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Introduction 

As calculation tools are reaching increasingly high performances, numerical 
modeling has developed significantly in all sectors of society. It can be used to 
predict the evolution of a given structure or device starting from an initial state, 
study physical phenomena by accessing quantities that are not measurable or 
develop virtual prototypes in order to improve a design process. Applied physics, 
and in particular low-frequency electromagnetism, which is the subject of this book, 
are no exceptions. Nowadays, high-performance simulation software is available for 
students, engineers and researchers. A prerequisite for making the best use of a tool, 
even in the field of computation, is obviously a good knowledge of its foundations 
and principles. In this context, it seemed interesting to propose a book that may 
grasp, under the best conditions, the path leading to building these numerical 
models.  

The modeling of electromagnetic phenomena relies on two partial differential 
equations, known as Maxwell’s equations: 

curl E = – ∂B / ∂t 

curl H = J + ∂D / ∂t 

These two equations should be completed by behavior laws that describe the 
reaction of media to electromagnetic fields, which are associated with physical 
phenomena such as dielectric polarization, electric conduction and ferromagnetism. 
Finally, for a proper formulation of the problem, boundary conditions should be 
added, for either a finite or infinite studied domain. Although it may appear simple, 
this problem, composed of several equations, has no analytical solution, except for 
the case of elementary geometry, with linear behavior laws. 
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As the exact solution to the problem is not available, there are two possibilities 
for reaching an approximation of this solution: 

– Formulate hypotheses on the geometry, the behavior laws of the materials and 
the spatial distribution of electromagnetic fields. The objective is to make the 
analytical solution possible. This approach requires the “model builder” to have very 
deep, expert knowledge on the studied system, to be able to formulate the “right 
hypotheses”. If the latter are not valid, there is a very high risk of reaching a low-quality 
solution, which is very far from the exact solution of the initial problem. Moreover, 
this approach is not always possible if complex phenomena, such as nonlinearities, 
are predominant. 

– Or, reformulate the initial problem in discrete form, leading to a system of 
differential algebraic equations. An approximation of the exact solution is then 
obtained at the cost of a significant amount of computation, which can be readily 
processed by the computers that are available nowadays. This reformulation, 
requiring few or almost no hypotheses, is obtained by implementing numerical 
methods. In the field of electromagnetism, the most widespread such method is the 
finite element method. 

This book focuses on the second approach, often referred to as “computational 
electromagnetics”, providing a detailed description of the implementation of the 
finite element method in low-frequency electromagnetism. Our purpose is to explain 
the process starting from equations verified by electromagnetic fields in the 
continuous domain, in order to arrive at a system of equations that will be solved 
using a computer. This process, often called “discretization”, will be conducted with 
a permanent concern for maintaining a link between physics, i.e. the properties of 
electromagnetic fields, and numerical analysis, through the finite element method.  

Furthermore, this book is mainly addressed to students, engineers and 
researchers in the field of electrical engineering. They will be able to better 
understand the intricate details of (open-source or commercial) software that models 
the behavior of electromagnetic fields. They will thus have the possibility of better 
using these tools and therefore have a good knowledge of their limits. This book is 
also addressed to students, engineers and researchers in the field of numerical 
analysis who are interested in better understanding the links between numerical 
methods and physics in the field of electromagnetism.  

Even though this book offers few pieces of information on numerical 
implementation, it provides all the elements required for understanding the 
theoretical foundations. It also allows us to conceive the link between physics and 
numerical methods and therefore between the applications and the software used. 
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The above-stated Maxwell’s equations allow for the study of all electromagnetic 
phenomena. For certain low-frequency applications it is, however, possible to derive 
them in a “static” or “quasi-static” state. Under certain hypotheses, these simpler 
problems lead to solutions that are equal or very close to those that would have been 
obtained using the full Maxwell equation system. After discretization using a 
numerical method, they can be used to obtain smaller size systems of equations that 
are easier to solve due to their mathematical properties. 

Approximations by problems under a static or quasi-static state are widely used 
in many domains such as power grids, electrical machines, power electronics and 
non-destructive testing. This book focuses in particular on three static problems, 
namely electrostatics, electrokinetics (when electric charges travel at constant speed, 
the fields do not depend on time) and magnetostatics. In the quasi-static state, 
Maxwell’s equations can be written in the magnetoquasistatic form (more often 
referred to as “magnetodynamics”) or in the electroquasistatic form. In this  
quasi-static case, our focus will be on magnetodynamics. On the contrary, 
electroquasistatic problems will not be considered, but the developments remain 
similar to those used in the case of magnetodynamics. 

This book has four chapters, each corresponding to a stage of the process leading 
to the discretization of Maxwell’s equations.  

The objective of Chapter 1 is to formulate various problems in the static state 
and the magnetodynamic state, and then to solve them. For each problem, the 
equilibrium equations are written, as well as the behavior laws and the boundary 
conditions on the electromagnetic fields. A review of the properties of these fields 
also highlights their behavior at the interface between two media, and the nature of 
their integral forms. A key point of this chapter is the definition of electric and 
magnetic quantities, referred to as “source terms”, which are at the origin of the 
creation of electromagnetic fields. These terms can be located inside the studied 
domain (electric charges, inductors, permanent magnets) or imposed on the 
boundary of the domain (electromotive or magnetomotive forces, current density or 
magnetic flux). 

Chapter 2 is dedicated to the introduction of functional spaces associated with 
vector operators: gradient, curl and divergence. As these operators are used when 
writing the equations of static and quasi-static problems, they can be used to define 
the functional spaces to which various electromagnetic fields belong. An analysis is 
conducted on the properties of functional spaces and in particular on the images and 
kernels of the vector operators in relation to the topology of the studied domain. 
These properties lead quite naturally to the notion of scalar and vector potentials, 
widely used as intermediary for solving static and quasi-static problems, which will 
be introduced in Chapter 3. The notion of gauge is also presented, which imposes 
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the uniqueness of a field when defining by a single vector operator. Gauge 
conditions will therefore be very useful to impose the uniqueness of potentials so 
that the problem is properly posed. They are also used in the construction of source 
terms. 

Chapter 3 focuses on the potential-based formulations for static and 
magnetodynamic problems. In the case of static problems, the introduction of these 
potentials allows for the reduction of the number of unknowns, passing from two 
unknown fields to only one unknown potential. This potential can be a scalar or a 
vector quantity. For each problem, two formulations in terms of potential referred to 
as “scalar” or “vector” are obtained. In magnetodynamics, two potentials are used in 
close relation to those introduced for static problems. Two formulations known as 
“electric” and “magnetic” are then deduced.  

These potentials are not necessarily introduced in a direct manner, requiring 
instead a reformulation of the source terms of the initial problem, located either 
inside or on the boundary of the domain. The first part of this chapter is dedicated to 
this reformulation. The number of sources is often limited, facilitating a focus on the 
essential, which is a systematic method for imposing source terms. However, as 
shown by the examples presented, the methodology is readily applicable to problems 
with a greater number of sources, using the superposition theorem (even though the 
behavior laws are not linear). 

Chapter 4 is dedicated to the discretization of formulations of static and 
magnetodynamic problems. Successful completion of this discretization requires 
first of all finding the proper spaces of approximation within which the approximate 
solutions will be sought. These spaces must have a finite dimension for implementation 
on a computer. In the case of the finite element method, the spaces of approximation 
are defined from a mesh, which is obtained by splitting the studied domain into 
elements of simple shapes (tetrahedron, hexahedron, prism, etc.). A field is then 
perfectly defined by a vector, whose entries are the coefficients of the basis of the 
approximation space. The entries of this vector are then the degrees of freedom to be 
determined. These spaces of finite dimension must be included in the functional 
spaces to which electromagnetic fields belong. This means they must meet the 
properties introduced in Chapter 2. This condition leads to physically acceptable 
field approximations in the sense that they verify the continuity conditions. Whitney 
finite elements are currently the most commonly used, and they generate spaces that 
allow for a real physical interpretation of the degrees of freedom, which are then 
fluxes, circulations and densities. Moreover, imposing gauge conditions is natural, 
as well as the calculation of source terms. It is important to note that, in this book, 
our developments are limited to first-order finite elements for a tetrahedron-based 
mesh. Very similar approaches can be applied with higher-order functions and 
elements of other shapes (hexahedron, prism, pyramid, etc.). The introduction of 
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discrete forms of fields in the potential-based formulations of static and 
magnetodynamic problems does not allow us to directly build a system of equations. 
Our objective is to use the weighted residual method, allowing for the 
transformation of the initial problem, based on local equations, into a problem based 
on integral equations. For each of the potential-based formulations developed in 
Chapter 3, the weighted residual method is used in association with Whitney finite 
elements in order to build a system of equations to be solved, which is then the 
numerical model we seek. 

 



 



1 

Equations of Electromagnetism 

1.1. Maxwell’s equations 

Maxwell’s equations can be written in a general form as follows (Stratton 1941; 
Ida 2020):  

t
∂= −
∂
BcurlE

 [1.1] 

t
∂= +
∂
DcurlH J

 [1.2] 

 [1.3] 

 [1.4] 

The vector fields denoted by E, B, H and D represent, respectively, the electric 
field, the magnetic flux density, the magnetic field and the electric displacement 
field. Electric current density J and electric charge density ρ can be considered 
source terms.  

Finally, it is common to adopt the quasi-static approximation for electromagnetic 
devices operating at industrial frequencies. In this case, the term ∂D/∂t in equation 
[1.2] can be considered negligible. Equation [1.2] can then be written as: 

=curlH J  [1.5] 

0div =B

ρ=Ddiv
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If the divergence operator is now applied to equation [1.5], considering the 
properties of vector operators (divcurlH = 0), the following property can be deduced 
for the electric current density: 

 [1.6] 

1.2. Behavior laws of materials 

Maxwell’s equations, as presented above, are independent of the media. But 
electric fields (E, J, D) and magnetic fields (H, B) are related by behavior laws. 

1.2.1. General case 

It can be noted that in vacuum these behavior laws are linear and have the 
following form:  

 [1.7] 

 [1.8] 

where ε0 represents the electric permittivity constant (ε0 = 10–9/36π F/m) and μ0 is 
the magnetic permeability constant (μ0 = 4π10–7 H/m). They are linked by the 
classical relation: ε0μ0c2 = 1, where c represents the speed of light in vacuum. 

On the contrary, electromagnetic fields in media interact with their environment. 
These interactions also depend on fields of different physical natures, such as 
temperature T or mechanical stress σm. In this case, the behavior laws become 
significantly more complex, and the following relations can be written: 

 [1.9] 

 [1.10] 

 [1.11] 

These various functions may depend on the history of the material. As an 
example, in the case of ferromagnetic materials, the value of the field B at the time t 
depends not only on the value of the field H at time t, but also on its previous values  
in the time interval [0, t]. This phenomenon is known as magnetic hysteresis. Some 

0div =J

ED 0ε=

HB 0μ=

,...)T,,( mσED f=

,...)T,,( mσHB g=

,...)T,,( mσEJ h=
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materials, used for their electric properties linking fields D and E, also exhibit this 
hysteresis phenomenon. They are referred to as ferroelectric materials. 

Behavior laws are often at the origin of the links between various physics 
domains. This is the case with coupling the equations of electromagnetism with the 
equations of thermodynamics and mechanics. For example, electric current density 
J, for a given value of the electric field E, decreases as a function of temperature due 
to thermal energy, which tends to reduce the conductivity of the material. As a first 
approximation, conductivity σ(T) can be written as a function of temperature:  

ref(T)
1 T

σσ
α

=
+ Δ

 [1.12] 

In this expression, ΔT = (T – Tref) with T > Tref, σref is the conductivity at 
temperature Tref and α is a temperature coefficient of the considered material also 
dependent on Tref. However, in many applications, multiphysics couplings can be 
considered negligible in a first approach. In this case, the behavior laws can be 
written in a simplified form:  

 [1.13] 

 [1.14] 

 [1.15] 

1.2.2. Simplified forms 

Even in the form presented in equations [1.13], [1.14] and [1.15], the behavior 
laws in material media may be relatively complex (anisotropy, hysteresis). It is 
nevertheless often possible to simplify them without affecting the precision of the 
results, which will be shown in the following section. 

1.2.2.1. Dielectric materials 

Consider the behavior law of dielectric materials written using relation [1.13]. 
Introducing the electric polarization vector Pe, which depends on the electric field E, 
the following relation can be written (Ida 2020):  

 [1.16] 

 

)(EfD =

)(HgB =

)(EhJ =

)(e0 EED P+ε=
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In the case of ferroelectricity, polarization Pe follows a hysteresis loop when the 
electric field varies as a function of time. However, the hypothesis of isotropy and 
linearity is acceptable for many dielectric materials. Polarization can therefore be 
considered to be directly proportional to the electric field strength. It can then be 
written as follows: 

 [1.17] 

where χe  represents  the electric susceptibility of the material.  Grouping  equations  
[1.16] and [1.17] leads to: 

 [1.18] 

This expression involves εr, a dimensionless number, which represents the 
relative permittivity of the considered material. Introducing permittivity ε = ε0εr, the 
commonly used behavior law of dielectric materials is obtained: 

 [1.19] 

1.2.2.2. Conductive materials 

For conductive materials, assuming thermal effects are negligible, electric 
current density is proportional to the electric field. The electrical behavior law is 
then expressed as: 

 [1.20] 

where σ is the electrical conductivity.  

1.2.2.3. Magnetic properties of materials 

The magnetic properties of materials can be expressed using relation [1.14]. 
Similar to the dielectric materials, a magnetic polarization vector, denoted by Pm, 
can be introduced (Bozorth 1993; Benabou 2002). Using this vector, it is possible to 
express the magnetic flux density in the following form: 

 [1.21] 

In this expression, the magnetization vector M can also be introduced, posing 
Pm = µ0M(H). Equation [1.21] can then be written as: 

 [1.22] 

Ee0e χε=P

EED r0e0 )1( εε=χ+ε=

ED ε=

EJ σ=

)(m0 HHB P+μ=
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Equations [1.21] and [1.22] contain a first term corresponding to the magnetic 
flux density created in vacuum (µ0H) and a second term, respectively, Pm(H) or 
μ0M(H), corresponding to the response of the material medium to the external 
magnetic field.  

There are various behaviors leading to the following classification: 

– diamagnetic materials that, when subjected to a magnetic field, create a 
magnetization that opposes the external field. In this case, equation [1.22] can be 
written as: 

 [1.23] 

where χm represents the magnetic susceptibility with χm < 0 and is of the order of  
– 10–5. It can be noted that this reaction magnetization is very weak for most 
materials used in electrical engineering. As an example, the magnetic susceptibility 
of copper is equal to –1.18 10–5; 

– Paramagnetic materials that, when subjected to a magnetic field, create a very 
weak magnetization in the same direction as the external field. In this case, the 
expression [1.23] is unchanged, but χm>0 may range between 10–3 and 10–5. As an 
example, magnetic susceptibility of molybdenum is equal to 1.05 10–4. 

– Ferromagnetic materials that, when subjected to a magnetic field of several 
hundred amperes per meter, may create a magnetization M(H) of the order of 
106 A/m. Moreover, in the absence of an external field, they may present a remanent 
magnetization. Considering their exceptional magnetic properties, these materials 
are understandably used in the field of conversion of electromagnetic energy. 

For industrial frequencies, with the exception of ferromagnetic materials, it is 
commonly accepted that the vacuum behavior law (see relation [1.8]) is perfectly 
suited for the modeling of the magnetic behavior law of material media. 

1.2.2.4. Ferromagnetic materials 

As shown in Figure 1.1, for ferromagnetic materials, magnetization describes a 
hysteresis loop when the magnetic field varies alternatively. In this figure, Mr 
represents the remanent magnetization, Μs represents the saturation magnetization 
and Hc represents the coercive field. It can be readily shown that the energy 
dissipated as losses, during a loop, is equal to the loop area. It can also be noted that 
magnetization M(H) varies with temperature, and beyond the Curie temperature the 
material exhibits paramagnetic behavior. Finally, ferromagnetic materials often have 
anisotropic magnetic properties, which means that their behavior varies according to 
the direction of the applied magnetic field. 

HHHB )1()( m0m0 χ+μ=χ+μ=



6     Finite Element Method to Model Electromagnetic Systems in Low Frequency 

 

Figure 1.1. M(H) characteristic of a ferromagnetic material 

Depending on the value of the coercive field intensity Hc, two families of 
magnetic materials can be identified:  

– Soft magnetic materials, for which Hc is below several hundred amperes per 
meter. They are mainly used for concentrating and driving the circulation of the 
magnetic field. The material then behaves as a “good magnetic conductor”. 

– Hard magnetic materials, for which the coercive field intensity Hc is very high. 
These materials are used as permanent magnets. 

1.2.2.4.1. Soft magnetic materials 

In order to represent soft ferromagnetic materials, it is possible, for certain 
applications, to ignore the anisotropy and also the hysteresis phenomenon. This new 
behavior law is then deduced from the M(H) characteristic, shown in Figure 1.1, by 
considering the anhysteretic curve (one-to-one curve experimentally measured 
according to a standard). In this case, magnetic flux density can be written as:  

 [1.24] 

or by introducing a nonlinear magnetic permeability µ(H) = µ0(1 + χm (H)):  

 [1.25] 

))(1())(())(( m0m00 HHHHHHMHB χ+μ=χ+μ=+μ=
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Finally, it is also possible to take into account only the linear part of the 
magnetic characteristic. This yields:  

 [1.26] 

1.2.2.4.2. Permanent magnets 

As for the hard magnetic materials, used as permanent magnets, they are of 
various types. For example, we can mention iron–nickel–aluminum–cobalt  
(Alnico) alloys, rare-earth-based alloys (samarium-cobalt (SmCo) and  
neodymium–iron–boron (Nd–Fe–B)) and ferrites.  

Figure 1.2(a) shows the useful characteristics (part of the hysteresis loop that is 
exploited when the material “operates” as a permanent magnet) of the materials 
commonly used as permanent magnets.  

This figure shows that except for the case of Alnico-type alloys, the useful 
characteristic of permanent magnets can be represented by a linear characteristic, as 
shown in Figure 1.2(b). This is:  

 [1.27] 

where µA represents the magnetic permeability of the permanent magnet (close to 
µ0) and Br the remanent flux density. 

 

Figure 1.2. a) Characteristics of the most common hard ferromagnetic  
materials used as permanent magnets; b) simplified representation  

HB μ=

rA BHB +μ=
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1.3. Interface between two media and boundary conditions 

Before studying the behavior of materials at the interface between two media 
with different properties, it is important to recall the definition of a vector field 
based on its normal and tangential components at a point on a surface. Considering a 
vector, denoted by u (see Figure 1.3), at a point M of a surface Γ, and n the normal 
vector to the surface at this point, it can be decomposed into its normal component 
un and tangential component ut as follows:  

 [1.28] 

where un = (n.u)n is the normal component, and ut = n ∧ (u ∧ n) is the tangential 
component (the operator “.” denotes the scalar product and “∧” denotes the vector 
product). 

NOTE.– For the sake of simplicity, when conditions are imposed on the tangential 
component, it is preferable to use the term u ∧ n. Indeed, it can be verified that if 
u ∧ n = 0, then ut = 0. Similarly, if two vectors u1 and u2 have equal tangential 
components, this is equivalent to having u1 ∧ n = u2 ∧ n. 

 

Figure 1.3. Definition of a vector field based  
on its normal and tangential components  

Having set these definitions, the next section describes how they are used to 
define the continuity conditions between two media and the boundary conditions. 

tn uuu +=
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1.3.1. Continuity conditions between two media 

The five already defined vector fields, E, H, B, D and J, have certain properties 
when passing from one medium to another (Ida 2020). These properties are derived 
from equations [1.1], [1.3], [1.4], [1.5] and [1.6]. 

1.3.1.1. Electric and magnetic fields 

It can be shown that if the curl of a field is defined, then the tangential 
component of this field is continuous at the interface between two media that may 
have different characteristics. Since the curl of the electric field is defined by 
equation [1.1], it can be deduced that:  

 [1.29] 

where Ekt (k ∈ {1,2}) represents the component of the electric field tangential to the 
interface. This result shows that at the interface between two media with different 
properties, the tangential component of the electric field is conserved.  

For the magnetic field, as defined by equation [1.5], similar to the case of the 
electric field, the following can be written: 

 [1.30] 

This relation shows that at the interface between two media the tangential 
component of the magnetic field is conserved. 

1.3.1.2. Electric displacement field, magnetic flux density and current density  

Likewise, it can be shown that if the divergence of a field is defined, then its 
normal component is continuous at the interface between two media with different 
physical properties.  

The divergence of the fields D, B and J is defined, and this property is then 
applied. For the electric displacement field, based on equation [1.4] and in the 
absence of surface charge density, the following expression can be written:  

 [1.31] 

where Dkn (k ∈ {1,2}) represents the normal component of the electric displacement 
field on the interface.  

 

t2t1 EE =

t2t1 HH =

n2n1 DD =
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Concerning the magnetic flux density, based on equation [1.3], the following 
expression can be written:  

 [1.32] 

where Bkn (k ∈ {1,2}) represents the normal component of the magnetic flux 
density. Therefore, at the interface between two media, the normal component of the 
magnetic flux density is conserved. 

As already noted for the electric displacement field and the magnetic flux 
density, equation [1.6] leads to the relation:  

 [1.33] 

therefore at the interface between two media the normal component of the current 
density is conserved. 

1.3.1.3. Refraction of field lines 

In order to alleviate the developments, this section considers a two-dimensional 
(2D) case, limited to the pair of fields composed of the magnetic field and the 
magnetic flux density {H,B}. The conclusions that will be drawn are, however, valid 
for the three-dimensional (3D) case and can be extended to the case of the {E,D} 
and {E,J} pairs that verify the same conservation conditions as the {H,B} pair. 

 

Figure 1.4. Normal and tangential components of fields B1, H1, B2 and H2 

As shown in Figure 1.4, let us consider an interface Γ between two magnetic 
materials denoted by 1 and 2. The behavior law of the materials, assumed to be  
 

n2n1 BB =

n2n1 JJ =
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isotropic and linear, is given by relation [1.26] with permeabilities µ1 and µ2. Under 
these conditions, the magnetic fields H1 and H2 are, respectively, collinear with 
magnetic flux densities B1 and B2. Finally (see Figure 1.4), the projection of the 
fields onto the two axes “n” and “t”, corresponding to the normal and tangential 
components, meets the properties expressed by [1.30] and [1.32].  

α1 and α2 are the angles made with the normal n directed from medium 2 to 
medium 1 by the two pairs of fields {H1,B1} and {H2,B2}, respectively.  

An elementary calculation, based on the continuity properties of the normal and 
tangential components [1.30] and [1.32] and on the behavior law [1.26], leads to the 
relation: 

 [1.34] 

where Kr represents a refractive index such that Kr = µ2 / µ1.  

Let us now consider the following case: if µ1→ ∝, then Kr →0, tgα2 ≈ 0 and 
α2 = 0. This implies that the pair {H1,B1} is normal to the surface and therefore 
Ht = 0. On the contrary, if µ1 → 0, then Kr → ∝, tgα2 → ∝ and α2 = π / 2. In this 
case, the pair {H1,B1} is tangential to the surface and the component Bn = 0. 

When considering the pairs {E1,D1} and {E2,D2} with the behavior law [1.19] or 
the pairs {E1,J1} and {E2,J2} with the behavior law [1.20], the same conclusions are 
reached. Under these conditions, the refractive index Kr is equal to ε2 / ε1 and σ2 / σ1, 
respectively. 

As an example, let us consider the case of a conductive material whose 
conductivity has a finite value σ2. If it is brought into contact with another 
conductive material, whose conductivity σ1 tends to infinity, then Kr → 0 and the 
tangential component of the electric field strength E and of the current density J at 
the interface is equal to zero. In this case, the interface can be considered a gate for 
the current density.  

On the contrary, if the conductive material, of conductivity σ2, is in contact with 
an insulating material, whose conductivity is σ1 = 0, then Kr → ∝ and the normal 
component (of E and J) to the interface between the two media is equal to zero. This 
interface will be considered a wall. 

These considerations will be very useful in the following section, particularly 
when boundary conditions imposed at the boundary of a domain are imposed. 

1r2 tgtg α=α K
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1.3.2. Boundary conditions 

For the study of electromagnetic systems, a well-posed formulation of the 
problem requires imposing spatial boundary conditions to the fields. For an infinite 
domain, these conditions are applied to infinity. In the case of numerical simulation, 
the domain is often limited to a part of the space. In this case, boundary conditions 
should be imposed at the boundaries of the domain. These boundary conditions may 
be derived either from symmetry conditions of the problem or from properties of the 
materials that are in contact with the boundary (see section 1.3.1). For example, if 
the boundary is in contact with a highly insulating material, then the normal 
component of the current density is imposed to zero. To have a physical meaning, 
these conditions always relate to the conservative (normal or tangential) component 
of the concerned field. Therefore, if a condition applies to the magnetic field, it 
concerns the tangential component. On the contrary, in the case of magnetic flux 
density, it relates to the normal component. 

However, in the context of problems evolving in time, a generally imposed 
condition is that the value of fields at the initial instant t = 0 is equal to zero.  

Taking into account the notations introduced after equation [1.28] for the normal 
and tangential components, the boundary conditions on the fields E, H, D, B and J 
can be written, for a large number of applications, as follows:  

 [1.35] 

 [1.36] 

 [1.37] 

 [1.38] 

 [1.39] 

These conditions, known as “homogeneous boundary conditions”, can be 
interpreted as follows:  

– Equation [1.35] indicates that the tangential component of the electric field is 
equal to zero on the boundary Γe and therefore the electric field E is normal to this 
surface. Using the expression introduced at the end of section 1.3.1.3, this boundary 
can be considered a gate for the field E. These are gate-type boundary conditions. 

0
e

=∧ ΓEn

0
h

=∧ ΓHn

0.
b

=ΓnB

0.
j

=ΓnJ

0.
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– Equation [1.36] leads to the same interpretations for the magnetic field intensity 
H on the boundary Γh. It can also be considered a gate for the magnetic field. 

– Equation [1.37] indicates that the normal component of the magnetic flux 
density is equal to zero on the boundary Γb. As already seen in section 1.3.1.3, this 
condition requires the boundary to behave as a wall for the magnetic flux density B. 
These are referred to as wall-type boundary conditions. 

– Equation [1.38] leads to the same interpretations for the current density, i.e. Γj 
behaves as a wall for the current density J. 

– Equation [1.39], similar to equations [1.37] and [1.38], shows that the 
boundary Γd behaves as a wall for the electric displacement field D. 

It can be shown that relations [1.1] and [1.35] imply equation [1.37]. Similarly, 
relations [1.5] and [1.36] imply equation [1.38]. On the contrary, the reverse is not 
true and depends on the topology of the domain (see Chapter 2). 

1.4. Integral forms: fundamental theorems 

The above-stated Maxwell’s equations provide local information on 
electromagnetic fields. The integral form of these equations leads to general 
theorems that are commonly used in electromagnetism. These theorems can be used 
to connect local quantities (vector fields) and global quantities such as the 
electromotive force “e”, the current density flux “I”, the magnetic flux “φ”, the 
magnetomotive force “fm” and the total charges “Q”. 

1.4.1. Faraday’s law 

Given a rigid loop Cs, the boundary of a surface denoted by S (see Figure 1.5), 
consider equation [1.1] that connects the electric field and the magnetic flux density. 
Integrating the equation over the surface S yields:  

. dS . dS
t

∂= −
∂ S S

BcurlE n n  [1.40] 

Using the Stokes theorem and inverting the operator differentiated with respect 
to time with the surface integral (which is possible, as the loop is assumed rigid), the 
following can be written:

 
 

 [1.41]  −= SC S
dS.

dt
d

. nBdlE
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Figure 1.5. Faraday’s law implementation example 

The left-hand side term of this equation corresponds to the electromotive force 
“e” induced in the loop, and the right-hand side term corresponds to the time 
derivative of the magnetic flux through the surface S (denoted by φ). This leads to 
Faraday’s law:

 
 

 [1.42] 

1.4.2. Ampère’s law 

As shown in Figure 1.6, consider a conductor carrying a current density J and a 
surface S bounded by a contour Cs. Based on equation [1.5], using the same approach 
as for Faraday’s law, the following can be written: 

. S . dS= S S
curlH nd J n  [1.43] 

Using the Stokes theorem, the term on the left-hand side is replaced by the 
circulation of the magnetic field along the contour Cs. The term on the right-hand 
side, which represents the flux of J, is therefore equal to the value of the electric 
current (denoted by “I”) flowing through the surface S. This relation leads to 
Ampère’s law, namely:

 
 

 [1.44] 

dt
d

e
φ

−=

I. =
sC dlH
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Figure 1.6. Illustration of Ampère’s law: conductor carrying a current  

1.4.3. Law of conservation of the magnetic flux 

Equation [1.3] provides information related to the behavior of the magnetic flux 
density, i.e. it is divergence free. In order to analyze this property, consider the case 
of the domain Ω, of boundary Γ = Γh1 ∪ Γb ∪ Γh2, defined in Figure 1.7. A magnetic 
flux density B flows through this domain. The boundary condition on the boundaries 
Γh1 and Γh2 is [1.36], and on the lateral boundary Γb it is [1.37]. This is known as the 
flux tube. 

 

Figure 1.7. Flux tube: law of conservation of the flux 

Calculating now the volume integral over the domain Ω of equation [1.3], we 
obtain:

 
 

 [1.45] 0ddiv =τ Ω B
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Applying to this equation Ostrogradski’s theorem, also known as the “divergence 
theorem”, we have:

 
 

 [1.46] 

Magnetic flux density is therefore a conservative flux vector field. This means 
that the magnetic flux flowing through a closed surface (in this case, the surface Γ of 
the domain Ω) is equal to zero. In the studied example, decomposing the boundary  
Γ (Γb, Γh1, Γh2), the following can be written:

 
 

 [1.47] 

Considering the boundary conditions on the lateral surface Γb (B.n = 0), it can be 
deduced that the incoming flux through Γh1 (see the orientation of the normal vectors 
in Figure 1.7) is naturally equal to the outgoing flux through Γh2.  

It is important to note that the divergence of the current density is also zero (see 
equation [1.6]). Under these conditions, it has the same properties as the magnetic 
flux density, i.e. it is a conservative flux vector field. This reflects the fact that 
electric current is conserved all along a conductor. 

1.4.4. Gauss’ law 

This section focuses on equation [1.4] that links the electric displacement field to 
the electric charge density ρ. To study the properties of this equation, consider the 
domain Ω of boundary Γe enclosing a charge density ρ (see Figure 1.8).  

 

Figure 1.8. Illustration of Gauss’ law  

0dS.ddiv  ΓΩ ==τ nBB

0dS.dS.dS.dS.
2h1hb

=++=   ΓΓΓ Γ nBnBnBnB
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Let us calculate, for equation [1.4], the volume integral over the domain Ω. This 
yields: 

 [1.48] 

Applying Ostrogradski’s theorem for the divergence operator leads to:
 
 

 [1.49] 

The term on the right-hand side corresponds to the total charges Q inside the 
domain, therefore:

 
 

 [1.50] 

As for the term on the left-hand side, it corresponds to the electric flux φe 
through the surface of the domain Ω. This reflects Gauss’ law, i.e. the electric flux 
through a closed surface is equal to the total charges Q enclosed by the volume 
defined by this surface. 

1.5. Various forms of Maxwell’s equations 

Depending on the given problem, in the context of low-frequency 
electromagnetism (see section 1.1), it is possible to simplify the initial model 
defined by equations [1.1], [1.3], [1.4] and [1.5]. Static and quasi-static problems are 
then identified. Concerning static problems, our focus is on studying the problems of 
electrostatics, electrokinetics and magnetostatics. As far as quasi-static problems are 
concerned, this book focuses only on magnetoquasistatics, commonly referred to as 
“magnetodynamics”. The following section studies these various forms and 
introduces, for each of them, the boundary conditions and the notion of source term.  

1.5.1. Electrostatics 

Electrostatics aims to study, within a given domain Ω, the distribution of the 
electric field and of the electric displacement field in the presence of static source 
terms. The study is conducted at electrostatic equilibrium; therefore, the problem to 
be addressed is stationary in time. As an example, Figure 1.9 shows a domain of 
permittivity ε0 inside of which there is a subdomain Ω1 of permittivity ε1. On the 
boundary, there are two types of boundary conditions, Γdk (see equation [1.39]) with 
k Î {1,2} and Γek (see equation [1.35]) with k Î {1,2}. It is important to recall that 

 ΩΩ τρ=τ dddivD

 ΩΓ τρ= ddS.
e

nD

QdS.
e

Γ =nD
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Γdk represents a wall for the electric displacement field and Γek is a gate for the 
electric field. The two gates, Γe1 and Γe2, are in contact with electrodes E1 and E2.  

For this example, the source term can be the circulation fs of the electric field 
strength E along an arbitrary path γ12 (see Figure 1.9) linking the two electrodes:

 
 

 [1.51] 

At the surface of the electrodes, located on the boundary of the domain Ω, the 
electric displacement field has the following property: 

 [1.52] 

where σs is the surface density of charges on the boundary with the electrode and n 
is the outgoing unit normal vector. The expression of the amount of charges Qσ on 
each electrode is:

 
 

 [1.53] 

In this case, Maxwell’s equations (see equations [1.1]–[1.4]) in electrostatics and 
in the absence of electric charge density within the domain lead to solving two 
equations: 

0=curlE  [1.54] 

 [1.55] 

 

Figure 1.9. Representation of an electrostatic problem 

γ=
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The solution to these equations aims to find a curl-free electric field [1.54] that 
verifies equation [1.55] via the dielectric behavior law [1.19] and also the boundary 
conditions on the boundary of the domain, defined in Figure 1.9. 

1.5.2. Electrokinetics 

Electrokinetics studies the distribution of the electric field and of the current 
density in a conductor in the presence of charges in motion, when the speed of these 
charges is constant.  

As an example, consider the set-up represented in Figure 1.10. The conductive 
domain Ω is composed of a main region of conductivity σ1 surrounding two 
subregions of conductivity σ2 and σ3. On the boundary of the domain, there are two 
wall-type boundaries for the current density (Γj1 and Γj2) and two other gate-type 
boundaries for the electric field Γe1 and Γe2. The boundary conditions on these 
boundaries are defined, respectively, by equations [1.38] and [1.35]. 

Two types of source terms can be applied on the boundaries Γe1 and Γe2: 

– the first is an electromotive force, denoted by “e”, which corresponds to the 
circulation of the electric field on a path γ12 (see Figure 1.10) inside the domain, 
linking the two surfaces Γe1 and Γe2, such that:

 
 

 [1.56] 

– the second consists of imposing the current density flux, denoted by I, to the 
surfaces Γe1 and Γe2. Its expression is:

 
 

 [1.57] 

where k Î {1,2}. 

In this context, Maxwell’s equations can be written as:  

0=curlE  [1.58] 

 [1.59] 

which can be completed by the electric behavior law [1.20] and the boundary 
condition [1.35] on the boundaries Γek and [1.38] on the boundaries Γjk.  

e.
12

=γ dlE

Γ ±=
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Figure 1.10. Representation of an electrokinetic problem 

1.5.3. Magnetostatics 

The magnetostatics problem aims to study the distribution of the magnetic field 
H and of the magnetic flux density B for source terms that are time invariant. In this 
context, the distribution of the current density, denoted by J0, is assumed to be 
known, unlike in the case of electrokinetics. 

For the study of magnetostatics, the general case is considered, as illustrated in 
Figure 1.11. Given a domain Ω of boundary Γ, such that: Γ = Γb1 ∪ Γb2 ∪ Γh1 ∪ Γh2. 
The boundaries Γbk (k ∈ {1,2}) are of wall type for the magnetic flux density (see 
equation [1.37]). On the contrary, Γh1 and Γh2 represent a gate for the magnetic flux 
density (see equation [1.36]).  

 

Figure 1.11. Representation of a magnetostatic problem 
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The studied domain, of permeability µ0, contains a ferromagnetic material of 
permeability µ [1.26] and source terms, hence a permanent magnet (denoted by 
“PM” in Figure 1.11) and a conductor carrying a current density J0 that is also 
referred to as inductor. Between the two gates, Γh1 and Γh2, it is possible to impose a 
magnetomotive force (or a magnetic flux through both of them). 

The following section details the various source terms with the associated 
equations: 

– the magnetomotive force fm that is imposed between the two boundaries Γh1 
and Γh2 is defined by:

 
 

 [1.60] 

where γ12 represents a path through the domain Ω linking the boundaries Γh1 to Γh2, 
as shown in Figure 1.11;  

– the magnetic flux, denoted by φ, can be imposed on the two surfaces Γh1 and 
Γh2 such that:  

 [1.61] 

where k Î {1,2}. When the two boundaries, Γh1 and Γh2, are separated by surfaces of 
type Γb, the incoming flux through Γh1 is equal to the outgoing flux through Γh2 (see 
equation [1.47] related to the law of conservation of the magnetic flux). The two 
source terms fm and φ are exclusive, in the sense that they cannot be imposed 
simultaneously; 

– an inductor, carrying a current density J0. In the case of multi-wire winding, by 
knowing the intensity I of the current through a conductor, the current density J0 is 
defined by:  

 [1.62] 

where Sc represents the cross-section of the wire conductors and n is the unit normal 
vector of current density whose direction corresponds to the geometrical orientation 
of the conductors; 

– a permanent magnet, characterized by its behavior law. A simplified 
characteristic is generally used, as shown in Figure 1.2(b), which can be written in 

γ=
12

.m dlHf

Γ φ±=
kh

dS.nB

nJ
c

0 S
I

=
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the form of equation [1.27]. It can be easily verified that the coercive field Hc has 
the following expression:  

 [1.63] 

Based on equations [1.27] and [1.63], the magnetic field strength H in the 
permanent magnet can be written as:

 
 

 [1.64] 

Based on these four source terms, the Maxwell’s equations to be solved in this 
context are: 

0=curlH J  [1.65] 

 [1.66] 

complemented by the magnetic behavior law [1.26] in the air and ferromagnetic 
material and equation [1.64] for the permanent magnet. These are completed by the 
homogeneous boundary conditions [1.36] and [1.37] for the magnetic field and the 
magnetic flux density, respectively, and also the source terms [1.60] or [1.61], as 
applicable. 

1.5.4. Magnetodynamics 

Magnetodynamics studies, in a conductive domain Ωc, the electromagnetic 
phenomena at industrial frequencies based on the quasi-static approximation. 

As an example of the studied set-up, let us consider the system shown in  
Figure 1.12. It is a domain Ω (of conductivity σ = 0) with a boundary Γb inside of 
which there is an inductor, carrying a current density J0 assumed to be known and 
varying in time, and a subdomain Ωc of boundary Γj where conductivity is assumed 
to be non-zero. In this example, the source term is an inductor, but this can be a 
permanent magnet in motion or any other device. In order to alleviate the 
developments for magnetodynamics, this section considers only the subdomain Ωc 
and its associated equations. Section 3.6 explains the coupling between the 
equations of magnetodynamics on Ωc and those of magnetostatics, defined on the 
subdomain Ω-Ωc. 

A

r
c μ

−=
BH

c
A

HBH −
μ

=

0div =B
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Figure 1.12. Example of studied domain in magnetodynamics  
with a source term J0 and a conductive subdomain Ωc 

In the domain Ωc, the equations to be solved, on the basis of Maxwell’s 
equations, are written as follows:

 
 

t
∂= −
∂
BcurlE  [1.67] 

=curlH J  [1.68] 

 [1.69] 

 [1.70] 

These equations are completed by the behavior laws [1.20] and [1.26], and also 
by the boundary conditions. For the example shown in Figure 1.12, the boundary 
conditions of wall type impose that, on the boundary of conductor Γj (domain Ωc), 
the normal component of the current density is equal to 0. The continuity property of 
the magnetic field H, at the boundary Γj between the equations of magnetostatics 
(domain Ω-Ωc) and magnetodynamics (domain Ωc), provides the other boundary 
conditions required for the correct formulation of the problem. If the conductive 
domain Ωc is in direct contact with the external boundary, boundary conditions must 
be imposed on the tangential component of the magnetic field intensity H or of the 
electric field strength E. 

0div =B

0div =J



 



2 

Function Spaces 

2.1. Introduction 

This chapter presents the function spaces that host the various electromagnetic 
fields introduced in Chapter 1. This presentation requires a review of some 
definitions. Next, the focus will be on kernels and images of vector operators (grad, 
curl, div) and on the extent to which the latter are strongly related. The 
dependencies of these relations on the topology of the studied domain will be 
explained. These properties will be very useful in Chapter 3 for building the 
potential-based formulations. 

2.2. Spaces of differential operators 

2.2.1. Definitions 

Consider an open and bounded domain Ω in ℜ3, its boundary being denoted by 
Γ. Let L2(Ω) be the space of square integrable scalar functions over the domain Ω. 
The scalar product of two functions u and v from L2(Ω) is given by: 

 [2.1] 

Similarly, consider L2(Ω) the space of square integrable vector functions over 
the domain Ω. The scalar product of two fields u and v from L2(Ω) is written as: 

 [2.2] 

 

( ) )(Lv,uu v dv,u 2 Ω∈∀τ= ΩΩ

( ) )(, d., 2 Ω∈∀τ= ΩΩ Lvuvuvu
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Two elements u and v ∈ L2(Ω) or u and v ∈ L2(Ω) are orthogonal if their scalar 
product is equal to zero or respectively: 

 [2.3] 

 [2.4] 

In physics, the spaces L2(Ω) and L2(Ω) can be interpreted as finite energy scalar 
and vector fields. 

2.2.2. Function spaces of grad, curl, div 

As already noted in section 1.1, Maxwell’s equations are defined using curl and 
divergence vector operators and also, as shown in what follows, the gradient 
operator. The function spaces of these operators, i.e. the set of fields to which the 
operator can be applied, are subspaces of L2(Ω) and L2(Ω), hence: 

 [2.5] 

{ }2 2H( , ) ( ); ( )Ω = ∈ Ω ∈ Ωcurl u L curlu L  [2.6] 

 [2.7] 

If homogeneous boundary conditions are introduced on the boundary Γ of the 
domain, three new subspaces can be defined as follows: 

 [2.8] 

{ }0H ( , ) H( , ); 0)ΓΩ = ∈ Ω ∧ =curl u curl u n  [2.9] 

 [2.10] 

It is important to recall that in these expressions n represents a unit vector 
normal to the boundary Γ of Ω, outwardly directed. 

 

 

( ) 0v,u =Ω

( ) 0, =Ωvu

{ })(u);(Lu),(H 22 Ω∈Ω∈=Ω Lgradgrad

{ })(Ldiv);(),div(H 22 Ω∈Ω∈=Ω uLu

{ }0u;),(Hu),(H0 =Ω∈=Ω Γgradgrad

{ }0.;),div(H),div(H0 =Ω∈=Ω Γnuu
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NOTE.– It can be noted that, for the space of definition associated with a curl or 
divergence operator, boundary conditions are applied, respectively, to the tangential  
or normal component of the field. This is fully consistent with the continuity 
properties of the fields, related to the curl or divergence operator, described in 
section 1.3.1. As for the gradient operator, since it is applied to a scalar function, the 
condition is obviously related to the value of the function. 

2.2.3. Kernel of vector operators 

The subspaces defined in section 2.2.2 can be associated with the kernel of 
vector operators, such that: 

 [2.11] 

}{ker( ) H ( , ); 0 H( 0, )= ∈ Ω = = Ωcurl u curl curlu curl  [2.12] 

 [2.13] 

The kernel of an operator (grad, curl or div) contains the set of functions for 
which this operator is equal to zero. Considering homogeneous boundary conditions, 
new subspaces of the kernels defined in [2.11], [2.12] and [2.13] can be defined: 

 [2.14] 

}{0H ( 0, ) H ( , ); 0, 0ΓΩ = ∈ Ω ∧ = =curl u curl u n curlu  [2.15] 

 [2.16] 

2.2.4. Image spaces of operators  

Furthermore, images of the gradient, curl and divergence can be introduced, 
denoted, respectively, by gradH(Ω), curlH(Ω), divH(Ω). For example, the subspace 
gradH(Ω) contains the fields v of L2(Ω) such that there is u, belonging to 
H(grad, Ω), with v = gradu. These images can be completed by taking into account 
homogeneous boundary conditions on the boundary, which are gradH0(Ω), 
curlH0(Ω), divH0(Ω). For example, gradH0(Ω) is the space containing the fields v 
of gradH(Ω), such that u = 0 on the boundary Γ of Ω.  

}{ ),0(H0u;),(Hu)ker( Ω==Ω∈= gradgradgradgrad

}{ ),0div(H0div);,div(H)divker( Ω==Ω∈= uu

}{ 0u,0u;),(Hu),0(H0 ==Ω∈=Ω Γ gradgradgrad

}{ 0div,0.);,div(H),0div(H0 ==Ω∈=Ω Γ unuu
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It should be noted that there is a fundamental property, on the one hand, between 
the image of the gradient and the kernel of the curl, and, on the other hand, between 
the image of the curl and the kernel of the divergence: 

H( ) H( 0, )Ω ⊂ Ωgrad curl  [2.17] 

H( ) H(div0, )Ω ⊂ Ωcurl  [2.18] 

These two properties recall, on the one hand, that the curl of a vector field 
resulting from a gradient is zero (curl(grad) = 0) and, on the other hand, that the 
divergence of a curl is also zero (div(curl) = 0). However, the reverse is not true, as 
will be seen when considering the topology of the studied domains in the following 
sections (see sections 2.3 and 2.4). As an example, there may be a field w whose 
curl is zero (curl w = 0), but that does not derive from a gradient, which means there 
is no field u belonging to grad H(Ω), so that w = gradu. 

If we now consider the boundary conditions, the image of the gradient operator 
gradH0(Ω) obviously belongs to H0(curl0, Ω). The same is true for the image of the 
curl operator curlH0(Ω) that belongs to H0(div0, Ω). This is expressed by the 
following relations: 

0 0H ( ) H ( 0, )Ω ⊂ Ωgrad curl  [2.19] 

0 0H ( ) H (div0, )Ω ⊂ Ωcurl  [2.20] 

It is easy to verify these two properties enable the boundary conditions to be 
taken into account. For example, consider a function v Î gradH0(Ω). Then, there is 
a scalar function u such that v = gradu with the boundary condition on Γ: u|Γ = 0. 
The boundary is therefore an equipotential surface for the function u. The vector 
gradu is then normal to Γ and therefore the tangential component of gradu is zero, 
which means n ∧ gradu = n ∧ v = 0. The vector v thus meets the right boundary 
conditions in order to belong to H0 (curl0, Ω). 

In this context, restrictive conditions should be introduced on the topology of the 
domain or complementary spaces, in order to transform the inclusions of equations 
[2.17], [2.18], [2.19] and [2.20] into equality. This will be addressed in section 2.4. 
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2.3. Studied topologies 

This section focuses on the definition of various domain topologies: connected or 
disconnected, simply connected and not simply connected, and, finally, contractible 
and non-contractible.  

2.3.1. Connected and disconnected domain 

A domain is connected if, for any two points of the domain, there is a continuous 
path connecting them, fully within the domain. As an illustration, the domain in 
Figure 2.1(a) is connected; indeed, for all arbitrary points P1 and P2 of the domain, 
there is a path γ, belonging to the domain, that connects them. On the other hand, the 
domain in Figure 2.1(b) is disconnected since, to go from P1 to P2, regardless of the 
path considered, the latter is not fully included in the studied domain. 

 
                                    a)                          b) 

Figure 2.1. a) Example of a connected domain; b) disconnected domain  

2.3.2. Simply connected and not simply connected domain 

By definition, a domain is simply connected if a closed path, arbitrarily chosen, 
can be contracted to a point by continuous transformation. If this is not the case, the 
domain is not simply connected.  

As an illustration, it can be seen that the domain in Figure 2.2(a) is simply 
connected. Indeed, any closed contour γ can be contracted to a point by successive 
continuous transformations. On the contrary, the domain in Figure 2.2(b) is not 
simply connected as, given the presence of a hole, it is not possible to contract by 
successive deformations a contour γ to a point while remaining inside the domain. A 
torus is not a simply connected domain. However, a sphere, having a cavity inside, 
is a simply connected domain. Indeed, any arbitrary contour surrounding the cavity, 
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belonging to the domain, can be contracted to a point by “sliding”, if required, on 
the surface of the cavity. 

  
                               a)                          b) 

Figure 2.2. a) Simply connected domain; b) not simply connected domain  

2.3.3. Contractible and non-contractible domain 

A domain is “contractible” if a contour or an arbitrary closed surface, taken 
inside the domain, can be contracted to a point by successive transformations. A 
further definition can be that a domain is contractible if it is simply connected with a 
connected boundary, in the sense that two arbitrary points of the boundary can be 
connected by a path belonging to this boundary.  

 
                                    a)                             b) 

Figure 2.3. a) Contractible domain; b) non-contractible domain  

The domain Ω represented in Figure 2.3(a) is contractible. However, the 
presence of the cavity in Figure 2.3(b) makes the domain non-contractible. Indeed, if 
we consider a closed surface surrounding the cavity, it is not possible, by continuous 
transformation, to contract it to a point within the domain. The aforementioned 
surface cannot be reduced more than the surface of the cavity, otherwise it will be 
out of the domain. It can be noted, on the same Figure 2.3(b), that the domain is 
simply connected (any closed contour can be contracted to a point by continuous 
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transformation within the domain), but with disconnected boundaries. Indeed, the 
union of Γ0 and Γ1 forms a disconnected surface.  

A sphere is typically contractible. On the contrary, a hollow sphere, though 
simply connected, is not contractible. 

2.3.4. Properties of function spaces 

Based on the topological notions introduced, inclusions [2.17] and [2.18] can be 
rewritten as follows: 

– For a simply connected domain, [2.17] is transformed into equality: 

H( ) H( 0, )Ω = Ωgrad curl  [2.21] 

In this case, if the curl of a vector v is zero, there is a function p such that 
v = gradp. 

– For a domain with a connected boundary, equation [2.18] then becomes: 

H( ) H(div0, )Ω = Ωcurl  [2.22] 

If a function v is such that divv = 0, then there is a function u such that 
curlu = v. 

– If the domain is contractible (simply connected and with a connected 
boundary), then the two properties [2.21] and [2.22] are simultaneously met. 

2.4. Relations between vector subspaces 

The focus in what follows is on four images: gradH(Ω), curlH(Ω), gradH0(Ω) 
and curlH0(Ω) and also on four subspaces corresponding to the kernel of the curl 
and divergence: H(curl0, Ω), H(div0, Ω), H0(curl0, Ω) and H0(div0, Ω). Taking into 
account the topology of the domain Ω, the properties of these eight function 
subspaces and their possible interconnections are analyzed.  

2.4.1. Orthogonality of function spaces 

In order to analyze the properties of function spaces, a first step is to study the 
orthogonality of four image spaces.  
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Given the image of the gradient, gradH(Ω), the aim is to define the space that is 
orthogonal to it, which is denoted at first by (gradH(Ω))⊥. Consider u ∈ H(grad, Ω) 
and v ∈ (gradH(Ω))⊥. Using the formulas on vector operators, the following relation 
can be written: 

 [2.23] 

where Γ represents the boundary of the domain Ω. The subspace (gradH(Ω))⊥ is 
orthogonal to gradH(Ω) if relation [2.23] is equal to zero ∀u ∈ H(grad, Ω). For 
this, v must meet the properties: 

div 0 and 0Γ= =v v.n  [2.24] 

or, considering [2.16], v ∈ H0(div0, Ω). Moreover, it can be shown that the two 
subspaces gradH(Ω) and H0(div0, Ω) are supplementary in L2(Ω) (Bossavit 1988). 
Then: 

 [2.25] 

According to this relation, any vector function w ∈ L²(Ω) can be decomposed 
into two functions v and u belonging, respectively, to H0(div0, Ω) and gradH(Ω). 

Consider now the image of the gradient considering the boundary conditions: 
gradH0(Ω). According to the above-mentioned reasoning, its associated orthogonal 
space is: H(div0, Ω). Therefore, it can be deduced that: 

 [2.26] 

Let us consider the image of the curl curlH(Ω) and find the subspace orthogonal 
to it and denoted by (curlH(Ω))⊥. The approach is similar to the one mentioned 
above. Consider u ∈ (curlH(Ω))⊥ and v ∈ H(curl, Ω). In order to be orthogonal, the 
two subspaces curlH(Ω) and (curlH(Ω))⊥) must meet the following property: 

.  d .  d ( ). dS 0τ τ
Ω Ω Γ

= − ∧ =  u curlv curlu v n u v  [2.27] 

u verifies equation [2.27] with the condition ∀v ∈ H(curl, Ω) by meeting the 
conditions: 

0 and 0Γ= ∧ =curlu u n  [2.28] 

 ΓΩΩ +τ−=τ dS.u dudiv d.u nvvvgrad

),0div(H)(H)( 0
2 Ω⊕Ω=Ω gradL

),0div(H)(H)( 0
2 Ω⊕Ω=Ω gradL
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Given [2.15], it can then be shown that u ∈ H0(curl0, Ω). The two spaces are 
also supplementary (Bossavit 1988), therefore: 

2
0( ) H( ) H ( 0, )Ω = Ω ⊕ ΩL curl curl  [2.29] 

Considering now v ∈ curl(H0, Ω), then, in order to meet equation [2.27], 
u ∈ H(curl0, Ω), the following can be written: 

2
0( ) H ( ) H( 0, )Ω = Ω ⊕ ΩL curl curl  [2.30] 

2.4.2. Analysis of function subspaces  

Making use of the previous properties, this section describes how the space 
L2(Ω) of vector functions can be decomposed, by means of the four images: 
gradH(Ω), curlH(Ω), gradH0(Ω) and curlH0(Ω) and four subspaces corresponding 
to the kernel of the curl and divergence: H(curl0, Ω), H(div0, Ω), H0(curl0, Ω) and 
H0(div0, Ω). As already seen in section 2.4.1, these eight subspaces are linked by 
properties [2.25], [2.26], [2.29] and [2.30]. In addition to these properties, there are 
the inclusion relations [2.17], [2.18], [2.19] and [2.20]. Depending on the topology 
of the studied domains, inclusions [2.17] and [2.18] can be substituted, respectively, 
by relations [2.21] and [2.22]. Our analysis will be conducted for domains with 
various topological properties.  

As a first step, consider the decomposition of space L2(Ω) without a priori on the 
topology of the domain Ω. The properties [2.25], [2.26], [2.29] and [2.30], 
associated with inclusions [2.17], [2.18], [2.19] and [2.20], allow for the 
decomposition of space L2(Ω) into five arbitrarily chosen equal segments, as shown 
in Figure 2.4. 

The fact that spaces are supplementary is graphically shown in Figure 2.4, as 
their association “covers” the domain L2(Ω). As can be seen, the subspaces 
gradH(Ω) and H0(div0, Ω) are a good illustration of equation [2.25]. The same 
applies to subspaces gradH0(Ω) and H(div0, Ω) for equation [2.26]. On the 
contrary, concerning subspaces curlH(Ω) and H0(curl0, Ω), they correspond to 
equation [2.29], and equation [2.30] is illustrated by the positioning of subspaces 
curlH0(Ω) and H(curl0, Ω). Relations [2.17], [2.18], [2.19] and [2.20] can be 
readily identified in Figure 2.4.  

The following four topologies are considered for the domain Ω: contractible, 
simply connected but not contractible, not simply connected with a connected 
boundary and the general case.  
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Figure 2.4. Decomposition of space L2(Ω)  
without a priori on the topology of domain Ω  

2.4.2.1. Contractible domain  

For a contractible domain, i.e. simply connected and with a connected boundary, 
the properties of function spaces (see equations [2.25], [2.26], [2.29] and [2.30]) are 
preserved. On the contrary, the topology of the domain allows for the use of equalities 
[2.21] and [2.22] and, as shown in Figure 2.5, the space L2(Ω) is divided into three 
segments instead of the initial five (see Figure 2.4). Using various properties and 
equalities, the decomposition L2(Ω) can be achieved, as shown in Figure 2.5. 

In order to illustrate the diagram in Figure 2.5, consider a field w ∈ H0(div0, Ω). 
The equality H0(div0, Ω) = curlH0(Ω) is applicable, i.e. w can be expressed from a 
field of vectors v such that: 

0H ( , )= ∀ ∈ Ωw curlv v curl  [2.31] 

where v represents a field known as “vector potential”. In Chapter 3, the importance 
of this notion of potential when applied to Maxwell’s equations will be highlighted. 

Consider now the field of vectors f ∈ H(curl0, Ω). Again using the diagram in 
Figure 2.5 and the definition of the gradient image space, the following can be 
written: 

 [2.32] 

In this expression, it can be seen that the field f can be similarly represented by a 
scalar potential p. 

),(Hpp Ω∈∀= gradgradf
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Figure 2.5. Decomposition of space L2(Ω) for a contractible domain Ω  
(simply connected domain with a connected boundary) 

2.4.2.2. Not simply connected domain with a connected boundary 

For a not simply connected domain with a connected boundary, the four 
properties introduced in section 2.4.1 (see equations [2.25], [2.26], [2.29] and 
[2.30]) can be applied. Given the topological characteristics of the studied domain 
compared to the case of section 2.4.2.1, relation [2.22] is replaced by inclusion 
[2.18]. Therefore, the diagram in Figure 2.5 is modified and its form is presented in 
Figure 2.6.  

 

Figure 2.6. Decomposition of space L2(Ω) for a not simply  
connected domain Ω with connected boundary 
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This modification leads to a new subspace, denoted by H 1(Ω), with zero curl 
vector fields that do not derive from a gradient. This subspace is orthogonal to 
gradH(Ω). It is therefore in H0(div0, Ω) and since it is in the kernel of the curl: 

1
0( ) H( 0, ) H (div0, )Ω = Ω ∩ ΩcurlH  [2.33] 

Based on the definitions of subspaces H(curl0, Ω) and H0(div0, Ω), the function 
space H 1(Ω) (Bossavit 1988) can be defined as follows: 

{ }1 2 ( ), 0, div 0, . 0Γ= ∈ Ω = = =u L curlu u u nH  [2.34] 

The dimension of this space is finite and equal to the number “k ” of holes within 
the domain. A possible interpretation is to consider the subspace H 1(Ω) as allowing 
for the introduction of additional functions to the space H(curl0, Ω) in order to 
“make” the domain Ω a simply connected domain, with the relation: 

1H( 0, ) H( ) ( )Ω = Ω ⊕ Ωcurl grad H  [2.35] 

In order to analyze the influence of the domain topology, the two cases presented 
in section 2.4.2.1 are studied. There is no change for the vector field 
w ∈ H0(div0, Ω), and it can be expressed using the curl of a vector field v, as 
expressed by [2.31]. 

For a vector field f ∈ H(curl0, Ω), Figure 2.6 shows that it can be decomposed 
as follows: 

 [2.36] 

In this expression, Ki is a constant and hi are k basis functions of H 1(Ω). As for 
the field p, it is defined as follows: 

 [2.37] 

where p is a scalar potential. 

2.4.2.3. Simply connected domain with a disconnected boundary 

Consider a simply connected domain with a disconnected boundary. Compared 
to the case of the contractible domain, instead of relation [2.22], inclusion relation 


=

+=
k

1i
iiKp hgradf

),(Hp Ω∈ grad
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[2.20] is applicable. As shown in Figure 2.7, this inclusion leads to a new function 
space denoted by H 2(Ω). Then: 

2
0( ) H ( 0, ) H(div0, )Ω = Ω ∩ ΩcurlH  [2.38] 

 

Figure 2.7. Decomposition of space L2(Ω) for a not simply  
connected domain Ω with disconnected boundary 

The properties of this subspace are deduced (see Figure 2.7) from the 
intersection of H0(curl0, Ω) and H(div0, Ω). They are therefore written as (Bossavit 
1988): 

{ }2 2 ( ) , 0, div 0, 0Γ= ∈ Ω = = ∧ =u L curlu u u nH  [2.39] 

The dimension of this subspace is finite and equal to the number of cavities of 
the domain. Similarly to the simply connected case, introducing this space makes it 
possible to define the following property: 

2 )H(div0, ) H( ) (Ω = Ω ⊕ Ωcurl H
 [2.40] 

This relation is similar to equation [2.22], which is applicable to a contractible 
domain. In other terms, the boundary Γ of the domain is composed of l  
disconnected closed surfaces Γj, with j = 1, …, l.  
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Let us consider the two fields introduced in section 2.4.2.1. For the field 
w ∈ H (div0, Ω), Figure 2.7 and equation [2.40] show that it can be decomposed as 
follows: 

j j
j 1

K
ι

=

= +w curlv h  [2.41] 

where Kj is a constant and hj are l basis functions of H 2(Ω) and: 

H( , )∈ Ωv curl  [2.42] 

where v represents a vector potential. Considering the vector field f ∈ H(curl0, Ω), 
Figure 2.7 clearly shows that it can be written using expression [2.32]. 

2.4.2.4. General case: not simply connected domain with a disconnected 
boundary 

In the general case, space L2(Ω) is decomposed using properties [2.25], [2.26], 
[2.29] and [2.30]. To take into account the topology of the studied domain, 
inclusions [2.17], [2.18], [2.19] and [2.20] can be used. Based on Figure 2.4, the 
function subspaces are decomposed as shown in Figure 2.8.  

This general case features the two already defined subspaces H 1(Ω) and H 2(Ω). 

 

Figure 2.8. Decomposition of space L2(Ω) for a not simply  
connected domain with disconnected boundary 
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Considering as an example the two fields introduced in section 2.4.2.1, the 
vector field w ∈ H0(div0, Ω) is decomposed according to relation [2.41]. Similarly, 
a vector field f ∈ H(curl0, Ω) is decomposed by means of relations [2.36].  

2.4.3. Organization of function spaces 

Based on the properties of function spaces described in the previous sections, it 
is possible to associate them into a sequence using vector operators. Consider the 
general case of a not simply connected domain with a disconnected boundary. In this 
context, a four-level graphical representation is built, linking the function spaces 
introduced in section 2.2 and the grad, curl and div operators. This representation 
features the properties mentioned in section 2.2.4, and particularly the following: 

2

2

H( , ) L H( ) H( , ),

H( ) H(div ) divH( ) L ( )

Ω ⊂ Ω ⊂ Ω

Ω ⊂ Ω Ω ⊂ Ω

grad , grad curl
curl ,

 [2.43] 

Consider the scalar function space H(grad, Ω) ⊂ L2(Ω), corresponding to the 
first line in Figure 2.9. We have highlighted the kernel of the gradient operator 
H(grad0, Ω). If the gradient operator is applied to the first line, the second line, 
representing H(curl, Ω), shows that the image of the gradient is included in the 
kernel of the curl operator. On the contrary, the vector function space H 1(Ω) 
included in the kernel of the curl operator does not belong to the gradient image 
subspace, as noted in section 2.4.2.2. Applying the curl operator to the second line in 
Figure 2.9, the third line corresponding to H(div, Ω) shows that its image is included 
in the kernel of the divergence operator. In this case, this graphical representation 
shows that the subspace H 2(Ω), which is in the kernel of the divergence operator, 
does not derive from the curl of a function from H(curl, Ω).  

 

Figure 2.9. Not simply connected domain with disconnected boundary:  
graphical representation of function spaces of grad, curl and div operators 
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This analysis leads to a series of function spaces, as shown in Figure 2.10.  

 

Figure 2.10. Series of function spaces of grad, curl and div operators  

Consider now a contractible domain (simply connected domain with a connected 
boundary). Compared to the case of the study presented in Figure 2.10, the 
representation is simpler as the dimension of subspaces H 1 and H 2 is zero. As 
Figure 2.11 shows, the first line is unchanged. As for the second line, it can be noted 
that the image of the gradient operator is equal to the kernel of the curl operator, 
according to equation [2.21]. Similarly, for the third line, the image of the curl 
operator is equal to the kernel of the divergence operator (see equation [2.22]). 

 

Figure 2.11. Contractible domain: graphical representation  
of function spaces of grad, curl and div operators 

2.5. Vector fields defined by a vector operator 

It turns out that there are an infinite number of fields that verify a partial 
differential equation defined by a grad, curl or div vector operator. As an example, 
consider a known scalar field f, such that divu = f, there are an infinite number of 
vectors u verifying this equation. This section reviews the vector fields defined by a 
gradient, curl or divergence operator and explores how uniqueness can be imposed 
by adding the so-called “gauge” condition. 
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2.5.1. Infinite number of solutions  

In the case of Maxwell’s equations, as noted in section 1.1, vector fields are 
defined by means of vector operators. However, via behavior laws, the various fields 
are connected in twos. If the objective is to find a solution that verifies only one 
equation and the associated boundary conditions, this is referred to as an admissible 
field. It is a solution provided it verifies a second equation via the behavior law and 
also the other boundary conditions. For example, this is the case with the electric 
field and the current density in electrokinetics (see section 1.5.2).  

On the contrary, as will be seen in Chapter 3, it is possible to search for a vector 
field or a scalar uniquely defined by a vector operator. In this case, there are an 
infinite number of solutions.  

For the sake of simplicity, the following study refers to the case of a contractible 
domain Ω. Consider a field u belonging to gradH(Ω). By definition, there is at least 
one scalar field, denoted by p1, which verifies the following relation: 

 [2.44] 

Let us now consider a scalar field p2 such that p2 = p1 + K, where K represents a 
constant. It can be readily verified that gradp2 = u. Therefore, there are an infinite 
number of scalar fields p verifying [2.44]. Similarly, consider a field w belonging to 
curlH(Ω), there is at least one function v1 such that: 

1=w curlv  [2.45] 

Let us now introduce a function v2 built as the sum of field v1 and a second field 
belonging to the space gradH(Ω). As shown by equation [2.21], this second field 
can be expressed as the gradient of a scalar α. Then: 

 [2.46] 

It is easy to show that v1 and v2 have the same curl w. Therefore, there are an 
infinite number of fields v verifying equation [2.45]. 

Finally, given a field of vectors w1 defined using the divergence operator through 
the relation: 

 [2.47] 

 

1pgradu =

α+= gradvv 12

1divw=q



42     Finite Element Method to Model Electromagnetic Systems in Low Frequency 

It is easy to show that any function w2 Î H(div, Ω), which is equal to the sum of 
w1 and a function deriving from a curl of a function v, such that: 

2 1= +w w curlv  [2.48] 

is also a solution to equation [2.47]. Under these conditions, for equation [2.47], 
there are also an infinite number of solutions. 

As a conclusion, it is important to note that for a function f (or p) belonging to 
images gradH(Ω), curlH(Ω) and divH(Ω), there are an infinite number of functions 
u (or u) that make it possible to write, respectively, f = gradu, f = curlu and 
p = divu. Imposing the uniqueness of the solution requires an additional condition 
referred to as the “gauge condition”. 

2.5.2. Gauge conditions 

As noted in section 2.4.3, depending on the properties of fields, it is possible to 
introduce a scalar or vector potential. These potentials, defined by a vector operator, 
are not physical quantities but mathematical entities. Moreover, as noted in  
section 2.5.1, they are not unique. To have a unique solution it is necessary to 
impose an additional condition, which is referred to as the “gauge condition”. 

This section focuses on how to obtain the uniqueness of a field defined by the 
gradient, curl or divergence. 

2.5.2.1. Gradient operator 

As noted in section 2.5.1, if p1 is the solution to equation u = gradp1 with u a 
known field, then p2 = p1 + K is also a solution. For this solution to be unique, it is 
then sufficient to set a value of the solution p(x) at a given point “x0” of the domain: 

 [2.49] 

In this case, as the potentials p1 and p2 must verify the constraint 
p1(x0) = p2(x0) = p0, K = 0 is automatically imposed. This reflects the uniqueness of 
the solution. 

2.5.2.2. Curl operator 

As already noted, there are an infinite number of functions v such that curlv = w, 
with w being a known vector field. Indeed, if v1 is a solution, then any field 
v1 = v2 + gradα is also a solution (see equation [2.46]). The literature proposes 

00 p)p( =x
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several gauge conditions (Stratton 1941; Ida 2020), but one of the most widely 
known is the Coulomb gauge: 

 [2.50] 

In the numerical simulation, another gauge is often used to set the value of 
potential α (see equation [2.46]). This gauge consists of imposing (Albanese and 
Rubinacci 1990): 

 [2.51] 

where η is an arbitrary vector field whose field lines do not close.  

Consider the case of the path γ, defined in Figure 2.12, and let us calculate the 
circulation of potentials v1 and v2 introduced in equation [2.46] that verify [2.51]. 
Then: 

 [2.52] 

Consider the path γ to be a field line of the vector η, where the term dl is 
collinear to η along γ. In fact, the scalar products v1.dl and v2.dl are zero (see 
equation [2.51]). It can therefore be verified, using equation [2.52], that αQ and αP 
are equal.  

This property is applicable to any pair of points P and Q of the curve γ and along 
all the field lines of the vector η in the studied domain. This leads to setting the 
scalar potential α at a constant value. With the gradient of α being zero, by means of 
equation [2.46], it can be found that v1 and v2 are equal, and therefore the vector 
potential is unique. 

 

Figure 2.12. Example of path γ for the gauge v.η = 0 

0div =v

0. =ηv

 α−α+= Q
P PQ1

Q
P 2 .. dlvdlv
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2.5.2.3. Divergence operator 

If a field w1 is a solution to the equation divw = q, then the field w2 = w1 + curlv 
is also a solution. A possible gauge condition is to impose the value of the curl of w, 
for example curlw = 0. Boundary conditions on the boundary of the domain must 
also be imposed on w. 

2.6. Structure of function spaces 

This section explores the link of the sequence of function spaces depending on 
vector operators and boundary conditions. To alleviate the developments, a 
contractible domain Ω is considered, with a boundary Γ composed of two parts Γn 
and Γm with homogeneous boundary conditions. 

2.6.1. Adjoint operators 

Assume that the boundary Γ of the domain Ω is composed of two complementary 
boundaries Γn and Γm. Consider the function subspaces of the gradient, curl and 
divergence operators (see equations [2.8], [2.9] and [2.10]) that are rewritten 
considering the boundary conditions. The following subspaces can be defined: 

 [2.53] 

{ }k k
H ( , ) H( , ); 0)Γ ΓΩ = ∈ Ω ∧ =curl u curl u n  [2.54] 

 [2.55] 

where k = n or m depending on the considered boundary. 

In what follows, we again consider the definitions provided for the scalar product 
over the domain Ω and the notations introduced in relations [2.1] and [2.2]. Consider 
a vector operator L that can be the gradient, curl or divergence. The aim is to find its 
adjoint operator, denoted by L*, which by definition satisfies: 

 [2.56] 

Given a function u belonging to space DΩ, let us denote by D*Ω  the space of 
functions v adjoint to u. For a given vector operator and its associated function 
space, the objective is to find the adjoint vector operator and also its associated 
function space. 

{ }0u;),(Hu),(H
kk

=Ω∈=Ω ΓΓ gradgrad

{ }0.;),div(H),div(H
kk

=Ω∈=Ω ΓΓ nuu

ΩΩ = )v*,u()v,u( LL
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2.6.1.1. Adjoint operator of the gradient 

Consider a scalar function u Î HΓn(grad, Ω) defined over a domain Ω of 
boundary Γ with Γ = Γn∪Γm. The aim is to find, for a vector function v, the operator 
L* and the adjoint function space denoted at first by (H(grad, Ω))*. Using equation 
[2.23], the following can be written: 

 [2.57] 

It can be noted that this equation is equivalent to [2.56] if the surface integral on 
the right-hand side is equal to zero. As u Î HΓn(grad, Ω) and therefore u|Γn = 0, this 
integral over the boundary Γ is zero provided that: 

 [2.58] 

Under these conditions, the following can be written: 

 [2.59] 

which leads to: 

m
* div and * H (div, )Ω Γ= − = Ω   [2.60] 

2.6.1.2. Adjoint operator of the curl 

A similar reasoning as for the gradient is applied, but using relation [2.27] and a 
vector field u Î HΓn(curl, Ω). The following relations are obtained for the operator 
L* and the associated function space D*: 

m
* and * H ( , )Ω Γ= = Ωcurl curl   [2.61] 

2.6.1.3. Adjoint operator of the divergence 

The case of the divergence uses relation [2.23] and a vector field 
u Î HΓn(div, Ω). For the operator L* and the associated function space D*, the 
following expressions are found: 

m
* and * H ( , )Ω Γ= − = Ωgrad grad   [2.62] 

2.6.1.4. Synthesis of adjoint operators and associated function spaces 

Table 2.1 summarizes, for each vector operator, the domain of definition D, and 
also the associated function space D* and the adjoint operator L*. 

 ΓΩΩ =τ+τ dS.u dudiv d.u nvvvgrad

0.
m

=Γnv

 ΩΩ τ−=τ  dudiv d.u vvgrad
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Vector operator L Function space D Function space D* Adjoint operator L* 

grad   – div 

curl n
H ( , )Γ Ωcurl  

m
( , )HΓ Ωcurl  curl 

div   – grad 

grad   – div 

curl m
H ( , )Γ Ωcurl  

n
H ( , )Γ Ωcurl  curl 

div   – grad 

Table 2.1. Synthesis of function spaces of vector operators and adjoint operators 

2.6.2. Tonti diagram 

Consider the two sequences of function spaces shown in Figure 2.10, but 
displayed vertically and differing by their boundary conditions (see Figure 2.13). 
For the sequence on the left, the conditions relate to the boundary Γn and for the 
sequence on the right to the boundary Γm. The adjoint operators as well as the 
corresponding function spaces are also displayed vertically, taking into account the 
constraints on the boundary conditions. The first structure of the Tonti diagram is 
thus obtained. 

 

Figure 2.13. Tonti diagram in the general case  
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This diagram contributes to a better understanding of the links between the 
various fields present in Maxwell’s equations, both in the continuous and discrete 
domains. This diagram will be used in Chapter 3 as it facilitates, on the one hand, 
the display of the interaction of the electromagnetic fields and their potentials 
through the vector operator and behavior laws and, on the other hand, easy 
deduction of the properties. 



 



3 

Maxwell’s Equations:  
Potential Formulations 

3.1. Introduction 

Maxwell’s equations, in a static or quasi-static state, are rarely solved by 
considering the (E, H, B, J, D) fields as unknowns. They are generally solved using 
formulations based on potentials instead of fields. The use of potentials, inter alia, 
makes it possible to simplify the equation system. 

In order to facilitate the implementation of these potential formulations, the 
source terms presented in section 1.5 can be rewritten. This is the first step in this 
chapter, with the introduction of source fields in the case of partial differential 
equations. The results will then be applied to the equations of electrostatics, 
electrokinetics, magnetostatics and magnetodynamics. This approach will show that 
the use of source fields allows for a quite natural introduction of potential 
formulations. 

3.2. Consideration of source terms 

Section 1.5 presented the various source terms generally encountered in  
low-frequency electromagnetism. These source terms can be classified into two 
categories: 

– global quantities, imposed on the boundaries of the domain, such as the current 
density flux or the magnetic flux or the circulation of the electric or magnetic field; 

– local quantities inside the domain, such as charge density in electrostatics  
or current density in an inductor or permanent magnet in magnetostatics and 
magnetodynamics. 
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In what follows, these source terms will be addressed independently. It should be 
noted, however, that it is possible to consider a problem involving source terms 
imposed both on the boundaries (surface terms) and inside the domain (volume 
terms). The contributions associated with each of the sources must then be 
calculated, and based on the linearity of differential operators, combined in order to 
have a complete problem accounting for all the sources. The multisource case is 
addressed in sections related to electrostatics, electrokinetics and magnetostatics. 

Finally, to simplify the presentation, it is assumed that the domain is contractible. 
Nevertheless, the methodology presented can be transposed to non-contractible 
domains using the properties introduced in section 2.4.2. 

3.2.1. Global source quantities imposed on the boundaries 

As for the sources, imposed on the boundaries, the link with the local physical 
quantities is achieved via an integration along a path between two gates (circulation 
of a field) or from a surface integral on a gate (flux of a field). 

Consider the case of fields E and H defined by a curl. Calculating their 
circulation along a path, they can be linked to the electromotive force in 
electrostatics [1.51] and in electrokinetics [1.56] or to the magnetomotive force in 
magnetostatics [1.60]. 

Likewise, consider the case of fields B and J defined by a divergence. By 
calculating their flux, through a surface, it is possible to make the link between the 
magnetic flux density B or the current density J and, respectively, the magnetic flux 
φ [1.61] or the current intensity I [1.57]. 

In order to integrate these source terms into Maxwell’s equations, the notion of 
source fields, support fields and associated potentials will be introduced. The 
objective is to bring the surface constraints at the boundaries on fields that are by 
nature volume-based and defined on the entire domain. The introduction of these 
new source terms then allows for the definition of potentials (new unknowns of the 
problem) with less constraining boundary conditions. This will significantly simplify 
the solution of the problem, particularly with numerical methods (see sections 4.3 
and 4.4). 

For the sake of clarity and in order to alleviate the developments, source fields 
and associated potentials will be introduced for a general problem. The results 
obtained will then be used when developing the potential formulations in the case of 
static and magnetodynamic problems. 
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Consider a contractible domain Ω of boundary Γ = Γn1 ∪ Γn2 ∪ Γm (see  
Figure 3.1). 

 

Figure 3.1. Example of contractible domain Ω with the various notations employed  

Inside the domain, two fields U and V are defined such that: 

0=curlU  [3.1] 

 [3.2] 

These two fields can be linked by a behavior law. On the boundary Γ, the 
boundary conditions are homogeneous and can be written as follows: 

{ }
1 2 m nk

n n m with . 0, 0

k 1,2
Γ ΓΓ = Γ ∪ Γ ∪ Γ = ∧ =

∈

V n U n
 [3.3] 

where Γm represents a wall for the field V, and Γn1 and Γn2 represent two gates for 
the field U. Considering equations [3.1]–[3.3], U and V belong to the function 
spaces: 

n1 n2 m
H ( 0, ) and H (div0, )Γ ∪Γ Γ∈ Ω ∈ ΩU curl V  [3.4] 

For this problem, two types of source terms are considered: 

– The circulation Cs of the field along a path γ12 between the two gates Γn1 and 
Γn2: 

12
s γ

C .=  Udl  [3.5] 

As U is curl free, it should be noted that this equation is valid for any path γ12, 
belonging to the domain Ω linking Γn1 to Γn2. 

 

0div =V
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– The flux φv of the field V through the gates Γnk, defined by: 

 [3.6] 

– And in this expression, n represents the outward unit normal vector with 
respect to Γn1∪Γn2. 

NOTE.– Let us consider surface Δ in the domain Ω in Figure 3.1. Its contour, denoted 
by γ0, belongs to the boundary Γm, but cannot be contracted to a point by successive 
transformations. Therefore, surface Γm is not simply connected. Moreover, by 
moving the contour γ0 to the limits of the boundary Γm, surface Δ may merge with 
the boundaries Γn1 or Γn2 of the domain. The flux of V through the surface Δ is 
always equal to ± φv (according to the orientation of n), as this vector is divergence 
free; therefore, its flux is conservative. Under these conditions, equation [3.6] can be 
rewritten as follows: 

 [3.7] 

As an example, in electrokinetics, condition [3.5] means imposing an 
electromotive force between the two surfaces Γn1 and Γn2. The field U is then the 
electric field E. Imposing condition [3.6] in electrokinetics means imposing the 
current intensity Ι through the surface Γn1. The vector field V is then the current 
density J. 

It is important to note that these conditions (imposing Cs and φv) are exclusive, 
meaning that the two conditions cannot be simultaneously applied. Considering 
again the case of electrokinetics, it is not possible to impose both an electromotive 
force across a conductor and the current flowing through it. Likewise, it is not 
possible to simultaneously impose the current and the voltage across a resistor. 

Having defined the problem and the equations to be solved, the next section 
explores how the notion of source field can be introduced into the entire domain. 
This field will allow for the representation in an equivalent manner of the conditions 
imposed on the boundaries. 

3.2.1.1. Source term related to a field defined by a curl 

The main idea is to determine, inside the domain, a source field denoted by Us, 
assumed to be known, which verifies the constraints imposed on the boundaries by 
the vector U (see relations [3.3] and [3.5]). It is also assumed that the field Us  
 
 

v
kn

dS. φ±=Γ nV

vdS. φ=Δ nV
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verifies, similar to U, equation [3.1]. It should be noted that there are an infinite 
number of fields Us verifying these constraints. Indeed, if a field Us is the solution, 
then Us + gradp, where p is a scalar field such that p = 0 on Γn1 and Γn2, is also a 
solution (see section 2.5). 

The field U is decomposed into two terms as follows: 

 [3.8] 

In this equation, U' becomes the new unknown of the problem, but this time with 
conditions of null circulation between the two gates Γn1 and Γn2. Nevertheless, it 
must still verify the boundary condition [3.3] on Γn1 and Γn2. Moreover, it can be 
readily shown that U' verifies the same equilibrium equation as the field U. The 
properties of U' can finally be stated as follows: 

n1 n 212

n1 n 2

' 0, '. 0, ' 0

i.e. ' H ( 0, )
γ Γ ∪Γ

Γ ∪Γ

= = ∧ =

∈ Ω

curlU U dl U n

U curl
 [3.9] 

As for the properties of the field Us, they are written as: 

n1 n 212

n1 n 2

s s s s

s

0, . C , 0

i.e. H ( 0, )
γ Γ ∪Γ

Γ ∪Γ

= = ∧ =

∈ Ω

curlU U dl U n

U curl
 [3.10] 

It can be noted that the constraints imposed on fields Us and U' are similar to 
those of field U defined by equations [3.1] and [3.3]. 

The source field Us is directly proportional to the circulation Cs. Under these 
conditions, a support field can be introduced, denoted by βs, such that: 

 [3.11] 

where βs must verify the properties of Us as follows: 

n1 n 212

n1 n 2

s s s

s

0, . 1, with 0

i.e. H ( 0, )
γ Γ ∪Γ

Γ ∪Γ

= = ∧ =

∈ Ω

curl β β dl β n

β curl
 [3.12] 

 

's UUU +=

sss C βU =
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Considering the above-stated properties and the fact that the domain Ω is 
contractible (see equation [2.32]), βs can be expressed using an “associated” scalar 
potential denoted by αs, such that: 

{ } ( )
nk

s s s nk s, with , k 1, 2 , H ,Γ= − α α = ∈ α ∈ Ωβ grad gradk
 [3.13] 

For the choice of constants knk, in order to verify the second relation of equation 
[3.12], a simple solution is to consider: 

1 2n n1 and 0= =k k  [3.14] 

By grouping equations [3.11] and [3.13], the source field Us can also be written as: 

 [3.15] 

Similar to Us, there are an infinite number of fields βs and αs satisfying equations 
[3.12] and [3.13], respectively. It is therefore necessary to impose a gauge condition 
to ensure uniqueness (see section 2.5.2). Section 3.2.3 will provide an example of 
the calculation of fields βs and αs. 

The equations to be solved can now be written by highlighting the source term Cs: 

s s s s( ' C ) ( ' C ) 0+ = − α =curl U β curl U grad  [3.16] 

 [3.17] 

It can be noted that the circulation Cs, which was at the beginning a condition 
imposed on the boundaries, now appears in the equilibrium equation in the form 
“Csβs” or “–Csgradαs”, which will be easier to handle in the numerical resolution. 
As for the boundary conditions of the problem for the new unknown of the problem 
U', they remain homogeneous and are stated as follows: 

{ }
nk m

' 0 with k 1,2 and . 0Γ Γ
∧ = ∈ =U n V n  [3.18] 

3.2.1.2. Source term related to a field defined by a divergence 

3.2.1.2.1. Expression of the source field and the support vector field 

Consider again the problem illustrated by Figure 3.1 and defined by equations 
[3.1]–[3.3]. However, the flux φv is now considered the source term and is related  
 

sss C α−= gradU

0div =V
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to the field V by relation [3.6]. In order to determine a source field, the idea 
developed in section 3.2.1.1 is applied, which consists of introducing inside the 
domain a term assumed to be known respecting the constraints imposed on the 
boundaries. The field V is then decomposed into two terms, in the form below: 

 [3.19] 

NOTE.– The function space to which V belongs is defined by equation [3.4]. The 
field V therefore has a conservative flux. The same is true for fields Vs and V' 
which, being built from V, have similar properties. Under these conditions, a 
decision is made to use Δ as a reference surface (see equation [3.7]). It is important 
to note that this surface can be superimposed to boundaries Γnk by sliding along 
surface Γm. 

Considering equation [3.19], the field V' becomes the unknown of the problem 
and its properties are significantly equivalent to those of field V, except on the 
boundaries. Indeed, the conditions defined in equation [3.6] are transferred to Vs and 
the flux of V', through the surfaces Γnk, is equal to 0. This field is then defined by the 
properties: 

mm
div ' 0, '. ds 0, '. 0 i.e. ' H (div0, )ΓΓΔ

= = = ∈ ΩV V n V n V  [3.20] 

Then, the field Vs represents the source term and must verify equation [3.7]. Its 
properties can be written as follows: 

m

m

s s v s

s

div 0, . ds , . 0

i.e. H (div0, )
Δ Γ

Γ

= = ±φ =

∈ Ω

V V n V n

V
 [3.21] 

In this expression, the ± sign before φv depends on the orientation of the normal 
vector with respect to the surface Δ. 

Since the field source Vs is proportional to flux φv, a support field λs is 
introduced, such that: 

 [3.22] 

 

 

's VVV +=

svs λV φ=
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The properties of the support field λs are similar to those of Vs (see equation 
[3.21]) and are stated as follows: 

m

m

s s s

s

div 0, with . 0 and . ds 1

i.e. H (div0, )
Γ Δ

Γ

= = = ±

∈ Ω
λ λ n λ n

λ
 [3.23] 

Grouping equations [3.1] and [3.2] with expressions [3.19] and [3.22], the 
equations to be solved can be written by introducing the source term φv such that: 

0=curlU  [3.24] 

 [3.25] 

Similar to section 3.2.1.1, the boundary condition is transferred to a volume 
source term “φvλs”. Finally, the boundary conditions for the unknown of the problem 
are stated as follows: 

m n1 n 2
'. 0, 0Γ Γ ∪Γ= ∧ =V n U n  [3.26] 

Since the studied domain Ω is contractible, it is possible to replace λs by an 
associated vector potential χs. It is nevertheless important to note that the 
homogeneous boundary conditions of field λs are imposed on a not simply 
connected boundary Γm (see Figure 3.1). In the context of such a configuration, 
some precautions must be taken. This will be described in section 3.2.1.2.2. 

3.2.1.2.2. Not simply connected boundary: discussion 

Figure 3.2a represents the vector field λs with the not simply connected boundary 
Γm. To introduce the field χs, considering the properties of λs (see equation [3.23]), 
one solution would be to consider: χs ∈ HΓm(curl, Ω). In this case, λs = curlχs 
having on Γm: χs ∧ n = 0. Replacing λs by χs in the surface integral of equation 
[3.23], we have: 

0
s s s. ds . ds . 0

Δ Δ γ
= = =  λ n curl χ n χ dl  [3.27] 

This result is in contradiction to properties [3.23] that λs must meet. It is due to 
the fact that the contour γ0 belongs to the boundary Γm where the tangential 
component of χs is zero and that therefore the term χs.dl is equal to zero. This 
contradiction is explained by the fact that the boundary Γm is not simply connected. 

0)'(div sv =φ+ λV
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A solution to this constraint, in the presence of a not simply connected boundary, 
is to enrich the space of definition of χs as follows: 

m ms mH ( , ) H ( , ) ( )
Γ Γ

Δ∈ Ω = Ω ⊕ Γχ curl curl H  [3.28] 

The function space HΓm(curl, Ω) relies on relation [2.54]. As for H(Γm), it is a 
function space of finite dimension equal to the number of cuts to make the boundary 
simply connected. In our case, for Γm (see Figure 3.2a), one cut needs to be 
introduced, and its dimension is therefore equal to one. The properties of the 
function space H(Γm) can then be defined as follows: 

 [3.29] 

As shown by Figure 3.2a, it should be recalled that γ0 is a contour belonging to 
Γm that cannot be contracted to a point by continuous transformation. 

A possible cut is represented in Figure 3.2b. It is in fact a path linking surfaces 
Γn1 and Γn2 and cutting the surface Γm so that it becomes simply connected. At the 
passage of the cut, the circulation of χc along a segment crossing it jumps by ± 1 
depending on the crossing sense with respect to the orientation of the cut. As an 
example, Figure 3.2b shows three closed paths γ0, γ1 and γ2. γ0 is the only one that 
cannot be contracted to a point by continuous transformation on surface Γm. The 
circulation of contour γ0 crosses the cut in the direction of the arrows. Under these 
conditions, the circulation of χc along γ0 is equal to 1. Consider now two contours γ1 
and γ2 that can be contracted to a point by continuous transformation on Γm. The 
contour γ1, belonging to Γm, does not cross the cut, the circulation of χc is equal to 
“0”. The same is true for the circulation on contour γ2 which intersects the cut in one 
direction, then in the opposite direction. Therefore, the function χc accounts for the 
topological “singularity” of surface Γm. 

 
                                         a                                                b 

Figure 3.2. a) Domain with a not simply connected  
boundary Γm; b) introduction of a cut on Γm  
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Under these conditions, χs can be written as: 

ms s c s c mχ χ ' χ with:χ ' H ( , ) and χ ( )Γ= + ∈ Ω ∈ Γcurl H  [3.30] 

And the expression of λs is: 

s s s cλ χ (χ ' χ )= = +curl curl  [3.31] 

Consider now the integral form of equation [3.23]. λs is replaced by curlχs and 
the Stokes formula is applied. The following succession of equations can then be 
written as: 

0
s s cλ . ds χ . ds χ . 1

Δ Δ γ
= = =  n curl n dl  [3.32] 

Finally, it is important to note that χs is not unique and is defined up to a 
gradient, as shown by equation [2.46]. A gauge condition should therefore be 
imposed, as proposed in section 2.5.2. 

3.2.2. Source quantities inside the domain 

It is important to note that, for an electrostatic problem, the source term can be a 
charge density ρ. This charge density leads, through a volume integral, to the 
quantity Q. Likewise, in magnetostatics, inside the studied domain, there may be an 
inductor through which flows a current density J0, see equation [1.65]. It is 
important to note that, in this case, the global source quantity is the intensity I of the 
current flowing through the conductors [1.62]. Still in magnetostatics, the existence 
of permanent magnets in the domain leads to a source term associated with the 
coercive field or the remanent magnetic flux density (see equations [1.63] and 
[1.64]). This particular source term will be considered in section 3.5. 

In what follows, similar to section 3.2.1, the notion of source fields, support 
fields and associated potentials will be introduced, to simplify the equations to be 
solved. In order to maintain a degree of consistency with the previous developments, 
the same notations defined at the beginning of section 3.2.1 will be used. However, 
in order to take into account the local quantities, equations [3.1] and [3.2] will be 
modified by introducing, respectively, the source terms J and q as follows: 

=curlU J  [3.33] 

 [3.34] qdiv =V
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According to the problem dealt with, J or q will be considered equal to zero. The 
boundary conditions are those defined by equation [3.3]: 

1 2 m n1 n 2n n m , with . 0, 0Γ Γ ∪ΓΓ = Γ ∪ Γ ∪ Γ = ∧ =V n U n  [3.35] 

Depending on the constraints on fields U and V, the boundary conditions can be 
modified to fit the studied problem. 

3.2.2.1. Local source quantity defined by a curl 

For this study, consider, as an example, the geometry shown in Figure 3.3, whose 
domain Ω is contractible. In this case, for equation [3.34], we pose q = 0. It should be 
noted that the subdomain Ωs, of boundary Γs, support to the source term, is not simply 
connected (case of torus). The complementary of Ωs, in the domain Ω, is denoted by 
Ω0. On the one hand, in the studied example and to simplify the developments (see 
Figure 3.3), there are no gates and therefore V.n = 0 on the boundary Γ. 

Because the vector J derives from a curl [3.33], it is divergence free. The density 
J is defined only in the subdomain Ωs and verifies on its boundary J.nΓs = 0. The 
flux of J through an arbitrary surface Δ (see Figure 3.3), representing a cross section 
of the inductor, is denoted by I. Then: 

dS = I
Δ .nJ  [3.36] 

It can be noted that the section of the inductor may vary. Considering equation 
[3.33] and its domain of definition, the field J belongs to HΓs(div0, Ωs). By 
extension, the field J is set to zero in Ω0. This extension is possible, as, even though 
it appears to be a discontinuity of J at the boundary of the domain Ωs, there is no 
discontinuity of the normal component as J.n = 0 on this surface. Under these 
conditions, J is defined throughout the domain Ω, which is contractible. Then, it 
belongs to H0 (div0, Ω). 

Now we introduce the support field λsl in the form: 

 [3.37] 

Relying on the domain of definition of the vector field J, the properties of λsl are 
deduced from equation [3.23] and can be written as follows: 

s
sl sl sl

sl 0

div 0, . dS 1, with . 0

i.e. H (div0, )
ΓΔ

= = =

∈ Ω
λ λ n λ n

λ
 [3.38] 

slλI=J
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Figure 3.3. Geometry with a local source  
quantity J inside the studied domain  

In equation [3.38], concerning the second condition, similar to equation [3.36], 
surface Δ represents an arbitrary internal section of the inductor whose contour lies 
on the boundary Γs. 

It is important to note that the subdomain Ωs is not simply connected. But J and 
therefore λsl were defined over the whole domain Ω, which is contractible. 
Considering this definition (see section 2.4.2.1), an associated potential χsl is 
introduced, having the following properties: 

sl sl sl sl 0, with 0 i.e. H ( , )Γ= ∧ = ∈ Ωcurlχ λ χ n χ curl  [3.39] 

Consider again equation [3.33] and replace the source term J by its expression as 
a function of I and χsl, obtained from equations [3.37] and [3.39]. The following 
equations can then be written as: 

sl sl( ) 0I I=  − =curlU curl χ curl U χ  [3.40] 

Introducing a new unknown U' such that U' = U – Iχsl, equation [3.33] of the 
initial problem can be written, based on equation [3.40], as follows: 

' 0, with ' H( 0, )= ∈ ΩcurlU U curl  [3.41] 

Dissociating the source term and introducing U' will allow us to readily develop 
potential formulations, as the equation is now homogeneous (the right-hand side 
term is zero). 
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3.2.2.2. Local source quantity defined by a divergence 

Consider again the previous example (see Figure 3.4), but in the presence of a 
density q defined on Ωs and of two gates Γn1 and Γn2. In this case, in equation [3.33], 
we have J = 0. On the contrary, the local source term q in equation [3.34] is 
preserved. The studied domain Ω of boundary Γ is the union of Ω0 and Ωs. The 
integration over Ωs of density q highlights the global integral quantity Q as follows: 

 [3.42] 

Finally, the boundary conditions on the boundary Γ of the domain are defined by 
equation [3.35]. 

 

Figure 3.4. Geometry with a local source quantity,  
represented by a density q inside the studied domain  

As the distribution of density q is known, its expression can be written as a 
function of the global quantity Q. In fact, the distribution of density q is transferred 
on a support scalar term ξsl such that: 

s

2
sl sl sl sq and d 1, with L ( )

Ω
= ξ ξ τ = ξ ∈ ΩQ  [3.43] 

Outside Ωs, the density is zero (q = 0), posing ξsl = 0 in Ω0, which allows for the 
extension of its definition to the entire domain, hence: ξsl ∈ L2(Ω). 

 

Q=τΩs
dq
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Let us now introduce a source field Vs, whose boundary conditions are identical 
to those of V, defined as follows: 

ms sl sdiv , with H (div, )Γ= ξ ∈ ΩV VQ  [3.44] 

It is then possible to introduce a second support field ηsl such that: 

 [3.45] 

Grouping equations [3.44] and [3.45], after simplification, the following can be 
written: 

 [3.46] 

where ηsl verifies the following properties: 

mm
sl sl. 0 i.e. H (div, )ΓΓ = ∈ Ωη n η  [3.47] 

It should be noted that there are an infinite number of fields ηsl verifying 
conditions [3.46] and [3.47] and uniqueness is imposed by adding a gauge condition 
(see section 2.5.2). 

Based on equations [3.34], [3.43] and [3.46], the following can be written: 

 [3.48] 

Consider now V' = V – Qηsl, with the same boundary conditions applicable for V 
and ηsl being valid for V'. Equation [3.48] can then be rewritten in the form: 

m
div ' 0, with ' H (div0, )Γ= ∈ ΩV V  [3.49] 

The field V' is therefore divergence free, which, as the following section will 
show, makes it easy to introduce potential formulations. 

3.2.3. Examples of the calculation of support fields 

Sections 3.2.1 and 3.2.2 referred to source terms represented by support vector 
fields βs, λs, ηsl and the scalar field ξsl as well as the associated potentials αs, χs and  
 
 

sls ηV Q=

slsldiv ξ=η

0)(div sl =− ηV Q
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χsl. There are an infinite number of fields meeting these conditions. As an 
illustration, this section presents possible analytical solutions for extremely simple 
cases. The aim is to illustrate our purpose and also the fact that support fields, source 
fields and associated potentials have an infinite number of solutions. On the 
contrary, in the case of complex geometries, where Maxwell’s equations will be 
solved using the finite element method, section 4.3.7 proposes general and 
systematic numerical methods for calculating these fields. 

3.2.3.1. Calculation of a support field βs and the potential αs 

The support field βs serves to impose the circulation of a field between two 
disjoint boundaries of a domain. This field is defined by the relations given in 
equation [3.12]. As for the associated scalar potential αs, it must verify equations 
[3.13]. 

For the calculation of these two terms, the geometry in Figure 3.5 can be viewed 
as an example, namely a brick-shaped domain Ω, of boundary Γ = Γn1∪Γn2∪Γm. The 
boundaries Γn1 and Γn2 are in the (x,y) plane in z = 0 and z = L, respectively. For the 
source field, the boundaries Γn1 and Γn2 represent gates and the boundary Γm is a 
wall. 

 

Figure 3.5. Geometry studied for the  
calculation of fields βs and αs  
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As mentioned, there are an infinite number of solutions for the support field βs. 
However, given the simplicity of the studied geometry, it is easy to find an 
analytical solution. As an example, it is possible to have for vector βs: 

 [3.50] 

This vector field verifies the properties defined in equation [3.12]. As shown by 
equation [3.13], the scalar potential αs is defined by its gradient. The integration of 
equation [3.13] allows us to write the following equation: 

 [3.51]
 

where K is a constant. If this constant is set to 1, relation [3.14] is verified. Then, 
αs(0) = 1 and αs(L) = 0. 

3.2.3.2. Calculation of a support field λs and of the associated potential χs 

For the calculation of fields λs and χs, the same geometry as in Figure 3.5 is 
used. But now the source term is considered to be an imposed flux φv flowing 
through the boundaries Γn1 and Γn2 (see equation [3.21]). The properties of field λs 
are given by relations [3.23]. As for the potential χs, with the boundary Γm being not 
simply connected, it is defined by relation [3.31]. In the case of the studied 
geometry, to verify the properties of λs, one solution consists of considering, over 
the domain Ω, a field defined as follows: 

 [3.52] 

It can be readily verified that λs is divergence free. Moreover, considering its 
direction along z, its normal component on the boundary Γm is zero. Finally, the 
surface integral on Γn1 is equal to –1 and to 1 on Γn2. The field λs can therefore be 
used for the studied problem as a support field. 

However, based on the above-mentioned expression of λs, it is impossible to 
deduce an analytical expression of the field χs that verifies the properties defined by 
relations [3.28]–[3.31]. This difficulty is mainly due to the fact that Γm is a not 
simply connected boundary. Therefore, a cut needs to be introduced. 
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Relying on the developments proposed in section 3.2.1.2.2, a possibility to cut 
the boundary Γm, to “make it” simply connected, can be found in Figure 3.6. The 
field χc is zero in the domain and its tangential component is also zero on Γm except, 
as shown in Figure 3.6, at the cut, with a jump of ±1 depending on the direction in 
which it is crossed. It is important to note that the field χc is directed along “y”.  
A new field λs is also defined along the cut (see gray arrow in Figure 3.6), directed 
along the “z” axis. 

Let us now choose an arbitrary surface “Δ0” (see Figure 3.6), belonging to the 
domain Ω and the contour γ0. If the contour γ0 intersects the cut, then the flux of λs is 
equal to ±1 according to the orientation of γ0. Considering equations [3.31] and 
[3.32], χc and λs have the following properties: 

0 0 0
s cdS dS 1sΔ Δ γ

= = = ±  λ n curl χ n χ dl. . .  [3.53] 

Otherwise, if there is no intersection between γ0 and the cut, the flux is equal to 
zero. 

As a conclusion, for the example presented in Figure 3.5, there are two 
possibilities for the support field. The first one consists of taking as a source term 
the vector field λs defined by equation [3.52]. However, in this case, it will not be 
possible to build a field χs belonging to the spaces defined by equation [3.28]. For 
the second possibility, the aim is to find a field χs by introducing a cut on the 
boundary Γm, as shown in Figure 3.6, verifying equation [3.31] with a field χc 
belonging to the space H(Γm), defined by relation [3.29]. 

 

Figure 3.6. Introduction of a cut in the geometry studied in Figure 3.5  
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3.2.3.3. Local source term: calculation of the support field λsl and the 
potential χsl 

In the case of a source term located inside the domain and defined by a curl, 
section 3.2.2.1 introduced the support field λsl and the associated potential χsl. Unlike 
the sources imposed on the boundaries, we have to account for their geometry. 

For our study, consider the relatively simple example presented in Figure 3.7. 
There is a domain Ω of boundary Γ. At the center of Ω, there is a subdomain Ωs in the 
form of square section circular ring (not simply connected domain) support to the 
source term. The dimensions as well as the orientation of the source J are defined in 
Figure 3.7. 

 

Figure 3.7. Geometry studied for the calculation of support fields λsl and χsl  

 

Figure 3.8. Cylindrical coordinates of support fields λsl  
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As already seen in section 3.2.2.1, in order to address the connectivity problems 
of the subdomain Ωs, the domain of definition of λsl and χsl is extended to Ω. The 
support field λsl can be determined by relying on equation [3.38]. In cylindrical 
coordinates, this vector field (see Figure 3.8) has only one component following θ 
and can be defined by the following relation for: 

slr

sl sl

slz

sl

0
1R r (R d), 0 z h,

hd
0

and 0 elsewhere

θ

 λ   
   ≤ ≤ + ≤ ≤ = λ =    λ   

 
=

λ

λ

 [3.54] 

Based on the above expression, it can be readily verified that λsl meets the 
conditions stated in equation [3.38]. It is important to note that, in the 
complementary of Ωs in Ω, λsl = 0. Figure 3.8 represents the orientation of the 
support field λsl for R ≤ r ≤ (R + d) and 0 ≤ z ≤ h. 

Having defined the vector field λsl, the objective is to determine χsl relying on its 
definition given by the relations in equation [3.39]. Let us first recall the expression 
of the curl in cylindrical coordinates, which leads to the expression of λsl: 

slz sl

slr slz
sl sl

sl slr

1
0r z
1

z r hd
(r ) 01 ( )

r r
for R r (R d) , 0 z h

θ

θ

∂χ ∂χ −   ∂θ ∂   ∂χ ∂χ   = − = =   ∂ ∂   ∂ χ ∂χ   − ∂ ∂θ 
≤ ≤ + ≤ ≤

curlχ λ
 [3.55] 

Considering the constraints defined by expression [3.54], a solution for χsl can be: 

sl

slz(r )

slz(r)

slz(r )

slz(r )

0
0 with 0 z h :

1for r R : ,
h

1for R r (R d) : ( r (R d)),
hd

for (R d) r : 0

 
 

= ≤ ≤ 
 χ 

< χ =

≤ ≤ + χ = − + +

+ < χ =

χ

 [3.56] 
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It can be readily verified that the vector χls meets the conditions defined in 
equation [3.39]. On the contrary, it can be verified that λsl is zero outside Ωs, which 
is not the case for the vector χls. 

3.2.3.4. Local source term: calculation of the support field ξsl and the 
potential ηsl 

For the calculation of source terms, in the case of a source located inside the 
domain and associated with a divergence, the elementary geometry represented in 
Figure 3.9 is considered. This parallelepipedic domain Ω contains a subdomain Ωs 
inside which there is a charge density q. In order to simplify these calculations, this 
density is assumed to be uniformly distributed. The boundary Γ of the domain is the 
union of lateral boundaries Γn1 and Γn2 which represent two gates and of the 
boundary Γm associated with a wall. It is important to note that the subdomain Ωs, 
also parallelepipedic, has its lower and upper faces in contact with Γm, as well as two 
of its lateral faces. The origin of Cartesian coordinates is located at the center of the 
domain Ω. For this example, the objective is to calculate the possible solutions for 
ηsl and ξsl linked by equation [3.46]. 

 

Figure 3.9. Geometry studied for the calculation of support fields ξsl and ηsl  

For the determination of ξsl, expression [3.43] is used. As the density q is 
assumed to be uniformly distributed over the subdomain Ωs, the expression of ξsl is 
given by: 

sl
s

1
vol( )

ξ =
Ω

 [3.57] 
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where vol(Ωs) represents the volume Ωs. It is easy to extend the definition of ξsl to 
the entire domain Ω by posing ξsl = 0 on the complementary of Ωs with respect to Ω. 
Then, ξsl ∈ L2(Ω). 

Concerning the support field ηsl, it is defined by relations [3.46] and [3.47]. 
Considering the symmetries of the studied geometry and the boundaries Γn1 and Γn2, 
which represent gates, it is invariant along y and z. A possible solution involves the 
definition of this vector field by only one component along x, such that: 

slx
s

slx slx
s s

a b x a,
vol( )

x aa x a and a x b
vol( ) vol( )

η = − ∀− ≤ < −
Ω

η = ∀ − ≤ ≤ η = ∀ < <
Ω Ω

 [3.58] 

with the components ηsly and ηslz being zero. The divergence of field ηsl, defined by 
relation [3.58], is equal to ξsl, as defined by equation [3.46]. Moreover, it can be 
verified that ηsl ∈ HΓm(div, Ω). 

3.3. Electrostatics 

In the case of electrostatics, potential formulations can be developed relying on 
function spaces defined in Chapter 2. The first notion introduced is the electric 
scalar potential V, and then the electric vector potential P. Then, the Tonti diagram 
will be obtained. 

In order to consider various possibilities, we examine in the first example, close 
to the one presented in section 1.5.1, the case of source terms (fs [1.51], then σs 
[1.52]) imposed on the boundary of the domain. Then, a problem with source terms 
on the boundary of the domain and an internal electrode will be studied. 

3.3.1. Source terms imposed on the boundary of the domain 

The objective of this section is to develop the formulations in terms of scalar and 
vector potential when the source term is imposed on the boundary of the domain. To 
this end, the simplified geometry represented in Figure 3.10 will be studied. The 
domain Ω is contractible and its boundary is denoted by Γ. This example involves 
two types of boundary conditions. The first one, denoted by Γd (see equation [1.39]), 
represents a wall for the electric displacement field on the boundaries of the domain. 
The second one, denoted by Γek (see equation [1.35]), represents a gate for the 
electric field. The two boundaries Γe1 and Γe2 behave as perfect electrodes denoted, 
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respectively, by E1 and E2. The permittivity of the domain Ω is denoted by ε and 
may depend on the position. 

As already seen in section 1.5.1, it is possible to consider two source terms 
imposed on the boundaries of the domain. The first one, denoted by fs, corresponds 
to the circulation of the electric field between Γe1 and Γe2 (see equation [1.51]). The 
second one is the total charges ±Qσ on each of the two electrodes (see equation 
[1.53]). 

It should also be recalled that, in the absence of volume charges, the equations of 
electrostatics are stated as follows: 

0=curlE  [3.59] 

 [3.60] 

with the electric behavior law [1.19] and the boundary conditions defined by 
equations [1.35] and [1.39] written as: 

{ }
d ek

e1 e2 d with . 0, 0,

with k 1,2
Γ ΓΓ = Γ ∪ Γ ∪ Γ = ∧ =

∈

D n E n
 [3.61] 

 

Figure 3.10. Geometry studied in electrostatics when  
the source terms are imposed on the boundary  

0div =D
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Considering equations [3.59]–[3.61], the fields E and D belong to the following 
function spaces: 

e1 e2 d
H ( 0, ) and H (div0, )Γ ∪Γ Γ∈ Ω ∈ ΩE curl D  [3.62] 

3.3.1.1. Scalar potential V formulation 

The electric scalar potential formulation is well suited to the case when the 
circulation of the electric field (source term fs) is imposed. On the contrary, when the 
source term is directly related to the electric displacement field, which is the case 
when a surface charge density is imposed on the electrodes, it is then necessary to 
introduce an additional equation, resulting from an energy balance. 

3.3.1.1.1. Imposed circulation of the electric field fs 

This configuration corresponds to a global quantity imposed on the boundary via 
a source term defined by a curl. We will therefore introduce into the local equations 
the term fs following the steps proposed in section 3.2.1.1. As shown in equation 
[3.8], the approach involves the decomposition of the electric field into two terms as 
follows: 

 [3.63] 

where Es represents the source field linked to the circulation fs and E' is the 
unknown of the problem. As the source term is supported by Es, the circulation of E' 
between the gates Γe1 and Γe2 is equal to zero. Relying on equation [3.9], the 
properties of field E' are written as: 

e1 e 2e1 e212

' 0, '. 0, ' 0 and ' H ( 0, )Γ ∪ΓΓ ∪Γγ
= = ∧ = ∈ ΩcurlE E dl E n E curl  [3.64] 

Similarly, based on equation [3.10], the properties of Es are given by the 
relations: 

e1 e 2e1 e 212
s s s s s0, . , 0 and H ( 0, )Γ ∪ΓΓ ∪Γγ

= = ∧ = ∈ ΩcurlE E dl E n E curlf  [3.65] 

The field Es can be expressed (see equation [3.11]) as a function of fs using a 
support field, denoted by βe: 

 [3.66] 

's EEE +=

ess βE f=
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Since the support vector field is proportional to Es, then for βe, the properties 
defined by equation [3.12] can be written as: 

e1 e 2e1 e212
e e e e0, . 1, with 0, H ( 0, )Γ ∪ΓΓ ∪Γγ

= = ∧ = ∈ Ωcurlβ β dl β n β curl  [3.67] 

Given its properties and the fact that the studied domain is contractible, βe can be 
expressed as a function of an associated scalar potential αe using relations [3.13] and 
[3.14]. Under these conditions, for the given example, we have: 

e1 e2
e e e e ewith 1, 0, H( , )Γ Γ= − α α = α = α ∈ Ωβ grad grad  [3.68] 

Then, the source field Es has the form: 

 [3.69] 

Relying on equations [3.63] and [3.66], the source term is introduced in the 
expression of the electric field E, and therefore equation [3.59] can be written as: 

s e( ') 0+ =curl β Ef  [3.70] 

where the source field “fsβe” is assumed to be known. The unknown of the problem 
is then the field E'. 

Concerning the field E', taking into account the properties stated in equation 
[3.64], it can be expressed by means of an electric scalar potential, which is denoted 
by V. As the tangential component of E' is zero on surfaces Γe1 and Γe2, this 
potential is constant and may take, respectively, the values V1 and V2. Moreover, the 
circulation of E' between two electrodes being equal to zero (see relation [3.64]), we 
have to impose V1 = V2. Finally, in order to obtain a unique solution (see  
section 2.5.2.1), the value of the electric scalar potential at one point of the domain 
must be fixed. Under these conditions, consider: V1 = V2 = 0, which corresponds to 
Dirichlet boundary conditions. The expression of E' can then be written as follows: 

e1 e2
' V with V H ( , )Γ ∪Γ= − ∈ ΩE grad grad  [3.71] 

Based on equations [3.63], [3.66] and [3.71], the expression of the electric field 
is: 

 [3.72] 

ess α−= gradE f

Ves gradβE −= f
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The electric displacement field results from equation [3.72] and the behavior law 
[1.19]: 

 [3.73] 

NOTE.– It can be noted that, on the boundary Γd, the wall-type condition (see 
equation [3.61]) for the electric displacement field is reflected by a Neumann 
boundary condition for the scalar potential V. 

Replacing in equation [3.60] the electric displacement field by its expression 
given in equation [3.73], the scalar potential electrostatic formulation can be written 
as follows: 

 [3.74] 

Replacing the support field βe by the associated scalar potential αe, equation 
[3.74] can be rewritten as follows: 

 [3.75] 

We have thus developed the electric scalar potential formulation when the 
circulation of the electric field E, inside the domain, is imposed between two 
electrodes. 

3.3.1.1.2. Charges Qσ imposed on the electrodes 

With the scalar potential formulation, imposing the total charges Qσ requires a 
complementary development. The objective is to express Qσ on the electrodes as a 
function of the electric scalar potential and the circulation fs, which then becomes an 
unknown of the problem. This requires an energy balance. 

In the case of electrostatics, the expression of the stored energy We is: 

 [3.76] 

If the electric field is replaced by its expression given in equation [3.72], the 
following can be written: 

 [3.77]
 

)V( es gradβD −ε= f

0))V((div es =−ε gradβf

0))V((div es =+αε gradgradf

 Ω τ= d.
2
1

We DE

 Ω τ+−= d).V(
2
1

W ese Dβgrad f
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Let us analyze the first term of the volume integral. Applying relation [2.23] for 
vector operators, we have: 

e1 e 2 d

V. d Vdiv d V . d 0
Ω Ω Γ ∪Γ ∪Γ

− τ = τ − τ =  grad D D D n  [3.78] 

This term is equal to zero, as the divergence of D is zero (see equation [3.60]), as 
well as to the surface integral, taking into account the boundary conditions of V on 
Γek (see equation [3.71]) and that of D on Γd (see equation [3.61]). Under these 
conditions, equation [3.77] has the form: 

 [3.79]
 

The stored energy can also be expressed via global quantities fs and Qσ. Then, 
the following relation can be written: 

 [3.80]
 

By identification, the expression of the total charges Qσ can be deduced: 

 [3.81] 

This expression allows us to write the total charges Qσ as a function of the 
support field βe and the electric displacement field D. Hence, by replacing the 
electric displacement field by its expression given in equation [3.73], we obtain: 

e s eQ V df
Ωσ = ε − τ .( )β β grad  [3.82] 

When writing the equation of the electrostatic problem, presented in Figure 3.10, 
with the electric scalar potential formulation, and given that the source term is the 
total charges Qσ, the circulation fs becomes an unknown. The system of equations to 
be solved is composed of relations [3.75] and [3.82] having as unknown the scalar 
potential V and circulation fs. 

It should be noted that equation [3.81] can also be used to calculate the total 
charges Qσ from the scalar potential V when the circulation is imposed. 

Ω τ= d.
2
1

W ese Dβf

Ωσ τ== d.
2
1

Q
2
1

W esse Dβff

Ωσ τ= d.Q e Dβ
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3.3.1.2. Vector potential P formulation 

The example in Figure 3.10 is also used in the case of the vector potential 
formulation, with the two source terms fs and Qσ imposed on the boundaries of the 
domain. The vector potential formulation is well suited to the source term 
corresponding to the total charges Qσ on the electrodes. On the contrary, when the 
circulation of the electric field fs is applied as the source term, the developments are 
not straightforward. An additional equation should then be added that can be 
obtained from an energy balance. The objective is to express the circulation fs as a 
function of the total charges Qσ and of the electric vector potential. 

3.3.1.2.1. Total charges Qσ imposed on the electrodes 

For our example, when the total charges Qσ are imposed on the boundaries Γe1 
and Γe2, the expression of the source term is given by equation [1.53]. To introduce 
this term in the local forms of the equations, the approach proposed in  
section 3.2.1.2.1 will be followed. Therefore, as proposed in relation [3.19], in order 
to introduce the source field, the electric displacement field is decomposed as 
follows: 

 [3.83] 

In this expression, Ds represents the source field produced by the total charges 
Qσ and D' is the new unknown of the problem. The absolute value of the flux of Ds, 
on the boundaries Γe1 and Γe2, is equal to the charges Qσ. Therefore, the flux of D', 
on these boundaries, is equal to zero. Relying on equation [3.20], in the context of 
our problem, the properties of field D' can be written as follows: 

dd ek

div ' 0, '. 0, '. ds 0 and ' H (div0, )ΓΓ Γ
= = = ∈ ΩD D n D n D  [3.84] 

As for the properties of the source field Ds, they are deduced from equation 
[3.21] and, for our example, they are written as follows: 

ek d

d

s s s

s

div 0, . ds Q , . 0

i.e. H (div0, )

σ
Γ Γ

Γ

= = ± =

∈ Ω

D D n D n

D
 [3.85] 

NOTE.– This configuration is similar to the notes concerning equations [3.6] and 
[3.19]. The fluxes of fields D' and Ds are conservative and any surface Δ whose 
contour γ0 (see Figure 3.10) lies on the boundary Γd, can replace the surface integral 
on Γek. 

's DDD +=
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Since the source field Ds is proportional to the total charges Qσ, it can be 
expressed using a support field, denoted by λe, such that: 

s eQσ=D λ  [3.86] 

The properties of λe are equivalent to those of Ds (see equation [3.85]) and can 
be written as follows: 

dd ek
e e e ediv 0 and . 0, . ds 1, H (div0, )ΓΓ Γ

= = = ± ∈ Ωλ λ n λ n λ  [3.87] 

As for λe, considering its properties and the fact that the domain Ω is 
contractible, it can be expressed by means of the vector potential χe. However, 
precautions are required when building the field χe, since the boundary Γd is not 
simply connected. To address this difficulty, a cut along this boundary is introduced 
(see section 3.2.1.2.2). The field χe then belongs to the function space HΔ

Γd(curl, Ω) 
defined by relation [3.28] and it verifies: 

 [3.88] 

where γ0 is the contour of the surface Δ defined in Figure 3.10. 

The support field λe can then be expressed as a function of χe as follows: 

e e=λ curlχ  [3.89] 

Grouping equations [3.60], [3.83] and [3.86], the following can be written as: 

ediv(Q ') 0σ + =λ D  [3.90] 

where the source field “Qσ λe” is assumed to be known. On the contrary, the 
unknown of the problem is now the field D'. Relying on the properties of D' defined 
in equation [3.84], it can be expressed as a function of an electric vector potential, 
denoted by P, in the following form: 

dd
' , 0 i.e. H ( , )ΓΓ= ∧ = ∈ ΩD curlP P n P curl  [3.91] 

As indicated in section 2.5.2, to have a unique solution to the electric vector 
potential, a gauge condition must be imposed. Based on equations [3.83], [3.86] and 
[3.91], the electric displacement field can be written as follows: 

eQσ= +D curlP λ  [3.92] 

 γΓ ±==∧
0d

1.,0 ee dlχnχ
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Similarly, using the behavior law [1.19], the electric field takes the form: 

1
e( Q )−

σ= ε +E curlP λ  [3.93] 

When writing the electric field by means of the electric vector potential P and 
the source term “Qσλe”, equation [3.60] is automatically verified. The solution to the 
problem must now simply verify the behavior law [3.93] and the equilibrium 
equation [3.59]. 

Grouping equations [3.59] and [3.93], the following equation can be written as: 

1
e( ( Q )) 0−

σε + =curl curlP λ  [3.94] 

Or still by introducing the source field χe (see equation [3.89]), then we have: 

1
e( ( Q )) 0−

σε + =curl curlP curlχ  [3.95] 

These equations represent the vector potential formulation of the electrostatic 
problem when the source term is the total charges Qσ on the electrodes Γe1 and Γe2. 
The steps to be taken to solve these equations are to express the source fields λe or 
χe, and then to calculate the vector potential P. Then, the electric displacement field 
D and the electric field E can be deduced. 

3.3.1.2.2. Imposed circulation fs of the electric field 

Still with the case of the formulation in terms of the vector potential P and the 
problem in Figure 3.10, let us now consider that the source term is the circulation fs 
of the electric field between the boundaries Γe1 and Γe2. As indicated in the 
introduction to section 3.3.1.2, in this case, the charge Qσ becomes an unknown of 
the problem. An additional equation should therefore be provided allowing for the 
expression of the source term fs as a function of the charge Qσ and of the vector 
potential P. This requires an energy balance. 

In the expression of the electrostatic energy We
 
(see equation [3.76]), the electric 

displacement field is replaced by its expression given in equation [3.92]. Then: 

e e
1W .( Q )d
2 σ

Ω
= + τ E curlP λ  [3.96] 

 

 



78     Finite Element Method to Model Electromagnetic Systems in Low Frequency 

Let us now consider the first term of the volume integral to which the formula 
[2.27] related to vector operators is applied. We then obtain the following: 

. d . d ( ). dS
Ω Ω Γ

τ = τ − ∧  E curlP P curlE P n E  [3.97] 

Considering the properties of the electric field E (see equation [3.59]), the 
volume integral, on the right-hand side of the equality, is zero. Concerning the 
surface integral, on the boundary Γ of the domain, it can be decomposed into two 
terms as follows: 

e1 e 2 d

( ). dS ( ). dS ( ). dS
Γ Γ ∪Γ Γ

∧ = ∧ + ∧   P n E P n E P n E  [3.98] 

The integral on Γe1 or Γe2 is equal to zero as, according to the properties of the 
mixed product, the tangential component of the electric field is zero on these 
boundaries. As for the second term, it is also zero, considering the properties of the 
vector potential P on the boundary Γd (see equation [3.91]). Under these conditions, 
the expression of the electrostatic energy is: 

 [3.99] 

If the electrostatic energy is expressed as a function of global quantities fs and Qσ 
(see equation [3.80]), then: 

 [3.100] 

After simplification, the source term fs can be expressed as a function of E and 
λe, hence: 

 [3.101] 

or by replacing the electric field E with its expression in equation [3.93], the 
following can be written: 

1
s e e.( Q )d−

σ
Ω

= ε + τ λ curlP λf  [3.102] 

 

Ω σ τ= d.Q
2
1

W ee λE

 Ω σσ τ= d.Q
2
1

Q
2
1

es λEf

τ= Ω d.es Eλf
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Let us now introduce the source potential χe (see equation [3.89]). Then, 
equation [3.102] can be rewritten in the following form: 

1
s e e.( Q )d−

σ
Ω

= ε + τ λ curlP curlχf  [3.103] 

In conclusion, for the electric vector potential formulation, when the source term 
is the circulation fs of the electric field, the unknowns are the electric vector 
potential P and the total charges Qσ. Then, the system of equations defined by 
relations [3.94] and [3.102] or [3.95] and [3.103] must be solved. 

It should be noted that equation [3.101] can also be used to calculate the 
circulation fs from the vector potential P when the total charge is imposed. 

3.3.1.3. Summary tables 

This section presents a summary of the equations to be solved for the example in 
Figure 3.10. 

Table 3.1 summarizes the equations for the scalar potential formulation when the 
source term is the circulation fs of the electric field or the total charges Qσ. The table 
also contains support fields and function spaces to which they belong. 

Electrostatics (studied domain) 

Sc
al

ar
 p

ot
en

tia
l V

 fo
rm

ul
at

io
n 

Source term: circulation of the electric field fs 

Source field support two 
possibilities: βe or αe 

Decomposition of the electric field: E = Es + E' 

e1 e2s s e e, H ( 0, )Γ ∪Γ= ∈ ΩE β β curlf  

 

Properties of the unknown 
E' and introduction of 

potential V 

e1 e2
' H ( 0, )Γ ∪Γ∈ ΩE curl  

e1 e2
' V , V H ( , )Γ ∪Γ= − ∈ ΩE grad grad  

Equation to be solved: two 
possible forms depending on 

βe or αe 

 

 

Source term: total charges Qσ 
fs becomes an unknown; an additional equation is needed 

 

Table 3.1. Summary of the equations to be solved in electrostatics  
for the scalar potential formulation (see Figure 3.10) 

),(H, eess Ω∈αα−= gradgradE f

0))V((div es =−ε gradβf

0))V((div es =+αε gradgradf

Ωσ τ= d.Q e Dβ
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For the same source terms (Qσ and fs), Table 3.2 presents the equations to be 
solved for a vector potential formulation. 

Electrostatics (studied domain) 

V
ec

to
r p

ot
en

tia
l P

 fo
rm

ul
at

io
n 

Source term: total charges Qσ 

Source field support two 
possibilities: λe or χe with a 
cut on not simply connected 

Γd  

Decomposition of the electric field: D = Ds + D' 

 

ds e eQ , H ( , )Δ
σ Γ= ∈ ΩD curlχ χ curl  

Properties of the unknown 
D' and introduction of the 

vector potential P 

 

d
' , H ( , )Γ= ∈ ΩD curlP P curl  

Equation to be solved: two 
possible forms depending on 

λe or χe 

1
e( ( Q )) 0−

σε + =curl curlP λ  

1
e( ( Q )) 0−

σε + =curl curlP curl χ  

Source term: circulation of the electric field fs 
Q becomes an unknown; an additional equation is needed 

 

Table 3.2. Summary of equations to be solved in electrostatics  
for the vector potential formulation (see Figure 3.10) 

3.3.2. Internal electrode 

This section again uses the example in Figure 3.10, adding inside the domain, as 
shown in Figure 3.11, a subdomain ΩE, namely an internal electrode, denoted by E3, 
of boundary Γe3. It should be recalled that at electrostatic equilibrium, the electric 
field is zero inside an electrode and the surface charge density is σs. Under these 
conditions, the electric field is normal to the surface. The studied domain then 
relates to Ω’ = Ω − ΩE3, it is therefore simply connected with disconnected 
boundary. For this problem, the source term can be the circulation of the electric 
field fs between the boundaries Γek (with k ∈ {1,2,3}), equation [1.51] or the electric 
flux on the gates [1.53]. 

),0div(H,Q
dees Ω∈= Γσ λλD

),0div(H'
d

Ω∈ ΓD

τ= Ω d.es Eλf
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Figure 3.11. Geometry studied in electrostatics in the case of an internal electrode  

The equations to be solved are written as follows: 

0=curlE  [3.104] 

 [3.105] 

With the dielectric behavior law [1.19] and the boundary conditions defined by 
equations [1.35] and [1.39] which, in this case, are written as: 

{ }
d ek

d e1 e2 e3

with : . 0, 0, k 1,2,3Γ Γ

Γ = Γ ∪Γ ∪Γ ∪Γ
= ∧ = ∈Dn E n  [3.106] 

Considering the above equations, the fields E and D are defined in the following 
function spaces: 

e1 e2 e3 d
H ( 0, ') and H (div0, ')Γ ∪Γ ∪Γ Γ∈ Ω ∈ ΩE curl D  [3.107] 

Let us now define the various possible source terms. This can be the circulation 
of the electric field E between two electrodes. Then, for electrodes i, j, the 
circulation fij is: 

}{ijij
. with i j and i, j 1, 2,3

γ
= ≠ ∈ E dl f  [3.108] 

0div =D
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It is important to note that with the electric field being curl free, the path γij, 
linking two electrodes can be arbitrary since in this case the circulation does not 
depend on the path followed. Moreover, in the presence of three electrodes, it is 
possible to define three circulations of the electric field. Nevertheless, two are 
sufficient, given that the electric field E is curl free, its circulation along a closed 
contour is zero. This leads to the following property: 

 [3.109] 

The source term can also be the total charges Qk on the electrodes of boundaries 
Γek. Then, we have: 

}{
ek

k. dS Q with k 1,2,3
Γ

= ∈ Dn  [3.110] 

In this case, Gauss’ law (see equation [1.50]) leads to: 

 [3.111] 

Similar to the case of circulations fij, this relation shows that the three values of 
charge are not independent. 

The following section develops the potential (V and P) formulations by 
considering, for the source terms, the following possibilities: 

– The two circulations of the electric field, f13 and f23, are imposed. The third 
circulation f12 can be deduced using relation [3.109]. The charges Qk are unknown. 

– The charges Q1 and Q2 are imposed, and in this case Q3 is fixed by equation 
[3.111]. The circulations fij are unknown. 

– Hybrid source terms are imposed, namely a circulation of the electric field and 
a total charge on an electrode. For example, f13 and the total charge Q2 are imposed. 
In this case, the unknowns are f23 and Q1 (f12 and Q3 are then obtained by [3.109] 
and [3.111]). 

3.3.2.1. Scalar potential V formulation 

As indicated in section 3.3.1.1, when the source terms are the circulations of the 
electric field, the scalar potential formulation is perfectly adapted. Our approach will 
therefore focus first on this case, and then on how to consider, as the source term, 
the total charges on the electrodes. 

0312312 =++ fff

0QQQ 321 =++



Maxwell’s Equations: Potential Formulations     83 

3.3.2.1.1. Imposed circulations of the electric field f13 and f23 

When the circulation of the electric field is imposed, as mentioned above (see 
equation [3.72]), it is expressed as a function of the scalar potential V and a support 
field βe. As our example holds two source terms, f13 and f23, two support fields are 
introduced (see equations [3.63] and [3.67]), such that: 

e1 e2 e313 13 23 23 ', with ' H ( 0, ')Γ ∪Γ ∪Γ= + + ∈ ΩE β β E E curlf f  [3.112] 

The support fields β13 and β23 are defined by the following relations: 

( ) ( ) { }
e1 e2 e3kj

e1 e2 e3

ij ij ki ij

ij

0, . 0

H 0, i, k 1.2 and j 3

Γ ∪Γ ∪Γγ

Γ ∪Γ ∪Γ

= = δ ∧ =

′∈ Ω ∈ =

curlβ β dl β n

β curl
 [3.113] 

Considering the above properties, and since the studied domain is simply 
connected with a disconnected boundary, the support fields βij can be expressed as a 
function of scalar potentials αij (see section 2.4.2.3). Based on relations [3.13] and 
[3.14], we can write: 

( )

}{ { }
ek

ij ij ij ki ijand H ,

with i 1,2 , k 1,2,3 , j 3
Γ

′= − α α = δ α ∈ Ω

∈ ∈ =

β grad grad

 
 [3.114] 

The properties of the field E', introduced in equation [3.112], are identical to 
those given by relation [3.64]. An electric scalar potential V can therefore be defined 
(see equation [3.71]). On the gates Γek, the tangential component of field E' is zero. 
Therefore, for the scalar potential V, these gates represent equipotential surfaces 
whose values may be Vk = Constant with k = {1, 2, 3}. Nevertheless, the circulation 
of the electric field, between various electrodes, is imposed by the support fields βij 
associated with circulations fij. The circulation of the field E' is then equal to “0” 
between the surfaces Γek. Under these conditions, we pose V = 0 on the three gates, 
and therefore the gauge condition can be imposed (see section 2.5.2.1). The field E' 
is then written as: 

e1 e2 e3
' V with V H ( , ')Γ ∪Γ ∪Γ= − ∈ ΩE grad grad  [3.115] 

Gathering equations [3.112] and [3.115], the electric field is written as: 

 [3.116] V23231313 gradββE −+= ff
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Based on this equation and the behavior law [1.19], the electric displacement 
field can be written as: 

 [3.117] 

To obtain the scalar potential formulation, in the presence of the two source 
terms f13 and f23, the electric displacement field is replaced in equation [3.105] by its 
expression given by equation [3.117]. The equation to be solved is then obtained in 
the following form: 

 [3.118] 

Replacing the support fields βij by the associated potentials αij (see equation 
[3.114]), equation [3.118] is written as: 

 [3.119] 

3.3.2.1.2. Total charges Q1 and Q2 imposed on the electrodes 

In the formulation developed in section 3.3.2.1.1, the source terms are the 
circulations of the electric field between the electrodes. The charges, carried by the 
electrodes, are not explicitly present. If instead of circulations, charges Q1 and Q2 
should be imposed, respectively, on electrodes E1 and E2, the formulation [3.118] 
can be used. In this case, circulations f13 and f23 become unknowns and two new 
equations should be added. These equations can be obtained from an energy balance, 
as in section 3.3.1.1.2. 

Based on global quantities, namely the circulations f13 and f23 and the total 
charges Q1 and Q2, the electrostatic energy can be expressed by the following 
equation: 

 [3.120]
 

On the contrary, if the energy We is expressed based on local quantities (see 
equation [3.76]), replacing the electric field by its expression given in equation 
[3.116] yields: 

 [3.121] 

)V( 23231313 gradββD −+ε= ff

0))V((div 23231313 =−+ε gradββ ff

0))V((div 23231313 =+α+αε gradgradgrad ff

223113e Q
2
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Q
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1

W ff +=
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W Dgradββ ff
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As shown in section 3.3.1.1.2 (see equation [3.78]), the contribution of the term 
related to “gradV.D” is zero. Indeed, a similar development can be readily obtained 
taking into consideration equations [3.105] and [3.107]. After simplification, by 
gathering equations [3.120] and [3.121], the following can be written as: 

 [3.122] 

This equation is true, irrespective of the values of f13 and f23. Under these 
conditions, posing f13 = 1 and f23 = 0, the expression of Q1 results quite naturally as 
follows: 

 [3.123] 

Similarly, considering f13 = 0 and f23 = 1, the expression of Q2 is obtained: 

 [3.124] 

If the electric displacement field D is replaced by its expression given by 
equation [3.117], the following expressions are obtained for Q1 and Q2: 

 [3.125] 

 [3.126] 

In conclusion, if the charges Q1 and Q2 are known, the circulations f13 and f23 
become the unknowns of the problem. In this case, the system of equations 
composed of equation [3.118] and relations [3.125] and [3.126] should be solved. 

3.3.2.1.3. Hybrid source terms: circulation and total charges 

When imposing a circulation and also a total charge on an electrode, taking into 
account the developments of sections 3.3.2.1.1 and 3.3.2.1.2, it is relatively simple 
to write the equation. In fact, a system of equations is built, consisting of relation 
[3.118] to which, depending on the imposed source terms, equation [3.125] or 
[3.126] is added. If the sources are f13 and Q2, the expression of Q2 (see equation 
[3.126]) is added to equation [3.118]. On the contrary, if the source terms are the 
circulation f23 and the total charges Q1, then equation [3.118] is completed by the 
expression of Q1 given by equation [3.125]. 

 Ω τ+=+ ' 23231313223113 d).(
2
1

Q
2
1

Q
2
1 Dββ ffff

Ω τ= ' 131 d.Q Dβ

Ω τ= ' 232 d.Q Dβ

 Ω τ−+ε= ' 23231313131 d)V.(Q gradβββ ff

Ω τ−+ε= ' 23231313232 d)V.(Q gradβββ ff
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3.3.2.2. Vector potential P formulation 

When the total charges Q1 and Q2 are imposed, the vector potential formulation 
is naturally obtained. This case will be discussed first, and then the focus will be on 
how the circulations f13 and f23 of the electric field can be introduced as source 
terms. Finally, section 3.3.2.2.3 will address the case of complementary hybrid 
source terms. 

It is important to note that, for the vector potential formulation, with this 
example holding three electrodes, the developments are similar to those presented in 
section 3.3.1.2.1. 

3.3.2.2.1. Total charges Q1 and Q2 imposed on the electrodes 

When the total charges Q1 and Q2 are, respectively, on the electrodes E1 and E2, 
the electric displacement field can be expressed using [3.83], but with two source 
fields, as follows: 

 [3.127] 

In this expression, Ds1 and Ds2 represent the two source fields due to the charges 
Q1 and Q2 on the two electrodes E1 and E2. As for the field D', it represents the new 
unknown of the problem. Under these conditions, the properties of D' are stated (see 
equation [3.84]) as follows: 

}{
de k

d

div ' 0, '. dS 0 with k 1, 2,3 , '. 0

i.e. ' H (div0, ')

ΓΓ

Γ

= = ∈ =

∈ Ω

D D n D n

D
 [3.128] 

The source fields have properties similar to those of the electric displacement 
field, but they take into account the constraints on the total charges imposed on the 
electrodes Ek. 

The properties of the source field Ds1 are written as follows: 

e1 e3

e2 d

e2 d

s1 s1 1 s1 1

s1

s1

div 0, . dS Q , . dS Q ,

and, . 0

i.e. H (div0, ')

Γ Γ

Γ ∪Γ

Γ ∪Γ

= = = −

=

∈ Ω

 D D n D n

D n

D

 [3.129] 
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and for Ds2, we have: 

e2 e3

e1 d

e1 d

s2 s 2 2 s 2 2

s2

s2

div 0, . dS Q , . dS Q ,

and, . 0

i.e. H (div0, ')

Γ Γ

Γ ∪Γ

Γ ∪Γ

= = = −

=

∈ Ω

 D D n D n

D n

D

 [3.130] 

Support fields λ13 and λ23 are now introduced, which are defined as follows: 

e1 e3

e2 de2 d

13 13 13

13 13

div 0, . dS 1, . dS 1

. 0 i.e. H (div0, ')
Γ Γ

Γ ∪ΓΓ ∪Γ

= = = −

= ∈ Ω

 λ λ n λ n

λ n λ
 [3.131] 

e2 e3

e1 de1 d

23 23 23

23 23

div 0, . dS 1, . dS 1

. 0 i.e. H (div0, ')
Γ Γ

Γ ∪ΓΓ ∪Γ

= = = −

= ∈ Ω

 λ λ n λ n

λ n λ
 [3.132] 

By identifying the properties of the source fields Ds1 and Ds2 with those of the 
support fields λ13 and λ23, we have: 

 [3.133] 

If in equation [3.127] the source fields are replaced by their expression provided 
in equation [3.133], the electric displacement field is written as: 

 [3.134] 

The divergence operator is now applied to this equation. Then, the following can 
be written as: 

 [3.135] 

Based on this equation and considering the properties of the support fields given 
in equations [3.131] and [3.132], as well as those of D' field defined in equation 
[3.128], it can be noted that equation [3.105] and the boundary conditions on D are 
verified. 
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Based on the properties of D', see [3.128], the notion of potential can be 
introduced. Nevertheless, as the domain is simply connected with a disconnected 
boundary, some precautions must be taken (see section 2.4.2.3). It should be noted 
that, for our study, there is only one cavity. As shown by equation [2.41], a vector 
potential P and a field h are introduced, which makes it possible to consider the fact 
that the studied domain is not contractible. Under these conditions, the field D' can 
be written in the following form: 

d

2' K with H ( , ') and ( ')Γ= + ∈ Ω ∈ ΩD curlP h P curl h H  [3.136] 

In this expression, the function space H 2(Ω') is defined by equation [2.39] and K 
is a constant to be determined. To this end, let us calculate the flux of the electric 
displacement field D through the external surface of the domain Ω. Based on 
equations [3.134] and [3.136] and expression [3.110], we can write the following: 

d e1 e2
1 13 2 23 1 2(Q Q P K ). dS Q Q

Γ ∪Γ ∪Γ
+ + + = + λ λ curl h n  [3.137] 

Based on the properties of the support fields λ13 and λ23 (see equations [3.131] 
and [3.132]), it can be deduced that their surface integrals on Γd∪Γe1∪ Γe2 are equal 
to 1. The function space to which the term curlP belongs implies that the surface 
integral is zero on Γd. The same is true on the boundaries Γe1 and Γe2 due to the 
constraints that D' must meet (see equation [3.128]). Finally, the integral on the 
external surface of the basis function h is equal to 1 (Bossavit 1988). Under these 
conditions, in order to verify the conservation equation [3.137], we obtain K = 0. 

NOTE.– In fact, constant K makes it possible to consider the total charges inside the 
domain ΩE (see Figure 3.11). As it is an electrode, there are by definition zero 
charges inside. 

Equation [3.136] is then written as: 

d
' with H ( , ')Γ= ∈ ΩD curlP P curl  [3.138] 

Under these conditions, based on equation [3.134], we have: 

1 13 2 23Q Q= + +D λ λ curlP  [3.139] 
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Using the induction D, defined by the above expression, the electric field can be 
expressed via the behavior law [1.19] as follows: 

1
1 13 2 23(Q Q )−= ε + +E λ λ curlP  [3.140] 

If the above expression of E is introduced in equation [3.104], the equation to be 
solved is: 

1
1 13 2 23( (Q Q )) 0−ε + + =curl λ λ curlP  [3.141] 

which represents the vector potential formulation, when the source terms are the 
total charges Q1 and Q2 on the electrodes E1 and E2 and in the presence of an 
electrode (E3) inside the domain. 

3.3.2.2.2. Imposed circulations of the electric field f13 and f23 

Consider now, as source terms, the circulations f13 and f23. The equation to be 
solved is still [3.141], but the total charges Q1 and Q2 on the electrodes become 
unknowns. Two new equations should then be introduced in order to build a 
complete system of equations. To this end, as in section 3.3.1.2.2, an energy balance 
is written. 

In equation [3.76], the electric displacement field is replaced by its expression, 
provided in equation [3.139]. The following can then be written as: 

e 1 13 2 23'

1W ( Q Q ). d
2 Ω

= + + τ curl P λ λ E  [3.142] 

Let us now consider the first term of the volume integral. Using formula [2.27], 
related to vector operators, the following can be written as: 

e1 e2 e3 d' '
. dτ . d ( ). d

Ω Ω Γ ∪ ∪ ∪Γ
= τ + ∧ τ  E curlP curlE P E n P  [3.143] 

The first right-hand side term is equal to zero (see equation [3.104]). The same is 
true for the surface integral, as the tangential component of E is equal to zero on the 
boundaries Γe1, Γe2 and Γe3 as well as the tangential component of P on Γd (see 
equation [3.136]). Equation [3.142] is then written as: 

 [3.144] Ω τ+= ' 232131e d).QQ(
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This relation must be equal to [3.120] for all the values of Q1 and Q2. This leads 
to: 

 [3.145] 

If the electric field is replaced by its expression provided in equation [3.140], 
then f13 is written as follows: 

1
13 13 1 13 2 23'

. (Q Q )d−

Ω
= ε + + τ λ λ λ curlPf  [3.146] 

and f23: 

1
23 23 1 13 2 23'

. (Q Q )d−

Ω
= ε + + τ λ λ λ curlPf  [3.147] 

In conclusion, for the problem studied with the vector potential formulation and 
when the source terms are the circulations f13 and f23, the unknowns of the problem 
are the vector potential P and the charges Q1 and Q2. The system to be solved is then 
composed of equations [3.141], [3.146] and [3.147]. 

3.3.2.2.3. Hybrid source terms: circulation and total charges 

Similar to the approach for the scalar potential formulation, two complementary 
source terms are now imposed, one circulation and one total charge. 

In this case, writing the equation is relatively simple. If the source terms are the 
total charges Q1 and the circulation f23, relation [3.146] should be added to equation 
[3.141]. On the contrary, if the source terms are f13 and Q2, then relation [3.147] 
should be added to equation [3.141]. 

3.3.3. Tonti diagram 

This section focuses on obtaining the Tonti diagram in electrostatics based on 
Figure 2.13. Then, we have a succession of function spaces with imposed boundary 
conditions and we place the various terms defined in sections 3.3.1 and 3.3.2. 

Besides the physical quantities E, D and ρ (see Figure 3.12), there are also the 
source fields Es and Ds as well as potentials V and P. 

 ΩΩ τ=τ= ' 2323' 1313 d.,d. EλEλ ff
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Figure 3.12. Tonti diagram in electrostatics  

3.4. Electrokinetics 

In electrokinetics, if a general problem is considered, the studied geometry may 
have the form presented in Figure 1.10 with two possible types of source terms: the 
electromotive force “e” and the current density flux “I”. However, to make the 
developments less cumbersome while maintaining a certain generality, a simplified 
geometry is considered. Nevertheless, in section 3.4.2, we will show how to address 
the case of a multisource problem. 

3.4.1. Elementary geometry 

The studied geometry, namely a section of a conductor, is represented in  
Figure 3.13. Its conductivity, which may depend on the position, will be denoted by 
σ and its boundary Γ comprises three surfaces, denoted by Γe1, Γe2 and Γj such that: 

 [3.148] 

On the two surfaces Γe1 and Γe2, the tangential component of the electric field is 
zero, namely a gate-type boundary condition [1.35]. These two surfaces, considered 
gates, are therefore in contact with perfect conductors (the tangential component of 
the electric field is zero). On the contrary, the wall-type surface Γj can be considered 
in contact with a perfect insulator. Then, the condition given by equation [1.38] is 
verified for the current density. 

j2e1e Γ∪Γ∪Γ=Γ



92     Finite Element Method to Model Electromagnetic Systems in Low Frequency 

Let us note that the studied domain Ω, which is limited to the conductor, is a 
contractible domain. On the contrary, the boundary Γj is not simply connected. 

 

Figure 3.13. Simplified geometry studied for electrokinetics  

For this example, there are two possibilities for the source term (see section 1.5.2): 

– the first one is an electromotive force, denoted by “e”, imposed between the 
two boundaries Γe1 and Γe2 (see equation [1.56]); 

– the second one consists of imposing the flux “I” of the current density on the 
boundaries Γe1 and Γe2 (see equation [1.57]). 

In the case of electrokinetics, the initial problem is governed by equations [1.58] 
and [1.59] written as follows: 

0=curlE  [3.149] 

 [3.150] 

which are completed by the electric behavior law [1.20] and the boundary conditions 
[1.35] and [1.38] as follows: 

{ }
j ek

j e1 e2 with . 0, 0

with k 1,2
Γ ΓΓ = Γ ∪ Γ ∪ Γ = ∧ =

∈

J n E n
 [3.151] 

Based on the above constraints, the electric field and the current density are 
defined in the function spaces: 

e1 e2 j
H ( 0, ) and H (div0, )Γ ∪Γ Γ∈ Ω ∈ ΩE curl J  [3.152] 

0div =J
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Sections 3.4.1.1 and 3.4.1.2 will develop the formulations in terms of the scalar 
potential and the vector potential when for each of them an electromotive force and 
the current density flux are imposed. It is important to note that, in the case of 
electrokinetics, the equations to be solved are equivalent to those encountered in 
electrostatics when a source term is imposed on the boundaries of the domain (see 
section 3.3.1). Therefore, the developments given in the following are very similar. 

3.4.1.1. Scalar potential V formulation 

3.4.1.1.1. Imposed electromotive force 

The electric scalar potential formulation is very well suited when an 
electromotive force “e” is imposed between the surfaces Γe1 and Γe2 (see equation 
[1.56]). To account for the source term “e” in the local equations, a source field is 
introduced by decomposing the electric field into two terms (see section 3.2.1.1): 

 [3.153] 

where Es represents a known source field depending on the electromotive force and 
E' is the unknown of the problem. 

The properties of Es are close to those of the electric field. Based on the general 
case, presented in section 3.2.1.1, they are stated (see equation [3.10]) as follows: 

e1 e212

e1 e2

s s s

s

0, . e , 0

i.e. H ( 0, )

Γ ∪Γγ

Γ ∪Γ

= = ∧ =

∈ Ω

curlE E dl E n

E curl
 [3.154] 

As the field Es is curl free, the integral is true for any path γ12, belonging to the 
domain Ω, linking the gates Γe1 and Γe2. 

The properties of the field E' are similar to those of the electric field E, except 
for its circulation between the two gates Γe1 and Γe2 which is equal to zero. Indeed 
(see equation [3.154]), this constraint is supported by Es. 

The properties of E' are then written as follows (see equation [3.9]): 

e1 e212

e1 e2

' 0, '. 0, ' 0

i.e. ' H ( 0, )

Γ ∪Γγ

Γ ∪Γ

= = ∧ =

∈ Ω

curlE E dl E n

E curl
 [3.155] 
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Based on equation [3.11], the source field Es can be defined using the 
electromotive force “e” and a support vector field βe, such that: 

 [3.156] 

the vector field βe having the following properties: 

e1 e2 12

e1 e2

e e e

e

0, 0 and . l 1

i.e. : H ( 0, )

Γ ∪Γ γ

Γ ∪Γ

= ∧ = =

∈ Ω

curl β β n β d

β curl
 [3.157] 

Considering the function space to which it belongs, the field βe can be defined by 
means of an associated scalar potential, which will be denoted by “αe”, as follows: 

e1 e2
e e e e1 e e2 e1 e2

e

, , , 1,

H( , )
Γ Γ= − α α = α α = α α − α =

′α ∈ Ω

β grad

grad
 [3.158] 

NOTE.– For the choice of the constants αe1 and αe2, similar to the approach in the 
case of electrostatics, a simple solution involves taking αe1 = 1 on Γe1 and αe2 = 0 on 
Γe2. 

The field E' also belongs to the function space HΓe1∪Γe2 (curl0, Ω). Therefore, it 
can be defined using an electric scalar potential V (see equation [2.21]), such that: 

e1 e2' V with V H ( , )Γ ∪Γ= − ∈ ΩE grad grad  [3.159] 

In this expression, homogeneous conditions are chosen for V on Γe1 and Γe2 to 
make sure that the circulation of E' is equal to zero. It is important to note that fixing 
a value of potential V, in this case zero, makes it possible to impose the gauge 
condition and therefore the uniqueness. If in expression [3.153] the field Es is 
replaced by equation [3.156] and E' by equation [3.159], the electric field can be 
written as follows: 

 [3.160] 

As for the current density, using the behavior law [1.20], it is written as: 

 [3.161] 

 

es eβE =

Ve e gradβE −=

)Ve( e gradβJ −σ=
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Finally, if in equation [3.150] the current density is replaced by the above 
expression, we can write: 

 [3.162] 

which corresponds to the scalar potential formulation of an electrokinetics problem 
when the electromotive force “e” is imposed. Furthermore, βe can be replaced by its 
expression defined in equation [3.158], which leads to: 

 [3.163] 

Solving equation [3.162] or [3.163] leads to obtaining the scalar potential V. The 
electric field E is expressed using equation [3.160] and the current density can be 
obtained via equation [3.161]. The current density can also be expressed using the 
associated scalar potential αe as follows: 

 [3.164] 

3.4.1.1.2. Flux of imposed current density 

Let us now consider as a source term the flux of current density “I” defined by 
equation [1.57]. The electric scalar potential formulation will therefore be centered 
on this source term, which does not naturally appear in the equations. To this end, 
expression [3.162] is kept, but the electromotive force “e” is now an unknown of the 
problem. A new equation accounting for the current intensity “I” should therefore be 
introduced. To deduce it, a power balance is written. 

In its classical form, depending on the distribution of the electric field and the 
current density, the expression of the power dissipated in a conducting domain is: 

 [3.165] 

Replacing the electric field by its expression given in equation [3.160] yields: 

 [3.166] 

The second term of this integral can be written using the formula related to 
vector operators [2.23] in the following form: 

 [3.167] 

0))Ve((div e =−σ gradβ

0))Ve((div e =+ασ gradgrad

)Ve( e gradgradJ +ασ−=

Ω τ= d.P JE

Ω τ−= d).Ve(P e Jgradβ

0d.VdVdivd.V
j2e1e

=τ−τ=τ−  Γ∪Γ∪ΓΩΩ nJJJgrad
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This equation is equal to zero, as the divergence of J is equal to zero (see 
equation [3.150]) and, considering the boundary conditions, the surface integral is 
also equal to zero (V = 0 on Γe1 and Γe2 [3.159] and J.n = 0 on Γj [3.150]). Under 
these conditions, equation [3.166] takes the form: 

 [3.168] 

The power dissipated in the conductor can also be expressed using global 
quantities, as the electromotive force “e” across it and the current intensity I. Then, 
we have: 

 [3.169] 

By identification, the current I can be very easily deduced: 

 [3.170] 

Replacing the current density J by its expression given in equation [3.164], we 
obtain: 

 [3.171] 

Solving a problem of electrokinetics with the electric scalar potential 
formulation, when the source term is the current density flux, amounts to solving the 
system of equations formed of expressions [3.163] and [3.171]. In this system of 
equations, the unknowns are then the electric scalar potential V and the 
electromotive force “e” imposed across the conductor. 

3.4.1.2. Vector potential T formulation 

Similar to the scalar potential formulation, for the vector potential formulation, 
the studied case imposes as the source term either an electromotive force or the 
current density flux. The first to be studied is the case where the source term is the 
current density flux that is naturally imposed in the vector potential formulation. 

3.4.1.2.1. Imposed current density flux 

For this problem, equations [3.149], [3.150] and [1.20] must be solved. The 
boundary conditions on the boundary of the domain are defined in equation [3.151]  
 
 
 

Ω τ= d.eP e Jβ

Ω τ== d.eeIP e Jβ

 Ω τ= d.I e Jβ

)d.ed.V(I eee τασ+τσ−=  ΩΩ βgradβgrad
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and the source term “I”, corresponding to the current density flux, is given by 
relationship [1.57]. As the current density is defined by means of the divergence 
operator, in order to introduce the source term in the local form of the equations, the 
procedure presented in section 3.2.1.2 will be used. The current density J is 
decomposed (see equation [3.19]) in the form: 

 [3.172] 

In this expression, the field J' becomes the unknown of the problem and the field 
Js makes it possible to take into account the source term imposed on the boundaries 
Γe1 and Γe2. The properties of Js are given by the relations: 

{ }
ek

j

j

s s s

s

div 0, . ds I k 1, 2 , . 0

i.e. H (div0, )

Γ Γ

Γ

= = ± ∈ =

∈ Ω

J J n  J n

J
 [3.173] 

It is important to note that the current density Js having a conservative flux, the 
above-mentioned surface integral is valid for any surface Δ whose contour lies on 
the boundary Γj (see Figure 3.13). 

Since the current density Js is proportional to the current intensity I, a support 
field λI is introduced such that: 

 [3.174] 

Under these conditions, the properties of λΙ are identical to those of Js and can be 
stated as follows: 

j

j

I I I

I

div 0, . 0 and . ds 1

i.e., H (div0, )
Γ Δ

Γ

= = = ±

∈ Ω
λ λ n λ n

λ
 [3.175] 

In this expression, the surface Δ, whose contour is denoted by γ0, lies on the 
boundary Γj (see Figure 3.13). It should be recalled that by sliding the contour γ0 on 
this boundary, the surface Δ can be superposed with the boundaries Γe1 and Γe2. 
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Since the flux I of the current density on the boundaries Γek of the domain is now 
supported by Js, J' is defined by the following relations: 

}{

),0div(H'.e.i

0'.,2,1kwith,0ds'.,0'div

j

jek

Ω∈

=∈==

Γ

ΓΓ
J

nJnJJ
 [3.176] 

As the field J' is divergence free, Γek (k∈{1,2}) can be replaced by any surface Δ 
whose contour belongs to Γj. 

Since the domain Ω is contractible and considering the function space to which 
the support field λI belongs, the latter can be expressed based on an associated 
vector potential χI. However, precautions must be taken when building χI, as the 
boundary Γj is not simply connected. To this end, a cut is introduced along Γj (see 
section 3.2.1.2.2). Based on equation [3.175], the properties of the potential χI are 
written as: 

j 0

j

I I I I

I

, 0 and . 1

i.e. H ( , )

Γ γ

Δ
Γ

= ∧ = = ±

∈ Ω

λ curlχ χ n χ dl

χ curl
 [3.177] 

where γ0 represents any contour supported by Γj that cannot be contracted to a point 
by successive transformations. 

After having defined the source term Js, J' must be expressed. Its properties are 
given by relations [3.176] or J' ∈ HΓj(div0, Ω). As the domain Ω is contractible, J' 
can be expressed using an electric vector potential (see equation [2.31]), which is 
denoted by T, such that: 

j
' H ( , )Γ= ∈ ΩJ curlT T curl  [3.178] 

NOTE.– The vector potential T is not unique. It is defined up to a gradient (see 
equation [2.46]). In order to have a unique solution, a gauge condition [2.50] or 
[2.51] must be imposed. 

Based on equations [3.172], [3.174] and [3.178], the following can be deduced: 

II= +J λ curlT  [3.179] 
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This equation and the behavior law [1.20] lead to the expression of the electric 
field: 

1
I(I )−= σ +E λ curlT  [3.180] 

Using the associated vector potential χI (see equation [3.177]), the electric field 
can also be written as follows: 

1
I( I )−= σ +E curlT curlχ  [3.181] 

If the electric field is replaced in equation [3.149] by its expression given in 
equation [3.180], we obtain: 

1
I( ( I )) 0−σ + =curl curlT λ  [3.182] 

The electric field defined by equation [3.181] can also be replaced in equation 
[3.149]. Then we obtain: 

1
I( ( I )) 0−σ + =curl curlT curlχ  [3.183] 

which is the electrokinetics formulation in terms of the electric vector potential 
having as a source term the flux of density of current I. 

This problem can be solved in two steps. The first one is to determine the 
support field λI verifying equation [3.175] or the associated vector potential χI (see 
equations [3.177]). Knowing that the determination of χI can be complex due to the 
topology of the surface Γj, which is not simply connected, the support field λI is 
generally preferred. Once the source field is calculated, equation [3.182] or [3.183] 
is solved with T ∈ HΓj(curl, Ω). 

3.4.1.2.2. Imposed electromotive force 

Let us now focus on the vector potential formulation having as a source term the 
electromotive force imposed between the surfaces Γe1 and Γe2. Introducing this 
source term, with the vector potential formulation, is not natural. Indeed, in this 
case, current I becomes an unknown of the problem. To address this issue, equation 
[3.182] or [3.183] is kept and we look for an additional expression of the 
electromotive force as a function of quantities I and T. A system of equations is thus 
obtained. To this end, a power balance is written. 
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Let us go back to the expression of power (see equation [3.165]) in which the 
current density is replaced by its expression given in equation [3.179]. This yields: 

IP . d I . d
Ω Ω

= τ + τ E curlT λ E  [3.184] 

Let us consider the first integral term of equation [3.184] to which the formula 
[2.27] related to vector operators is applied. Then, the following can be written as: 

e1 e2 j

. dτ . d ( ). d
Ω Ω Γ ∪Γ ∪Γ

= τ + ∧ τ  E curlT curlE T E n T  [3.185] 

Considering equation [3.149], the first integral term on the right is equal to zero. 
It can be readily shown that the second term is also equal to zero. Indeed, the surface 
integral is decomposed into three terms, namely Γe1, Γe2 and Γj. On Γe1 and Γe2, the 
surface integral is zero, considering the properties of E (see equation [3.151]). The 
same is true for the integral on Γj due to the properties of T (see equation [3.178]). 
The power dissipated in the domain Ω only depends on the second term of equation 
[3.184] as follows: 

 [3.186] 

Expressing power as a function of global quantities, namely the electromotive 
force “e” and the flux of the current density “I”, equation [3.186] is written as: 

  [3.187] 

Simplifying by “I”, the following expression of the electromotive force is 
obtained: 

 [3.188] 

This equation can be rewritten by replacing the electric field by its expression 
given in equation [3.180] as follows: 

1 1
I I Ie . d I . d− −

Ω Ω
= σ τ + σ τ λ curlT λ λ  [3.189] 

 

 

Ω τ= d.IP I Eλ

τ= Ω d.IeI I Eλ

Ω τ= d.e I Eλ
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The expression of the electromotive force “e” is obtained as a function of the 
electric vector potential T and the current intensity I. 

In order to solve this problem, with the electromotive force as a source term, 
assume that the vector field λI is known (see equation [3.175]). In this case, the 
system of equations to be solved, whose unknowns are the electric vector potential T 
and the current intensity I, has the following form: 

1 1
I( ) ( I) 0− −σ + σ =curl curlT curl λ   

1 1
I I I. d I . d 0− −

Ω Ω
σ τ + σ τ = λ curlT λ λ  [3.190] 

For the problem to be complete, the gauge condition and the boundary conditions 
for T should be added. 

3.4.1.3. Summarizing tables 

Electrokinetics (studied domain) 

Sc
al

ar
 p

ot
en

tia
l V

 fo
rm

ul
at

io
n 

Source term: electromotive force e 

Source field support two 
possibilities: βe or αe 

Decomposition of the electric field: E = Es + E' 

e1 e2s e ee , H ( 0, )Γ ∪Γ= ∈ ΩE β β curl  

 

Properties of the unknown E' 
and introduction of potential V

e1 e2
' H ( 0, )Γ ∪∈ ΩE curl  

e1 e2
' V, V H ( , )Γ ∪Γ= − ∈ ΩE grad grad  

Equation to be solved: two 
possible forms as a function of 

βe or αe 

 

 

Source term: current intensity I 
e becomes an unknown; an additional equation is needed 

 

Table 3.3. Summary of equations to be solved in electrokinetics  
for the scalar potential formulation (see Figure 3.13) 

),(H,e ees Ω∈αα−= gradgradE

0))Ve((div e =−σ gradβ

0))Ve((div e =+ασ gradgrad

Ω τ= d.I e Jβ
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Electrokinetics (studied domain) 

V
ec

to
r 

po
te

nt
ia

l T
 fo

rm
ul

at
io

n 

Source term: current intensity I 

Source field support two 
possibilities: λI or χI with a 

cut on Γj not simply 
connected 

Decomposition of the electric field: J = Js + J' 

 

js I II , H ( , )Δ
Γ= ∈ ΩJ curlχ χ curl  

Properties of the unknown 
J' and introduction of the 

vector potential T 

 

j
' , H ( , )Γ= ∈ ΩJ curlT T curl  

Equation to be solved: two 
possible forms depending on 

λI or χI 

1
I( ( I )) 0−σ + =curl curlT λ  

1
I( ( I )) 0−σ + =curl curlT curlχ  

Source term: electromotive force e 
I becomes an unknown; an additional equation is needed 

 

Table 3.4. Summary of equations to be solved in electrokinetics  
for the vector potential formulation (see Figure 3.13) 

3.4.2. Multisource case 

Section 3.4.1 only considered two gates on which either an electromotive force 
or the current intensity was imposed. The approach can be generalized to a set-up 
with N boundaries of Γek type (N gates). The source terms can be electromotive 
forces (circulation of the electric field between two gates), current intensity (flux of 
current density) or still a combination of the two. 

For the electric field, which is curl free (see equation [3.149]), the path γij, 
linking two gates i and j, can be arbitrary, since in this case the circulation is 
independent of the path followed. Nevertheless, the paths on which the circulation 
(the electromotive force) is imposed should not form a closed loop. As there are N 
gates, the maximum number of conditions to be imposed on the circulations 
(electromotive forces) is N – 1. 

Similarly, as J is divergence free (see equation [3.150]), the sum of the fluxes of 
current density, imposed across the gates, must be equal to zero. Therefore, the 
maximum number of independent values of current I that can be imposed is N – 1. 

),0div(H,I
jIIs Ω∈= ΓλλJ

),0div(H'
j

Ω∈ ΓJ

Ω τ= d.e I Eλ
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Conditions on the circulations and the fluxes of current density can also be 
imposed simultaneously. Likewise, the number of these conditions must be equal to 
N – 1 and respect the above constraints. 

In order to illustrate these various possibilities, the example to be studied is that 
of Figure 3.14, composed of three gates Γe1, Γe2 and Γe3. 

 

Figure 3.14. Electrokinetics: example of  
multisource geometry with 3 gates (N = 3)  

The studied domain Ω, of the conductivity σ, is contractible, of the boundary Γ, 
such that: 

 [3.191] 

It can be noted that the boundary Γj is not simply connected. The boundary 
conditions on various boundaries are equivalent to those given in equation [3.151]. 
The fields E and J are governed by equations [3.149] and [3.150] and the electric 
behavior law [1.20]. In this example, in the presence of three gates, two source terms 
must be imposed. As shown in Figure 3.14, the source terms can be, for example, 
the electromotive forces e13 and e23, the currents I1 and I2 or a condition on an 
electromotive force and a current. 

In what follows, in reference to sections 3.4.1.1 and 3.4.1.2, the two formulations 
in terms of the scalar potential V and the vector potential T will be built. 
Considering the equations to be solved, a certain similarity with the electrostatic 
problem studied in section 3.3.2 can be noted. This will serve as a reference when 
building the support fields and associated potentials. 

j3e2e1e Γ∪Γ∪Γ∪Γ=Γ
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3.4.2.1. Scalar potential V formulation 

As a first step, the source terms are considered to be the electromotive forces e13 
and e23. Based on equation [3.153], two source fields Es1 and Es2 are evidenced,  
and they can be expressed, respectively, using two support fields β13 and β23  
(see equation [3.157]) such that: 

( ) { }
e1 e2 e3kj

e1 e2 e3

ij ij ki ij

ij

0, . 0

H ( 0, ) i, k 1.2 and j 3

Γ ∪Γ ∪Γγ

Γ ∪Γ ∪Γ

= = δ ∧ =

′∈ Ω ∈ =

curl β β dl β n

β curl
 [3.192] 

Since the studied domain is contractible, the support fields βij can be expressed 
as a function of associated scalar potentials defined by relations [3.13] and [3.14]. 
Then, we have: 

( )

}{ { }
ek

ij ij ij ki ijand H ,

with i 1,2 , k 1,2,3 , j 3
Γ

′= − α α = δ α ∈ Ω

∈ ∈ =

β grad grad
 [3.193] 

Following the same approach as in section 3.4.1.1.1, let us introduce the electric 
scalar potential V (see equation [3.159]). The electric field can then be expressed using 
support fields, electromotive forces and scalar potential V in the following form: 

e1 e2 e313 13 23 23e e V, with V H ( , )Γ ∪Γ ∪Γ= + − ∈ ΩE β β grad grad  [3.194] 

As for the current density, considering equation [3.150] and the boundary 
conditions defined by equations [3.191] and [3.151], they belong to HΓj(div0, Ω). Its 
expression is obtained using the behavior law [1.20] as follows: 

j13 13 23 23(e e V) with H (div0, )Γ= σ + − ∈ ΩJ β β grad J  [3.195] 

Applying equation [3.147] to the expression of the current density, the scalar 
potential formulation is written as: 

 [3.196] 

The two support fields β13 and β23 can be expressed (see equation [3.193]), by 
means of the associated scalar potentials α13 and α23. In this case, equation [3.196] 
has the following form: 

 [3.197] 

0)Vee(div 23231313 =−+σ gradββ

0)Vee(div 23231313 =+α+ασ gradgradgrad
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If instead of the electromotive forces, the currents I1 and I2 are imposed on the 
gates Γe1 and Γe2, as shown in section 3.4.1.1.2, the electromotive forces become the 
unknowns of the problem. To obtain a full equation system, two additional equations 
must be added by means of a power balance. Based on equation [3.170], it can be 
noted that current I is obtained by integrating, over the entire domain Ω, the scalar 
product of the current density J and of the support field βe. There are two support 
fields β13 and β23 in our application. Applying an approach similar to the one 
developed in the case of electrostatics (see section 3.3.2.1.2), it can be deduced that 
the current I1 is obtained by integrating the scalar product of J (see equation [3.195]) 
and β13 as follows: 

 [3.198] 

Similarly, for current I2, we have: 

 [3.199] 

The system of equations to be solved is then composed of equations [3.196], 
[3.198] and [3.199]. 

Let us now consider that the source terms are a combination of an electromotive 
force and a current, namely e13 and I2. In order to solve equation [3.196], we have 
two unknowns: the scalar potential V and the electromotive force e23. To obtain a 
full equation system, equation [3.199] is added. 

3.4.2.2. Vector potential T formulation 

For the vector potential formulation, we rely on section 3.4.1.2. As a first step, 
let us consider as source terms the currents I1 and I2. 

Based on equation [3.172], two source current densities Js1 and Js2 are introduced 
and their expressions use the two support fields λ13 and λ23. The approach used for 
building these two fields is similar to that for the field λI of equation [3.175]. This 
yields: 

e1 e3

e2 je2 j

13 13 13

13 13

div 0, . dS 1, . dS 1

. 0 i.e. H (div, )
Γ Γ

Γ ∪ΓΓ ∪Γ

= = = −

= ∈ Ω

 λ λ n λ n

λ n λ
 [3.200] 

Ω τ−+σ= d)Vee.(I 23231313131 gradβββ

Ω τ−+σ= d)Vee.(I 23231313232 gradβββ



106     Finite Element Method to Model Electromagnetic Systems in Low Frequency 

e2 e3

e1 je1 j

23 23 23

23 23

div 0, . dS 1, . dS 1,

. 0 i.e. H (div, )
Γ Γ

Γ ∪ΓΓ ∪Γ

= = = −

= ∈ Ω

 λ λ n λ n

λ n λ
 [3.201] 

Using these support fields and introducing the electric vector potential T (see 
equation [3.178]), the current density is written as: 

( )
j1 13 2 23I I with H ,Γ= + + ∈ ΩJ λ λ curlT    T curl  [3.202] 

For the electric field, equation [3.149] and the boundary conditions defined by 
equations [3.191] and [3.151] show that it belongs to HΓe1∪Γe2∪Γe3curl0, Ω). Its 
expression is obtained by means of the behavior law [1.20], i.e.: 

e1 e2 e3

1
1 13 2 23(I I ) with H ( 0, )−

Γ ∪Γ ∪Γ= σ + + ∈ ΩE λ λ curlT E curl  [3.203] 

The vector potential formulation of this problem is then obtained by applying 
relation [3.149] to the electric field as follows: 

1
1 13 2 23( (I I )) 0−σ + + =curl λ λ curlT  [3.204] 

Considering the properties of the support fields λ13 and λ23 (see equations [3.200] 
and [3.201]), it is possible to introduce the potentials χij, as shown by equation 
[3.177]. However, given that the boundary Γj is not simply connected, some 
precautions must be taken (see section 3.2.1.2.2). 

Let us now consider that the source terms are the electromotive forces e13 and e23. 
The current densities I1 and I2 become the unknowns of the problem. It is therefore 
necessary to impose two additional equations. Similar to section 3.4.1.2.2, these two 
equations are obtained by means of a power balance. In this section, equation [3.188] 
shows that the electromotive force is expressed by integrating, over the domain Ω, the 
scalar product of the electric field with a support field. Applied to our example, the 
expression of the electromotive force e13, with λ13 as the support field, is: 

1
13 13 1 13 2 23e λ . (I I )d−

Ω
= σ + + τ λ λ curlT  [3.205] 

As for the electromotive force e23, it is written similarly, with λ23 as the support 
field: 

1
23 23 1 13 2 23e λ . (I I )d−

Ω
= σ + + τ λ λ curlT  [3.206] 
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The system of equations to be solved is therefore composed of equations [3.204], 
[3.205] and [3.206]. 

Finally, consider the case of a combination of source terms of different natures, 
for example, the electromotive force e13 and the current I2. We have to solve 
equation [3.204] but, besides the vector potential T, the current I1 is unknown. 
Under these conditions, to obtain a full equation system, equation [3.205] is added. 

3.4.3. Tonti diagram 

First of all, the physical quantities, namely J, E and also the conductivity σ 
linking them (see equation [1.20]), are positioned in the diagram. Then, similar to E 
and J, the source fields Es, Js and the fields E' and J' can be placed on the diagram 
as well as the two potentials V and T so that they verify, respectively, equations 
[3.159] and [3.178]. 

 

Figure 3.15. Tonti diagram in the case of electrokinetics  

3.5. Magnetostatics 

3.5.1. Studied problems 

Similar to electrostatics and electrokinetics, two (scalar and vector) potential 
formulations will be developed for magnetostatics. These developments will be 
achieved for the four types of source terms presented in section 1.5.3, namely the 
magnetomotive force, the magnetic flux, a permanent magnet and an inductor 
through which a known current density flows. Similar to electrostatics and 
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electrokinetics, depending on the source term used, the scalar or vector potential 
formulation will be introduced naturally. For the other configurations, an additional 
equation resulting from a magnetic energy balance needs to be introduced. 

It can also be noted that if the source terms are imposed on the boundaries of the 
domain, in this case the magnetomotive force and the magnetic flux, the 
developments required to obtain the potential formulations are equivalent to those 
introduced in electrostatics and electrokinetics. 

3.5.2. Scalar potential ϕ formulation 

3.5.2.1. Imposed magnetomotive force 

For the study of a set-up in which the source term is a magnetomotive force, let us 
consider the relatively simple example, represented in Figure 3.16. The domain Ω is 
contractible, its boundary Γ being Γ = Γh1∪Γ h2∪Γb. The boundary Γb, defined by 
relation [1.37], represents a wall for the magnetic flux density and the boundaries Γh1 
and Γh2, defined by relation [1.36], represent the gates. As shown in Chapter 1 (see 
equation [1.60]), the magnetomotive force “fm” is defined by the circulation of the 
magnetic field between the boundaries Γh1 and Γh2 of the domain Ω along the path γ12. 

The equations to be solved, see for example Figure 3.16, are written based on 
equations [1.65] and [1.66], but in the absence of the current density, in the 
following form: 

0=curlH  [3.207] 

 [3.208] 

We should add the magnetic behavior law [1.26] and the boundary conditions [1.36] 
and [1.37] which, for the studied problem, are defined by the following expressions: 

{ }
b hk

b h1 h2 with . 0, 0

with k 1,2
Γ ΓΓ = Γ ∪ Γ ∪ Γ = ∧ =

∈

B n H n
 [3.209] 

It should be noted that the boundary Γb is not simply connected. 

Based on the above equations, the function spaces associated with the magnetic 
field H and with the magnetic flux density B can be readily deduced. Then, we have: 

h1 h 2 b
H ( 0, ) and H (div0, )Γ ∪Γ Γ∈ Ω ∈ ΩH curl B  [3.210] 

0div =B
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Figure 3.16. Geometry studied for magnetostatics having  
as source terms the flux φ or the magnetomotive force fm  

It should be recalled that when the source term is linked to a field defined by a 
circulation (see section 3.2.1.1), the scalar potential formulation is naturally 
introduced. Under these conditions, in order to introduce the source term, in the 
local forms of the equations, the magnetic field H is decomposed into two terms (see 
equation [3.8]) as follows: 

 [3.211] 

where Hs is the source field due to the magnetomotive force, a priori known, and H' 
is the new unknown of the problem. The source field Hs is defined based on the 
properties of field H as follows: 

h1 h 212

h1 h 2

s s m s

s

0, . , 0

i.e. H ( 0, )

Γ ∪Γγ

Γ ∪Γ

= = ∧ =

∈ Ω

curlH H dl H n

H curl

f
 [3.212] 

The field Hs is proportional to the magnetomotive force “fm”. It can therefore  
be expressed by means of a support field, denoted by βs (see equation [3.11]), such 
that: 

 [3.213] 

 

 

's HHH +=

sms βH f=
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where βs has the properties equivalent to those defined in the general case (see 
equation [3.12]), therefore: 

h1 h 212

h1 h 2

s s s

s

0, . 1, with 0

i.e. H ( 0, )

Γ ∪Γγ

Γ ∪Γ

= = ∧ =

∈ Ω

curlβ β dl β n

β curl
 [3.214] 

For a contractible studied domain, taking into account its properties, the field βs 
can be expressed by means of a scalar potential “αs” (see equation [3.13]). Then, the 
source field Hs has the following form: 

e1 e2
s m s s swith 1 and 0Γ Γ= − α α = α =H grad    f  [3.215] 

Having defined the source field, the aim is to determine the field H', the new 
unknown of the problem. The properties of H' are deduced from the magnetic field 
H and from the source field Hs and have the following form: 

h1 h 212

h1 h 2

' 0, '. 0, ' 0

i.e. ' H ( 0, )

Γ ∪Γγ

Γ ∪Γ

= = ∧ =

∈ Ω

curlH H dl H n

H curl
 [3.216] 

For a contractible domain, H' can be expressed using the magnetic scalar 
potential, which will be denoted by ϕ. In order to have a circulation of H' between 
Γh1 and Γh2 equal to zero and a unique solution, the scalar potential ϕ is set to zero 
on these two surfaces. Under these conditions, the scalar potential is defined by the 
properties: 

h2h1
' with H ( , )Γ ∪Γ= − ϕ ϕ∈ ΩH grad grad  [3.217] 

Gathering equations [3.211], [3.213] and [3.217], the magnetic field has the 
following form: 

 [3.218] 

Based on this equation and using the behavior law [1.26], the magnetic flux 
density is written as: 

 [3.219] 

 

ϕ−= gradβH smf

)( sm ϕ−μ= gradβB f
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If the magnetic flux density is replaced in equation [3.208] by expression 
[3.219], we obtain: 

 [3.220] 

Furthermore, βs can be replaced by its expression as a function of αs, defined in 
equation [3.215]. Under these conditions, equation [3.220] can be rewritten as 
follows: 

 [3.221] 

The solution to equation [3.220] or [3.221] makes it possible to determine the 
magnetic scalar potential ϕ. Relation [3.218] is used in order to calculate the 
magnetic field H, knowing ϕ. Then, in order to determine the magnetic flux density 
B, equation [3.219] is used. The scalar source term αs introduced into equation 
[3.215] can also be used. Then, we obtain: 

 [3.222] 

It can be noted that, in this case, this equation is similar to relation [3.164], 
obtained in the case of electrokinetics. 

3.5.2.2. Imposed magnetic flux density 

To illustrate the case when the source term is the magnetic flux φ (see equation 
[1.61]), the example in Figure 3.16 is considered. Imposing the flux φ is more 
difficult in scalar potential formulation. Indeed, as developed in the previous section, 
in the case of formulations in electrostatics and electrokinetics, an additional 
equation is required. In the present case, the objective is to express the flux φ as a 
function of the magnetomotive force fm and of the scalar potential ϕ. To obtain this 
expression, an energy balance must be written. 

The following section presents the developments for a linear behavior law of 
materials. This result is nevertheless true when the magnetic behavior law is not 
linear. 

In the linear case, the magnetic energy is written as: 

 [3.223] 

 

0))((div sm =ϕ−μ gradβf

0))((div sm =ϕ+αμ gradgradf

)( sm α+ϕμ−= gradgradB f

Ω τ= d.
2
1Wmag HB
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Replacing the magnetic field H by its expression given in equation [3.218], we 
have: 

 [3.224] 

Let us consider the second term of the integral. Using formula [2.23], related to 
vector operators, we can write: 

 [3.225] 

It can be easily shown that this integral is equal to zero. Indeed, for the first term, 
the divergence of B is zero (see equation [3.208]). For the second term, it can be 
readily shown that, taking into account the boundary conditions, the surface integral 
is also zero (on Γb, B.n = 0 and on h1 h2Γ ∪Γ , ϕ = 0). Under these conditions, 
equation [3.224] has the form: 

 [3.226] 

The magnetic energy can also be expressed using the global quantities fm and φ. 
The following can be written: 

 [3.227] 

By identification, the expression of the magnetic flux is obtained: 

 [3.228] 

By replacing B by its expression, given in equation [3.222]: 

 [3.229] 

Under these conditions, when the source term is the magnetic flux, with the 
scalar potential formulation, the magnetostatic problem to be solved has the form of 
the following system of equations: 

 

Ω τϕ−= d).(
2
1W smmag gradβB f

 Γ∪Γ∪ΓΩΩ τϕ−τϕ=τϕ−
2h1hb

d.
2
1ddiv

2
1d.

2
1 nBBgradB

Ω τ= d.
2
1

W smmag Bβf

Ω τ=φ= d.
2
1

2
1

W smmmag Bβff

Ω τ=φ d. sβB

Ω τα+ϕμ−=φ d).( ssm βgradgrad f

0))((div sm =ϕ−μ gradβf
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 [3.230] 

where the unknowns are the scalar potential ϕ and the magnetomotive force “fm”. 

3.5.2.3. Imposed current density 

For the analysis of a magnetostatics problem, having as a source term the current 
density J0, let us consider the example in Figure 3.17. We have an iron core coil, 
consisting of a multiwire inductor winding, through which flows a current I. The 
magnetic permeability of the iron core is denoted by µ1. Knowing the intensity of 
the current I in the inductor, the current density J0 is given by the expression [1.62]. 
The studied domain Ω, of boundary Γ, holds the coil Ωs of boundary Γs, the iron 
core, all being immersed in an air box of permeability µ0. On the external boundary 
Γ, the boundary conditions are of wall type for the magnetic flux density (see 
equation [1.37]). Finally, it should be noted that the domain defined by the coil 
(subdomain Ωs) is not simply connected and its permeability is equal to µ0. 

 

Figure 3.17. Studied geometry for magnetostatics when the  
source term is a current density J0 imposed in an inductor  

In the case of magnetostatics, having as a source term a current density, the 
equations to be solved are written as follows: 

0=curlH J  [3.231] 

Ω ταμ+ϕμ−=φ d)..( ssms gradβgradβ f
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 [3.232] 

with the magnetic behavior law [1.26] and the Γb type of boundary condition over 
the entire boundary of the domain, which is: 

 [3.233]
 

Based on these equations, the function spaces, to which belong the magnetic 
field H and the magnetic flux density B, can be deduced as follows: 

0H( , ) and H (div0, )∈ Ω ∈ ΩH curl B  [3.234] 

For this problem, the configuration is that of a source term inside a domain 
associated with a curl. The formulation relies on the results of section 3.2.2.1. Let us 
first focus on the current density J0, which is a divergence free vector field. It is 
proportional to the current intensity I and can be expressed using a support field λI 
(see equation [3.37]) in the form: 

 [3.235] 

In reference to the field λs introduced in section 3.2.2.1, λI is defined in the 
inductor and, by extension, it is set to zero in the remaining domain. Let us recall 
that this extension is possible, as we have J0.n = 0 on the boundary of the inductor 
thus providing the continuity of the normal component of J0 throughout the domain. 
This process allows for the definition of λI throughout the domain Ω that is 
contractible. The issue related to the non-connectedness of the subdomain Ωs for the 
construction of the associated vector potential χI (see equation [3.39]) vanishes. 
Under these conditions, the properties of λI are stated (see equation [3.38]) in the 
following form: 

s
I I I

I 0

div 0, . dS 1, . 0

i.e. H (div0, )
ΓΔ

= = =

∈ Ω
λ λ n λ n

λ
 [3.236] 

In this expression, Δ represents the cross-section of the conductors, perpendicular 
to the direction of the current density. 

The support field λI belongs to the space H0(div0, Ω), which can therefore be 
expressed by means of a potential χI (see equation [3.39]) whose properties are: 

I I I I 0, 0 i.e. H ( , )Γ= ∧ = ∈ Ωcurlχ λ χ n χ curl  [3.237] 

0div =B

0. =ΓnB

I0 IλJ =



Maxwell’s Equations: Potential Formulations     115 

For the developments, a source field Hs is again introduced. In the studied 
example, it is defined using the current density J0 via the curl operator. Then, based 
on equations [3.235] and [3.237], the following succession of equations can be 
written as: 

s 0 I II I= = =curlH J λ curlχ  [3.238] 

Based on equation [3.231], introducing the field Hs and using equation [3.238], a 
field H' can be defined as follows: 

s I( ) ( I ) ' 0− = − = =curl H H curl H χ curlH  [3.239] 

In this expression, the following can be deduced by identification: 

 [3.240] 

It should be noted that this is the expression of the decomposition of field H 
given by equation [3.211]. The properties of H' can be deduced from these relations 
as follows: 

' 0, ' H( 0, )=  ∈ ΩcurlH H curl  [3.241] 

Considering the function space to which H' belongs, where the studied domain is 
contractible, equation [2.32] yields: 

' , with H( , )= − ϕ ϕ∈ ΩH grad grad  [3.242] 

where ϕ represents the magnetic scalar potential to which a gauge condition must be 
added, namely setting the potential in a point of the domain. Based on relations 
[3.240] and [3.242], the magnetic field is written as: 

 [3.243] 

Using this expression, with the behavior law [1.26], the magnetic flux density is 
written as: 

 [3.244] 

Using equation [3.244], equation [3.232] is written as: 

 [3.245] 

Is I'' χHHHH +=+=

ϕ−= gradχH II

)I( I ϕ−μ= gradχB

0))I((div I =ϕ−μ gradχ
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To which we should add the boundary conditions on the boundary Γb of the 
domain as follows: 

b
II n 0

Γ
μ − ϕ =( ).χ grad  [3.246] 

Equation [3.245] represents the magnetic scalar potential formulation of a 
magnetostatics problem when the source term is an imposed current density flowing 
through an inductor located inside the domain. 

3.5.2.3.1. Expression of the flux Φ in a coil 

To determine the total magnetic flux Φ in a coil, the magnetic energy will first be 
expressed. This is given by equation [3.223]. Replacing the magnetic field by 
expression [3.243], we obtain: 

 [3.247]
 

As already seen in section 3.5.2.2, the first term of the integral is equal to zero. 
Indeed, in this configuration, using equation [2.23], it can be decomposed as 
follows: 

 [3.248] 

with divB = 0 and the boundary conditions on the boundary, namely B.n = 0 on Γb. 
Considering this result, if now the magnetic energy is also expressed using the 
global quantities I and Φ, we then have: 

 [3.249]
 

By identification, the expression of the flux in the coil is written as: 

 [3.250] 

This expression allows not only for the calculation of the total flux Φ in the coil 
but also its imposition. It is sufficient then to couple equations [3.245] and [3.250]. 
In this case, the current I becomes an unknown of the problem. 

Ω τ+ϕ−= d)I.(
2
1

W Imag χgradB

0dS.
2
1ddiv

2
1d.

2
1

b
=ϕ−τϕ=τϕ−  ΓΩΩ nBBgradB

Ω τ=Φ= d.I
2
1

I
2
1

W Imag χB

Ω τ=Φ d. IχB
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3.5.2.4. Permanent magnet as the source term 

Consider the domain Ω represented in Figure 3.18. It consists of three 
subdomains (Ω0, Ω1, ΩPM), which are, respectively, air, a ferromagnetic material and 
a permanent magnet. The boundary conditions on the boundary are of type Γb. In the 
air, a magnetic permeability equal to µ0 is considered. For the ferromagnetic 
subdomain, a permeability µ1 is considered. The permanent magnet will be 
represented by a magnetic permeability µA and a coercive field Hc (see equation 
[1.64]). In order to simplify the developments, the domain of definition of field Hc is 
extended to the entire domain Ω considering it equal to zero in Ω-ΩPM. 

In this case, the equations to be solved have the form: 

0=curlH  [3.251] 

 [3.252] 

having as the behavior law of the domains Ω0 and Ω1, equation [1.26] and relation 
[1.64] for the permanent magnet. Considering the Γb type boundary conditions on 
the entire boundary, the function spaces associated with field H and with magnetic 
flux density B are given by: 

0H( 0, ) and H (div0, )∈ Ω ∈ ΩH curl B  [3.253] 

Based on the function space to which the field H belongs and the fact that the 
domain Ω is contractible, we can introduce (see equation [2.32]) the magnetic scalar 
potential, such that: 

with H( , )= − ϕ ϕ∈ ΩH grad grad  [3.254] 

Using the scalar potential, equation [3.251] can be automatically verified. The 
behavior law [1.64] can be used to express the magnetic flux density in the 
following form: 

 [3.255] 

where µ takes the value µ0, µ1 and µA depending on the considered subdomain and 
Hc which is zero in the domain Ω-ΩPM. 

Under these conditions, grouping equations [3.252], [3.254] and [3.255], we 
obtain the following for the domain Ω: 

 [3.256] 

0div =B

)( cHHB −μ=

0))((div c =+ϕμ Hgrad
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Figure 3.18. Studied geometry for magnetostatics  
when the source term is a permanent magnet  

NOTE.– For many applications, the coercive field Hc is considered constant in the 
permanent magnet. This leads to discontinuities of its normal component on some 
parts of its boundary. Consider the example in Figure 3.19, where the permanent 
parallelepipedic magnet (domain ΩPM) is immersed in the domain Ω, such that 
Ω = ΩPM∪Ω0. It can be noted that the normal component of µHc is discontinuous on 
the boundary ΓAn, since this component is zero in Ω0, and therefore, the divergence 
of this term is not defined on the entire domain. In fact, only the divergence of the 
term μgradϕ + μHc is defined. Therefore, the source term µHc cannot be extracted 
from the divergence operator. This will no longer be a difficulty when the weighted 
residual method is introduced in section 4.4.5.1, as the work will be conducted on 
integral formulations. 

 

Figure 3.19. Study of a permanent magnet: discontinuity of the  
normal component of the coercive field on the boundary ΓAn  
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Finally, on the boundary of the domain Ω, of Γb type, the boundary condition is 
written as: 

 [3.257] 

Moreover, the system of equations is well posed, provided that a gauge condition 
is imposed on the scalar potential. 

3.5.2.5. General case 

This section develops the scalar potential formulation in the presence of several 
source terms, as shown in Figure 3.20. It is not difficult to simultaneously impose 
source terms of various natures, considering the linearity of vector operators and 
boundary conditions. The following developments are therefore true, even though 
the behavior laws are not linear. However, concerning the magnetomotive force fm 
and the magnetic flux φ, imposed on the boundaries ΓΓh1 ∪Γh2, only one of these two 
terms should be considered at a time. In what follows, let us first consider as source 
terms the current density J0, a permanent magnet represented by means of the 
coercive field Hc and a magnetomotive force fm. The next step will be to replace fm 
by the magnetic flux φ. 

 

Figure 3.20. Magnetostatics problem: studied geometry in the general case  

Maxwell’s equations to be solved in this context are written as: 

0=curlH J  [3.258] 

 [3.259] 

0. =ϕμ− Γngrad

0div =B
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For this example, the boundary conditions on the boundary Γ have the following 
form: 

{ }
b hk

b h1 h2 , . 0, 0, and k 1, 2Γ ΓΓ = Γ ∪ Γ ∪ Γ = ∧ = ∈B n H n  [3.260] 

Irrespective of whether the magnetomotive force or the magnetic flux is 
imposed, the function spaces to which the magnetic field H and the magnetic flux 
density B belong are defined by: 

h1 h 2 b
H ( , ) and H (div0, )Γ ∪Γ Γ∈ Ω ∈ ΩH curl B  [3.261] 

3.5.2.5.1. Source terms: fs, J0, Hc 

As developed in sections 3.2.5.1–3.2.5.4, the magnetic field can be decomposed 
into several terms (see equation [3.211]). In the presence of a magnetomotive force 
and a source current density, we have: 

 [3.262] 

where H' represents the unknown of the problem, Hsf is the source term due to the 
magnetomotive force and HsI is the source term due to the current density J0 in the 
inductor. It should be recalled that the flux of the current density J0 is equal to the 
intensity I (see equation [1.62]). If Hsf is replaced in equation [3.262] by its 
expression given in equation [3.215], HsI by its expression given in equation [3.240] 
and ( )

h1 h2
H ,Γ ∪Γ′∈ ΩH curl  by equation [3.217], the magnetic field is written as: 

h1 h2m s I( I ) with H ( , )Γ ∪Γ= − ϕ + α − ϕ∈ ΩH grad grad χ gradf  [3.263] 

It is important to note that the function space to which ϕ belongs, as well as the 
properties of the scalar potential αs [3.215] and of the support field χI [3.237], 
require the tangential component of the magnetic field to be zero on the boundaries 
Γh1∪Γh2. The contribution due to the permanent magnet appears through the 
behavior law [3.255], when the magnetic flux density is expressed: 

 [3.264] 

where µ depends on the position according to the subdomains (Ω0, Ω1 and ΩPM) and 
may take the values µ0, µ1 or µPM. When the source terms are fm, J0 and in the 
presence of a permanent magnet, the scalar potential formulation results by applying 
equation [3.259] to the expression of the magnetic flux density as follows: 

 [3.265] 

sIs' HHHH ++= f

cIsm )I( HχgradgradB μ−−α+ϕμ−= f

0))I((div cIsm =+−α+ϕμ Hχgradgrad f
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This equation can be rewritten by replacing the associated potential αs by the 
support field βs, see [3.13], which yields: 

 [3.266] 

3.5.2.5.2. Source terms: φ, J0, Hc 

Imposing the magnetic flux φ on the boundaries Γh1 and Γh2 (see equation [1.61]) 
does not modify equation [3.265]. On the contrary, the magnetomotive force fm that 
was a source term becomes, as seen in section 3.5.2.2, an additional unknown of the 
problem. To obtain a full equation system, an additional equation is required in 
which the magnetic flux on the boundaries Γh1 and Γh2 appears. To this end, relation 
[3.228] can be used. If in this equation B is replaced by its expression (see equation 
[3.264]), we obtain: 

 [3.267] 

This equation can also be rewritten, posing βs = – gradαs, as follows: 

 [3.268] 

The system of equations composed of relations [3.265] and [3.268] then has to 
be solved, where the unknowns are the scalar potential ϕ and the magnetomotive 
force fm. The gauge condition on ϕ and the boundary conditions on the boundaries of 
the domain must be added to this system. 

3.5.3. Vector potential A formulation 

Similar to the approach for the scalar potential formulation, for the vector 
potential formulation the equations to be solved will be introduced by considering 
the four source terms separately, and then the general case will be dealt with. 

To facilitate the reasoning, the first case to be studied is that in which the source 
term is the magnetic flux φ imposed on the boundaries of a domain (see  
section 3.5.3.1). This source term is very well adapted to the vector potential 
formulation. The next section focuses on how to impose a magnetomotive force “fm” 
(see section 3.5.3.2), the current “I” in a stranded inductor (see section 3.5.3.3) and 
the case of a permanent magnet (see section 3.5.3.4). Finally, the general case with 
several source terms in the studied domain will be considered. 

0))I((div cIsm =+−−ϕμ Hχβgrad f

Ω τ−+α−ϕ−μ=φ d)..I..( csIsssms Hβχβgradβgradβ f

Ω τ−++ϕ−μ=φ d)..I..( csIsssms Hβχβββgradβ f
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3.5.3.1. Imposed magnetic flux 

The development of this formulation uses the example in Figure 3.16. The 
equations to be solved are those given in equations [3.207] and [3.208] with the 
magnetic behavior law [1.26] and the Γh and Γb type boundary conditions (see 
equation [3.209]). To solve these equations, the flux φ across the boundaries Γh1 and 
Γh2 will be introduced into the local equations. It should be recalled (see equation 
[1.61]) that the flux is expressed using the magnetic flux density B. As the latter is 
defined by the divergence operator, the procedure proposed in section 3.2.1.2 will be 
used. 

First of all, the magnetic flux density is decomposed into two terms as follows: 

 [3.269] 

In this expression, Bs represents the source field created by the flux φ imposed on 
the boundaries Γh1 and Γh2. The properties of this field (see equation [3.21]) are 
given by the relations: 

{ }
hk b

b

s s s

s

div 0, . ds , . 0

with k 1,2 i.e. H (div0, )

Γ Γ

Γ

= = ±φ =

∈ ∈ Ω

B B n B n

B
 [3.270] 

Concerning B' on Γb, condition [1.37] is obviously applicable. On the contrary, 
considering equation [3.270], through Γh1 and Γh2, the flux is equal to zero. Finally, 
using equation [3.208], the properties of B' are stated as follows: 

{ }
bhk

b

div 0, '. ds 0, '. 0

with k 1, 2 i.e. ' H (div0, )

ΓΓ

Γ

= = =

∈ ∈ Ω

B' B n B n

B
 [3.271] 

In order to express the source field Bs, the support vector field denoted by λφ is 
introduced (see equation [3.22]), such that: 

 [3.272] 

Similar to λs (see section 3.2.1.2.1), the properties of λφ are similar to Bs, which 
are written as: 

b

b

div 0 with . ds 1 and . 0

i.e. H (div0, )

φ φ φ ΓΔ

φ Γ

= = =

∈ Ω
λ λ n λ n

λ
 [3.273] 

's BBB +=

φ= φλBs
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The surface Δ was introduced in this expression, as in equation [3.23]. It should 
be noted that by sliding Δ along the boundary Γb (see Figure 3.16), this surface may 
merge with the boundaries Γh1 or Γh2. The boundary conditions imposed by 
expression [3.270] can thus be verified. Considering these properties and the fact 
that the studied domain is contractible, the support field λφ can be expressed using 
an associated potential χφ. As the boundary Γb is not simply connected, the 
construction of potential χφ requires some precautions. In fact, a cut must be 
introduced along the boundary Γb (see section 3.2.1.2.2). Based on relations [3.273], 
the properties of potential χφ have the following form: 

b 0

b

with 0 and . 1

i.e. H ( 0, )

φ φ φ φΓ γ

Δ
φ Γ

= ∧ = =

∈ Ω

λ curlχ χ n χ dl

χ curl
 [3.274] 

In this expression, γ0 represents a contour belonging to Γb and that cannot be 
contracted to a point by successive transformations (see Figure 3.16). 

As the source term Bs is assumed to be known, the field B' remains to be  
defined. Equation [3.271] indicates that B' ∈ HΓb(div0, Ω). As the domain is 
contractible, it is then possible to express B' using a magnetic vector potential, 
denoted by A (see equation [2.31]), such that: 

b
' A with H ( , )Γ= ∈ ΩB curl A curl  [3.275] 

The vector potential A is not unique. It is defined up to a gradient (see equation 
[2.46]). The uniqueness of the solution can be imposed by adding a gauge condition 
similar to equations [2.50] or [2.51]. 

Based on equations [3.269] and [3.275], we obtain: 

s= +B B curlA  [3.276] 

This can be rewritten using equation [3.272] in the form: 

φ= + φB curlA λ  [3.277] 

Or still by introducing the field χφ [3.274]: 

φ= + φB curlA curlχ  [3.278] 
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As for the magnetic field H, it can be written via the behavior law [1.26]: 

1( )−
φ= μ + φH curlA λ  [3.279] 

Replacing the magnetic field in equation [3.207] by its expression given in 
equation [3.279], the following can be written: 

1( ( )) 0−
φμ + φ =curl curlA λ  [3.280] 

Or still, if equation [3.278] and the behavior law are used, then: 

1( ( )) 0−
φμ + φ =curl curlA curlχ  [3.281] 

This is the equation of a magnetostatics problem with the magnetic vector 
potential formulation, when the source term is the magnetic flux imposed on the 
boundaries of the domain. 

It should be noted that the introduction of the associated potential χφ is not 
required for the resolution of the vector potential formulation, as it is sufficient to 
know the support vector λφ (see relation [3.277]). 

3.5.3.2. Imposed magnetomotive force 

The studied geometry is still the one presented in Figure 3.16, considering as the 
source term the magnetomotive force imposed between the boundaries Γh1 and Γh2 
of the domain. 

In this case, for the magnetic vector potential formulation, the developments are 
more complex. The situation is equivalent to that in section 3.5.2.2 and the 
magnetomotive force must appear in the equations to be solved. To this end, an 
energy balance is used. The latter allows us to express the magnetomotive force as  
a function of the vector potential A and the magnetic flux φ, which becomes an 
unknown of the problem. 

Based on the expression of the magnetic energy [3.223], expressing the magnetic 
flux density as a function of A and φ (see equation [3.277]), we have: 

mag
1 1W . d . d
2 2 φ

Ω Ω
= τ + φ τ H curlA λ H  [3.282] 
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Using the properties of the vector operators, equation [2.27], the first integral of 
this expression can be rewritten in the form: 

1 1 1. d . d ( ). d
2 2 2Ω Ω Γ

τ = τ + ∧ τ  H curlA curlH A H n A  [3.283] 

Considering equation [3.207], the first term on the right-hand side is zero. The 
same is applied to the second term by decomposing the boundary integral into  
two contributions, corresponding to Γh =Γh1∪Γh2 and Γb. Indeed, with 
H ∈ HΓh1 ∪Γh2curl, Ω) (see equation [3.210]), the integral on the boundaries Γh1 and 
Γh2 is equal to zero. Similarly, it can be readily shown that the integral on Γb is equal 
to zero, by applying the mixed product and considering that A ∈ HΓb(curl, Ω). 
Under these conditions, equation [3.282] can be rewritten in the following form: 

 [3.284] 

Expressing the magnetic energy as a function of global quantities fm and φ, we 
can write: 

 [3.285] 

and by identification the expression of the magnetomotive force is obtained: 

 [3.286] 

It can also be expressed as a function of χφ (see equation [3.274]) as follows: 

m . χ dϕ
Ω

= τ H curlf  [3.287] 

If the field H is replaced in equation [3.286] by its expression given by [3.279], 
we obtain: 

1 1
m . d . . d− −

φ φ φ
Ω Ω

= μ τ + μ φ τ curlA λ λ λf  [3.288] 

Under these conditions, when the source term is the magnetomotive force, the 
system of equations to be solved, with the vector potential formulation, is defined by 
equations [3.281] and [3.288]. The unknowns are then the magnetic vector potential 
A and the magnetic flux φ. 

Ω φ τφ= d.
2
1Wmag λH

Ω φ τφ=φ= d.
2
1

2
1

W mmag λHf

Ω φ τ= d.m λHf
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3.5.3.3. Imposed current density 

Let us consider again the example presented in Figure 3.17 with the associated 
equations [3.231] and [3.232] and Γb-type conditions over the boundary. It can be 
noted that the source term, represented by the current density J0, is associated with a 
curl. As already seen in section 3.2.2.1, this source term can be expressed by means 
of vector fields, denoted by λI and χI, defined, respectively, by equations [3.38] and 
[3.39]. It should be recalled that, in order to overcome the constraints related to 
disconnectedness of the inductor (subdomain Ωs), the support field λI and the 
potential χI are defined on the entire domain Ω. Under these conditions, equation 
[3.231] can be rewritten as: 

0 I I

I 0 I 0

I I
with H (div0, ) and H ( 0, )

= = =
∈ Ω ∈ Ω

curlH J λ curlχ
λ χ curl

 [3.289] 

On the contrary, equation [3.232] and the boundary conditions on Γb show that 
B ∈ H0(div0, Ω). As the studied domain is contractible (see section 3.5.3.1), the 
magnetic flux density can be defined using a magnetic vector potential A, such that: 

0with H ( , )= ∈ ΩB curlA A curl  [3.290] 

As shown in section 2.5.2.2, the uniqueness of the solution makes is necessary to 
impose a gauge condition on the vector potential A. 

Having defined the vector potential, the formulation results from equation 
[3.289] by replacing, via the behavior law [1.26], H by the magnetic flux density 
and J0 by the source field IλI: 

1
II−μ =curl curl A λ  [3.291] 

Or by introducing the associated potential χI: 

1
II−μ =curl curlA curlχ  [3.292] 

3.5.3.4. Permanent magnet 

In order to study the case of a permanent magnet as the source term, let us 
consider again the problem presented in Figure 3.18. The equations to be solved are 
given by relations [3.251] and [3.252] with the behavior laws [1.26] for subdomains 
Ω0 and Ω1 and equation [1.27] for the subdomain ΩPM. The boundary conditions on 
the boundary of the domain are of Γb type. The magnetic vector potential A can be 
used to automatically verify equation [3.252]. To establish the equation to be solved, 



Maxwell’s Equations: Potential Formulations     127 

the magnetic flux density is introduced into equation [3.252], via the behavior laws, 
as a function of the vector potential, as follows: 

1
r 0( ( )) 0 H ( , )−μ − = ∈ Ωcurl curlA B A curl  [3.293] 

In this equation, permeability μ is equal to μ0 in Ω0, μ1 in Ω1 and μPM in ΩPM. 
Likewise, the remanent magnetic flux density Br is defined throughout the domain Ω 
and will be zero everywhere, except for ΩPM. 

NOTE.– As already seen in section 3.5.2.4 and particularly in Figure 3.19, the normal 
component of µHc is discontinuous on the boundary ΓAn. Applying the same 
reasoning, it can be shown that the tangential component of the term µ–1Br is 
discontinuous on the boundaries ΓAt of the permanent magnet. Under these 
conditions, the separation of the term curl(μ–1(curlA –Br)) into two terms, by using 
the linearity of the curl operator, would be abusive. Section 4.4.5.2 will show that 
this constraint is lifted, because the weighted residual method is used. 

3.5.3.5. General case 

Similar to the scalar potential formulation, this section studies the case when three 
source terms are simultaneously imposed on the studied domain (see Figure 3.20). First, 
let us consider as a source term: the flux φ imposed on the boundaries Γh1 and Γh2, an 
inductor with a current density J0 and a permanent magnet represented by the remanent 
magnetic flux density Br. Then, the flux φ is replaced by a magnetomotive force fm. 

3.5.3.5.1. Source terms: φ, I, Br 

Similar to our approach in section 3.5.3.1, the magnetic flux density B can be 
decomposed into several terms and, based on equation [3.276], the following can be 
written: 

sφ= +B B curlA  [3.294] 

where Bsφ represents the source term due to the flux imposed on the boundaries Γh1 
and Γh2. If Bsφ is replaced by its expression as a function of λφ, similar to relation 
[3.272], we can write: 

b
with H (div0, )φ φ Γ= + φ ∈ ΩB curlA λ λ  [3.295] 

Based on this expression, using the behavior laws [1.26] and [1.27], the magnetic 
field H is written as follows: 

1
r( )−

φ= μ + φ −H curlA λ B  [3.296] 
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As already seen in section 3.5.3.1, equation [3.274], the support field can be 
expressed using an associated potential χφ. Under these conditions, equation [3.296] 
can be rewritten as follows: 

1
r( )−

φ= μ + φ −H curlA curlχ B  [3.297] 

It should be recalled that precautions must be taken to determine χφ, as the 
boundary Γb is not simply connected (see section 3.2.1.2.2). 

Consider now equation [3.289], in which the field H is replaced by its expression 
given by equation [3.296]. Expressing the current density J0 as a function of the 
support field λI, after rearrangement we obtain: 

1
r I( ) I−

φμ + φ − =curl curlA λ B λ  [3.298] 

or based on equation [3.297] and introducing the associated potential χI via [3.289], 
we obtain: 

1
r I( ) I−

φμ + φ − =curl curlA curlχ B curlχ  [3.299] 

Finally, to obtain the uniqueness of the equation system, a gauge condition and 
also boundary conditions on Γb must be imposed on A. 

3.5.3.5.2. Source terms: fm, I and Br 

When the source terms are fm, I and Br, the approach is similar to the one 
presented in section 3.5.2.2. Indeed, in this case, the magnetomotive force fm 
generates a flux φ, which becomes an unknown of the problem, but formulas [3.298] 
or [3.299] are not modified. Since there is an additional unknown, an equation must 
be added. To this end, the expression of the magnetomotive force between surfaces 
Γh1 and Γh2 can be used. Depending on the magnetic field, this one is given by 
equation [3.286] or [3.287]. Gathering equation [3.286] and expression [3.297], we 
obtain: 

1
m r( ). d−

φ φ
Ω

= μ + φ − τ curlA λ B λf  [3.300] 

Then, the system to be solved is composed of equations [3.298] and [3.300] 
whose unknowns are the vector potential A and the flux φ. To impose the 
uniqueness of the solution, a gauge condition on A and the boundary conditions on 
Γb must be added. 
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3.5.4. Summarizing tables 

In the case of magnetostatics, Table 3.5 summarizes the equations to be solved 
for various types of source term with the scalar potential formulation. Similarly, 
Table 3.6 summarizes the vector potential formulation. 

Magnetostatics 

Sc
al

ar
 p

ot
en

tia
l ϕ

 fo
rm

ul
at

io
n 

Source term: magnetomotive force fm on the boundary (see Figure 3.16) 

Source field support two 
possibilities: βs or αs 

Decomposition of the magnetic field: H = Hs + H' 

h1 h2s m s s, H ( 0, )Γ ∪Γ= ∈ ΩH β β curlf  

h1 h 2s m s s, H ( , )Γ ∪Γ= − α α ∈ ΩH grad gradf  

Properties of the unknown H' 
and introduction of potential ϕ

h1 h 2
' H ( 0, )Γ ∪Γ∈ ΩH curl  

h1 h 2
' , H ( , )Γ ∪Γ= − ϕ ϕ ∈ ΩH grad grad  

Equation to be solved: two 
possible forms depending on 

βs or αs 

 

 

Source term: flux φ on the boundary (see Figure 3.16) 
fm becomes an unknown; an additional equation is needed 

 

Source term: current intensity I (see Figure 3.17) 

Source field support two 
possibilities: λI or χI 

Decomposition of the magnetic field: H = Hs + H' 

s I I 0I , H (div0, )= ∈ ΩcurlH λ λ  

s I I 0I , H ( , )= ∈ ΩH χ χ curl  

Properties of the unknown H' 
and introduction of scalar 

potential ϕ 

' H( 0, )∈ ΩH curl  

 

Equation to be solved as a 
function of χI 

 

Source term: permanent magnet (see Figure 3.18) 

c( ) with , H( , )= μ − = − ϕ ϕ∈ ΩB H H H grad grad  

 

Table 3.5. Summary of equations to be solved in magnetostatics  
with the scalar potential formulation for various source terms 

0))((div sm =ϕ−μ gradβf

0))((div sm =ϕ+αμ gradgradf

Ω τ=φ d. sβB

),(H,' Ω∈ϕϕ−= gradgradH

0))I((div I =ϕ−μ gradχ

0))((div c =+ϕμ Hgrad
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Magnetostatics 

V
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to
r p

ot
en

tia
l A

 fo
rm
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Source term: flux φ on the boundary (see Figure 3.16) 

Source field support two 
possibilities: λφ or χφ with a cut on 

not simply connected Γb 

Decomposition of the magnetic field: 
B = Bs + B' 

bs , H ( 0, )φ φ Γ= φ ∈ ΩB λ λ curl  

bs , H ( , )Δ
φ φ Γ= φ ∈ ΩB curlχ χ curl  

Properties of the unknown B' and 
introduction  

of the vector potential Α 

 

b
' , H ( , )Γ= ∈ ΩB curlA A curl  

Equation to be solved: two possible 
forms depending on λφ or χφ 

1( ( )) 0−
φμ + φ =curl curlA λ  

1( ( )) 0−
φμ + φ =curl curlA curlχ  

Source term: magnetomotive force fm on the boundary (see Figure 3.16) 

φ becomes unknown; an additional equation is needed 

 

Source term: current intensity I (see Figure 3.17) 

Source field support two possibilities: 
λI or χI 

I I 0I , H (div0, )= ∈ ΩcurlH λ λ  

I I 0I , H ( , )= ∈ ΩcurlH curlχ χ curl  

Properties of the unknown B  
and introduction of the vector  

potential A 

 

0, H ( , )= ∈ ΩB curlA A curl  

Equation to be solved depending on χI 1
IA I−μ =curl curl curlχ  

Source term: permanent magnet (see Figure 3.18) 
1

r 0( ) with , H ( , )−= μ − = ∈ ΩH B B B curlA A curl  

( )( )1 1
r 0−μ −μ =curl curlA B  

Table 3.6. Summary of the equations to be solved in magnetostatics  
with the vector potential formulation for various source terms 

),0div(H'
b

Ω∈ ΓB

Ω φ τ= d.m λHf

),0div(H0 Ω∈B
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3.5.5. Tonti diagram  

Similar to the approach taken for electrostatics and electrokinetics for obtaining 
the Tonti diagram in magnetostatics, the fields H, J0 and B are placed to verify 
equations [3.207] and [3.208] (see Figure 3.21). As can be noted in this figure, quite 
naturally, the current density J0 is divergence free. The source terms Hs and Bs as 
well as the scalar potential ϕ and the vector potential A can also be positioned. 

 

Figure 3.21. Tonti diagram for magnetostatics  

3.6. Magnetodynamics 

A magnetodynamics problem, as shown in Figure 1.12, leads to the study of 
electromagnetic phenomena at industrial frequencies. To simplify the notations, the 
time dependency of all electric and magnetic quantities is not explicit but rather 
implicit, similar to space dependency. Nevertheless, concerning the source terms e(t), 
φ(t), fm(t) and I(t), this time dependency will be recalled at the beginning of  
sections 3.6.1 and 3.6.2. 

Under these conditions, in a domain Ω, the magnetodynamic equations are 
recalled as follows: 

t
∂= −
∂
BcurlE  [3.301] 

=curlH J  [3.302] 
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Applying the divergence operator to equation [3.301], we deduce: 

 [3.303] 

Likewise, applying the divergence operator to equation [3.302], it can be readily 
verified that: 

 [3.304] 

The behavior laws [1.20] and [1.26], as well as the homogeneous boundary 
conditions, are added to these equations. As indicated in section 1.3.2, there is a link 
between the fields E and B, and also between H and J, which can be written as 
follows: 

 [3.305] 

h h
0 0Γ Γ∧ =  =nn H J  [3.306] 

It is important to note that reciprocity does not always apply to these two 
equations, and this depends on the topology of the boundaries Γe or Γh. 

This study first considers the problem presented in Figure 3.22. Given a domain 
Ω of boundary Γ, composed of two subdomains denoted by Ωc and Ω0. The 
subdomain Ωc, of boundary Γc, is a conductor whose conductivity is denoted by σ. It 
holds two gates Γn1 and Γn2, in contact with an external source. Electric quantities 
e(t) or I(t), or magnetic quantities fm(t) or φ(t), can be imposed on these two gates. 
The remaining boundary of the conducting subdomain Ωc, denoted by Γj is in 
contact with the subdomain Ω0 and represents a wall for the current density J. The 
subdomain Ω0 is a non-conducting material. Nevertheless, the conductivity σ is 
defined on the entire domain as follows: 

c 00 in and 0 inσ > Ω σ = Ω  [3.307] 

The conductivity is not necessarily constant on the conducting domain Ωc and 
can vary depending on the position. 

The subdomain Ω0 (see Figure 3.22) is not simply connected. The part of its 
boundary, in contact with the exterior, is a wall for the magnetic flux density and is 
denoted by Γb. Finally, magnetic permeability, which depends on space, will be 
denoted by µ throughout the domain. 

0div =B

0div =J

0.0
ee

==∧ ΓΓ nBEn
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Equation [3.301] is valid throughout the domain Ω. In fact, there is an electric 
field related to the variations in time of the magnetic flux density. However, in the 
subdomain Ω0, the conductivity being zero, the current density will be zero 
irrespective of the value of the electric field E. Under these conditions, the field E 
does not need to satisfy equation [3.301] on Ω0. Even though the magnetic flux 
density B is defined uniquely on Ω0, this is not applicable to the electric field, which 
is defined up to a gradient. On the contrary, it is perfectly defined in the domain Ωc. 
The equations of magnetodynamics can therefore be solved on the domain Ωc and 
those of magnetostatics in the domain Ω0. The next section shows that the coupling 
of these two problems is quite natural for potential formulations. 

Therefore, various potential formulations (Bouillault and Ren 2008; Alonso 
Rodriguez and Valli 2010) will be implemented when electric or magnetic quantities 
are imposed on gates Γn1 and Γn2. 

 

Figure 3.22. Basic geometry for the magnetodynamics study  

Depending on the cases studied, boundary topology-related problems will be 
highlighted. Consider a divergence free vector field respecting, on a not simply 
connected part of the boundary, wall-type conditions. As shown (see  
section 3.2.1.2.2), to define a “χ” type source potential, a cut can be introduced. 
Sections 3.6.1 and 3.6.2 will show that for the same topology of the studied domain, 
depending on the type of electric or magnetic source, introducing a cut may or may 
not be necessary. 

The studied example considers a single conductor in a given environment. 
Nevertheless, the proposed approach can be generalized to multiple conductors 
using the linearity of differential operators. 
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3.6.1. Imposed electric quantities 

This section again uses the example in Figure 3.22 by imposing electric 
quantities e(t) or I(t) on the two conductor boundaries in contact with an external 
source, which can be a voltage or current source. These two boundaries are then 
gates for the electric field with boundary conditions denoted by Γe1 and Γe2 (see 
Figure 3.23). The other boundary conditions remain unchanged. The following can 
then be written for the boundary Γ of the domain Ω: 

 [3.308] 

and for the boundary Γc of the conductor Ωc: 

 [3.309] 

As already noted, inside the conducting domain Ωc, the magnetodynamic equations 
are solved, while the subdomain Ω0 is governed by magnetostatic equations. 

 

Figure 3.23. Geometry studied in magnetodynamics:  
electric quantities imposed on the boundary  

For the problem at hand, the fields E and J are defined in the domain Ωc and, 
considering equations [3.301], [3.304] and the previously introduced boundary 
conditions, the function spaces to which they belong can be written as follows: 

e1 e2 jc cH ( , ), H (div0, )Γ ∪Γ Γ∈ Ω ∈ ΩE curl J  [3.310] 

b2e1e ΓΓΓΓ ∪∪=

j2e1ec ΓΓΓΓ ∪∪=
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It is possible to extend the domain of definition of the current density to the 
entire domain Ω by extending J over Ω0 and posing J = 0 in Ω0. It can be noted that 
divJ = 0 on Ω0. The extension of J to the entire domain Ω raises no problem for the 
continuity of the normal component since J.n|Γj = 0. On the contrary, as will be 
noted in the following, it allows for the definition of a source term without dealing 
with the non-connected domain and the introduction of cuts. The function space of 
the current density, defined by relation [3.310], is then written as: 

 [3.311] 

As for the fields H and B, they are defined throughout the domain Ω. The 
properties of the magnetic field H are governed, at the beginning, by equations 
[3.302] in Ωc and [3.207] in Ω0. Nevertheless, due to the extension of current density 
J to the entire domain Ω, the field H verifies equation curlH = J on Ω. As for the 
magnetic flux density B, it is defined, in the entire domain Ω, by equation [3.303]. 
Taking into account the boundary conditions on the boundary Γ (see equation 
[3.308]), it can be noted that, considering equation [3.305], the normal component of 
the magnetic flux density is zero. 

The function spaces of the fields H and B can be introduced as follows: 

0H( , ), H (div0, )∈ Ω ∈ ΩH curl B  [3.312] 

In order to solve the magnetodynamic equations, two potential formulations can 
be used. The first one, known as “electric formulation”, is based on the magnetic 
vector potential A and the electric scalar potential V. The second, known as 
“magnetic formulation”, uses the electric vector potential T and the magnetic scalar 
potential ϕ. For these two formulations, it can be seen that, considering the choice of 
potentials, the coupling with magnetostatics can be readily made. 

3.6.1.1. Electric formulation A-V 

The development of the A-V formulation, when an electromotive force e(t) is 
imposed, is quite natural. On the contrary, when the current intensity I(t) is imposed, 
an additional equation is required. 

3.6.1.1.1. Imposed electromotive force 

For this formulation, in order to introduce the source term e(t) into local form, 
the approach presented in section 3.4.1.1.1 is used. The electric field is decomposed 
(see equation [3.153]) in the form of a source field Es and the field E' that becomes 
the unknown of the problem. The properties of the source field are given in equation 
[3.154] with Es ∈ HΓe1 ∪Γe2 (curl0, Ωc). It should be recalled that Es can be expressed  
 

),0div(H Ω∈J
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using a support field βe (see equation [3.157]) or an associated scalar potential αe 
(see equation [3.158]). For our example, βe and αe are defined in the function 
spaces: 

e1 e2e c e cH ( 0, ) and H( , )Γ ∪Γ∈ Ω α ∈ Ωβ curl grad  [3.313] 

Introducing the fields E' and Es into equation [3.301] and, considering the 
properties of Es, the following succession of equations can be written as: 

s( ' ) '
t

∂= + = = −
∂
BcurlE curl E E curlE  [3.314] 

Under these conditions, the properties of the field E' are stated as follows: 

e1 e 212

e1 e 2 c

' , '. 0, ' 0
t

i.e. ' H ( , )

Γ ∪Γγ

Γ ∪Γ

∂= − = ∧ =
∂

∈ Ω


BcurlE E dl E n

E curl
 [3.315] 

Concerning the magnetic flux density, as shown in relation [3.312], it belongs to 
the function space H0(div0, Ω). Therefore, it can be expressed using the magnetic 
vector potential A defined on the entire domain Ω, which is contractible, as follows: 

0with H ( , )= ∈ ΩB curlA A curl  [3.316] 

Here we again find the potential A, which was introduced in magnetostatics (see 
section 3.5.3). Using the behavior law [1.26], the magnetic field is then written as: 

1−= μH curlA  [3.317] 

On the domain Ωc, if the magnetic flux density is replaced in the first equation of 
relation [3.315] by its expression given in equation [3.316], the following is 
deduced: 

( ' ) 0
t

∂+ =
∂
Acurl E  [3.318] 

The field (E'+∂A/∂t) ∈ HΓe1∪Γe2(curl0, Ωc) and, Ωc being contractible, an electric 
scalar potential can be defined (see Figure 2.5) such that: 

e1 e2 c' ( V) with V H ( , )
t Γ ∪Γ

∂= − + ∈ Ω
∂
AE grad grad  [3.319] 



Maxwell’s Equations: Potential Formulations     137 

NOTE.– It can be noted that since the source term is supported by the source fields βe 
or αe (see equation [3.313]), the boundary conditions of the potential V, on the 
boundaries Γe1 and Γe2, are zero. 

Based on equation [3.319], by adding a source term Es (see equation [3.153]) 
expressed by means of the potential αe (see equation [3.158]), the following 
expression of the electric field E is obtained: 

 [3.320] 

In this equation, besides the source term, the electric field is expressed using the A-V 
pair of potentials, hence its name of electric formulation. Moreover, equation [3.320] 
automatically verifies relations [3.301] and [3.303]. Then, using the behavior law [1.20], 
the expression of the current density in Ωc can be written in the following form: 

 [3.321] 

If in equation [3.302] the magnetic field is replaced by its expression given by 
equation [3.317] and the current density by equation [3.321], we then obtain: 

1
e( ) ( V) e

t
− ∂μ + σ + = − σ α

∂
Acurl curlA grad grad  [3.322] 

Introducing instead the support field βe (see equation [3.158]), we have: 

1
e( A) ( V) e

t
− ∂μ + σ + = σ

∂
Acurl curl grad β  [3.323] 

It is recommended to also verify equation [3.304], which is performed by 
imposing the divergence operator to relation [3.321]. 

Then, we can write: 

 [3.324] 

Similarly, with the support field βe: 

 [3.325] 

)eV
t

( eα++
∂
∂

−= gradgrad
A

E

)eV
t

( eα++
∂
∂

σ−= gradgrad
A

J

0))eV
t

((div e =α++
∂
∂

σ gradgradA

0))eV
t

((div e =−+
∂
∂

σ βgradA
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The systems of equations [3.322] and [3.324] or [3.323] and [3.325] correspond 
to the electric formulation of a magnetodynamics problem with an electromotive 
force as the source term. It should be recalled that the source field Es is defined only 
on the conducting domain Ωc. The same is valid for the support field βe and the 
associated potential αe. 

To extend the equations to be solved to the complete domain Ω, the coupling 
with the magnetostatics formulation is naturally made. Indeed, the vector potential A 
is defined on the entire domain (see equation [3.316]). Therefore, it also appears as 
an unknown of the magnetostatics problem, on the domain Ω0. Moreover, since the 
fields B and H depend only on the vector potential (see equations [3.316] and 
[3.317]), the normal component of B and the tangential component of H will be 
naturally continuous on the boundary Γj between Ωc and Ω0. Furthermore, it can be 
verified that the vector potential magnetostatic formulation in the domain Ω0 can be 
deduced from the magnetodynamic formulation. Indeed, as the conductivity σ is 
zero in Ω0, equation [3.325] is naturally verified and relation [3.323] becomes: 

1( ) 0−μ =curl curlA  [3.326] 

It can be noted that the above equation relates only to A and that in the  
non-conducting domain, where the electric field E is not defined, the scalar potential 
V is not defined either, and therefore there is no need to determine it. The scalar 
potential will only be calculated on Ωc, though the latter may be considered as 
existing throughout the domain. 

As conductivity σ is equal to zero on Ω0 (see equation [3.307]), and the vector 
potential A is defined throughout the domain Ω, equations [3.323] and [3.326] can 
be regrouped. The system of equations to be solved then has the following form: 

1
e( ) ( V) e 0 on

t
− ∂μ + σ + − σ = Ω

∂
Acurl curlA grad β  [3.327] 

e cdiv( ( V e )) 0 on
t

∂σ + − = Ω
∂
A grad β  [3.328] 

NOTE.– It should be noted that equation [3.328] is obtained by applying the 
divergence operator to equation [3.327]. This result is quite expected, considering 
that equations [3.327] and [3.328] are built, respectively, from equations [1.5] and 
[1.6] and that equation [1.6] is obtained by applying the divergence operator to 
equation [1.5]. However, to simplify the developments, the two expressions will be 
used in the following. 
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It should be recalled that the scalar potential V should be determined only on the 
domain Ωc and the vector potential A on the entire domain Ω. 

3.6.1.1.2. Imposed current intensity 

The current intensity I(t) is now imposed on the boundaries Γe1 and Γe2. In order 
to solve the problem in the domain Ω, we can use the system of equations [3.327] 
and [3.328] where the unknowns are the potentials A and V and the source term “e”. 
As the current I is imposed, the electromotive force e becomes an additional 
unknown of the problem. A new equation should then be introduced, and this is 
obtained by expressing I as a function of A-V potentials and of the electromotive 
force. To this end, a power balance is written. 

In magnetodynamics, the instantaneous power “p” is written as: 

 [3.329] 

Expressing E according to [3.320] and B as a function of the potential A, we 
have: 

e

p . d V. d
t

( )e . d . d
t

Ω Ω

Ω Ω

∂= − τ − τ
∂

∂− α τ + τ
∂

 
 

A J grad J

curlAgrad J H
 [3.330] 

Let us now consider the first term of the integral on the right and replace the 
current density J by its expression as a function of H (see equation [3.302]). Using 
relation [2.27], for vector operators, we can write: 

. d ( ). d ( ). dS
t t tΩ Ω Γ

∂ ∂ ∂− τ = − τ − ∧
∂ ∂ ∂  A curlA AcurlH H n H  [3.331] 

Concerning the surface integral of the above equation, given that for the example 
mentioned A ∈ H0(curl, Ω), it is equal to zero. Based on this result, equation [3.331] 
can be rewritten as follows: 

. d ( ). d
t tΩ Ω

∂ ∂− τ = − τ
∂ ∂ 
A curlAJ H  [3.332] 

Taking this result into account, the first and the last term of equation [3.330] 
cancel each other out. On the contrary, it can be shown that the second integral, on 

 ΩΩ τ
∂
∂

+τ= d.
t

d.p H
B

JE
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the right-hand side of equation [3.330], is also equal to zero. Indeed, it can be 
rewritten using formula [2.23] of vector operators. Moreover, as the current density 
J is zero in the subdomain Ω0 (see equations [3.310] and [3.311]), the volume 
integral is limited to the subdomain Ωc. Then, we have: 

 [3.333] 

Since the current density is divergence free, the first term on the right-hand side 
is equal to zero. As for the term related to the surface integral on Γc, it can be 
decomposed into three parts, as shown in equation [3.309], namely Γe1, Γe2 and Γj. 
On the one hand, on the boundaries Γe1 and Γe2, the scalar potential V is imposed to 
zero due to the introduction of the source term αe (see the function space of potential 
V, equation [3.319]). On the other hand, the normal component of the current 
density is zero on the boundary Γj. 

Let us again consider the expression of power, equation [3.330]. Considering 
equations [3.332] and [3.333], the following can be written as: 

 [3.334] 

Given that the current density J is zero in the non-conducting subdomain Ω0, the 
integral over volume Ω can be contracted to an integration over Ωc. The power can 
also be expressed using the global electric quantities “e” and “I”. This leads to the 
following succession of equations: 

 [3.335]
 

By identification, the current I can be expressed as follows: 

 [3.336] 

Or, by introducing the support vector βe (see equation [3.158]), we have: 

 [3.337] 

If the current density is replaced by its expression given in equation [3.321], we 
can write: 

 [3.338] 

0dS.VdVdivd.V
ccc

=+τ−=τ  ΓΩΩ nJJJgrad

Ω τα−= d.ep e Jgrad

 Ω τα−==
c

d.eeIp e Jgrad

Ω τα−=
c

d.I e Jgrad

Ω τ=
c

d.I e Jβ

Ω τ+
∂
∂

+ασ−=
c

d)V
t

e(.I ee gradAgradβ
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Using equation [3.158], this relation can be rewritten as follows: 

 [3.339] 

In this configuration, the objective is to solve the system composed of equations 
[3.327] and [3.328] coupled with equation [3.338] or [3.339]. Furthermore, it should 
be recalled that the gauge condition on A should be added. Concerning the electric 
scalar potential V, the gauge condition is naturally provided, as V = 0 is imposed on 
the boundaries Γe1 and Γe2. 

3.6.1.2. Magnetic formulation T-ϕ 

Let us now focus on the magnetic formulation in terms of the electric vector 
potential T and the magnetic scalar potential ϕ. For this formulation, when the 
current intensity I(t) is imposed, the source terms appear naturally in the 
developments. On the contrary, when an electromotive force e(t) is imposed, an 
additional equation is required, similar to the A-V formulation when current 
intensity is imposed. 

3.6.1.2.1. Imposed current density flux 

Let us consider the problem represented in Figure 3.23 having as a source term 
the flux I(t) of the current density. Moreover, let us recall the boundary conditions 
for the domain Ωc, which can be stated as follows: 

{ }
ek j

c e1 e2 j with 0, k 1, 2 and . 0Γ ΓΓ = Γ ∪ Γ ∪ Γ ∧ = ∈ =E n J n  [3.340] 

As previously mentioned (see equation [3.311]), the current density is extended 
to the entire domain with J = 0 in Ω0, while maintaining J.n|Γj = 0. 

Finally, on the boundary Γ of the domain Ω, we have: 

b e1 e2 i.e. : . 0ΓΓ = Γ ∪ Γ ∪ Γ =B n  [3.341] 

Similar to electrokinetics (see section 3.4.1.2.1), in the presence of an imposed 
current I, a source current density Js is defined, extended to the entire domain Ω 
(with Js = 0 in Ω0 and Js.n|Γj = 0), such that: 

}{ ),0div(H.e.i2,1kwith,Ids.,0div sss
ek

Ω∈∈±== Γ JnJJ  [3.342] 

Ω τ+
∂
∂

+−σ−=
c

d)V
t

e(.I ee grad
A

ββ
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In this expression, n represents the outgoing normal on the boundaries. On the 
contrary, as noted after equation [3.19], for a vector field with conservative flux, in 
this case the current density Js, the integral over Γe1 or Γe2 can be replaced by any 
surface Δ (see Figure 3.23) whose contour γ0 belongs to the boundary Γj surrounding 
the domain Ωc. 

Introducing the source term Js (see equation [3.172]), the current density in the 
domain Ω is written as: 

 [3.343] 

where J' represents an unknown of the problem. Considering the properties of J and 
Js, the current density J' is extended to the entire domain Ω. Then, the current 
density J' is defined by: 

div ' 0, '. ds 0 with ' H(div0, )
Δ

= = ∈ ΩJ J n J  [3.344] 

Like the fields J and Js, J' = 0 in Ω0 and J'.n|Γj = 0. 

The source current Js can be written, using a λI support vector field, as shown in 
the case of electrokinetics by equations [3.174] and [3.175]. However, λI extends to 
the entire domain by considering it equal to zero on Ω0 similarly to the current 
density Js (see equation [3.344]). Then, we have: 

j

s I I 0 I I

I I

I , 0 in , div 0, . ds 1

and . 0 i.e. H(div0, )
Δ

Γ

= = Ω = =

= ∈ Ω

J λ λ λ λ n

λ n λ
 [3.345] 

Let us recall that surface Δ, whose contour is denoted by γ0, lies on the boundary 
Γj (see Figure 3.23). It is possible to consider a surface Δ, and therefore, γ0 its 
contour in Ω0, in contact with the boundary Γb. This does not change the properties 
of λI since, by continuous transformation, γ0 can be back to a contour surrounding 
Γj. 

Since the domain Ω is simply connected, the support field λI can be expressed 
using an associated vector potential χI such that: 

I I I, with H( , )= ∈ Ωλ curlχ χ curl  [3.346] 

 

's JJJ +=
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NOTE.– The current density J and therefore J', Js and the source field λI are  
extended to the entire domain Ω, which is simply connected. Then, there is no 
condition on normal components of J, Js, J' and λI, on the boundary Γb. A source 
potential χI can then be introduced without introducing any cut. This would not have 
been the case if the domain of definition of J and its associated quantities had been 
restricted Ωc (see equations [3.310] and [3.311]). In this case, the domain of 
definition for Js, and therefore for λI, would have been restrained to Ωc, with a not 
simply connected boundary of Γj type on which λI.n = 0 should be imposed. But such 
a constraint, in the case of a not simply connected boundary (see section 3.2.1.2.2), a 
cut should be introduced to define correctly a χI type potential. Similarly, the domain 
Ω0 being not simply connected, a cut should have also been introduced for the latter, 
to take into account the current I flowing through Ωc. 

Having defined the current density Js, the objective is to determine the 
expression of J'. As shown in relation [3.344], J' ∈ H(div0, Ω) and can therefore be 
defined using an electric vector potential T. Then, we have: 

' i.e. H( , )= ∈ ΩJ curlT T curl  [3.347] 

Since the current density J' is equal to zero on Ω0, the potential T equal to zero 
can be imposed on Ω0. This is quite compatible with the continuity of the tangential 
component of T on the boundary Γj and with J' = curlT = 0 on Ω0. In this case, the 
potential T remains unknown only on Ωc. It should be recalled (see equation 
[3.344]) that the flux of the current density J' through a section of the conductor is 
equal to zero. Though Γj is not simply connected, this property allows us to impose 
homogeneous boundary conditions on the tangential component of T on the entire 
surface Γj. Under these conditions, based on equation [3.347], a restriction of T on 
Ωc can be defined such that: 

jj
c' with 0 i.e. H ( , )ΓΓ= ∧ = ∈ ΩJ curlT T n T curl  [3.348] 

Considering equations [3.343], [3.345] and [3.347], the current density J can 
then be written as follows: 

II= +J λ curlT  [3.349] 

Or using the associated potential χI: 

II= +J curlχ curlT  [3.350] 
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Using the behavior law [1.20], the expression of the electric field on Ωc is: 

1
I(I )−= σ +E curlχ curlT  [3.351] 

Using equations [3.302] and [3.350], the following relation can be written on the 
entire domain Ω (T being defined on Ω0) (see equation [3.347]): 

II= +curlH curlχ curlT  [3.352] 

which can be written as: 

I( I ) 0− − =curl H T χ  [3.353] 

Since the domain Ω is simply connected, the magnetic scalar potential ϕ (see 
equation [2.32]) can be introduced as follows: 

II , with H( , )= + − ϕ ϕ∈ ΩH χ T grad grad  [3.354] 

Besides the source term IχI, the magnetic field is expressed using the T-ϕ pair of 
potentials, hence the name magnetic formulation. Finally, for the scalar potential ϕ 
to be uniquely defined, its value must be fixed at a point of the domain Ω. 

Based on relation [3.354], the magnetic flux density can be written, via the 
magnetic behavior law [1.26], as follows: 

 [3.355] 

At this stage of our developments, equations [3.350] and [3.354] verify, 
respectively, equations [3.302] and [3.304]. Equations [3.301] and [3.303] should 
also be verified. As for the first equation, replacing the electric field by its 
expression given in equation [3.351] and the magnetic flux density by equation 
[3.355], the following relation is obtained on Ωc: 

1
I I( (I )) ( (I ))

t
− ∂σ + = − μ + − ϕ

∂
curl curlχ curlT χ T grad  [3.356] 

Gathering the source term on the right-hand side, the following can be written: 

1

1
I I

( ) ( ( ))
t

( I ) ( (I )
t

−

−

∂σ + μ − ϕ =
∂

∂− σ − μ
∂

curl curlT T grad

curl curlχ χ
 [3.357] 

)I( I ϕ−+μ= gradTχB
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For the second equation [3.303], the magnetic flux density is replaced by 
expression [3.355], hence: 

 [3.358] 

To obtain the solution to the problem on the domain Ωc, the system consisting of 
equations [3.357] and [3.358] must be solved, in which the unknowns are the vector 
potential T and the scalar potential ϕ, coupled with magnetostatic equations. 

The potentials χI and ϕ are defined on the entire domain (see equations [3.346] 
and [3.354]). In the subdomain Ω0, since the vector potential T is equal to zero, the 
magnetic field H is written as follows: 

 [3.359] 

Similarly, based on relation [3.355], the expression of the magnetic flux density 
is: 

 [3.360] 

For the magnetostatics part, based on equations [3.303] and [3.360], the equation 
to be solved has the form: 

 [3.361] 

Finally, the coupling between magnetodynamics and magnetostatics is quite 
natural. Indeed, the vector potential T is zero on Ω0 and ϕ is defined on the entire 
domain Ω. At the interface between Ωc and Ω0, namely the boundary Γj, the 
condition J.n = 0 is imposed by means of the properties of the vector potential T and 
of the support field λI (see equation [3.349]). Similarly, still on Γj, the continuity of 
the tangential component of the magnetic field H is ensured via the continuity of the 
tangential component of χI and of gradϕ. As already noted, the electric field E was 
only defined in the domain Ωc. 

The system to be solved is given by equations [3.356] and [3.358] in Ωc and 
[3.361] in Ω0. However, it can be noted that the vector potential T is equal to zero 
on Ω0 (see equation [3.348]) and the scalar potential ϕ is defined (see equation 
[3.354]) on the entire domain. It is therefore possible to gather relations [3.358] and 
[3.361]. In this case, the system to be solved can be written as follows: 

0))I((div I =ϕ−+μ gradTχ

ϕ−= gradχH II

)I( I ϕ−μ= gradχB

0))I((div I =ϕ−μ gradχ
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1
I

I c

( (I ))

( (I )) 0 on
t

−σ +
∂+ μ + − ϕ = Ω
∂

curl curlχ curlT

χ T grad
 [3.362] 

Idiv( (I )) 0 onμ + − ϕ = Ωχ T grad  [3.363] 

3.6.1.2.2. Imposed electromotive force 

The source term is now the electromotive force. With the T-ϕ electric 
formulation, the equations to be solved are given by expressions [3.362] and [3.363]. 
However, in this system, current intensity I becomes an unknown. To obtain a full 
equation system, a new equation is added, in which the electromotive force is 
expressed as a function of T-ϕ potentials and of the current intensity I. To this end, 
the power conservation equation [3.329] is again used in the following form: 

 [3.364] 

In this equation, J and H are replaced by, respectively, expressions [3.350] and 
[3.354]. Then, we obtain: 

I IeI .( I )d .(I grad )d
tΩ Ω

∂= + τ + + − ϕ τ
∂ 
BE curlT curlχ χ T  [3.365] 

Using the formulas of vector operators (see equation [2.27]), the first term of the 
first integral on the right-hand side can be written as follows: 

. d . d ( ). dS
Ω Ω Γ

τ = τ + ∧  E curlT curlE T n T E  [3.366] 

The surface integral of this equation, on the boundary Γ of the domain, is equal 
to zero. Indeed, Γ is the union of three boundaries (see relation [3.308]) or 
Γ= Γe1∪Γe2∪Γb. If the integral is decomposed into three terms, considering the 
properties of the electric field, the integrals over Γe1 and Γe2 are equal to zero. The 
same is valid for the integral on Γb as the vector potential T is zero in the subdomain 
Ω0 and therefore on the boundary. Considering this result, we can write: 

. d . d
Ω Ω

τ = τ E curlT curlE T  [3.367] 

 

 ΩΩ τ
∂
∂

+τ== d.
t

d.eIp HBJE
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Consider now the last term of the second integral of equation [3.365]. Using the 
formulas of vector operators (see equation [2.23]), we can write: 

 [3.368] 

This equation is also zero as the magnetic flux density B belongs to H0(div0, Ω). 
Under these conditions, considering relations [3.367] and [3.368], equation [3.365] 
is written as: 

I IeI ( . I . )d .(I )d
tΩ Ω

∂= + τ + + τ
∂ 
BT curlE E curlχ χ T  [3.369] 

This equation can be simplified by replacing “curlE” by its expression given in 
equation [3.301]. After simplification, we obtain: 

I IeI I . d .I d
tΩ Ω

∂= τ + τ
∂ 
BE curlχ χ  [3.370] 

The expression of the electromotive force “e” is deduced by identification as 
follows: 

I Ie . d . d
tΩ Ω

∂= τ + τ
∂ 
BE curlχ χ  [3.371] 

This relation can also be written using the properties of the source vector field λI 
(see equation [3.345]) as follows: 

 [3.372] 

If E and B are, respectively, replaced by equations [3.351] and [3.355], we 
obtain: 

1
I I

I I

e ( I ). )d

( I ). d
t

−

Ω

Ω

= σ + τ

∂+ μ − ϕ + τ
∂




curlT curlχ λ

T grad χ χ
 [3.373] 
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Using relations [3.371]–[3.373], the electromotive force “e” can be expressed as 
a function of T-ϕ potentials and the current intensity “I”. 

To solve a magnetodynamics problem, with the T-ϕ magnetic formulation, when 
the source term is the electromotive force, we have to solve the system consisting of 
equations [3.362] and [3.363], in association with expression [3.373]. 

3.6.2. Imposed magnetic quantities 

This section considers the same domain Ω, consisting of a conducting 
subdomain Ωc, where two parts of its boundary Γc are in contact with the external 
domain. 

 

Figure 3.24. Geometry studied in magnetodynamics: 
magnetic quantities imposed on the boundary  

The conductor is immersed in an insulating environment Ω0 (then Ω = Ω0 ∪ Ωc). 
Through the two gates Γh1 and Γh2 located on the boundary Γ, it is supplied by 
magnetic source terms that could be a magnetomotive force fm(t) or a flux φ(t) (see 
Figure 3.24). On the external boundary of Ω0, Γb boundary conditions are imposed. 
It can be noted that the external surface Γb of Ω (on which B.n = 0 is imposed) is not 
simply connected. This is due to the presence of surfaces Γh1 and Γh2 on which 
H ∧ n = 0 is imposed. Then, for the boundary Γ of the domain Ω, the following 
boundary conditions apply: 

{ }
hk b

h1 h2 bΓ Γ Γ Γ with 0, k 1, 2 and . 0Γ Γ= ∪ ∪ ∧ = ∈ =H n B n  [3.374] 
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The boundary Γc of the conducting domain represents a wall for the current 
density. Indeed, the boundary conditions on the field H, imposed on Γh1 and Γh2, 
imply that J.n = 0 (see equation [3.306]). Moreover, since the domain Ω, in which 
the conductor is immersed, is an insulator, the remaining part of the boundary, 
denoted by Γj, is a wall for the current density. Then: 

 [3.375] 

The magnetic permeability, which depends on the space, will be denoted by µ 
throughout the domain. We recall that, in the subdomain Ωc, the conductivity is 
σ ≠ 0. On the contrary, its values are zero in Ω0 (see equation [3.307]). 

Similar to section 3.6.1.1, inside the conducting domain Ωc, the  
magnetodynamic equations are solved, while in Ω0, those of magnetostatics are 
solved. 

In this new configuration, the fields E and J are defined only in the domain Ωc 
and, taking into account equations [3.301], [3.304] and the boundary conditions, the 
associated function spaces are written as: 

c 0 cH( , ), H (div0, )∈ Ω ∈ ΩE curl J  [3.376] 

The fields H and B are defined in the entire domain Ω. For the magnetic field, 
equation [3.302] must be solved in Ωc and equation [3.207] in Ω0. As for the 
magnetic flux density, it is governed by equation [3.303] on the entire domain. 
Based on their properties, fields H and B are defined, respectively, in the function 
spaces: 

h1 h 2 b
H ( , ), H (div0, )Γ ∪Γ Γ∈ Ω ∈ ΩH curl B  [3.377] 

Applying the same approach as in section 3.6.1, the electric and magnetic 
formulations will be introduced for the magnetic source terms fm(t) and φ(t). The 
equations of magnetodynamics will be developed in the conducting domain and 
those of magnetostatics in Ω0. It will be noted that, depending on the chosen 
potentials, the coupling is naturally achieved at the interface between these two 
domains. 

j2h1hc ΓΓΓΓ ∪∪=
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3.6.2.1. Electric formulation A-V 

3.6.2.1.1. Imposed magnetic flux 

In order to take into account the source term φ(t), a similar approach to the one in 
section 3.5.3.1 will be used. The magnetic flux density is decomposed into two 
terms, Bs and B', as shown by equation [3.269], as follows: 

 [3.378] 

where Bs represents a source field, the image of the flux φ imposed on the 
boundaries Γh1 and Γh2. The properties of this field (see equation [3.21]) are given by 
the following relations: 

}{

),0div(H.e.i

0.,2,1kwithds.,0div

b

b
hk

s

sss

Ω∈

=∈φ±==

Γ

ΓΓ
B

nBnBB
 [3.379] 

The source term Bs can be expressed on the entire domain Ω using a support 
field λφ (see equation [3.272]). Based on the field Bs, λφ must verify the following 
properties: 

b

b

div 0 with . ds 1 and . 0

i.e., H (div0, )

φ φ φ ΓΔ

φ Γ

= = =

∈ Ω
λ λ n λ n

λ
 [3.380] 

NOTE.– The flux of the vector field λφ is conservative, and therefore the conditions 
of the note following equation [3.19] are met. The surface Δ (see Figure 3.24) 
represents an arbitrary section of the domain Ω whose contour γ0 must rely on the 
boundary Γb. If Δ is reduced, by deformation on the surface Γb, the latter merges in 
the end with the boundaries Γh1 or Γh2 and it can no longer be contracted to a point 
on Γb. This highlights the fact that the surface Γb is not simply connected. 

Considering its properties, the support field λφ can be expressed by means of a 
potential χφ (see equation [3.274]). As the boundary Γb is not simply connected, 
imposing the constraints on χφ requires the introduction of a cut, as shown in  
section 3.2.1.2.2. Figure 3.24 shows an example of a possible cut. Under these 
conditions, the properties of potential χφ can be written as follows: 

b
0

, . 1 with H ( , )Δ
φ φ φ φ Γ

γ
= = ± ∈ Ωλ curlχ χ dl χ curl  [3.381] 

's BBB +=
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The function space to which χφ belongs is built according to equation [3.28]. 

Having defined the source field Bs, let us now focus on the magnetic flux density 
B' that can be expressed, as shown by equation [3.275], as a function of the vector 
potential A, as follows: 

b
' , with H ( , )Γ= ∈ ΩB curlA A curl  [3.382] 

If B' and Bs are replaced in equation [3.378] by curlA and φλφ (or φcurlχφ), 
respectively, we obtain: 

φ φ= + φ = + φB curlA λ curlA curlχ  [3.383] 

The behavior law of magnetic materials [1.26] can be used to express the field H 
as follows: 

1 1( ) ( )− −
φ φ= μ + φ = μ + φH curlA λ curlA curlχ  [3.384] 

To obtain the A-V formulation, equation [3.383] is introduced into equation 
[3.301], which leads, on the domain Ωc, to the following relation: 

( )
t φ

∂= − + φ
∂

curlE curlA curlχ  [3.385] 

This equation can be rewritten as: 

( ) 0
t t

φ∂φ∂+ + =
∂ ∂

χAcurl E  [3.386] 

Considering equation [3.386] and, since the domain Ωc is simply connected, the 
electric scalar potential V can be defined such that: 

cV with V H( , )
t t

φ∂φ∂+ + = − ∈ Ω
∂ ∂

χAE grad grad  [3.387] 

Under these conditions, the electric field E has the form: 

 [3.388] 

 

)V
tt

( grad
χAE +

∂

φ∂
+

∂
∂

−= φ
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The current density is then written as: 

 [3.389] 

If in equation [3.302], the magnetic field is replaced by equation [3.384] and the 
current density by equation [3.389], we obtain: 

1( ( )) ( V ) 0
t t

φ−
φ

∂φ∂μ + φ + σ + + =
∂ ∂

χAcurl curl A χ grad  [3.390] 

The system is completed considering that equation [3.304] is also verified, 
hence: 

 [3.391] 

In conclusion, with the A-V formulation, when the source term is the magnetic 
flux φ, the system consisting of equations [3.390] and [3.391] must be solved in the 
domain Ωc. To these equations should be added the equations related to the 
magnetostatics formulation in Ω0 and the continuity conditions of fields H and B 
should be imposed at the interface Γj. 

The equations to be solved in the domain Ω0 are [3.207] and [3.303]. The choice 
of the magnetic vector potential (see equation [3.383]) allows for the verification of 
property [3.303] throughout the domain Ω. Similarly, the magnetic field, via 
equation [3.384], is defined in Ω. Under these conditions, if the magnetic field, 
expressed by relation [3.384], is replaced in equation [3.207], the equation to be 
solved in magnetostatics is: 

1( ( ) 0−
φμ + φ =curl curl A χ  [3.392] 

The electric field is defined only in the domain Ωc and no constraint is imposed 
on its tangential component. On the contrary, the normal component of the current 
density must be equal to zero on the boundary of the conductor. This property is 
imposed on the boundaries Γh1 and Γh2 via the magnetic field (see equation [3.306]). 
For the boundary Γj, it is imposed via equation [3.391]. The fields H and B are 
defined on the entire domain and no constraint is imposed at the interface between 
Ω0 and Ωc. 
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( grad
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Under these conditions, for the study of the problem represented in Figure 3.24, 
equations [3.390] and [3.391] in the domain Ωc, and in addition equation [3.392], 
must be solved in Ω0. The vector potential A is defined on the entire domain Ω 
[3.382]. Moreover, conductivity σ is equal to zero in the subdomain Ω0 (see 
equation [3.307]). 

Under these conditions, relations [3.390] and [3.392] can be gathered. Then, the 
system of equations has the following form: 

1( ( ) ( V ) 0 on
t t

φ−
φ

∂φ∂μ + φ + σ + + = Ω
∂ ∂

χAcurl curl A χ grad  [3.393] 

cdiv( ( V)) 0 on
t t

φ∂φ∂σ + + = Ω
∂ ∂

χA grad  [3.394] 

NOTE.– It can be noted that equation [3.394] is deduced from equation [3.393] when 
the divergence operator is applied. In fact, a configuration equivalent to the one 
analyzed at the end of section 3.6.1.1.1 (see note after equation [3.328]) is obtained. 

3.6.2.1.2. Imposed magnetomotive force 

For the studied geometry (see Figure 3.24), the magnetomotive force fm is 
imposed. The flux φ then becomes an unknown of the problem. The system 
consisting of equations [3.393] and [3.394] should therefore be completed with an 
additional equation that is obtained from a power balance. The objective is to 
express the magnetomotive force as a function of A-V potentials and of the 
magnetic flux φ. 

The power “p” (see equation [3.329]) is written as follows: 

 [3.395]
 

The first term on the right-hand side is integrated over Ωc, taking into account 
the function space to which the current density J belongs (see equation [3.376]). E is 
expressed using relation [3.388] and B as a function of A and λφ (see equation 
[3.383]). 
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Then, the expression of power is: 

c c

p d V d
t t

d
t t

φ

Ω Ω

φ

Ω

∂φ∂= − + τ − τ
∂ ∂

∂ φ∂
+ + τ

∂ ∂

 



( ). .

( )( )
( ).

χA J grad J

λcurlA H

 [3.396] 

Let us now consider the first term of the integral on the right-hand side. 
Considering equation [3.302] and the properties of the vector operators (see equation 
[2.27]), this integral can be rewritten on the domain Ω (since curlH = J on Ωc and 
curlH = 0 on Ω0) in the form: 

. d ( ). d ( ). dS
t t tΩ Ω Γ

∂ ∂ ∂− τ = − τ − ∧
∂ ∂ ∂  A curlA AcurlH H n H  [3.397] 

Concerning the surface integral of equation [3.397], given that A ∈ HΓb(curl, Ω) 
and H ∈ HΓh1∪Γh2(curl, Ω), it is equal to zero. In fact, by decomposing the boundary 
Γ and using the properties of the mixed product, we have: 

b

h h 21

( ). dS ( ). dS
t t

( ). dS 0
t

Γ Γ

Γ ∪Γ

∂ ∂∧ = ∧
∂ ∂

∂+ ∧ =
∂

 



 A An H n H

AH n
 [3.398] 

Based on this result, equation [3.397] can be rewritten as: 

. d ( ). d
t tΩ Ω

∂ ∂− τ = − τ
∂ ∂ 
A curlAcurlH H  [3.399] 

On the contrary, the second integral on the right-hand side of equation [3.396] is 
also zero. In fact, it can be rewritten, again using the formulas of vector operators 
[2.23], in the following form: 

 [3.400] 

Since the current density is divergence free, the first integral on the right-hand 
side is equal to zero. The same is true for the second integral, as on Γc = Γj∪Γh1∪Γh2 
(see equation [3.376]), we have J.n = 0. 

0dS.VdVdivd.V
cc

=+τ−=τ  ΓΩΩ c
nJJJgrad
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Consider now the expression of power, defined by equation [3.396]. Taking into 
account the results given by equations [3.399] and [3.400] and after rearrangement, 
we can write: 

dp ( ). d . d
t dt

( ) d. d . d
t dt

φ
Ω Ω

φ
Ω Ω

∂ φ= − τ − τ
∂

∂ φ+ τ + τ
∂

 
 

curlA H χ J

curlA H λ J
 [3.401] 

After simplification and by expressing the power “p” as a function of global 
quantities, we obtain: 

 [3.402] 

By identification, the expression of the magnetomotive force is deduced as 
follows: 

 [3.403] 

NOTE.– The above expression can be rewritten by again using the vector operators. 
Indeed, let us consider the first integral term on the right-hand side, in which the 
support field λφ is replaced by its potential χφ, defined by relation [3.381]. Applying 
the formula [2.27], we obtain: 

.  d .  d ( ). dSφ φ φ
Ω Ω Γ

τ = τ − ∧  curlχ H χ curlH n H χ  [3.404] 

Let us now consider the surface integral, which can be decomposed as follows: 

h1 h 2 b

( ). dS ( ). dS ( . dSφ φ φ
Γ Γ ∪Γ Γ

∧ = ∧ + ∧   n H χ n H χ n H) χ  [3.405] 

Considering the first integral on the right-hand side, on the boundary Γh1∪Γh2, it 
appears as the tangential component of H. As this tangential component is equal to 
zero on Γh1 and Γh2, the integral term is also equal to zero. For the second integral on 
the right, we again refer to the domain of definition of potential χφ (see equations 
[3.381] and [3.31]). On Γb, χφ is decomposed into two terms χ’φ and χcφ. For χ’φ, its 
tangential component on Γb is equal to zero. As for the second term χcφ, it is  
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tangential to Γb and perpendicular to the cut (see Figure 3.2b). Then, equation 
[3.405] is written as: 

 [3.406] 

Grouping equations [3.403], [3.404] and [3.405] and considering that curlH = J, 
after simplification, we have: 

b

m

c

.  d ( ). dS

. d ( ). dS

φ φ
Ω Γ

φ φ
Ω Γ

= τ − ∧

− τ = − ∧

 
 

χ curlH n H χ

χ J χ n H

f
 [3.407] 

The vector product χcφ∧n represents a field collinear with the cut. Under these 
conditions, the last integral term corresponds to the circulation of field H along the 
cut between gates Γh1 and Γh2. This validates equation [3.403] as the definition of the 
magnetomotive force fm. 

Let us consider equation [3.403] again and replace, on the one hand, the field H, 
via the behavior law [1.26], with the magnetic flux density B expressed by equation 
[3.383] and, on the other hand, the current density J with its expression [3.389]. 
Then, we obtain: 

1
m ( ). d

( ( ) V). d
t

−
φ φ

Ω

φ φ
Ω

= μ + φ τ

∂+ σ + φ + τ
∂




curlA λ λ

A χ grad χ

f
 [3.408] 

For this formulation, the system of equations to be solved has the form of 
equations [3.393], [3.394] and [3.408], where the unknowns are the potentials A and 
V and the flux φ. 

3.6.2.2. Magnetic formulation T-ϕ 

For the magnetic quantities imposed on the boundary (see Figure 3.24), the T-ϕ 
formulation will be developed. With this formulation, it is quite natural to introduce 
the magnetomotive force fm(t) as a source term. On the contrary, an additional 
equation should be considered in order to impose the magnetic flux φ(t). 

3.6.2.2.1. Imposed magnetomotive force 

For the electric formulation, having fm(t) as the source term, let us first use the 
property of the current density J defined by equation [3.304]. Moreover, as noted 

 Γ φΓ φ ∧=∧
b

dS).(dS).( c HnχχHn
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above, the boundary condition of J is wall-type, throughout the boundary of the 
domain Ωc (see equation [3.376]). With J ∈ H0(div0, Ωc) and since the domain Ωc is 
contractible, an electric vector potential T can be introduced (see equation [2.31]), 
such that: 

c
0 cand 0 i.e. : H ( , )Γ= ∧ = ∈ ΩJ curlT T n T curl  [3.409] 

It can be noted that T ∧ n = 0 can be directly imposed on Γj even though the 
latter is not simply connected, because, unlike the case of section 3.6.1.2.1, the flux 
of the current density flowing through a surface Δ (see Figure 3.24) is zero. The 
circulation of T on the contour surrounding the domain Ωc is therefore equal to zero 
this time, unlike the case in which electric quantities are imposed. Indeed, the 
addition of a support potential is not required in order to take into account the 
current I, as in the case of section 3.6.1.2. Moreover, the domain of the definition  
of J, and therefore that of T, can be extended, on the entire domain Ω taking J = 0 
and T = 0 on Ω0. The conditions [3.409] can then be rewritten in the following form: 

c
0 0, 0, 0 on i.e. H ( , )Γ= ∧ = = Ω ∈ ΩJ curlT T n T T curl  [3.410] 

Since the source term is the magnetomotive force, the developments used for its 
introduction into the formulation are similar to those presented in section 3.5.2.1. 
The magnetic field H is then decomposed into two terms: 

 [3.411] 

Considering the properties of H (see equation [3.377]), the field H' belongs to 
the function space HΓh1∪Γh2(curl, Ω). Concerning the source field Hs, it makes it 
possible to take into account the constraints imposed to the magnetic field on the 
boundaries Γh1 and Γh2. It is therefore defined in the function space 
HΓh1∪Γh2(curl0, Ω) and can be represented by a support vector field βs (see equation 
[3.213]) such that: 

h1 h 2s m s swith H ( 0, )Γ ∪Γ= ∈ ΩH β β curlf  [3.412] 

The properties of field βs are identical to those defined in section 3.5.2.1 (see 
equation [3.214]), hence: 

h1 h 2
s s s12

0, 0 and . 1Γ ∪Γ γ
= ∧ = =curlβ β n β dl  [3.413] 

 

's HHH +=
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where γ12 represents an arbitrary path, in the domain Ω, linking the gates Γh1 and Γh2. 
A possible path γ12 is represented in Figure 3.24. Based on the function space in 
which the support field βs is defined, a potential αs (see equation [3.214]) can be 
introduced, such that: 

h1 h 2
s s s h1 s h2 h1 h2

s

, , , 1

i.e. H( , )
Γ Γ= − α α = α α = α α − α =

α ∈ Ω

β grad

grad
 [3.414] 

For the choice of constants, a simple solution is to consider αh1 = 1 on Γe1 and 
αh2 = 0 on Γe2. 

Based on equation [3.302], replacing J by its expression given by equation 
[3.409] and H by equation [3.411], and given that Hs ∈ HΓh1∪Γh2(curl0, Ω), we can 
write: 

( ' ) 0− =curl H T  [3.415] 

This relation allows for the introduction of the magnetic scalar potential ϕ such 
that: 

h1 h 2
' with  H ( , )Γ ∪Γ− = − ϕ ϕ∈ ΩH T grad grad  [3.416] 

On the gates Γh1 and Γh2, the tangential component of the field H is equal to zero 
and the boundary conditions are supported by the field Hs. This is why the magnetic 
scalar potential is equal to zero on these two equipotential surfaces. 

Gathering equations [3.411], [3.412], [3.414] and [3.416] and rearranging them, 
we obtain the expression of the magnetic field in the domain Ωc as follows: 

 [3.417] 

Then, the magnetic flux density can be written using the behavior law [1.26] as 
follows: 

 [3.418] 

The magnetic flux density B can also be written as a function of the support field 
βs (see equation [3.414]): 

 [3.419] 

ϕ−α−= gradgradTH smf

)( sm ϕ−α−μ= gradgradTB f

)( sm ϕ−+μ= gradβTB f
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As for the electric field, using equation [3.409] and the behavior law [1.20], its 
expression in the conducting domain is: 

1−= σE curlT  [3.420] 

At this level of development, the electric vector potential T and the expression of 
the magnetic field given by equation [3.417] verify, respectively, the expressions 
[3.304] and [3.302]. If in equation [3.301] the electric field is replaced by its 
expression given in equation [3.420] and the magnetic flux density by equation 
[3.418], then the equation below is obtained. 

1
m s( ( ))

t
− ∂σ = − μ − α − ϕ

∂
curl curlT T grad gradf  [3.421] 

This expression can also be written using the support field βs of equation [3.414] 
as follows: 

1
m s( ( ))

t
− ∂σ = − μ + − ϕ

∂
curl curlT T β gradf  [3.422] 

To obtain a full equation system, equation [3.303] should be verified. To this 
end, the magnetic flux density is replaced in this equation by its expression given in 
equation [3.418] as follows: 

 [3.423] 

In this equation, βs [3.414] can also be introduced as follows: 

 [3.424] 

Equations [3.421] and [3.423] or still [3.422] and [3.424] represent, for the 
magnetic formulation, the system to be solved in the conducting domain. 
Completeness requires taking into account the equations of magnetostatics in Ω0 and 
verifying the conditions of continuity at the interface between subdomains Ωc and 
Ω0. 

In the domain Ω0, we have to solve equations [3.207] and [3.303] with the 
function spaces defined in equation [3.377]. Given the absence of current density in 
Ω0, the electric vector potential is zero. Under these conditions, gathering equations 
[3.303] and [3.418] with T = 0, we obtain: 

 [3.425] 

0))((div sm =ϕ−α−μ gradgradT f

0))((div sm =ϕ−+μ gradβT f

0))((div sm =ϕ+αμ gradgradf
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As above, the support field βs can also be introduced as follows: 

 [3.426] 

which corresponds to the magnetic scalar potential formulation in magnetostatics.  

Let us now verify the conditions of continuity at the interface between the 
subdomains Ω0 and Ωc. For the current density, its normal component is naturally 
equal to zero, considering the boundary conditions imposed on Γc for the magnetic 
vector potential T (see equation [3.409]). The electric field E is uniquely defined in 
the conducting domain (see equation [3.376]); therefore, there is no particular 
constraint on the boundary Γc. As for the conservation of the tangential component 
of the magnetic field, it is ensured via potentials αs and ϕ (it should be recalled that 
T ∧ n = 0 on Γc). Finally, the conservation of the normal component of B is ensured 
via equations [3.423] or [3.424] associated with [3.425]. 

The study of the problem represented in Figure 3.24 involves solving equations 
[3.422], [3.424] and [3.426]. Nevertheless, as the vector potential T is defined on the 
entire domain Ω (see equation [3.409]), it is equal to zero on Ω0. It is therefore 
possible to gather equations [3.424] and [3.426]. Under these conditions, the system 
of equations to be solved has the following form: 

1
m s c( ( )) 0 on

t
− ∂σ + μ + − ϕ = Ω

∂
curl curlT T β gradf  [3.427] 

m sdiv( ( )) 0 onμ + − ϕ = ΩT β gradf  [3.428] 

3.6.2.2.2. Imposed magnetic flux 

When the source term is the magnetic flux φ(t), the configuration of the problem 
is the same as that given in Figure 3.24. The unknowns are then T in the domain Ωc, 
ϕ throughout the domain Ω and the magnetomotive force fs. Similar to  
section 3.6.2.1.2, an additional equation is needed in this case to express the flux φ 
as a function of potentials T-ϕ and of the magnetomotive force. To this end, a 
similar approach to that in section 3.6.2.1.2 is used, and a power balance is written. 
Expression [3.395] is recalled below, taking into account that the current density is 
zero in Ω0, as follows: 

 [3.429] 

0))((div sm =ϕ−μ gradβf
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Expressing the current density as a function of the vector potential T (see 
equation [3.409]) and replacing the field H by its expression [3.417], we obtain: 

c
m m s

d . d .( )d
dt tΩ Ω

φ ∂= τ + − α − ϕ τ
∂ 
BE curlT T grad gradf f  [3.430] 

Applying formula [2.27] to the first term on the right-hand side, we have: 

c c c

. d . d ( ). dS
Ω Ω Γ

τ = τ − ∧  E curlT curlE T n E T  [3.431] 

Taking into account the properties of the vector potential T on the boundary Γc 
(see equation [3.409]), the surface integral is zero. This can be readily proven using 
the mixed product. Let us consider now the second integral term, on the right-hand 
side of equation [3.430], and decompose it using the fact that the vector potential T 
is zero on Ω0. Then, the following can be written as: 

 [3.432]

 

Grouping equations [3.430], [3.431] and [3.432], we obtain: 

c c
m

m s

d . d . d
dt t

.( )d
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Ω Ω

Ω

φ ∂= τ + τ
∂

∂− α + ϕ τ
∂

 



BcurlE T T

B grad grad

f

f
 [3.433] 

This equation is simplified if curlE is replaced by its expression given by 
equation [3.301]. Then, we obtain: 

 [3.434]
 

Let us now consider the last term of the integral on the right-hand side of 
equation [3.434], the formulas of vector operators (see equation [2.23]) allowing us 
to write: 

 [3.435]
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This equation is equal to zero. Indeed, as the magnetic flux density is divergence 
free, the first term on the right-hand side is zero. As for the second term, namely the 
surface integral, it is also zero, as the boundary Γ consists of the boundaries Γb, Γh1 
and Γh2. But on Γb, we have B.n = 0 and on Γh1 and Γh2, we have ϕ = 0 (see equation 
[3.416]). Under these conditions, equation [3.434] is written as: 

 [3.436]
 

As the studied domain Ω is not subject to deformation over time and the term αs 
is time-independent, the above equation can be rewritten as follows: 

 [3.437]
 

By identification, the magnetic flux φ can be expressed using the potential αs or 
the source field βs (see equation [3.414]) up to a constant. This constant is 
considered to be equal to zero, as φ = 0 when B = 0 on the entire domain. Hence, we 
have: 

 [3.438] 

This expression can also be written by replacing the magnetic flux density B 
with its expression given in equation [3.419]: 

 [3.439] 

In conclusion, for a magnetodynamics problem, with the (T-ϕ) magnetic 
formulation and when the source term is the magnetic flux, we need to solve 
equations [3.427] and [3.428], to which expression [3.439] must be added. 

3.6.3. Summarizing tables 

This section offers a synthetic presentation of the main results when the source 
terms are global quantities imposed on the boundary of the domain. 

For electric quantities (see the studied geometry in Figure 3.23), namely the 
electromotive force e(t) or the current density flux I(t), Table 3.7 summarizes the 
properties of the source terms and the equations to be solved for the electric 
formulation. Again for the imposed electric quantities, Table 3.8 summarizes the  
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properties of source terms and the equations to be solved for the magnetic 
formulation. 

Let us now consider the case when magnetic quantities (φ(t) and fm(t)) are 
imposed on the boundary of the domain. The studied geometry is the one in  
Figure 3.24. Table 3.9 summarizes the properties of the source fields and the 
equations to be solved with the electric formulation. Table 3.10 presents the 
synthesis for the magnetic formulation. 

Global electric quantities imposed on the boundary 
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-V

) e
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ri

c 
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rm
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Source term: electromotive force e(t) 

Source field support 
two possibilities: βe or αe 

Decomposition of the electric field: E = Es + E' 

e1 e2s e e ce , H ( 0, )Γ ∪Γ= ∈ ΩE β β curl  

 

Properties of the unknowns 
B and E', introduction of 

potentials A, V 

0

0

div 0, H (div0, ),
, H ( , )
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= ∈ Ω
B B

B curlA A curl
 

e1 e2
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c

c
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Γ ∪Γ

Γ ∪Γ

∂= − ∈ Ω
∂

∂= − + ∈ Ω
∂

BcurlE E curl

E grad grad
 

Equation to be solved: two 
forms are possible βe and 
αe or for the function βe 

1
e( ) ( V) e 0on

t
− ∂μ + σ + − σ = Ω

∂
Acurl curlA grad β  

e cdiv( ( V e )) 0 on
t

∂σ + − = Ω
∂
A grad β  

Source term: current intensity I(t) 

e becomes an unknown; an additional equation is needed 

 

Table 3.7. Summary of the equations to be solved in  
magnetodynamics with the electric formulation for electric  

global quantities imposed on the boundary (see Figure 3.23) 

),(H,e cees Ω∈αα−= gradgradE

Ω τ=
c

d.I e Jβ



164     Finite Element Method to Model Electromagnetic Systems in Low Frequency 

Global electric quantities imposed on the boundary 
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Source term: current intensity I(t) 

Source fields, two 
possibilities: λI or χI 

Decomposition of the current density: J = Js + J' 

 

s I II , H( , )= ∈ ΩJ curlχ χ curl  

Properties of the unknowns 
J' (extended in Ω0) and H, 

introduction of  
potentials T, ϕ 
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Equation to be solved: two 
forms are possible with λI 

and χI or for the function χI 
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Idiv( (I )) 0 onμ + − ϕ = Ωχ T grad  

Source term: electromotive force e(t) 

I becomes an unknown; an additional equation is needed 

 

Table 3.8. Summary of equations to be solved in  
magnetodynamics with the magnetic formulation for global  

electric quantities imposed on the boundary (see Figure 3.23) 

),0div(H,I IIs Ω∈= λλJ

 ΩΩ τ
∂
∂

+τ=
cc

d.
t

d.e II χBλE



Maxwell’s Equations: Potential Formulations     165 

Global magnetic quantities imposed on the boundary 
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Source term: magnetic flux φ(t) 

Source fields, two 
possibilities: λφ or χφ 
with a cut on Γb not 
simply connected 

Decomposition of the magnetic flux density: B = Bs + B' 

 

bs , H ( , )Δ
φ φ Γ= φ ∈ ΩB curlχ χ curl  

Properties of the 
unknowns B' and E, 

introduction of 
potentials A, V 
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Equation to be solved: 
two forms are possible 

λφ and χφ, or for the 
function χφ 
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χA grad

 

cdiv( ( V)) 0 on
t t
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χA grad  

Source term: magnetomotive force fm(t) 

φ(t) becomes an unknown; an additional equation is needed 

 

Table 3.9. Summary of equations to be solved in  
magnetodynamics with the electric formulation for global  

electric quantities imposed on the boundary (see Figure 3.24) 
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Global magnetic quantities imposed on the boundary 
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Source term: magnetomotive force fm (t) 

Source field support two 
possibilities: βs or αs 

Decomposition of the magnetic field: H = Hs + H' 

h1 h 2s m s s, H ( 0, )Γ ∪Γ= ∈ ΩH β β curlf  

),(H, ssms Ω∈αα−= gradgradH f  

Properties of the unknowns J 
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potentials T, ϕ 
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),(H,' Ω∈ϕϕ−= gradgradTH

Equation to be solved: two 
forms are possible βs and αs or 

for the function βs 

1
m s

c

( ( )) 0
t
on

− ∂σ + μ + − ϕ =
∂

Ω

curl curlT T β gradf
 

Ω=ϕ−+μ sur0))((div sm gradβT f  

Source term: magnetic flux φ(t) 

fm(t) becomes an unknown; an additional equation is needed

Ω τ=φ
c

d. sβB  

Table 3.10. Summary of the equations to be solved in  
magnetodynamics with the magnetic formulation for the global  
electric quantities imposed on the boundary (see Figure 3.24) 

3.6.4. Tonti diagram 

The structure of the Tonti diagram is equivalent to that proposed for static 
problems (electrostatics, electrokinetics and magnetostatics). However, the notion of 
time must be introduced, which leads to a split in the sequences of function spaces, 
as can be noted in Figure 3.25. A three-dimensional structure is then obtained 
(Bossavit 1997). The front plane supports the diagram of magnetostatics, while the 
back plane supports the case of electrostatics. For electrokinetics, the work involves 
the diagonal part of the diagram. It should be noted that the front and back planes 
are linked by a time derivative. The function spaces with the boundary conditions 
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can then be positioned on the set of physical quantities E, D, J, H and B. Then, the 
set of source fields and vector and scalar potentials are placed. 

 

Figure 3.25. Tonti diagram for magnetodynamics  

 



 



4 

Formulations in the Discrete Domain 

4.1. Introduction 

The analytical solution to the formulations proposed in Chapter 3 is not 
accessible unless the geometry is extremely simple, but very often these are 
academic cases. Since the solution in the continuous domain, which is referred to as 
the “exact solution” cannot be obtained, numerical methods can be used. The 
application of these numerical methods leads to a discretized model. The resulting 
discretized model leads to an approximation to the exact solution, known as the 
“discrete solution”. Among the many existing numerical methods, this chapter 
focuses on the method that is currently most widely used for solving low-frequency 
electromagnetism problems, namely the finite element method.  

As a first step, this chapter applies the weighted residual method to the equations 
presented in Chapter 3. This method leads to weak formulations, used for the 
discretization of Maxwell’s equations. Discrete function spaces are then introduced, 
to which the discretized electromagnetic fields belong. These spaces are generated 
by basis functions, namely Whitney elements. Space discretization using the finite 
element method will then be addressed. 

Finally, for the sake of lighter notations, we decided to omit space dependency in 
the continuous domain. However, in this chapter, in order to avoid any confusion in 
the notations, the quantities in the discrete domain will be marked by an index “d”, 
and space dependency will be indicated. For example, the discretized form of the 
electric field E will be denoted by Ed(x). 
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It should be recalled that this book focuses on the theoretical foundations leading 
to the construction of a system of equations. For the computer implementation, 
specific books can be referred to (Russenschuck 2010; Dhatt et al. 2012; Bastos and 
Sadowski 2014; Cardoso 2016). Electromagnetic quantities, such as the force or the 
torque, besides the Maxwell tensor, can often be determined using the virtual work 
method (Coulomb 1983). The same is valid for the use of software in electrical 
engineering (Hameyer et al. 1999).  

4.2. Weighted residual method: weak form of Maxwell’s equations 

4.2.1. Methodology 

Depending on the type of problem posed, either in electrostatics, electrokinetics, 
magnetostatics or magnetodynamics and according to the chosen potential 
formulation, the systems of partial differential equations to be solved, referred to as 
“strong formulations”, were largely developed in Chapter 3. Nevertheless, as 
indicated in section 4.1, for many applications, it is impossible to solve these 
equations directly and obtain the exact solution. Moreover, based on the strong 
formulation, an approximation to the numerical solution cannot be readily obtained. 

A more global approach, referred to as the “weighted residual method”, can be 
considered. It allows us to pose the problem in an integral form, and not locally, as 
for strong formulations. The resulting formulations are referred to as the “weak 
formulation”. This approach is expected to facilitate the work in a finite dimension 
space of approximation, which makes it easier to use numerical methods. The 
objective is to find in this space a solution approximating the exact solution that 
minimizes a residue, which leads to the solution of a system of equations. This 
section explains the general approach to building weak formulations. 

Consider an operator “L”, applied to a vector function U, with, for example, 
U Î H(L,Ω) and a source term fs and associated boundary conditions. The strong 
formulation is written as: 

0)( s =− fUL  [4.1] 

This reflects a general form of potential formulations already noted in Chapter 3, 
for example those of magnetostatics, with equation [3.220] or [3.281]. For these 
formulations, operator L is the divergence (for the first one) and the curl (for the 
second one).  
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Consider now the integral on the entire domain Ω of equation [4.1], weighted by 
a function Ψ, known as the “weighting function”. Then, it can be written as: 

Ω =τ− 0d)).)(( s ΨfUL  [4.2] 

As will be seen in sections 4.2.2–4.2.5, Ψ will be chosen in the adjoint function 
space of H(L,Ω).  

The solution U to equation [4.1], known as the “exact solution”, implies, in fact, 
that the integral form [4.2] is zero. On the contrary, there is no reciprocity: if the 
integral form is zero for any function Ψ, equation [4.1] is not automatically verified 
at any point of the space. This is referred to as a “weak solution”. 

As an illustration of the notion of solution in the weak sense, a specific case is 
presented. Consider a function U, defined inside a contractible domain Ω of 
boundary Γ. The properties of function U are: 

0div 0, . 0 i.e. H (div0, )Γ= = ∈ ΩU U n U  [4.3] 

The condition [4.3] can be expressed in an integral form using the weighted 
residual method. The choice of the weighting functions is generally made, as 
mentioned above, in the adjoint function space of the differential operator of the 
equation to be solved. In this case, the function space of the differential operator of 
equation [4.3] is H0(div0, Ω). Consequently, as shown by equation [2.62], the 
weighting functions are ψ Î H(grad, Ω). The weighted residual method leads to the 
integral form, which must be verified for each weighting function of H(grad, Ω), 
such that: 

Ω =τψ 0ddivU  [4.4] 

Based on equation [4.4], formula [2.23] related to vector operators is used. 
Considering the boundary conditions on the boundary Γ of function U, the weak 
form can be written as follows:  

Ω =τψ 0d.gradU  [4.5] 

In what follows, U' is the notation for a solution field to equation [4.5], for all the 
functions ψ of H(grad, Ω) and we will see to what extent it verifies condition [4.3]. 
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Since U' verifies [4.5], the reverse operation is performed and, using equation 
[2.23], the following can be written: 

  ΓΩ Ω =ψ+τψ−=τψ 0dS'.d'divd'. nUUgradU  [4.6] 

Consider now, as shown in Figure 4.1, a subdomain Ω' of Ω and a scalar 
weighting function ψ' Î H(grad, Ω), such that ψ' is non-zero in Ω' Ì Ω and is  
zero in Ω – Ω'. On the small size domain Ω', let us pose the function ψ' is equal  
to 1 except for the vicinity of the boundary Γ', where it varies continuously from  
1 to zero in a transition zone Z of thickness “z”. It can be verified that the function  
ψ' is continuous. It belongs to H(grad, Ω). Since ψ' is zero on the boundary Ω, we 
have: 

 Ω −Ω =τψ+τ=τψ ZZ 0d'.div'd'divd'div' ' UUU  [4.7] 

If Z tends to zero, the integral on the transition zone tends to zero and we have:  

 −Ω =τZ' 0d'divU  [4.8] 

The left-hand side term of equation [4.8] yields, up to a factor (which is the 
inverse of the volume of Ω'), the average of divU' on Ω'. Since Ω' can be taken as 
small as needed, and the average of divU' is zero on Ω', then divU' is locally zero. 
Consider now a family of subdomains Ωk’ covering the entire domain Ω with which 
the functions ψk’ are associated. The set of solutions U' locally verifies relation [4.8] 
on all the subdomains Ωk’ (the subdomains Ωk’ can be chosen as small as needed), 
but not at any point of the domain. The solution is then considered weakly verified 
on average on the domain.  

 

Figure 4.1. Example of subdomain  
Ω'⊂ Ω with a transition zone 
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Although leading to a weak solution, the weighted residual method has the 
following essential advantages: 

– under specific conditions (that are met in the case of potential formulations), it 
makes it possible to alleviate the constraints on the function U by transferring them 
to the weighting function; 

– as will be noted in sections 4.2.2–4.2.5, it makes it possible to naturally 
introduce the boundary conditions; 

– it highly facilitates the construction of a numerical model leading to an 
approximation to the solution to equation [4.1]. 

For our applications, the scalar or vector weighting functions, denoted by ψ or 
Ψ, respectively, will be chosen in the adjoint spaces of the operators grad, curl and 
div that were introduced in section 2.6.1. The integral formulation [4.2] will not be 
used as such in practice, but under a modified form, following an integration by 
parts that features an adjoint operator. This will lead to the weak formulation that 
imposes fewer differentiability constraints on the solution. 

Sections 4.2.2–4.2.5 present the application of the weighted residual method to 
various strong potential formulations presented in Chapter 3. This will be referred to 
as the “weak form of the formulation” or the weak formulation. For the sake of 
lighter notations, the fact that the solution resulting from the weak formulation is an 
approximation to the solution will not be indicated.  

4.2.2. Weak form of the equations of electrostatics 

For the development of the weighted residual method in electrostatics, let us 
consider again the example presented in Figure 3.11. For this example, we are in the 
presence of a domain Ω composed of two electrodes in contact with the external 
environment, denoted by E1 and E2 and an internal electrode E3. It should be recalled 
that for the studied structure, the studied domain Ω' is defined by Ω' = Ω – ΩE3. The 
source terms can be circulations “fij” of the electric field (see equation [3.108]) or 
the total charges Qk on the electrodes (see equation [3.110]). Section 4.2.2.1 will 
focus on the scalar potential formulation, and section 4.2.2.2 will focus on the vector 
potential formulation. 

It is important to recall that the equations to be solved are given in equations 
[3.104] and [3.105] with the dielectric behavior law [1.19]. The boundary conditions 
on fields E and D are defined in equation [3.106], and the function spaces to which 
they belong are given by relation [3.107]. 
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4.2.2.1. Scalar potential V formulation 

For the scalar potential formulation, in the presence of two source terms f13 and 
f23 (see section 3.3.2.1.1), the electric field can be written in the form [3.116]: 

e1 e2 e313 13 23 23 V, V H ( , ')Γ ∪Γ ∪Γ= + − ∈ ΩE β β grad gradf f  [4.9] 

with βij defined by relation [3.113]. The electric displacement field is given by 
equation [3.117] as follows: 

)V( 23231313 gradββD −+ε= ff  [4.10] 

To obtain the scalar potential formulation, in the presence of the two source 
terms, the electric displacement field is introduced as defined by equation [4.10] 
based on equation [3.105]. This yields: 

0))V((div 23231313 =−+ε gradββ ff  [4.11] 

To apply the weighted residual method, the function space of the weighting 
functions must be chosen. As indicated in section 4.2.1, it is chosen in the adjoint 
space of the differential operator. In equation [4.11], the divergence operator is 
applied to the expression of the electric displacement field with, as indicated by 
relation [3.107], D Î HΓd(div0, Ω'). According to Table 2.1, it can be shown that the 
adjoint operator is the gradient and the associated space HΓe1∪Γe2∪Γe3 (grad, Ω'). The 
weighting functions are therefore scalar such that ψ Î HΓe1∪Γe2∪Γe3 (grad, Ω'). These 
various points are summarized in Table 4.1. 

Vector operator Associated  
function space Adjoint operator Weighting function 

div HΓd(div0, Ω') – grad ψ Î HΓe1∪Γe2∪Γe3(grad, Ω') 

Table 4.1. Electrostatics, scalar potential V formulation; vector  
operator and function space of potential and weighting functions 

Applying the weighted residual method to equation [4.11] yields: 

0d))V((div' 23231313 =τψ−+εΩ gradββ ff  [4.12] 
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Having defined the gradient of the weighting function ψ, it is then possible to 
use formula [2.23] related to vector operators. Equation [4.12] can then be rewritten 
as follows: 

0dS).V(

d)).V((

23231313

' 23231313

=−+ψε+

τψ−−ε−




Γ

Ω

ngradββ

gradββgrad

ff

ff
 [4.13] 

It can be noted that the transition from equation [4.12] to equation [4.13] 
alleviates the differentiability conditions on the term 
“div(ε(f13β13 + f23β23 − gradV))”. The unknown V should be differentiated twice in 
[4.12], whereas it should be done only once in [4.13] “by transferring” the 
differentiation order on the weighting function ψ.  

As indicated in section 4.2.1, it can be readily verified that any solution to 
equation [4.11] is a solution to equation [4.13]. On the other hand, as mentioned 
previously in section 4.2.1, a solution to equation [4.13] does not automatically 
verify equation [4.11]. It can then be said that the solution to equation [4.13] is a 
weak solution. 

The integral on the boundary Γ in equation [4.13] can be decomposed by 
introducing terms related to boundary conditions of a different nature: 

e1 e2 e3

d

13 13 23 23

13 13 23 23

13 13 23 23

( V). dS

( V). dS

( V). dS

Γ

Γ ∪Γ ∪Γ

Γ

ψε + − =

ψ ε + − +

ψ ε + −






 β β grad n

β β grad n

β β grad n

f f

f f

f f

 [4.14] 

To analyze the contributions of each term, in relation to the boundary conditions 
on the boundaries Γe1∪Γe2∪Γe3 and Γd, we consider the relations given in equation 
[3.106] and the domain of definition of the weighting function ψ. As for the 
contribution of the terms related to the boundaries Γe1∪Γe2∪Γe3, it is zero, since 
ψ Î HΓe1∪Γe2∪Γe3(grad, Ω). For the boundary Γd, we have D.n|Γd = 0 (see equation 
[4.10]), which in our case is ε(f13β13 + f23β23 – gradV).n = 0. Under these conditions, 
the surface term related to this boundary is set to zero.  

The weak form of the scalar potential formulation is written as: 

 Ω Ω τψ+ε=τψε' ' 23231313 d).(d.V gradββgradgrad ff  [4.15]
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Let us analyze this expression in terms of the equations to be solved. The choice 
of the electric scalar potential V, which is the unknown of the problem, and that of 
the fields βij, supporting the source terms with their properties, implies that equation 
[3.104] is automatically strongly verified. The same is true for the boundary 
conditions of the electric field on the boundaries Γe1∪Γe2∪Γe3 via the function 
spaces to which V and the source fields defined by βij belong. On the other hand, it 
should be noted that equation [3.60] is weakly verified via the weighted residual 
method. For the electric displacement field, the boundary condition on Γd is also 
weakly verified. Indeed, it is imposed by the surface integral form of equation [4.14] 
considered zero in equation [4.15]. 

Considering now as a source term the total charges Qk on the electrodes, the 
circulations fij become the unknowns of the problem. To obtain a full equation 
system, relations [3.125] and [3.126], which are recalled below, are added to 
equation [4.15]: 

 Ω τ−+ε= ' 23231313131 d)V.(Q gradβββ ff  [4.16] 

 Ω τ−+ε= ' 23231313232 d)V.(Q gradβββ ff  [4.17] 

This leads to a system of equations to be solved, in which the unknowns are the 
scalar potential V and the circulations fij.  

NOTE.– The functions β13 and β23 play the role of weighting functions in expressions 
[4.16] and [4.17], respectively, in the same way as the field gradψ in the weak 
formulation [4.15]. These functions are in both cases curl free. On the other hand, it 
can be noted that the circulations of β13 and β23 differ from zero between two 
electrodes, which is not the case for the function gradψ. This shows that adding the 
two equations [4.16] and [4.17] enriches the space of weighting functions, which 
becomes HΓe1∪Γe2∪Γe3 (grad, Ω') ∪ { β13,β23}. In general, and as will be seen in what 
follows for other cases (electrokinetics, magnetostatics, magnetodynamics), taking 
into account source terms that do not appear naturally in the potential formulations 
leads to an enrichment of the space of the weighting functions.  

Hybrid source terms can also be considered, namely the total charges Qk on an 
electrode and a circulation fij. Assume that the imposed source terms are the 
circulation f13 and the total charges Q2. Based on equation [4.11], it can be noted that 
the unknowns are the scalar potential V and the circulation f23. The system of 
equations to be solved is then composed of the integral form [4.15] and equation 
[4.17]. Conversely, if the source terms are Q1 and f23, to have a full equation system, 
equation [4.15] is added to equation [4.16]. 
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4.2.2.2. Vector potential P formulation 

For the vector potential formulation, when the source terms are the total charges 
Q1 and Q2, the superposition theorem is applied to express the electric displacement 
field. Based on equations [3.138] and [3.139], the electric displacement field D is 
then written as: 

d1 13 2 23Q Q with H ( , ')Γ= + + ∈ ΩD λ λ curlP P curl
 [4.18]

 

where the fields λ13 and λ23 are defined, respectively, by relations [3.131] and 
[3.132]. Based on the electric displacement field D defined by equation [4.18], the 
electric field can be expressed using the behavior law [1.19] as follows: 

e1 e 2 e3

1
1 13 2 23( Q Q ) with H ( 0, ')−

Γ ∪Γ ∪Γ= ε + + ∈ ΩE curlP λ λ E curl
 [4.19]

 

Introducing the expression of E thus obtained in equation [3.104], the equation 
to be solved has the following form: 

1
1 13 2 23( (Q Q )) 0−ε + + =curl λ λ curlP  [4.20] 

To apply the weighted residual method, the weighting functions are chosen in the 
adjoint space of the differential operator. In the case of equation [4.20], the 
differential operator is the curl, applied to the expression of the electric field, which 
is E Î HΓe1∪Γe2∪Γe3 (curl, Ω'). In this case (see Table 2.1), the adjoint operator is the 
curl and the chosen vector weighting function is Ψ Î HΓd(curl, Ω'). These various 
points are summarized in Table 4.2.  

Vector operator Associated  
function space Adjoint operator Weighting function 

curl HΓe1∪Γe2∪Γe3 (curl0, Ω') curl Ψ Î HΓd(curl, Ω') 

Table 4.2. Electrostatics; vector potential P formulation; vector  
operator and function space of the potential and weighting functions 

Under these conditions, the application of the weighted residual method to 
equation [4.20] yields the following expression: 

1
1 13 2 23( (Q Q )). d 0−

Ω
ε + + τ = curl λ λ curlP Ψ  [4.21] 
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In order to lower the level of differentiability of the potential P, formula [2.27] 
related to vector operators is applied. The Ostrogradski theorem can be used to write 
equation [4.21] by introducing the Γ boundary integral as follows: 

1
1 13 2 23'

1
1 13 2 23

(Q Q ). d

( (Q Q ) ). dS 0

−

Ω

−

Γ

ε + + τ

− ε + + ∧ =




λ λ curlP curlΨ

λ λ curlP n Ψ
 [4.22] 

Based on this equation, the boundary integral term can be decomposed by 
introducing two terms related to the boundaries Γd and Γe1∪Γe2∪Γe3 in the following 
form: 

d

e1 e2 e3

1
1 13 2 23

1
1 13 2 23

1
1 13 2 23

( (Q Q ) ). dS

( (Q Q ) ). dS

( (Q Q ) ). dS

−

Γ

−

Γ

−

Γ ∪Γ ∪Γ

ε + + ∧ =

ε + + ∧

+ ε + + ∧






 λ λ curlP n Ψ

λ λ curlP n Ψ

λ λ curlP n Ψ

 [4.23] 

In this expression, as the function Ψ belongs to HΓd(curl, Ω'), the term related to 
the boundary Γd is zero. Moreover, the contributions on the boundaries Γe1∪Γe2∪Γe3 
are also zero. Indeed, the tangential component of the electric field, therefore the 
term ε–1(curlP + Q1λ13 + Q2λ23), is equal to zero on these boundaries. Under these 
conditions, equation [4.22], which represents the weak form of the vector potential 
formulation, can be expressed as follows: 

1
1 13 2 23'

(Q Q ). d 0−

Ω
ε + + τ = λ λ curlP curlΨ  [4.24] 

Let us consider again the initial problem defined by equations [3.104], [3.105] 
and the boundary conditions [3.106]. The definition of support fields λij, the 
equations [3.131] and [3.132] and the introduction of the vector potential P allow for 
the strong verification of equation [3.105]. The boundary conditions on Γd are also 
strongly verified via the properties of source fields λij and the function space to 
which the vector potential P of equation [3.138] belongs. As for equation [3.104], it 
is weakly verified on the domain Ω', via the weighted residual method. The same is 
true for the boundary condition of the electric field on the boundary Γe1∪Γe2∪Γe3. 

If the source terms are the circulations f13 and f23 of the electric field,  
the application of the weighted residual method is unchanged. On the other hand, as 
seen in section 3.3.2.2.2, equations [3.146] and [3.147] should be added. The 
unknowns of the problem are then the total charges Q1, Q2 and the vector potential P. 
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As already indicated (see note in section 4.2.2.1), this leads to an enrichment of the 
weighting function space HΓd(curl, Ω') by functions λij. 

Hybrid source terms can also be considered, namely total charges and a 
circulation (see section 3.3.2.2.3). As an example, let us consider as source terms Q1 
and f23. Besides the vector potential, we have as unknown (see equation [4.20]) the 
total charges Q2. In this case, the equation to be solved is equation [4.24] to which 
equation [3.147] must be added. Conversely, if the source terms are Q2 and f13, 
equation [3.146] must be added to the integral form [4.24]. 

4.2.3. Weak form of the equations of electrokinetics 

The case to be studied for electrokinetics is the multisource case presented in 
Figure 3.14. The equations to be solved are defined in equations [3.149] and [3.150], 
with the electrical behavior law [1.20]. As for the boundary conditions, defined in 
equation [3.191], they are given by the expressions of equation [3.151]. As source 
terms, it is possible to impose on the boundaries Γek with k Î {1,2,3} two 
electromotive forces, two currents or a combination of both.  

The equation can be written using the scalar potential or the vector potential 
formulation. It should be recalled that the scalar potential formulation is suitable 
when electromotive forces are imposed on the boundaries between the surfaces Γe1, 
Γe2 and Γe3. On the other hand, if the flux “I” of the current density is imposed on 
the boundaries Γe1, Γe2 and Γe3, in this case, the vector potential formulation is the 
most suitable. 

The weighted residual method will be applied to the scalar potential formulation 
in section 4.2.3.1 and to the vector potential formulation in section 4.2.3.2.  

4.2.3.1. Scalar potential V formulation 

With the scalar potential V formulation, when the electromotive forces e13 and 
e23 are imposed, the equation to be solved can be written in the form of equation 
[3.196] with V Î HΓe1∪Γe2∪Γe3(grad, Ω). This equation is as follows: 

0)Vee(div 23231313 =−+σ gradββ  [4.25] 

with, as shown by equation [3.192], βi,j Î HΓe1∪Γe2∪Γe3 (curl, Ω).  

To apply the weighted residual method, we must define the weighting functions, 
which are chosen in the adjoint space of the differential operator of the unknown 
field. For equation [4.25], the vector operator is the divergence and the associated 
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function space, which corresponds to that of the current density, is therefore 
HΓj(div0, Ω) (see equation [3.195]). Based on Table 2.1, it can be deduced that the 
adjoint operator is the gradient, and the weighting function, which is a scalar, is 
defined by ψ Î HΓe1∪Γe2∪Γe3 (grad, Ω). These various points are summarized in 
Table 4.3. 

Vector 
operator 

Associated  
function space 

Adjoint 
operator Weighting function 

div HΓj(div0, Ω) – grad ψ Î HΓe1∪Γe2∪Γe3 (grad, Ω) 

Table 4.3. Electrokinetics, scalar potential V formulation; vector  
operator and function space of potential and weighting functions 

Applying the weighted residual method to equation [4.25], we obtain: 

Ω =τψ−+σ 0d))Vee((div 23231313 gradββ  [4.26] 

Equation [4.26] can be integrated by parts using formula [2.23] related to the 
vector operators. This allows for the introduction of boundary conditions as follows: 

0Sd).Vee(

d)).ee(V(

23231313

23231313

=−+ψσ

+τψ+−σ−




Γ

Ω

ngradββ

gradββgrad
 [4.27] 

It can again be noted that the weighted residual method allows for the lowering 
of the level of differentiability of the unknown V of the problem by transferring it to 
the weighting function ψ. 

The surface integral can be decomposed into several terms in order to highlight 
the boundary conditions. Then, we have: 

e1 e2 e3

13 13 23 23

13 13 23 23

13 13 23 23j

(e e V). dS

(e e V). dS

(e e V). dS

Γ

Γ ∪Γ ∪Γ

Γ

ψσ + − =

ψσ + −

+ ψσ + −






 β β grad n

β β grad n

β β grad n

 [4.28] 

This surface integral is equal to zero. Indeed, the term related to boundary 
Γe1∪Γe2∪Γe3 is naturally zero, taking into account the function space to which the 
weighting function ψ belongs. As for the second integral, it is a function of the 
normal component of the current density on the boundary Γj (see equation [3.161]). 
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As the latter is equal to zero, the integral is also zero. Under these conditions, 
equation [4.27] has the following form: 

 Ω Ω τψ+σ=τψσ d).ee(d).V( 23231313 gradββgradgrad  [4.29] 

Let us consider again the initial problem defined by equations [3.149], [3.150], 
[3.191] and [3.151]. The properties of the scalar potential V and of the support fields 
βij allow for the strong verification of equation [3.149] and of the boundary 
conditions on Γe1∪Γe2∪Γe3. On the other hand, the weighted residual method makes 
it possible to impose equation [3.150] in the weak sense. The boundary conditions of 
the current density on Γj are also imposed in the weak sense via the integral term of 
equation [4.28], considered to be zero in equation [4.29]. 

If the source terms are the current density fluxes I1 and I2, as already seen in 
section 3.4.2.1, the electromotive forces e13 and e23 become additional unknowns. 
Following the same approach as that detailed for the electrostatics at the end of 
section 4.2.2.1, a system of equations can be built from relation [4.29] to which 
equations [3.198] and [3.199] are added. If an electromotive force and a current are 
now imposed, to obtain a full equation system, the equation expressing the imposed 
current is added, namely equation [3.198] or [3.199]. 

4.2.3.2. Vector potential T formulation 

For the vector potential formulation, with the imposed current density fluxes I1 
and I2, equation [3.204] must be solved with T Î HΓj(curl, Ω). This yields: 

1
1 13 2 23( (I I )) 0−σ + + =curl λ λ curlT  [4.30] 

To apply the weighted residual method, the function space to which the 
weighting function belongs must be determined. As already seen in section 4.2.1, it 
is defined in the adjoint space of the differential operator of the unknown field. 
Equation [4.30] shows that the differential operator is the curl and it applies to the 
electric field (see equation [3.203]) with E Î HΓe1∪Γe2∪Γe3(curl0, Ω). Consequently, 
using Table 2.1, it can be shown that the adjoint operator is also the curl and the 
weighting function is a vector field such that Ψ Î HΓj(curl, Ω). These various data 
are gathered in Table 4.4. 

Applying the weighted residual method to equation [4.30], we obtain: 

1
1 13 2 23( (I I )). d 0−

Ω
σ + + τ = curl λ λ curlT Ψ  [4.31] 
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Vector 
operator 

Associated  
function space Adjoint operator Weighting function 

curl H Γe1∪Γe2∪Γe3 (curl0, Ω) curl Ψ Î HΓj(curl, Ω) 

Table 4.4. Electrokinetics; vector potential T formulation; vector  
operator and function space of potential and weighting functions 

Using formula [2.27], related to the vector operators, the differentiability 
conditions on the vector potential T are lowered and the boundary conditions are 
naturally introduced: 

1
1 13 2 23

1
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( ( I I )). d
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 [4.32] 

The surface integral of this equation can be decomposed into two terms 
following the boundaries Γe1∪Γe2∪Γe3 and Γj as follows: 
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 [4.33] 

The first term on the right-hand side is equal to zero, as Ψ Î HΓj(curl, Ω). As for 
the second term, it corresponds to the surface integral of the tangential component of 
the electric field that is equal to zero on Γe1∪Γe2∪Γe3 (see equation [3.203]). Under 
these conditions, equation [4.32], which represents the weak form of the equation to 
be solved, can be written as follows: 

1 1
1 13 2 23( . d (I I ). dS− −

Ω Ω
σ τ = − σ + curlT curlΨ λ λ curlΨ  [4.34] 

Let us compare the integral form [4.34] with equations [3.149], [3.150], [3.191] 
and [3.151] of the initial problem. The choice of the vector potential T and of the 
support fields λ13 and λ23 allows the properties of the current density (see equation 
[3.150] and its boundary conditions on Γj [3.151]) to be strongly imposed. As for the  
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electric field, equation [3.149] is weakly imposed with the weighted residual 
method. The boundary condition of the electric field on the boundary Γe1∪Γe2∪Γe3 
(see equation [3.151]) is also weakly imposed. Indeed, the boundary integral on 
Γe1∪Γe2∪Γe3 of equation [4.33] is considered zero in equation [4.34]. 

Let us now consider that the source terms are the electromotive forces e13 and e23 
imposed on the boundaries Γe1, Γe2 and Γe3. In this case, currents I1 and I2 become 
unknowns of the problem. To obtain a full equation system, relations [3.205] and 
[3.206] introducing the electromotive forces are added. If a current and an 
electromotive force are imposed as source terms, to have a well-posed problem the 
equation expressing the imposed electromotive force is added, namely equation 
[3.205] or [3.206]. 

4.2.4. Weak form of the equations of magnetostatics 

In the case of magnetostatics, the two (scalar potential ϕ and vector potential A) 
formulations will be studied, for the example presented in Figure 3.20. It should be 
recalled that in this case three different kinds of source terms appear. A magnetic 
quantity imposed on the boundary (magnetomotive force or magnetic flux) and two 
source terms inside the domain (current intensity in a stranded conductor and a 
permanent magnet). As far as the inductor is concerned (see section 3.5.2.3), 
knowing the intensity of current I, the current density J0 is given by expression 
[1.62]. 

For the two formulations (see sections 4.2.4.1 and 4.2.4.2) and depending on 
various source terms, the equation of equilibrium and the weighted residual method 
will be reviewed. Finally, the equations and the boundary conditions imposed in the 
strong sense and in the weak sense will be summarized.  

4.2.4.1. Scalar potential ϕ formulation 

The scalar potential formulation relies on the equations developed in  
section 3.5.2.5. The first studied case is the one where the source terms are the 
magnetomotive force fm, the current intensity I (which represents the current density 
flux J0) and the coercive field Hc of a permanent magnet (see equation [1.64]). 
Then, as the source term on the boundaries, the magnetomotive force will be 
replaced by the magnetic flux φ.  

4.2.4.1.1. Imposed source terms fm, I, Hc 

For the scalar potential formulation, having as source terms fm and I, the 
magnetic field is expressed as an equation [3.263]. The scalar potential, thus 
defined, belongs to the function space HΓh1 ∪Γh2 (grad, Ω). The magnetic flux density 



184     Finite Element Method to Model Electromagnetic Systems in Low Frequency 

is obtained via the magnetic behavior law that allows for the introduction of the 
source term related to the permanent magnet, the coercive field Hc (see equation 
[3.264]). The equation to be solved [3.266], written in the form of an equation of 
equilibrium, can then be written as follows: 

h1 h 2

m s I cdiv( ( Iχ )) 0
with H ( , )Γ ∪Γ

μ ϕ − − + =
ϕ∈ Ω
grad β H

grad
f

 [4.35] 

The function space associated with this expression is defined by the magnetic 
flux density, i.e. B Î HΓb(div0, Ω), as shown by equation [3.261]. According to 
Table 2.1, the adjoint operator is the gradient and the weighting function is a scalar 
function such that ψ Î HΓh1 ∪Γh2(grad, Ω). These various results are summarized in 
Table 4.5. 

Vector 
operator 

Associated  
function space Adjoint operator Weighting function 

div HΓb(div0, Ω) – grad ψ Î HΓh1 ∪Γh2 (grad, Ω) 

Table 4.5. Magnetostatics, scalar potential ϕ formulation; vector operator  
and function space of the potential and of the weighting functions 

Under these conditions, the weighted residual method, applied to equation 
[4.35], has the following form: 

h1 h 2

m s I cdiv( ( I )) d 0

with H ( , )
Ω

Γ ∪Γ

μ ϕ − − + ψ τ =

ψ ∈ Ω
 grad β χ H

grad

f
 [4.36] 

Using formula [2.23], related to the vector operators, the “boundary” term is 
introduced: 

0Sd)).I((

d)).I((

cIsm
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=+−−ϕμψ+

τψ+−−ϕμ−




Γ

Ω

nHχβgrad

gradHχβgrad

f

f
 [4.37] 

As noted in section 4.2.1, the weighted residual method makes it possible to 
decrease the constraints of differentiability on the scalar potential ϕ. This constraint 
is transferred to the weighting function. Similarly, the problems of discontinuity of 
the field Hc, on some surfaces of the permanent magnet, mentioned in  
section 3.5.2.4, are also lifted.  
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Let us now decompose the surface term by introducing the various boundary 
conditions as follows: 

h1 h 2

b
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m s I c

m s I c

( ( I )). dS
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 grad β χ H n
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f

f
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 [4.38] 

For this equation, the first term on the right-hand side is equal to zero, as 
ψ Î HΓh1 ∪Γh2 (grad, Ω). The second integral on Γb is also equal to zero. Indeed, this 
expression contains the normal component of the magnetic flux density (see 
equation [3.260]) which is equal to zero on Γb. Consequently, the surface integral 
[4.38] is equal to zero and equation [4.37], which represents the weak formulation of 
the problem, is written as: 

 ΩΩ τψ−+μ=τψϕμ d)).I((d).( cIsm gradHχβgradgrad f  [4.39] 

Let us analyze this formulation with respect to the initial problem, defined by 
equations [3.258]–[3.261]. The choice of the scalar potential ϕ and of the support 
fields βs and χI allows, considering their respective properties, for the strong 
verification of equation [3.258] and the imposition of boundary conditions of the 
magnetic field on Γh1∪Γh2. On the other hand, equation [3.259] is weakly imposed, 
via the weighted residual method. Concerning the boundary conditions on the 
magnetic flux density (see equation [3.260]), they are also weakly verified via the 
integral term on Γb of equation [4.38] considered zero in the expression [4.39].  

4.2.4.1.2. Imposed source terms φ, I, Hc 

In the case of the scalar potential formulation, if the source term is the flux φ of 
the magnetic flux density imposed through the boundaries Γh1 and Γh2, the 
magnetomotive force fm becomes an unknown of the problem. The approach is then 
similar to the one in section 4.2.2.1. To obtain a full problem, equation [3.267] is 
added to the integral form [4.39].  

4.2.4.2. Vector potential A formulation 

For the vector potential formulation, in the presence of several source terms, the 
developments have been introduced in section 3.5.3.5. As a first step, the source 
terms are considered the flux φ, the current intensity I in the inductor and the  
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remanent magnetic flux density Br to represent the permanent magnet. It should be 
noted (see equation [1.63]) that Br and Hc are linked by relation Br = – μAHc. In 
section 4.2.4.2.2, the magnetic flux is replaced by the magnetomotive force fm. It 
should be recalled that the studied structure is “represented” in Figure 3.20 and that 
equations [3.258]–[3.261] should be solved. 

4.2.4.2.1. Imposed source terms φ, I, Br 

With the vector potential A formulation and in the presence of the source terms 
φ, I and Br, the expressions of the magnetic flux density and magnetic field are 
given, respectively, by equations [3.295] and [3.296]. The function spaces of H and 
B are defined in equation [3.261], and the equation to be solved (see equation 
[3.298]) is rewritten in the form of an equilibrium equation 

1
r I( ) I 0−

φμ + φ + − =curl curlA λ B λ  [4.40] 

In this expression, λφ and λI represent, respectively, the support fields of the  
flux φ and of the current density J0. These fields, as shown in relations [3.273]  
and [3.289], are defined in the function spaces, such that λφ Î HΓb(div0, Ω) and  
λI Î H0 (div0, Ω). 

In expression [4.40], the vector operator is the curl and the associated function 
space corresponds to the magnetic field, namely HÎHΓh1∪Γh2(curl, Ω) (see equation 
[3.261]). Under these conditions (see Table 2.1), the adjoint operator is also the  
curl and the space of weighting functions is a field of vectors such that  
Ψ Î HΓh1 ∪Γh2(curl, Ω). These various results are summarized in Table 4.6.  

Vector 
operator 

Associated 
function space 

Adjoint 
operator Weighting function 

curl HΓh1 ∪Γh2 (curl, Ω) curl Ψ Î HΓb(curl, Ω) 

Table 4.6. Magnetostatics; vector potential A formulation; vector  
operator and function space of potential and of weighting functions  

Applying the weighted residual method to equation [4.40] leads to the following 
expression: 

1
r I( ( ) I ). d 0−

φ
Ω

μ + φ + − τ = curl curlA λ B λ Ψ  [4.41] 
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Applying formula [2.27], the surface integral appears naturally and the following 
can be written: 

1 1
r

1
r I

. d ( ). dS

( ) ). dS I . d 0

− −
φ

Ω Ω

−
φ

Γ Ω

μ τ + μ φ +

− μ + φ + ∧ − τ =

 
 

curlA curlΨ λ B curlΨ

curlA λ B n Ψ λ Ψ
 [4.42] 

NOTE.– After equation [3.293], we noted that, since the normal component of Br was 
discontinuous on the domain, this led to constraints on the strong form. In the case 
of the weak formulation, it can be noted (see equation [4.42]) that these constraints 
are lifted. 

Comparing equations [4.41] and [4.42], it can be noted that the differentiability 
conditions on the vector potential A are alleviated. Moreover, the surface integral 
can be decomposed into two terms related to the boundaries Γh1∪Γh2 and Γb, which 
yields:
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 curlA λ B n Ψ

curlA λ B n Ψ

curlA λ B n Ψ

 [4.43] 

As Ψ Î HΓb(curl, Ω), the surface integral on Γb is equal to zero. The same is true 
for the surface integral on Γh1∪Γh2 where the tangential component of the magnetic 
field is zero (see its domain of definition, equation [3.261]). Consequently, equation 
[4.42], which represents the weak form of the equations to solve, takes the following 
form: 

1 1
r Id I d− −

φΩ Ω Ω
μ τ = − μ φ − + τ  . ( . ). .curlA curlΨ λ B curlΨ λ Ψ  [4.44] 

Let us consider again the initial problem with equations [3.258]–[3.261]. The 
choice of vector potential A, associated with the properties of support fields λφ and 
λI, allows for the strong verification of equation [3.259]. The boundary conditions 
on Γb of the magnetic flux density (see equation [3.260]) are also strongly verified 
thanks to the function spaces of potential A and of fields λφ and λI. On the other 
hand, relation [3.258] is weakly imposed via the weighted residual method. As for 
the boundary conditions, on the magnetic field (see equation [3.260]), they are also 
weakly verified via the surface integral on Γh1∪Γh2 of equation [4.42], which is 
considered zero in equation [4.44]. 
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4.2.4.2.2. Imposed source terms fm, J0, Br 

If the source term imposed on the boundary Γh1∪Γh2 is the magnetomotive force 
fm, the flux φ proves to be an unknown. The approach is similar to that in section 
4.2.2.1. To obtain a full equation system, the integral form [4.44] is added to 
equation [3.300], which allows for the expression of the magnetomotive force as a 
function of the vector potential A, the flux φ and the remanent magnetic flux density.  

4.2.5. Weak form of the equations of magnetodynamics 

This section uses the same approach as that followed in the introduction of 
potential formulations in section 3.6. The studied structure, presented in the general 
case of Figure 3.22, is a domain Ω of boundary Γ, composed of two subdomains 
denoted by Ωc and Ω0. The subdomain Ωc, of boundary Γc, is a conductor and holds 
two gates Γn1 and Γn2 in contact with the external environment. Electric quantities 
e(t) or I(t) or magnetic quantities fm(t) or φ(t) can be imposed on these two gates. 
The remaining boundary of the conducting subdomain Ωc, denoted by Γj, is in 
contact with the subdomain Ω0 and represents a wall for the current density. The not 
simply connected subdomain Ω0 is not conducting, meaning that conductivity σ is 
equal to zero (see equation [3.307]). The part of its boundary, in contact with the 
external environment, is a wall for the magnetic flux density and is denoted by Γb. 

In what follows, as introduced in section 3.6, we reconsider the various supply 
modes with the A-V and T-ϕ formulations and apply the weighted residual method. 

4.2.5.1. Imposed electrical quantities 

In this case, the studied domain is represented in Figure 3.23, and we have to 
solve equations [3.301]–[3.304]. For the given example, when the electrical 
quantities e(t) or I(t) are imposed, the boundary conditions and the function spaces 
of fields E, J, H and B are defined by expressions [3.310]–[3.312].  

4.2.5.1.1. Electric formulation A-V  

In the case of the electric formulation, the developments rely on the magnetic 
vector potential A and the electrical scalar potential V. For the given example, we 
have (see equations [3.316] and [3.319]), respectively, AÎH0(curl, Ω) and 
VÎH Γe1∪Γe2 (grad, Ωc). The system to be solved, when the source term is the 
electromotive force “e”, is composed of equations [3.327] and [3.328] for,  
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respectively, the domain Ω and the subdomain Ωc. These relations presented in the 
form of equilibrium equations are: 

1
e( ) ( V) e 0 on− ∂μ + σ + − σ = Ω

∂
Acurl curlA grad β
t

 [4.45] 

e cdiv( ( V e )) 0 on
t

∂σ + − = Ω
∂
A grad β  [4.46] 

It should be recalled that βe is the support field of the electromotive force, which 
is defined by relation [3.313]. In order to develop the weighted residual method for 
these equations, weighting functions should be defined. For equation [4.45], the 
vector operator is the curl and the associated space is defined by the magnetic field, 
i.e. (see relation [3.312]) HÎH(curl, Ω). The adjoint operator (see Table 2.1) is the 
curl and the space of weighting functions ΨÎH0(curl, Ω). As for equation [4.46], 
the vector operator is the divergence and the associated space is defined by the 
current density (relation [3.310]), with JÎHΓj(curl, Ωc). In this case (see Table 2.1), 
the adjoint operator is the gradient and the space of weighting functions 
ψÎHΓe1∪Γe2(grad,Ωc). Table 4.7 summarizes these various results. 

Equation Vector 
operator 

Associated 
function space 

Adjoint 
operator Weighting function 

[4.45] curl H(curl, Ω) curl Ψ Î H0(curl, Ω) 
[4.46] div HΓj(div0, Ωc) – grad ψ Î HΓe1∪Γe2 (grad, Ωc) 

Table 4.7. Magnetodynamics, imposed electrical quantities,  
A-V electrical formulation; vector operator and function  

space of potentials and weighting functions 

As a first step, the weighted residual method is applied to equation [4.45], which 
is integrated over the domain Ω. Then, we obtain: 

1
e( ( ). ( V e ). )d 0

t
−

Ω

∂μ + σ + − τ =
∂
Acurl curlA Ψ grad β Ψ  [4.47] 

It should be noted that the scalar potential V and the source field βe are only 
defined on the domain Ωc. Nevertheless, since the conductivity σ is zero on Ω0 (see 
equation [3.307]), the integral of σ(∂A/∂t + gradV – eβe) can be extended to the  
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entire domain Ω. The first term of the volume integral can be rewritten using 
expression [2.27] that introduces the surface integral on Γ as follows: 

1

1 1

( ). d

. d ( ). dS

−

Ω

− −

Ω Γ

μ τ

= μ τ − μ ∧


 

curl curlA Ψ

curlA curlΨ curlA n Ψ
 [4.48] 

Given the function space to which the weighting function Ψ belongs, the integral 
on the boundary Γ is equal to zero. Under these conditions, gathering equations 
[4.47] and [4.48], we obtain: 

1
e( ( . ) ( V e ). )d 0

t
−

Ω

∂μ + σ + − τ =
∂
AcurlA curlΨ grad β Ψ  [4.49] 

Let us again apply the weighted residual method for equation [4.46] with the 
scalar weighting function ψ defined in Table 4.7. The following can be written as: 
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Formula [2.23], related to the vector operators, leads to the following: 
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 [4.51] 

The surface integral on Γc can be decomposed by introducing the terms related to 
the boundaries Γj and Γe1∪Γe2. Then, we have: 
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 [4.52] 
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The first term on the right-hand side of the equality is equal to zero, as (see  
Table 4.7) the weighting function ψ is zero on the boundary Γe1∪Γe2. As for the 
second term, it is also zero, since J.n = 0 on Γj. Equation [4.51] can then be 
rewritten as follows: 

0d)).e
t

(V.( e
c

=τψ−
∂
∂

σ+ψσΩ gradβ
A

gradgrad  [4.53] 

The weak form of the magnetodynamics problem represented in Figure 3.23, 
with the electric formulation A-V, is expressed using equations [4.49] and [4.53]. It 
should be noted that the basis equations [3.301] and [3.303] are strongly verified via 
the properties of the potentials A, V and of the support field βe. Considering the 
function spaces to which these potentials and also βe belong, the boundary 
conditions on Γe1∪Γe2 and Γb on the fields E and B are also strongly verified. On the 
other hand, equations [3.302] and [3.304] are weakly verified, via the weighted 
residual method. The boundary conditions of the current density on the boundary Γj 
are also weakly imposed via the boundary integral of equation [4.52]. Indeed, the 
latter is considered zero in expression [4.53]. 

If the flux of the current density is imposed through the boundaries Γe1 and Γe2, 
the electromotive force becomes an unknown of the problem. The process used is 
the same as in section 4.2.2.1. For a full equation system, relation [3.338] or [3.339] 
(see section 3.6.1.1.2) is added to equations [4.49] and [4.53]. 

4.2.5.1.2. Magnetic formulation T-ϕ 

The magnetic formulation uses the electric vector potential T and the magnetic 
scalar potential ϕ. For the example in Figure 3.23, with the current density flux I(t) 
as a source term, the potentials T and ϕ are defined, as shown by relations [3.348] 
and [3.354], in the function spaces HΓj(curl, Ωc) and H(grad, Ω), respectively. In 
this case, the equations to be solved are given by relations [3.362] and [3.363], 
which are recalled below: 

1
I

I c

( (I ))

( (I )) 0 on
t

−σ +
∂+ μ + − ϕ = Ω
∂

curl curlχ curlT

χ T grad
 [4.54] 

Idiv( (I )) 0 onμ + − ϕ = Ωχ T grad  [4.55] 
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It should be recalled (see equation [3.346]) that the vector potential χI is defined 
throughout the domain Ω, and it belongs to the function space H(curl, Ω). 

According to the weighted residual method, the function spaces to which the 
weighting functions belong should be determined. For equation [4.54], the vector 
operator is the curl and the associated space is defined by the electric field (see 
relation [3.310]), i.e. E Î HΓe1∪Γe2 (curl, Ωc). The adjoint operator is then the curl 
(see Table 2.1) and the weighting functions Ψ belong to HΓj(curl, Ωc).  

NOTE.– The space of weighting functions generally corresponds to the space to 
which unknown potentials belong. But the function space of the vector potential T is 
H(curl, Ω) (see equation [3.347]) which a priori does not correspond to that of 
weighting functions Ψ. It should nevertheless be recalled that T is equal to zero on 
Ω-Ωc. This potential should therefore be determined only on Ωc, and the restriction 
of T to Ωc belongs to the same space HΓj(curl, Ωc) as the weighting functions Ψ (see 
equation [3.348]). 

For equation [4.55], the vector operator is the divergence and the associated 
function space is defined by the magnetic flux density with (see equation [3.312]) 
BÎH0(div0, Ω). As shown in Table 2.1, the adjoint operator of the divergence is the 
gradient and the weighting functions ψ belong to H(grad, Ω). Table 4.8 summarizes 
these various results.  

Equation Vector 
operator 

Associated function 
space 

Adjoint 
operator 

Weighting 
function 

[4.54] curl HΓe1∪Γe2 (curl, Ω) curl Ψ Î HΓj(curl, Ωc) 

[4.55] div H0(div0, Ω) – grad ψ Î H(grad, Ω) 

Table 4.8. Magnetodynamics, imposed electric  
quantities, electric formulation T-ϕ; vector operator and  

function space of potentials and weighting functions 

Let us apply the weighted residual method to equation [4.54]. This yields: 

c

1
I

I

( ( I ).

( I ). )d 0
t

−

Ω
σ +

∂+ μ + − ϕ τ =
∂

 curl curlT curlχ Ψ

T χ grad Ψ
 [4.56] 
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Formula [2.27] related to the vector operators, applied to the first term of the 
volume integral of equation [4.56], allows us to introduce the surface term. Using 
the properties of the mixed product, this yields: 

c

c

c

1
I

1
I

1
I

( I ). d

( I ). d

( ). ( I )dS

−

Ω

−

Ω

−

Γ

σ + τ =

σ + τ

− ∧ σ +





curl curlT curlχ curlΨ

curlT curlχ curlΨ

n Ψ curlT curlχ

 [4.57] 

The surface integral on Γc can be decomposed on the boundaries Γj and Γe1∪Γe2 
of the conducting domain. Then, we have:

 

 

c

j

e1 e2

1
I

1
I

1
I

( ). ( I )dS

( ). ( I )dS

( ). ( I )dS

−

Γ

−

Γ

−

Γ ∪Γ

∧ σ +

= ∧ σ +

+ ∧ σ +





 n Ψ curlT curlχ

n Ψ curlT curlχ

n Ψ curlT curlχ

 [4.58] 

It can be readily shown that the surface integral on Γc is equal to zero. Indeed, 
the contribution on Γj is zero as shown by the function space to which the weighting 
function Ψ belongs (see Table 4.8). Using the mixed product, it can be shown that 
the second integral on the right-hand side represents the tangential component of the 
electric field (see equation [3.351]) on the boundary Γe1∪Γe2. As this component is 
zero, the integral is also zero. Under these conditions, equation [4.56] has the 
following form:  

c

1
I

I

( ( I ).

( I ). )d 0
t

−

Ω
σ +

∂+ μ + − ϕ τ =
∂

 curlT curlχ curlΨ

T χ grad Ψ
 [4.59] 

This expression is the weak form of equation [4.54]. Applying the weighted 
residual method to equation [4.55] yields: 

0d))I((div I =τψϕ−+μΩ gradχT  [4.60] 
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In order to introduce the boundary terms, formula [2.23] is applied to the volume 
integral. Then, we obtain:

 

 

0dS).I(

ψd.)I(

d))I(div(

I

I

I

=ϕ−+μψ+

τϕ−+μ−

=τψϕ−+μ






Γ

Ω

Ω

ngradχT

gradgradχT

gradχT

 [4.61] 

The surface integral on the boundary Γ of the domain introduces the magnetic 
flux density (see equation [3.355]) and more particularly its normal component. But 
as shown by relation [3.312], this normal component is zero on the boundary. 
Considering this property, we can write: 

0ψd).I( I =τϕ−+μΩ gradgradχT  [4.62] 

It should be recalled (see equations [3.347] and [3.348]) that the vector potential 
T is defined throughout the domain Ω, but it is equal to zero on Ω0. 

When applying the weighted residual method, for the T-ϕ formulation, the 
system to be solved is composed of equations [4.59] and [4.62]. In this case, 
equations [3.302] and [3.304] are strongly verified by the use of potentials T and ϕ 
and of the associated potential χI. The same is true for the boundary condition of the 
current density on the boundary Γj, taking into account the function space to which 
the potential T belongs (see equation [3.348]). On the other hand, the use of the 
weighted residual method verifies equations [3.301] and [3.303] in the weak sense. 
This is also valid for the boundary conditions of the electric field on Γe1∪Γe2 and the 
magnetic flux density on Γb. Indeed, the corresponding boundary integrals are 
considered zero in equations [4.58] and [4.61]. 

If the electromotive force “e” between the boundaries Γe1 and Γe2 is now 
imposed as a source term, then the current density flux becomes an unknown. To 
obtain a full equation system, relation [3.373] is added to the system composed of 
equations [4.59] and [4.62] (see section 3.6.1.2.2). 

4.2.5.2. Imposed magnetic quantities 

In this section, we again consider the example in Figure 3.24, having the flux φ(t) 
of the magnetic flux density or the magnetomotive force fm(t) as the imposed global 
quantities. Equations [3.301]–[3.304] should be solved. The boundary conditions on 
the boundaries are given in equations [3.374] and [3.375] and the function spaces to 
which the fields E, J, H and B belong are defined by relations [3.376] and [3.377]. 
For this study, the two (electric and magnetic) formulations have been introduced in 
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section 3.6.2. In what follows, the weighted residual method is applied to these 
formulations. 

4.2.5.2.1. Electric formulation (A-V) 

As a first step, the magnetic flux is imposed on the boundaries Γh1 and Γh2. For 
this configuration, the vector potential A belongs, as shown in relation [3.382], to 
the function space HΓb(curl, Ω) and the scalar potential V (see equation [3.387]) to 
the function space H(grad, Ωc). It should be recalled (see section 3.6.2) that the 
boundary Γb is not simply connected. When the source term is the flux φ, the system 
to be solved is composed of equation [3.393] for the domain Ω and equation [3.394] 
for the subdomain Ωc. These two equations are recalled as follows: 

1( ( ) ( V ) 0 on
t t

φ−
φ

∂φ∂μ + φ + σ + + = Ω
∂ ∂

χAcurl curl A χ grad  [4.63] 

cdiv( ( V)) 0 on
t t

φ∂φ∂σ + + = Ω
∂ ∂

χA grad  [4.64] 

In these expressions, the associated potential χφ is defined on the entire domain 
Ω. Given that the boundary Γb is not simply connected, χφ belongs (see equation 
[3.381]) to the function space HΔ

Γb(curl, Ω).  

The function space to which the weighting functions belong must be determined 
to apply the weighted residual method to equations [4.63] and [4.64]. For equation 
[4.63], the vector operator is the curl and the associated space is defined by the 
magnetic field (see equation [3.377]), i.e. HÎHΓh1∪Γh2 (curl, Ω). In this case (see 
Table 2.1), the adjoint operator is also the curl and the weighting functions Ψ belong 
to HΓb(curl, Ω). For equation [4.64], the vector operator is the divergence and the 
associated space is defined by the current density J (see expression [3.376]), with 
JÎH0(div0, Ωc). In this case, as shown in Table 2.1, the adjoint operator is the 
gradient and the weighting functions ψ belong to H(grad, Ωc). Table 4.9 
summarizes these various results.  

Equation Vector 
operator 

Associated  
function space 

Adjoint 
operator 

Weighting 
function 

[4.63] curl HΓh1∪Γh2 (curl, Ω) curl Ψ Î HΓb(curl, Ω) 
[4.64] div H0(div0, Ωc) – grad ψ Î H(grad, Ωc) 

Table 4.9. Magnetodynamics, imposed magnetic quantities, electric formulation  
A-ϕ; vector operator and function space of potentials and weighting functions 
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Having defined the weighting functions and their associated function spaces, the 
weighted residual method is now applied. Concerning equation [4.63], the following 
can be written: 

1( ( ( )) ( V ). )d 0
t t

φ−
φ

Ω

∂φ∂μ + φ + σ + + τ =
∂ ∂

χAcurl curlA χ grad Ψ  [4.65] 

As already mentioned, after equation [4.47], relying on conductivity, which is 
zero in Ω0, it can be shown that the integral of term σ(∂A /∂t + gradV + φ∂χφ /∂t) 
can be extended to the entire domain Ω. The application of formula [2.27] to the first 
term of integral [4.65] allows us to write: 

1

1

1

( ( )). d

( ). d

( ( ) ). dS 0

−
φ

Ω

−
φ

Ω

−
φ

Γ

μ + φ τ =

μ + φ τ

− μ + φ ∧ =






curl curlA χ Ψ

curl A χ curlΨ

curl A χ n Ψ

 [4.66] 

The surface integral on Γ can be decomposed (see equation [3.374]) following 
the boundaries Γh1∪Γh2 and Γb. This yields the following formula: 

h1 h 2

b

1

1

1

( ( ) ). dS

( ( ) . )dS

( ( ) . )dS

−
φ

Γ

−
φ

Γ ∪Γ

−
φ

Γ

μ + φ ∧

= μ + φ ∧

+ μ + φ ∧






 curl A χ n Ψ

curl A χ n Ψ

curl A χ n Ψ

 [4.67] 

In this expression, for the first integral on the right-hand side, the tangential 
component of the magnetic field is integrated on the boundary Γh1∪Γh2. Considering 
the function space to which the field H belongs, this integral is equal to zero. The 
second integral on Γb is also equal to zero. Indeed, using the properties of the mixed 
product, the tangential component of the weighting function Ψ, which is zero on Γb 
(see Table 4.9), is introduced. Under these conditions, equation [4.66] is written as: 

1( ( ( ). ( V ). )d 0
t t

φ−
φ

Ω

∂φ∂μ + φ + σ + + τ =
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χAcurl A χ curlΨ grad Ψ  [4.68] 
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Let us now consider equation [4.64] to which we apply the weighted residual 
method considering as the weighting function the scalar function ψ defined in  
Table 4.9. Then, we have: 

0d))V
tt

((div
c

=τψ+
∂

φ∂
+

∂
∂

σΩ
φ grad

χA
 [4.69] 

We then apply formula [2.23] to this equation, and the boundary conditions can 
be introduced. Then, the following can be written:
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 [4.70] 

The surface integral term on Γc makes the normal component of the current 
density appear. But this component is zero on the boundary Γc (see equation 
[3.376]). Under these conditions, equation [4.70] has the form: 

0ψd.)V
tt

(
c

=τ+
∂

φ∂
+

∂
∂

σ φ
Ω gradgrad

χA
 [4.71] 

The weak form of magnetodynamic equations, with the electric formulation and 
where the source term is the magnetic flux, is given by equations [4.68] and [4.71]. 
The choice of A-V formulation, associated with potential χφ, allows for the strong 
verification of the basis equations [3.301] and [3.303]. The same is true for the 
boundary conditions of the magnetic flux density B on the boundary Γb, as shown by 
the properties of A and χφ (see relations [3.381] and [3.382]). On the other hand, the 
weighted residual method leads to verifying equations [3.302] and [3.304] in the 
weak sense, respectively, on domains Ω and Ωc. Similarly, the boundary conditions 
of fields H and J on, respectively, the boundaries Γh1∪Γh2and Γj, are also weakly 
verified. This is due to the boundary integrals of equations [4.67] and [4.70] 
considered zero in expressions [4.68] and [4.71], respectively.  

Considering now the case in which the source term is a magnetomotive force fm 
imposed on the boundaries Γhk, the approach is the same as that used in  
section 4.2.2.1. As shown in section 3.6.2.1.2, the flux φ becomes an unknown of the 
problem. To obtain a full equation system, relation [3.407] is added to equations 
[4.68] and [4.71].  
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4.2.5.2.2. Magnetic formulation T-ϕ 

With the formulation T-ϕ, involving magnetic quantities, imposing the 
magnetomotive force fm is quite natural (see section 3.6.2.2). For the example 
presented in Figure 3.24, the electric vector potential T belongs to the function space 
H0(curl, Ω), as shown by equation [3.410]. It should, however, be noted that T = 0 
in Ω-Ωc. As for the magnetic scalar potential ϕ, it belongs (see equation [3.416]) to 
HΓh1∪Γh2 (grad, Ω). The equations to be solved are given by relations [3.427] and 
[3.428]. They are recalled as follows: 

1
m s c( ) ( ( )) 0 on

t
− ∂σ + μ + − ϕ = Ω

∂
curl curl T T β gradf  [4.72] 

m sdiv( ( )) 0 onμ + − ϕ = ΩT β gradf
 [4.73] 

In these expressions, βs represents the support field of the magnetomotive force. 
It is defined by relation [3.412]. 

In order to apply the weighted residual method, the weighting functions must be 
defined. In the case of equation [4.72], the vector operator is a curl and the 
associated function space is defined by the electric field (see equation [3.376]), 
namely H(curl, Ωc). In this case, the adjoint operator (see Table 2.1) is the curl and 
the weighting functions Ψ belong to the function space HΓc(curl,Ωc). As for 
equation [4.73], the vector operator is the divergence and the function space is 
defined by the magnetic flux density with BÎHΓb(div0,Ω), as shown by equation 
[3.377]. The adjoint operator is then (see Table 2.1) the gradient, and the weighting 
functions ψ belong to HΓh1∪Γh2 (grad, Ω). These various results are summarized in 
Table 4.10. 

Equation Vector 
operator 

Associated  
function space 

Adjoint 
operator Weighting function 

[4.72] curl H(curl, Ωc) curl Ψ Î HΓc(curl, Ωc) 
[4.73] div HΓb(div0, Ωc) – grad ψ Î HΓh1∪Γh2(grad, Ωc) 

Table 4.10. Magnetodynamics, imposed magnetic  
quantities, electric formulation T-ϕ; vector operator and  

function space of potentials and weighting functions 
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Let us now apply the weighted residual method to these two equations. For 
equation [4.72], this yields: 

c

1
m s( ( ) ( ( ))). d 0

t
−

Ω

∂σ + μ + − ϕ τ =
∂ curl curlT T β grad Ψf  [4.74] 

Let us introduce the boundary conditions by means of relation [2.27] applied to 
the first term of the integral as follows: 

c

c c

1

1 1

( ). d

. d ( ). d

−

Ω

− −

Ω Γ

σ τ =

σ τ − ∧ σ τ


 

curl curlT Ψ

curlT curlΨ n curlT Ψ
 [4.75] 

Considering the vector space to which the functions Ψ belong, the surface 
integral is equal to zero. Under these conditions, the weighted residual method 
applied to equation [4.72] has the form: 

c

1
m s( . ( ). )d 0

t
−

Ω

∂σ + μ + − ϕ τ =
∂ curlT curlΨ T β grad Ψf  [4.76] 

Let us now apply the weighted residual method to equation [4.73]. The following 
equation is then obtained: 

0d))((div sm =τϕ−+μψΩ gradβT f  [4.77]
 

Using relation [2.23], the boundary conditions are introduced, differentiating 
between the boundaries Γh1∪Γh2 and Γb, as follows:
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 [4.78] 

First of all, consider the surface integral on Γh1∪Γh2; the properties of the 
weighting function ψ (see Table 4.10) show that it is equal to zero. On the other 
hand, the second integral on Γb introduces the normal component of the field B  
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(see equation [3.418]). But as shown by equation [3.377], this component is equal to 
zero on Γb.  

Under these conditions, equation [4.78] is written as: 

0d.)( sm =τψϕ−+μΩ gradgradβT f   [4.79]
 

When the source term is the magnetomotive force, with the magnetic 
formulation, the weak form of our magnetodynamics problem is described by 
equations [4.72] and [4.73]. The properties of potentials T and ϕ (see equations 
[3.409] and [3.416]), associated with field βs, support of the source field (see 
equation [3.412]) allow for the strong verification of equations [3.302] and [3.304]. 
The same is true for the boundary conditions on fields H and J (boundaries Γc and 
Γh1∪Γh2 ) via the function spaces of definition of T, ϕ and βs. On the other hand, 
equations [3.301] and [3.303] are weakly verified with the weighted residual method 
on Ωc and Ω, respectively. The boundary condition of the magnetic flux density on 
Γb is also weakly verified. This is due to the boundary integral of equation [4.78] 
considered zero in expression [4.79]. 

Let us now consider the case in which the source term is the magnetic flux φ 
imposed on the boundaries Γh1∪Γh2: the approach is the same as in section 4.2.2.1. 
As shown in section 3.6.2.2.2, the magnetomotive force fm becomes an unknown of 
the problem. To obtain a full equation system, relation [3.439] is added to equations 
[4.76] and [4.79]. 

4.2.6. Synthesis of results 

In this section, the weighted residual method was applied to the examples 
presented in Chapter 3. With respect to electrostatics, electrokinetics and 
magnetostatics, we considered the multisource systems. For magnetodynamics, we 
applied the weighted residual method to the configurations introduced in section 3.6.  

For each of the applications, the use of the weighted residual method, associated 
with the potential formulation, leads to the strong verification of an equilibrium 
equation and a weak verification of the other.  

In all the cases, the strongly and weakly imposed properties are independent of 
the source terms; they depend only on the potential formulation used and the 
boundary conditions imposed on the boundary. 
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In this context, Table 4.11 summarizes for various formulations the properties 
that were strongly and weakly verified with the weighted residual method. 

Formulation Strong properties Weak properties 

El
ec

tr
os

ta
tic

s 

Scalar potential V 
e

0, 0Γ= ∧ =curlE E n  0.,0div d == ΓnDD  

Vector potential P 0.,0div
d

== ΓnDD  
e

0, 0Γ= ∧ =curlE E n  

El
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tr
ok
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ic
s 

Scalar potential V 
e

0, 0Γ= ∧ =curlE E n  0.,0div
j

== ΓnJJ  

Vector potential T 0.,0div
j

== ΓnJJ  
e

0, 0Γ= ∧ =curlE E n  

M
ag

ne
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s 

Scalar potential ϕ 
h

0 , 0Γ= ∧ =curlH J H n  0.,0div
b

== ΓnBB  

Vector potential A 0.,0div
b

== ΓnBB  
h

0 , 0Γ= ∧ =curlH J H n  

M
ag

ne
to

dy
na

m
ic

s Electric 
(A-V) 

e

b

, 0
t

div 0, . 0

Γ

Γ

∂= − ∧ =
∂

= =

BcurlE E n

B B n

h

j

, 0

div 0, . 0
Γ

Γ

= ∧ =

= =

curlH J H n

J J n
 

Magnetic 
(T-ϕ) 

h

j

, 0

div 0, . 0
Γ

Γ

= ∧ =

= =

curlH J H n

J J n  
e

b

, 0
t

div 0, . 0

Γ

Γ

∂= − ∧ =
∂

= =

BcurlE E n

B B n
 

Table 4.11. Potential formulations; properties  
of strongly and weakly verified solutions 

4.3. Finite element discretization 

4.3.1. The need for discretization 

Let us consider, as an example, the scalar potential formulation in the case of 
electrokinetics. The objective is to find a scalar potential V belonging to H(grad, Ω) 
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and verifying equation [4.29] for any ψ belonging to H(grad, Ω). Assuming there is 
a basis υk (k ∈ ℕ) of H(grad, Ω), then we can write: 


∞

=
υ=

1k
kk VV  [4.80] 

where the scalar potentials Vk are the unknowns to be determined.  

The number of terms to be calculated to weakly define the solution is infinite. 
Such a process is naturally impossible in practice, given that a computer can only 
process a finite amount of operations. There are cases where it is possible to 
determine an analytical or semi-analytical solution, but they concern structures with 
an extremely simple geometry. Consequently, we have to work with a basis of finite 
dimension υ'k (1 ≤ k ≤ N) of a subspace of dimension N (denoted by H'(grad, Ω)) of 
H(grad, Ω). Then, we obtain an approximation V' to the “exact” solution in the 
weak sense, as the space H'(grad, Ω) is less “rich” than H(grad, Ω). This solution is 
written as: 


=

υ=
N

1k
kk 'V''V  [4.81] 

Since there are N unknowns V'k to be determined, we must find N independent 
equations. For this purpose, we can use the weighted residual method and apply the 
weak formulation [4.29]. As already noted, the weighting functions ψ belong to the 
same space H(grad, Ω) as the scalar potential V. The approach can be similar in the 
discrete case and V' and ψ' can be taken in the same space H'(grad, Ω). This is 
referred to as the Ritz–Galerkin method. Applying to equation [4.29] the N basis 
functions ψ' = υ'k, we build a system of N equations with N unknowns V'k. The 
solution to this system of equations, coupled with enforcing the boundary 
conditions, makes it possible to determine the N coefficients V'k. The quality of the 
approximation V' is expected to strongly depend on the choice of the basis υ'k, 
referred to as “discretization”, which will be used. 

The finite element method is often used, in the case of low-frequency 
electromagnetism, to build these subspaces of discretization. The domain Ω is then 
decomposed into elementary geometric units. The domain thus discretized with a 
mesh M is denoted by Ωd. 

The geometric elements generally used in 3D are tetrahedra, hexahedra, prisms, 
etc. Based on this spatial division, a finite number of interpolation functions is 
defined, forming the basis of subspaces where the approximation to the solution is to 
be found. 
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Section 4.3.2 provides the expressions of the interpolation functions of the first 
order for tetrahedral elements that are widely used in practice. Moreover, most of the 
properties presented can subsequently be generalized to other types of elements. 
Section 4.3.3 will show how the vector operators grad, curl and div are discretized 
by introducing the notion of incidence matrix. Then, section 4.3.4 will present the 
discretization of physical fields and associated fields like potential and source fields 
as well as the introduction of gauges and boundary conditions. Finally, section 3.4.4 
presents the Ritz–Galerkin method, which can be used to build a system of equations 
whose solution leads to the approximation to the solution of a given problem. 

4.3.2. Approximation functions 

A finite element is built from a geometric form, denoted by k, which in 2D can 
be a triangle, a quadrangle, etc., or in 3D it can be a tetrahedron, a hexahedron, etc. 
As noted above, this book considers the three-dimensional case, namely 
tetrahedrons. This type of element remains the one that is actually most commonly 
used in practice, as it allows for the meshing of complex geometries that are met in 
low-frequency electromagnetism applications. It should moreover be noted that most 
of the properties that will be presented in detail in what follows can be generalized 
to other types of elements. 

This element is associated with a space of nk scalar or vector interpolation 
functions that correspond to degrees of freedom. Under these conditions, if a 
function f(x) is considered, defined on the element k , it can be approximated by a 
discretized function fd(x) as follows: 


=

≅ω=
k

f
n

1i
iid )x(f)x()x(f  [4.82] 

where ωi(x) represents the interpolation functions and fi represents the coefficients 
that allow for the “best” approximation of the function f(x). In electromagnetism, 
Whitney elements (Bossavit 1997) are used, as will be seen, to create function 
spaces that have properties similar to those of the continuous domain, which were 
introduced in Chapter 2. The interpolation functions are then associated with 
geometric entities of the element, such as nodes, edges, facets and volumes.  

For various types of interpolation functions (nodes, edges, facets and volumes), 
we present, in the case of tetrahedrons, the shape functions, their properties and the 
associated subspaces. 
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4.3.2.1. Node elements 

In the case of node elements, for each node “i” of a mesh M, a scalar function 
ωni(x) is defined. As an illustration, Figure 4.2(a) presents a tetrahedron and the four 
nodes associated with its vertices. 

 
                                           a)                        b) 

Figure 4.2. First order node elements: a) case of a tetrahedron; 
b) 2D case, triangular elements related to node “n0” 

The node interpolation functions ωni(x) are also known as “nodal elements”. 
They are continuous on the domain Ωd and vary linearly from one node to its nearest 
neighbors, in the case of first-order elements. Let us consider the example of an 
interpolation function ωni(x). It is equal to the unit at node “i” and it is equal to zero 
at other nodes of the mesh as follows: 

)j,i()x( jn i
δ=ω  [4.83] 

where xj represents the coordinates of node “j” and δ(i,j) is the Kronecker symbol.  

For a better illustration of this definition, let us consider, for the sake of 
simplicity, the 2D example consisting of triangular elements in Figure 4.2(b). The 
function associated with node ni satisfies the property ωni(xni) = 1. On the other 
hand, at node nj, for example, we have ωni(xnj) = 0. Moreover, as mentioned above, 
the interpolation function ωni(x) varies linearly on the elements containing the node 
ni. Hence, ωni(x) is equal to 1 at the node ni and is equal to zero at the other nodes. In 
the case of Figure 4.2(b), the function ωni(x) is not equal to zero on the gray 
elements (Ei, Ej, Ek, El, Em and En). On the other elements of mesh M, the function 
ωni(x) is equal to zero. On a given element k , only the functions associated with the 
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nodes of k are not zero. Considering these properties, if N is the number of nodes of 
mesh M, it can be shown that: 

d
1i

n x1)x(
i

Ω∈∀=ω
=

N
 [4.84] 

Moreover, it can be noted that the function ωni(x) is continuous throughout the 
mesh. 

If we now consider a function ud(x), belonging to the space defined by the set of 
functions ωni(x) on a mesh M, this function is written as: 


=

ω=
N

1i
ind u)x()x(u

i
 [4.85] 

It can then be noted that, given the property [4.83], we have: 

iid u)x(u =  [4.86] 

In other terms, the scalar values ui, which will subsequently be the unknowns of 
the problem, have a physical meaning as they correspond to the values of field ud(x) 
at the various nodes of mesh M. 

Equation [4.85] can also be written using a vector of dimension N and denoted 
by [ωN(x)] (each term represents a nodal interpolation function) and a vector [uN] 
that represents the N discrete values ui of the function ud(x) at the nodes of the mesh 
M. Then, we have: 

[ ] [ ]NN u)x()x(u t
d ω=  [4.87] 

Considering the continuity properties of the node interpolation functions, at the 
interface between two elements, the function ud(x) is naturally continuous. The set 
of nodal interpolation functions generates a discrete subspace, of finite dimension, 
that will be denoted by W0(Ωd). It can be verified that W0(Ωd) is a subspace of 
H(grad, Ωd), as the nodal functions are continuous on the domain and their gradient 
exists. We can then write: 

{ }ℜ∈ω=Ω∈=Ω 
=

i
1i

indddd
0 u,u)x()x(u);,(H)x(u)(W

i

N
grad  [4.88] 
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4.3.2.2. Edge elements 

Each of the A edges of the mesh M is associated with a vector interpolation 
function, denoted by ωai(x). In the case of a tetrahedron, these functions are built 
based on interpolation functions of nodes located at the ends of the edge.  
Figure 4.3(a) shows the six edges of the tetrahedron with arbitrarily chosen orientation. 

       
                                              a)              b) 

Figure 4.3. a) Edge elements of a tetrahedron; b) orientation of an edge with i < j  

Considering now the edge ak in Figure 4.3(b), the interpolation function ωak(x) is 
built from the nodal functions associated with the nodes ωni(x) and ωnj (x) as follows 
(Dular and Piriou 2008): 

)x()x()x()x()x(
ijjik nnnna ωω−ωω= gradgradω  [4.89] 

Let us focus on the properties of this function and, for this, let us consider the 
edge a1 of the tetrahedron in Figure 4.3(a). The nodes at the edge extremities are n1 
and n2. Let us now consider the facet defined by nodes {n2, n3, n4}. On this facet, the 
function ωn1(x) is zero (ωn1(x) is zero at nodes n2, n3 and n4 (see equation [4.83]), 
and varies linearly on the facet). Consequently, the interpolation function ωa1(x) has 
the following form: 

)x()x()x(
121 nna ωω= gradω  [4.90] 

Moreover, as ωn1(x) is zero on the facet defined by the nodes {n2, n3, n4}, its 
gradient is normal to this facet. The circulation of ωa1(x) on any path belonging to 
this facet is therefore zero and therefore on its three edges, i.e. a4, a5 and a6. 
Applying the same reasoning to the facet defined by the nodes {n1, n3, n4}, it can be 
shown that the circulation of ωa1(x) is also zero on the edges a2 and a3. Moreover, we  
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have the circulation of ωa1(x) that is equal to 1 on its own edge. It can be noted that, 
except for the edge a1 with which it is associated, the circulation of ωa1(x) is zero on 
all the edges of the elements to which it belongs and therefore on the entire mesh. 
This result can be generalized to the set of edge interpolation functions and we have 
the following property: 

)k,j().x(
j ka a δ= dlω  [4.91] 

Let us now consider a function vd(x) belonging to the space defined by the edge 
elements, which can be written as: 


=

=
A

1i
iad v)x()x(

i
ωv  [4.92] 

In this expression, due to the property [4.91], the scalar vi represents the value of 
the circulation of vd(x) on the edge “I” of the mesh. Expression [4.92] of the vector 
function vd(x) can also be written using a vector [ωA(x)], composed of A vector 
interpolation functions of the mesh M. The vector [vA] is then defined, 
corresponding to circulations vi of function vd(x), as follows: 

[ ] [ ]AA v)x()x( t
d ωv =  [4.93] 

Finally, according to equation [4.89], since nodal functions and also the 
tangential component of their gradient are continuous at the interface between two 
elements, the tangential component of interpolation functions ωai(x) and therefore 
vd(x) are conserved. 

The set of edge interpolation functions generates the discrete subspace, of finite 
dimension, denoted by W1(Ωd). It can be shown that W1(Ωd) belongs to the space 
H(curl, Ωd): 

{ }
i

1
d d d d a i i

i 1

W ( ) v (x) H( , ); v (x) ω (x)v , v
=

Ω = ∈ Ω = ∈ℜcurl
A

 [4.94] 

4.3.2.3. Facet elements 

Each of the F facets of the mesh is associated with a vector interpolation function 
denoted by ωfk(x). Similar to the edge elements, these interpolation functions are 
built from interpolation functions of nodes belonging to the facet. Figure 4.4(a) 
shows the four facets of a tetrahedron.  
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                                               a)         b) 

Figure 4.4. a) Facet elements of a tetrahedron; b) facet orientation  

The orientation of facets is defined by their normal (using the right-hand rule). It 
should be noted that these orientations are completely arbitrary but their definition 
remains essential. As an illustration, Table 4.12 presents for each facet of the 
tetrahedron in Figure 4.4(a), the succession of nodes corresponding to their 
orientation. 

Facet elements; succession of nodes 
f1 = {1, 2, 3} f2 = {1, 3, 4} f3 = {1, 4, 2} f4 = {2, 4, 3} 

Table 4.12. Facet elements; succession of  
nodes of the tetrahedron in Figure 4.4(a) 

Let us consider the facet fj, represented in Figure 4.4(b). Following its 
orientation, we have the succession of nodes {nk, nm, nl}. The corresponding 
interpolation function can then be written as (Dular and Piriou 2008): 

).)x()x()x(

)x()x()x(

)x()x()x((2)x(

klm

mkl

lmkj

nnn

nnn

nnnf

gradωgradω
gradωgradω

gradωgradωω

∧ω+

∧ω+

∧ω=

 [4.95] 

As can be noted in the above expression, the three terms are obtained by the 
circular permutation of the indices of node functions. 
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Let us now consider the facet f1, of Figure 4.4(a), defined by the nodes {1, 2, 3}, 
its interpolation function is written based on equation [4.95]: 

))x()x()x(

)x()x()x(

)x()x()x((2)x(

132

213

3211

nnn

nnn

nnnf

gradωgradω
gradωgradω
gradωgradωω

∧ω+

∧ω+

∧ω=

 

[4.96] 

Consider the flux of the function ωf1(x) through the facet f2 defined by the 
nodes{1, 3, 4}. On the one hand, as the function ωn2(x) is zero on the facet f2, the 
flux of term ωn2(x)gradωn3(x) ∧ gradωn1(x) is zero. On the other hand, as noted in 
the case of edge interpolation functions, given that ωn2(x) is constant on the facet f2, 
vector gradωn2(x) is normal to it. Under these conditions, since the two remaining 
terms ωn1(x)gradωn2(x) ∧ gradωn3(x) and ωn3(x)gradωn1(x) ∧ gradωn2(x) are in a 
plane perpendicular to gradωn2(x), they are tangential to the facet f2. Consequently, 
the flux of these two terms through f2 is also equal to zero. A similar type of 
reasoning can be applied to facets f3 and f4 leading to the fact that the flux of ωf1(x) 
is also zero through these facets. The same approach is taken on the facets of the 
adjacent element (not represented in Figure 4.4(a)) containing the facet f1. Then, it 
can be noted that the flux of ωf1(x) through f1 is equal to 1 and is zero on the other 
facets of this element.  

Let us now consider all the other facets of the mesh that do not belong to the two 
adjacent elements containing the facet f1. It proves that these nodal functions 
associated with the nodes of f1 (namely n1, n2 and n3) are zero on these facets and 
therefore the flux of ωf1(x) through them. In conclusion, the flux of ωf1(x) is zero 
through all the facets of the mesh, except for f1 where it is equal to 1. This result can 
be generalized to the set of facets of the mesh and the following property is deduced: 

 δ=
i jf f )j,i(dS).x( nω  [4.97] 

Moreover, at the interface between two elements, the normal component of the 
function wd(x) is conserved. 

Consider now a vector function wd(x) belonging to the space defined by the 
elements of the facet, which is written as: 


=

=
F

1i
ifd w)x()x(

i
ωw  [4.98] 
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In this expression, given the property [4.97], wi represents the flux of the 
function wd(x) through the facet “i”. This expression can also be written using a 
vector [ωF(x)], composed of F vector interpolation functions of mesh M, and a 
vector [wF] which entries are the functions wi, as follows: 

[ ] [ ]FF w)x()x( t
d ωw =  [4.99] 

The set of facet interpolation functions generates a discrete space, of finite 
dimension, that is denoted by W2(Ωd). This space is a subspace of H(div, Ωd), such 
that: 

{ }ℜ∈=Ω∈=Ω 
=

i
1i

ifdddd
2 w,w)x()x();,div(H)x()(W

i

F
ωww  [4.100] 

4.3.2.4. Volume elements 

The volume elements associate with each element of the mesh V, a scalar 
interpolation function ωvi(x). These volume elements are such that for a given 
element “vi”, its value is constant and is equal to (Dular and Piriou 2008): 

i iv v
i

1(x) on element i and 0 elsewhere
vol(v )

ω = ω =  [4.101] 

where vol(vi) represents the volume of the element “i”. Under these conditions, 
integrating on the volume, the following property is found: 

1d)x(
i iv v =τω  [4.102] 

Likewise, the integral of the function ωvi(x) on an element vj that differs from vi 
is equal to zero. The following property is found: 

)j,i(d)x(
i jv v δ=τω  [4.103] 

Considering a scalar function pd(x), belonging to the set of volume elements, it 
can be written as: 


=

ω=
V

1i
ivd p)x()x(p

i
 [4.104] 
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where pi represents, for the element “i”, the value of the volume integral of pd(x). 
Introducing the vector [ωV(x)] of dimension “V” and the vector of V values of pk 
(denoted [pv]), we have: 

[ ] [ ]VV p)x(ω)x(p t
d =  [4.105] 

Taking into account the properties of functions ωvi, at the interface between two 
elements, the discretized scalar quantity pd(x) is discontinuous. The set of volume 
interpolation functions generates the discrete subspace, of finite dimension, denoted 
by W3(Ωd). It is a subspace of L2(Ωd): 

{ }ℜ∈ω=Ω∈=Ω 
=

i
1i

ivdd
2

dd
3 p,p)x()x(p);(L)x(p)(W

i

V
 [4.106] 

4.3.2.5. Synthesis of properties  

The main properties of the nodal, edge, facet and volume elements are 
summarized in Table 4.13. This presents the notations that will be used to define the 
interpolation functions, the continuity properties of discretized quantities at the 
interface between two elements, as well as the discrete subspaces generated. 

Functions Properties Continuity at the interface 
of elements Generated space 

ωn(x) ijjin )(x δ=ω  Continuous W0(Ωd) 

ωa(x)  δ=
j ka a )k,j().x( dlω

 ωa(x) ∧ n, continuous W1(Ωd) 

ωf(x)  δ=
j kf f )k,j(dS).x( nω

 ωf(x).n, continuous W2(Ωd) 

ωv(x)  δ=ω
j kv v )k,j(dv).x(

 Discontinuous W3(Ωd) 

Table 4.13. Summary of the properties of the  
node, edge, facet and volume elements 

4.3.3. Discretization of vector operators  

4.3.3.1. Incidence matrices 

This section focuses on the edge–node, facet–edge and volume–facet incidences 
for a given mesh M. Matrices of incidence between the various geometric entities of 
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the mesh will be built. These matrices will allow us to define the discrete forms of 
gradient, curl and divergence vector operators. Then, these discrete operators will be 
applied to functions belonging to subspaces W0(Ωd), W1(Ωd) and W2(Ωd). Similar to 
section 4.3.2, this section will present the expressions of matrices in the case of 
tetrahedral elements. Nevertheless, for other types of elements (hexahedra, pyramids, 
etc.), the expressions can be deduced in a similar manner (Dular 1996; Geuzaine 
2001). 

4.3.3.2. Node–edge incidence 

For a given mesh, the incidence of a node “n” on an edge “a” is denoted by 
i(a,n). This incidence is equal to 1 if the node “n” corresponds to the end of the edge, 
and –1 if it corresponds to the origin (it should be recalled that an edge is oriented, 
allowing for the definition of an origin and an end). If the node does not belong to 
the edge, this incidence is equal to zero. For a mesh composed of A edges and  
N nodes, the A×N incidence matrix will be denoted by [GA,N]. As an illustration, 
consider the extremely simple case of the tetrahedral element in Figure 4.4(a). The 
matrix [GA,N] composed of six rows each associated with an edge and four columns 
each associated with one node is represented (see Table 4.14). 

I(a,n) 1 2 3 4 
1 – 1 1 0 0 
2 – 1 0 1 0 
3 – 1 0 0 1 
4 0 – 1 1 0 
5 0 – 1 0 1 
6 0 0 – 1 1 

Table 4.14. [GAN] edge–node incidence matrix of a tetrahedron 

Consider now a function ud(x) discretized in W0(Ωd), namely the space of the 
nodal elements. Then, we have (see equations [4.85] and [4.87]):  

[ ] [ ]NN
N

u)x(u)x()x(u t

1i
ind i

ω=ω= 
=

 [4.107] 

If we now apply the gradient operator to the function ud(x), we have:  

[ ] [ ]NN
N

u))x((u))x(()x(u)x( t

1i
iindd ω=ω== 

=
gradgradgradv  [4.108] 
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Based on this expression, following the developments given in the note at the 
end of this section, we can write:  

[ ] [ ]i,
1k

t
an i)x()x()i,k(i)x(

ki A
A

A
=

==ω ωωgrad  [4.109] 

where the vector [iA,i] corresponds to the incidence of the node “i” on the A edges of 
the mesh.  

Using expression [4.109], the following can be deduced for the set of N nodes of 
the mesh (Bossavit 1991): 

[ ] [ ] [ ]NAAN ,
tt )x()x( Gωgrad =ω  [4.110] 

From expression [4.108], we can write, using relations [4.110] and [4.93], the 
succession of equations:  

[ ] [ ] [ ] [ ][ ] [ ] [ ]AANNAANN v)x(u)x(u))x(()x( t
,

tt
d ωGωgradv ==ω=  [4.111] 

First of all, it can be noted that the gradient vd(x) of a function ud(x) of W0(Ωd) 
belongs to W1(Ωd). Then, we have: 

0 1
d d(W ( )) W ( )Ω ⊂ Ωgrad  [4.112] 

By identification, from equation [4.111], the following relation can be deduced:  

[ ] [ ][ ]NNAA uv ,G=  [4.113] 

Therefore, the [GA,N] incidence matrix allows for the direct determination of the 
vector[vA] of the gradient of a function ud(x) based on components [uN] in W0(Ωd). It 
can be noted that this expression does not depend on the shape functions. Hence, the 
[GA,N] matrix is the discrete equivalent of the gradient operator. If the domain is 
connected, the rank of this matrix, denoted by R[G], is given by the following 
relation:  

[ ] 1−= NR G  [4.114] 
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NOTE.– In what follows, our objective is to find the space to which function 
gradωni(x) belongs. Equation [4.84] is written as:
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N
 [4.115] 

Applying the gradient operator to this equation, we have: 
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N
grad  [4.116] 

Consider the term gradωni(x) of equation [4.108]. Taking into account the 
properties [4.115] and [4.116], the following equality can be written:
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The linearity properties of the sum operator allow this expression to be rewritten 
in the following form: 


=

ωω−ωω=ω
N

1j
nnnnn ))x()x()x()x(()x(

jiiji
gradgradgrad  [4.118] 

It can be noted that if a node “j” is not connected, via an edge, to a node “i”, then 
the function ωnj(x)gradωni(x) – ωni(x)gradωnj(x) is zero on the domain Ωd. Indeed, 
in this case, we have ωni(x) or ωnj(x) that is equal to zero. Let us denote by Se{i} the 
set of nodes “j” connected to node “i”. Under these conditions, equation [4.118] can 
be rewritten as: 

{

))x()x()x()x(()x(
jii

}ie
ji nnn

j
nn ωω−ωω=ω 

∈
gradgradgrad

S
 [4.119] 

If we consider a node “j” belonging to Se{i}, then there is an edge “k” with “i” 
and “j” as vertices. This is shown by the example in Figure 4.5 (extracted from 
Figure 4.2(b)), which reproduces the elements of Se{i} with six edges having as one 
vertex the node “i”.  
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Figure 4.5. Set Se{i} of nodes of Figure 4.2, connected  
to the node “i” via an edge of the mesh 

Moreover, relation [4.119] shows, up to a sign, the expression of edge functions 
ωak(x) having the node “i” as one of their vertices (see equation [4.89]). The sign 
depends on the orientation of the considered edge “k” and, therefore, on the fact that 
the node “i” is either the origin, or the end. It is given by the edge–node incidence 
i(k,i). Moreover, if an edge “k” does not have the node “i” as a vertex, then the  
edge–node incidence i(k,i) is zero. Under these conditions, it can be verified that 
relation [4.118] can be rewritten in the following form using the incidence i(k,i): 


=

=ω
A

1k
an )x()i,k(i)x(

ki
ωgrad  [4.120] 

The vector of edge interpolation functions [ωA(x)]t can also be introduced as 
follows: 

[ ] [ ]i,
1k

t
an i)x()x()i,k(i)x(

ki A
A

A
=

==ω ωωgrad  [4.121] 

This is similar to relation [4.109]. 

4.3.3.3. Facet–edge incidence 

The facet–edge incidence is denoted by i(f, a). It should be recalled that the 
facets and edges have their own orientation. Hence, the incidence i(f, a) is equal to: 

– “1” if the direction of circulation of edge “a” is the same as the one defining 
the orientation of the facet “f”; 
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– “– 1” if the direction of circulation of edge “a” is opposite to the one defining 
the orientation of the facet “f”; 

– “0” if the edge does not belong to the facet. 

Consider, as an example, Figure 4.4(a) and the sequence of nodes of the facet 
“f1” of Table 4.12. Then, we have:  

– i(1, 1) = 1, i(1, 4) = 1, as the edges 1 and 4 have the same orientation as the 
direction of circulation of facet 1 defined by its normal (right-hand rule); 

– i(1, 2) = – 1, as the orientation of edge 2 is opposite to the direction of 
circulation of facet 1; 

– i(1, 3) = 0, i(1, 5) = 0 and i(1, 6) = 0, as the edges 3, 5 and 6 do not belong to 
facet 1. 

More generally, for a mesh composed of F facets and A edges, the dimension of 
the incidence matrix is F × A. This matrix will be denoted by [RF,A]. Considering 
again the case of the tetrahedron in Figure 4.4(a), the matrix [RF,A] is presented in 
Table 4.15.  

i(f,a) 1 2 3 4 5 6 
1 1 – 1 0 1 0 0 

2 0 1 – 1 0 0 1 

3 – 1 0 1 0 – 1 0 

4 0 0 0 – 1 1 – 1 

Table 4.15. Facet–edge incidence matrix [RFA] 
of the tetrahedron in Figure 4.4(a) 

Let us now consider a field vd(x), discretized in W1(Ωd). Equations [4.92] and 
[4.93] are written as: 

[ ] [ ]AA
A

v)x(v)x()x( t

1i
iad i

ωωv == 
=

 [4.122] 

Applying to this equation the curl operator, we have: 

kd d a k
k 1

(x) (v (x)) ( (x))v
=

= =w curl curl ω
A

 [4.123] 
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Based on this expression, the next note will contain the developments that allow 
us to write the following equation: 

[ ]t t(x) (x) R =    curl ω ωA F F,A  [4.124] 

The function wd(x), introduced in equation [4.123], is written as follows: 

[ ]t t
d (x) (x) v (x) v = =           w curl ω ω RA A F F,A A  [4.125] 

It can be noted that the curl wd(x) of a function vd(x) of W1(Ωd) belongs to 
W2(Ωd), which yields: 

1 2
d d(W ( )) W ( )Ω ⊂ Ωcurl  [4.126] 

By identification, the following property can be deduced from equations [4.99] 
and [4.125]: 

v     =    ,w RF F A A  [4.127] 

Therefore, the matrix [RF,A] is the equivalent of the curl operator in the discrete 
domain. For a connected domain, the rank R[R] of matrix [RF,A] depends on the 
number of edges and nodes of the mesh and we have (Bossavit 1997): 

[ ] )1( −−= NAR R  [4.128] 

Finally, the properties of the curl and the gradient in the discrete domain are 
equivalent to those in the continuous domain. In fact, for any field ud(x) belonging to 
W0(Ωd), we have curl(gradud(x)) = 0. Using expressions [4.87], [4.110] and 
[4.124], this property allows us to write: 

[ ] [ ] [ ] [ ] 0u)x( ,
t =NNA,AFF GRω  [4.129] 

And this for any function ud(x) hence any vector [uN]. Relation [4.129] allows us to 
write the property: 

[ ][ ] 0, =NA,AF GR  [4.130] 

 



218     Finite Element Method to Model Electromagnetic Systems in Low Frequency 

We find here in a discrete form, with incidence matrices, the fact that the curl of 
a gradient is zero. 

NOTE.– In order to determine the space to which functions curlωai(x) belong, let us 
consider the simple example of the tetrahedron V, represented in Figure 4.6. ωai(x) is 
the notation for the interpolation function of edge i, whose vertices are the nodes j, 
k, and which is common to the referenced facets “n” and “o”.  

 

Figure 4.6. Denomination of nodes j, k, l, m of a  
tetrahedron and of the edge i common to facets n and o 

Let us first recall a property of the curl operator: 

p p p= + ∧curl v curlv grad v  [4.131] 

where p is a scalar function and v is a vector function.  

Let us now express the term curlωai(x) in which the edge interpolation function 
is replaced by its expression given by equation [4.89]. Using formula [4.131] and 
after development, the following can be written: 

i j ka n n(x) 2 ω (x) ω (x)= ∧curlω grad grad  [4.132] 

where ωnj(x) and ωnk(x) represent the nodal interpolation functions of the two nodes 
of edge i. 

Let us now consider (see Figure 4.6) the element V containing the edge i. The 
two other nodes of V, differing from j and k, are the nodes l and m. Using the  
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property [4.84], for the four nodes of element V, equation [4.132] can be written in 
the following form:
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curlω grad grad

grad grad

grad grad

grad grad

grad grad

 [4.133] 

Let us now apply the gradient operator to expression [4.84], as shown in 
equation [4.116], then we have: 

}{
0)x(ω)x(ω

)x(ω)x(ω))x((

ml

kjh

nn

nn
m,l,k,jh

n

=++

+=ω
∈

gradgrad

gradgradgrad
 [4.134] 

Based on equation [4.134], gradωnj(x) can be expressed in relation [4.133] as a 
function of the gradient of three node functions ωnk(x), ωnl(x) and ωnm(x). The same 
can be done for gradωnk(x). These two functions are then replaced by their 
expression in relation [4.133]. It should be recalled that the vector product of a 
vector by itself is equal to zero. Then, after development, relation [4.133] has the 
form: 

i j l k

j m k

k j l

k j m

l j k

m j k

a n n n

n n n
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n n n
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(x) 2 (x) ω (x) ω (x)

2 (x) ω (x) ω (x)
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2 (x) ω (x) ω (x)

2 (x) ω (x) ω (x)

= − ω ∧

− ω ∧

− ω ∧

− ω ∧
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+ ω ∧

curlω grad grad

grad grad

grad grad

grad grad

grad grad

grad grad

 [4.135] 

To introduce the facet functions related to the facet n defined by the nodes j, l 
and k and to the facet o defined by the nodes j, m and k, the first three terms 
depending on the node functions associated with the nodes j, k and l are gathered  
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with the three terms below depending on the nodes associated with the nodes j, m 
and k: 

i j l k

k j l

l j k

j m k

k j m

m j k

a n n n

n n n

n n n

n n n

n n n

n n n

(x) 2 (x) ω (x) ω (x)

2 (x) ω (x) ω (x)

2 (x) ω (x) ω (x)

2 (x) ω (x) ω (x)

2 (x) ω (x) ω (x)

2 (x) ω (x) ω (x)

= − ω ∧

− ω ∧

+ ω ∧

− ω ∧

− ω ∧

+ ω ∧

curlω grad grad

grad grad

grad grad

grad grad

grad grad

grad grad

 [4.136] 

This equation can be written by inverting the terms of the vector product as 
follows: 

i j l k

k j l

l k j

j m k

k j m

m k j

a n n n

n n n
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n n n
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(x) 2 (x) ω (x) ω (x)

2 (x) ω (x) ω (x)
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− ω ∧

− ω ∧

− ω ∧

− ω ∧

− ω ∧

curlω grad grad

grad grad

grad grad

grad grad

grad grad

grad grad

 [4.137] 

This expression reveals (see equation [4.95]) the interpolation functions ωfn(x) 
and ωfo(x) of the facets “n” and “o” containing the nodes j, k, l and j, k, m (see 
Figure 4.6). These are counted as positive if the orientation of the facet corresponds 
to that of the edge and as negative otherwise. The defined edge–facet incidence can 
be naturally introduced here. Finally, on element V, we have: 

i n oa f f(x) i(n, i)ω (x) i(o,i) (x)= +curlω ω  [4.138] 

As this was defined, we have: 

– the incidences i(n,i) of facets “n” that do not contain the edge “i” are zero; 

– the function ωfn(x) is also zero on the element V if the facet n does not belong 
to V. 
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Then, we can write, on the element V: 

i ma f
m 1

(x) i(m,i) (x)
=

=curlω ω
F  [4.139] 

A similar reasoning can be applied to the set of elements V connected to the edge 
“i”. On the elements that do not contain the edge “i”, the function ωai(x) is zero, and 
it can be verified that relation [4.139] is still true. It can therefore be concluded that 
relation [4.139] is verified on the entire domain Ωd. It is then possible to complete 
equation [4.138] by introducing the vector of the facet interpolation functions 
[ωF(x)]t as follows: 

[ ]
i m

t
a f ,i

m 1

(x) i(m,i) (x) (x) i
=

 = =  curlω ω ω
F

F F  [4.140] 

In this equation, the vector [iF,i] represents the incidence of the edge i on the F 
facets of the mesh. Introducing the matrix [RF,A], the property introduced in equation 
[4.124] can be deduced as follows:  

[ ]t t(x) (x) R =    curl ω ωA F F,A  [4.141] 

4.3.3.4. Volume–facet incidence 

The volume–facet incidence is denoted by i(v,f). If the facet belongs to the 
element V, this incidence is equal to 1 or –1 depending on the orientation of the 
normal to the facet (inward or outward with respect to the element). If the facet does 
not belong to the considered element, this incidence is equal to zero. For the 
tetrahedron in Figure 4.4(a), the incidence matrix is represented in Table 4.16. In 
this table, all the incidences are equal to 1, as all four facets have an outward 
orientation. In the general case of a mesh composed of V elements and F facets, the 
V×F incidence matrix will be denoted by [DV,F]. 

i(v,f) 1 2 3 4 
1 1 1 1 1 

Table 4.16. Volume–facet incidence matrix [DVF] of a tetrahedron 
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Let us now consider a vector function wd(x) of the space of facet elements. Using 
the notations of equations [4.98] and [4.99], we can write: 

[ ] [ ]FF
F

w)x(w)x()x( t

1i
ifd i

ωωw == 
=

 [4.142] 

Applying the divergence operator to this equation, we have: 

[ ] [ ]FF
F

w))x((divw))x((div))x((div)x(p t

1i
ifdd i

ωωw === 
=

 [4.143] 

Based on this expression, and relying on the developments given in the note 
below, we can write: 

[ ] [ ]
iii ,f

t

1j
vf i)x(ω)x()i,j(i))x((div VV

V
=ω= 

=
ω  [4.144] 

where [iV,fi] represents the vector of incidences i(j,i) of the facet i on the set of V 
volumes j of the mesh. Based on this equation, and considering the set of F facets, if 
we introduce the matrix [DV,F], we obtain the following property: 

[ ] [ ] [ ]FVVF ,
tt D)x()x(div ω=ω  [4.145] 

Gathering equations [4.143] and [4.145], we can write: 

[ ] [ ] [ ] [ ][ ]FFVVFF wD)x(w))x((div)x(p ,
tt

d ω== ω  [4.146] 

This expression shows that the divergence pd(x) of a function of W2(Ωd) belongs 
to W3(Ωd). Therefore, we have: 

)(W))(W(div d
3

d
2 Ω⊂Ω  [4.147] 

Using equation [4.105], based on relation [4.146], the following property can be 
deduced: 

[ ] [ ][ ]FFVV wDp ,=  [4.148] 
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This relation allows us to state that the matrix [DV,F] represents the equivalent of 
the divergence operator in the discrete domain. The rank R[D] of matrix [DV,F] 
depends on the number of facets, edges and nodes of the mesh. It is expressed by the 
relation (Dular 1996; Bossavit 1997): 

[ ] ))1((D −−−= NAFR  [4.149] 

Finally, in the discrete domain, the properties of the divergence and curl are 
equivalent to those of the continuous domain. Indeed, considering a field vd(x) of 
W1(Ωd), we then have div(curlvd(x)) = 0. The following can be readily deduced 
from equations [4.122], [4.124] and [4.145]: 

[ ] [ ][ ][ ] 0vD)x( ,
t =AAFFV,V Rω  [4.150] 

which is valid for any vector [vA] representing the components of the field vd(x) in 
W1(Ωd), which is reflected by the property: 

[ ] [ ] 0D , =AFFV, R  [4.151] 

NOTE.– Consider now the term div(ωfi(x)) associated with the facets whose vertices 
are the nodes {k, m, l} and let us find the space to which it belongs.  

As a first step, using the properties of the divergence and curl vector operators, 
we show that the following can be written after development:

 
 

div(p ) pdiv( ) ( ). p
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u v u v u v grad
v curlu u curlv u v grad

 [4.152] 

In div(ωfi(x)), ωfi(x) is replaced by equation [4.95] and formula [4.152] is 
applied. After development, we obtain:
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 [4.153] 

Since the mixed product is unchanged by circular permutation, this equation can 
be rewritten as follows: 

))x()).x()x((3))x((div
klmi nnnf ωω∧ω= gradgradgradω  [4.154] 
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Consider now two adjacent elements o and p containing the facet i. The function 
div(ωfi(x)) is constant on the element o and equal, up to a sign, to the inverse of its 
volume. The same is true on element p. The sign depends on the orientation of the 
facet defined by the permutation of nodes k, m and l. It is therefore related to the 
notion of the facet–element incidence. On the other hand, the function div(ωfi(x)) is 
zero on any other element v of the mesh for which the facet–element incidence i(v,i) 
is zero. Using the definition of volume elements [4.101], we obtain the previously 
introduced relation [4.144] as follows: 

[ ] [ ]
iii ,f

t

1j
vijf i)x(ω)x()f,v(i))x((div VV

V
=ω= 

=
ω  [4.155] 

4.3.3.5. Properties of discrete subspaces  

The main results obtained from incidence matrices are summarized in  
Table 4.17. 

Using relations [4.112], [4.126] and [4.147], it can be shown that the discrete 
subspaces Wk(Ωd), where k Î {0, 1, 2, 3}, form a sequence of spaces with properties 
similar (see Figure 4.7) to those met in the continuous domain (see section 2.4) and 
that depend on the topology of the domain, as shown in Figure 2.10. 

Element type Discrete space Discrete operator 

Node W0(Ωd) [ ]NA,G  

Edge W1(Ωd) [ ]AF,R  

Facet W2(Ωd) [ ]FV,D  

Volume W3(Ωd) / 

Table 4.17. Discrete domain, function spaces and vector operators 

 

Figure 4.7. Sequence of discrete function spaces 
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Based on equations [4.130] and [4.151], two properties can be found:  

0 1
d dIm W ker WΩ ⊂ Ω( ( )) ( ( ))grad curl  [4.156] 

1 2
d dIm W ker divWΩ ⊂ Ω( ( )) ( ( ))curl  [4.157] 

As indicated in section 2.3.4, the first property becomes an equality if the 
domain is simply connected. It is also the case for the second if the boundary of the 
domain is connected. If the domain is contractible, then we have: 

0 1
d dIm W ker WΩ = Ω( ( )) ( ( ))grad curl  [4.158] 

1 2
d dIm W ker divWΩ = Ω( ( )) ( ( ))curl  [4.159] 

Similar to the continuous domain, we can also introduce the homogeneous 
boundary conditions and define the discrete function subspaces. Consider the 
subspace W0

Γk(Ωd) of nodal elements defined by: 

{ }
kk

0u),(Wu)(W dd
0

dd
0

ΓΓ =Ω∈=Ω  [4.160] 

and W1
Γn(Ωd), which corresponds to the space of edge elements such that: 

{ }0),(W)(W
nn

dd
1

dd
1 =∧Ω∈=Ω ΓΓ nvv  [4.161] 

and W2
Γm(Ωd), which corresponds to the space of facet elements such that:  

{ }0.),(W)(W
mm

dd
2

dd
2 =Ω∈=Ω ΓΓ nww  [4.162] 

It should be noted that these various subspaces are similar to those introduced  
in the continuous domain. As an illustration, Table 4.18 summarizes the 
correspondence between the continuous and discrete function spaces. 

In conclusion, there is a great similarity between the properties of discrete spaces 
introduced in this section and those encountered in the continuous domain (see  
Chapter 2). All of these results will be used for the discretization of electromagnetic 
fields and potentials, and also for taking into account source terms (support fields 
and associated potentials). 
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Function spaces 
Continuous domain Discrete domain 

),(H
n

ΩΓ grad )(W d
0

n
ΩΓ

n
H ( , )Γ Ωcurl  )(W d

1
n

ΩΓ

),div(H
m

ΩΓ )(W d
2

m
ΩΓ

L2(Ω) )(W d
3 Ω

Table 4.18. Correspondence between the function spaces  
in the continuous domain and in the discrete domain 

4.3.4. Discretization of physical quantities and associated fields 

Maxwell’s equations, as presented in Chapter 1, introduce the vector fields E, H, 
B, J and D, as well as the volume density of charges ρ. In Chapter 3, these fields 
were associated with function spaces in the continuous domain. Then, the scalar and 
vector potentials V, P, T, A and ϕ were introduced for electrostatics, electrokinetics, 
magnetostatics and also magnetodynamics. On the other hand, in order to take into 
account the sources of electromagnetic fields, we introduced source fields, defined 
by their support fields β and λ or their associated potentials, α and χ, respectively. 
These source fields, support fields and potentials have been defined in function 
spaces in relation to the physical quantities to which they are associated. 

As already seen in section 4.3.3, some properties of the function spaces 
encountered in the continuous domain can be transposed in the discrete domain. We 
defined in the continuous domain the spaces to which the fields and potentials 
belong (see the Tonti diagram, Figure 3.25). As illustrated in Table 4.18, for each 
function space in the continuous domain, there is an equivalent space in the discrete 
domain. Therefore, it seems natural to use this correspondence to define the 
discretization spaces. As an illustration, Table 4.19 presents for the fields E, H, B, J, 
D and the potentials V, ϕ, P, T and A, the function spaces to which they belong in 
the continuous domain and their equivalent in the discrete domain. Concerning the 
boundary conditions, they are given as an illustration. They obviously depend on the 
studied problem and on the source terms imposed on the boundary. 

For the discrete function spaces of the support fields and associated potentials, 
the approach is equivalent, relying on the fields they represent.  
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The function space W0(Ωd) allows for the discretization, by means of nodal 
elements, of the fields that are defined, in the continuous domain, in the function 
space H(grad, Ω). Consider the example of the scalar potential V ∈ H(grad, Ω); its 
approximation can then be written in the discrete domain (see Table 4.19) in the 
following form: 

[ ] [ ]NN
N

V)x(V)x()x(V t

1i
ind i

ω=ω= 
=

 [4.163] 

where Vi is the value of the scalar potential Vd(x) at node i and [VN] is the vector 
with components Vi. 

Physical 
quantities 

Continuous domain Discrete domain 
Notation Function space Notation Function space 

Electric scalar 
potential V ),(H
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ΩΓ grad
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Electric 
displacement 
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D ),div(H

d
ΩΓ  Dd )(W d

2
d

ΩΓ  
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density ρ L2(Ω) ρd )(W d

3 Ω
 

Table 4.19. Function spaces of fields or pote ntials  
in the continuous domain and the discrete domain 
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As for the space W1(Ωd), it allows for the discretization with edge elements of 
quantities defined in the continuous space H(curl, Ω). Under these conditions, the 
approximation of an electric field EÎH(curl, Ω) can be written in the following 
form:  

 [4.164] 

where Ei is the circulation of the electric field Ed(x) on the edge i of the mesh and 
[EA] is the vector with entries Ei. 

Likewise, the space W2(Ωd) allows, with facet elements, for the discretization of 
fields defined in the continuous domain in the space H(div, Ω).  

Hence, the approximation of the magnetic flux density B, belonging to 
H(div0, Ω), has the following expression: 

 [4.165] 

where Bi is the magnetic flux density Bd(x) through the facet i of the mesh and [BF] 
is the vector composed of the entries Bi. 

Finally, the discrete space W3(Ωd), corresponding to the space L2(Ω) in the 
continuous domain, allows the electric charge density ρ to be expressed with the 
volume elements in the following form: 

 [4.166] 

where ρi is the charge contained in the element i of the mesh and [ρV] is the vector 
whose entries are ρi. 

Based on Table 4.19 and the previous formulas, the expressions of the other 
vector fields or support fields are very easily deduced. 

4.3.5. Taking into account homogeneous boundary conditions 

As already seen in section 4.3.4, the fields are naturally discretized in the space 
of the node, edge and facet elements. This section shows how to impose, on a part of 
the boundary of the domain, homogeneous boundary conditions (see equations 
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[4.160], [4.161] and [4.162]). These conditions depend on the space in which the 
considered quantity is discretized and it will be shown that they are imposed by 
acting on the degrees of freedom.  

4.3.5.1. Case of node elements 

The space of the nodal elements W0(Ωd) allows for the discretization of scalar 
functions continuous on the domain (see Table 4.13). These functions can be 
associated with homogeneous boundary conditions on one part of the boundary, as 
indicated by relation [4.160].  

Let us consider, as an example, the expression of the electric scalar potential (see 
equation [4.163]) and denote by Γe the boundary on which V = 0 should be imposed. 
Consider now a facet fk belonging to Γe and n1, n2 and n3 the three associated nodes. 
The value of V on the facet fk depends only on the node values Vn1, Vn2 and Vn3 (see 
section 4.3.2.1). Consequently, if it is expected to have V = 0 on fk, it is sufficient to 
impose the values Vn1 = Vn2 = Vn3 = 0. This reasoning can be generalized to the set 
of facets covering the surface Γe, and it can thus be shown that to impose V = 0 on 
Γe, it is sufficient to have the value of Vni zero on all the nodes of this surface. 

Let us denote by N the number of nodes of the mesh and by N0 the number of 
nodes located on Γe. Let us assume there is a layout of nodes so that those belonging 
to the boundary Γe are the last ones in the order of numbering. Since the N0 node 
values are set to zero, the number of remaining nodes is written as Nr = N – N0. 
Under these conditions, the discretized form of the electric scalar potential, 
considering the boundary conditions homogeneous on the boundary, is written as: 

[ ] [ ]
r

t

r

r

i
V)x(V)x()x(V

1i
ind NN

N
ω=ω= 

=
 [4.167] 

4.3.5.2. Case of edge elements 

As already seen previously, the fields defined in the function space H(curl, Ω) 
are discretized in the space of the edge elements W1(Ωd). As noted in section 4.3.2.2, 
the tangential component of fields of W1(Ωd) is conserved when passing from one 
element to another (see Table 4.13). For these fields, the boundary conditions 
homogeneous on one part of the boundary of the domain are defined by relation 
[4.161]. As an example, let us consider the electric field, whose discrete form Ed(x) 
is given by equation [4.164]. Let us assume that on one part of the boundary, 
denoted by Γe, we impose Ed(x) ∧ n = 0. Consider now a facet fk, belonging to the 
boundary Γe, composed of edges a1, a2 and a3. The expression of the tangential 
component of Ed(x), on the facet fk, depends only on the circulations Ea1, Ea2 and Ea3 
along the edges a1, a2 and a3, respectively. Under these conditions, in order to 
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impose to zero the tangential component of Ed(x) on fk, we fix the circulations Ea1, 
Ea2 and Ea3 equal to zero. This reasoning can be generalized to the set of facets 
composing surface Γe and it can be concluded that in order to impose 
Ed(x) ∧ n|Γe = 0, the circulation of Eak should be zero on all the edges ak of Γe. 

Let us consider now that the mesh is composed of A edges and that the boundary 
Γe, on which the condition (Ed(x) ∧ n = 0) is imposed, has A0 edges. Similar to 
section 4.3.5.1, let us assume that the layout of edges is such that those belonging to 
the boundary Γe are the last ones in the order of numbering. Since the values of A0 
edges are fixed, the number of remaining unknown edges is written as Ar = A – A0. 
Then, the expression of the field is: 
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4.3.5.3. Case of facet elements 

The subspace of the facet elements W2(Ωd) allows for the discretization of fields 
defined in the function space H(div, Ω). For these fields, the boundary conditions on 
the boundary are given by relation [4.162]. As an example of discretized magnetic 
quantity in the space of facet elements, consider the magnetic flux density B with 
boundary conditions of type Γb (see Table 4.19). If a facet “fi” belongs to the 
boundary Γb, the flux through this facet is equal to the component Bi associated with 
the facet function ωfi(x). Consequently, imposing the facet flux Bfi = 0, we impose 
that the normal component of B is zero on the facet “fi”. This can be generalized to 
the set of facets belonging to the boundary Γb. 

Consider now the mesh M, composed of F facets, among which F0 facets belong 
to the boundary Γb. Assume that the F0 facets, belonging to the boundary Γb, are 
organized such that they are the last in the order of numbering. To impose 
B.n|Γb = 0, we set to zero the flux Bfi on the F0 facets. The number of remaining 
unknowns of the problem is then Fr = F – F0. Under these conditions, the discrete 
form Bd(x) is:
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4.3.5.4. Synthesis of properties 

It can be noted that the use of the node, edge and facet elements makes it 
possible to naturally impose homogeneous conditions on a boundary. For this, it is 
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sufficient to have zero degrees of freedom of the approximation functions associated 
with the geometric elements belonging to this boundary. 

4.3.6. Gauge conditions in the discrete domain 

As already noted, there are an infinite number of fields verifying a condition 
carried by a grad, curl or div operator (see section 2.5). This is the case with scalar 
and vector potentials introduced in Chapter 3, as well as support fields and 
associated potentials. To obtain a unique solution, a gauge condition must be 
imposed (see section 2.5.2). For the fields defined by a gradient, a curl or a 
divergence, the following section explores the numerical process to be used to 
impose a gauge in the discrete domain. 

For the developments, we assume that the domain Ωd is contractible. 

4.3.6.1. Case of the gradient operator 

Given a known field vd(x) ∈ W1(Ωd), the objective is to find a scalar field ud(x) 
such that vd(x) = gradud(x) with ud(x)∈W0(Ωd). In order to have a good formulation 
of the problem and to satisfy the property [4.158], vd(x) must verify the relation 
curlvd(x) = 0. In a matricial form, searching for ud(x) means finding a vector [uN] 
such that [vA] = [GA,N][uN] where [vA] is a known vector that verifies [RF,A][vA] = 0. 
Since the rank of the [GA,N] matrix is N –1 (see equation [4.114]), the value of an 
entry of vector [uN] must be fixed in order to have a unique solution. This makes it 
necessary to fix the value of the function ud(x) at one node of the mesh. 

In the general case, to fix a node value of [uN], an arbitrary node of the mesh can 
be chosen. Nevertheless, in some cases, the entries of the problem may guide the 
choice. As an example, let us consider the magnetic scalar potential ϕ formulation. It 
is not rare to have at least one surface of the boundary, of type Γh, on which the 
magnetic field has a zero tangential component. Under these conditions, this is an 
equipotential surface with ϕ∈HΓh(grad, Ω) (see equation [3.217]). To impose 
ϕ|Γh = 0, as indicated in section 4.3.5.1, we set at zero the entries of vector [ϕN] 
which corresponds to the nodes located on Γh, which equally allows for imposing 
the gauge condition. The same approach can be taken in the case of the electric 
scalar potential V formulation, imposing to zero the entries associated with the 
nodes located on the boundary Γe (see relation [3.159]). 

For a given mesh, in order to obtain the components ui (1 ≤ i ≤ N) of the vector 
[uN], knowing the components vk (1 ≤ k ≤ A) of the vector [vA], the following 
approach can be used: given an edge k linking two nodes i and j, with the circulation 
vk being known, as well as the value ui, it is possible to calculate the value uj. 
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Indeed, using the raw k of the matrix relation [vA] = [GA,N][uN] we obtain the 
following formula (see section 4.3.3.2): 

ijk u)i,k(iu)j,k(iv +=  [4.170] 

Using this relation, an iterative process can be developed for the calculation of N 
values uj of the vector [uN]. It starts at the node i where the component ui was 
imposed. Then, we consider the set of m edges connected to node i. For all the nodes 
j (except the node i), extremity of the m edges, the value of uj is calculated using 
relation [4.170]. The above process is then repeated for all the nodes i whose value 
is known. This process aims to determine the node values of all the nodes in the 
mesh. During this process, the value at a node j can be calculated several times, but 
the value of uj at this node will always be the same. If this is not the case, then the 
field vd(x) is not curl free and does not derive from a gradient.  

In order to illustrate this process, we work with an elementary mesh M composed 
of two adjacent tetrahedra (see Figure 4.8). The properties of the mesh are: N = 5, 
A = 9, F = 7 and V = 2. The element V1 is composed of nodes 1, 2, 3 and 4 and V2 of 
nodes 1, 2, 3 and 5. Figure 4.8 shows the orientation of edges. For the sake of a 
lighter figure, the orientation of facets is not indicated. In fact, except for the internal 
facet “4”, oriented from element V1 to V2, the other facets are outwardly oriented.  

 

Figure 4.8. Mesh composed of two adjacent tetrahedrons  
with numbering of nodes, edges and facets  
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As an example, let us fix the circulations of the field vd(x) along the nine edges, 
i.e. [vA] = [–1, –1, –2, –3, –2, –1, 4, 5, 6]t. To impose the uniqueness of ud(x), the 
value at node 4 is set, i.e. u4 = 0. According to the approach proposed above, the first 
step is to determine the matrix[GAN], reproduced in Table 4.20.  

i(a, n) 1 2 3 4 5 
1 – 1 1 0 0 0 
2 0 – 1 1 0 0 
3 0 – 1 0 1 0 
4 – 1 0 0 1 0 
5 – 1 0 1 0 0 
6 0 0 – 1 1 0 
7 – 1 0 0 0 1 
8 0 – 1 0 0 1 
9 0 0 – 1 0 1 

Table 4.20. Matrix [GAN], example of Figure 4.8 

Second, we determine the set of nodes connected to the edges linked with node 
4. Figure 4.8 shows that nodes 1, 2 and 3 are linked to node 4 via, respectively, the 
edges 3, 4 and 6. It should be noted that it also includes the list of edges connected 
via column 4 of matrix [GAN] (see Table 4.20). The value of uj, in these nodes, can 
be calculated using relation [4.170], which yields: 

1u2u,3u 321 ===  [4.171] 

Nodes 1, 2 and 3 should now be successively considered to calculate the values 
at the nodes to which they are connected. Node 1 is connected to nodes 2–5. As the 
values at nodes 2–4 have already been calculated, only node 5 is considered. 
Applying again relation [4.125], we obtain: 

7u5 =  [4.172] 

Since the present case is extremely simple, the process stops here, as all the values 
at nodes have been determined. Then, we have the vector [uN] = [3, 2, 1, 0, 7]t.  

4.3.6.2. Case of a curl operator 

Let us now consider a known field wd(x) ∈ W2(Ωd) and search for a field vd(x) 
such that wd(x) = curlvd(x) with vd(x) ∈ W1(Ωd). To have a well posed problem and 
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in agreement with property [4.159], wd(x) must verify relation divwd(x) = 0. When a 
field is uniquely defined by a curl, in order to have a unique solution, a gauge 
condition must be imposed, either in the continuous or in the discrete domain.  

As already seen in section 2.5.2.2, in the continuous domain, there are several 
gauges, among which is the gauge v.η = 0 (see equation [2.51]). Its equivalent, in 
the discrete domain, relies on the construction of an edge tree (Albanese and 
Rubinacci 1990), whose process will be developed below.  

A tree is a set TA of edges, connecting all the nodes of the mesh without creating 
loops. This means that all the nodes of the mesh can be linked by a unique path 
using the edges of the tree. The tree TA contains N – 1 edges. Assigning an arbitrary 
value to the circulations of vd(x) on this set of edges is equivalent to imposing a 
gauge condition and therefore its uniqueness (see section 2.5.2.2).  

Indeed, let us consider two fields vd1(x) and vd2(x) belonging to W1(Ωd) so that 
the circulations on all the edges of tree TA are equal. As the curls of the two fields 
vd1(x) and vd2(x) are equal to wd(x), the field Δvd(x) = vd1(x) – vd2(x) is curl free and 
can be written as the gradient of a scalar function Δud(x) (i.e. Δvd(x) = gradΔud(x)). 
Along the edges of TA, since the circulations of vd1(x) and vd2(x) being imposed are 
equal, the circulations of gradΔud(x) are zero. Considering now two nodes A and B 
of the mesh, since TA is a spanning tree, there is a unique path C made of edges of TA 
connecting A and B. Since the circulation of gradΔud(x) is zero on the edges of TA, 
the circulation of gradΔud(x) between A and B is also zero. The values of Δud(x), at 
the nodes A and B, are therefore equal. This reasoning can be applied to any pair of 
nodes of the mesh. Consequently, all the values at nodes of the function Δud(x) are 
equal, leading to the function ud(x), which is constant throughout the domain. The 
function gradΔud(x) is therefore zero; thus, we have vd1(x) = vd2(x). Consequently, 
imposing the circulation of vd(x) on the edges of the tree leads to the uniqueness of 
this function. In practice, these circulations are equal to zero. The objective is now 
to determine the circulations on the edges of the cotree, i.e. not belonging to the 
edge tree. An iterative process is used for this purpose. Since the curl of vd(x) is 
equal to wd(x), the circulation of vd(x) around a facet f is equal to the flux of wd(x) 
through this facet. Using the raw “f” of the incidence matrix [RFA] (see equation 
[4.127]), we then obtain in the case of a triangular facet: 

kjif v)k,f(iv)j,f(iv)i,f(iw ++=  [4.173] 

where i, j and k are the indices of the edges belonging to the facet f and i(f,i) is the 
incidence of the edge i on the facet f of the matrix [RFA] (see section 4.3.3.3). As for 
the terms vi, vj and vk, they represent the components of vector [vA] of the 



Formulations in the Discrete Domain     235 

circulations of vd(x) on the edges and wf the fth component of vector [wF] of the 
fluxes of wd(x) through the facets of the mesh. 

To calculate the circulations of vd(x), therefore of vk, on the edges of the cotree, 
all of the facets of the mesh are scanned one after the other. When a facet is met, for 
which the circulations of vd(x) along the two edges are known, the circulation on the 
third edge is determined using relation [4.173]. This process is repeated until all the 
circulations on the edges of the cotree are calculated. 

NOTE.– Consider relation [4.127], which connects the vector [vA] of A values of the 
circulation of vd(x) on the edges with the vector [wF] of F values of the flux of facets 
of wd(x) via the discrete curl operator [RFA]. According to relation [4.128], the rank 
of the matrix [RFA] is equal to A – (N – 1), which is in agreement with the previous, 
where, in order to fix the uniqueness of vd(x), (N – 1) values of vector [vA] are 
imposed through an edge tree.  

As a simple illustration, let us consider the two adjacent tetrahedra in Figure 4.8. 
It should be recalled that, except for the internal facet “4”, oriented from the element 
V1 to V2, the other facets are oriented outwardly. Based on this information and on 
the orientation of the edges in the figure, it is easy to build the incidence matrix 
[RFA] reproduced in Table 4.21.  

i(f,a) 1 2 3 4 5 6 7 8 9 
1 1 0 1 – 1 0 0 0 0 0 
2 0 1 – 1 0 0 1 0 0 0 
3 0 0 0 1 – 1 – 1 0 0 0 
4 – 1 – 1 0 0 1 0 0 0 0 
5 – 1 0 0 0 0 0 1 – 1 0 
6 0 – 1 0 0 0 0 0 1 – 1 
7 0 0 0 0 1 0 – 1 0 1 

Table 4.21. Matrix [RFA]; example of Figure 4.8 

For this mesh, let us now assume the known field wd(x) of W2(Ωd), defined by 
the fluxes through the seven facets, i.e. [wF] = [0, 0, – 1, 1, 1, 0, 0]t. Taking into 
account the orientation of facets, it can be readily verified that wd(x) is divergence 
free. The objective is to find a field vd(x), belonging to W1(Ωd), so that 
vd(x) = curlwd(x). This is equivalent to finding the set of circulations 
[vA] = [v1, v2, v3, v4, v5, v6, v7, v8, v9]t. 
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To calculate the vector [vA], we build an edge tree. Knowing the number of 
nodes of the mesh (N = 5), the tree is composed of four edges (N – 1). Let us choose, 
for example (see Figure 4.9), the edges 1, 3, 6 and 9 on which zero circulation is 
imposed, hence v1 = v3 = v6 = v9 = 0. To calculate the remaining circulations, we use 
the incidence matrix to find a facet for which two circulations are known and the 
third one is calculated using relation [4.173]. This process can be repeated until all 
the circulations are obtained. Then, for vector [vA], we have the following values: 

[ ] [ ]t0,0,1,0,1,0,0,0,0v =A  [4.174] 

 

Figure 4.9. Edge tree in the thick line, composed of edges 1, 3, 6 and 9  

4.3.6.3. Case of a divergence operator 

The objective is now to calculate a field wd(x) ∈ W2(Ωd) so that its divergence is 
equal to a known source term, qd(x) ∈ W3(Ωd). The field wd(x) is not unique, given 
that if wd(x) is a solution, any field written in the form wd(x) + curlvd(x) with 
vd(x)∈W1(Ωd) is also a solution. A gauge should therefore be introduced to impose 
the uniqueness of wd(x). A solution is to again use a tree technique (Le Ménach et al. 
1998). In fact, this involves building an edge tree denoted by Tf. The analogy 
existing between “nodes and elements” and “edges and facets” will be used for this 
purpose (Bossavit 1997). Indeed, an edge joins two nodes and a facet “joins” two 
elements. Based on this principle, a graph G can be built. In this context, the 
elements of the mesh are represented by nodes and the facets by edges. The 
orientation of the facet f of the mesh defines the orientation of the corresponding 
edge of graph G. An additional node is required to represent the external 
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environment of the domain Ωd. All the edges representing the facets located on the 
boundary of Ωd are linked to this additional node.  

To illustrate this principle, let us consider again the example in Figure 4.8, 
namely two adjacent tetrahedra. For this example, it should be recalled that, with the 
exception of the internal facet “4”, oriented from the element V1 to V2, the other 
facets are outwardly oriented. Figure 4.10(a) reproduces the two tetrahedra, but for 
the sake of readability, the notations related to nodes and facets are not indicated. On 
the other hand, the orientation of the seven facets via their normal component has 
been introduced. A graph of facets, corresponding to this elementary mesh, is 
reproduced in Figure 4.10(b), which shows the additional node, denoted by Vext, 
representing the external domain. The graph G is therefore composed of F edges and 
V  + 1 nodes, hence seven edges and three nodes. 

A tree is then built on the graph G. The facets of tree Tf correspond to the edges 
of the cotree of G. The tree Tf then contains F – V facets. 

NOTE.– Let us consider relation [4.148]; it links the vector [wF] of F values of the 
flux of wd(x) on the facets with the vector [pv] of V values of charge pd(x) contained 
in each element via the discrete divergence operator [DVF]. According to relation 
[4.149], the rank of matrix [DVF] is equal to F – (A – (N – 1)). For the studied 
example, the domain is assumed to be contractible; therefore, according to the  
Euler–Poincaré formula, we have: V – F + A – N = – 1. Therefore, the rank of matrix 
[DVF] is equal to V. F – V values of vector [wF] should be fixed to have a unique 
vector wd(x). This leads to a number of facets of tree Tf equal to F – V. 

 
                                              a)              b) 

Figure 4.10. a) Two adjacent tetrahedrons with  
facet orientation; b) corresponding facet graph G  
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Let us consider again the calculation of the field wd(x), defined by its divergence 
and the way in which the gauge condition is imposed by building a facet tree. 
However, depending on the boundary conditions on the boundary, some precautions 
must be taken.  

NOTE.– All of the facets located on the boundary on which the normal component of 
field wd(x) is imposed must belong to the tree. Nevertheless, if the normal 
component is imposed on the entire domain, to avoid creating a closed surface, one 
facet must be excluded from the tree. 

To gauge the solution, the values of the fluxes are then fixed through the facets 
of Tf. Then, there are three possible cases. 

– Case 1: the objective is to find the support field ηsl of a source term imposed 
inside the domain and defined by a density (see section 3.2.2.2). This is the case 
with the electric charge density for electrostatic problems. Arbitrary values of flux 
on the facets of tree Tf are then imposed. 

– Case 2: the objective is to find the support field λs of a source term imposed on 
a part of the domain boundary (see section 3.2.1.2). In this case, the values of the 
fluxes for the facets of the tree belonging to the boundary are fixed by the boundary 
conditions. On the other hand, arbitrary values can be imposed on the facets of the 
tree, located inside the domain. 

– Case 3: the objective is to build an approximation of a known source field 
defined inside the domain and divergence free. Then, it can be defined by its support 
field λsl (see equation [3.38]). An example is the current density J0 in the case of a 
magnetostatics problem (see Figure 3.20). Indeed, if the mesh does not perfectly fit 
the shapes of the inductor (case of a curved inductor in the case of a tetrahedral 
mesh), λsl cannot be correctly expressed in the space W2(Ωd). In this case, an 
approximation λsld of λsl is determined, which is divergence free. For this purpose, a 
possible approach (Le Ménach et al. 1998) is to use the proposed gauge, but this 
time by imposing a flux on the facets of the tree: 

dS.w f slf nλ=  [4.175] 

In these three cases, the values of fluxes on the facet tree Tf are fixed. The fluxes 
through the other facets of the mesh M are calculated according to an iterative 
process similar to that presented in section 4.3.6.2 using, for the case of a 
tetrahedron, the following relation: 

lkjiv w)l,v(iw)k,v(iw)j,v(iw)i,v(iq +++=  [4.176] 
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where i, j, k and l are the indices of the facets of the element v, i(v, i) is the 
incidence of the facet i with respect to the element v (see the matrix [DVF] in  
section 4.3.3.4). As for wi, wj, wk and wl, they represent the components of the vector 
[wF] of fluxes of wd(x) through the facets of the element v. Finally, qv represents the  
vth component of the vector [qV] of charges related to the density of charges qd(x).  

As an illustration, let us consider again the two adjacent tetrahedra in  
Figure 4.10(a). Based on the orientation of edges in the figure, the incidence matrix 
[DVF], reproduced in Table 4.22, can be easily built.  

i(v,f) 1 2 3 4 5 6 7 
1 1 1 1 1 0 0 0 
2 0 0 0 – 1 1 1 1 

Table 4.22. Matrix [DVF]; example of Figure 4.10(a) 

For this mesh M, composed of two elements and seven facets, let us now 
consider a field qd(x) ∈ W3(Ωd) such that qd(x) = 0, therefore vector [qV] = [0, 0]t. 
The objective is to find a field wd(x) ∈ W2(Ωd) such that:  

– divwd(x) = qd(x) = 0;  

– fluxes entering facet 1 and exiting facet 7 are equal to 1; 

– fluxes exiting the other facets of the boundary, i.e. facets 2, 3, 5 and 6 are equal 
to zero.  

All the facets located on the surface have imposed fluxes, but given the fact that 
wd(x) is divergence free, one of these six fluxes is a linear combination of the other 
five. Consequently, five of these facets must belong to the facet tree Tf and hence to 
the cotree of graph G represented in Figure 4.10(b). Let us fix the edge 
corresponding to the facet 7 in the tree of G and complete it by the edge 
corresponding to facet 4. The tree of G is therefore composed of facets 4 and 7. The 
facet tree corresponding to the cotree of G therefore contains all the facets 1, 2, 3, 5 
and 6. The fluxes on these facets are fixed by the boundary conditions. Therefore, 
we have: 

0w,0w,0w0w,1w 65321 ====−=  [4.177] 

In order to obtain the missing fluxes, we use the approach involving a loop on 
the elements. Since three of the four fluxes of the facets of element 1 are known, 
considering again the first line of the matrix [DVF], with q1 = 0, it can be deduced 
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from equation [4.176] that w4 = 1. The same approach applied to element 2 yields 
w7 = 1. Under these conditions, the vector of fluxes of the facet [wF] is given by: 

[ ] [ ]t1,0,1,0,0,1,0,0,1w −=F  [4.178] 

4.3.7. Discretization of support fields and associated potentials 

As already seen in section 1.5, source terms, encountered in the low-frequency 
electromagnetism, can be local quantities (ρ, σs, Js) or global quantities (fs, e, fm, I, φ). 
In section 3.2, to facilitate the derivation of the formulations, we introduced source 
fields and, for their representation, we used support fields (βs, λs, ηsl, ξsl), which  
can be associated with the potentials (αs, χs). The following section will develop,  
in the discrete domain, the expression of support fields and associated potentials 
depending on their properties. The notations are the same, namely the mesh  
M contains N nodes, A edges, F facets and V volumes. 

4.3.7.1. Discretization of the source terms αs and βs 

For the discretization of the source terms αs and βs, we refer again to the general 
case considered in section 3.2.1.1. The properties of the scalar potential αs, given by 
relations [3.13] and [3.14], show that it is defined in the space H(grad, Ω) with 
boundary conditions on Γnk with k Î {1, 2}. The potential αs must therefore be 
discretized in the space of node elements W0(Ωd), as shown in Table 4.18. It should 
be recalled that the boundaries Γn1 and Γn2 are equipotential with αsΓn1 and  αsΓn2 
equal to 1 and 0, respectively.  

In the discrete domain, in order to impose the boundary conditions on Γn1 and 
Γn2, we fix to 1 the values associated with the nodes on the boundary Γn1 and to zero 
those associated with the nodes of Γn2 (Henneron et al. 2004). Indeed, it can be 
verified that if the values of a function are equal on the nodes of a facet, then the 
value of the function is constant on this facet. Consequently, the value of αsd(x) is 
constant and equal to 1 on all the facets of surface Γn1 and is zero on those of Γn2. 
Moreover, the other values of αsd(x) at nodes can be arbitrarily fixed (in practice, 
they are often fixed at zero). Indeed, let us note by N1 the set of nodes belonging to 
the boundary Γn1; then, we can write: 

isd 1 sdi1 if i else 0α = ∈ α =N  [4.179] 
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where αsdi is the value of αsd(x) at nodes “i”. Let us now consider the N nodes of 
mesh M. In this case, the expression of the discrete form αsd(x) of the potential αs is: 

ii sd
1i

nsd )x()x( αω=α 
=

N

 [4.180] 

where, as a reminder, ωni(x) represents the nodal interpolation functions (see 
equation [4.84]).  

To represent the nodal values αsdi in expression [4.180], we can introduce an 
N-dimensional vector denoted by [αN]. Then, we have: 

[ ] [ ]NN αω=α t
sd )x()x(  [4.181] 

Considering the properties given by equation [3.12], the support field βs is 
defined in the function space HΓn1∪Γn2(curl0, Ω). Moreover, it is expressed as a 
function of potential αs via the gradient operator (see equation [3.13]). In the discrete 
domain, it belongs to the space of edge elements W1

Γn1∪Γn2 (Ωd) (see Table 4.18). 
Therefore, based on equation [4.111], it can be written in the discrete form: 

[ ] [ ][ ] [ ] [ ]AANNAA

N

β=α−=

αω−=α−= 
∈

t
,

t
i

nnsdsd

)x()x(

))x(()x()x(
ii

ωGω

gradgradβ
 [4.182] 

where [βA] is written as:  

[ ] [ ][ ]NNAA α−=β ,G  [4.183] 

For a given problem, knowing the vector [αN] of nodal values, as well as the 
matrix [GAN], we very easily obtain the vector [βA] of A circulations of βs on the 
edges of the mesh. It can then be verified that the only non-zero components of 
vector [βA] are associated with edges with only one extremity on the surface Γn1. 

4.3.7.2. Discretization of fields λs and χs 

This section considers again the example presented in Figure 3.1 with the 
support fields introduced in section 3.2.1.2. The field λs is entirely defined in the 
domain Ω of boundary Γ. This boundary is the union of two gates Γn1 and Γn2 and of 
the wall Γm. The support field λs belongs to the function space HΓm(div0, Ω) (see 
relation [3.23]). Under these conditions, this field must be discretized in the space of 



242     Finite Element Method to Model Electromagnetic Systems in Low Frequency 

facet elements (see Table 4.18). Then, λsd(x) Î W2
Γm(Ωd), and its expression is 

written as: 

[ ] [ ]FF
F

λ=λ= 
=

t

1i
sffsd )x()x()x(

ii
ωωλ  [4.184] 

The objective is to determine the fluxes of λsd(x) through the facets of the mesh, 
i.e. the components of the vector [λF] such that: 

– divλsd(x) = 0 or in an equivalent manner, in the discrete domain, [DVF] [λF] = 0; 

– λsd(x).n = 0 on Γm, which means that the fluxes through the facets located on 
Γm are zero; 

– 1dS).x(dS).x(
1n2n

sdsd =−=  ΓΓ nλnλ , which is equivalent to imposing that 

the sum of fluxes exiting the facets located on Γn2 is equal to 1 and equal to –1 on 
Γn1. 

There are an infinite number of solutions satisfying these conditions. To build 
one, the gauge condition proposed in section 4.3.6.3 is applied. This gauge relies on 
building a facet tree (case 2). It should be recalled that a requirement when building 
a tree is that all the facets of the domain boundary except one belong to the facet tree 
(Le Ménach et al. 1998; Henneron et al. 2004).  

Concerning the associated vector potential χsd(x), it is linked to the support field 
λsd(x) via the curl operator. In the case of a not simply connected boundary such as 
Γm, some precautions need to be taken in the continuous domain in order to 
determine it (see section 3.2.1.2.2). Indeed, in this case, as shown by equations 
[3.28] and [3.29], we have χs Î HΔ

Γm(curl, Ω). It will be shown how this difficulty 
can be overcome during its discretization.  

In the discrete domain, the associated vector potential χsd(x) belongs to the space 
of the edge elements W1

Γm(Ωd) and its expression is given by: 

[ ] [ ]AA
A

χ=χ= 
=

t

1i
saasd )x()x()x(

ii
ωωχ  [4.185] 

The objective is to determine the components of the vector [χA] that represent the 
A circulations of χsd(x) on the edges of the mesh. The conditions to be verified are: 

– λsd(x) = curlχsd(x) or, in an equivalent manner, [λF] = [RFA][χA]; 

– χsd(x) ∧ n = 0 on Γm. 
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Since λsd(x) belongs to W2
Γm(Ωd) and it is divergence free, there are an infinite 

number of fields χsd(x) satisfying the two above-mentioned conditions. To determine 
one solution, we can use the gauge condition (see section 4.3.6.2), based on the 
construction of an edge tree. To impose the boundary conditions on the boundary 
Γm, the construction of the edge tree must begin on this boundary. It can be shown 
that this algorithm introduces a cut on the boundary Γm between the gates Γn1 and 
Γn2 (Le Ménach et al. 1998). This makes it possible to alleviate the constraints 
related to the not simply connected boundary Γm. 

Knowing the A circulations of the field on the edges of the mesh, hence the 
vector [χA], we can express χsd(x) in the form of equation [4.185]. 

4.3.7.3. Discretization of the source terms ξsl and ηsl 

The support fields of the source terms, ξsl and ηsl, are defined in section 3.2.2.2. 
The scalar field ξsl represents a density as shown in equation [3.43]. As for the field 
ηsl, it is defined based on ξsl via relation [3.46]. 

In order to determine the discrete form of these two fields, denoted by ξsld and 
ηsld, we consider the example in Figure 3.9 introduced in section 3.2.3.4. In the 
continuous domain, these two fields are defined in the function spaces, such that 
ξsl Î L2(Ω) and ηsl Î HΓm(div, Ω). Under these conditions, transposed in the discrete 
domain (see Table 4.18), we have ξsld(x) Î W3(Ωd) and ηsld(x) Î W2

m(Ωd), hence, 
respectively, the space of the volume elements and the facet elements. As a first 
step, we determine ξsld(x) by using its properties defined in the continuous domain 
by equation [3.43]. Then, we calculate ηsld(x) by transposing relation [3.46] in the 
discrete domain. 

The field ξsld(x) is an input of the problem defined in the space of the volume 
elements. Under these conditions (see equation [4.105]), the expression of its 
discrete form is: 

[ ] [ ]VV
V

ξω=ξω=ξ 
=

t

1i
slvvsld )x()x()x(

ii
 [4.186] 

The entries of the vector [ξV] represent the contribution of the volume 
corresponding to the element. This means the volume integral of ξsld(x) on each 
element of the mesh. For example, in electrostatics, if the charge density is constant  
on a subdomain Ωsd of Ωd, then we can write for an element vi, based on equation 
[3.57]: 
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( )i i
i

slv i sd slv i sd
sd

vol(v ) if v and 0 if v
vol

ξ = ∈ Ω ξ = ∉ Ω
Ω

 [4.187] 

in this expression, vol(vi) represents the volume of the element vi.  

Let us now find the support field ηsld(x), which is written as follows: 

[ ] [ ]FF
F

η=η= 
=

)x()x()x(
1i

slffsld ii
ωωη  [4.188] 

In this expression, the vector [ηF] represents the F fluxes of the facets of the field 
ηsld(x), which must satisfy the following conditions: 

– divηsld(x) = ξsld(x) or, in an equivalent manner, [ξV] = [DVF][ηF]; 

– ηsld(x).n = 0 on Γm. 

There are an infinite number of fields ηsld(x) verifying these two conditions. To 
determine the entries of [ηF], we then apply a gauge condition such as the one 
described in section 4.3.6.3 (case 1). Therefore, we have to build a facet tree Tf. To 
impose the boundary conditions, all the facets belonging to Γm in the tree Tf must be 
imposed. However, as indicated in section 4.3.6.3, if Γm covers the entire boundary, 
then all the facets of Γm, except one, belong to Tf. 

4.4. Discretization of weak formulations 

4.4.1. Notations 

In what follows, we apply the finite element method to the set of weak 
formulations developed in section 4.2. As a first step, the Ritz–Galerkin method will 
be presented. This method will be applied to construct the discrete model from the 
weak formulation obtained in section 4.2.  

To alleviate the notations, the next section of this book will no longer refer to the 
dependence on “x” of the interpolation functions. The node, edge, facet and volume 
functions will therefore be denoted by ωn, ωa, ωf and ωv, respectively. Similarly, the 
vectors corresponding to these interpolation functions will be written as [ωN]t, [ωA]t, 
[ωF]t and [ωV]t, where N, A, F and V represent their dimension, namely the number 
of nodes, edges, facets and volume, respectively. 



Formulations in the Discrete Domain     245 

4.4.2. Ritz–Galerkin method 

Section 4.2 developed the weighted residual method that led, in the continuous 
domain, to searching for a weak form of the solution to the initial problem. 

Consider the example of a scalar function U, defined on a domain Ω. This field 
must satisfy a gate-type boundary condition on a part Γn of the boundary Γ on which 
we impose U = 0. Consider that the equation to be solved can be written as follows: 

0q)U(div =+gradK  [4.189] 

where K is a strictly positive scalar function depending on the position, qÎL2(Ω) is a 
volume source term that can be expressed using a global quantity Q (see equation 
[3.43]), such that q = Q ξsl, and U Î HΓn(grad, Ω) is the unknown function. On the 
remaining part Γm of Γ, we impose Neumann’s boundary conditions in the form “K 
gradU.n = 0”. 

Considering the boundary conditions, the weak form of this equation can be 
written, after development, in the form: 

 Ω Ω Γ Ω∈ψ∀τψξ=τψ ),(Hdd).U(
nsl gradgradgrad QK  [4.190] 

To find an approximation to the solution, we will associate equation [4.190] and 
the finite element method (see section 4.3.1). Let us consider that the mesh M 
contains N nodes and V volumes. Considering the domain of definition of the 
function U, the objective is to find an approximation (see Table 4.18), in the 
function space W0

Γn (Ωd), namely the space of nodal elements. Moreover, to impose 
the boundary conditions, we fix at zero the N0 nodes of the mesh belonging to the 
boundary Γn (see section 4.3.6.1). Then, the number of nodes to be determined is 
Nr = N – N0. To simplify the notations, the nodes are renumbered so that those 
belonging to the boundary Γn have an index higher than Nr. Under these conditions, 
the discretized form of the unknown function, denoted by Ud(x), is written as: 

[ ] [ ]
rr

r

NN

N
UU)x(U t

1i
ind i

ω=ω= 
=

 [4.191] 
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On the other hand, the source term q is discretized, taking into account these 
properties in the space W3(Ωd). Then, it can be written using the discrete form of ξsl 
(see equation [4.186]), in the following form: 

[ ] [ ]VV
V

QQ ξ=ξ= 
=

t

1i
slvvd ωω)x(q

ii
 [4.192] 

As indicated in section 4.2.1, in the continuous domain, the weighting functions 
ψ were chosen in the adjoint space of the operator. In our case, the operator is the 
divergence (see equation [4.189]) and therefore the adjoint operator is the gradient, 
as shown in Table 2.1. Therefore, the weighting functions ψ belong to HΓn(grad, Ω). 
The approach is similar in the discrete domain and the weighting functions are 
chosen in the space W0

Γn(Ωd), which is generated by the set of Nr node functions 
associated with the nodes of the mesh that are not located on Γn. This is known as 
the Ritz–Galerkin method. In fact, the space of approximation and the space of the 
weighting functions is the same. Under these conditions, the expression [4.190] can 
be rewritten by taking for weighting functions ψ = ωnj with 1 ≤ j ≤ Nr, i.e.: 

r

i j k k jn n i v slv n
i 1 k 1

r

( ).( )U d Q d

with 1 j

Ω Ω
= =

ω ω τ = ω ξ ω τ

≤ ≤

  grad grad
N V

K

N

 [4.193] 

This equation must be verified for the set of the Nr functions ωnj. Then, we obtain 
a system of Nr equations with Nr unknowns Ui, contained in the vector [UN r]. The 
system of equations can then be written in the following matrix form: 

[ ] [ ] [ ]
[ ][ ] [ ] τξωω=

τωω





Ω

Ω

d)(

dU)()(
t

tt

r

rrr

VVN

NNN

Q

K gradgrad
 [4.194] 

Relation [4.110] allows us to rewrite this system by introducing the matrices 







rANG  and the vector [ωA] of the edge weighting functions:  

[ ] [ ][ ] [ ][ ]
[ ][ ] [ ] τξωω

=τ





Ω

Ω

d(

dU

t

tt

r

rr

VVN

NANAAAN

Q

K
r

GωωG
 [4.195] 
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The incidence matrix 





rANG  and also vectors 





r
UN  and 



ξV  do not depend 

on the position “x”. Under these conditions, equation [4.195] is written as: 

[ ] [ ] [ ][ ] [ ][ ]VVNNAN
K
AAAN ξ= st

rrrr
MUM GG  [4.196] 

The elementary term of the matrix 



 K

AAM  is written as: 

τ= Ω d.M
jiji

aaaa ωωKK  [4.197] 

As for the matrix 



 s

r
M VN , it represents the contribution of the source term 

whose elementary term has the following expression: 

τ= Ω dω.ωM
jiji

vn
s

vn Q  [4.198] 

NOTE.– Two different types of matrices can be noted in the obtained matrix system: 

– Incidence matrix 





rANG  whose expression depends only on the manner in 

which the edges and the nodes are interconnected (topology of the mesh). On the 
other hand, it does not depend on the position of the nodes (the metric associated 
with domain Ωd). 

– Matrices 



 K

AAM
 

and 



 s

r
M VN  whose expressions strongly depend on the 

metric with the integration of functions depending on the position and on the 
behavior law of the materials. 

This dissociation between topology and metric occurs naturally by using the 
tools proposed by differential geometry (Bossavit 1997). 

Finally, posing: 

[ ]
r r r r r r

t sS G M G and F M          = = ξ          
K

N N AN AA AN N N V V  [4.199] 
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equation [4.196] is written as: 

[ ] [ ] [ ]
rrrr

FUS NNNN =  [4.200] 

The solution to this system of equations makes it possible to obtain, in this case, 

the Nr values of the vector 





r
UN . Then, using relation [4.85], we deduce the 

expression Ud(x), namely the approximation to the solution of this problem. 

4.4.3. Electrostatics  

For electrostatics, let us consider the previously studied example in Figure 3.11 
(see sections 3.3.2 and 4.2.2). It should be recalled that, for this example, there is a 
domain Ω, composed of two electrodes in contact with the external environment, 
denoted by E1 and E2, and an internal electrode E3. The presence of the internal 
electrode limits the studied domain to Ω' = Ω – ΩE3. The source terms can be the 
circulations fij between the electrodes of the electric field (see equation [3.108]) or 
the charges Qk on the electrodes (see equation [3.110]). The boundary Γ of the 
domain is composed of gates Γek with k Î {1, 2, 3} and a wall Γd (see equation 
[3.106]). On the domain Ω', a mesh M is built and the number of nodes, edges, 
facets and volumes is denoted by N, A, F and V, respectively. 

In this section, the finite element method is applied to the two weak formulations 
(scalar potential and vector potential) that have been developed in section 4.2.2. 

4.4.3.1. Scalar potential V formulation 

The weak scalar potential formulation (see equation [4.15]) is recalled as 
follows: 

 Ω Ω τψ+ε=τψε' ' 23231313 d).(d.V gradββgradgrad ff  [4.201] 

where V and ψ belong to the space HΓe1∪Γe2∪Γe3(grad, Ω') and the support fields βij 
of the source terms defined in [3.113]. 

To solve this equation with the finite element method, the first step is to 
discretize the scalar potential V and the support fields βij. 

4.4.3.1.1. Discretization of the scalar potential V  

The scalar potential V belongs to H Γe1∪Γe2∪Γe3(curl0, Ω') and, as shown in  
Table 4.18, it must be discretized in the space of the node elements 
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W0
Γe1∪Γe2∪Γe3 (Ω'd). Its expression is then given by relation [4.163]. The boundaries 

Γek with k = {1, 2, 3} are equipotential surfaces on which the potential is equal to 
zero (see equation [3.115]). To impose this condition in the discrete domain, we fix 
at zero the set of nodal values Vi belonging to the boundary Γe1∪Γe2∪Γe3. It should 
be noted that, as indicated in section 4.3.6.1, this condition also allows for the 
gauging of the scalar potential. Given N the number of nodes of the mesh and Nek 
the number of nodes on the boundaries Γek with k = {1, 2, 3}, the number of 
remaining unknowns of the problem, denoted by Nr, is written as: 


=

−=
3

1k
ekr NNN  [4.202] 

At this stage of our study, the nodes are renumbered so that those belonging to 
the boundary Γe1∪Γe2∪Γe3 have the highest indices. In other terms, the nodes with 
an index higher than Nr are located on the boundary Γe1∪Γe2∪Γe3. Under these 
conditions, given that the node values of the scalar potential are equal to zero for the 
nodes located on the boundary Γe1∪Γe2∪Γe3, the discrete form of the scalar potential 
Vd(x) is written as: 

[ ] [ ]
rr

r

i
VV)x(V t

1i
ind NN

N
ω=ω= 

=
 [4.203] 

where 





r
VN  represents the vector of dimension Nr of the nodal values of the scalar 

potential.  

4.4.3.1.2. Discretization of the support fields αij and βij 

To determine the discrete form of the support fields βij, we will use the approach 
proposed in section 4.3.7.1. The first step is to build in the space of nodal elements 
the associated scalar potentials αij, and then deduce from them the support fields in 
the space of edge elements. 

The scalar potentials αij are defined by the relations given in equation [3.114]. 
To build their discrete forms, we use the approach developed in section 4.3.7.1. In 
fact, for α13d(x) and α23d(x), we fix to 1 their node values belonging, respectively, to 
the boundaries Γe1 and Γe2, and to zero the other node values (Henneron et al. 2004). 
Then, we have, for α13i (with 1 ≤ i ≤ N): 

e113i 13i1 if i else 0Γα = ∈ α =N  [4.204] 



250     Finite Element Method to Model Electromagnetic Systems in Low Frequency 

Similarly, for the components α23i (with 1 ≤ i ≤ N) associated with the function 
α23d(x), we have: 

e 223i 23i1 if i else 0Γα = ∈ α =N  [4.205] 

As we know the expression of nodal values, the discrete form of α13d(x) is 
written as: 

[ ] [ ]NN

N

13
t

13
1i

nd13 ii
)x( αω=αω=α 

=
 [4.206] 

where [α13N] represents the N-dimensional vector of nodal values α13i. Similarly, the 
expression of the discrete form of the associated potential α23 d(x) is: 

[ ] [ ]NN

N

23
t

23
1i

nd23 ii
)x( αω=αω=α 

=
 [4.207] 

where [α23N] represents the N-dimensional vector of nodal values α23i. 

Knowing the expression of the associated potentials α13d(x) and α23d(x), the 
discrete form of the support fields β13d(x) and β23d(x) can be immediately calculated 
(see equation [3.114]). Relying on equation [4.182], as well as on equation [4.92] 
and posing [ ] [ ] [ ]NNAA 13

t
,13 α−=β G , we deduce the following equation: 

[ ] [ ]AA
A

13
t

13
1i

ad13 ii
)x( β=β= 

=
ωωβ  [4.208] 

Similarly, the support field β23(x) is written as: 

[ ] [ ]AA
A

23
t

23
1i

ad23 ii
)x( β=β= 

=
ωωβ  [4.209] 

with [ ] [ ] [ ]NNAA 23
t

,23 G α−=β . 

4.4.3.1.3. System of equations to be solved 

In order to solve equation [4.201] using the finite element method, we replace 
the scalar potential and the support fields by their discrete forms and we apply the  
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Ritz–Galerkin method (see section 4.4.2). In this case, the weighting functions are  
in the discrete space corresponding to HΓe1∪Γe2∪Γe3 (grad, Ω'), namely 
W0

Γe1∪Γe2∪Γe3 (Ω’d), which corresponds to Nr nodal approximation functions ωnj. 
Then, we can write: 
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 [4.210] 

Using relation [4.108] and, given that the equation must be verified for the Nr 
weighting functions, this is reflected by the matrix equation:
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Relation [4.110], related to the gradient operator, allows us to rewrite this 
expression in the following form: 

[ ] [ ]
[ ] [ ][ ] [ ]

[ ] [ ][ ] [ ] τβε+

τβε

=τ















ε







Ω

Ω

Ω

d

d

dV

23
t

'
t

23

13
t

'
t

13

tt
'

r

r

rrr

AAAAN

AAAAN

NANAAAN

f

f

ωωG

ωωG

GωωG

 [4.212] 

Knowing that, besides the circulations f13 and f23, the matrix 





rANG  and the 

vectors [VNr], [β13A] and [β23A] do not depend on the position (see equation [4.196]), 
we can modify this equation and write it as follows: 
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where the elementary terms of the matrix 



 ε

AAM  are: 

τε= Ω
ε d.M '

d jiji
aaaa ωω  [4.214] 

Finally, posing: 
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        = β + β              

N N AN AA AN

N AN AA A AN AA Af f
 [4.215] 

Equation [4.213] to be solved can be written in the generic form as follows: 

[ ] [ ] [ ]εε =
rrrr

FVS NNNN  [4.216] 

The solution to this system of equations allows us to obtain the nodal values of 
the scalar potential. Then, using expression [4.203], we can express the scalar 
potential Vd(x) in any point of the domain Ωd’.  

4.4.3.1.4. Imposed charges 

Sections 3.3.2.1 and 4.2.2.1 considered that the source terms may be either the 
total charges Qk or a combination of the circulation fij and charges Qk. In this case, 
we need to add equations [3.125] or [3.126] depending on whether we impose the 
charges Q1 or Q2 or both. These relations are recalled below, where the total charges 
Q1 are written as: 

Ω τ−+ε= ' 23231313131 d)V.(Q gradβββ ff  [4.217] 

Similarly, for the total charges Q2, we have: 

Ω τ−+ε= ' 23231313232 d)V.(Q gradβββ ff  [4.218] 

These equations can be made compatible with the matrix equation [4.213] if we 
introduce the discrete form of the scalar potential V and that of the support fields β13  
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and β23. For this purpose, we can use expressions [4.203], [4.208] and [4.209]. The 
expression of the total charges Q1 is then: 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] τββε+

τββε+

τωβε−=


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23
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' 13
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tt

' 13
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13

tt
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t
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d

d

rrd
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f

f

ωω

ωω

gradω

 [4.219] 

Introducing the incidence matrix 





rANG  (see equation [4.110]) and after 

rearranging the equation, we can write: 

[ ] [ ][ ] [ ][ ]
[ ] [ ][ ] [ ]

[ ] [ ][ ] [ ] τββε+
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

Ω

Ω

Ω

d

d

dVQ

23
t

'
t
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'
t

1313

tt
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d

d
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f

f

r

ωω

ωω
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 [4.220] 

On the other hand, the matrix 





rANG  and the vectors 





r
VN , [ ]A13β , [ ]A23β  do 

not depend on the position. Hence, we can introduce the mass matrix 



 ε

AAM , whose 

elementary term is given by relation [4.214]. Then, we have: 

[ ] [ ][ ][ ]
[ ] [ ][ ] [ ] [ ][ ]AAAAAAAA

NANAAA

ff 23
t

132313t1313

t
131

MM

VMQ
rr

ββ+ββ+

β−=

εε

ε G
 [4.221] 

The same developments, applied to expression [4.218], can be used to write the 
total charges Q2: 

[ ] [ ][ ][ ]
[ ] [ ][ ] [ ] [ ][ ]AAAAAAAA

NANAAA

ff 23
t

232313t2313

t
232

MM

VMQ
rr

ββ+ββ+

β−=

εε

ε G
 [4.222] 
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In order to build a complete matrix system, the following notations are 
introduced: 

[ ] [ ] [ ][ ] [ ] [ ] [ ][ ]
[ ] [ ][ ] [ ] [ ][ ]

[ ] [ ][ ]AAAA

AAAAAAAA

AAAANNAAAANN

23
t

13

23
t

2313
t

13

23
t

2313
t

13

MH

MB,MB

MC,MC

2313

rrrr

ββ=

ββ=ββ=

β−=β−=

εε

εε
β

εε
β

εεεε GG

[4.223] 

where 



 ε

r13C N  and 



 ε

r23C N  are the notations for vectors of dimension Nr and  

ε
β13

B , ε
β 23

B  and Hε for scalars. 

Let us now gather equations [4.213], [4.221] and [4.222] with the notations 
defined in equations [4.215] and [4.223]. Then, for an electrostatic problem in the 
case of the scalar potential formulation when the source terms are total charges Q1 
and Q2, we have the following system to solve: 
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[ ] [ ]











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Q
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23r

13r

rrrr

f
f
N
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NNNN

 [4.224] 

In this system of equations, the unknowns are the nodal values of the scalar 
potential and the circulations f13 and f23. As for the source terms, they are the total 
charges Q1 and Q2. It should also be noted that the system is symmetric. If we now 
impose a circulation and a value of charges, the new system to be solved is deduced 
from equation [4.224].  

4.4.3.2. Vector potential P formulation 

For the vector potential formulation, the weak form of our electrostatic problem 
is given by relation [4.24], which is recalled as follows: 

d

1 1
1 13 2 23' '

. d (Q Q ). d ,

and H ( , ')

− −

Ω Ω

Γ

ε τ = − ε + τ

∈ Ω
 curlP curlΨ λ λ curlΨ

P Ψ curl
 [4.225] 
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To solve this equation with the finite element method, besides the vector 
potential P, we have to discretize the support fields λ12 and λ23. These support fields 
are defined by equations [3.131] and [3.132] and they belong, respectively, to 
HΓe2∪Γd(div, Ω') and HΓe1∪Γd(div, Ω'). 

4.4.3.2.1. Discretization of the vector potential P 

In the continuous domain, the vector potential P is defined in the function space 
HΓd(curl, Ω'). In the discrete domain, this potential therefore belongs (see Table 4.18) 
to the function space W1

Γd(Ω'd). Moreover, a gauge condition and the boundary 
conditions should be imposed on Γd (see equation [3.138]). To impose the gauge 
condition, we can use the process presented in section 4.3.6.2, leading to the 
construction of an edge tree. It should be recalled that, in order to impose the 
boundary conditions and the gauge, we first build the edge tree on the boundary Γd, 
then we extend it to the set of edges of the mesh. Then, we fix the circulations of P 
to zero on the N – 1 edges of the tree. For the boundary conditions, we denote by Ad 
the number of edges belonging to the boundary Γd and by Ada the number of edges of 
the tree also belonging to the boundary Γd. To impose the boundary conditions, 
besides the edges belonging to the tree, we also fix to zero the Ad – Ada edges of the 
boundary. The number of unknowns of the problem, namely the number Ar of 
circulations of the vector potential on the edges, has the following expression: 

)()( dadr AA1-NAA −−−=  [4.226] 

To facilitate the implementation of the gauge and the boundary conditions in the 
following, as already noted in sections 4.4.2 and 4.4.3.1, we renumber the edges so 
that the unknown circulations of the vector P are numbered from 1 to Ar. Hence, the 
indices of the edges belonging to the boundary Γd and to the edge tree are higher 
than Ar. Under these conditions, the discrete form of the vector potential Pd(x) is 
expressed using the vector [ωAr] of interpolation functions ωai and the circulations of 
the vector potential (denoted by Pi) on the Ar edges as follows: 

[ ] [ ]
rAA

A
PP)x( t

1i
iad r

r

i
ωωP == 

=
 [4.227] 

In this expression, [PAr] represents the vector of Pi circulations of the vector potential 
on the Ar edges of the mesh associated with the unknowns of the problem. 

4.4.3.2.2. Discretization of the support fields λij 

For the discretization of the support fields λ13 and λ23, we rely on the properties 
defined by relations [3.131] and [3.132]. These two fields belong to the function  
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spaces HΓe2∪Γd(div, Ω') and HΓe1∪Γd(div, Ω'). Therefore, they are discretized (see 
Table 4.18) in the spaces W2

Γe2∪Γd(Ω'd) and W2
Γe1∪Γd(Ω'd), respectively, namely the 

space of facet elements. The expression of the support field λ13 is: 

[ ] [ ]
FF

F
13

t

1i
f13fd13 ii

)x( λ=λ= 
=

ωωλ  [4.228] 

and λ23: 

[ ] [ ]
FF

F
23

t

1i
f23fd23 ii

)x( λ=λ= 
=

ωωλ  [4.229] 

For the calculation of the vectors [λ13] and [λ23], we use the process developed in 
section 4.3.7.2. For the construction of [λ13], the two gates are Γe1 and Γe3 and the 
wall boundary Γm is the union of Γe2 and Γd. In a complementary manner, [λ23] is 
built with the surfaces Γe2 and Γe3 as gates, and the union of Γe1 and Γd as wall Γm. 

4.4.3.2.3. System of equations to be solved 

In order to solve equation [4.225] with the finite element method, we replace the 
source fields and the vector potential with their discretized expressions given, 
respectively, by relations [4.227], [4.228] and [4.229].  

The Ritz–Galerkin method is applied, consisting of having the Ar edge functions 
ωaj as weighting functions. We then obtain: 
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 [4.230] 

This equation must be verified for the set of Ar weighting functions ωaj of the 
function space W1

Γd(Ω’d).  
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It can therefore be rewritten in the matrix form as: 

[ ] [ ]

[ ] [ ]

' r r
d

' r
d

' r
d

t t1 t

t t1 t
1 13

t t1 t
2 23
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Ω
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 [4.231] 

Using relation [4.124], we can write the system of equations by introducing the 
matrices [RFA] and [ωF] as follows: 

[ ] [ ][ ] [ ][ ]
[ ] [ ][ ] [ ]

[ ] [ ][ ] [ ] τλε−
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 [4.232] 

The incidence matrices 





rFAR  as well as the vectors 





r
PA , [λ13F] and [λ23F] are 

vectors whose components do not depend on the position. Under these conditions, 
equation [4.232] can be written in the following form: 
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The elementary term of the matrix 



 −ε 1
MFF  is written as: 

τε= Ω
−ε −

d.M '
d ji

1

ji
ff

1
ff ωω  [4.234] 

Let us now pose: 

[ ] [ ]

1 1

r r r r

1 1 1

r r r

t

t t
1 13 2 23

S M and

F Q M Q M

− −

− − −

ε ε

ε ε ε

      =          

        = − λ − λ             

R R

R R

A A FA FF FA

A FA FF F FA FF F

 [4.235] 
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The system of equations is then written as: 

[ ] 



=



 −εε 1

rr

1_

rr
FPS AAAA  [4.236] 

The solution of this matrix equation can be used to obtain the circulations of the 
vector potential on the edges of the mesh. Then, using expression [4.227], we 
express the vector potential Pd(x) in any point of the domain Ω'd.  

4.4.3.2.4. Imposed circulation of the electric field 

According to sections 3.3.2.2 and 4.2.2.2, the source terms could be the 
circulations fij or a combination of a circulation and a value of charges imposed on 
an electrode. Under these conditions, to obtain a full equation system, the system 
[4.233] must be completed with equation [3.146] and/or, depending on the case, 
equation [3.147]. These two equations must therefore be discretized. Therefore, 
equation [3.146] is recalled below: 

1
13 13 1 13 2 23'

. (Q Q )d−

Ω
= ε + + τ λ λ λ curlPf  [4.237] 

Replacing the vector potential P and the support fields λ13 and λ23 by their 
expressions given, respectively, by equations [4.227], [4.228] and [4.229], we 
obtain: 
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Using relation [4.124] related to the discrete curl operator and then introducing 

matrix 



 −ε 1
MFF  defined in equation [4.234], equation [4.238] takes the following 

form: 
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The discretization of equation [3.147] can be very easily deduced from this 
expression and we obtain: 

[ ] [ ][ ]
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Similar to the case of the scalar potential formulation, a full system of equations 
is built. The first step is to introduce the following notations: 
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In this expression, 



 −ε 1

r13C A  and 



 −ε 1

r23C A  denote vectors of dimension Ar. As for 

the terms 
1

13
B

−ε
λ , 

1

23
B

−ε
λ  

and 
1

H
−ε , they denote scalars. 

Gathering equations [4.233], [4.239] and [4.240] using the previous notations, 
the system of equations to be solved is written as: 
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f
f

 [4.242] 

In this system of equations, the unknowns are the circulations of the vector 
potential on the edges of the mesh and the values of charges Q1 and Q2. The source 
terms are then the circulations f13 and f23. Moreover, similar to the scalar potential 
formulation, the matrix of equations to be solved is symmetric.  

Let us now assume that the source terms are the circulation f13 and the value of 
charges Q2, the unknowns of the problem are the circulations of the vector potential 
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on the edges of the mesh and the value of charges Q1. The system of equations to be 
solved can be readily obtained from equation [4.242]. 

4.4.4. Electrokinetics 

For electrokinetics, we consider again the example presented in section 3.4.2 and 
illustrated in Figure 3.14. In this case, we must solve equations [3.149] and [3.150]. 
For the boundary conditions (see equation [3.191]), we recall that the boundary Γ is 
decomposed into three gates Γe1, Γe2 and Γe3 for the electric field and a wall Γj for 
the current density. For this example, we studied several combinations of source 
terms that can be imposed on the three gates. We have considered two electromotive 
forces e13 and e23, two current density fluxes I1 and I2 and the possibility of 
combining an electromotive force and a current. We developed the scalar potential 
formulation and the vector potential formulation. Finally, section 4.2.2 introduces 
the weak forms of the formulations. This section develops these various weak 
formulations in the case of the finite element method. 

To solve these equations, we consider a mesh M composed of N nodes, A edges, 
F facets and V elements. 

4.4.4.1. Scalar potential V formulation  

When electromotive forces e13 and e23 are imposed, the weak scalar potential 
formulation is given by relation [4.29], with V and ψ belonging to 
HΓe1∪Γe2∪Γe3(grad, Ω). To solve this equation, we need to first discretize the 
potential V and the support fields β13 and β23.  

4.4.4.1.1. Discretization of the scalar potential V  

Concerning the scalar potential V, as already seen in section 4.4.3.1, it is 
discretized in the space of nodal elements, with Vd(x) Î W0

Γe1∪Γe2∪Γe3(Ωd). The three 
boundaries Γek, k ∈ {1, 2, 3}, are equipotential surfaces on which (see equation 
[3.159]) the unknown electric scalar potential is imposed to zero. Imposing this 
condition in the discrete domain means fixing to zero the nodal values (denoted by 
Vi) of the scalar potential. Proceeding this way, it can be noted that the scalar 
potential V is automatically gauged (see section 4.3.6.1). Under these conditions, the 
number of unknown nodal values of the problem (denoted by Nr) is written as: 

)( 321r NNNNN ++−=  [4.243] 

where N1, N2 and N3 represent the number of nodes on the boundaries Γe1, Γe2 and 
Γe3, respectively. 
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Using a renumbering, the indices of the nodes belonging to the boundaries Γe1, 
Γe2 and Γe3 are imposed higher than Nr. Under these conditions, considering the 
boundary conditions on the boundary Γe1∪Γe2∪Γe3, the scalar potential Vd(x) is 
written as: 

[ ] [ ]
rr

r

i
VV)x(V t

1i
ind NN

N
ω=ω= 

=
 [4.244] 

4.4.4.1.2. Discretization of the support fields αij and βij 

The properties of the support fields βij and αij are given by relations [3.192] and 
[3.193]. Since these properties are the same as in the case of electrostatics, an 
approach similar to that in section 4.4.3.1.2 will be used for their construction. As a 
first step, we build the associated potentials αij in the space of node elements. Then, 
we deduce the fields βij, which belong to the space of edge elements, using relations 
[4.182] and [4.183].  

As already seen in section 4.4.3.1.2, a possible solution for expressing the 
potentials αij involves fixing to 1 the values of αij(x) of the set of nodes of Γei and to 
zero the other ones (see relations [4.204] and [4.205]). The expressions of α13d(x) 
and α23d(x) are then given by equations [4.206] and [4.207], respectively.  

Based on the associated potentials αij, the support fields βij are obtained by 
applying the discrete operator [GAN] of the gradient.  

Using equation [4.208], presented in the case of electrostatics, the discrete form 
of the support field β13d(x) is written as: 

i i

t
13d a 13 13

i 1

13 13

(x) ,

with : G
=

= β = β      

β = − α        

β ω ω
A

A A

A AN N

 [4.245] 

and, for the field β23d(x), we have: 

i i

t
23d a 23 23

i 1

23 23

(x) ,

with :
=

= β β      

β = − α        

β ω ω

G

A

A A

A AN N

 [4.246] 
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4.4.4.1.3. System of equations to be solved 

Applying the finite element method means discretizing the weak formulation 
[4.29]. To this end, the scalar potential V and the support fields β13 and β23 are 
replaced by their discrete form and the Ritz–Galerkin method is applied (see section 
4.4.2) by taking as weighting functions the Nr node functions ωnj. Based on relations 
[4.244], [4.245] and [4.246], we can write:  

r

j i
d

j k k
d

j k l
d

n n i
i 1

13 n a 13
k 1

23 n al 23 r
l 1

( . )V d

e .ω d

e .ω d with 1 j

Ω
=

Ω
=

Ω
=

σ ω ω τ =

σ ω β τ

+ σ ω β τ ≤ ≤







grad grad

grad

grad

N

A

A

N

 [4.247] 

Let us now consider the set of Nr weighting functions, which leads to the matrix 
system: 

[ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ] [ ] τβωσ+

τβωσ

=τωωσ







Ω

Ω

Ω

d)(e

d)(e

dV)()(

23
ttt

23

13
ttt

13

ttt

r

r

rrr

AAN

AAN

NNN

ωgrad

ωgrad

gradgrad

 [4.248] 

Using relation [4.110], we can rewrite the matrix equation in the following form: 

[ ] [ ][ ] [ ][ ]
[ ] [ ][ ] [ ]

[ ] [ ][ ] [ ] τβσ+

τβσ=

τσ







Ω

Ω

Ω

de

de

dV

23
tt

23

13
tt

13

tt

d r

d r

rrd r

AAAAN

AAAAN

NANAAAN

ωωG

ωωG

GωωG

 [4.249] 

Given that the electromotive forces e13 and e23, the matrix 





rANG  and also 

vectors 





r
VN , [β13A] and [β23A] are independent of position, we can write: 

[ ] [ ][ ][ ] [ ] [ ][ ]
[ ] [ ][ ]AAAAN

AAAANNANAAAN

23
t

23

13
t

13
t

Me

MeVM

r

rrrr

β+

β=
σ

σσ

G

GGG
 [4.250] 
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where the elementary term of the matrix 



 σ

AAM  is written as: 

τσ= Ω
σ d.M

d jiji
aaaa ωω  [4.251] 

In expression [4.250], the following can be defined: 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ][ ] [ ] [ ][ ]AAAANAAAANN

ANAAANNN

23
t

2313
t

13

t

MeMeF

etMS

rrr

rrrr

β+β=

=

σσσ

σσ

GG

GG
 [4.252] 

Equation [4.250] can then be written as follows: 

[ ] [ ] [ ]σσ =
rrrr

FVS NNNN  [4.253] 

The solution to this matrix equation enables us to calculate in this case the Nr 

node values of the vector potential, namely the vector 





r
VN . Then, using relation 

[4.244], we deduce expression Vd(x) which represents the approximation to the 
solution to the problem. 

4.4.4.1.4. Imposed current density flux 

As noted in section 3.4.2.1, when the source terms are the current density flux, 
the electromotive forces become unknowns. System [4.253] should be added to the 
discretized form of relations [3.198] and [3.199], which are recalled as follows: 

Given the expression of current I1: 

Ω τ−+σ= d)Vee.(I 23231313131 gradβββ  [4.254] 

Similarly, for current I2, we have: 

Ω τ−+σ= d)Vee.(I 23231313232 gradβββ  [4.255] 

In order to make these equations compatible with the finite element method, we 
have to introduce the discrete form of the scalar potential V and the support fields 
β13 and β23. For this, we can use expressions [4.244], [4.245] and [4.246].  
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The resulting expression for current I1 is then: 

r r

t tt
1 13

t t t
13 13 13

t t t
23 13 23

I ( ) ( ) V d

e ( ) d

e ( ) d

Ω

Ω

Ω

      = − σ β ω τ       

       + σ β β τ       

       + σ β β τ       





ω grad

ω ω

ω ω

A A N N

A A A A

A A A A

 [4.256] 

Using the properties of the gradient operator in the discrete domain, by means of 
equation [4.110], we can write: 

r r

t t
1 13

t t t
13 13 13

t t t
23 13 23

I V d

e ( ) d

e ( ) d

Ω

Ω

Ω

        = − σ β τ         

       + σ β β τ       

       + σ β β τ       





ω ω G

ω ω

ω ω

A A A AN N

A A A A

A A A A

 [4.257] 

Then, taking into account that the vectors 





r
VN , [ ]A13β , [ ]A23β  and the matrix 







rANG  are independent of the position, we can introduce the mass matrix 



 σ

AAM , 

whose elementary term is given by relation [4.251].  

We can then write: 

[ ] [ ][ ][ ]
[ ] [ ][ ] [ ] [ ][ ]AAAAAAAA

NANAAA

23
t

132313
t

1313

t
131

MeMe

VMI
rr

ββ+ββ+

β−=
σσ

σ G
 [4.258] 

The same developments, applied to expression [4.255], yield the following 
expression for current I2: 

[ ] [ ][ ][ ]
[ ] [ ][ ] [ ] [ ][ ]AAAAAAAA

NANAAA

23
t

232313
t

2313

t
232

MeMe

VMI
rr

ββ+ββ+

β−=
σσ

σ G
 [4.259] 
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In order to simplify the expressions to build the matrix system, the following 
notations are introduced: 

[ ] [ ] [ ][ ] [ ] [ ] [ ][ ]
[ ] [ ][ ] [ ] [ ][ ]

[ ] [ ][ ]AAAA

AAAAAAAA

AAAANNAAAANN

23
t

13

23
t

2313
t

13

23
t

2313
t

13

MH

MB,MB

MC,MC

2313

rrrr

ββ=

ββ=ββ=

β−=β−=

σσ

σσ
β

σσ
β

σσσσ GG

[4.260] 

where 



 σ

r1C 3N  and 



 σ

r2C 3N  denote vectors of dimension Nr and σ
β13

B , σ
β 23

B  and 

σH  scalar terms. 

Let us now gather equations [4.250], [4.258] and [4.259] with the notations 
defined in equations [4.252] and [4.260]. For an electrokinetics problem, with the 
vector potential formulation where the source terms are the currents I1 and I2, the 
system below should be solved: 

[ ] [ ] [ ]
[ ]
[ ]

[ ] [ ]
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
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

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t
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I
I
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e
e
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CCS
r

23r

13r

rrrr
N

N

N

NNNN

 [4.261] 

The matrix equation thus obtained is symmetric. It can also be noted that the 
structure is equivalent to that of the electrostatic problem. If an electromotive force 
and a current are imposed, the system to be solved can readily be obtained from 
equation [4.261]. 

4.4.4.2. Vector potential T formulation 

It should be recalled that the studied problem is presented in Figure 3.14 and the 
equations to be solved are developed in section 3.4.1.2. The weak form of the vector 
potential T formulation, where the current density fluxes I1 and I2 are imposed, is 
given by relation [4.34], which is recalled below:  

j

1 1
1 13 2 23. d (I I ). dS

with and H ( , )

− −

Ω Ω

Γ

σ τ = − σ +

∈ Ω
 curlT curlΨ λ λ curlΨ

T Ψ curl
 [4.262] 
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To solve this equation with the finite element method, T and the fields λ13 and 
λ23 must be discretized. It should be recalled that λ13 ÎHΓe2∪Γj(div0,Ω) and 
λ23ÎHΓe1∪Γj(div0,Ω) (see equations [3.200] and [3.201]). 

4.4.4.2.1. Discretization of vector potential T 

The vector potential T belonging to HΓj(curl, Ω) must be discretized (see Table 
4.18) in the space of edge elements W1

Γj(Ωd). Moreover, a gauge condition must be 
imposed and the boundary conditions must be taken into account.  

To gauge the vector potential, as indicated in section 4.3.6.2, an edge tree is 
built. To make it easier to consider the boundary conditions, we start by building the 
tree considering the edges of boundary Γj. Then, we extend it to the entire domain. 
We then fix the N – 1 edges of the tree to zero. We denote by Aj the number of edges 
of the boundary Γj and by Aja those of Γj belonging to the tree. To impose the 
boundary condition on Γj, besides the Aja edges of the boundary belonging to the 
tree, zero must be imposed to the remaining Aj – Aja edges. Then, for the number of 
unknown edges of the problem denoted by Ar, we have: 

)()1( jajr AA- NAA −−−=  [4.263] 

The order of the indices of the edges of the mesh is such that those belonging to 
the tree and the boundary Γj are the last ones in the order of numbering. Under these 
conditions, the discretized electric vector potential Td(x) has the following 
expression: 

[ ] [ ]
rri

TT)x( t
i

1i
ad AA

Ar

ωωT == 
=

 [4.264] 

4.4.4.2.2. Discretization of the support fields λij 

Concerning the support fields, λ13 and λ23, they belong, respectively, to the 
function spaces HΓe2∪Γj(div0, Ω) and HΓe1∪Γj(div0, Ω). They are therefore discretized 
in the space of facet elements (see Table 4.18), i.e. λ13d(x) Î W2

Γe2∪Γj(Ωd) and 
λ23d(x) Î W2

Γe1∪Γj(Ωd).  

To calculate their discrete form, we use the process presented in section 4.3.7.2 
(see equation [4.184]). It can be written in the following form for λ13d(x): 

[ ] [ ]FF
F

13
t

1i
f13fd13 ii

)x( λ=λ= 
=

ωωλ  [4.265] 
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Similarly, the expression of λ23d(x) is: 

[ ] [ ]FF
F

23
t

1i
f23fd23 ii

)x( λ=λ= 
=

ωωλ  [4.266] 

4.4.4.2.3. System of equations to be solved 

The system of equations to be solved is obtained by replacing in equation [4.262] 
the vector potential and the support fields by their discrete form and by applying the 
Ritz–Galerkin method. Then, considering as the weighting function the Ar edge 
functions ωaj belonging to W1

Γj(Ωd), we have: 
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 [4.267] 

Then, using the same approach as in section 4.4.3.2.3, we obtain the following 
expression: 

[ ] [ ][ ] [ ] [ ]
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It can be easily found that the elementary term of the matrix 



 −σ 1
MFF  is written 

as: 

τσ= Ω
−σ−

d.M
d ji

1

ji
ff

1
ff ωω  [4.269] 

Posing: 
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r r r r

1 1
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 [4.270] 



268     Finite Element Method to Model Electromagnetic Systems in Low Frequency 

The matrix equation to be solved can then be written as follows: 

[ ] 



=



 −− σσ 1

rr

1

rr
FTS AAAA  [4.271] 

The solution to the matrix equation given in equation [4.271] allows us to obtain 
the circulations of the vector potential on the edges of the mesh when the source 
terms are the currents I1 and I2 imposed on the boundaries Γe1 and Γe2. To obtain the 
expression of the vector potential Td(x) at any point of the domain Ωd, we can use 
equation [4.264].  

4.4.4.2.4. Imposed electromotive forces 

In section 3.4.2.2, we considered the case in which source terms are the 
electromotive forces e13 and e23 or a combination of an electromotive force and a 
current. Under these conditions, to obtain a full system, we need to add equation 
[3.205] and/or, as applicable, equation [3.206]. In order to integrate them into 
system [4.270], they must be discretized. As an example, let us consider equation 
[3.205]. Following the same process as the one that led to expression [4.239] in 
electrostatics, we obtain, after development:
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The elementary terms of the matrix 



 −σ 1
MFF  are given by equation [4.269]. The 

discretization of equation [3.308] can also be deduced very easily:
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 [4.273] 

Using the same approach as in section 4.4.3.2.4, in order to build a full equation 
system, we introduce the following notations: 
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where 



 −σ 1

r13C A  and 



 −σ 1

r23C A  denote vectors of dimension Ar and 
1

13
B

−σ
λ , 

1

23
B

−σ
λ  and 

1
H

−σ  are scalars. 

Gathering equations [4.268], [4.272] and [4.273] and relying on the notations 
introduced in equations [4.269] and [4.274], we obtain the following system to be 
solved: 
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 [4.275]

 

It should be noted that the matrix of this matrix equation is symmetric. The 

unknowns are the vector 





r
TA  of the circulations of the vector potential and the 

currents I1 and I2. If the source terms are, for example, the electromotive force e13 
and the current I2, the system of equations to be solved can be readily obtained from 
system [4.275]. 

4.4.5. Magnetostatics 

In the case of magnetostatic problems, the approach used for introducing the 
finite element method relies on the formulation of the equation in sections 3.5.2.5 
and 3.5.3.5. This is related to the problem presented in Figure 3.20. The domain Ω 
contains two source terms, a permanent magnet and an inductor. As for the 
boundary Γ, it is composed of two gates Γh1 and Γh2 and a wall Γb. A magnetomotive 
force fm between the gates Γh1 and Γh2 or the magnetic flux φ through these gates can 
be imposed.  
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In section 4.2.4, we have developed the weak forms of the ϕ and A potential 
formulations. In this section, we use the finite element method for solving these 
weak forms.  

The domain Ω is discretized using a mesh M composed of N elements, A edges, 
F facets and V volumes. It will then be denoted by Ωd. 

4.4.5.1. Magnetic scalar potential ϕ formulation 

As a first step in the scalar potential formulation, we will study the case in which 
the source terms are a magnetomotive force fm, a current intensity I in the inductor 
and a permanent magnet. The second step will be to replace, on the boundaries Γh1 
and Γh2, the boundary condition by imposing the magnetic flux φ. 

However, the first step is to discretize the magnetic scalar potential ϕ. In the 
continuous domain, it belongs to the function space HΓh1∪Γh2(grad, Ω) (see equation 
[4.35]). Consequently, in the discrete domain (see Table 4.18), the scalar potential, 
denoted by ϕd(x), belongs to W0

Γh1∪Γh2(Ωd). It is written in the form of equation 
[4.85] or [4.87]. Similar to the approach in sections 4.4.3.1 and 4.4.4.1, we define 
the number of nodal values, unknowns of the problem, denoted by Nr, and then we 
write the scalar potential in a discrete form.  

The boundaries Γh1 and Γh2 are equipotential surfaces on which the magnetic 
scalar potential is imposed to zero. Considering now the mesh M, we denote by N1 
and N2 the number of nodes belonging to boundaries Γh1 and Γh2, respectively. 
Consequently, to impose the boundary conditions, we fix at zero (see section 4.3.5.1) 
the values ϕi of potential at the nodes located on Γh1 and Γh2. It should be recalled 
that this makes it possible to engage the gauge condition. The number of unknown 
nodal values of the problem, denoted by Nr, is then written as:  

)( 21r NNNN +−=  [4.276] 

Let us now consider a numbering of nodes so that those belonging to the 
boundaries Γh1 and Γh2 have the highest indices. In fact, the nodes whose index is 
higher than Nr are located on the boundaries Γh1 and Γh2. Under these conditions, the 
expression ϕd(x) of the magnetic scalar potential is written as: 
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=
 [4.277] 
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4.4.5.1.1. Imposed source terms: fm, I, Hc  

When the source terms are fm, I and the coercive field Hc of the permanent 
magnet, the local form of the equation to be solved is given by equation [3.265] with 
ϕ∈HΓh1∪ Γh2(grad,Ω). Applying the weighted residual method leads to equation 
[4.39], which is recalled below: 

h1 h 2

m s I c( . )d ( I ). d

with H ( , )
Ω Ω

Γ ∪Γ

μ ϕ ψ τ = μ + μ − μ ψ τ

ψ ∈ Ω
 grad grad β χ H grad

grad

f
 [4.278] 

To solve this equation, we have to discretize, besides the scalar potential ϕ, the 
support field βs and the associated potential χI. On the other hand, the coercive field 
Hc is a special case as, unlike βs and χI, its distribution on the domain Ωd is an input 
of the problem and does not require any specific construction. 

NOTE.– As already seen in section 3.5.2.4, the coercive field Hc features 
discontinuities of its normal and tangential components; therefore, it is not possible 
to exactly approximate this field in the space of facet or edge elements. However, 
the distribution of permanent magnets and the direction of their magnetization, given 
by Hc or Br, are perfectly known. The coercive field is therefore a vector function 
depending on the position and that is zero outside of permanent magnets.  

The support field βs belongs to HΓh1∪Γh2(curl0, Ω) (see equation [3.12]). It is 
therefore discretized in the space of edge elements W1

Γh1∪Γh2 (Ωd). For its 
construction, we can use the method proposed in section 4.3.7.1 (see equation 
[4.182]). This makes it possible to write βsd(x) as follows: 

[ ] [ ]AA
A

s
t

s
1i

asd ii
)x( β=β= 

=
ωωβ  [4.279] 

Concerning χI, it should be recalled that it is the potential associated with the 
support field λI that represents the current density in the inductor located inside the 
domain (see equations [3.236] and [3.237]). As shown in section 3.5.2.3, λI and χI 
are built on the entire domain, thus avoiding the problem of connexity related to the 
inductor geometry. Then, we have λI ∈ H0(div0, Ω) and χI Î H0(curl, Ω). In the 
discrete domain (see Table 4.18), these two fields belong to the function spaces 
W2

0(Ωd) and W1
0(Ωd), respectively. These fields are linked by the curl operator, and 

χI is generally deduced from λI. For the construction of the discrete form λId(x), we 
use the process proposed in section 4.3.6.3 referring to case 3. Then, we deduce  
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χId(x), based on the method proposed in section 4.3.7.2 (see equation [4.185]). This 
allows us to write χId(x) as follows: 

[ ] [ ]AA
A

I
t

1i
IaId ii

)x( χ=χ= 
=

ωωχ  [4.280] 

where [χIA] represents the vector of the circulations of the associated potential χId(x) 
on the edges of the mesh. 

To build the matrix equation to be solved, based on the weak form, recalled in 
equation [4.278], we use the same approach as the one developed in electrostatics in 
section 4.4.3.1.3. In equation [4.278], the scalar potential ϕ and the fields βs and χI 
are replaced by their given expressions, respectively, by equations [4.277], [4.279] 
and [4.280], and applying the Ritz–Galerkin method, we can write the equation as 
follows: 
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The fact that Hc is discontinuous on certain surfaces of permanent magnets (see 
section 3.5.2.4) does not pose any problems, since the difficulty related to the term 
divHc was removed using the weighted residual method (see section 4.2.4.1).  

Continuing the developments, similar to section 4.4.3.1.3, the above equation 
can be written as follows: 
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In this expression, the elementary term of the matrix 



 μ

AAM  is written as: 

τμ= Ω d.M
d jiji

aa
µ

aa ωω  [4.283] 

As for the elementary term of the vector 



 μ

AcH , corresponding to the source term 

of the permanent magnet, its expression is: 
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d ii
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Consider now:
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Taking the above notations into account, equation [4.282] to be solved can be 
written as follows: 

[ ] [ ] [ ]μμ =ϕ
rrrr

FS NNNN  [4.286] 

In this system of equations, the unknowns are the nodal values of the scalar 
potential represented by the vector [ϕN r]. Neglecting the effects of the saturation of 
magnetic materials (see equation [1.26]), the system to be solved is linear. 

4.4.5.1.2. Imposed source terms φ, I, Hc 

As already shown in section 3.5.2.5.2, if the magnetic flux is imposed, the 
magnetomotive force becomes an unknown of the problem.  

Then, we have to add equation [3.268], which is recalled below: 

Ω τμ−μ+μ+ϕμ−=φ d)..I..( csIsssms Hβχβββgradβ f  [4.287] 

The approach used for discretization is similar to that in section 4.4.5.1.2, with ϕ, 
βs and χI being replaced by their discrete form.  
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It can then be shown that equation [4.287] is written as follows:
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After development and using the matrix [4.283] and the vector [4.284], we can 
write the expression of φ in the following form: 
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The system of equations to be solved is built by gathering relations [4.282] and 
[4.289]. Nevertheless, to simplify the expressions, we introduce the following 
notations: 
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where 



 μ

β r
C N  denotes a vector of dimension Nr and 



 μ

rcI-HF N  denotes a vector of 

dimension Nr, representing the contributions of the current in the inductor and of the 
permanent magnet. Moreover, μ

βB  is a scalar term representing a permeance and 
μ
−φ

cHI  is a scalar representing the flux created on the boundaries Γh1 and Γh2 by the 

current in the inductor and the permanent magnet. 
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Gathering equations [4.286] and [4.289] and relying on the notations introduced 
in equation [4.290], the system to be solved is written as: 

r r r
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It can be noted that the matrix of this system of equations is symmetric. The 

unknowns are the vector 



ϕ

rN  of nodal values of the scalar potential and the 

magnetomotive force fm. If the characteristic of the magnetic materials is linear (see 
equation [1.26]), the solution to the problem results from solving the system of 
equations [4.291].  

4.4.5.1.3. Taking nonlinearity into account 

If the nonlinearity of ferromagnetic materials is taken into account (see  
section 1.2.2.4, equation [1.25]), the magnetic permeability depends on H and 

therefore on the unknowns of the problem, namely the vector 



ϕ

rN  of the node 

values of the scalar potential and fm. Under these conditions, considering  
the behavior law of magnetic materials, the systems of equations [4.286] and [4.291] 
are nonlinear. Numerical methods are available for solving this type of problem, 
such as the substitution method or the Newton–Raphson method (Dhatt et al. 2012). 

4.4.5.2. Vector potential A formulation 

For the vector potential formulation, the studied problem is the same (see  
Figure 3.20). As for writing the equation, it is presented in section 3.5.3.5. The first 
step is to consider as source terms the magnetic flux φ imposed on the boundaries 
Γh1 and Γh2, the inductor through which flows a current I and the permanent magnet 
represented by the remanent induction Br. The second step is to replace the magnetic 
flux by a magnetomotive force fm. 

Irrespective of the source terms used, we have to discretize the vector potential 
A. As already shown (see equation [3.275]), we have A ∈ HΓb(curl, Ω). Under these 
conditions, as shown in Table 4.18, in the discrete domain, the vector potential 
belongs to the space of edge elements, i.e. Ad(x) ∈ W1

Γb(Ωd). It is then written in the 
form of equations [4.92] and [4.93]. However, to express the discrete form Ad(x), we 
have to take into account the number of unknowns of the problem considering the 
boundary conditions and the gauge condition.  
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In order to gauge the vector potential, by integrating the boundary conditions, we 
use the process developed in section 4.3.6.2, which relies on an edge tree. With this 
process, to take into account the boundary conditions, we start the construction of 
the tree by the edges of the boundary Γb, and then extend it to the set of edges of the 
mesh. The circulations of the vector potential A on the N – 1 edges of the tree are 
then set to zero. In what follows, we denote by Ab the number of edges belonging to 
the boundary Γb and by Aba the number of edges of the boundary Γb also belonging 
to the edge tree. To impose the boundary condition on the boundary Γb, besides the 
Aba edges of the tree, zero must be imposed on the Ab – Aba remaining edges. Then, 
the number of unknown circulations of the vector potential A on the edges denoted 
by Ar satisfies: 

)()1( babr AA- NAA −−−=  [4.292] 

The edges are renumbered so that those on which the circulation was imposed to 
zero have an index higher than Ar. Under these conditions, the expression Ad(x) is 
written as: 
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 [4.293] 

4.4.5.2.1. Imposed source terms φ, I, Br  

As already seen in section 3.5.3.5.1, we must solve equation [3.298]. Applying 
the weighted residual method (see section 4.2.4.2.1), the weak form is given by 
equation [4.44] recalled below: 

b

1 1
r I. d ( ). I . d
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− −
φ

Ω Ω Ω

Γ

μ τ = − μ φ + + τ

∈ Ω
  curlA curlΨ λ B curlΨ λ Ψ

Ψ curl
 [4.294] 

Besides the vector potential A, the solution to this equation requires the 
discretization of the support fields λφ and λI. Concerning the term Br, it is considered 
as perfectly known and its discretization is not needed (on this matter, please see the 
note in section 4.4.5.1.1).  

The support fields λφ and λI (see equations [3.273] and [3.289]) belong to the 
function spaces ΗΓb(div0, Ω) and Η0(div0, Ω), respectively. As shown in Table 4.18, 
they are discretized with facet elements with λφd(x) Î W2

Γb(Ωd) and 
λId(x) Î W2

0(Ωd).  
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In order to determine the support field λφd(x), we directly use the process 
presented in section 4.3.7.2, which yields the expression: 

[ ] [ ]FF
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φ
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ffd ii

)x( ωωλ  [4.295] 

Concerning the support field λId(x), its construction is introduced in  
section 4.4.5.1.1 and its expression is: 
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Knowing the discrete form of the various terms used in the weak form [4.294], 
we will now build the matrix equation to be solved.  

For this purpose, after having introduced the discrete forms [4.293], [4.295] and 
[4.296], we apply the Ritz–Galerkin formula, which allows us to write the equation 
as follows: 
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This equation, which must be verified for the set of Ar weighting functions ωaj, 
leads to a matrix equation.  

Using the same approach as that proposed in section 4.4.3.2.3, we can write the 
matrix form: 
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In this expression, the elementary term of the matrix 



 −μ 1
MFF  is written as: 
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As for the elementary term of the matrix 
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Now, we pose:
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The system of equations to be solved can then be written as follows: 
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In this system of equations, the unknowns are the circulations of the magnetic 

vector potential along the edges of the mesh contained in the vector 





r
AA . If the 

saturation of magnetic materials is considered negligible (see equation [1.26]), the 
system to be solved is linear. 

NOTE.– The system of equations [4.303] was built by gauging the vector potential. A 
similar approach can be used to build a system of equations in which the vector  
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potential is not gauged. The number of solutions of the resulting system of equations 
is then infinite. It has been shown that iterative methods like the conjugate gradient 
method converge and lead to a unique solution in field (Ren 1996). Indeed, during 
the iterative solution process, the divergence of the potential is implicitly fixed in the 
weak sense and automatically imposes the gauge condition. 

4.4.5.2.2. Imposed source terms fm, I, Br  

The objective is to impose the magnetomotive force fm rather than the magnetic 
flux between the boundaries Γh1 and Γh2. As shown in section 4.2.4.2.2, the weak 
formulation [4.44] is maintained, but the flux φ becomes an unknown.  

To obtain a full equation system, we then add equation [3.300], which is recalled 
as follows: 
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To discretize this equation, the vector potential A and the support field λφ are 
replaced by their discrete form, namely equations [4.293] and [4.295]. Then, we 
obtain: 
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Using the properties of the discrete curl operator [4.124] and introducing the 

matrix 
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
 −μ 1
MFF , whose elementary term is given in equation [4.299], as well as the 

vector 
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rB F , having as an elementary term equation [4.301], we obtain: 
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In order to build the matrix equation to be solved, we will gather relations 
[4.298] and [4.306]. To simplify the expression, we first introduce the following 
notations: 
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In this expression, 



 −μ

λ
1

r
C A  denotes a vector of dimension Ar. Similarly, 



 −μ 1

rrI-BF A  

is a vector, of the same dimension Ar, representing the contribution of the current in 

the inductor and that of the permanent magnet. On the other hand, the term 
1

B
−μ

λ  is a 

scalar term corresponding to a reluctance. Finally, the term 
1

rB
−μf  is a scalar 

representing the magnetomotive force created between the boundaries Γh1 and Γh2 by 
the permanent magnet. 

Gathering equations [4.298] and [4.306] and relying on the notations introduced 
in equation [4.307], the matrix equation to be solved is written as: 
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This system of equations allows us to solve a magnetostatics problem with the 
vector potential formulation when the source terms are a magnetomotive force 
imposed on the boundary with an inductor and a permanent magnet inside the 
domain. This is a linear system if the effects of the saturation of magnetic materials 
are considered negligible. 

4.4.5.2.3. Consideration of the magnetic nonlinearity 

As noted in section 1.2.2.4, equation [1.25], magnetic permeability could be 
considered as a nonlinear function of the field H or the magnetic flux density B. In 
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this case, the elementary terms of matrices 



 −μ 1
MFF  (see equation [4.299]) depend on 

B and therefore on the unknowns of the problem, namely on the vector 





r
AA  of the 

circulations of the vector potential. Then, taking into account the behavior law of 
magnetic materials, we have to solve a system of nonlinear equations. As indicated 
in section 4.4.5.2.3, methods are available to solve this type of problem, for 
example, the substitution method or the Newton–Raphson method (Dhatt et al. 
2012).  

4.4.6. Magnetodynamics 

For magnetodynamics, the focus is on the study of the example presented in 
Figure 3.23. The domain is denoted by Ω and contains a conductor Ωc with two 
gates Γe1 and Γe2 on which an electromotive force “e” or the current density flux “I”, 
two quantities varying with time, can be imposed. One part of the boundary of the 
conductor is in contact with a subdomain Ω0 whose boundary with the external 
environment, denoted by Γb, is a wall for the magnetic flux density. The interface 
between Ωc and Ω0 (denoted by Γj) is a wall for the current density.  

For this example, we will develop the finite element method in the case of 
electric (A-V) and magnetic (T-ϕ) formulations, introduced in section 3.6.1. To this 
end, we will rely on the weak forms developed in section 4.2.5.1. 

In this part, we consider that the magnetic materials have linear characteristics 
(see equation [1.25]). In the nonlinear case, a substitution or Newton–Raphson 
iterative method can be introduced after time discretization (Dhatt et al. 2012). We 
build a mesh M on the domain Ω, denoted by Ωd in what follows. This mesh is 
composed of N nodes, A edges, F facets and V volumes. We consider the mesh Mc 
of the conductor (domain Ωcd), composed of Nc nodes, Ac edges, Fc facets and Vc 
volumes. The mesh Mc is a “sub-mesh” of the mesh M. In what follows, we will 
develop the potential formulations for the case in which electric quantities are 
imposed. If magnetic quantities are imposed (see Figure 3.24), the system of 
equations results from developments similar to those that will be presented.  

4.4.6.1. Electric A-V formulation 

The first step in obtaining this formulation is to impose the electromotive force 
that appears as a natural source term (see section 3.6.1.1.1). The second step is to 
study the case in which current intensity I is imposed. This requires the introduction 
of an additional equation (see section 3.6.1.1.2). Before this, we have to discretize 
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the potentials A and ϕ by taking into account the boundary conditions and the gauge 
conditions. 

The vector potential (see equation [3.316]) belongs to the space H0(curl, Ω). As 
shown in section 4.4.5.2 and in Table 4.18, it is discretized in the space of edge 
elements, i.e. W1

0(Ωd). To impose the gauge condition, we build an edge tree (see 
sections 4.3.6.2 and 4.4.5.2). The construction of a tree starts by the edges belonging 
to the boundary Γ of the domain. For the boundary conditions, we impose a zero 
circulation on all the edges located on the boundary Γ. Under these conditions, if we 
denote by Ab the set of edges belonging to Γ, the number of unknown circulations Ar 
of the discretized vector potential Ad(x) is written based on equation [4.292] in the 
following form: 

)()1( babr AA- NAA −−−=  [4.309] 

where Aba represents the number of edges on the boundary Γ belonging to the edge 
tree. The edges are renumbered so that those belonging to the tree and to the 
boundary have an index number higher than Ar. In this case, the expression of the 
vector potential Ad(x) is written in the form [4.293], which is recalled below. 

[ ] [ ]
rri

r

i
AA)x( t

a
1i

ad AA

A
ωωA == 

=
 [4.310] 

The scalar potential V belongs (see equation [3.319]) to the space 
HΓe1∪Γe2(grad, Ωc). It should be recalled that it is calculated only in the conducting 
domain Ωc. In the discrete domain, it belongs to the space of nodal elements (see 
section 4.4.4.1.1 and Table 4.18), i.e. Vd(x) ∈ W0

Γe1∪Γe2(Ωcd). To impose the gauge 
condition and the boundary conditions, we proceed as in electrokinetics, setting to 
zero the node values “Vi” of the potential on the boundary Γe1∪Γe2 (see section 
4.2.4.1.1). Let us denote by N1c and N2c the number of nodes belonging to the 
boundaries Γe1 and Γe2, respectively. Under these conditions, the number of 
unknown nodal values of the discrete scalar potential Vd(x) is written as: 

)( c2c1crc NNNN +−=  [4.311] 

All the nodes Nc of the mesh of the conductor are then renumbered so that those 
located on the boundaries Γe1 and Γe2 have an index higher than Nrc. The scalar 
potential Vd(x) can be written in the form of equation [4.244] as follows: 

[ ] [ ]
rcrc

rc

i
VV)x(V t

1i
ind NN

N
ω=ω= 

=
 [4.312] 



Formulations in the Discrete Domain     283 

4.4.6.1.1. Imposed electromotive force 

For the example in Figure 3.23, when the source term is the electromotive force, 
the weak form of the equations to be solved is given by equations [4.49] and [4.53] 
that are recalled as follows: 

1
e( ( . ) ( V e ). )d 0

t
−

Ω

∂μ + σ + − τ =
∂
AcurlA curlΨ grad β Ψ  [4.313] 

0d)).e.
t

(V.( e
c

=τψ−
∂
∂

σ+ψσΩ gradβgrad ψAgradgrad  [4.314] 

with Ψ Î H0(curl, Ω) and ψ Î HΓe1∪Γe2 (grad, Ωc) (see Table 4.7).  

In order to solve this system of equations, besides the potentials A and V, we 
have to discretize the support field βe. Similar to the approach for electrostatics and 
electrokinetics, this field can be built from the associated potential αe. For the 
studied example, the properties of these two fields (βe and αe) are defined in 
equation [3.313]. The support field αe belongs to the function space H(grad, Ωc) 
with two equipotential surfaces Γe1 and Γe2. It is therefore discretized in the space of 
nodal elements. It belongs to W0(Ωcd) and is denoted by αed(x). As for βe, it belongs 
to HΓe1∪Γe2 (grad, Ωc); it is discretized in the space of edge elements W1

Γe1∪Γe2 (Ωcd) 
and is denoted by βed(x). It should be recalled that the fields βe and αe are uniquely 
defined on the conducting domain Ωcd. Indeed, in equations [4.303] and [4.304], the 
contribution of the support field βe, on the non-conducting domain Ωd – Ωcd, is zero 
because the conductivity σ = 0 (see equation [3.307]). 

For the construction of βed(x), we use the same procedure as that used in  
section 4.4.4.1.2 and therefore we first determine αed(x). To do this, we set to 1 the 
values “αei” associated with the nodes located on the boundary Γe1 and to zero the 
other nodes. Based on equation [4.180], its expression can be written as follows: 

[ ] [ ]
cci

c

i e
t

e
1i

ned )x()x( NN

N
αω=αω=α 

=
 [4.315] 

where Nc represents the number of nodes of mesh Mc of Ωcd. Knowing the 
associated potential αed(x), we determine the support field βed(x) by applying the 
gradient operator. In the discrete domain, we calculate the vector of the circulations  

of the support field 



β

ceA  using the expression [4.245]. Based on vector 



β

ceA , 

the field βed(x) can be written using equation [4.182]: 
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[ ] [ ]
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ωωβ  [4.316] 

It should be recalled that Ac represents the number of edges of the mesh Mc. In 
magnetodynamics, we have a system of two differential equations to solve, [4.313] 
and [4.314]. To build the discrete form of our problem, let us first consider equation 
[4.313]. In this expression, the vector and scalar potentials, as well as the support 
field βe, are replaced by their discretized form (Ad(x), Vd(x) and βed(x)) and the 
Ritz–Galerkin method is applied. Then, we obtain: 
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The terms related to Vd(x) and βed(x) are only defined on Ωcd, as shown by 
equations [4.312] and [4.316]. However, since the conductivity σ is zero on Ωd – Ωcd 
(see equation [3.307]), the last two terms of equation [4.317] are perfectly defined 
and can be integrated on Ωd. As this expression must be verified by the set of Ar 
weighting functions ωaj, it can be written in the form of a matrix system: 
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Using the properties of the curl [4.124] and gradient [4.110] discrete operators, 
we have:  
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The incidence matrices 





rFAR  and 





rcANG  as well as the vectors 





r
AA , 







rc
VN

 and 



β

ceA  are vectors with constant terms, therefore independent of the 

position in space. The equation can then be rewritten as follows: 
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The elementary term of the matrix 



 −μ 1
MFF  is written as: 
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d.M
d ji
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ff ωω  [4.321] 

Concerning the matrices 



 σ

rr
M AA  and 



 σ

AAr
M , their elementary terms have the 

following form: 

τσ= Ω
σ d.M

d jiji
aaaa ωω  [4.322] 

However, as defined in section 3.6 (see equation [3.307]), the conductivity σ is 
zero in Ωd – Ωcd. Consequently, the integrations corresponding to the 2nd, 3rd and 
4th terms of equation [4.319] can be limited to domain Ωcd. Under these conditions, 

the elementary terms of matrices 



 σ

rr
M AA  and 



 σ

AAr
M  given by equation [4.322] 

are written as: 

τσ= Ω
σ d.M

cd jiji
aaaa ωω  [4.323] 

It can be noted that, if an edge i or j is located outside the domain Ωcd, then the 
term Mσ

aiaj is zero, since the function ωai or ωaj is zero on Ωcd. 

Let us now consider equation [4.314], which should also be solved. To do this, 
we can use a similar approach to the one used for the discretization of relation 
[4.313]. First, we introduce the discrete forms of the scalar potential, vector potential  
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and support field βe, and then we apply the Ritz–Galerkin method. Then, we can 
write as: 
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Based on this expression, the approach used for equation [4.317] readily leads to 
the following relation: 
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For this expression, the elementary terms of matrices 



 σ

cc
M AA  and 



 σ

rc
M AA  are 

given by expression [4.323].  

Gathering the matrix forms [4.320] and [4.325], we obtain the matrix equation to 
be solved as follows: 
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In order to take into account the time derivative of the unknown vectors 





r
AA  

and 





r
VN , two possibilities can be considered. The objective is to find the solution 

in the steady state when the source term is periodic. In this case, when the magnetic 
behavior laws are linear, the complex notation can be introduced (Alonso Rodriguez 
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and Valli 2010) leading to a complex matrix equation. Conversely, if an arbitrary 
state is considered or if, in the presence of a sinusoidal source, we want to consider a 
transient state, then the differential operator d/dt should be discretized using a time 
discretization scheme like, for example, Euler or Crank–Nicholson methods. 

NOTE.– Similar to the magnetostatics case, we can take into account a nonlinear 
magnetic behavior law. This leads to a matrix 



 −μ 1
MFF  that depends on the solution. 

The system of equations to be solved is then nonlinear, and fixed point iteration 
methods or the Newton–Raphson method (Dhatt et al. 2012) should then be 
implemented. On the other hand, precautions should be taken for the time 
discretization. 

4.4.6.1.2. Imposed current intensity 

When the current intensity is imposed through the boundaries Γe1 and Γe2, the 
electromotive force becomes an unknown of the problem. As shown in  
section 3.6.1.1.2, an additional equation is then required. In what follows, we use 
equation [3.339], which is recalled below: 

 Ω τ++
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d)e)V
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((.I ee βgradAβ  [4.327] 

Then, we need to consider the discrete forms of the potentials A and V as well as 
those of the support field βe. Using expressions [4.310], [4.312] and [4.316], we 
obtain: 
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After rearrangement, and using the expression of the elementary term [4.323], 
this equation is written as:
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whose elementary terms of matrices 



 σ

rc
M AA  and 



 σ

cc
M AA  are given by equation 

[4.323].  

In conclusion, when the current I through the boundaries Γe1 and Γe2 is the source 
term, we have to solve the matrix equation composed of expressions [4.326] and 
[4.329]. The unknowns are then the circulations of the magnetic vector potential on 
the edges of the mesh, the nodal values of the electric scalar potential in the 
conductor and the electromotive force imposed between the boundaries Γe1 and Γe2.  

4.4.6.2. Magnetic formulation T-ϕ 

The studied example is still the one in Figure 3.23, having the electromotive 
force e(t) and the current I(t) as source terms. For this configuration, the magnetic 
formulation T-ϕ is developed in section 3.6.1.2. As shown in this section, when the 
current intensity I is imposed, the source term appears naturally in the developments. 
On the other hand, if the source term is the electromotive force, then an additional 
equation is required. The first to be studied is the case in which a current I is 
imposed through the boundaries Γe1 and Γe2. Then, the electromotive force “e” will 
be considered a source term. 

Before writing the equation with the finite element method, we will discretize the 
magnetic scalar potential ϕ and the electric vector potential T. 

For the studied example, the scalar potential ϕ (see equation [3.354]) belongs to 
the function space H(grad, Ω). In the discrete domain, it belongs to the space of 
nodal elements (see Table 4.18), i.e. ϕd(x) ∈ W0(Ωd). To impose the gauge 
condition, we then set the potential to zero in one node of the mesh. In our case, the 
node with the highest index will be chosen. The number of unknown nodal values of 
the potential, denoted by Nr, is then equal to N – 1. The discrete form of the 
magnetic scalar potential ϕd(x) can be written as follows: 

[ ] [ ]
rr

r
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1i
ind )x( NN
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=
 [4.330] 

Concerning the vector potential T (see equation [3.347]), in the continuous 
domain, it belongs to the function space H (curl, Ω). It is therefore decomposed in 
the space of edge elements. Moreover, this potential is zero on Ω − Ωc. Finally, the 
focus is on the restriction of T in Ωc (see equation [3.348]). In conclusion, the vector 
potential Td(x) ∈ W1

Γj(Ωcd). Boundary conditions should therefore be imposed on 
the boundary Γj, which represents the interface between the conductor and the 
domain Ω0. 
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To gauge the discretized form Td(x) and impose the boundary condition on Γj, 
we proceed similarly to section 4.4.4.2.1. We build a tree by considering first the 
edges located on the boundary Γj, and then those located inside the domain Ωcd. 
Then, we denote by Aj the edges of the boundary Γj and by Aja those of Γj belonging 
to the edge tree. Finally, the circulation of Td(x) is set equal to zero on the edges 
belonging to the tree and also on the edges of boundary Γj that are not included in 
the tree. Under these conditions, the number of unknown edges Arc of the electric 
vector potential has the following expression: 

)()1( jajccrc AA- NAA −−−=  [4.331] 

The arrangement of the edges of the mesh is such that those belonging to the 
edge tree or to Γj have an index that is higher than Arc. Under these conditions, the 
expression of the discretized electric vector potential Td(x) is: 

[ ] [ ]
rcrc

rc

i
TT)x( t

i
1i

ad AA

A
ωωT == 

=
 [4.332] 

NOTE.– It can be noted that the functions ωai appearing in the expression [4.332] are 
all associated with the edges located inside Ωcd and are therefore all zero on  
Ωd – Ωcd. Since Td(x) can be extended to Ωd – Ωcd keeping it equal to zero, the 
expression is still valid on Ωd – Ωcd [4.332].  

4.4.6.2.1. Imposed current intensity 

For this formulation, when the source term is the current intensity I, the weak 
form of the equations to be solved is given by relations [4.59] and [4.62], which are 
recalled as follows: 

c

1
I

I

( ( I ).

( I ). )d 0
t

−

Ω
σ +

∂+ μ + − ϕ τ =
∂

 curlT curlχ curlΨ

T χ grad Ψ
 [4.333] 

0ψd).I( I =τϕ−+μΩ gradgradχT  [4.334] 

with Ψ Î HΓj(curl, Ωc) and ψ Î H(grad, Ω). As for the associated potential χI, as 
shown by equation [3.346], it belongs to H(curl, Ω) (see Table 4.8). 

Applying the finite element method requires the prior discretization of the 
potential χI, besides the potentials T and ϕ.  
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It should be recalled that the associated vector potential χI is defined, as shown 
by equations [3.345] and [3.346], based on the support field λI ∈ H(div0, Ω) which 
makes it possible to impose a current in the domain Ωc. Referring to Table 4.18, the 
term λI is decomposed in the space of facet elements W2(Ωd). Moreover (see relation 
[3.309]), it must verify the boundary conditions on the boundaries Γe1, Γe2 and Γj. To 
calculate this source term, namely the flux through the facets λIk (with 1 ≤ k ≤ F), we 
apply only on the domain Ωcd the method introduced in section 4.3.6.3 (see case II). 
The domain of definition is then extended to Ωd by imposing a zero flux λIk on the 
facets belonging to Ωd-Ωcd. It is then possible to write: 

[ ] [ ]
FF

F
I

t

1k
IfId kk

)x()x( λ=λ= 
=

ωωλ  [4.335] 

The source term χId(x) can then be calculated on Ωd with the method proposed in 
section 4.3.6.2. Under these conditions, χId(x) is written as: 
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A
I

t

1i
IaaId ii

)x()x( χ=χ= 
=

ωωχ  [4.336] 

To build the matrix equation to be solved, we first consider equation [4.333]. 
The potentials T,ϕ and the associated potential χI are replaced by their discrete form.  

Applying the Ritz–Galerkin method, we obtain: 
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 [4.337] 

Expression [4.337] must be verified for the Arc weighting functions ωaj; 
therefore, we can write the following system of equations: 
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 [4.338] 

Let us now use the properties of discrete operators: curl (see equation [4.124]) 
and gradient (see equation [4.110]).  

Then, we can write:  
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NOTE.– In the nonlinear case, which is not applicable for this example, magnetic 
permeability depends on the space (see equation [1.25]), as well as on the field 
magnitude. Therefore, the expression cannot be decomposed in the form: 
 ∂B / ∂t = μ∂H / ∂t = μ∂(T + I χ – gradϕ) / ∂t since μ is no longer a constant, but it 
depends explicitly on the field H and so implicitly on time. 

As the incidence matrices 





rcFAR  and 





rANG , the vectors 
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
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ϕ

rN  

and 



χ AI  are independent of space, this equation can be written in the following 

form: 
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In equation [4.340], the elementary term of the matrix 
1

M
−σ 

  FF  is written as: 
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For the matrices 
1
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  FF  and 
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  A A

, the elementary terms have the following 

form: 
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Let us now consider equation [4.333], which must also be discretized. For this, 
we introduce the discrete forms of potentials T and ϕ and of the associated potential 
χI. The Ritz–Galerkin method can be used to write: 
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 [4.343] 

It should be noted that the first term of this expression concerns the electric 
vector potential, defined on Ωcd and the Nr test functions defined on the entire 
domain.  

The same steps can be taken for the development of equation [4.337]. Since 
equation [4.343] must be verified for the Nr test functions, the first step is to obtain a 
system of Nr equations. Then, we introduce the properties of discrete vector 
operators. Finally, given that the incidence matrices and the vectors of discrete 
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quantities are independent of space, we obtain after development the following 
system of equations: 
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In this expression, the elementary terms of the matrices 



 μ
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MAA  and 



 μ

AAM  are 

given by equation [4.342], but by integration over the entire domain Ωd. Gathering 
the equations [4.340] and [4.344] then leads to the matrix equation below: 
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Here, the unknowns are the circulations of the electric vector potential, the nodal 
values of the magnetic scalar potential and also their time derivatives. 

4.4.6.2.2. Imposed electromotive force  

If an electromotive force is imposed instead of the current intensity, the matrix 
system [4.345] is unchanged, but we must add equation [3.373], which is recalled as 
follows: 
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I I

I I
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( I ). d
t
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∂+ μ − ϕ + τ
∂
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curlT curlχ λ

T grad χ χ
 [4.346] 

In order to associate this equation with the matrix equation [4.345], we must 
introduce the various discrete forms of the terms, i.e. Td(x), ϕd(x), λId(x) and χΙd(x)). 
For this purpose, we use the same process as that used in section 4.4.6.1.2. We then 
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obtain, if the magnetic permeability is linear (see note after equation [4.339]), the 
following system of equations: 
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In this expression, the elementary term of the matrix 



 −σ 1
MFF  is given by relation 

[4.341], with integration on Ωcd (see the domain of definition of σ, equation 

[3.307]). For the matrices 



 μ

rc
MAA  and 



 μ

AAM , we refer to equation [4.342], but by 

an integration over the domain Ωd. 

Under these conditions, when the electromotive force is imposed between the 
gates Γe1 and Γe2, the equations to be solved are given by the systems of equations 
[4.345] and [4.347]. The unknowns are then the circulations of T, the nodal values 
of ϕ and the current intensity I. 
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