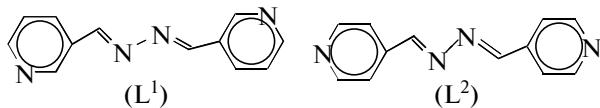


Supramolecular Structures of Fe(II) and Co(II) Complexes Based on the Conjugated Schiff-Base Ligands¹

R. N. Liu, C. X. Xiong, and S. P. Zhao

School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430073 P.R. China

*e-mail: liuruina@mail.nankai.edu.cn


Received February 10, 2012

Abstract—Three new complexes $[\text{Fe}(\text{L}^1)_2(\text{NCS})_2(\text{CH}_3\text{OH})_2]$ (**I**), $[\text{Co}(\text{L}^2)_2(\text{CH}_3\text{OH})_2(\text{H}_2\text{O})_2](\text{ClO}_4)_2 \cdot \text{L}^2 \cdot 2\text{H}_2\text{O}$ (**II**), and $[\text{Co}(\text{L}^1)_3(\text{H}_2\text{O})_2](\text{ClO}_4)_2 \cdot \text{L}^1$ (**III**) ($\text{L}^1 = 1,4\text{-bis}(3\text{-pyridyl})-2,3\text{-diaz-1,3-butadiene}$; $\text{L}^2 = 1,4\text{-bis}(4\text{-pyridyl})-2,3\text{-diaz-1,3-butadiene}$) have been prepared and structurally characterized by X-ray single crystal diffraction. Complexes **I** and **II** are mononuclear. Complex **III** has a 1D chain structure. Complex **I** is assembled by intermolecular O—H···N hydrogen bonds leading to 2D structure. In complex **II**, mononuclear complex cations are linked into 1D chain through hydrogen bonds. Then the chains get into 2D structure by intermolecular O—H···N hydrogen bonds too. In complex **III**, coordinated ligand L^1 acts as a ditopic bridge to produce 1D coordination chain. The self-complementary intermolecular O—H···N hydrogen bonds assemble the chains into 2D sheets.

DOI: 10.1134/S1070328413090042

INTRODUCTION

Schiff base ligands are very important in the development of coordination chemistry as they can readily form stable complexes with most metal ions [1–3]. The construction of new polymeric networks through the long conjugated Schiff-base ligands and metal ions is an area of intense current interest [4–7]. The structure of the ligands in building coordination networks is important. Other interactions, such as hydrogen bonding and π – π stacking, may serve as additional forces sustaining the coordination networks. Through these forces, low-dimensional coordination motifs can get into higher-dimensional architectures [8–16]. In addition, solvent molecules may also dramatically influence the architecture of the complex. Rigid organic ligands containing pyridine rings separated by various spacers, such as 4,4'-bipyridine, 1,2-bis(4-pyridyl)ethene, and 1,2-bis(4-pyridyl)ethyne, have proven popular in recent years and have resulted in a rich variety of structural motifs [17, 18]. We here report three hydrogen-bonded networks built of transition metal ion Fe(II), Co(II) and two long conjugated Schiff-base ligands 1,4-bis(3-pyridyl)-2,3-diaz-1,3-butadiene (L^1) and 1,4-bis(4-pyridyl)-2,3-diaz-1,3-butadiene (L^2):

EXPERIMENTAL

All reagents were of AR grade without further purification. The L^1 and L^2 were prepared by the literature method [9]. Elemental analyses for C, H, and N were performed on a PerkinElmer 240C analyzer. The infrared spectra of the complexes in KBr pellets were obtained on a Bruker Tensor 27 IR spectrometer in the range of 4000–400 cm^{-1} region.

Synthesis of $[\text{Fe}(\text{L}^1)_2(\text{NCS})_2(\text{CH}_3\text{OH})_2]$ (I**).** Iron(II) perchlorate hexahydrate (0.033 g, 0.1 mmol) was added to a solution of KNCS (0.02 g, 0.2 mmol) in methanol (5 mL). The mixture was stirred at room temperature for 20 min, decanted off, and filtered. The resulting colorless 1 : 2 $\text{Fe}^{2+}/\text{NCS}^-$ solution was added dropwise to a methanol solution of L^1 (0.042 g, 0.2 mmol, 20 mL), followed by continuous stirring for 1 h and filtration. The resulting yellow filtrate was kept at room temperature for slow evaporation. After a few days, orange single crystals suitable for X-ray analysis appeared.

For $\text{C}_{28}\text{H}_{28}\text{N}_{10}\text{O}_2\text{S}_2\text{Fe}$
anal. calcd., %: C, 51.22; N, 21.33; H, 4.30.
Found, %: C, 51.18; N, 21.40; H, 4.31.

FT-IR (KBr; ν , cm^{-1}): 2075 $\nu(\text{NCS})$, 1618 $\nu(\text{C}=\text{N})$, 1418 $\nu(\text{O—H})$.

Synthesis of $[\text{Co}(\text{L}^2)_2(\text{CH}_3\text{OH})_2(\text{H}_2\text{O})_2](\text{ClO}_4)_2 \cdot \text{L}^2 \cdot \text{H}_2\text{O}$ (II**).** The methanol solution (10 mL) of cobalt(II) perchlorate hexahydrate (0.034 g, 0.1 mmol) was added into a solution of L^2 (0.042 g, 0.2 mmol) in methanol (10 mL). The mixture was stirred for 1 h and

¹ The article is published in the original.

Table 1. Crystallographic data and details of structure refinements for complexes **I–III**

Parameter	Value		
	I	II	III
Formula	$C_{28}H_{28}N_{10}O_2S_2Fe$	$C_{38}H_{46}N_{12}O_{15}Cl_2Co$	$C_{48}H_{44}N_{16}O_{10}Cl_2Co$
Formula weight	656.57	1040.70	1134.82
Crystal system	Monoclinic	Triclinic	Triclinic
Space group	$P2_1/c$	$P\bar{1}$	$P\bar{1}$
$a, \text{\AA}$	9.112(3)	9.364(3)	10.512(6)
$b, \text{\AA}$	9.565(3)	11.142(4)	10.909(6)
$c, \text{\AA}$	18.280(6)	13.338(5)	11.714(6)
α, deg	90	67.141(6)	98.280(10)
β, deg	94.699(6)	80.639(6)	99.315(9)
γ, deg	90	78.338(6)	92.324(9)
$Z; \rho_{\text{calcd}}, \text{g cm}^{-3}$	2; 1.373	1; 1.382	1; 1.440
$\mu(\text{Mo}K_{\alpha}), \text{mm}^{-1}$	0.649	0.524	0.503
$F(000)$	680	539	585
Reflections measured	8919	6547	6805
Unique reflections (R_{int})	3261 (0.0281)	4395 (0.0311)	4561 (0.0280)
Reflections with ($I > 2\sigma(I)$)	2437	2882	3008
Parameters	197	352	386
GOOF (F^2)	1.026	1.050	1.005
$R_1, wR_2 (I > 2\sigma(I))$	0.0352, 0.0875	0.0697, 0.2036	0.0575, 0.1504
R_1, wR_2 (all data)	0.0549, 0.0964	0.1088, 0.2348	0.0954, 0.1798
Largest diff. peak and hole, $e \text{\AA}^{-3}$	0.242 and -0.240	0.752 and -0.505	0.569 and -0.505

filtered to give a clear solution. Slow evaporation of the filtrate at room temperature afforded orange crystals.

For $C_{38}H_{46}N_{12}O_{15}Cl_2Co$

anal. calcd., %: C, 43.86; N, 16.15; H, 4.46.
Found, %: C, 43.75; N, 16.30; H, 4.41.

FT-IR (KBr; ν, cm^{-1}): 1618 $\nu(\text{C}=\text{N})$, 1415 $\nu(\text{O}-\text{H})$.

Synthesis of $[\text{Co}(\text{L}^1)_3(\text{H}_2\text{O})_2](\text{ClO}_4)_2 \cdot \text{L}^1$ (III). Complex **III** was synthesized using the same procedure for complex **II** but with L^1 instead of L^2 .

For $C_{48}H_{44}N_{16}O_{10}Cl_2Co$

anal. calcd., %: C, 50.80; N, 19.75; H, 3.91.
Found: C, 50.91; N, 19.63; H, 4.01.

FT-IR (KBr; ν, cm^{-1}): 1616 $\nu(\text{C}=\text{N})$, 1409 $\nu(\text{O}-\text{H})$.

X-ray structure determination. X-ray single-crystal diffraction data for complexes **I–III** were collected using a Bruker Smart CCD 1000 area detector at room temperature with $\text{Mo}K_{\alpha}$ radiation ($\lambda = 0.71073 \text{\AA}$). The ω scan technique was employed. The structure was solved by direct methods and refined by full matrix least-squares on F^2 using SHELXS-97 and SHELXL-97 pro-

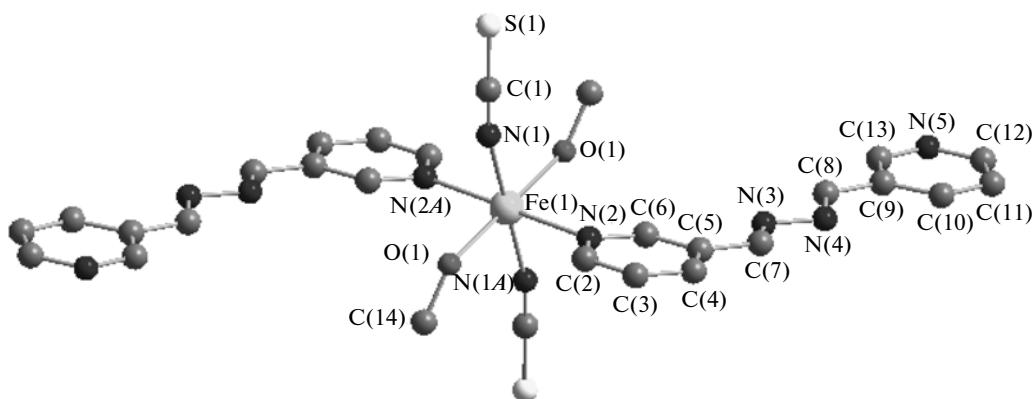
grams, respectively [19]. Non-hydrogen atoms were refined anisotropically. The hydrogen atoms were set in calculated positions and refined as riding atoms with a common fixed isotropic thermal parameter. Details of the crystal parameters, data collection, and refinement are summarized in Table 1. The selected bond lengths and angles for complexes **I–III** are given in Table 2.

Supplementary material for the structural analysis has been deposited with the Cambridge Crystallographic Data Centre (nos. 705571 (**I**), 705572 (**II**), and 705573 (**III**); deposit@ccdc.cam.ac.uk or <http://www.ccdc.cam.ac.uk>).

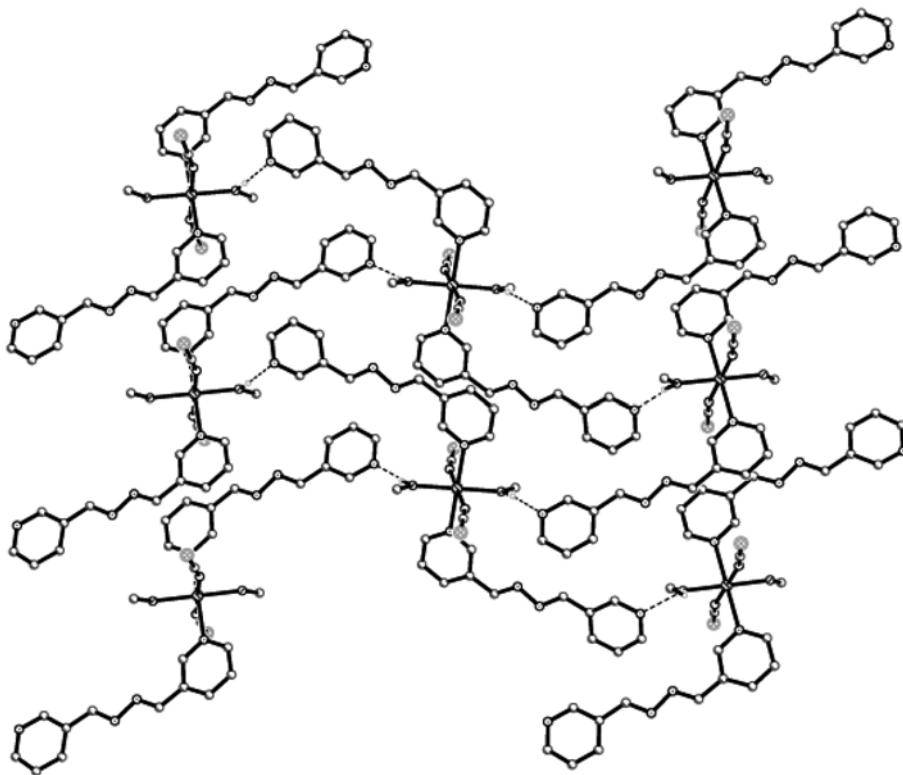
RESULTS AND DISCUSSION

A view of the complex $[\text{Fe}(\text{L}^1)_2(\text{NCS})_2(\text{CH}_3\text{OH})_2]$ (**I**) is shown in Fig. 1. Iron atom lies in a distorted octahedron with two nitrogen atoms of NCS^- ($\text{N}(1)$, $\text{N}(1A)$) occupying the axial positions and two nitrogen atoms of L^1 ($\text{N}(2)$, $\text{N}(2A)$), two oxygen atoms of CH_3OH ($\text{O}(1)$, $\text{O}(1A)$) building the basal plane. $\text{Fe}(1)-\text{O}(1)$ is 2.1034(15), $\text{Fe}(1)-\text{N}(2)$ is 2.2535(17), and $\text{Fe}(1)-\text{N}(1)$ is 2.1136(18) \AA . The angles of $\text{O}(1)\text{Fe}(1)\text{N}(1)$ is 87.39(7) $^\circ$.

The crystal packing is shown in Fig. 2. There are intermolecular hydrogen bonds in this complex. In the crystal structure, the oxygen atoms of two coordinated CH_3OH molecules in per mononuclear unit are associated with the coordinated schiff base ligands L^1 from neighboring units through $\text{O}(1)-\text{H}(1)\cdots\text{N}(5)$ hydrogen bonds (distance is 2.675 Å; angle is 155°). And in the mononuclear unit, $\text{N}(5)$ or $\text{N}(5A)$ of the coordinated Schiff base ligands L^1 are linked to other neighboring two mononuclear units through these hydrogen bonds, too. Extended complex gets into 2D layer structure through these hydrogen bonds and stabilized by these intermolecular hydrogen bonds.


The structure of compound **II** consists of a mononuclear $[\text{Co}(\text{L}_2)_2(\text{CH}_3\text{OH})_2(\text{H}_2\text{O})_2]^{2+}$ cation, two perchlorate anions and one uncoordinated L^2 molecule, two lattice water molecules. The structure of the complex cation is depicted in Fig. 3. Cobalt atom lies in a distorted octahedron with two oxygen atoms of H_2O ($\text{O}(2)$, $\text{O}(2A)$) occupying the axial positions and two nitrogen atoms of L^2 ($\text{N}(1)$, $\text{N}(1A)$), two oxygen atoms of CH_3OH ($\text{O}(1)$, $\text{O}(1A)$) building the basal plane. The distance of $\text{Co}(1)-\text{O}(2)$ is 2.084(2), $\text{Co}(1)-\text{O}(1)$ is 2.133(3), and $\text{Co}(1)-\text{N}(1)$ is 2.147(2) Å. The angles of $\text{O}(2)\text{Co}(1)\text{O}(1)$ is 90.40(10)°.

The hydrogen bonding pattern is shown in Figs. 4, 5. In Fig. 4, mononuclear complex cations form 1D chain through the hydrogen bonds between $\text{N}(4)$ atoms of the coordinated schiff base ligands L^2 molecules and $\text{O}(2)$ atoms of coordinated water molecules. In addition, the $\text{O}(2)$ atoms of the coordinated water molecules are linked to the uncoordinated schiff base ligands L^2 molecules through $\text{O}(2)-\text{H}(2)\cdots\text{N}(5)$ hydrogen bonds (distance is 2.033 Å; angle is 153°) and every four metal centers are interconnected to form a rhombus-like network of 13×9 Å in the xy plane. So it gets into 2D sheet structure (Fig. 5). Except $\text{O}(2)-\text{H}(2)\cdots\text{N}(4)$ and $\text{O}(2)-\text{H}(2)\cdots\text{N}(5)$ hydrogen bonds, there are intermolecular hydrogen bonds involving the oxygen at-


Table 2. Selected bond lengths (Å) and angles (deg) for compounds **I–III**

Bond	d , Å	Bond	d , Å
I			
Fe(1)–O(1)	2.1034(15)	Fe(1)–N(2)	2.2535(17)
Fe(1)–N(1)	2.1136(18)		
II			
Co(1)–O(1)	2.133(3)	Co(1)–N(1)	2.147(2)
Co(1)–O(2)	2.084(2)		
III			
Co(1)–O(1)	2.051(3)	Co(1)–N(5)	2.238(3)
Co(1)–N(1)	2.180(3)		
Angle	ω , deg	Angle	ω , deg
I			
O(1)Fe(1)N(1)	87.39(7)	O(1)Fe(1)N(2)	89.05(6)
O(1)Fe(1)N(2)	90.95(6)	N(1)Fe(1)N(2)	90.50(7)
N(1)Fe(1)N(2)	89.50(7)		
II			
O(1)Co(1)N(1)	88.96(10)	O(2)Co(1)O(1)	89.62(9)
O(2)Co(1)N(1)	91.05(10)		
III			
O(1)Co(1)N(1)	91.60(12)	N(1)Co(1)N(5)	88.11(13)
O(1)Co(1)N(5)	89.15(12)		

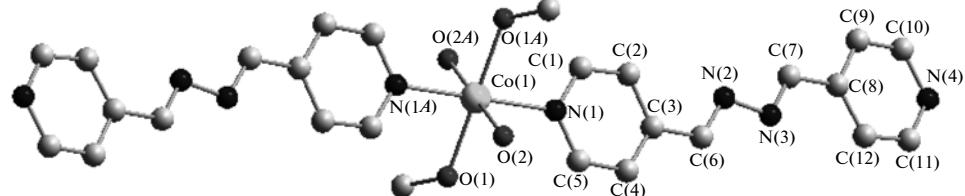

oms of coordinated methanol molecules with the oxygen atoms of uncoordinated water molecules ($\text{O}(1)-\text{H}(1)\cdots\text{O}(7)$ and $\text{O}(7)-\text{H}(7)\cdots\text{O}(1)$), as well as the oxygen atoms of the two uncoordinated water molecules $\text{O}(8)-\text{H}(8)\cdots\text{O}(7)$ in this complex. But between $\text{O}(8)$ atoms of the uncoordinated water molecules and other atoms except for $\text{O}(7)$ atom, it doesn't have hydrogen bonds. This prevents the complex from self-assembling into 3D structures. Perchlorate anions are

Fig. 1. Perspective view of the mononuclear complex in **I**.

Fig. 2. The 2D layer in **I** assembled through the O—H···N interactions.

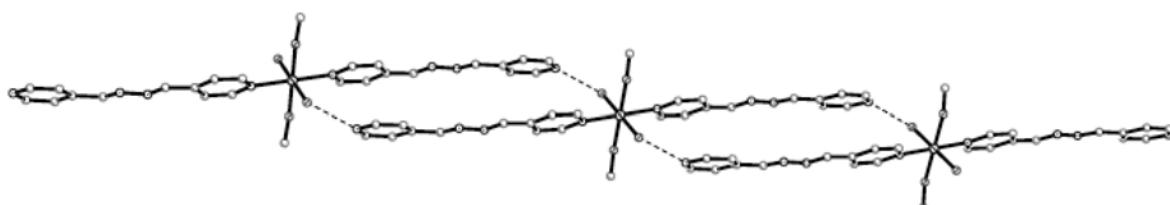


Fig. 3. Perspective view of the mononuclear complex cation in **II**.

located in the void space. The relevant parameters are listed in Table 3.

The structure of complex **III** consists of 1D coordination chains (Fig. 6), perchlorate ions and uncoordinated L^1 molecules. The 1D chains are formed through ditopic bridging L^1 ligands. Cobalt atom lies in a distorted octahedron with two oxygen atoms of

coordinated water molecules (O(1), O(1A)) occupying the axial positions and four nitrogen atoms of coordinated schiff base ligands L^1 (N(1), N(1A), N(5), N(5A)) building the basal plane. The distance of Co(1)–O(1) is 2.051(3), Co(1)–N(1) is 2.180(3), and Co(1)–N(5) is 2.238(3) Å. The angle of O(1)Co(1)N(1) is 91.60(12)°. The nonlinear bridging mode of the

Fig. 4. The 1D chain structure through O(2)–H(2)...N(4) interactions in **II**.

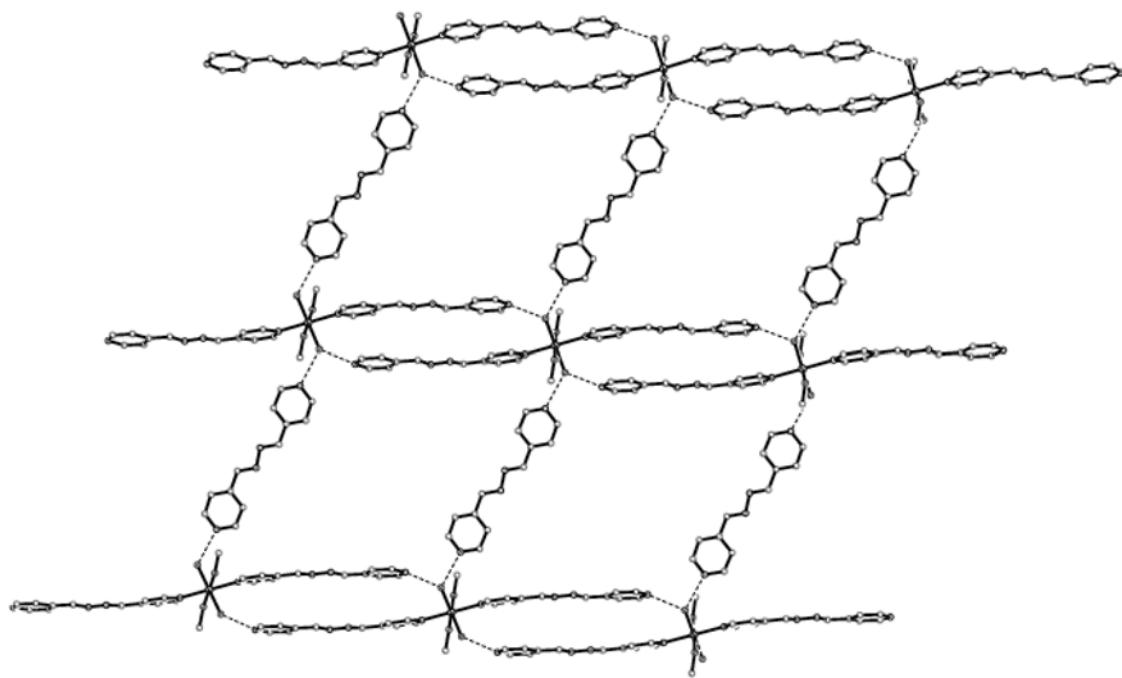


Fig. 5. The 2D sheet of the complex **II**. Perchlorate anions are omitted for clarity.

ligand and the local symmetry of the Co^{2+} ions dictate a zigzag shape from the coordination chain, with the pyridyl groups at the corners and the Co atoms at the midpoints between the corners.

The packing of the chains structure is shown in Fig. 7. As can be seen from the figure, the O(1) atoms of coordinated water molecules are linked to the uncoordinated Schiff base ligands L^1 through $\text{O}(1)-\text{H}(1)\cdots\text{N}(7)$ hydrogen bonds (distance is 2.764 \AA ; angle is 167°) and leave big void space. So along the z direction, there are

large rhombus-like networks ($14 \times 10\text{ \AA}$). The perchlorate ions are located in the void space. Through the $\text{O}-\text{H}\cdots\text{N}$ intermolecular hydrogen bonds, the complex gets into 2D sheet structure. This is somewhat similar to that in **II**. The relevant parameters are listed in Table 3.

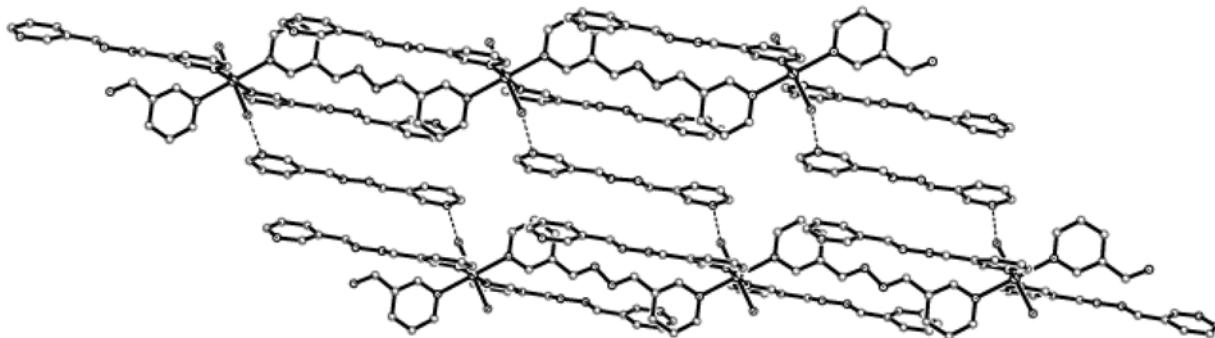

In summary, we have reported three new complexes containing conjugated schiff-base ligands, and obtained mononuclear and 1D chain crystal structures. In complexes **I** and **II**, the pyridyl nitrogen atoms don't participate in direct coordination to other

Table 3. Geometric parameters of hydrogen bonds for complexes **II** and **III**

Contact D—H \cdots A	Distance, \AA			Angle D—H \cdots A, deg	Symmetry codes
	D—H	H \cdots A	D \cdots A		
II					
O(1)—H(1) \cdots O(7)	0.93	1.85	2.736	160	$x - 1, y - 1, z$
O(2)—H(2a) \cdots N(4)	0.82	3.20	2.777	106	$x - 1, y - 1, z + 1$
O(2)—H(2b) \cdots N(5)	0.82	2.03	2.787	153	$x - 1, y, z$
O(7)—H(7) \cdots O(1)	0.86	2.24	2.736	117	$x + 1, y + 1, z$
O(8)—H(8) \cdots O(7)	0.88	2.04	2.700	131	$-x + 2, -y + 1, -z + 1$
III					
O(1)—H(1a) \cdots N(7)	0.82	1.96	2.764	167	$-x, -y, -z + 2$
O(1)—H(1b) \cdots N(4)	0.85	1.86	2.703	177	$-x, -y, -z + 1$

Fig. 6. The 1D coordination chain in **III**.

Fig. 7. The 2D sheet in III assembled through the O–H…N interactions.

metal ions, but in complex **III**, they do. They all form 2D structures through intermolecular hydrogen bonds, and large rhombus-like networks have arisen in the Co(II) complexes,

ACKNOWLEDGMENTS

This work was supported by the Start-up Foundation of Wuhan Textile University. We appreciated the guidance of prof. Licun Li at Nankai University.

REFERENCES

metal ions, but in complex **III**, they do. They all form 2D structures through intermolecular hydrogen bonds, and large rhombus-like networks have arisen in the Co(II) complexes,

ACKNOWLEDGMENTS

This work was supported by the Start-up Foundation of Wuhan Textile University. We appreciated the guidance of prof. Licun Li at Nankai University.

REFERENCES

1. Yu, Q., Zhu, L.G., Bian1.Yu, Q., Zhu, L.G., Bian, H.D., et al., *Chin. J. Struct. Chem.*, 2005, vol. 34, p. 1271.
2. Zhou, Y.Z., Li, J.F., Tu, S.J., and Zhang, M., *Chin. J. Struct. Chem.*, 2005, vol. 24, p. 1193.
3. Lin, H., Feng, Y.L., and Gao, S., *Chin. J. Struct. Chem.*, 2005, vol. 24, p. 375.
4. Kim, H.J., Kim, W., Lough, A.J., and Kim, B.M., *J. Am. Chem. Soc.*, 2005, vol. 127, p. 16776.
5. May, J.P., Ting, R., Lermer, L., et al., *J. Am. Chem. Soc.*, 2004, vol. 126, p. 4145.
6. Cline, S.J., Wasson, J.R., Hatfield, W.E., and Hodgson, D.J., *Dalton Trans.*, 1978, p. 1051.
7. Gao, E.Q., Cheng, A.L., Xu, Y.X., et al., *Inorg. Chem.*, 2005, vol. 44, p. 8822.
8. Beatty, A.M., *Coord. Chem. Rev.*, 2003, vol. 246, p. 131.
9. Kumar, D.K., Das, A., Dastidar, P., *CrystEngComm*, 2006, vol. 8, p. 805.
10. Smith, M.B., Dale, S.H., Coles, S.J., et al., *CrystEngComm*, 2007, vol. 9, p. 165.
11. Stephenson, M.D. and Hardie, M.J., *CrystEngComm*, 2007, vol. 9, p. 496.
12. Uemura, K., Saito, K., Kitagawa, S., and Kita, H., *J. Am. Chem. Soc.*, 2006, vol. 128, p. 16122.
13. Zhou, L.J., Wang, Y.Y., Zhou, C.H., et al., *Cryst. Growth Des.*, 2007, vol. 7, p. 300.
14. Katsuki, I., Motoda, Y., Sunatsuki, Y., et al., *J. Am. Chem. Soc.*, 2002, vol. 124, p. 629.
15. Bhogala, B.R., Thallapally, P.K., and Nangia, A., *Cryst. Growth Des.*, 2004, vol. 4, p. 215.
16. Aitipamula, S., Thallapally, P.K., Thaimattam, R., et al., *Org. Lett.*, 2002, p. 4921.
17. Shin, D.M., Lee, I.S., Chung, Y.K., and Lah, M.S., *Inorg. Chem.*, 2003, vol. 42, p. 5459.
18. Lee, I.S., Shin, D.M., and Chung, Y.K., *Chem. Eur. J.*, 2004, vol. 10, p. 3158.
19. Sheldrick, G.M., *SHELXS-97 and SHELXL-97*, Göttingen (Germany); Univ. of Göttingen, 1997.