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1 INTRODUCTION

Coordination polymers, also known as metal�or�
ganic coordination networks (MOCNs) or metal�or�
ganic frameworks (MOFs), extend “infinitely” into
one, two or three dimensions (1D, 2D or 3D) via met�
al�ligand bonding [1–5]. For a few years, there is a con�
siderably interest in this field because of its potential ap�
plications in many fields including ion exchange, ad�
sorption catalysis, fluorescence, magnetism, and gas
storage [6–13]. Consequently, numerous new com�
pounds have been produced mostly by using appropri�
ate organic ligands, especially bridging ligands contain�
ing multi�dentate oxygen with the metal centers. As
functional metal centers, rare earth metals are attract�
ing more and more attention from synthesis chemists for
their fantastic coordination properties and special
chemical characteristics arising from 4f electrons and
the propensity to form isostructural complexes [14–18].

1,4,5,8�Naphthalenetetracarboxylic acid (H4Ntc) is
a rigid ligand with multiple coordination sites and
thus it can be certainly a candidate for providing nov�
el coordination polymer structures. So far, there are
just a few reports on metal�organic compounds con�
taining ligand H4Ntc [19, 20]. The first two lan�
thanide based coordination polymers involving
Ntc4–, namely Gd(HNtc)(H2O)4 ⋅ 9H2O and
Er4(Ntc)3(H2O)10 ⋅ 12H2O, have been reported in
[21]. Two new compounds with respective chemical
formulae La2(Ntc)(C2O4)(H2O)6 ⋅ 4H2O and

1 The article is published in the original.

La Na(Ntc)(H2O)7 ⋅ 4H2O have also been synthesized
[22].

Two microporous coordination polymers of H4Ntc
with rare earth metals have been reported in this paper,
with chemical formulae [Y2(Ntc)1.5(H2O)5] ⋅ 6H2O (I)
and [Er2(Ntc)1.5(H2O)5] ⋅ 6H2O (II). As far as we
know, II has been reported in [21], and I is the first rare
earth containing coordination polymers involving this
ligand. The synthesis, crystal structures and the esti�
mated porosity of the compound I have been described
in detail.

EXPERIMENTAL

All reagents, 1,4,5,8�naphtalene�tetra�carboxylic
acid (H4Ntc) and lanthanide oxides were reagent
grade and used without further purification. Tetra�so�
dium naphtalenetetra�carboxylate salt and both lan�
thanide chlorides were prepared by the similar meth�
ods according to literature reported [23, 24]. Both
yields of the synthesis were close to 100%. The pro�
ductions were stored in a desiccator.

Synthesis I and II. The coordination polymers were
obtained by the slow diffusion of de�ionized aqueous
solutions of lanthanum chloride and naphthalene�tet�
ra�carboxylate sodium salts, through an agarose gel
bridge, in a U�shaped tube. Compounds I and II were
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obtained in a 0.3% agarose gel. After several weeks,
yellow transparent single crystals were obtained.

The IR spectrum had been observed for com�
pounds I and II. It clearly showed vibration bands
characteristic of the –(O–C–O)– groups around
1566 and 1447 cm–1 confirming the presence of car�
boxylate groups.

For C21H28O23Y2 (I)

anal. calcd., %: C, 30.50; H, 3.39; O, 44.54.

Found, %: C, 30.52; H, 4.00; O, 44.51.

For C21H28O23Er2 (II)

anal. calcd., %: C, 26.64; H, 2.85; O, 37.44.

Found, %: C, 26.67; H, 2.86; O, 37.40.

X�ray structure determination. Single�crystal X�ray
diffraction studies of complexes I and II were per�
formed on a Bruker Smart Apex II CCD diffractome�
ter equipped with a graphite crystal monochromator
situated in the incident beam. The data collections were
performed with MoK

α
 radiation (λ = 0.71073 Å). The

crystal data collection were performed at 296(2) (I) and
150(2) K (II), respectively. The crystallographic data
and experimental details for the structural analyses of
compounds I and II were summarized in Table 1. All
structures were solved by the direct methods using
SHELXS program and were refined with SHELXL of
the SHELXTL�97 package [23]. The final refinements
were performed by full�matrix least�squares methods
on F 2 with anisotropic thermal parameters for non�hy�
drogen atoms. All hydrogen atoms were included in cal�
culated positions and were refined with isotropic ther�
mal parameters riding on those of the parent atoms. The

Table 1. Crystal data and structure refinement for compounds I and II

Parameter
Value

I II

Formula weight 826.24 982.95 

Crystal system; space group Monoclinic; P21/c Monoclinic; P21/c

Unit cell dimensions:

a, Å 9.8475(8) 9.8605(6)

b, Å 29.058(2) 29.210(16)

c, Å 10.8151(9) 10.8652(6)

β, deg 92.3110(10) 92.203(10)

Volume, Å3 3092.2(4) 

Z 4 4

ρcalcd, mg/m3 1.772 2.129

F(000) 1680 1912

Absorption coefficient, mm–1 3.789 5.488 

Crystal size, mm 0.20 × 0.16 × 0.14 0.27 × 0.13 × 0.08 

θ Range for data collection, deg 2.00–27.63 2.07–27.59

Limiting indices –12 ≤ h ≤ 10, –38 ≤ k ≤ 33, –11 ≤ l ≤ 14 –12 ≤ h ≤ 9, –37 ≤ k ≤ 36, –13 ≤ l ≤ 14

Reflections collected/unique (Rint) 18634/7201 (0.0589) 18676/7094 (0.0486)

Completeness to θ = 27.57°, % 98.9 99.1 

Absorption correction Semi�empirical from equivalents

Max and min transmission 0.6190 and 0.5178 0.6679 and 0.3189

Data/restraints/parameters 7201/33/483 7094/57/483

Goodness�of�fit on F 2 1.055 1.047

Final R indices (I > 2σ(I)) R1 = 0.0474, wR2 = 0.1003 R1 = 0.0366, wR2 = 0.0813

R indices (all data) R1 = 0.0856, wR2 = 0.1112 R1 = 0.0520, wR2 = 0.0879

Largest diff. peak and hole, e Å–3 0.810 and –0.567 1.828 and –1.121 
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crystal structures of compounds I and II have been de�
posited at the Cambridge Crystallographic Data Centre
(nos. 800394 (I) and 800391 (II); deposit@ccdc.cam.
ac.uk or http://www.ccdc.cam.ac.uk). 

RESULTS AND DISCUSSION

Single crystal X�ray structural analysis shows that
there are two crystallographically independent Y3+

ions in structure of I (Fig. 1). The first one (Y(1)) is
eight coordinated by two oxygen atoms from coordi�
nation water molecules and six oxygen atoms of four
carboxylate groups (a bidentate one and three uniden�
tate) from four different ligands. Its coordination pol�
yhedron can be described as a slightly distorted bi�
capped trigonal�prizm. The second Y3+ ion (Y(2)) is
also eight�coordinated. Three of the oxygen atoms are
from coordination water molecules, and the five oth�
ers are belonging to four carboxylate groups from four
different ligands (one chelating bidentate, one of
bridging bidentate and two monodentate). The coor�
dination polyhedron is also best described by a distort�
ed bicapped trigonal�prizm.

There are also two crystallographically indepen�
dent ligands. The first Ntc ligand (type A) acts as a
μ6�bridge linking six Y3+ ions (Fig. 2a). For type A,
each of two carboxylate groups adopts a bidentate
chelating mode, chelating one Y3+ ion, whereas each
of the other two adopts a bidentate bridging mode, co�
ordinating to two Y3+ ions. The second ligand (type B)
has its four carboxylate groups bound to four different
Y3+ ions (Fig. 2b). For type B, each of two carboxylate
groups adopts a bidentate bridging mode, coordinat�
ing to two Y3+ ions (O(12) and O(11)), whereas each of
the other two adopts a monodentate bridging mode, co�
ordinating to one Y3+ ion. In type B, Ntc ligand offers a
chelating mode via the oxygen atoms of two neighboring
carboxylate groups. The carboxylic O–Y bond distances
range from 2.240 to 2.476 Å and those of the water’s
O⎯Y bonds from 2.355 to 2.402 Å. More data on selected
bond lengths and angles are presented in Table 2.

The general arrangement (Fig. 3) consists of a suc�
cession, along the x axis, of yttrium atoms planes and
organic planes. The nearest yttrium–yttrium inter�
plane distance (Y(1)–Y(1)) is 4.8826 Å. The yttrium–
yttrium interplane distance is 9.8475 Å. As shown in
Fig. 3, there is one crystallographically independent or�
ganic molecule in the general position (labeled “A”) and
one�half located in an inversion center (labeled “B”).
The coordination modes of these two organic mole�
cules are different. The angle between the “A” and “B”
Ntc naphthyl plane is about 50°. The Ntc4– ligand
links the Y atoms with different coordination mode to
afford a 2D layer (Fig. 4) and adjacent 2D layers are
further connected by the Ntc4– ligands to form a 3D
metal�organic framework. A view of the 3D network
along the x axis is shown in Fig. 5. Its crystal structure
presents some large channels with rectangular sections
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Fig. 1. A view of the environment of Y3+ ions in
Y2(Ntc)1.5(H2O)5 

⋅ 6H2O (I).
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Fig. 2. Coordination modes of the Ntc ligand in
Er2(Ntc)1.5(H2O)5 ⋅ 6H2O (II).
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spreading along the x axis. The channels are full of
crystallization water molecules which have been re�
moved. As far as metallic ions are concerned, the sec�
tion of the channels can be described as a slightly dis�
torted irregular octagon. The longest side of this irreg�
ular octagon is roughly 5.7 Å long and the smallest side
is 4.9 Å.

In order to evaluate the porosity of
Y2(Ntc)1.5(H2O)5, we have formally removed the crys�
tallization water molecules from the crystal structure
of I and applied a computational method based on
Connolly’s algorithm which has already been de�
scribed and successfully used elsewhere [21, 22, 24].
The porosity of a partially dehydrated material can be
calculated on the basis of its crystal structure. Further�
more, this method allows obtaining the maximal ki�
netic radius a guest molecule can present for being
hosted by the structure. The porosity profile (Fig. 6)
reveals that the porosity radius along the x axis of com�
pound Y2(Ntc)1.5(H2O)5 ⋅ 6H2O is 2.3 Å. In this case
(Fig. 6), it appears that the compound can host mole�
cules with a kinetic radius as big as 2.3 Å. This is in per�
fect agreement with what could be anticipated from
the crystallographic data.

Thus, we have reported here novel rare earth coordi�
nation polymers involving 1,4,5,8�naphthalenetetra�
carboxylate as ligand, namely [Y2(Ntc)1.5(H2O)5] ⋅
6H2O and [Er2(Ntc)1.5(H2O)5] ⋅ 6H2O. Two crystallo�
graphically independent La3+ ions and two crystallo�
graphically independent ligands were in the structure
of the compound [Y2(Ntc)1.5(H2O)5] ⋅ 6H2O and
[Er2(Ntc)1.5(H2O)5] ⋅ 6H2O. Their potential porosity
has been estimated using Connolly’s approach. 

However, they are not available for technical appli�
cations or even for further physical measurements be�
cause we have obtained them only as single crystal in gel
media. We are currently working for obtaining them as
microcrystalline powders. Up to now, 1,4,5,8�naphtha�
lene�tetra�carboxylate�based coordination polymers

have been only obtained with Y3+ and Er3+ ions. It would
be very interesting to extend the families to other rare
earth ions and exhibiting catalytic or optical properties. 

Table 2. Selected bond lengths (Å) and angles (deg) for I*

Bond d, Å Bond d, Å

O(1)–Y(1) 2.422(3) O(10)–Y(1) 2.261(3)

O(2)–Y(1) 2.480(3) O(11)–Y(1)#6 2.272(3)

O(3)–Y(1)#2 2.246(3) O(12)–Y(1) 2.319(3)

O(4)–Y(2)#3 2.298(3) O(13)–Y(1) 2.414(3)

O(5)–Y(2) 2.485(3) O(14)–Y(1) 2.382(3)

O(6)–Y(2) 2.463(3) O(15)–Y(2) 2.373(3)

O(7)–Y(2)#4 2.311(3) O(16)–Y(2) 2.367(3)

O(8)–Y(2)#5 2.249(3) O(17)–Y(2) 2.375(3)

Angle ω, deg Angle ω, deg

O(3)#5Y(1)O(10) 144.27(11) O(10)Y(1)O(2) 73.56(10)

O(3)#5Y(1)O(11)#6 89.32(11) O(11)#6Y(1)O(2) 150.60(10)

O(10)Y(1)O(11)#6 104.79(11) O(12)Y(1)O(2) 124.36(10)

O(3)#5Y(1)O(12) 141.38(11) O(1)Y(1)O(2) 52.91(9)

O(10)Y(1)O(12) 74.01(10) O(8)#2Y(2)O(6) 80.64(10)

O(11)#6Y(1)O(12) 81.44(11) O(4)#7Y(2)O(6) 73.13(10)

O(3)#5Y(1)O(1) 86.49(10) O(7)#8Y(2)O(6) 142.15(10)

O(10)Y(1)O(1) 93.50(10) O(8)#2Y(2)O(5) 86.41(10)

O(11)#6Y(1)O(1) 153.68(11) O(4)#7Y(2)O(5) 89.43(10)

O(12)Y(1)O(1) 85.74(10) O(7)#8Y(2)O(5) 163.67(10)

O(3)#5Y(1)O(2) 78.22(10) O(6)Y(2)O(5) 52.28(9)

* Symmetry transformations used to generate equivalent atoms:
#1 –x, –y + 1, –z ; #2 x – 1, y, z ; #3 x, –y + 1/2, z – 1/2 ; #4 x + 1,
–y + 1/2, z – 1/2 ; #5 x + 1, y, z ; #6 –x + 1, –y + 1, –z ; #7 x,
–y + 1/2, z + 1/2; #8 x – 1, –y + 1/2, z + 1/2. 
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z

Fig. 4. View along the x axis of compound I. The
coordination polyhedron of the Y3+ ions has been drawn.
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Fig. 5. View along the x axis of compound II. The
coordination water molecules have been removed.
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Fig. 6. Porosity profile of compound I.


