

Hexanuclear Chloride and Brimode Tungsten Clusters and Their Derivatives¹

P. A. Abramov^{a, b, *}, A. V. Rogachev^a, M. A. Mikhailov^a, A. V. Virovets^a, E. V. Peresypkina^a,
M. N. Sokolov^{a, b}, and V. P. Fedin^{a, b}

^a Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia

^b Novosibirsk State University

*e-mail: abramov@niic.nsc.ru

Received August 28, 2013

Abstract—Several hexanuclear chloride and bromide bridged tungsten clusters have been prepared. Two new oxo-bridged clusters, $\text{Na}[\text{W}_6\text{OBr}_{18}]$ and $[\alpha\text{-W}_6(\mu_2\text{-OH})_4(\mu_2\text{-O})_6(\mu_2\text{-Cl})_2\text{Cl}_6]^{2-}$ are reported. Crystal structures of eight new tungsten cluster complexes with different core types were determined. The possibility of Se for Cl substitution in the $\{\text{W}_6\text{Cl}_8\}^{4+}$ core was investigated.

DOI: 10.1134/S1070328414050017

INTRODUCTION

Clusters of 5–7 group transition metals with $\{\text{M}_6(\mu_3\text{-X})_8\}^{n+}$ ($\text{M} = \text{Nb, Mo, W, Tc, Re}$; $\text{X} = \text{halogen or chalcogen atom}$) core form an extensive family of high-valence inorganic cluster compounds [1, 2]. This family also includes Chevrel phases (PbMo_6S_8 etc.) with thermoelectric and superconducting properties [3–6]. The molecular clusters of this family are attractive candidates for design of solar energy converting systems because of their prominent photophysical and redox properties [2, 7]. Specifically, luminescence of this compounds can be used for energy transmission and triplet-singlet oxygen conversion [1]. Molybdenum clusters are better studied [2–8] compared to the tungsten analogues. In this work report preparation and structural characterization of a number of new salts with $[\text{W}_6\text{X}_{14}]^{2-}$ ($\text{X} = \text{Cl, Br}$) anion, the perfluorobutyrate complex $(\text{Bu}_4\text{N})_2[\text{W}_6\text{Cl}_8(\text{C}_3\text{F}_7\text{COO})_6]$ and new oxo-halide clusters $(\text{Bu}_4\text{N})_2[\alpha\text{-W}_6(\mu_3\text{-O})_6(\mu_3\text{-Cl})_6\text{Cl}_6]$, $(\text{PyH})_2[\alpha\text{-W}_6(\mu_2\text{-OH})_4(\mu_2\text{-O})_6(\mu_2\text{-Cl})_2\text{Cl}_6]$ and $\text{Na}[\text{W}_6\text{OBr}_{18}]$. The possibility of bridging chloride substitution in $\{\text{W}_6(\mu_3\text{-Cl})_8\}^{4+}$ core with selenide was also explored.

EXPERIMENTAL

All reagents were commercially available and used as purchased without further purification. Solvents were purified by standard procedures. Reactions involving H_2Se were handled in a well-ventilated fume cupboard. The ampoules (200 × 20 mm) were opened after cooling with liquid N_2 . IR spectra were recorded with a Scimitar FTS 2000 spectrometer. ESI–MS spectra were recorded with a Quattro LC (Micromass,

Manchester, UK). Sample solutions were injected through injection pump at 6 L/min rate. The capillary voltage was 3.5 kV, the chamber voltage varied between –10 and –60 V. Formulated composition of every peak was compared with theoretically predicted isotopic pattern using MassLynx 3.5 (MassLynx 3.5; Micromass: Manchester, UK, 1998). Elemental analysis was carried out in the analytic service of NIIC SB RAS.

X-ray structure analysis. Crystallographic characteristics of compounds and experiment details are listed in Table 1. The data were collected on a single-crystal diffractometer Bruker X8Apex CCD (MoK_α , $\lambda = 0.71073 \text{ \AA}$) by standard scanning of narrow (0.5°) frames at 100 K. The structures were solved directly and refined by full-matrix least-squares treatment on $|\text{F}_{\text{obs}}|^2$ in anisotropic approximation using SHELXTL program set [9]. Absorption correction was applied with SADABS program [10]. Hydrogen atoms were placed in their geometrically calculated positions and refined using riding model. Packing of cluster anions in the crystal structures was analyzed with TOPOS 4.0 Professional program [11]. Atom coordinates have been deposited with The Cambridge Crystallographic Data Centre under deposition numbers 889201–889205 (available by request at <http://www.ccdc.cam.ac.uk>), and in Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: (+49) 7247-808-666; e-mail: crys-data@fiz-karlsruhe.de) under numbers 424877, 424892, and 424893.

$(\text{Bu}_4\text{N})_2[\text{W}_6\text{Cl}_{14}]$ (I) and $(\text{Bu}_4\text{N})_2[\alpha\text{-W}_6(\mu_2\text{-O})_6(\mu_2\text{-Cl})_6\text{Cl}_6]$ (II): The reduction of WCl_6 with metallic antimony in the presence of NaCl was carried out as reported in [12], but the crude melt was then treated in air. Extraction with HCl gives a yellow-green solution, which after addition of 1.5 g Bu_4NBr

¹ The article was translated by the authors.

Table 1. X-ray experiments details

Parameter	Value						
	I	II	IV	V	VI	VII	IX
<i>M</i>	2084.32	2109.42	1876.48	1783.01	3149.86	2804.51	2580.47
Crystal system, space group	Monoclinic, $P2_1/n$	Triclinic, $P\bar{1}$	Hexagonal, $P\bar{3}1c$	Orthorhombic, $Pnmm$	Monoclinic, $P2_1/n$	Triclinic, $P\bar{1}$	Hexagonal, $P6_3/m$
Temperature, K	100	100	203	296	100	150	150
<i>a</i> , Å	12.630(11)	12.5619(2)	9.7941(6)	9.1567(3)	12.4215(3)	13.5580(4)	13.4289(2)
<i>b</i> , Å	11.4734(10)	12.9716(3)	9.7841(6)	12.7498(4)	17.9360(6)	15.0908(4)	13.4289(2)
<i>c</i> , Å	18.5232(14)	19.6207(4)	14.329(2)	13.3445(4)	20.1925(6)	16.7646(5)	13.4289(2)
α , deg	90	87.459(1)	90	90	90	69.461(1), 72.185(1), 90	90
β , deg	90.022(4)	74.301(1)	90	90	103.296(1)	67.048(1), 72.185(1), 90	90
γ , deg	90	63.793(1)	120	90	90	120	90
<i>V</i> , Å ³	2684.2(4)	2751.02(10)	1190.4(2)	1557.92(8)	4378.1(2)	2900.28(14)	1397.81(6)
<i>Z</i>	2	2	2	2	2	2	4
<i>F</i> (000)	1920	1948	1597	1752	2952	2504	2186
μ , mm ⁻¹	13.53	13.11	33.45	23.634	8.24	21.55	50.33
Crystal size (mm)	0.12 × 0.06 × 0.05	0.21 × 0.12 × 0.10	0.10 × 0.03 × 0.02	0.07 × 0.06 × 0.03	0.53 × 0.06 × 0.05	0.20 × 0.20 × 0.20	0.29 × 0.25 × 0.04
<i>T</i> _{min} , <i>T</i> _{max}	0.335, 0.508	0.024, 0.269	0.135, 0.554	0.735, 1	0.488, 0.662	0.654, 1	0.005, 0.158
No of measured, independent and observed (<i>I</i> > 2σ(<i>I</i>)) reflections	17261/5909/3800	22548/9349/8095	3336/845/533	10774/2631/2261	47086/12741/9872	36179/15824/11678	17623/2461/1916
<i>R</i> _{int}	0.066	0.028	0.064	0.020	0.056	0.034	0.114
θ _{max} , deg	27.5	25.0	28.3	33.43	32.0	31.7	37.6
<i>h</i> , <i>k</i> , <i>l</i> ranges	-15 ≤ <i>h</i> ≤ 15, -14 ≤ <i>k</i> ≤ 14, -24 ≤ <i>l</i> ≤ 16	-14 ≤ <i>h</i> ≤ 14, -15 ≤ <i>k</i> ≤ 15, -23 ≤ <i>l</i> ≤ 23	-10 ≤ <i>h</i> ≤ 12, -11 ≤ <i>k</i> ≤ 8, -18 ≤ <i>l</i> ≤ 12	-13 ≤ <i>h</i> ≤ 13, -18 ≤ <i>k</i> ≤ 15, -12 ≤ <i>l</i> ≤ 19	-17 ≤ <i>h</i> ≤ 14, -24 ≤ <i>k</i> ≤ 26, -29 ≤ <i>l</i> ≤ 29	-19 ≤ <i>h</i> ≤ 19, -16 ≤ <i>k</i> ≤ 21, -22 ≤ <i>l</i> ≤ 23	-16 ≤ <i>h</i> ≤ 14, -14 ≤ <i>k</i> ≤ 16, -30 ≤ <i>l</i> ≤ 14
<i>R</i> (<i>F</i> ² > 2σ(<i>F</i> ²)), <i>wR</i> (<i>F</i> ²)	0.058, 0.131	0.030, 0.070	0.064, 0.173	0.0364, 0.1142	0.047, 0.064	0.027, 0.050	-17 ≤ <i>l</i> ≤ 14
GOOF	1.09	1.06	1.11	1.124	1.04	0.98	0.028, 0.057
No of parameters, restraints	257, 0	523, 0	38, 0	96, 0	572, 0	620, 12	1.03
Weighting scheme	$w = 1/[\sigma^2(F_o^2) + (0.0243P_o^2 + 193.156P)]$, where $P = (F_o^2 + 2F_c^2)/3$	$w = 1/[\sigma^2(F_o^2) + (0.0125P_o^2 + 1.2P)]$, where $P = (F_o^2 + 2F_c^2)/3$	$w = 1/[\sigma^2(F_o^2) + (0.0123P_o^2 + 10.4412P)]$, where $P = (F_o^2 + 2F_c^2)/3$	$w = 1/[\sigma^2(F_o^2) + (0.0073P)^2]$, where $P = (F_o^2 + 2F_c^2)/3$	$w = 1/[\sigma^2(F_o^2) + (0.0167P)^2]$, where $P = (F_o^2 + 2F_c^2)/3$	$w = 1/[\sigma^2(F_o^2) + (17.9257P)]$, where $P = (F_o^2 + 2F_c^2)/3$	$w = 1/[\sigma^2(F_o^2) + (0.89/2.26)]$
Δρ _{max} / Δρ _{min} , e Å ⁻³	4.86/-2.81	2.80/-2.01	2.46/-6.18	2.527/-3.416	1.96/-1.47	1.10/-1.11	4.48/-3.12

* Computer programs: Apex2 V.1.27 (Bruker, 2005), SHELLXS97 (Sheldrick, 1997), SHELLXTL V6.22 (Bruker, 2000–2005).

gives a yellow-orange precipitate. The precipitate was filtered, dried in *vacuo* and dissolved in 20 mL of CH_3CN . Slow diffusion of diethyl ether vapor at 4°C yielded a mixture of yellow (**I**) and red (**II**) crystals in two days, suitable for X-ray analysis. Complex **I** was also prepared quantitatively by reaction of **III** with Bu_4NBr in HCl . Calculated for $(\text{Bu}_4\text{N})_2[\text{W}_6\text{Cl}_{14}]$: C : H : N (%) 18.8 : 3.7 : 1.3; found: 18.4 : 3.5 : 1.3.

(H_7O_3)₂W₆Cl₁₄ · 3H₂O (III): 4.3 g of metallic Bi (0.02 mol) and 8.8 g of WCl_6 (0.022 mol) were placed into a glass ampoule, which was evacuated and sealed. The mixture was heated at 230°C, for 2 h, and at 355°C for another 2 hours, and then the ampoule was placed in a temperature gradient such as its empty end was situated in the cooler part of the furnace, and heated at 350°C for 24 hours. After cooling to the room temperature the ampoule was opened up gently in order to avoid mixing the dark with BiCl_3 , sublimated in the cooler end. Then the melt (8.1 g) was washed with 8 mL of cold conc. HCl , filtered through a glass filter, and the dark precipitate was extracted with 15 mL of hot conc. HCl by boiling for 30 min. The insoluble part was removed by filtration. Cooling of the filtrate yielded light yellow crystalline precipitate of $(\text{H}_7\text{O}_3)_2[\text{W}_6\text{Cl}_{14}] \cdot 3\text{H}_2\text{O}$ (**III**) as thin long needles. Yield 4.1 g (65%).

Cs₂W₆Cl₁₄ · 0.63H₂O (IV): A solution of 1.05 g (0.6 mmol) of **III** in 8 mL of conc. HCl was added to a solution of 0.20 g (1.2 mmol) of CsCl in 5 mL of conc. HCl . Yellow crystals of the cesium separated. Yield 79%. Anal. Calc. for Cl 26.4%. Found Cl 26.1%.

(PyH)₂[α -W₆(μ_2 -OH)₄(μ_2 -O)₆(μ_2 -Cl)₂Cl₆] · 4H₂O (V): 0.5 mL of pyridine was added to 5 mL of the brown hydrochloric solution extract from synthesis of **I** instead of Bu_4NBr . A yellow-orange solid precipitated immediately, which was redissolved upon heating and after slow cooling yielded a mixture of yellow and red crystals. Yellow crystals were shown to be $(\text{PyH})_2[\text{W}_6\text{Cl}_{14}]$.

For $\text{C}_{10}\text{H}_{12}\text{N}_2\text{Cl}_{14}\text{W}_6$

anal. calcd., %: C, 6.84; H, 0.69; N, 1.60.
Found, %: C, 7.00; H, 1.07; N, 1.44.

The composition and structure of the red crystals were established by X-ray diffraction (**V**).

(Bu_4N)₂W₆Cl₈(C₃F₇COO)₆ (VI): 10 mL of CHCl_3 were added to a mixture of $(\text{Bu}_4\text{N})_2[\text{W}_6\text{Cl}_{14}]$ (0.24 g, 0.12 mmol) and $\text{AgC}_3\text{F}_7\text{COO}$ (0.22 g, 0.69 mmol), and the suspension was stirred mixed in a foil-covered flask for 24 hours. AgCl precipitate was filtered out from yellow solution, and the filtrate was rota-evaporated. Addition of diethyl ether to the oily residue gives pale-yellow crystals of **VI** in two days. Yield 50%. IR (KBr, 4000–400 cm^{-1}): 2972 (m), 2884 (w), 1716 (s), 1486 (m), 1366 (m), 1326 (m), 1269 (m), 1213 (s), 1166 (m), 1118 (m), 1080 (m), 966 (m), 931 (m), 881

(w), 807 (m), 738 (m), 714 (w), 598 (w), 527 (w), 492 (w), 438 (w).

[Na(diglyme)]₂[W₆Br₁₄] (VII): Tungsten powder (3.50 g, 0.02 mol), NaBr (0.65 g, 6.0 mmol) and 1.0 mL of bromine (0.02 mol) were placed in a quartz ampoule, which was evacuated, sealed, and heated at 720°C for 2 days. After cooling the ampoule was opened and the solidified melt was extracted with diglyme (50 mL, 150°C) during 2 days under Ar. The solution was filtered and **VII** was crystallized after laying with diethyl ether as yellow crystalline solid (0.335 g, 10%).

Na[W₆OB₁₈] (VIII): Tungsten powder, niobium powder, NaBr and bromine (1.0 mL) were placed in a quartz ampoule in 10 : 2 : 6 : 11 molar ratio. The ampoule was evacuated, sealed and heated at 720°C for 2 days. After cooling brown crystals of **VIII** were found on ampoule walls. Formula and structure were determined by X-ray diffraction. Yield 5%. The compound is unstable on humid air because of quick hydrolysis.

Na[W₆Br₁₄] (IX): Tungsten powder, NaBr and bromine (1.0 mL) were placed in a quartz ampoule in 6 : 2 : 6 molar ratio. The ampoule was evacuated, sealed and heated at 720°C for 2 days. After cooling brown crystals of **IX** were found on ampoule walls. Formula and structure were determined by X-ray diffraction. Yield 5%.

Reaction of III with H₂Se in situ: 0.9 g (0.5 mmol) of **III**, 0.23 g (1.6 mmol) of ZnSe and 2 mL of 4M HCl were placed into a glass ampoule, which was evacuated, sealed and heated at 150°C for 8 hours. After cooling the ampoule contained an orange-red solution with a small amount of a black precipitate. The precipitate was filtered out and the solution was added to a solution of Bu_4NBr (0.5 g, 1.68 mmol) in 3.0 mL of conc. HCl . Light gray precipitate was filtered out and dried in *vacuo*. Yield 0.84 g.

For $\text{C}_{32}\text{H}_{72}\text{N}_2\text{Cl}_{14}\text{W}_6$

anal. calcd., %: C, 18.48; H, 3.49; N, 1.35.
Found, %: C, 18.28; H, 3.44; N, 1.35.

IR (KBr, 4000–400 cm^{-1}): 3444 (m), 2961 (s), 2873 (s), 1622 (w), 1464 (s), 1381 (m), 1151 (w), 1063 (w), 1023 (w), 973 (w), 881 (w), 813 (w), 738 (w). IR (500–100 cm^{-1}): 445 (w), 306 (s), 285 (s), 224 (m), 104 (w). The precipitate was dissolved in 2 mL of CH_3CN and the solution was put into diethyl ether vapor at 4°C. A mixture of yellow and red crystals was obtained. According to ESI-MS(–) in CH_3CN , orange crystals contain $[\text{W}_6(\mu_3\text{-SeCl}_7)\text{Cl}_6]^{2-}$ (m/z = 800) as well as $[\text{W}_6(\mu_3\text{-SeCl}_7)\text{Cl}_6]^{2-}$ (m/z = 547) in 2 : 1 molar ratio. Determination of crystal parameters shows that yellow crystals are $(\text{NBu}_4)_2[\text{W}_6\text{Cl}_{14}]$ [13].

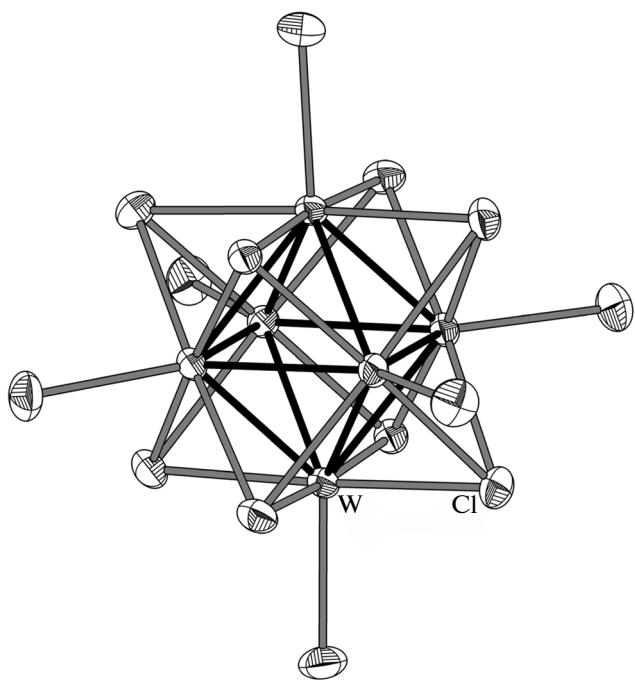


Fig. 1. Structure of a $[W_6(\mu_3\text{-Cl})_8\text{Cl}_6]^{2-}$.

RESULTS AND DISCUSSION

Synthesis and reaction ability. Standard approaches to $W_6\text{Cl}_{12}$ employ reduction of $W\text{Cl}_6$ with various metals [12]. It is assumed that the best way consists in the reduction with bismuth in the presence of KCl [12]. In this work we have carried reduction of $W\text{Cl}_6$ with metallic antimony in presence of NaCl under similar conditions, followed by work-up in air. This procedure yielded a mixture of Bu_4N^+ salts of $[W_6\text{Cl}_{14}]^{2-}$ (**I**) and $[\alpha\text{-}W_6(\mu_3\text{-O})_6(\mu_3\text{-Cl})_6\text{Cl}_6]^{2-}$ (**II**). It should be noted the synthesis of $[\alpha\text{-}W_6(\mu_2\text{-O})_6(\mu_2\text{-Cl})_6\text{Cl}_6]^{2-}$ published in [14] employed reduction of WOCl_4 with bismuth. We suppose that in our case $W\text{Cl}_6$ contained some WOCl_4 , because repetitive experiments, carried out under more meticulous protection from oxygen and moisture (freshly sublimed $W\text{Cl}_6$, loading in a glovebox and thorough evacuation), led only to the salts of $[W_6\text{Cl}_{14}]^{2-}$ isolated as Bu_4N^+ (**I**), H_3O^+ (**III**) or Cs^+ (**IV**) salts. Crystals of $(\text{H}_7\text{O}_3)_2[W_6\text{Cl}_{14}]\cdot 3\text{H}_2\text{O}$ (**III**) were found isostructural to its molybdenum analogue [15]. Addition of pyridine to HCl solution, which contained $[W_6\text{Cl}_{14}]^{2-}$ and $[\alpha\text{-}W_6(\mu_3\text{-O})_6(\mu_3\text{-Cl})_6\text{Cl}_6]^{2-}$ led to precipitation of the PyH^+ salts. $(\text{pyH})_2[W_6\text{Cl}_{14}]$ was identified by elemental analysis, whereas recrystallization of crude $(\text{pyH})_2[\alpha\text{-}W_6(\mu_3\text{-O})_6(\mu_3\text{-Cl})_6\text{Cl}_6]$ resulted in partial substitution of four OH for bridging Cl and yielded an oxo-hydroxo-chloride bridged cluster $(\text{pyH})_2[\alpha\text{-}W_6(\mu_2\text{-OH})_4(\mu_2\text{-O})_6(\mu_2\text{-Cl})_2\text{Cl}_6]$ (**V**).

Cluster complex $(\text{Bu}_4\text{N})_2[\text{Mo}_6\text{Cl}_8(\text{CH}_3\text{COO})_6]$ (**VI**) was obtained from **I** by exchange reaction with silver perfluorobutyrate, driven by the formation of insoluble AgCl . Similar approach has been used for preparation of acetate

and trifluoroacetate $(\text{Bu}_4\text{N})_2[\text{Mo}_6\text{Cl}_8(\text{CH}_3\text{COO})_6]$ and $(\text{Bu}_4\text{N})_2[\text{Mo}_6\text{X}_8(\text{CF}_3\text{COO})_6]$ ($\text{X} = \text{Cl}, \text{Br}$) complexes [16]. Complex **VI** is initially obtained as an oil, which crystallizes little by little. Its IR spectrum is typical for complexes with monodentate carboxylates. Bands at 1716 and 1366 cm^{-1} refer to carboxylate group, while C–F bond appear at 1200–1100 cm^{-1} . Weak bands near 500 cm^{-1} refer to W–O bond vibrations.

In a previous work [10] we studied reaction of $[(\text{Mo}_6\text{Cl}_8)\text{Cl}_6]^{2-}$ with H_2Se generated in situ from ZnSe and 4M HCl at 140°C in molar ratios cluster/ ZnSe from 1 : 3 up to 1 : 20. Subject to the reagents ratio, substitution of one or two chloride bridges by selenide occurs. In the case of $[(\text{W}_6\text{Cl}_8)\text{Cl}_6]^{2-}$ the reaction was carried out under the same conditions and was followed by ESI–MS technique, after precipitation of a possible mixture of anionic clusters with Bu_4N^+ . Recrystallization of the crude precipitate yielded two types of crystals. Orange-red crystals belonged to the $(\text{Bu}_4\text{N})_2[(\text{W}_6\text{X}_8)\text{Cl}_6]$ type [13]. Refinement of the statistic ratio Se/Cl in the X bridging positions could give no information about the amount of selenium. However, according to the ESI–MS(–) data the crystals contained a mixture of monoselenide derivative $[(\text{W}_6\text{SeCl}_7)\text{Cl}_6]^{2-}$ as well as original $[\text{W}_6\text{Cl}_{14}]^{2-}$ in approximately 2 : 1 molar ratio. Thus under similar conditions the tungsten cluster $[\text{W}_6\text{Cl}_{14}]^{2-}$ was turned out more inert to the insertion of a chalcogen into the cluster core than $[\text{Mo}_6\text{Cl}_{14}]^{2-}$, and the reaction stops already at the first stage. The reaction was also accompanied by one-electron oxidation of the 24-electron $\{\text{W}_6\text{Cl}_8\}^{4+}$ core into 23-electron $\{\text{W}_6\text{SeCl}_7\}^{4+}$ core. Assuming that crystals contain 2 : 1 molar mixture of $[\text{W}_6\text{Cl}_{14}]^{2-}$ and $[\text{W}_6\text{SeCl}_{13}]$, the share of selenium in every position does not exceed 1/24 and cannot be reliably determined by X-ray analysis.

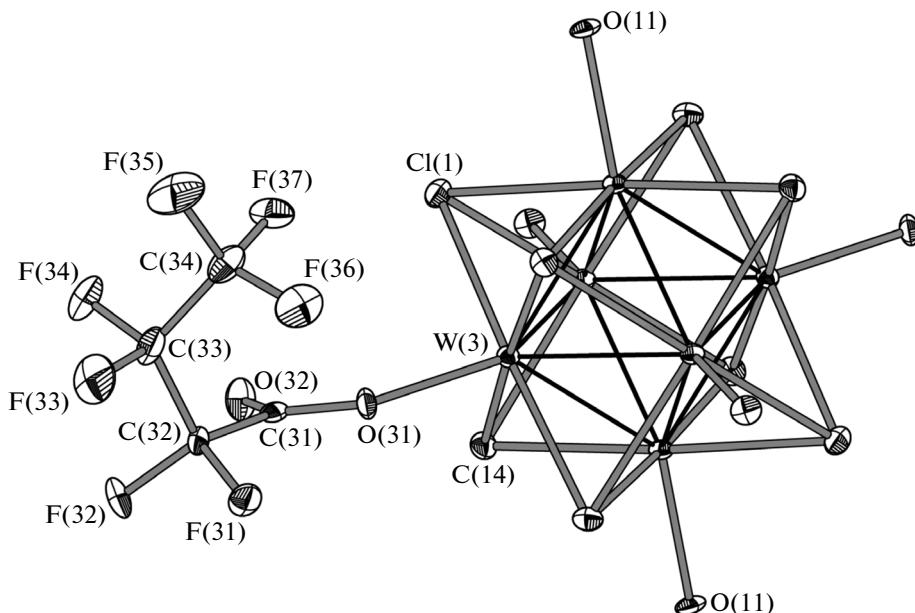
When developing a single-stage synthesis of $[\text{W}_6\text{Br}_{14}]^{2-}$ from tungsten and bromine in presence of NaBr we discovered, along with $\text{Na}_2[\text{W}_6\text{Br}_{14}]$ which was isolated by extraction in diglyme and structurally characterized as $[\text{Na}(\text{diglyme})_2][\text{W}_6\text{Br}_{14}]$ (**VII**), the formation of a few single crystals of two side products containing tungsten in higher oxidation states, namely, $\text{Na}[\text{W}_6\text{OB}_{18}]$ (**VIII**) and $\text{Na}[\text{W}_6\text{Br}_{14}]$ (**IX**) characterized by X-ray analysis.

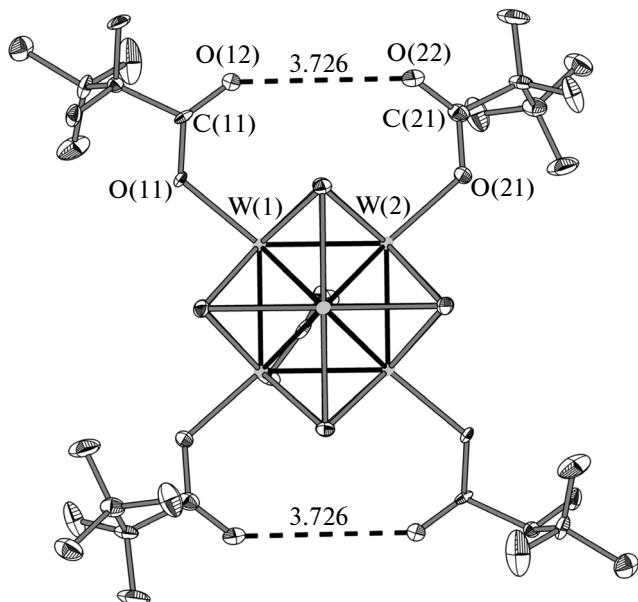
Crystal structures. All the complexes described in this paper contain cluster anions of four different types, their geometric characteristics presented in Table 2. Anions like $[\text{W}_6(\mu_3\text{-X})_8\text{X}_6]^{2-}$ ($\text{X} = \text{Cl}, \text{Br}$) containing 24 cluster valence electrons (complexes **I**, **III**, **IV**, **VI**, **VII**) belong to the first type which contains octahedral cluster core held together by eight $\mu_3\text{-X}$ bridging ligands besides direct W–W bonds. The rest of the tungsten coordination places are occupied by terminal halide (**I**, **III**, **IV**, **VII**; Fig. 1) or carboxylate (**VI**; Fig. 2) ligands. Average W–W distances are 2.610 Å (**I**), 2.614 Å (**IV**), 2.606 Å (**VI**), 2.635 Å (**VII**), being in a good agreement with the values reported for other salts of these anions.

Table 2. Average distances in the cluster cores of **I–IX**

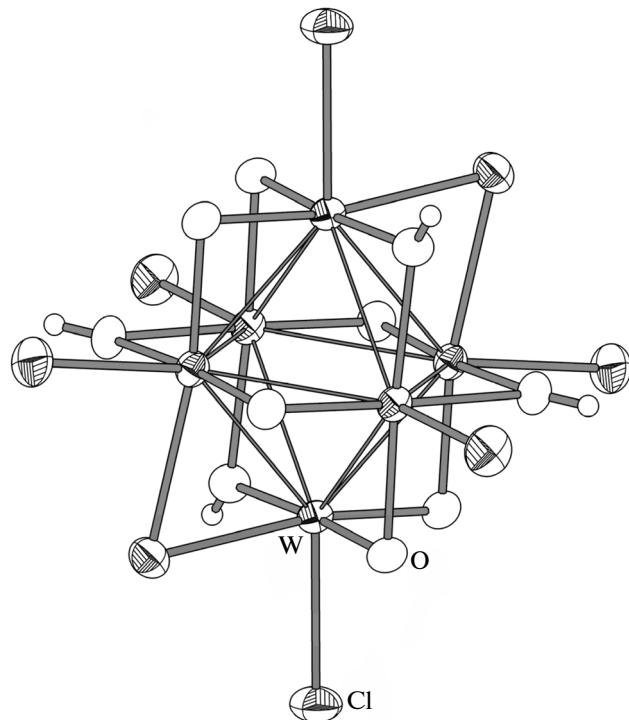
Complex	W–W(av)	W– ⁱ X(av)	W–X(av)	W–O(av)	Reference
I	2.610(1)	2.497(5)	2.426(5)		This work, [14]
II	2.9116(5)	2.456(2)	2.403(2)	1.906(6)	»
	2.6873(5)				
IV	2.614(3)	2.506(8)	2.428(8)		»
V	2.687(1)*	2.457(2)	2.403(1)	**	»
VI	2.606(1)	2.500(1)		2.102(4)	»
VII	2.635(1)	2.6231(5)	2.5889(5)		»
VIII	2.7246(3)	2.5767(5)	2.6339(5)	2.17416(17)	»
	3.0018(3)	2.5100(5)			
IX	2.6513(4)	2.6119(9)	2.5657(7)		»
Ag[W ₆ Br ₁₄]	2.647(2)	2.622(2)	2.575(2)		[18]
[W ₆ Br ₁₄]	2.653(1)	2.608(1)	2.569(1)		[17]
Cu ₂ [W ₆ Br ₁₄]	2.631(1)	2.622(4)	2.613(1)		[20]

* Data for short distances W–W.


** Distances W–O and W–OH have large distribution and are not shown.


Crystal structure of **I** and of the isostructural bromide cluster complex were determined earlier at room temperature. The authors chose a monoclinic cell setting, which can be reduced to our setting by rearrangement of *a* and *c* axes. Our data are in good agreement with literature values [13].

In the anionic cluster [W₆Cl₈(C₃F₇COO)₆]²⁻ (**VI**) six perfluorobutyrate ligands coordinate to tungsten by oxygen atoms in monodentate way (Fig. 2), average W–O distances being 2.102 Å. The carboxylate groups of the perfluorobutyrate ligands coordinated to W(1)


and W(2) are oriented in such a way that oxygen, carbon and tungsten atoms form a flat nine-link fragment resembling an open macrocycle (Fig. 3).

The second type includes [W₆(μ₃-Br)₈Br₆]⁻ anion **IX** (23 cluster valent electrons), which is oxidized form of [W₆(μ₃-X)₈X₆]²⁻ (24 cluster valence electrons). In the crystal structure the cluster anions are bonded in a 3D network by sodium cations (coordination number 6). According to the cell parameters, cubic **IX** is isostructural to the binary bromide [W₆Br₁₄] (22 cluster valence electrons) with molecular

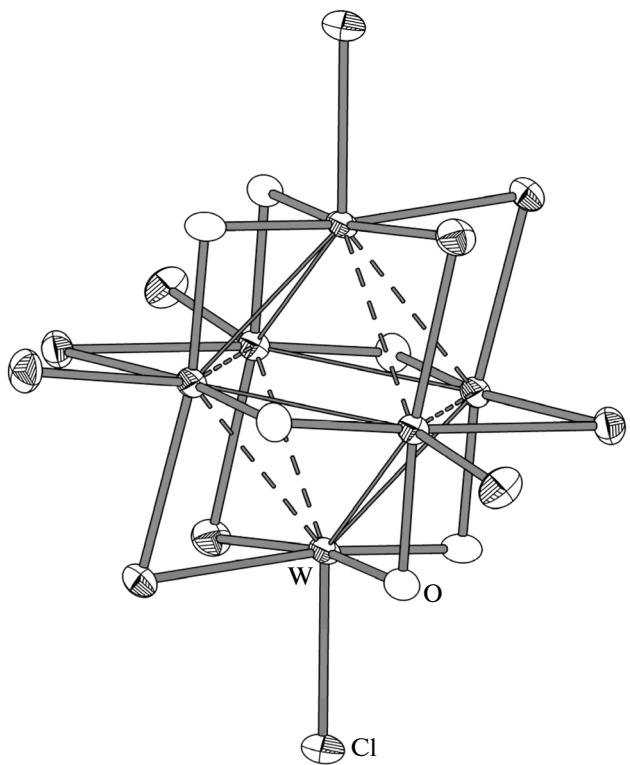

Fig. 2. Structure of a cluster anion [W₆Cl₈(C₃F₇COO)₆]²⁻ in **VI** (only one perfluorobuthirate ligand is shown for clarity).

Fig. 3. Specific orientation of the perfluorobuthirate ligands in the crystal structure of **VI**.

Fig. 5. Structure of a $[\alpha\text{-W}_6(\mu_2\text{-OH})_4(\mu_2\text{-O})_6(\mu_2\text{-Cl})_2\text{Cl}_6]^{2-}$.

Fig. 4. Structure of a $[\alpha\text{-W}_6(\mu_2\text{-O})_6(\mu_2\text{-Cl})_6\text{Cl}_6]^{2-}$ (long metal-metal distances are in the dash style, short distances are in the solid style).

structure and face-centered cubic topology of cluster arrangement [17], and to $\text{Ag}[\text{W}_6\text{Br}_{14}]$ and $\text{Pb}[\text{Mo}_6\text{Br}_{14}]$ [18, 19]. Compound **IX** is also isotopic to $\text{Cu}_2[\text{W}_6\text{Br}_{14}]$ with three-coordinated Cu^+ [20]. Comparison of W–W and W–Br distances for 22, 23 and 24 electron clusters (Table 1) shows that increasing number of the cluster valence electrons shortens W–W bonds and lengthens both bridging and terminal W–Br bonds.

The third type comprises $[\alpha\text{-W}_6(\mu_2\text{-O})_6(\mu_2\text{-Cl})_6\text{Cl}_6]^{2-}$ (**II**) and $[\alpha\text{-W}_6(\mu_2\text{-OH})_4(\mu_2\text{-O})_6(\mu_2\text{-Cl})_2\text{Cl}_6]^{2-}$ (**V**) (both with 14 cluster valence electrons) which belong to the rare for tungsten cluster type $[\text{M}_6(\mu_2\text{-X})_{12}\text{X}_6]^{n-}$, more typical for Nb or Ta [21, 22]. Tungsten atoms form a distorted octahedron and bonded with twelve μ_2 -bridging ligands. The remaining coordination places are occupied by six terminal chloride ligands. Depending on the location of oxygen atoms the oxo-chloride clusters may be isolated in α or β isomeric forms [14]. Structure of $[\alpha\text{-W}_6(\mu_2\text{-OH})_4(\mu_2\text{-O})_6(\mu_2\text{-Cl})_2\text{Cl}_6]^{2-}$ is shown in Fig. 4 (shorter and longer metal-metal distances are shown with lines of different thickness). Considering only stronger W–W interactions (2.685(1)–2.689(1) Å) the cluster core of **II** can be described as a metal-cyclohexane fragment in chair conformation with weaker additional interactions (2.908(1)–2.919(1)). In hot solutions partial substitution of only four of the six bridging chloride ligands leads to the formation of $[\alpha\text{-W}_6(\mu_2\text{-OH})_4(\mu_2\text{-O})_6(\mu_2\text{-Cl})_2\text{Cl}_6]^{2-}$ (**IV**) (Fig. 5) complex takes

place. The W–O bonds for bridging hydroxide and bridging oxide have distinctive differences in length: the W–OH distances are 2.024(1), 2.034(1) Å, while the W–O distances vary from 1.907(1) to 1.947(1) Å. The W–W distances fall within 2.688(1)–2.846(1) Å.

The fourth type of clusters contains hexanuclear anion $[W_6(\mu_6-O)(\mu_2-Br)_{12}Br_6]^-$ which is found $Na[W_6(\mu_6-O)(\mu_2-Br)_{12}Br_6]^-$ (VIII) (16 cluster valence electrons) where tungsten atoms are placed in the vertexes of a triangular prism centered by a μ_6 -O ligand (Fig. 6). The tungsten atoms are bonded pairwise by bridging bromide ligands and the remaining coordination sites are occupied by terminal bromides. This is the first example of an oxygen-centered cluster among the tungsten clusters complementary to carbide and nitride-centered analogues (Table 3). In the crystal structure of VIII the cluster anions are bonded in a 3D network with sodium cations (coordination number 6), distances Na–Br are 2.9882(5) Å.

The dependence of W–W bond length from metal oxidation state has complicated character. Moreover direct comparison of M–M bond length for chloride and bromide clusters is incorrect dealing with known effect of lengthening of M–M bonding due to increasing of halogen radius (matrix effect of halogen). Unfortunately our attempts for “excision” of a cluster by melting with NBu_4Br or by the diglyme extraction were not successful. Final solutions had intensive blue color and only salts of known anions $[WOBr_4]^-$ or $trans-[WOBr_4(H_2O)]^-$ were isolated.

In the structure of VIII the distances between tungsten atoms with the same triangular face appear shorter (2.7246(3) Å) than between the triangular faces (3.0018(3) Å). The distance between tungsten and the central oxygen lengthens only a little

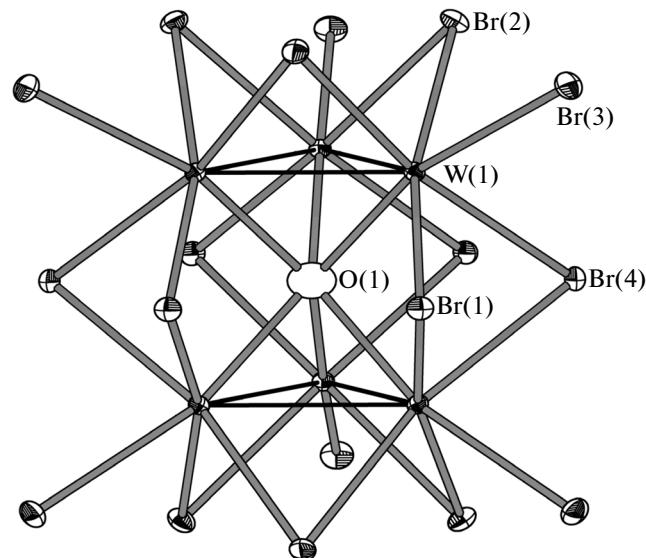


Fig. 6. Structure of a cluster anion $[W_6(\mu_6-O)(\mu_2-Br)_{12}Br_6]^-$.

(2.17416(17) Å) in comparison with the carbide and nitride analogues.

In order to analyze packing motifs in the $[M_6X_{14}]^{2-}$ salts and related compounds we have concentrated on anion placement topology. Quantitative characteristics as coordination sequences and Schlaefli symbols which allow independent determination of packing motifs were calculated with TOPOS 4.0 Professional program complex [11]. For data interpretation mathematical apparatus developed for analysis of the pack-

Table 3. Main parameters of prismatic-type W complexes*

Complex	+z	Y	W–Y _{av} , Å	W–W, Å	W3–W3, Å	Reference
$[W_6NCl_{18}]^-$	3.33	N	2.1682	2.6518(6)	3.0705(7)	[23]
$[W_6NCl_{18}]^{2-}$	3.17	N	2.173	2.6574(6), 2.6608(6), 2.6585(6), 2.6584(6), 2.6759(6), 2.6835(6)	3.0708(6), 3.0789(6), 3.0518(6)	[23]
$[W_6NCl_{18}]^{3-}$	3.00	N	2.16	2.606(1), 2.730(1), 2.732(1), 2.592(1), 2.740(1)	3.087(1), 3.104(1), 2.803(1)	[23]
$[W_6CCl_{18}]^-$	3.50	C	2.157(8)	2.74(1)	2.93(2)	[24]
$[W_6CCl_{18}]^{2-}$	3.33	C	2.1595	2.66(7)	3.028	[24]
$[W_6CCl_{18}]^{3-}$	3.17	C	2.15(3)	2.71(5)	2.96(8)	[24]
$[W_6CCl_{12}(CF_3SO_3)_6]^{2-}$	3.33	C	2.15(3)	2.632(2)	3.037(5)	[25]
$[W_6CCl_{12}(Dmf)_6]^{2+}$	3.33	C	2.1323	2.6618	2.9562	[25]
$[W_6CCl_{12}(Py)_6]^{2+}$	3.33	C	2.15(2)	2.67(3)	3.00(6)	[25]
$[W_6OBr_{18}]^-$ (VIII)	3.17	O	2.174(1)	2.725(1)	3.002(1)	This work

* z—average oxidation state of tungsten, Y—inner atom, W–W=d(W–W) in the triangular faces, W3–W3=d(W–W) between tungsten triangles.

Table 4. Characteristics of the crystal packing of the anions in the salts of $[M_6X_{14}]^{2-}$ and related complexes

Complex	Topology of anion sublattice	G_3	G_3^* , %	Reference
$(Bu_4N)_2[W_6Cl_{14}]$ (I)	fcc	0.07894	99.8	This work
$(Bu_4N)_2[W_6O_6Cl_{12}]$ (II)	fcc	0.07917	99.5	"
$Cs_2[W_6Cl_{14}] \cdot 0.63H_2O$ (IV)	hcp	0.07901	99.4	"
$(PyH)_2[W_6(\mu-OH)_4(\mu-O)_6(\mu-Cl)_2Cl_6] \cdot 4H_2O$ (V)	fcc	0.08014	98.3	"
$(Bu_4N)_2[W_6Cl_8(C_3F_7COO)_6]$ (VI)	fcc	0.08142	96.7	"
$(Na\{diglyme\}_2)_2[W_6Br_{14}]$ (VII)	fcc	0.08439	93.3	"
$Na[W_6(\mu_3-O)Br_{18}]$ (VIII)	hcp	0.07959	98.7	"
$Na[W_6Br_{14}]$ (IX)	fcc	0.07875	100	"
$(Bu_4N)_2[W_6Cl_{14}]$	fcc	0.07892	99.8	[13]
$(Bu_4N)_2[W_6Br_{14}]$	fcc	0.07897	99.7	[13]
$(Bu_4N)_2[W_6I_{14}]$	fcc	0.08065	97.6	[13]
$(H_3O)_2[W_6Br_{14}] \cdot 4H_2O$	hcp	0.08020	97.9	[28]
$[W_6Br_{14}]$	fcc	0.07875	100	[17]
$Ag_2[W_6Br_{14}]$	hcp	0.07903	99.4	[18]
$\alpha-Cu_2[W_6Br_{14}]$	fcc	0.07875	100	[29]
$\beta-Cu_2[W_6Br_{14}]$	fcc	0.07875	100	[29]
$Cd[W_6Br_{14}]$	fcc	0.07875	100	[30]
$K_2[W_6Br_{14}]$	fcc	0.07875	100	[31]
$Rb_2[W_6Br_{14}]$	hcp	0.08148	96.4	[31]
$Cs_2[W_6Br_{14}]$	hcp	0.07894	99.5	[31]
$Tl_2[W_6Br_{14}]$	fcc	0.07875	100	[32]

ing in monomolecular and ionic compounds was used [26, 27].

Results of crystal packing characteristics calculation are listed in Table 4. The G_3^* parameter shows evenness of anion distribution (larger G_3^* value means more even distribution), 100% being a value expected for the ideal structure of this type. As can be seen from Table 4, the principle of anionic close-packing is obeyed in every case. In other words, the topology of anionic centers of gravity always corresponds to fcc or hcp types. High values of G_3^* indicate high evenness of the anionic substructures (negligible distortion). The most distorted substructures are those with asymmetric cations like $[Na\{diglyme\}_2]^+$ or large organic substituents coordinated to the cluster core.

It appeared interesting to examine the principle of close packing vs. an effect of possible presence anion-anion contacts in the structure. In the case of monoatomic cations like Na^+ , K^+ , Tl^+ , etc., the anions contact with each other in all directions, forming a pseudo 3D framework with the cations occupying interstitial spaces. However in the structures with organic cations the latter efficiently shield anions from each other causing decrease in the network (pseudo)dimension down to 2D in $(Bu_4N)_2[W_6I_{14}]$, 1D in **II** and **VII**, or

even to complete isolation of the anion by bulky Bu_4N^+ in **I** and isostructural $(Bu_4N)_2[W_6Br_{14}]$.

These observations show that cation-anion interactions and associated demands for accessible space and coordination environment can determine mutual orientation, but not the motif of gravity centers arrangement. Even isolation of anions by bulky organic cations cannot prevent close-packing arrangement of their substructure.

Authors thank Dr. C. Vicent (University Jaume I, Castellon, Spain) for recording ESI-MS spectra. The authors also thank Prof. V.A. Blatov (Samara State University) for kindly granting the TOPOS 4.0 Professional program. The work supported by State contract no. 14.740.11.0273 of Federal Program "Scientific and Scientific-Educational Personnel of Innovation Russia."

REFERENCES

1. Fedorov, V.E., Mironov, Yu.V., Naumov, N.G., et al., *Usp. Khim.*, 2007, no. 76, p. 529.
2. Prokopuk, N. and Shriver, D.F., *Adv. Inorg. Chem.*, 1999, vol. 46, p. 1.
3. Tobola, J., Pecheur, P., Scherrer, H., et al., *J. Phys.: Condens. Matter*, 2003, vol. 15, no. 44, p. L655.

4. Chevrel, R., Gougeon, P., Potel, M., et al., *J. Solid State Chem.*, 1985, vol. 57, no. 1, p. 25.
5. Chevrel, R., Hirrien, M., and Sergent, M., *Polyhedron*, 1986, vol. 5, no. 1, p. 87.
6. Perrin, A., Perrin, C., and Sergent, M., *J. Less-Common Met.*, 1988, vol. 137, nos. 1–2, p. 241.
7. Nocera, D.G. and Gray, H.B., *J. Am. Chem. Soc.*, 1984, vol. 106, no. 3, p. 824.
8. Hilsenbeck, S.J., Young, V.G., and McCarley, R.E., *Inorg. Chem.*, 1994, vol. 33, no. 9, pp. 1822–1832.
9. Ebihara, M., Toriumi, K., and Saito, K., *Inorg. Chem.*, 1988, vol. 27, no. 1, p. 13.
10. Sokolov, M., Abramov, P., Virovets, A., et al., *J. Clust. Sci.*, 2009, vol. 20, p. 83.
11. Blatov, V.A., <http://www.iucr.org/iucr-top/comm/ccom/newsletters>
12. Kolesnichenko, V. and Messerle, L., *Inorg. Chem.*, 1998, vol. 37, p. 3660.
13. Zietlow, T.C., Schaefer, W.P., Sedeghi, B., et al., *Inorg. Chem.*, 1986, vol. 25, p. 2195.
14. Crawford, N.R.M. and Long, J.R., *Inorg. Chem.*, 2001, vol. 40, p. 3456.
15. Flemstroem, A., Hirsch, T.K., Sehlstedt, L., et al., *Solid State Sciences*, 2002, vol. 4, p. 1017.
16. Sokolov, M.N., Mihailov, M.A., Peresypkina, E.V., et al., *Dalton Trans.*, 2011, vol. 40, no. 24, p. 6375.
17. Sasmannshausen, J. and von Schnerring, H.G., *Z. Anorg. Allg. Chem.*, 1994, vol. 620, p. 1312.
18. Zheng, Y.-Q. and von Schnerring, H.G., *Z. Anorg. Allg. Chem.*, 1999, vol. 625, p. 2115.
19. Boeschen, S. and Keller, H.L., *Z. Kristallogr.*, 1992, vol. 200, p. 305.
20. Ihmaine, S., Perrin, C., and Sergent, M., *Eur. J. Solid State Inorg. Chem.*, 1997, vol. 34, p. 169.
21. Koknat, F.W., Parsons, J.A., and Vongvusharintra, A., *Inorg. Chem.*, 1974, vol. 13, p. 1699.
22. Hughes, B.G., Meyer, J.L., Fleming, P.B., et al., *Inorg. Chem.*, 1970, vol. 9, p. 1343.
23. Welch, E.J., Yu, C.L., Crawford, N.R., and Long, J.R., *Angew. Chem.*, 2005, vol. 117, p. 2605.
24. Welch, E.J., Crawford, N.R., Bergman, R.G., and Long, J.R., *J. Am. Chem. Soc.*, 2003, vol. 125, p. 11464.
25. Welch, E.J. and Long, J.R., *Angew. Chim. Int. Ed.*, 2007, vol. 46, no. 19, p. 3494.
26. Peresypkina, E.V. and Blatov, V.A., *Acta Crystallogr., Sect. B: Struct. Sci.*, 2000, vol. 56, p. 501.
27. Peresypkina, E.V. and Blatov, V.A., *Acta Crystallogr., Sect. B: Struct. Sci.*, 2000, vol. 56, 1035.
28. Yarovoi, S.S., Tarasenko, M.S., Brylev, K.A., et al., *Russ. J. Coord. Chem.*, 2012, vol. 38, no. 6, p. 402.
29. Zheng, Y.Q., Grin, Y., Peters, K., et al., *Z. Anorg. Allg. Chem.*, 1998, vol. 624, no. 6, p. 959.
30. Ihmaine, S., Perrin, C., and Sergent, M., *Croat. Chem. Acta*, 1995, vol. 68, no. 4, p. 877.
31. Zheng, Y.Q., Peters, K., Grin, Y., et al., *Z. Anorg. Allg. Chem.*, 1998, vol. 624, no. 3, p. 506.
32. Zheng, Y.Q., Peters, K., and von Schnerring, H.G., *Z. Kristallogr.-New Cryst. Struct.*, 1998, vol. 213, no. 4, p. 681.