

Ligand Condensation of $\text{P}(\text{CH}_2\text{OH})_3$: Synthesis and Structure of $[\text{Ni}_3\text{S}_2\{(\text{CH}_2\text{OH})_2\text{PCH}_2\text{OP}(\text{CH}_2\text{OH})_2\}_3][\text{Mo}_6\text{Cl}_{14}] \cdot 0.8\text{H}_2\text{O}$ ¹

A. V. Anyushin^{a, b}, P. A. Abramov^{a, b}, Nikolay B. Kompankov^a, M. N. Sokolov^{a, b, *}, and V. P. Fedin^{a, b}

^a Nikolaev Institute of Inorganic Chemistry, Novosibirsk, Russia

^b Novosibirsk State University, Novosibirsk, Russia

*e-mail: caesar@niic.nsc.ru

Received December 23, 2011

Abstract—Reaction of $\text{NiCl}_2 \cdot 6\text{H}_2\text{O}$ and $\text{P}(\text{CH}_2\text{OH})_3$ (THP) with H_2S and $(\text{H}_7\text{O}_3)_2[\text{Mo}_6\text{Cl}_{14}] \cdot 3\text{H}_2\text{O}$ in ethanol produces new trinuclear nickel sulphide complex $[\text{Ni}_3(\mu_3\text{S})_2\{(\text{HOCH}_2)_2\text{PCH}_2\text{OP}(\text{CH}_2\text{OH})_2\}_3][\text{Mo}_6\text{Cl}_{14}] \cdot 0.8\text{H}_2\text{O}$ (**I**) with new bidentate phosphine-phosphinite ligand resulted from THP condensation. It was characterized by X-ray structure analysis.

DOI: 10.1134/S1070328412090011

INTRODUCTION

Stable water soluble transition metal complexes for catalytic and biomedical purposes are one of the hot topics in modern coordination chemistry [1–5]. Phosphines functionalized with hydroxo or sulfonate groups are the ligands of choice [1, 6]. Phosphines with hydroxyalkyl groups such as tris(hydroxymethyl)phosphine ($\text{P}(\text{CH}_2\text{OH})_3$, THP), form stable water-soluble complexes with Pd, Pt, Rh, Re, Ru, Ir [7–11]. Sulfide clusters of Mo with hydroxyalkyl-functionalized diphosphines have also been reported [12]. However, sulfide-bridged complexes and clusters of 3d metals with THP are unknown.

EXPERIMENTAL

All manipulations with $\text{P}(\text{CH}_2\text{OH})_3$ were carried out in argon atmosphere used Schlenk technique. Ethanol was purified according standard procedure prior to use. Silica gel L 100/160 (Chemapol), $\text{P}(\text{CH}_2\text{OH})_3$ and $\text{CoCl}_2 \cdot 6\text{H}_2\text{O}$ (Sigma-Aldrich) were used as supplied. $\{\text{H}\}^{31}\text{P}$ (202 MHz) spectra of **I** in $\text{EtOH}-\text{D}_2\text{O}$ solution were recorded on a Bruker Avance 500 spectrometer at room temperature. $\{\text{H}\}^{31}\text{P}$ NMR shifts were referenced to external 85% H_3PO_4 in D_2O . IR spectra were recorded on a Scimitar FTS 2000 spectrometer in KBr pill at $4000–400\text{ cm}^{-1}$. X-ray diffraction data were collected on a Bruker X8 Apex diffractometer.

Element analysis (C, H, S) was carried out in Analytic laboratory (Nikolaev Institute of Inorganic Chemistry) on Euro EA 3000 analyzer. Absorption spectra in solution were recorded on Helios γ spectrophotometer.

¹ The article was translated by the authors.

Preparation of $[\text{Ni}_3(\mu_3\text{S})_2\{(\text{HOCH}_2)_2\text{PCH}_2\text{OP}(\text{CH}_2\text{OH})_2\}_3][\text{Mo}_6\text{Cl}_{14}] \cdot 0.8\text{H}_2\text{O}$ (I**)**. $\text{NiCl}_2 \cdot 6\text{H}_2\text{O}$ (0.24 g, 0.10 mmol) and $\text{P}(\text{CH}_2\text{OH})_3$ (0.25 g, 0.20 mmol) were dissolved in ethanol (10 cm³) under argon and then hydrogen sulfide was bubbled through the solution for 4 h. The solution became dark-red and was stirred for another 12 h, filtered, and $(\text{H}_7\text{O}_3)_2[\text{Mo}_6\text{Cl}_{14}] \cdot 3\text{H}_2\text{O}$ was added to the filtrate. Slow evaporation of the solvent in air gave orange needle-shaped crystals of **I**; they were collected and dried in vacuo. Yield 0.12 g, 18%.

For $\text{C}_{15}\text{H}_{43.6}\text{O}_{15.8}\text{S}_2\text{P}_6\text{Cl}_{14}\text{Ni}_3\text{Mo}_6$

anal. calcd., %: C, 9.12; H, 2.23; S, 3.25.
Found, %: C, 9.15; H, 2.19; S, 3.27.

IR (ν , cm^{-1}): 445, 505, 560, 677, 750, 846, 873, 1030, 1179, 1283, 1374, 1408, 1619, 1729, 2051, 2897, 3355.

X-ray crystallography. The diffraction data were collected on a Bruker X8Apex CCD diffractometer with MoK_α radiation ($\lambda = 0.71073\text{ \AA}$) by doing φ - and ω scans of narrow (0.5°) frames at 296 K. Structure of **I** was solved by direct methods and refined by full-matrix least-squares treatment against $|F|^2$ with SHELXTL programs set [13]. Absorption corrections were applied empirically with SADABS program [14]. For structure determination APEX 2 (Bruker AXS, 2004), SAINT (Bruker-AXS, 2004), SHELXS-97 (Sheldrick, 1998), SHELXL-97 (Sheldrick, 1998), CIFTAB-97 (Sheldrick, 1998) programs were used. Coordinated {P,P-PCH₂OP} ligands were refined isotropically, because refinement of fully disordered model in anisotropic approximation was unstable. The hydrogen atoms were refined in their geometri-

Table 1. Crystallographic data and refinement details for **I**

Parameter	Value
<i>M</i>	1974.91
Crystal system	Triclinic
Space group, <i>Z</i>	<i>P</i> ̄1, 2
Temperature, K	296
<i>a</i> , Å	11.0506(3)
<i>b</i> , Å	12.3111(3)
<i>c</i> , Å	21.9626(7)
α, deg	96.896(1)
β, deg	94.778(1)
γ, deg	112.356(1)
<i>V</i> , Å ³	2716.14(13)
<i>F</i> (000)	1912
μ, mm ⁻¹	3.35
Crystal size, mm	0.15 × 0.05 × 0.05
<i>T</i> _{min} , <i>T</i> _{max}	0.634, 0.851
Range of <i>h</i> , <i>k</i> , <i>l</i>	-12 ≤ <i>h</i> ≤ 12, -13 ≤ <i>k</i> ≤ 14, -24 ≤ <i>l</i> ≤ 24
Number of measured reflections	38145
Number of independent reflections (<i>R</i> _{int})	8301 (0.042)
Number of reflections with (<i>I</i> > 2σ(<i>I</i>))	6858
GOOF	1.054
Number of parameters refined	2
<i>R</i> (<i>F</i> ² > 2σ(<i>F</i> ²)), <i>wR</i> (<i>F</i> ²); <i>S</i>	0.040, 0.115; 1.05
Weighting scheme	<i>w</i> = 1/[σ ² (<i>F</i> _o ²) + (0.0509 <i>P</i>) ² + 15.2203 <i>P</i>], where <i>P</i> = (<i>F</i> _o ² + 2 <i>F</i> _c ²)/3
Δρ _{max} , Δρ _{min} , e Å ⁻³	1.23, -0.91

cially calculated positions; a riding model was used for this purpose. Crystallographic data and refinement details are given in Table 1, geometrical parameters of **I** are given in Table 2. Further details may be obtained from the Cambridge Crystallographic Data Centre [15] on quoting depository number CCDC 857936. Copies of this information may be obtained free of charge from <http://www.ccdc.cam.ac.uk>.

RESULTS AND DISCUSSIONS

Reaction of NiCl₂ · 6H₂O and P(CH₂OH)₃ in ethanol with hydrogen sulfide, similar to the preparation of [Ni₃S₂(PEt₃)₆]²⁺ from Ni(BF₄)₂ · 6H₂O and H₂S [16] produced red-brown solution. Addition of (H₇O₃)₂[Mo₆Cl₁₄] · 3H₂O [17] followed by slow crystallization yielded orange crystals suitable for X-ray

structure determination. Crystal structure of **I** contains trinuclear cations [Ni₃(μ₃-S)₂{P,P-PCH₂OP})₃]²⁺ (Fig. 1), PCH₂OP = (HOCH₂)₂PCH₂OP(CH₂OH)₂, cluster anions [Mo₆Cl₁₄]²⁻ and solvent water molecules which form hydrogen bonds with OH groups of the {P,P-PCH₂OP} ligands—{PCH₂OH}...H₂O (O...O 2.522(1)–2.660(1) Å). In crystal packing of **I** layers of cluster cations alternate with layers of cluster anions (Fig. 2).

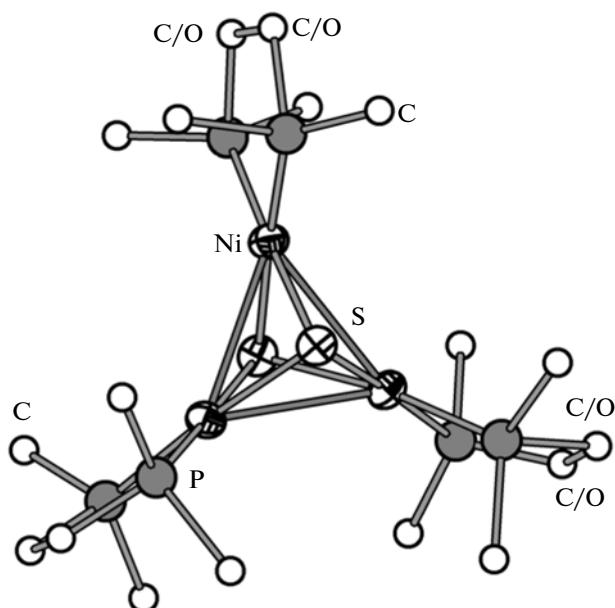
Cationic cluster [Ni₃(μ₃-S)₂{P,P-PCH₂OP})₃]²⁺ has triangular {Ni₃S₂}²⁺ core with average Ni–Ni distance of 2.78 Å, which are appreciably shorter than the Ni–Ni distance found in [Ni₃S₂(PEt₃)₆](BPh₄)₂ (**II**) (2.91(2) Å) [16]. However, this value is much shorter than the Ni–Ni bond length calculated from the covalent radius of Ni (2.48 Å) [18, 19]. Other distances (Ni–S(av.) 2.204(2) Å, Ni–P(av.) 2.151(6) Å) also differ from those reported for the PEt₃ complex (2.15(2) and 2.27(4) Å, respectively), indicating considerable non-rigidity of the {Ni₃(μ₃-S)₂}²⁺ core. Each Ni atom has square planar environment and is coordinated with two sulfur atoms and two phosphorus atoms of the bidentate phosphine-phosphite (HOCH₂)₂PCH₂OP(CH₂OH)₂ ligand. All valence angles P–Ni–P are close to 85°, thus being much smaller than 98° observed in [Pt₃S₂(P(CH₂OH)₃)₆]Cl₂ [16] and 97° in [Pt₃S₂(THP)₆]Cl₂ [18], most probably due to constraints required by formation of five-membered ring in **I**. Curiously, the Ni–S–Ni angles are smaller (78°) and S–Ni–S angles are larger (85°) than those observed in [Ni₃S₂(PEt₃)₆](BPh₄)₂ (85° and 77°, respectively).

The bidentate phosphine-phosphite ligand (HOCH₂)₂PCH₂OP(CH₂OH)₂ can be regarded as condensation product of two P(CH₂OH)₃ molecules. All these ligands are disordered over two positions with relative occupancy ratio 0.5/0.5. This disorder is due to flexibility of the –P–O–C–P– bridge and can indicate presence of two chiral isomers with D₃ point group symmetry in the same structure. This disorder makes impossible to split bridging atoms into individual C and O positions in the {P,P-PCH₂OP} ligand.

Reaction of NiCl₂ with two equivalents of THP in ethanol smoothly gives dark-orange solution of [Ni(THP)₂Cl₂] as the only product, as evidenced by reaction monitoring with ¹H-³¹P NMR (sole peak at -6.2 ppm). Bubbling H₂S through this solution gives dark-red solution (λ_{max} 347 nm; reported [16] for [Ni₃S₂(PEt₃)₆]²⁺ 360 nm) with only one ¹H-³¹P NMR signal at +14.0 ppm, in good agreement with [Ni₃S₂(P(CH₂OH)₃)₆]²⁺ formulation. After 3 days signal of [P(CH₂OH)₄]⁺ at +24.0 ppm appears, together with two other signals of equal intensity at +14.5 and at +42.3 ppm, attributable to {P,P-PCH₂OP} and to

Table 2. Selected bond lengths and valence angles for complex **1***

Bond	<i>d</i> , Å	Bond	<i>d</i> , Å
Ni(2)–Ni(1)	2.7832 (12)	Mo(4)–Mo(6)	2.6062 (8)
Ni(3)–Ni(1)	2.7786 (12)	Mo(4)–Mo(6) ⁱⁱ	2.6100 (9)
Ni(3)–Ni(2)	2.7872 (12)	Mo(5)–Mo(4)	2.6090 (9)
Ni(1)–S(11)	2.1968 (19)	Mo(5)–Mo(4) ⁱⁱ	2.6119 (8)
Ni(1)–S(12)	2.2071 (19)	Mo(5)–Mo(6)	2.6052 (9)
Ni(2)–S(11)	2.2056 (19)	Mo(5)–Mo(6) ⁱⁱ	2.6056 (8)
Ni(2)–S(12)	2.2110 (19)	Mo(6)–Mo(4) ⁱⁱ	2.6100 (9)
Ni(3)–S(11)	2.2045 (19)	Mo(6)–Mo(5) ⁱⁱ	2.6056 (8)
Ni(3)–S(12)	2.1996 (19)	Ni(1)–P(11A)	2.132 (2)
Mo(1)–Mo(2)	2.6052 (9)	Ni(1)–P(12B)	2.122 (6)
Mo(1)–Mo(2) ⁱ	2.6094 (9)	Ni(1)–P(12A)	2.155 (7)
Mo(1)–Mo(3)	2.6039 (9)	Ni(2)–P(21B)	2.077 (6)
Mo(1)–Mo(3) ⁱ	2.6055 (9)	Ni(2)–P(21A)	2.197 (5)
Mo(2)–Mo(1) ⁱ	2.6094 (9)	Ni(2)–P(22B)	2.177 (6)
Mo(2)–Mo(3)	2.6075 (9)	Ni(2)–P(22A)	2.107 (5)
Mo(2)–Mo(3) ⁱ	2.6143 (9)	Ni(3)–P(31B)	2.116 (7)
Mo(3)–Mo(1) ⁱ	2.6055 (9)	Ni(3)–P(31A)	2.150 (7)
Mo(3)–Mo(2) ⁱ	2.6143 (9)	Ni(3)–P(32B)	2.118 (6)
Mo(4)–Mo(5) ⁱⁱ	2.6119 (8)	Ni(3)–P(32A)	2.155 (6)
Angle	ω , deg	Angle	ω , deg
Ni(1)S(11)Ni(2)	78.42 (6)	P(21A)Ni(2)S(11)	89.86 (16)
Ni(1)S(11)Ni(3)	78.29 (6)	P(21A)Ni(2)S(12)	176.03 (16)
Ni(3)S(11)Ni(2)	78.40 (6)	P(22B)Ni(2)S(11)	176.62 (17)
Ni(1)S(12)Ni(2)	78.09 (6)	P(22B)Ni(2)S(12)	90.56 (17)
Ni(3)S(12)Ni(1)	78.18 (6)	P(22A)Ni(2)S(11)	172.16 (17)
Ni(3)S(12)Ni(2)	78.39 (6)	P(22A)Ni(2)S(12)	98.92 (16)
P(11A)Ni(1)S(11)	92.08 (8)	P(31B)Ni(3)S(11)	176.8 (2)
P(11A)Ni(1)S(12)	177.97 (8)	P(31B)Ni(3)S(12)	92.2 (2)
P(12B)Ni(1)S(11)	171.82 (19)	P(31A)Ni(3)S(11)	176.7 (2)
P(12B)Ni(1)S(12)	96.85 (18)	P(31A)Ni(3)S(12)	93.21 (19)
P(12A)Ni(1)S(11)	179.5 (2)	P(32B)Ni(3)S(11)	95.86 (18)
P(12A)Ni(1)S(12)	93.36 (19)	P(32B)Ni(3)S(12)	173.26 (19)
P(21B)Ni(2)S(11)	97.18 (19)	P(32A)Ni(3)S(11)	94.83 (18)
P(21B)Ni(2)S(12)	175.58 (19)	P(32A)Ni(3)S(12)	178.45 (18)


* Symmetry codes: ⁱ – *x* + 1, –, –*z*; ⁱⁱ –*x*, –*y*, –*z* + 1.

{*P,P*-PCH₂OP}, respectively. Some decomposition also takes place, liberating paramagnetic Ni²⁺, which causes peak broadening and prevents determination of *J* constants. Formation of [P(CH₂OH)₄]⁺ can be explained by disproportionation:

which furnishes necessary secondary phosphine for condensation.

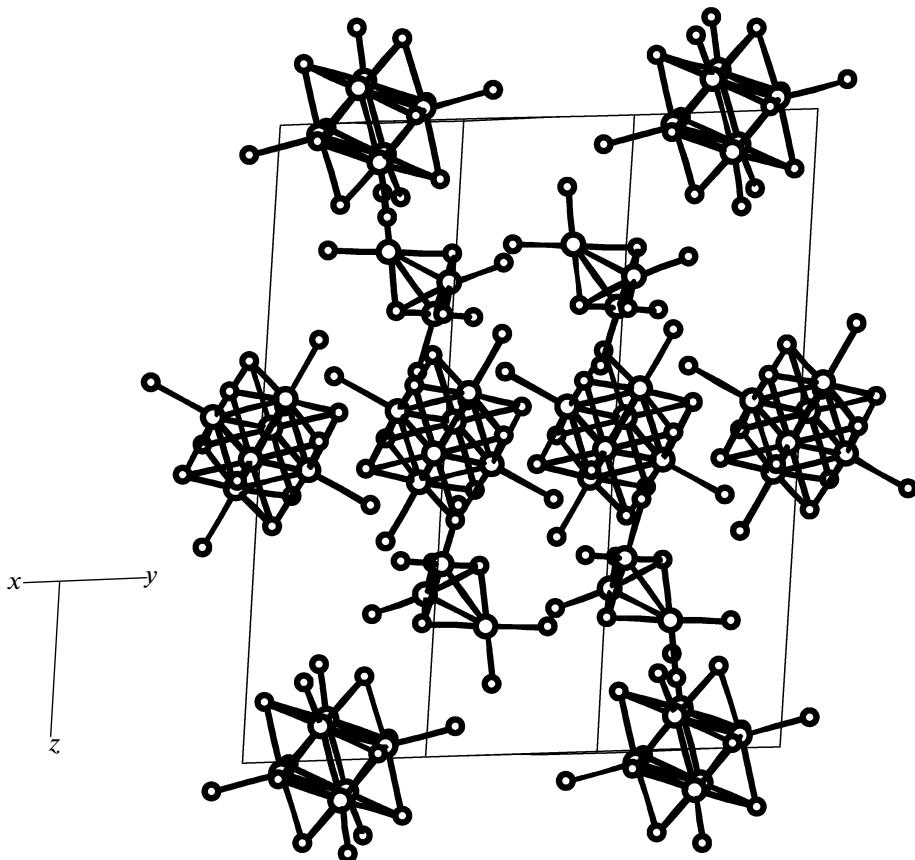

Condensation of two THP molecules into (HOCH₂)₂PCH₂OP(CH₂OH)₂ can be explained by intermediate formation of HP(CH₂OH)₂, either via CH₂OH elimination or by disproportionation reaction 1, followed by oxidation of HP(CH₂OH)₂ into HOP(CH₂OH)₂, followed by its condensation with THP into (HOCH₂)₂PCH₂OP(CH₂OH)₂. Alternatively, addition of strong acid (H₇O)₃[Mo₆Cl₁₄] causes elimination of methanol from protonated THP, fol-

Fig. 1. View of $[\text{Ni}_3\text{S}_2\{(\text{HOCH}_2)_2\text{PCH}_2\text{OP}(\text{CH}_2\text{OH})_2\}_3]^{2+}$. Hydrogen-atoms and OH groups of the ligand are omitted for clarity.

lowed by condensation of $\text{HOP}(\text{CH}_3\text{OH})_2$ with another THP molecule. Ligand condensation of coordinated THP with itself or with PPh_3 into $\{P,P\text{-PCH}_2\text{OP}\}$ -type ligands was reported for Pt, Pd [20] and Rh [21] complexes. Reaction of $[\text{MCl}_2(\text{P}(\text{CH}_2\text{OH})_3)_2]$ ($\text{M} = \text{Pd, Pt}$) with excess $\text{P}(\text{CH}_2\text{OH})_3$ produced $[\text{M}\{(\text{CH}_2\text{OH})_2\text{PCH}_2\text{OP}(\text{CH}_2\text{OH})_2\}_2]^{2+}$, but attempts to isolate free $\{P,P\text{-PCH}_2\text{OP}\}$ ligand failed because of its rapid decomposition into $\text{P}(\text{CH}_2\text{OH})_3$ and $\text{HP}(\text{O})(\text{CH}_2\text{OH})_2$ [7].

Because of high hydrophilicity of $[\text{Ni}_3\text{S}_2\{(\text{HOCH}_2)_2\text{PCH}_2\text{OP}(\text{CH}_2\text{OH})_2\}_3]^{2+}$ attempts to intercept this complex failed, since even addition of NH_4PF_6 or NaBPh_4 did not bring about crystallization. We decided to substitute relatively small $[\text{PF}_6]^-$ with topologically similar, but much larger $[\text{Mo}_6\text{Cl}_{14}]^{2-}$ which has octahedral $\{\text{Mo}_6\text{Cl}_8\}^{4+}$ core and can be regarded as “superoctahedral” analogue of PF_6^- . Indeed, addition of $[\text{Mo}_6\text{Cl}_{14}]^{2-}$ gave suitable for X-ray analysis single crystals of **I** after slow crystallization. It is insoluble in common organic solvents and sparingly soluble in

Fig. 2. Crystal packing of **I**, only phosphorus atoms at the $\{P,P\text{-PCH}_2\text{OP}\}$ ligands are shown. Water molecules are omitted for clarity.

DMSO and DMF. The $[\text{Ni}_3\text{S}_2(\text{P}(\text{CH}_2\text{OH})_3)_6]^{2+}$ can also be generated in aqueous solutions (both neutral and in 4 M Hpts). However, these solutions were found to be unstable, especially at high $[\text{H}]^+$, decomposing to liberate H_2S and octahedral Ni^{2+} .

To conclude, we have succeeded in preparation and full characterization of $[\text{Ni}_3\text{S}_2(\{P,P-\text{PCH}_2\text{OP}\})_3][\text{Mo}_6\text{Cl}_{14}] \cdot 0.8\text{H}_2\text{O}$, which contains hydrophilic hydroxyphosphine ligands. This chemistry promises new developments including catalytic reactions in aqueous media, or preparation of dendrimers by functionalization of the OH groups at the phosphine ligands. It is also worth mentioning that complexes containing Ni in mixed *P*, *S*-donor coordination environment have been suggested as functional models of hydrogenases [22].

ACKNOWLEDGMENTS

This work was supported by, Government Contracts no. 16.740.11.0473 in the framework of Federal Frame Program “Scientific and Research-Educational Staff for Innovative Russia 2009–2013” and no. 11.519.11.3021 in the framework of Federal Frame Program “Research and Development of the Science & Technology Complex of Russia in 2007–2013”.

REFERENCES

1. Pinault, N. and Bruce, D.W., *Coord. Chem. Rev.*, 2003, vol. 241, p. 1.
2. Herrmann, W.A. and Kohlpaintner, C.W., *Angew. Chem., Int. Ed. Engl.*, 1993, vol. 32, p. 1524.
3. Kothari, K.K., Raghuraman, K., Pillarsetty, N.K., et al., *Appl. Radiat. Isot.*, 2003, vol. 58, p. 543.
4. Dilworth, J.R. and Parrott, S.J., *Chem. Soc. Rev.*, 1998, vol. 27, p. 43.
5. Blower, P.J., *Transituin Met. Chem.*, 1998, vol. 23, p. 109.
6. Katti, K.V., Gali, H., Smith, C.J., et al., *Acc. Chem. Res.*, 1999, vol. 32, p. 9.
7. Ellis, J.W., Harrison, K.N., Hoye, P.A.T., et al., *Inorg. Chem.*, 1992, vol. 31, p. 3026.
8. Chatt, J., Leigh, J.G., and Slade, R.M., *J. Chem. Soc., Dalton Trans.*, 1973, p. 2021.
9. Berning, D.E., Katti, K.V., Barbour, L.G., et al., *Inorg. Chem.*, 1998, p. 334.
10. Driessens-Holscher, B. and Heinen, J., *J. Organomet. Chem.*, 1998, vol. 570, p. 141.
11. Fukoka, A., Kosugi, W., Morishita, F., et al., *Chem. Commun.*, 1999, p. 489.
12. Algarra, A.G., Basallote, M.G., Fernandez-Trujillo, M.J., et al., *Inorg. Chem.*, 2007, vol. 46, p. 7668.
13. Sheldrick, G.M., *SHELXTL. Programs for Structure Solution and Refinement*, Bruker AXS, 1990–2007.
14. Sheldrick, G.M., *SADABAS. Program for Empirical X-Ray Absorption Correction*, Bruker AXS, 1990–2007.
15. Allen, F.H., *Acta Crystallogr., Sect. B: Struct. Sci.*, 2002, vol. 58, p. 380.
16. Gilardi, C.A., Midollini, S., and Sacconi, L., *Inorg. Chim. Acta*, 1978, vol. 31, p. L431.
17. Nannelli, P. and Block, B.P., *Inorg. Synth.*, 1970, vol. 12, p. 170.
18. Cordero, B., Gymez, V., Platero-Prats, A.E., et al., *Dalton Trans.*, 2008, p. 2832.
19. Sokolov, M.N., Anyushin, A.V., Virovets, A.V., et al., *Inorg. Chem. Commun.*, 2011, vol. 14, p. 1659.
20. Hoye, P.A.T., Pringle, P.G., and Smith, M.B., *Dalton Trans.*, 1993, p. 269.
21. Lorenzini, F., Patrick, B.O., and James, B.R., *Inorg. Chem.*, 2007, vol. 6, p. 8998.
22. Sellmann, D., Lauderbach, F., and Geipel, F., *Angew. Chem., Int. Ed. Engl.*, 2004, vol. 43, p. 3141.