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Introduction

As calculation tools are reaching increasingly high performances, numerical
modeling has developed significantly in all sectors of society. It can be used to
predict the evolution of a given structure or device starting from an initial state,
study physical phenomena by accessing quantities that are not measurable or
develop virtual prototypes in order to improve a design process. Applied physics,
and in particular low-frequency electromagnetism, which is the subject of this book,
are no exceptions. Nowadays, high-performance simulation software is available for
students, engineers and researchers. A prerequisite for making the best use of a tool,
even in the field of computation, is obviously a good knowledge of its foundations
and principles. In this context, it seemed interesting to propose a book that may
grasp, under the best conditions, the path leading to building these numerical
models.

The modeling of electromagnetic phenomena relies on two partial differential
equations, known as Maxwell’s equations:

curl E=—-0B /ot
curl H=J+0D /ot

These two equations should be completed by behavior laws that describe the
reaction of media to electromagnetic fields, which are associated with physical
phenomena such as dielectric polarization, electric conduction and ferromagnetism.
Finally, for a proper formulation of the problem, boundary conditions should be
added, for either a finite or infinite studied domain. Although it may appear simple,
this problem, composed of several equations, has no analytical solution, except for
the case of elementary geometry, with linear behavior laws.
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As the exact solution to the problem is not available, there are two possibilities
for reaching an approximation of this solution:

— Formulate hypotheses on the geometry, the behavior laws of the materials and
the spatial distribution of electromagnetic fields. The objective is to make the
analytical solution possible. This approach requires the “model builder” to have very
deep, expert knowledge on the studied system, to be able to formulate the “right
hypotheses”. If the latter are not valid, there is a very high risk of reaching a low-quality
solution, which is very far from the exact solution of the initial problem. Moreover,
this approach is not always possible if complex phenomena, such as nonlinearities,
are predominant.

— Or, reformulate the initial problem in discrete form, leading to a system of
differential algebraic equations. An approximation of the exact solution is then
obtained at the cost of a significant amount of computation, which can be readily
processed by the computers that are available nowadays. This reformulation,
requiring few or almost no hypotheses, is obtained by implementing numerical
methods. In the field of electromagnetism, the most widespread such method is the
finite element method.

This book focuses on the second approach, often referred to as “computational
electromagnetics”, providing a detailed description of the implementation of the
finite element method in low-frequency electromagnetism. Our purpose is to explain
the process starting from equations verified by electromagnetic fields in the
continuous domain, in order to arrive at a system of equations that will be solved
using a computer. This process, often called “discretization”, will be conducted with
a permanent concern for maintaining a link between physics, i.e. the properties of
electromagnetic fields, and numerical analysis, through the finite element method.

Furthermore, this book is mainly addressed to students, engineers and
researchers in the field of electrical engineering. They will be able to better
understand the intricate details of (open-source or commercial) software that models
the behavior of electromagnetic fields. They will thus have the possibility of better
using these tools and therefore have a good knowledge of their limits. This book is
also addressed to students, engineers and researchers in the field of numerical
analysis who are interested in better understanding the links between numerical
methods and physics in the field of electromagnetism.

Even though this book offers few pieces of information on numerical
implementation, it provides all the elements required for understanding the
theoretical foundations. It also allows us to conceive the link between physics and
numerical methods and therefore between the applications and the software used.
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The above-stated Maxwell’s equations allow for the study of all electromagnetic
phenomena. For certain low-frequency applications it is, however, possible to derive
them in a “static” or “quasi-static” state. Under certain hypotheses, these simpler
problems lead to solutions that are equal or very close to those that would have been
obtained using the full Maxwell equation system. After discretization using a
numerical method, they can be used to obtain smaller size systems of equations that
are easier to solve due to their mathematical properties.

Approximations by problems under a static or quasi-static state are widely used
in many domains such as power grids, electrical machines, power electronics and
non-destructive testing. This book focuses in particular on three static problems,
namely electrostatics, electrokinetics (when electric charges travel at constant speed,
the fields do not depend on time) and magnetostatics. In the quasi-static state,
Maxwell’s equations can be written in the magnetoquasistatic form (more often
referred to as “magnetodynamics”) or in the electroquasistatic form. In this
quasi-static case, our focus will be on magnetodynamics. On the contrary,
electroquasistatic problems will not be considered, but the developments remain
similar to those used in the case of magnetodynamics.

This book has four chapters, each corresponding to a stage of the process leading
to the discretization of Maxwell’s equations.

The objective of Chapter 1 is to formulate various problems in the static state
and the magnetodynamic state, and then to solve them. For each problem, the
equilibrium equations are written, as well as the behavior laws and the boundary
conditions on the electromagnetic fields. A review of the properties of these fields
also highlights their behavior at the interface between two media, and the nature of
their integral forms. A key point of this chapter is the definition of electric and
magnetic quantities, referred to as “source terms”, which are at the origin of the
creation of electromagnetic fields. These terms can be located inside the studied
domain (electric charges, inductors, permanent magnets) or imposed on the
boundary of the domain (electromotive or magnetomotive forces, current density or
magnetic flux).

Chapter 2 is dedicated to the introduction of functional spaces associated with
vector operators: gradient, curl and divergence. As these operators are used when
writing the equations of static and quasi-static problems, they can be used to define
the functional spaces to which various electromagnetic fields belong. An analysis is
conducted on the properties of functional spaces and in particular on the images and
kernels of the vector operators in relation to the topology of the studied domain.
These properties lead quite naturally to the notion of scalar and vector potentials,
widely used as intermediary for solving static and quasi-static problems, which will
be introduced in Chapter 3. The notion of gauge is also presented, which imposes
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the uniqueness of a field when defining by a single vector operator. Gauge
conditions will therefore be very useful to impose the uniqueness of potentials so
that the problem is properly posed. They are also used in the construction of source
terms.

Chapter 3 focuses on the potential-based formulations for static and
magnetodynamic problems. In the case of static problems, the introduction of these
potentials allows for the reduction of the number of unknowns, passing from two
unknown fields to only one unknown potential. This potential can be a scalar or a
vector quantity. For each problem, two formulations in terms of potential referred to
as “scalar” or “vector” are obtained. In magnetodynamics, two potentials are used in
close relation to those introduced for static problems. Two formulations known as
“electric” and “magnetic” are then deduced.

These potentials are not necessarily introduced in a direct manner, requiring
instead a reformulation of the source terms of the initial problem, located either
inside or on the boundary of the domain. The first part of this chapter is dedicated to
this reformulation. The number of sources is often limited, facilitating a focus on the
essential, which is a systematic method for imposing source terms. However, as
shown by the examples presented, the methodology is readily applicable to problems
with a greater number of sources, using the superposition theorem (even though the
behavior laws are not linear).

Chapter 4 is dedicated to the discretization of formulations of static and
magnetodynamic problems. Successful completion of this discretization requires
first of all finding the proper spaces of approximation within which the approximate
solutions will be sought. These spaces must have a finite dimension for implementation
on a computer. In the case of the finite element method, the spaces of approximation
are defined from a mesh, which is obtained by splitting the studied domain into
elements of simple shapes (tetrahedron, hexahedron, prism, etc.). A field is then
perfectly defined by a vector, whose entries are the coefficients of the basis of the
approximation space. The entries of this vector are then the degrees of freedom to be
determined. These spaces of finite dimension must be included in the functional
spaces to which electromagnetic fields belong. This means they must meet the
properties introduced in Chapter 2. This condition leads to physically acceptable
field approximations in the sense that they verify the continuity conditions. Whitney
finite elements are currently the most commonly used, and they generate spaces that
allow for a real physical interpretation of the degrees of freedom, which are then
fluxes, circulations and densities. Moreover, imposing gauge conditions is natural,
as well as the calculation of source terms. It is important to note that, in this book,
our developments are limited to first-order finite elements for a tetrahedron-based
mesh. Very similar approaches can be applied with higher-order functions and
elements of other shapes (hexahedron, prism, pyramid, etc.). The introduction of
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discrete forms of fields in the potential-based formulations of static and
magnetodynamic problems does not allow us to directly build a system of equations.
Our objective is to use the weighted residual method, allowing for the
transformation of the initial problem, based on local equations, into a problem based
on integral equations. For each of the potential-based formulations developed in
Chapter 3, the weighted residual method is used in association with Whitney finite
elements in order to build a system of equations to be solved, which is then the
numerical model we seek.






Equations of Electromagnetism

1.1. Maxwell’s equations

Maxwell’s equations can be written in a general form as follows (Stratton 1941;
Ida 2020):

[1.1]
curlE=—a—B
Jdt
[1.2]
curlH =J+a—D
Jat
divB=0 [1.3]
divD=p [1.4]

The vector fields denoted by E, B, H and D represent, respectively, the electric
field, the magnetic flux density, the magnetic field and the electric displacement
field. Electric current density J and electric charge density p can be considered
source terms.

Finally, it is common to adopt the quasi-static approximation for electromagnetic

devices operating at industrial frequencies. In this case, the term 0D/0t in equation
[1.2] can be considered negligible. Equation [1.2] can then be written as:

curlH=J [1.5]
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If the divergence operator is now applied to equation [1.5], considering the
properties of vector operators (diveurlH = 0), the following property can be deduced
for the electric current density:

divl =0 [1.6]

1.2. Behavior laws of materials

Maxwell’s equations, as presented above, are independent of the media. But
electric fields (E, J, D) and magnetic fields (H, B) are related by behavior laws.
1.2.1. General case

It can be noted that in vacuum these behavior laws are linear and have the
following form:

D=¢E [1.7]

B=p H [1.8]

where €, represents the electric permittivity constant (go=10"%/36m F/m) and L, is
the magnetic permeability constant (o =4m10" H/m). They are linked by the
classical relation: gouc® = 1, where c represents the speed of light in vacuum.

On the contrary, electromagnetic fields in media interact with their environment.
These interactions also depend on fields of different physical natures, such as
temperature T or mechanical stress G,,. In this case, the behavior laws become
significantly more complex, and the following relations can be written:

D= f(ET,06,,..) [1.9]
B=4(HT,0,,.) [1.10]
J=h(E,T,0,..) [1.11]

These various functions may depend on the history of the material. As an
example, in the case of ferromagnetic materials, the value of the field B at the time t
depends not only on the value of the field H at time t, but also on its previous values
in the time interval [0, t]. This phenomenon is known as magnetic hysteresis. Some
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materials, used for their electric properties linking fields D and E, also exhibit this
hysteresis phenomenon. They are referred to as ferroelectric materials.

Behavior laws are often at the origin of the links between various physics
domains. This is the case with coupling the equations of electromagnetism with the
equations of thermodynamics and mechanics. For example, electric current density
J, for a given value of the electric field E, decreases as a function of temperature due
to thermal energy, which tends to reduce the conductivity of the material. As a first
approximation, conductivity 6(T) can be written as a function of temperature:

O,
o(T) = —rf 1.12
™ 1+0AT [1.12]

In this expression, AT = (T — T, with T> T, O is the conductivity at
temperature T, and o is a temperature coefficient of the considered material also
dependent on T, However, in many applications, multiphysics couplings can be
considered negligible in a first approach. In this case, the behavior laws can be
written in a simplified form:

D =f(E) [1.13]
B=g(H) [1.14]
J = h(E) [1.15]

1.2.2. Simplified forms

Even in the form presented in equations [1.13], [1.14] and [1.15], the behavior
laws in material media may be relatively complex (anisotropy, hysteresis). It is
nevertheless often possible to simplify them without affecting the precision of the
results, which will be shown in the following section.

1.2.2.1. Dielectric materials

Consider the behavior law of dielectric materials written using relation [1.13].
Introducing the electric polarization vector ®, which depends on the electric field E,
the following relation can be written (Ida 2020):

D =¢E + @, (E) [1.16]



4 Finite Element Method to Model Electromagnetic Systems in Low Frequency

In the case of ferroelectricity, polarization @, follows a hysteresis loop when the
electric field varies as a function of time. However, the hypothesis of isotropy and
linearity is acceptable for many dielectric materials. Polarization can therefore be
considered to be directly proportional to the electric field strength. It can then be
written as follows:

®, =¢eg)E [1.17]

where . represents the electric susceptibility of the material. Grouping equations
[1.16] and [1.17] leads to:

D=¢y(1+y.)E =¢pgE [1.18]

This expression involves €, a dimensionless number, which represents the
relative permittivity of the considered material. Introducing permittivity € = €€, the
commonly used behavior law of dielectric materials is obtained:

D=¢E [1.19]

1.2.2.2. Conductive materials

For conductive materials, assuming thermal effects are negligible, electric
current density is proportional to the electric field. The electrical behavior law is
then expressed as:

J=cE [1.20]
where G is the electrical conductivity.

1.2.2.3. Magnetic properties of materials

The magnetic properties of materials can be expressed using relation [1.14].
Similar to the dielectric materials, a magnetic polarization vector, denoted by @,
can be introduced (Bozorth 1993; Benabou 2002). Using this vector, it is possible to
express the magnetic flux density in the following form:

B =y H + @, (H) [1.21]

In this expression, the magnetization vector M can also be introduced, posing
@, = noM(H). Equation [1.21] can then be written as:

B=y1,(H-+M(H)) [1.22]
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Equations [1.21] and [1.22] contain a first term corresponding to the magnetic
flux density created in vacuum (poH) and a second term, respectively, @,(H) or
UoM(H), corresponding to the response of the material medium to the external
magnetic field.

There are various behaviors leading to the following classification:

— diamagnetic materials that, when subjected to a magnetic field, create a
magnetization that opposes the external field. In this case, equation [1.22] can be
written as:

B =41, (H+y, H) =41, (14, ) H [1.23]

where y;, represents the magnetic susceptibility with x,, < 0 and is of the order of
—107. It can be noted that this reaction magnetization is very weak for most
materials used in electrical engineering. As an example, the magnetic susceptibility
of copper is equal to —1.18 107;

— Paramagnetic materials that, when subjected to a magnetic field, create a very
weak magnetization in the same direction as the external field. In this case, the
expression [1.23] is unchanged, but ¥,>>0 may range between 10~ and 10~°. As an
example, magnetic susceptibility of molybdenum is equal to 1.05 107,

— Ferromagnetic materials that, when subjected to a magnetic field of several
hundred amperes per meter, may create a magnetization M(H) of the order of
10° A/m. Moreover, in the absence of an external field, they may present a remanent
magnetization. Considering their exceptional magnetic properties, these materials
are understandably used in the field of conversion of electromagnetic energy.

For industrial frequencies, with the exception of ferromagnetic materials, it is
commonly accepted that the vacuum behavior law (see relation [1.8]) is perfectly
suited for the modeling of the magnetic behavior law of material media.

1.2.2.4. Ferromagnetic materials

As shown in Figure 1.1, for ferromagnetic materials, magnetization describes a
hysteresis loop when the magnetic field varies alternatively. In this figure, M;
represents the remanent magnetization, M; represents the saturation magnetization
and H, represents the coercive field. It can be readily shown that the energy
dissipated as losses, during a loop, is equal to the loop area. It can also be noted that
magnetization M(H) varies with temperature, and beyond the Curie temperature the
material exhibits paramagnetic behavior. Finally, ferromagnetic materials often have
anisotropic magnetic properties, which means that their behavior varies according to
the direction of the applied magnetic field.
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M(A/m)

M,

3

H(A/m)

Figure 1.1. M(H) characteristic of a ferromagnetic material

Depending on the value of the coercive field intensity H., two families of
magnetic materials can be identified:

— Soft magnetic materials, for which H, is below several hundred amperes per
meter. They are mainly used for concentrating and driving the circulation of the
magnetic field. The material then behaves as a “good magnetic conductor”.

— Hard magnetic materials, for which the coercive field intensity H, is very high.
These materials are used as permanent magnets.
1.2.2.4.1. Soft magnetic materials

In order to represent soft ferromagnetic materials, it is possible, for certain
applications, to ignore the anisotropy and also the hysteresis phenomenon. This new
behavior law is then deduced from the M(H) characteristic, shown in Figure 1.1, by
considering the anhysteretic curve (one-to-one curve experimentally measured
according to a standard). In this case, magnetic flux density can be written as:

B = uo(H+MH)) = uo(H + ¥y (HH) = uoHA + ¥, (H)) [1.24]
or by introducing a nonlinear magnetic permeability p(H) = po(1 + % (H)):

B=u(H)H [1.25]
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Finally, it is also possible to take into account only the linear part of the
magnetic characteristic. This yields:

B=uH [1.26]

1.2.2.4.2. Permanent magnets

As for the hard magnetic materials, used as permanent magnets, they are of
various types. For example, we can mention iron—nickel-aluminum—cobalt
(Alnico) alloys, rare-carth-based alloys (samarium-cobalt (SmCo) and
neodymium—iron-boron (Nd-Fe-B)) and ferrites.

Figure 1.2(a) shows the useful characteristics (part of the hysteresis loop that is
exploited when the material “operates” as a permanent magnet) of the materials
commonly used as permanent magnets.

This figure shows that except for the case of Alnico-type alloys, the useful
characteristic of permanent magnets can be represented by a linear characteristic, as

shown in Figure 1.2(b). This is:

B=y,H+B, [1.27]

where p, represents the magnetic permeability of the permanent magnet (close to
Ko) and B, the remanent flux density.

1.4 B
1.2

0.8
NdFeB 0.6

Ferr)ity

-1000 -600 -200 0| H(kA/m) H

0.4
0.2

mV

a) b)

Figure 1.2. a) Characteristics of the most common hard ferromagnetic
materials used as permanent magnets; b) simplified representation
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1.3. Interface between two media and boundary conditions

Before studying the behavior of materials at the interface between two media
with different properties, it is important to recall the definition of a vector field
based on its normal and tangential components at a point on a surface. Considering a
vector, denoted by u (see Figure 1.3), at a point M of a surface I', and n the normal
vector to the surface at this point, it can be decomposed into its normal component
u, and tangential component u; as follows:

u=u, +u, [1.28]

where u,= (n.u)n is the normal component, and u,;=n A (u A n) is the tangential
component (the operator “.”” denotes the scalar product and “A” denotes the vector
product).

NOTE.— For the sake of simplicity, when conditions are imposed on the tangential
component, it is preferable to use the term u A n. Indeed, it can be verified that if
u An=0, then u=0. Similarly, if two vectors u; and u, have equal tangential
components, this is equivalent to having uy A n=u, A n.

Figure 1.3. Definition of a vector field based
on its normal and tangential components

Having set these definitions, the next section describes how they are used to
define the continuity conditions between two media and the boundary conditions.
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1.3.1. Continuity conditions between two media

The five already defined vector fields, E, H, B, D and J, have certain properties
when passing from one medium to another (Ida 2020). These properties are derived
from equations [1.1], [1.3], [1.4], [1.5] and [1.6].

1.3.1.1. Electric and magnetic fields

It can be shown that if the curl of a field is defined, then the tangential
component of this field is continuous at the interface between two media that may
have different characteristics. Since the curl of the electric field is defined by
equation [1.1], it can be deduced that:

Ey =Ey [1.29]

where Ey; (k € {1,2}) represents the component of the electric field tangential to the
interface. This result shows that at the interface between two media with different
properties, the tangential component of the electric field is conserved.

For the magnetic field, as defined by equation [1.5], similar to the case of the
electric field, the following can be written:

Hy; = Hyy [1.30]

This relation shows that at the interface between two media the tangential
component of the magnetic field is conserved.

1.3.1.2. Electric displacement field, magnetic flux density and current density

Likewise, it can be shown that if the divergence of a field is defined, then its
normal component is continuous at the interface between two media with different
physical properties.

The divergence of the fields D, B and J is defined, and this property is then
applied. For the electric displacement field, based on equation [1.4] and in the
absence of surface charge density, the following expression can be written:

Dln =D2n [131]

where Dy, (k € {1,2}) represents the normal component of the electric displacement
field on the interface.
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Concerning the magnetic flux density, based on equation [1.3], the following
expression can be written:

B, =By, [1.32]

where By, (ke {1,2}) represents the normal component of the magnetic flux
density. Therefore, at the interface between two media, the normal component of the
magnetic flux density is conserved.

As already noted for the electric displacement field and the magnetic flux
density, equation [1.6] leads to the relation:

Jin =Jo [1.33]

therefore at the interface between two media the normal component of the current
density is conserved.

1.3.1.3. Refraction of field lines

In order to alleviate the developments, this section considers a two-dimensional
(2D) case, limited to the pair of fields composed of the magnetic field and the
magnetic flux density {H,B}. The conclusions that will be drawn are, however, valid
for the three-dimensional (3D) case and can be extended to the case of the {E,D}
and {E,J} pairs that verify the same conservation conditions as the {H,B} pair.

Figure 1.4. Normal and tangential components of fields B4, H1, B> and H-

As shown in Figure 1.4, let us consider an interface I" between two magnetic
materials denoted by 1 and 2. The behavior law of the materials, assumed to be
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isotropic and linear, is given by relation [1.26] with permeabilities p; and p,. Under
these conditions, the magnetic fields H;, and H, are, respectively, collinear with
magnetic flux densities B; and B,. Finally (see Figure 1.4), the projection of the
fields onto the two axes “n” and “t”, corresponding to the normal and tangential
components, meets the properties expressed by [1.30] and [1.32].

o, and o, are the angles made with the normal n directed from medium 2 to
medium 1 by the two pairs of fields {H,,B;} and {H,,B,}, respectively.

An elementary calculation, based on the continuity properties of the normal and
tangential components [1.30] and [1.32] and on the behavior law [1.26], leads to the
relation:

tgo, =K., tgoy, [1.34]
where K; represents a refractive index such that K= p, / ;.

Let us now consider the following case: if p;— o<, then ¥, —0, tgo,=0 and
o= 0. This implies that the pair {H;,B;} is normal to the surface and therefore
H;= 0. On the contrary, if p; — 0, then K, — o<, tgo, > o< and 0, =7 / 2. In this
case, the pair {H;,B,} is tangential to the surface and the component B, = 0.

When considering the pairs {E;,D;} and {E,,D,} with the behavior law [1.19] or
the pairs {E;,J,} and {E,,J,} with the behavior law [1.20], the same conclusions are
reached. Under these conditions, the refractive index X; is equal to €,/ €; and G,/ 0,
respectively.

As an example, let us consider the case of a conductive material whose
conductivity has a finite value ©,. If it is brought into contact with another
conductive material, whose conductivity G, tends to infinity, then K. — 0 and the
tangential component of the electric field strength E and of the current density J at
the interface is equal to zero. In this case, the interface can be considered a gate for
the current density.

On the contrary, if the conductive material, of conductivity G,, is in contact with
an insulating material, whose conductivity is 6; =0, then K, — o< and the normal
component (of E and J) to the interface between the two media is equal to zero. This
interface will be considered a wall.

These considerations will be very useful in the following section, particularly
when boundary conditions imposed at the boundary of a domain are imposed.
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1.3.2. Boundary conditions

For the study of electromagnetic systems, a well-posed formulation of the
problem requires imposing spatial boundary conditions to the fields. For an infinite
domain, these conditions are applied to infinity. In the case of numerical simulation,
the domain is often limited to a part of the space. In this case, boundary conditions
should be imposed at the boundaries of the domain. These boundary conditions may
be derived either from symmetry conditions of the problem or from properties of the
materials that are in contact with the boundary (see section 1.3.1). For example, if
the boundary is in contact with a highly insulating material, then the normal
component of the current density is imposed to zero. To have a physical meaning,
these conditions always relate to the conservative (normal or tangential) component
of the concerned field. Therefore, if a condition applies to the magnetic field, it
concerns the tangential component. On the contrary, in the case of magnetic flux
density, it relates to the normal component.

However, in the context of problems evolving in time, a generally imposed
condition is that the value of fields at the initial instant t = 0 is equal to zero.

Taking into account the notations introduced after equation [1.28] for the normal
and tangential components, the boundary conditions on the fields E, H, D, B and J
can be written, for a large number of applications, as follows:

n/\E|Fe =0 [1.35]
n/\H|]_h =0 [1.36]
B.n|1_b =0 [1.37]
J.n|1_j =0 [1.38]
D.n|rd =0 [1.39]

These conditions, known as “homogeneous boundary conditions”, can be
interpreted as follows:

— Equation [1.35] indicates that the tangential component of the electric field is
equal to zero on the boundary T, and therefore the electric field E is normal to this
surface. Using the expression introduced at the end of section 1.3.1.3, this boundary
can be considered a gate for the field E. These are gate-type boundary conditions.



Equations of Electromagnetism 13

— Equation [1.36] leads to the same interpretations for the magnetic field intensity
H on the boundary TI'},. It can also be considered a gate for the magnetic field.

— Equation [1.37] indicates that the normal component of the magnetic flux
density is equal to zero on the boundary I',. As already seen in section 1.3.1.3, this
condition requires the boundary to behave as a wall for the magnetic flux density B.
These are referred to as wall-type boundary conditions.

— Equation [1.38] leads to the same interpretations for the current density, i.e. T
behaves as a wall for the current density J.

— Equation [1.39], similar to equations [1.37] and [1.38], shows that the
boundary I'y behaves as a wall for the electric displacement field D.

It can be shown that relations [1.1] and [1.35] imply equation [1.37]. Similarly,
relations [1.5] and [1.36] imply equation [1.38]. On the contrary, the reverse is not
true and depends on the topology of the domain (see Chapter 2).

1.4. Integral forms: fundamental theorems

The above-stated Maxwell’s equations provide local information on
electromagnetic fields. The integral form of these equations leads to general
theorems that are commonly used in electromagnetism. These theorems can be used
to connect local quantities (vector fields) and global quantities such as the
electromotive force “e”, the current density flux “I”, the magnetic flux “¢”, the
magnetomotive force “f,” and the total charges “Q”.

1.4.1. Faraday’s law

Given a rigid loop (s, the boundary of a surface denoted by § (see Figure 1.5),

consider equation [1.1] that connects the electric field and the magnetic flux density.
Integrating the equation over the surface S yields:

”ScurlE.ndS=—j s%—‘?.nds [1.40]

Using the Stokes theorem and inverting the operator differentiated with respect
to time with the surface integral (which is possible, as the loop is assumed rigid), the
following can be written:

d
fo Edl=——[[;B.ndS [1.41]
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B(t)

G

Figure 1.5. Faraday’s law implementation example

The left-hand side term of this equation corresponds to the electromotive force
“¢” induced in the loop, and the right-hand side term corresponds to the time
derivative of the magnetic flux through the surface § (denoted by ¢). This leads to
Faraday’s law:

L [1.42]

dt

1.4.2. Ampére’s law

As shown in Figure 1.6, consider a conductor carrying a current density J and a
surface § bounded by a contour ;. Based on equation [1.5], using the same approach
as for Faraday’s law, the following can be written:

I L curlH.ndS = USJ.ndS [1.43]

Using the Stokes theorem, the term on the left-hand side is replaced by the
circulation of the magnetic field along the contour ;. The term on the right-hand
side, which represents the flux of J, is therefore equal to the value of the electric
current (denoted by “I”) flowing through the surface . This relation leads to
Ampére’s law, namely:

§C Hdl =1 [1.44]



Equations of Electromagnetism 15

Figure 1.6. /llustration of Ampere’s law: conductor carrying a current

1.4.3. Law of conservation of the magnetic flux

Equation [1.3] provides information related to the behavior of the magnetic flux
density, i.e. it is divergence free. In order to analyze this property, consider the case
of the domain Q, of boundary I" =T}, U I', U Ty, defined in Figure 1.7. A magnetic
flux density B flows through this domain. The boundary condition on the boundaries
Iy and Ty is [1.36], and on the lateral boundary T, it is [1.37]. This is known as the
flux tube.

%

Figure 1.7. Flux tube: law of conservation of the flux

Calculating now the volume integral over the domain Q of equation [1.3], we
obtain:

[[] gdivBdt =0 [1.45]
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Applying to this equation Ostrogradski’s theorem, also known as the “divergence
theorem”, we have:

[I] , divBdt = ff BndS =0 [1.46]

Magnetic flux density is therefore a conservative flux vector field. This means
that the magnetic flux flowing through a closed surface (in this case, the surface I" of
the domain Q) is equal to zero. In the studied example, decomposing the boundary
' (T, Thy, o), the following can be written:

ﬁr BandS = ”r B.ndS +”r BandS + .”r BndS =0 [1.47]
b h1 h2

Considering the boundary conditions on the lateral surface I', (B.n = 0), it can be
deduced that the incoming flux through I',; (see the orientation of the normal vectors
in Figure 1.7) is naturally equal to the outgoing flux through I',.

It is important to note that the divergence of the current density is also zero (see
equation [1.6]). Under these conditions, it has the same properties as the magnetic
flux density, i.e. it is a conservative flux vector field. This reflects the fact that
electric current is conserved all along a conductor.

1.4.4. Gauss’ law
This section focuses on equation [1.4] that links the electric displacement field to

the electric charge density p. To study the properties of this equation, consider the
domain Q of boundary T, enclosing a charge density p (see Figure 1.8).

L,

Figure 1.8. lllustration of Gauss’ law
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Let us calculate, for equation [1.4], the volume integral over the domain €. This
yields:

mgdivD dr = mgpdr [1.48]
Applying Ostrogradski’s theorem for the divergence operator leads to:

ffr. DndS =][[, pdz [1.49]

The term on the right-hand side corresponds to the total charges Q inside the
domain, therefore:

ff Dnds =Q [1.50]

As for the term on the left-hand side, it corresponds to the electric flux ¢
through the surface of the domain Q. This reflects Gauss’ law, i.e. the electric flux
through a closed surface is equal to the total charges Q enclosed by the volume
defined by this surface.

1.5. Various forms of Maxwell’s equations

Depending on the given problem, in the context of low-frequency
electromagnetism (see section 1.1), it is possible to simplify the initial model
defined by equations [1.1], [1.3], [1.4] and [1.5]. Static and quasi-static problems are
then identified. Concerning static problems, our focus is on studying the problems of
electrostatics, electrokinetics and magnetostatics. As far as quasi-static problems are
concerned, this book focuses only on magnetoquasistatics, commonly referred to as
“magnetodynamics”. The following section studies these various forms and
introduces, for each of them, the boundary conditions and the notion of source term.

1.5.1. Electrostatics

Electrostatics aims to study, within a given domain Q, the distribution of the
electric field and of the electric displacement field in the presence of static source
terms. The study is conducted at electrostatic equilibrium; therefore, the problem to
be addressed is stationary in time. As an example, Figure 1.9 shows a domain of
permittivity €, inside of which there is a subdomain Q; of permittivity €;. On the
boundary, there are two types of boundary conditions, Iy (see equation [1.39]) with
k € {1,2} and Iy (see equation [1.35]) with k € {1,2}. It is important to recall that
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[y represents a wall for the electric displacement field and T’ is a gate for the
electric field. The two gates, I'.; and I, are in contact with electrodes %, and %,.

For this example, the source term can be the circulation f; of the electric field
strength E along an arbitrary path v, (see Figure 1.9) linking the two electrodes:

fo=[, Ed [1.51]

At the surface of the electrodes, located on the boundary of the domain €, the
electric displacement field has the following property:

D = +o.n [1.52]

where G is the surface density of charges on the boundary with the electrode and n
is the outgoing unit normal vector. The expression of the amount of charges Qs on
each electrode is:

[Ir, DndS =+Qq [1.53]

In this case, Maxwell’s equations (see equations [1.1]-[1.4]) in electrostatics and
in the absence of electric charge density within the domain lead to solving two
equations:

curlE=0 [1.54]

divD = 0 [1.55]

-

T

Figure 1.9. Representation of an electrostatic problem
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The solution to these equations aims to find a curl-free electric field [1.54] that
verifies equation [1.55] via the dielectric behavior law [1.19] and also the boundary
conditions on the boundary of the domain, defined in Figure 1.9.

1.5.2. Electrokinetics

Electrokinetics studies the distribution of the electric field and of the current
density in a conductor in the presence of charges in motion, when the speed of these
charges is constant.

As an example, consider the set-up represented in Figure 1.10. The conductive
domain €Q is composed of a main region of conductivity G; surrounding two
subregions of conductivity 6, and 65. On the boundary of the domain, there are two
wall-type boundaries for the current density (I'j; and I'j;) and two other gate-type
boundaries for the electric field T',; and T',. The boundary conditions on these
boundaries are defined, respectively, by equations [1.38] and [1.35].

Two types of source terms can be applied on the boundaries I'.; and I',:

[P L)

—the first is an electromotive force, denoted by “e”, which corresponds to the
circulation of the electric field on a path v, (see Figure 1.10) inside the domain,
linking the two surfaces I'.; and I',, such that:

[, Edi=e [1.56]
YIZ

— the second consists of imposing the current density flux, denoted by I, to the
surfaces I, and I',,. Its expression is:

[fp JIndS = +1 [1.57]

where k € {1,2}.
In this context, Maxwell’s equations can be written as:
curlE=0 [1.58]
divd =0 [1.59]

which can be completed by the electric behavior law [1.20] and the boundary
condition [1.35] on the boundaries I'y, and [1.38] on the boundaries Iy
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Figure 1.10. Representation of an electrokinetic problem

1.5.3. Magnetostatics

The magnetostatics problem aims to study the distribution of the magnetic field
H and of the magnetic flux density B for source terms that are time invariant. In this
context, the distribution of the current density, denoted by J,, is assumed to be
known, unlike in the case of electrokinetics.

For the study of magnetostatics, the general case is considered, as illustrated in
Figure 1.11. Given a domain Q of boundary I', such that: T =T%; U I'y, U Ty U Ty,
The boundaries 'y, (k € {1,2}) are of wall type for the magnetic flux density (see
equation [1.37]). On the contrary, I',; and I, represent a gate for the magnetic flux
density (see equation [1.36]).

rbl

Figure 1.11. Representation of a magnetostatic problem
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The studied domain, of permeability p,, contains a ferromagnetic material of
permeability p [1.26] and source terms, hence a permanent magnet (denoted by
“PM” in Figure 1.11) and a conductor carrying a current density J, that is also
referred to as inductor. Between the two gates, I'y,; and I, it is possible to impose a
magnetomotive force (or a magnetic flux through both of them).

The following section details the various source terms with the associated
equations:

— the magnetomotive force f, that is imposed between the two boundaries I'y
and Ty, is defined by:

fm =], Hal [1.60]

where 7, represents a path through the domain Q linking the boundaries Iy to T,
as shown in Figure 1.11;

— the magnetic flux, denoted by ¢, can be imposed on the two surfaces I',; and
T}, such that:

[l BndS =0 [1.61]

where k € {1,2}. When the two boundaries, I',; and I'y,, are separated by surfaces of
type Iy, the incoming flux through I, is equal to the outgoing flux through Iy, (see
equation [1.47] related to the law of conservation of the magnetic flux). The two
source terms f, and ¢ are exclusive, in the sense that they cannot be imposed
simultaneously;

— an inductor, carrying a current density J. In the case of multi-wire winding, by
knowing the intensity I of the current through a conductor, the current density Jj is
defined by:

Jo=—n [1.62]
SC

where S, represents the cross-section of the wire conductors and n is the unit normal
vector of current density whose direction corresponds to the geometrical orientation
of the conductors;

—a permanent magnet, characterized by its behavior law. A simplified
characteristic is generally used, as shown in Figure 1.2(b), which can be written in
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the form of equation [1.27]. It can be easily verified that the coercive field H, has
the following expression:

g -_Br [1.63]

C
Ha

Based on equations [1.27] and [1.63], the magnetic field strength H in the
permanent magnet can be written as:

B
H=— _H, [1.64]
Ha

Based on these four source terms, the Maxwell’s equations to be solved in this
context are:

curlH=1J, [1.65]
divB =0 [1.66]

complemented by the magnetic behavior law [1.26] in the air and ferromagnetic
material and equation [1.64] for the permanent magnet. These are completed by the
homogeneous boundary conditions [1.36] and [1.37] for the magnetic field and the
magnetic flux density, respectively, and also the source terms [1.60] or [1.61], as
applicable.

1.5.4. Magnetodynamics

Magnetodynamics studies, in a conductive domain €., the electromagnetic
phenomena at industrial frequencies based on the quasi-static approximation.

As an example of the studied set-up, let us consider the system shown in
Figure 1.12. It is a domain Q (of conductivity ¢ = 0) with a boundary T, inside of
which there is an inductor, carrying a current density J, assumed to be known and
varying in time, and a subdomain €. of boundary I'; where conductivity is assumed
to be non-zero. In this example, the source term is an inductor, but this can be a
permanent magnet in motion or any other device. In order to alleviate the
developments for magnetodynamics, this section considers only the subdomain €,
and its associated equations. Section 3.6 explains the coupling between the
equations of magnetodynamics on €. and those of magnetostatics, defined on the
subdomain Q-Q)..
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Figure 1.12. Example of studied domain in magnetodynamics
with a source term Jo and a conductive subdomain £2;

In the domain €., the equations to be solved, on the basis of Maxwell’s
equations, are written as follows:

oB

curlE = o [1.67]
curlH=J [1.68]
divB =0 [1.69]
divI=0 [1.70]

These equations are completed by the behavior laws [1.20] and [1.26], and also
by the boundary conditions. For the example shown in Figure 1.12, the boundary
conditions of wall type impose that, on the boundary of conductor I'; (domain ),
the normal component of the current density is equal to 0. The continuity property of
the magnetic field H, at the boundary I'; between the equations of magnetostatics
(domain Q-Q.) and magnetodynamics (domain €.), provides the other boundary
conditions required for the correct formulation of the problem. If the conductive
domain €, is in direct contact with the external boundary, boundary conditions must
be imposed on the tangential component of the magnetic field intensity H or of the
electric field strength E.






2

Function Spaces

2.1. Introduction

This chapter presents the function spaces that host the various electromagnetic
fields introduced in Chapter 1. This presentation requires a review of some
definitions. Next, the focus will be on kernels and images of vector operators (grad,
curl, div) and on the extent to which the latter are strongly related. The
dependencies of these relations on the topology of the studied domain will be
explained. These properties will be very useful in Chapter 3 for building the
potential-based formulations.

2.2. Spaces of differential operators
2.2.1. Definitions
Consider an open and bounded domain Q in R, its boundary being denoted by

I. Let LX) be the space of square integrable scalar functions over the domain Q.
The scalar product of two functions u and v from LX) is given by:

(w,v)g = Jquvdt Vu,ve Q) [2.1]

Similarly, consider L%(Q) the space of square integrable vector functions over
the domain Q. The scalar product of two fields u and v from L*(Q) is written as:

(w,v)y = Jouvdt Vu,ve L?(Q) [2.2]
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Two elements u and v € L*(Q) or u and v € L*(Q) are orthogonal if their scalar
product is equal to zero or respectively:

(u,v)o =0 [2.3]
(u,v)g =0 [2.4]

In physics, the spaces L*(Q) and L*(2) can be interpreted as finite energy scalar
and vector fields.

2.2.2. Function spaces of grad, curl, div

As already noted in section 1.1, Maxwell’s equations are defined using curl and
divergence vector operators and also, as shown in what follows, the gradient
operator. The function spaces of these operators, i.e. the set of fields to which the
operator can be applied, are subspaces of L*(Q) and L*(Q), hence:

H(grad, Q) = {ue L?(Q); gradue LZ(Q)} [2.5]
H(curl,Q) = { ue L*(Q);curlue L? (Q)} [2.6]
H(div, Q) = {ue L2(Q); divue LZ(Q)} [2.7]

If homogeneous boundary conditions are introduced on the boundary T" of the
domain, three new subspaces can be defined as follows:

Hy(grad, Q) = {ue H(grad, Q); u|1_ = 0} [2.8]
Hy (curl,Q) ={ ue H(curl,Q);u an|,. = 0)} [2.9]
Ho(div, Q) = {ue H(div, Q); un|. = 0} [2.10]

It is important to recall that in these expressions n represents a unit vector
normal to the boundary I of €2, outwardly directed.
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NOTE.— It can be noted that, for the space of definition associated with a curl or
divergence operator, boundary conditions are applied, respectively, to the tangential
or normal component of the field. This is fully consistent with the continuity
properties of the fields, related to the curl or divergence operator, described in
section 1.3.1. As for the gradient operator, since it is applied to a scalar function, the
condition is obviously related to the value of the function.

2.2.3. Kernel of vector operators

The subspaces defined in section 2.2.2 can be associated with the kernel of
vector operators, such that:

ker(grad) = { ue H(grad,Q);grad u = O}= H(grad0, Q) [2.11]
ker(curl) = { ue H(curl,Q);curlu = 0} = H(curl 0,Q) [2.12]
ker(div) = { u € H(div, Q); divu = 0} = H(div0, Q) [2.13]

The kernel of an operator (grad, curl or div) contains the set of functions for
which this operator is equal to zero. Considering homogeneous boundary conditions,
new subspaces of the kernels defined in [2.11], [2.12] and [2.13] can be defined:

Ho(grad0,Q) = { uc H(grad, Q); ul_ = 0, gradu = 0} [2.14]
H,(curl0,Q) :{ ue H(curl,Q); u /\n|l_ =0, curlu = 0} [2.15]
H(div0, Q) = { u € H (div, Q); u.n|1_ =0, diva = O} [2.16]

2.2.4. Image spaces of operators

Furthermore, images of the gradient, curl and divergence can be introduced,
denoted, respectively, by gradH(Q), curlH(€2), divH(L2). For example, the subspace
gradH(Q) contains the fields v of L*(Q) such that there is u, belonging to
H(grad, Q), with v = gradu. These images can be completed by taking into account
homogeneous boundary conditions on the boundary, which are gradHy(€2),
curlHy(€2), divHy(€2). For example, gradH(£2) is the space containing the fields v
of gradH(Q), such that u = 0 on the boundary I" of Q.
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It should be noted that there is a fundamental property, on the one hand, between
the image of the gradient and the kernel of the curl, and, on the other hand, between
the image of the curl and the kernel of the divergence:

gradH(Q2) c H(curl0,Q) [2.17]
curlH(Q2) c H(div0,Q) [2.18]

These two properties recall, on the one hand, that the curl of a vector field
resulting from a gradient is zero (curl(grad) =0) and, on the other hand, that the
divergence of a curl is also zero (div(curl) = 0). However, the reverse is not true, as
will be seen when considering the topology of the studied domains in the following
sections (see sections 2.3 and 2.4). As an example, there may be a field w whose
curl is zero (curl w = 0), but that does not derive from a gradient, which means there
is no field u belonging to grad H(L2), so that w = gradu.

If we now consider the boundary conditions, the image of the gradient operator
gradH(Q2) obviously belongs to Hy(curl0, Q). The same is true for the image of the
curl operator curlHy(Q2) that belongs to Hy(div0, ). This is expressed by the
following relations:

gradH, (2) c H,(curl0,Q) [2.19]
curl H,(2) c H,,(div0, Q) [2.20]

It is easy to verify these two properties enable the boundary conditions to be
taken into account. For example, consider a function v € gradHy(€2). Then, there is
a scalar function u such that v =gradu with the boundary condition on I": u | =0.
The boundary is therefore an equipotential surface for the function u. The vector
gradu is then normal to I" and therefore the tangential component of gradu is zero,
which means n A gradu=n A v=0. The vector v thus meets the right boundary
conditions in order to belong to Hy (curl0, ).

In this context, restrictive conditions should be introduced on the topology of the
domain or complementary spaces, in order to transform the inclusions of equations
[2.17], [2.18], [2.19] and [2.20] into equality. This will be addressed in section 2.4.
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2.3. Studied topologies

This section focuses on the definition of various domain topologies: connected or
disconnected, simply connected and not simply connected, and, finally, contractible
and non-contractible.

2.3.1. Connected and disconnected domain

A domain is connected if, for any two points of the domain, there is a continuous
path connecting them, fully within the domain. As an illustration, the domain in
Figure 2.1(a) is connected; indeed, for all arbitrary points P; and P, of the domain,
there is a path v, belonging to the domain, that connects them. On the other hand, the
domain in Figure 2.1(b) is disconnected since, to go from P, to P,, regardless of the
path considered, the latter is not fully included in the studied domain.

a) b)

Figure 2.1. a) Example of a connected domain; b) disconnected domain

2.3.2. Simply connected and not simply connected domain

By definition, a domain is simply connected if a closed path, arbitrarily chosen,
can be contracted to a point by continuous transformation. If this is not the case, the
domain is not simply connected.

As an illustration, it can be seen that the domain in Figure 2.2(a) is simply
connected. Indeed, any closed contour y can be contracted to a point by successive
continuous transformations. On the contrary, the domain in Figure 2.2(b) is not
simply connected as, given the presence of a hole, it is not possible to contract by
successive deformations a contour ¥ to a point while remaining inside the domain. A
torus is not a simply connected domain. However, a sphere, having a cavity inside,
is a simply connected domain. Indeed, any arbitrary contour surrounding the cavity,
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belonging to the domain, can be contracted to a point by “sliding”, if required, on
the surface of the cavity.

S~ >

a)

Figure 2.2. a) Simply connected domain; b) not simply connected domain

2.3.3. Contractible and non-contractible domain

A domain is “contractible” if a contour or an arbitrary closed surface, taken
inside the domain, can be contracted to a point by successive transformations. A
further definition can be that a domain is contractible if it is simply connected with a
connected boundary, in the sense that two arbitrary points of the boundary can be
connected by a path belonging to this boundary.

a) b)

Figure 2.3. a) Contractible domain; b) non-contractible domain

The domain € represented in Figure 2.3(a) is contractible. However, the
presence of the cavity in Figure 2.3(b) makes the domain non-contractible. Indeed, if
we consider a closed surface surrounding the cavity, it is not possible, by continuous
transformation, to contract it to a point within the domain. The aforementioned
surface cannot be reduced more than the surface of the cavity, otherwise it will be
out of the domain. It can be noted, on the same Figure 2.3(b), that the domain is
simply connected (any closed contour can be contracted to a point by continuous
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transformation within the domain), but with disconnected boundaries. Indeed, the
union of I'y and I'; forms a disconnected surface.

A sphere is typically contractible. On the contrary, a hollow sphere, though
simply connected, is not contractible.

2.3.4. Properties of function spaces
Based on the topological notions introduced, inclusions [2.17] and [2.18] can be
rewritten as follows:

— For a simply connected domain, [2.17] is transformed into equality:
gradH(€2) = H(curl0, Q) [2.21]
In this case, if the curl of a vector v is zero, there is a function p such that
v = gradp.
— For a domain with a connected boundary, equation [2.18] then becomes:
curlH(Q2) = H(div0,Q) [2.22]
If a function v is such that divv =0, then there is a function u such that

curlu=v.

—If the domain is contractible (simply connected and with a connected
boundary), then the two properties [2.21] and [2.22] are simultaneously met.

2.4. Relations between vector subspaces

The focus in what follows is on four images: gradH(Q2), curlH(L2), gradHy(Q2)
and curlHy(€) and also on four subspaces corresponding to the kernel of the curl
and divergence: H(curl0, Q), H(div0, Q), Ho(curl0, ) and Hy(div0, 2). Taking into
account the topology of the domain €, the properties of these eight function
subspaces and their possible interconnections are analyzed.

2.4.1. Orthogonality of function spaces

In order to analyze the properties of function spaces, a first step is to study the
orthogonality of four image spaces.
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Given the image of the gradient, gradH((2), the aim is to define the space that is
orthogonal to it, which is denoted at first by (gradH(Q))". Consider u € H(grad, Q)
and v € (gradH(Q))". Using the formulas on vector operators, the following relation
can be written:

[ gradu.v dt = —[, udivv dt + [ uv.ndS [2.23]

where T represents the boundary of the domain Q. The subspace (gradH(Q))" is
orthogonal to gradH(Q) if relation [2.23] is equal to zero Vu € H(grad, Q). For
this, v must meet the properties:

divv =0 and v.n|_ =0 [2.24]

or, considering [2.16], v € Hy(div0, Q). Moreover, it can be shown that the two
subspaces gradH(Q) and Hy(div0, Q) are supplementary in L*(Q) (Bossavit 1988).
Then:

L2(Q) = gradH(Q) ® H(div0, Q) [2.25]

According to this relation, any vector function w € L*(Q2) can be decomposed
into two functions v and u belonging, respectively, to Ho(div0, Q) and gradH(€2).

Consider now the image of the gradient considering the boundary conditions:
gradHy(Q2). According to the above-mentioned reasoning, its associated orthogonal
space is: H(div0, Q). Therefore, it can be deduced that:

L2 (€2) = gradH () @ H(div0, Q) [2.26]
Let us consider the image of the curl curlH(2) and find the subspace orthogonal
to it and denoted by (curlH(Q))". The approach is similar to the one mentioned

above. Consider u € (curlH(Q))" and v € H(curl, Q). In order to be orthogonal, the
two subspaces curlH(Q2) and (curlH(2))") must meet the following property:

I wcurlvdz = J curlu.v dT_.[ (mAu).vdS=0 [2.27]
Q Q r

u verifies equation [2.27] with the condition Vv e H(curl, Q) by meeting the
conditions:

curlu=0and u /\n|r =0 [2.28]
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Given [2.15], it can then be shown that u € Hy(curl0, €2). The two spaces are
also supplementary (Bossavit 1988), therefore:

L*(Q) = curlH(Q) ® H, (curl0,Q) [2.29]

Considering now v € curl(Hy, Q), then, in order to meet equation [2.27],
u € H(curl0, Q), the following can be written:

L*(Q) = curlH, (Q) ® H(curl0,Q) [2.30]

2.4.2. Analysis of function subspaces

Making use of the previous properties, this section describes how the space
LZ(Q) of vector functions can be decomposed, by means of the four images:
gradH(Q2), curlH(Q), gradH(L2) and curlHy(2) and four subspaces corresponding
to the kernel of the curl and divergence: H(curl0, 2), H(div0, ), Hy(curl0, Q) and
Ho(div0, Q). As already seen in section 2.4.1, these eight subspaces are linked by
properties [2.25], [2.26], [2.29] and [2.30]. In addition to these properties, there are
the inclusion relations [2.17], [2.18], [2.19] and [2.20]. Depending on the topology
of the studied domains, inclusions [2.17] and [2.18] can be substituted, respectively,
by relations [2.21] and [2.22]. Our analysis will be conducted for domains with
various topological properties.

As a first step, consider the decomposition of space L*(€) without a priori on the
topology of the domain Q. The properties [2.25], [2.26], [2.29] and [2.30],
associated with inclusions [2.17], [2.18], [2.19] and [2.20], allow for the
decomposition of space LA(Q) into five arbitrarily chosen equal segments, as shown
in Figure 2.4.

The fact that spaces are supplementary is graphically shown in Figure 2.4, as
their association “covers” the domain L*(Q). As can be seen, the subspaces
gradH(€2) and Hy(div0, Q) are a good illustration of equation [2.25]. The same
applies to subspaces gradHy(Q2) and H(div0, Q) for equation [2.26]. On the
contrary, concerning subspaces curlH(€2) and Hy(curl0, Q2), they correspond to
equation [2.29], and equation [2.30] is illustrated by the positioning of subspaces
curlHy(2) and H(curl0, Q). Relations [2.17], [2.18], [2.19] and [2.20] can be
readily identified in Figure 2.4.

The following four topologies are considered for the domain Q: contractible,
simply connected but not contractible, not simply connected with a connected
boundary and the general case.
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gradH(Q2) H(div0.0)
1 1

_— — — -
_—————f - -
[ TR
—_———— - - =

H(curl0,0))
|

Hy(curl0,Q))

L’ ()

curlHy(0) "

T 1
curlH(() :

|
)

—————— — .
——— = .

v Y
gradH,(Q) H(div0.0)

Figure 2.4. Decomposition of space L2(.Q)
without a priori on the topology of domain 2

2.4.2.1. Contractible domain

For a contractible domain, i.e. simply connected and with a connected boundary,
the properties of function spaces (see equations [2.25], [2.26], [2.29] and [2.30]) are
preserved. On the contrary, the topology of the domain allows for the use of equalities
[2.21] and [2.22] and, as shown in Figure 2.5, the space L*(Q) is divided into three
segments instead of the initial five (see Figure 2.4). Using various properties and
equalities, the decomposition L*(Q) can be achieved, as shown in Figure 2.5.

In order to illustrate the diagram in Figure 2.5, consider a field w € Hy(divO0, Q).
The equality Hy(div0, 2) = curlHy(£2) is applicable, i.e. w can be expressed from a
field of vectors v such that:

w=curlv V ve Hj(curl,Q) [2.31]

where v represents a field known as “vector potential”. In Chapter 3, the importance
of this notion of potential when applied to Maxwell’s equations will be highlighted.

Consider now the field of vectors f e H(curl0, Q). Again using the diagram in
Figure 2.5 and the definition of the gradient image space, the following can be
written:

f =gradp V p € H(grad, Q) [2.32]

In this expression, it can be seen that the field f can be similarly represented by a
scalar potential p.
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gradH(9) H;(div0.0Q)
I 4 L . 1
: H(curl0, Q) : :
1 A ] 1
i \ 1
: Hy(curl0,0Q) | |
L

ol - '
L2(Q) !
1 I L T h
I ' curlHy(Q) !
. ! , i.
: : curlH(Q) :
) i )

T T

gradH,(Q) H(div0.0Q)

Figure 2.5. Decomposition of space L?(£2) for a contractible domain 2
(simply connected domain with a connected boundary)

2.4.2.2. Not simply connected domain with a connected boundary

For a not simply connected domain with a connected boundary, the four
properties introduced in section 2.4.1 (see equations [2.25], [2.26], [2.29] and
[2.30]) can be applied. Given the topological characteristics of the studied domain
compared to the case of section 2.4.2.1, relation [2.22] is replaced by inclusion
[2.18]. Therefore, the diagram in Figure 2.5 is modified and its form is presented in
Figure 2.6.

gradH(Q) H,(div0.0Q)
{ . W . \
: H(curl0,0) ' !
I 1 L |
ol 1 .I |
: Hy(curl0,Q)) : . :
If 1 1 1 : "
L’ (0) ! i I i l
1 : | Y I\ , il
: ll 7 curlHy(Q) '}
1 } r ]
: : curlH(Q) :
I ' ;
gradH,(Q) H(div0.Q2

Figure 2.6. Decomposition of space L2(.Q) for a not simply
connected domain 2 with connected boundary
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This modification leads to a new subspace, denoted by # '(Q), with zero curl
vector fields that do not derive from a gradient. This subspace is orthogonal to
gradH(Q2). It is therefore in Hy(div0, Q) and since it is in the kernel of the curl:

7' (Q) = H(curl0,Q) N H, (div0, Q) [2.33]

Based on the definitions of subspaces H(curl0, Q) and H(divO0, Q), the function
space #'(Q) (Bossavit 1988) can be defined as follows:

7! ={ ueL?(Q), curlu =0, divu = 0,u.n|. = 0} [2.34]

The dimension of this space is finite and equal to the number “§” of holes within
the domain. A possible interpretation is to consider the subspace #'(Q) as allowing
for the introduction of additional functions to the space H(curl0, Q) in order to
“make” the domain Q a simply connected domain, with the relation:

H(curl0,Q) = gradH(Q) ® ' (Q) [2.35]

In order to analyze the influence of the domain topology, the two cases presented
in section 2.4.2.1 are studied. There is no change for the vector field
w e Hy(div0, Q), and it can be expressed using the curl of a vector field v, as
expressed by [2.31].

For a vector field f € H(curl0, Q2), Figure 2.6 shows that it can be decomposed
as follows:
K,
f = gradp + > K;h; [2.36]

i=1

In this expression, K; is a constant and h; are £ basis functions of #'(Q). As for
the field p, it is defined as follows:

p € H(grad,Q) [2.37]

where p is a scalar potential.

2.4.2.3. Simply connected domain with a disconnected boundary

Consider a simply connected domain with a disconnected boundary. Compared
to the case of the contractible domain, instead of relation [2.22], inclusion relation
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[2.20] is applicable. As shown in Figure 2.7, this inclusion leads to a new function
space denoted by #*(Q). Then:

H*(Q)=H,(curl0, Q) N H(div0,Q [2.38]
0
grad H(QY) Hy(div0.0)

I . | 4 1

: H(curl0,Q) : :

il . { :

1

Ho(cu:'l(),O_) : :

] I
L

L*(Q)

I
H-(Q) { curlH,(0))

T
curlH(0Y)

—
b
—
=

T |
gradH,(Q) H(div0.0Q)

Figure 2.7. Decomposition of space L2(.Q) for a not simply
connected domain £2 with disconnected boundary

The properties of this subspace are deduced (see Figure 2.7) from the
intersection of Hy(curl0, Q) and H(div0, €2). They are therefore written as (Bossavit
1988):

#* ={ue I*(Q) , curlu=0, divu=0, uan|.=0} [2.39]

The dimension of this subspace is finite and equal to the number of cavities of
the domain. Similarly to the simply connected case, introducing this space makes it
possible to define the following property:

H(div0,Q) = curlH(Q) ® #*(Q) [2.40]

This relation is similar to equation [2.22], which is applicable to a contractible
domain. In other terms, the boundary I" of the domain is composed of [
disconnected closed surfaces I'j, withj=1, ..., £
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Let us consider the two fields introduced in section 2.4.2.1. For the field
w € H (div0, Q), Figure 2.7 and equation [2.40] show that it can be decomposed as
follows:

!
w=curlv+ Y Kh, [2.41]
j=1

where K; is a constant and h; are [ basis functions of #° *(Q) and:

v e H(curl, Q) [2.42]

where v represents a vector potential. Considering the vector field f € H(curlO0, €2),
Figure 2.7 clearly shows that it can be written using expression [2.32].

2.4.2.4. General case: not simply connected domain with a disconnected
boundary

In the general case, space LZ(Q) is decomposed using properties [2.25], [2.26],
[2.29] and [2.30]. To take into account the topology of the studied domain,
inclusions [2.17], [2.18], [2.19] and [2.20] can be used. Based on Figure 2.4, the
function subspaces are decomposed as shown in Figure 2.8.

This general case features the two already defined subspaces #(Q) and H(Q).

gradH(Q2) Hy(div0.0Q)
| I

H(curl0.Q))

Hy(curl0,02)
|

-——-———f -

L’ (Q)

1‘ '
H(Q) l H(Q) curlHy ()

T
curlH(QY)

—){—- o

—

= ———
- - R - - - - - - -

J\
T |
gradH;(Q) H(div0.Q)

Figure 2.8. Decomposition of space L2(.Q) for a not simply
connected domain with disconnected boundary
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Considering as an example the two fields introduced in section 2.4.2.1, the
vector field w € Hy(div0, Q) is decomposed according to relation [2.41]. Similarly,
a vector field f € H(curl0, Q) is decomposed by means of relations [2.36].

2.4.3. Organization of function spaces

Based on the properties of function spaces described in the previous sections, it
is possible to associate them into a sequence using vector operators. Consider the
general case of a not simply connected domain with a disconnected boundary. In this
context, a four-level graphical representation is built, linking the function spaces
introduced in section 2.2 and the grad, curl and div operators. This representation
features the properties mentioned in section 2.2.4, and particularly the following:

H(grad,Q) c L2, gradH(Q2) c H(curl, Q),

2.43
curl H(Q) c H(divQ), divH(Q) c [*(Q) 243
Consider the scalar function space H(grad, Q) c L*(Q), corresponding to the
first line in Figure 2.9. We have highlighted the kernel of the gradient operator
H(grad0, Q). If the gradient operator is applied to the first line, the second line,
representing H(curl, ), shows that the image of the gradient is included in the
kernel of the curl operator. On the contrary, the vector function space #'(Q)
included in the kernel of the curl operator does not belong to the gradient image
subspace, as noted in section 2.4.2.2. Applying the curl operator to the second line in
Figure 2.9, the third line corresponding to H(div, Q) shows that its image is included
in the kernel of the divergence operator. In this case, this graphical representation
shows that the subspace # *(Q), which is in the kernel of the divergence operator,
does not derive from the curl of a function from H(curl, Q2).

Higrad0, )
il

0 L2y J
grad

MRS 9@ i Q2
curl

& 7' (O (0

2 () R =
div

3' L} (0) L 2

Figure 2.9. Not simply connected domain with disconnected boundary:
graphical representation of function spaces of grad, curl and div operators
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This analysis leads to a series of function spaces, as shown in Figure 2.10.

L*(Q )_,. H (curl,Q2) ﬂ, H(div.Q) dL,. L*(Q)

Figure 2.10. Series of function spaces of grad, curl and div operators

Consider now a contractible domain (simply connected domain with a connected
boundary). Compared to the case of the study presented in Figure 2.10, the
representation is simpler as the dimension of subspaces #' and #” is zero. As
Figure 2.11 shows, the first line is unchanged. As for the second line, it can be noted
that the image of the gradient operator is equal to the kernel of the curl operator,
according to equation [2.21]. Similarly, for the third line, the image of the curl
operator is equal to the kernel of the divergence operator (see equation [2.22]).

H(grado, )
0 _» | 1
L)

ad
gra H(curl0.0)
L |

1 L)

curl

Figure 2.11. Contractible domain: graphical representation
of function spaces of grad, curl and div operators

2.5. Vector fields defined by a vector operator

It turns out that there are an infinite number of fields that verify a partial
differential equation defined by a grad, curl or div vector operator. As an example,
consider a known scalar field f, such that divu = f, there are an infinite number of
vectors u verifying this equation. This section reviews the vector fields defined by a
gradient, curl or divergence operator and explores how uniqueness can be imposed
by adding the so-called “gauge” condition.
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2.5.1. Infinite number of solutions

In the case of Maxwell’s equations, as noted in section 1.1, vector fields are
defined by means of vector operators. However, via behavior laws, the various fields
are connected in twos. If the objective is to find a solution that verifies only one
equation and the associated boundary conditions, this is referred to as an admissible
field. It is a solution provided it verifies a second equation via the behavior law and
also the other boundary conditions. For example, this is the case with the electric
field and the current density in electrokinetics (see section 1.5.2).

On the contrary, as will be seen in Chapter 3, it is possible to search for a vector
field or a scalar uniquely defined by a vector operator. In this case, there are an
infinite number of solutions.

For the sake of simplicity, the following study refers to the case of a contractible
domain Q. Consider a field u belonging to gradH((2). By definition, there is at least
one scalar field, denoted by p;, which verifies the following relation:

u = gradp; [2.44]

Let us now consider a scalar field p, such that p,=p; + K, where K represents a
constant. It can be readily verified that gradp,=u. Therefore, there are an infinite
number of scalar fields p verifying [2.44]. Similarly, consider a field w belonging to
curlH(Q), there is at least one function v; such that:

w = curly, [2.45]

Let us now introduce a function v, built as the sum of field v, and a second field
belonging to the space gradH(L). As shown by equation [2.21], this second field
can be expressed as the gradient of a scalar o.. Then:

v, = vy + grado [2.46]

It is easy to show that v; and v, have the same curl w. Therefore, there are an
infinite number of fields v verifying equation [2.45].

Finally, given a field of vectors w; defined using the divergence operator through
the relation:

g = divw, [2.47]
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It is easy to show that any function w, € H(div, ), which is equal to the sum of
w; and a function deriving from a curl of a function v, such that:

W, =w, +curlv [2.48]

is also a solution to equation [2.47]. Under these conditions, for equation [2.47],
there are also an infinite number of solutions.

As a conclusion, it is important to note that for a function f (or p) belonging to
images gradH(Q2), curlH(Q2) and divH(€2), there are an infinite number of functions
u (or u) that make it possible to write, respectively, f=gradu, f= curlu and
p = divu. Imposing the uniqueness of the solution requires an additional condition
referred to as the “gauge condition”.

2.5.2. Gauge conditions

As noted in section 2.4.3, depending on the properties of fields, it is possible to
introduce a scalar or vector potential. These potentials, defined by a vector operator,
are not physical quantities but mathematical entities. Moreover, as noted in
section 2.5.1, they are not unique. To have a unique solution it is necessary to
impose an additional condition, which is referred to as the “gauge condition”.

This section focuses on how to obtain the uniqueness of a field defined by the
gradient, curl or divergence.

2.5.2.1. Gradient operator

As noted in section 2.5.1, if p; is the solution to equation u = gradp; with u a
known field, then p,=p;+ K is also a solution. For this solution to be unique, it is
then sufficient to set a value of the solution p(x) at a given point “x,” of the domain:

p(Xg) = po [2.49]

In this case, as the potentials p; and p, must verify the constraint
P1(X0) = p2(X0) = po, K =0 is automatically imposed. This reflects the uniqueness of
the solution.

2.5.2.2. Curl operator

As already noted, there are an infinite number of functions v such that curlv = w,
with w being a known vector field. Indeed, if v, is a solution, then any field
vi=Vv,+ grada is also a solution (see equation [2.46]). The literature proposes
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several gauge conditions (Stratton 1941; Ida 2020), but one of the most widely
known is the Coulomb gauge:

divy = 0 [2.50]

In the numerical simulation, another gauge is often used to set the value of
potential o (see equation [2.46]). This gauge consists of imposing (Albanese and
Rubinacci 1990):

v =0 [2.51]
where 1 is an arbitrary vector field whose field lines do not close.

Consider the case of the path v, defined in Figure 2.12, and let us calculate the
circulation of potentials v; and v, introduced in equation [2.46] that verify [2.51].
Then:

[vodi = [Dvidl+ag - op [2.52]

Consider the path y to be a field line of the vector M, where the term dl is
collinear to M along 7. In fact, the scalar products v;.dl and v,.dl are zero (see
equation [2.51]). It can therefore be verified, using equation [2.52], that 0, and o
are equal.

This property is applicable to any pair of points P and Q of the curve y and along
all the field lines of the vector 1 in the studied domain. This leads to setting the
scalar potential o at a constant value. With the gradient of o being zero, by means of
equation [2.46], it can be found that v, and v, are equal, and therefore the vector

potential is unique.
Q /

dl

Figure 2.12. Example of path yfor the gauge v.n =0
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2.5.2.3. Divergence operator

If a field w; is a solution to the equation divw = q, then the field w, = w; + curlv
is also a solution. A possible gauge condition is to impose the value of the curl of w,
for example curlw = 0. Boundary conditions on the boundary of the domain must
also be imposed on w.

2.6. Structure of function spaces

This section explores the link of the sequence of function spaces depending on
vector operators and boundary conditions. To alleviate the developments, a
contractible domain Q is considered, with a boundary I' composed of two parts I',
and I';, with homogeneous boundary conditions.

2.6.1. Adjoint operators

Assume that the boundary I" of the domain Q is composed of two complementary
boundaries T, and I',. Consider the function subspaces of the gradient, curl and
divergence operators (see equations [2.8], [2.9] and [2.10]) that are rewritten
considering the boundary conditions. The following subspaces can be defined:

Hr, (grad,Q) = {u € H(grad,Q);u|. =0] [2.53]

H, (curl, Q) ={ue H(curl,Q);un n|1_k = O)} [2.54]

Hr, (div, Q) = {u € H(div,Q);un|. = 0] [2.55]
k

where k = n or m depending on the considered boundary.

In what follows, we again consider the definitions provided for the scalar product
over the domain Q and the notations introduced in relations [2.1] and [2.2]. Consider
a vector operator £ that can be the gradient, curl or divergence. The aim is to find its
adjoint operator, denoted by £*, which by definition satisfies:

(Lu,v)g =, L*Vv)g [2.56]

Given a function u belonging to space @q, let us denote by ©@*qy the space of
functions v adjoint to u. For a given vector operator and its associated function
space, the objective is to find the adjoint vector operator and also its associated
function space.
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2.6.1.1. Adjoint operator of the gradient

Consider a scalar function u € Hpy(grad, Q) defined over a domain Q of
boundary I" with I"=T",UI';,. The aim is to find, for a vector function v, the operator
£* and the adjoint function space denoted at first by (H(grad, €2))*. Using equation
[2.23], the following can be written:

IQ gradu.v dt + J'Q udivv dt = I]_ uv.ndS [2.57]

It can be noted that this equation is equivalent to [2.56] if the surface integral on
the right-hand side is equal to zero. As u € Hr,(grad, Q) and therefore u |, = 0, this
integral over the boundary I is zero provided that:

va[. =0 [2.58]

Under these conditions, the following can be written:

jQ gradu.v dt = —IQ udivv dt [2.59]

which leads to:

L*=—divand 2%, =Hp (div,Q) [2.60]

2.6.1.2. Adjoint operator of the curl

A similar reasoning as for the gradient is applied, but using relation [2.27] and a
vector field u € Hr,(curl, Q). The following relations are obtained for the operator
£* and the associated function space ©*:

£L*=curl and 2%, =Hp (curl,Q) [2.61]

2.6.1.3. Adjoint operator of the divergence

The case of the divergence uses relation [2.23] and a vector field
u € Hry(div, Q). For the operator £* and the associated function space ©*, the
following expressions are found:

L*=—grad and D *, = Hy (grad,Q) [2.62]

2.6.1.4. Synthesis of adjoint operators and associated function spaces

Table 2.1 summarizes, for each vector operator, the domain of definition @, and
also the associated function space ®* and the adjoint operator £*.
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Vector operator £| Function space © Function space ©* | Adjoint operator £*
grad Hr (grad,Q) Hr (div,Q) —div
curl Hr (curl,Q) Hp (curl,Q) curl
div Hr, (div,Q) Hr (grad,Q) - grad
grad Hr (grad,Q) Hr (div,Q) —div
curl Hp (curl,Q) Hp (curl,Q) curl
div Hr (div,Q) Hr (grad,Q) _grad

Table 2.1. Synthesis of function spaces of vector operators and adjoint operators

2.6.2. Tonti diagram

Consider the two sequences of function spaces shown in Figure 2.10, but
displayed vertically and differing by their boundary conditions (see Figure 2.13).
For the sequence on the left, the conditions relate to the boundary I', and for the
sequence on the right to the boundary I',. The adjoint operators as well as the
corresponding function spaces are also displayed vertically, taking into account the
constraints on the boundary conditions. The first structure of the Tonti diagram is
thus obtained.

Hr (grad.Q 2 ©)
A
-grad, div,,
A J
Hry, (curl, Q) Hr_(div.€2)
A
curl, curl,
4
Hr, (div.€2) Hrp, (curl Q)
. -~
divy _grad,,
A J
L’ (Q) Hr_(grad. Q)

Figure 2.13. Tonti diagram in the general case
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This diagram contributes to a better understanding of the links between the
various fields present in Maxwell’s equations, both in the continuous and discrete
domains. This diagram will be used in Chapter 3 as it facilitates, on the one hand,
the display of the interaction of the electromagnetic fields and their potentials
through the vector operator and behavior laws and, on the other hand, easy
deduction of the properties.






3

Maxwell’'s Equations:
Potential Formulations

3.1. Introduction

Maxwell’s equations, in a static or quasi-static state, are rarely solved by
considering the (E, H, B, J, D) fields as unknowns. They are generally solved using
formulations based on potentials instead of fields. The use of potentials, inter alia,
makes it possible to simplify the equation system.

In order to facilitate the implementation of these potential formulations, the
source terms presented in section 1.5 can be rewritten. This is the first step in this
chapter, with the introduction of source fields in the case of partial differential
equations. The results will then be applied to the equations of electrostatics,
electrokinetics, magnetostatics and magnetodynamics. This approach will show that
the use of source fields allows for a quite natural introduction of potential
formulations.

3.2. Consideration of source terms

Section 1.5 presented the various source terms generally encountered in
low-frequency electromagnetism. These source terms can be classified into two
categories:

— global quantities, imposed on the boundaries of the domain, such as the current
density flux or the magnetic flux or the circulation of the electric or magnetic field;

—local quantities inside the domain, such as charge density in electrostatics
or current density in an inductor or permanent magnet in magnetostatics and
magnetodynamics.
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In what follows, these source terms will be addressed independently. It should be
noted, however, that it is possible to consider a problem involving source terms
imposed both on the boundaries (surface terms) and inside the domain (volume
terms). The contributions associated with each of the sources must then be
calculated, and based on the linearity of differential operators, combined in order to
have a complete problem accounting for all the sources. The multisource case is
addressed in sections related to electrostatics, electrokinetics and magnetostatics.

Finally, to simplify the presentation, it is assumed that the domain is contractible.
Nevertheless, the methodology presented can be transposed to non-contractible
domains using the properties introduced in section 2.4.2.

3.2.1. Global source quantities imposed on the boundaries

As for the sources, imposed on the boundaries, the link with the local physical
quantities is achieved via an integration along a path between two gates (circulation
of a field) or from a surface integral on a gate (flux of a field).

Consider the case of fields E and H defined by a curl. Calculating their
circulation along a path, they can be linked to the electromotive force in
electrostatics [1.51] and in electrokinetics [1.56] or to the magnetomotive force in
magnetostatics [1.60].

Likewise, consider the case of fields B and J defined by a divergence. By
calculating their flux, through a surface, it is possible to make the link between the
magnetic flux density B or the current density J and, respectively, the magnetic flux
¢ [1.61] or the current intensity I [1.57].

In order to integrate these source terms into Maxwell’s equations, the notion of
source fields, support fields and associated potentials will be introduced. The
objective is to bring the surface constraints at the boundaries on fields that are by
nature volume-based and defined on the entire domain. The introduction of these
new source terms then allows for the definition of potentials (new unknowns of the
problem) with less constraining boundary conditions. This will significantly simplify
the solution of the problem, particularly with numerical methods (see sections 4.3
and 4.4).

For the sake of clarity and in order to alleviate the developments, source fields
and associated potentials will be introduced for a general problem. The results
obtained will then be used when developing the potential formulations in the case of
static and magnetodynamic problems.
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Consider a contractible domain Q of boundary I'=T,,u I, UT}, (see
Figure 3.1).

Figure 3.1. Example of contractible domain 2 with the various notations employed

Inside the domain, two fields U and V are defined such that:
curlU=0 [3.1]
divv =0 [3.2]

These two fields can be linked by a behavior law. On the boundary T, the
boundary conditions are homogeneous and can be written as follows:
r=r, v, uI', with Vo, =0, Uanj. =0

P [3.3]

ke {12}

where T, represents a wall for the field V, and I',; and T, represent two gates for
the field U. Considering equations [3.1]-[3.3], U and V belong to the function
spaces:

UeHr _r , (curl0, Q) and Ve Hp (div0,Q) [3.4]

For this problem, two types of source terms are considered:

— The circulation C; of the field along a path 7y, between the two gates I',; and
rnzl

C.=[ ua [3.5]

Y]2

As U is curl free, it should be noted that this equation is valid for any path vy,
belonging to the domain Q linking I';;; to T'p».
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— The flux ¢, of the field V through the gates I, defined by:

”rnk V.andS = 19, [3.6]
—And in this expression, n represents the outward unit normal vector with
respect to [, Ul .

NOTE.— Let us consider surface A in the domain Q in Figure 3.1. Its contour, denoted
by 7o, belongs to the boundary I';,, but cannot be contracted to a point by successive
transformations. Therefore, surface I',, is not simply connected. Moreover, by
moving the contour 7y, to the limits of the boundary I',, surface A may merge with
the boundaries I',; or Iy, of the domain. The flux of V through the surface A is
always equal to + ¢, (according to the orientation of n), as this vector is divergence
free; therefore, its flux is conservative. Under these conditions, equation [3.6] can be
rewritten as follows:

[[,Vads =0, [3.7]

As an example, in electrokinetics, condition [3.5] means imposing an
electromotive force between the two surfaces I'y; and I'y,. The field U is then the
electric field E. Imposing condition [3.6] in electrokinetics means imposing the
current intensity I through the surface I'y;. The vector field V is then the current
density J.

It is important to note that these conditions (imposing C; and ¢,) are exclusive,
meaning that the two conditions cannot be simultaneously applied. Considering
again the case of electrokinetics, it is not possible to impose both an electromotive
force across a conductor and the current flowing through it. Likewise, it is not
possible to simultaneously impose the current and the voltage across a resistor.

Having defined the problem and the equations to be solved, the next section
explores how the notion of source field can be introduced into the entire domain.
This field will allow for the representation in an equivalent manner of the conditions
imposed on the boundaries.

3.2.1.1. Source term related to a field defined by a curl

The main idea is to determine, inside the domain, a source field denoted by Us,
assumed to be known, which verifies the constraints imposed on the boundaries by
the vector U (see relations [3.3] and [3.5]). It is also assumed that the field U
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verifies, similar to U, equation [3.1]. It should be noted that there are an infinite
number of fields U verifying these constraints. Indeed, if a field Uy is the solution,
then U + gradp, where p is a scalar field such that p=0 on I';; and T, is also a
solution (see section 2.5).

The field U is decomposed into two terms as follows:

U=U,+U [3.8]

In this equation, U' becomes the new unknown of the problem, but this time with
conditions of null circulation between the two gates I';; and I',. Nevertheless, it
must still verify the boundary condition [3.3] on I, and I',. Moreover, it can be
readily shown that U' verifies the same equilibrium equation as the field U. The
properties of U' can finally be stated as follows:

curlU'=0, | U'dl=0,U'An|. . =0
%e T2 [3.9]

ie. U'e Hp r  (curl0,Q)

As for the properties of the field U, they are written as:

curlU, =0, | Udl=C,, Uganl o =0 101

ie. UgeHp or  (curl0,Q)

It can be noted that the constraints imposed on fields U and U' are similar to
those of field U defined by equations [3.1] and [3.3].

The source field Uy is directly proportional to the circulation Cs. Under these
conditions, a support field can be introduced, denoted by B, such that:

U, = C,Pq [3.11]
where B must verify the properties of Uy as follows:

=0
Tyl [312]

curl, =0, L B.dl=1, with B, An
12

ie. Boe Hr r , (curl0,Q)
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Considering the above-stated properties and the fact that the domain € is
contractible (see equation [2.32]), Bs can be expressed using an “associated” scalar
potential denoted by o, such that:

[‘;s =—grad0€s, with O('S|1"nk =Rk » ke{l,Z},(Xse H(gl‘ad,Q) [313]

For the choice of constants Ky, in order to verify the second relation of equation
[3.12], a simple solution is to consider:

Ky =1 and £, =0 [3.14]

By grouping equations [3.11] and [3.13], the source field U, can also be written as:
U, = —C,grado [3.15]

Similar to Uy, there are an infinite number of fields B; and o satisfying equations
[3.12] and [3.13], respectively. It is therefore necessary to impose a gauge condition
to ensure uniqueness (see section 2.5.2). Section 3.2.3 will provide an example of
the calculation of fields B and o.

The equations to be solved can now be written by highlighting the source term C;:
curl(U'+CB,) = curl(U'-C,grado,,) =0 [3.16]
div V=0 [3.17]

It can be noted that the circulation C,, which was at the beginning a condition
imposed on the boundaries, now appears in the equilibrium equation in the form
“Css” or “~Csgradoy”, which will be easier to handle in the numerical resolution.
As for the boundary conditions of the problem for the new unknown of the problem
U', they remain homogeneous and are stated as follows:

U'an|. =0 with ke {1,2} and V.
nk

=0 [3.18]
T

m

3.2.1.2. Source term related to a field defined by a divergence
3.2.1.2.1. Expression of the source field and the support vector field

Consider again the problem illustrated by Figure 3.1 and defined by equations
[3.1]-[3.3]. However, the flux ¢, is now considered the source term and is related
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to the field V by relation [3.6]. In order to determine a source field, the idea
developed in section 3.2.1.1 is applied, which consists of introducing inside the
domain a term assumed to be known respecting the constraints imposed on the
boundaries. The field V is then decomposed into two terms, in the form below:

V=V, +V [3.19]

NOTE.— The function space to which V belongs is defined by equation [3.4]. The
field V therefore has a conservative flux. The same is true for fields V; and V'
which, being built from V, have similar properties. Under these conditions, a
decision is made to use A as a reference surface (see equation [3.7]). It is important
to note that this surface can be superimposed to boundaries I', by sliding along
surface I',.

Considering equation [3.19], the field V' becomes the unknown of the problem
and its properties are significantly equivalent to those of field V, except on the
boundaries. Indeed, the conditions defined in equation [3.6] are transferred to V and
the flux of V', through the surfaces I'y, is equal to 0. This field is then defined by the
properties:

divv'=0, 'U V'.nds =0, Vin|.
A

=0ie V'e Hp (div0,Q) [3.20]

m

Then, the field V, represents the source term and must verify equation [3.7]. Its
properties can be written as follows:

=0

divv, =0, ”AVS.nds=i¢V, Von| ol

ie. Ve Hp (div0,Q)

In this expression, the + sign before ¢, depends on the orientation of the normal
vector with respect to the surface A.

Since the field source V; is proportional to flux ¢,, a support field A, is
introduced, such that:

Vi =0y &g [3.22]
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The properties of the support field A, are similar to those of V (see equation
[3.21]) and are stated as follows:

divk, =0, with don_ =0 and I j h. nds = £1
" A [3.23]
ie. by € Hp (div0,Q)

Grouping equations [3.1] and [3.2] with expressions [3.19] and [3.22], the
equations to be solved can be written by introducing the source term ¢, such that:

curlU=0 [3.24]
div(V'+d,As) =0 [3.25]
Similar to section 3.2.1.1, the boundary condition is transferred to a volume
source term “¢,As”. Finally, the boundary conditions for the unknown of the problem

are stated as follows:

Vinl. =0, Uan =0 [3.26]

Iyl

Since the studied domain Q is contractible, it is possible to replace A, by an
associated vector potential s It is nevertheless important to note that the
homogeneous boundary conditions of field A, are imposed on a not simply
connected boundary I',, (see Figure 3.1). In the context of such a configuration,
some precautions must be taken. This will be described in section 3.2.1.2.2.

3.2.1.2.2. Not simply connected boundary: discussion

Figure 3.2a represents the vector field A, with the not simply connected boundary
I, To introduce the field ), considering the properties of A (see equation [3.23]),
one solution would be to consider: ;€ Hry(curl, Q). In this case, As= curly;
having on T,: gsAn=0. Replacing As by ¥ in the surface integral of equation
[3.23], we have:

Acnds= || curl y,nds=| y,.dl=0 [3.27]
JI,penes=[I, J,

This result is in contradiction to properties [3.23] that A, must meet. It is due to
the fact that the contour ¥, belongs to the boundary I, where the tangential
component of X is zero and that therefore the term ..dl is equal to zero. This
contradiction is explained by the fact that the boundary I, is not simply connected.
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A solution to this constraint, in the presence of a not simply connected boundary,
is to enrich the space of definition of ; as follows:

1. € HY (curLlQ)=H_ (curl,Q)®#(T,,) [3.28]

The function space Hry(curl, Q) relies on relation [2.54]. As for #(I,), it is a
function space of finite dimension equal to the number of cuts to make the boundary
simply connected. In our case, for I',, (see Figure 3.2a), one cut needs to be
introduced, and its dimension is therefore equal to one. The properties of the
function space #(I,) can then be defined as follows:

H(Ty) = {Xc e L2(Q); telg = 0:

% /\nlr =0 ;ﬁ{o Acdl =i1}

m

[3.29]

As shown by Figure 3.2a, it should be recalled that 7y, is a contour belonging to
I, that cannot be contracted to a point by continuous transformation.

A possible cut is represented in Figure 3.2b. It is in fact a path linking surfaces
Iy and I, and cutting the surface I'y, so that it becomes simply connected. At the
passage of the cut, the circulation of %, along a segment crossing it jumps by * 1
depending on the crossing sense with respect to the orientation of the cut. As an
example, Figure 3.2b shows three closed paths 7y, y; and ¥,. Y is the only one that
cannot be contracted to a point by continuous transformation on surface I',,. The
circulation of contour Y, crosses the cut in the direction of the arrows. Under these
conditions, the circulation of . along 7, is equal to 1. Consider now two contours %,
and v, that can be contracted to a point by continuous transformation on I'y,. The
contour 7, belonging to I',,, does not cross the cut, the circulation of ¥, is equal to
“0”. The same is true for the circulation on contour y, which intersects the cut in one
direction, then in the opposite direction. Therefore, the function %, accounts for the
topological “singularity” of surface I,

I

a b

Figure 3.2. a) Domain with a not simply connected
boundary I, b) introduction of a cut on I,
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Under these conditions, s can be written as:

Xs =X 's+x. withiy'se Hr (curl,Q2) and € H ([, [3.30]

And the expression of A is:
A =curly, =curl (x';+x.) [3.31]

Consider now the integral form of equation [3.23]. A, is replaced by curly and
the Stokes formula is applied. The following succession of equations can then be
written as:

HA A nds = ”A curl y,.nds :IYO X -dl=1 [3.32]

Finally, it is important to note that s is not unique and is defined up to a
gradient, as shown by equation [2.46]. A gauge condition should therefore be
imposed, as proposed in section 2.5.2.

3.2.2. Source quantities inside the domain

It is important to note that, for an electrostatic problem, the source term can be a
charge density p. This charge density leads, through a volume integral, to the
quantity Q. Likewise, in magnetostatics, inside the studied domain, there may be an
inductor through which flows a current density J,, see equation [1.65]. It is
important to note that, in this case, the global source quantity is the intensity I of the
current flowing through the conductors [1.62]. Still in magnetostatics, the existence
of permanent magnets in the domain leads to a source term associated with the
coercive field or the remanent magnetic flux density (see equations [1.63] and
[1.64]). This particular source term will be considered in section 3.5.

In what follows, similar to section 3.2.1, the notion of source fields, support
fields and associated potentials will be introduced, to simplify the equations to be
solved. In order to maintain a degree of consistency with the previous developments,
the same notations defined at the beginning of section 3.2.1 will be used. However,
in order to take into account the local quantities, equations [3.1] and [3.2] will be
modified by introducing, respectively, the source terms Jand q as follows:

curlU=79 [3.33]

divV =q [3.34]
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According to the problem dealt with, J or q will be considered equal to zero. The
boundary conditions are those defined by equation [3.3]:

r=r, ur, uT,,with Va|. =0,UAn =0 [3.35]

ol

Depending on the constraints on fields U and V, the boundary conditions can be
modified to fit the studied problem.

3.2.2.1. Local source quantity defined by a curl

For this study, consider, as an example, the geometry shown in Figure 3.3, whose
domain € is contractible. In this case, for equation [3.34], we pose q = 0. It should be
noted that the subdomain €, of boundary I, support to the source term, is not simply
connected (case of torus). The complementary of €, in the domain €, is denoted by
€. On the one hand, in the studied example and to simplify the developments (see
Figure 3.3), there are no gates and therefore V.n = 0 on the boundary T".

Because the vector 7 derives from a curl [3.33], it is divergence free. The density
Jis defined only in the subdomain € and verifies on its boundary J.n | =0. The
flux of Jthrough an arbitrary surface A (see Figure 3.3), representing a cross section
of the inductor, is denoted by 1. Then:

ﬂA gndS =1 [3.36]

It can be noted that the section of the inductor may vary. Considering equation
[3.33] and its domain of definition, the field 7 belongs to Hpy(divO0, ). By
extension, the field 7is set to zero in €. This extension is possible, as, even though
it appears to be a discontinuity of J at the boundary of the domain €2, there is no
discontinuity of the normal component as 7.n=0 on this surface. Under these
conditions, J is defined throughout the domain €, which is contractible. Then, it
belongs to Hy (div0, Q).

Now we introduce the support field Ay in the form:

J=1Ihy [3.37]

Relying on the domain of definition of the vector field 7, the properties of Ay are
deduced from equation [3.23] and can be written as follows:

divig =0, || AgndS=1, with Agn|. =0
sl A sl sl T, [338]

re. Ay € Hy(div0,Q)
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Figure 3.3. Geometry with a local source
quantity g inside the studied domain

In equation [3.38], concerning the second condition, similar to equation [3.36],
surface A represents an arbitrary internal section of the inductor whose contour lies
on the boundary T.

It is important to note that the subdomain € is not simply connected. But 7 and
therefore Ay were defined over the whole domain Q, which is contractible.
Considering this definition (see section 2.4.2.1), an associated potential ¥ is
introduced, having the following properties:

curlyy =iy, with g /\n|r =0 ie. x4 € Hy(curl,Q) [3.39]

Consider again equation [3.33] and replace the source term 7 by its expression as
a function of I and ¥, obtained from equations [3.37] and [3.39]. The following
equations can then be written as:

curlU=curl /3y = curl(U-1y,)=0 [3.40]

Introducing a new unknown U' such that U'= U — Iy, equation [3.33] of the
initial problem can be written, based on equation [3.40], as follows:

curlU'=0, with U'e H(curl0,<) [3.41]

Dissociating the source term and introducing U' will allow us to readily develop
potential formulations, as the equation is now homogeneous (the right-hand side
term is zero).
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3.2.2.2. Local source quantity defined by a divergence

Consider again the previous example (see Figure 3.4), but in the presence of a
density q defined on € and of two gates I',; and I',. In this case, in equation [3.33],
we have 7=0. On the contrary, the local source term q in equation [3.34] is
preserved. The studied domain Q of boundary I' is the union of Q, and Q. The
integration over €2, of density q highlights the global integral quantity Q as follows:

[llg adr=Q [3.42]

Finally, the boundary conditions on the boundary I" of the domain are defined by
equation [3.35].

Figure 3.4. Geometry with a local source quantity,
represented by a density q inside the studied domain

As the distribution of density q is known, its expression can be written as a
function of the global quantity Q. In fact, the distribution of density q is transferred
on a support scalar term &g such that:

q=QE&, and j I IQ‘ g dt=1, with &, e [2(Q,) [3.43]

Outside Q, the density is zero (q = 0), posing &g= 0 in ,, which allows for the
extension of its definition to the entire domain, hence: & e L*(Q).
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Let us now introduce a source field Vi, whose boundary conditions are identical
to those of V, defined as follows:

divV, =Q¢&, with V e Hr (div,Q) [3.44]
It is then possible to introduce a second support field 1 such that:
Vs =Qg [3.45]

Grouping equations [3.44] and [3.45], after simplification, the following can be
written:

divng =&y [3.46]
where T verifies the following properties:

"sl-“|rm =0 ie myeHp (div,Q) [3.47]

It should be noted that there are an infinite number of fields mg verifying
conditions [3.46] and [3.47] and uniqueness is imposed by adding a gauge condition
(see section 2.5.2).

Based on equations [3.34], [3.43] and [3.46], the following can be written:

div(V-Qmng)=0 [3.48]

Consider now V' =V — Qn, with the same boundary conditions applicable for V
and M being valid for V'. Equation [3.48] can then be rewritten in the form:

divv'=0, with V'e Hr_(div0,Q) [3.49]

The field V' is therefore divergence free, which, as the following section will
show, makes it easy to introduce potential formulations.
3.2.3. Examples of the calculation of support fields

Sections 3.2.1 and 3.2.2 referred to source terms represented by support vector
fields Bs, A, Mg and the scalar field & as well as the associated potentials o, s and



Maxwell’'s Equations: Potential Formulations 63

Xs. There are an infinite number of fields meeting these conditions. As an
illustration, this section presents possible analytical solutions for extremely simple
cases. The aim is to illustrate our purpose and also the fact that support fields, source
fields and associated potentials have an infinite number of solutions. On the
contrary, in the case of complex geometries, where Maxwell’s equations will be
solved using the finite element method, section 4.3.7 proposes general and
systematic numerical methods for calculating these fields.

3.2.3.1. Calculation of a support field s and the potential oy

The support field B; serves to impose the circulation of a field between two
disjoint boundaries of a domain. This field is defined by the relations given in
equation [3.12]. As for the associated scalar potential o, it must verify equations
[3.13].

For the calculation of these two terms, the geometry in Figure 3.5 can be viewed
as an example, namely a brick-shaped domain Q, of boundary I' =T, I 'p . The
boundaries I';,; and I, are in the (x,y) plane in z= 0 and z = L, respectively. For the
source field, the boundaries I'y; and T', represent gates and the boundary I, is a
wall.

A

Figure 3.5. Geometry studied for the
calculation of fields fs and s
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As mentioned, there are an infinite number of solutions for the support field B.
However, given the simplicity of the studied geometry, it is easy to find an
analytical solution. As an example, it is possible to have for vector B:

0
Bs=| O [3.50]
1/L

This vector field verifies the properties defined in equation [3.12]. As shown by
equation [3.13], the scalar potential o is defined by its gradient. The integration of
equation [3.13] allows us to write the following equation:

a&@=—%+K [3.51]

where K is a constant. If this constant is set to 1, relation [3.14] is verified. Then,
0o4(0)=1 and ox(L) = 0.

3.2.3.2. Calculation of a support field As and of the associated potential y;

For the calculation of fields A, and 7, the same geometry as in Figure 3.5 is
used. But now the source term is considered to be an imposed flux ¢, flowing
through the boundaries T'y; and T, (see equation [3.21]). The properties of field A
are given by relations [3.23]. As for the potential , with the boundary I';,, being not
simply connected, it is defined by relation [3.31]. In the case of the studied
geometry, to verify the properties of A, one solution consists of considering, over
the domain Q, a field defined as follows:

0
o= 0 [3.52]
1/(4ab)

It can be readily verified that A, is divergence free. Moreover, considering its
direction along z, its normal component on the boundary I';, is zero. Finally, the
surface integral on I is equal to —1 and to 1 on I';,. The field A can therefore be
used for the studied problem as a support field.

However, based on the above-mentioned expression of A, it is impossible to
deduce an analytical expression of the field i, that verifies the properties defined by
relations [3.28]-[3.31]. This difficulty is mainly due to the fact that I',, is a not
simply connected boundary. Therefore, a cut needs to be introduced.
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Relying on the developments proposed in section 3.2.1.2.2, a possibility to cut
the boundary I',,, to “make it” simply connected, can be found in Figure 3.6. The
field ¥, is zero in the domain and its tangential component is also zero on I';, except,
as shown in Figure 3.6, at the cut, with a jump of £1 depending on the direction in
which it is crossed. It is important to note that the field 7. is directed along “y”.
A new field A, is also defined along the cut (see gray arrow in Figure 3.6), directed

[T}

along the “z” axis.

Let us now choose an arbitrary surface “Ay” (see Figure 3.6), belonging to the
domain Q and the contour ¥,. If the contour ¥, intersects the cut, then the flux of A, is
equal to £1 according to the orientation of 7y, Considering equations [3.31] and
[3.32], %. and A have the following properties:

}..ndS=J..[ curlx.nds=4> ¥ .dl = £l 3.53
II.x , el e [3.53]

Otherwise, if there is no intersection between 7y, and the cut, the flux is equal to
Zero.

As a conclusion, for the example presented in Figure 3.5, there are two
possibilities for the support field. The first one consists of taking as a source term
the vector field A, defined by equation [3.52]. However, in this case, it will not be
possible to build a field ¥ belonging to the spaces defined by equation [3.28]. For
the second possibility, the aim is to find a field ¥ by introducing a cut on the
boundary Iy, as shown in Figure 3.6, verifying equation [3.31] with a field ¥,
belonging to the space #(I",), defined by relation [3.29].

Figure 3.6. Introduction of a cut in the geometry studied in Figure 3.5
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3.2.3.3. Local source term: calculation of the support field Ay and the
potential yg

In the case of a source term located inside the domain and defined by a curl,
section 3.2.2.1 introduced the support field Ay and the associated potential %. Unlike
the sources imposed on the boundaries, we have to account for their geometry.

For our study, consider the relatively simple example presented in Figure 3.7.
There is a domain Q of boundary I". At the center of €, there is a subdomain € in the
form of square section circular ring (not simply connected domain) support to the
source term. The dimensions as well as the orientation of the source 7 are defined in
Figure 3.7.

Figure 3.7. Geometry studied for the calculation of support fields As; and ys

Figure 3.8. Cylindrical coordinates of support fields As
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As already seen in section 3.2.2.1, in order to address the connectivity problems
of the subdomain €, the domain of definition of Ay and ) is extended to Q. The
support field Ay can be determined by relying on equation [3.38]. In cylindrical
coordinates, this vector field (see Figure 3.8) has only one component following 6
and can be defined by the following relation for:

}\'slr (I
R<r<(R+d), 0<z<h, by =Ly Td [3.54]
7\'512 0 '

and Ay =0 elsewhere

Based on the above expression, it can be readily verified that Ay meets the
conditions stated in equation [3.38]. It is important to note that, in the
complementary of Qg in Q, Ag=0. Figure 3.8 represents the orientation of the
support field Ag for R<r<(R+d)and 0 <z <h.

Having defined the vector field Ay, the objective is to determine Y relying on its
definition given by the relations in equation [3.39]. Let us first recall the expression
of the curl in cylindrical coordinates, which leads to the expression of Ag:

1%, Wisto
r d0 0z
curly = % aX—SlZ
0z or [3.55]
1(8(%19) 3 %)
r or 00
for R<r<(R+d) , 0<z<h

Considering the constraints defined by expression [3.54], a solution for ) can be:

0

Xa=| O with 0<z<h:

Xslz(r)
1

for r <R g, =1

for R<Sr<(R+d): Ygpr) = hl—d(—r+(R +d)),

for (R+d)<r: Xg,m =

0

[3.56]
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It can be readily verified that the vector %), meets the conditions defined in
equation [3.39]. On the contrary, it can be verified that Ay is zero outside Qg, which
is not the case for the vector .

3.2.3.4. Local source term: calculation of the support field &, and the
potential 1

For the calculation of source terms, in the case of a source located inside the
domain and associated with a divergence, the elementary geometry represented in
Figure 3.9 is considered. This parallelepipedic domain €2 contains a subdomain €
inside which there is a charge density q. In order to simplify these calculations, this
density is assumed to be uniformly distributed. The boundary I" of the domain is the
union of lateral boundaries I',; and I, which represent two gates and of the
boundary T, associated with a wall. It is important to note that the subdomain €2,
also parallelepipedic, has its lower and upper faces in contact with I',,, as well as two
of its lateral faces. The origin of Cartesian coordinates is located at the center of the
domain Q. For this example, the objective is to calculate the possible solutions for
N« and & linked by equation [3.46].

VO N I ——

2a

2b

A

Figure 3.9. Geometry studied for the calculation of support fields & and ns

For the determination of &, expression [3.43] is used. As the density q is
assumed to be uniformly distributed over the subdomain €, the expression of & is
given by:

1

S = vol(©,)

[3.57]
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where vol(€);) represents the volume Q. It is easy to extend the definition of & to
the entire domain Q by posing & = 0 on the complementary of € with respect to Q.
Then, &g e LA(Q).

Concerning the support field mg, it is defined by relations [3.46] and [3.47].
Considering the symmetries of the studied geometry and the boundaries I';,; and I,
which represent gates, it is invariant along y and z. A possible solution involves the
definition of this vector field by only one component along x, such that:

Mgy =— a V-b<x<-a,
vol(£,)
[3.58]
LI =— 2 V-a<x<a and Mg, =—2 v a<x<b
vol(£2,) vol(£,)

with the components Ny, and 1Ny, being zero. The divergence of field 1, defined by
relation [3.58], is equal to &, as defined by equation [3.46]. Moreover, it can be
verified that Ny € Hry(div, Q).

3.3. Electrostatics

In the case of electrostatics, potential formulations can be developed relying on
function spaces defined in Chapter 2. The first notion introduced is the electric
scalar potential V, and then the electric vector potential P. Then, the Tonti diagram
will be obtained.

In order to consider various possibilities, we examine in the first example, close
to the one presented in section 1.5.1, the case of source terms (f; [1.51], then o,
[1.52]) imposed on the boundary of the domain. Then, a problem with source terms
on the boundary of the domain and an internal electrode will be studied.

3.3.1. Source terms imposed on the boundary of the domain

The objective of this section is to develop the formulations in terms of scalar and
vector potential when the source term is imposed on the boundary of the domain. To
this end, the simplified geometry represented in Figure 3.10 will be studied. The
domain Q is contractible and its boundary is denoted by I'. This example involves
two types of boundary conditions. The first one, denoted by I'y (see equation [1.39]),
represents a wall for the electric displacement field on the boundaries of the domain.
The second one, denoted by I'.x (see equation [1.35]), represents a gate for the
electric field. The two boundaries I'.; and T',, behave as perfect electrodes denoted,
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respectively, by &, and %,. The permittivity of the domain Q is denoted by € and
may depend on the position.

As already seen in section 1.5.1, it is possible to consider two source terms
imposed on the boundaries of the domain. The first one, denoted by f;, corresponds
to the circulation of the electric field between I, and T, (see equation [1.51]). The
second one is the total charges +Q, on each of the two electrodes (see equation
[1.53D).

It should also be recalled that, in the absence of volume charges, the equations of
electrostatics are stated as follows:

curlE=0 [3.59]
divD =0 [3.60]

with the electric behavior law [1.19] and the boundary conditions defined by
equations [1.35] and [1.39] written as:

=T, url,, ul,with D.n|rd =0,EA “|rek =0, 611
with ke {1,2}

Iy

Figure 3.10. Geometry studied in electrostatics when
the source terms are imposed on the boundary
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Considering equations [3.59]-[3.61], the fields E and D belong to the following
function spaces:

EeHr  r, (curl0, Q) and De Hr, (div0,Q) [3.62]

3.3.1.1. Scalar potential V formulation

The electric scalar potential formulation is well suited to the case when the
circulation of the electric field (source term f) is imposed. On the contrary, when the
source term is directly related to the electric displacement field, which is the case
when a surface charge density is imposed on the electrodes, it is then necessary to
introduce an additional equation, resulting from an energy balance.

3.3.1.1.1. Imposed circulation of the electric field £

This configuration corresponds to a global quantity imposed on the boundary via
a source term defined by a curl. We will therefore introduce into the local equations
the term £ following the steps proposed in section 3.2.1.1. As shown in equation
[3.8], the approach involves the decomposition of the electric field into two terms as
follows:

E=E; +E [3.63]
where E; represents the source field linked to the circulation f; and E' is the
unknown of the problem. As the source term is supported by Eg, the circulation of E'

between the gates I,y and Ty, is equal to zero. Relying on equation [3.9], the
properties of field E' are written as:

curlE'=0, , E'dl=0, E'/\n|l_elurez =0 and E'e Hp_ . (curl0,Q) [3.64]
12

Similarly, based on equation [3.10], the propertiecs of E are given by the
relations:

curlE, =0, L E.di=f, B an[ =0and E e Hp r (curl0,Q)  [3.65]
12

The field E, can be expressed (see equation [3.11]) as a function of £ using a
support field, denoted by B.:

Es = fBe [3.66]
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Since the support vector field is proportional to E, then for B, the properties
defined by equation [3.12] can be written as:

curlp, =0, '[Y B..dl=1, with B, /\n|Felurez =0, B, € Hr or,, (curl0,Q) [3.67]
12

Given its properties and the fact that the studied domain is contractible, B, can be
expressed as a function of an associated scalar potential o, using relations [3.13] and
[3.14]. Under these conditions, for the given example, we have:

B. =—grado, with oce|rel =1, o, |rez =0, o, € H(grad,Q) [3.68]

Then, the source field E, has the form:
E; = —f,grad o, [3.69]

Relying on equations [3.63] and [3.66], the source term is introduced in the
expression of the electric field E, and therefore equation [3.59] can be written as:

curl(£,, +E)=0 [3.70]

where the source field “£B.” is assumed to be known. The unknown of the problem
is then the field E'.

Concerning the field E', taking into account the properties stated in equation
[3.64], it can be expressed by means of an electric scalar potential, which is denoted
by V. As the tangential component of E' is zero on surfaces I'y; and I, this
potential is constant and may take, respectively, the values V; and V,. Moreover, the
circulation of E' between two electrodes being equal to zero (see relation [3.64]), we
have to impose V;=V,. Finally, in order to obtain a unique solution (see
section 2.5.2.1), the value of the electric scalar potential at one point of the domain
must be fixed. Under these conditions, consider: V| = V,= 0, which corresponds to
Dirichlet boundary conditions. The expression of E' can then be written as follows:

E'=—gradV with Ve Hr_r_(grad,Q) [3.71]

Based on equations [3.63], [3.66] and [3.71], the expression of the electric field
is:

E = f,B. — gradV [3.72]
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The electric displacement field results from equation [3.72] and the behavior law
[1.19]:

D = e(fp. — gradV) [3.73]

NOTE.— It can be noted that, on the boundary I'y, the wall-type condition (see
equation [3.61]) for the electric displacement field is reflected by a Neumann
boundary condition for the scalar potential V.

Replacing in equation [3.60] the electric displacement field by its expression
given in equation [3.73], the scalar potential electrostatic formulation can be written
as follows:

div(e(fsP. — gradV)) =0 [3.74]

Replacing the support field B, by the associated scalar potential o, equation
[3.74] can be rewritten as follows:

div(e( f,grado,, + gradV)) =0 [3.75]
We have thus developed the electric scalar potential formulation when the
circulation of the electric field E, inside the domain, is imposed between two

electrodes.

3.3.1.1.2. Charges Q, imposed on the electrodes

With the scalar potential formulation, imposing the total charges Q. requires a
complementary development. The objective is to express Q, on the electrodes as a
function of the electric scalar potential and the circulation £, which then becomes an
unknown of the problem. This requires an energy balance.

In the case of electrostatics, the expression of the stored energy W, is:
1
W, = Emg E.Ddt [3.76]

If the electric field is replaced by its expression given in equation [3.72], the
following can be written:

W, = %m o (—grad V + fB.).Ddt [3.77]
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Let us analyze the first term of the volume integral. Applying relation [2.23] for
vector operators, we have:

—m gradV.Ddt = ” VdivDdt - <ﬂ> VD.ndt=0 [3.78]
Q Q T Ul 0l

This term is equal to zero, as the divergence of D is zero (see equation [3.60]), as
well as to the surface integral, taking into account the boundary conditions of V on
I« (see equation [3.71]) and that of D on T’y (see equation [3.61]). Under these
conditions, equation [3.77] has the form:

W, = % [Tk, f+B< Dd [3.79]

The stored energy can also be expressed via global quantities f and Q. Then,
the following relation can be written:

W, = %fsQG - émg B Ddt [3.80]

By identification, the expression of the total charges Q. can be deduced:

Q5 =[] BDdt [3.81]

This expression allows us to write the total charges Qs as a function of the
support field B, and the electric displacement field D. Hence, by replacing the
electric displacement field by its expression given in equation [3.73], we obtain:

Q, = j J'J'Q eB..(/,B, — gradV)dt [3.82]

When writing the equation of the electrostatic problem, presented in Figure 3.10,
with the electric scalar potential formulation, and given that the source term is the
total charges Qg, the circulation f becomes an unknown. The system of equations to
be solved is composed of relations [3.75] and [3.82] having as unknown the scalar
potential V and circulation f,.

It should be noted that equation [3.81] can also be used to calculate the total
charges Q. from the scalar potential V when the circulation is imposed.



Maxwell’'s Equations: Potential Formulations 75

3.3.1.2. Vector potential P formulation

The example in Figure 3.10 is also used in the case of the vector potential
formulation, with the two source terms £ and Qs imposed on the boundaries of the
domain. The vector potential formulation is well suited to the source term
corresponding to the total charges Qg on the electrodes. On the contrary, when the
circulation of the electric field f£ is applied as the source term, the developments are
not straightforward. An additional equation should then be added that can be
obtained from an energy balance. The objective is to express the circulation f as a
function of the total charges Q. and of the electric vector potential.

3.3.1.2.1. Total charges Q, imposed on the electrodes

For our example, when the total charges Q. are imposed on the boundaries T,
and T,,, the expression of the source term is given by equation [1.53]. To introduce
this term in the local forms of the equations, the approach proposed in
section 3.2.1.2.1 will be followed. Therefore, as proposed in relation [3.19], in order
to introduce the source field, the electric displacement field is decomposed as
follows:

D=D, +D [3.83]

In this expression, D represents the source field produced by the total charges
Qs and D' is the new unknown of the problem. The absolute value of the flux of Dy,
on the boundaries I'; and I', is equal to the charges Q.. Therefore, the flux of D',
on these boundaries, is equal to zero. Relying on equation [3.20], in the context of
our problem, the properties of field D' can be written as follows:

divD'=0, D'n|. =0, ” D'nds=0 and D'e Hp (div0,Q) [3.84]
d lqek

As for the properties of the source field D, they are deduced from equation
[3.21] and, for our example, they are written as follows:

=0

divD, =0, Hr D,nds=2Q,, D,n 5]
ek Ty .

ie. D, € Hy, (div0,Q)

NoOTE.— This configuration is similar to the notes concerning equations [3.6] and
[3.19]. The fluxes of fields D' and D are conservative and any surface A whose
contour 7, (see Figure 3.10) lies on the boundary I'y, can replace the surface integral
on .
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Since the source field Dy is proportional to the total charges Q, it can be
expressed using a support field, denoted by A, such that:

D, =Q, k. [3.86]

The properties of A, are equivalent to those of Dy (see equation [3.85]) and can
be written as follows:

divk, =0 and doml. =0, ﬂr hends=zl A e Hr (dv0,Q)  [3.87]
d ek

As for A., considering its properties and the fact that the domain Q is
contractible, it can be expressed by means of the vector potential %.. However,
precautions are required when building the field Y., since the boundary I'y is not
simply connected. To address this difficulty, a cut along this boundary is introduced
(see section 3.2.1.2.2). The field . then belongs to the function space H*4(curl, Q)
defined by relation [3.28] and it verifies:

Ye A n|rd =0, jyo Lo dl = £1 [3.88]

where 7 is the contour of the surface A defined in Figure 3.10.
The support field A, can then be expressed as a function of ., as follows:
A, = curly, [3.89]
Grouping equations [3.60], [3.83] and [3.86], the following can be written as:
div(Qgh, +D") =0 [3.90]

where the source field “Q, A.” is assumed to be known. On the contrary, the
unknown of the problem is now the field D'. Relying on the properties of D' defined
in equation [3.84], it can be expressed as a function of an electric vector potential,
denoted by P, in the following form:

D'=curlP, P/\n|r =0 ie. Pe Hl-d (curl,Q) [3.91]
d

As indicated in section 2.5.2, to have a unique solution to the electric vector
potential, a gauge condition must be imposed. Based on equations [3.83], [3.86] and
[3.91], the electric displacement field can be written as follows:

D =curlP +Q, A, [3.92]
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Similarly, using the behavior law [1.19], the electric field takes the form:
E=¢'(curlP+Q,L,) [3.93]

When writing the electric field by means of the electric vector potential P and
the source term “QgA.”, equation [3.60] is automatically verified. The solution to the
problem must now simply verify the behavior law [3.93] and the equilibrium
equation [3.59].

Grouping equations [3.59] and [3.93], the following equation can be written as:
curl(e”' (curlP +Q 4,)) = 0 [3.94]
Or still by introducing the source field ¥, (see equation [3.89]), then we have:
curl(e™' (curlP + Qcurly,)) = 0 [3.95]

These equations represent the vector potential formulation of the electrostatic
problem when the source term is the total charges Q. on the electrodes I',; and T,.
The steps to be taken to solve these equations are to express the source fields A, or
%> and then to calculate the vector potential P. Then, the electric displacement field
D and the electric field E can be deduced.

3.3.1.2.2. Imposed circulation £ of the electric field

Still with the case of the formulation in terms of the vector potential P and the
problem in Figure 3.10, let us now consider that the source term is the circulation f
of the electric field between the boundaries I',; and I'.;. As indicated in the
introduction to section 3.3.1.2, in this case, the charge Q, becomes an unknown of
the problem. An additional equation should therefore be provided allowing for the
expression of the source term f as a function of the charge Qs and of the vector
potential P. This requires an energy balance.

In the expression of the electrostatic energy W, (see equation [3.76]), the electric
displacement field is replaced by its expression given in equation [3.92]. Then:

W, =% J j I EeurlP+Qg 1, )dt [3.96]
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Let us now consider the first term of the volume integral to which the formula
[2.27] related to vector operators is applied. We then obtain the following:

mﬁ E.curlPdt = mﬁ P.curlEdr—chr(P An).EdS [3.97]

Considering the properties of the electric field E (see equation [3.59]), the
volume integral, on the right-hand side of the equality, is zero. Concerning the
surface integral, on the boundary I" of the domain, it can be decomposed into two
terms as follows:

q;f)r(P An)EdS = ”r . (PAMEdS+ ”r (P An).EdS [3.98]

The integral on I';; or T, is equal to zero as, according to the properties of the
mixed product, the tangential component of the electric field is zero on these
boundaries. As for the second term, it is also zero, considering the properties of the
vector potential P on the boundary I'y (see equation [3.91]). Under these conditions,
the expression of the electrostatic energy is:

W, = % ([ QoEAdr [3.99]

If the electrostatic energy is expressed as a function of global quantities £ and Qg
(see equation [3.80]), then:

%fsQo =%IHQQG E.}dt [3.100]

After simplification, the source term f; can be expressed as a function of E and
A, hence:

fs = [[Jg e Ed [3.101]

or by replacing the electric field E with its expression in equation [3.93], the
following can be written:

f= j ”Q eh.,.(curlP +Q_k, )dt [3.102]
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Let us now introduce the source potential %. (see equation [3.89]). Then,
equation [3.102] can be rewritten in the following form:

£ = mg e7'h.(curlP + Q eurly, )dt [3.103]

In conclusion, for the electric vector potential formulation, when the source term
is the circulation f of the electric field, the unknowns are the electric vector
potential P and the total charges Qg. Then, the system of equations defined by
relations [3.94] and [3.102] or [3.95] and [3.103] must be solved.

It should be noted that equation [3.101] can also be used to calculate the
circulation f; from the vector potential P when the total charge is imposed.

3.3.1.3. Summary tables

This section presents a summary of the equations to be solved for the example in
Figure 3.10.

Table 3.1 summarizes the equations for the scalar potential formulation when the
source term is the circulation f; of the electric field or the total charges Q.. The table
also contains support fields and function spaces to which they belong.

Electrostatics (studied domain)

Source term: circulation of the electric field f;

Decomposition of the electric field: E = Eg + E'
. Source. ﬁeld support two E, = fBc., B. € Hr__r, (curl0,€Q)
£ possibilities: B, or o,
= E, =—fgrado, , 0, € H(gradQ)
£
& | Properties of the unknown E'e Hrelul—ez (curl0,Q)
> E' and introduction of '
= potential V E'=—gradV, Ve Hre1UFez (grad, Q)
§ Equation to be solved: two div(e( fsBe — gradv)) =0
2. | possible forms depending on -
E B. or 0, div(e( fggrado,, +gradV)) =0
é Source term: total charges Qg

f; becomes an unknown; an additional equation is needed

Qs = ‘”L) Be-Ddt

Table 3.1. Summary of the equations to be solved in electrostatics
for the scalar potential formulation (see Figure 3.10)
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For the same source terms (Q, and f£), Table 3.2 presents the equations to be
solved for a vector potential formulation.

Electrostatics (studied domain)

Source term: total charges Qg

Decomposition of the electric field: D = D, + D'
Source field support two
possibilities: A, or ¥, with a Dg =Qs2e , e € Hr, (div0,Q)
cut on not simply connected
,E Iy D, =Qgcurly,, %.€ Hléd (curl,Q)
]
S ) .
E | Properties of the unknown D'e Hr, (div0, Q)
S D' and introduction of the
A vector potential P D'=curlP , Pe Hy (curl, Q)
<
£ | Equation to be solved: two curl (¢! (curlP+Q, %,)) =0
g | possible forms depending on
5 Ac or X curl (™' (curlP + Qscurl 1.))=0
>
S Source term: circulation of the electric field f;

Q becomes an unknown; an additional equation is needed

f =m9xe.Edr

Table 3.2. Summary of equations to be solved in electrostatics
for the vector potential formulation (see Figure 3.10)

3.3.2. Internal electrode

This section again uses the example in Figure 3.10, adding inside the domain, as
shown in Figure 3.11, a subdomain Qg namely an internal electrode, denoted by 3,
of boundary I';. It should be recalled that at electrostatic equilibrium, the electric
field is zero inside an electrode and the surface charge density is 6. Under these
conditions, the electric field is normal to the surface. The studied domain then
relates to €Q’=Q—Qg; it is therefore simply connected with disconnected
boundary. For this problem, the source term can be the circulation of the electric
field f, between the boundaries 'y (with k € {1,2,3}), equation [1.51] or the electric
flux on the gates [1.53].
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Figure 3.11. Geometry studied in electrostatics in the case of an internal electrode

The equations to be solved are written as follows:
curlE=0 [3.104]
divD =0 [3.105]

With the dielectric behavior law [1.19] and the boundary conditions defined by
equations [1.35] and [1.39] which, in this case, are written as:

F:Fd Urel UFeZ Ure3
with : D.n|r =0,E /\n|r =0, ke {1’ 2, 3} [3.106]
d ek

Considering the above equations, the fields E and D are defined in the following
function spaces:

Ee Hr or,or,(curl0,Q") and De Hy (div0,Q") [3.107]

e

Let us now define the various possible source terms. This can be the circulation
of the electric field E between two electrodes. Then, for electrodes i, j, the
circulation fj is:

Edl=f; with i#j and i,je{1,2,3} [3.108]
¥ij
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It is important to note that with the electric field being curl free, the path v;,
linking two electrodes can be arbitrary since in this case the circulation does not
depend on the path followed. Moreover, in the presence of three electrodes, it is
possible to define three circulations of the electric field. Nevertheless, two are
sufficient, given that the electric field E is curl free, its circulation along a closed
contour is zero. This leads to the following property:

Jotfut =0 [3.109]

The source term can also be the total charges Q, on the electrodes of boundaries
T'.x. Then, we have:

”r DndS=Q, with ke{1,2,3} [3.110]
ek

In this case, Gauss’ law (see equation [1.50]) leads to:
Q +Q;+Q3=0 [3.111]

Similar to the case of circulations fj, this relation shows that the three values of
charge are not independent.

The following section develops the potential (V and P) formulations by
considering, for the source terms, the following possibilities:

—The two circulations of the electric field, fi; and f;, are imposed. The third
circulation f;, can be deduced using relation [3.109]. The charges Qy are unknown.

— The charges Q; and Q, are imposed, and in this case Qs is fixed by equation
[3.111]. The circulations f; are unknown.

— Hybrid source terms are imposed, namely a circulation of the electric field and
a total charge on an electrode. For example, fi; and the total charge Q, are imposed.
In this case, the unknowns are f,; and Q, (fi2 and Q; are then obtained by [3.109]
and [3.111]).

3.3.2.1. Scalar potential V formulation

As indicated in section 3.3.1.1, when the source terms are the circulations of the
electric field, the scalar potential formulation is perfectly adapted. Our approach will
therefore focus first on this case, and then on how to consider, as the source term,
the total charges on the electrodes.
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3.3.2.1.1. Imposed circulations of the electric field f3 and f23

When the circulation of the electric field is imposed, as mentioned above (see
equation [3.72]), it is expressed as a function of the scalar potential V and a support
field B.. As our example holds two source terms, fi; and f3, two support fields are
introduced (see equations [3.63] and [3.67]), such that:

E = f3Bi3 + f23B3 +E', with E'eHy - or  (curl0,Q") [3.112]

I

The support fields B3 and B,; are defined by the following relations:

[ Ul Ul [3.113]
B;eHr or,or, (curl0,Q’) (i,k)e{1.2} and j=3

curlB; =0, L B dl=3; B;An
'

Considering the above properties, and since the studied domain is simply
connected with a disconnected boundary, the support fields B; can be expressed as a
function of scalar potentials o (see section 2.4.2.3). Based on relations [3.13] and
[3.14], we can write:

B; =—gradoy; and oy;

= d; oy € H(grad, Q)

el

[3.114]
withi € {1,2}, ke {1,2,3},j=3

The properties of the field E', introduced in equation [3.112], are identical to
those given by relation [3.64]. An electric scalar potential V can therefore be defined
(see equation [3.71]). On the gates [, the tangential component of field E' is zero.
Therefore, for the scalar potential V, these gates represent equipotential surfaces
whose values may be Vi = Constant with k = {1, 2, 3}. Nevertheless, the circulation
of the electric field, between various electrodes, is imposed by the support fields B;
associated with circulations f;. The circulation of the field E' is then equal to “0”
between the surfaces I'¢. Under these conditions, we pose V =0 on the three gates,
and therefore the gauge condition can be imposed (see section 2.5.2.1). The field E'
is then written as:

E'=—gradV with V e Hr or,or, (grad, Q") [3.115]

Gathering equations [3.112] and [3.115], the electric field is written as:

E = fisB13 + f23B23 —grad V [3.116]
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Based on this equation and the behavior law [1.19], the electric displacement
field can be written as:

D = e(f13B13 + f23B23 — gradV) [3.117]

To obtain the scalar potential formulation, in the presence of the two source
terms fi3 and f33, the electric displacement field is replaced in equation [3.105] by its
expression given by equation [3.117]. The equation to be solved is then obtained in
the following form:

div(e( f13B13 + f23B23 —gradV)) =0 [3.118]

Replacing the support fields B; by the associated potentials o; (see equation
[3.114]), equation [3.118] is written as:

div(e( fi3grado s + fo3gradoy; + gradV)) = 0 [3.119]

3.3.2.1.2. Total charges Q; and Q, imposed on the electrodes

In the formulation developed in section 3.3.2.1.1, the source terms are the
circulations of the electric field between the electrodes. The charges, carried by the
electrodes, are not explicitly present. If instead of circulations, charges Q; and Q,
should be imposed, respectively, on electrodes E; and &,, the formulation [3.118]
can be used. In this case, circulations fj; and f; become unknowns and two new
equations should be added. These equations can be obtained from an energy balance,
as in section 3.3.1.1.2.

Based on global quantities, namely the circulations fj; and f; and the total
charges Q; and Q,, the electrostatic energy can be expressed by the following
equation:

1 1
We :5f13Q1 +5f23Q2 [3.120]

On the contrary, if the energy W, is expressed based on local quantities (see
equation [3.76]), replacing the electric field by its expression given in equation
[3.116] yields:

1
W, = EI_[_[Q'(ﬁ3ﬁ13 + f23B23 — gradV).Ddt [3.121]
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As shown in section 3.3.1.1.2 (see equation [3.78]), the contribution of the term
related to “gradV.D” is zero. Indeed, a similar development can be readily obtained
taking into consideration equations [3.105] and [3.107]. After simplification, by
gathering equations [3.120] and [3.121], the following can be written as:

1 1 1
EfBQI +Ef23Q2 ZEHJ' o (f13B13 + f23B23).Ddt [3.122]

This equation is true, irrespective of the values of fi; and f;. Under these
conditions, posing fi; =1 and f; = 0, the expression of Q, results quite naturally as
follows:

Qi = [[]¢yB13-Ddt [3.123]
Similarly, considering f;; = 0 and f,; = 1, the expression of Q, is obtained:

Q3 = [[[B23Ddt [3.124]

If the electric displacement field D is replaced by its expression given by
equation [3.117], the following expressions are obtained for Q; and Q,:

Q) = [[] o eB13-(f13B13 + f23B23 —gradV)de [3.125]

Q2 = [[eB23-(f13B13 + f23B23 — gradV)de [3.126]

In conclusion, if the charges Q; and Q, are known, the circulations fi; and f3;
become the unknowns of the problem. In this case, the system of equations
composed of equation [3.118] and relations [3.125] and [3.126] should be solved.

3.3.2.1.3. Hybrid source terms: circulation and total charges

When imposing a circulation and also a total charge on an electrode, taking into
account the developments of sections 3.3.2.1.1 and 3.3.2.1.2, it is relatively simple
to write the equation. In fact, a system of equations is built, consisting of relation
[3.118] to which, depending on the imposed source terms, equation [3.125] or
[3.126] is added. If the sources are fi; and Q,, the expression of Q, (see equation
[3.126]) is added to equation [3.118]. On the contrary, if the source terms are the
circulation f;; and the total charges Q,, then equation [3.118] is completed by the
expression of Q; given by equation [3.125].
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3.3.2.2. Vector potential P formulation

When the total charges Q; and Q, are imposed, the vector potential formulation
is naturally obtained. This case will be discussed first, and then the focus will be on
how the circulations fi; and f;; of the electric field can be introduced as source
terms. Finally, section 3.3.2.2.3 will address the case of complementary hybrid
source terms.

It is important to note that, for the vector potential formulation, with this
example holding three electrodes, the developments are similar to those presented in
section 3.3.1.2.1.

3.3.2.2.1. Total charges Q; and Q, imposed on the electrodes

When the total charges Q; and Q, are, respectively, on the electrodes &, and E,,
the electric displacement field can be expressed using [3.83], but with two source
fields, as follows:

D =Dy +Dg, +D' [3.127]

In this expression, Dy, and Dy, represent the two source fields due to the charges
Q; and Q, on the two electrodes E, and %,. As for the field D', it represents the new
unknown of the problem. Under these conditions, the properties of D' are stated (see
equation [3.84]) as follows:

divD'=0, II D'ndS =0 with ke {l, 2,3}, D'.n|r =0
i d [3.128]
ie. D'e Hr, (div0,Q")

The source fields have properties similar to those of the electric displacement
field, but they take into account the constraints on the total charges imposed on the
electrodes .

The properties of the source field Dy, are written as follows:
divD,, =0, H D, .ndS =Q,, J' j D, .ndS =—Q,,
1—‘cl rc}

and, Dy nf. . =0 [3.129]
ie. Dy e Hp o, (div0,Q)
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and for D,, we have:

divD,, =0, I I D,,ndS =Q,, H D,,ndS =-Q,,
Le, Ies
and, D, =0 [3.130]

ie. Dy e Hp o, (div0,Q)

'n|l"clul"d

Support fields A3 and A,3 are now introduced, which are defined as follows:

Tei Tes [3.131]

or, =0 ie hyeHp o, (div0,Q)

divi,; =0, j L hp3ndS =1, j L hysndS =1
e2 e3

’“23'“|relvrd =0 ie dy3€Hp o, (div0,Q)

[3.132]

By identifying the properties of the source fields Dy, and Dy, with those of the
support fields A3 and A,3, we have:

Dy =Qihi3 , Dy =Qrkhy3 [3.133]

If in equation [3.127] the source fields are replaced by their expression provided
in equation [3.133], the electric displacement field is written as:

D =Qihj3 + Qohy; + D [3.134]

The divergence operator is now applied to this equation. Then, the following can
be written as:

divD = Q,div 3 + Q,divh,; + divD' [3.135]

Based on this equation and considering the properties of the support fields given
in equations [3.131] and [3.132], as well as those of D' field defined in equation
[3.128], it can be noted that equation [3.105] and the boundary conditions on D are
verified.
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Based on the properties of D', see [3.128], the notion of potential can be
introduced. Nevertheless, as the domain is simply connected with a disconnected
boundary, some precautions must be taken (see section 2.4.2.3). It should be noted
that, for our study, there is only one cavity. As shown by equation [2.41], a vector
potential P and a field h are introduced, which makes it possible to consider the fact
that the studied domain is not contractible. Under these conditions, the field D' can
be written in the following form:

D'=curlP +Kh with Pe Hr, (curl,Q") and he H*(Q" [3.136]

In this expression, the function space #*(Q') is defined by equation [2.39] and K
is a constant to be determined. To this end, let us calculate the flux of the electric
displacement field D through the external surface of the domain Q. Based on
equations [3.134] and [3.136] and expression [3.110], we can write the following:

<ﬂ> (Qyhy3 + Qoo +eurlP+Kh)ndS = Q, +Q, [3.137]
ryur, ur,,

Based on the properties of the support fields A3 and Ay; (see equations [3.131]
and [3.132]), it can be deduced that their surface integrals on I'yuUl';U T, are equal
to 1. The function space to which the term curlP belongs implies that the surface
integral is zero on I'y. The same is true on the boundaries I',; and T, due to the
constraints that D' must meet (see equation [3.128]). Finally, the integral on the
external surface of the basis function h is equal to 1 (Bossavit 1988). Under these
conditions, in order to verify the conservation equation [3.137], we obtain K = 0.

NOTE.— In fact, constant K makes it possible to consider the total charges inside the
domain Qg (see Figure 3.11). As it is an electrode, there are by definition zero
charges inside.

Equation [3.136] is then written as:

D'=curlP with Pe Hr, (curl, Q") [3.138]

Under these conditions, based on equation [3.134], we have:

D = QA3 +Q,hy; +curlP [3.139]
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Using the induction D, defined by the above expression, the electric field can be
expressed via the behavior law [1.19] as follows:

E =¢"'(Q,A;; +Q,h,; +curlP) [3.140]

If the above expression of E is introduced in equation [3.104], the equation to be
solved is:

curl(e” (Q, k5 + Q5 +curlP)) = 0 [3.141]

which represents the vector potential formulation, when the source terms are the
total charges Q; and Q, on the electrodes & and &, and in the presence of an
electrode (%) inside the domain.

3.3.2.2.2. Imposed circulations of the electric field f3 and f23

Consider now, as source terms, the circulations fi; and f;. The equation to be
solved is still [3.141], but the total charges Q; and Q, on the electrodes become
unknowns. Two new equations should then be introduced in order to build a
complete system of equations. To this end, as in section 3.3.1.2.2, an energy balance
is written.

In equation [3.76], the electric displacement field is replaced by its expression,
provided in equation [3.139]. The following can then be written as:

W, = %m (curl P+Q,A 5 +Q,hy;)Edr [3.142]
o

Let us now consider the first term of the volume integral. Using formula [2.27],
related to vector operators, the following can be written as:

I ” E.curlPdz = J' I j curlE.Pdt+ <j':j'> (E An).Pdt [3.143]
Q' Q' T Uen U3 UT

The first right-hand side term is equal to zero (see equation [3.104]). The same is
true for the surface integral, as the tangential component of E is equal to zero on the
boundaries I, I, and T';; as well as the tangential component of P on I'y (see
equation [3.136]). Equation [3.142] is then written as:

1
We = E-..J.J.Q'(Ql;ul?’ + Qz)\-z?,).EdT [3144]
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This relation must be equal to [3.120] for all the values of Q; and Q,. This leads
to:

_fl3 = J..” Q,)u13.EdT , f23 = L” Q,k23.Ed‘C [3145]

If the electric field is replaced by its expression provided in equation [3.140],
then fi; is written as follows:

fis = mg,hs-e’l (Quhys +Qyhys +curlP)dr [3.146]
and f3:

Fos = J'J'J'nyx.s*l(lew +Qyhys +eurlP)dr [3.147]

In conclusion, for the problem studied with the vector potential formulation and
when the source terms are the circulations fi; and f;, the unknowns of the problem
are the vector potential P and the charges Q; and Q,. The system to be solved is then
composed of equations [3.141], [3.146] and [3.147].

3.3.2.2.3. Hybrid source terms: circulation and total charges

Similar to the approach for the scalar potential formulation, two complementary
source terms are now imposed, one circulation and one total charge.

In this case, writing the equation is relatively simple. If the source terms are the
total charges Q, and the circulation f;, relation [3.146] should be added to equation
[3.141]. On the contrary, if the source terms are fi; and Q,, then relation [3.147]
should be added to equation [3.141].

3.3.3. Tonti diagram
This section focuses on obtaining the Tonti diagram in electrostatics based on
Figure 2.13. Then, we have a succession of function spaces with imposed boundary

conditions and we place the various terms defined in sections 3.3.1 and 3.3.2.

Besides the physical quantities E, D and p (see Figure 3.12), there are also the
source fields E; and Dy as well as potentials V and P.
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Figure 3.12. Tonti diagram in electrostatics

3.4. Electrokinetics

In electrokinetics, if a general problem is considered, the studied geometry may
have the form presented in Figure 1.10 with two possible types of source terms: the
electromotive force “e” and the current density flux “I”. However, to make the
developments less cumbersome while maintaining a certain generality, a simplified
geometry is considered. Nevertheless, in section 3.4.2, we will show how to address
the case of a multisource problem.

3.4.1. Elementary geometry

The studied geometry, namely a section of a conductor, is represented in
Figure 3.13. Its conductivity, which may depend on the position, will be denoted by
6 and its boundary I" comprises three surfaces, denoted by I'c;, I'e» and Ij such that:

=T, Ul UT; [3.148]

On the two surfaces I, and I, the tangential component of the electric field is
zero, namely a gate-type boundary condition [1.35]. These two surfaces, considered
gates, are therefore in contact with perfect conductors (the tangential component of
the electric field is zero). On the contrary, the wall-type surface I'j can be considered
in contact with a perfect insulator. Then, the condition given by equation [1.38] is
verified for the current density.
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Let us note that the studied domain €, which is limited to the conductor, is a
contractible domain. On the contrary, the boundary I’ is not simply connected.

rel

Figure 3.13. Simplified geometry studied for electrokinetics

For this example, there are two possibilities for the source term (see section 1.5.2):

€9

— the first one is an electromotive force, denoted by “e”, imposed between the
two boundaries I'.; and I, (see equation [1.56]);

— the second one consists of imposing the flux “I” of the current density on the
boundaries I';; and T, (see equation [1.57]).

In the case of electrokinetics, the initial problem is governed by equations [1.58]
and [1.59] written as follows:

curlE=0 [3.149]
divd =0 [3.150]

which are completed by the electric behavior law [1.20] and the boundary conditions
[1.35] and [1.38] as follows:

=0
1Hck

=r;ul’,ul, with Jn|. =0, EAn
! [3.151]
with ke {1,2}

Based on the above constraints, the electric field and the current density are
defined in the function spaces:

Ee Hr r, (curl0,Q2) and Je Hl-j (div0,Q) [3.152]
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Sections 3.4.1.1 and 3.4.1.2 will develop the formulations in terms of the scalar
potential and the vector potential when for each of them an electromotive force and
the current density flux are imposed. It is important to note that, in the case of
electrokinetics, the equations to be solved are equivalent to those encountered in
electrostatics when a source term is imposed on the boundaries of the domain (see
section 3.3.1). Therefore, the developments given in the following are very similar.

3.4.1.1. Scalar potential V formulation
3.4.1.1.1. Imposed electromotive force

The electric scalar potential formulation is very well suited when an
electromotive force “e” is imposed between the surfaces I',; and ', (see equation
[1.56]). To account for the source term “e” in the local equations, a source field is

introduced by decomposing the electric field into two terms (see section 3.2.1.1):
E=E; +E' [3.153]

where E; represents a known source field depending on the electromotive force and
E' is the unknown of the problem.

The properties of E; are close to those of the electric field. Based on the general
case, presented in section 3.2.1.1, they are stated (see equation [3.10]) as follows:

curlE, =0, E,dl=¢,E An
Yi2

ie. Ege Hp _r  (curl0,Q)

LTz [3.154]

As the field E; is curl free, the integral is true for any path 7,,, belonging to the
domain Q, linking the gates I'.; and T'e,.

The properties of the field E' are similar to those of the electric field E, except
for its circulation between the two gates I'.; and I'., which is equal to zero. Indeed
(see equation [3.154]), this constraint is supported by E.

The properties of E' are then written as follows (see equation [3.9]):

curlE'=0, E'dl=0, E'An
Y2

ie. E'e Hp _r  (curl0,Q)

0

[ Ul -

[3.155]



94  Finite Element Method to Model Electromagnetic Systems in Low Frequency

Based on equation [3.11], the source field E; can be defined using the
electromotive force “e” and a support vector field B., such that:

E; =e¢B, [3.156]
the vector field B, having the following properties:

curl B, =0. B Anfy . =0 and | Pedi=1 [3.157]

ie.: B € Hr__r , (curl0,Q)

Considering the function space to which it belongs, the field B, can be defined by
means of an associated scalar potential, which will be denoted by “c.”, as follows:

Be = —gradoce d o =0, Ol T, = 0Olgp, Oy =0y = 1,

e|rel [3.158]

0, € H(grad, Q)

NOTE.— For the choice of the constants o, and 0., similar to the approach in the
case of electrostatics, a simple solution involves taking o,; =1 on I';; and 0., =0 on
Te.

The field E' also belongs to the function space Hre_re (curl0, Q). Therefore, it
can be defined using an electric scalar potential V (see equation [2.21]), such that:

E'=—gradV with Ve Hpy ., (grad,Q)| [3.159]

In this expression, homogeneous conditions are chosen for V on I';; and ', to
make sure that the circulation of E' is equal to zero. It is important to note that fixing
a value of potential V, in this case zero, makes it possible to impose the gauge
condition and therefore the uniqueness. If in expression [3.153] the field E; is
replaced by equation [3.156] and E' by equation [3.159], the electric field can be
written as follows:

E = ef, — gradV [3.160]
As for the current density, using the behavior law [1.20], it is written as:

J =o(ep, —gradV) [3.161]
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Finally, if in equation [3.150] the current density is replaced by the above
expression, we can write:

div(o(ep, — gradV)) = 0 [3.162]

which corresponds to the scalar potential formulation of an electrokinetics problem

when the electromotive force “e” is imposed. Furthermore, B, can be replaced by its
expression defined in equation [3.158], which leads to:

div(c(egrado,, + gradV)) =0 [3.163]

Solving equation [3.162] or [3.163] leads to obtaining the scalar potential V. The
electric field E is expressed using equation [3.160] and the current density can be
obtained via equation [3.161]. The current density can also be expressed using the
associated scalar potential o as follows:

J = —o(egrado.,, + gradV) [3.164]

3.4.1.1.2. Flux of imposed current density

Let us now consider as a source term the flux of current density “I” defined by
equation [1.57]. The electric scalar potential formulation will therefore be centered
on this source term, which does not naturally appear in the equations. To this end,
expression [3.162] is kept, but the electromotive force “e” is now an unknown of the
problem. A new equation accounting for the current intensity “I”” should therefore be

introduced. To deduce it, a power balance is written.

In its classical form, depending on the distribution of the electric field and the
current density, the expression of the power dissipated in a conducting domain is:

P = [[[,EJdt [3.165]

Replacing the electric field by its expression given in equation [3.160] yields:

P =[], (B, — gradV).Jdr [3.166]

The second term of this integral can be written using the formula related to
vector operators [2.23] in the following form:

— [[f, gradVv.Jdt = [[[,, VdivJdt Vindt=0 [3.167]

- ﬁrelurezurj
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This equation is equal to zero, as the divergence of J is equal to zero (see
equation [3.150]) and, considering the boundary conditions, the surface integral is
also equal to zero (V=0 on I';; and 'y, [3.159] and J.n=0 on T [3.150]). Under
these conditions, equation [3.166] takes the form:

P = [[[, eBJdt [3.168]

The power dissipated in the conductor can also be expressed using global

quantities, as the electromotive force “e” across it and the current intensity 1. Then,
we have:

P=el= jﬂg ep.Jdt [3.169]
By identification, the current I can be very easily deduced:

=[] oBeddt [3.170]

Replacing the current density J by its expression given in equation [3.164], we
obtain:

I = ~(J[[,0gradV B dt + [[[, ecgrado., B.dt) [3.171]

Solving a problem of electrokinetics with the electric scalar potential
formulation, when the source term is the current density flux, amounts to solving the
system of equations formed of expressions [3.163] and [3.171]. In this system of
equations, the unknowns are then the electric scalar potential V and the

[P}

electromotive force “e” imposed across the conductor.

3.4.1.2. Vector potential T formulation

Similar to the scalar potential formulation, for the vector potential formulation,
the studied case imposes as the source term either an electromotive force or the
current density flux. The first to be studied is the case where the source term is the
current density flux that is naturally imposed in the vector potential formulation.

3.4.1.2.1. Imposed current density flux

For this problem, equations [3.149], [3.150] and [1.20] must be solved. The
boundary conditions on the boundary of the domain are defined in equation [3.151]
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and the source term “I”, corresponding to the current density flux, is given by
relationship [1.57]. As the current density is defined by means of the divergence
operator, in order to introduce the source term in the local form of the equations, the
procedure presented in section 3.2.1.2 will be used. The current density J is
decomposed (see equation [3.19]) in the form:

J=J, +J [3.172]

In this expression, the field J' becomes the unknown of the problem and the field
Js makes it possible to take into account the source term imposed on the boundaries
I"e; and I',. The properties of J; are given by the relations:

divd, =0, H Jonds=+Ike {12}, J.n =0
T I [3.173]

J

ie. Jg€e Hrj (div0,Q)

It is important to note that the current density J; having a conservative flux, the
above-mentioned surface integral is valid for any surface A whose contour lies on
the boundary T (see Figure 3.13).

Since the current density J; is proportional to the current intensity I, a support
field A, is introduced such that:

J, =Ty [3.174]

Under these conditions, the properties of A; are identical to those of J; and can be
stated as follows:

divi, =0, hyn|_ =0 and J J )., nds = 1
) A [3.175]
ie. ke Hy (div0,Q)

In this expression, the surface A, whose contour is denoted by 7y, lies on the
boundary I (see Figure 3.13). It should be recalled that by sliding the contour 7y, on
this boundary, the surface A can be superposed with the boundaries I'.; and T'.,.
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Since the flux I of the current density on the boundaries I of the domain is now
supported by Jg, J' is defined by the following relations:

divd'=0, J'nds =0, with ke 1,25, J'n|. =0
.”rek 1.2] |1‘j [3.176]
ie. J'e Hl—j (div0,Q)

As the field J' is divergence free, 'y (ke {1,2}) can be replaced by any surface A
whose contour belongs to T

Since the domain Q is contractible and considering the function space to which
the support field A; belongs, the latter can be expressed based on an associated
vector potential ;. However, precautions must be taken when building %, as the
boundary T is not simply connected. To this end, a cut is introduced along I (see
section 3.2.1.2.2). Based on equation [3.175], the properties of the potential (; are
written as:

A =curly;, % /\n|r‘ =0 and | y;.dl==%1
! Yo [3.177]
ie Y € Hf-j (curl, Q)

where 7y, represents any contour supported by I'j that cannot be contracted to a point
by successive transformations.

After having defined the source term J;, J' must be expressed. Its properties are
given by relations [3.176] or J' € Hrj(div0, €2). As the domain Q is contractible, J'
can be expressed using an electric vector potential (see equation [2.31]), which is
denoted by T, such that:

J'=curlT Te Hrj (curl, Q) [3.178]

NOTE.— The vector potential T is not unique. It is defined up to a gradient (see
equation [2.46]). In order to have a unique solution, a gauge condition [2.50] or
[2.51] must be imposed.

Based on equations [3.172], [3.174] and [3.178], the following can be deduced:

J =T, +curlT [3.179]
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This equation and the behavior law [1.20] lead to the expression of the electric
field:

E =c"'(IA +curlT) [3.180]

Using the associated vector potential ¥; (see equation [3.177]), the electric field
can also be written as follows:

E zc’l(curlT+Icurlxl) [3.181]

If the electric field is replaced in equation [3.149] by its expression given in
equation [3.180], we obtain:

curl(c™' (curlT + IA)=0 [3.182]

The electric field defined by equation [3.181] can also be replaced in equation
[3.149]. Then we obtain:

curl(c™! (curlT + Ieurly,))=0 [3.183]

which is the electrokinetics formulation in terms of the electric vector potential
having as a source term the flux of density of current I.

This problem can be solved in two steps. The first one is to determine the
support field A; verifying equation [3.175] or the associated vector potential ¥y (see
equations [3.177]). Knowing that the determination of ; can be complex due to the
topology of the surface I';, which is not simply connected, the support field A, is
generally preferred. Once the source field is calculated, equation [3.182] or [3.183]
is solved with T € Hrj(curl, Q).

3.4.1.2.2. Imposed electromotive force

Let us now focus on the vector potential formulation having as a source term the
electromotive force imposed between the surfaces I'.; and I'.,. Introducing this
source term, with the vector potential formulation, is not natural. Indeed, in this
case, current I becomes an unknown of the problem. To address this issue, equation
[3.182] or [3.183] is kept and we look for an additional expression of the
electromotive force as a function of quantities I and T. A system of equations is thus
obtained. To this end, a power balance is written.



100 Finite Element Method to Model Electromagnetic Systems in Low Frequency

Let us go back to the expression of power (see equation [3.165]) in which the
current density is replaced by its expression given in equation [3.179]. This yields:

p= ” J'Q E.curlTdt+ j j B Ede [3.184]

Let us consider the first integral term of equation [3.184] to which the formula
[2.27] related to vector operators is applied. Then, the following can be written as:

I j E.curlTdz = j j I curlETdt + qf}S (E An).Tdt [3.185]
Q Q I Ul Ur

Considering equation [3.149], the first integral term on the right is equal to zero.
It can be readily shown that the second term is also equal to zero. Indeed, the surface
integral is decomposed into three terms, namely I'c;, I and I'. On I'; and I, the
surface integral is zero, considering the properties of E (see equation [3.151]). The
same is true for the integral on I'; due to the properties of T (see equation [3.178]).
The power dissipated in the domain Q only depends on the second term of equation
[3.184] as follows:

P = [[[, Ih; Edt [3.186]

Expressing power as a function of global quantities, namely the electromotive
force “e” and the flux of the current density “I”, equation [3.186] is written as:

el = [[f, In; Edt [3.187]

Simplifying by “I”, the following expression of the electromotive force is
obtained:

e = [[[,*1-Edt [3.188]

This equation can be rewritten by replacing the electric field by its expression
given in equation [3.180] as follows:

e= J j J‘Qc_lkl.curle’H- j j Io7 ' adt [3.189]
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[Tt}

The expression of the electromotive force “e” is obtained as a function of the
electric vector potential T and the current intensity 1.

In order to solve this problem, with the electromotive force as a source term,
assume that the vector field A; is known (see equation [3.175]). In this case, the

system of equations to be solved, whose unknowns are the electric vector potential T
and the current intensity I, has the following form:

curl(c”'curlT) + curl(c’lkll) =0
mg 6~ curlTdr+ H Jo 7 hkydT=0 [3.190]

For the problem to be complete, the gauge condition and the boundary conditions
for T should be added.

3.4.1.3. Summarizing tables

Electrokinetics (studied domain)

Source term: electromotive force e

Decomposition of the electric field: E = E;+ E'

Sourcg ﬁeld support two E =cB., B.<€ Hrelurez (curl0,Q)
possibilities: B, or o,

Eg = —egrado,,, o, € H(grad, Q)

E'e Hp (curl0,Q)

Properties of the unknown E'

and introduction of potential V E'=—gradV, VeH, or, (grad,Q)
Equation to be solved: two div(c(ep, —gradVv)) =0
possible forms as a function of -
B. or o div(c(egrado., + gradV)) =0

Scalar potential V formulation

Source term: current intensity I

e becomes an unknown; an additional equation is needed

1= ][, Beddt

Table 3.3. Summary of equations to be solved in electrokinetics
for the scalar potential formulation (see Figure 3.13)
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Electrokinetics (studied domain)

Source term: current intensity [

Decomposition of the electric field: J =J;+ J'

Source field support two

possibilities: Aj or y; with a Js=I, M€ HFJ (div0, €
= cut on I'j not simply
=]
k- connected J, =leurly,, y, € Hléj (curl, )
=
g ) .
:9" Properties of the unknown Je HFJ (div0,€9)
[ J' and introduction of the
= vector potential T J'=curlT, Te Hl—j (curl, Q)
=
Q
E_ Equation to be solved: two curl((s_l (curlT+1A;)) =0
5 possible forms depending on
2 Ajory curl(c™' (curlT + Ieurly;)) =0
>

Source term: electromotive force e

I becomes an unknown; an additional equation is needed

e = [[[, M1 et

Table 3.4. Summary of equations to be solved in electrokinetics
for the vector potential formulation (see Figure 3.13)

3.4.2. Multisource case

Section 3.4.1 only considered two gates on which either an electromotive force
or the current intensity was imposed. The approach can be generalized to a set-up
with N boundaries of T’y type (N gates). The source terms can be electromotive
forces (circulation of the electric field between two gates), current intensity (flux of
current density) or still a combination of the two.

For the electric field, which is curl free (see equation [3.149]), the path v;,
linking two gates i and j, can be arbitrary, since in this case the circulation is
independent of the path followed. Nevertheless, the paths on which the circulation
(the electromotive force) is imposed should not form a closed loop. As there are N
gates, the maximum number of conditions to be imposed on the circulations
(electromotive forces) is N — 1.

Similarly, as J is divergence free (see equation [3.150]), the sum of the fluxes of
current density, imposed across the gates, must be equal to zero. Therefore, the
maximum number of independent values of current I that can be imposed is N — 1.
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Conditions on the circulations and the fluxes of current density can also be
imposed simultaneously. Likewise, the number of these conditions must be equal to
N — 1 and respect the above constraints.

In order to illustrate these various possibilities, the example to be studied is that
of Figure 3.14, composed of three gates I'j, ['s; and T'.;.

Figure 3.14. Electrokinetics: example of
multisource geometry with 3 gates (N = 3)

The studied domain Q, of the conductivity o, is contractible, of the boundary T,
such that:

I = Fel Urez Ure3 UFJ [3191]

It can be noted that the boundary I'j is not simply connected. The boundary
conditions on various boundaries are equivalent to those given in equation [3.151].
The fields E and J are governed by equations [3.149] and [3.150] and the electric
behavior law [1.20]. In this example, in the presence of three gates, two source terms
must be imposed. As shown in Figure 3.14, the source terms can be, for example,
the electromotive forces e;3 and e,3;, the currents I; and I, or a condition on an
electromotive force and a current.

In what follows, in reference to sections 3.4.1.1 and 3.4.1.2, the two formulations
in terms of the scalar potential V and the vector potential T will be built.
Considering the equations to be solved, a certain similarity with the electrostatic
problem studied in section 3.3.2 can be noted. This will serve as a reference when
building the support fields and associated potentials.
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3.4.2.1. Scalar potential V formulation

As a first step, the source terms are considered to be the electromotive forces e;3
and e,;. Based on equation [3.153], two source fields E; and Eg, are evidenced,
and they can be expressed, respectively, using two support fields B3 and By
(see equation [3.157]) such that:

curlp. =0, J Ldl=8,, PB.An
BU Y BJ : BJ [ Ul Ul [3192]

_ur,, (curl0, Q) (i,k)e{1.2} and j=3

B Hr or

Since the studied domain is contractible, the support fields B; can be expressed
as a function of associated scalar potentials defined by relations [3.13] and [3.14].
Then, we have:

Bij = _gradO(ij and (xij = 8ki aij € H(gl’ad, Q,)
o [3.193]
withi e {1,2}, ke {1,2,3},j=3

Following the same approach as in section 3.4.1.1.1, let us introduce the electric
scalar potential V (see equation [3.159]). The electric field can then be expressed using
support fields, electromotive forces and scalar potential V in the following form:

E=¢3p;; +¢53B,3 —gradV, with Ve Hy - r (grad,Q) [3.194]

As for the current density, considering equation [3.150] and the boundary
conditions defined by equations [3.191] and [3.151], they belong to Hp(div0, Q). Its
expression is obtained using the behavior law [1.20] as follows:

J=0(e;By; + 5By —gradV) with Je H (div0,Q) [3.195]

Applying equation [3.147] to the expression of the current density, the scalar
potential formulation is written as:

diVG(el3Bl3 + 623[523 — gradV) =0 [3196]
The two support fields B3 and B,; can be expressed (see equation [3.193]), by

means of the associated scalar potentials o3 and 0,;. In this case, equation [3.196]
has the following form:

divo(ejzgrado 3 + ey3grado,; + gradV) =0 [3.197]
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If instead of the electromotive forces, the currents I; and I, are imposed on the
gates I, and [, as shown in section 3.4.1.1.2, the electromotive forces become the
unknowns of the problem. To obtain a full equation system, two additional equations
must be added by means of a power balance. Based on equation [3.170], it can be
noted that current I is obtained by integrating, over the entire domain €, the scalar
product of the current density J and of the support field B.. There are two support
fields Bi3 and B,; in our application. Applying an approach similar to the one
developed in the case of electrostatics (see section 3.3.2.1.2), it can be deduced that
the current I, is obtained by integrating the scalar product of J (see equation [3.195])
and B, as follows:

11 = J.J.J-Q Gﬁ13.(el3ﬁ13 +623B23 —gradV)d‘c [3198]
Similarly, for current I,, we have:

I = [[jq oBa3-(e13B13 +ex3Bo3 — gradV)de [3.199]

The system of equations to be solved is then composed of equations [3.196],
[3.198] and [3.199].

Let us now consider that the source terms are a combination of an electromotive
force and a current, namely e;; and I,. In order to solve equation [3.196], we have
two unknowns: the scalar potential V and the electromotive force ey;. To obtain a
full equation system, equation [3.199] is added.

3.4.2.2. Vector potential T formulation

For the vector potential formulation, we rely on section 3.4.1.2. As a first step,
let us consider as source terms the currents I; and I,.

Based on equation [3.172], two source current densities J; and J, are introduced
and their expressions use the two support fields A3 and A,;. The approach used for
building these two fields is similar to that for the field A; of equation [3.175]. This
yields:

diviy; =0, j L J;3ndS =1, ”'r h;3ndS =—1
el e3

r =0 ie hye Hr op (div.Q)

[3.200]

Aj3.n rLu
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T Tes [3.201]

Using these support fields and introducing the electric vector potential T (see
equation [3.178]), the current density is written as:

J =1k +1yho; +curlT with Te Hp (curl, Q) [3.202]

For the electric field, equation [3.149] and the boundary conditions defined by
equations [3.191] and [3.151] show that it belongs to Hreireaureseurl0, Q). Its
expression is obtained by means of the behavior law [1.20], i.e.:

E=0"(I;k; +Lyhy +eurlT) with E€ Hp . r (curl0,Q) [3.203]

The vector potential formulation of this problem is then obtained by applying
relation [3.149] to the electric field as follows:

curl(c™' (I, A5 + I,Ay; +curlT)) = 0 [3.204]

Considering the properties of the support fields A3 and A,; (see equations [3.200]
and [3.201]), it is possible to introduce the potentials Y;, as shown by equation
[3.177]. However, given that the boundary I is not simply connected, some
precautions must be taken (see section 3.2.1.2.2).

Let us now consider that the source terms are the electromotive forces €3 and e;.
The current densities I; and I, become the unknowns of the problem. It is therefore
necessary to impose two additional equations. Similar to section 3.4.1.2.2, these two
equations are obtained by means of a power balance. In this section, equation [3.188]
shows that the electromotive force is expressed by integrating, over the domain Q, the
scalar product of the electric field with a support field. Applied to our example, the
expression of the electromotive force e;3, with A3 as the support field, is:

e = ﬂ' M50 (kg + kg +eurl T)de [3.205]

As for the electromotive force ey, it is written similarly, with Ay; as the support
field:

ey = J' I 1230 (kg3 + kg +eurlTde [3.206]
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The system of equations to be solved is therefore composed of equations [3.204],
[3.205] and [3.206].

Finally, consider the case of a combination of source terms of different natures,
for example, the electromotive force e;; and the current I,. We have to solve
equation [3.204] but, besides the vector potential T, the current I, is unknown.
Under these conditions, to obtain a full equation system, equation [3.205] is added.

3.4.3. Tonti diagram

First of all, the physical quantities, namely J, E and also the conductivity ¢
linking them (see equation [1.20]), are positioned in the diagram. Then, similar to E
and J, the source fields Eg, J; and the fields E' and J' can be placed on the diagram
as well as the two potentials V and T so that they verify, respectively, equations
[3.159] and [3.178].

Hr (grad.Q) V 0 12
—grad l T div
G
H].—_ (curl.Q2) E, ES' E' J, JS’ J H]_- (div.QY)
curl l T curl
Hr, (div.Q 0 T Hl’J (curl.Q)
div l T _grad
(o) Hl—__(grad Q)

Figure 3.15. Tonti diagram in the case of electrokinetics

3.5. Magnetostatics
3.5.1. Studied problems

Similar to electrostatics and electrokinetics, two (scalar and vector) potential
formulations will be developed for magnetostatics. These developments will be
achieved for the four types of source terms presented in section 1.5.3, namely the
magnetomotive force, the magnetic flux, a permanent magnet and an inductor
through which a known current density flows. Similar to electrostatics and
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electrokinetics, depending on the source term used, the scalar or vector potential
formulation will be introduced naturally. For the other configurations, an additional
equation resulting from a magnetic energy balance needs to be introduced.

It can also be noted that if the source terms are imposed on the boundaries of the
domain, in this case the magnetomotive force and the magnetic flux, the
developments required to obtain the potential formulations are equivalent to those
introduced in electrostatics and electrokinetics.

3.5.2. Scalar potential ¢ formulation

3.5.2.1. Imposed magnetomotive force

For the study of a set-up in which the source term is a magnetomotive force, let us
consider the relatively simple example, represented in Figure 3.16. The domain € is
contractible, its boundary T" being I" =T, Ul pUl,. The boundary T, defined by
relation [1.37], represents a wall for the magnetic flux density and the boundaries Iy,
and Ty, defined by relation [1.36], represent the gates. As shown in Chapter 1 (see
equation [1.60]), the magnetomotive force “f,” is defined by the circulation of the
magnetic field between the boundaries I',; and I'y, of the domain Q along the path vy;,.

The equations to be solved, see for example Figure 3.16, are written based on
equations [1.65] and [1.66], but in the absence of the current density, in the
following form:

curlH=0 [3.207]
divB = 0 [3.208]

We should add the magnetic behavior law [1.26] and the boundary conditions [1.36]
and [1.37] which, for the studied problem, are defined by the following expressions:

=T, Ul ul,, with B.n|rb =0, H/\n|l_hk =0 [3.200]
with ke {1,2} |

It should be noted that the boundary Iy, is not simply connected.

Based on the above equations, the function spaces associated with the magnetic
field H and with the magnetic flux density B can be readily deduced. Then, we have:

He Hj (curl0,Q2) and Be Hr, (div0,Q) [3.210]

1Yl 2
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Figure 3.16. Geometry studied for magnetostatics having
as source terms the flux ¢ or the magnetomotive force f,,

It should be recalled that when the source term is linked to a field defined by a
circulation (see section 3.2.1.1), the scalar potential formulation is naturally
introduced. Under these conditions, in order to introduce the source term, in the
local forms of the equations, the magnetic field H is decomposed into two terms (see
equation [3.8]) as follows:

H=H,+H [3.211]

where Hj is the source field due to the magnetomotive force, a priori known, and H'
is the new unknown of the problem. The source field H; is defined based on the
properties of field H as follows:

curlH, =0, . H,dl= £, H, "“|rmurh2 =0 52121

ie. Hye Hp r, , (curl0,Q)

The field H; is proportional to the magnetomotive force “f,,”. It can therefore
be expressed by means of a support field, denoted by By (see equation [3.11]), such
that:

Hg = fi Bs [3.213]
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where B, has the properties equivalent to those defined in the general case (see
equation [3.12]), therefore:

curlp, =0, le B,di=1, with B An|. . =

[3.214]
ie. Bye Hr or,, (curl0,Q)

For a contractible studied domain, taking into account its properties, the field B
can be expressed by means of a scalar potential “o” (see equation [3.13]). Then, the
source field H; has the following form:

H, =-fgradog with o|. =1and o,
e c2

1 e

=0 [3.215]

Having defined the source field, the aim is to determine the field H', the new
unknown of the problem. The properties of H' are deduced from the magnetic field
H and from the source field H, and have the following form:

curlH'=0, H'dl=0, H
"2

ie. H'e Hy, r , (curl0,Q)

/\n| =0
[ENISI B

[3.216]

For a contractible domain, H' can be expressed using the magnetic scalar
potential, which will be denoted by ¢. In order to have a circulation of H' between
Iy and Ty, equal to zero and a unique solution, the scalar potential ¢ is set to zero
on these two surfaces. Under these conditions, the scalar potential is defined by the
properties:

H'=-grado with ¢ Hl-hlurhz(grad, Q) [3.217]

Gathering equations [3.211], [3.213] and [3.217], the magnetic field has the
following form:

H = f,,Bs —grado [3.218]

Based on this equation and using the behavior law [1.26], the magnetic flux
density is written as:

B = i(fnBs — grado) [3.219]
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If the magnetic flux density is replaced in equation [3.208] by expression
[3.219], we obtain:

div(u(fmPs — grade)) =0 [3.220]

Furthermore, B can be replaced by its expression as a function of o, defined in
equation [3.215]. Under these conditions, equation [3.220] can be rewritten as
follows:

div(u( fpgradog + grade)) =0 [3.221]

The solution to equation [3.220] or [3.221] makes it possible to determine the
magnetic scalar potential ¢. Relation [3.218] is used in order to calculate the
magnetic field H, knowing ¢. Then, in order to determine the magnetic flux density
B, equation [3.219] is used. The scalar source term ¢ introduced into equation
[3.215] can also be used. Then, we obtain:

B = —u(grado + f,grada) [3.222]

It can be noted that, in this case, this equation is similar to relation [3.164],
obtained in the case of electrokinetics.

3.5.2.2. Imposed magnetic flux density

To illustrate the case when the source term is the magnetic flux ¢ (see equation
[1.61]), the example in Figure 3.16 is considered. Imposing the flux ¢ is more
difficult in scalar potential formulation. Indeed, as developed in the previous section,
in the case of formulations in electrostatics and electrokinetics, an additional
equation is required. In the present case, the objective is to express the flux ¢ as a
function of the magnetomotive force f, and of the scalar potential @. To obtain this
expression, an energy balance must be written.

The following section presents the developments for a linear behavior law of
materials. This result is nevertheless true when the magnetic behavior law is not

linear.

In the linear case, the magnetic energy is written as:

Winag = % [{l, BHdT [3.223]
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Replacing the magnetic field H by its expression given in equation [3.218], we
have:

Winag = %HIQ B.(fmBs — grade)de [3.224]

Let us consider the second term of the integral. Using formula [2.23], related to
vector operators, we can write:

I 1 . I
= [l Begradodt = [[[ odivBdr——ff; . p oBnde [3.225]

It can be easily shown that this integral is equal to zero. Indeed, for the first term,
the divergence of B is zero (see equation [3.208]). For the second term, it can be
readily shown that, taking into account the boundary conditions, the surface integral
is also zero (on I',, B.n=0 and on I'y; Ul},, ¢=0). Under these conditions,

equation [3.224] has the form:

Winag = %HIQ fmbBsBdt [3.226]

The magnetic energy can also be expressed using the global quantities £, and ¢.
The following can be written:

1 1
Winag =~ fm® = = [[lq fmbsBd [3.227]

By identification, the expression of the magnetic flux is obtained:

¢ = [[[ BBsdt [3.228]
By replacing B by its expression, given in equation [3.222]:

0 = —[f[,(grad + f,grado)pydt [3.229]

Under these conditions, when the source term is the magnetic flux, with the
scalar potential formulation, the magnetostatic problem to be solved has the form of
the following system of equations:

div(u(fmBs — grade)) =0



Maxwell’'s Equations: Potential Formulations 113

0 =[], (uBs-grade + £, 1B grado)dt [3.230]

where the unknowns are the scalar potential ¢ and the magnetomotive force “f,,”.

3.5.2.3. Imposed current density

For the analysis of a magnetostatics problem, having as a source term the current
density Jj, let us consider the example in Figure 3.17. We have an iron core coil,
consisting of a multiwire inductor winding, through which flows a current I. The
magnetic permeability of the iron core is denoted by p,. Knowing the intensity of
the current I in the inductor, the current density J, is given by the expression [1.62].
The studied domain Q, of boundary T', holds the coil € of boundary T, the iron
core, all being immersed in an air box of permeability p,. On the external boundary
I', the boundary conditions are of wall type for the magnetic flux density (see
equation [1.37]). Finally, it should be noted that the domain defined by the coil
(subdomain €) is not simply connected and its permeability is equal to L.

T

Fmmmmmmmmm————

N

/ .

Iy

R

Figure 3.17. Studied geometry for magnetostatics when the
source term is a current density Jo imposed in an inductor

In the case of magnetostatics, having as a source term a current density, the
equations to be solved are written as follows:

curlH=J, [3.231]
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divB = 0 [3.232]

with the magnetic behavior law [1.26] and the I', type of boundary condition over
the entire boundary of the domain, which is:

Ba|. =0 [3.233]

Based on these equations, the function spaces, to which belong the magnetic
field H and the magnetic flux density B, can be deduced as follows:

He H(curl,2) and Be H,(div0,) [3.234]

For this problem, the configuration is that of a source term inside a domain
associated with a curl. The formulation relies on the results of section 3.2.2.1. Let us
first focus on the current density J,, which is a divergence free vector field. It is
proportional to the current intensity I and can be expressed using a support field A;
(see equation [3.37]) in the form:

Jo =1h [3.235]

In reference to the field A, introduced in section 3.2.2.1, A; is defined in the
inductor and, by extension, it is set to zero in the remaining domain. Let us recall
that this extension is possible, as we have Jo.n =0 on the boundary of the inductor
thus providing the continuity of the normal component of J, throughout the domain.
This process allows for the definition of A; throughout the domain Q that is
contractible. The issue related to the non-connectedness of the subdomain Q for the
construction of the associated vector potential %, (see equation [3.39]) vanishes.
Under these conditions, the properties of A; are stated (see equation [3.38]) in the
following form:

divi, =0, j'J'A ApndS=1, dynf =0 [3.236]

ie. A€ Hy(div0,Q)

In this expression, A represents the cross-section of the conductors, perpendicular
to the direction of the current density.

The support field A; belongs to the space Hy(div0, Q2), which can therefore be
expressed by means of a potential ; (see equation [3.39]) whose properties are:

curly; =4, x;An|. =0 ie. y; € Hy(curl,Q) [3.237]
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For the developments, a source field H is again introduced. In the studied
example, it is defined using the current density J, via the curl operator. Then, based
on equations [3.235] and [3.237], the following succession of equations can be
written as:

curlHg = J, =1Ix; = Ieurly;, [3.238]

Based on equation [3.231], introducing the field Hs and using equation [3.238], a
field H' can be defined as follows:

curlH-H,) =curlH-Iy;) =curlH'=0 [3.239]
In this expression, the following can be deduced by identification:
H = H'+H, = H+Iy, [3.240]
It should be noted that this is the expression of the decomposition of field H
given by equation [3.211]. The properties of H' can be deduced from these relations

as follows:

curlH'=0, = H'e H(curl0,Q) [3.241]

Considering the function space to which H' belongs, where the studied domain is
contractible, equation [2.32] yields:

H'=-grade, with ¢e H(grad,() [3.242]
where ¢ represents the magnetic scalar potential to which a gauge condition must be
added, namely setting the potential in a point of the domain. Based on relations
[3.240] and [3.242], the magnetic field is written as:

H = Iy; — grado [3.243]

Using this expression, with the behavior law [1.26], the magnetic flux density is
written as:

B = u(Iy; — grado) [3.244]
Using equation [3.244], equation [3.232] is written as:

div(u(ly; —grade)) =0 [3.245]
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To which we should add the boundary conditions on the boundary I', of the
domain as follows:

w(Iy; —grade).n| . =0 [3.246]
b

Equation [3.245] represents the magnetic scalar potential formulation of a

magnetostatics problem when the source term is an imposed current density flowing

through an inductor located inside the domain.

3.5.2.3.1. Expression of the flux @ in a coil

To determine the total magnetic flux @ in a coil, the magnetic energy will first be
expressed. This is given by equation [3.223]. Replacing the magnetic field by
expression [3.243], we obtain:

1
Winag = — [l B-(~grado + Iy )dt [3.247]

As already seen in section 3.5.2.2, the first term of the integral is equal to zero.
Indeed, in this configuration, using equation [2.23], it can be decomposed as
follows:

- % [[], Bgradodt = % ([l edivBdt — % ff- eBnds =0 [3.248]
b

with divB = 0 and the boundary conditions on the boundary, namely B.n =0 on T%.
Considering this result, if now the magnetic energy is also expressed using the
global quantities I and @, we then have:

1 1
Wmag = EI(D = EIJ‘J‘J-Q B.XIdT [3249]
By identification, the expression of the flux in the coil is written as:
@ = [[[, Bxdr [3.250]

This expression allows not only for the calculation of the total flux @ in the coil
but also its imposition. It is sufficient then to couple equations [3.245] and [3.250].
In this case, the current I becomes an unknown of the problem.
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3.5.2.4. Permanent magnet as the source term

Consider the domain € represented in Figure 3.18. It consists of three
subdomains (€2, €, Qpy), Which are, respectively, air, a ferromagnetic material and
a permanent magnet. The boundary conditions on the boundary are of type I'},. In the
air, a magnetic permeability equal to L, is considered. For the ferromagnetic
subdomain, a permeability p; is considered. The permanent magnet will be
represented by a magnetic permeability p, and a coercive field H, (see equation
[1.64]). In order to simplify the developments, the domain of definition of field H. is
extended to the entire domain £ considering it equal to zero in Q-Qpy;.

In this case, the equations to be solved have the form:
curlH=0 [3.251]
divB=0 [3.252]

having as the behavior law of the domains €, and €;, equation [1.26] and relation
[1.64] for the permanent magnet. Considering the I', type boundary conditions on
the entire boundary, the function spaces associated with field H and with magnetic
flux density B are given by:

He H(curl0,2) and Be H,(div0,£2) [3.253]

Based on the function space to which the field H belongs and the fact that the
domain Q is contractible, we can introduce (see equation [2.32]) the magnetic scalar
potential, such that:

H =—-grado with @€ H(grad,(Q) [3.254]

Using the scalar potential, equation [3.251] can be automatically verified. The
behavior law [1.64] can be used to express the magnetic flux density in the
following form:

B=puH-H,) [3.255]

where p takes the value py, pu; and pa depending on the considered subdomain and
H, which is zero in the domain Q-Qpy,.

Under these conditions, grouping equations [3.252], [3.254] and [3.255], we
obtain the following for the domain Q:

div(uw(grade+ H;)) =0 [3.256]
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Figure 3.18. Studied geometry for magnetostatics
when the source term is a permanent magnet

NOTE.— For many applications, the coercive field H, is considered constant in the
permanent magnet. This leads to discontinuities of its normal component on some
parts of its boundary. Consider the example in Figure 3.19, where the permanent
parallelepipedic magnet (domain Qpy) is immersed in the domain Q, such that
Q = Qpy L. It can be noted that the normal component of puH, is discontinuous on
the boundary I'a,, since this component is zero in €, and therefore, the divergence
of this term is not defined on the entire domain. In fact, only the divergence of the
term pgrado + WH, is defined. Therefore, the source term pH, cannot be extracted
from the divergence operator. This will no longer be a difficulty when the weighted
residual method is introduced in section 4.4.5.1, as the work will be conducted on
integral formulations.

Figure 3.19. Study of a permanent magnet: discontinuity of the
normal component of the coercive field on the boundary I'an
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Finally, on the boundary of the domain €, of ', type, the boundary condition is
written as:

- ugrad(p.nh_ =0 [3.257]

Moreover, the system of equations is well posed, provided that a gauge condition
is imposed on the scalar potential.

3.5.2.5. General case

This section develops the scalar potential formulation in the presence of several
source terms, as shown in Figure 3.20. It is not difficult to simultaneously impose
source terms of various natures, considering the linearity of vector operators and
boundary conditions. The following developments are therefore true, even though
the behavior laws are not linear. However, concerning the magnetomotive force f,
and the magnetic flux ¢, imposed on the boundaries I'ry,; Urn2, Only one of these two
terms should be considered at a time. In what follows, let us first consider as source
terms the current density Jy, a permanent magnet represented by means of the
coercive field H, and a magnetomotive force f,. The next step will be to replace fi,
by the magnetic flux ¢.

Figure 3.20. Magnetostatics problem: studied geometry in the general case

Maxwell’s equations to be solved in this context are written as:

curlH=1J, [3.258]

divB = 0 [3.259]
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For this example, the boundary conditions on the boundary I" have the following
form:

F:FbuquFm,Bﬂmzo,HAnhk:Qamikeﬂﬂ} [3.260]

Irrespective of whether the magnetomotive force or the magnetic flux is
imposed, the function spaces to which the magnetic field H and the magnetic flux
density B belong are defined by:

He Hp o, (curl,Q) and Be Hr, (div0,Q) [3.261]

3.5.2.5.1. Source terms: £, Jo, He

As developed in sections 3.2.5.1-3.2.5.4, the magnetic field can be decomposed
into several terms (see equation [3.211]). In the presence of a magnetomotive force
and a source current density, we have:

H=H'+Hy +Hg [3.262]

where H' represents the unknown of the problem, Hyf is the source term due to the
magnetomotive force and Hy; is the source term due to the current density Jj in the
inductor. It should be recalled that the flux of the current density J, is equal to the
intensity I (see equation [1.62]). If Hy is replaced in equation [3.262] by its
expression given in equation [3.215], Hy; by its expression given in equation [3.240]
and H'e Hr or, (curl,Q) by equation [3.217], the magnetic field is written as:

H =—(grado+ f, grado, ;) with ¢e Hr 1 (grad,Q) [3.263]

It is important to note that the function space to which ¢ belongs, as well as the
properties of the scalar potential o [3.215] and of the support field ¥; [3.237],
require the tangential component of the magnetic field to be zero on the boundaries
Iy Ulp. The contribution due to the permanent magnet appears through the
behavior law [3.255], when the magnetic flux density is expressed:

B = —u(grado + f,gradog — Iy;) — uH, [3.264]

where p depends on the position according to the subdomains (€2, ; and Qpy) and
may take the values po, p; or pupy. When the source terms are f,, Jo and in the
presence of a permanent magnet, the scalar potential formulation results by applying
equation [3.259] to the expression of the magnetic flux density as follows:

div(u(grade + f,gradog — Iy + H.)) =0 [3.265]
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This equation can be rewritten by replacing the associated potential o, by the
support field Bs, see [3.13], which yields:

div(u(grado — frB — Iy + H)) = 0 [3.266]

3.5.2.5.2. Source terms: ¢, Jo, H¢

Imposing the magnetic flux ¢ on the boundaries I',; and I'y, (see equation [1.61])
does not modify equation [3.265]. On the contrary, the magnetomotive force f, that
was a source term becomes, as seen in section 3.5.2.2, an additional unknown of the
problem. To obtain a full equation system, an additional equation is required in
which the magnetic flux on the boundaries I',; and I'y, appears. To this end, relation
[3.228] can be used. If in this equation B is replaced by its expression (see equation
[3.264]), we obtain:

o= IJ'IQ W(-Bs-grado — fi,Bs.gradog + 1By — Bs-He)dt [3.267]
This equation can also be rewritten, posing Bs = — grada, as follows:
0= [[Jqu(-Bs.grade+ finBsBs + Bsx1 — Bs-He)dr [3.268]

The system of equations composed of relations [3.265] and [3.268] then has to
be solved, where the unknowns are the scalar potential ¢ and the magnetomotive
force f,. The gauge condition on ¢ and the boundary conditions on the boundaries of
the domain must be added to this system.

3.5.3. Vector potential A formulation

Similar to the approach for the scalar potential formulation, for the vector
potential formulation the equations to be solved will be introduced by considering
the four source terms separately, and then the general case will be dealt with.

To facilitate the reasoning, the first case to be studied is that in which the source
term is the magnetic flux ¢ imposed on the boundaries of a domain (see
section 3.5.3.1). This source term is very well adapted to the vector potential
formulation. The next section focuses on how to impose a magnetomotive force “f£,”
(see section 3.5.3.2), the current “I” in a stranded inductor (see section 3.5.3.3) and
the case of a permanent magnet (see section 3.5.3.4). Finally, the general case with
several source terms in the studied domain will be considered.
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3.5.3.1. Imposed magnetic flux

The development of this formulation uses the example in Figure 3.16. The
equations to be solved are those given in equations [3.207] and [3.208] with the
magnetic behavior law [1.26] and the T} and I, type boundary conditions (see
equation [3.209]). To solve these equations, the flux ¢ across the boundaries I'},; and
T, will be introduced into the local equations. It should be recalled (see equation
[1.61]) that the flux is expressed using the magnetic flux density B. As the latter is
defined by the divergence operator, the procedure proposed in section 3.2.1.2 will be
used.

First of all, the magnetic flux density is decomposed into two terms as follows:
B =B +B [3.269]

In this expression, B; represents the source field created by the flux ¢ imposed on
the boundaries I, and I'y,. The properties of this field (see equation [3.21]) are
given by the relations:

divB, =0, j B.nds=+¢, B.n| =0
T r 3.270]

with ke {1,2} ie. B, € Hp, (div0,Q)

Concerning B' on T, condition [1.37] is obviously applicable. On the contrary,
considering equation [3.270], through I',; and Ty, the flux is equal to zero. Finally,
using equation [3.208], the properties of B' are stated as follows:

divB'=0, [ B'nds=0, B'a| =0
T b [3.271]
with ke {1,2} ic. B'e Hy (div0,Q)

In order to express the source field By, the support vector field denoted by Ay is
introduced (see equation [3.22]), such that:

B, = x¢¢ [3.272]

Similar to A (see section 3.2.1.2.1), the properties of A, are similar to B, which
are written as:

divi, =0 with [[ dends=1 and k,n| =0
A r [3.273]
ie. hy€ Hp, (div0,Q)
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The surface A was introduced in this expression, as in equation [3.23]. It should
be noted that by sliding A along the boundary I', (see Figure 3.16), this surface may
merge with the boundaries I'y; or I'y,. The boundary conditions imposed by
expression [3.270] can thus be verified. Considering these properties and the fact
that the studied domain is contractible, the support field A, can be expressed using
an associated potential Y, As the boundary I', is not simply connected, the
construction of potential 7y, requires some precautions. In fact, a cut must be
introduced along the boundary I', (see section 3.2.1.2.2). Based on relations [3.273],
the properties of potential ), have the following form:

Ay =curly, with 4, An| =0 and Yo dl =1
’ ’ ’ |Fb ' [3.274]
Le. o € HIA-b (curl0,Q)

In this expression, 7Y, represents a contour belonging to I', and that cannot be
contracted to a point by successive transformations (see Figure 3.16).

As the source term Bg is assumed to be known, the field B' remains to be
defined. Equation [3.271] indicates that B'e Hp,(div0, Q). As the domain is
contractible, it is then possible to express B' using a magnetic vector potential,
denoted by A (see equation [2.31]), such that:

B'=curlA with Ae Hr, (curl, Q) [3.275]

The vector potential A is not unique. It is defined up to a gradient (see equation
[2.46]). The uniqueness of the solution can be imposed by adding a gauge condition
similar to equations [2.50] or [2.51].

Based on equations [3.269] and [3.275], we obtain:

B =B, +curlA [3.276]

This can be rewritten using equation [3.272] in the form:

B = curlA + ¢, [3.277]

Or still by introducing the field y, [3.274]:

B = curlA + ¢ecurly, [3.278]
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As for the magnetic field H, it can be written via the behavior law [1.26]:
H =y (curlA + L) [3.279]

Replacing the magnetic field in equation [3.207] by its expression given in
equation [3.279], the following can be written:

curl(”™' (curlA +¢k,)) =0 [3.280]
Or still, if equation [3.278] and the behavior law are used, then:
curl(u™ (curlA + deurly,, ) =0 [3.281]

This is the equation of a magnetostatics problem with the magnetic vector
potential formulation, when the source term is the magnetic flux imposed on the
boundaries of the domain.

It should be noted that the introduction of the associated potential y, is not
required for the resolution of the vector potential formulation, as it is sufficient to
know the support vector A, (see relation [3.277]).

3.5.3.2. Imposed magnetomotive force

The studied geometry is still the one presented in Figure 3.16, considering as the
source term the magnetomotive force imposed between the boundaries Iy, and I,
of the domain.

In this case, for the magnetic vector potential formulation, the developments are
more complex. The situation is equivalent to that in section 3.5.2.2 and the
magnetomotive force must appear in the equations to be solved. To this end, an
energy balance is used. The latter allows us to express the magnetomotive force as
a function of the vector potential A and the magnetic flux ¢, which becomes an
unknown of the problem.

Based on the expression of the magnetic energy [3.223], expressing the magnetic
flux density as a function of A and ¢ (see equation [3.277]), we have:

1 1
Wo = I j | HeurlAdt+ I ”Q ok, Hdt [3.282]
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Using the properties of the vector operators, equation [2.27], the first integral of
this expression can be rewritten in the form:

1 j H H.curlAdt = lﬁ j curlH.Adt +le_:{> (H An).Adt [3.283]
2JJJa 2J0Ja 20T

Considering equation [3.207], the first term on the right-hand side is zero. The
same is applied to the second term by decomposing the boundary integral into
two contributions, corresponding to I} =[}Ul}, and Ty, Indeed, with
H € Hpy, umpcurl, Q) (see equation [3.210]), the integral on the boundaries I, and
Tz is equal to zero. Similarly, it can be readily shown that the integral on T, is equal
to zero, by applying the mixed product and considering that A € Hpy(curl, Q).
Under these conditions, equation [3.282] can be rewritten in the following form:

1
Winag = ([l 0HA 4d [3.284]

Expressing the magnetic energy as a function of global quantities f, and ¢, we
can write:

Winag = %fmq) = %mg OH.2 ,dt [3.285]
and by identification the expression of the magnetomotive force is obtained:
fm = [[lgHAydt [3.286]
It can also be expressed as a function of ), (see equation [3.274]) as follows:

for = J‘HQH.curlx(pd’t [3.287]

If the field H is replaced in equation [3.286] by its expression given by [3.279],
we obtain:

fu=|| K eurlAdrr 1] 0k hde [3.288]

Under these conditions, when the source term is the magnetomotive force, the
system of equations to be solved, with the vector potential formulation, is defined by
equations [3.281] and [3.288]. The unknowns are then the magnetic vector potential
A and the magnetic flux ¢.
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3.5.3.3. Imposed current density

Let us consider again the example presented in Figure 3.17 with the associated
equations [3.231] and [3.232] and T',-type conditions over the boundary. It can be
noted that the source term, represented by the current density Jy, is associated with a
curl. As already seen in section 3.2.2.1, this source term can be expressed by means
of vector fields, denoted by A; and ¥, defined, respectively, by equations [3.38] and
[3.39]. It should be recalled that, in order to overcome the constraints related to
disconnectedness of the inductor (subdomain ), the support field A; and the
potential y; are defined on the entire domain €. Under these conditions, equation
[3.231] can be rewritten as:

curlH=J, =Ii; = Icurly; 3289
with A, € H,(div0,Q) and y; € H,(curl0,Q) [3.289]
On the contrary, equation [3.232] and the boundary conditions on I', show that

B € Hy(div0, Q). As the studied domain is contractible (see section 3.5.3.1), the
magnetic flux density can be defined using a magnetic vector potential A, such that:

B =curlA with A e H,(curl,Q) [3.290]

As shown in section 2.5.2.2, the uniqueness of the solution makes is necessary to
impose a gauge condition on the vector potential A.

Having defined the vector potential, the formulation results from equation
[3.289] by replacing, via the behavior law [1.26], H by the magnetic flux density
and J, by the source field IA;:

curly 'curl A = 1), [3.291]
Or by introducing the associated potential
curlu’lcurlA = leurly, [3.292]

3.5.3.4. Permanent magnet

In order to study the case of a permanent magnet as the source term, let us
consider again the problem presented in Figure 3.18. The equations to be solved are
given by relations [3.251] and [3.252] with the behavior laws [1.26] for subdomains
Q, and Q,; and equation [1.27] for the subdomain Qpy;. The boundary conditions on
the boundary of the domain are of I', type. The magnetic vector potential A can be
used to automatically verify equation [3.252]. To establish the equation to be solved,
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the magnetic flux density is introduced into equation [3.252], via the behavior laws,
as a function of the vector potential, as follows:

curl(u™ (curlA — B,))=0 Ae Hj(curl,Q2) [3.293]

In this equation, permeability W is equal to Ly in €, W, in Q; and ppy in Qpy.
Likewise, the remanent magnetic flux density B; is defined throughout the domain Q
and will be zero everywhere, except for Qpy.

NOTE.— As already seen in section 3.5.2.4 and particularly in Figure 3.19, the normal
component of pH, is discontinuous on the boundary I's,. Applying the same
reasoning, it can be shown that the tangential component of the term p'B, is
discontinuous on the boundaries I'y; of the permanent magnet. Under these
conditions, the separation of the term curl(i'(curlA —B,)) into two terms, by using
the linearity of the curl operator, would be abusive. Section 4.4.5.2 will show that
this constraint is lifted, because the weighted residual method is used.

3.5.3.5. General case

Similar to the scalar potential formulation, this section studies the case when three
source terms are simultaneously imposed on the studied domain (see Figure 3.20). First,
let us consider as a source term: the flux ¢ imposed on the boundaries I'},; and I, an
inductor with a current density J, and a permanent magnet represented by the remanent
magnetic flux density B,. Then, the flux ¢ is replaced by a magnetomotive force f;,.

3.5.3.5.1. Source terms: o, |, B,

Similar to our approach in section 3.5.3.1, the magnetic flux density B can be
decomposed into several terms and, based on equation [3.276], the following can be
written:

B=B,, +curlA [3.294]

where By, represents the source term due to the flux imposed on the boundaries I'y;
and T'yp. If By, is replaced by its expression as a function of Ay, similar to relation
[3.272], we can write:

B =curlA+0k, with i, Hp (div0,Q) [3.295]

Based on this expression, using the behavior laws [1.26] and [1.27], the magnetic
field H is written as follows:

H =y (curlA + ¢k, —B,) [3.296]
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As already seen in section 3.5.3.1, equation [3.274], the support field can be
expressed using an associated potential . Under these conditions, equation [3.296]
can be rewritten as follows:

H =y (curlA + eurly, - B,) [3.297]

It should be recalled that precautions must be taken to determine Y4, as the
boundary T, is not simply connected (see section 3.2.1.2.2).

Consider now equation [3.289], in which the field H is replaced by its expression
given by equation [3.296]. Expressing the current density J, as a function of the
support field A;, after rearrangement we obtain:

curly”' (curlA + ¢, —B,) =1i, [3.298]

or based on equation [3.297] and introducing the associated potential ; via [3.289],
we obtain:

curly ™ (curlA + geurly, — B, ) = Ieurly, [3.299]

Finally, to obtain the uniqueness of the equation system, a gauge condition and
also boundary conditions on I', must be imposed on A.

3.56.3.5.2. Source terms: £, | and B,

When the source terms are fy,, I and B,, the approach is similar to the one
presented in section 3.5.2.2. Indeed, in this case, the magnetomotive force fy
generates a flux ¢, which becomes an unknown of the problem, but formulas [3.298]
or [3.299] are not modified. Since there is an additional unknown, an equation must
be added. To this end, the expression of the magnetomotive force between surfaces
Iy and Ty, can be used. Depending on the magnetic field, this one is given by
equation [3.286] or [3.287]. Gathering equation [3.286] and expression [3.297], we
obtain:

fn = mﬁ W (curlA +0hy —B,)dydt [3.300]

Then, the system to be solved is composed of equations [3.298] and [3.300]
whose unknowns are the vector potential A and the flux ¢. To impose the
uniqueness of the solution, a gauge condition on A and the boundary conditions on
T, must be added.
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3.5

.4. Summarizing tables

In the case of magnetostatics, Table 3.5 summarizes the equations to be solved
for various types of source term with the scalar potential formulation. Similarly,
Table 3.6 summarizes the vector potential formulation.

Magnetostatics

Scalar potential ¢ formulation

Source term: magnetomotive force f;, on the boundary (see Figure 3.16)

Source field support two
possibilities: B or o

Decomposition of the magnetic field: H=H+ H'

H, = f.B, B;€ Hr, o, (curl0,Q)

H,=-f, grado, o € Hrhlurhz (grad,Q)

Properties of the unknown H'
and introduction of potential ¢

H'e Hr r,, (curl0,Q)

H'=—grado, o€ Hr _r,  (grad,Q)

Equation to be solved: two
possible forms depending on
B; or o

div(u(fmBs — grade)) =0

div(u( fpgradog + grade)) =0

Source term: flux ¢ on the boundary (see Figure 3.16)

fm becomes an unknown; an additional equation is needed

o= mQ B dt

Source term: current intensity I (see Figure 3.17)

Source field support two
possibilities: Aj or )

Decomposition of the magnetic field: H=H; + H'

curlH, =1Ix;, A; € H;(div0,Q)

H, =1y, y; € Hy(curl,Q)

Properties of the unknown H'
and introduction of scalar
potential @

H'e H(curl0,Q)

H'= —gradp, @< H(grad,Q)

Equation to be solved as a
function of x;

div(u(Iyy — gradg)) =0

Source term: permanent magnet (see Figure 3.18)

B=puH-H_) with H=-gradg, ¢ H(grad,Q)

div(u(grade + H.)) =0

Table 3.5. Summary of equations to be solved in magnetostatics
with the scalar potential formulation for various source terms
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Magnetostatics

Vector potential A formulation

Source term: flux ¢ on the boundary (see Figure 3.16)

Decomposition of the magnetic field:
B=B,+B

Source field support two
possibilities: A, or ), with a cut on

B, =0k, k€ Hp, (curl0,Q)

not simply connected I',

B, = ocurly,, %, € HIA-b (curl,Q)

Properties of the unknown B' and

B'e Hr, (div0, Q)

introduction
of the vector potential A

B'=curlA, Ae Hl-b (curl, Q)

Equation to be solved: two possible

curl (™' (curlA +¢k,)) =0

forms depending on A, or

curl(},tfl (curlA +¢curly,,)) =0

Source term: magnetomotive force £, on the boundary (see Figure 3.16)

¢ becomes unknown; an additional equation is needed

fm = mg Ho.dt

Source term: current intensity I (see Figure 3.17)

Source field support two possibilities:

}\II or X1

curlH=1x;, &; € H;(div0,Q)

curlH = Icurly;, %, € H(curl,Q)

Properties of the unknown B
and introduction of the vector
potential A

B e H(div0,Q)

B =curlA, Ae Hj(curl, Q)

Equation to be solved depending on

curlu_lcurlA = Ieurly;

Source term: permanent magnet (see Figure 3.18)

H=p"'(B-B,) with B=curlA, Aec H(curl,Q)

curl ( u_l (curlA - ulBr )) =0

Table 3.6. Summary of the equations to be solved in magnetostatics
with the vector potential formulation for various source terms
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3.5.5. Tonti diagram

Similar to the approach taken for electrostatics and electrokinetics for obtaining
the Tonti diagram in magnetostatics, the fields H, J, and B are placed to verify
equations [3.207] and [3.208] (see Figure 3.21). As can be noted in this figure, quite
naturally, the current density Jy is divergence free. The source terms Hg and By as
well as the scalar potential ¢ and the vector potential A can also be positioned.

Hr (grad.Q I 0 12(0)
A
~grad 1 div
H )
Hr, (curl.Q) H, Hy > B.B, Hr (div.Q)
A
codf curl
A
Hl—h (div. Q) Jo A Hp (cwl.Q)
i A
i —grad
y
L@ 0 Hr (grad.Q)

Figure 3.21. Tonti diagram for magnetostatics

3.6. Magnetodynamics

A magnetodynamics problem, as shown in Figure 1.12, leads to the study of
electromagnetic phenomena at industrial frequencies. To simplify the notations, the
time dependency of all electric and magnetic quantities is not explicit but rather
implicit, similar to space dependency. Nevertheless, concerning the source terms e(t),
0(t), fm(t) and I(t), this time dependency will be recalled at the beginning of
sections 3.6.1 and 3.6.2.

Under these conditions, in a domain €, the magnetodynamic equations are
recalled as follows:

curlE = —aa—B [3.301]

t

curlH=1J [3.302]
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Applying the divergence operator to equation [3.301], we deduce:
divB =0 [3.303]

Likewise, applying the divergence operator to equation [3.302], it can be readily
verified that:

divl =0 [3.304]

The behavior laws [1.20] and [1.26], as well as the homogeneous boundary
conditions, are added to these equations. As indicated in section 1.3.2, there is a link
between the fields E and B, and also between H and J, which can be written as
follows:

n/\E|F‘ =0 = B.n|r‘ =0 [3.305]
nAHL =0= J,[. =0 [3.306]

It is important to note that reciprocity does not always apply to these two
equations, and this depends on the topology of the boundaries I, or I';..

This study first considers the problem presented in Figure 3.22. Given a domain
Q of boundary I', composed of two subdomains denoted by Q. and €2, The
subdomain €., of boundary T, is a conductor whose conductivity is denoted by G. It
holds two gates I';,; and I, in contact with an external source. Electric quantities
e(t) or I(t), or magnetic quantities fi,(t) or ¢(t), can be imposed on these two gates.
The remaining boundary of the conducting subdomain €2, denoted by I is in
contact with the subdomain €2, and represents a wall for the current density J. The
subdomain €2 is a non-conducting material. Nevertheless, the conductivity ¢ is
defined on the entire domain as follows:

6>0in ;, and 6=0 in Q, [3.307]

The conductivity is not necessarily constant on the conducting domain Q. and
can vary depending on the position.

The subdomain €, (see Figure 3.22) is not simply connected. The part of its
boundary, in contact with the exterior, is a wall for the magnetic flux density and is
denoted by I',. Finally, magnetic permeability, which depends on space, will be
denoted by p throughout the domain.
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Equation [3.301] is valid throughout the domain Q. In fact, there is an electric
field related to the variations in time of the magnetic flux density. However, in the
subdomain €, the conductivity being zero, the current density will be zero
irrespective of the value of the electric field E. Under these conditions, the field E
does not need to satisfy equation [3.301] on Q. Even though the magnetic flux
density B is defined uniquely on €, this is not applicable to the electric field, which
is defined up to a gradient. On the contrary, it is perfectly defined in the domain €..
The equations of magnetodynamics can therefore be solved on the domain Q. and
those of magnetostatics in the domain €,. The next section shows that the coupling
of these two problems is quite natural for potential formulations.

Therefore, various potential formulations (Bouillault and Ren 2008; Alonso
Rodriguez and Valli 2010) will be implemented when electric or magnetic quantities
are imposed on gates I',; and I'y,.
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Figure 3.22. Basic geometry for the magnetodynamics study

Depending on the cases studied, boundary topology-related problems will be
highlighted. Consider a divergence free vector field respecting, on a not simply
connected part of the boundary, wall-type conditions. As shown (see
section 3.2.1.2.2), to define a “y” type source potential, a cut can be introduced.
Sections 3.6.1 and 3.6.2 will show that for the same topology of the studied domain,
depending on the type of electric or magnetic source, introducing a cut may or may
not be necessary.

The studied example considers a single conductor in a given environment.
Nevertheless, the proposed approach can be generalized to multiple conductors
using the linearity of differential operators.
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3.6.1. Imposed electric quantities

This section again uses the example in Figure 3.22 by imposing electric
quantities e(t) or I(t) on the two conductor boundaries in contact with an external
source, which can be a voltage or current source. These two boundaries are then
gates for the electric field with boundary conditions denoted by I'.; and I, (see
Figure 3.23). The other boundary conditions remain unchanged. The following can
then be written for the boundary I" of the domain Q:

=Ty ul,uly [3.308]
and for the boundary T of the conductor €:

[, =T ULy UT; [3.309]

As already noted, inside the conducting domain €, the magnetodynamic equations
are solved, while the subdomain €, is governed by magnetostatic equations.

I

e

s

Figure 3.23. Geometry studied in magnetodynamics:
electric quantities imposed on the boundary

For the problem at hand, the fields E and J are defined in the domain €. and,
considering equations [3.301], [3.304] and the previously introduced boundary
conditions, the function spaces to which they belong can be written as follows:

EeHr ., (curl,Q.), Je Hrj (div0,€,) [3.310]
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It is possible to extend the domain of definition of the current density to the
entire domain Q by extending J over € and posing J = 0 in €. It can be noted that
divJ = 0 on Q. The extension of J to the entire domain € raises no problem for the
continuity of the normal component since J.n|r;=0. On the contrary, as will be
noted in the following, it allows for the definition of a source term without dealing
with the non-connected domain and the introduction of cuts. The function space of
the current density, defined by relation [3.310], is then written as:

J e H(div0, Q) [3.311]

As for the fields H and B, they are defined throughout the domain Q. The
properties of the magnetic field H are governed, at the beginning, by equations
[3.302] in ©_ and [3.207] in €. Nevertheless, due to the extension of current density
J to the entire domain (2, the field H verifies equation curlH =J on Q. As for the
magnetic flux density B, it is defined, in the entire domain €, by equation [3.303].
Taking into account the boundary conditions on the boundary I' (see equation
[3.308]), it can be noted that, considering equation [3.305], the normal component of
the magnetic flux density is zero.

The function spaces of the fields H and B can be introduced as follows:

H e H(curl,Q2), Be H(div0,€) [3.312]

In order to solve the magnetodynamic equations, two potential formulations can
be used. The first one, known as “electric formulation”, is based on the magnetic
vector potential A and the electric scalar potential V. The second, known as
“magnetic formulation”, uses the electric vector potential T and the magnetic scalar
potential @. For these two formulations, it can be seen that, considering the choice of
potentials, the coupling with magnetostatics can be readily made.

3.6.1.1. Electric formulation A-V

The development of the A-V formulation, when an electromotive force e(t) is
imposed, is quite natural. On the contrary, when the current intensity I(t) is imposed,
an additional equation is required.

3.6.1.1.1. Imposed electromotive force

For this formulation, in order to introduce the source term e(t) into local form,
the approach presented in section 3.4.1.1.1 is used. The electric field is decomposed
(see equation [3.153]) in the form of a source field E, and the field E' that becomes
the unknown of the problem. The properties of the source field are given in equation
[3.154] with Ege Hre rex (curl0, Q). It should be recalled that E can be expressed
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using a support field B. (see equation [3.157]) or an associated scalar potential o,
(see equation [3.158]). For our example, B. and o, are defined in the function
spaces:

B. € Hr r, (curl0,Q;) and o, € H(grad,Q,) [3.313]

Introducing the fields E' and E; into equation [3.301] and, considering the
properties of Eg, the following succession of equations can be written as:

B
curlE = curl(E'+E) = curlE' = —aa—t [3.314]

Under these conditions, the properties of the field E' are stated as follows:

curlE'=—a—B, E'dl=0, E'An =0
FT Ul [3.315]

ie. E'e Hp r  (curl, Q)

Concerning the magnetic flux density, as shown in relation [3.312], it belongs to
the function space Hy(div0, Q). Therefore, it can be expressed using the magnetic
vector potential A defined on the entire domain Q, which is contractible, as follows:

B =curlA with Ae H,(curl,Q) [3.316]

Here we again find the potential A, which was introduced in magnetostatics (see
section 3.5.3). Using the behavior law [1.26], the magnetic field is then written as:

H=p"curlA [3.317]

On the domain €., if the magnetic flux density is replaced in the first equation of
relation [3.315] by its expression given in equation [3.316], the following is
deduced:

curl(E'+ aa—‘?) =0 [3.318]

The field (E'+0A/dt) € Hreiore2(curl0, Q) and, Q. being contractible, an electric
scalar potential can be defined (see Figure 2.5) such that:

A .
E'= —(aa—t +gradV) with Ve Hr or,(grad, Q) [3.319]
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NOTE.— It can be noted that since the source term is supported by the source fields B,
or o, (see equation [3.313]), the boundary conditions of the potential V, on the
boundaries I';; and I, are zero.

Based on equation [3.319], by adding a source term E (see equation [3.153])
expressed by means of the potential o, (see equation [3.158]), the following
expression of the electric field E is obtained:

A
E = —(aa— +gradV +egrado.,) [3.320]
t

In this equation, besides the source term, the electric field is expressed using the A-V
pair of potentials, hence its name of electric formulation. Moreover, equation [3.320]
automatically verifies relations [3.301] and [3.303]. Then, using the behavior law [1.20],
the expression of the current density in ). can be written in the following form:

A
J= —(S(aa— + gradV + egrado.,) [3.321]
t

If in equation [3.302] the magnetic field is replaced by its expression given by
equation [3.317] and the current density by equation [3.321], we then obtain:

A
curly ™' (curlA) +o(aa—t+gradV) =—eogrado,, [3.322]
Introducing instead the support field B, (see equation [3.158]), we have:
1 0A
curly™ (curlA)+ G(E +gradV) =ecf, [3.323]

It is recommended to also verify equation [3.304], which is performed by
imposing the divergence operator to relation [3.321].

Then, we can write:
. 0A
d1v(<5(a— + gradV + egrado.,.)) =0 [3.324]
t
Similarly, with the support field B.:

div((s(%—A +gradV —ep,)) =0 [3.325]
t
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The systems of equations [3.322] and [3.324] or [3.323] and [3.325] correspond
to the electric formulation of a magnetodynamics problem with an electromotive
force as the source term. It should be recalled that the source field E; is defined only
on the conducting domain €. The same is valid for the support field B, and the
associated potential .

To extend the equations to be solved to the complete domain €2, the coupling
with the magnetostatics formulation is naturally made. Indeed, the vector potential A
is defined on the entire domain (see equation [3.316]). Therefore, it also appears as
an unknown of the magnetostatics problem, on the domain €,. Moreover, since the
fields B and H depend only on the vector potential (see equations [3.316] and
[3.317]), the normal component of B and the tangential component of H will be
naturally continuous on the boundary I'; between Q. and €2,. Furthermore, it can be
verified that the vector potential magnetostatic formulation in the domain €, can be
deduced from the magnetodynamic formulation. Indeed, as the conductivity ¢ is
zero in €, equation [3.325] is naturally verified and relation [3.323] becomes:

curl(u'curlA) = 0 [3.326]

It can be noted that the above equation relates only to A and that in the
non-conducting domain, where the electric field E is not defined, the scalar potential
V is not defined either, and therefore there is no need to determine it. The scalar
potential will only be calculated on €., though the latter may be considered as
existing throughout the domain.

As conductivity G is equal to zero on €2 (see equation [3.307]), and the vector
potential A is defined throughout the domain Q, equations [3.323] and [3.326] can
be regrouped. The system of equations to be solved then has the following form:

curlu*‘(curlA)+c(aa—‘?+gradV)—oe B.=0 on Q [3.327]

diV(G(%—? +gradV—ef,))=0 on Q [3.328]

NOTE.— It should be noted that equation [3.328] is obtained by applying the
divergence operator to equation [3.327]. This result is quite expected, considering
that equations [3.327] and [3.328] are built, respectively, from equations [1.5] and
[1.6] and that equation [1.6] is obtained by applying the divergence operator to
equation [1.5]. However, to simplify the developments, the two expressions will be
used in the following.
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It should be recalled that the scalar potential V should be determined only on the
domain €, and the vector potential A on the entire domain €.

3.6.1.1.2. Imposed current intensity

The current intensity I(t) is now imposed on the boundaries I',; and I',. In order
to solve the problem in the domain Q, we can use the system of equations [3.327]
and [3.328] where the unknowns are the potentials A and V and the source term “e”.
As the current I is imposed, the electromotive force e becomes an additional
unknown of the problem. A new equation should then be introduced, and this is
obtained by expressing I as a function of A-V potentials and of the electromotive

force. To this end, a power balance is written.

[}

In magnetodynamics, the instantaneous power “p” is written as:

p = [[], E-JdT + jjjgi)—':.Hdr [3.329]

Expressing E according to [3.320] and B as a function of the potential A, we

have:
p= —IIIQ%—?.JdT - J-J. o gradV.Jdt

- J. J J ¢ grado, . Jdt+ J-J.J.Q deT

Let us now consider the first term of the integral on the right and replace the
current density J by its expression as a function of H (see equation [3.302]). Using
relation [2.27], for vector operators, we can write:

—IJ-J.Q%—?.curlHd’c _ _J'J'.[Q(acglt'lA)_Hd,c_(ﬁﬁr(n /\aa—?)_HdS [3.331]

[3.330]

Concerning the surface integral of the above equation, given that for the example
mentioned A € Hy(curl, Q), it is equal to zero. Based on this result, equation [3.331]
can be rewritten as follows:

- ”Q%—‘?.Jdr - _mg(aa;: 1) e [3.332]

Taking this result into account, the first and the last term of equation [3.330]
cancel each other out. On the contrary, it can be shown that the second integral, on
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the right-hand side of equation [3.330], is also equal to zero. Indeed, it can be
rewritten using formula [2.23] of vector operators. Moreover, as the current density
J is zero in the subdomain € (see equations [3.310] and [3.311]), the volume
integral is limited to the subdomain €. Then, we have:

[Il, gradv.Jde=—[[[, VdivJdt+§. VIndS=0 [3.333]

Since the current density is divergence free, the first term on the right-hand side
is equal to zero. As for the term related to the surface integral on I, it can be
decomposed into three parts, as shown in equation [3.309], namely I';;, I';; and Tj.
On the one hand, on the boundaries I'.; and Iy, the scalar potential V is imposed to
zero due to the introduction of the source term ¢, (see the function space of potential
V, equation [3.319]). On the other hand, the normal component of the current
density is zero on the boundary T

Let us again consider the expression of power, equation [3.330]. Considering
equations [3.332] and [3.333], the following can be written as:

p = —[f| e grada, Jdt [3.334]

Given that the current density J is zero in the non-conducting subdomain €2, the
integral over volume € can be contracted to an integration over .. The power can
also be expressed using the global electric quantities “e” and “I”. This leads to the
following succession of equations:

p=el=-[[], egrado,.Jdt [3.335]

By identification, the current I can be expressed as follows:
I= —HL,Z grado...Jdt [3.336]
Or, by introducing the support vector B (see equation [3.158]), we have:

I= [l BeJdr [3.337]

If the current density is replaced by its expression given in equation [3.321], we
can write:

1=~ Beo(egrado, + aa—A +gradV)dt [3.338]
¢ t
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Using equation [3.158], this relation can be rewritten as follows:
0A
1=—[[o, Be-o(-eBe + ==+ gradV)dv [3.339]
N t

In this configuration, the objective is to solve the system composed of equations
[3.327] and [3.328] coupled with equation [3.338] or [3.339]. Furthermore, it should
be recalled that the gauge condition on A should be added. Concerning the electric
scalar potential V, the gauge condition is naturally provided, as V =0 is imposed on
the boundaries I',; and T',.

3.6.1.2. Magnetic formulation T-¢

Let us now focus on the magnetic formulation in terms of the electric vector
potential T and the magnetic scalar potential ¢. For this formulation, when the
current intensity I(t) is imposed, the source terms appear naturally in the
developments. On the contrary, when an electromotive force e(t) is imposed, an
additional equation is required, similar to the A-V formulation when current
intensity is imposed.

3.6.1.2.1. Imposed current density flux

Let us consider the problem represented in Figure 3.23 having as a source term
the flux I(t) of the current density. Moreover, let us recall the boundary conditions
for the domain €., which can be stated as follows:

I, =T, UT,UTl; with EAn|. =0,ke{l,2} and J.n|. =0 [3.340]
ek J

As previously mentioned (see equation [3.311]), the current density is extended
to the entire domain with J = 0 in €, while maintaining J.n|r; = 0.

Finally, on the boundary I" of the domain €, we have:

I =I,uT, Ul ie: Bn| =0 [3.341]

Similar to electrokinetics (see section 3.4.1.2.1), in the presence of an imposed
current I, a source current density J is defined, extended to the entire domain Q
(with Js = 0 in £, and J,.n|r; = 0), such that:

divd, =0, -Ur J,nds =1, with ke {1,2} ie. J, € H(div0,Q) [3.342]
ek
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In this expression, n represents the outgoing normal on the boundaries. On the
contrary, as noted after equation [3.19], for a vector field with conservative flux, in
this case the current density Jj, the integral over I, or I'.; can be replaced by any
surface A (see Figure 3.23) whose contour ¥, belongs to the boundary I'; surrounding
the domain Q..

Introducing the source term J; (see equation [3.172]), the current density in the
domain Q is written as:

J=J, +J [3.343]

where J' represents an unknown of the problem. Considering the properties of J and
J;, the current density J' is extended to the entire domain Q. Then, the current
density J' is defined by:

divd'=0, ﬂ' J'nds =0 with J'e H(div0,Q) [3.344]
A

Like the fields J and J;, J'= 0 in  and J'.n|; = 0.

The source current J can be written, using a A; support vector field, as shown in
the case of electrokinetics by equations [3.174] and [3.175]. However, A; extends to
the entire domain by considering it equal to zero on €2 similarly to the current
density J; (see equation [3.344]). Then, we have:

J, =D, by =0in Q, divk, =0, ﬂ ) nds =1
A [3.345]
and A;.n FJ:0 ie. Ay e H(div0,Q)

Let us recall that surface A, whose contour is denoted by 7y, lies on the boundary

I'j (see Figure 3.23). It is possible to consider a surface A, and therefore, 7y, its

contour in €, in contact with the boundary I',. This does not change the properties

of A; since, by continuous transformation, Y, can be back to a contour surrounding

T

Since the domain Q is simply connected, the support field A; can be expressed
using an associated vector potential ; such that:

Ay =curly;, with y; € H(curl,Q) [3.346]
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NOTE.— The current density J and therefore J', J; and the source field A; are
extended to the entire domain Q, which is simply connected. Then, there is no
condition on normal components of J, J;, J' and A;, on the boundary T',. A source
potential ; can then be introduced without introducing any cut. This would not have
been the case if the domain of definition of J and its associated quantities had been
restricted Q. (see equations [3.310] and [3.311]). In this case, the domain of
definition for J, and therefore for A;, would have been restrained to €., with a not
simply connected boundary of I’} type on which A;.n = 0 should be imposed. But such
a constraint, in the case of a not simply connected boundary (see section 3.2.1.2.2), a
cut should be introduced to define correctly a ¥, type potential. Similarly, the domain
Q, being not simply connected, a cut should have also been introduced for the latter,
to take into account the current I flowing through Q..

Having defined the current density J;, the objective is to determine the
expression of J'. As shown in relation [3.344], J' € H(div0, Q) and can therefore be
defined using an electric vector potential T. Then, we have:

J'=curlT ie. Te H(curl,Q) [3.347]

Since the current density J' is equal to zero on €, the potential T equal to zero
can be imposed on €. This is quite compatible with the continuity of the tangential
component of T on the boundary I'; and with J'= curlT = 0 on Q. In this case, the
potential T remains unknown only on Q.. It should be recalled (see equation
[3.344]) that the flux of the current density J' through a section of the conductor is
equal to zero. Though TI’j is not simply connected, this property allows us to impose
homogeneous boundary conditions on the tangential component of T on the entire
surface I';. Under these conditions, based on equation [3.347], a restriction of T on
Q. can be defined such that:

J'=curlT with Tan|. =0 ie Te Hr (curl,Q,) [3.348]

Considering equations [3.343], [3.345] and [3.347], the current density J can
then be written as follows:

J =Ii; +curlT [3.349]

Or using the associated potential ¥;:

J =Ieurly; +curlT [3.350]
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Using the behavior law [1.20], the expression of the electric field on € is:
E=c" (Ieurly; +curlT) [3.351]

Using equations [3.302] and [3.350], the following relation can be written on the
entire domain Q (T being defined on ) (see equation [3.347]):

curlH = Icurly; +curlT [3.352]

which can be written as:
curl H-T-1Iy;)=0 [3.353]

Since the domain € is simply connected, the magnetic scalar potential ¢ (see
equation [2.32]) can be introduced as follows:

H =1Iy, + T—gradep, with ¢ H(grad,() [3.354]

Besides the source term I, the magnetic field is expressed using the T-¢ pair of
potentials, hence the name magnetic formulation. Finally, for the scalar potential ¢
to be uniquely defined, its value must be fixed at a point of the domain €.

Based on relation [3.354], the magnetic flux density can be written, via the
magnetic behavior law [1.26], as follows:

B = u(Iy; + T — gradg) [3.355]

At this stage of our developments, equations [3.350] and [3.354] verify,
respectively, equations [3.302] and [3.304]. Equations [3.301] and [3.303] should
also be verified. As for the first equation, replacing the electric field by its
expression given in equation [3.351] and the magnetic flux density by equation
[3.355], the following relation is obtained on €.

curl((s_1 (Ieurly; +curlT)) = —% (WIy; + T —grado)) [3.356]
Gathering the source term on the right-hand side, the following can be written:
- 0
curl(c” curlT) + > (W(T—grado)) =

3 [3.357]
- curl(cs_llcurl)(I ) —g(u Iep)
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For the second equation [3.303], the magnetic flux density is replaced by
expression [3.355], hence:

div(u(Iy + T — grade)) = 0 [3.358]

To obtain the solution to the problem on the domain €., the system consisting of
equations [3.357] and [3.358] must be solved, in which the unknowns are the vector
potential T and the scalar potential ¢, coupled with magnetostatic equations.

The potentials y; and ¢ are defined on the entire domain (see equations [3.346]
and [3.354]). In the subdomain €, since the vector potential T is equal to zero, the
magnetic field H is written as follows:

H = Iy — grado [3.359]

Similarly, based on relation [3.355], the expression of the magnetic flux density
is:

B = u(Iy; — grado) [3.360]

For the magnetostatics part, based on equations [3.303] and [3.360], the equation
to be solved has the form:

div(u(ly; — grade)) = 0 [3.361]

Finally, the coupling between magnetodynamics and magnetostatics is quite
natural. Indeed, the vector potential T is zero on €y and ¢ is defined on the entire
domain Q. At the interface between Q. and €, namely the boundary T, the
condition J.n = 0 is imposed by means of the properties of the vector potential T and
of the support field A; (see equation [3.349]). Similarly, still on T, the continuity of
the tangential component of the magnetic field H is ensured via the continuity of the
tangential component of y; and of grad@. As already noted, the electric field E was
only defined in the domain €.

The system to be solved is given by equations [3.356] and [3.358] in Q. and
[3.361] in €. However, it can be noted that the vector potential T is equal to zero
on €, (see equation [3.348]) and the scalar potential ¢ is defined (see equation
[3.354]) on the entire domain. It is therefore possible to gather relations [3.358] and
[3.361]. In this case, the system to be solved can be written as follows:
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curl(cs’1 (Ieurly; +curlT))

0 [3.362]
+5(1,L(I)(I +T —gradg))=0 on

div(u(Iy, + T—-grade))=0 on Q [3.363]

3.6.1.2.2. Imposed electromotive force

The source term is now the electromotive force. With the T-¢ electric
formulation, the equations to be solved are given by expressions [3.362] and [3.363].
However, in this system, current intensity I becomes an unknown. To obtain a full
equation system, a new equation is added, in which the electromotive force is
expressed as a function of T-¢@ potentials and of the current intensity 1. To this end,
the power conservation equation [3.329] is again used in the following form:

p=el=[[[, E.Jd‘c+mgaa—?.Hdr [3.364]

In this equation, J and H are replaced by, respectively, expressions [3.350] and
[3.354]. Then, we obtain:

B
el = j I _ E.(curlT-+ leurly, )t + j ”QE'(IXI +T- gradg)dt [3.365]

Using the formulas of vector operators (see equation [2.27]), the first term of the
first integral on the right-hand side can be written as follows:

IJ' EcurlTdt= m‘ curlETdt+ <ﬂ> (n AT)EdS [3.366]
Q Q T

The surface integral of this equation, on the boundary I" of the domain, is equal
to zero. Indeed, I" is the union of three boundaries (see relation [3.308]) or
=T ulnUIlY. If the integral is decomposed into three terms, considering the
properties of the electric field, the integrals over I'.; and I, are equal to zero. The
same is valid for the integral on I}, as the vector potential T is zero in the subdomain
€, and therefore on the boundary. Considering this result, we can write:

j j  EcurlTdt= j j jgcurlE.TdT [3.367]



Maxwell’'s Equations: Potential Formulations 147

Consider now the last term of the second integral of equation [3.365]. Using the
formulas of vector operators (see equation [2.23]), we can write:

mg— gradodt = —|[[, (pdlv( )dr + j':fl_(p— ndS =0 [3.368]

This equation is also zero as the magnetic flux density B belongs to Hy(div0, Q).
Under these conditions, considering relations [3.367] and [3.368], equation [3.365]
is written as:

el = j I (T.curlE + IE.curly, )t + ”.[ (yy + T)de [3.369]

This equation can be simplified by replacing “curlE” by its expression given in
equation [3.301]. After simplification, we obtain:

el = I J.J‘Q IE.curly,dt+ Iﬁ Qaa—]:.lxldr [3.370]

“ 2

The expression of the electromotive force
follows:

e= J.J‘ QE.curl)(1d17+ .”.'[Qaa—]:.xldr [3.371]

This relation can also be written using the properties of the source vector field A;
(see equation [3.345]) as follows:

is deduced by identification as

e= Eldt + ypdt
Bt + i, 22 -

If E and B are, respectively, replaced by equations [3.351] and [3.355], we
obtain:

e= J' ”Q ™! (curIT + Leurly, ). A, Mt
[3.373]

m —u(T grado+1Iy,).y,dt
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Using relations [3.371]-[3.373], the electromotive force “e” can be expressed as
a function of T-¢ potentials and the current intensity “I”.

To solve a magnetodynamics problem, with the T-¢ magnetic formulation, when
the source term is the electromotive force, we have to solve the system consisting of
equations [3.362] and [3.363], in association with expression [3.373].

3.6.2. Imposed magnetic quantities
This section considers the same domain €, consisting of a conducting

subdomain Q., where two parts of its boundary I'; are in contact with the external
domain.

Iy

Figure 3.24. Geometry studied in magnetodynamics:
magnetic quantities imposed on the boundary

The conductor is immersed in an insulating environment €, (then Q = Q, U €Q,).
Through the two gates I}, and I, located on the boundary T, it is supplied by
magnetic source terms that could be a magnetomotive force f,(t) or a flux ¢(t) (see
Figure 3.24). On the external boundary of €, I', boundary conditions are imposed.
It can be noted that the external surface I', of Q (on which B.n = 0 is imposed) is not
simply connected. This is due to the presence of surfaces I, and I, on which
H An=0 is imposed. Then, for the boundary I" of the domain €, the following
boundary conditions apply:

I'=Ty, UTy, Ul with Han|. =0, ke {1,2} and Bn|. =0 [3.374]
hk b
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The boundary I'; of the conducting domain represents a wall for the current
density. Indeed, the boundary conditions on the field H, imposed on I',; and Ty,
imply that J.n =0 (see equation [3.306]). Moreover, since the domain €2, in which
the conductor is immersed, is an insulator, the remaining part of the boundary,
denoted by I, is a wall for the current density. Then:

FC = Fhl U th U F_I [3375]

The magnetic permeability, which depends on the space, will be denoted by p
throughout the domain. We recall that, in the subdomain €., the conductivity is
o # 0. On the contrary, its values are zero in £, (see equation [3.307]).

Similar to section 3.6.1.1, inside the conducting domain €. the
magnetodynamic equations are solved, while in €, those of magnetostatics are
solved.

In this new configuration, the fields E and J are defined only in the domain €,
and, taking into account equations [3.301], [3.304] and the boundary conditions, the
associated function spaces are written as:

Ee H(curl,Q,), Je H,(div0,Q,) [3.376]

The fields H and B are defined in the entire domain Q. For the magnetic field,
equation [3.302] must be solved in Q. and equation [3.207] in Q,. As for the
magnetic flux density, it is governed by equation [3.303] on the entire domain.
Based on their properties, fields H and B are defined, respectively, in the function
spaces:

He Hp or (curlLQQ), Be Hr, (div0,Q) [3.377]

Applying the same approach as in section 3.6.1, the electric and magnetic
formulations will be introduced for the magnetic source terms fu(t) and ¢(t). The
equations of magnetodynamics will be developed in the conducting domain and
those of magnetostatics in €. It will be noted that, depending on the chosen
potentials, the coupling is naturally achieved at the interface between these two
domains.
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3.6.2.1. Electric formulation A-V
3.6.2.1.1. Imposed magnetic flux

In order to take into account the source term ¢(t), a similar approach to the one in
section 3.5.3.1 will be used. The magnetic flux density is decomposed into two
terms, B and B, as shown by equation [3.269], as follows:

B=B, +B' [3.378]

where By represents a source field, the image of the flux ¢ imposed on the
boundaries I'y;; and T'y,. The properties of this field (see equation [3.21]) are given by
the following relations:

divB, =0, J' _[r B,nds=+¢ with ke {1.2}, B,n| =0
3 r [3.379]

ie. Bge Hr, (div0,Q)
The source term B can be expressed on the entire domain Q using a support
field Ay (see equation [3.272]). Based on the field B, A, must verify the following

properties:

divky =0 with [[ honds=1 and 2yn

=0
T [3.380]
e, Ay € Hr, (div0,Q)

NOTE.— The flux of the vector field A, is conservative, and therefore the conditions
of the note following equation [3.19] are met. The surface A (see Figure 3.24)
represents an arbitrary section of the domain Q whose contour Y, must rely on the
boundary T',. If A is reduced, by deformation on the surface I',, the latter merges in
the end with the boundaries I'y,; or I'y; and it can no longer be contracted to a point
on I',. This highlights the fact that the surface I'y, is not simply connected.

Considering its properties, the support field A, can be expressed by means of a
potential ¥, (see equation [3.274]). As the boundary I', is not simply connected,
imposing the constraints on ), requires the introduction of a cut, as shown in
section 3.2.1.2.2. Figure 3.24 shows an example of a possible cut. Under these
conditions, the properties of potential y, can be written as follows:

b = curly,, J %Al =1 with 7, € HY, (curl,Q) [3.381]
Yo
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The function space to which , belongs is built according to equation [3.28].
Having defined the source field By, let us now focus on the magnetic flux density
B' that can be expressed, as shown by equation [3.275], as a function of the vector

potential A, as follows:

B'=curlA, with Ae Hl-b (curl, Q) [3.382]

If B' and By are replaced in equation [3.378] by curlA and ¢A, (or deurly,),
respectively, we obtain:

B = curlA + ¢k, = curlA + ¢curly, [3.383]

The behavior law of magnetic materials [1.26] can be used to express the field H
as follows:

H =p"" (curlA +¢ky) =~ (curlA + deurly, ) [3.384]

To obtain the A-V formulation, equation [3.383] is introduced into equation
[3.301], which leads, on the domain €., to the following relation:

curlE = —% (curlA + ¢curly, ) [3.385]

This equation can be rewritten as:

0
curl(E +8—A+%) =0 [3.386]
ot ot

Considering equation [3.386] and, since the domain €2 is simply connected, the
electric scalar potential V can be defined such that:

d
+ aa—? + % =-—gradV with Ve H(grad,Q,) [3.387]

E

Under these conditions, the electric field E has the form:

d
B2 % vy [3.388]
x| ot
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The current density is then written as:

J
3= oA L 2% | oraav) [3.389]
ot ot

If in equation [3.302], the magnetic field is replaced by equation [3.384] and the
current density by equation [3.389], we obtain:

0
curl (u_lcurl(A + %)) + G(aa—? +gradV + %) =0 [3.390]

The system is completed considering that equation [3.304] is also verified,
hence:

divio(PA + ALZIN gradV)) = 0 [3.391]
ot t
In conclusion, with the A-V formulation, when the source term is the magnetic
flux ¢, the system consisting of equations [3.390] and [3.391] must be solved in the
domain €. To these equations should be added the equations related to the
magnetostatics formulation in €, and the continuity conditions of fields H and B
should be imposed at the interface T’

The equations to be solved in the domain € are [3.207] and [3.303]. The choice
of the magnetic vector potential (see equation [3.383]) allows for the verification of
property [3.303] throughout the domain . Similarly, the magnetic field, via
equation [3.384], is defined in Q. Under these conditions, if the magnetic field,
expressed by relation [3.384], is replaced in equation [3.207], the equation to be
solved in magnetostatics is:

curl ™ (curl(A +¢y,) =0 [3.392]

The electric field is defined only in the domain €. and no constraint is imposed
on its tangential component. On the contrary, the normal component of the current
density must be equal to zero on the boundary of the conductor. This property is
imposed on the boundaries I',; and Iy, via the magnetic field (see equation [3.306]).
For the boundary I, it is imposed via equation [3.391]. The fields H and B are
defined on the entire domain and no constraint is imposed at the interface between
Qo and Q..
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Under these conditions, for the study of the problem represented in Figure 3.24,
equations [3.390] and [3.391] in the domain €., and in addition equation [3.392],
must be solved in €. The vector potential A is defined on the entire domain Q
[3.382]. Moreover, conductivity ¢ is equal to zero in the subdomain €, (see
equation [3.307]).

Under these conditions, relations [3.390] and [3.392] can be gathered. Then, the
system of equations has the following form:

0
curl (W curl(A + %)+ G(aa—? +gradV +%) =0 on Q [3.393]
d
div(c(aa—?+% +gradV))=0 on Q_ [3.394]

NOTE.— It can be noted that equation [3.394] is deduced from equation [3.393] when
the divergence operator is applied. In fact, a configuration equivalent to the one
analyzed at the end of section 3.6.1.1.1 (see note after equation [3.328]) is obtained.

3.6.2.1.2. Imposed magnetomotive force

For the studied geometry (see Figure 3.24), the magnetomotive force f, is
imposed. The flux ¢ then becomes an unknown of the problem. The system
consisting of equations [3.393] and [3.394] should therefore be completed with an
additional equation that is obtained from a power balance. The objective is to
express the magnetomotive force as a function of A-V potentials and of the
magnetic flux ¢.

The power “p” (see equation [3.329]) is written as follows:
oB
p=[ll, Eddu+ ], - Hdt [3.395]

The first term on the right-hand side is integrated over €, taking into account
the function space to which the current density J belongs (see equation [3.376]). E is
expressed using relation [3.388] and B as a function of A and A, (see equation
[3.383)).
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Then, the expression of power is:

p=~[[], 2+ 220 a0 ], eraav.ae

J' J' I curlA (‘Z[vq,)) Hde

[3.396]

Let us now consider the first term of the integral on the right-hand side.
Considering equation [3.302] and the properties of the vector operators (see equation
[2.27]), this integral can be rewritten on the domain Q (since curlH =J on Q_ and
curlH = 0 on Q) in the form:

H L5 curlHde = m'g(ac‘; 1A Hdr- @F (n /\aa—?).HdS [3.397]

Concerning the surface integral of equation [3.397], given that A € Hp,(curl, Q)
and H € Hpy,;uro(curl, Q), it is equal to zero. In fact, by decomposing the boundary
I and using the properties of the mixed product, we have:

@Sr(n 9A) Hds = ” (n/\—)HdS

[3.398]
+“’ Han) 2ds=0
Ty, Ul ot
Based on this result, equation [3.397] can be rewritten as:
deurlA
_[ J’ 92 curlHdt = J' ﬂ ( ).Hdt [3.399]
Q9 Q odt

On the contrary, the second integral on the right-hand side of equation [3.396] is
also zero. In fact, it can be rewritten, again using the formulas of vector operators
[2.23], in the following form:

[l gradv.Jdt=—[ff, Vdividt+{f. VIndS=0 [3.400]

Since the current density is divergence free, the first integral on the right-hand
side is equal to zero. The same is true for the second integral, as on I'; = I';UIy, Ul
(see equation [3.376]), we have J.n = 0.
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Consider now the expression of power, defined by equation [3.396]. Taking into
account the results given by equations [3.399] and [3.400] and after rearrangement,
we can write:

oo e

+Hjﬂ@ﬂdr+%jﬂgwdr

[t}

After simplification and by expressing the power “p” as a function of global
quantities, we obtain:

[3.401]

o

p:
Im

d d
= =Sl oA+ D[], g H [3.402]

By identification, the expression of the magnetomotive force is deduced as
follows:

Fm = [[lg o Hdt = [[[o 24-ddT [3.403]

NOTE.— The above expression can be rewritten by again using the vector operators.
Indeed, let us consider the first integral term on the right-hand side, in which the
support field A, is replaced by its potential ), defined by relation [3.381]. Applying
the formula [2.27], we obtain:

j '[J'Q curly, H dt = j IJ.QX¢.curlH di— @r(n AH)2,dS [3.404]

Let us now consider the surface integral, which can be decomposed as follows:
c_ﬂS (n AH).,dS = H (n AH),dS+ H (n A H),dS [3.405]
r [y Ol I,

Considering the first integral on the right-hand side, on the boundary I'y,; U, it
appears as the tangential component of H. As this tangential component is equal to
zero on [y, and T, the integral term is also equal to zero. For the second integral on
the right, we again refer to the domain of definition of potential y, (see equations
[3.381] and [3.31]). On I}, %, is decomposed into two terms %’y and ¥co. For %o, its
tangential component on I', is equal to zero. As for the second term Y, it is
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tangential to I, and perpendicular to the cut (see Figure 3.2b). Then, equation
[3.405] is written as:

f-(n A H)odS = | jrb (Leo A~ m).HAS [3.406]

Grouping equations [3.403], [3.404] and [3.405] and considering that curlH = J,
after simplification, we have:

fn = m'g Xo-curlH dt— @F(n AH)7,dS

_ I j o ddT=— I J'r (ep Am)HAS [3.407]

The vector product )cyAn represents a field collinear with the cut. Under these
conditions, the last integral term corresponds to the circulation of field H along the
cut between gates I, and I'y,. This validates equation [3.403] as the definition of the
magnetomotive force f,.

Let us consider equation [3.403] again and replace, on the one hand, the field H,
via the behavior law [1.26], with the magnetic flux density B expressed by equation
[3.383] and, on the other hand, the current density J with its expression [3.389].
Then, we obtain:

fn = L' (curlA + ¢k, ) hydt
” ’ [3.408]

+ mg o(%(A +0y,) +gradV).g,de

For this formulation, the system of equations to be solved has the form of
equations [3.393], [3.394] and [3.408], where the unknowns are the potentials A and
V and the flux ¢.

3.6.2.2. Magnetic formulation T-¢

For the magnetic quantities imposed on the boundary (see Figure 3.24), the T-¢
formulation will be developed. With this formulation, it is quite natural to introduce
the magnetomotive force f,(t) as a source term. On the contrary, an additional
equation should be considered in order to impose the magnetic flux ¢(t).

3.6.2.2.1. Imposed magnetomotive force

For the electric formulation, having f,(t) as the source term, let us first use the
property of the current density J defined by equation [3.304]. Moreover, as noted
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above, the boundary condition of J is wall-type, throughout the boundary of the
domain €, (see equation [3.376]). With J € Hy(div0, Q.) and since the domain €. is
contractible, an electric vector potential T can be introduced (see equation [2.31]),
such that:

J=curlT and TAn

r, =0 ic.: Te Hy(curl,Q,) [3.409]

It can be noted that T An =0 can be directly imposed on I'j even though the
latter is not simply connected, because, unlike the case of section 3.6.1.2.1, the flux
of the current density flowing through a surface A (see Figure 3.24) is zero. The
circulation of T on the contour surrounding the domain €2, is therefore equal to zero
this time, unlike the case in which electric quantities are imposed. Indeed, the
addition of a support potential is not required in order to take into account the
current I, as in the case of section 3.6.1.2. Moreover, the domain of the definition
of J, and therefore that of T, can be extended, on the entire domain C taking J =0
and T = 0 on €. The conditions [3.409] can then be rewritten in the following form:

J=curlT, TANn

r, = 0,T=0 on Q, ie. Te H,(curl,Q) [3.410]

Since the source term is the magnetomotive force, the developments used for its
introduction into the formulation are similar to those presented in section 3.5.2.1.
The magnetic field H is then decomposed into two terms:

H=H, +H [3.411]

Considering the properties of H (see equation [3.377]), the field H' belongs to
the function space Hpyomo(curl, Q). Concerning the source field H, it makes it
possible to take into account the constraints imposed to the magnetic field on the
boundaries T}, and Ty, It is therefore defined in the function space
Hruiorme(curl0, Q) and can be represented by a support vector field B, (see equation
[3.213]) such that:

H = f.B; with B, e H, _r , (curl0,€) [3.412]

The properties of field B are identical to those defined in section 3.5.2.1 (see
equation [3.214]), hence:

curlf, =0, B /\n|rhlurhz

-0 andj B,.dl=1 [3.413]
Y12
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where ¥, represents an arbitrary path, in the domain €, linking the gates I'y; and T',.
A possible path v, is represented in Figure 3.24. Based on the function space in
which the support field B is defined, a potential o (see equation [3.214]) can be
introduced, such that:

Bs = —gradocs, OLS|1"111 = Oy O

ie. o, € H(grad,Q)

R = Ch2e O~ G2 =1 [3.414]

For the choice of constants, a simple solution is to consider oy,; =1 on I',; and
Ol = 0 on rez.

Based on equation [3.302], replacing J by its expression given by equation
[3.409] and H by equation [3.411], and given that Hy€ Hpy mo(curl0, ), we can
write:

curl H'-T) =0 [3.415]

This relation allows for the introduction of the magnetic scalar potential ¢ such
that:

H'-T=—-grado with ¢ Hy . (grad, Q) [3.416]

On the gates I',; and Iy, the tangential component of the field H is equal to zero
and the boundary conditions are supported by the field H. This is why the magnetic
scalar potential is equal to zero on these two equipotential surfaces.

Gathering equations [3.411], [3.412], [3.414] and [3.416] and rearranging them,
we obtain the expression of the magnetic field in the domain € as follows:

H=T - f,gradog — grado [3.417]

Then, the magnetic flux density can be written using the behavior law [1.26] as
follows:

B = W(T - f,grado — grado) [3.418]

The magnetic flux density B can also be written as a function of the support field
Bs (see equation [3.414]):

B =w(T + f,Bs —grado) [3.419]
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As for the electric field, using equation [3.409] and the behavior law [1.20], its
expression in the conducting domain is:

E=0"curlT [3.420]

At this level of development, the electric vector potential T and the expression of
the magnetic field given by equation [3.417] verify, respectively, the expressions
[3.304] and [3.302]. If in equation [3.301] the electric field is replaced by its
expression given in equation [3.420] and the magnetic flux density by equation
[3.418], then the equation below is obtained.

curlo 'curlT = —%(u(T — f,grado, —grado)) [3.421]

This expression can also be written using the support field B, of equation [3.414]
as follows:

curlo 'curlT = —%(u(T + £..B, —grado)) [3.422]

To obtain a full equation system, equation [3.303] should be verified. To this
end, the magnetic flux density is replaced in this equation by its expression given in
equation [3.418] as follows:

div((T — f,gradog — grade)) =0 [3.423]
In this equation, [, [3.414] can also be introduced as follows:
div(W(T + B — grado)) =0 [3.424]

Equations [3.421] and [3.423] or still [3.422] and [3.424] represent, for the
magnetic formulation, the system to be solved in the conducting domain.
Completeness requires taking into account the equations of magnetostatics in £, and

verifying the conditions of continuity at the interface between subdomains €. and
Q.

In the domain €, we have to solve equations [3.207] and [3.303] with the
function spaces defined in equation [3.377]. Given the absence of current density in

Qo, the electric vector potential is zero. Under these conditions, gathering equations
[3.303] and [3.418] with T = 0, we obtain:

div(u( f,grado + grade)) =0 [3.425]
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As above, the support field B, can also be introduced as follows:
div(u(fmPBs — grade)) = 0 [3.426]

which corresponds to the magnetic scalar potential formulation in magnetostatics.

Let us now verify the conditions of continuity at the interface between the
subdomains €, and €. For the current density, its normal component is naturally
equal to zero, considering the boundary conditions imposed on I, for the magnetic
vector potential T (see equation [3.409]). The electric field E is uniquely defined in
the conducting domain (see equation [3.376]); therefore, there is no particular
constraint on the boundary I'.. As for the conservation of the tangential component
of the magnetic field, it is ensured via potentials 0 and @ (it should be recalled that
T A n =0 on I?). Finally, the conservation of the normal component of B is ensured
via equations [3.423] or [3.424] associated with [3.425].

The study of the problem represented in Figure 3.24 involves solving equations
[3.422], [3.424] and [3.426]. Nevertheless, as the vector potential T is defined on the
entire domain Q (see equation [3.409]), it is equal to zero on €. It is therefore
possible to gather equations [3.424] and [3.426]. Under these conditions, the system
of equations to be solved has the following form:

curlcflcurlT+%(u(T+ fiuB, —grade))=0 on Q, [3.427]

div((T+ £, —grade)) =0 on Q [3.428]

3.6.2.2.2. Imposed magnetic flux

When the source term is the magnetic flux ¢(t), the configuration of the problem
is the same as that given in Figure 3.24. The unknowns are then T in the domain Q.
¢ throughout the domain Q and the magnetomotive force f. Similar to
section 3.6.2.1.2, an additional equation is needed in this case to express the flux ¢
as a function of potentials T-¢ and of the magnetomotive force. To this end, a
similar approach to that in section 3.6.2.1.2 is used, and a power balance is written.
Expression [3.395] is recalled below, taking into account that the current density is
zero in £, as follows:

P = fm % = [l EJddt+ JHQ%—B.Hdr [3.429]
¢ t
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Expressing the current density as a function of the vector potential T (see
equation [3.409]) and replacing the field H by its expression [3.417], we obtain:

H E.curlTdt+ J' H —(T f.grado, —grade)dt  [3.430]

Applying formula [2.27] to the first term on the right-hand side, we have:

mg E.curlTdt = H j  curlETde- #r\ (n AE)TdS [3.431]

Taking into account the properties of the vector potential T on the boundary T,
(see equation [3.409]), the surface integral is zero. This can be readily proven using
the mixed product. Let us consider now the second integral term, on the right-hand
side of equation [3.430], and decompose it using the fact that the vector potential T
is zero on €. Then, the following can be written as:

,[_UQ_ (T - fgrado — grade)dt =

[3.432]
mg — Tdr mg ( fmgradog + grade)dt
Grouping equations [3.430], [3.431] and [3.432], we obtain:
J'H curlE.Tdt+ m 2 Tdr
[3.433]

N Ta—

This equation is simplified if curlE is replaced by its expression given by
equation [3.301]. Then, we obtain:

d oB
fm d—T = —mg E.(fmgradocS + grad@)drt

[3.434]

Let us now consider the last term of the integral on the right-hand side of
equation [3.434], the formulas of vector operators (see equation [2.23]) allowing us
to write:

IHQ gradwdr =[ll, (pdlv( )dr + ﬁr [3.435]
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This equation is equal to zero. Indeed, as the magnetic flux density is divergence
free, the first term on the right-hand side is zero. As for the second term, namely the
surface integral, it is also zero, as the boundary I" consists of the boundaries I, I'y;
and I',. But on I',, we have B.n = 0 and on I'},; and I',, we have ¢ = 0 (see equation
[3.416]). Under these conditions, equation [3.434] is written as:

d OB
Fn d—‘l’ = —full jgg.gradocsdt [3.436]

As the studied domain € is not subject to deformation over time and the term o
is time-independent, the above equation can be rewritten as follows:

do

Im

= —fm % [[[, Bgrado dt [3.437]

By identification, the magnetic flux ¢ can be expressed using the potential oy or
the source field B (see equation [3.414]) up to a constant. This constant is
considered to be equal to zero, as ¢ = 0 when B = 0 on the entire domain. Hence, we
have:

¢ = —[[|,, Bgrado dt = [[f, Bpdt [3.438]

This expression can also be written by replacing the magnetic flux density B
with its expression given in equation [3.419]:

¢ = ~[[fq W(T + finBs — grad¢).grad o dt [3.439]

In conclusion, for a magnetodynamics problem, with the (T-¢) magnetic
formulation and when the source term is the magnetic flux, we need to solve
equations [3.427] and [3.428], to which expression [3.439] must be added.

3.6.3. Summarizing tables

This section offers a synthetic presentation of the main results when the source
terms are global quantities imposed on the boundary of the domain.

For electric quantities (see the studied geometry in Figure 3.23), namely the
electromotive force e(t) or the current density flux I(t), Table 3.7 summarizes the
properties of the source terms and the equations to be solved for the electric
formulation. Again for the imposed electric quantities, Table 3.8 summarizes the
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properties of source terms and the equations to be solved for the magnetic
formulation.

Let us now consider the case when magnetic quantities (¢(t) and f,(t)) are
imposed on the boundary of the domain. The studied geometry is the one in
Figure 3.24. Table 3.9 summarizes the properties of the source fields and the
equations to be solved with the electric formulation. Table 3.10 presents the
synthesis for the magnetic formulation.

Global electric quantities imposed on the boundary

Source term: electromotive force e(t)

Decomposition of the electric field: E = Es + E'

Source field support E, =cB,, B, < Hrelul“ez (curl0,Q,)
two possibilities: B, or o

Eg = —egrado,., o, € H(grad Q)

divB =0,B € H;(div0,Q),
B =curlA, A e Hj(curl, Q)

Properties of the unknowns
B and E', introduction of oB _,
,E'e Hp r, (curlLQ.),

potentials A, V curlE'= _E

0A
E'= _(E +gradV), Ve Hp  r (grad,Q,)

(A-V) electric formulation

curlp.t_1 (curlA) + G(aa—? +gradV)—ocep, =0on Q

Equation to be solved: two

forms are possible B, and

for the functi e .
o or for the function B le(G(aa—?+ gradV—ep.))=0on Q,

Source term: current intensity I(t)

¢ becomes an unknown; an additional equation is needed

Izjjbc Be.Jdt

Table 3.7. Summary of the equations to be solved in
magnetodynamics with the electric formulation for electric
global quantities imposed on the boundary (see Figure 3.23)
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Global electric quantities imposed on the boundary

(T-¢) magnetic formulation

Source term: current intensity I(t)

Source fields, two
possibilities: A; or )

Decomposition of the current density: J = J; + J'

Jg =Dy, e H(div0,Q)

J, =Icurly,;, %; € H(curl, Q)

introduction of
potentials T, ¢

divl'=0, J'e H(div0,Q),

Properties of the unknowns J'=curlT, Te Hp (curl,Q,)
J' (extended in Q) and H, !

curlH =J, He H(curl,Q),
H=T+]Iy; —grado, ¢< H(grad,Q)

Equation to be solved: two
forms are possible with A
and y; or for the function

curl((f1 (Ieurly; +curlT))

+%<uc(lxl +T-gradg))=0 on Q

div(u(Iy; + T—grade))=0 on Q

Source term: electromotive force e(t)

I becomes an unknown; an additional equation is needed

oB
e = [l Eade+ [y 2 e

Table 3.8. Summary of equations to be solved in
magnetodynamics with the magnetic formulation for global
electric quantities imposed on the boundary (see Figure 3.23)
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Global magnetic quantities imposed on the boundary

(A-V) electric formulation

Source term: magnetic flux ¢(t)

Source fields, two
possibilities: Ay or Yo
with a cut on I'y not
simply connected

Decomposition of the magnetic flux density: B = B, + B'

B, = 0hg. kg€ Hr, (div0,Q)

B, = ocurly,, x,€ Hléb (curl,Q)

Properties of the
unknowns B' and E,
introduction of
potentials A, V

divB'=0, B'e Hy, (div0,€2),
B'=curlA, A€ Hp, (curl, Q)

curlE = —%(curlA +ocurly,),E € H(curl,Q ),

d
E= _(a_A +_¢X¢ +gradV), Ve H(grad,Q,)
at ot
curl].i_1 (curl(A + ¢x¢)
- ) A 0
Equation to be solv.ed. +0'(a—+ gradV + ¢X¢) =0 on Q
two forms are possible ot ot

Ay and x4, or for the
function

d
div(o(%—?+%+gradV)) —0 on Q,

Source term: magnetomotive force f,(t)

O(t) becomes an unknown; an additional equation is needed

fm = [, o Hdr=[[{ x0T

Table 3.9. Summary of equations to be solved in
magnetodynamics with the electric formulation for global
electric quantities imposed on the boundary (see Figure 3.24)
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Global magnetic quantities imposed on the boundary

Source term: magnetomotive force f, (t)

Decomposition of the magnetic field: H=H+ H'

Sourc§ ﬁeld support two H, = £, B, B, Hrhlurhz (curl0, Q)
possibilities: B, or ous

Hg = - fhgradog, og € H(grad, Q)

divi =0 Je H, (div0,Q,),

Properties of the unknowns J _
and H', introduction of J =curlT, Te H, (curl,Q)

potentials T, @

H'=T - grado, ¢ € H(grad,Q)

_ d
curlo'eurIT + — (W(T + —grado))=0
Equation to be solved: two ot (W(T+ /P, ~ grade))

forms are possible B, and o or on Q,
for the function [

(T-¢) magnetic formulation

div(W(T + finBs — grade)) =0 sur Q

Source term: magnetic flux ¢(t)

fm(t) becomes an unknown; an additional equation is needed

o= mﬂc Bpgdt

Table 3.10. Summary of the equations to be solved in
magnetodynamics with the magnetic formulation for the global
electric quantities imposed on the boundary (see Figure 3.24)

3.6.4. Tonti diagram

The structure of the Tonti diagram is equivalent to that proposed for static
problems (electrostatics, electrokinetics and magnetostatics). However, the notion of
time must be introduced, which leads to a split in the sequences of function spaces,
as can be noted in Figure 3.25. A three-dimensional structure is then obtained
(Bossavit 1997). The front plane supports the diagram of magnetostatics, while the
back plane supports the case of electrostatics. For electrokinetics, the work involves
the diagonal part of the diagram. It should be noted that the front and back planes
are linked by a time derivative. The function spaces with the boundary conditions
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can then be positioned on the set of physical quantities E, D, J, H and B. Then, the
set of source fields and vector and scalar potentials are placed.

L
Hr, (grad.Q) : \ div
@ | 0

—grad P e Hr, (div.Q)

Hr (curl.Q)H, H.T| IS 5B curl

" X .B,
curl l D il E.E, Hra(cm'l.Q)
Hr, (div.Q)J, J, =" . N orad
I
di LT T T T T T I T AY
v l Pl ‘ﬁ/ Hr (grad.)
0 L5 '

L} ()

Figure 3.25. Tonti diagram for magnetodynamics






4

Formulations in the Discrete Domain

4.1. Introduction

The analytical solution to the formulations proposed in Chapter 3 is not
accessible unless the geometry is extremely simple, but very often these are
academic cases. Since the solution in the continuous domain, which is referred to as
the “exact solution” cannot be obtained, numerical methods can be used. The
application of these numerical methods leads to a discretized model. The resulting
discretized model leads to an approximation to the exact solution, known as the
“discrete solution”. Among the many existing numerical methods, this chapter
focuses on the method that is currently most widely used for solving low-frequency
electromagnetism problems, namely the finite element method.

As a first step, this chapter applies the weighted residual method to the equations
presented in Chapter 3. This method leads to weak formulations, used for the
discretization of Maxwell’s equations. Discrete function spaces are then introduced,
to which the discretized electromagnetic fields belong. These spaces are generated
by basis functions, namely Whitney elements. Space discretization using the finite
element method will then be addressed.

Finally, for the sake of lighter notations, we decided to omit space dependency in
the continuous domain. However, in this chapter, in order to avoid any confusion in
the notations, the quantities in the discrete domain will be marked by an index “d”,
and space dependency will be indicated. For example, the discretized form of the
electric field E will be denoted by E4(x).
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It should be recalled that this book focuses on the theoretical foundations leading
to the construction of a system of equations. For the computer implementation,
specific books can be referred to (Russenschuck 2010; Dhatt et al. 2012; Bastos and
Sadowski 2014; Cardoso 2016). Electromagnetic quantities, such as the force or the
torque, besides the Maxwell tensor, can often be determined using the virtual work
method (Coulomb 1983). The same is valid for the use of software in electrical
engineering (Hameyer et al. 1999).

4.2. Weighted residual method: weak form of Maxwell’s equations
4.2.1. Methodology

Depending on the type of problem posed, either in electrostatics, electrokinetics,
magnetostatics or magnetodynamics and according to the chosen potential
formulation, the systems of partial differential equations to be solved, referred to as
“strong formulations”, were largely developed in Chapter 3. Nevertheless, as
indicated in section 4.1, for many applications, it is impossible to solve these
equations directly and obtain the exact solution. Moreover, based on the strong
formulation, an approximation to the numerical solution cannot be readily obtained.

A more global approach, referred to as the “weighted residual method”, can be
considered. It allows us to pose the problem in an integral form, and not locally, as
for strong formulations. The resulting formulations are referred to as the “weak
formulation”. This approach is expected to facilitate the work in a finite dimension
space of approximation, which makes it easier to use numerical methods. The
objective is to find in this space a solution approximating the exact solution that
minimizes a residue, which leads to the solution of a system of equations. This
section explains the general approach to building weak formulations.

Consider an operator “£”, applied to a vector function U, with, for example,
U € H(£,Q2) and a source term f; and associated boundary conditions. The strong
formulation is written as:

L(U)—f, =0 [4.1]

This reflects a general form of potential formulations already noted in Chapter 3,
for example those of magnetostatics, with equation [3.220] or [3.281]. For these
formulations, operator £ is the divergence (for the first one) and the curl (for the
second one).
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Consider now the integral on the entire domain Q of equation [4.1], weighted by
a function ¥, known as the “weighting function”. Then, it can be written as:

[, (£(U) = f)¥)dt = 0 [4.2]

As will be seen in sections 4.2.2-4.2.5, ¥ will be chosen in the adjoint function
space of H(L,Q2).

The solution U to equation [4.1], known as the “exact solution”, implies, in fact,
that the integral form [4.2] is zero. On the contrary, there is no reciprocity: if the
integral form is zero for any function ¥, equation [4.1] is not automatically verified
at any point of the space. This is referred to as a “weak solution”.

As an illustration of the notion of solution in the weak sense, a specific case is
presented. Consider a function U, defined inside a contractible domain Q of
boundary I". The properties of function U are:

divU =0, U.n|. =0 ie. Ue Hy(div0,Q) [4.3]

The condition [4.3] can be expressed in an integral form using the weighted
residual method. The choice of the weighting functions is generally made, as
mentioned above, in the adjoint function space of the differential operator of the
equation to be solved. In this case, the function space of the differential operator of
equation [4.3] is Hy(div0, Q). Consequently, as shown by equation [2.62], the
weighting functions are Wy € H(grad, Q). The weighted residual method leads to the
integral form, which must be verified for each weighting function of H(grad, ),
such that:

) jQ ydivUdrt = 0 [4.4]

Based on equation [4.4], formula [2.23] related to vector operators is used.
Considering the boundary conditions on the boundary I" of function U, the weak
form can be written as follows:

I} jQ U.gradydt =0 [4.5]

In what follows, U' is the notation for a solution field to equation [4.5], for all the
functions y of H(grad, (2) and we will see to what extent it verifies condition [4.3].
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Since U' verifies [4.5], the reverse operation is performed and, using equation
[2.23], the following can be written:

[[lo, U gradydt = —[[|, wdivU'dt + [[.yU'ndS = 0 [4.6]

Consider now, as shown in Figure 4.1, a subdomain Q' of Q and a scalar
weighting function y' € H(grad, 2), such that W' is non-zero in Q'c Q and is
zero in Q—Q'. On the small size domain ', let us pose the function y' is equal
to 1 except for the vicinity of the boundary I'", where it varies continuously from
1 to zero in a transition zone Z of thickness “z”. It can be verified that the function
V' is continuous. It belongs to H(grad, Q). Since ' is zero on the boundary Q, we
have:

[[vdivudr=[f[,  divude+{[[ y'divU'dr=0 [4.7]
If Ztends to zero, the integral on the transition zone tends to zero and we have:
mguz divU'dt =0 [4.8]

The left-hand side term of equation [4.8] yields, up to a factor (which is the
inverse of the volume of '), the average of divU' on Q'. Since Q' can be taken as
small as needed, and the average of divU' is zero on Q', then divU' is locally zero.
Consider now a family of subdomains €2’ covering the entire domain Q with which
the functions .’ are associated. The set of solutions U' locally verifies relation [4.8]
on all the subdomains Q,’ (the subdomains €’ can be chosen as small as needed),
but not at any point of the domain. The solution is then considered weakly verified
on average on the domain.

I

G,

Transition zone "2"

Figure 4.1. Example of subdomain
Q'c Q2 with a transition zone
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Although leading to a weak solution, the weighted residual method has the
following essential advantages:

—under specific conditions (that are met in the case of potential formulations), it
makes it possible to alleviate the constraints on the function U by transferring them
to the weighting function;

—as will be noted in sections 4.2.2-4.2.5, it makes it possible to naturally
introduce the boundary conditions;

—it highly facilitates the construction of a numerical model leading to an
approximation to the solution to equation [4.1].

For our applications, the scalar or vector weighting functions, denoted by y or
¥, respectively, will be chosen in the adjoint spaces of the operators grad, curl and
div that were introduced in section 2.6.1. The integral formulation [4.2] will not be
used as such in practice, but under a modified form, following an integration by
parts that features an adjoint operator. This will lead to the weak formulation that
imposes fewer differentiability constraints on the solution.

Sections 4.2.2-4.2.5 present the application of the weighted residual method to
various strong potential formulations presented in Chapter 3. This will be referred to
as the “weak form of the formulation” or the weak formulation. For the sake of
lighter notations, the fact that the solution resulting from the weak formulation is an
approximation to the solution will not be indicated.

4.2.2. Weak form of the equations of electrostatics

For the development of the weighted residual method in electrostatics, let us
consider again the example presented in Figure 3.11. For this example, we are in the
presence of a domain Q composed of two electrodes in contact with the external
environment, denoted by &, and %, and an internal electrode ;. It should be recalled
that for the studied structure, the studied domain Q' is defined by Q'=Q — Qg;. The
source terms can be circulations “f;” of the electric field (see equation [3.108]) or
the total charges Qi on the electrodes (see equation [3.110]). Section 4.2.2.1 will
focus on the scalar potential formulation, and section 4.2.2.2 will focus on the vector
potential formulation.

It is important to recall that the equations to be solved are given in equations
[3.104] and [3.105] with the dielectric behavior law [1.19]. The boundary conditions
on fields E and D are defined in equation [3.106], and the function spaces to which
they belong are given by relation [3.107].
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4.2.2.1. Scalar potential V formulation

For the scalar potential formulation, in the presence of two source terms fi; and
/23 (see section 3.3.2.1.1), the electric field can be written in the form [3.116]:

E = fi3P13 + fo3By; —gradV, Ve Hr r or, (grad,Q’) [4.9]

with B;; defined by relation [3.113]. The electric displacement field is given by
equation [3.117] as follows:

D =e(f13B13 + f23B23 — gradV) [4.10]

To obtain the scalar potential formulation, in the presence of the two source
terms, the electric displacement field is introduced as defined by equation [4.10]
based on equation [3.105]. This yields:

div(e( f13B13 + f23B23 —gradV)) =0 [4.11]

To apply the weighted residual method, the function space of the weighting
functions must be chosen. As indicated in section 4.2.1, it is chosen in the adjoint
space of the differential operator. In equation [4.11], the divergence operator is
applied to the expression of the electric displacement field with, as indicated by
relation [3.107], D € Hry(div0, Q"). According to Table 2.1, it can be shown that the
adjoint operator is the gradient and the associated space Hrejureaures (grad, Q). The
weighting functions are therefore scalar such that W € Hrejoreaures; (grad, Q'). These
various points are summarized in Table 4.1.

Associated

Vector operator function space

Adjoint operator Weighting function

div Hrq4(div0, ") —grad W € Hreiureoures(grad, Q')

Table 4.1. Electrostatics, scalar potential V formulation; vector
operator and function space of potential and weighting functions

Applying the weighted residual method to equation [4.11] yields:

[l dive( f13B13 + f23B23 — gradV))yde =0 [4.12]
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Having defined the gradient of the weighting function , it is then possible to
use formula [2.23] related to vector operators. Equation [4.12] can then be rewritten
as follows:

— [[[ey (e(gradV — f13B13 — f23B23)). gradyde

4.13

+ ff- we(fi3B13 + f23B23 — gradV).ndS = 0 A

It can be noted that the transition from equation [4.12] to equation [4.13]

alleviates the differentiability conditions on the term

“div(e(f13B13+ f3B23— gradV))”. The unknown V should be differentiated twice in

[4.12], whereas it should be done only once in [4.13] “by transferring” the
differentiation order on the weighting function .

As indicated in section 4.2.1, it can be readily verified that any solution to
equation [4.11] is a solution to equation [4.13]. On the other hand, as mentioned
previously in section 4.2.1, a solution to equation [4.13] does not automatically
verify equation [4.11]. It can then be said that the solution to equation [4.13] is a
weak solution.

The integral on the boundary T' in equation [4.13] can be decomposed by
introducing terms related to boundary conditions of a different nature:

@FWS (f13B13 + f23B,; —gradV).ndS =

I} W e(fisB3 + fosBos — gradV)nds + [4.14]
Iﬂcl UFCZ Urc}

.Ur W €( f13B13 + f23B2; —gradV).ndS

To analyze the contributions of each term, in relation to the boundary conditions
on the boundaries I'.;Ul'; Ul 3 and Iy, we consider the relations given in equation
[3.106] and the domain of definition of the weighting function y. As for the
contribution of the terms related to the boundaries I'.;UI ., UL, it is zero, since
VY € Hreiureaures(grad, Q). For the boundary I'y, we have D.n |y =0 (see equation
[4.10]), which in our case is €(fi3P13 + f23P2 — gradV).n = 0. Under these conditions,
the surface term related to this boundary is set to zero.

The weak form of the scalar potential formulation is written as:

mg egradV.gradydt = mg e(f13B13 + f23B23). gradydr [4.15]
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Let us analyze this expression in terms of the equations to be solved. The choice
of the electric scalar potential V, which is the unknown of the problem, and that of
the fields B, supporting the source terms with their properties, implies that equation
[3.104] is automatically strongly verified. The same is true for the boundary
conditions of the electric field on the boundaries I'.;Ul'; I3 via the function
spaces to which V and the source fields defined by B; belong. On the other hand, it
should be noted that equation [3.60] is weakly verified via the weighted residual
method. For the electric displacement field, the boundary condition on T’y is also
weakly verified. Indeed, it is imposed by the surface integral form of equation [4.14]
considered zero in equation [4.15].

Considering now as a source term the total charges Qy on the electrodes, the
circulations f;j become the unknowns of the problem. To obtain a full equation
system, relations [3.125] and [3.126], which are recalled below, are added to
equation [4.15]:

Qi = [[[ o &B13-(f13B13 + f23B23 — gradV)dt [4-16]

Q2 = [[[ o eB23.(f13B13 + f23B23 — gradV)de [4.17]

This leads to a system of equations to be solved, in which the unknowns are the
scalar potential V and the circulations f;.

NOTE.— The functions B3 and B,; play the role of weighting functions in expressions
[4.16] and [4.17], respectively, in the same way as the field grady in the weak
formulation [4.15]. These functions are in both cases curl free. On the other hand, it
can be noted that the circulations of B;; and By differ from zero between two
electrodes, which is not the case for the function grady. This shows that adding the
two equations [4.16] and [4.17] enriches the space of weighting functions, which
becomes Hreioreaores (grad, Q') U { Bi3,Ba3}. In general, and as will be seen in what
follows for other cases (electrokinetics, magnetostatics, magnetodynamics), taking
into account source terms that do not appear naturally in the potential formulations
leads to an enrichment of the space of the weighting functions.

Hybrid source terms can also be considered, namely the total charges Qi on an
electrode and a circulation fj. Assume that the imposed source terms are the
circulation fi; and the total charges Q,. Based on equation [4.11], it can be noted that
the unknowns are the scalar potential V and the circulation f;. The system of
equations to be solved is then composed of the integral form [4.15] and equation
[4.17]. Conversely, if the source terms are Q, and f3, to have a full equation system,
equation [4.15] is added to equation [4.16].
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4.2.2.2. Vector potential P formulation

For the vector potential formulation, when the source terms are the total charges
Q, and Q,, the superposition theorem is applied to express the electric displacement
field. Based on equations [3.138] and [3.139], the electric displacement field D is
then written as:

4.18
D=QA;3 +Q, Ay; +curlP with Pe Hp- (curl, Q') [4.18]

where the fields A3 and Ay; are defined, respectively, by relations [3.131] and
[3.132]. Based on the electric displacement field D defined by equation [4.18], the
electric field can be expressed using the behavior law [1.19] as follows:

[4.19]
E=¢"(curlP + QA5 +Q,hy;) with E€ Hp r o r (curl0,Q)

Introducing the expression of E thus obtained in equation [3.104], the equation
to be solved has the following form:

curl(e” (QA3 +Q,yhy; +eurlP)) =0 [4.20]

To apply the weighted residual method, the weighting functions are chosen in the
adjoint space of the differential operator. In the case of equation [4.20], the
differential operator is the curl, applied to the expression of the electric field, which
is E € Hrejreaures (curl, Q). In this case (see Table 2.1), the adjoint operator is the
curl and the chosen vector weighting function is ¥ € Hpy(curl, Q). These various
points are summarized in Table 4.2.

Associated

Vector operator function space

Adjoint operator | Weighting function

curl Hreioreoures (curl0, Q') curl ¥ e Hry(curl, Q')

Table 4.2. Electrostatics; vector potential P formulation; vector
operator and function space of the potential and weighting functions

Under these conditions, the application of the weighted residual method to
equation [4.20] yields the following expression:

”J'Q curl(e™ (Q k3 +Q, s +curlP)).¥dt = 0 [4.21]
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In order to lower the level of differentiability of the potential P, formula [2.27]
related to vector operators is applied. The Ostrogradski theorem can be used to write
equation [4.21] by introducing the I" boundary integral as follows:

m 7 (Qh3 + Qyhyy + curlP).curl¥dr
o

[4.22]
—<ﬁ> (€' QA3 + Qyhys +eurlP) An) WdS =0
T

Based on this equation, the boundary integral term can be decomposed by
introducing two terms related to the boundaries 'y and I',;Ul'pUl; in the following
form:

gfj)r (€ (Qh3 + Qah o +curlP) An).WdS =
J'J'r (€ (QA45 +Qyh o3 +curlP) An).¥dS [4.23]

+H (€7 (Quhys + Q1 55 +curlP) An).¥dS
1—‘el urezure3

In this expression, as the function ¥ belongs to Hry(curl, '), the term related to
the boundary T4 is zero. Moreover, the contributions on the boundaries I'e; Ul Ul 3
are also zero. Indeed, the tangential component of the electric field, therefore the
term € '(curlP + Q,A;3+ QA»3), is equal to zero on these boundaries. Under these
conditions, equation [4.22], which represents the weak form of the vector potential
formulation, can be expressed as follows:

m £71(Qhy3 +Qyhs +curlP). curl¥dr = 0 [4.24]
o

Let us consider again the initial problem defined by equations [3.104], [3.105]
and the boundary conditions [3.106]. The definition of support fields Ay, the
equations [3.131] and [3.132] and the introduction of the vector potential P allow for
the strong verification of equation [3.105]. The boundary conditions on I'y are also
strongly verified via the properties of source fields A;; and the function space to
which the vector potential P of equation [3.138] belongs. As for equation [3.104], it
is weakly verified on the domain €', via the weighted residual method. The same is
true for the boundary condition of the electric field on the boundary I'j UL Ul ;.

If the source terms are the circulations fi; and f; of the electric field,
the application of the weighted residual method is unchanged. On the other hand, as
seen in section 3.3.2.2.2, equations [3.146] and [3.147] should be added. The
unknowns of the problem are then the total charges Q;, Q, and the vector potential P.
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As already indicated (see note in section 4.2.2.1), this leads to an enrichment of the
weighting function space Hry(curl, Q') by functions A;;.

Hybrid source terms can also be considered, namely total charges and a
circulation (see section 3.3.2.2.3). As an example, let us consider as source terms Q,
and f,;. Besides the vector potential, we have as unknown (see equation [4.20]) the
total charges Q.. In this case, the equation to be solved is equation [4.24] to which
equation [3.147] must be added. Conversely, if the source terms are Q, and fis,
equation [3.146] must be added to the integral form [4.24].

4.2.3. Weak form of the equations of electrokinetics

The case to be studied for electrokinetics is the multisource case presented in
Figure 3.14. The equations to be solved are defined in equations [3.149] and [3.150],
with the electrical behavior law [1.20]. As for the boundary conditions, defined in
equation [3.191], they are given by the expressions of equation [3.151]. As source
terms, it is possible to impose on the boundaries I'yx with k € {1,2,3} two
electromotive forces, two currents or a combination of both.

The equation can be written using the scalar potential or the vector potential
formulation. It should be recalled that the scalar potential formulation is suitable
when electromotive forces are imposed on the boundaries between the surfaces Iy,
I, and I';. On the other hand, if the flux “I” of the current density is imposed on
the boundaries T, I's; and I, in this case, the vector potential formulation is the
most suitable.

The weighted residual method will be applied to the scalar potential formulation
in section 4.2.3.1 and to the vector potential formulation in section 4.2.3.2.

4.2.3.1. Scalar potential V formulation

With the scalar potential V formulation, when the electromotive forces e;3 and
e,3 are imposed, the equation to be solved can be written in the form of equation
[3.196] with V € Hreiureaures(grad, Q). This equation is as follows:

diVG(el3l313 + 623l323 - gradV) =0 [4.25]
with, as shown by equation [3.192], B;; € Hreiureaures (curl, Q).
To apply the weighted residual method, we must define the weighting functions,

which are chosen in the adjoint space of the differential operator of the unknown
field. For equation [4.25], the vector operator is the divergence and the associated
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function space, which corresponds to that of the current density, is therefore
Hr(div0, Q) (see equation [3.195]). Based on Table 2.1, it can be deduced that the
adjoint operator is the gradient, and the weighting function, which is a scalar, is
defined by W € Hrejureaures (grad, Q). These various points are summarized in
Table 4.3.

Vector Associated Adjoint sy .
. Weighting function
operator function space operator
div Hp(div0, Q) —grad VY € Hrejureaures (grad, Q)

Table 4.3. Electrokinetics, scalar potential V formulation; vector
operator and function space of potential and weighting functions

Applying the weighted residual method to equation [4.25], we obtain:
[I[q div(o(e13By3 +e23B o3 — gradV))ydt = 0 [4.26]

Equation [4.26] can be integrated by parts using formula [2.23] related to the
vector operators. This allows for the introduction of boundary conditions as follows:
— [[[o(gradV — (e3P + e3B23)).gradydr +

[4.27]
ff-wo(e13Bi3 +ex3Br3 — gradV)nds = 0

It can again be noted that the weighted residual method allows for the lowering
of the level of differentiability of the unknown V of the problem by transferring it to
the weighting function y.

The surface integral can be decomposed into several terms in order to highlight
the boundary conditions. Then, we have:

#rwc(enﬁn +e3P,; —gradV)ndS =

J'j Wo(e 3Bs +er3Bo; —gradV)nds [4.28]
l—‘el UrelureS

+ J.J.l"j yo(e;;P5 +€53P,; —gradV).ndS

This surface integral is equal to zero. Indeed, the term related to boundary
iUl UT 3 is naturally zero, taking into account the function space to which the
weighting function y belongs. As for the second integral, it is a function of the
normal component of the current density on the boundary I (see equation [3.161]).
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As the latter is equal to zero, the integral is also zero. Under these conditions,
equation [4.27] has the following form:

mg o(gradV.grady)dt = mg o(e13By3 + €3Bo3).gradydr [4.29]

Let us consider again the initial problem defined by equations [3.149], [3.150],
[3.191] and [3.151]. The properties of the scalar potential V and of the support fields
B; allow for the strong verification of equation [3.149] and of the boundary
conditions on I UIl';UTe;. On the other hand, the weighted residual method makes
it possible to impose equation [3.150] in the weak sense. The boundary conditions of
the current density on I'j are also imposed in the weak sense via the integral term of
equation [4.28], considered to be zero in equation [4.29].

If the source terms are the current density fluxes I; and I,, as already seen in
section 3.4.2.1, the electromotive forces e;3 and e,; become additional unknowns.
Following the same approach as that detailed for the electrostatics at the end of
section 4.2.2.1, a system of equations can be built from relation [4.29] to which
equations [3.198] and [3.199] are added. If an electromotive force and a current are
now imposed, to obtain a full equation system, the equation expressing the imposed
current is added, namely equation [3.198] or [3.199].

4.2.3.2. Vector potential T formulation

For the vector potential formulation, with the imposed current density fluxes I,
and I,, equation [3.204] must be solved with T € Hpj(curl, €2). This yields:

curl(c™' (I,Ay; +I,A; +curlT) =0 [4.30]

To apply the weighted residual method, the function space to which the
weighting function belongs must be determined. As already seen in section 4.2.1, it
is defined in the adjoint space of the differential operator of the unknown field.
Equation [4.30] shows that the differential operator is the curl and it applies to the
electric field (see equation [3.203]) with E € Hrejoreoures(curl0, Q). Consequently,
using Table 2.1, it can be shown that the adjoint operator is also the curl and the
weighting function is a vector field such that ¥ € Hrj(curl, €2). These various data
are gathered in Table 4.4.

Applying the weighted residual method to equation [4.30], we obtain:

m'g curl(6™ (Iky; + Lyhys +curlT))Wdt =0 [4.31]
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Vector ASS.O ciated Adjoint operator | Weighting function
operator function space
curl H reioreaores (curl0, Q) curl ¥ e Hyy(curl, Q)

Table 4.4. Electrokinetics; vector potential T formulation; vector
operator and function space of potential and weighting functions

Using formula [2.27], related to the vector operators, the differentiability
conditions on the vector potential T are lowered and the boundary conditions are
naturally introduced:

m' (67 (eurT +1,h 5 + Lyk,y))curl¥d
Q

[4.32]
- QEJBF(G—I (eurI T+ 1,05 + ,hy;) An).WdS =0

The surface integral of this equation can be decomposed into two terms
following the boundaries I'e;UI'; Ul 3 and Ty as follows:

@r("_l (CurdT + I,k 5 +Lyhpy) AD).WAS =
Hr (67 (curlT+1,h 5 +Lyhr3) An).¥dS [4.33]
J

+J] (07" (curlT+1,hy5 +Lyhp;) An).¥dS
Tey Ul Ul 5

The first term on the right-hand side is equal to zero, as ¥ € Hrj(curl, Q). As for
the second term, it corresponds to the surface integral of the tangential component of
the electric field that is equal to zero on I'; Ul ;T (see equation [3.203]). Under
these conditions, equation [4.32], which represents the weak form of the equation to
be solved, can be written as follows:

ma (6~ curIT.curl¥dr =— I ﬂg 67 (Ihys + LAy )curl¥ds [4.34]

Let us compare the integral form [4.34] with equations [3.149], [3.150], [3.191]
and [3.151] of the initial problem. The choice of the vector potential T and of the
support fields A3 and Ay; allows the properties of the current density (see equation
[3.150] and its boundary conditions on I'j [3.151]) to be strongly imposed. As for the
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electric field, equation [3.149] is weakly imposed with the weighted residual
method. The boundary condition of the electric field on the boundary I'e; UL, Ul 3
(see equation [3.151]) is also weakly imposed. Indeed, the boundary integral on
Ul UT; of equation [4.33] is considered zero in equation [4.34].

Let us now consider that the source terms are the electromotive forces €3 and €3
imposed on the boundaries I, I, and T';. In this case, currents I, and I, become
unknowns of the problem. To obtain a full equation system, relations [3.205] and
[3.206] introducing the electromotive forces are added. If a current and an
electromotive force are imposed as source terms, to have a well-posed problem the
equation expressing the imposed electromotive force is added, namely equation
[3.205] or [3.206].

4.2.4. Weak form of the equations of magnetostatics

In the case of magnetostatics, the two (scalar potential @ and vector potential A)
formulations will be studied, for the example presented in Figure 3.20. It should be
recalled that in this case three different kinds of source terms appear. A magnetic
quantity imposed on the boundary (magnetomotive force or magnetic flux) and two
source terms inside the domain (current intensity in a stranded conductor and a
permanent magnet). As far as the inductor is concerned (see section 3.5.2.3),
knowing the intensity of current I, the current density J, is given by expression
[1.62].

For the two formulations (see sections 4.2.4.1 and 4.2.4.2) and depending on
various source terms, the equation of equilibrium and the weighted residual method
will be reviewed. Finally, the equations and the boundary conditions imposed in the
strong sense and in the weak sense will be summarized.

4.2.4.1. Scalar potential ¢ formulation

The scalar potential formulation relies on the equations developed in
section 3.5.2.5. The first studied case is the one where the source terms are the
magnetomotive force f,, the current intensity I (which represents the current density
flux Jy) and the coercive field H, of a permanent magnet (see equation [1.64]).
Then, as the source term on the boundaries, the magnetomotive force will be
replaced by the magnetic flux ¢.

4.2.4.1.1. Imposed source terms £, |, Hc

For the scalar potential formulation, having as source terms f, and I, the
magnetic field is expressed as an equation [3.263]. The scalar potential, thus
defined, belongs to the function space Hry,; uriz (grad, Q). The magnetic flux density
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is obtained via the magnetic behavior law that allows for the introduction of the
source term related to the permanent magnet, the coercive field H, (see equation
[3.264]). The equation to be solved [3.266], written in the form of an equation of
equilibrium, can then be written as follows:

diV(H(grad(P_ mes - IXI + Hc)) =0 [4 35]

with e Hr -, (grad,Q) '
The function space associated with this expression is defined by the magnetic
flux density, i.e. B € Hpy(div0, Q), as shown by equation [3.261]. According to
Table 2.1, the adjoint operator is the gradient and the weighting function is a scalar

function such that @ € Hry, yrp(grad, ). These various results are summarized in
Table 4.5.

Vector Ass.o ciated Adjoint operator Weighting function
operator function space
div H]"b(leO, Q) - grad Y e Hrui orne (grad, Q)

Table 4.5. Magnetostatics, scalar potential ¢ formulation; vector operator
and function space of the potential and of the weighting functions

Under these conditions, the weighted residual method, applied to equation
[4.35], has the following form:

[[[ diviucerado— £, 1z, + Ho)ydr=0
(grad,Q)

[4.36]
with weHr, o,

Using formula [2.23], related to the vector operators, the “boundary” term is
introduced:

- .I..UQ (u(grad(p - mes - IXI + Hc)).gradwdr

[4.37]
+ f - w(grade — f,B — Iy + He))ndS = 0

As noted in section 4.2.1, the weighted residual method makes it possible to
decrease the constraints of differentiability on the scalar potential ¢. This constraint
is transferred to the weighting function. Similarly, the problems of discontinuity of
the field H., on some surfaces of the permanent magnet, mentioned in
section 3.5.2.4, are also lifted.
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Let us now decompose the surface term by introducing the various boundary
conditions as follows:

4P wu(grade— £,,B, ~1z; + H.))ndS =

[ win(erado- £,B, -1z, +H,)nds [4.38]

+ﬂr y(w(grado— £, B — Iy, + H,)).ndS

For this equation, the first term on the right-hand side is equal to zero, as
v € Hpyy o (grad, Q). The second integral on T, is also equal to zero. Indeed, this
expression contains the normal component of the magnetic flux density (see
equation [3.260]) which is equal to zero on I',. Consequently, the surface integral
[4.38] is equal to zero and equation [4.37], which represents the weak formulation of
the problem, is written as:

[[lou(gradogrady)dt =[[[, (W(fmBs + Ix; — H,))gradyde (4.39]

Let us analyze this formulation with respect to the initial problem, defined by
equations [3.258]-[3.261]. The choice of the scalar potential ¢ and of the support
fields Bs and %x; allows, considering their respective properties, for the strong
verification of equation [3.258] and the imposition of boundary conditions of the
magnetic field on I';Ul,. On the other hand, equation [3.259] is weakly imposed,
via the weighted residual method. Concerning the boundary conditions on the
magnetic flux density (see equation [3.260]), they are also weakly verified via the
integral term on Iy, of equation [4.38] considered zero in the expression [4.39].

4.2.41.2. Imposed source terms ¢, |, H

In the case of the scalar potential formulation, if the source term is the flux ¢ of
the magnetic flux density imposed through the boundaries I',; and T3, the
magnetomotive force f,, becomes an unknown of the problem. The approach is then
similar to the one in section 4.2.2.1. To obtain a full problem, equation [3.267] is
added to the integral form [4.39].

4.2.4.2. Vector potential A formulation

For the vector potential formulation, in the presence of several source terms, the
developments have been introduced in section 3.5.3.5. As a first step, the source
terms are considered the flux ¢, the current intensity I in the inductor and the
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remanent magnetic flux density B, to represent the permanent magnet. It should be
noted (see equation [1.63]) that B, and H, are linked by relation B, =— pu.H,. In
section 4.2.4.2.2, the magnetic flux is replaced by the magnetomotive force f,. It
should be recalled that the studied structure is “represented” in Figure 3.20 and that
equations [3.258]-[3.261] should be solved.

4.2.4.2.1. Imposed source terms ¢, |, B,

With the vector potential A formulation and in the presence of the source terms
0, I and B,, the expressions of the magnetic flux density and magnetic field are
given, respectively, by equations [3.295] and [3.296]. The function spaces of H and
B are defined in equation [3.261], and the equation to be solved (see equation
[3.298]) is rewritten in the form of an equilibrium equation

curly™ (curlA + ¢k, +B)~In; =0 [4.40]

In this expression, Ay, and A; represent, respectively, the support fields of the
flux ¢ and of the current density Jo. These fields, as shown in relations [3.273]
and [3.289], are defined in the function spaces, such that Me Hpy(div0, Q) and
A € Hy (div0, Q).

In expression [4.40], the vector operator is the curl and the associated function
space corresponds to the magnetic field, namely HeHp,, m(curl, Q) (see equation
[3.261]). Under these conditions (see Table 2.1), the adjoint operator is also the
curl and the space of weighting functions is a field of vectors such that
WY € Hpy omne(curl, Q). These various results are summarized in Table 4.6.

Vector Associated Adjoint I .
. Weighting function
operator function space operator
curl Hrui orno (curl, Q) curl Y € Hpy(curl, Q)

Table 4.6. Magnetostatics; vector potential A formulation; vector
operator and function space of potential and of weighting functions

Applying the weighted residual method to equation [4.40] leads to the following
expression:

mg (curly”™ (curlA + ¢k, +B,)— ;) ¥d =0 [4.41]
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Applying formula [2.27], the surface integral appears naturally and the following
can be written:

[IJ_w curtacurrear+ [[ '@, +B,)curtas

[4.42]
—<ij> W' (curlA + ¢k, +B,) A n).‘I’dS—J.j I I ¥dr=0
T Q

NOTE.— After equation [3.293], we noted that, since the normal component of B, was
discontinuous on the domain, this led to constraints on the strong form. In the case
of the weak formulation, it can be noted (see equation [4.42]) that these constraints
are lifted.

Comparing equations [4.41] and [4.42], it can be noted that the differentiability
conditions on the vector potential A are alleviated. Moreover, the surface integral
can be decomposed into two terms related to the boundaries I, UIT,; and Iy, which
yields:

q%j) (" (curlA + 0Ly +B,) An).WdS =
T
”r (7 (curlA + 9k, +B,) Am).¥dS [4.43]

+H (W' (curlA + 9, +B,) Am).WdS
Ty

As ¥ € Hpy(curl, Q), the surface integral on I', is equal to zero. The same is true
for the surface integral on I';,;UI'y, where the tangential component of the magnetic
field is zero (see its domain of definition, equation [3.261]). Consequently, equation
[4.42], which represents the weak form of the equations to solve, takes the following
form:

J'J' u”curlA curl¥dt = m' h7! (0.~ B, )-curl® + | j I, Wdt [4.44]

Let us consider again the initial problem with equations [3.258]-[3.261]. The
choice of vector potential A, associated with the properties of support fields A, and
A, allows for the strong verification of equation [3.259]. The boundary conditions
on I, of the magnetic flux density (see equation [3.260]) are also strongly verified
thanks to the function spaces of potential A and of fields A, and A;. On the other
hand, relation [3.258] is weakly imposed via the weighted residual method. As for
the boundary conditions, on the magnetic field (see equation [3.260]), they are also
weakly verified via the surface integral on I',; Uy, of equation [4.42], which is
considered zero in equation [4.44].
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4.2.4.2.2. Imposed source terms £, Jo, B;

If the source term imposed on the boundary I'y,; Uy, is the magnetomotive force
Jms, the flux ¢ proves to be an unknown. The approach is similar to that in section
4.2.2.1. To obtain a full equation system, the integral form [4.44] is added to
equation [3.300], which allows for the expression of the magnetomotive force as a
function of the vector potential A, the flux ¢ and the remanent magnetic flux density.

4.2.5. Weak form of the equations of magnetodynamics

This section uses the same approach as that followed in the introduction of
potential formulations in section 3.6. The studied structure, presented in the general
case of Figure 3.22, is a domain Q of boundary I', composed of two subdomains
denoted by €. and Q. The subdomain €., of boundary I', is a conductor and holds
two gates I';; and I, in contact with the external environment. Electric quantities
e(t) or I(t) or magnetic quantities f(t) or ¢(t) can be imposed on these two gates.
The remaining boundary of the conducting subdomain €., denoted by Ij, is in
contact with the subdomain €, and represents a wall for the current density. The not
simply connected subdomain €2 is not conducting, meaning that conductivity ¢ is
equal to zero (see equation [3.307]). The part of its boundary, in contact with the
external environment, is a wall for the magnetic flux density and is denoted by T,

In what follows, as introduced in section 3.6, we reconsider the various supply
modes with the A-V and T-¢ formulations and apply the weighted residual method.

4.2.5.1. Imposed electrical quantities

In this case, the studied domain is represented in Figure 3.23, and we have to
solve equations [3.301]-[3.304]. For the given example, when the electrical
quantities e(t) or I(t) are imposed, the boundary conditions and the function spaces
of fields E, J, H and B are defined by expressions [3.310]-[3.312].

4.2.5.1.1. Electric formulation A-V

In the case of the electric formulation, the developments rely on the magnetic
vector potential A and the electrical scalar potential V. For the given example, we
have (see equations [3.316] and [3.319]), respectively, AeHy(curl, Q2) and
VeH reure: (grad, ). The system to be solved, when the source term is the

[Tt}

electromotive force “e”, is composed of equations [3.327] and [3.328] for,
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respectively, the domain € and the subdomain €. These relations presented in the
form of equilibrium equations are:

curly ™' (curlA) + G(%—? +gradV)—ocep, =0 on Q [4.45]

div(c(aa—? +gradV—-ef,.))=0 on Q [4.46]

It should be recalled that B, is the support field of the electromotive force, which
is defined by relation [3.313]. In order to develop the weighted residual method for
these equations, weighting functions should be defined. For equation [4.45], the
vector operator is the curl and the associated space is defined by the magnetic field,
i.e. (see relation [3.312]) HeH(curl, Q). The adjoint operator (see Table 2.1) is the
curl and the space of weighting functions WeHy(curl, ). As for equation [4.46],
the vector operator is the divergence and the associated space is defined by the
current density (relation [3.310]), with JeHpj(curl, Q.). In this case (see Table 2.1),
the adjoint operator is the gradient and the space of weighting functions
YeHreure(grad,Q.). Table 4.7 summarizes these various results.

Equation Vector Assp ciated Adjoint Weighting function
operator function space operator
[4.45] curl H(curl, Q) curl ¥ e Hy(curl, Q)
[4.46] div Hr(div0, Q.) —grad Y € Hrejure (grad, Q)

Table 4.7. Magnetodynamics, imposed electrical quantities,
A-V electrical formulation; vector operator and function
space of potentials and weighting functions

As a first step, the weighted residual method is applied to equation [4.45], which
is integrated over the domain €. Then, we obtain:

”  (curl™ (curlA). ¥ + c(%—‘? +gradV —ep,).¥)dr =0 [4.47]

It should be noted that the scalar potential V and the source field B. are only
defined on the domain €. Nevertheless, since the conductivity ¢ is zero on €2, (see
equation [3.307]), the integral of G(dA/dt+ gradV —ef.) can be extended to the
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entire domain €. The first term of the volume integral can be rewritten using
expression [2.27] that introduces the surface integral on I" as follows:

”.[Q curl(u’lcurlA).‘I’dr

[4.48]
= '[ I u’lcurlA.curl‘I’d’c - 4:!) (W 'curlA An).wdS
Q r

Given the function space to which the weighting function ¥ belongs, the integral
on the boundary I" is equal to zero. Under these conditions, gathering equations
[4.47] and [4.48], we obtain:

H (17! (curlA curt¥) + c(aa—‘:‘ +gradV —ep,).¥)dt =0 [4.49]

Let us again apply the weighted residual method for equation [4.46] with the
scalar weighting function y defined in Table 4.7. The following can be written as:

. 0A
I} ch ohv(cs(E +gradV —eB,))ydt =0 [4.50]
Formula [2.23], related to the vector operators, leads to the following:
oA
[l div(c(a— + gradV — eB,))ydt =
e t
JA
- m Q, (;(E + gradV — ef.. ).gradydt [4.51]
0A
+ ﬁrc \V(G(E + gradV —eB.))ndS = 0

The surface integral on I', can be decomposed by introducing the terms related to
the boundaries I'; and T',;UTl',. Then, we have:

ﬁr \V(G(%—? +gradV —ef,)n)dS=
oA
JJ o, wioCsy eraav—chmas [4.52]

0A
+ IJ;_J \V(G(E +gradV —ep,).ndS
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The first term on the right-hand side of the equality is equal to zero, as (see
Table 4.7) the weighting function y is zero on the boundary I',;Ul'e,. As for the
second term, it is also zero, since J.n=0 on I Equation [4.51] can then be
rewritten as follows:

”L) (ogradygradV + 0(% —efe)grady)dt =0 [4.53]

The weak form of the magnetodynamics problem represented in Figure 3.23,
with the electric formulation A-V, is expressed using equations [4.49] and [4.53]. It
should be noted that the basis equations [3.301] and [3.303] are strongly verified via
the properties of the potentials A, V and of the support field B.. Considering the
function spaces to which these potentials and also P. belong, the boundary
conditions on I",;UT,, and T, on the fields E and B are also strongly verified. On the
other hand, equations [3.302] and [3.304] are weakly verified, via the weighted
residual method. The boundary conditions of the current density on the boundary T
are also weakly imposed via the boundary integral of equation [4.52]. Indeed, the
latter is considered zero in expression [4.53].

If the flux of the current density is imposed through the boundaries I',; and T,
the electromotive force becomes an unknown of the problem. The process used is
the same as in section 4.2.2.1. For a full equation system, relation [3.338] or [3.339]
(see section 3.6.1.1.2) is added to equations [4.49] and [4.53].

4.2.5.1.2. Magnetic formulation T-¢

The magnetic formulation uses the electric vector potential T and the magnetic
scalar potential @. For the example in Figure 3.23, with the current density flux I(t)
as a source term, the potentials T and ¢ are defined, as shown by relations [3.348]
and [3.354], in the function spaces Hrj(curl, £2.) and H(grad, Q), respectively. In
this case, the equations to be solved are given by relations [3.362] and [3.363],
which are recalled below:

curl(c™ (Icurly,; + curlT))

d [4.54]
+§ (W(Iy; +T—gradg)) =0 on Q,

div(p(ly; + T —grade)) =0 on Q [4.55]
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It should be recalled (see equation [3.346]) that the vector potential ¥; is defined
throughout the domain €, and it belongs to the function space H(curl, Q).

According to the weighted residual method, the function spaces to which the
weighting functions belong should be determined. For equation [4.54], the vector
operator is the curl and the associated space is defined by the electric field (see
relation [3.310]), i.e. E € Hrejures (curl, ;). The adjoint operator is then the curl
(see Table 2.1) and the weighting functions ¥ belong to Hrj(curl, Q).

NOTE.— The space of weighting functions generally corresponds to the space to
which unknown potentials belong. But the function space of the vector potential T is
H(curl, Q) (see equation [3.347]) which a priori does not correspond to that of
weighting functions P. It should nevertheless be recalled that T is equal to zero on
Q-Q.. This potential should therefore be determined only on €, and the restriction
of T to €. belongs to the same space Hr;(eurl, €2.) as the weighting functions ‘¥ (see
equation [3.348]).

For equation [4.55], the vector operator is the divergence and the associated
function space is defined by the magnetic flux density with (see equation [3.312])
BeHy(div0, €2). As shown in Table 2.1, the adjoint operator of the divergence is the
gradient and the weighting functions y belong to H(grad, Q). Table 4.8 summarizes
these various results.

. Vector Associated function Adjoint Weighting
Equation .
operator space operator function
[4.54] curl Hreiore (curl, Q) curl ¥ e Hyj(curl, Q)
[4.55] div Ho(div0, Q) —grad v € H(grad, Q)

Table 4.8. Magnetodynamics, imposed electric
quantities, electric formulation T-g; vector operator and
function space of potentials and weighting functions

Let us apply the weighted residual method to equation [4.54]. This yields:

I .U (curlc_1 (curlT +Icurly,; ).
QC

3 [4.56]
+§ W(T +1Iy; —grade).¥)dt=0
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Formula [2.27] related to the vector operators, applied to the first term of the
volume integral of equation [4.56], allows us to introduce the surface term. Using
the properties of the mixed product, this yields:

J.J‘ I curl(G_lcurlT +Icurly;).curl¥dt =
QC
mﬂ o' (curIT + Ieurly, ).curl¥dt [4.57]

—q‘fj.) (nAY).c (curl T+ Ieurly, )dS
FC

The surface integral on I'; can be decomposed on the boundaries I'j and I';;UI'e,
of the conducting domain. Then, we have:

(ﬂ) (M AY).0" (curlT + Ieurly,)dS

rC

- ﬂ (n A¥).5' (curlT + Icurly, )dS [4.58]
¥

+J-I (nAY).c " (curlT + Ieurly, )dS
[ Uley

It can be readily shown that the surface integral on I'; is equal to zero. Indeed,
the contribution on I'j is zero as shown by the function space to which the weighting
function W belongs (see Table 4.8). Using the mixed product, it can be shown that
the second integral on the right-hand side represents the tangential component of the
electric field (see equation [3.351]) on the boundary I'.;UTl'.,. As this component is
zero, the integral is also zero. Under these conditions, equation [4.56] has the
following form:

J. H (cs_1 (curlT + Icurly, ).curl'¥
QC

5 [4.59]
+ o W(T + Iy, —grade).¥)dt=0

This expression is the weak form of equation [4.54]. Applying the weighted
residual method to equation [4.55] yields:

([ div(u(T + Iy — gradg))ydt = 0 [4.60]
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In order to introduce the boundary terms, formula [2.23] is applied to the volume
integral. Then, we obtain:

[flg (divi(T + Iy — grade))ydt =
— [[Jq W(T + Iy; — gradg) . gradydt [4.61]
+ f- Wl (T + Iyg — grade).ndS = 0

The surface integral on the boundary I' of the domain introduces the magnetic
flux density (see equation [3.355]) and more particularly its normal component. But
as shown by relation [3.312], this normal component is zero on the boundary.
Considering this property, we can write:

[l W + Iy — grade).gradydt = 0 [4.62]

It should be recalled (see equations [3.347] and [3.348]) that the vector potential
T is defined throughout the domain Q, but it is equal to zero on €.

When applying the weighted residual method, for the T-¢ formulation, the
system to be solved is composed of equations [4.59] and [4.62]. In this case,
equations [3.302] and [3.304] are strongly verified by the use of potentials T and ¢
and of the associated potential ;. The same is true for the boundary condition of the
current density on the boundary I, taking into account the function space to which
the potential T belongs (see equation [3.348]). On the other hand, the use of the
weighted residual method verifies equations [3.301] and [3.303] in the weak sense.
This is also valid for the boundary conditions of the electric field on I'.;UI'; and the
magnetic flux density on I',. Indeed, the corresponding boundary integrals are
considered zero in equations [4.58] and [4.61].

If the electromotive force “e” between the boundaries I',; and I’y is now
imposed as a source term, then the current density flux becomes an unknown. To
obtain a full equation system, relation [3.373] is added to the system composed of
equations [4.59] and [4.62] (see section 3.6.1.2.2).

4.2.5.2. Imposed magnetic quantities

In this section, we again consider the example in Figure 3.24, having the flux ¢(t)
of the magnetic flux density or the magnetomotive force f,(t) as the imposed global
quantities. Equations [3.301]-[3.304] should be solved. The boundary conditions on
the boundaries are given in equations [3.374] and [3.375] and the function spaces to
which the fields E, J, H and B belong are defined by relations [3.376] and [3.377].
For this study, the two (electric and magnetic) formulations have been introduced in
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section 3.6.2. In what follows, the weighted residual method is applied to these
formulations.

4.2.5.2.1. Electric formulation (A-V)

As a first step, the magnetic flux is imposed on the boundaries Iy, and I'y,. For
this configuration, the vector potential A belongs, as shown in relation [3.382], to
the function space Hpy(curl, 2) and the scalar potential V (see equation [3.387]) to
the function space H(grad, €2.). It should be recalled (see section 3.6.2) that the
boundary T, is not simply connected. When the source term is the flux ¢, the system
to be solved is composed of equation [3.393] for the domain € and equation [3.394]
for the subdomain €. These two equations are recalled as follows:

9
curlu™ (curl(A + oy, ) + c(aa—‘:‘ +gradV + %) =0on Q [4.63]
9
div(c(aa—? + % +gradV))=0on Q, [4.64]

In these expressions, the associated potential X, is defined on the entire domain
Q. Given that the boundary I} is not simply connected, y, belongs (see equation
[3.381]) to the function space H*y(curl, Q).

The function space to which the weighting functions belong must be determined
to apply the weighted residual method to equations [4.63] and [4.64]. For equation
[4.63], the vector operator is the curl and the associated space is defined by the
magnetic field (see equation [3.377]), i.e. HeHpyum (curl, ). In this case (see
Table 2.1), the adjoint operator is also the curl and the weighting functions ¥ belong
to Hrp(curl, Q). For equation [4.64], the vector operator is the divergence and the
associated space is defined by the current density J (see expression [3.376]), with
JeHy(div0, .). In this case, as shown in Table 2.1, the adjoint operator is the
gradient and the weighting functions W belong to H(grad, Q.. Table 4.9
summarizes these various results.

. Vector Associated Adjoint Weighting
Equation . .
operator function space operator function
[463] curl Hryiome (curl, Q) curl Y e Hrb(curl, Q)
[4.64] div Ho(div0, Q) —grad v € H(grad, Q)

Table 4.9. Magnetodynamics, imposed magnetic quantities, electric formulation
A-@; vector operator and function space of potentials and weighting functions
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Having defined the weighting functions and their associated function spaces, the
weighted residual method is now applied. Concerning equation [4.63], the following
can be written:

j HQ (curl (™" (curlA + ¢y,)) + c(aa—?+ gradV +aq;%).\1')dr -0 [4.65]

As already mentioned, after equation [4.47], relying on conductivity, which is
zero in €, it can be shown that the integral of term G(JA /0t + gradV + ¢dy,/0t)
can be extended to the entire domain Q. The application of formula [2.27] to the first
term of integral [4.65] allows us to write:

.U .[ curl(u (curlA +y,)). Wdt =
W curl(A + ¢y, ) curl¥dt .
i1, ;

- ﬁ)r“_l (curl(A +0yy) Am).¥dS = 0

The surface integral on I" can be decomposed (see equation [3.374]) following
the boundaries I',; Ul and Ty,. This yields the following formula:

@SF 1! (curl(A + 0, ) A ). ¥dS
- j j 1! (curl(A +dxy) An¥)AS [4.67]
IVl

+ﬂ'r W' (curl(A +0x,) An W)dS

In this expression, for the first integral on the right-hand side, the tangential
component of the magnetic field is integrated on the boundary I',;UI',. Considering
the function space to which the field H belongs, this integral is equal to zero. The
second integral on T, is also equal to zero. Indeed, using the properties of the mixed
product, the tangential component of the weighting function ¥, which is zero on T
(see Table 4.9), is introduced. Under these conditions, equation [4.66] is written as:

m (™ (curl(A +¢x¢).curl‘l’+0(a—A+ gradV +%).‘I’)dr 0 [4.68]
Q ot ot
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Let us now consider equation [4.64] to which we apply the weighted residual
method considering as the weighting function the scalar function y defined in
Table 4.9. Then, we have:

Jfla, div( (— + Bd);th, + gradV))ydt = 0 [4.69]

We then apply formula [2.23] to this equation, and the boundary conditions can
be introduced. Then, the following can be written:

[llq div(o (—+ q;""’ + gradV)ydr =

- [[f Q, (— + q)—t + gradV). gradydr [4.70]

Iy
+ 6(— +———+ gradV).ndS =0
{Efrclv(at o te )

The surface integral term on I'. makes the normal component of the current
density appear. But this component is zero on the boundary I, (see equation
[3.376]). Under these conditions, equation [4.70] has the form:

3
[llg, c(%—‘? + q;’th’ +gradV).gradydt = 0 [4.71]

The weak form of magnetodynamic equations, with the electric formulation and
where the source term is the magnetic flux, is given by equations [4.68] and [4.71].
The choice of A-V formulation, associated with potential %, allows for the strong
verification of the basis equations [3.301] and [3.303]. The same is true for the
boundary conditions of the magnetic flux density B on the boundary I, as shown by
the properties of A and y, (see relations [3.381] and [3.382]). On the other hand, the
weighted residual method leads to verifying equations [3.302] and [3.304] in the
weak sense, respectively, on domains Q and €. Similarly, the boundary conditions
of fields H and J on, respectively, the boundaries I',j\Ul,and T, are also weakly

verified. This is due to the boundary integrals of equations [4 67] and [4.70]
considered zero in expressions [4.68] and [4.71], respectively.

Considering now the case in which the source term is a magnetomotive force f,
imposed on the boundaries I}y, the approach is the same as that used in
section 4.2.2.1. As shown in section 3.6.2.1.2, the flux ¢ becomes an unknown of the
problem. To obtain a full equation system, relation [3.407] is added to equations
[4.68] and [4.71].
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4.2.5.2.2. Magnetic formulation T-¢

With the formulation T-¢, involving magnetic quantities, imposing the
magnetomotive force f, is quite natural (see section 3.6.2.2). For the example
presented in Figure 3.24, the electric vector potential T belongs to the function space
Ho(curl, ), as shown by equation [3.410]. It should, however, be noted that T =0
in Q-Q.. As for the magnetic scalar potential @, it belongs (see equation [3.416]) to
Hrnome (grad, Q). The equations to be solved are given by relations [3.427] and
[3.428]. They are recalled as follows:

curlo”'curl(T) +%(H(T+ B, —grade)) =0 on Q [4.72]

div(W(T+ f,,B, —grad)) =0 on Q [4.73]

In these expressions, B represents the support field of the magnetomotive force.
It is defined by relation [3.412].

In order to apply the weighted residual method, the weighting functions must be
defined. In the case of equation [4.72], the vector operator is a curl and the
associated function space is defined by the electric field (see equation [3.376]),
namely H(curl, €.). In this case, the adjoint operator (see Table 2.1) is the curl and
the weighting functions ¥ belong to the function space Hr.(curlL(.). As for
equation [4.73], the vector operator is the divergence and the function space is
defined by the magnetic flux density with BeHp,(div0,Q2), as shown by equation
[3.377]. The adjoint operator is then (see Table 2.1) the gradient, and the weighting
functions y belong to Hpy,ome (grad, Q). These various results are summarized in
Table 4.10.

Equation Vector Ass? ciated Adjoint Weighting function
operator function space operator
[4.72] curl H(curl, Q) curl ¥ € Hr(curl, Q)
[4.73] div Hry(div0, ) —grad W € Hriomo(grad, Q)

Table 4.10. Magnetodynamics, imposed magnetic
quantities, electric formulation T-g; vector operator and
function space of potentials and weighting functions
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Let us now apply the weighted residual method to these two equations. For
equation [4.72], this yields:

.mg (curl(c~'curlIT) +%(u(T + £..B, —gradg))).¥dr =0 [4.74]

Let us introduce the boundary conditions by means of relation [2.27] applied to
the first term of the integral as follows:

_[U curl(c”'curlT). Wdt =
e [4.75]
I ” o curlT.curl¥dt - @5 (nA G_lcurlT).‘I’dr
QC rC

Considering the vector space to which the functions W belong, the surface
integral is equal to zero. Under these conditions, the weighted residual method
applied to equation [4.72] has the form:

IJ' (o™ curlTeurl¥ + % W(T + £, B, —gradg).¥)dt =0 [4.76]

Let us now apply the weighted residual method to equation [4.73]. The following
equation is then obtained:

[ o Wdiv(W(T + f;,Bs — gradg))dt = 0 [4.77]

Using relation [2.23], the boundary conditions are introduced, differentiating
between the boundaries I'y,;UI'}, and Iy, as follows:

” o wdiv(W(T + f,,B, —grado))dt =
B I .[ J. Q W(T+ f;,Bs —grado).gradyde

[4.78]
+ -”.l“hl or, yu(T + £,,B, —grade).ndS

+ J’J’rb WW(T + £, B, —grade).ndS =0

First of all, consider the surface integral on Iy UIlY,; the properties of the
weighting function y (see Table 4.10) show that it is equal to zero. On the other
hand, the second integral on T3 introduces the normal component of the field B
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(see equation [3.418]). But as shown by equation [3.377], this component is equal to
zero on Iy,

Under these conditions, equation [4.78] is written as:
[Jlo (T + f1,Bs — grado).gradydt = 0 [4.79]

When the source term is the magnetomotive force, with the magnetic
formulation, the weak form of our magnetodynamics problem is described by
equations [4.72] and [4.73]. The properties of potentials T and ¢ (see equations
[3.409] and [3.416]), associated with field B,, support of the source field (see
equation [3.412]) allow for the strong verification of equations [3.302] and [3.304].
The same is true for the boundary conditions on fields H and J (boundaries I'. and
I, LT, ) via the function spaces of definition of T, ¢ and . On the other hand,
equations [3.301] and [3.303] are weakly verified with the weighted residual method
on . and Q, respectively. The boundary condition of the magnetic flux density on
T, is also weakly verified. This is due to the boundary integral of equation [4.78]
considered zero in expression [4.79].

Let us now consider the case in which the source term is the magnetic flux ¢
imposed on the boundaries I',; Ul the approach is the same as in section 4.2.2.1.
As shown in section 3.6.2.2.2, the magnetomotive force f;, becomes an unknown of
the problem. To obtain a full equation system, relation [3.439] is added to equations
[4.76] and [4.79].

4.2.6. Synthesis of results

In this section, the weighted residual method was applied to the examples
presented in Chapter 3. With respect to electrostatics, electrokinetics and
magnetostatics, we considered the multisource systems. For magnetodynamics, we
applied the weighted residual method to the configurations introduced in section 3.6.

For each of the applications, the use of the weighted residual method, associated
with the potential formulation, leads to the strong verification of an equilibrium
equation and a weak verification of the other.

In all the cases, the strongly and weakly imposed properties are independent of
the source terms; they depend only on the potential formulation used and the
boundary conditions imposed on the boundary.
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In this context, Table 4.11 summarizes for various formulations the properties
that were strongly and weakly verified with the weighted residual method.

Formulation Strong properties Weak properties
é Scalar potential V curlE=0, EAn r = 0 divD =0, D 'nll"d =0
N €
g
5 Vector potential P divD =0, D‘"Ird =0 curlE=0, EAn r, = 0
'é Scalar potential V curlE=0, EAn r, = 0 div¥ =0, J'“ll‘j =0
£
£
S .
5 Vector potential T divli =0, J .n|1_j =0 curlE=0, EAn r, =0
-g Scalar potential @ | curlH=J,, HA n|l"h =0 divB =0, B'nlrb =0
z
g
§ Vector potential A divB=0, B. n|1_b =0 curlH=J,, HA n|1_h =0
JB

i __9 - 1H=J,H =
8 Electric curlE = ot ;EAn r. 0] cur J.HA n|1"h 0
£ . ) O = —
g (A-V) divB =0, Ba| =0 divy =0, J.n|rj =0
> b
2
E curlH = J,H An|. =0 E=-28 Eanl =0
e Magnetic ’ r, curllk = o0 Al =
= (T-) divJ =0, .| =0 divB =0, Ba| =0

Table 4.11. Potential formulations; properties
of strongly and weakly verified solutions

4.3. Finite element discretization

4.3.1. The need for discretization

Let us consider, as an example, the scalar potential formulation in the case of
electrokinetics. The objective is to find a scalar potential V belonging to H(grad, Q)
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and verifying equation [4.29] for any y belonging to H(grad, (). Assuming there is
a basis v, (k € N) of H(grad, Q), then we can write:

V= Yoy, [4.80]
k=1

where the scalar potentials Vy are the unknowns to be determined.

The number of terms to be calculated to weakly define the solution is infinite.
Such a process is naturally impossible in practice, given that a computer can only
process a finite amount of operations. There are cases where it is possible to
determine an analytical or semi-analytical solution, but they concern structures with
an extremely simple geometry. Consequently, we have to work with a basis of finite
dimension V' (1 £ k <N) of a subspace of dimension N (denoted by H'(grad, Q2)) of
H(grad, Q). Then, we obtain an approximation V' to the “exact” solution in the
weak sense, as the space H'(grad, Q) is less “rich” than H(grad, Q2). This solution is
written as:

N
V= Sy VY [4.81]
k=1

Since there are N unknowns V' to be determined, we must find N independent
equations. For this purpose, we can use the weighted residual method and apply the
weak formulation [4.29]. As already noted, the weighting functions y belong to the
same space H(grad, Q) as the scalar potential V. The approach can be similar in the
discrete case and V' and y' can be taken in the same space H'(grad, Q2). This is
referred to as the Ritz—Galerkin method. Applying to equation [4.29] the N basis
functions y' ="', we build a system of N equations with N unknowns V'y. The
solution to this system of equations, coupled with enforcing the boundary
conditions, makes it possible to determine the N coefficients V'y. The quality of the
approximation V' is expected to strongly depend on the choice of the basis V',
referred to as “discretization”, which will be used.

The finite element method is often used, in the case of low-frequency
electromagnetism, to build these subspaces of discretization. The domain Q is then
decomposed into elementary geometric units. The domain thus discretized with a
mesh M is denoted by €.

The geometric elements generally used in 3D are tetrahedra, hexahedra, prisms,
etc. Based on this spatial division, a finite number of interpolation functions is
defined, forming the basis of subspaces where the approximation to the solution is to
be found.
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Section 4.3.2 provides the expressions of the interpolation functions of the first
order for tetrahedral elements that are widely used in practice. Moreover, most of the
properties presented can subsequently be generalized to other types of elements.
Section 4.3.3 will show how the vector operators grad, curl and div are discretized
by introducing the notion of incidence matrix. Then, section 4.3.4 will present the
discretization of physical fields and associated fields like potential and source fields
as well as the introduction of gauges and boundary conditions. Finally, section 3.4.4
presents the Ritz—Galerkin method, which can be used to build a system of equations
whose solution leads to the approximation to the solution of a given problem.

4.3.2. Approximation functions

A finite element is built from a geometric form, denoted by &, which in 2D can
be a triangle, a quadrangle, etc., or in 3D it can be a tetrahedron, a hexahedron, etc.
As noted above, this book considers the three-dimensional case, namely
tetrahedrons. This type of element remains the one that is actually most commonly
used in practice, as it allows for the meshing of complex geometries that are met in
low-frequency electromagnetism applications. It should moreover be noted that most
of the properties that will be presented in detail in what follows can be generalized
to other types of elements.

This element is associated with a space of ng scalar or vector interpolation
functions that correspond to degrees of freedom. Under these conditions, if a
function f(x) is considered, defined on the element £, it can be approximated by a
discretized function fy(x) as follows:

fq(x) = ﬁ%(X)ﬁ =1f(x) [4.82]
i=1

where m;(x) represents the interpolation functions and f represents the coefficients
that allow for the “best” approximation of the function f(x). In electromagnetism,
Whitney elements (Bossavit 1997) are used, as will be seen, to create function
spaces that have properties similar to those of the continuous domain, which were
introduced in Chapter 2. The interpolation functions are then associated with
geometric entities of the element, such as nodes, edges, facets and volumes.

For various types of interpolation functions (nodes, edges, facets and volumes),
we present, in the case of tetrahedrons, the shape functions, their properties and the
associated subspaces.
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4.3.2.1. Node elements

[33%1)
1

In the case of node elements, for each node of a mesh 9, a scalar function

M,i(x) 1s defined. As an illustration, Figure 4.2(a) presents a tetrahedron and the four
nodes associated with its vertices.

11

\
A
1,
a) b)

Figure 4.2. First order node elements: a) case of a tetrahedron;
b) 2D case, triangular elements related to node “ny”

The node interpolation functions (x) are also known as “nodal elements”.
They are continuous on the domain Qg and vary linearly from one node to its nearest
neighbors, in the case of first-order elements. Let us consider the example of an
interpolation function m,;(x). It is equal to the unit at node “i” and it is equal to zero
at other nodes of the mesh as follows:

o (xj) = 8, ) [4.83]

where x; represents the coordinates of node *j” and 8(i,j) is the Kronecker symbol.

For a better illustration of this definition, let us consider, for the sake of
simplicity, the 2D example consisting of triangular elements in Figure 4.2(b). The
function associated with node n; satisfies the property ®;(x,)=1. On the other
hand, at node n;, for example, we have m,i(x,j) = 0. Moreover, as mentioned above,
the interpolation function m,;(x) varies linearly on the elements containing the node
n;. Hence, m,;(x) is equal to 1 at the node n; and is equal to zero at the other nodes. In
the case of Figure 4.2(b), the function m,(x) is not equal to zero on the gray
elements (E, E, E, E, En and E,). On the other elements of mesh %, the function
m,i(x) is equal to zero. On a given element &, only the functions associated with the
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nodes of £ are not zero. Considering these properties, if 'is the number of nodes of
mesh %, it can be shown that:

%ni (x)=1 Vxe Q4 [4.84]

i=1

Moreover, it can be noted that the function m,;(x) is continuous throughout the
mesh.

If we now consider a function uy(x), belonging to the space defined by the set of
functions m,;(x) on a mesh 9, this function is written as:

N
ug(x) = ¥ 0, (Ou; [4.85]
i=1

It can then be noted that, given the property [4.83], we have:
ug(x;) = u; [4.86]

In other terms, the scalar values u;, which will subsequently be the unknowns of
the problem, have a physical meaning as they correspond to the values of field uy(x)
at the various nodes of mesh .

Equation [4.85] can also be written using a vector of dimension A and denoted
by [w(x)] (each term represents a nodal interpolation function) and a vector [uy]
that represents the % discrete values u; of the function uy(x) at the nodes of the mesh
M. Then, we have:

ug(®) =[oy @] [uy ] [4.87]

Considering the continuity properties of the node interpolation functions, at the
interface between two elements, the function uy(x) is naturally continuous. The set
of nodal interpolation functions generates a discrete subspace, of finite dimension,
that will be denoted by W°(Qq). It can be verified that W°(Qq) is a subspace of
H(grad, ), as the nodal functions are continuous on the domain and their gradient
exists. We can then write:

W%(Qy) = {ug(x) € H(grad, Qy); uy(x)= %mni(x)ui, u; e R} [4.88]
i=1
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4.3.2.2. Edge elements

Each of the 4 edges of the mesh M is associated with a vector interpolation
function, denoted by ®,(x). In the case of a tetrahedron, these functions are built
based on interpolation functions of nodes located at the ends of the edge.
Figure 4.3(a) shows the six edges of the tetrahedron with arbitrarily chosen orientation.

n

86 as
ay.
1 1 /
ay n;
a) b)

Figure 4.3. a) Edge elements of a tetrahedron; b) orientation of an edge with i < j

Considering now the edge a; in Figure 4.3(b), the interpolation function @, (x) is
built from the nodal functions associated with the nodes wy;(x) and ,; (x) as follows
(Dular and Piriou 2008):

@y, (X) =@, (Y grado, (x)- o, (x)grady, () [4.89]

Let us focus on the properties of this function and, for this, let us consider the
edge a; of the tetrahedron in Figure 4.3(a). The nodes at the edge extremities are n;
and n,. Let us now consider the facet defined by nodes {n,, n3, ns}. On this facet, the
function m,;(x) is zero (w,(X) is zero at nodes n,, n; and n4 (see equation [4.83]),
and varies linearly on the facet). Consequently, the interpolation function ®,(x) has
the following form:

0, (X) =0, (x)grady, (x) [4.90]

Moreover, as @, (x) is zero on the facet defined by the nodes {n,, n3, ny}, its
gradient is normal to this facet. The circulation of ®,;(x) on any path belonging to
this facet is therefore zero and therefore on its three edges, i.e. a4, as and ag.
Applying the same reasoning to the facet defined by the nodes {nj, nj, ns}, it can be
shown that the circulation of ®,(x) is also zero on the edges a, and a;. Moreover, we
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have the circulation of ®,(x) that is equal to 1 on its own edge. It can be noted that,
except for the edge a; with which it is associated, the circulation of ®,;(x) is zero on
all the edges of the elements to which it belongs and therefore on the entire mesh.
This result can be generalized to the set of edge interpolation functions and we have
the following property:

[, @4 (x)dl =38(j,k) [4.91]

Let us now consider a function v4(x) belonging to the space defined by the edge
elements, which can be written as:

vi(x) = fmai (x)v; [4.92]

i=1

In this expression, due to the property [4.91], the scalar v; represents the value of
the circulation of v4(x) on the edge “I”” of the mesh. Expression [4.92] of the vector
function vy4(x) can also be written using a vector [®4(x)], composed of 4 vector
interpolation functions of the mesh M. The vector [v4] is then defined,
corresponding to circulations v; of function vy4(x), as follows:

va(x) =l 0] [V 4] [4.93]

Finally, according to equation [4.89], since nodal functions and also the
tangential component of their gradient are continuous at the interface between two
elements, the tangential component of interpolation functions ®,(x) and therefore
v4(x) are conserved.

The set of edge interpolation functions generates the discrete subspace, of finite
dimension, denoted by W'(€). It can be shown that W'(,) belongs to the space
H(curl, Qy):

A
w! (Qy) ={vq(x)€ H(eurl,Q,); vq(x)= Zwai (x)v;, v; € R} [4.94]
i=l

4.3.2.3. Facet elements

Each of the ¥ facets of the mesh is associated with a vector interpolation function
denoted by g (x). Similar to the edge elements, these interpolation functions are
built from interpolation functions of nodes belonging to the facet. Figure 4.4(a)
shows the four facets of a tetrahedron.
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i
'
a) b)

Figure 4.4. a) Facet elements of a tetrahedron; b) facet orientation

The orientation of facets is defined by their normal (using the right-hand rule). It
should be noted that these orientations are completely arbitrary but their definition
remains essential. As an illustration, Table 4.12 presents for each facet of the
tetrahedron in Figure 4.4(a), the succession of nodes corresponding to their
orientation.

Facet elements; succession of nodes
=123 | 6=(34 | 6-(.42 | =243

Table 4.12. Facet elements; succession of
nodes of the tetrahedron in Figure 4.4(a)

Let us consider the facet fj, represented in Figure 4.4(b). Following its
orientation, we have the succession of nodes {ny, n, n}. The corresponding
interpolation function can then be written as (Dular and Piriou 2008):

of x) = 2(0)nk (x) grado, (x) A grado, (x)
+ o, (x)grado, (x)Agrade, (x) [4.95]

+ o, (x) grado, (x) A grado, (x)).

As can be noted in the above expression, the three terms are obtained by the
circular permutation of the indices of node functions.
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Let us now consider the facet f}, of Figure 4.4(a), defined by the nodes {1, 2, 3},
its interpolation function is written based on equation [4.95]:

of (x) = 2(o, (x)grado, (x)Agrado, (x)
+ oy, (%) grado, x) A grado (x) [4.96]

+ 0 (x) grado, (x) A grado, (x))

Consider the flux of the function wg(x) through the facet f, defined by the
nodes{l, 3, 4}. On the one hand, as the function w,(x) is zero on the facet f,, the
flux of term ®,(x)gradm,;(x) A gradm,(x) is zero. On the other hand, as noted in
the case of edge interpolation functions, given that m,(x) is constant on the facet f,,
vector gradm,,(x) is normal to it. Under these conditions, since the two remaining
terms ,(x)gradw,(x) A gradm,;(x) and my3(x)gradw,(x) A gradw,,(x) are in a
plane perpendicular to gradm,,(x), they are tangential to the facet f,. Consequently,
the flux of these two terms through f, is also equal to zero. A similar type of
reasoning can be applied to facets f; and f; leading to the fact that the flux of 0 (x)
is also zero through these facets. The same approach is taken on the facets of the
adjacent element (not represented in Figure 4.4(a)) containing the facet fj. Then, it
can be noted that the flux of w(x) through f is equal to 1 and is zero on the other
facets of this element.

Let us now consider all the other facets of the mesh that do not belong to the two
adjacent elements containing the facet f;. It proves that these nodal functions
associated with the nodes of f; (namely n;, n, and n3) are zero on these facets and
therefore the flux of @ (x) through them. In conclusion, the flux of ¢ (x) is zero
through all the facets of the mesh, except for f; where it is equal to 1. This result can
be generalized to the set of facets of the mesh and the following property is deduced:

) jfi of, (x).ndS = &(i, j) [4.97]

Moreover, at the interface between two elements, the normal component of the
function wy(x) is conserved.

Consider now a vector function wy(x) belonging to the space defined by the
elements of the facet, which is written as:

F
Wi(x) = 2o ()W; [4.98]

i=1
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In this expression, given the property [4.97], w; represents the flux of the
function wy(x) through the facet “i”. This expression can also be written using a
vector [0«x)], composed of F vector interpolation functions of mesh M, and a
vector [w¢] which entries are the functions w;, as follows:

wa(x) =0z [we] [4.99]

The set of facet interpolation functions generates a discrete space, of finite
dimension, that is denoted by Wz(Qd). This space is a subspace of H(div, £,), such
that:

W2(Qq) = fwq(x) € H(div, Qq); wgq(x) = imfi X)wi, wie R} [4.100]

i=1

4.3.2.4. Volume elements

The volume elements associate with each element of the mesh 9, a scalar
interpolation function ;(x). These volume elements are such that for a given

[T 1)

element “v;”, its value is constant and is equal to (Dular and Piriou 2008):

1
oy, (x) = vol(v;)

on element i and o, =0 elsewhere [4.101]

17331}
1

where vol(v;) represents the volume of the element “i”. Under these conditions,
integrating on the volume, the following property is found:

fil, oy (x)dt=1 [4.102]

Likewise, the integral of the function wy;(x) on an element v; that differs from v;
is equal to zero. The following property is found:

[If, @y, (0dr=8G. j) [4.103]

Considering a scalar function py4(x), belonging to the set of volume elements, it
can be written as:

4
pa(x) = 2 @, (x)p; [4.104]

i=l1
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[73¢1)
1

where p; represents, for the element “i”, the value of the volume integral of py(x).
Introducing the vector [®«(x)] of dimension “7” and the vector of 9/ values of py
(denoted [p,]), we have:

pa®) =y )] [py] [4.105]

Taking into account the properties of functions ®,;, at the interface between two
elements, the discretized scalar quantity py(x) is discontinuous. The set of volume
interpolation functions generates the discrete subspace, of finite dimension, denoted
by W3(Qy). It is a subspace of L(Qy):

3 _{ 2/ 1 _& -
W2(Qq) = |pa(¥)EL(Qq): pa(x) = Yoy (X)p;, pi € R} [4.106]
i=1

4.3.2.5. Synthesis of properties

The main properties of the nodal, edge, facet and volume elements are
summarized in Table 4.13. This presents the notations that will be used to define the
interpolation functions, the continuity properties of discretized quantities at the
interface between two elements, as well as the discrete subspaces generated.

Functions Properties Continuity at the interface Generated space
of elements
,(x) O (x j) = 6ij Continuous WoQ)
0,(x) J.aj W, (x)dl = 8(j, k) ,(X) A n, continuous WH(Qy)
0(x) ij of, (x)ndS = &(j,k) o¢(X).n, continuous WA(Qy)
®,(x) IVj oy, (x)dv =3(j.k) Discontinuous W3(Qq)

Table 4.13. Summary of the properties of the
node, edge, facet and volume elements

4.3.3. Discretization of vector operators

4.3.3.1. Incidence matrices

This section focuses on the edge—node, facet-edge and volume—facet incidences
for a given mesh M. Matrices of incidence between the various geometric entities of
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the mesh will be built. These matrices will allow us to define the discrete forms of
gradient, curl and divergence vector operators. Then, these discrete operators will be
applied to functions belonging to subspaces W’(Qy), W'(Qq) and W(Q,). Similar to
section 4.3.2, this section will present the expressions of matrices in the case of
tetrahedral elements. Nevertheless, for other types of elements (hexahedra, pyramids,
etc.), the expressions can be deduced in a similar manner (Dular 1996; Geuzaine
2001).

4.3.3.2. Node—edge incidence

For a given mesh, the incidence of a node “n” on an edge “a” is denoted by
i(a,n). This incidence is equal to 1 if the node “n” corresponds to the end of the edge,
and —1 if it corresponds to the origin (it should be recalled that an edge is oriented,
allowing for the definition of an origin and an end). If the node does not belong to
the edge, this incidence is equal to zero. For a mesh composed of 4 edges and
N nodes, the 4x% incidence matrix will be denoted by [Gaa]. As an illustration,
consider the extremely simple case of the tetrahedral element in Figure 4.4(a). The
matrix [Ga] composed of six rows each associated with an edge and four columns
each associated with one node is represented (see Table 4.14).

Ian)| 1 | 2 |3 |4
1 [-1|1]0]o0
2 |-1]of|1]o
3 |-1]0]o0 |1
4 |o|-1]11]o0
5 ~1l0 |1
6 0 -1]1

Table 4.14. [G ;] edge—node incidence matrix of a tetrahedron

Consider now a function uy(x) discretized in W(Q), namely the space of the
nodal elements. Then, we have (see equations [4.85] and [4.87]):

N
ug(x) = Y oy (U5 = [y (0 fug ] [4.107]
i=1

If we now apply the gradient operator to the function uy(x), we have:

N
va(x) = gradug(x) = Y (gradoy, (x))u; = (grad|o, (x)[uy]  [4.108]

i=1
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Based on this expression, following the developments given in the note at the
end of this section, we can write:

A
grado, (x) = ik, Do, () =l ) fi4;] [4.109]
k=1

(13¢5
1

where the vector [i4,;] corresponds to the incidence of the node
the mesh.

on the 4 edges of

Using expression [4.109], the following can be deduced for the set of A nodes of
the mesh (Bossavit 1991):

grad [0, (0] = [0 (0] [G 4] [4.110]

From expression [4.108], we can write, using relations [4.110] and [4.93], the
succession of equations:

va(x) = (gradloy (0 )uy ] = [0, O G o Jun ] =0, 0] [v 4] 14111]

First of all, it can be noted that the gradient v4(x) of a function uy(x) of W(Q)
belongs to W'(Q). Then, we have:

grad(W°(Q,)) c W'(Q,) [4.112]

By identification, from equation [4.111], the following relation can be deduced:

[V,q] = [Gﬁ,ﬂ\f][uﬂ\f] [4.113]

Therefore, the [G 1] incidence matrix allows for the direct determination of the
vector[v.4] of the gradient of a function uy(x) based on components [u,] in Wo(Qg). It
can be noted that this expression does not depend on the shape functions. Hence, the
[Ga] matrix is the discrete equivalent of the gradient operator. If the domain is
connected, the rank of this matrix, denoted by R, is given by the following
relation:

RG] =W -1 [4.114]



214  Finite Element Method to Model Electromagnetic Systems in Low Frequency

NOTE.— In what follows, our objective is to find the space to which function
gradm,;(x) belongs. Equation [4.84] is written as:

N
2o, x)=1 [4.115]
=

Applying the gradient operator to this equation, we have:

N
Y grado, (x)=0 [4.116]
j=1 !

Consider the term gradw,(x) of equation [4.108]. Taking into account the
properties [4.115] and [4.116], the following equality can be written:

grado, (x) = {yZvlwn _ (x)]gradwn (%)
= [4.117]

N
- mni (X)[ Zgrada)n ) (X)J

j=1

The linearity properties of the sum operator allow this expression to be rewritten
in the following form:

gradoonl x)= 9Zv: (oonj (x)gradmni (x) - on (x)gradoonj (x)) [4.118]
j=1
It can be noted that if a node “j” is not connected, via an edge, to a node “i”, then
the function y(x)gradm,;(x) — myi(x)gradw,(x) is zero on the domain €. Indeed,
in this case, we have m,i(x) or ,i(x) that is equal to zero. Let us denote by S, the
set of nodes “j” connected to node “i”. Under these conditions, equation [4.118] can
be rewritten as:

grado, (x)= > (0, (xgrado, (x)-o, (x)grado, (x)) [4.119]
1 €S ' ‘ ‘ !
If we consider a node “j” belonging to Sy, then there is an edge “k” with “i”
and “j” as vertices. This is shown by the example in Figure 4.5 (extracted from
Figure 4.2(b)), which reproduces the elements of S.;;; with six edges having as one
vertex the node “i”.
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Figure 4.5. Set Se{i} of nodes of Figure 4.2, connected
to the node “i” via an edge of the mesh

Moreover, relation [4.119] shows, up to a sign, the expression of edge functions
®.x(x) having the node “i” as one of their vertices (see equation [4.89]). The sign
depends on the orientation of the considered edge “k” and, therefore, on the fact that
the node “i” is either the origin, or the end. It is given by the edge—node incidence
i(k,1). Moreover, if an edge “k” does not have the node “i” as a vertex, then the
edge—node incidence i(k,i) is zero. Under these conditions, it can be verified that
relation [4.118] can be rewritten in the following form using the incidence i(k,i):

grado, (x) = f i(k,i) 0, (%) [4.120]
k=1

The vector of edge interpolation functions [W4(x)]' can also be introduced as
follows:

A
grado, (x)= 3 itk Do, () =[o,00]]i;] [4.121]
k=1

This is similar to relation [4.109].

4.3.3.3. Facet—edge incidence

The facet-edge incidence is denoted by i(f, a). It should be recalled that the
facets and edges have their own orientation. Hence, the incidence i(f, a) is equal to:

(T3S 1}

—“1” if the direction of circulation of edge “a” is the same as the one defining
the orientation of the facet “f”;
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— “~1” if the direction of circulation of edge “a” is opposite to the one defining
the orientation of the facet “f”;

—“0” if the edge does not belong to the facet.

Consider, as an example, Figure 4.4(a) and the sequence of nodes of the facet
“f,” of Table 4.12. Then, we have:

—i(1,1)=1, i(1,4) =1, as the edges 1 and 4 have the same orientation as the
direction of circulation of facet 1 defined by its normal (right-hand rule);

—i(1,2)=—1, as the orientation of edge 2 is opposite to the direction of
circulation of facet 1;

—i(1,3)=0, i(1, 5) =0 and i(1, 6) = 0, as the edges 3, 5 and 6 do not belong to
facet 1.

More generally, for a mesh composed of F facets and 4 edges, the dimension of
the incidence matrix is Fx 4. This matrix will be denoted by [Rg4]. Considering
again the case of the tetrahedron in Figure 4.4(a), the matrix [R44] is presented in
Table 4.15.

i(f,) 1 2 3 4 5 6
1 1 ~1 0 1 0 0
2 0 1 -1 0 1
3 -1 0 1 0 -1 0
4 0 0 0 ~1 1 ~1

Table 4.15. Facet—edge incidence matrix [Ry4]
of the tetrahedron in Figure 4.4(a)

Let us now consider a field vy(x), discretized in W'(Qq). Equations [4.92] and
[4.93] are written as:

< t
Vi) = S o, )i =0, (0]'[v,4] [4.122]
i=1
Applying to this equation the curl operator, we have:

A
W, (x) = curl(vy(x)) = Zcurl(mak X))V, [4.123]
k=1
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Based on this expression, the next note will contain the developments that allow
us to write the following equation:

curl[@,(x) | =[o, (0] [Ry, ] [4.124]

The function wy(x), introduced in equation [4.123], is written as follows:

wax)=curl[o,(x)] [v, ]=[o; 0] [Req |[v4] [4.125]

It can be noted that the curl wy(x) of a function v4(x) of W'(Qy) belongs to
WA(Qy), which yields:

curl(W'(Qy)) c W3(Q,) [4.126]

By identification, the following property can be deduced from equations [4.99]
and [4.125]:

[WT] :|:R?-".ﬂ:||:vﬁ:| [4.127]

Therefore, the matrix [Rg, 4] is the equivalent of the curl operator in the discrete
domain. For a connected domain, the rank R, of matrix [Rg4] depends on the
number of edges and nodes of the mesh and we have (Bossavit 1997):

RR]=A-(V -1 [4.128]
Finally, the properties of the curl and the gradient in the discrete domain are
equivalent to those in the continuous domain. In fact, for any field uy(x) belonging to

W%Qq), we have curl(graduy(x))=0. Using expressions [4.87], [4.110] and
[4.124], this property allows us to write:

[0 [Ry_a] G 45 [ug]=0 [4.129]

And this for any function uy(x) hence any vector [ua]. Relation [4.129] allows us to
write the property:

[Rf,ﬂ][cﬂ,w] =0 [4.130]
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We find here in a discrete form, with incidence matrices, the fact that the curl of
a gradient is zero.

NOTE.— In order to determine the space to which functions curl®,;(x) belong, let us
consider the simple example of the tetrahedron 7 represented in Figure 4.6. @,(x) is
the notation for the interpolation function of edge i, whose vertices are the nodes j,
k, and which is common to the referenced facets “n” and “o0”.

Figure 4.6. Denomination of nodes j, k, |, m of a
tetrahedron and of the edge i common to facets n and o

Let us first recall a property of the curl operator:

curlpv = pcurlv+gradp A v [4.131]

where p is a scalar function and v is a vector function.
Let us now express the term curl®,;(x) in which the edge interpolation function
is replaced by its expression given by equation [4.89]. Using formula [4.131] and

after development, the following can be written:

curlo, x)= 2grado>nj x)A grado, (x) [4.132]

where m,(x) and wy(X) represent the nodal interpolation functions of the two nodes
of edge i.

Let us now consider (see Figure 4.6) the element 7/ containing the edge i. The
two other nodes of 7, differing from j and k, are the nodes 1 and m. Using the
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property [4.84], for the four nodes of element 7, equation [4.132] can be written in
the following form:

curlo, (x) = Z 2(o,, (x)gradwnj (x) Agrado, (x))
he{jk,L,m}

= 2(0nj (x)gradmnj x)A grado, (x)
+ 20)nk (x)gradconj x)A gradoonk (x) [4.133]
+20, (x)gradcorlJ (x) Agrado, (x)

+20, (X)Zgradmrli x)A grado, (x)

Let us now apply the gradient operator to expression [4.84], as shown in
equation [4.116], then we have:

grad( wy, (X)) = grado)nj (x) + grado, (x)
he{j.k.Lm} [4.134]
+ gradmnl (x) + gradconm x)=0

Based on equation [4.134], gradm,;(x) can be expressed in relation [4.133] as a
function of the gradient of three node functions ®.(x), @, (x) and ®,y,(X). The same
can be done for gradwy(x). These two functions are then replaced by their
expression in relation [4.133]. It should be recalled that the vector product of a
vector by itself is equal to zero. Then, after development, relation [4.133] has the
form:

curlo, x)= —2(1)ni (x)grado, (x) Agrado, (x)
- 2(1)nj (x)gradmnm x)A grado, (x)
-20m, (x)grado, (x)Agrado, (x)
‘ ! : [4.135]
—2w, (x)gradmnj x)A grado, (%)
+ anl (x)gradconj x)A grado, (x)
+2w, (x)gradconj x)A grado, (x)
To introduce the facet functions related to the facet n defined by the nodes j, 1

and k and to the facet o defined by the nodes j, m and k, the first three terms
depending on the node functions associated with the nodes j, k and 1 are gathered
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with the three terms below depending on the nodes associated with the nodes j, m
and k:
curlo, x)= —20)nj (x)gradcon] x)A grado, (x)
- 20)nk (x)gradoonj x)A grado, (x)
+20, (x)gradmnj x)A grado, (x) (4136]
- 20\)nj (x)grado, (x)Agrado, (x) '
- 20)nk (x)gradmnj x)A grado, (x)

+ 20)nm (x)gradmnj x)A gradmnk (x)

This equation can be written by inverting the terms of the vector product as
follows:
curlo, x)= —Zmnj (x)gradmn] ) A grado, (x)
—2w, (x)gradwnj (x) Agrado, (x)
=20, (x)grado, (x)Agrado, (x)
: ‘ ! [4.137]
- 20)rli (x)gradconm x)A grado, (x)
20, (x)gradoaIlj (x) Agrado, (x)

- Zmnm (x)gradmnk x)A grado)nJ (x)

This expression reveals (see equation [4.95]) the interpolation functions g, (x)
and ox,(x) of the facets “n” and “o” containing the nodes j, k, 1 and j, k, m (see
Figure 4.6). These are counted as positive if the orientation of the facet corresponds
to that of the edge and as negative otherwise. The defined edge—facet incidence can
be naturally introduced here. Finally, on element 7, we have:

curlo, (x) =i(n,)o; (x)+i(o,)eo; (x) [4.138]

As this was defined, we have:

[T 1) [7343]

— the incidences i(n,i) of facets “n” that do not contain the edge “i” are zero;

— the function g,(x) is also zero on the element ¥/if the facet n does not belong
to V.
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Then, we can write, on the element 7/

F [4.139]
curlo, (x)= Y i(m,i)o; (x)

m=1

A similar reasoning can be applied to the set of elements 7/connected to the edge
. On the elements that do not contain the edge “i”, the function m,(x) is zero, and
it can be verified that relation [4.139] is still true. It can therefore be concluded that
relation [4.139] is verified on the entire domain €. It is then possible to complete
equation [4.138] by introducing the vector of the facet interpolation functions
[0x)]" as follows:

3331
1

curlo, (x)= Z itm,)o; (x)=[0,®)] [i; ] [4.140]
m=1

In this equation, the vector [ig;] represents the incidence of the edge i on the F
facets of the mesh. Introducing the matrix [R¢ 4], the property introduced in equation
[4.124] can be deduced as follows:

curl[ @, (x) | =[o,; (0] [Ry, ] [4.141]

4.3.3.4. Volume—facet incidence

The volume—facet incidence is denoted by i(v,f). If the facet belongs to the
element 7 this incidence is equal to 1 or —1 depending on the orientation of the
normal to the facet (inward or outward with respect to the element). If the facet does
not belong to the considered element, this incidence is equal to zero. For the
tetrahedron in Figure 4.4(a), the incidence matrix is represented in Table 4.16. In
this table, all the incidences are equal to 1, as all four facets have an outward
orientation. In the general case of a mesh composed of 7/ elements and  facets, the
VX Fincidence matrix will be denoted by [Dy¢].

iv,f) 1 2 3 4
1 1 1 1 1

Table 4.16. Volume—facet incidence matrix [D.] of a tetrahedron
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Let us now consider a vector function wy(x) of the space of facet elements. Using
the notations of equations [4.98] and [4.99], we can write:

F
wi(x)= Yo (Ow; = [o:0)] [we] [4.142]

i=l1

Applying the divergence operator to this equation, we have:

F
pa(x) = div(wg() = Y div(es )w; = div(fos ()] [wy] [4.143]
i=1

Based on this expression, and relying on the developments given in the note
below, we can write:

Vv
divor ()= i oy, () =[op (0l fig | [4.144]
il

where [iyg] represents the vector of incidences i(j,i) of the facet i on the set of ¥

volumes j of the mesh. Based on this equation, and considering the set of ¥ facets, if
we introduce the matrix [D¢], we obtain the following property:

divfo, (9] = [0, (0] [Dy ] [4.145]
Gathering equations [4.143] and [4.145], we can write:
Pa(x) = divlor (0] [ = [, O [0y [, [4.146]

This expression shows that the divergence py(x) of a function of W*(€2y) belongs
to W*(Qq). Therefore, we have:

diW2(Qy)) € W (Qy) [4.147]

Using equation [4.105], based on relation [4.146], the following property can be
deduced:

[by]=Dy ¢ llwe] [4.148]
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This relation allows us to state that the matrix [Da,] represents the equivalent of
the divergence operator in the discrete domain. The rank Rp) of matrix [Dass]
depends on the number of facets, edges and nodes of the mesh. It is expressed by the
relation (Dular 1996; Bossavit 1997):

R[p]=F — (A - (N —1) [4.149]

Finally, in the discrete domain, the properties of the divergence and curl are
equivalent to those of the continuous domain. Indeed, considering a field v4(x) of
W'(Qq), we then have div(curlvy(x)) =0. The following can be readily deduced
from equations [4.122], [4.124] and [4.145]:

[0y GOl Dy Rz 4]l 4 0 [4.150]

which is valid for any vector [v4] representing the components of the field v4(x) in
W'(Qyq), which is reflected by the property:

[Dw] [Rrp,,q]=0 [4.151]

NOTE.— Consider now the term div(®g(x)) associated with the facets whose vertices
are the nodes {k, m, 1} and let us find the space to which it belongs.

As a first step, using the properties of the divergence and curl vector operators,
we show that the following can be written after development:

div(pu A v) =pdiv(u A v)+ (u A v).gradp [4.152]
=p(v.curlu —u.curlv) +(u A v).gradp '

In div(ws(x)), 0s(x) is replaced by equation [4.95] and formula [4.152] is
applied. After development, we obtain:

diV(o)fi (x) = (gradconm (x) A grado, (x)).gradmnk (x) +
(grado, (x) A gradw, (x)).grado, (x)+ [4.153]
(grado, (x) A grado, (x)).grad(nnm (x)

Since the mixed product is unchanged by circular permutation, this equation can
be rewritten as follows:

div(oy (x)) = 3(grad 0, (x) A grad @, (x)).grad o, (x)) [4.154]
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Consider now two adjacent elements o and p containing the facet i. The function
div(mg(x)) is constant on the element o and equal, up to a sign, to the inverse of its
volume. The same is true on element p. The sign depends on the orientation of the
facet defined by the permutation of nodes k, m and 1. It is therefore related to the
notion of the facet—element incidence. On the other hand, the function div(wgs(x)) is
zero on any other element v of the mesh for which the facet—element incidence i(v,1)
is zero. Using the definition of volume elements [4.101], we obtain the previously
introduced relation [4.144] as follows:

(V
divior, (0) = Yi(vj,f)y, () = oy (0] fi | [4.155]
=i

4.3.3.5. Properties of discrete subspaces

The main results obtained from incidence matrices are summarized in
Table 4.17.

Using relations [4.112], [4.126] and [4.147], it can be shown that the discrete
subspaces W5(Qq), where k € {0, 1, 2, 3}, form a sequence of spaces with properties
similar (see Figure 4.7) to those met in the continuous domain (see section 2.4) and
that depend on the topology of the domain, as shown in Figure 2.10.

Element type Discrete space Discrete operator
Node W(Qy) (G o]
Edge W(Qu) Ry 4]

Facet WA(Q) [DVT]
Volume W3(Qq) /

Table 4.17. Discrete domain, function spaces and vector operators

grad curl div
WIQ)——> WI(Q) ———> WAQ) ——> Wi(Q)

Figure 4.7. Sequence of discrete function spaces
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Based on equations [4.130] and [4.151], two properties can be found:

Im(gradWO(Qd)) < ker(curlw! (€)) [4.156]

Im(curlW' (©)) < ker(divW?(€,)) [4.157]

As indicated in section 2.3.4, the first property becomes an equality if the
domain is simply connected. It is also the case for the second if the boundary of the
domain is connected. If the domain is contractible, then we have:

Im(gradW (©3,)) = ker(curlW'(©2,)) [4.158]

Im(curlW'(Q,)) = ker(divW?(€)) [4.159]

Similar to the continuous domain, we can also introduce the homogeneous
boundary conditions and define the discrete function subspaces. Consider the
subspace W' (Qq) of nodal elements defined by:

Wl(_)k Q) = {ud e WO(Qy),uqy = 0|Fk } [4.160]
and W'[,(Qq), which corresponds to the space of edge elements such that:

w}n (Qq) = {vd e WH(Qy),vq A n|1_n = 0} [4.161]
and Wzrm(Qd), which corresponds to the space of facet elements such that:

lem Q) = {wd e W2(Qy), Wy .n|l_m = 0} [4.162]

It should be noted that these various subspaces are similar to those introduced
in the continuous domain. As an illustration, Table 4.18 summarizes the
correspondence between the continuous and discrete function spaces.

In conclusion, there is a great similarity between the properties of discrete spaces
introduced in this section and those encountered in the continuous domain (see
Chapter 2). All of these results will be used for the discretization of electromagnetic
fields and potentials, and also for taking into account source terms (support fields
and associated potentials).
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Function spaces
Continuous domain | Discrete domain
HF" (grad,Q) WIQ“ (24)
Hy (curl,Q) w}“ (Qq)
Hp (div.Q) Wﬁm (Qq)
LA(Q) W3 (Qy)

Table 4.18. Correspondence between the function spaces
in the continuous domain and in the discrete domain

4.3.4. Discretization of physical quantities and associated fields

Maxwell’s equations, as presented in Chapter 1, introduce the vector fields E, H,
B, J and D, as well as the volume density of charges p. In Chapter 3, these fields
were associated with function spaces in the continuous domain. Then, the scalar and
vector potentials V, P, T, A and ¢ were introduced for electrostatics, electrokinetics,
magnetostatics and also magnetodynamics. On the other hand, in order to take into
account the sources of electromagnetic fields, we introduced source fields, defined
by their support fields B and A or their associated potentials, o and y, respectively.
These source fields, support fields and potentials have been defined in function
spaces in relation to the physical quantities to which they are associated.

As already seen in section 4.3.3, some properties of the function spaces
encountered in the continuous domain can be transposed in the discrete domain. We
defined in the continuous domain the spaces to which the fields and potentials
belong (see the Tonti diagram, Figure 3.25). As illustrated in Table 4.18, for each
function space in the continuous domain, there is an equivalent space in the discrete
domain. Therefore, it seems natural to use this correspondence to define the
discretization spaces. As an illustration, Table 4.19 presents for the fields E, H, B, J,
D and the potentials V, ¢, P, T and A, the function spaces to which they belong in
the continuous domain and their equivalent in the discrete domain. Concerning the
boundary conditions, they are given as an illustration. They obviously depend on the
studied problem and on the source terms imposed on the boundary.

For the discrete function spaces of the support fields and associated potentials,
the approach is equivalent, relying on the fields they represent.
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The function space W°(Q,) allows for the discretization, by means of nodal

elements, of the fields that are defined, in the continuous domain, in the function
space H(grad, Q). Consider the example of the scalar potential V € H(grad, Q2); its
approximation can then be written in the discrete domain (see Table 4.19) in the

following form:

N
Vi(x) = Y 0, )V = oy (0] [Viy ]

i=l1

where V; is the value of the scalar potential V4(x) at node i and [Va] is the vector

with components V;.

[4.163]

Physical Continuous domain Discrete domain
quantities Notation Function space Notation Function space
Electric scalar 0
H rad, Q W (Q
potential v r.(® ) Va r, (@)
Magnetic scalar 0
H rad, Q AN (9]
potential ¢ T, (g ) Pa Ty (€24)
Electric field E Hr (curl,Q) E, Wll- Q)
Magnetic field H Hp, (curl, Q) H, Wth (Qq)
Electric sector 1
H 1,Q W (Q
potential P r, (curl.Q) Py T, (Qq)
Electric sector 1
Hr (curl,Q W (Q
potential T T ( ) Ta T (€24)
Magnetic sector 1
H 1,Q W (Q
potential A r, (curl, ) Aq T, (Q4q)
Magnetic flux . 2
Hp (div0,Q Wi (Q
density B r, (Av0.2) By r, (2d)
Current density J Hp (div0,Q) J WE (Qq)
Electric )
displacement D Hp (div,€Q) Dy Wr (©Q4)
field
Electric charge 2 3
density P L(Q) Pa W2(Qq)

Table 4.19. Function spaces of fields or pote ntials
in the continuous domain and the discrete domain

227
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As for the space W'(Qy), it allows for the discretization with edge elements of
quantities defined in the continuous space H(curl, Q). Under these conditions, the
approximation of an electric field E€H(curl, Q) can be written in the following
form:

A
Eq(x) = 3o, (0E; = [0, [E 4] [4.164]

i=1

where E; is the circulation of the electric field E4(x) on the edge i of the mesh and
[E 4] is the vector with entries E;.

Likewise, the space Wz(Qd) allows, with facet elements, for the discretization of
fields defined in the continuous domain in the space H(div, Q).

Hence, the approximation of the magnetic flux density B, belonging to
H(div0, €2), has the following expression:

F
By(x) = Y oo (0)B; = [0z(x)] [B¢] [4.165]

i=l1

where B; is the magnetic flux density By(x) through the facet i of the mesh and [By]
is the vector composed of the entries B;.

Finally, the discrete space W>(Qq), corresponding to the space L*(Q) in the
continuous domain, allows the electric charge density p to be expressed with the
volume elements in the following form:

%
pa(x) = Y oy (p; = oy (0] [py] [4.166]

i=1

where p; is the charge contained in the element i of the mesh and [p+] is the vector
whose entries are p;.

Based on Table 4.19 and the previous formulas, the expressions of the other
vector fields or support fields are very easily deduced.
4.3.5. Taking into account homogeneous boundary conditions

As already seen in section 4.3.4, the fields are naturally discretized in the space

of the node, edge and facet elements. This section shows how to impose, on a part of
the boundary of the domain, homogeneous boundary conditions (see equations
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[4.160], [4.161] and [4.162]). These conditions depend on the space in which the
considered quantity is discretized and it will be shown that they are imposed by
acting on the degrees of freedom.

4.3.5.1. Case of node elements

The space of the nodal elements W°(Q,) allows for the discretization of scalar
functions continuous on the domain (see Table 4.13). These functions can be
associated with homogeneous boundary conditions on one part of the boundary, as
indicated by relation [4.160].

Let us consider, as an example, the expression of the electric scalar potential (see
equation [4.163]) and denote by T, the boundary on which V = 0 should be imposed.
Consider now a facet fi belonging to I'. and nj, n, and n; the three associated nodes.
The value of V on the facet f; depends only on the node values V,;, V» and V; (see
section 4.3.2.1). Consequently, if it is expected to have V = 0 on fi, it is sufficient to
impose the values V,; = V,;, = V3 = 0. This reasoning can be generalized to the set
of facets covering the surface I, and it can thus be shown that to impose V=0 on
I'., it is sufficient to have the value of V,; zero on all the nodes of this surface.

Let us denote by & the number of nodes of the mesh and by A, the number of
nodes located on I'.. Let us assume there is a layout of nodes so that those belonging
to the boundary I, are the last ones in the order of numbering. Since the A, node
values are set to zero, the number of remaining nodes is written as N, = N — M.
Under these conditions, the discretized form of the electric scalar potential,
considering the boundary conditions homogeneous on the boundary, is written as:

Wl’ t
V) = Son (Vi o (0] [V | [4.167]

i=1

4.3.5.2. Case of edge elements

As already seen previously, the fields defined in the function space H(curl, €2)
are discretized in the space of the edge elements W'(Qy). As noted in section 4.3.2.2,
the tangential component of fields of W'(€y) is conserved when passing from one
element to another (see Table 4.13). For these fields, the boundary conditions
homogeneous on one part of the boundary of the domain are defined by relation
[4.161]. As an example, let us consider the electric field, whose discrete form Ey(x)
is given by equation [4.164]. Let us assume that on one part of the boundary,
denoted by T'., we impose E4(x) A n = 0. Consider now a facet f;, belonging to the
boundary T'., composed of edges a;, a, and a;. The expression of the tangential
component of E4(x), on the facet fi, depends only on the circulations E,;, E., and E,3
along the edges a;, a, and a;, respectively. Under these conditions, in order to
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impose to zero the tangential component of E4(x) on fi, we fix the circulations E,,
E,, and E,; equal to zero. This reasoning can be generalized to the set of facets
composing surface I and it can be concluded that in order to impose
E4(x) A n |re = 0, the circulation of E, should be zero on all the edges a, of T.

Let us consider now that the mesh is composed of 4 edges and that the boundary
I'., on which the condition (E4(x) A n=0) is imposed, has 4, edges. Similar to
section 4.3.5.1, let us assume that the layout of edges is such that those belonging to
the boundary T, are the last ones in the order of numbering. Since the values of 4
edges are fixed, the number of remaining unknown edges is written as 4, = 14— A,.
Then, the expression of the field is:

4,
Eq0) = Y0, 0F; = [0, 0} [E4 ] [4.168]

i=l1

4.3.5.3. Case of facet elements

The subspace of the facet elements W*(€2y) allows for the discretization of fields
defined in the function space H(div, €2). For these fields, the boundary conditions on
the boundary are given by relation [4.162]. As an example of discretized magnetic
quantity in the space of facet elements, consider the magnetic flux density B with
boundary conditions of type I', (see Table 4.19). If a facet “f;” belongs to the
boundary T, the flux through this facet is equal to the component B; associated with
the facet function g(x). Consequently, imposing the facet flux Bg =0, we impose
that the normal component of B is zero on the facet “f;”. This can be generalized to
the set of facets belonging to the boundary I,

Consider now the mesh M, composed of ¥ facets, among which %, facets belong
to the boundary I',. Assume that the % facets, belonging to the boundary T, are
organized such that they are the last in the order of numbering. To impose
B.n |, =0, we set to zero the flux Bg on the % facets. The number of remaining
unknowns of the problem is then # = #— F. Under these conditions, the discrete
form By(x) is:

£,
By(x) = Yo (X)B; = [wﬁ wf [BT,] [4.169]
i=1
4.3.5.4. Synthesis of properties

It can be noted that the use of the node, edge and facet elements makes it
possible to naturally impose homogeneous conditions on a boundary. For this, it is
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sufficient to have zero degrees of freedom of the approximation functions associated
with the geometric elements belonging to this boundary.

4.3.6. Gauge conditions in the discrete domain

As already noted, there are an infinite number of fields verifying a condition
carried by a grad, curl or div operator (see section 2.5). This is the case with scalar
and vector potentials introduced in Chapter 3, as well as support fields and
associated potentials. To obtain a unique solution, a gauge condition must be
imposed (see section 2.5.2). For the fields defined by a gradient, a curl or a
divergence, the following section explores the numerical process to be used to
impose a gauge in the discrete domain.

For the developments, we assume that the domain € is contractible.

4.3.6.1. Case of the gradient operator

Given a known field vy(x) € W'(Qy), the objective is to find a scalar field ugy(x)
such that v4(x) = graduy(x) with ug(x)e W°(Qy). In order to have a good formulation
of the problem and to satisfy the property [4.158], v4(x) must verify the relation
curlvy(x) = 0. In a matricial form, searching for uy(x) means finding a vector [uq]
such that [v4] = [G][ua] where [v4] is a known vector that verifies [Rg4][v4] = 0.
Since the rank of the [G44] matrix is V-1 (see equation [4.114]), the value of an
entry of vector [uys] must be fixed in order to have a unique solution. This makes it
necessary to fix the value of the function uy(x) at one node of the mesh.

In the general case, to fix a node value of [uy], an arbitrary node of the mesh can
be chosen. Nevertheless, in some cases, the entries of the problem may guide the
choice. As an example, let us consider the magnetic scalar potential ¢ formulation. It
is not rare to have at least one surface of the boundary, of type I';, on which the
magnetic field has a zero tangential component. Under these conditions, this is an
equipotential surface with @eHpy(grad, Q) (see equation [3.217]). To impose
@ | =0, as indicated in section 4.3.5.1, we set at zero the entries of vector [Qa]
which corresponds to the nodes located on I',, which equally allows for imposing
the gauge condition. The same approach can be taken in the case of the electric
scalar potential V formulation, imposing to zero the entries associated with the
nodes located on the boundary I, (see relation [3.159]).

For a given mesh, in order to obtain the components u; (1 <i< ) of the vector
[ua], knowing the components vy (1 <k <. 4) of the vector [v,], the following
approach can be used: given an edge k linking two nodes i and j, with the circulation
vk being known, as well as the value u;, it is possible to calculate the value u;.
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Indeed, using the raw k of the matrix relation [v4]=[Gaa][us] wWe obtain the
following formula (see section 4.3.3.2):

Vg = i(k,j)uj + i(k,i)ui [4170]

Using this relation, an iterative process can be developed for the calculation of &
values u; of the vector [ua]. It starts at the node i where the component u; was
imposed. Then, we consider the set of m edges connected to node i. For all the nodes
J (except the node i), extremity of the m edges, the value of y; is calculated using
relation [4.170]. The above process is then repeated for all the nodes i whose value
is known. This process aims to determine the node values of all the nodes in the
mesh. During this process, the value at a node j can be calculated several times, but
the value of u; at this node will always be the same. If this is not the case, then the
field v4(x) is not curl free and does not derive from a gradient.

In order to illustrate this process, we work with an elementary mesh % composed
of two adjacent tetrahedra (see Figure 4.8). The properties of the mesh are: A=35,
A=9, F=7Tand 7= 2. The element 1/ is composed of nodes 1, 2, 3 and 4 and 7 of
nodes 1, 2, 3 and 5. Figure 4.8 shows the orientation of edges. For the sake of a
lighter figure, the orientation of facets is not indicated. In fact, except for the internal
facet “4”, oriented from element 7/ to 74, the other facets are outwardly oriented.

(O nodes

O edges
A\ facets

Figure 4.8. Mesh composed of two adjacent tetrahedrons
with numbering of nodes, edges and facets
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As an example, let us fix the circulations of the field v4(x) along the nine edges,
ie [va=[-1,-1,-2,-3,-2,-1,4,5,6]. To impose the uniqueness of uy(x), the
value at node 4 is set, i.e. uy = 0. According to the approach proposed above, the first
step is to determine the matrix[G 44], reproduced in Table 4.20.

i(a, n) 1 2 3 4 5
1 ~1 1 0 0 0
2 0 ~1 1 0 0
3 0 ~1 0 1 0
4 ~1 0 0 1 0
5 ~1 0 1 0 0
6 0 0 -1 1 0
7 -1 0 0 1
8 0 ~1 0 0 1
9 0 0 ~1 0 1

Table 4.20. Matrix [G 44], example of Figure 4.8

Second, we determine the set of nodes connected to the edges linked with node
4. Figure 4.8 shows that nodes 1, 2 and 3 are linked to node 4 via, respectively, the
edges 3, 4 and 6. It should be noted that it also includes the list of edges connected
via column 4 of matrix [Gs] (see Table 4.20). The value of u;, in these nodes, can
be calculated using relation [4.170], which yields:

uy =3 u, =2 u3 =1 4.171]
1 2 3 [

Nodes 1, 2 and 3 should now be successively considered to calculate the values
at the nodes to which they are connected. Node 1 is connected to nodes 2—-5. As the
values at nodes 2—4 have already been calculated, only node 5 is considered.
Applying again relation [4.125], we obtain:

ug =7 [4.172]

Since the present case is extremely simple, the process stops here, as all the values
at nodes have been determined. Then, we have the vector [us] =[3, 2, 1, 0, 7]

4.3.6.2. Case of a curl operator

Let us now consider a known field wy(x) € WX(Qy) and search for a field vy(x)
such that wy(x) = curlvy(x) with v(x) € W'(Qq). To have a well posed problem and
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in agreement with property [4.159], wy(x) must verify relation divwy(x) = 0. When a
field is uniquely defined by a curl, in order to have a unique solution, a gauge
condition must be imposed, either in the continuous or in the discrete domain.

As already seen in section 2.5.2.2, in the continuous domain, there are several
gauges, among which is the gauge v.n =0 (see equation [2.51]). Its equivalent, in
the discrete domain, relies on the construction of an edge tree (Albanese and
Rubinacci 1990), whose process will be developed below.

A tree is a set T; of edges, connecting all the nodes of the mesh without creating
loops. This means that all the nodes of the mesh can be linked by a unique path
using the edges of the tree. The tree T; contains ' — 1 edges. Assigning an arbitrary
value to the circulations of v4(x) on this set of edges is equivalent to imposing a
gauge condition and therefore its uniqueness (see section 2.5.2.2).

Indeed, let us consider two fields vg4;(x) and vg(x) belonging to W'(€2y) so that
the circulations on all the edges of tree T; are equal. As the curls of the two fields
vqi(x) and vg(x) are equal to wy(x), the field Avy(x) = vai(X) — v4o(x) is curl free and
can be written as the gradient of a scalar function Auy(x) (i.e. Avy(x) = gradAuy(x)).
Along the edges of T, since the circulations of v4;(x) and vg(x) being imposed are
equal, the circulations of gradAuy(x) are zero. Considering now two nodes A and B
of the mesh, since T is a spanning tree, there is a unique path ¢ made of edges of T,
connecting A and B. Since the circulation of gradAuy(x) is zero on the edges of T3,
the circulation of gradAuy(x) between A and B is also zero. The values of Auy(x), at
the nodes A and B, are therefore equal. This reasoning can be applied to any pair of
nodes of the mesh. Consequently, all the values at nodes of the function Auy(x) are
equal, leading to the function uy(x), which is constant throughout the domain. The
function gradAuy(x) is therefore zero; thus, we have v4;(x) = vg(x). Consequently,
imposing the circulation of v4(x) on the edges of the tree leads to the uniqueness of
this function. In practice, these circulations are equal to zero. The objective is now
to determine the circulations on the edges of the cotree, i.e. not belonging to the
edge tree. An iterative process is used for this purpose. Since the curl of vy(x) is
equal to wy(x), the circulation of v4(x) around a facet f is equal to the flux of wy(x)
through this facet. Using the raw “f” of the incidence matrix [Rg4] (see equation
[4.127]), we then obtain in the case of a triangular facet:

wr = i(f,i)vi +i(f, v +i(f.k)v [4.173]

where i, j and k are the indices of the edges belonging to the facet f and i(f,i) is the
incidence of the edge i on the facet f of the matrix [R#4] (see section 4.3.3.3). As for
the terms v;, v;j and v, they represent the components of vector [v,] of the
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circulations of vy(x) on the edges and w¢ the fth component of vector [w¢] of the
fluxes of wy(x) through the facets of the mesh.

To calculate the circulations of v4(x), therefore of vy, on the edges of the cotree,
all of the facets of the mesh are scanned one after the other. When a facet is met, for
which the circulations of v4(x) along the two edges are known, the circulation on the
third edge is determined using relation [4.173]. This process is repeated until all the
circulations on the edges of the cotree are calculated.

NOTE.— Consider relation [4.127], which connects the vector [v4] of 4 values of the
circulation of v4(x) on the edges with the vector [w¢] of & values of the flux of facets
of wy(x) via the discrete curl operator [Rg]. According to relation [4.128], the rank
of the matrix [Re4] is equal to 4— (% — 1), which is in agreement with the previous,
where, in order to fix the uniqueness of v4(x), (W — 1) values of vector [v4] are
imposed through an edge tree.

As a simple illustration, let us consider the two adjacent tetrahedra in Figure 4.8.
It should be recalled that, except for the internal facet “4”, oriented from the element
) to 14, the other facets are oriented outwardly. Based on this information and on
the orientation of the edges in the figure, it is easy to build the incidence matrix
[Rg4] reproduced in Table 4.21.

i(f,a) 1 2 3 4 7 8 9
1 1 0 1 ~1 0 0 0
2 0 1 ~1 0 1 0 0 0
3 0 0 0 1 -1 | -1 0 0 0
4 ~1 ~1 0 0 1 0 0 0 0
5 ~1 0 0 0 0 0 1 ~1 0
6 ~1 0 0 0 0 0 1 ~1
7 0 0 0 1 0 ~1 0 1

Table 4.21. Matrix [R4]; example of Figure 4.8

For this mesh, let us now assume the known field wy(x) of WX(Qy), defined by
the fluxes through the seven facets, i.e. [wgs =[0,0,—1,1, 1,0, 0]". Taking into
account the orientation of facets, it can be readily verified that wy(x) is divergence
free. The objective is to find a field v4(x), belonging to W'(Q), so that
vy(x) = curlwy(x). This is equivalent to finding the set of circulations
[Va] = [V1, V2, V3, V4, Vs, Ve, V7, Vg, V9]t~
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To calculate the vector [v4], we build an edge tree. Knowing the number of
nodes of the mesh (W= 5), the tree is composed of four edges (V- 1). Let us choose,
for example (see Figure 4.9), the edges 1, 3, 6 and 9 on which zero circulation is
imposed, hence v, = v3 = v4 = vo = 0. To calculate the remaining circulations, we use
the incidence matrix to find a facet for which two circulations are known and the
third one is calculated using relation [4.173]. This process can be repeated until all
the circulations are obtained. Then, for vector [v,], we have the following values:

[Vﬂ] = [07 Oa 09 0; 17 07 15 09 O]t [4174]

Figure 4.9. Edge tree in the thick line, composed of edges 1, 3, 6 and 9

4.3.6.3. Case of a divergence operator

The objective is now to calculate a field wy(x) € W3(Qyg) so that its divergence is
equal to a known source term, qu(x) € W3(Qy). The field wy(x) is not unique, given
that if wy(x) is a solution, any field written in the form wy(x) + curlvy(x) with
va(x)e W'(Qyq) is also a solution. A gauge should therefore be introduced to impose
the uniqueness of wy(x). A solution is to again use a tree technique (Le Ménach et al.
1998). In fact, this involves building an edge tree denoted by 7. The analogy
existing between “nodes and elements” and “edges and facets” will be used for this
purpose (Bossavit 1997). Indeed, an edge joins two nodes and a facet “joins” two
elements. Based on this principle, a graph G can be built. In this context, the
elements of the mesh are represented by nodes and the facets by edges. The
orientation of the facet f of the mesh defines the orientation of the corresponding
edge of graph G. An additional node is required to represent the external
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environment of the domain 4. All the edges representing the facets located on the
boundary of € are linked to this additional node.

To illustrate this principle, let us consider again the example in Figure 4.8,
namely two adjacent tetrahedra. For this example, it should be recalled that, with the
exception of the internal facet “4”, oriented from the element 7} to %4, the other
facets are outwardly oriented. Figure 4.10(a) reproduces the two tetrahedra, but for
the sake of readability, the notations related to nodes and facets are not indicated. On
the other hand, the orientation of the seven facets via their normal component has
been introduced. A graph of facets, corresponding to this elementary mesh, is
reproduced in Figure 4.10(b), which shows the additional node, denoted by Ty,
representing the external domain. The graph G is therefore composed of Fedges and
7+ 1 nodes, hence seven edges and three nodes.

A tree is then built on the graph G. The facets of tree 7y correspond to the edges
of the cotree of G. The tree Iy then contains F — 9/ facets.

NOTE.— Let us consider relation [4.148]; it links the vector [w¢] of F values of the
flux of wy(x) on the facets with the vector [pv] of 7/values of charge py(x) contained
in each element via the discrete divergence operator [Dyg]. According to relation
[4.149], the rank of matrix [Dg] is equal to F—(4—-(N—1)). For the studied
example, the domain is assumed to be contractible; therefore, according to the
Euler—Poincaré formula, we have: ©/— #+ 4 — W= — 1. Therefore, the rank of matrix
[Dey] is equal to 7. F— 9/ values of vector [w¢] should be fixed to have a unique
vector wy(x). This leads to a number of facets of tree 7y equal to F— 7.

A facets

—> normal to facet

a) b)

Figure 4.10. a) Two adjacent tetrahedrons with
facet orientation; b) corresponding facet graph G
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Let us consider again the calculation of the field wy(x), defined by its divergence
and the way in which the gauge condition is imposed by building a facet tree.
However, depending on the boundary conditions on the boundary, some precautions
must be taken.

NOTE.— All of the facets located on the boundary on which the normal component of
field wy(x) is imposed must belong to the tree. Nevertheless, if the normal
component is imposed on the entire domain, to avoid creating a closed surface, one
facet must be excluded from the tree.

To gauge the solution, the values of the fluxes are then fixed through the facets
of ;. Then, there are three possible cases.

— Case 1: the objective is to find the support field ng of a source term imposed
inside the domain and defined by a density (see section 3.2.2.2). This is the case
with the electric charge density for electrostatic problems. Arbitrary values of flux
on the facets of tree 7 are then imposed.

— Case 2: the objective is to find the support field A of a source term imposed on
a part of the domain boundary (see section 3.2.1.2). In this case, the values of the
fluxes for the facets of the tree belonging to the boundary are fixed by the boundary
conditions. On the other hand, arbitrary values can be imposed on the facets of the
tree, located inside the domain.

— Case 3: the objective is to build an approximation of a known source field
defined inside the domain and divergence free. Then, it can be defined by its support
field Ay (see equation [3.38]). An example is the current density Jj in the case of a
magnetostatics problem (see Figure 3.20). Indeed, if the mesh does not perfectly fit
the shapes of the inductor (case of a curved inductor in the case of a tetrahedral
mesh), Ay cannot be correctly expressed in the space Wz(Qd). In this case, an
approximation Aqq of Ay is determined, which is divergence free. For this purpose, a
possible approach (Le Ménach et al. 1998) is to use the proposed gauge, but this
time by imposing a flux on the facets of the tree:

wg = [[AgndS [4.175]

In these three cases, the values of fluxes on the facet tree 77 are fixed. The fluxes
through the other facets of the mesh M are calculated according to an iterative
process similar to that presented in section 4.3.6.2 using, for the case of a
tetrahedron, the following relation:

qQy = i(v,hw +i(v, w; +i(v,Kw +i(v,hw, [4.176]
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where 1, j, k and | are the indices of the facets of the element v, i(v, 1) is the
incidence of the facet i with respect to the element v (see the matrix [Dqs] in
section 4.3.3.4). As for w;, wj, wi and w;, they represent the components of the vector
[we] of fluxes of wy(x) through the facets of the element v. Finally, q, represents the
vth component of the vector [qq] of charges related to the density of charges qq(x).

As an illustration, let us consider again the two adjacent tetrahedra in
Figure 4.10(a). Based on the orientation of edges in the figure, the incidence matrix
[D ], reproduced in Table 4.22, can be easily built.

iv,f) 1 2 3 4
1 1 1 1 1 0
2 0 0 0 ~1 1 1 1

Table 4.22. Matrix [D.]; example of Figure 4.10(a)

For this mesh M, composed of two elements and seven facets, let us now
consider a field qy(x) € W3(€2y) such that qy(x) = 0, therefore vector [q+] = [0, 0]".
The objective is to find a field wy(x) € W(Qy) such that:

—divwy(x) = qa(x) = 0;
— fluxes entering facet 1 and exiting facet 7 are equal to 1;

— fluxes exiting the other facets of the boundary, i.e. facets 2, 3, 5 and 6 are equal
to zero.

All the facets located on the surface have imposed fluxes, but given the fact that
wy(x) is divergence free, one of these six fluxes is a linear combination of the other
five. Consequently, five of these facets must belong to the facet tree 77 and hence to
the cotree of graph G represented in Figure 4.10(b). Let us fix the edge
corresponding to the facet 7 in the tree of G and complete it by the edge
corresponding to facet 4. The tree of G is therefore composed of facets 4 and 7. The
facet tree corresponding to the cotree of G therefore contains all the facets 1, 2, 3, 5
and 6. The fluxes on these facets are fixed by the boundary conditions. Therefore,
we have:

W1 2—1, Wo =0 W3 20, Wy ZO, Wg =0 [4177]
In order to obtain the missing fluxes, we use the approach involving a loop on

the elements. Since three of the four fluxes of the facets of element 1 are known,
considering again the first line of the matrix [Dq#], with q; =0, it can be deduced
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from equation [4.176] that w, = 1. The same approach applied to element 2 yields
w7 = 1. Under these conditions, the vector of fluxes of the facet [w¢] is given by:

wg]=[-1,0,0,1,0,0,1,0,1]" [4.178]
F

4.3.7. Discretization of support fields and associated potentials

As already seen in section 1.5, source terms, encountered in the low-frequency
electromagnetism, can be local quantities (p, G, Js) or global quantities (f;, €, fu, 1, 0).
In section 3.2, to facilitate the derivation of the formulations, we introduced source
fields and, for their representation, we used support fields (B, As, N> Es1), Which
can be associated with the potentials (0L, ). The following section will develop,
in the discrete domain, the expression of support fields and associated potentials
depending on their properties. The notations are the same, namely the mesh
M contains N nodes, 4 edges, F facets and 7/volumes.

4.3.7.1. Discretization of the source terms o and fs

For the discretization of the source terms o and B, we refer again to the general
case considered in section 3.2.1.1. The properties of the scalar potential o, given by
relations [3.13] and [3.14], show that it is defined in the space H(grad, Q) with
boundary conditions on Iy, with k € {1, 2}. The potential o, must thercfore be
discretized in the space of node elements WO(Qd), as shown in Table 4.18. It should
be recalled that the boundaries I',; and I, are equipotential with Oy and Ol
equal to 1 and 0, respectively.

In the discrete domain, in order to impose the boundary conditions on I'y; and
T, we fix to 1 the values associated with the nodes on the boundary I';;; and to zero
those associated with the nodes of I, (Henneron et al. 2004). Indeed, it can be
verified that if the values of a function are equal on the nodes of a facet, then the
value of the function is constant on this facet. Consequently, the value of oy(X) is
constant and equal to 1 on all the facets of surface I';; and is zero on those of T'y.
Moreover, the other values of 0(x) at nodes can be arbitrarily fixed (in practice,
they are often fixed at zero). Indeed, let us note by ; the set of nodes belonging to
the boundary I';; then, we can write:

oy =1if ie & else oy =0 [4.179]
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(1341
1

where 0 is the value of o,4(x) at nodes “i”. Let us now consider the A nodes of
mesh M. In this case, the expression of the discrete form o4(x) of the potential o is:

N
O (X) = 20 (X) g [4.180]
i=l1

where, as a reminder, m,(x) represents the nodal interpolation functions (see
equation [4.84]).

To represent the nodal values 0,y in expression [4.180], we can introduce an
N-dimensional vector denoted by [0a]. Then, we have:

0sq(%) = [0 ()] [0ty ] [4.181]

Considering the properties given by equation [3.12], the support field B, is
defined in the function space Hp, i mp(curl0, Q). Moreover, it is expressed as a
function of potential o via the gradient operator (see equation [3.13]). In the discrete
domain, it belongs to the space of edge elements W'r o (Q4) (see Table 4.18).
Therefore, based on equation [4.111], it can be written in the discrete form:

Beg(x) = —grado g (x) = —igv (grad Oy, (X))Oﬁni [4.182]

= —[(9;4(7()]t [G,q,w I(XW] = [m,q (X)]t [B,q]
where [B4] is written as:
Bal=-IG 4 lloy ] [4.183]

For a given problem, knowing the vector [0s] of nodal values, as well as the
matrix [Gaq], we very easily obtain the vector [B4] of 4 circulations of B, on the
edges of the mesh. It can then be verified that the only non-zero components of
vector [B4] are associated with edges with only one extremity on the surface T;.

4.3.7.2. Discretization of fields As and ys

This section considers again the example presented in Figure 3.1 with the
support fields introduced in section 3.2.1.2. The field A is entirely defined in the
domain Q of boundary I'. This boundary is the union of two gates I',;; and I',;;, and of
the wall T',,. The support field A, belongs to the function space Hr,(div0, Q) (see
relation [3.23]). Under these conditions, this field must be discretized in the space of
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facet elements (see Table 4.18). Then, Ay(x) € W rn(Qq), and its expression is
written as:

i t
ha(X) = Yo (A = [0 0] [he ] [4.184]
i=1

The objective is to determine the fluxes of Ag(x) through the facets of the mesh,
i.e. the components of the vector [As] such that:

— divAg(x) = 0 or in an equivalent manner, in the discrete domain, [Das] [As] = 0;

— Asg(x).n =0 on I'y,, which means that the fluxes through the facets located on
I',, are zero;

- -[Fnz Agg(x)ndS = —jrnl Agq(x)ndS =1, which is equivalent to imposing that

the sum of fluxes exiting the facets located on I', is equal to 1 and equal to —1 on
T

There are an infinite number of solutions satisfying these conditions. To build
one, the gauge condition proposed in section 4.3.6.3 is applied. This gauge relies on
building a facet tree (case 2). It should be recalled that a requirement when building
a tree is that all the facets of the domain boundary except one belong to the facet tree
(Le Ménach et al. 1998; Henneron et al. 2004).

Concerning the associated vector potential )(x), it is linked to the support field
Asa(x) via the curl operator. In the case of a not simply connected boundary such as
I, some precautions need to be taken in the continuous domain in order to
determine it (see section 3.2.1.2.2). Indeed, in this case, as shown by equations
[3.28] and [3.29], we have ¥, H2rm(curl, Q). It will be shown how this difficulty
can be overcome during its discretization.

In the discrete domain, the associated vector potential y(x) belongs to the space
of the edge elements W'[,(Qg) and its expression is given by:

A
150X = S0, ()%, =040 [ 4] [4.185]
i=1

The objective is to determine the components of the vector [y 4] that represent the
A circulations of )((X) on the edges of the mesh. The conditions to be verified are:

— Asa(X) = curlyy(x) or, in an equivalent manner, [A¢] = [Rea][)al;

—Xsd(X) An=0o0n I,
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Since Ag(x) belongs to Wzrm(Qd) and it is divergence free, there are an infinite
number of fields y4(x) satisfying the two above-mentioned conditions. To determine
one solution, we can use the gauge condition (see section 4.3.6.2), based on the
construction of an edge tree. To impose the boundary conditions on the boundary
I, the construction of the edge tree must begin on this boundary. It can be shown
that this algorithm introduces a cut on the boundary I';, between the gates I',; and
T2 (Le Ménach et al. 1998). This makes it possible to alleviate the constraints
related to the not simply connected boundary T7;,.

Knowing the 4 circulations of the field on the edges of the mesh, hence the
vector [x.4], we can express Xsq(X) in the form of equation [4.185].

4.3.7.3. Discretization of the source terms & and 1

The support fields of the source terms, & and mg, are defined in section 3.2.2.2.
The scalar field & represents a density as shown in equation [3.43]. As for the field
Ms1, it is defined based on & via relation [3.46].

In order to determine the discrete form of these two fields, denoted by &4 and
Nsie» We consider the example in Figure 3.9 introduced in section 3.2.3.4. In the
continuous domain, these two fields are defined in the function spaces, such that
RS Lz(Q) and Mg € Hry(div, Q). Under these conditions, transposed in the discrete
domain (see Table 4.18), we have Egy(x) € W (Qy) and ngu(x) € W2,(Qy), hence,
respectively, the space of the volume elements and the facet elements. As a first
step, we determine Egqy(x) by using its properties defined in the continuous domain
by equation [3.43]. Then, we calculate Mgq(x) by transposing relation [3.46] in the
discrete domain.

The field &qy(x) is an input of the problem defined in the space of the volume
elements. Under these conditions (see equation [4.105]), the expression of its
discrete form is:

Y t
Ega(X) = Yoy (&g, = [0y )] [Ey] [4.186]

i=1

The entries of the vector [E.] represent the contribution of the volume
corresponding to the element. This means the volume integral of &gy(x) on each
element of the mesh. For example, in electrostatics, if the charge density is constant
on a subdomain Qg of €4, then we can write for an element v;, based on equation
[3.57]:
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vol(v;)

‘tvslvl = vol (Qsd )

if v;e Qg and &, =0 if v, ¢ Qg [4.187]

slv;

in this expression, vol(v;) represents the volume of the element v;.

Let us now find the support field Mgq4(x), which is written as follows:

F
Mga () = Yo (XNge = [0 (0)] ] [4.188]
i=1

In this expression, the vector [N¢] represents the F fluxes of the facets of the field
Ns1a(X), which must satisfy the following conditions:

— divngy(x) = Egq(x) or, in an equivalent manner, [E4] = [Das][N];

— T]Sld(x).n =0on Fm.

There are an infinite number of fields Mg4(x) verifying these two conditions. To
determine the entries of [ns], we then apply a gauge condition such as the one
described in section 4.3.6.3 (case 1). Therefore, we have to build a facet tree 7;. To
impose the boundary conditions, all the facets belonging to I', in the tree 7 must be
imposed. However, as indicated in section 4.3.6.3, if I, covers the entire boundary,
then all the facets of I, except one, belong to 7;.

4.4. Discretization of weak formulations
4.4.1. Notations

In what follows, we apply the finite element method to the set of weak
formulations developed in section 4.2. As a first step, the Ritz—Galerkin method will
be presented. This method will be applied to construct the discrete model from the
weak formulation obtained in section 4.2.

To alleviate the notations, the next section of this book will no longer refer to the
dependence on “x” of the interpolation functions. The node, edge, facet and volume
functions will therefore be denoted by w,, ®,, @ and ®,, respectively. Similarly, the
vectors corresponding to these interpolation functions will be written as [wa]', [®4]',
[0 and [0+]', where %, 4, F and Vrepresent their dimension, namely the number
of nodes, edges, facets and volume, respectively.
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4.4.2. Ritz—Galerkin method

Section 4.2 developed the weighted residual method that led, in the continuous
domain, to searching for a weak form of the solution to the initial problem.

Consider the example of a scalar function U, defined on a domain Q. This field
must satisfy a gate-type boundary condition on a part I', of the boundary I" on which
we impose U = 0. Consider that the equation to be solved can be written as follows:

div(kgradU) +q = 0 [4.189]

where X is a strictly positive scalar function depending on the position, qeL*(Q) is a
volume source term that can be expressed using a global quantity Q (see equation
[3.43]), such that = Q &, and U € Hry(grad, Q) is the unknown function. On the
remaining part I, of I, we impose Neumann’s boundary conditions in the form “&
gradU.n =0".

Considering the boundary conditions, the weak form of this equation can be
written, after development, in the form:

[[lo X (gradU.grady)dt = [}, Qqwdt V v € Hr (grad,Q) [4.190]

To find an approximation to the solution, we will associate equation [4.190] and
the finite element method (see section 4.3.1). Let us consider that the mesh M
contains A nodes and 7’ volumes. Considering the domain of definition of the
function U, the objective is to find an approximation (see Table 4.18), in the
function space W'r, (Qg), namely the space of nodal elements. Moreover, to impose
the boundary conditions, we fix at zero the %\, nodes of the mesh belonging to the
boundary T', (see section 4.3.6.1). Then, the number of nodes to be determined is
N =N—N,. To simplify the notations, the nodes are renumbered so that those
belonging to the boundary I', have an index higher than ;. Under these conditions,
the discretized form of the unknown function, denoted by Uy(x), is written as:

N,
Ug() = Yo, U = oy Huy | [4.191]

i=l1
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On the other hand, the source term q is discretized, taking into account these
properties in the space W*(Qy). Then, it can be written using the discrete form of &
(see equation [4.186]), in the following form:

v t
4g() =Q Y oy &y, =Qloy] [Ey] [4.192]

i=l1

As indicated in section 4.2.1, in the continuous domain, the weighting functions
v were chosen in the adjoint space of the operator. In our case, the operator is the
divergence (see equation [4.189]) and therefore the adjoint operator is the gradient,
as shown in Table 2.1. Therefore, the weighting functions y belong to Hr,(grad, Q).
The approach is similar in the discrete domain and the weighting functions are
chosen in the space W°r(Qq), which is generated by the set of A; node functions
associated with the nodes of the mesh that are not located on I',. This is known as
the Ritz—Galerkin method. In fact, the space of approximation and the space of the
weighting functions is the same. Under these conditions, the expression [4.190] can
be rewritten by taking for weighting functions y = @, with I <j <N, i.e.:

W, v
Z}m o Klgrado, ). (gradw, YU;dr= kaz; WQ O Satv @0, 4Ty 1037
with 1< j<wv,
This equation must be verified for the set of the A, functions ®,;. Then, we obtain

a system of %, equations with %; unknowns U;, contained in the vector [Ua,]. The
system of equations can then be written in the following matrix form:

mg K(grad[wwr ]t ) (gl’ad["’w, ])[va, ]d’c

=Q|lfq ([‘DW, I"J«/ '[e Ddr [4.194]

Relation [4.110] allows us to rewrite this system by introducing the matrices

[G ﬂw} and the vector [®4] of the edge weighting functions:

mQK [GﬂW, ]t ["’ﬂ]["’ﬂ]t [Gﬂw, IUW, ]dT =

[4.195]
HIQ Q([‘Ow, qu/ ['ey Jae
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ﬂﬂ\fj and also vectors [UW,} and [@V} do not depend

on the position “x”. Under these conditions, equation [4.195] is written as:

The incidence matrix [G

6 e 105 ) e Ui - [Mivrq/][iq/] [4.196]

The elementary term of the matrix [Mﬁ ﬂ} is written as:
K _
Ma“,1lj = J.HQKmai‘maJ dt [4.197]

As for the matrix [M;v ,V}, it represents the contribution of the source term

whose elementary term has the following expression:
M, =Q[qon, oy dt [4.198]

NoOTE.— Two different types of matrices can be noted in the obtained matrix system:

— Incidence matrix [G } whose expression depends only on the manner in

AN,

which the edges and the nodes are interconnected (topology of the mesh). On the
other hand, it does not depend on the position of the nodes (the metric associated
with domain ).

— Matrices [Mﬁﬁ} and [M;WV} whose expressions strongly depend on the

metric with the integration of functions depending on the position and on the
behavior law of the materials.

This dissociation between topology and metric occurs naturally by using the
tools proposed by differential geometry (Bossavit 1997).

Finally, posing:

[Sacoe 1=[Gane | [M%] [Gan ] and [Ey ]=[Mis JI60]  14199]
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equation [4.196] is written as:

S | U 1= [Fo | [4.200]

The solution to this system of equations makes it possible to obtain, in this case,

the 9; values of the vector [U } Then, using relation [4.85], we deduce the

N,

r

expression Ugy(x), namely the approximation to the solution of this problem.

4.4.3. Electrostatics

For electrostatics, let us consider the previously studied example in Figure 3.11
(see sections 3.3.2 and 4.2.2). It should be recalled that, for this example, there is a
domain €, composed of two electrodes in contact with the external environment,
denoted by E; and %,, and an internal electrode E;. The presence of the internal
electrode limits the studied domain to Q'=Q — Qg;. The source terms can be the
circulations f; between the electrodes of the electric field (see equation [3.108]) or
the charges Qy on the electrodes (see equation [3.110]). The boundary I" of the
domain is composed of gates I',x with k € {1, 2, 3} and a wall I'y (see equation
[3.106]). On the domain €', a mesh M is built and the number of nodes, edges,
facets and volumes is denoted by o, 4, Fand 7/, respectively.

In this section, the finite element method is applied to the two weak formulations
(scalar potential and vector potential) that have been developed in section 4.2.2.

4.4.3.1. Scalar potential V formulation

The weak scalar potential formulation (see equation [4.15]) is recalled as
follows:

[l egradV.gradydr = [[[ e(fi3B13 + f23B23)-gradydt [4.201]

where V and y belong to the space Hreiureures(grad, Q') and the support fields B;;
of the source terms defined in [3.113].

To solve this equation with the finite element method, the first step is to
discretize the scalar potential V and the support fields B;.

4.4.3.1.1. Discretization of the scalar potential V

The scalar potential V belongs to H e reaores(curl0, Q) and, as shown in
Table 4.18, it must be discretized in the space of the node elements
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Wheioreaores (Q1). Its expression is then given by relation [4.163]. The boundaries
T with k= {1, 2, 3} are equipotential surfaces on which the potential is equal to
zero (see equation [3.115]). To impose this condition in the discrete domain, we fix
at zero the set of nodal values V; belonging to the boundary I'e; UL, UI 3. It should
be noted that, as indicated in section 4.3.6.1, this condition also allows for the
gauging of the scalar potential. Given % the number of nodes of the mesh and My
the number of nodes on the boundaries 'y with k= {1, 2, 3}, the number of
remaining unknowns of the problem, denoted by 9, is written as:

3
Ne =N = 2 Nek [4.202]
k=1

At this stage of our study, the nodes are renumbered so that those belonging to
the boundary I',;UI'pUl'e; have the highest indices. In other terms, the nodes with
an index higher than A; are located on the boundary T';UI',;UI;. Under these
conditions, given that the node values of the scalar potential are equal to zero for the
nodes located on the boundary I'.; UL, UI e, the discrete form of the scalar potential
V4(x) is written as:

Ny
Vo) = o, V; = o J Vi | [4.203)

where [VW } represents the vector of dimension %; of the nodal values of the scalar

r

potential.

4.4.3.1.2. Discretization of the support fields o and 3

To determine the discrete form of the support fields By, we will use the approach
proposed in section 4.3.7.1. The first step is to build in the space of nodal elements
the associated scalar potentials o, and then deduce from them the support fields in
the space of edge elements.

The scalar potentials o; are defined by the relations given in equation [3.114].
To build their discrete forms, we use the approach developed in section 4.3.7.1. In
fact, for 01134(X) and 034(x), we fix to 1 their node values belonging, respectively, to
the boundaries I',; and I',, and to zero the other node values (Henneron et al. 2004).
Then, we have, for o3 (with 1 <1< N):

oy =1 if e Vp, else oy =0 [4.204]
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Similarly, for the components 03; (with 1 <1< %) associated with the function
O34(X), we have:

Oy =1 if ie N else 05 =0 [4.205]

As we know the expression of nodal values, the discrete form of o134(X) is
written as:

N
ay39(x) = X 0, 03, = [og | [05139\[] [4.206]
i=1
where [0l34] represents the A-dimensional vector of nodal values o3;. Similarly, the
expression of the discrete form of the associated potential 03 4(X) is:
ol t
03q(X) = 2 0y Op3 = [o ] [0‘239\[] [4.207]
i=1

where [0,34] represents the N-dimensional vector of nodal values o.,3;.

Knowing the expression of the associated potentials 0(j33(x) and 034(X), the
discrete form of the support fields Bi34(x) and Bysq4(x) can be immediately calculated
(see equation [3.114]). Relying on equation [4.182], as well as on equation [4.92]

and posing [B1 3 /q] = —[G 4, W]t [aBW], we deduce the following equation:

A
Br3a(x) =3 0, B3 =0, [Bi3.4] [4.208]

i=1

Similarly, the support field By3(x) is written as:

A
Ba3a(x) = 2 @, Bos, = o 4 [B23 4] [4.209]
i=1

with [B2s ﬂ] = —[G ﬂ,W]t locag .

4.4.3.1.3. System of equations to be solved

In order to solve equation [4.201] using the finite element method, we replace
the scalar potential and the support fields by their discrete forms and we apply the
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Ritz—Galerkin method (see section 4.4.2). In this case, the weighting functions are
in the discrete space corresponding to Hrejureures (grad, '), namely
Wororaures (€’4), which corresponds to A; nodal approximation functions ;.
Then, we can write:

WT

)3 f f fg'd S(grad(onj grado, )Vidt =

i=1
A
2 Ml f gradon, @ i3, dv [4.210]
ﬂ .

+ zj‘”gd Ef23grad03ni-0)a][323ldt avec 1< j<w,

1=1 L

Using relation [4.108] and, given that the equation must be verified for the M
weighting functions, this is reflected by the matrix equation:

mﬂ; 3 (grad[u)Wr ]‘)t(grad[coWr ]t)[VWr ]dr =
Mg, Sfls(gl‘ad[wyv, ]‘)t[(’oﬂ]t[ﬁl:;]{ i [4.211]
+ mg'd efy3(grad ["JW, ]t)t [ 4 ] [ﬁzu ]dT

Relation [4.110], related to the gradient operator, allows us to rewrite this
expression in the following form:

[ Hmﬂ}[mﬂ}t [Gﬁw, } [Vav, Jie =
IIIQ'Efl3[GﬂWr H‘”ﬂ][‘”ﬂ]t [ﬁwﬂ]df [4.212]
+ ”J.Qvef23[GﬂW, ]t[(”ﬂ][m,q]t [B23ﬂ]d’c

Knowing that, besides the circulations f; and f;, the matrix [G ﬂWJ and the

vectors [V, [Bisa] and [Ba34] do not depend on the position (see equation [4.196]),
we can modify this equation and write it as follows:

[Gﬂﬁ\f, ]t [quﬂ] [G;wv, ][Vwr ]= f13[GﬂWr ]I[quﬂ][ﬁmﬂ]

[4.213]
+ f23 [GﬂW, ]t [quﬂ ]ﬁmﬂ]
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where the elementary terms of the matrix [qu ﬂ} are:

M;al = mg.d £0, .0, dT [4.214]
Finally, posing:

500 1= T[] [0 ]

. t [4.215]
|:F7£Vr :| = f13 |:G/fl?\fr :| [M;fl][ﬁwﬂ :| +f23 [Gﬂwr :| [M;ﬂ][ﬁﬁﬂ}

Equation [4.213] to be solved can be written in the generic form as follows:

s v 1=l | [4216]

The solution to this system of equations allows us to obtain the nodal values of
the scalar potential. Then, using expression [4.203], we can express the scalar
potential Vy(x) in any point of the domain Q.

4.4.3.1.4. Imposed charges

Sections 3.3.2.1 and 4.2.2.1 considered that the source terms may be either the
total charges Qy or a combination of the circulation fj and charges Qy. In this case,
we need to add equations [3.125] or [3.126] depending on whether we impose the
charges Q; or Q, or both. These relations are recalled below, where the total charges
Q, are written as:

Qi = [[[g eB13-(f13B13 + f23B23 — grad V)dt [4.217]
Similarly, for the total charges Q,, we have:
Qy = [[[geB23 (f13B13 + f23B23 — grad V)dt [4.218]

These equations can be made compatible with the matrix equation [4.213] if we
introduce the discrete form of the scalar potential V and that of the support fields B3
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and [,;. For this purpose, we can use expressions [4.203], [4.208] and [4.209]. The
expression of the total charges Q is then:

Q = —”J.de 8([")/1 ]t [B13ﬂ ])t grad[“)ﬂv, ]t [Vw, ]dT

+ fisffley, el a1 Brsa bl 2 [ Bz ko [4.219]
+ fzs.mg'd 3([mﬂ]t [Blm])t [‘D,q]t [B23ﬂ ]dT

Introducing the incidence matrix [G ﬂw} (see equation [4.110]) and after

rearranging the equation, we can write:
Q = ‘m@d ePBisallo o) [Gﬂw, ][Vw, ]dT

+ fisllley, Brsalloallo s [Brsa ke [4.220]
+ f23IIJ.Q‘d 8[313;1 ]t [(’3;1] [(’3;1] t[Bzm]dT

On the other hand, the matrix [G ﬂW,} and the vectors [Vﬂ\fr } , [Bl 3 ﬂ] s [B23 ﬂ] do

not depend on the position. Hence, we can introduce the mass matrix |:Mi:q ﬁ} , whose

elementary term is given by relation [4.214]. Then, we have:

Q = _[1313;4 ]t lMgﬂﬂJ[Gﬂw, ][VW, ] 42211
+f13[Bl3;1]t [Mfflﬂ][ﬁl3jq]+f23[[-)’13/q]t[M§lﬂIl323ﬁ] |

The same developments, applied to expression [4.218], can be used to write the
total charges Q;:

Q= _[B23;1 ]t [quﬁJ[GﬂW, ][VW, ]

[4.222]
+ f13[523,q]‘ [Msﬂﬁ][ﬁl3ﬂ]+ f23[[323,q]t[MfM]l323,q]
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In order to build a complete matrix system, the following notations are
introduced:

[C%Wr] - _[GﬂWrHMsﬂf’l][BBﬂ] ’ [Cgawr]:_[Gﬂw, ]t [MEMIBB,@]
By = [Bmz]t[Mfu][Bn ﬂ] . B, = B3 ﬂ]t[MfM][Bﬁ ﬂ] [4.223]

H® = [B13,q]t [quﬂ][ﬁﬁﬂ]

where [Clngr} and [C‘c“

23 } are the notations for vectors of dimension %; and

BE ,BE and H* for scalars.
13 23

Let us now gather equations [4.213], [4.221] and [4.222] with the notations
defined in equations [4.215] and [4.223]. Then, for an electrostatic problem in the
case of the scalar potential formulation when the source terms are total charges Q
and Q,, we have the following system to solve:

S . Ve I Tl
[Cim ]t e B[Sizg 123 Q;

In this system of equations, the unknowns are the nodal values of the scalar
potential and the circulations fi; and f;;. As for the source terms, they are the total
charges Q, and Q. It should also be noted that the system is symmetric. If we now
impose a circulation and a value of charges, the new system to be solved is deduced
from equation [4.224].

4.4.3.2. Vector potential P formulation

For the vector potential formulation, the weak form of our electrostatic problem
is given by relation [4.24], which is recalled as follows:

jﬂ e curlP.curl¥dt = —J'H 71 (Qhy3 +Qyhyy)curlWdr,
Q' Q'
Pand Ye Hp, (curl,Q")

[4.225]
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To solve this equation with the finite element method, besides the vector
potential P, we have to discretize the support fields A, and A,3. These support fields
are defined by equations [3.131] and [3.132] and they belong, respectively, to
Hrezurd(diV, Q’) and Hrelurd(div, Q’)

4.4.3.2.1. Discretization of the vector potential P

In the continuous domain, the vector potential P is defined in the function space
Hrqy(curl, Q). In the discrete domain, this potential therefore belongs (see Table 4.18)
to the function space W'r4(Q). Moreover, a gauge condition and the boundary
conditions should be imposed on I'y (see equation [3.138]). To impose the gauge
condition, we can use the process presented in section 4.3.6.2, leading to the
construction of an edge tree. It should be recalled that, in order to impose the
boundary conditions and the gauge, we first build the edge tree on the boundary T,
then we extend it to the set of edges of the mesh. Then, we fix the circulations of P
to zero on the V— 1 edges of the tree. For the boundary conditions, we denote by 44
the number of edges belonging to the boundary I'y and by 44, the number of edges of
the tree also belonging to the boundary I'y. To impose the boundary conditions,
besides the edges belonging to the tree, we also fix to zero the 44— 4,4, edges of the
boundary. The number of unknowns of the problem, namely the number 2, of
circulations of the vector potential on the edges, has the following expression:

Ap = A= (N -1) = (Ag = Ada) [4.226]

To facilitate the implementation of the gauge and the boundary conditions in the
following, as already noted in sections 4.4.2 and 4.4.3.1, we renumber the edges so
that the unknown circulations of the vector P are numbered from 1 to 4,. Hence, the
indices of the edges belonging to the boundary I'y and to the edge tree are higher
than _4,. Under these conditions, the discrete form of the vector potential Py(x) is
expressed using the vector [ ] of interpolation functions ®,; and the circulations of
the vector potential (denoted by P;) on the 4, edges as follows:

Py(x) = %ma‘Pi o, }Ps ] [4.227]
i=1

In this expression, [P ] represents the vector of P; circulations of the vector potential
on the 4, edges of the mesh associated with the unknowns of the problem.

4.4.3.2.2. Discretization of the support fields A;

For the discretization of the support fields A;3 and A,3, we rely on the properties
defined by relations [3.131] and [3.132]. These two fields belong to the function
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spaces Hreora(div, Q') and Hrejorg(div, '). Therefore, they are discretized (see
Table 4.18) in the spaces Wzrezurd(Q’d) and Wzrelurd(Q'd), respectively, namely the
space of facet elements. The expression of the support field A3 is:

z t
h3a(x) = Yo Ayp = [04] [7¥13q,] [4.228]
i=1
and Ays:
z t
ho3a(X) = Y og Ayyp = o] [7~23q,] [4.229]

i=1

For the calculation of the vectors [A;3] and [A,3], we use the process developed in
section 4.3.7.2. For the construction of [A3], the two gates are I'.; and I'.; and the
wall boundary T, is the union of Ty, and I'y. In a complementary manner, [A»;] is
built with the surfaces I'.; and '3 as gates, and the union of I',; and 'y as wall T,

4.4.3.2.3. System of equations to be solved

In order to solve equation [4.225] with the finite element method, we replace the
source fields and the vector potential with their discretized expressions given,
respectively, by relations [4.227], [4.228] and [4.229].

The Ritz—Galerkin method is applied, consisting of having the 4, edge functions
®,; as weighting functions. We then obtain:

A,
ZJ..UQ s’lcurlmaj curlo, dtP, =
i=1 d
¥
-0y IHQ e eurlo, o hyy, dt [4.230]
k=l d
(F‘
—sz”jg‘ e_lcurlmaj ¢ Ay dT, with 1< <A,
k=1 d

This equation must be verified for the set of 4, weighting functions ®,; of the
function space W ().
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It can therefore be rewritten in the matrix form as:

UJ‘Q; g’ (curl[(o/qr T)tcurl[m/qr T [Pﬂr Jd’c =
-0 ff, & cunt[, ) o, 1 s oo [4231)
—sz.'”g e (c“rl[‘”ﬂ, ]t)t [0,] [ ]t

Using relation [4.124], we can write the system of equations by introducing the
matrices [Rg4] and [o¢] as follows:

e R o lor I Ry JPs Jar=
~ Q[ e Ria Moo Too A3 ix [4.232]
~ Qe Rea Moo Toos sy e

The incidence matrices [ } as well as the vectors [P 1 }, [A13¢] and [Ay3¢] are

R,
vectors whose components do not depend on the position. Under these conditions,
equation [4.232] can be written in the following form:

[Rrrﬂ, ]{M%FI} [RT}I, ] [Pﬁ, ] =-Q [R@qr ]{M?%; } i3]

[4.233]
-1
- Qz[Rm, ]{M%} s ]
-1
The elementary term of the matrix [M%F} is written as:
Mi = [llg e oo dt [4.234]
Let us now pose:
~1 t ~1
[Sfur } = [R%ﬂ, ] [Mfqu } [Rm, J and
[4.235]

E = QiR T M5 s 1= Q[ R, [ M5 [ ]
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The system of equations is then written as:

[SZ,;J P r]:[F;j [4.236]

The solution of this matrix equation can be used to obtain the circulations of the
vector potential on the edges of the mesh. Then, using expression [4.227], we
express the vector potential Py(x) in any point of the domain €'y.

4.4.3.2.4. Imposed circulation of the electric field

According to sections 3.3.2.2 and 4.2.2.2, the source terms could be the
circulations f; or a combination of a circulation and a value of charges imposed on
an electrode. Under these conditions, to obtain a full equation system, the system
[4.233] must be completed with equation [3.146] and/or, depending on the case,
equation [3.147]. These two equations must therefore be discretized. Therefore,
equation [3.146] is recalled below:

fis = I I i€ Qs + Qahs + eurlP)de [4.237]

Replacing the vector potential P and the support fields A;; and A,; by their
expressions given, respectively, by equations [4.227], [4.228] and [4.229], we
obtain:

fis = J.J.J-Q'd e (o, ]t [A3e ])‘(curl[c)ﬂr J)t [Pﬂ, Jdr [4.238]
+Q [f]., € (0r] s Do [hizy Jao
+Qu[[, & (00) Paae ) [00] [rase Jan

Using relation [4.124] related to the discrete curl operator and then introducing

matrix [M%;} defined in equation [4.234], equation [4.238] takes the following

form:

Sz = [7&13r; i [Mﬁ; }[Rm, IP/'z, ]

) ] [4.239]
+Q [7\'13q:]t|:M§-"T:| [7»13¢] +Q, [7"13rf]t|:M§:T:|[7\’23q:]
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The discretization of equation [3.147] can be very easily deduced from this
expression and we obtain:

faz = [7\’23rf I [M%; :l[R‘F/l,. IP,q, ]

. . [4.240]
+Q [;\'23%" ]t[Msw} [7%3@ ]+, [7~23¢ I [M%}[M%]

Similar to the case of the scalar potential formulation, a full system of equations
is built. The first step is to introduce the following notations:

|:C1€31ﬂ:| = [Rqrﬂ,]t[M%;}[?»lyf] ; [Cgﬂr}= [RM]‘[M%;}[KZM]
Bi: = [7\'13fF]t|iM%;:|[7\'13T] ) B;; = [X23¢]t[M§;J[7»23T] [4.241]

-1 -1
HE =[hyaq ] |:M§:q::| A3 ]
In this expression, [Cf;ﬂ } and [ngﬁ } denote vectors of dimension 4,. As for

-1 -1 -
the terms Bi , Bi and HE' , they denote scalars.
13 23

Gathering equations [4.233], [4.239] and [4.240] using the previous notations,
the system of equations to be solved is written as:

[sia ] [eiln] [esi]
ot -1 -1 [Pﬂr} I:O:I

L] e ow o -l [4242)
— ; ; Q; f23

|:C§3/l,:| He BE

In this system of equations, the unknowns are the circulations of the vector
potential on the edges of the mesh and the values of charges Q; and Q,. The source
terms are then the circulations fi; and f,;. Moreover, similar to the scalar potential
formulation, the matrix of equations to be solved is symmetric.

Let us now assume that the source terms are the circulation f; and the value of
charges Q,, the unknowns of the problem are the circulations of the vector potential
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on the edges of the mesh and the value of charges Q,. The system of equations to be
solved can be readily obtained from equation [4.242].

4.4.4. Electrokinetics

For electrokinetics, we consider again the example presented in section 3.4.2 and
illustrated in Figure 3.14. In this case, we must solve equations [3.149] and [3.150].
For the boundary conditions (see equation [3.191]), we recall that the boundary T is
decomposed into three gates I',;, I'y; and I';; for the electric field and a wall I for
the current density. For this example, we studied several combinations of source
terms that can be imposed on the three gates. We have considered two electromotive
forces e;3 and e,;, two current density fluxes I; and I, and the possibility of
combining an electromotive force and a current. We developed the scalar potential
formulation and the vector potential formulation. Finally, section 4.2.2 introduces
the weak forms of the formulations. This section develops these various weak
formulations in the case of the finite element method.

To solve these equations, we consider a mesh M composed of N nodes, 4 edges,
F facets and 7/ elements.

4.4.4 1. Scalar potential V formulation

When electromotive forces e;3 and e,; are imposed, the weak scalar potential
formulation is given by relation [4.29], with V and Wy belonging to
Hreioreores(grad, Q). To solve this equation, we need to first discretize the
potential V and the support fields B3 and By;.

4.4.4.1.1. Discretization of the scalar potential V

Concerning the scalar potential V, as already seen in section 4.4.3.1, it is
discretized in the space of nodal elements, with Vy(x) € WOFeluFeZuFeS(Qd)- The three
boundaries Ty, ke {1, 2, 3}, are equipotential surfaces on which (see equation
[3.159]) the unknown electric scalar potential is imposed to zero. Imposing this
condition in the discrete domain means fixing to zero the nodal values (denoted by
V;) of the scalar potential. Proceeding this way, it can be noted that the scalar
potential V is automatically gauged (see section 4.3.6.1). Under these conditions, the
number of unknown nodal values of the problem (denoted by %) is written as:

Wr:W_(W1+W2+W3) [4.243]

where MV, N and N represent the number of nodes on the boundaries I, T'.; and
T3, respectively.
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Using a renumbering, the indices of the nodes belonging to the boundaries Iy,
Iy, and T'; are imposed higher than A;. Under these conditions, considering the
boundary conditions on the boundary I'.;UI',Ul;, the scalar potential Vy(x) is
written as:

~,
Va(x) = 20, Vi = [ww, I [Vw,] [4.244]
i=1

4.4.4.1.2. Discretization of the support fields o;; and f3;

The properties of the support fields B; and oy; are given by relations [3.192] and
[3.193]. Since these properties are the same as in the case of electrostatics, an
approach similar to that in section 4.4.3.1.2 will be used for their construction. As a
first step, we build the associated potentials o in the space of node elements. Then,

we deduce the fields B, which belong to the space of edge elements, using relations
[4.182] and [4.183].

As already seen in section 4.4.3.1.2, a possible solution for expressing the
potentials oy involves fixing to 1 the values of oj(x) of the set of nodes of I';; and to
zero the other ones (see relations [4.204] and [4.205]). The expressions of 0l134(x)
and 0134(X) are then given by equations [4.206] and [4.207], respectively.

Based on the associated potentials oy, the support fields B; are obtained by
applying the discrete operator [G aa] of the gradient.

Using equation [4.208], presented in the case of electrostatics, the discrete form
of the support field B34(x) is written as:

A
Bisa(x)= Z‘Dai B13i = [‘0/1 ]t [Bwﬂ]’
i=l

4 [4.245]
with : [[313;,] = —[G;w ][amv]
and, for the field B,34(x), we have:
A
Prza(x) = ;‘”ai Bas [, ] [Brsa ] [4.246]

with : I:BZS/I] = _|:G/2L7\/‘ ][uzsw]
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4.4.4.1.3. System of equations to be solved

Applying the finite element method means discretizing the weak formulation
[4.29]. To this end, the scalar potential V and the support fields B;; and Bo; are
replaced by their discrete form and the Ritz—Galerkin method is applied (see section
4.4.2) by taking as weighting functions the #; node functions w,;. Based on relations
[4.244], [4.245] and [4.246], we can write:

WI
Z_WQ o(grado, .grado, )V;dt =
i=1 d
A
ZW oejsgrado, .o, By dt [4.247]
o ik
A
+ ;H Igd csezagradmnj XORN stl dt with 1< j<ov,

Let us now consider the set of %; weighting functions, which leads to the matrix
system:

Hfgc(grad[@w, ]‘)t (grad[wwr ]‘)[Vwr ]dr =
Ik, °°13(grad[@w, by [ 4] [ﬁl 34 ]dT [4.248]

+ J' J‘ J‘Q oe3 (grad[u)wr ]t )t [(D A ]t [323 4 ]dT

Using relation [4.110], we can rewrite the matrix equation in the following form:

M, 016, oo Jo i} G, v L
= Ml 001316, ' ol 4 1By 4 e [4.249]

+ Il 0023 [G;wv, o alleo [BB;[]dT

Given that the electromotive forces e;; and e,3;, the matrix [G an } and also

vectors [VW } , [Bi34] and [B,34] are independent of position, we can write:

[Gﬂﬂ\fr ]t lM?qﬂJ[GﬂWr ][Vyv, ]= 613[var ]t IM?MJ[BIS;J

[4.250]
+ex3 [Gﬁw, ]t [M?qﬂ][ﬁzsﬂ]
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where the elementary term of the matrix [M?q ﬂ} is written as:
M:a‘l = J’”Qdcwa‘.wajdt [4.251]
In expression [4.250], the following can be defined:

[S?v,w,]: [Gﬂw, ]t[MGﬂﬂ] [G;wvr] et

[4.252]
[Fg?/ ]= el3[G}lWr]'[M?fM][ﬁl3,q]+ €23 [G;wv, ]t [MGM Iﬁzm]
Equation [4.250] can then be written as follows:
[Sﬁm v 1= [Fg‘é ] [4.253]

The solution to this matrix equation enables us to calculate in this case the

node values of the vector potential, namely the vector [VW } . Then, using relation

r

[4.244], we deduce expression V4(x) which represents the approximation to the
solution to the problem.

4.4.4.1.4. Imposed current density flux

As noted in section 3.4.2.1, when the source terms are the current density flux,
the electromotive forces become unknowns. System [4.253] should be added to the
discretized form of relations [3.198] and [3.199], which are recalled as follows:

Given the expression of current I;:

I = [[[o 0B13(e13B13 + €232 — grad V)dt [4.254]
Similarly, for current I, we have:

I = [[[q 0B2s-(e;3B13 + ex3Ba3 — grad V)dr [4.255]

In order to make these equations compatible with the finite element method, we
have to introduce the discrete form of the scalar potential V and the support fields
B3 and B,;. For this, we can use expressions [4.244], [4.245] and [4.246].
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The resulting expression for current I, is then:

I = —Iﬁg oo, ]t [Bisq ])' (grad [myvr ]t ) [VW, ]df
i e”’.m‘ Q o] [Biaa ' [ ] [Bras Jar [4.256]
+ ezs_m.g 0([°°;4T [Biaa))'[@a] [BasaJdr

Using the properties of the gradient operator in the discrete domain, by means of
equation [4.110], we can write:

b= fffetaal Lo Jooa [ v Jo
+ e13_[”.Q G([‘”ﬂ T [BB}I })t [‘”ﬁ] t[ﬁnﬂ]d‘c [4.257]
+es3 _UJ‘Q o(@, ]t [Bisa ) [@q][Basa]de

Then, taking into account that the vectors [VW } , [[313 /qJ, [[323 /q] and the matrix

[G 2 W,} are independent of the position, we can introduce the mass matrix [qu ﬂ},

whose elementary term is given by relation [4.251].

We can then write:

I =B34 [M?UIJ[GﬂWr ][Vw, ]

[4.258]
+e3 [Bm,q ]t [M?Zlﬂ][l313ﬁ]+ €23 [313;1 ]t [M?ZM][BZS;I]

The same developments, applied to expression [4.255], yield the following
expression for current I:

L= —[[523;1 i lM?qﬂ“G;wv, ][Vyv, ]

[4.259]
Te3 [[323;1 ]t [M?u][ﬁla,q ]+ €23 [Bzm ]t [MG}M][BB;J
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In order to simplify the expressions to build the matrix system, the following
notations are introduced:

[C%Wr] B _[GﬂWrHMGﬂf’l][BBﬂ] ’ [C(zjawr]:_[Gﬂw, ]t [M%'llﬁzm]
By = Bzl [Mglﬂ]hsnﬂ] . Bg, = [B2s 4l [M?ﬂﬂ][ﬁﬁﬂ] [4.260]

HO = B34 [M?qﬂ][ﬁzm]

where [ijwr} and [CG

230 } denote vectors of dimension A; and BS , B and

13 23

HC scalar terms.

Let us now gather equations [4.250], [4.258] and [4.259] with the notations
defined in equations [4.252] and [4.260]. For an electrokinetics problem, with the
vector potential formulation where the source terms are the currents I, and I, the
system below should be solved:

c S S
[S w,w,] [Cmv,] [Czsw, [Vyv [0
t T
o | owe e |Lenl L
[C23Wr H Bst

The matrix equation thus obtained is symmetric. It can also be noted that the
structure is equivalent to that of the electrostatic problem. If an electromotive force
and a current are imposed, the system to be solved can readily be obtained from
equation [4.261].

4.4.4.2. Vector potential T formulation

It should be recalled that the studied problem is presented in Figure 3.14 and the
equations to be solved are developed in section 3.4.1.2. The weak form of the vector
potential T formulation, where the current density fluxes I; and I, are imposed, is
given by relation [4.34], which is recalled below:

H_[ " 'curlT.curl¥dr =—Hj 67 (Ihy3 + ko )curl®dS
Q Q
with T and W € Hy (curl,Q)
il

[4.262]
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To solve this equation with the finite element method, T and the fields A3 and
Ay must be discretized. It should be recalled thatA;; €Hrepor(div0,£2) and
A2 €Hreurj(div0,Q) (see equations [3.200] and [3.201]).

4.4.4.2.1. Discretization of vector potential T

The vector potential T belonging to Hrj(curl, £2) must be discretized (see Table
4.18) in the space of edge elements erj(Qd). Moreover, a gauge condition must be
imposed and the boundary conditions must be taken into account.

To gauge the vector potential, as indicated in section 4.3.6.2, an edge tree is
built. To make it easier to consider the boundary conditions, we start by building the
tree considering the edges of boundary I';. Then, we extend it to the entire domain.
We then fix the ¥— 1 edges of the tree to zero. We denote by 3; the number of edges
of the boundary I'j and by 4, those of I belonging to the tree. To impose the
boundary condition on I, besides the 3, edges of the boundary belonging to the
tree, zero must be imposed to the remaining 4; — 4j, edges. Then, for the number of
unknown edges of the problem denoted by 4,, we have:

Ay = A= (N =1)- (4] - Aj,) [4.263]

The order of the indices of the edges of the mesh is such that those belonging to
the tree and the boundary T’j are the last ones in the order of numbering. Under these
conditions, the discretized electric vector potential Ty(x) has the following
expression:

1,
Tyx) = Yo, T = o, ], ] [4.264]

i=1

4.4.4.2.2. Discretization of the support fields A;

Concerning the support fields, A3 and Ay, they belong, respectively, to the
function spaces Hreouri(div0, ) and Hreiurj(div0, £2). They are therefore discretized
in the space of facet elements (see Table 4.18), i.e. Aj3e(X) € szezurj(Qd) and

Mad(x) € Woreon(Qu)-

To calculate their discrete form, we use the process presented in section 4.3.7.2
(see equation [4.184]). It can be written in the following form for A;34(x):

i t
Mg () = Yopdsp, = o] 3] [4.265]
i=1
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Similarly, the expression of A,34(x) is:

ul t
hoza(x) = Yo hozp = [og o] [4.266]

i=l1

4.4.4.2.3. System of equations to be solved

The system of equations to be solved is obtained by replacing in equation [4.262]
the vector potential and the support fields by their discrete form and by applying the
Ritz—Galerkin method. Then, considering as the weighting function the 4, edge
functions ®,; belonging to erj(Qd), we have:

ﬁr
Z ”J‘ o} (curl(naj curlw, )Tdt=
i=1 Q
F
-1
_ZL”J.Q o curlmaj.(ofkkmkdr [4.267]
k=1 4
¥
—1 . )
_lejﬂgdo curle, 0 Ay dt with 1< j<a,
=1

Then, using the same approach as in section 4.4.3.2.3, we obtain the following
expression:

[Rmr ]t[M% ] [Rm, ][T;:, ]= -1 [RrFﬂ, ]{Mg; }[7»1%]

] [4.268]
-I [Rmr P[M% J Masr]

-1
It can be easily found that the elementary term of the matrix [M%F} is written

as:
M?f = [l o~ 'or, o du [4.269]

Posing:

(59, |- [Rey I M52 ] R ] and
[F}f l } =1, [Ryy | [Mg;l }[MW]—I2 R, | [M;; }[%m]

[4.270]
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The matrix equation to be solved can then be written as follows:
s |, | =|Fe” 4271
aa, LAl =4 [4.271]

The solution to the matrix equation given in equation [4.271] allows us to obtain
the circulations of the vector potential on the edges of the mesh when the source
terms are the currents I; and I, imposed on the boundaries I'.; and I';. To obtain the
expression of the vector potential Ty4(x) at any point of the domain €, we can use
equation [4.264].

4.4.4.2.4. Imposed electromotive forces

In section 3.4.2.2, we considered the case in which source terms are the
electromotive forces e;3 and e,; or a combination of an electromotive force and a
current. Under these conditions, to obtain a full system, we need to add equation
[3.205] and/or, as applicable, equation [3.206]. In order to integrate them into
system [4.270], they must be discretized. As an example, let us consider equation
[3.205]. Following the same process as the one that led to expression [4.239] in
electrostatics, we obtain, after development:

e;3 = [7‘13¢]t[Mg; } [Rm, ][T;l,]

. . [4.272]
+ 11[7~13¢]t[M%F }[7»13¢]+ 12[}"13q:]t[MgT }[7%?]

The elementary terms of the matrix [M%;} are given by equation [4.269]. The

discretization of equation [3.308] can also be deduced very easily:

€3 = [7\’2397]t [Mg; } [R@q, ][Tﬂ, ]

. . [4.273]
+1 [7\‘23zp]t|:MgT :|[;\'13fp]+ 12[7~23¢]t[Mg¢ }[7»2%]

Using the same approach as in section 4.4.3.2.4, in order to build a full equation
system, we introduce the following notations:
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[C%,Iq} = [RTﬂ, ]T[Mgfl } Pise] [Cglﬂ} = [quﬂr H:MngI }[kzyr]
Bgnl - [7“13“”]{1\/[2;}[}”1” I Bgzl = [ngqc]t[Mg;}[sz] [4.274]

HO = i3 ]t[M% } Moz

G—l

s o' imensi BO | B
where [CIS ﬂr} and [C23 ﬂr} denote vectors of dimension 4, and L O, and

1
H®  are scalars.
Gathering equations [4.268], [4.272] and [4.273] and relying on the notations

introduced in equations [4.269] and [4.274], we obtain the following system to be
solved:

Gl Gfl Gl

I:S/’i,ﬂrj| I:CB/Irjl |:C23J4 jl [T [0]
o 1" o’ o A

[CBA} B, H | =|es [4.275]
o Tt o o I €23

(A

It should be noted that the matrix of this matrix equation is symmetric. The

unknowns are the vector [T } of the circulations of the vector potential and the

A

currents I, and I,. If the source terms are, for example, the electromotive force e;
and the current I, the system of equations to be solved can be readily obtained from
system [4.275].

4.4.5. Magnetostatics

In the case of magnetostatic problems, the approach used for introducing the
finite element method relies on the formulation of the equation in sections 3.5.2.5
and 3.5.3.5. This is related to the problem presented in Figure 3.20. The domain Q
contains two source terms, a permanent magnet and an inductor. As for the
boundary T, it is composed of two gates I'y,; and I'; and a wall T',. A magnetomotive
force f;, between the gates I'y; and I'y, or the magnetic flux ¢ through these gates can
be imposed.
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In section 4.2.4, we have developed the weak forms of the ¢ and A potential
formulations. In this section, we use the finite element method for solving these
weak forms.

The domain Q is discretized using a mesh M composed of % elements, 4 edges,
F facets and 7/volumes. It will then be denoted by €.

4.4.5.1. Magnetic scalar potential ¢ formulation

As a first step in the scalar potential formulation, we will study the case in which
the source terms are a magnetomotive force f,, a current intensity I in the inductor
and a permanent magnet. The second step will be to replace, on the boundaries I'y;
and I, the boundary condition by imposing the magnetic flux ¢.

However, the first step is to discretize the magnetic scalar potential @. In the
continuous domain, it belongs to the function space Hry,urmo(grad, Q) (see equation
[4.35]). Consequently, in the discrete domain (see Table 4.18), the scalar potential,
denoted by @4(x), belongs to Womum(Qd). It is written in the form of equation
[4.85] or [4.87]. Similar to the approach in sections 4.4.3.1 and 4.4.4.1, we define
the number of nodal values, unknowns of the problem, denoted by %;, and then we
write the scalar potential in a discrete form.

The boundaries I3, and Iy, are equipotential surfaces on which the magnetic
scalar potential is imposed to zero. Considering now the mesh M, we denote by M
and A, the number of nodes belonging to boundaries I3, and I, respectively.
Consequently, to impose the boundary conditions, we fix at zero (see section 4.3.5.1)
the values @; of potential at the nodes located on I, and I'y,. It should be recalled
that this makes it possible to engage the gauge condition. The number of unknown
nodal values of the problem, denoted by %, is then written as:

Ny =N — (V] +N5) [4.276]

Let us now consider a numbering of nodes so that those belonging to the
boundaries I and T, have the highest indices. In fact, the nodes whose index is
higher than %; are located on the boundaries I'y,; and I'y,,. Under these conditions, the
expression @q4(x) of the magnetic scalar potential is written as:

w,
0409 = X 00,01 = o, o | [4277)
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4.4.5.1.1. Imposed source terms: f,, I, H¢

When the source terms are f,, I and the coercive field H, of the permanent
magnet, the local form of the equation to be solved is given by equation [3.265] with
¢ Hrpyu mo(grad,QQ). Applying the weighted residual method leads to equation
[4.39], which is recalled below:

” o w(grado.grady)dr =J.J' o (W Bs + 1y —uH, ).gradydr
(grad,Q)

[4.278]
with ye Hr,

n1 Y h2

To solve this equation, we have to discretize, besides the scalar potential ¢, the
support field B and the associated potential ;. On the other hand, the coercive field
H_ is a special case as, unlike B and y, its distribution on the domain Q4 is an input
of the problem and does not require any specific construction.

NOTE.— As already seen in section 3.5.2.4, the coercive field H. features
discontinuities of its normal and tangential components; therefore, it is not possible
to exactly approximate this field in the space of facet or edge elements. However,
the distribution of permanent magnets and the direction of their magnetization, given
by H. or B,, are perfectly known. The coercive field is therefore a vector function
depending on the position and that is zero outside of permanent magnets.

The support field B, belongs to Hryora(curl0, Q) (see equation [3.12]). It is
therefore discretized in the space of edge elements W'n,lurhz (Qy). For its
construction, we can use the method proposed in section 4.3.7.1 (see equation
[4.182]). This makes it possible to write By (x) as follows:

A
Boa(x) = S0, By =0 4] Bos] [4.279]

i=l1

Concerning ¥, it should be recalled that it is the potential associated with the
support field A; that represents the current density in the inductor located inside the
domain (see equations [3.236] and [3.237]). As shown in section 3.5.2.3, A; and ¥,
are built on the entire domain, thus avoiding the problem of connexity related to the
inductor geometry. Then, we have A€ Hy(div0, Q) and y; € Ho(curl, Q). In the
discrete domain (see Table 4.18), these two fields belong to the function spaces
W2(Qq) and W'((Qy), respectively. These fields are linked by the curl operator, and
X1 is generally deduced from A;. For the construction of the discrete form Ai(x), we
use the process proposed in section 4.3.6.3 referring to case 3. Then, we deduce



272  Finite Element Method to Model Electromagnetic Systems in Low Frequency

%14(x), based on the method proposed in section 4.3.7.2 (see equation [4.185]). This
allows us to write y14(x) as follows:

A
Ad(X) = 20 X1, = [m,q]t [xm] [4.280]
i=1

where [)14] represents the vector of the circulations of the associated potential );4(X)
on the edges of the mesh.

To build the matrix equation to be solved, based on the weak form, recalled in
equation [4.278], we use the same approach as the one developed in electrostatics in
section 4.4.3.1.3. In equation [4.278], the scalar potential ¢ and the fields B, and y;
are replaced by their given expressions, respectively, by equations [4.277], [4.279]
and [4.280], and applying the Ritz—Galerkin method, we can write the equation as
follows:

j\[gﬂjgd M(gl‘adcorlj grado, )¢;dt=
A
ng uf, grado, o, B, dt
k=l d

A
+ ; J. J.J-Qd ngradmnj 0, X,

—H o ugradwnj.Hcdr forl < j<w,
d

[4.281]

The fact that H, is discontinuous on certain surfaces of permanent magnets (see
section 3.5.2.4) does not pose any problems, since the difficulty related to the term
divH, was removed using the weighted residual method (see section 4.2.4.1).

Continuing the developments, similar to section 4.4.3.1.3, the above equation
can be written as follows:

[G;wv, HM%J[G,@W, ][(Pw, ]: Sm [G;wv, ]TlMtLMJ[Bsﬁ]

[4.282]
+ I[Gﬂﬂv, ]t[M%ﬂ][XI;[]_ [Gﬂw, ]t [chlﬂ
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In this expression, the elementary term of the matrix [M% ﬂ} is written as:
T
ML =l oy, 0, dt [4.283]

As for the elementary term of the vector [Ht‘ﬂ}, corresponding to the source term

of the permanent magnet, its expression is:

HY, = [ffy, woq, Hode [4.284

Consider now:

[s“w ,W,} =Gy T (M, | [ | and

BN [Gﬂw,t} v B 1[Gy [ M |[e] 14289
B |:GﬂWr } [Hgﬁ:'

Taking the above notations into account, equation [4.282] to be solved can be
written as follows:

[S?v,w,] o |- [F;*f ] [4.286]

r

In this system of equations, the unknowns are the nodal values of the scalar
potential represented by the vector [@y]. Neglecting the effects of the saturation of
magnetic materials (see equation [1.26]), the system to be solved is linear.

4.4.5.1.2. Imposed source terms ¢, |, H

As already shown in section 3.5.2.5.2, if the magnetic flux is imposed, the
magnetomotive force becomes an unknown of the problem.

Then, we have to add equation [3.268], which is recalled below:
q) = ”J.Q (‘H[‘sgradq) + fm“BS'Bs + MIBs%I - ”—BS'Hc)d‘E [4-287]

The approach used for discretization is similar to that in section 4.4.5.1.2, with ¢,
Bs and % being replaced by their discrete form.
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It can then be shown that equation [4.287] is written as follows:

0 =1l o ] [Bea) ! eradloy, How, har
+ finJffy, 1o a1 Boa) o s By e
+1fff, w11 Boa) o o Fbera ke
g, 1o 1) e

[4.288]

After development and using the matrix [4.283] and the vector [4.284], we can
write the expression of ¢ in the following form:

0= Aol M6 o 1+ bt [

1By ] e e,

The system of equations to be solved is built by gathering relations [4.282] and
[4.289]. Nevertheless, to simplify the expressions, we introduce the following
notations:

[CEWJ = —[Gﬂw, }[M%ﬂ}[ﬁsﬂ] ;

[FEHCWJ = I[Gﬁ?\/, ]t[M%ﬁ}[XI/’I]_ [GﬂW, ]t[Hgﬂ} 4 [4_290]
B = [Boal | Mty |Boa]

¢IiL_HC = I[Bsﬂ ]t|:Ml;1ﬂ:|[XI/q]_ [BSﬂ ]t[Httﬂ:|

[4.289]

where [OEW} denotes a vector of dimension %; and [FI” Hav } denotes a vector of

dimension %;, representing the contributions of the current in the inductor and of the

permanent magnet. Moreover, BE is a scalar term representing a permeance and
¢§‘_H is a scalar representing the flux created on the boundaries I',; and I'y, by the

current in the inductor and the permanent magnet.
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Gathering equations [4.286] and [4.289] and relying on the notations introduced
in equation [4.290], the system to be solved is written as:

n
[t

o-of

[ | (] o] -

t
m u
[CBW,1| B[i fm

It can be noted that the matrix of this system of equations is symmetric. The

unknowns are the vector [ } of nodal values of the scalar potential and the

Do,
magnetomotive force f,. If the characteristic of the magnetic materials is linear (see

equation [1.26]), the solution to the problem results from solving the system of
equations [4.291].

4.4.5.1.3. Taking nonlinearity into account

If the nonlinearity of ferromagnetic materials is taken into account (see
section 1.2.2.4, equation [1.25]), the magnetic permeability depends on H and

therefore on the unknowns of the problem, namely the vector |: } of the node

P,
values of the scalar potential and f, Under these conditions, considering
the behavior law of magnetic materials, the systems of equations [4.286] and [4.291]
are nonlinear. Numerical methods are available for solving this type of problem,
such as the substitution method or the Newton—Raphson method (Dhatt et al. 2012).

4.4.5.2. Vector potential A formulation

For the vector potential formulation, the studied problem is the same (see
Figure 3.20). As for writing the equation, it is presented in section 3.5.3.5. The first
step is to consider as source terms the magnetic flux ¢ imposed on the boundaries
Iy and Iy, the inductor through which flows a current I and the permanent magnet
represented by the remanent induction B,. The second step is to replace the magnetic
flux by a magnetomotive force f,.

Irrespective of the source terms used, we have to discretize the vector potential
A. As already shown (see equation [3.275]), we have A € Hpy(curl, Q2). Under these
conditions, as shown in Table 4.18, in the discrete domain, the vector potential
belongs to the space of edge elements, i.e. Ay(x) € W'r,(Qq). It is then written in the
form of equations [4.92] and [4.93]. However, to express the discrete form Ay(x), we
have to take into account the number of unknowns of the problem considering the
boundary conditions and the gauge condition.
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In order to gauge the vector potential, by integrating the boundary conditions, we
use the process developed in section 4.3.6.2, which relies on an edge tree. With this
process, to take into account the boundary conditions, we start the construction of
the tree by the edges of the boundary I',, and then extend it to the set of edges of the
mesh. The circulations of the vector potential A on the '— 1 edges of the tree are
then set to zero. In what follows, we denote by 4, the number of edges belonging to
the boundary I, and by 4, the number of edges of the boundary I'y, also belonging
to the edge tree. To impose the boundary condition on the boundary I',, besides the
Ay, edges of the tree, zero must be imposed on the 4,— 4, remaining edges. Then,
the number of unknown circulations of the vector potential A on the edges denoted
by A, satisfies:

A= A= (N —=1)- (A — Apy) [4.292]

The edges are renumbered so that those on which the circulation was imposed to
zero have an index higher than 4. Under these conditions, the expression Ay(x) is
written as:

Ag(x) = %(s)aiAai o, Jlas] [4.293]
i=1

4.4.5.2.1. Imposed source terms ¢, 1, B,

As already seen in section 3.5.3.5.1, we must solve equation [3.298]. Applying
the weighted residual method (see section 4.2.4.2.1), the weak form is given by
equation [4.44] recalled below:

ﬂ' W curlA curl¥dt = — IJ' W (Ohy + B, ).curl¥ + j I L, Wdt
Q Q Q
with We Hr, (curl,Q)

[4.294]

Besides the vector potential A, the solution to this equation requires the
discretization of the support fields A, and A;. Concerning the term B,, it is considered
as perfectly known and its discretization is not needed (on this matter, please see the
note in section 4.4.5.1.1).

The support fields A, and A; (see equations [3.273] and [3.289]) belong to the
function spaces Hp,(div0, Q) and Hy(div0, €2), respectively. As shown in Table 4.18,
they are discretized with facet elements with Ag(x) € W y(Qq) and
Ma(x) € W2(Qy).
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In order to determine the support field Ay(x), we directly use the process
presented in section 4.3.7.2, which yields the expression:

£ t
1) = Sor Aot = oz o] [4.295]
i=1

Concerning the support field A(x), its construction is introduced in
section 4.4.5.1.1 and its expression is:

a t
hd() = Yog A = [og] gl [4.296]
i=1

Knowing the discrete form of the various terms used in the weak form [4.294],
we will now build the matrix equation to be solved.

For this purpose, after having introduced the discrete forms [4.293], [4.295] and
[4.296], we apply the Ritz—Galerkin formula, which allows us to write the equation
as follows:

/qr
Z ”.[Q },L_lcurl(naj curlo, Ajdt=
i=1 d
F
-1
_ Zq)jﬁgd W curlo, o Ay dt
k=1

F
+ ; IJ.J-J‘Qd p,t“curl(x)aj o Ay dt

- j I  Weurlo, B,dt with 1< <4,
d

[4.297]

This equation, which must be verified for the set of 4, weighting functions ;,
leads to a matrix equation.

Using the same approach as that proposed in section 4.4.3.2.3, we can write the
matrix form:

[Rfﬂr ]t [M;T} [R“r } [?ﬂr} - _¢[Rfﬂr T [M;T MKW} [4.298]
+1[Mﬂ4[xm] - [Rmrjl [Bt‘;}
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In this expression, the elementary term of the matrix [Mb‘,;} is written as:
T -1
Mg = [[fon™ o o dt [4.299]

As for the elementary term of the matrix [M ﬂ(F} , it is written as:

M = ﬂ j )0 0 T [4.300]

L)

-1
The expression of the elementary term of the vector [BffF } is:

BY = [llg n o Bde [4.301]

Now, we pose:

o t p
|:F; } = —¢[Rfﬂr] [Mlqlw}[?»qﬁ} +I|:M;4T:|[7\’Iqr} [4.302]
t -1
_[Rfﬂr} [Bt? }
The system of equations to be solved can then be written as follows:
[S%’f } bl = [F;: } [4.303]

In this system of equations, the unknowns are the circulations of the magnetic

vector potential along the edges of the mesh contained in the vector [A ﬂf] If the

saturation of magnetic materials is considered negligible (see equation [1.26]), the
system to be solved is linear.

NOTE.— The system of equations [4.303] was built by gauging the vector potential. A
similar approach can be used to build a system of equations in which the vector
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potential is not gauged. The number of solutions of the resulting system of equations
is then infinite. It has been shown that iterative methods like the conjugate gradient
method converge and lead to a unique solution in field (Ren 1996). Indeed, during
the iterative solution process, the divergence of the potential is implicitly fixed in the
weak sense and automatically imposes the gauge condition.

4.4.5.2.2. Imposed source terms £, I, B,

The objective is to impose the magnetomotive force f;, rather than the magnetic
flux between the boundaries I, and I',. As shown in section 4.2.4.2.2, the weak
formulation [4.44] is maintained, but the flux ¢ becomes an unknown.

To obtain a full equation system, we then add equation [3.300], which is recalled
as follows:

£y = m'g w7 (curlA + iy — B ) dt [4.304]

To discretize this equation, the vector potential A and the support field A, are
replaced by their discrete form, namely equations [4.293] and [4.295]. Then, we
obtain:

N 0, ] [rgs teurtfo, [ A, et
+¢W K7 (o [ [ ) [0 ] [ |00 [4.305]
—mgdu (o] [xw])t.nrdr)

Using the properties of the discrete curl operator [4.124] and introducing the

-1
matrix [M‘;«(F}, whose elementary term is given in equation [4.299], as well as the

vector [B } having as an elementary term equation [4.301], we obtain:

JSm = [Myf ]t [M% :I[RT}I, ][Aﬂ, ]+ q)[}‘(])f]tl:M%; }[KM]

- [Mw]t[B?q: ]

[4.306]
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In order to build the matrix equation to be solved, we will gather relations
[4.298] and [4.306]. To simplify the expression, we first introduce the following
notations:

] =l Mo o]

[F#__l;r ﬂ,} I[ :|[7"I‘F] [Rm,]t[B?;}= [4.307]
BY =[%¢qr]t[M%;}[7~M]
= [7bq>qr]t[Blrlq: }

In this expression, [Ch a } denotes a vector of dimension 4. Similarly, [ B4, }

is a vector, of the same dimension _4,, representing the contribution of the current in

-1
the inductor and that of the permanent magnet. On the other hand, the term B& isa

-1
scalar term corresponding to a reluctance. Finally, the term fg is a scalar

representing the magnetomotive force created between the boundaries Iy, and I, by
the permanent magnet.

Gathering equations [4.298] and [4.306] and relying on the notations introduced
in equation [4.307], the matrix equation to be solved is written as:

i | e {[Aﬂq P

p—t |t p-1 h [4.308]
[Ckﬂr B?u 0 Jm + f]_),r

This system of equations allows us to solve a magnetostatics problem with the
vector potential formulation when the source terms are a magnetomotive force
imposed on the boundary with an inductor and a permanent magnet inside the
domain. This is a linear system if the effects of the saturation of magnetic materials
are considered negligible.

4.4.5.2.3. Consideration of the magnetic nonlinearity

As noted in section 1.2.2.4, equation [1.25], magnetic permeability could be
considered as a nonlinear function of the field H or the magnetic flux density B. In
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this case, the elementary terms of matrices [M%;} (see equation [4.299]) depend on

B and therefore on the unknowns of the problem, namely on the vector [A fJ of the

circulations of the vector potential. Then, taking into account the behavior law of
magnetic materials, we have to solve a system of nonlinear equations. As indicated
in section 4.4.5.2.3, methods are available to solve this type of problem, for
example, the substitution method or the Newton—Raphson method (Dhatt et al.
2012).

4.4.6. Magnetodynamics

For magnetodynamics, the focus is on the study of the example presented in
Figure 3.23. The domain is denoted by € and contains a conductor Q. with two
gates I',; and I'y; on which an electromotive force “e” or the current density flux “I”,
two quantities varying with time, can be imposed. One part of the boundary of the
conductor is in contact with a subdomain €}, whose boundary with the external
environment, denoted by I',, is a wall for the magnetic flux density. The interface
between €. and € (denoted by T5) is a wall for the current density.

For this example, we will develop the finite element method in the case of
electric (A-V) and magnetic (T-@) formulations, introduced in section 3.6.1. To this
end, we will rely on the weak forms developed in section 4.2.5.1.

In this part, we consider that the magnetic materials have linear characteristics
(see equation [1.25]). In the nonlinear case, a substitution or Newton—Raphson
iterative method can be introduced after time discretization (Dhatt et al. 2012). We
build a mesh M on the domain €, denoted by €24 in what follows. This mesh is
composed of N nodes, 4 edges, F facets and 7/ volumes. We consider the mesh 9,
of the conductor (domain €.4), composed of M nodes, 4. edges, F. facets and 7,
volumes. The mesh M, is a “sub-mesh” of the mesh M. In what follows, we will
develop the potential formulations for the case in which electric quantities are
imposed. If magnetic quantities are imposed (see Figure 3.24), the system of
equations results from developments similar to those that will be presented.

4.4.6.1. Electric A-V formulation

The first step in obtaining this formulation is to impose the electromotive force
that appears as a natural source term (see section 3.6.1.1.1). The second step is to
study the case in which current intensity I is imposed. This requires the introduction
of an additional equation (see section 3.6.1.1.2). Before this, we have to discretize
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the potentials A and ¢ by taking into account the boundary conditions and the gauge
conditions.

The vector potential (see equation [3.316]) belongs to the space Ho(curl, 2). As
shown in section 4.4.5.2 and in Table 4.18, it is discretized in the space of edge
elements, i.e. W'((Qg). To impose the gauge condition, we build an edge tree (see
sections 4.3.6.2 and 4.4.5.2). The construction of a tree starts by the edges belonging
to the boundary I" of the domain. For the boundary conditions, we impose a zero
circulation on all the edges located on the boundary I'. Under these conditions, if we
denote by 14, the set of edges belonging to I', the number of unknown circulations 4,
of the discretized vector potential Ay(x) is written based on equation [4.292] in the
following form:

A= A= (N =1)- Uy~ pg) [4.309]

where 4, represents the number of edges on the boundary I" belonging to the edge
tree. The edges are renumbered so that those belonging to the tree and to the
boundary have an index number higher than 4. In this case, the expression of the
vector potential Ay(x) is written in the form [4.293], which is recalled below.

a,
Agx) = Yo, Ay =lo, [a,] [4.310]
i=1

The scalar potential V belongs (see equation [3.319]) to the space
Hrejure2(grad, Q). It should be recalled that it is calculated only in the conducting
domain Q.. In the discrete domain, it belongs to the space of nodal elements (see
section 4.4.4.1.1 and Table 4.18), i.e. V4(x) € Worelurez(ch). To impose the gauge
condition and the boundary conditions, we proceed as in electrokinetics, setting to
zero the node values “V;” of the potential on the boundary I'.; Ul (see section
4.2.4.1.1). Let us denote by A, and N>, the number of nodes belonging to the
boundaries T,y and T, respectively. Under these conditions, the number of
unknown nodal values of the discrete scalar potential V4(x) is written as:

Nie = Ne = (Ve + Noe) [4.311]

All the nodes 9V, of the mesh of the conductor are then renumbered so that those
located on the boundaries I',; and I, have an index higher than M. The scalar
potential V4(x) can be written in the form of equation [4.244] as follows:

Vy(x) = %wni\/i = ox_Flvi_] [4.312]
i=1
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4.4.6.1.1. Imposed electromotive force

For the example in Figure 3.23, when the source term is the electromotive force,
the weak form of the equations to be solved is given by equations [4.49] and [4.53]
that are recalled as follows:

mg (! (curlA.curl¥®) + c(aa—l?+ gradV —ep, ).¥)dt =0 [4.313]

HIQC (ogradygradV + 6(88_? grady —ep,).grady)dt =0 [4.314]

with ¥ € Hy(curl, Q) and ¢ € Hrejure (grad, Q) (see Table 4.7).

In order to solve this system of equations, besides the potentials A and V, we
have to discretize the support field B.. Similar to the approach for electrostatics and
electrokinetics, this field can be built from the associated potential o,. For the
studied example, the properties of these two fields (B. and o) are defined in
equation [3.313]. The support field o, belongs to the function space H(grad, €.)
with two equipotential surfaces I',; and I',. It is therefore discretized in the space of
nodal elements. It belongs to WO(ch) and is denoted by 0.4(x). As for B, it belongs
to Hreiures (grad, Q,); it is discretized in the space of edge elements W reiore (Qcq)
and is denoted by B.y(x). It should be recalled that the fields . and o, are uniquely
defined on the conducting domain €. Indeed, in equations [4.303] and [4.304], the
contribution of the support field B, on the non-conducting domain Q4 — Q4, is zero
because the conductivity ¢ = 0 (see equation [3.307]).

For the construction of P.4(x), we use the same procedure as that used in
section 4.4.4.1.2 and therefore we first determine 0.4(X). To do this, we set to 1 the
values “0.;” associated with the nodes located on the boundary I'.; and to zero the
other nodes. Based on equation [4.180], its expression can be written as follows:

c

g () = 3 0, (X) 0, = [0 Floten ] [4315]
i=1

where A represents the number of nodes of mesh 9, of Q.. Knowing the
associated potential 0.4(x), we determine the support field B.y(x) by applying the
gradient operator. In the discrete domain, we calculate the vector of the circulations

of the support field [Be 2 } using the expression [4.245]. Based on vector [Be 1 },

the field B.q(x) can be written using equation [4.182]:
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Bea (x) = ilcoﬁ =lo JBes ] [4.316]

It should be recalled that 4, represents the number of edges of the mesh 9. In
magnetodynamics, we have a system of two differential equations to solve, [4.313]
and [4.314]. To build the discrete form of our problem, let us first consider equation
[4.313]. In this expression, the vector and scalar potentials, as well as the support
field B, are replaced by their discretized form (A4(x), Vy(x) and B.s(x)) and the
Ritz—Galerkin method is applied. Then, we obtain:

ZJ:U w (curlm curlo, A Ddt+ ZJ.J“[ oo, o, k d‘t "
; Iﬂﬂd oo, grado, V, dt— elzz; I .Ugd o, O, Be, dt=0 [4.317]

for 1<j< 4,

The terms related to Vy(x) and Bes(x) are only defined on Q, as shown by
equations [4.312] and [4.316]. However, since the conductivity ¢ is zero on Qg — Q4
(see equation [3.307]), the last two terms of equation [4.317] are perfectly defined
and can be integrated on 4. As this expression must be verified by the set of 4,
weighting functions @,;, it can be written in the form of a matrix system:

J-.”gd w7 eurlfo, ]t)t(c“rl[‘”ﬂ, ]t)[A 4 Pdr+
J-.”Qdﬁ[“’ﬂr J[“’AJ 5 Jdo +I_” ©, |(grad[o,_ ]t)[vwm Jde—[4318]
eJ-J.J.Qd olo, o, T [Beﬂc Jdz=0

Using the properties of the curl [4.124] and gradient [4.110] discrete operators,
we have:

J1Jo 7 TRy o Too T[T, s
m.g oo, wﬂeri[Aﬂ,JdT +mgdo[m [0 ] [Gan, [V, Jar-14.319]
I”g [Beﬁ ]dT—O



Formulations in the Discrete Domain 285

as well as the vectors [A },

The incidence matrices [RTA} and [G 4

_/qu :|
[Vw } and [Be 1 } are vectors with constant terms, therefore independent of the

position in space. The equation can then be rewritten as follows:

[ ] [t e 2 0 M50 T2 ]

[4.320]
+[M§l,fl:||:GﬂWm J[Vw,c J + e[M,GuC }[Beﬁc J: 0
The elementary term of the matrix [M%} is written as:
-1
M =, W lop o dt [4.321]

Concerning the matrices [M?l ﬂr} and [M; ﬂ} , their elementary terms have the

following form:

M7, = llg, 000 @, dr [4.322]

However, as defined in section 3.6 (see equation [3.307]), the conductivity G is
zero in Q4 — Q4. Consequently, the integrations corresponding to the 2nd, 3rd and
4th terms of equation [4.319] can be limited to domain Q.. Under these conditions,

the elementary terms of matrices [M;, A} and {M; ;1} given by equation [4.322]

are written as:

M7, =l 004 0. dt [4.323]

It can be noted that, if an edge 1 or j is located outside the domain Q.4, then the
term M®,,; is zero, since the function @,; or @,; is zero on Q.

Let us now consider equation [4.314], which should also be solved. To do this,
we can use a similar approach to the one used for the discretization of relation
[4.313]. First, we introduce the discrete forms of the scalar potential, vector potential
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and support field B, and then we apply the Ritz—Galerkin method. Then, we can
write as:

WI'C
Z.UI ogrado, .grado, V, dt+
i ch i ;
i=1
> d
Z”j ogrado, .w, —A, dt- -
ch J k dt
k=1
';4()
C; J.J.J;)m Ggradu)nj .(Dam Bemd‘c =0 with 1< ] < j\/‘rc

Based on this expression, the approach used for equation [4.317] readily leads to
the following relation:

e 1007 o I Bl o o B -

[4.325]
e[G]lCW,C HMG;;C;[C ]ﬁeﬁlc J=0

For this expression, the elementary terms of matrices | M® and | M® are
xP ’ Y [ ﬂcﬂj [ A,

given by expression [4.323].

Gathering the matrix forms [4.320] and [4.325], we obtain the matrix equation to
be solved as follows:

_[RM, ]t [M%EI][RM, ] [M(,jq ﬂJ[G}le ] {A a } N
[0] [Gﬂcwm HMZC A, ] [Gﬂcﬂ\fw] ] V.

s ] L] [[Aﬂr] s, Jper ]

_[G/chm]'[MZc ,qr] Lo]| dt| [Var, ]| |16 o Miﬁchﬂc]

[4.326]

=¢

In order to take into account the time derivative of the unknown vectors l:A ﬁj

Vv

T

and [ } , two possibilities can be considered. The objective is to find the solution

in the steady state when the source term is periodic. In this case, when the magnetic
behavior laws are linear, the complex notation can be introduced (Alonso Rodriguez
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and Valli 2010) leading to a complex matrix equation. Conversely, if an arbitrary
state is considered or if, in the presence of a sinusoidal source, we want to consider a
transient state, then the differential operator d/dt should be discretized using a time
discretization scheme like, for example, Euler or Crank—Nicholson methods.

NOTE.— Similar to the magnetostatics case, we can take into account a nonlinear

-1
magnetic behavior law. This leads to a matrix [M%} that depends on the solution.

The system of equations to be solved is then nonlinear, and fixed point iteration
methods or the Newton—Raphson method (Dhatt et al. 2012) should then be
implemented. On the other hand, precautions should be taken for the time
discretization.

4.4.6.1.2. Imposed current intensity

When the current intensity is imposed through the boundaries I',; and I, the
electromotive force becomes an unknown of the problem. As shown in
section 3.6.1.1.2, an additional equation is then required. In what follows, we use
equation [3.339], which is recalled below:

=[] 4 ﬂe.c(—(%—A +gradV) + e B, )dt [4.327]
¢ t

Then, we need to consider the discrete forms of the potentials A and V as well as
those of the support field B.. Using expressions [4.310], [4.312] and [4.316], we
obtain:

1=l otho s FBos Jilos F o e
HIQM G([‘”ﬂc ]t[Beﬂc ])t grad[wwm ]t [Vyvm ]dT + [4.328]

efll, oo Bes )ilos JBes e

After rearrangement, and using the expression of the elementary term [4.323],
this equation is written as:

I= _[Be/lc ]t [lecﬁr ]% [Aﬂ, ]_ [Beﬁc ]t [I\/I;Cﬁc IG/’CW,C IVW;C ]+

e[ﬁef’lc ]t [quc/qc IBe/’lc ]

[4.329]
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whose elementary terms of matrices [M;c ﬂr} and [Mi’q P } are given by equation

[4.323].

In conclusion, when the current I through the boundaries I',; and T, is the source
term, we have to solve the matrix equation composed of expressions [4.326] and
[4.329]. The unknowns are then the circulations of the magnetic vector potential on
the edges of the mesh, the nodal values of the electric scalar potential in the
conductor and the electromotive force imposed between the boundaries I'; and T,.

4.4.6.2. Magnetic formulation T-¢

The studied example is still the one in Figure 3.23, having the electromotive
force e(t) and the current I(t) as source terms. For this configuration, the magnetic
formulation T-¢ is developed in section 3.6.1.2. As shown in this section, when the
current intensity I is imposed, the source term appears naturally in the developments.
On the other hand, if the source term is the electromotive force, then an additional
equation is required. The first to be studied is the case in which a current I is
imposed through the boundaries T, and T',. Then, the electromotive force “e” will
be considered a source term.

Before writing the equation with the finite element method, we will discretize the
magnetic scalar potential ¢ and the electric vector potential T.

For the studied example, the scalar potential ¢ (see equation [3.354]) belongs to
the function space H(grad, Q2). In the discrete domain, it belongs to the space of
nodal elements (see Table 4.18), ie. @4x)e W'Qg). To impose the gauge
condition, we then set the potential to zero in one node of the mesh. In our case, the
node with the highest index will be chosen. The number of unknown nodal values of
the potential, denoted by #;, is then equal to & —1. The discrete form of the
magnetic scalar potential @4(x) can be written as follows:

94(x) = %'lmni@i = low Ilow, ] [4.330]

Concerning the vector potential T (see equation [3.347]), in the continuous
domain, it belongs to the function space H (curl, Q). It is therefore decomposed in
the space of edge elements. Moreover, this potential is zero on  — €).. Finally, the
focus is on the restriction of T in . (see equation [3.348]). In conclusion, the vector
potential Ty(x) € erj(QCd). Boundary conditions should therefore be imposed on
the boundary T, which represents the interface between the conductor and the
domain Q.
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To gauge the discretized form Ty(x) and impose the boundary condition on I,
we proceed similarly to section 4.4.4.2.1. We build a tree by considering first the
edges located on the boundary I'j, and then those located inside the domain Qcq.
Then, we denote by 3; the edges of the boundary T and by 4, those of T belonging
to the edge tree. Finally, the circulation of Ty(x) is set equal to zero on the edges
belonging to the tree and also on the edges of boundary I that are not included in
the tree. Under these conditions, the number of unknown edges 4. of the electric
vector potential has the following expression:

Arc :ﬂc_(wc_l)‘(ﬂj—ﬂja) [4.331]

The arrangement of the edges of the mesh is such that those belonging to the
edge tree or to I'; have an index that is higher than 4,.. Under these conditions, the
expression of the discretized electric vector potential Ty(X) is:

Ay
Ta(x) = Yo, T = o, {1, ] [4.332]
i=1

NOTE.— It can be noted that the functions ®,; appearing in the expression [4.332] are
all associated with the edges located inside Q4 and are therefore all zero on
Q4 — Q. Since Ty(x) can be extended to Q4 — Q.4 keeping it equal to zero, the
expression is still valid on Q4 — Q4 [4.332].

4.4.6.2.1. Imposed current intensity

For this formulation, when the source term is the current intensity I, the weak
form of the equations to be solved is given by relations [4.59] and [4.62], which are
recalled as follows:

J. I (07] (curlT + Icurly, ).curl'¥
QC

5 [4.333]
+ o W(T + Iy, —grade).¥)dt=0

[{lg W(T + Iy — gradg).gradydt = 0 [4.334]

with W € Hrj(curl, Q) and y € H(grad, Q). As for the associated potential %, as
shown by equation [3.346], it belongs to H(curl, Q) (see Table 4.8).

Applying the finite element method requires the prior discretization of the
potential y;, besides the potentials T and ¢.
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It should be recalled that the associated vector potential ¥; is defined, as shown
by equations [3.345] and [3.346], based on the support field A;e H(div0, Q) which
makes it possible to impose a current in the domain €. Referring to Table 4.18, the
term A, is decomposed in the space of facet elements W>(Q ). Moreover (see relation
[3.309]), it must verify the boundary conditions on the boundaries I';, I'y; and Ij. To
calculate this source term, namely the flux through the facets Ay (with 1 <k < ), we
apply only on the domain Q.4 the method introduced in section 4.3.6.3 (see case II).
The domain of definition is then extended to Q4 by imposing a zero flux Ay on the
facets belonging to Q4-Q.q. It is then possible to write:

i t
ha(x) = Yop (O, =|og] [7LI,F] [4.335]
k=1

The source term 4(x) can then be calculated on €4 with the method proposed in
section 4.3.6.2. Under these conditions, y4(X) is written as:

A
1140 = 3 00 (0110, = 04 s | [4.336]

i=1

To build the matrix equation to be solved, we first consider equation [4.333].
The potentials T, and the associated potential ; are replaced by their discrete form.

Applying the Ritz—Galerkin method, we obtain:
/qrc
Z I ” c! (curlo)aJ curlo, )T,dt+
Q i

i=1 o

N 1
IZ I ”‘Qd o (curlo, curlo, )y, dt+

k=1 o

‘/qu dT ﬂ
LI [
;”J.ncdumaj Po gt ; g,

N de,
Z”J‘ uo, grado, —=dt=0 for 1<j< 4
n=1 ch ! ! dt

[4.337]
dly

n dt—
dt

Expression [4.337] must be verified for the 4, weighting functions ,;
therefore, we can write the following system of equations:
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JII, o cnfo, 1Y cuntfo,, T[T, aes

ifff o euntfo,, ] curt[o, 1)1 e+

fﬁg 1[%0 Lo, T)E[Tﬂn Jart [4.338]
JII, wlo JoT [ ]G oe

I, #lox Jarao, )40, Jor=o

Let us now use the properties of discrete operators: curl (see equation [4.124])

and gradient (see equation [4.110]).

Then, we can write:

”.[ch o' [R‘Fﬂm ]t o4 Jo | [RTﬂm ITﬂm ])d‘c +

Imszcd o' [er,c ]t[wqr][mqr]t [R g Lipa o+
Mg, oy Jo s, ]‘) 4 [T/qm it [4339]
+HIQN [‘”ﬂ ][‘Dﬂ [Xl,q —dt—

dt

ngcd “["’ﬁm ][(Dﬂc ]t [Gﬂyv, ]% [(Pyvr ]dT =0

NOTE.— In the nonlinear case, which is not applicable for this example, magnetic
permeability depends on the space (see equation [1.25]), as well as on the field
magnitude. Therefore, the expression cannot be decomposed in the form:
OB /dt=udH /dt=pd(T +1 y — grade) / dt since U is no longer a constant, but it
depends explicitly on the field H and so implicitly on time.

As the incidence matrices [RTJ‘LJ and [G ﬂﬂ‘fr] the vectors [Tﬂm}’ [(Pwr }

and [XI jq} are independent of space, this equation can be written in the following

form:
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[Rfijlm ]‘ [ng_fl [erm ][Tﬂm ]"‘ I[RfF/lm ]‘ [ng_rl IRrF;l ][Xl,q ] +

d dI
[Mil,c%l,c ]a [Tﬂm ]+ [Mttlm/q IXM]

—- 4.340
m [4.340]

[M; ,q][Gﬂw, ]% [(PW, J=0

In equation [4.340], the elementary term of the matrix [Mg; } is written as:
o _ -1
Mg, = ) jQCd o o o dt [4.341]

For the matrices I:Mg; } and [M; ﬂ} , the elementary terms have the following

form:

MY = [l woq o, do [4.342]

Let us now consider equation [4.333], which must also be discretized. For this,
we introduce the discrete forms of potentials T and ¢ and of the associated potential
x1- The Ritz—Galerkin method can be used to write:

ﬂrc
> mﬂd w(gradow, .o, T)dt+
i=1
A
12 [, w(grado, o, i, )dt - [4.343]
k=1
WT
Zﬂfgd w(gradw, grado, )¢;dt =0 avec I < j<,
=1

It should be noted that the first term of this expression concerns the electric
vector potential, defined on Q. and the A; test functions defined on the entire
domain.

The same steps can be taken for the development of equation [4.337]. Since
equation [4.343] must be verified for the ; test functions, the first step is to obtain a
system of A; equations. Then, we introduce the properties of discrete vector
operators. Finally, given that the incidence matrices and the vectors of discrete
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quantities are independent of space, we obtain after development the following
system of equations:

[Gﬂw, ]t lM; A, J[Tﬂm ] + I[Gﬂw, ]t [M%/l IXM]

[4.344]
- [G%wvr J [M%ﬂ IGﬂW, ][%f, J=0

In this expression, the elementary terms of the matrices {Mt:‘l AJ and {qu ﬂ} are

given by equation [4.342], but by integration over the entire domain ;. Gathering
the equations [4.340] and [4.344] then leads to the matrix equation below:

Tﬂrc ﬂ

t t

[Gﬂﬂ\fr] [Mi,qm] - [Gﬂwr] [Mttlﬁ][GﬂW,] P,
T VTR T
+{[Mﬁ y Mﬂmrﬁl Gﬂw,qi{
0

ok | " A ﬂ [4.345]

Pov,
R _g{[Mz,ﬂlxmq

[G;wv, HMELM] Lol &

Here, the unknowns are the circulations of the electric vector potential, the nodal
values of the magnetic scalar potential and also their time derivatives.

Ry sk, | o {

4.4.6.2.2. Imposed electromotive force

If an electromotive force is imposed instead of the current intensity, the matrix
system [4.345] is unchanged, but we must add equation [3.373], which is recalled as
follows:

€= J'J‘J.Q G_I(C“l’lT+ leurly;).A;)dt
+mﬂ%“ (T—grade+Iy;)ydt [4.346]

In order to associate this equation with the matrix equation [4.345], we must
introduce the various discrete forms of the terms, i.e. Ty(X), Qq4(x), Aig(x) and Y1a(X)).
For this purpose, we use the same process as that used in section 4.4.6.1.2. We then
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obtain, if the magnetic permeability is linear (see note after equation [4.339]), the
following system of equations:

] lng_rl J[Rmm ITﬂ,C ]"‘ g [ lM%;l IRM ][Xlﬂ]

+ [XM I [Miﬂm ]% [T}lm ]— [Xl,q I [ML}M IGﬂW, ]% [‘Pw, ] [4.347]
+ ) [M%ﬂ]}(m]% =e

—1
In this expression, the elementary term of the matrix [M?rqr} is given by relation

[4.341], with integration on Q4 (see the domain of definition of G, equation

Al

an integration over the domain €.

[3.307]). For the matrices [Mu } and |:N[51 ﬂ}, we refer to equation [4.342], but by

Under these conditions, when the electromotive force is imposed between the
gates I, and T',, the equations to be solved are given by the systems of equations
[4.345] and [4.347]. The unknowns are then the circulations of T, the nodal values
of @ and the current intensity 1.
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