

# Ammonium and Potassium Citratogermanates(IV): Synthesis, Chemical Compositions, and Structures. The Crystal Structures of $(\text{NH}_4)[\text{Ge}(\text{OH})(\text{H}_2\text{Cit})_2] \cdot \text{H}_2\text{O}$ and $\text{K}_4[\text{Ge}(\text{HCit})_2(\text{H}_2\text{Cit})] \cdot 3\text{H}_2\text{O}$

E. E. Martsinko<sup>a</sup>, L. Kh. Minacheva<sup>b</sup>, E. A. Chebanenko<sup>a</sup>, A. B. Ilyukhin<sup>b,\*</sup>,  
I. I. Seifullina<sup>a</sup>, and V. S. Sergienko<sup>b</sup>

<sup>a</sup>Mechnikov National University, Odessa, Ukraine

<sup>b</sup>Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences,  
Leninskii pr. 31, Moscow, 119991 Russia

\*e-mail: ilyukhin@rambler.ru

Received January 28, 2013

**Abstract**—Methods for the synthesis of ammonium citratogermanate  $(\text{NH}_4)[\text{Ge}(\text{OH})(\text{H}_2\text{Cit})_2] \cdot \text{H}_2\text{O}$  (**I**) and potassium citratogermanate  $(\text{K}_4[\text{Ge}(\text{HCit})_2(\text{H}_2\text{Cit})] \cdot 3\text{H}_2\text{O}$  (**II**), where  $\text{H}_4\text{Cit}$  is citric acid) in aqueous MeCN were developed. The individuality, chemical composition, and thermal stability of complexes **I** and **II** were proved by elemental analysis, thermogravimetry, and IR spectroscopy. According to X-ray diffraction data, the coordination numbers of the Ge atoms are 5 and 6 and their coordination polyhedra are a square pyramid and an octahedron in complexes **I** and **II**, respectively. In both complexes, the Ge atom coordinates the deprotonated OH group and the  $\alpha$ -carboxyl group of the ligands  $\text{H}_n\text{Cit}^{4-n}$  to form five-membered chelate rings. Hydrogen bonds in **I** as well as potassium cations in **II** serve to unite these complexes into frameworks.

**DOI:** 10.1134/S1070328413090054

Earlier, we have synthesized the complex acid  $[\text{H}_5\text{O}_2][\text{Ge}(\text{H}_2\text{Cit})(\text{H}_{2.5}\text{Cit})(\text{OH})_2] \cdot 2\text{CH}_3\text{COOH} \cdot 2\text{H}_2\text{O}$  by a reaction of  $\text{GeCl}_4$  with citric acid in 85%  $\text{CH}_3\text{COOH}$  [1]. This provides direct evidence that complex citratogermanic acid exists not only in solution. As a next step in these investigations, we extended the range of citratogermanates studied by changing the solvent from proton-donating (acetic acid) to proton-withdrawing (acetonitrile) and employing other starting materials.

The goal of this study was to examine complexation between  $\text{GeCl}_4$  and citric acid in acetonitrile and compare the chemical compositions and structures of the resulting complexes with those of the citratogermanates  $[\text{H}_5\text{O}_2][\text{Ge}(\text{H}_2\text{Cit})(\text{H}_{2.5}\text{Cit})(\text{OH})_2] \cdot 2\text{CH}_3\text{COOH} \cdot 2\text{H}_2\text{O}$  [1] and  $\text{K}_2[\text{Ge}(\text{HCit})_2] \cdot 2\text{H}_2\text{O}$  [2] obtained earlier under other conditions.

## EXPERIMENTAL

**Synthesis of  $(\text{NH}_4)[\text{Ge}(\text{OH})(\text{H}_2\text{Cit})_2] \cdot \text{H}_2\text{O}$  (**I**)**  
Citric acid monohydrate (0.01 mol) was dissolved in 50% aqueous acetonitrile (40 mL). High-purity  $\text{GeCl}_4$  (0.005 mol) was added and the mixture was heated at 40°C for 5 min. Then aqueous ammonia was added to pH 2–3. After 48 h, the reaction produced a crystalline precipitate of complex **I**. The yield was 50% (with respect to Ge). Single crystals of complex **I** suitable for

X-ray diffraction were withdrawn from the reaction medium.

For  $\text{C}_{12}\text{H}_{19}\text{GeNO}_{16}$  ( $M = 505.6$ )

anal. calcd., %: C, 28.48; H, 3.76; Ge, 14.36; N, 2.77.

Found, %: C, 28.13; H, 3.87; Ge, 14.32; N, 2.65.

**Synthesis of  $\text{K}_4[\text{Ge}(\text{HCit})_2(\text{H}_2\text{Cit})] \cdot 3\text{H}_2\text{O}$  (**II**)**. The complex  $[\text{H}_5\text{O}_2][\text{Ge}(\text{H}_2\text{Cit})(\text{H}_{2.5}\text{Cit})(\text{OH})_2] \cdot 2\text{CH}_3\text{COOH} \cdot 2\text{H}_2\text{O}$  (**III**) (0.01 mol) was dissolved at 18–19°C in water (20 mL). Then  $\text{KHCO}_3$  was gradually added in portions to pH 5. To reach equilibrium, the resulting solution was kept at room temperature for 24 h. Addition of an equal volume of acetonitrile initiated the formation of a white crystalline precipitate containing single crystals of complex **II** suitable for X-ray diffraction.

For  $\text{C}_{18}\text{H}_{22}\text{GeK}_4\text{O}_{24}$  ( $M = 851.36$ )

anal. calcd., %: C, 25.39; H, 2.60; Ge, 8.52; K, 18.37.

Found, %: C, 25.24; H, 2.43; Ge, 8.56; K, 18.12.

Analyses for germanium and potassium were performed using inductively coupled plasma atomic emission spectroscopy with an Optima 2000 DV instrument (PerkinElmer); analyses for carbon,

**Table 1.** Selected crystallographic parameters and the data collection and refinement statistics for structures **I** and **II**

| Parameter                                                                | Value                                                               |                                                                      |
|--------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
|                                                                          | <b>I</b>                                                            | <b>II</b>                                                            |
| Temperature, K                                                           | 293                                                                 | 296                                                                  |
| Radiation; $\lambda$ , Å                                                 | $\text{Mo}K_{\alpha}$ ; 0.71073                                     | $\text{Mo}K_{\alpha}$ ; 0.71073                                      |
| Crystal system                                                           | Triclinic                                                           | Monoclinic                                                           |
| Space group                                                              | $P\bar{1}$                                                          | $P2_1/c$                                                             |
| $a$ , Å                                                                  | 8.2494(11)                                                          | 11.592(2)                                                            |
| $b$ , Å                                                                  | 10.0269(15)                                                         | 14.978(3)                                                            |
| $c$ , Å                                                                  | 12.9473(16)                                                         | 16.984(3)                                                            |
| $\alpha$ , deg                                                           | 97.435(17)                                                          | 90                                                                   |
| $\beta$ , deg                                                            | 98.793(18)                                                          | 94.548(4)                                                            |
| $\gamma$ , deg                                                           | 113.660(14)                                                         | 90                                                                   |
| $V$ , Å <sup>3</sup>                                                     | 947.6(2)                                                            | 2939.6(9)                                                            |
| $Z$                                                                      | 2                                                                   | 4                                                                    |
| $\rho_{\text{calcd}}$ , g/cm <sup>3</sup>                                | 1.773                                                               | 1.924                                                                |
| $\mu$ , mm <sup>-1</sup>                                                 | 1.703                                                               | 1.712                                                                |
| Crystal dimensions, mm                                                   | 0.40 × 0.30 × 0.30                                                  | 0.25 × 0.18 × 0.15                                                   |
| θ Scan range, deg                                                        | 2.27–29.96                                                          | 2.41–28.25                                                           |
| Ranges of $h$ , $k$ , and $l$ indices                                    | $-11 \leq h \leq 1$<br>$-13 \leq k \leq 14$<br>$-18 \leq l \leq 18$ | $-15 \leq h \leq 15$<br>$-17 \leq k \leq 19$<br>$-20 \leq l \leq 22$ |
| Number of measured reflections                                           | 6567                                                                | 23512                                                                |
| Number of independent reflections                                        | 5508                                                                | 7246                                                                 |
| $R_{\text{int}}$                                                         | 0.0441                                                              | 0.0513                                                               |
| Number of reflections with $I > 2\sigma(I)$                              | 4537                                                                | 5050                                                                 |
| Number of parameters refined                                             | 271                                                                 | 424                                                                  |
| GOOF ( $F^2$ )                                                           | 1.278                                                               | 0.941                                                                |
| $R_1$ , $wR_2$ ( $I > 2\sigma(I)$ )                                      | 0.0366, 0.1048                                                      | 0.0429, 0.1072                                                       |
| $R_1$ , $wR_2$ (for all reflections)                                     | 0.0565, 0.1478                                                      | 0.0771, 0.1271                                                       |
| $\Delta\rho_{\text{max}}$ , $\Delta\rho_{\text{min}}$ , e/Å <sup>3</sup> | 0.904, -1.060                                                       | 0.850, -0.646                                                        |

hydrogen, and nitrogen were carried out on a semi-automatic C,N,H-analyzer.

Thermogravimetric analysis (**TGA**) was performed on a Q-1500D derivatograph in air (temperature range 20–1000°C, heating rate 10°C/min).

X-ray powder diffraction from the final products of thermolysis of complexes **I** and **II** was studied using a DRON-0.5 diffractometer with a copper anticathode and a nickel filter.

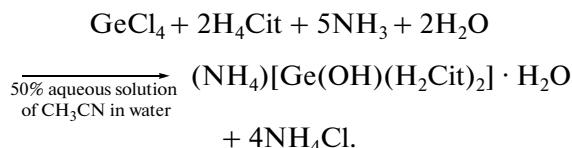
The IR absorption spectra of the ligand and the complexes were recorded on a Frontier spectrophotometer (PerkinElmer) in the 400–4000 cm<sup>-1</sup> range.

**X-ray diffraction study.** Experimental data were collected with Enraf-Nonius CAD4 (**I**) and Bruker SMART APEX II (**II**) diffractometers (Joint Use Center of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences).

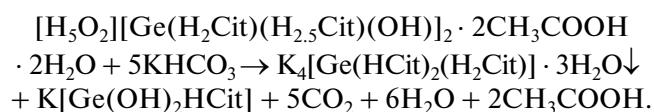
An absorption correction was applied semiempirically with the MULTISCAN (**I**) [3] and SADABS programs (**II**) [4]. Structures **I** and **II** were solved by combining direct methods and electron density maps. The H atoms of water molecules, the hydroxyl group, and ammonium are located in difference electron-density maps. The aliphatic H atoms were located geometrically. The structures were refined anisotropically by the full-matrix least-squares method with allowance for the H atoms. All calculations were performed with the SHELXS-97 and SHELXL-97 programs [5].

Selected crystallographic data are given in Table 1. Experimental data for complexes **I** and **II** have been deposited with the Cambridge Crystallographic Data Centre (nos. 920656 (**I**) and 920657 (**II**); deposit@ccdc.cam.ac.uk or [http://www.ccdc.cam.ac.uk/data\\_request/cif](http://www.ccdc.cam.ac.uk/data_request/cif)).

Table 2. Thermolysis of complexes I and II


| Complex   | Processes and temperature ranges          |                          |                          |                                           |                |                          |                                           |            |                           |                                          |
|-----------|-------------------------------------------|--------------------------|--------------------------|-------------------------------------------|----------------|--------------------------|-------------------------------------------|------------|---------------------------|------------------------------------------|
|           | -nH <sub>2</sub> O                        |                          |                          | -nCO <sub>2</sub> + xH <sub>2</sub> O     |                |                          | Thermal degradation and combustion        |            | Final thermolysis product |                                          |
|           | T <sub>max</sub> <sup>*</sup> , (DTA), °C | Δm (TG), %               | Δm (C <sup>**</sup> ), % | T <sub>max</sub> <sup>*</sup> , (DTA), °C | Δm (TG), %     | Δm (C <sup>**</sup> ), % | T <sub>max</sub> <sup>*</sup> , (DTA), °C | Δm (TG), % | m (TG), %                 | M (C <sup>**</sup> ), %                  |
| <b>I</b>  | 70–120 (100↓)                             | 3.60<br>n = 1            | 3.55                     | 170–265 (200↓)                            | 38.34<br>n = 4 | 38.29                    | 265–300 (280↑)                            | 33.01      | 21.25                     | 20.65<br>GeO <sub>2</sub>                |
|           | 120–170 (150↓)                            | 3.80<br>–NH <sub>3</sub> | 3.75                     |                                           | x = 1          |                          |                                           |            |                           |                                          |
| <b>II</b> | 90–120 (100↓)                             | 2.00<br>n = 1            | 2.10                     | 170–245 (210↓)                            | 10.12<br>n = 2 | 10.34                    | 370–500 (400↑)                            | 43.65      | 34.00                     | 34.37<br>K <sub>4</sub> GeO <sub>4</sub> |
|           | 120–170 (160↓)                            | 4.10<br>n = 2            | 4.23                     | 245–370 (350↓)                            | 20.55<br>n = 4 | 20.67                    | 500–700 (680↑)                            |            |                           |                                          |

Notes: \* ↓ and ↑ denote endo- and exothermic effects, respectively.


\*\* C is the calculated value.

## RESULTS AND DISCUSSION

We found that a reaction of GeCl<sub>4</sub> with citric acid in acetonitrile upon the addition of aqueous ammonia yields a precipitate of ammonium bis(citato)hydroxygermanate (**I**). The formation of this complex can be represented as follows:



With acid **III** as the starting material, we obtained complex **II** in which the molar ratio of Ge : citric acid is 1 : 3. This ratio has not been noted earlier for citrate complexes of Ge(IV) [1, 2, 6–9] but can be explained under the assumption that complex **III** serves as a building block for two complexes. Complex **II** precipitates, while another complex remains dissolved because of double hydrolysis of a Ge species according to the equation:



This seems to be quite probable since it is the species Ge(OH)<sub>2</sub><sup>2+</sup> that predominantly exists in aqueous solution at pH 5 [10].

Complexes **I** and **II** are white crystalline solids that are stable in air. The thermolysis of both complexes follows a complicated stepwise scheme (Table 2). The wide temperature range (90–170°C), the relatively high dehydration temperature, and the corresponding weight loss observed in the TGA curves suggest that complexes **I** and **II** contain hydrogen-bonded mole-

cules of crystallization water and (for **I** only) the ammonium ion. The endothermic peak in a temperature range from 170 to 265°C is due to decarboxylation with elimination of four (**I**) or two CO<sub>2</sub> molecules (**II**). In addition, one water molecule is eliminated from complex **I** (that molecule is formed by an interaction of the carboxyl proton with the inner-sphere OH group bound to germanium [11]). On further heating, complex **II** eliminates other four CO<sub>2</sub> molecules from the citrate ligands. Finally, complexes **I** and **II** undergoes oxidative thermal degradation and combustion of the organic part of their molecules, with the corresponding one (for **I**) and three exothermic peaks (for **II**). According to the weight losses calculated from the TG curves, the final thermolysis products at 1000°C were GeO<sub>2</sub> (for **I**) and potassium orthogermanate (for **II**), which was confirmed by X-ray powder diffraction data.

The IR spectra of complexes **I** and **II** were analyzed by comparing them with spectroscopic data obtained for complex **III** [1]. The presence of water of crystallization in their structures, which was detected by thermogravimetric measurements, was confirmed by IR spectroscopy. Their IR spectra show absorption bands due to the ν(OH) stretching vibrations at 3450–3406 (**I**) and 3476–3335 cm<sup>-1</sup> (**II**). Also, the IR spectra of the above three complexes contain the same set of characteristic bands due to main functional groups responsible for the coordination to germanium (**I**, **II**) and potassium (**II**): 1754 (**I**), 1733 (**II**), ν(C=O)), 1713 (**I**), 1688 (**II**), ν(C=O)), 1644 (**I**), 1663 (**II**, ν<sub>as</sub>(COO<sup>-</sup>)); 1409, 1334 (**I**), 1444, 1350 cm<sup>-1</sup> (**II**, ν<sub>s</sub>(COO<sup>-</sup>)) (stretching vibrations of the free, coordinated, and carboxylate groups, respectively). The deprotonation of the alcoholic OH groups of the

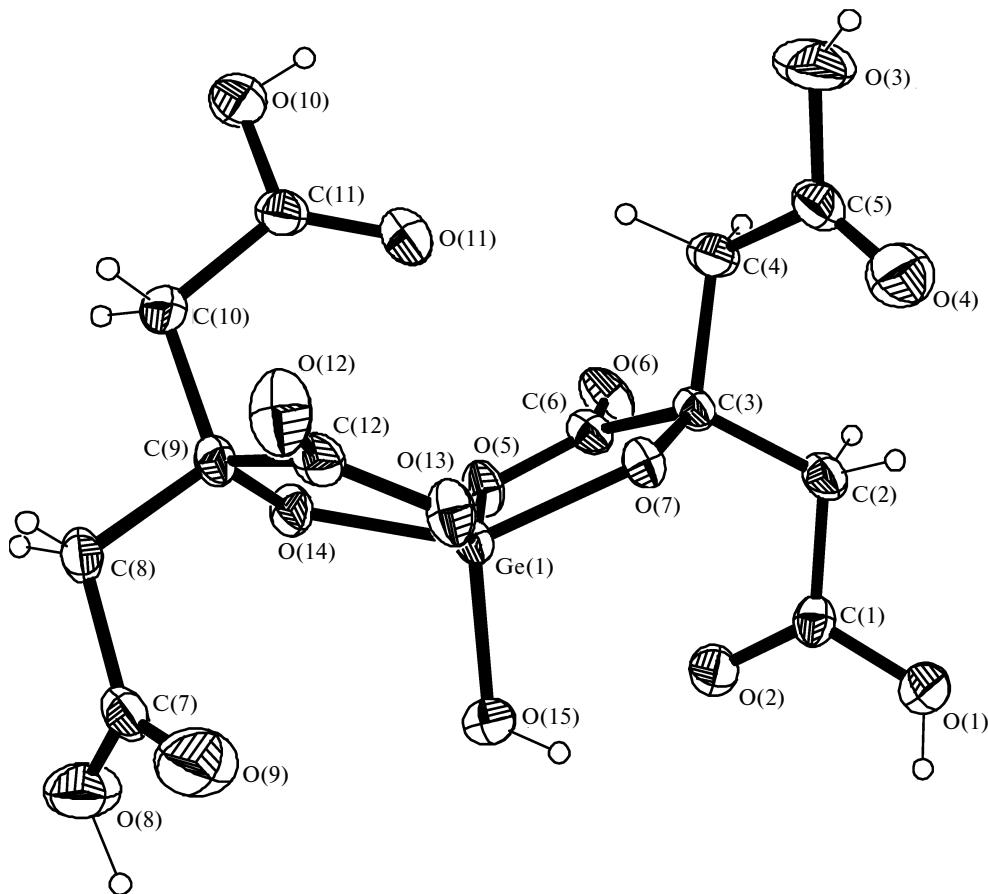



Fig. 1. Complex anion in structure I.

citrate ligands and their coordination to germanium are suggested by the absorption bands due to  $\nu(\text{C}-\text{O})$  at 1083 (I) and 1090  $\text{cm}^{-1}$  (II). The  $\nu(\text{Ge}-\text{O})$  bands at 660, 636, and 607  $\text{cm}^{-1}$  (I) and at 660 and 641  $\text{cm}^{-1}$  (II) suggest chelate ring closure via formation of  $\text{Ge}-\text{O}$  bonds with different lengths. Therefore, one can conclude that complexes I and II retain the same monochelating bidentate way of coordination of citrate ligands as in structure III. In contrast to complexes III and I, the IR spectrum of complex II contains no absorption band at 820  $\text{cm}^{-1}$  due to the  $\delta(\text{Ge}-\text{OH})$  bending vibrations.

Structure I is built from the complex anions  $[\text{Ge}(\text{OH})(\text{H}_2\text{Cit})_2]^-$  (Fig. 1), the ammonium ions, and the molecules of crystallization water. The coordination polyhedron of the Ge atom is a square pyramid with an apical hydroxyl group. The coordinated O atoms of the carboxyl groups are *trans* to each other. All the “active” H atoms are involved in hydrogen bonding (Table 3). The system of hydrogen bonds serves to unite the structural units into a framework.

Structure II is made up of the complex anions  $[\text{Ge}(\text{HCit})_2(\text{H}_2\text{Cit})]^{4-}$  (Fig. 2), the potassium cations, and potassium-coordinated water molecules. The Ge atom coordinates with one diprotonated and two

monoprotonated citrate anions. The coordination polyhedron of the Ge atom is an octahedron. The complex molecules are united through the cations into a framework additionally stabilized by hydrogen bonds.

The formation of five-membered chelate rings (as in complexes I and II) is typical of metal citrates. Out of 333 complexes of *p*-, *d*-, and *f* metals with citric acid (CCDC, v. 5.33 [12]), 324 complexes show such chelate rings; in 124 complexes, the  $\beta$ -carboxyl branches are not coordinated.

In the organometallic complex  $[\text{Ge}(\text{Mft})(\text{H}_2\text{Cit})_2] \cdot \text{H}_2\text{O}$  (Mft is N-methylmorpholinium) [13] with a germanium coordination number of 5 (as in I), the Ge atom has a trigonal-bipyramidal environment. The same germanium polyhedron (trigonal bipyramidal) has been found in structure III [1]. The different structures of five-vertex polyhedra in complexes I and III are difficult to explain by different degrees of protonation. Most likely, this is due to the conformational flexibility of the anion, which can conform itself to the structural demands of its coordination partners.

The octahedral complex  $[\text{M}(\text{Cit})_3]$  (with no regard to the degree of protonation of the ligand), in which all three ligand molecules form five-membered chelate

**Table 3.** Geometrical parameters of the hydrogen bonds in structures **I** and **II**

| Bond<br>D—H…A     | Distance, Å |      |          | Angle | Transformation matrix<br>of the atom A |
|-------------------|-------------|------|----------|-------|----------------------------------------|
|                   | D—H         | H…A  | D…A      |       |                                        |
| I                 |             |      |          |       |                                        |
| O(1)—H(1)…O(2)    | 0.82        | 1.88 | 2.692(4) | 173   | $-x, -y, -z$                           |
| O(3)—H(2)…O(11)   | 0.87        | 2.11 | 2.890(5) | 150   | $-x, -y + 1, -z + 1$                   |
| O(8)—H(3)…O(16)   | 0.95        | 1.67 | 2.619(4) | 176   |                                        |
| O(10)—H(4)…O(6)   | 0.78        | 1.88 | 2.643(4) | 164   | $-x + 1, -y + 1, -z + 1$               |
| O(15)—H(5)…O(9)   | 0.83        | 1.93 | 2.753(4) | 173   | $-x, -y + 1, -z$                       |
| O(16)—H(6)…O(7)   | 0.76        | 2.12 | 2.868(4) | 172   | $-x, -y + 1, -z$                       |
| O(16)—H(7)…O(6)   | 0.83        | 2.08 | 2.828(4) | 151   | $-x + 1, -y + 1, -z$                   |
| N(1)—H(8)…O(14)   | 0.92        | 2.05 | 2.955(4) | 171   | $-x + 1, -y + 1, -z$                   |
| N(1)—H(9)…O(16)   | 0.86        | 2.06 | 2.895(5) | 163   |                                        |
| N(1)—H(11)…O(15)  | 0.92        | 2.06 | 2.877(5) | 147   |                                        |
| N(1)—H(10)…O(12)  | 0.90        | 2.03 | 2.907(5) | 164   | $-x, -y + 1, -z$                       |
| II                |             |      |          |       |                                        |
| O(1)—H(1)…O(4)    | 1.00        | 1.48 | 2.481(4) | 173   |                                        |
| O(8)—H(2)…O(16)   | 0.95        | 1.59 | 2.540(4) | 173   | $-x + 1, -y, -z + 1$                   |
| O(10)—H(3)…O(5)   | 0.93        | 1.93 | 2.803(3) | 155   | $x, -y + 1/2, z - 1/2$                 |
| O(17)—H(4)…O(3)   | 0.90        | 1.66 | 2.557(4) | 172   | $-x, y - 1/2, -z + 3/2$                |
| O(22)—H(5)…O(2)   | 0.92        | 1.91 | 2.804(4) | 164   | $x + 1, y, z$                          |
| O(22)—H(6)…O(6)   | 0.96        | 2.05 | 2.958(4) | 156   | $x + 1, -y + 1/2, z - 1/2$             |
| O(23)—H(7)…O(1)   | 0.95        | 1.91 | 2.850(4) | 171   | $-x, y - 1/2, -z + 1/2$                |
| O(23)—H(8)…O(13)  | 0.95        | 1.89 | 2.806(4) | 161   | $x, -y + 1/2, z - 1/2$                 |
| O(24)—H(9)…O(12)  | 1.07        | 1.84 | 2.901(5) | 169   | $x, -y + 1/2, z - 1/2$                 |
| O(24)—H(10)…O(15) | 1.04        | 2.15 | 3.146(5) | 159   |                                        |

rings, can exist as two isomers with the *mer*- and *fac*-arrangement of the O atoms of the coordinated central carboxylate branch. Structure **II** is a *fac* isomer. The Cambridge Crystallographic Data Centre contain data for 22 octahedral metal triscitrates with the *fac*-structure (as in **II**). Note that all these 22 complexes are Ti(IV) triscitrates, which makes it difficult to conclude about preference of one or the other isomer.

The Ge—O bond lengths (Table 4) for similar O atoms in complex **II** differ by more than  $30\sigma$  (1.909

and 1.975 Å). Note that these values refer to the monoprotonated anions and that neither of these O atoms forms short hydrogen bonds, which provides additional evidence for lack of structural rigidity in Ge(IV) citrates. The uncoordinated  $\beta$ -carboxyl groups in complexes **I** and **II** exist in different conformations depending on hydrogen bonding. One monoprotonated citrate anion (C(1–5), Fig. 2) forms an intramolecular hydrogen bond, while the other two anions (mono- and diprotonated ones) are involved in intermolecular hydrogen bonds.

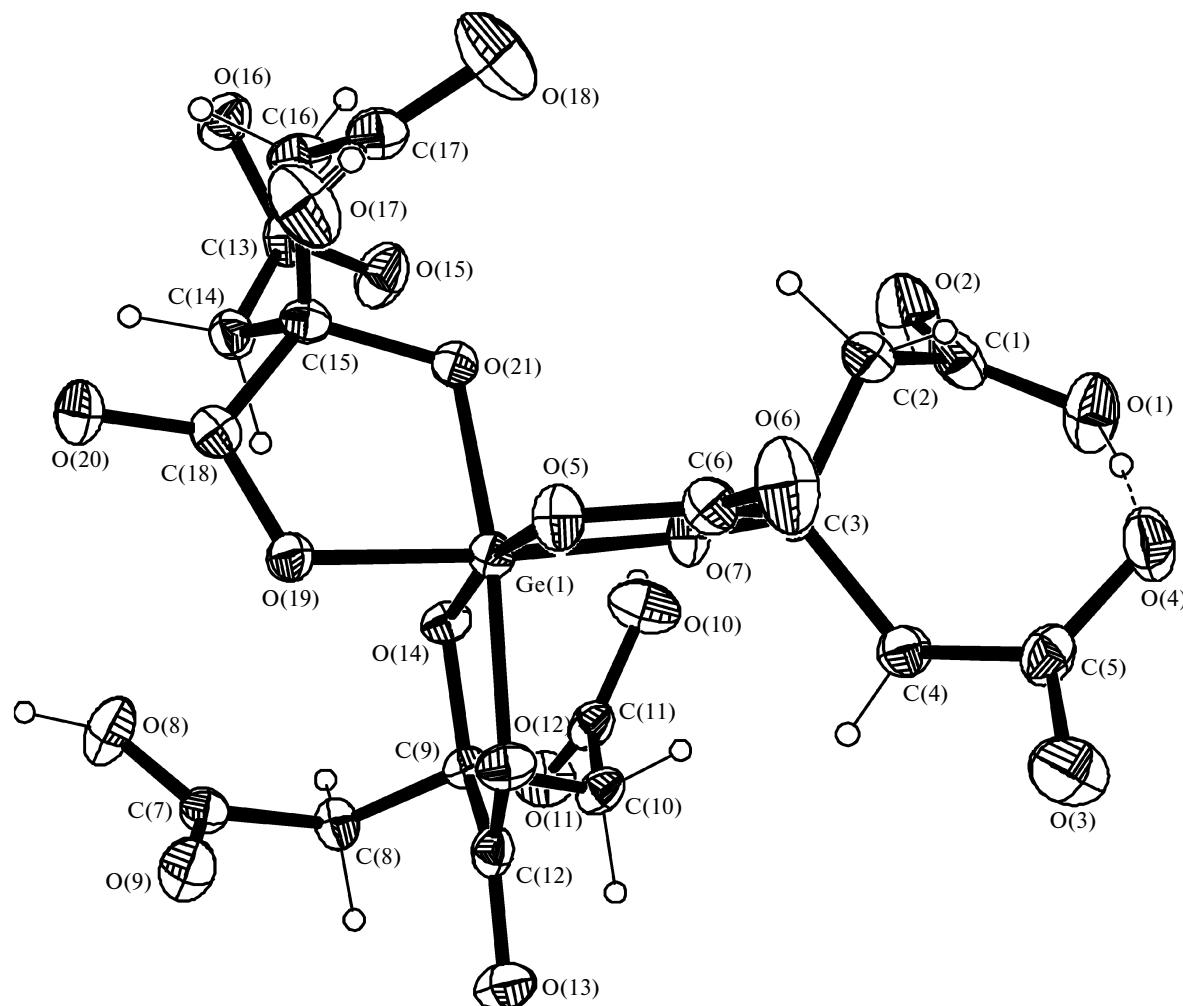



Fig. 2. Complex anion in structure II.

Table 4. Ge—O bond lengths in structures I and II

| Bond | <i>d</i> , Å |
|------|--------------|
| I    | 1.751(3)     |
|      | 1.800(2)     |
|      | 1.809(2)     |
|      | 1.887(2)     |
|      | 1.905(2)     |
| II   | 1.826(2)     |
|      | 1.828(2)     |
|      | 1.834(2)     |
|      | 1.909(2)     |
|      | 1.936(2)     |
|      | 1.975(2)     |

Based on the data obtained, one can conclude that the chemical compositions and structures of the complex anions in I and III substantially differ from those found in II and, even to a greater extent, from those for the *bis*(citrate)germanates synthesized earlier under different conditions [2, 6–9]. Therefore, the structural variety of the latter depends on the starting reagent ( $\text{GeO}_2$ ,  $\text{GeCl}_4$ , or complex III), the solvent (acetonitrile, acetic acid, or water), pH of the medium, and the cations (*s*-, and *d* metals). Triscitrate complex II is a first representative of Ge(IV) complexes of this type.

## REFERENCES

1. Seifullina, I.I., Minacheva, L.Kh., Chebanenko, E.A., et al., *Russ. J. Inorg. Chem.*, 2011, vol. 56, no. 12, p. 1886.
2. Martsinko, E.E., Seifullina, I.I., and Pesaroglo, A.G., *Ukr. Khim. Zh.*, 2011, vol. 77, no. 9, p. 3.
3. Blessing, R.H., *Acta Crystallogr., Sect. A: Found. Crystallogr.*, 1995, vol. 51, no. 1, p. 33.

4. Sheldrick, G.M., *SADABS*, Göttingen (Germany): Univ. of Gottingen, 1997.
5. Sheldrick, G.M., *Acta Crystallogr., Sect. A: Found. Crystallorg.*, 2008, vol. 64, no. 1, p. 112.
6. Seifullina, I.I., Pesaroglo, A.G., Martsinko, E.E., et al., *Russ. J. Inorg. Chem.*, 2006, vol. 51, no. 12, p. 1892.
7. Seifullina, I.I., Pesaroglo, A.G., Martsinko, E.E., et al., *Russ. J. Inorg. Chem.*, 2007, vol. 52, no. 4, p. 494.
8. Pesaroglo, A.G., Martsinko, E.E., Minacheva, L.Kh., et al., *Russ. J. Inorg. Chem.*, 2010, vol. 55, no. 9, p. 1366.
9. Martsinko, E.E., Pesaroglo, A.G., Seifullina, I.I., et al., *Russ. J. Inorg. Chem.*, 2011, vol. 56, no. 8, p. 1243.
10. Nazarenko, V.A., Antonovich, V.P., and Nevskaia, E.M., *Gidroliz ionov metallov v razbavlenykh rastvorakh* (Hydrolysis of Metal Ions in Dilute Solutions), Moscow: Atomizdat, 1979.
11. Martsinko, E.E., Seifullina, I.I., Minacheva, L.Kh., et al., *Russ. J. Inorg. Chem.*, 2008, vol. 53, no. 11, p. 1694.
12. Allen, F.H., *Acta Crystallogr., Sect. B: Struct. Sci.*, 2002, vol. 58, no. 3, p. 380.
13. Tacke, R., Heermann, J., and Pülm, M., *Organometallics*, 1997, vol. 16, no. 26, p. 5648.

*Translated by D. Tolkachev*