(1)Cu(1)N(3)	172.29(7)	O(2w)Cu(2)N(4)	94.89(6)
N(1)Cu(1)O(1w)	94.20(6)	O(2w)Cu(2)N(5)	90.39(7)
N(3)Cu(1)O(1w)	90.40(7)	N(4)Cu(2)N(5)	174.70(7)
N(1)Cu(1)N(2)	94.93(7)	O(2w)Cu(2)N(6)	170.82(7)
N(3)Cu(1)N(2)	81.21(7)	N(4)Cu(2)N(6)	93.40(7)
O(1w)Cu(1)N(2)	169.06(7)	N(5)Cu(2)N(6)	81.30(7)
N(1)Cu(1)O(2)	75.97(6)	O(2w)Cu(2)O(7)	90.35(6)
N(3)Cu(1)O(2)	97.80(6)	N(4)Cu(2)O(7)	76.93(6)
O(1w)Cu(1)O(2)	90.90(6)	N(5)Cu(2)O(7)	103.55(7)
N(2)Cu(1)O(2)	97.15(6)	N(6)Cu(2)O(7)	95.37(6)
N(1)Cu(1)O(3)	75.86(6)	O(2w)Cu(2)O(6)	90.39(6)
N(3)Cu(1)O(3)	110.52(7)	N(4)Cu(2)O(6)	74.60(6)
O(1w)Cu(1)O(3)	88.22(6)	N(5)Cu(2)O(6)	104.95(6)
N(2)Cu(1)O(3)	88.17(6)	N(6)Cu(2)O(6)	88.01(6)
O(2)Cu(1)O(3)	151.67(6)	O(7)Cu(2)O(6)	151.48(5)
II			
O(1)Cu(1)N(1)	83.36(8)		

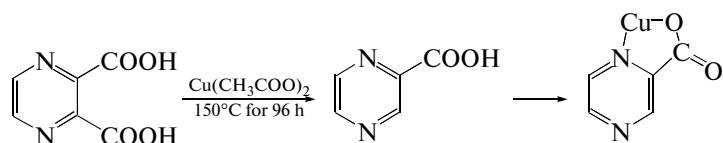
Fig. 1. The formation of 3D framework of $[\text{Cu}(\text{PDA})(\text{Phen})(\text{H}_2\text{O})]_2 \cdot 5\text{H}_2\text{O}$: coordination environment of the MOF I and the $\pi-\pi$ interactions in the MOF (a); view of the 1D chain and 2D single layer (b); view of the 3D framework in the y axis direction (c); view of the 3D framework in the x axis direction (d).

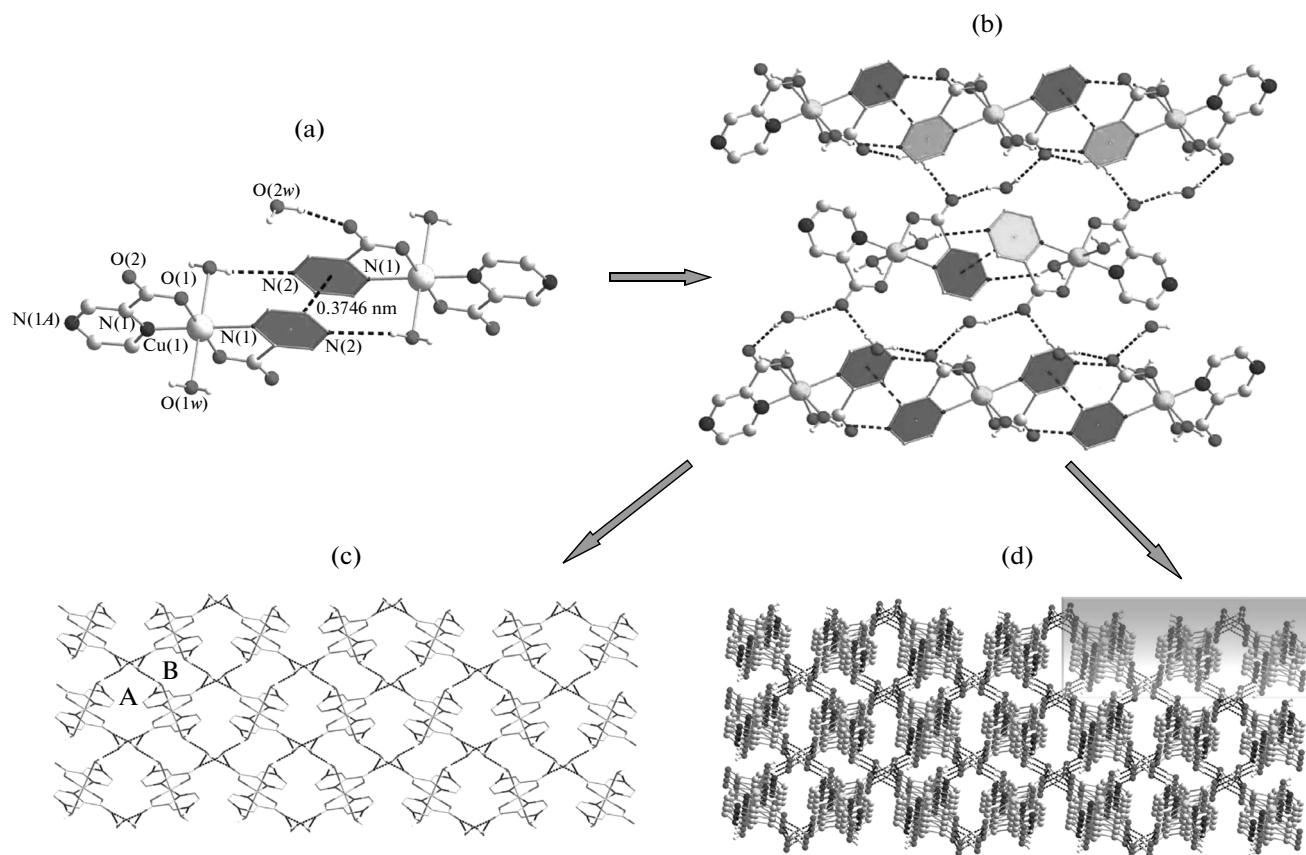
$\text{O}(4w)-\text{H}(4w)\cdots\text{O}(5)$) to construct an infinite 1D chain, which are further arranged into 2D sheet through hydrogen bonds (Fig. 1b). The neighboring 2D sheets are connected through hydrogen bonds ($\text{O}(6w)-\text{H}(6wA)\cdots\text{O}(1)^{\#2}$, $\text{O}(5w)-\text{H}(5wA)\cdots\text{O}(1)$, $\text{O}(3w)-\text{H}(3wA)\cdots\text{O}(4)^{\#3}$, $\text{O}(7w)-\text{H}(7wB)\cdots\text{O}(5w)^{\#4}$, $\text{O}(6w)-\text{H}(6wB)\cdots\text{O}(5)^{\#5}$, $\text{O}(3w)-\text{H}(3wB)\cdots\text{O}(6w)^{\#2}$, $\text{O}(2w)-\text{H}(2wA)\cdots\text{O}(3w)^{\#7}$, $\text{O}(1w)-\text{H}(1wA)\cdots\text{O}(4w)$) and $\pi-\pi$ interactions ($\pi-\pi$ interactions occur between the parallel pyridine rings of Phen with the centroid-to-centroid distances of 3.607 Å to give rise to a supramolecular 3D framework (Figs. 1c and 1d). The corresponding data of hydrogen bonds are listed in Table 3.

Regarding to MOF II, the original ligand H_2PZDA was decarboxylated in the form of HPZCA to form $[\text{Cu}(\text{PZCA})_2(\text{H}_2\text{O})_2] \cdot 2\text{H}_2\text{O}$ under hydrothermal conditions in the presence of Cu^{2+} ion. MOF II gives a

distorted octahedral geometry with $\text{N}(1)$, $\text{O}(1)$ and $\text{N}(1A)$, $\text{O}(1A)$ belonging to two molecules of PZCA ligand to occupy each vertex of the four equatorial sites, while two O atoms coming from two molecules of terminal water to locate in the apical positions along the axis (Fig. 2a). The corresponding bond angles are: $\text{O}(1)\text{Cu}(1)\text{N}(1)$ 83.37°, $\text{O}(1)\text{Cu}(1)\text{N}(1A)$ 96.65°, $\text{O}(1A)\text{Cu}(1)\text{N}(1)$ 96.65° and $\text{O}(1A)\text{Cu}(1)\text{N}(1A)$ 83.37° (Table 2). The sum of bond angles is 360.00°, which indicates that the four atoms ($\text{O}(1)$, $\text{O}(1A)$, $\text{N}(1)$ and $\text{N}(1A)$) are accurately coplanar under the experimental error. It also can be proved by the sum of the internal angle of the parallelogram ($\text{N}(1)\text{O}(1)\text{N}(1A)$ 90.78°, $\text{O}(1)\text{N}(1A)\text{O}(1A)$ 89.22°, $\text{N}(1)\text{O}(1A)\text{N}(1A)$ 90.78° and $\text{O}(1)\text{N}(1)\text{O}(1A)$ 89.22°, summation: 360.00°). Three diagonals defined by $\text{O}(1)\text{Cu}(1)\text{O}(1A)$, $\text{O}(1w)\text{Cu}(1)\text{O}(1wA)$ and $\text{N}(1)\text{Cu}(1)\text{N}(1A)$ are exactly collinear. Among the bond lengths of $\text{Cu}-\text{O}$, $\text{Cu}-\text{O}(w)$ and $\text{Cu}-\text{N}$, the lat-

Table 3. Geometric parameters of hydrogen bonds in MOFs **I** and **II***


Contact D—H···A	Distance, Å			Angle D—H···A, deg
	D—H	H···A	D···A	
I				
O(7w)—H(7wA)···O(5w) ^{#1}	0.85	1.97	2.812(3)	169
O(6w)—H(6wA)···O(1) ^{#2}	0.85	1.97	2.814(3)	172
O(5w)—H(5wA)···O(1)	0.85	1.98	2.821(3)	169
O(4w)—H(4wA)···O(7w)	0.85	1.97	2.798(3)	163
O(3w)—H(3wA)···O(4) ^{#3}	0.85	2.06	2.842(3)	153
O(7w)—H(7wB)···O(5w) ^{#4}	0.85	1.96	2.812(3)	178
O(4w)—H(4wB)···O(5)	0.85	1.98	2.799(2)	162
O(6w)—H(6wB)···O(5) ^{#5}	0.85	1.95	2.793(2)	172
O(5w)—H(5wB)···O(8) ^{#6}	0.85	1.83	2.672(3)	174
O(1w)—H(1wB)···O(6)	0.85	1.83	2.675(2)	169
O(3w)—H(3wB)···O(6w) ^{#2}	0.85	1.97	2.818(3)	180
O(2w)—H(2wA)···O(3w) ^{#7}	0.85	1.87	2.688(2)	162
O(2w)—H(2wB)···O(3)	0.85	1.77	2.616(2)	174
O(1w)—H(1wA)···O(4w)	0.85	1.90	2.692(2)	155
II				
O(2w)—H(2wB)···O(2) ^{#2}	0.85	2.00	2.818(3)	161
O(2w)—H(2wA)···O(2) ^{#3}	0.85	2.01	2.834(3)	163
O(1w)—H(1wB)···N(2)	0.85	2.38	3.182(3)	157
O(1w)—H(1wA)···O(2w) ^{#4}	0.85	1.88	2.732(3)	177


* Symmetry transformations used to generate equivalent atoms: ^{#1} $x - 1, y, z$; ^{#2} $-x + 1, -y + 1, -z + 1$; ^{#3} $x, y + 1, z$; ^{#4} $-x + 1, -y + 1, -z$; ^{#5} $x, y, z + 1$; ^{#6} $x + 1, y + 1, z$; ^{#7} $x, y - 1, z$ (**I**); ^{#1} $-x + 1, -y + 1, -z + 2$; ^{#2} $-x + 1, -y + 1, -z + 1$; ^{#3} $-x + 1, y - 1/2, -z + 3/2$; ^{#4} $x - 1, y, z - 1$ (**II**).

ter one is longest, probably due to the stronger bidentate chelating effect of PZCA ligand. The lengths of Cu—N, Cu—O and Cu—O(*w*) are consistent with those in the similar MOFs reported. Though the reported complexes are somewhat similar to MOF **II**, some differences also exist between them including crystallographic data, molecule weight, coordination environments of the central metal ions, etc. [22–24]. The discrete 0D units of MOF **II** connected into 1D chain via hydrogen bonds and π — π interactions and then linked into coplanar 2D sheet through hydrogen bonds (Figs. 2a and 2b), which are further assembled into 3D frame-

work through hydrogen bonds bridged by the linkers of lattice water molecules (Fig. 2d). A fascinating and peculiar structural feature of MOF **II** exhibits the alternate arrangement of ring A and ring B motifs in the form of (ABABAB)_∞ in the same plane to generate the porous 2D sheet (Fig. 2c), which present two kinds of opening porosities in the 3D architecture (Fig. 2d).

What's noteworthy is that HPZCA ligands derive from *in situ* decarboxylation of original H₂PZDA ligands under hydrothermal conditions in the presence of Cu²⁺ ion:

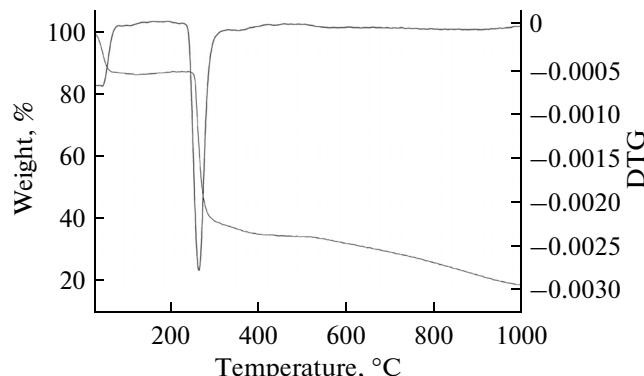
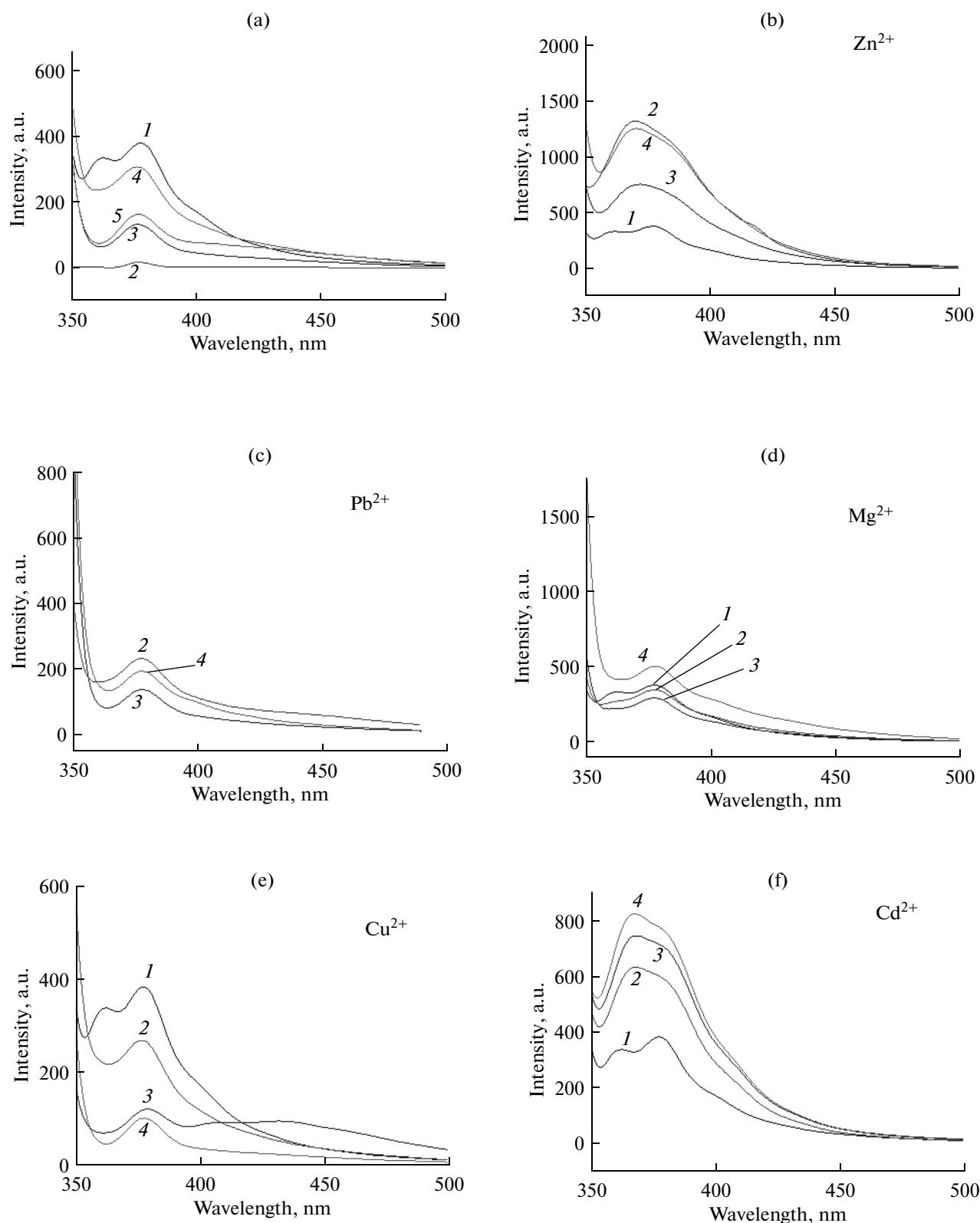


Fig. 2. The formation of 3D framework of $[\text{Cu}(\text{PZCA})_2(\text{H}_2\text{O})_2] \cdot 2\text{H}_2\text{O}$: coordination environment of the MOF II (a); view of the hydrogen bonds and π - π interactions in the 2D structure (b); view of the 2D single sheet linked via 1D chains (c); view of the 3D framework (d).


(only one of the carboxylates in H_2PZDA ligand is de-carboxylated). To make a further understanding of this kind of phenomenon, the comparative experiments have been performed. In the first experiment, the other reaction conditions were kept unchanged except the amount of Cu^{2+} ion was doubled, the identical crystals were obtained. In the second experiment was made di-

rectly from H_2PZDA ligand without Cu^{2+} ion at 150°C (with other conditions were changeless), the HPZCA ligand could not be generated, namely, the in situ de-carboxylations of H_2PZDA ligands didn't occur. In the third experiment we attempted to synthesize MOF II by starting the reaction from HPZCA ligand in stead of H_2PZDA , however, the title MOF II could not be obtained. These results indicate that Cu^{2+} ion may play a promotional role in decarboxylation in this reaction process at 150°C . Some similar results about in situ de-carboxylations of multcarboxylic acid promoted by Cu^{2+} ion have also been reported [25–28].

The TG and DTG curves of the MOF I are shown in Fig. 3, which indicate that the MOF decomposes in two steps. The first weight loss stage has a decomposition temperature range of 25 – 100°C , with a weight loss of 13.41%, which corresponds to the loss of part of five molecules of coordinated water and two molecules of H_2O ligands (theoretical loss is 13.36%). On further heating, the material loses weight continuously during the second step, which has a decomposition temperature range of 243 – 980°C , with a weight loss of 67.62%, corresponding to the loss of two molecules of Phen and two molecules of H_2PDA ligands (theoretical

Fig. 3. TG–DTG curves of the MOF I.

Fig. 4. Emission spectra of MOF I in methanol (10^{-4} M) at room temperature ($\lambda_{\text{ex}} = 337$ nm) in the presence of Zn^{2+} , Cd^{2+} , Mg^{2+} , Pb^{2+} , and Cu^{2+} ions with respect to I: (a)—MOF I (1), methanol (2), $\text{Cu}(\text{Ac})_2 \cdot \text{H}_2\text{O}$ (3), Phen (4), H_2PDA (5) (concentrations of all compounds 10^{-4} M); (b)— Zn^{2+} , (c)— Pb^{2+} , (d)— Mg^{2+} , (e)— Cu^{2+} , (f)— Cd^{2+} (no addition (1), 1 (2), 2 (3), 3 equiv (4)).

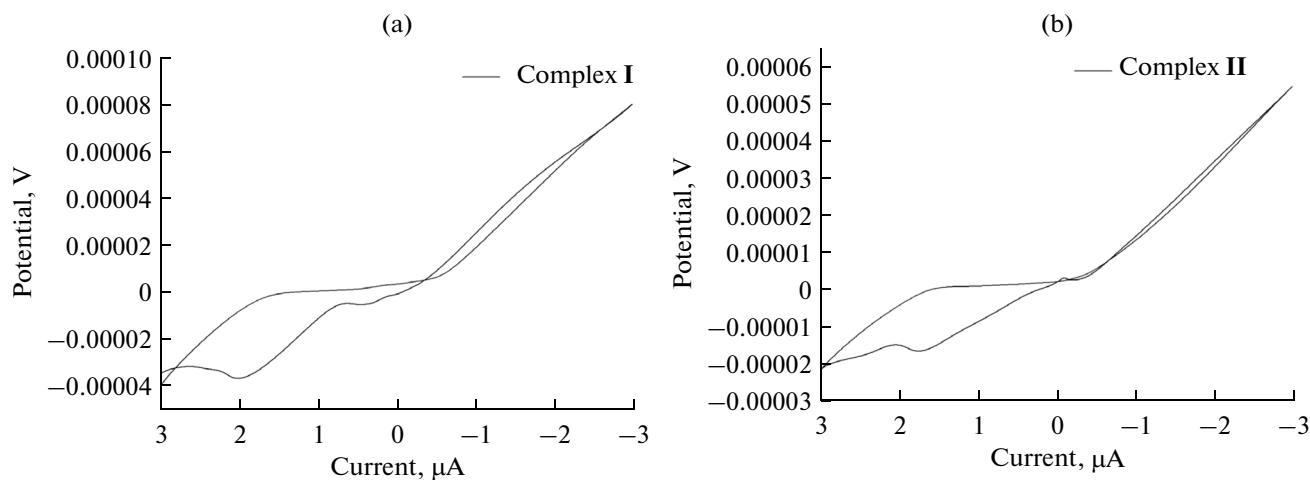


Fig. 5. Cyclic voltammograms of MOF I (a) and II (b) in methanol at $v = 0.25$ V/s.

cal loss is 69.35%). The fact that H_2PDA ligands are lost at a higher temperature suggests that they are coordinated with the Cu atoms. The decomposition product is identified as CuO . The observed weight 18.97% is in agreement with the calculated value (17.29%).

The luminescent properties of MOF I are studied in methanol (10^{-4} M) at room temperature. Emission spectra of MOF I (excited at 337 nm) in the presence of Cd^{2+} , Cu^{2+} , Mg^{2+} , Pb^{2+} , and Zn^{2+} ions with respect to MOF I are listed in Fig. 4, respectively. MOF I exhibits intense broad emission bands at 362 and 377 nm, which may be due to the $\pi^* \rightarrow n$ or $\pi \rightarrow \pi^*$ transition. According to the above results, the emission of MOF I may be assigned to the ligand-to-metal-charge-transfer bands (LMCT). The emission intensity of MOF I increases significantly upon adding 3×10^{-4} mol L $^{-1}$ of Cd^{2+} (from $\text{Cd}(\text{Ac})_2$). The highest peak at 362 nm increased nearly three times as intense as the corresponding bands in the solution without adding. The highest peak at 362 nm for the MOF I was at least three times as intense as the corresponding bands in the solution without 1×10^{-4} mol L $^{-1}$ of Zn^{2+} and decreased to three times when 1×10^{-4} mol L $^{-1}$ of Pb^{2+} . In contrast, the same experiments were performed with the introduction of Mg^{2+} . As a result, the metal ions have no significant effect on the luminescent intensities. The results above support the notion that the luminescent emission of MOF I display selectivity on a certain extent for Zn^{2+} , Cu^{2+} , Pb^{2+} , and Cd^{2+} .

The cyclic voltammograms graphics of MOF I and II in methanol (10^{-4} M) solution are shown in Fig. 5. From 2 to 0 V, there are two irreversible oxidation peaks of the MOFs, one at the $E_{\text{pa}} = 387$ mV and the other at the $E_{\text{pa}} = 1997$ mV, which corresponding to the ligands and Cu(I)/Cu(II) oxidation process. There is one weak reduction peak at the $E_{\text{pa}} = 1591$ mV,

which corresponding to ligands PDA^{2-} and ligands reduction process. The electrochemical property of MOF II is similar to that of MOF I (Fig. 5).

ACKNOWLEDGMENTS

This work was supported by the Natural Science Foundation of Henan Province, P.R. China (nos. 13A150056, 12B150005, 122102210174 and 12B150004).

REFERENCES

1. Deng, H., Grunder, S., Cordova, K.E., et al., *Science*, 2012, vol. 336, no. 6084, p. 1018.
2. Wang, C., Zhang, T., and Lin, W., *Chem. Rev.*, 2012, vol. 112, no. 7, p. 1084.
3. Zhao, B., Gao, H.L., Chen, X.Y., et al., *Chem. Eur. J.*, 2006, vol. 12, no. 1, p. 149.
4. Devereux, M., McCann, M., Leon, V., et al., *Polyhedron*, 2002, vol. 21, no. 12, p. 1063.
5. Ramezanipour, F., Aghabozorg, H., Sheshmani, S., et al., *Acta Crystallogr., E*, 2004, vol. 60, no. 45, p. m1803.
6. Wen, G.L., Wang, Y.Y., Liu, P., et al., *Inorg. Chim. Acta*, 2009, vol. 362, no. 8, p. 1730.
7. Li, M., Xiang, J., Yuan, L., et al., *Cryst. Growth Des.*, 2006, vol. 6, no. 9, p. 2036.
8. Liu, M.S., Yu, Q.Y., Cai, Y.P., et al., *Cryst. Growth Des.*, 2008, vol. 8, no. 11, p. 4083.
9. Yang, L.R., Song, S., Shao, C.Y., et al., *Synth. Met.*, 2011, vol. 161, no. 4, p. 1500.
10. Yang, L.R., Song, S., Shao, C.Y., et al., *Synth. Met.*, 2011, vol. 161, nos. 11–12, p. 925.
11. Wang, Z. and Cohen, S.M., *Chem. Soc. Rev.*, 2009, vol. 38, no. 5, p. 1315.
12. Zhu, T., Ikarashi, K., Ishigaki, T., et al., *Inorg. Chim. Acta*, 2009, vol. 362, no. 1, p. 3407.
13. Zhao, B., Chen, X.Y., Cheng, P., et al., *J. Am. Chem. Soc.*, 2004, vol. 126, no. 47, p. 15394.

14. Brouca-Cabarrecq, C., Dexpert-Ghys, J., Fernandes, A., et al., *Inorg. Chim. Acta*, 2008, vol. 361, nos. 9–10, p. 2909.
15. Mahata, P., Ramya, K.V., and Natarajan, S., *Dalton Trans.*, 2007, no. 36, p. 4017.
16. Dossantos, C., Harte, A., Quinn, S., et al., *Chem. Rev.*, 2008, vol. 108, no. 18, p. 2512.
17. Matsuda, R., Kitaura, R., Kitagawa, S., et al., *J. Am. Chem. Soc.*, 2004, vol. 126, no. 43, p. 14063.
18. Sheldrick, G.M., *SHELXTL, Version 5, Reference Manual*, USA: Siemens Analytical X-ray Systems, 1996.
19. Premkumar, T., Govindarajan, S., Coles, A.E., et al., *J. Phys. Chem., B*, 2005, vol. 109, no. 13, p. 6126.
20. Gabr, I.M., El-Asmy, H.A., Emmam, M.S., et al., *Transition Met. Chem.*, 2009, vol. 24, no. 32, p. 409.
21. Nakamoto K., *Infrared and Raman Spectra of Inorganic and Coordination Compounds*, New York: John Wiley and Sons, 1997.
22. Klein, C.L., Majeste, R.J., Trefonas, L.M., et al., *Inorg. Chem.*, 1982, vol. 21, no. 5, p. 1891.
23. Wang, G.H., He, R.L., Meng, F.J., et al., *Acta Crystallogr., E*, 2009, vol. 65, p. m1511.
24. Chutia, P., Kato, S., Kojima, T., et al., *Polyhedron*, 2009, vol. 28, no. 10, p. 370.
25. Wu, W.P., Wang, Y.Y., Wu, Y.P., et al., *CrystEngComm*, 2007, vol. 9, p. 753.
26. Frisch, M. and Cahill, C.L., *J. Solid State Chem.*, 2007, vol. 180, no. 36, p. 2597.
27. Ziegelgruber, K.L., Knope, K.E., Frisch, M., et al., *J. Solid State Chem.*, 2008, vol. 181, no. 8, p. 373.
28. Zhong, D.C., Lu, W.G., Jiang, L., et al., *Cryst. Growth Des.*, 2009, vol. 10, no. 2, p. 739.