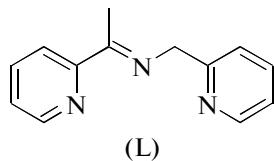


Synthesis, Crystal Structure, and Fluorescence Property of a Thiocyanato-Bridged Polymeric Cadmium(II) Complex Derived from (1-Pyridin-2-ylethylidene)pyridin-2-ylmethylamine¹

X. M. Hu, L. W. Xue, and W. C. Yang

College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan, Henan, 467000 P.R. China

e-mail: pdsuchemistry@163.com


Received January 10, 2012

Abstract—A new thiocyanato-bridged polymeric cadmium(II) complex with the Schiff base ligand (1-pyridin-2-ylethylidene)pyridin-2-ylmethylamine (**L**) derived from 2-acetylpyridine and 2-aminomethylpyridine has been prepared and characterized by elemental analyses, IR spectrum, and single crystal X-ray crystallographic determination. The complex crystallizes in the monoclinic space group $P2_1/n$ with unit cell dimensions $a = 8.904(2)$, $b = 12.041(2)$, $c = 15.550(3)$ Å, $\beta = 92.354(2)^\circ$, $V = 1665.7(5)$ Å³, $Z = 4$, $R_1 = 0.0523$, and $wR_2 = 0.1274$. The Schiff base ligand coordinates to the Cd atom through the three N atoms. The Cd atom of the complex is heptacoordinated by the Schiff base ligand in a tridentate fashion, one nitrate ligand in a bidentate fashion, and one N and one S atoms from two thiocyanate ligands. The overall coordination is pseudopen-tagonal bipyramidal geometry. The fluorescence property of the complex was investigated.

DOI: 10.1134/S1070328413080022

INTRODUCTION

Considerable attention has been focused on the polymeric complexes containing bridging ligands because of their interesting molecular topologies, as well as the fact that they may be designed with specific functionalities [1–3]. Thiocyanate anions have been widely used in the construction of polymeric structures with either end-on or end-to-end bridging mode [4–6]. In addition, luminescent compounds are attracting much interest because of their versatile applications in medical and analytical chemistry [7, 8]. The cadmium complexes with Schiff bases have shown interesting fluorescence properties [4, 9, 10]. In this paper, a new thiocyanato-bridged polymeric cadmium(II) complex, $[\text{CdL}(\text{NO}_3)(\mu_{1,3}\text{-NCS})]_n$ (**I**), with the tridentate Schiff base (1-pyridin-2-ylethylidene)pyridin-2-ylmethylamine (**L**) has been prepared, characterized, and investigated for its fluorescence property.

EXPERIMENTAL

Material and methods. 2-Acetylpyridine and 2-aminomethylpyridine were purchased from Fluka. The cadmium nitrate and other reagents were analytical grade and were used without further purification. The Schiff base **L** was prepared by the condensation of equimolar quantities of 2-acetylpyridine with 2-aminomethylpyridine in methanol according to the literature method [11]. Elemental (C, H, and N) analyses were made on a PerkinElmer Model 240B automatic analyser. Infrared spectra were recorded on an IR-408 Shimadzu 568 spectrophotometer. X-ray diffraction was carried out on a Bruker SMART 1000 CCD diffractometer. The luminescence spectrum was recorded on a JASCO FP-6500 spectrofluorimeter (solid) in the range of 300–550 nm.

Synthesis of complex I. The Schiff base **L** (0.105 g, 0.5 mmol) was diluted by methanol (20 mL), to which was added with stirring a methanol solution (10 mL) of cadmium nitrate tetrahydrate (0.154 g, 0.5 mmol), and an aqueous solution (1 mL) of ammonium thiocyanate (0.038 g, 0.5 mmol). The mixture was stirred for 1 h at ambient temperature to give a colorless solution. Colorless block-shaped single crystals suitable for X-ray diffraction were formed by slow evaporation of the solution in air for a week. The crystals were fil-

¹ The article is published in the original.

Table 1. Crystallographic data and structure refinement summary for complex I

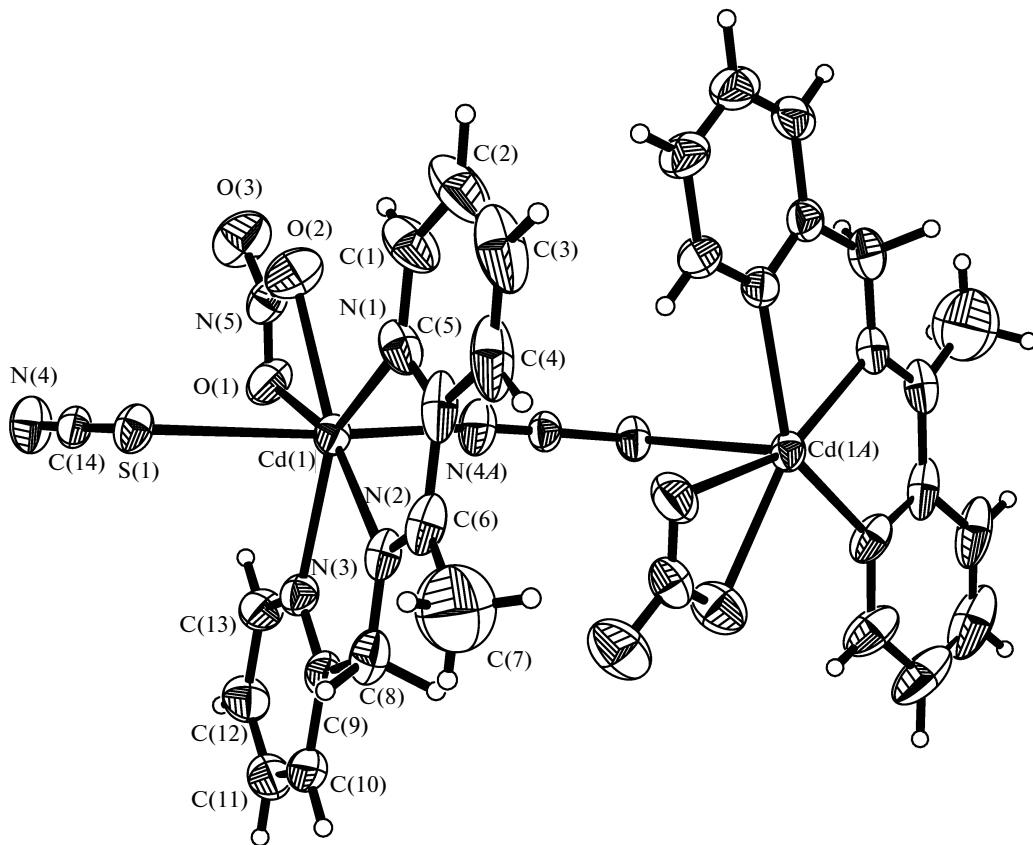
Parameter	Value
Habit, color	Block, colorless
Formula weight	442.8
Temperature, K	298(2)
Crystal size, mm	0.27 × 0.23 × 0.23
Radiation (λ , Å)	MoK α (0.71073)
Crystal system	Monoclinic
Space group	$P2_1/n$
Unit cell dimensions:	
a , Å	8.904(2)
b , Å	12.041(2)
c , Å	15.550(3)
β , deg	92.354(2)
V , Å 3	1665.7(5)
Z	4
ρ_{calcd} , mg cm $^{-3}$	1.765
Absorption coefficient, mm $^{-1}$	1.459
θ Range for data collection, deg	2.14–26.99
Index ranges	$-11 \leq h \leq 11, -15 \leq k \leq 15, -19 \leq l \leq 17$
Reflections collected	13238
Independent reflections	3625
Observed reflections ($I > 2\sigma(I)$)	2356
Parameters	218
Restraints	6
Final R indices ($I \geq 2\sigma(I)$)	0.0523
R indices (all data)	0.0947
Goodness-of-fit	1.098
Largest diff. peak and hole, e/Å 3	1.282 and -0.568

tered off, washed with cold methanol, and dried over silica gel. The yield was 63% (based on L).

For C₁₄H₁₂N₅O₃SCd

anal. calcd., %: C, 38.0; H, 2.7; N, 15.8.
Found, %: C, 37.8; H, 2.8; N, 15.7.

IR data (ν, cm $^{-1}$): 3106 w, 3063 w, 2874 w, 2108 v.s., 1658 s, 1603 s, 1593 m, 1572 w, 1438 s, 1383 m, 1293 s, 1253 w, 1210 w, 1158 w, 1105 w, 1050 w, 1036 w, 1013 m,


Table 2. Coordinate bond distances (Å) and angles (deg) for complex I*

Bond	d , Å	Bond	d , Å
Cd(1)–N(1)	2.358(6)	Cd(1)–N(2)	2.336(6)
Cd(1)–N(3)	2.347(6)	Cd(1)–N(4) ⁱ	2.298(7)
Cd(1)–O(1)	2.526(7)	Cd(1)–O(2)	2.400(7)
Cd(1)–S(1)	2.809(2)		
Angle	ω , deg	Angle	ω , deg
N(4)Cd(1)N(2) ⁱ	97.2(2)	N(4)Cd(1)N(3) ⁱ	93.2(3)
N(2)Cd(1)N(3)	69.9(2)	N(4)Cd(1)N(1) ⁱ	92.5(2)
N(2)Cd(1)N(1)	69.9(3)	N(3)Cd(1)N(1)	139.9(3)
N(4)Cd(1)O(2) ⁱ	89.4(3)	N(2)Cd(1)O(2)	153.8(2)
N(3)Cd(1)O(2)	135.2(2)	N(1)Cd(1)O(2)	84.5(3)
N(4)Cd(1)O(1) ⁱ	82.0(2)	N(2)Cd(1)O(1)	155.7(2)
N(3)Cd(1)O(1)	85.8(2)	N(1)Cd(1)O(1)	134.3(3)
O(2)Cd(1)O(1)	50.3(2)	N(4)Cd(1)S(1) ⁱ	172.66(19)
N(2)Cd(1)S(1)	90.07(15)	N(3)Cd(1)S(1)	88.61(16)
N(1)Cd(1)S(1)	90.65(16)	O(2)Cd(1)S(1)	84.32(19)
O(1)Cd(1)S(1)	91.05(15)		

* Symmetry code for: ⁱ 1/2 – x , -1/2 + y , 1/2 – z .

817 w, 786 m, 770 m, 720 w, 668 w, 638 w, 605 w, 578 w, 456 w, 407 m.

X-ray structure determination. Data were collected from a selected well-shaped single crystal mounted on a glass fibre. The data for the complex was processed with SAINT [12] and corrected for absorption using SADABS [13]. Multiscan absorption correction was applied with ψ scans [14]. The structure was solved by direct method using the program SHELXS-97 and was refined by full-matrix least-squares techniques on F^2 using anisotropic displacement parameters [15]. All hydrogen atoms were placed at the calculated positions. Idealized H atoms were refined with isotropic displacement parameters set to 1.2 (1.5 for methyl groups) times the equivalent isotropic U values of the parent carbon atoms. The crystallographic data for the complex are listed in Table 1. Supplementary material for structure I has been deposited with the Cambridge Crystallographic Data Centre (no. 849708;

Fig. 1. Perspective view of complex **I** with 30% probability thermal ellipsoids. Unlabeled atoms and those labeled with the suffix *A* are related to the symmetry position $1/2 - x, -1/2 + y, 1/2 - z$.

deposit@ccdc.cam.ac.uk or <http://www.ccdc.cam.ac.uk>).

RESULTS AND DISCUSSION

The Schiff base ligand L was readily prepared by the condensation of equimolar quantities of 2-acetylpyridine and 2-aminomethylpyridine in methanol. The Schiff base prepared in this way is formed in nearly quantitative yield and is of high purity. There are one mononuclear Zn and one mononuclear Cd complexes with L and nitrate ligands have been reported [16]. As is well known, the thiocyanate ligands are easily coordinate to the Cd atoms, generating interesting polymeric structures [17–19]. In this paper, the thiocyanate ligand was introduced during the preparation. As expected, the thiocyanato-bridged polymeric complex with L and nitrate ligand was obtained. The complex is stable at room temperature in the solid state. The results of the elemental analyses are in accord with the composition suggested for complex **I**.

The molecular structure of complex **I** is shown in Fig. 1. Selected bond distances and angles are listed in Table 2. The complex is a thiocyanato-bridged poly-

meric Schiff base cadmium(II) compound. The smallest repeat unit of the complex is $[\text{CdL}(\text{NO}_3)(\text{NCS})]$. The $\text{Cd}\cdots\text{Cd}$ distance is $6.301(2)$ Å. Each Cd atom is hepta-coordinated by the Schiff base ligand L in a tridentate NNN fashion, one NO_3^- in a bidentate fashion, and one S and one N atoms from two thiocyanate ligands. The overall coordination is pseudo-pentagonal bipyramidal geometry. As expected, the $\text{Cd}-\text{N}_{\text{imine}}$ is shorter than the $\text{Cd}-\text{N}_{\text{pyridine}}$. The coordinate bond lengths are comparable to those observed in similar cadmium(II) complexes with Schiff bases [16, 20, 21]. The chelate rings, $\text{Cd}(1)-\text{N}(1)-\text{C}(5)-\text{C}(6)-\text{N}(2)$ and $\text{Cd}(1)-\text{N}(2)-\text{C}(8)-\text{C}(9)-\text{N}(3)$ are nearly planar and form a dihedral angle of $0.1(2)^\circ$. The bidentate nitrate ligand occupies the pentagonal base and deviates from the plane formed by the two chelate rings by an angle of $9.5(2)^\circ$. The $[\text{CdL}(\text{NO}_3)]$ units are linked through end-to-end thiocyanate bridges, forming 1D chains running along the y axis, as shown by Fig. 2.

The weak absorptions at 3106 and 3063 cm^{-1} in the spectrum of complex **I** are assigned to the aromatic C–H vibrations. The intense absorption band at 2108 cm^{-1} is assigned to the stretching vibrations of the thiocyan-

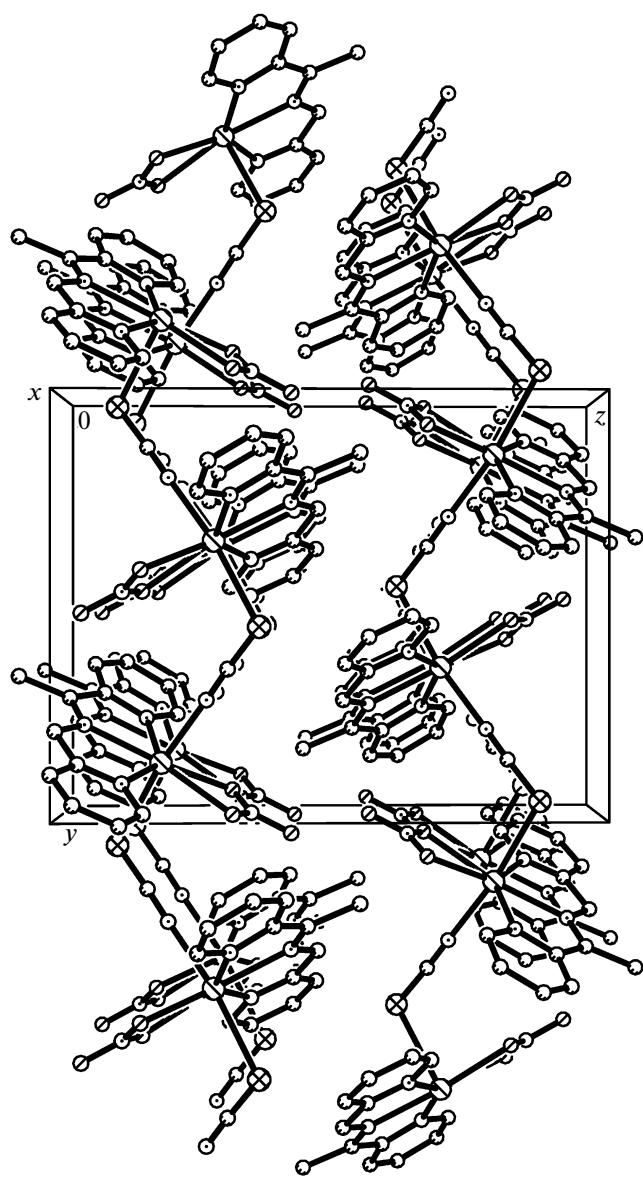


Fig. 2. Molecular packing of complex I, viewed along the x axis.

ate groups. The strong absorption band centered at 1658 cm^{-1} is assigned to the azomethine group, $\nu(\text{C}=\text{N}_{\text{imine}})$, and that centered at 1603 cm^{-1} is attributed to the vibration of the $\nu(\text{C}=\text{N}_{\text{pyridine}})$. The vibrations of the $\text{Cd}=\text{O}$, $\text{Cd}=\text{N}$, and $\text{Cd}=\text{S}$ bonds are located in the low wave numbers $400\text{--}700\text{ cm}^{-1}$.

The fluorescence property of complex I was studied at room temperature (298 K) in the solid state. Figure 3 is the emission spectrum of the complex. There are two emission bands for the complex, centered at 420 and 449 nm ($\lambda_{\text{ex}} = 372\text{ nm}$), respectively. This may be caused by the ligand-to-metal charge transfer (LMCT) [22]. Such luminescent behavior

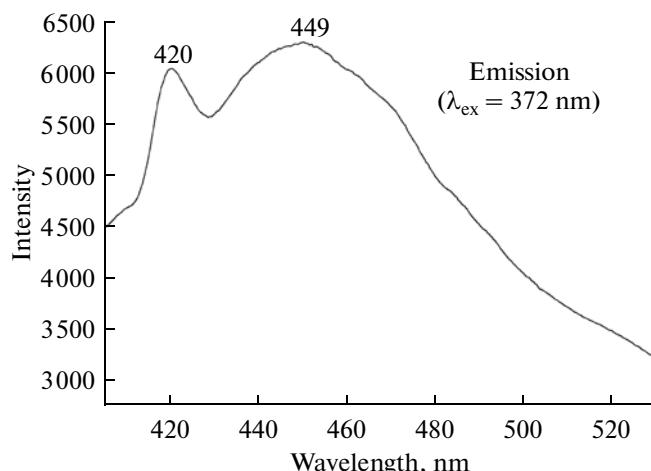


Fig. 3. Emission spectra of complex I.

suggests that the emission bands of the complex are mainly due to a ligand-to-metal charge transfer emission state as reported for $\text{Cd}(\text{II})$ or other d^{10} metal compounds [23, 24].

ACKNOWLEDGMENTS

This research was supported by the National Science Foundation of China (nos. 20676057 and 20877036) and the Top-class Foundation of the Pingdingshan University (no. 2008010).

REFERENCES

1. Ravikumar, I., Saha, S., and Ghosh, P., *Chem. Commun.*, 2011, vol. 47, no. 16, p. 4721.
2. Lee, Y.H., Komatsu, Y., Yamamoto, Y., et al., *Inorg. Chem. Commun.*, 2011, vol. 14, no. 9, p. 1498.
3. Kogan, V.A., Lukov, V.V., and Shcherbakov, I.N., *Russ. J. Coord. Chem.*, 2010, vol. 36, no. 6, p. 401.
4. Fan, L.L., Sun, Y.Q., Xu, Y.Y., et al., *Russ. J. Coord. Chem.*, 2010, vol. 36, no. 9, p. 657.
5. Wei, R.M. and Luo, F., *J. Coord. Chem.*, 2010, vol. 63, no. 4, p. 610.
6. Carranza, J., Sletten, J., Lloret, F., et al., *Polyhedron*, 2009, vol. 28, no. 11, p. 2249.
7. Guerchais, V. and Fillaut, J.L., *Coord. Chem. Rev.*, 2011, vol. 255, nos. 21–22, p. 2448.
8. Kawamoto, T., Nishiwaki, M., Tsunekawa, Y., et al., *Inorg. Chem.*, 2008, vol. 47, no. 8, p. 3095.
9. Berenguer, J.R., Gil, B., Fernandez, J., et al., *Inorg. Chem.*, 2009, vol. 48, no. 12, p. 5250.
10. Liu, F., Zhang, W.P., and He, S.Y., *Russ. J. Coord. Chem.*, 2010, vol. 36, no. 2, p. 105.
11. Padhi, S.K. and Manivannan, V., *Inorg. Chem.*, 2006, vol. 45, no. 20, p. 7994.
12. SMART and SAINT, *Area Detector Control and Integration Software*, Madison (WI, USA): Bruker Analytical X-ray Instruments Inc., 1997.

13. Sheldrick, G.M., *SADABS, Program for Empirical Absorption Correction of Area Detector*, Göttingen (Germany): Univ. of Göttingen, 1996.
14. North, A.C.T., Phillips, D.C., and Mathews, F.S., *Acta Crystallogr., A*, 1968, vol. 24, no. 3, p. 351.
15. Sheldrick, G.M., *SHELXL-97, Program for the Refinement of Crystal Structures*, Göttingen (Germany): Univ. of Göttingen, 1997.
16. Padhi, S.K., Sahu, R., and Manivannan, V., *Polyhedron*, 2008, vol. 27, no. 2, p. 805.
17. Goher, M.A.S., Mautner, F.A., Abu-Youssef, M.A.M., et al., *Polyhedron*, 2003, vol. 22, no. 23, p. 3137.
18. Bose, D., Rahaman, S.H., Ghosh, R., et al., *Polyhedron*, 2006, vol. 25, no. 3, p. 645.
19. Suen, M.-C. and Wang, J.-C., *J. Coord. Chem.*, 2007, vol. 60, no. 3, p. 257.
20. Banerjee, S., Wu, B., Lassahn, P.-G., et al., *Inorg. Chim. Acta*, 2005, vol. 358, no. 3, p. 535.
21. Ghosh, R., Rahaman, S.H., Rosair, G.M., et al., *Inorg. Chem. Commun.*, 2007, vol. 10, no. 1, p. 61.
22. Liu, X.-G., Huang, J., Bao, S.-S., et al., *Dalton Trans.*, 2009, no. 44, p. 9837.
23. Yang, J., Li, G.-D., Cao, J.-J., et al., *Chem. Eur. J.*, 2007, vol. 13, no. 11, p. 3248.
24. Hu, J.-Y., Zhao, J.-A., Hou, H.-W., et al., *Inorg. Chem. Commun.*, 2008, vol. 11, no. 10, p. 1110.