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Preface 

This book describes the fundamentals and applications of sustainable electrical 
energy in mechanical engineering. The main objective of this book is to provide 
readers with an easy-to-understand resource for the foundations and applications 
of sustainable electrical energy. The book is among first publications to address 
these topics. Furthermore, this book aims to bridge the gap between the funda-
mental and technical aspects of industrial applications in sustainable electrical energy 
engineering. 

Recently, sustainable energy technologies have attracted considerable attention 
in advanced energy engineering. This textbook was specifically crafted to serve as 
a resource for undergraduate and graduate school students, particularly in depart-
ments other than electrical engineering, such as mechanical engineering departments 
at universities. The aim is to provide foundational knowledge on sustainable elec-
trical energy and energy conversion principles. The topics covered in this work are 
those the author found valuable for pursuing research in mechanical engineering and 
its connection to sustainable electrical engineering. This book does not introduce 
the specifics of renewable energy systems such as solar battery, wind turbine, and 
biomass fuels but is intended to equip readers with the basic skills to read technical 
books that deal with such topics. The content is designed to span a 15-week semester 
(90 min per week) and is organized into nine chapters. Specifically, it is recommended 
that Chap. 1 be covered over two weeks, Chaps. 2–6 over five weeks, Chap. 7 over 
two weeks, and Chaps. 8 and 9 over six weeks. Note that Chaps. 8 and 9 treat 
advanced application topics. Additionally, the chapters include comprehensive exer-
cise problems. These exercises can be utilized either as in-class integrative activities 
or as weekly homework assignments, aimed at enhancing students’ problem-solving 
skills. Upon request, sample answers will be sent to instructors who have adopted 
this book as a textbook. 

The author is affiliated with the Department of Mechanical Engineering at the 
university and has been involved in mentoring students and professionals in the fields 
of environmental and energy engineering for many years. The author has been partic-
ularly dedicated to educational research at the intersection of electrical and mechan-
ical engineering with a focus on plasma processing and electrostatic precipitation. A
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significant gap in the electrical engineering knowledge of students undertaking final-
year projects has been observed. This course was specifically designed to address this 
gap, providing insights into topics such as electrical circuits and sustainable energy 
conversion—areas often overlooked in conventional electrical engineering curricula. 
The course covers techniques related to energy principles and circuit matching. This 
book is intended to serve as both a foundational guide and bridge to advanced appli-
cations for graduate students and engineers exploring plasma circuitry. Additionally, 
it includes a wide range of specific problems with detailed solutions. The content 
has been carefully curated to emphasize the fundamental aspects of sustainable 
electrical engineering, drawing on the author’s extensive research experiences and 
collaborative industrial projects 

The contents of this book are summarized as follows: 
Chapter 1 outlines the basic laws of electrical circuits, Maxwell’s equations, 

and the law of charge conservation. Kirchhoff’s current law, Ohm’s Law, DC 
circuits, power supply, DC and AC circuits, and transient phenomena calcula-
tions are described. Chapter 2 discusses the fundamentals of AC electrical circuits 
(1); complex notation, AC circuits, and mechanical-electrical system analogy are 
covered. Chapter 3 discusses the fundamentals of AC electrical circuits (2); resonant 
circuits and various AC circuits are covered. Chapter 4 covers impedance matching 
and energy conversion (1); power calculation and impedance matching apparatus 
are explained. Chapter 5 covers impedance matching and energy conversion (2); 
Smith chart and matching circuit design method are explained. Chapter 6 covers 
impedance matching and energy conversion (3); example problems on Smith chart, 
transformers, and induction motors are mainly covered. Chapter 7 discusses the 
energy principle and approximated solution of energy systems. The principles of 
least action, variational theory, energy principles, and approximate solutions using 
variational methods in electrical and mechanical engineering are discussed. Chapter 8 
addresses the fundamentals of continuum thermal-energy fluid science and electrical 
circuits. The basic equation system for plasma–fluid heat transfer, characteristics 
of plasma–fluid heat transfer, and examples of the analysis of the basic equation 
system related with electrical circuits are described. Chapter 9 discusses gas turbine 
combined-energy systems and renewable energy technologies. Especially, plasma 
technologies for renewable energy are discussed. All chapters compile comprehen-
sive exercise problems. Appendix covers the background of this book’s descriptions 
and formulas on vectors and tensors. 

The unique elements of this book can be expressed as follows: 

1. Covers… Principles, fundamentals, apparatus, methods, and industry application 
examples of electrical sustainable energy technologies are covered. 

2. Explains… Principles and methods of sustainable electrical energy technologies 
are explained in detail. In particular, basic knowledge on how to utilize electrically 
sustainable energy can be obtained. 

3. Demonstrates… Successful industrial application technologies for electrical 
sustainable energy are demonstrated.
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4. Introduces… Principles and methods of electrical sustainable energy technolo-
gies are introduced for beginner engineers and graduate students. 

5. Readers... This book should be read by engineering students and all technicians 
working on electrical sustainable energy. 

Although phenomena in electrical circuits can be fundamentally explained by the 
principles of electromagnetism, standard textbooks often do not treat the derivation 
of circuit laws based on these principles. Considering the possibility that electromag-
netism courses may not be extensively covered in mechanical engineering curricula, 
this book includes explanations derived from the laws of electromagnetism as foun-
dational knowledge of electrical circuits. In writing this textbook, numerous domestic 
and international references were consulted and gratitude is expressed. We hope that 
this textbook will serve as a foundational resource for a broad spectrum of mechan-
ical engineers, enabling them to understand and apply their knowledge of electrical 
and energy engineering to their professional endeavors. 

Our research group has more than 20 years of research projects on environmental 
plasma and electrical energy engineering for many companies toward the develop-
ment of new machines. These projects provided us with a wide range of exciting expe-
riences. We aim to share our fascination with this technology in this book, enabling 
scientists and engineers to successfully engage with it. We believe that our research 
work should be documented and that it is vital that these technologies are passed on 
to future generations. Most of these projects were conducted at Osaka Metropolitan 
University (formerly Osaka Prefecture University) in Sakai City, Japan. Sakai City 
has prospered maritime trade for centuries. In the 16th century, it was called “Ori-
ental Venice” or “Saccai” by Europeans, and it has been a prosperous international 
trade port and home to many industries. Sakai City is an important industrial city 
in Japan with a large industrial zone in the coastal area. Sakai has a long tradition 
of using metals. I would like to publish this book on sustainable electrical energy 
engineering from Osaka Metropolitan University, which is located in this traditional 
Japanese city. This book covers the recent developments in energy technologies 
and their fundamental aspects. Selected applications of sustainable electrical energy 
technologies are also described. Although some of these technologies have reached 
the commercial stage, others are still in the early stages of development. This book 
provides technical details of sustainable electrical energy engineering. 

The author first wrote each chapter separately based on materials that had been 
published previously as scientific papers, reviews, and book chapters, and then knit 
the contents together to maintain comprehensive unity. I am grateful to many individ-
uals who assisted in the preparation of this book. We are grateful to Ms. Ayako Yoden 
for meticulously typing handwritten manuscripts. Furthermore, it has been a plea-
sure to work with the editors of this book, Mr. Smith Ahram Chae and Ms. Vinothini 
Elango, in Springer Nature. Collaboration with colleagues over the years has been 
enriched and enjoyable. I discussed the future prospects of various electrical energy 
plasma treatment systems with Dr. Tomoyuki Kuroki and Dr. Haruhiko Yamasaki 
of Osaka Metropolitan University, Prof. Toshiaki Yamamoto and Dr. Hidekatsu 
Fujishima of Osaka Prefecture University. Research studies performed with students
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over 20 years of age at Osaka Prefecture University and Osaka Metropolitan Univer-
sity have been enriching and enjoyable, and most of these are credited in this book 
through citations of their published work. I truly enjoyed studying and conducting 
experiments on sustainable energy. I hope that this book proves beneficial not only 
to mechanical engineers and students but also to professionals in other fields such 
as electrical, chemical, and environmental engineering, who wish to gain essential 
knowledge of the emerging electrical sustainable energy system technologies. 

Sakai, Japan Masaaki Okubo
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Chapter 1 
Basic Laws of Electrical Circuits 

Abstract This chapter outlines the basic law of electrical circuits, Maxwell’s equa-
tions and the law of conservation of charge, Kirchhoff’s current law, Ohm’s law 
and linear circuit element, Kirchhoff’s voltage law, and displacement current are 
explained. Following these, DC and AC circuits and calculations, and Transient 
phenomena in DC and AC circuits are explained. The chapter is concluded by the 
conclusions and exercise problems. 

1.1 Introduction 

Electric circuits form the foundation of modern technology, from the simplest elec-
tronic devices to complex power distribution systems. Understanding how these 
circuits operate requires a thorough grasp of the fundamental laws that govern the 
behavior of electrical currents and voltages. This chapter introduces these essential 
principles, laying the groundwork for more advanced studies in sustainable electrical 
engineering, based on textbook and Refs. [1–5]. 

We begin with Maxwell’s equations, which encapsulate the core concepts of elec-
tromagnetism, linking electric fields, magnetic fields, and charge distributions. These 
equations are not only central to understanding electromagnetism but also provide 
the theoretical basis for many of the laws that govern circuit behavior. The law of 
conservation of charge, one of the consequences of Maxwell’s equations, is described 
as it plays a crucial role in the operation of electric circuits. 

Following this, we treat Kirchhoff’s laws, which are indispensable tools for 
analyzing circuits. Kirchhoff’s current law and Kirchhoff’s voltage law are derived 
from the fundamental principles of electromagnetism and energy conservation, 
respectively. Kirchhoff’s current law deals with the flow of current at junctions within 
a circuit, while Kirchhoff’s current law addresses the sum of potential differences 
around a closed loop. These laws provide a framework for understanding how currents 
and voltages distribute themselves within a circuit. 

Ohm’s law, another cornerstone of circuit theory, relates the voltage across a linear 
circuit element to the current flowing through it, with the proportionality constant
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2 1 Basic Laws of Electrical Circuits

being the resistance. This simple yet powerful relationship allows for the analysis of 
linear circuit elements, which include resistors, capacitors, and inductors. Each of 
these elements behaves predictably under the influence of an applied voltage, and 
their combined behavior can be systematically analyzed using the principles outlined 
in this chapter. 

We also explore the concept of displacement current, which extends the appli-
cability of Maxwell’s equations to circuits involving changing electric fields. 
This concept is particularly relevant in alternating current (AC) circuits, where 
time-varying currents and voltages are common. 

The chapter then guides you through the analysis of both direct current (DC) 
and AC circuits. DC circuits, which involve constant currents and voltages, serve 
as the simplest context for applying Kirchhoff’s laws and Ohm’s law. AC circuits, 
however, introduce complexities due to the time-varying nature of their currents and 
voltages. Understanding these types of circuits requires additional concepts such 
as impedance and phase angles, which are covered in detail. Finally, we address 
transient phenomena in both DC and AC circuits. Transients occur when circuits 
switch states, such as when a switch is opened or closed. These phenomena are 
characterized by temporary deviations from the steady-state behavior of the circuit, 
and understanding them is crucial for the accurate analysis and design of electrical 
systems. 

In summary, this chapter equips you with the knowledge of fundamental laws 
and techniques necessary for analyzing both simple and complex electrical circuits. 
By mastering these concepts, you are prepared to tackle a wide range of challenges 
in electrical engineering and related fields. Note that textbooks of electromagnetics, 
electrical circuits [6–12], mechanical vibration [13] and field theory and vector and 
tensor [14–17] are listed in references. 

1.2 Maxwell’s Equations and Law of Conservation 
of Charge 

Maxwell’s equations and law of conservation of charge are explained based on Ref. 
[1]. Electromagnetic properties are well described using Maxwell’s equations: 

(Gauss’s law for electric charges) 

∇ ·  D = ρ (1.1) 

(Gauss’s law for magnetic charges) 

∇ ·  B = 0 (1.2)  

(Faraday’s law) 

∇ ×  E = −  
∂B 
∂t 

(1.3)
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(Maxwell–Ampere’s law) 

∇ ×  H = J + 
∂D 
∂t 

(1.4) 

where D represents the electric flux density vector, B represents the magnetic flux 
density vector, E represents the electric field vector, H represents the magnetic field 
vector, and ρ represents the charge density. Maxwell’s equations are four cornerstone 
equations that unify electric and magnetic fields. They provide a complete description 
of electromagnetic fields. 

By calculating the divergence of both sides of Faraday’s law given by Eq. (1.3), 
Gauss’s law for magnetic charges, Eq. (1.2), can be derived from the vector formula 
∇·∇×A = 0, where A is an arbitrary vector. Similarly, by calculating the divergence 
∇· of both sides of Maxwell–Ampere’s law of Eq. (1.4), we obtain: 

∇ ·  J + 
∂ 
∂t 

(∇ ·  D) = 0 (1.5) 

Substituting Gauss’s law for electric charges, Eq. (1.1), into Eq. (1.5), we derive the 
equation of the law of conservation of charge: 

∂ρ 
∂t 

+ ∇  ·  J = 0 (1.6) 

Multiplying this particle conservation law by mass gives the law of conservation 
of mass, and multiplying it by the charge q of a charged particle gives the law of 
conservation of charge from Eq. (1.6). 

Suppose charged particles are stored with a charge density ρ = qn inside a certain 
volume V. Integrating Eq. (1.6) with respect to the volume V, we get:

∫
V 

∂ρ 
∂t 

dV +
∫
V 

∇ ·  JdV = 0 (1.7) 

If this volume V does not change over time, the first term on the left side of Eq. (1.7) 
becomes: 

The first term on the left side = 
dQ 

dt 
(1.8) 

However, the second term on the left side of Eq. (1.7) is converted to an integral 
on the surface S of the volume V by Gauss’s theorem (divergence theorem). Further, 
by using the relationship between the current density and the current in Eq. (1.7), we 
obtain:
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∫
V 

∇ ·  JdV =
∮
S 
J · dS = Iout (1.9) 

The last term indicates that the current flowing out from volume V is calculated as 
positive because dS is the vector pointing outward from volume V. If the current 
flowing into volume V is I, then Iout = −  I. From this, we obtain the relationship 
between current and charge: 

I = 
dQ 

dt 
(1.10) 

The relationship between electric current and charge is obtained. Equation (1.10) 
is the law of current and charge. 

1.3 Kirchhoff’s Current Law 

Derivation of Kirchhoff’s laws from Maxwell’s equations is explained based on Ref. 
[1]. If there is no stored charged particles and the density of charged particles does 
not change over time, i.e., ∂ρ/∂t = 0 in Eq.  (1.6), the law of conservation of charge 
becomes: 

(Equation of current continuity) 

∇ ·  J = 0 (1.11) 

Let us consider the case where N conductors are connected at a certain point, and 
a current I is flowing through the conductors. Considering the volume V surrounding 
the connection point and integrating Eq. (1.11) over it, we get:

∫
V 

∇ ·  JdV =
∮
S 
J · dS = 

N∑
i=1

∮
Si 

Ji · dS = 0 (1.12) 

where Ji is the current density of the current flowing through the ith conductor 
and represents the cross-section of the ith conductor. Furthermore, by using the 
relationship between current density and current in the third equation of Eq. (1.12), 
we obtain: 

N∑
i=1 

Ii = 0 (Kirchhoff’s current law) (1.13) 

This leads to the conclusion that “the sum of the currents flowing into any node in 
an electric circuit is zero.” However, the sum of currents flowing out of a node is
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calculated by assuming that a negative current flows in. This relationship is called 
Kirchhoff’s current law. 

1.4 Ohm’s Law and Linear Circuit Element 

Ohm’s law and linear circuit element are explained based on Ref. [1]. Let us consider 
in more detail the situation where a collection of charged particles moves at a uniform 
speed through a conductor at an average speed of u. Consider the tube illustrated in 
Fig. 1.1 with a cross-sectional area of S and length of L. Furthermore, assume that 
an electric field E is applied in the longitudinal direction of the tube. If there are 
freely moving charged particles (e.g., free electrons) with a charge of q and mass m 
inside this tube, they will be subjected to the Coulomb force due to the electric field. 
When a charged particle moves due to the Coulomb force, it will collide with solid 
particles. In the following, we will assume that all of the momentum of the charged 
particle is lost due to the collision with the particles. 

Momentum lost in one collision = −  mu (1.14) 

Collisions with the particles become a kind of friction force for the motion of the 
charged particle. If the average collision time from when the charged particle starts 
moving until it collides is τ, the equation of motion for each charged particle is 

m 
du 
dt 

= qE − 
mu 
τ 

(1.15) 

Although each particle has accelerated motion with a different velocity, the average 
velocity of the particles is the velocity at which the frictional and Coulomb forces 
are balanced. By setting the left side of the above equation to 0, the averaged velocity 
u is expressed as follows: 

u = 
qτ 
m 

E (1.16) 

Furthermore, by using the relationship between the current density J and u, J = nqu, 
it can be rewritten as follows:

Fig. 1.1 Model of moving 
charges in a tube [1] 
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J = 
nτ q2 

m 
E (1.17) 

Equation (1.17) shows that the current density J is proportional to the electric field 
E. The proportionality coefficient is called the electrical conductivity and is defined 
by the following equation: 

σ = 
nτ q2 

m 
(1.18) 

Using the electrical conductivity σ, Eq.  (1.17) becomes: 

J = σ E (1.19) 

Equation (1.19) is called Ohm’s law in electromagnetism. The reciprocal of conduc-
tivity σ is called resistivity ρ, and indicates how difficult it is for current to 
flow. 

ρ = 
1 

σ 
(1.20) 

These quantities represent the electrical properties of a material and are independent 
of the shape (length and cross-sectional area) of the material. Now, let us consider 
Fig. 1.1 again. Assume that the potential on the inlet side and the potential on the 
outlet side differ by a voltage of V. If the electric field is spatially uniform, the 
magnitude of the electric field is E = V /L. However, if we take the cross-sectional 
area of the rectangular solid as S, integrate  J there, and then use Eq. (1.19), we get: 

I =
∫
S 
J · dS = JS = σ ES = 

σ S 
L 

V (1.21) 

If we rearrange Eq. (1.21) with respect to V, we get: 

V = 
L 

σ S 
I (1.22) 

If the proportionality coefficient in the above formula is set to R, 

V = RI (Ohm’s law) (1.23) 

R = 
L 

σ S 
= 

ρL 

S 
(1.24) 

Equation (1.23) is usually called Ohm’s law in electrical circuits. The resistance is 
called electrical resistance, or simply resistance, and its unit is Ω (ohm).
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1.5 Kirchhoff’s Voltage Law 

Kirchhoff’s voltage law from Maxwell’s equations is derived based on Ref. [1]. Let 
us consider a closed circuit formed using resistors. By integrating the differential 
form of Ohm’s law Eq. (1.19) around the closed curve, we get:

∮
C 
J · dl = σ

∮
C 
E · dl =

∫
S 
∇ ×  E · dS (1.25) 

where C represents the integral path along the closed curve, and S represents the 
surface enclosed by Stokes’ theorem is used to transform the second equation into 
the right-hand side. Considering an electromagnetic field that does not change over 
time and assuming that a direct current flows through the circuit, Faraday’s law gives 
us the following: 

∇ ×  E = 0 (1.26)

∮
C 
J · dl = 0 (1.27) 

As shown, the contour integral of the current density along the circuit is zero. Since 
this is true for any C, it means that J is not equal to 0, which contradicts our experience 
of electric current flowing in a closed circuit. To resolve the difficulties, it is necessary 
to extend the differential form of Ohm’s law shown in Eq. (1.19) as follows: 

J = σ
(
E + E′) (1.28) 

Equation (1.28) is called the generalized Ohm’s law. Eʹ is an electric field generated 
by effects outside the scope of electromagnetic considerations and should only be 
considered in the power supply portion of an electric circuit. Typically, it refers to the 
electric field generated by chemical reactions inside a battery and has the property of 
∇ ×  Eʹ �= 0. Therefore, by integrating Eq. (1.28) along a closed circuit, we obtain:

∮
C 
J · dl =

∮
C 

σ(E + E′) · dl =
∫
S 
σ∇ ×  E′ · dS �= 0 (1.29) 

This explains how current flows in an electric circuit. When there are the number K 
electromotive forces in the integral of the power supply section,

∫
CP 

E′ · dl = 
K∑

k=1 

V ′
k (1.30) 

and
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K∑
k=1 

V ′
k = 

N∑
i=1 

Vi (Kirchhoff’s voltage law) (1.31) 

holds. In other words, the sum of the electromotive forces present in a closed circuit 
and the sum of the voltages across the resistors are equal. Equation (1.31) is called 
Kirchhoff’s voltage law. 

1.6 Displacement Current 

Displacement current is a current that arises when the surface integral of the normal 
component of the electric flux density on a closed surface changes over time. 

I = 
d 

dt

∫
S 
D · dS = 0 (1.32) 

Normally, electric current occurs due to the movement of electric charges; however, 
displacement current is not caused by the movement of electric charges, hence the 
name “displacement.” Its unit is the ampere, similar to conventional current. Exam-
ples of displacement current include the current flowing through a dielectric inside a 
capacitor or between the internal electrodes of a plasma reactor. Although a dielectric 
is an insulator with no movement of electric charges inside, displacement current as 
described by Eq. (1.32) does flow. 

(Poisson’s equation) 

∇2 φ = −  
σ 
ε 

(1.33) 

where σ is the space charge volume density (C/m3) and is necessary to calculate the 
space potential ϕ. It is generally difficult to calculate σ, so an approximate solution 
that expresses it as a function is used. 

In this section, when deriving Kirchhoff’s voltage law, we have considered a DC 
circuit with a battery as the power source and a resistor as the load. This law also 
applies to AC circuits as well as DC circuits. The power source can be something 
other than a battery, and the load can be a linear element such as a capacitor or coil, as 
will be shown in the following chapters, or even a nonlinear element such as a diode 
or transistor. However, it should be noted that Kirchhoff’s voltage law no longer 
holds when the displacement current is significant.
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1.7 DC Circuit and Calculations 

Next, applications of electromagnetic theory for electrical circuits are explained 
based on Ref. [3]. Systems such as those shown in Fig. 1.1 are frequently found in 
magnetohydrodynamics (MHD) and plasma fluid system. 

Discharge plasma forms in the MHD reactor in Fig. 1.2a and the plasma reactor 
in Fig. 1.2b. Its magnetohydrodynamic characteristics must be analyzed using equa-
tions; however, the electromagnetic circuit characteristics can be simplified to an 
equivalent circuit connected to a power supply + LCR in the steady state where the 
plasma is stabilized. 

Fig. 1.2 Target system: a MHD power generator [18] and  b environmental plasma system [19]
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Fig. 1.3 Equivalent circuit: a for the MHD power generator and b for the environmental plasma 
system 

Whether the series circuit of the variable LCR power supply in the figure becomes 
a parallel circuit depends on the situation. Selection should be made appropriately 
to maximize power. In Chaps. 2–6, we explain the analysis method and matching of 
the circuit as illustrated in Fig. 1.3. This chapter covers the basics of power supplies 
and calculations. 

An electric circuit is a combination of elements such as capacitance, electrical 
resistance, and inductance, connected by paths through which current flows. When 
analyzing an electric circuit, we do not consider the distribution of current density 
within a current path or the electric or magnetic fields surrounding it. The current 
path is treated as a thin conductor without resistance, inductance, or capacitance 
between other conductors. 

Capacitance, resistance, and inductance have two terminals, and the physical 
conditions within them are not considered; only the voltage between the terminals and 
the current through the terminals are of concern. Since charge does not accumulate or 
dissipate along the current path, the value of the current remains constant throughout 
the path. Voltage and current whose magnitude and direction do not change over 
time are termed DC voltage and DC current, respectively, and form a DC circuit, 
which is essentially a combination of a DC power source and electrical resistance, 
as illustrated in Fig. 1.4.

DC power sources are usually represented as batteries. A power source moves 
charges using forces beyond electrostatic fields, creating an electromotive force 
between its terminals. Ohm’s law is assumed to hold for resistance. 

When resistors with resistance values Rl, R2, … are connected in series, as illus-
trated in Fig. 1.5, the current I through each resistor is common, and the voltage V
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Fig. 1.4 DC circuit

across the entire circuit is the sum of individual voltages: V l = RlI, V 2 = R2I, …,  
etc. 

V = V1 + V2 +  · · ·  =  (R1 + R2 +  · · ·)I (1.34) 

The total resistance R is given as follows: 

R = 
V 

I 
= R1 + R2 +  · · · (1.35) 

Thus, the total combined resistance equals the sum of the individual resistances. If 
resistors Rl and R2 are connected in series and a voltage V is applied across them 
(Fig. 1.6), the current is as follows: 

I = 
V 

R1 + R2 
(1.36)

The voltage V l across R1 is as follows: 

V1 = R1I (1.37) 

Therefore,

Fig. 1.5 Series connection 
of resistors 
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Fig. 1.6 Voltage division by 
resistors

V1 

V 
= R1 

R1 + R2 
(1.38) 

The voltage V is distributed in proportion to the resistance ratio. A series combination 
of resistors extracting an exact fraction of a given voltage is termed a voltage divider, 
frequently used in voltage measurement. 

When resistors with resistances Rl, R2, … are connected in parallel, as illustrated 
in Fig. 1.7, the voltage V across each resistor is common, and the total current I is 
the sum of individual currents I1 = V /Rl, I2 = V /R2, that flow through each resistor. 

I = I1 + I2 +  · · ·  =
(

1 

R1 
+ 

1 

R2 
+  · · ·

)
V (1.39) 

The total combined resistance R is 

1 

R 
= 

I 

V 
= 

1 

R1 
+ 

1 

R2 
+  · · · (1.40)

Fig. 1.7 Parallel connection 
of resistors 
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Fig. 1.8 Shunt resistor 

The reciprocal of the total resistance equals the sum of the reciprocals of individual 
resistances. 

The conductance of each resistor is Gl = 1/Rl, G2 = 1/R2, etc., so the total 
conductance G = 1/R is 

G = G1 + G2 +  · · · (1.41) 

For two resistors Rl and R2 connected in parallel, the combined resistance R is 

R = 1 
1 
R1 

+ 1 
R2 

= 
R1R2 

R1 + R2 
(1.42) 

If resistors Rl and R2 are connected in parallel and a current I flows through them 
(Fig. 1.8), the voltage V across both resistors is common: 

V = R1R2 

R1 + R2 
I (1.43) 

The current I1 through R1 is 

I1 = 
V 

R1 
= R2 

R1 + R2 
I (1.44) 

Therefore, 

I1 
I 

= R2 

R1 + R2 
(1.45) 

The current I is distributed in the inverse ratio of the resistances. A resistor connected 
in parallel to extract a specific fraction of a current is termed a current shunt, often 
used in current measurement. 

In circuits with complex resistor combinations, such as series and parallel config-
urations, they can often be broken into simpler series and parallel components. For 
example, in the combination illustrated in Fig. 1.9, the parallel combination of R2
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Fig. 1.9 Series–parallel circuit of resistors 

and R3 yields a combined value r1: 

r1 = R2R3 

R2 + R3 
(1.46) 

Next, combining this with Rl in series gives the resistance r2 of the upper path: 

r2 = R1 + r1 = R1 + 
R2R3 

R2 + R3 
= 

R1R2 + R1R3 + R2R3 

R2 + R3 
(1.47) 

Finally, the total resistance is r2 and R4 in parallel, yielding: 

R = 
R4r2 

R4 + r2 
= R4 

R1R2+R1R3+R2R3 
R2+R3 

R4 + R1R2+R1R3+R2R3 
R2+R3 

= R1R2 + R1R3 + R2R3 

R2R4 + R3R4 + R1R2 + R1R3 + R2R3 
R4 

(1.48) 

1.8 AC Circuit and Calculation 

For an AC circuit, resistance, inductance, and capacitance can be considered analo-
gous to resistance in a DC circuit. Resistance in an AC circuit is termed impedance 
Z. The voltage drops across these elements in an AC circuit are expressed as follows: 

Inductance: The inductance of the coil is expressed as a complex number iωLI: 

VL = L 
dI 

dt 
= iωLI (1.49)
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Resistance: The voltage drop is the same as in a DC circuit: 

VR = IR (1.50) 

Capacitance: The voltage drop is determined by the relationship dQ/dt = I: 

VC = 
Q 

C 
= 

1 

C

∫
Idt = I 

iωC 
,

(
dQ 

dt 
= I

)
(1.51) 

where i is the imaginary unit (i = 
√− 1). The total voltage drop across the series 

circuit is the sum of these individual voltage drops: 

VL + VR + VC = L 
dI 

dt 
+ IR + 

1 

C

∫
Idt =

(
iωL + R + 

1 

iωC

)
I = ZI (1.52) 

where Z is the impedance of the series circuit. Using a similar method as explained 
in Sect. 1.7 for DC circuits, calculations should be performed. A detailed procedure 
will be treated in Chap. 2. 

1.9 Transient Phenomena in DC and AC Circuits 

1.9.1 Transient Phenomena in DC Circuit 

In this section, we explain the transient phenomena in an LCR series circuit connected 
to a DC power source based on the explanation of Ref. [4]. DC circuits and steady-
state solutions, as well as non-steady-state solutions or transient phenomena in LCR 
series circuits, are described as an example for the treatment of electrical circuits. 

Figure 1.10 illustrates an RLC series circuit connected to a DC power source E, 
resistance R, inductance L, and capacitance C. Here, C is assumed to be uncharged 
before the switch is turned on. Applying Ohm’s law to the circuit, the circuit equation 
is 

L 
dI 

dt 
+ RI + 

1 

C

∫
Idt = E (1.53)

When solving Eq. (1.53) to determine the current I, the solution to the equation is 

I = It + Is (1.54) 

Substituting Eq. (1.54) into Eq. (1.53) we obtain two equations for I t and Is
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Fig. 1.10 DC LCR series 
circuit

L 
dIt 
dt 

+ RIt + 
1 

C

∫
Itdt = 0 (1.55) 

L 
dIs 
dt 

+ RIs + 
1 

C

∫
Isdt = E (1.56) 

Equation (1.55) is an equation that should only be considered in the transient state 
(mathematically, it is a homogeneous equation), and both sides converge to 0 as t → 
∞. Equation (1.56) holds in the steady state. Equation (1.55) should be first solved 
to find the transient solution I t. Differentiating both sides of Eq. (1.55) with respect 
to t: 

L 
d2 It 
dt2 

+ R 
dIt 
dt 

+ 
It 
C 

= 0 (1.57) 

Let the solution of Eq. (1.57) be  I t = AeBt (A and B are complex constants). B is 
determined as follows: 

B = −  
R 

2L 
±

√(
R 

2L

)2 

− 
1 

LC 
(1.58) 

Therefore, the transient solution I t is given by: 

It = e− R 2L t

[
A1e 

√
( R 2L )

2− 1 LC t + A2e
− 

√
( R 2L )

2− 1 LC t
]

(1.59) 

where A1 and A2 are complex constants. 
The behavior of I t depends on the magnitude of α2 and ω0 

2, as the sign of{
[R/(2L)]2 − 1/(LC)

}
in the square root in Eq. (1.58) determines the behavior. From 

now on, we set α = R/(2L), ω0 = 1/
√
LC, and

{
[R/(2L)]2 − 1/(LC)

} = α2 − ω2 
0. 

1.9.1.1 Case of α2 > ω0 
2 

When α2 − ω0 
2 > 0, that is, α2 > ω0 

2, Eq.  (1.59) becomes:
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It = e−αt
(
A1e 

√
α2−ω2 

0 t + A2e
−
√

α2−ω2 
0 t
)

(1.60) 

To determine A1 and A2, check the initial conditions at t = 0. At t = 0, immediately 
after the switch is turned on, no current flows through the circuit in Fig. 1.10 due to 
the action of inductance L: 

I |t=0 = A1 + A2 = 0 (1.61) 

At this time, the voltage across L is equal to the DC power supply voltage E, therefore, 

A1 = E 

2L 
√

α2 − ω2 
0 

= −A2 (1.62) 

Substituting Eq. (1.62) into Eq. (1.60), the transient solution I t becomes: 

It = E 

2L
√

α2 − ω2 
0 

e−αt
(
e 
√

α2−ω2 
0 t − e−

√
α2−ω2 

0 t
)

= E 

L
√

α2 − ω2 
0 

e−αt sinh
√

α2 − ω2 
0t (1.63) 

This represents a hyperbolic function decaying with time. 

1.9.1.2 Case of α2 = ω0 
2 

When α2 − ω0 
2=0, that is, α2 = ω0 

2, the solution of Eq. (1.57) is set as I t = A(t)e−αt . 
Substituting this into Eq. (1.57): 

L 
d2 A(t) 
dt2 

+ (−2αL + R) 
dA(t) 
dt 

+
(

α2 L − αR + 
1 

C

)
A(t) = 0 (1.64) 

The coefficients of the second and third terms of Eq. (1.64) are  

− 2αL + R = −  2 
R 

2L 
L + R = 0 (1.65) 

α2 L − αR + 
1 

C 
= ω2 

0L − αR + 
1 

C 
= 

1 

C 
− 

R2 

2L 
+ 

1 

C 
= 0 (1.66) 

Therefore, Eq. (1.64) becomes: 

L 
d2 A(t) 
dt2 

= 0 (1.67)
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and 

A(t) = A1 + A2t (1.68) 

where A1 and A2 are constants. From Eq. (1.68), the transient solution I t is 

It = (A1 + A2t)e
−αt (1.69) 

From the initial conditions at t = 0, It|t=0 = 0 and L(dIt/dt)|t=0 = E, we obtain A2 

= E/L. Therefore, the transient solution I t is 

It = 
E 

L 
te−αt (1.70) 

1.9.1.3 Case of α2 < ω0 
2 

When α2 − ω0 
2 < 0, that is, α2 < ω0 

2, Eq.  (1.59) becomes: 

It = e−αt
(
A1e

i
√

ω2 
0−α2t + A2e

−i
√

ω2 
0−α2t

)
(1.71) 

where i = 
√− 1. From the initial conditions at t = 0, It|t=0 = 0, L(dIt/dt)|t=0 = E, 

I |t=0 = A1 + A2 = 0 (1.72) 

L 
dIt 
dt

∣∣∣∣
t=0 

= L
[
− αe−αt

(
A1e

i
√

ω2 
0−α2t + A2e

−i
√

ω2 
0−α2t

)

+ e−αt

(
i 
√

ω2 
0 − α2A1e

i
√

ω2 
0−α2t − i

√
ω2 
0 − α2A2e

−i
√

ω2 
0−α2t

)]∣∣∣∣
t=0 

= L
[
− α(A1 + A2) + i

√
ω2 
0 − α2A1 − i

√
ω2 
0 − α2A2

]

= i2L
√

ω2 
0 − α2A1 = E (1.73) 

Therefore 

A1 = E 

2iL
√

ω2 
0 − α2 

= −  A2 (1.74) 

Substituting Eq. (1.74) into Eq. (1.71), the transient solution I t becomes:
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It = E 

i2L
√

ω2 
0 − α2 

e−αt
(
ei
√

ω2 
0−α2t − e−i

√
ω2 
0−α2t

)

= E 

L 
√

ω2 
0 − α2 

e−αt sin
√

ω2 
0 − α2t (1.75) 

1.9.1.4 Derivation of Steady-State Solution 

Next, Eq. (1.56) is solved to obtain the steady-state solution. Differentiating both 
sides of Eq. (1.56) with respect to t, 

L 
d2 Is 
dt2 

+ R 
dIs 
dt 

+ 
Is 
C 

= 0 (1.76) 

Equation (1.76) is also valid in the steady state, that is, when t → ∞. In this case, as 
there is no variation in the current value, we obtain: 

d2 Is 
dt2 

= 0, 
dIs 
dt 

= 0, Is = 0 (1.77) 

Therefore, the steady-state solution is Is vanishes. In other words, no current flows 
in the circuit in the steady state. 

1.9.1.5 General Solution for DC Circuit 

To summarize the results in the previous sections, the general solution of the current 
flowing in the circuit in Fig. 1.10 is 

I = 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

E 

L
√

α2−ω2 
0 

e−αt sinh
√

α2 − ω2 
0t

(
α2 > ω2 

0

)
E 
L te

−αt
(
α2 = ω2 

0

)
E 

L
√

ω2 
0−α2 

e−αt sin
√

ω2 
0 − α2t

(
α2 < ω2 

0

) (1.78) 

where α = R/(2L), ω0 = 1/ 
√
LC, f0 = 1/(2π 

√
LC). 

Figure 1.11 illustrates the graph of the obtained current I. From the figure, when 
α2 > ω0 

2 (orange waveform), the current slowly decays over time (overdamping). 
When the values of R, L, and C are such that α2 = ω0 

2 (gray waveform), the damping 
is most rapid (critical damping). Furthermore, when α2 < ω0 

2 (blue waveform), the 
current oscillates while damping (damped oscillation or underdamping).
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1.9.2 Transient Phenomena in AC Circuit 

We explain the transient phenomena in an LCR series circuit connected to an AC 
power source. AC circuits and steady-state solutions, as well as non-steady-state 
solutions or transient phenomena in LCR series circuits, are described based on the 
explanation of Ref. [5] as an example for the treatment of electrical circuits. 

Figure 1.12 illustrates an LCR series circuit connected to an AC power source 
E = Em sin ωt with a peak value Em and frequency ω, resistance R, inductance L, 
and capacitance C. Note that C is not charged before the switch is turned on. When 
Kirchhoff’s second law is applied to an AC circuit with power source E = Em sin ωt 
in Fig. 1.12, the circuit equation is 

L 
dI 

dt 
+ RI + 

1 

C

∫
Idt = Em sin ωt (1.79) 

The solution of the circuit equation is obtained. When solving Eq. (1.79) for  the  
current I, assuming the transient solution I t and the steady-state solution Is, the  
solution of Eq. (1.79) is

Fig. 1.11 Graph of current in LCR series circuit (L = 0.1 μH, C = 0.1 μF, R = 0.5, 2, 4 Ω, and  Em 
= 10 V) 

Fig. 1.12 AC LCR series 
circuit 
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I = It + Is (1.80) 

Substituting Eq. (1.80) into Eq. (1.79):

(
L 
dIt 
dt 

+ RIt + 
1 

C

∫
Itdt

)
+

(
L 
dIs 
dt 

+ RIs + 
1 

C

∫
Isdt

)
= Em sin ωt (1.81) 

Equation (1.81) is separated into two equations for I t and Is, respectively, 

L 
dIt 
dt 

+ RIt + 
1 

C

∫
Itdt = 0 (1.82) 

L 
dIs 
dt 

+ RIs + 
1 

C

∫
Isdt = Em sin ωt (1.83) 

Equation (1.82) is an equation that should only be considered in the transient state, 
and both sides converge to 0 as t → ∞. Equation (1.83) is an equation that holds in 
the steady state with a non-zero right-hand side. To solve the target Eq. (1.79), first, 
we should obtain the transient solution I t. From Eq.  (1.82), 

L 
d2 It 
dt2 

+ R 
dIt 
dt 

+ 
It 
C 

= 0 (1.84) 

Equation (1.84) can be solved in the same way as for the DC circuit in previous 
section, and the solution is the same as Eq. (1.59) and 

It = A1e

[
− R 2L + 

√
( R 2L )

2− 1 LC

]
t + A2e

[
− R 2L − 

√
( R 2L )

2− 1 LC

]
t 

= e−αt
(
A1e 

√
α2−ω2 

0 t + A2e
−
√

α2−ω2 
0 t
)

(1.85) 

where A1 and A2 are constants, and α = R/(2L), ω0 = 1/ 
√
LC. 

Next, derivation of steady-state solution is explained. 

L 
dIs 
dt 

+ RIs + 
1 

C

∫
Isdt = Em sinωt (1.86) 

is solved to obtain the steady-state solution. Differentiating both sides of Eq. (1.86) 
with respect to t, 

L 
d2 Is 
dt2 

+ R 
dIs 
dt 

+ 
1 

C 
Is = ωEm cos ωt (1.87) 

The detailed method of solving this equation for steady-state solution will be 
explained in next Chap. 2 using complex analysis. Only the result is presented here. 
The steady-state solution is is
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Is = Em √
R2 + (

ωL − 1 
ωC

)2 sin(ωt − ϕ) (1.88) 

where, ϕ = tan−1{[ωL − 1/(ωC)]/R}. Equation (1.88) is the steady-state solution 
of Eq. (1.86). Substituting Eqs. (1.85) and (1.88) into Eq. (1.80), the current I is 
determined as 

I = e−αt
(
A1e

−α+βt + A2e
−α−βt

) + Im sin(ωt − ϕ) (1.89) 

where β =
√

α2 − ω2 
0, Im = Em/ 

√
R2 + [ωL − 1/(ωC)]2 . 

For Eq. (1.89), the next three cases are considered. 

1.9.2.1 Transient Solution: Case of α2 > ω0 
2 

When α2 − ω0 
2 > 0, that is, α2 > ω0 

2, integrating both sides of Eq. (1.89) with respect 
to t gives the circuit charge q: 

q = 
A1 

− α + β 
e(−α+β)t + 

A2 

− α − β 
e(−α−β)t − 

Im 

ω 
cos(ωt − ϕ) (1.90) 

where the integral constant is calculated as 0. At t = 0, the circuit current I and 
charge q are 0, so from Eqs. (1.89) and (1.90): 

I |t=0 = A1 + A2 − Im sin ϕ = 0 (1.91) 

q|t=0 =
A1 

− α + β 
+ A2 

− α − β 
− Im cos ϕ = 0 (1.92) 

From Eqs. (1.91) and (1.92), A1 and A2 are 

A1 = 
Im 

2β

[
(− α + β) sin ϕ − 

α2 − β2 

ω 
cos ϕ

]
(1.93) 

A2 = 
Im 

2β

[
(α + β) sin ϕ + 

α2 − β2 

ω 
cos ϕ

]
(1.94) 

Therefore, from Eq. (1.89), the current I is 

I = 
Im 

2β 
e−αt

{[
(− α + β) sin ϕ − 

α2 − β2 

ω 
cos ϕ

]
eβt 

+
[
(α + β) sin ϕ + 

α2 − β2 

ω 
cos ϕ

]
e−βt

}
+ Im sin(ωt − ϕ)
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= Im
{
e−αt

[
sin ϕ cosh βt −

(
α 
β 
sin ϕ + 

α2 − β2 

ωβ 
cos ϕ

)
sinh βt

]

+ sin(ωt − ϕ)} (1.95) 

1.9.2.2 Transient Solution: Case of α2 = ω0 
2 

When α2 − ω0 
2 = 0, that is, α2 = ω0 

2, the current I can be obtained by setting β → 
0 in Eq.  (1.95). Using the formula for the limit value of hyperbolic functions: 

lim 
β→0 

cosh βt = 1 (1.96) 

lim 
β→0 

sinh βt 

β 
= t (1.97) 

From Eq. (1.95): 

I = lim 
β→0 

Ime
−αt

[
sin ϕ cosh βt −

(
α sin ϕ + 

α2 − β2 

ω 
cos ϕ

)
sinh βt 

β

]

+ Im sin(ωt − ϕ) 

= Im
{
e−αt

[
sin ϕ −

(
α sin ϕ + 

α2 

ω 
cos ϕ

)
t

]
+ sin(ωt − ϕ)

}
(1.98) 

1.9.2.3 Transient Solution: Case of α2 < ω0 
2 

When α2 − ω0 
2 < 0, that is, α2 < ω0 

2, the current I can be obtained by setting 

β = i
√

ω2 
0 − α2 = iγ in Eq. (1.95), where i = 

√− 1. In this case, the relationship 
between hyperbolic functions and trigonometric functions: 

cosh iγ t = 
eiγ t + e−iγ t 

2
= cos γ t (1.99) 

sinh iγ t = i 
eiγ t − e−iγ t 

2i
= i sin γ t (1.100) 

holds. Therefore, Eq. (1.95) can be expressed as follows: 

I = Ime−αt

{[
sin ϕ cos γ t −

(
α 
γ 
sin ϕ + 

α2 + γ 2 

ωγ 
cos ϕ

)
sin γ t

]
+ sin(ωt − ϕ)

}

(1.101)
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1.9.2.4 General Solution for AC Circuit 

To summarize the discussion up to the previous section, the general solution of the 
current flowing through the circuit in Fig. 1.11 is given by Eqs. (1.95), (1.98), and 
(1.101): 

I = 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

Im

{
e−αt

[
sin ϕ cosh βt −

(
α 
β 
sin ϕ + 

α2 − β2 

ωβ 
cos ϕ

)
sinh βt

]

+ sin(ωt − ϕ)}(
α2 > ω2 

0

)
Im

{
e−αt

[
sin ϕ −

(
α sin ϕ + 

α2 

ω 
cos ϕ

)
t

]
+ sin(ωt − ϕ)

}
(
α2 = ω2 

0

)
Im

{
e−αt

[
sin ϕ cos γ t −

(
α 
γ 
sin ϕ + 

α2 + γ 2 

ωγ 
cos ϕ

)
sin γ t

]

+ sin(ωt − ϕ)}(
α2 < ω2 

0

)

(1.102) 

where Im = Em/ 
√
R2 + [ωL − 1/(ωC)]2 , ϕ = tan−1[ωL − 1/(ωC)]/R, α = 

R/(2L), ω0 = 1/ 
√
LC, β =

√
α2 − ω2 

0, γ = 
√

ω2 
0 − α2. 

Figure 1.13 illustrates a graph of the calculated current I. From the figure, when 
α2 > ω0 

2 (orange waveform), the peak value is suppressed near t = 0 when the 
switch is turned on due to the influence of the transient term. However, as time t 
progresses, the waveform approaches a sine wave, representing the steady-state term 
(overdamping). When the values of R, L, and C are changed and α2 = ω0 

2 is set 
(gray waveform), the influence of the transient term is the largest (critical damping). 
Furthermore, when α2 < ω0 

2 (blue waveform) is set, the waveform oscillates and 
damps to reach a steady oscillation (damped oscillation or underdamping).

1.10 Conclusions 

In this chapter, we treat the analysis of both direct current and alternating current 
circuits. DC circuits, characterized by constant currents and voltages, provide a 
straightforward context for applying Kirchhoff’s laws and Ohm’s law. Conversely, 
AC circuits introduce complexities due to their time-varying currents and voltages. 
To understand these circuits, one must grasp additional concepts such as impedance 
and phase angles, which are thoroughly discussed. 

The chapter also addresses transient phenomena in DC and AC circuits, which 
occur during state changes such as when a switch is opened or closed. These 
phenomena are marked by temporary deviations from the steady-state behavior of 
the circuits, and comprehending them is crucial for the precise analysis and design 
of electrical systems.
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Fig. 1.13 Graph of current in AC LCR series circuit (L = 0.1 μH, C = 0.1 μF, R = 0.5, 2, 4 Ω, Em 
= 10 V, and ω = 314.16 rad/s)

In conclusion, this chapter equips you with the fundamental laws and techniques 
necessary to analyze both simple and complex electrical circuits. By mastering 
these concepts, you are well-prepared to address a broad spectrum of challenges 
in electrical engineering and related fields. 

Chapter 1 Exercises 

Problem 1: Nonlinear resistor 

A voltage source of 12 V is connected in series with a linear resistor R1 = 50 Ω and 
a nonlinear resistor that has a voltage-current relationship given by V = I2 × 10 Ω. 
Determine the current through the circuit. 

Problem 2: Wheatstone bridge 

A Wheatstone bridge circuit consists of four resistors. Resistors R1 = 100 Ω and R2 

= 150 Ω are in one branch, and R3 = x Ω and R4 = 200 Ω are in the other. If the 
bridge is balanced when x = 120 Ω, what is the supply voltage if the voltage drop 
across R2 is 6 V? 

Problem 3: Battery internal resistance 

A 9 V battery with an internal resistance of 0.5 Ω is connected to a resistor R = 
8.5 Ω. An ammeter, having a negligible resistance, is connected in series to measure 
the current, and a voltmeter, with a very high internal resistance, is connected across 
the resistor to measure the voltage. Calculate the reading of the ammeter and the 
voltmeter.
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Problem 4: Voltage divider 

A voltage divider circuit is formed with two resistors, R1 = 200 Ω and R2 = 300 Ω, 
connected in series across a 15 V source. Calculate the voltage across R2. 

AC Circuit Problems 

Problem 5: Impedance calculation 

An AC circuit consists of a resistor R = 50 Ω, an inductor L = 0.1 H, and a capacitor 
C = 50 μF connected in series. The frequency of the AC source is 60 Hz. Calculate 
the total impedance of the circuit. 

Problem 6: Resonance frequency 

Determine the resonance frequency of a series LC circuit where L = 200 mH and C 
= 100 μF. 

Problem 7: Voltage drop across components 

A resistor (R = 100 Ω) and a capacitor (C = 22 μF) are connected in series to a 120 
VRMS, 50 Hz AC source. Calculate the voltage drop across the capacitor. 

Transient Phenomena in Circuits 

Problem 8: Graph drawing for DC and AC circuits 

Draw the graphs shown in Figs. 1.11 and 1.13, using Excel for L, C, R, Em, and 
ωparameters shown in the captions of the figures. 

Problem 9: CR charging circuit 

A capacitor C = 100 μF is connected in series with a resistor R = 1 kΩ and a DC 
source of 5 V. Determine the time constant of the circuit and calculate the voltage 
across the capacitor after one time constant. 

Problem 10: LCR series circuit at resonance 

A series  LCR circuit is driven by a sinusoidal source at its resonant frequency. The 
values are L = 10 mH, C = 10 μF, and R = 50 Ω. Assuming initial conditions of zero, 
calculate the voltage across the resistor at a time equal to three times the resonant 
period after the source is switched on. 
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Chapter 2 
Fundamentals of AC Electrical Circuits 
(1): Complex Notation, AC Circuits, 
and Mechanical–Electrical System 
Analogy 

Abstract This chapter discusses the fundamentals of AC electrical circuits and 
mechanical systems (1). Complex notation, AC circuits, and mechanical–elec-
trical system analogy are mainly covered. Systems of linear ordinary differen-
tial equations, general solution, special solution, and complex notation and review 
are covered. Following these, vibration in electrical circuits, mechanical–electrical 
analogy, equivalent circuit networks, and principle of superposition are explained. 
The chapter is concluded by the conclusions and exercise problems. 

2.1 Introduction 

This chapter and Chaps. 3–6 of Sustainable Electrical Energy for Mechanical Engi-
neers address the principles of electrical circuits, impedance matching, and energy 
conversion. Specifically, they provide a comprehensive explanation of alternating 
current (AC) electrical circuits. For additional reference materials, please consult 
the list of references at the end of this chapter [1–4]. This chapter focuses on 
Fundamentals of AC electrical circuits (1): Complex notation, AC circuits, and 
mechanical–electrical system analogy. 

The primary goal of this book is to offer a thorough understanding of how mechan-
ical engineering principles intersect with electrical systems in industrial applications. 
In particular, it aims to equip readers with the techniques and knowledge necessary for 
designing and manufacturing mechanical systems, given that a solid understanding 
of electrical circuits and electrical engineering is vital for designing and building 
efficient and functional mechanical systems. In this chapter and Chaps. 3–6, we  
focus on the flow of electrical energy from the power source to the load within an 
electrical circuit powering a mechanical system. We also explore methods to opti-
mize this energy flow. Starting with the fundamentals of electrical circuit analysis, 
these chapters introduce key principles and concepts related to the transmission and 
conversion of electrical energy. A detailed explanation is provided on determining 
circuit parameters to maximize the energy delivered to the load through impedance

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
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matching. Beyond theoretical exploration, this book emphasizes practical applica-
tions in circuit design, offering guidance that enables students and engineers to apply 
theory in real-world scenarios. This book seeks to help students and mechanical engi-
neers grasp the fundamental principles of electrical engineering, acquire essential 
skills in electrical circuit design and analysis, and apply these concepts within the 
mechanical engineering domain. By doing so, it aims to contribute to the development 
of more effective and efficient mechanical systems. The combination of theoretical 
knowledge and practical skills presented here lays a strong foundation for future 
engineers to effectively navigate the challenges of sustainable energy systems. 

2.2 Systems of Linear Ordinary Differential Equations 
with Constant Coefficients 

We begin by reviewing the solutions of linear ordinary differential equations with 
constant coefficients. Equation (2.1) represents such an equation, which appears in 
various fields: 

m 
d2 x 

dt2 
+ β 

dx 

dt 
+ kx = F0 sin ωt (2.1) 

2.2.1 General Solution 

The general solution of Eq. (2.1) has been studied in mechanical engineering majors 
in courses such as mechanical dynamics. The general solution is the sum of the 
damping vibration (general solution) and forced vibration (special solution), which 
is also known as the steady-state vibration. 

The general solution of Eq. (2.1) is commonly studied in mechanical engineering 
courses, such as machine mechanics. It consists of the sum of the damped free 
vibration (general solution) and the forced (also referred to as steady-state) vibration 
(special solution). The general solution, also known as the damped free vibration, 
corresponds to the solution of the associated homogeneous equation obtained by 
setting the right-hand side of Eq. (2.1) to zero. Readers are encouraged to review or 
study the methods for solving such equation, as detailed in the recommended Ref. 
[4]. 

For example, the general solution when β2 < 4  km is as follows: 

β2 < 4km
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x = Ce− β 
2m t cos

(√
k 

m 
− 

β2 

4m2 
t

)
t + De− β 

2m t sin

(√
k 

m 
− 

β2 

4m2

)
t (2.2) 

This book does not provide an in-depth explanation of how to derive this solution, 
references for self-study are shown in Ref. [4]. The general solution of Eq. (2.1) 
indicates that, when t becomes infinity, x is attenuated. The special solution, which 
represents the forced or steady vibration, is addressed in next Sect. 2.2.2. In this  
chapter, we explain the methodology to calculate this type solution, particularly in 
the context of electrical circuits. 

2.2.2 Special Solution 

One approach to finding the special solution x1 is to assume a solution form x1 = 
A sin ωt + B cos ωt and then substitute it into Eq. (2.1) to determine coefficients A 
and B. This yields the steady vibration solution represented by Eqs. (2.3) and (2.4): 

x = F0

(
k − mω2

)
sin ωt − βω cos ωt(

k − mω2
)2 + β2ω2 

= F0 sin(ωt − ϕ)√(
k − mω2

)2 + β2ω2 
(2.3) 

tan ϕ = 
βω 

k − mω2 
(2.4) 

As shown in Eq. (2.3), the form A sin ωt + B cos ωt can also be expressed as a single 
sine function using trigonometric identities and defining tan φ as in Eq. (2.4). 

When the equation of interest is as simple as Eq. (2.1), its solution is relatively 
straightforward to analyze. However, when the complexity of the problem increases, 
such as when solving a system of multiple simultaneous differential equations, calcu-
lating the solution becomes more challenging. For such cases, there is an easier 
method to address the problem: using complex notation, which will be explained in 
the following section. 

2.2.3 Complex Notation 

In this section, we introduce the basics of analysis using complex numbers, partic-
ularly as applied to AC electrical circuits in the context of mechanical engineering. 
First, the fundamentals of complex numbers are reviewed. Consider a complex 
number x = a + ib, where a is the real component and b is the imaginary component. 
In polar coordinates, x can be written as |x|eiφ, where |x| is the absolute value or 
magnitude of x, which is expressed in the form r = √

a2 + b2. When plotting x on a 
complex plane, the horizontal and vertical axes represent, respectively, the real and
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imaginary parts of the complex number. Therefore, x can be described as a point in 
a complex plane, with argument φ and magnitude r. This argument is tan φ = b/a. If 
we express this using the inverse function, we get φ = tan−1 b/a or φ = arctan−1 b/ 
a. If we express x itself in polar coordinates, it takes the form r(cos φ + i sin φ). 

Write down the ordinary differential equation. It will take the form shown here. 
When using complex notation to find the solution, only take the real or imaginary 
part at the end. 

m 
d2 x 

dt2 
+ β 

dx 

dt 
+ kx = F0e

iωt (2.5) 

Let us assume that x is expressed in complex notation, which is equal to C(cos ωt + 
i sin ωt) in real notation, as shown in Eq. (2.6): 

x = Ceiωt = C(cos ωt + i sin ωt) (2.6) 

where C is a complex number. Next, by substituting x as expressed in Eq. (2.6) into  
the differential Eq. (2.5), the left-hand side becomes: 

Left term = Cm(iω)2 eiωt + βiωCeiωt + kCeiωt
(= F0e

iωt
)

= [
m(iω)2 + βiω + k

]
x = Z(iω)x (2.7) 

Let Z(iω) represent the term in brackets on the right-hand side of Eq. (2.7), where 
Z(iω) is a complex number with argument iω. Setting Eq. (2.7) equal to F0 eiωt , we  
obtain: 

x = 
F0 eiωt 

Z(iω) 
(2.8) 

2.2.4 Review for Complex Number Relations 

A critical point in working with complex numbers is that when dividing two complex 
numbers, the magnitude of the result is the quotient of their magnitudes, and the 
argument of the result is the difference of their arguments. In other words, when 
dividing complex numbers Y 1 and Y 2, the following relationship holds: 

Y1 = |Y1|eiω1t , Y2 = |Y2|eiω2t , 
Y1 
Y2 

= 
|Y1| 
|Y2| e

i(ω1−ω2)t (2.9) 

Applying this to x, the magnitude of x is the quotient between the magnitude of 
F0 eiωt , i.e., F0, and the magnitude of Z:
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|x| = 
F0 

|Z| =
F0√(

k − mω2
)2 + β2ω2 

(2.10) 

x = F0√(
k − mω2

)2 + β2ω2 
ei(ωt−ϕ) (2.11) 

Consequently, Z and the magnitude of Z can be expressed as: 

Z(iω) = m(iω)2 + βiω + k = −  mω2 + βiω + k 
= (

k − mω2
) + βiω (2.12) 

|Z| =
√(

k − mω2
) + (βω)2 (2.13) 

and the argument is given by: 

tan ϕ = 
βω 

k − mω2 
(2.14) 

ϕ = tan−1 βω 
k − mω2 

(2.15) 

If we plot Z on a complex plane, it is shown in Fig. 2.1. Using these relationships, 
we determine the steady-state or special solution to Eq. (2.5). 

Fig. 2.1 Real and imaginary 
parts of Z in Eq. (2.12) in the  
complex plane
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2.3 Vibration in Electrical Circuits 

This section explains the oscillation behavior of electrical circuits. While V = IR 
applies to direct current (DC) circuits, the AC case requires a more complex analysis, 
as explained in Fig. 2.2. Consider an AC circuit where an inductor L, capacitor C, 
and resistor R are connected in series, as shown in Fig. 2.2. If an alternating voltage V 
= V 0 eiωt is applied across the circuit, the voltage drop across each element depends 
on the current I = I0 eiωt , where I0 is a complex number. The current is represented 
as a complex number because its phase usually differs from the applied voltage V. 
Differentiation and integration of I with respect to time are given by: 

dI 

dt 
= iωI0eiωt = iωI (2.16)

∫
Idt = 

1 

iω 
I0e

iωt + const. = 
1 

iω 
I + const. (2.17) 

where “const.” in Eq. (2.17) is the integration constant, which can typically be set to 
zero for simplicity. Therefore, the voltage drops across each element is expressed as 
follows: 

Inductance: The voltage drop is determined by the next relationship: 

VL = L 
dI 

dt 
= (iωL)I (2.18) 

Resistance: The voltage drop is the same as in a DC circuit: 

VR = IR (2.19) 

Capacitance: The voltage drop is determined by the relationship dQ/dT = I:

Fig. 2.2 LCR AC circuit 
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VC = 
Q 

C 
= 

1 

C

∫
Idt = I 

iωC 
,

(
dQ 

dt 
= I

)
(2.20) 

The total voltage drop across the series circuit is the sum of these individual voltage 
drops: 

VL + VR + VC = L 
dI 

dt 
+ IR + 

1 

C

∫
Idt = V (2.21) 

This introduces the concept of impedance, which is equivalent to resistance in a DC 
circuit. As shown above, the impedances of L, R, and C are equal to iωL, R, and 1/ 
(iωC), respectively. 

Next, we analyzed the basic equation of this series circuit using complex numbers. 
Let us consider current I0 eiωt , where I and I0 are complex numbers. By substituting 
this expression for I in the basic equation, we obtain:

(
iωL + R + 

1 

iωC

)
I0e

iωt = V0e
iωt (2.22) 

I0 = V0 

iωL + R + 1 
iωC 

= V0 

R + i
(
ωL − 1 

ωC

) = 
V0 

Z 
= 

V0 

|Z|eiϕ = 
V0 

|Z| e
−iϕ (2.23) 

By multiplying the numerator and denominator of the first equation of Eq. (2.23) 
by i and given that 1/i = −  i, we obtain the second equation. Subsequently, by 
substituting Z in the denominator, we obtain the third equation, where Z is the 
circuit impedance. Finally, by expressing Z in polar coordinates as |Z|eiφ, where φ 
represents the argument of Z, we obtain the fifth equation on the right-hand side. The 
definitions φ and |Z| are as follows (Fig. 2.3): 

ϕ = tan−1

(
ωL − 1 

ωC 

R

)
(2.24) 

|Z| =
√
R2 +

(
ωL − 

1 

ωC

)2 

(2.25)

2.4 Mechanical–Electrical Analogy 

Next, we explore the similarity between mechanical and electrical systems. The 
fundamental equations for this analogy are as follows: 

Electrical circuit:
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Fig. 2.3 Real and imaginary 
parts of Z in the complex 
plane

L 
d2 I 

dt2 
+ R 

dI 

dt 
+ 

I 

C 
= iωV0e

iωt (2.26) 

Mechanical vibration: 

m 
d2 x 

dt2 
+ β 

dx 

dt 
+ kx = F (2.27) 

Rotational system: 

I 
d2 θ 
dt2 

+ β 
dθ 
dt 

+ kθ = T (2.28) 

These systems are shown in Figs. 2.4, 2.5 and 2.6. The correspondence between 
elements in these systems is summarized in Table 2.1: the inductance L, resistance 
R, capacitance C, and applied voltage V in electrical circuits correspond to the mass 
m, damper β, spring  k, and forced excitation F in mechanical systems, and to the 
moment of inertia I, damping (fluid resistance) β, torsional spring k, and torque T in 
rotational systems.

Equations (2.26), (2.27), and (2.28) are all second-order linear ordinary differ-
ential equations with constant coefficients, making them mathematically analogous. 
Thus, by thoroughly studying Eq. (2.26), one can apply similar methods to analyze 
problems represented by Eqs. (2.27) and (2.28). This similarity forms the basis of 
the mechanical–electrical analogy.
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Fig. 2.4 LCR electrical 
circuit 

Fig. 2.5 
Spring-mass-damper system

2.5 Equivalent Circuit Networks 

In electrical engineering, in addition to considering electrical circuits in their original 
sense, electrical machines or devices such as generators, motors, and transformers 
can be replaced with equivalent circuit networks. One example is the equivalent 
circuit of an electric motor.
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Fig. 2.6 Torsional 
spring-moment of 
inertia-damper system 

Table 2.1 Correspondence between mechanical and electrical systems 

Equation (2.26) Equation (2.27) Equation (2.28) 

Inductance Mass Moment of inertia 

Resistance Damper Damper (fluid resistance) 

Capacitance Spring Torsional spring (moment required to produce unit relative 
angle) 

Voltage Excitation force Torque

2.6 Principle of Superposition 

The principle of superposition is a key concept in analyzing linear systems—phys-
ical systems governed by linear differential equations or integral equations with 
constant coefficients. For instance, Eqs. (2.26), (2.27), and (2.28) represent linear 
ordinary differential equations that describe the system’s response to external forces. 
An external force can be expressed as a Fourier series: 

F(t) = 
m∑

n=1 

Fne
inωt (2.29) 

In the case of electrical circuits, this external force corresponds to voltage. If the 
system impedance is Z(inω), the solution for the circuit’s response can be expressed 
as: 

x(t) = 
m∑

n=1 

Fn 
einωt 

Z(inω) 
= 

m∑
n=1 

cne
inωt (2.30)
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where 

cn = 
1 

T

∫ T 

0 
x(t)e−inωt dt (Complex Fourier series) (2.31) 

2.7 Conclusions 

In conclusion, this chapter integrates fundamental principles of mechanical and elec-
trical engineering, offering theoretical and practical tools for analyzing and designing 
AC circuits. By leveraging the analogy between mechanical and electrical systems, 
the chapter highlights methods for achieving efficient energy use in engineering 
applications. The main points are summarized as follows: 

(1) Fundamentals of AC circuits 

This chapter introduces the foundational principles of AC circuits, using complex 
notation to analyze the analogy between mechanical vibration systems and elec-
trical circuits. It emphasizes understanding energy flow in electrical circuits and 
determining circuit constants to optimize energy transmission. 

(2) Theory of vibrations and forced oscillations 

Solution methods for linear ordinary differential equations, particularly those 
describing damped free vibrations and forced oscillations, are described. These solu-
tions are frequently applied to AC circuits to understand the oscillatory behavior of 
electrical circuits. 

(3) Complex notation as a method of analysis 

Complex notation simplifies the solution of differential equations, making it partic-
ularly effective for AC circuit analysis. It aids in handling the real and imaginary 
components of oscillating systems, providing insights into physical phenomena. 

(4) Mechanical–electrical analogy 

The chapter demonstrates the analogy between mechanical and electrical systems, 
showing that the analysis of vibrational and rotational systems can be performed 
similarly to that of electrical circuits. This analogy enables mechanical engineers to 
apply electrical circuit principles to optimize mechanical system designs. 

(5) Equivalent circuits and the principle of superposition 

Representing electrical machines such as generators and motors with equivalent 
circuits simplifies the analysis of complex systems. Additionally, the principle of 
superposition enables the determination of system responses to multiple external 
forces, which is applicable to both electrical and mechanical domains.
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Chapter 2 Exercises 

Problem 1: LR series circuit 

If a voltage with an amplitude of 12 V and an angular frequency of 4000 rad/s is 
applied to a series circuit with resistance R = 1.2 kΩ and inductance L = 0.5 H, as 
shown in Fig. 2.7, calculate the current I flowing between terminals a and b, and the 
voltages VR and VL across R and L. 

Problem 2: CR parallel circuit 

If a voltage with an amplitude of 12 V and an angular frequency of 4000 rad/s is 
applied to a parallel circuit with resistance R = 5 kΩ and capacitance C = 0.1 μF, 
as shown in Fig. 2.8, calculate the currents IR and IC flowing through the resistor R 
and capacitor C, as well as the total current I. 

Problem 3: LCR series circuit I

Fig. 2.7 LR series circuit 

Fig. 2.8 CR parallel circuit 
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Consider an LCR series circuit with an inductor L = 0.1 H, a capacitor C = 100 μF, 
and a resistor R = 10 Ω, connected to an AC source with a voltage V (t) = 50 
sin(1000t). The units of V (t) and t are volts and seconds, respectively. Calculate the 
total impedance Z of the circuit, and the amplitude of the current I0. 

Problem 4: Mechanical system analogious to LCR series circuit 

Consider a mechanical system analogous to an LCR series circuit, where the mass, 
damping coefficient, and spring coefficient are m = 0.5 kg, β = 1 Ns/m, and k = 
100 N/m, respectively. The system is subjected to a sinusoidal driving force given 
by F(t) = 10 sin(10t). The units of F(t) and t are Newton and seconds, respectively. 
Write the equation of motion for the system and find the steady-state solution. 

Problem 5: LCR series circuit II 

Consider an AC circuit with two voltage sources applied to a series LCR circuit 
with L = 0.05 H, C = 200 μF, and R = 5 Ω. The first voltage source is V 1(t) = 40 
sin(100t), and the second is V 2(t) = 30 sin(200t). Find the total current through the 
circuit using the principle of superposition. 
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Chapter 3 
Fundamentals of AC Electrical Circuits: 
(2) Resonant Circuits and Various AC 
Circuits 

Abstract This chapter discusses the fundamentals of AC electrical circuits (2). 
Resonant circuits and various AC circuits are mainly covered. Series resonant 
circuits, role of series resonant circuits, and example of a series resonant circuit 
are explained. Following these, properties of complex numbers, basic characteris-
tics of LCR circuits, and various AC circuits of example problems are reviewed and 
explained. The chapter is concluded by the conclusions and exercise problems. 

3.1 Introduction 

In this chapter, we explain the fundamentals of AC electrical circuits and devices, 
with a particular focus on the theory and practical applications of series resonant 
circuits. Resonance is a crucial concept in electrical engineering, essential for under-
standing the behavior of current and voltage in AC systems. For series resonant 
circuits, we explore in detail how inductance, capacitance, and resistance interact 
under specific conditions to minimize the circuit’s impedance and maximize the 
current. This chapter aims to equip readers with a clear understanding of how these 
components work together to transmit and control energy, providing practical knowl-
edge for circuit design and analysis. As noted in the previous chapter, this explana-
tions below cover only the “steady-state solutions” after sufficient time has elapsed. 
The descriptions are still referred by Refs. [1–4]. 

3.2 Series Resonant Circuits 

Consider the circuit illustrated in Fig. 3.1, representing a series resonant circuit. The 
relationship between voltage V, current I, and impedance Z is V = IZ. In the figure, 
ω is angular frequency and equal to 2πf , and f is frequency of the power source. The 
total impedance of the circuit, its magnitude, and phase are:
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Fig. 3.1 LCR AC circuit 

Z = iωL + R + 
1 

iωC 
= R + i

(
ωL − 

1 

ωL

)
= |Z|eiϕ (3.1) 

|Z| = 

√
R2 +

(
ωL − 

1 

ωC

)2 

, ϕ  = tan−1 ωL − 1 
ωC 

R 
(3.2) 

Let I = I0 eiωt and V = V 0 eiωt , where I0 is a complex number given by: 

I0 = 
V0 

Z 
= V0 

|Z|eiϕ = 
V0 

|Z| e
−iϕ (3.3) 

Equations (3.2) and (3.3) indicate that I0 is maximized when: 

ωL − 
1 

ωC 
= 0 or  f = 

1 

2π 

√
1 

LC 
(3.4) 

This condition, known as series resonance, is illustrated in Fig. 3.2, where hori-
zontal axis represents the frequency f , and the vertical axis represents the current 
amplitude I0.

3.3 Role of Series Resonant Circuits 

3.3.1 Example of a Series Resonant Circuit 

A series resonant circuit is used to allow a large current to flow at a specific high 
frequency through a circuit containing R and L, by inserting an appropriate C. The  
impedance of the R and L circuit is expressed as follows:
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Fig. 3.2 Series resonance

|Z| =
√
R2 + ω2L2 (3.5) 

When the frequency ( f or ω = 2πf ) is very high, Z increases, making it difficult 
for current to flow under constant V, thereby reducing the current flowing through the 
circuit. To address this, a capacitor is added in series, with its capacitance C chosen 
to satisfy the resonance condition ω = √

1/(LC). If this is done, the impedance 
becomes: 

|Z| =
√
R2 +

(
ωL − 

1 

ωC

)2 

= R (3.6) 

Thus, at resonance, |Z| is minimized and I is maximized. A schematic of this process 
is shown in Fig. 3.3. 

Fig. 3.3 Schematic of a series resonant circuit
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3.3.2 Properties of Complex Numbers 

For a circuit with impedance Z, the amplitude of the current I0, the magnitude of the 
impedance |Z|, and the phase φ are given by the following equations: 

I0 = V0 

a + ib 
= V0 

|Z|eiϕ = 
V0 

|Z| e
−iϕ , |Z| = 

√
a2 + b2, tan ϕ = 

b 

a 
(3.7) 

In these equation, I and Z can be expressed as: 

I = 
V 

Z 
, Z = R + iX (3.8) 

where R is the resistance and X is the reactance. Adjusting the circuit constants such 
that X = 0 corresponds to series resonance. 

Defining the admittance of the circuit, Y, as the reciprocal of Z, then the current 
can be rewritten as I = YV. The admittance can also be expressed as a complex 
number Y = G + iB, where G is the conductance and B is the susceptance. Adjusting 
the circuit constants such that B = 0 corresponds to parallel resonance. 

3.4 Basic Characteristics of LCR Circuits (Review) 

Let the voltage be V = V 0 eiωt , where V 0 is a real number. The unknown quantities 
are Q = Q0 eiωt and I = I0 eiωt , with Q0 and I0 being complex numbers to account 
for phase differences. The voltage drops across each circuit element are expressed 
as: 

Inductance: 

VL = L 
dI 

dt 
= iωLI (3.9) 

Resistance: 

VR = IR (3.10) 

Capacitance: 

VC = 
Q 

C 
= 

1 

C

∫
Idt = I 

iωC 
,

(
dQ 

dt 
= I

)
(3.11) 

When R, L, and C are connected in series (see Fig. 3.4). The resulting basic 
equation for a series circuit is:
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Fig. 3.4 LCR series circuit 

Fig. 3.5 LCR parallel circuit 

L 
dI 

dt 
+ IR + 

1 

C

∫
Idt = V (3.12) 

where the unknown quantity is I. It is often convenient to analyze a series circuit in 
terms of the impedance Z. The impedance can be expressed as: 

Z = iωL + R + 
1 

iωC 
= R + i

(
ωL − 

1 

ωC

)
(3.13) 

If ω = √
1/(LC), the magnitude of Z is minimized and I is maximized, corresponding 

to the series circuit resonance. 
In the case of parallel circuits, it is more convenient to analyze them in terms 

of admittance Y instead of impedance; therefore, let us consider the parallel circuit 
shown in Fig. 3.5. Y is expressed as: 

Y = 
1 

Z 
= 

1 

R 
+ 

1 

iωL 
+ 

1 
1 

iωC 

= 
1 

R 
+ i

(
ωC − 

1 

ωL

)
(3.14) 

Because the magnitudes of Y and I are minimized for ω = 
√
1/(LC), this defines 

the parallel resonance condition. 

3.5 Various AC Circuits (Example Problems) 

Next, we examine various AC circuits that are useful for solving practical problems. 
Examples of such circuits are illustrated in Fig. 3.6a–f.

Considering the circuit in Fig. 3.6f, the impedance Z1 of the section containing R 
and C is: 

1 

Z1 
= 

1 

R 
+ 

1 
1 

iωC 

= 
1 

R 
+ iωC (3.15)
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Fig. 3.6 Various types of 
AC circuits

The total impedance Z of the circuit is: 

Z = Z1 + iωL = 1 

iωC + 1 R 
+ iωL (3.16) 

Similar calculations can be performed to determine the impedance or admittance 
of the other circuits. To solve these problems efficiently, you need to become familiar 
with a scientific calculator capable of handling complex numbers. Such calculators 
are readily available commercially, and students are encouraged to practice using 
them. Problems 1 and 2 in Chap. 3 exercises are recommended for homework.
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3.6 Conclusions 

In conclusion, this chapter has provided an in-depth exploration of the fundamentals 
of AC electrical circuits and devices, focusing especially on the theory and practical 
applications of series resonant circuits. Understanding resonance is vital in elec-
trical engineering for grasping how current and voltage behave in AC systems. The 
chapter detailed the interaction of inductance, capacitance, and resistance in series 
resonant circuits, demonstrating how these elements work together under specific 
conditions to minimize impedance and maximize current flow. This knowledge is 
crucial for anyone involved in circuit design and analysis, ensuring that readers are 
well-prepared to handle and optimize energy transmission and control within these 
systems. 

Chapter 3 Exercises 

Problem 1: Calculation of the impedance 

Calculate the impedance Z of an electrical circuit formed by the series and parallel 
connections of R and C. 

Problem 2: Parallel circuit 

For the circuit shown in Fig. 3.7, demonstrate that, if the relationship R = √
L/C 

holds, then the connection between terminals A and B is equivalent to a resistor R. 

Problem 3: LCR AC circuit 

Consider the LCR AC circuit shown in Fig. 3.8. An AC voltage V = V 0 cos ωt is 
applied between terminals A and B. 

(1) If the impedance of the circuit is Z, then the magnitude |1/Z| and argument φ of 
the admittance can be expressed as follows: 

|1/Z| =
√

1 

a2 
+ 

1 

b2 
, tan ϕ = −a 

b 

Write these expressions in terms of real numbers a and b using parameters 
ω, L, C, and R.

Fig. 3.7 AC parallel circuit 
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Fig. 3.8 LCR 
series-parallel AC circuit 

Fig. 3.9 LCR parallel 
resonant circuit 

(2) Express the current I flowing through the circuit as a real number using the 
admittance magnitude |1/Z|, phase difference φ, and other relevant parameters. 

(3) Suppose the circuit between A and B is connected to a household outlet with V 0 

= 141 (V, volts) and ω = 2π × 60 = 377 rad/s. Given R = 500 (Ω), L = 2 (H),  
and C = 3 (μF) (H), calculate the amplitude (A, amperes) of the AC current I 
and the tangent of the phase difference (tan φ). (Note: The SI units for L and C 
are Henry (H) and Farad (F), respectively, with μ representing 10−6.) 

Problem 4: LCR parallel resonant circuit 

An AC voltage is applied to the LRC parallel circuit shown in Fig. 3.9. Let  the  
current flowing through C be I1 = I01eiωt , the current flowing through L and R be 
I2 = I02eiωt , and the total current be I = I0eiωt . 

(1) Derive an equation for the circuit and three equations that relate I01, I02, and I0. 
(2) Express I0 with V 0, using the form a + bi (a, b: real numbers), where the real 

and imaginary parts of the complex number are separated. 
(3) Determine the resonant angular frequency, i.e., the angular frequency at which 

the current reaches its maximum under a constant voltage: 

ω0 = 1 √
LC 

√
1 − R2 

C 

L
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Chapter 4 
Impedance Matching and Energy 
Conversion (1): Power Calculation 
and Impedance Matching Apparatus 

Abstract This chapter covers the impedance matching and energy conversion (1); 
power calculation and impedance matching apparatus are mainly explained. On 
calculating the average value of the product of two periodic complex numbers, expla-
nations are presented. On power consumption of LR circuit, explanation is presented. 
Power consumption in capacitor and coil, circuit impedance matching both for cases 
with DC and AC circuits are covered. The chapter is concluded by the conclusions 
and exercise problems. 

4.1 Introduction 

This chapter provides a detailed explanation of how to calculate the average value 
of the product of periodic complex numbers. In particular, it focuses on calculating 
the time-averaged value of the product of their real parts when two periodic complex 
numbers, A and B are given. Specifically, as a nonlinear calculation is required to 
obtain the products of A and B, a method is proposed to calculate only the real part. 
In addition, a formula for the time-averaged value that is convenient for calcula-
tions is derived, and examples of its proof and concrete application are shown. This 
allows readers to deepen their understanding of how to handle complex numbers and 
calculate the average value of periodic signals. The descriptions are referred by Refs. 
[1–7]. 

4.2 On Calculating the Average Value of the Product 
of Two Periodic Complex Numbers 

Regarding the calculation of the average value of the product of two periodic complex 
numbers, the explanation is related to Problem 1 at the end of the chapter. Let the 
periodic complex numbers be A = A0 eiωt and B = B0 eiωt , and let A0 and B0 

be complex numbers. Because calculating the product of A and B is a nonlinear
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calculation, the real part is considered, and the calculation is performed in the form 
of Re(A) × Re(B), where Re denotes the real part. However, if only the time-averaged 
value needs to be calculated, this formula holds [1]. 

Re(A) · Re(B) = 
1 

2 
Re

(
AB∗) (4.1) 

The time average value of Re(A) and Re(B), i.e., the real part of A multiplied by the 
real part of B, is Re(AB*)/2. On the right side, B* represents the number of conjugated 
complexes. For example, if there is a complex number a + ib, its conjugate is a − 
ib; in other words, if the imaginary part is positive, it becomes negative, and if it is 
negative, it becomes positive. This is known as the conjugate complex number. The 
left-hand side represents the time-averaged value of the product of the real parts of 
A and B, which can be expressed by the integral. 

Re(A) · Re(B) = 
1 

T

∫ T 

0 
Re(A) · Re(B)dt (4.2) 

Equation (4.1) holds true when it is necessary to calculate the time-averaged value. 
The proof of this formula is as follows. 

Proof It is well known that the following formula holds in relation to conjugate 
complex numbers.

(
A∗)∗ = A, (4.3) 

(AB)∗ = A∗B∗, (4.4) 

Re(A) = (
A + A∗)/2, (4.5) 

Re(AB) = (
AB + A∗B∗)/2 (4.6) 

From this, we obtain the following equation: 

Re
(
AB∗) = 

1 

2

(
AB∗ + A∗B

)
(4.7) 

Re(A) · Re(B) = 
1 

4

(
A0e

iωt + A∗ 
0e

−iωt
)(
B0e

iωt + B∗ 
0e

−iωt
)

= 
1 

4

(
A0B0e

2iωt + A0B
∗ 
0 + A∗ 

0B0 + A∗ 
0B

∗ 
0e

−2iωt
)

(4.8) 

The terms in () including e2iωt and e−2iωt and become zero when the time average is 
taken, and we obtain the following formula or the formula for the average value of 
the product of complex numbers:
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Re(A) · Re(B) = 
1 

4

(
A0B

∗ 
0 + A∗ 

0B0
) = 

1 

4

(
AB∗ + A∗B

) = 
1 

2 
Re

(
AB∗) (4.9) 

(Proof is completed.) 

The application of this formula will be explored in future studies. Note that 
complex analytical representations are generally unavailable for nonlinear systems. 
However, using this formula, the time-averaged value, which is a nonlinear calcula-
tion, can be calculated easily. This is the explanation related to Problem 1 at the end 
of the chapter. 

4.3 Power Consumption of LR Circuit 

As mentioned earlier, in Problem 1, calculate the instantaneous power P = VI and 
average power P = ∫ T 

0 VIdt/T = VI of the LR circuit shown below, where T is the 
period, ω = 2π/T. This indicated the power consumption of the circuit. 

Answer and another solution using formula (4.1) are shown below. 

4.3.1 Solution by Calculating the Real Part 

First, we will answer by calculate the real part. As the actual applied voltage is V 0 

cos ωt, we ultimately consider the real part. This is the basic principle of the process. 
By performing calculations for this circuit, we obtain the following: 

I = I0eiωt , (R + iωL)I0 = V0, I0 = V0 

R + iωL 
= 

V0 

Z 
(4.10) 

|Z| =
√
R2 + ω2L2, tan ϕ = 

ωL 

R 
, I = V0 √

R2 + ω2L2 
ei(ωt−ϕ) (4.11) 

Now, we consider the real part. Equation (4.12) is obtained. 

I = V0 √
R2 + ω2L2 

cos(ωt − ϕ) (4.12) 

Since the instantaneous power consumption P is VI, equation (4.13) is obtained. 

P = VI = V 2 0 √
R2 + ω2L2 

cos(ωt) cos(ωt − ϕ) 

= V 2 0 
2 
√
R2 + ω2L2 

[cos(2ωt − ϕ) + cos ϕ] (4.13)
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This form is obtained from the formula for converting the product of cosine functions 
into a sum. For mathematical formulas, please refer to mathematical formulas book 
such as Ref. [8]. Various formulae have been described. Nowadays, we can use 
mathematical processing software such as Mathematica, instead of the formula book. 
Take the average of this Eq. (4.13) or the average of P. Represent the average with a 
superscript bar. Note that cos(2ωt − ϕ) = 0 this is because it is periodic over time 
and the average of trigonometric functions is 0. Therefore 

P = V 2 0 
2 
√
R2 + ω2L2 

cos ϕ = V 2 e √
R2 + ω2L2 

cos ϕ (4.14) 

This is the answer. If we express the effective voltage as V e, we can obtain the 
second equation, which also provides an answer. In this equation, cos φ is the power 
factor, and Ve = V0/

√
2 is called the effective voltage. 

4.3.2 Alternative Solution Using the Formula for the Average 
Value of the Product 

An alternative solution is explained. In other words, if there are time-varying quan-
tities A and B, taking their real values and multiplying them yields an average Re(A 
× B*)/2. This is explained by Eq. (4.1). This is used to calculate the power. To find 
that the averages of VI, A and B are now V and I, we apply them to Eq. (4.1). The 
average value of VI is expressed as follows, using the above formula: 

VI = 
1 

2 
Re

[
V 2 0 √

R2 + ω2L2 
eiωt e−i(ωt−ϕ)

]
= 

1 

2 
Re

[
V 2 0 √

R2 + ω2L2 
eiϕ

]

= V 2 0 
2 
√
R2 + ω2L2 

cos ϕ (4.15) 

Please note that the exponent of e−i(ωt−φ) in the second term on the right-hand side has 
negative signed phase. As we proceed with the calculation, we obtain if we consider 
the real part of this equation, we obtain the same result as if we are extracting the 
real part of the calculation. This is an important expression. 

Next, we explain misunderstandings and mistakes. By multiplying V and I 
directly, the instantaneous power P = VI becomes 

P = VI = V 2 0 √
R2 + ω2L2 

ei(2ωt−ϕ) (4.16) 

This is a mistake. Multiplication must be performed by separating the real parts, but 
it is a mistake to simply multiply them. Moreover, the average value of P is zero in 
this equation, which is a complete mistake. Please be careful for this mistake.
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4.4 Power Consumption in Capacitor and Coil 

In this section, the power consumption of the capacitor and coil are explained. 
Although it is written here, this item is a reference advanced topic. Please read the 
manuscript if you are interested. First, the results are explained. It has been proven 
that, generally, when the voltage is only a sine wave, the power consumption of 
the capacitor alone and the coil alone in a series circuit with a resistor is zero, and 
the power is consumed only by the resistor. If you are interested, please study the 
examples in Sect. 4.4.1 below. 

4.4.1 Power Consumption in Resistance and Coil 

Example 1 In a series circuit of R and L as shown in Fig. 4.1, the power is consumed 
by R and L. 

Answer 

I = V0 √
R2 + ω2L2 

ei(ωt−ϕ) (4.17) 

tan ϕ = 
ωL 

R 
(4.18) 

Therefore (see Fig. 4.2), the total power of the entire circuit is 

P = 
1 

2 
Re

(
VI∗) = V 2 0 

2 
√
R2 + ω2L2 

cos ϕ (4.19)

On the other hand, the voltage VR applied to R is given by the following equation.

Fig. 4.1 LR AC circuit with 
power source V = V0 cos ωt 
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Fig. 4.2 Complex plane of 
the circuit in Fig. 4.1

VR = 
V0R eiωt 

R + iωL 
= V0 

R eiωt √
R2 + ω2L2eiϕ 

= V0 cos ϕ · ei(ωt−ϕ) (4.20) 

The power is calculated using Eqs. (4.17) and (4.20) as follows: 

PR = 
1 

2 
Re

(
VRI

∗)

= 
1 

2 
Re

[
V0 cos ϕ · ei(ωt−ϕ) V0 √

R2 + ω2L2 
e−i(ωt−ϕ)

]

= V 2 0 
2 
√
R2 + ω2L2 

cos ϕ (4.21) 

This is the same as Eq. (4.19). On the other hand, the voltage VL applied to L is 

VL = 
iωLV0eiωt 

R + iωL 
= V0 

ωLieiωt √
R2 + ω2L2eiϕ 

= V0 sin ϕ · iei(ωt−ϕ) (4.22) 

The power is calculated from Eqs. (4.17) and (4.22) as follows:  

P = 
1 

2 
Re

(
VLI

∗) = 
1 

2 
Re

(
V0 sin ϕ · i V0 

R2 + ω2L2

)
= 0 (4.23) 

Therefore, it can be seen that the power consumed by reactance L is 0, and all power 
is consumed by resistance R. 

Example 2 In a circuit with resistor R and capacitors C and C′ connected as shown 
in Fig. 4.3, calculate the power consumption P of C′.

Answer 

The total impedance is given by the following formula:
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Fig. 4.3 Circuit in which 
resistor R and capacitors C 
and C′ are connected

Z = R + 1 

iω(C + C ′) 
= R − i 

1 

ω(C + C ′) 
(4.24) 

The total current I = I0 eiωt is obtained as follows. 

I0 = 
V0 

Z 
= 

V0 

|Z| e
−iϕ (ϕ <  0) (4.25) 

(see Fig. 4.4). 

|Z| =
√

R2 + 1 

ω2(C + C ′)2 
, tan ϕ = − 1 

Rω(C + C ′) 
(4.26) 

On the other hand, if the currents to C and C′ are I1 and I2, I1 = I01 eiωt and I2 = 
I02 eiωt , and the following equation is obtained: 

I0 = I01 + I02 (4.27) 

If the voltage applied to C and C′ is V ′ = V ′
0 eiωt , the following equation is obtained:

Fig. 4.4 Complex plane of 
the circuit in Fig. 4.3 
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V ′
0 = 

I01 
iωC 

= 
I02 
iωC ′ , Therefore, I01 = I02 

C 

C ′ (4.28) 

From Eq. (4.27), 

I0 = I02
(
1 + 

C 

C ′

)
(4.29) 

From Eqs. (4.25) and (4.29), we obtain 

I02 = 1
(
1 + C C ′

)
V0 

|Z|e
−iϕ (4.30) 

I2 = 1
(
1 + C C ′

)
V0 

|Z|e
i(ωt−ϕ) (4.31) 

Furthermore, the voltage applied to C′ is given by the following equation from 
the relationship in Eq. (4.30) and 1/i = −  i = e−iπ/2 

V2 = V ′
0e

iωt = 
I02 
iωC ′ e

iωt = V0 

ω(C + C ′) 
1 

|Z| e
i(ωt−ϕ− π 

2 ) (4.32) 

From Eqs. (4.31) and (4.32), and P = Re(V2)Re(I2) = Re
(
V2I∗

2

)
/2 

V2I
∗ 
2 =

V0 

|Z|ω(C + C ′) 
ei(ωt−ϕ− π 

2 )
C ′

C + C ′
V0 

|Z| e
−i(ωt−ϕ) 

= V 2 0 C
′

|Z|2 ω(C + C ′)2 
e− iπ 

2 = V 2 0 C
′

1 
ω + R2ω(C + C ′)2 

(− i) (4.33) 

Therefore, 

P = 
1 

2 
Re

(
V2I

∗ 
2

) = 0 (4.34) 

From the above, it can be observed that the power consumption of the capacitor alone 
is zero, and power is consumed only by the resistor. 

4.5 Circuit Impedance Matching 

Impedance matching involves adjusting the circuit constants such that the power 
supply can deliver maximum power (energy) to the load. This concept is important 
in this context.
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4.5.1 Case with DC Circuit 

We now explain the importance of circuit impedance matching. Impedance matching 
involves adjusting the circuit constants so that the power supply can send the 
maximum amount of energy to the load. First, we consider the case of a DC circuit. 
We consider the circuit diagram shown in Fig. 4.5. There is a power supply that has 
internal resistance r and voltage V. Consider a DC circuit to which load resistance 
R is connected. In the diagram, the DC power supply always has internal resistance 
r. When this power supply sends power P = VR I to load resistance R, the question 
is at what load resistance R will power P be maximized, and matching is achieved. 

The results are presented in this section. The power is maximized when R = r. 
The proof or explanation is provided below. 

Proof 
I = V 

r + R 
(4.35) 

Therefore, we obtain the following equation for the power P: 

P = IR2 = V 2R 

(r + R)2 
= V 2R 

r2 + 2Rr + R2 
= V 2 

r2 
R + 2r + R 

(4.36) 

Differentiate denominator = r2/(R + 2r + R) with respect to R and set this value to 
0. In other words, if we set d(denominator)/dR = 1 − r2/R2 = 0, then because R > 
0, when R = r it will be a minimum. The denominator is the minimum, and we write 
this increase/decrease in Table 4.1. This is also the minimum value. In other words, 
P is the maximum value. This implies that in this circuit, power is maximized when 
R = r. 

Fig. 4.5 Circuit in which 
the load resistance R and 
internal resistance r at the 
power supply are connected 

Table 4.1 Increase/decrease 
table for the denominator of 
Eq. 4.36 when changing R 

R r 

d(denominator)/dR − 0 + 

denominator ↘ Local minimum ↗
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4.5.2 Case with AC Circuit 

Next, we examine the case of AC circuit. In Fig. 4.6, the AC power source V always 
has an internal impedance ZS (= RS + iXS: constant). When this power source sends 
power P = VR I to a load impedance ZR (= RR + iXR: variable), the problem is what 
load impedance resistance ZR is required to maximize power P and achieve circuit 
matching. In conclusion, the power is maximized when the following conditions are 
satisfied: ZS = ZR* or  RS = RR, XS = −  XR, that is, when ZS and ZR are complex 
conjugates, the power is maximized. 

A representation of the complex plane is shown in Fig. 4.7. The proof is more 
complicated than the DC circuit case as shown below. 

Proof Assuming this V = V 0 eiωt , we obtain the following equation: 

I = V 

ZS + ZR 
= V0 

|ZS + ZR|e
i(ωt−ϕ) , tan ϕ = 

Im(ZS + ZR) 
Re(ZS + ZR) 

= 
XS + XR 

RS + RR 
(4.37) 

If we calculate power using the average value formula, we get the following formula.

P = 
1 

2 
Re

(
VRI

∗) = 
1 

2 
Re

(
ZRI · I∗) = 

1 

2 
Re

(
ZR|I |2

)

Fig. 4.6 Circuit in which 
load impedance ZR and 
internal impedance ZS at the 
power supply are connected 

Fig. 4.7 Complex plane of 
the circuit in Fig. 4.6 
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Table 4.2 Increase/decrease 
table for the denominator of 
Eq. 4.39 when changing R 

R r 

∂(denominator)/∂RR − 0 + 

denominator ↘ Local minimum ↗

= 
1 

2 
Re

[
(RR + iXR) 

V 2 0 
|ZS + ZR|2

]

= V 2 0 RR 

2|ZS + ZR| = 
V 2 0 
2 

RR[
(RS + RR)

2 + (XS + XR)
2
] (4.38)

Note that RS and RR are always positive, whereas XS and XR are negative. 
Differentiating the denominator of P with respect to XR. 

If we put ∂(denominator)/∂XR = 2(XS + XR) = 0, XS = −  XR and P becomes 
maximum. In other words, P reaches a maximum when |XS | = |XR| and XS have 
signs opposite to XR. Therefore, 

P = 
V 2 0 
2 

RR 

(RS + RR)
2 = 

V 2 0 
2 

1
(
R2 
S 

RR 
+ 2RS + RR

) (4.39) 

If we set ∂(denominator)/∂RR = 1 − R2 
S /R

2 
R = 0, then the denominator is the 

minimum and P is the maximum for RS = RR and RS > 0 and RR > 0, respectively 
(see Table 4.2). 

In summary, to achieve impedance matching that satisfies the conditions RS = RR 

and XS = −  XR, a matching circuit consisting of C and L is inserted between ZS and 
ZR to maximize the change in electrical energy from the power supply to the load. 
As previously explained, if it is a complex conjugate, the power is maximized. 

4.6 Matching for the Plasma Apparatus 

In an inductively coupled plasma (ICP) [9] cleaning system and a capacitively 
coupled plasma (CCP) system, a matching circuit is installed between the power 
supply and the coil to apply the maximum energy to the coil with a high frequency 
to form a plasma. For example, it consists of two variable capacitors, C1 and C2, as  
shown in Fig. 4.8. C1 is semi-fixed, and C2 can be adjusted for matching. The output 
impedance of the power supply is typically designed to be 50 Ω. The induction coil 
has a high impedance of several hundred ohms or more when no plasma is gener-
ated; however, the impedance drops sharply when plasma is formed. Considering the 
problem of matching the load of Z = 16 + 30i to the power supply of Zc = 50 Ω at f 
= 13.56 MHz, C1 = 1.68 nF and C2 = 510 pF are determined as the matched values 
using a Smith chart. A normal variable capacitor is used for C1, a vacuum variable
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Fig. 4.8 Matching circuit 
with the ICP apparatus [9] 

capacitor is usually used for C2, and is electrically changed by servo mechanisms for 
automatic matching. In other words, plasma irradiation is possible by simply turning 
on the switch. Remarks, to achieve impedance matching so that RS = RR and XS = 
− XR are satisfied, a matching circuit consisting of C and L is inserted between ZS 

and ZR. This maximizes electrical energy conversion from the power supply to the 
load. 

4.7 Conclusions 

In conclusion, this section has effectively provided a comprehensive guide on how to 
calculate the average value of the product of periodic complex numbers, particularly 
emphasizing the calculation of the time-averaged value of the real parts of two given 
periodic complex numbers, A and B. The process requires a nonlinear approach to 
obtaining the products of A and B, and a specialized method has been proposed 
to focus solely on calculating the real part. Moreover, a formula has been derived 
that simplifies the calculation of the time-averaged value, supported by examples 
of its proof and practical application. This detailed exposition enables readers to 
enhance their understanding of complex numbers and effectively compute the average 
value of periodic signals. Following this, impedance matching and energy conversion 
using Smith chart and matching circuit design methods are further discussed in next 
Chap. 5. 

Chapter 4 Exercises 

Problem 1: Products of two complex variables 

When there are any two periodic complex unknown variables, A = A0 eiωt and B = 
B0 eiωt (A0 and B0 are also complex variables), the method described in this section 
cannot be used for equations that contain their products, i.e., nonlinear equations 
(systems). To calculate the products, the real (or imaginary) parts must first be sepa-
rated. However, as is often the case, the product in an equation that governs the
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Fig. 4.9 A series circuit 
(V = V0 cos ωt) 

time average value can be calculated as Re(AB*)/2 as the time average value. Prove 
this. Note that Re( ) represents the real part and * represents the complex conjugate 
number. 

Problem 2: Instantaneous and average powers 

Calculate the instantaneous and average powers of the series circuits R and L shown 
in Fig. 4.9. 

Problem 3: Equivalent circuit network of the transformer 

Figure 4.10 shows the equivalent circuit network of the transformer. The impedance 
is measured at 60 Hz 

(1) Calculate the current when an AC voltage of 130 V is applied between terminals 
A and B, and three Ω resistors are connected between terminals C and D. 

(2) Calculate the current at 500 Hz when terminals C and D are short circuited. 

Problem 4: LCR parallel AC circuit 

Figure 4.11 shows an L, C, R parallel AC circuit

(1) The reciprocal Y = 1/Z of the circuit impedance Z is called the admittance. Find 
the complex expression for Y and its magnitude.

Fig. 4.10 Equivalent circuit network of the transformer 
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Fig. 4.11 LCR parallel AC 
circuit 

(2) If an AC voltage V = V 0 cos ωt is applied to the circuit, derive an expression 
for the current I flowing through the circuit from the relationship I = Y V. Note  
that tan−1 may be included in the result. 
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Chapter 5 
Impedance Matching and Energy 
Conversion (2): Smith Chart 
and Matching Circuit Design Method 

Abstract This chapter covers the impedance matching and energy conversion (1). 
Smith chart and matching circuit design method are explained. First, the circuit 
impedance matching method is summarized. Design of matching circuit using Smith 
chart and impedance chart and admittance chart are explained. Trajectories on Smith 
chart are explained for cases of connecting C in series to a load, connecting L in series 
to a load, connecting R in series to an impedance load, connecting C in parallel to a 
load, connecting L in parallel to a load, connecting R in parallel to an impedance load, 
and connecting a transmission line to an impedance load. The chapter is concluded 
by the conclusions and exercise problems. 

5.1 Introduction 

Impedance matching is an essential concept for optimizing the power transfer 
between each component in a circuit and plays a fundamental role in electrical 
engineering. By adjusting the circuit constants, impedance matching ensures that 
maximum power is transferred from the source to the load. This principle is partic-
ularly important in applications requiring efficient power transfer such as antenna 
designs, radio frequency (RF) circuits, and various electronic devices. Maximum 
power transfer is achieved when the source impedance (ZS) is the complex conju-
gate of the load impedance (ZR*). Engineers have used a powerful graphical tool 
called the Smith chart to assist in this matching process. The Smith chart simplifies 
complex calculations and allows the visualization of impedance transformations. 
Despite advances in computer tools, the Smith chart holds value, especially for 
helping understand and visualize impedance transformations. This section describes 
the design and application of impedance-matching circuits using a Smith chart. 
Important topics are covered, including impedance and admittance charts, trajec-
tory plots, and practical examples of the series and parallel connections of R, L, and 
C components. Mastering these techniques enables engineers to achieve the desired

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
M. Okubo, Electrical Sustainable Energy for Mechanical Engineering, 
https://doi.org/10.1007/978-981-96-5170-2_5 

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-5170-2_5&domain=pdf
https://doi.org/10.1007/978-981-96-5170-2_5


68 5 Impedance Matching and Energy Conversion (2): Smith Chart …

impedance matching to ensure efficient and reliable operation of a variety of elec-
tronic systems. References in this chapter are [1–3]. A Smith chart sheet is obtained 
in Ref. [3]. 

5.2 Circuit Impedance Matching (Summary) 

First, we review the contents of the previous chapter regarding circuit impedance 
control procedure in the following bullet points. 

• Adjusting the circuit constants such that the power supply can send maximum 
power (energy) to the load is called impedance matching. 

• If the power supply impedance is Zs and the load impedance is ZR, then ZS = 
ZR* or  RS = RR and XS = −  XR; in other words, the power input to the load is 
maximized when ZS and ZR are complex conjugates. It is important to design the 
matching circuit appropriately. 

• For example, ZS can be a power supply, and ZR can be an antenna, electronic, or 
electrical equipment. 

5.3 Design of Matching Circuit Using Smith Chart 

The design of the matching circuit is explained using the Smith chart. By assuming 
the shape of the matching circuit using the complex number calculations we have 
practiced so far, we can determine the constants of the matching circuit such that RS 

= RR and XS = −  XR are satisfied. Smith charts are widely used to design matching 
circuits. With the development of computers, its necessity has somewhat diminished, 
but as explained below, it does not require complex algebraic calculations and is 
useful for understanding matching conditions. The trajectory drawn on the Smith 
chart when connecting L, C, R or a transmission line between the power supply and 
load is explained below. 

5.3.1 Impedance Chart and Admittance Chart 

We explain the paths or trajectories that appears on the Smith chart when a LCR 
or transmission line is connected between a power supply and a load. First, we 
describe the impedance and admittance charts. In Fig. 5.1, the circular diagram is 
the impedance chart, and the diagram on the right is the admittance chart.

An impedance chart is used to connect L or C in series to the electrical circuit, 
and an admittance chart is used to connect L or C in parallel to the circuit. 

Figure 5.2 shows a complex plane. An impedance chart is created by bending the 
endpoints along the axis. This is the impedance chart. The horizontal axis indicates
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Fig. 5.1 Impedance and 
admittance charts

resistance. A complex coordinate axis exists on the upper side, ranging from zero to 
infinity, where i is an imaginary unit. It moves in the directions of plus and minus 
infinity. By bending the endpoints, the chart is transformed into a circle, as shown 
in Fig. 5.3, and by following these steps, the endpoints can be bent along the axis 
to create an impedance chart. The admittance chart represents the inverse of the 
impedance chart. 

The chart in Fig. 5.4 is an impedance chart and admittance chart superimposed on 
each other. To read this chart, the horizontal line that divides a circle in half vertically 
represents pure resistance, with the left end being 0 Ω (short circuit), the right end 
being ∞ Ω (open circuit), and the center being 50 Ω. However, the Smith chart paper 
described later lists the normalized impedance of 1 Ω, which is obtained by dividing 
all impedances by 50. This is an important point. 

We review the terminology. Impedance is defined as Z = R + iX, where R is the 
resistance and X is the reactance. The admittance is Y = 1/Z = G + iB, where G is 
the conductance and B is the susceptance.

Fig. 5.2 Resistance and 
reactance space
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Fig. 5.3 Resistance and 
reactance space when 
bending end points (±∞) 
along the axis

It is important to note that the impedance chart on the left side of Fig. 5.5 is shown 
as a red line in the Smith chart sheet, where the value Z = R + iX is indicated. Below 
the horizontal line, the value of reactance X is negative. However, the absolute values 
are shown without negative signs in the sheet. 

The admittance chart on the right side of Fig. 5.5 is a blue line in the Smith 
chart sheet, where the value Y = G + iB is indicated. Above the horizontal line, the 
value of susceptance B is negative. However, the absolute values are shown without 
negative signs in the sheet.

Fig. 5.4 Impedance and 
admittance charts inside a 
circle 
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Fig. 5.5 Impedance chart 
(the downward direction is − 
iX) and admittance chart (the 
upward direction is − iB) 

5.3.2 Trajectories on Smith Chart 

5.3.2.1 Connecting C in Series to a 50 Ω Load 

Next, we will explain the trajectory in the Smith chart [3]. In the case of a series 
connection, we should use the red diagram. When a capacitor C is connected in series 
to a 50  Ω load, the impedance follows a trajectory like the chart in Fig. 5.6, and as 
the capacitance of C becomes smaller and approaches 0 pF, the trajectory eventually 
reaches infinity. This is the behavior when C is connected in series to a 50 Ω resistor. 

5.3.2.2 Connecting L in Series to a 50 Ω Load 

Next, if an inductance L is connected in series to a 50 Ω load, the impedance will 
follow a path like the chart in Fig. 5.7, and as L gets larger, the trajectory will 
eventually reach infinity.

Fig. 5.6 Connecting C in 
series to a 50 Ω load 
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Fig. 5.7 Connecting L in 
series to a 50 Ω load 

Fig. 5.8 Connecting R in 
series to an impedance load 

5.3.2.3 Connecting R in Series to an Impedance Load 

Next, if you connect R in series to a load of R + iX, the impedance will follow a 
trajectory like the chart in Fig. 5.8, and as R gets larger, the trajectory eventually 
reaches infinity. 

5.3.2.4 Connecting C in Parallel to a 50 Ω Load 

When a capacitor is connected in parallel to a 50 Ω load, the admittance follows a 
path as shown in the chart in Fig. 5.9, and as the capacitance of C increases, the 
trajectory eventually reaches 0 on the iso conductance circle. 

Fig. 5.9 Connecting C in 
parallel to a 50 Ω
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Fig. 5.10 Connecting L in 
parallel to a 50 Ω load 

5.3.2.5 Connecting L in Parallel to a 50 Ω Load 

When an inductance is connected in parallel to a 50 Ω load, the admittance follows 
a path like the chart in Fig. 5.10, and as L becomes smaller, the trajectory eventually 
reaches 0. 

5.3.2.6 Connecting R in Parallel to an Impedance Load 

When R is connected in parallel to a load of R + iX Ω, the admittance follows a path 
as shown in the chart in Fig. 5.11, and as R becomes smaller, the trajectory eventually 
reaches 0. 

5.3.2.7 Connecting a Transmission Line to an Impedance Load 

When an element with a time delay, such as a coaxial cable or stripline, is inserted, 
it moved clockwise along the bold line on the left side as shown in Fig. 5.12. The  
bold line is called an “equal SWR circle.” The amount of rotation 2θ corresponds 
to the time it takes to travel round trip through the delay line. θ = 360 (length)/ 
(effective wavelength), where unit is degree. Effective wavelength is the wavelength 
shortened by 1/

√
εr when the transmission line is wrapped in a dielectric material. 

If the dielectric is Teflon, it is approximately 70% of the time in vacuum. If the

Fig. 5.11 Connecting R in 
parallel to an impedance load 
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Fig. 5.12 Connecting a 
transmission line to an 
impedance load 

characteristic impedance of the delay line is different from the normalized impedance 
(Z0), the center of rotation is on the other position. 

The circuit shown in Fig. 5.13 is the trajectory when a transmission line of Z = 
50 Ω is connected between a 100 Ω load and an input, and moves in an arc on a circle 
centered at Z = 50 Ω and tangent to the load Zr = 100 Ω. In the example below, 
for a transmission line of λ/4 length, the impedance seen from the input is a pure 
resistance of Zi = Z2/Zr = 502/100 = 25 Ω. 

About transmission lines, in an actual circuit, when connecting L, C, etc. to the  
circuit, there will always be physical distance between the components; therefore, it 
is necessary to consider the components as having transmission lines between them. 
The theory of transmission lines (electrical transmission lines) will not be explained 
in detail in this book. Please refer to Refs. [1, 2]. 

Related remarks on the Smith Chart are noted. Smith chart-related software Smith 
Ver. 4 [4]. Please refer to these addresses for details on the free software that can 
be used to design circuits using Smith charts and how to use them. The web page 
[5] provides a detailed explanation of how to use Smith V3.10. Furthermore, several 
smartphone apps have also been released. For example, the Android version of Smith 
Chart Matching Calc. In this software, the load is placed on the left and the power 
supply is placed on the right. The website of Online Smith Chart Tool is also useful 
for matching calculation.

Fig. 5.13 Connecting a 
transmission line of Z = 
50 Ω to an impedance load 
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5.4 Conclusions 

In conclusion, this section underscores the critical importance of impedance matching 
in optimizing power transfer across circuit components, a key principle in electrical 
engineering. By tuning circuit constants, impedance matching maximizes power 
delivery from the source to the load, crucial in efficient power applications like 
antenna design, RF circuits, and various electronic devices. Optimal power transfer 
is achieved when the source impedance matches the complex conjugate of the load 
impedance. Engineers leverage the Smith chart, a robust graphical tool, to facilitate 
this matching process. The Smith chart not only simplifies complex calculations but 
also aids in visualizing impedance transformations. Despite technological advance-
ments, the Smith chart remains invaluable, particularly in helping to comprehend 
and visualize impedance transformations. This section has detailed the design and 
application of impedance-matching circuits using the Smith chart, covering essential 
topics such as impedance and admittance charts, locus plots, and practical exam-
ples involving series and parallel connections of resistors, inductors, and capaci-
tors. Mastery of these techniques ensures engineers can effectively achieve desired 
impedance matching, leading to efficient and reliable electronic system operations. 
Following this, impedance matching and energy conversion of example problems, 
transformers analysis, and induction motor analysis are explained in next Chap. 6. 

Chapter 5 Exercises 

Problem 1: Calculation of complex values 

Familiarity with the Smith chart calculations and the calculation of (1 + i)/(1 − 9i) 
using a scientific calculator. 

Problem 2: Calculation for AC LCR circuit I 

In the LCR circuit in Fig. 5.14, 

(1) Find the admittance (reciprocal of impedance) between terminals A and B. 
Express it as a + bi (a and b are real numbers, i is an imaginary unit). 

(2) Find the expression (amplitude and phase) of current I that flows through the 
circuit when an AC voltage is applied between terminals A and B. ω is the 
angular frequency. 

(3) Explaining whether resonance occurs in the circuit. If so, we find the expression 
for the resonant angular frequency.

Problem 3: Calculation for AC LCR circuit II 

In the circuit in Fig. 5.15, the impedance is shown in ohms for 60 Hz. In this case, we 
calculated the magnitude and phase of the current when a 60 Hz frequency, 100 V AC 
voltage is applied between terminals A and B, and a 1.0 mF capacitor is connected 
between terminals C and D.

Problem 4: (Advanced problem) Disks with periodical torque
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Fig. 5.14 AC circuit I

Fig. 5.15 AC circuit II

Three equal disks are attached at equal intervals to an elastic shaft. The spring constant 
between the disks (torque required to displace the disks by a unit angle) is C. 

(1) Find the natural frequency of this two-degree-of-freedom system. 
(2) Find an expression for the angular displacement of the three disks when a 

periodic torque is applied to the leftmost disk. 
(3) Show that when the angular frequency ω or 3ω of the periodic torque is equal 

to the natural frequency, the angular displacement of the disks becomes infinite 
(resonance phenomenon due to excitation at the natural frequency). 
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Chapter 6 
Impedance Matching and Energy 
Conversion (3): Example Problems, 
Transformers, and Induction Motors 

Abstract This chapter covers the impedance matching and energy conversion part 
(3): example problems on Smith chart, transformers, and induction motors are mainly 
covered. First, an example problem of matching circuits and formula for calculating C 
and L are explained. Other solutions for example problem are presented. Next, induc-
tive coupling circuits for transformers and induction motor are discussed. Equivalent 
circuits of a transformer and an induction motor are covered. Three-phase induction 
motor characterization are discussed with a circle diagram. The chapter is concluded 
by the conclusions and exercise problems. 

6.1 Introduction 

This chapter describes impedance matching, a critical aspect of energy-conversion 
engineering. In particular, we focus on the theoretical and practical applications 
of impedance matching in electronics and communication engineering. Impedance 
matching is essential for minimizing power loss and preventing signal reflection, 
ensuring efficient transmission of signals from transmitters to receivers. 

The chapter begins by introducing basic concepts of impedance and admittance, 
explaining their impact on the design and performance of electronic circuits. This 
includes the calculation of impedance and an analysis of how different components— 
resistors, capacitors, and inductors—contribute to the overall circuit impedance. 

The continues by addressing impedance matching methods based on Smith charts, 
a powerful tool for visually representing complex impedance values and easily 
deriving solutions to matching problems. Readers will learn how to interpret Smith 
charts and apply them to real-world circuits. 

The chapter also describes matching methods using series and parallel connec-
tions, providing detailed explanations of their applications in circuit design. Practical 
exercises with actual circuit examples are included, bridging the gap between theo-
retical knowledge and practical implementation. In the second half of the chapter, 
examples of impedance-matching techniques are presented, offering readers oppor-
tunities to analyze problems and derive their own solutions. This approach helps

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
M. Okubo, Electrical Sustainable Energy for Mechanical Engineering, 
https://doi.org/10.1007/978-981-96-5170-2_6 

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-5170-2_6&domain=pdf
https://doi.org/10.1007/978-981-96-5170-2_6


80 6 Impedance Matching and Energy Conversion (3): Example Problems …

readers solidify the understanding of impedance matching principles and strengthen 
the ability to apply them to real-world problems of induction motors. 

Finally, the chapter provides a comprehensive understanding of impedance 
matching as it relates to energy conversion engineering, illustrating its role in 
enhancing technological efficiency [1–4]. The combination of detailed explanations, 
practical examples, and numerous diagrams ensures an effective balance between 
theory and practice, making the content accessible and valuable for both engineering 
students and professionals. 

6.2 Example Problem 1 of Impedance Matching 

In this section, the normalized impedance z (lower case letter), which is obtained 
by dividing the impedance Z by 50 Ω, and the corresponding admittance y = 1/ 
z, are represented within curly brackets {}. The problems and solving method are 
considered based on Ref. [1]. 

Example Problem 1 

Consider the matching a load with ZA = 16 + 30i Ω {z1 = 0.32 + 0.6i} at a frequency 
of 1 GHz (= 109 Hz) to a power source with ZC = 50 Ω {zC = 1}. 

Solution 1 

Three matching methods can be applied in this case. solution 1 is explained in this 
section, whereas solutions 2 and 3 are detailed in Sect. 6.4. 

In Fig. 6.1, point A corresponds to ZA = 16 + 30i {zA = 0.32 + 0.6i}. An equal-
resistance circle is drawn on the impedance chart through this point. In addition, an 
equal-conductance circle is drawn on the admittance through the final point C, 50 + 
0i {1 + 0i}. From the Smith chart, point B, where ZB = 16 − 23.33i Ω {zB = 0.320 
− 0.4666i, yB = 1/zB = 0.9996390 + 1.4575986i}, is defined as the intersection of 
both circles. Note that yB can be calculated using a scientific calculator from zB.

In summary, if a capacitor with capacitance C is connected in series at point A, 
the impedance moves to point B. Next, if an inductor with inductance L is connected 
in parallel at point B, the impedance moves to point C to achieve matching. In this 
case, the values of C and L are calculated as follows: (Note: capacitors should be 
connected closest to the load.) 

• The capacitance connected in series, based on the reactance difference between 
A and B, is:

∣
∣
∣
∣

1 

iωC

∣
∣
∣
∣
= [0.6 − (− 0.4666)] × 50 = 53.33 

C = 1 

2 × π × 109 × 53.33 
= 2.98434 × 10−12 F = 2.9846 pF 

(6.1)
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Fig. 6.1 Matching process using Smith chart for a circuit with C and L for zA = 16 + i30

• The inductance connected in parallel, based on the susceptance difference between 
B and C, is:

∣
∣
∣
∣

1 

iωL

∣
∣
∣
∣
= [0 − (− 1.4575986)]/50 = 0.029151972 

L = 1 

2 × π × 109 × 0.029151972 
= 5.459 × 10−9 H = 5.459 nH 

(6.2) 

6.3 Formula for Calculating C and L 

To calculate C and L, use the following equations: 

• In the case of series-connection, if the difference in normalized reactance (the 
imaginary part of z) is |ΔX|, the capacitance is given by: 

50|�X | = 
1 

2π fC 
and C = 1 

2π f × 50|�X | (6.3) 

where 2πf = ω. The inductance of the series-connected coils is: 

50|�X | = 2π fL and L = 
50|�X | 
2π f 

(6.4)
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• In the case of parallel-connection, if the difference in normalized susceptance 
(the imaginary part of y) is |ΔB|, the capacitance is given by: 

|�B| 
50 

= 2π fC and C = 
|�B| 

2π f × 50 
(6.5) 

The inductance of the parallel-connected coils is: 

|�B| 
50 

= 1 

2π fL 
and L = 50 

2π f × |�B| (6.6) 

6.4 Other Solutions 2 and 3, and Example Problem 2 

Let us now explain the other two solutions to the example problem considered in 
Sect. 6.2. 

Solution 2 

Starting at point A, where ZA = 16 + 30i Ω {zA = 0.32 + 0.6i}, connect capaci-
tance C1 in parallel. This causes the impedance to rotate clockwise along the equal-
conductance circle on the admittance chart, reaching point D, where ZD = 50 + 
37.5i {zD = 1.0 + 0.75i, yD = 1/zD = 0.640 − 0.480i}. Next, at point D, connect 
capacitance C2 in series. This moves the impedance counterclockwise along the 
equal-resistance circle on the impedance chart, ultimately reaching point C, 50 + 0i. 

Solution 3 

From point A, connect capacitance C3 in series. This causes a slight counterclockwise 
rotation along the equal resistance circle on the impedance chart, reaching point E, 
where ZE = 16 + 23i {zE = 0.320 + 0.460i, yE = 1/zE = 1.01911 − 1.46497i}. 
Next, at point E, connect capacitance C4 in parallel. This rotates impedance clockwise 
along the equal-conductance circle on the admittance chart, to reach point C, 50 + 
0i. 

Both solutions 2 and 3 require two capacitors, making them more cost-efficient 
than solution 1. 

Example Problem 2 

Draw solutions 2 and 3 on a Smith chart, as well as diagram of each circuit, and 
calculate the circuit constants and capacitances C1, C2, C3, and C4. 

Answer 

See Figs. 6.2 and 6.3 for the answers: C1 = 2.66 pF, C2 = 4.77 pF, C3 = 23.84 pF, 
C4 = 4.64 pF.
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Fig. 6.2 Matching process using Smith chart for another circuit with C1 and C2 for ZA = 16 + 
30i Ω 

Fig. 6.3 Matching process using Smith chart for another circuit with C3 and C4 for ZA = 16 + 
30i 

Solving problems 1, 2, and 3 in this chapter exercises are related with the Smith 
chart usage. 

6.5 Inductive Coupling Circuits 

6.5.1 Transformers 

This section examines inductive coupling circuits, including transformers and induc-
tion motors, using the previously introduced impedance calculation methods [2]. 
Inductive coupling circuits transmit AC power and signals through magnetic flux
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a b  

c 

Fig. 6.4 Transformers [2]: a iron-core transformer; b high-frequency transformer; and c circuit 
diagram 

between coils without direct electrical connections. These circuits are used to adjust 
AC voltage, match impedance, and block DC in AC circuits. 

An example circuit diagram is shown in Fig. 6.4, the circuit configuration depends 
on whether an iron core is present and whether the frequency is low or high. At low 
frequencies, an iron core is used (Fig. 6.4a). At high frequencies, two air-core coils are 
placed close together to allow magnetic flux coupling (Fig. 6.4b). Circuit diagrams of 
both configurations are shown in Fig. 6.4c, where N1 is the number of primary turns, 
N2 is the number of secondary turns, L1 and L2 are the reactances of the primary and 
secondary windings, respectively, and M is the mutual inductance. 

6.5.2 Relationships for Transformers 

In Fig. 6.5, the load impedance is inductively coupled to the power supply with voltage 
V 1 through a coupling coil with self-inductances L1 and L2 and mutual inductance 
M. The following equations describe the currents in the primary and secondary coils 
(I1 and I2): 

V1 = iωL1I1 ± iωMI2 (6.7)
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Fig. 6.5 Typical inductively coupled circuit [2] 

± iωMI1 = iωL2I2 + ZI2 (6.8) 

When the directions of I1 and I2 are such that their magnetic fluxes assist each other, 
the compound sign ± is +, and when the fluxes oppose each other, the compound 
sign ± is −. From Eqs. (6.7) and (6.8), 

V1 =
(

iωL1 + ω2M 2 

iωL2 + Z

)

I1 = Z1I1 (6.9) 

where Z1 is the impedance on the primary side. By rearranging, we obtain the 
following solution: 

Z1 = ω2M 2r 

r2 + (ωL2 + x)2 
+ i

[

ωL1 − 
ω2M 2(ωL2 + x) 
r2 + (ωL2 + x)2

]

(6.10) 

In the case of a short-circuited secondary coil (Z = 0), r = x = 0. Consequently, 
Eq. (6.10) reduces to: 

Z1 = iω
(

L1 − 
M 2 

L2

)

(6.11) 

where |Z| < L1. If there is no leakage flux, the impedance transforms directly from 
M 2 = L1L2 to Z1 = 0, similar to a primary short circuit.
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6.5.3 Transformer Coupled Circuit 

In the case of transformer coupling, leakage flux is designed to be minimum. Refer-
ring to Fig. 6.5, if the number of primary windings is N1 and the number of secondary 
windings is N2, then the impedance Z1 observed from the primary side of the circuit 
is given by: 

Z1 = iωL1 + 
ω2L1L2 
iωL2 + Z 

= 1 
1 

(L1/L2)Z 
+ 1 

iωL1 

(6.12) 

If no leakage flux exists: 

L1 = KN 2 1 , L2 = KN 2 2 (K : constant) (6.13) 

Therefore, 
L1 
L2 

=
(
N1 

N2

)2 

(6.14) 

Substituting Eq. (6.14) into Eq. (6.12) yields: 

Z1 = 1 
1 

(N1/N2)
2 Z 

+ 1 
iωL1 

(6.15) 

where Z1 is the impedance of (N1/N2)2Z and L1 is connected in parallel. The 
current flowing through L1, known as the excitation current, is usually designed 
to be negligible by increasing L1. In this case, the following relationship holds: 

Z1 ∼=
(
N1 

N2

)2 

Z (6.16) 

In other words, when passing through a transformer, the impedance changes by a 
factor of (N1/N2)2. In this case, the relationship between the secondary voltage V 2 

and current I2, and the primary voltage V 1 and current I1 is: 

V2 

V1 
= ±  

N2 

N1 
,

|V2| 
|V1| = 

N2 

N1 
(6.17) 

I2 
I1 

∼= ± 

√

L1 
L2 

= ±  
N1 

N2 
(6.18) 

In Eq. (6.18), I1/I2 is the reciprocal of the ratio between N1 and N2.
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Fig. 6.6 Inductively coupled 
circuit (L1 = 7 mH,  L2 = 
2 mH,  M = 3 mH,  R = 50 Ω) 

Example Problem 

Using complex notation, calculate the impedance Z1 seen from terminals a and b in 
the inductively coupled circuit shown in Fig. 6.6, whose frequency is f = 1 kHz.  

Answer 

Using Eq. (6.9), we obtain: 

Z1 = iωL1 + ω2M 2 

iωL2 + Z 
= i · 2π × 103 × 7 × 10−3 +

(

2π × 103
)2 × (

3 × 10−3
)2 

i2π × 103 × 2 × 10−3 + 50 

= i · 43.98 + 355.31 

i12.566 + 50 
= 6.68 + 42.3i � (Answer) (6.19) 

Z1 can also be calculated using the equivalent circuit in Fig. 6.7. 

Fig. 6.7 Equivalent circuit
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6.6 Induction Motor 

6.6.1 Equivalent Circuit of a Transformer related 
with an Induction Motor 

The equivalent circuit of an induction motor that rotates due to induction between 
the primary and secondary windings can be derived by considering the equivalent 
circuit of a transformer [3, 4]. As shown in Fig. 6.8a, when secondary current I2 flows 
through the secondary side of the transformer, a corresponding primary current I1 
is induced. If the induced electromotive forces in both the primary and secondary 
windings are V 1 and V 2, the power transmitted between the windings, ignoring the 
losses, is given by: 

V1I1 = V2I2 (6.20)

From Eq. (6.20): 

|V1| 
|V2| = 

I2 
I1 

= 
N1 

N2 
= α (6.21) 

where α is referred to as the turns ratio. Equation (6.21) indicates that connecting r2, 
x2, and R to the secondary through a transformer is equivalent to connecting α2r2, 
α2x2, and α2R directly to the primary. Therefore, the circuit shown in Fig. 6.8a can 
be transformed into the circuit shown in Fig. 6.8b. To account for the magnetizing 
current (reactive component) that generates magnetic flux in the iron core and the 
small active current that supplies iron loss, excitation impedances rM and xM are 
added to the circuit in Fig. 6.8b, resulting in the more accurate equivalent circuit 
shown in Fig. 6.8c. 

6.6.2 Equivalent Circuit of an Induction Motor 

In an induction motor, when the rotor of the secondary motor rotates with a slip s, the  
effective work equivalent to the load is expressed as sf where f is the frequency of 
the primary voltage. Consequently, the magnitude of the secondary voltage is sV 2, 
the reactance is sx2, and the secondary current is: 

I2 = sV2 
√

r2 2 + (sx2)2 
= V2 

√

(r2/s)
2 + x2 2 

= V2 
√

[r2 + (r2/s − r2)]2 + x2 2 
(6.22)
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Fig. 6.8 Transformer 
equivalent circuit: 
a transformer circuit, 
b equivalent circuit I, and 
c equivalent circuit II

a 

b 

c 

From this equation, it is evident that as the induction motor rotates, the resistance r2 
changes to r2/s. The winding resistance of the rotating motor r2 satisfies the following 
relationship: 

r2 
s 

− r2 = 
1 − s 
s 

r2 (6.23) 

This can be considered that the load resistance in Eq. (6.23) are inserted in the circuit. 
Therefore, the equivalent circuit of the induction motor can be drawn as shown in 
Fig. 6.9.

Since the excitation current ± M is often small enough to be ignored, the excita-
tion circuit r0 x0 can be approximately transferred to the terminal side, as shown in 
Fig. 6.10. This simplified circuit can also be considered a no-load circuit. Further-
more, the mechanical and copper losses are included in x0 and r0. The circuit depicted 
in Fig. 6.9 is called a T-type equivalent circuit, whereas that in Fig. 6.10 is known as 
an L-type equivalent circuit.
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Fig. 6.9 T-type equivalent 
circuit of an induction motor

Fig. 6.10 L-type equivalent circuit of an induction motor 

These diagrams are drawn for one phase. For a three-phase induction motor, 
if the line voltage is V 1l and the line current is I, then in the equivalent circuit, 
V1 = V1l/

√
3 and quantities such as r1 and x1 are converted to per-phase values of 

a Y-connection, and the result must be multiplied by three when calculating power 
or torque. An equivalent circuit can also be drawn for a Δ single-phase connection. 
In this case, quantities such as r1 and x1 are converted to per-phase values of the Δ 
connection. When the slip changes, the tip of the I1 vector describes a circular path. 
This technique, known as the circle-diagram method, is used to effectively calculate 
the motor’s characteristics. 

6.6.3 Three-Phase Induction Motor Characterization 

To determine various characteristics of a three-phase induction motor we can draw 
a circular diagram from the results obtained from primary winding resistance 
measurements, no-load tests, and locked-in tests [5].
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6.6.3.1 Principles and Equivalent Circuits of Three-Phase Induction 
Motors 

A three-phase induction motor comprises three symmetrical windings (u-, v-, and 
w-phase) on the stator (primary) side. When a symmetrical three-phase AC voltage is 
applied, a rotating magnetic field is generated in the iron core. The rotor (secondary) 
side can be considered to have three equivalent short-circuited symmetrical windings, 
generating torque due to the interaction between the rotating magnetic field and the 
current induced by the electromotive force in the rotor winding derived from said 
field. The speed at which the magnetic field rotates, called the synchronous speed, 
is expressed as 

Synchronous speed Ns = 
120f 

P

(

min−1
)

(6.24) 

where f is the power supply frequency, and P is the number of poles. During steady-
state operation, the rotor speed N r is slightly lower than the synchronous speed N s. 
The ratio between the speed difference and the synchronous speed is called slip, s: 

s = 
Ns − Nr 

Ns 
× 100 (%) (6.25) 

When s = 0, the rotor speed equals the synchronous speed, resulting in no relative 
motion between the rotor and the magnetic field. Consequently, no electromotive 
force, current, or torque is generated in the rotor circuit, which corresponds to a no-
load state (idle rotation). As the load increases starting from a no-load state, the rotor 
speed decreases, causing the s to increase. However, even under full load, the slip 
typically remains below 10%, meaning the speed does not significantly change. In 
other words, three-phase induction motors tend to maintain a nearly constant speed 
regardless of load fluctuations. 

The L-type equivalent circuits for each of the three phases of the induction motor 
are shown in Fig. 6.10, where r1 + α2r2 is winding resistance of the stator and rotor 
converted to the primary side, x1 + α2x2 (= x) is winding leakage reactance, r0 
is resistance representing iron and mechanical losses (equivalent to the total power 
consumed by these losses), x0 is excitation reactance, s is slip, and (1 − s) r2/s 
is resistance representing the mechanical output (infinite at no load, and zero when 
the rotor is stationary). 

6.6.3.2 No-Load and Locked-In Tests 

In the no-load test, the motor operates without a load while voltage, current, and 
power are measured. In this state, s ∼= 0; therefore, the resistance (1 − s)r2/s of 
the equivalent circuit in Fig. 6.10 can be considered infinite, effectively making it 
open-circuited. The measured current in this state equals the excitation current I0 
and the measured power corresponds to the losses in r0, which include the iron and 
mechanical losses.
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In the locked-in test, the rotor is prevented from rotating, and a small voltage 
is applied while current and power are measured. Under these conditions, N r = 0 
and s = 1; therefore, (1 − s)r2/s = 0, effectively short-circuiting this resistor. Since 
the rotor is stationary, there are no mechanical losses, and the applied voltage is 
sufficiently small to make the iron loss negligible. Thus, the measured power in this 
test represents the power consumption at resistance r1 + α2r2, that is, the primary 
and secondary copper losses. 

6.6.3.3 Circle Diagram 

The circle diagram represents the vector trajectry (path described by a vector’s head) 
of the primary current when the applied voltage is constant, and the load (or slip, 
s) varies. This diagram can be constructed using the results of the primary winding 
resistance, no-load test, and locked-in test. From the circle diagram, it is possible 
to estimate key characteristics of a three-phase induction motor, such as efficiency, 
power factor, and speed, for various load conditions, ranging from no load to full 
load, without physically applying a load to the motor. From the equivalent circuit, 
the primary current is: 

I1 = I0 + I2 = V1 

r0 + ix0 
+ V1 

r1 + r2/s + ix 
(6.26) 

When the slip s varies from − ∞  to + ∞, with the primary voltage as the reference, 
the head of the primary current vector describes a circle with a radius of V 1/2x, 
where x = x1 + α2x2, as shown in Fig. 6.11. In the no-load state, s = 0; therefore, the 
second term of Eq. (6.26) is zero, and I1 = I0, with the vector I1 corresponding to 
OʹO. The active component of I1, that is, the component parallel to V 1, represents the 
current required to supply the sum of the iron and mechanical losses. In the locked-in 
state, s = 1; thus, the vector I1 corresponds to OʹQ in the circle diagram. The active 
component of I2 represents the sum of the primary and secondary copper losses. 
During normal operation, 0 ≤ s ≤ 1, which is described by the movement of vector 
I1 along the arc between O and Q on the circle diagram.

This type of circle diagram, based on the L-shaped equivalent circuit, is commonly 
referred to as an L-shaped circle diagram. 

6.7 Conclusions 

In conclusion, this chapter thoroughly explores the subject of impedance matching, 
emphasizing the utilization of Smith charts and series and parallel connections to 
optimize power transfer in electrical circuits. The chapter begins by detailing the 
use of Smith charts, a vital visual tool for representing complex impedance values 
and simplifying the solution of matching problems. Readers are guided on how to 
interpret and apply Smith charts to real-world circuit scenarios. Furthermore, the 
chapter delves into practical applications of series and parallel connections in circuit
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Fig. 6.11 Circle diagram of 
an induction motor

design, supplemented by hands-on exercises with actual circuit examples that bridge 
theoretical knowledge with practical implementation. 

Particularly highlighted in this chapter are example problems focused on elec-
trical circuit matching, transformers, and induction motors analysis. These exam-
ples furnish readers with opportunities to analyze impedance-matching challenges, 
fostering a deeper comprehension of the principles involved and enhancing their 
ability to address real-world engineering issues related to induction motors and other 
complex systems. 

Ultimately, the chapter culminates in a comprehensive understanding of 
impedance matching within the context of energy conversion engineering. By 
presenting detailed explanations, practical examples, and numerous diagrams, the 
chapter strikes an effective balance between theory and practice, rendering the content 
highly accessible and beneficial for both engineering students and professionals. 
This ensures a robust grasp of how impedance matching can significantly enhance 
technological efficiency across various applications. 

Chapter 6 Exercises 

Problem 1: Smith chart drawing
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Draw solutions 1, 2, and 3 in Sects. 6.2–6.4 on a Smith chart sheet, read the chart, 
and determine the circuit constants of C, L, C1, C2, C3, and C4. 

Problem 2: Matching circuit I 

In the circuit with inductance L and capacitance C shown in Fig. 6.12, determine the 
values of L and C required to match a source impedance Z0 = 50 Ω at f = 7 MHz  
to a load impedance Za = 25 − 5i Ω. Express the results in nH and pF (n: 10−9 and 
p: 10−12). This is called L-type matching configuration. 

Problem 3: Matching circuit II 

For the circuit shown in Fig. 6.13, which includes an inductance L and two capaci-
tances C1 and C2 in a π-type matching configuration, calculate the values of L, C1, 
and C2 required to match a source impedance Z0 = 50 Ω at f = 21.4 MHz to a load 
impedance Za = 20.33 − 123.3i Ω. Express the results in nH and pF. 

Problem 4: Alternative circuits 

Propose alternative circuits, other than the one in Fig. 6.13, that can achieve 
impedance matching. For example, T-type matching configuration can be considered. 

Problem 5: Induction motor’s equivalent circuit [4]

Fig. 6.12 Matching circuit I 

Fig. 6.13 Matching circuit II 
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Fig. 6.14 Equivalent circuit of an induction motor 

In the induction motor’s equivalent circuit shown in Fig. 6.14, the numbers represent 
the impedances corresponding to a 60 Hz current, with the real part representing the 
resistance in ohms, and the imaginary part representing the value of 2π60Li when L 
is expressed in Henry. One of these resistances is given as a function of slip s. Note  
that s is proportional to the speed difference between the rotating magnetic field and 
the rotor: s ≈ 0 at no load, and s = 1 when the rotor is braked under full load. A 
vector diagram is drawn at an applied voltage of 577 V. Using an applied voltage 
of 577 V, represent the voltage vector as fixed on the imaginary axis and illustrate 
how the current vector changes with s. Furthermore, show that the tip of the current 
vector traces a circle, which is a general property of induction motors regardless of 
circuit values. Calculate and draw the circles for s = 0, s = 0.1, and s = ∞. 
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Chapter 7 
Energy Principle and Approximated 
Solution of Energy Systems 

Abstract This chapter discusses the energy principle and approximated solution 
of energy systems. The principles of least action, variational theory, energy princi-
ples, and approximate solutions using variational methods in electrical and mechan-
ical engineering are mainly discussed. Variational theory and energy principle are 
explained based on various example problems. Following these, approximate solu-
tion methods using variational methods are explained based on various example 
problems. The chapter is concluded by the conclusions and exercise problems. 

7.1 Introduction 

In this chapter, we elucidate the energy principle, a fundamental concept in energy 
conversion engineering that plays a crucial role in various engineering disciplines. 
The energy principle is integral to the understanding of how energy transformations 
underpin the functionality of mechanical systems, fluid dynamics, and electrical 
circuits. We explore both the theoretical underpinnings and practical applications of 
this principle, illustrating its broad utility in design and analysis. 

In particular, our discussion encompasses the application of the energy principle 
in mechanics, where it provides a framework for analyzing forces and motion in 
systems ranging from simple machines to complex mechanical structures. In the 
realm of fluid engineering, we examine how this principle helps in understanding 
the fluid behavior under different flow and pressure conditions, contributing to the 
design of more efficient hydraulic systems and pipelines. Furthermore, in electrical 
engineering, the energy principle is pivotal for the analysis and design of electrical 
circuits to ensure energy efficiency and system stability. 

Additionally, we cover the principle of least action, a sophisticated approach that 
seeks to minimize the action, or integral of the Lagrangian, of a system. This principle 
is crucial for optimizing processes and systems across various engineering fields. It 
not only underscores the concept of minimal energy usage but also facilitates a 
detailed analysis and solution of complex problems. By employing the principle of
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least action, engineers can derive equations of motion for systems in a manner that 
guarantees that the most energy-efficient path or trajectory is taken [1]. 

7.2 Principle of Least Action 

7.2.1 Case of Single Variable 

First, the principle of the least action is considered. First, we treat a motion of a 
mass point. Consider the movement of a mass point from one location to another in 
a gravitational field. Assume an alternative trajectory (2) for the real trajectory (1) of 
a mass point (Fig. 7.1). 

KE: kinetic energy becomes 

m 

2 
|u|2 = 

m 

2

∣
∣
∣
∣

dx 
dt

∣
∣
∣
∣

2 

(7.1) 

and PE: Potential energy. The action equation is written as follows:

∫ t2 

t1

[

m 

2

∣
∣
∣
∣

dx 
dt

∣
∣
∣
∣

2 

− V (x)

]

dt (7.2)

Fig. 7.1 Real and imaginary 
motion 
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For the same time interval, the value of the action integral for the assumed alter-
native trajectory is greater than that of the action integral for the real trajectory. 
The integral value is smallest in trajectry (1) and smaller than that in trajectory (2). 
A function of functions is called functional. The derivative of functional is known 
as variation. Generally, x is determined such that the action integral (function of 
functions, KE and PE) 

S =
∫ t2 

t1 

(KE(x) − PE(x))dt (7.3) 

is minimal. This principle is equivalent to Newton’s 2nd Law, expressed as F = m 
a, where F: force, m: mass, and a: acceleration. 

The minimal point is determined such that df /dx = 0 when differentiated with 
respect to the general function f (x). The derivative of functional such as Eq. (7.3) is  
known as a variation. Determining a function that minimizes the value of functional 
is known as variation principle. This is also known as the principle of least action, δS 
= 0. This is expressed as the variation principle of mechanics. Landau–Lifschitz’s 
Mechanics [2] begins here. Finding a trajectory x, where functional S is minimal, 
is known as a variation problem. The purpose of this chapter is to solve equations 
in mechanics, fluids, electricity, and electromagnetism using the principle of least 
action. It is also possible to analyze various other differential equations. 

Generally speaking, a characteristic of a minimum is that when the function 
deviates from the minimum to the first order, the deviation of it from the minimum 
is only of the second order. In cases of normal function f (x) differentiation, 

f (x + �x) = f (x) + f ′(x)�x + 
1 

2 
f ′′(x)(�x)2 + O

(

(�x)3
)

(7.4) 

f ʹ(x) = 0 corresponds to a minimum, 

f (x + �x) − f (x) = O
(

(�x)2
)

(7.5) 

and the right-hand side is two or more orders of Δx, making it a minimum. 
We seek the variation δS of the functional S for the one-dimensional motion x = 

x(t) in the following Eq. (7.6). 

S(x) =
∫ t2 

t1 

(KE − PE)dt =
∫ t2 

t1

[

m 

2

(
dx 

dt

)2 

− V (x)

]

dt (7.6) 

The answer is shown below. Let the true trajectory be x and assume x = x + η as 
shown in Fig. 7.2. 

S(x + η) =
∫ t2 

t1

[

m 

2

(
dx 

dt 
+ 

dη 
dt

)2 

− V (x + η)

]

dt (7.7)
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Fig. 7.2 Optimum and 
tested paths 

Right 1st term = 
m 

2

[(
dx 

dt

)2 

+ 2 
dx 

dt 

dη 
dt 

+
(
dη 
dt

)2
]

(7.8) 

Right 2nd term = V (x) + ηV ′(x) + O
(

η2
)

(7.9) 

Order of η2 terms or O(η2) is omitted and S becomes S1(x + η) which includes first 
order terms. 

S1(x + η) =
∫ t2 

t1

[

m 

2

(
dx 

dt

)2 

− V (x) + m 
dx 

dt 

dη 
dt 

− ηV ′(x)

]

dt (7.10) 

δS ≡ S1(x + η) − S(x) =
∫ t2 

t1

[

m 
dx 

dt 

dη 
dt 

− ηV ′(x)
]

dt (7.11) 

This is the same procedure as determining the differential f ʹ(x) of the ordinary func-
tion f (x). Using the partial integration formula, the term dη/dt is eliminated from 
Eq. (7.11). 

d 

dt 
(ηf ) = η 

df 

dt 
+ f 

dη 
dt 

(7.12) 

The well-known Eq. (7.12) is integrated to obtain the following equation:

∫

f 
dη 
dt 

= ηf −
∫

η 
df 

dt 
dt (7.13) 

When applied to the previous Eq. (7.11), 

δS =
∫ t2 

t1

[

m 
dx 

dt 

dη 
dt 

− ηV ′
]

dt 

=
[

ηm 
dx 

dt

]t2 

t1 

−
∫ t2 

t1

[

ηm 
d2 x 

dt2 
+ ηV ′

]

dt 

=
[

m 
dx 

dt 
η

]t2 

t1 

−
∫ t2 

t1

[

m 
d2 x 

dt2 
+ V ′

]

ηdt (7.14)
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The first term on the integrated right-hand side disappears, because the trajectry 
of η(t1) = η(t1) = 0 is known as the natural boundary condition (BC), which we will 
test. If the integral is 0 for any η, the coefficient of η is 0, and the following equation 
holds for δS = 0. 

δS =
∫ t2 

t1

[

m 
d2 x 

dt2 
+ V ′

]

ηdt = 0 or  m 
d2 x 

dt2 
+ V ′ = 0 (7.15) 

Therefore, the principle of δS = 0 ↔ F = ma holds. This principle is known as the 
principle of least action by the calculus of variations. The procedure of solving the 
calculus of variations is summarized below. 

(1) For the functional S(x), let x → x + η and consider S(x + η). 
(2) Expand S(x + η) and take only the first-order term (define this S1). 
(3) Find the variation from δS = S1(x + η) − S(x). 
(4) Apply partial integration to δS to remove dη/dt. 
(5) Use the natural BCs to 

δS =
∫ t2 

t1 

[ ]ηdt = 0 

make it into the form. 
(6) [ ]  = 0 holds. 

To summarize the above, in the case of functions, 

f (x + �x) − f (x) = f ′(x)�x + O
(

(�x)2
)

(7.16) 

because 

df = f1(x + �x) − f (x) = f ′(x)�x (7.17) 

where f 1 represents only the first-order term. When df = 0, f ʹ(x) = 0, which is an 
extreme value. A similar procedure is possible for functions with multiple variables. 

Next, we consider the case of functional S. Because direct differentiation cannot 
be considered as in the case of normal functions, calculate S(x + η) − S(x) and leave 
the first-order term with respect to η. 

δS = S1(x + η) − S(x) (7.18) 

The extreme value occurs when δS = 0. A similar handling is possible for functions 
with multiple variables.
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7.2.2 Case of Multiple Variables 

Next, the problem of finding y that minimizes the integral 

J (y) =
∫ x1 

x0 

F
(

x, y, y′)dx (7.19) 

for the function F(x, y, yʹ) under the conditions y(x0) = y0 and y(x1) = y1 is as follows: 

δJ = 0 or  
∂F 

∂y 
− 

d 

dx

(
dF 

dy′

)

= 0 (7.20) 

Solving Eq. (7.20) yields y. Equation (7.20) is known as the Euler equation for this 
problem. 

Here, we describe Hamilton’s principle (principle of least action). The motion of 
the dynamic system realized between times t0 and t1 occurs such that 

J =
∫ t1 

t0 

L(q1, . . . ,  qN, q̇1, . . .  ̇qN )dt (7.21) 

takes an extreme value, that is, δJ = 0. J denotes the action, L denotes the Lagrangian 
= KE − PE, and q1, …,  qN denote the generalized coordinates. The Euler equation 
for this problem 

d 

dt

(
∂L 

∂ ̇qi

)

− 
∂L 

∂qi 
= 0, (i = 1, . . . ,  N) (7.22) 

is known as the Lagrange equation. This can be derived using the aforementioned 
solution method. 

7.3 Variational Theory and Energy Principle 

Next, we discuss the theory of variation and the energy principle. As mentioned 
above, this is the same principle as least action and Hamilton’s principle. The differ-
ential equations corresponding to these principles are the Euler or Lagrange equa-
tions. For details, please refer to Reference books [3] and [4]. Below, we derive the 
Euler–Lagrange equation and provide additional explanations. For simplicity, if we 
assume one dimension, the functional is: 

J (q1, q̇1) =
∫ t1 

t0 

L(q1, q̇1)dt (7.23)
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where · denotes d/dt. The variation of functional J, δJ is 

δJ = J1
[

q1 + η, 
d 

dt 
(q1 + η)

]

− J (q1, q̇1) (7.24) 

where the first term on the right-hand side, J1, represents the first-order term of η. 
The following equation is obtained using partial integration. 

δJ =
∫ t1 

t0

{

L1

[

q1 + η, 
d 

dt 
(q1 + η)

]

− L(q1, q̇1)
}

dt 

=
∫ t1 

t0

[
∂ 

∂q1 
L(q1, q̇1)η + 

∂ 
∂ ̇q1 

L(q1, q̇1) 
dη 
dt

]

dt 

=
[

∂ 
∂q1 

L(q1, q̇1)η
]t1 

t0 

−
∫ t1 

t0

[

− 
∂ 

∂q1 
L + 

d 

dt

(
∂ 

∂ ̇q1 
L

)]

ηdt (7.25) 

The first term on the right-hand side in the third equation is zero owing to the natural 
BC. As δJ = 0, the second term is

∫

[ ]η = 0, equivalent to the form [ ] = 0. Therefore, 

d 

dt

(
∂ 

∂ q̇1 
L

)

− 
∂ 

∂q1 
L = 0 (7.26) 

We obtain the Euler or Lagrange equation (7.26). 
Next, as a supplementary matter, we explain the Hamilton equation that appears 

in the analysis of mechanical systems. 

dL = 
∂L 

∂q 
dq + 

∂L 

∂ ̇q 
dq̇ (7.27) 

where 

∂L 

∂ ̇q 
= p (generalized momentum) (7.28) 

∂L 

∂q 
= ṗ (Lagrange formula) (7.29) 

From these equations 

dL = ṗdq + pdq̇ (7.30) 

To write this equation in terms of dq and dp, d(pq̇) = q̇dp + pdq̇, 

dL = ṗdq + d(pq̇) − q̇dp or d(L − pq̇) = ṗdq − q̇dp (7.31)
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is obtained as the Hamilton relationship 

q̇ = 
∂H 

∂p 
, ṗ = −∂H 

∂q 
(7.32) 

where H = pq̇ - L is Hamiltonian. Next, the Hamilton–Jacobi equation is explained 
as a supplementary item. For system of N degrees of freedom, 

H (q1, q2 · · ·  qN, p1, p2 · · ·  pN) = 
N

∑

i 

piqi − L (7.33) 

For action S = ∫ t1 
t0 
Ldt 

dS 

dt 
= L (Perfect derivative, function of t) (7.34) 

dS 

dt 
= 

∂S 

∂t 
+

∑ ∂S 

∂qi 
q̇i = 

∂S 

∂t 
+

∑

pi q̇i (when viewed as a function of t and q) 

(7.35) 

Equation (7.35) is obtained by the following equations. 

δS = 
∂L 

∂ ̇q 
dq

∣
∣
∣
∣

t1 
t0 

+
∫ t1 

t0

(
∂L 

∂q 
− 

d 

dt 

∂L 

∂ ̇q

)

dqdt (7.36) 

∂L 

∂ ̇q 
= p, 

∂L 

∂q 
− 

d 

dt 

∂L 

∂q 
= 0 for real path 

δS =
∑

pidq, therefore, 
∂S 

∂qi 
= pi 

(7.37) 

L = 
∂S 

∂t 
+

∑

pi q̇i (7.38) 

or 

∂S 

∂t 
+ H = 0 (Hamilton−Jacobi equation) (7.39) 

7.3.1 Example Problem 1, Euler’s Equation 

The followings are some example problems. 
Find the equation (Euler’s equation) to minimize functionals (1) and (2).
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(1) J (y) =
∫ 2 

1

[

x

(
dy 

dx

)2 

− y 
dy 

dx 
+ y

]

dx (7.40) 

(2) J (y) =
∫ 1 

0

[(
dy 

dx

)2 

+ k2 cos y

]

dx (7.41) 

Solution 

(1) Calculate the following equation: 

J (y + η) =
∫ 2 

1

{

x

[
d(y + η) 

dx

]2 

− (y + η) 
d(y + η) 

dx 
+ (y + η)

}

dx (7.42) 

Leave only the first-order term of η. Denote it as J1. 

J1(y + η) =
∫ 2 

1

[

x

(
dy 

dx

)2 

+ x · 2 dy 
dx 

dη 
dx 

− y 
dy 

dx 
− y 

dη 
dx 

− η 
dy 

dx 
+ (y + η)

]

dx 

(7.43) 

δJ = J1(y + η) − J (y) =
∫ 2 

1

[(

2x 
dy 

dx 
− y

)
dη 
dx 

− η 
dy 

dx 
+ η

]

dx (7.44) 

Integrate by parts to remove dη/dx 

δJ =
[(

2x 
dy 

dx 
− y

)

η

]2 

1 

−
∫ 2 

1

[
d 

dx

(

2x 
dy 

dx 
− y

)

η + η 
dy 

dx 
− η

]

dx (7.45) 

The first term disappears because of the natural BC. Therefore, we obtain 

δJ = −
∫ 2 

1

[
d 

dx

(

2x 
dy 

dx

)

− 1
]

ηdx (7.46) 

Euler’s equation becomes 

d 

dx

(

2x 
dy 

dx

)

= 1 (7.47) 

By solving this problem, we obtain: 

y = 
x 

2 
+ C1 log x + C2 (7.48) 

as the answer.
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(2) J (y + η) =
∫ 1 

0

{[
d(y + η) 

dx

]2 

+ k2 cos(y + η)

}

dx (7.49) 

If only the first order of η remains, we obtain the following J1 

J1(y + η) =
∫ 1 

0

[(
dy 

dx

)2 

+ 2 
dy 

dx 

dη 
dx 

+ k2 cos y − k2 sin y · η
]

dx (7.50) 

where we use the expansion of cos(y + η) in the following equation: 

cos(y + η) = cos y − sin y · η + O
(

η2
)

(7.51) 

δJ = J1(y + η) − J (y) =
∫ 1 

0

(

2 
dy 

dx 

dη 
dx 

− k2 sin y · η
)

dx (7.52) 

Integrate by parts to obtain the following equation: 

δJ =
[

2 
dy 

dx 
η

]1 

0 

−
∫ 1 

0

(

2 
d2 y 

dx2 
+ k2 sin y

)

ηdx (7.53) 

The first term disappears owing to natural BC 

δJ = −
∫ 1 

0

(

2 
d2 y 

dx2 
+ k2 sin y

)

ηdx (7.54) 

We obtain Euler’s equation. 

2 
d2 y 

dx2 
+ k2 sin y = 0 (7.55) 

We obtain the following equation as the solution: 

x = ±
∫

dy 

k 
√
C1 + cos y 

+ C2 (7.56) 

7.3.2 Example Problem 2, Hamilton’s Principle 

Amass  m is supported by a spring moving vertically (x-axis: downward is positive). 
Gravity and resistance force − kx (x denotes the displacement from the equilibrium 
position) act on this mass. Hamilton’s principle yields
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δ

∫ t1 

t0

(
1 

2 
mẋ2 + mgx − 

1 

2 
kx2

)

dt = 0 (7.57) 

and derive Euler’s equation of motion by calculating the variation on the left-hand 
side (Fig. 7.3). 

Answer 

Hamilton’s principle determines function x that minimizes the functional U(x). If 
we simply write as x, we can obtain Euler’s equation using partial integration from 
δU = 0 when δU = U1(x + η) − U(x) (taking only the first-order terms). In the 
following, 

U (x, ̇x) =
∫ t1 

t0

(
1 

2 
mẋ2 + mgx − 

1 

2 
kx2

)

dt (7.58) 

U (x + η) =
∫ t1 

t0

[

m 

2

(
dx 

dt 
+ 

dη 
dt

)2 

+ mg(x + η) − 
k 

2 
(x + η)2

]

dt 

= U (x) +
∫ t1 

t0

(

m 
dx 

dt 

dη 
dt 

+ mgη − kxη
)

dt + O
(

η2
)

(7.59) 

Therefore, the variation is as follows:

Fig. 7.3 System with mass, 
gravitational force, and 
spring 
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δU =
∫ t1 

t0

(

m 
dx 

dt 

dη 
dt 

+ mgη − kxη
)

dt 

=
[

m 
dx 

dt 
η

]t1 

t0 

−
∫ t1 

t0

(

m 
d2 x 

dt2 
− mg + kx

)

ηdt 

(7.60) 

The first term on the right-hand side is 0. Because δU = 0, the integrand becomes 

m 
d2 x 

dt2 
− mg + kx = 0 (7.61) 

7.3.3 Example Problem 3, System of Multiple Degrees 
of Freedom 

Next, consider a problem with multiple degrees of freedom. The Lagrange function 
(Lagrangian) of the spring-mass system (m denotes mass, k denotes stiffness or spring 
constant) shown in Fig. 7.4 is 

L = 
1 

2

[

m1ẋ
2 
1 + m2 ẋ

2 
2 + m3 ẋ

2 
3 − k1x2 1 − k2(x2 − x1)2 − k3(x3 − x2)2

]

(7.62) 

No damping force is considered. Next, we derive the Lagrange equation from the 
principle of least action. 

Answer 

Because L = KE − PE, we can determine L by determining the kinetic energy KE 
and potential energy PE of each mass and adding them. KE is 

KE = 
1 

2

(

m1ẋ
2 
1 + m2 ẋ

2 
2 + m3ẋ

2 
3

)

(7.63) 

Considering the relative displacement of each mass point and PE becomes

Fig. 7.4 System with three masses and springs 
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PE = 
1 

2

[

k1x
2 
1 + k2(x2 − x1)2 + k3(x3 − x2)2

]

(7.64) 

Because we only need to consider the energies of each mass point, the analysis 
is easier. From the above, we obtain Eq. (7.62) as a Lagrangian expression. The 
principle of least action (Hamilton principle) is as follows: 

δS = δ1
∫ t2 

t1 

Ldt = 0 (7.65) 

The Euler equation for this problem is the Lagrange equation. Variations can be 
performed as follows in the case of multiple variables similar to the case of one 
variable. 

x1 = x1 + η1, x2 = x2 + η2, x3 = x3 + η3 (7.66) 

We obtain the following equation: 

S(x1 + η1, x2 + η2, x3 + η3) 

=
∫ t2 

t1

{

m1 

2

[
d 

dt 
(x1 + η1)

]2 

+ 
m2 

2

[
d 

dt 
(x2 + η2)

]2 

+ 
m3 

2

[
d 

dt 
(x3 + η3)

]2 

− 
k1 
2 

(x1 + η1)2 − 
k2 
2 

(x2 − x1 + η2 − η1)2 − 
k3 
2 

(x3 − x2 + η3 − η2)2
}

dt (7.67) 

The variation is as follows: 

δS = S1(x1 + η1, x2 + η2, x3 + η3) − S(x1, x2, x3) 

=
∫ t2 

t1

[

m1 
dx1 
dt 

dη1 
dt 

+ m2 
dx2 
dt 

dη2 
dt 

+ m3 
dx3 
dt 

dη3 
dt 

− k1x1η1 

− k2(x2 − x1)(η2 − η1) − k3(x3 − x2)(η3 − η2)]dt (7.68) 

where S1 is in first order of η. By partial integration, we obtain the following equation: 

δS =
[

m1 
dx1 
dt 

η1

]t2 

t1 

+
[

m2 
dx2 
dt 

η2

]t2 

t1 

+
[

m3 
dx3 
dt 

η3

]t2 

t1 

−
∫ t2 

t1

[

m1 
d2 x1 
dt2 

η1 + m2 
d2 x2 
dt2 

η2 + m3 
d2 x3 
dt2 

η3 

+ k1x1η1 + k2(x2 − x1)η2 − k2(x2 − x1)η1 
+ k3(x3 − x2)η3 − k3(x3 − x2)η2]dt (7.69) 

Natural boundary condition is
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η1|t2 t1 = η2|t2 t1 = η3|t2 t1 = 0 (7.70) 

Therefore, the first term on the right-hand side of Eq. (7.69) becomes 0. 

δS = −
∫ t2 

t1

[

m1 
d2 x1 
dt2 

+ k1x1 − k2(x2 − x1)
]

η1dt 

−
∫ t2 

t1

[

m2 
d2 x2 
dt2 

+ k2(x2 − x1) − k3(x3 − x2)
]

η2dt 

−
∫ t2 

t1

[

m3 
d2 x3 
dt2 

+ k3(x3 − x2)
]

η3dt (7.71) 

The Euler (Lagrange) equation is obtained by setting the integrands of the three 
integrals to 0. 

m1 
d2 x1 
dt2 

+ k1x1 − k2(x2 − x1) = 0 

m2 
d2 x2 
dt2 

+ k2(x2 − x1) − k3(x3 − x2) = 0 

m3 
d2 x3 
dt2 

+ k3(x3 − x2) = 0 

(7.72) 

7.3.4 Example Problem 4, System with Damping 

The variation principle for a particle falling under gravity with an air resistance force 
proportional to velocity is given by Eq. (7.73), where m is the mass of the particle, g 
is the gravitational acceleration, k is the damping coefficient for air resistance, and 
x(t) is the position of the particle as a function of time. Taking its variation of the 
first term of Eq. (7.73), we obtain Eq. (7.74). 

δ

∫ t1 

t0

(
1 

2 
mẋ2 + mgx

)

dt −
∫ t1 

t0 

cẋη dt = 0 (7.73) 

δS = δ
∫ t1 

t0

(
1 

2 
mẋ2 + mgx

)

dt =
∫ t1 

t0 

(mẋ η̇ + mgη)dt (7.74)
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Fig. 7.5 System with mass, 
damper, and spring 

The system is schematically shown in Fig. 7.5. 

Using integration by parts, we rewrite the first term. Assuming the boundary 
conditions η = 0 at the initial and final times. Thus, the variation simplifies to: 

δS =
∫ t1 

t0 

(−mẍ + mg)η dt (7.75) 

From Eqs. (7.73) and (7.75), we obtain

∫ t1 

t0 

(−mẍ + mg − cẋ)η dt = 0 (7.76) 

Since this must hold for all variations η, the integrand must be zero: 

mẍ = mg − cẋ or m 
d2 x 

dt2 
= mg − c 

dx 

dt 
(7.77)
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7.4 Approximate Solution Method Using Variational 
Method 

For boundary value problems, the problem of the calculus of variations is reduced 
to a Euler equation. Therefore, Hamilton’s principle is reduced to the Lagrange 
equation. It is difficult to solve the Euler or Lagrange equations directly, which 
have several degrees of freedom. These problems can be solved using numerical 
calculations. Direct methods have been developed to deal with variational problems 
directly. One such approach is the Ritz method. An approximation method can be 
considered in which a given differential equation is reduced to a variational problem 
that coincides with the Euler equation, which is solved by a direct method. This is 
known as the Ritz method. This concept is important in the finite element method 
(FEM). Unlike numerical calculations, the solution can be expressed using a versatile 
formula. However, only problems that can be converted into variational problems are 
valid. 

7.4.1 Example Problem 5, Ritz Method 

x 
d2 u 

dx2 
+ 

du 

dx 
+ 

x2 − 1 
x 

u + x2 = 0, 1 ≤ x ≤ 2 (7.78) 

Solve this equation using the Ritz method with BC u(1) = u(2) = 0. 

Solution 

The functional (function of functions) for the corresponding variation problem is as 
follows: 

J (u) =
∫ 2 

1

[

x

(
du 

dx

)2 

− 
x2 − 1 

x 
u2 − 2x2 u

]

dx (7.79) 

Note that it is necessary to find the functional. The approximate equation that satisfies 
the BC is tested 

u1 = C1(x − 1)(2 − x) = C1w1, w1 = (x − 1)(2 − x) (7.80) 

is tested as a test function. We assume w1ʹ = dw1/dx. 

J (u1) = C2 
1

∫ 2 

1

(

xw′2 
1 − 

x2 − 1 
x 

w2 
1

)

dx − C1

∫ 2 

1 
2x2 w1dx (7.81) 

Now calculate the integral whose value is known.
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I1 =
∫ 2 

1

(

xw′2 
1 − 

x2 − 1 
x 

w2 
1

)

dx = 0.47260 (7.82) 

I2 =
∫ 2 

1 
x2 w1dx = 0.38333 (7.83) 

The integrals can be obtained using Mathematica, a book on mathematical 
formulas [5], and numerical integration. 

J (u1) = C2 
1 I2 − 2C1I2 (7.84) 

To make J an extreme value 

∂J 

∂C1 
= 2I2C1 − 2I2 = 2(I1C1 − I2) = 0 or  C1 = 

I2 
I1 

= 
0.38333 

0.47260 
= 0.811 

(7.85) 

The approximate solution is 

u1 = 0.811(x − 1)(2 − x) (7.86) 

Therefore, u1(1.5) = 0.20275. The exact solution is 

u(x) = 3.6072JB1(x) + 0.75195Y1(x) − x (7.87) 

where JB1(x) and Y 1(x) are Bessel functions. For Eq. (7.87), u(1.5) = 0.2024; thus, 
Eq. (7.86) is a good approximation. 

7.4.2 Example Problem 6, Ordinary Differential Equation 

For the ordinary differential equation, 

u′′ + (

1 + x2
)

u + 1 = 0, − 1 ≤ x ≤ 1 (7.88) 

obtain the approximate solution using the Ritz method, where uʹ = du/dx, and the 
BC is u(− 1) = u(1) = 0. Use 

u = C1
(

1 − x2
) + C2

(

1 − x4
) + C3

(

1 − x6
)

(7.89) 

as the linear test function. 

Solution 

The functionals for the corresponding variation problem is as follows:
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J (u) =
∫ 1 

−1

[

u′2 − (

1 + x2
)

u2 + u
]

dx (7.90) 

J (u + η) =
∫ 1 

−1

[

(u + η)′2 − (

1 + x2
)

(u + η)2 + (u + η)
]

dx (7.91) 

J1(u + η) − J (u) =
∫ 1 

−1

[

2u′η′ − 2
(

1 + x2
)

uη + η
]

dt (7.92) 

where J1 includes first order terms only. The first term on the right-hand side of Eq. 
(7.92) is transformed as follows: 

2
∫ 1 

−1 
u′y′dt = 2

[

u′η
]1 
−1 − 2

∫ 1 

−1 
u′′ηdt (7.93) 

The first term varnishes. From the above, we obtain the following: 

δJ = J1(u + η) − J (u) =
∫ 1 

−1

[− 2u′′η − 2
(

1 + x2
)

uη + η
]

dt 

= −  2
∫ 1 

−1

[

u′′ + (

1 + x2
)

u + 1
]

ηdt (7.94) 

From δJ = 0 in Eq.  (7.94), Eq. (7.88) is obtained. Substituting Eq. (7.89) into  
Eq. (7.90), J can be expressed in terms of C1, C2, and C3. They can be calculated from 
the conditions: 

∂J 

∂C1 
= 0, 

∂J 

∂C2 
= 0, 

∂J 

∂C3 
= 0 (7.95) 

C1, C2, and C3 are determined from Eq. (7.95). The approximated solution is as 
follows: 

u = 0.9664776
(

1 − x2
) − 0.00047361

(

1 − x4
) − 0.029671

(

1 − x6
)

(7.96) 

7.4.3 Example Problem 7, Poiseuille Flow 

The energy principle for steady axial laminar flow (Poiseuille flow) in a circular pipe 
with radius a, whose cross section is shown in Fig. 7.6, is  

U (w) =
∫ a 

0

[

r

(
dw 

dr

)2 

+ 2rβw

]

dr, β  = 
1 

μ 
dp 

dx 
= constant (7.97)
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The variation in the functional U is δU = 0, where w: axial velocity, p: pressure, 
μ: viscosity coefficient, r: radial coordinate, and x: axial coordinate. 

(1) Calculate δU and derive the differential equation that w satisfies by setting it to 
zero under the natural BCs. 

(2) Obtain the flow velocity distribution using the Ritz method. Assume that the 
test function for the velocity distribution is 

w = Ar(r − a) (7.98) 

and find parameter A. 

Answer 

(1) U (w + η) =
∫ a 

0

{

r

[
d(w + η) 

dr

]2 

+ 2rβ(w + η)

}

dr (7.99) 

If we express this U1(w + η) with only the first-order term of η as 

δU = U1(w + η) − U (w) = 
a∫

0

(

2r 
dw 

dr 

dη 
dr 

+ 2rβη

)

dr 

=
[

2r 
dw 

dr 
η

]a 

0 

−
∫ a 

0 
2 
d 

dr

(

r 
dw 

dr

)

ηdr +
∫ a 

0 
2rβηdr 

= − 2
∫ a 

0

[
d 

dr

(

r 
dw 

dr

)

− βr
]

ηdr = 0 (7.100) 

Then, we obtain the following equation: 

d 

dr

(

r 
dw 

dr

)

− βr = 0 or  r 
d2 w 

dr2 
+ 

dw 

dr 
− βr = 0 (7.101)

Fig. 7.6 Poiseuille flow 
system 
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(2) The calculation is performed as follows for the test function w: 

w = Ar(r − a) = Ar2 − Ara (7.102) 

dw 

dr 
= 2Ar − Aa (7.103)

(
dw 

dr

)2 

= 4A2 r2 − 4A2 ar + A2 a2 (7.104) 

Substituting this into the expression for U, we obtain the following equation: 

U =
∫ a 

0

(

4A2 r3 − 4A2 ar2 + A2 a2 r + 2βAr3 − 2βAar2
)

dr 

= 4A2 a 

4 

4 − 4A2 a
4 

3 
+ A2 a

4 

2 
+ 2βA 

a4 

4 
− 2βA 

a4 

3 

= A2 a4
(

1 − 
4 

3 
+ 

1 

2

)

+ 2βAa4
(
1 

4 
− 

1 

3

)

= 
A2a4 

6 
− 

βAa4 

6 
(7.105) 

Differentiate U with respect to A as follows: 

∂U 

∂A 
= 

Aa4 

3 
− 

βa4 

6 
= 0 (7.106) 

The value of A that yields the minimum value is obtained as follows: 

A = 
β 
2 

(7.107) 

The velocity distribution is therefore as follows: 

w = 
β 
2 
r(r − a) (7.108) 

The procedure for obtaining the above approximate solution is summarized below. 

(1) Transform the differential equation into a variation problem that matches the 
Euler formula. 

(2) Substitute a linear test function that satisfies the BCs. 
(3) Set ∂J/(∂Ci) = 0 and find C1 … CN. 

The Rayleigh–Ritz method for finding an approximate eigenvalue problem using 
the calculus of variations is well known; however, it is not covered in this book.
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7.4.4 Example Problem 8, Capacitor 

Next, we solve the electrical problem [1]. A cylindrical capacitor exists with an inner 
conductor of radius a and a potential (potential function) of V, along with an outer 
conductor of radius b and a potential of 0 as shown in Fig. 7.7. When no charge is 
observed between the conductors and if the potential function between the conductors 
is ϕ, then the volume integral 

ε0 

2

∫

(∇φ)2 dV (7.109) 

is equal to the energy of capacitor CV 2/2. Consider the problem of determining an 
approximate value of C. 

Solution 

In cylindrical coordinates, if we consider one-dimensional a < r < b in the r-direction, 
we obtain 

∇φ = 
∂φ 
∂r 

+ 
1 

r 

∂φ 
∂θ 

+ 
∂φ 
∂z 

= 
dφ 
dr 

(7.110) 

Moreover, 

dV = 2π r · Ldr (7.111) 

L: axial length; thus, if we set the unit axial length L = 1, we obtain: 

C = 
ε0 

V 2

∫

(∇φ)2 dV = 
ε0 

V 2

∫ b 

a

(
dφ 
dr

)2 

2πrdr (7.112)

Fig. 7.7 Coaxial condenser 
system 
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Table 7.1 C/(2πε0) 
B = b/a Exact solution First order 

approximation 
solution 

Second order 
approximation 
solution 

Third order 
approximation 
solution 

1.1 10.492070 10.500000 10.492065 10.492058 

1.5 2.4662 2.50 2.4667 2.4663 

2 1.4423 1.500 1.444 1.4427 

4 0.721 0.833 0.733 0.722 

10 0.434 0.612 0.475 0.445 

100 0.267 0.51 0.346 0.290 

First, we consider a linear expression of the radial coordinate r as a test function. 

φ = V
(

1 − 
r − a 
b − a

)

(7.113) 

Substituting into Eq. (7.40), we obtain the expression for C/(2πε0). 

C 

2πε0 
= b + a 

2(b − a) 
(7.114) 

Naturally, it differs from the exact solution: 

C 

2πε0 
= 

1 

ln
(
b 
a

) (7.115) 

However, the comparison in Table 7.1 shows that this first order approximation 
solution is acceptable. Next, we consider the quadratic expression of r as the test 
function. The most general quadratic expression, where ϕ = 0 at  r = b and ϕ = V at 
r = a is 

φ = V

[

1 + α
(
r − a 
b − a

)

− (1 + α)

(
r − a 
b − a

)2
]

(7.116) 

and the result of the substitution calculation is 

C 

2πε0 
= a 

(b − a)

[
b 

a

(
α2 

6 
+ 

2α 
3 

+ 1
)

+ 
α2 

6 
+ 

1 

3

]

(7.117) 

We are aware that the true value is smaller than any of the values we will calculate; 
therefore, regardless of the value of α, the answer we obtain will be excessively large. 
However, if we vary α and reduce it to the maximum extent, the lowest value will 
be closer to the true value than any other value. Therefore, the next step is to select
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α that yields the minimum C. Using ordinary differential calculus, we observe that 
the minimum C occurs at α = −  2b/(b + a). Substituting this into the equation, we 
obtain the minimum capacitance as follows: 

C 

2πε0 
= 

b2 + 4ab + a2 

3
(

b2 − a2
) (7.118) 

This is a second order approximation solution. Calculated results are shown in 
Table 7.1. Next, we use the cubic expression of r with unknowns β1, β2, and β3 
as the test function: 

φ = V

[

1 + β1

(
r − a 
b − a

)

+ β2

(
r − a 
b − a

)2 

+ β3

(
r − a 
b − a

)3
]

(7.119) 

From the boundary conditions of ϕ(a) = V and ϕ(b) = 0, we derive an equation that 
satisfies β1, β2, and β3: 

β1 = − 1 − β2 − β3 (7.120) 

We obtain an approximation of the capacitance C of the capacitor using the following 
procedure. Then, we eliminate β1. 

I =
∫

(∇φ)2 dV = 2π
∫ b 

a

(
∂φ 
∂r

)2 

rdr 

= 2π V 2
∫ b 

a

[
β1 

b − a 
+ 2β2 

r − a 
(b − a)2 

+ 3β3 
(r − a)2 

(b − a)3

]2 

rdr 

= 1 

(b − a)2

∫ b 

a

[

(− 1 − β2 − β3) + 2β2 
r − a 
b − a 

+ 3β3 
(r − a)2 

(b − a)2

]2 

rdr 

= 1 

(b − a)2

∫ b 

a

[

− 1 + β2 
a − b + 2(r − a) 

b − a
+ β3 

− (b − a)2 + 3(r − a)2 

(b − a)2

]2 

rdr 

(7.121) 

Then, assuming A = 1/(b − a), 

I = A2 ×
∫ b 

a

{− 1 + β2A(2r − a − b) + β3A
2
[

3(r − a)2 − (b − a)2
]}2 

rdr 

= A2
∫ b 

a 
rdr + β2 

2 A
4
∫ b 

a 
(2r − a − b)2 rdr 

+ β2 
3 A

6
∫ b 

a

[

3(r − a)2 − (b − a)2
]2 
rdr − 2β2A

3
∫ b 

a 
(2r − a − b)rdr
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+ 2β2β3A
5
∫ b 

a 
(2r − a − b)

[

3(r − a)2 − (b − a)2
]

rdr 

− 2β3A
4
∫ b 

a

[

3(r − a)2 − (b − a)2
]

rdr 

= I0 + I1β2 
2 + I2β2 

3 − 2I3β2 + 2I4β2β3 − 2I5β3 (7.122) 

is obtained, where I0, I1, I2, I3, I4, and I5 are integrals including A that appear on 
the right-hand side of Eq. (7.122). We partially differentiate with respect to β2 and 
β3 and set them to zero to determine the coefficients. 

∂I 

∂β2 
= 2I1β2 − 2I3 + 2I4β3 = 0 (7.123) 

∂I 

∂β3 
= 2I2β3 + 2I4β2 − 2I5 = 0 (7.124) 

Result 

C 

2πε0 
= 

B + 1 
2B − 2 

+ 
10B2 − 20B + 10 
38B + 11B2 + 11 

+ 
20B2 − 15B − 5 
38B + 11B2 + 11 

+ 
160B + 240B2 − 480B3 + 200B4 − 120 
836B + 1686B2 + 836B3 + 121B4 + 121 

+ 
60B2 − 480B + 800B3 − 510B4 + 130 
836B + 1686B2 + 836B3 + 121B4 + 121 

+ 450B − 600B2 − 450B3 + 675B4 − 75 
1672B + 3372B2 + 1672B3 + 242B4 + 242 

(7.125) 

where B = b/a. As summarized in Table 7.1, the values of C/2πε0 for first, second, 
and third orders are calculated for B = b/a = 1.1, 1.5, 2, 4, 10, and 100, and a 
comparison table with the true values of exact solution is created. The third order 
approximation solution is more accurate. 

7.5 Conclusions 

In conclusion, this chapter comprehensively elucidates the energy principle, a corner-
stone of energy conversion engineering that is essential across various engineering 
disciplines. It details how energy transformations are fundamental to the function-
ality of mechanical systems, fluid dynamics, and electrical circuits, illustrating the 
principle’s broad applicability in both theoretical and practical realms. 

Specifically, the chapter highlights the application of the energy principle in 
mechanics, providing a robust framework for analyzing forces and motion within
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a range of systems from simple machines to complex mechanical structures. In fluid 
engineering, it examines the principle’s role in understanding fluid behavior under 
varying flow and pressure conditions, aiding in the design of more efficient hydraulic 
systems and pipelines. In electrical engineering, the energy principle is pivotal for 
the design and analysis of electrical circuits, ensuring energy efficiency and system 
stability. 

Additionally, the chapter discusses the principle of least action, a sophisticated 
approach aimed at minimizing the action, or integral of the Lagrangian, across various 
systems. This principle not only emphasizes the concept of minimal energy usage but 
also supports the detailed analysis and resolution of complex engineering problems. 
By applying the principle of least action, engineers can optimize processes and 
derive equations of motion in a way that ensures the most energy-efficient pathways 
are followed. This comprehensive exploration empowers engineers to effectively 
implement these principles to enhance efficiency and stability in their respective 
fields. 

Chapter 7 Exercises 

Problem 1: Hamilton’s principle 

A mass point of mass m falls vertically (x-axis: downward is positive) through the 
air in a gravitational field (gravitational acceleration g). Show the variation principle 
(Hamilton’s principle) that governs the motion of the mass point, and derive Euler’s 
equation by calculating the variation. 

Problem 2: Forced oscillation 

As shown in Fig. 7.8, a mass point of mass m moves vertically (x-axis: downward is 
positive). Gravity and spring resistance force − kx (x denotes the displacement from 
the equilibrium position) act on this mass point. In addition, the support position 
of the spring is periodically displaced by X = A cos ωt. In this case, Hamilton’s 
principle yields 

δS(x) = δ
∫ t1 

t0

[
1 

2 
mẋ2 + mgx − 

1 

2 
k(x − A cos ωt)2

]

dt = 0

By calculating the variation in this equation, derive Euler’s equation of motion (a 
second-order ordinary differential equation). 

Problem 3: Pendulum with spring 

Consider a pendulum comprising a spring (resistance coefficient k) and mass m, 
as shown in Fig. 7.9. In the figure, 
0 denotes the length (constant) of the spring 
in its natural state, whereas x denotes the extension of the spring. θ denotes the 
angle of swing from the vertical downwards. If we apply the principle of least action 
(Hamilton’s principle) to this two-degree-of-freedom system, we obtain
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Fig. 7.8 Systems with mass, 
gravitational force, springs, 
and support vibration

Fig. 7.9 Pendulum system 
with mass, gravitational 
force, spring, and support 
vibrations 

δS(x, θ  ) = δ
∫ t1 

t0

{

m 

2

[(
dx 

dt

)2 

+ (
0 + x)2
(
dθ 
dt

)2
]

− 
k 

2 
x2 + mg(
0 + x) cos θ

}

dt 

= 0



7.5 Conclusions 123

Fig. 7.10 Laminar flow 
between two coaxial 
cylinders 

By calculating the variation in this two-variable functional, derive Euler’s equation 
of motion (two-order simultaneous ordinary differential equations). (Hint: Displace 
the two functions x and θ independently and calculate the variations.) 

Problem 4: Ritz method 

Using the Ritz method, find an approximate solution for the steady laminar flow in 
a concentric double pipe with the inner radius of the outer pipe as a and the outer 
radius of the inner pipe as b (Fig. 7.10). Assume that the flow velocity distribution 
is w = A(a − r)(r − b) with parameter A. 

Problem 5: Cylindrical capacitor 

As shown in Fig. 7.7 in the main text, a cylindrical capacitor with an inner conductor 
of radius a and potential V exists, along with an outer conductor of radius b and 
potential 0. If the potential function between the conductors is ϕ, it is determined 
such that the variation in energy per unit length 

U = 
ε0 

2

∫ b 

a

(
dφ 
dr

)2 

2πrdr 

is δU = 0. 

(1) Calculate δU and set it to 0 under the natural boundary conditions to derive 
the differential equation that ϕ satisfies, and solve the differential equation to 
determine the exact ϕ. 

(2) If C denotes the capacitance of the capacitor, 

U = 
1 

2 
CV 2
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holds true for the determined ϕ. Express the capacitance C in terms of a, b π, 
and ε0. 
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Chapter 8 
Fundamentals of Continuum Thermal 
Energy Fluid Science 

Abstract This chapter provides a comprehensive discussion on the integration of 
fluid dynamics, heat transfer engineering, and plasma engineering, disciplines that 
span the fields of mechanical engineering, chemical engineering, and electrical engi-
neering. The chapter introduces a fundamental equation system for plasma heat 
transfer fluids and explores its key characteristics. In typical books, there is often a 
significant gap between fundamental theory and practical application. To bridge this 
divide, this chapter emphasizes an application-oriented perspective, ensuring that 
the concepts are presented in a manner relevant to real-world implementations. The 
derivation of fundamental equations and mathematical formulations is accompanied 
by practical examples related to plasma applications, facilitating a clearer under-
standing of their significance. Additionally, the mechanisms of heat transfer in both 
equilibrium and nonequilibrium plasmas are examined in detail. This discussion is 
structured around the fundamental equation system and includes concrete examples 
of computational analyses. The chapter concludes with a summary of key findings 
and a set of exercise problems to reinforce the concepts covered. 

8.1 Introduction 

Nonthermal plasma flows have found widespread applications across various indus-
tries. However, a significant gap remains between fundamental research and prac-
tical implementation. To effectively design and predict the performance of industrial 
plasma systems, it is crucial to develop numerical simulations and predictive models 
for nonthermal plasma fluid flows. This book seeks to integrate fluid dynamics, 
heat transfer engineering, and plasma engineering, disciplines that are commonly 
addressed within the fields of mechanical engineering, chemical engineering, and 
electrical engineering. A fundamental equation system for plasma heat transfer fluids 
is introduced, and its key characteristics are explained in detail. 

The discussion then extends to several critical aspects of plasma heat transfer, 
including convective heat transfer, thermal conduction, streamer formation, electron 
temperature rise in nonequilibrium plasma flows, Joule heating induced by voltage
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application, thermal conduction from electrodes to fluids, and nonequilibrium states 
in supersonic plasma flows. The analytical approach is structured around the heat 
transfer phenomena occurring within plasma systems, providing a comprehensive 
perspective on the subject. 

The fundamental equation systems governing plasma heat transfer are reviewed 
based on prior studies and established literature [1–7]. Additionally, a separate study 
has examined these phenomena from an engineering application perspective [8]. In 
this chapter, we aim to review and present these concepts with a strong focus on 
practical applications. To facilitate understanding, the derivation of mathematical 
formulas and fundamental equations is provided alongside real-world application 
examples of nonthermal plasmas. 

8.2 Fundamental System of Equations for Heat Transfer 
in Plasma Fluids 

8.2.1 Plasma Fluid Concept 

As an example, when analyzing atmospheric pressure plasma, macroscopic “convec-
tion” plays a significant role. Therefore, when evaluating plasma heat transfer, it is 
essential to treat plasma as a “fluid” system. In this context, the plasma fluid is consid-
ered within the framework of continuum mechanics, meaning that the individual 
plasma components—neutral particles, ions, and radicals (collectively referred to 
as heavy particles)—are treated as a continuous medium rather than as discrete 
particles. Notably, these heavy particles are distinct from electrons, which exhibit 
different transport properties. To establish a meaningful continuum approximation, 
consider a small control volume (ΔV ) that is significantly smaller than the charac-
teristic length L of the system but still large enough compared to both the Langmuir 
length and the mean free path (λ) of the plasma particles. This ensures that the control 
volume contains a sufficient number of heavy particles and electrons, allowing for a 
statistically valid description of plasma behavior. Consequently, plasmas operating in 
high-vacuum conditions, where the mean free path is exceptionally long, fall outside 
the scope of this discussion. 

A key parameter in determining whether the continuum assumption is valid is 
the Knudsen number (K = λ/L), which represents the ratio of the mean free path to 
the system’s characteristic length. It is important to note that the continuum approx-
imation remains applicable only when the Knudsen number is sufficiently small, 
indicating that particle interactions occur frequently enough for the plasma to be 
treated as a continuous medium. 

The volume of this infinitesimal element, ΔV, is considered to approach zero, ΔV 
→ 0, and can be represented by the position vector x in a spatially fixed inertial 
reference frame. In other words, a fundamental aspect of continuum dynamics is the 
treatment of an infinitesimal volume as a point, the definition of a position vector, and
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the consideration of the system in coordinates fixed to an inertial reference frame. 
In this framework, physical quantities such as the density and velocity of the plasma 
fluid at a given position vector x must be defined as the mean values of the particles 
contained within the infinitesimal volume element. For instance, density ρ as a field 
quantity, momentum per unit volume, or mass flux density ρu can be expressed as: 

Density: 

ρ(x) = lim
�V →0 

N∑

i=1 
mi

�V 
(8.1) 

Mass flux density: 

ρ(x)u(x) = lim
�V →0 

N∑

i=1 
miui

�V 
(8.2) 

where mi and ui are the mass and velocity of individual particles, respectively. Phys-
ical quantities appearing in the basic equations described in Sect. 8.2.7, namely 
specific enthalpy, temperature, component concentrations, or quantities of electro-
magnetic fields such as magnetic field H, magnetic flux density B, electric field E, 
etc., are scalar or vector quantities similar to density or momentum. Therefore, field 
quantities can be defined as the average values of particles, similar to the approach 
used in Eqs. (8.1) and (8.2). Additionally, while it is challenging to apply the aver-
aging operation to second-order tensor quantities such as stress, this difficulty can 
be addressed by specifying the normal vector of the acting surface at position x. By  
doing so, stress can be transformed into a force vector through a linear transforma-
tion, allowing the average to be defined inversely based on this operation. On the 
other hand, if the fluid is assumed to behave as an ideal gas, the temperature of the 
fluid particles can be explicitly defined. This concept is further explored in the next 
section. 

8.2.2 Plasma Fluid Temperature 

Temperature can be clearly defined only when the kinetic energy of individual parti-
cles follows the Maxwellian velocity distribution. The definition of temperature in 
non-Maxwellian states is not discussed in this context. For weakly ionized atmo-
spheric nonthermal plasmas, the Maxwellian electron distribution provides a reason-
ably accurate approximation [9]. It has been confirmed that assuming a Maxwellian 
electron distribution is sufficient for the fundamental equations governing plasma 
heat transfer fluids. However, a more comprehensive treatment of non-Maxwellian 
effects should be considered in future research. In this framework, the electron 
temperature T e is defined for electrons, the ion temperature for ions, and the gas
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temperature T g for neutral gas molecules. Since the mass of electrons is significantly 
smaller than that of heavier particles such as neutral species, ions, and radicals, elec-
tron velocities are typically much higher. This results in a nonequilibrium plasma 
state, where the electron temperature is much greater than the gas temperature (T e 

>> T g). 
The plasma electron temperature T e is explained as follows. It is assumed 

that within the plasma, electrons undergo frequent collisions with heavy particles. 
Furthermore, if these collisions are considered to be nearly completely elastic, the 
behavior of the electrons can be approximated using the ideal gas model. Under these 
conditions, while the electrons exhibit random motion, their overall behavior can be 
described by the following fundamental law: 

u = (u1, u2, u3) =
(
ux, uy, uz

)

f (ui) =
(

me 

2π kTe

) 1 
2 

exp

(

− 
meu2 i 
2kTe

)

i = 1, 2, 3 
(8.3) 

F(u) = 4π
(

me 

2πkTe

) 3 
2 

u2 exp

(

− 
meu2 

2kTe

)

(8.4) 

Each component (u1, u2, u3) = (ux, uy, uz) of the particle velocity u follows the 
probability density function of Eq. (8.3), and the magnitude u follows the cumulative 
distribution function of Eq. (8.4). Here, electrons are used as an example, but heavy 
particles can be considered in the same way. Gas molecular kinetic theory is applied 
to gas molecules. In order to facilitate the demonstration of Eqs. (8.3) and (8.4), 
variable transformation is performed to introduce xi and xu. 

f (xi) = 
1 √
π 
exp

(− x2 i
)
, xi =

(
me 

2kTe

) 1 
2 

ui (8.5) 

F(xu) = 
4 √
π 
x2 u exp

(− x2 u
)
, xu =

(
me 

2kTe

) 1 
2 

u (8.6) 

Equations (8.5) and (8.6) are illustrated in Fig. 8.1. The distribution of f (xi) is  
symmetric, reaching its maximum value at xi = 0. In contrast, the distribution of 
F(xu) is asymmetrical, with its peak occurring at xu = 1 and decreasing to zero at 
xu = 0. Since u represents the magnitude of velocity, it is always positive (u > 0),  
and consequently, xu is also positive. If the speed of the most probable electron, 
corresponding to xu = 1, is denoted as up, then: 

up =
(
2kTe 
me

) 1 
2 

or Te = 
1 

2 
meu

2 
p (8.7)

Equation (8.7) defines the electron temperature.
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Fig. 8.1 Shapes of functions 
f (xi) and  F(xu)

8.2.3 Kinetic Energy and Internal Energy 

Let xC represent the position vector of the center of gravity of the fluid particle under 
consideration, as illustrated in Fig. 8.2. The position vector of an individual particle 
i (which may be a heavy particle or an electron) within the fluid particle is denoted 
as xi, and the displacement relative to the center of gravity is given by Δxi, defined 
as the difference between xi and xC. The total kinetic energy K can be decomposed 
by expressing xi as xC + Δxi, as follows: 

K = 
N∑

i=1 

mi 
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d�xi 
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∣
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∣

2 

= KC + KM (8.8) 

KC is the kinetic energy of the center of gravity assumed to bear the total mass, and 
KM is the sum of the kinetic energies around the center of gravity. In other words, 
KC is the energy of the macroscopic motion of fluid particles, KM is the energy of 
the thermal motion of individual particles in it, and the internal energy U in the case

Fig. 8.2 Position vector xC 
of the center of gravity of 
fluid particles, position 
vector xi of individual 
particle i, and the difference 
between xi and xC, Δxi 
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of an ideal gas. The relationship between the distribution functions, i.e., Eqs. (8.3) 
and (8.8), is as follows: 

U = KM = 
1 

N 

N∑

i=1 

mi 

2

∣
∣
∣
∣
d�xi 
dt

∣
∣
∣
∣

2 

=
∫

�V 

1 

2 
mu2 f (u)dV (8.9) 

In the description above, which considers a system of mass points, the kinetic energy 
relative to the center of gravity and the potential energy of the forces acting on 
each point are regarded as internal energy. If rotational and vibrational motions are 
present, all kinetic and potential energies associated with these degrees of freedom 
must also be included as part of the internal energy. Furthermore, in the case of fluids, 
incorporating specific enthalpy, defined as h = U + pV, in the fundamental equations 
is useful for accounting for work done by pressure. Even within the framework of 
continuum mechanics, macro-fluid particles can be defined in a manner analogous 
to kinetic modeling. 

8.2.4 Thermal Conduction, Convection, and Radiation 

The fundamental principles of heat transfer, which are incorporated into the basic 
equations, are discussed. Heat or energy naturally flows from a region of higher 
temperature to one of lower temperature. This irreversible process is referred to as 
heat transfer and occurs in three primary forms: thermal conduction, convective heat 
transfer, and thermal radiation. 

8.2.4.1 Thermal Conduction 

In solids and fluids (liquids and gases), heat transfer that occurs through direct contact 
between substances is known as thermal conduction. The amount of heat transferred 
per unit area per unit time, referred to as heat flux q, is directly proportional to the 
temperature gradient in the direction of heat flow. This relationship is described by 
Fourier’s law. 

q = − λ∇T (8.10) 

The negative sign on the right side indicates that heat is transmitted in the direction 
of decreasing temperature. The constant of proportionality, λ, varies with materials 
and is called thermal conductivity.
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8.2.4.2 Heat Transfer 

Heat transfer that occurs between a solid surface and a fluid flowing in contact with 
it is referred to as convective heat transfer. In flowing fluids, conductive heat transfer 
is closely linked to fluid motion. When fluid flow is driven solely by buoyancy forces 
resulting from temperature differences, it is known as free convection or natural 
convection heat transfer. In contrast, when fluid movement is induced by an external 
force, such as a pump or fan, the process is referred to as forced convection heat 
transfer. 

When examining the temperature distribution of a fluid undergoing convective 
heat transfer along a wall surface, it is often observed that temperature changes 
occur rapidly within a relatively thin region near the wall. This effect is particularly 
pronounced when the fluid velocity is high. This thin region is known as the thermal 
boundary layer. Beyond this layer, the fluid is considered part of the mainstream flow. 
For clarity, the subscript w is used to denote the wall surface, while the subscript 
∞ represents the mainstream flow. The heat flux at the wall surface is generally 
expressed as a function of the temperature difference between the wall surface and 
the mainstream flow, and is given by the following equation: 

q = −  h(Tw − T∞) (8.11) 

where h is the heat transfer coefficient, which depends on the shape and size of the 
object, the type of fluid, the cause of flow, and its state. 

8.2.4.3 Thermal Radiation 

In plasmas, high-temperature gases (such as those generated in pulverized coal 
combustion) and fluids exchange energy by emitting and absorbing electromagnetic 
waves. This process is known as thermal radiation. In general, the radiant energy 
emitted from the surface of an object is proportional to the fourth power of its abso-
lute temperature. In high-temperature plasmas, radiation heat transfer often becomes 
the dominant mode of energy transfer. 

8.2.5 Method to Express Inertia Term for Field Quantities 

To formulate an equation for analyzing the volume-averaged behavior of particles as 
described above, it is necessary to express the state of the flow at a given moment using 
the position vector x and time t as independent variables. This approach is known 
as Euler’s method. In this representation, the time derivative ∂A/∂t of a physical 
quantity A at a specific position x does not correspond to the time variation of A 
for a single plasma fluid particle. Instead, it represents the time-dependent change 
observed as different plasma fluid particles successively pass through the position
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x. In other words, the Eulerian description provides an overview of the entire flow 
field at each instant rather than tracking the motion of individual fluid particles. 
Conversely, when x0 represents the position coordinate of a specific volume element 
at time t, the Lagrangian formulation is used to describe the behavior of the plasma 
thermal fluid, treating x0 and t as independent variables. The relationship between 
the Lagrangian time derivative (left-hand side of Eq. (8.12)) and the Eulerian time 
derivative (right-hand side of Eq. (8.12)) for a given physical quantity A is expressed 
as follows: 

DA 

Dt 
= 

∂A 
∂t 

+ (u · ∇)A (8.12) 

The Lagrangian time derivative is represented by D/Dt. In ordinary continuum 
mechanics texts, the Euler equation, which is suitable for describing field quantities, 
is used to describe basic equations. We will also adopt this below. 

8.2.6 Constitutive Equation 

The strain tensor, which is the spatial gradient of the displacement vector w and the 
field quantity, is as follows: 

ε = 
1 

2

[∇w + (∇w)T
]

(8.13) 

Among solids, the “elastic body” is defined by a continuum where the internal stress 
τ is proportional to ε. This is called Hooke’s law of elasticity, and is written in the 
form. 

Elastic body: 

τ = E : ε (8.14) 

where E is a fourth-order symmetric tensor, written using subscripts, e.g., Eijkl. This  
is also one of the quantities of fields. 

On the other hand, the strain rate tensor, which is the spatial gradient of the velocity 
field vector u, can be given as 

e = 
1 

2

[∇u + (∇u)T
]

(8.15) 

A “fluid” is defined by a continuum where the internal stress τ is proportional 
to e. This can be assumed for ordinary fluids such as water, air, and plasma. This is 
called Newton’s law of viscosity and is written in the form: 

Fluid (Newton fluid):
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τ = C′ + C : e (8.16) 

where Cʹ and C are tensors of the second- and fourth-orders, respectively. It is noted 
from Eqs. (8.13) and (8.15) that the dimensions of ε and e differ only by time. In 
Eq. (8.14) for the elastic body, the stress is τ = 0 for ε= 0. In other words, no internal 
stress exists when the strain ε is 0. However, in fluids, it becomes a constant value of 
τ = Cʹ at e = 0. Cʹ is called pressure. From the viewpoint of classical mechanics of 
the field, fluid mechanics deals with fluids, solid mechanics the theory of elasticity, 
and the strength of materials deals with solids (elastic bodies). It is noted that the 
subject of this paper is limited to plasma as a “fluid.” 

If Cʹ represents the isotropic pressure and the symmetry of e, e = eT is taken into 
account, and the fluid stress tensor equation of Eq. (8.16) finally becomes 

τ = (− p + χVe : I)I + 2μ
[

e − 
1 

3 
(e : I)I

]

(8.17) 

where p represents the pressure, xV denotes the volume viscosity (which is approx-
imately zero), I is the unit tensor (equal to δij), and μ is the viscosity coefficient. 
This relationship is known as the stress constitutive equation. By substituting this 
equation into Cauchy’s equation of motion of Eq. (8.18), which describes the general 
motion of a continuum, the equation of motion of Eq. (8.20) can be derived. 

∂(ρu) 
∂t 

+ ∇  ·  (ρuu) = F + ∇  ·  τ (8.18) 

8.2.7 Fundamental Equations for Plasma Heat Transfer 
Fluids 

To analyze heat transfer in plasma fluids and their associated dynamics, it is essential 
to examine the fundamental equations alongside Maxwell’s equations, which govern 
the electromagnetic field. Heat transfer and fluid dynamics are inherently intercon-
nected. However, unlike conventional fluid dynamics, plasma fluid dynamics lacks 
a fully established set of fundamental equations, and analytical methods in this field 
are still undergoing development. Building upon previous studies and literature from 
various researchers [1–29], this section presents a generalized formulation of the 
fundamental equations for two-temperature nonequilibrium plasmas. These equa-
tions have been widely applied in plasma analysis and have been validated through 
practical evaluations. 

Continuity equation (law of conservation of mass): 

∂ρ 
∂t 

+ ∇  ·  (ρu) = 0 (8.19)
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Equation of motion (law of conservation of momentum): 

∂(ρu) 
∂t 

+ ∇  ·  (ρuu) = −∇p + ∇  ·  (μ∇u) + 
1 

3 
μ∇(∇ ·  u) + F (8.20) 

F = ρeE + J × B 

when electrostatic and Lorentz forces are considered. 
Heavy particle energy equation (equation of state and law of conservation of 

energy): 

p = ρRT (8.21) 

∂(ρh) 
∂t 

+ ∇  ·  (ρuh) = ∇  ·  (λ∇T ) + ψD + Sc + ne
∑

k 

εknkKk (8.22) 

ψD = 2μ
[(

e − 
1 

3 
e : I

)

I
]

:
[(

e − 
1 

3 
e : I

)

I
]

(8.23) 

Assuming an ideal gas, dh = Cp dT strictly holds between specific enthalpy h and 
heavy particle temperature T. Therefore, Eq. (8.22) is expressed using T as follows: 

Cp

[
∂(ρT ) 

∂t
+ ∇  ·  (ρuT )

]

= ∇  ·  (λ∇T ) + ψD + Sc + ne
∑

k 

εknkKk (8.24) 

Chemical species transport equation (species conservation law): 

∂(ρYi) 
∂t 

+ ∇  ·  (ρuYi) = ∇  ·  Ji + Miωi (8.25) 

Ji = −  ρDi∇Yi + ρYiudi + Jci (8.26) 

ωi = 
NR∑

j=1

(
ν ′′
ij − ν ′

ij

)
qj (8.27) 

qj = kj

(
Ns∏

m=1 

c 
ν ′
mj 
m − Kcj 

Ns∏

m=1 

c 
ν ′′
mj 
m

)

(8.28) 

kj = AjT 
n 
j exp

(− Ej/RTj
)

(8.29) 

or 

kj =
∫ √

Teσcol(Te)f (Te)dTe (8.30)
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Electron transport equation (conservation law of electron number density): 

∂ne 
∂t 

+ ∇  ·  Ge = Se (8.31) 

Ge = μene∇φ − De∇ne (8.32) 

Electron energy equation (electron energy conservation law): 

3 

2 

∂(neTe) 
∂t

+ ∇  ·
(
5 

2 
TeGe − χ ∇Te

)

= J · E − ne
∑

k 

nkKk − Ra (8.33) 

Maxwell’s equations (electromagnetic field equations): 

∇ ×  H = J + 
∂D 
∂t 

(8.34) 

∇ ×  E = −  
∂B 
∂t 

(8.35) 

∇ ·  D = ρe, D = εrε0E (8.36) 

∇ ·  B = 0, B = μH (8.37) 

J = ρeu + σ (E + u × B) (8.38) 

Potential ϕ is introduced by E = − ∇ϕ, and Poisson’s equation is obtained from 
Eq. (8.36). 

∇ ·  (εrε0∇φ) = −  ρe (8.39) 

Furthermore, taking the divergence of both sides of Eq. (8.34) and considering 
Eq. (8.36), we obtain Eq. (8.40) for the continuity of the current density. 

∂ρe 

∂t 
+ ∇  ·  J = 0 (8.40) 

The symbols that appear in the basic equations are as follows: t: time, ρ: density, u: 
velocity, p: pressure, μ: viscosity coefficient, R: gas constant, T: absolute temperature, 
h: specific enthalpy, λ: thermal conductivity ψD: dissipation energy loss, Sc: Chemical 
reaction heat generation term, ne: electron number density, εk: energy loss, Kk: equi-
librium constant, nk: number density of neutral particles, Cp: specific heat at constant 
pressure, Y i: mass fraction, J i: mass flux, M i: molecular weight, ωi: molecular forma-
tion rate, Di = μ/(ρSc): diffusion coefficient, udi: drift velocity, Jci: mass flux, νʹij
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and ν′′ij: forward and reverse equivalence coefficients, respectively, NR: number of 
chemical reactions, N s: number of chemical species, cm: molar concentration, Kcj: 
equilibrium constant, kj: reaction rate coefficient, T j (= T e or T ): absolute tempera-
ture of species j, Aj, n, Ej: Coefficients related to chemical reaction for species j, σcol: 
collision cross section of species j (function of T e), f : electron energy distribution 
function (Maxwellian distribution), Ge: electron density flux vector, Se: chemical 
reaction, μe: electron mobility (= e/(meνe), e: electron charge, me: electron mass, νe: 
collision frequency), De: electron diffusion coefficient (= μe T e), ϕ: potential, χ = 5 
ne De/2: thermal diffusion coefficient, J: current density, E: electric field, Ra: radia-
tion energy loss, H: magnetic field, D: electric flux density, B: magnetic flux density, 
εr: relative permittivity, ε0: vacuum permittivity, and ρe: volume charge density. 

8.2.8 Boundary Conditions 

To solve the fundamental equations mentioned above, it is necessary to consider 
three types of boundary conditions: (1) thermo-hydrodynamic boundary conditions, 
(2) electromagnetic field boundary conditions, and (3) plasma boundary conditions, 
which include electron and ion behavior. For thermo-hydrodynamic boundary condi-
tions (1), several conditions may apply, such as zero velocity at the wall surface, a 
constant velocity gradient, constant temperature, constant heat flux, or free inflow 
and outflow conditions. For electromagnetic field boundary conditions (2), when a 
physical quantity such as the electric potential ϕ is specified at the boundary or when a 
boundary exists between two media with different electrical conductivities σ, certain 
continuity conditions must be satisfied. Specifically, the normal component of the 
current density J must be continuous, and the tangential component of the electric 
field E must also be continuous. Similarly, if an interface exists between two media 
with different magnetic permeabilities μ, the normal component of the magnetic flux 
density B must be continuous, and the tangential component of the magnetic field 
H must also be continuous. For plasma boundary conditions (3), constraints include 
the conservation of electron number density at the boundary and the conservation of 
particle number density in surface chemical reactions. 

Since boundary conditions must be specified according to the actual system under 
consideration, it is difficult to establish a single unified framework for describing 
them. Instead, they will be explained individually in the context of specific analysis 
examples presented later.
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8.2.9 Analysis Procedure for the System of Fundamental 
Equations 

The equations governing plasma heat transfer, as described above, are solved in 
a coupled manner to determine the velocity field, temperature field, concentration 
distribution, chemical reactions, and electromagnetic field within the plasma. Once 
these fields are obtained, the amount of heat transfer can be calculated. In this process, 
a system of partial differential equations must be solved. Both analytical and numer-
ical methods exist for solving these equations. However, when dealing with highly 
complex scenarios, analytical solutions become impractical. Exact solutions can 
be derived for specific cases, such as parallel flows in pipes, which correspond to 
Poiseuille flow, and flows along flat plates, but these solutions are limited to highly 
simplified conditions. Consequently, for more complex systems, numerical methods 
are employed, and equations are formulated in a manner that facilitates computational 
solutions, as discussed in later sections. 

8.3 Characteristics of Plasma Fluid Heat Transfer 

Unlike conventional gas flows, heat transfer in plasma is significantly influenced 
by charged particles such as ions and electrons. Each term in the governing equa-
tions represents a specific contribution to this process. In particular, in atmospheric-
pressure plasmas, convective heat transfer plays a much more dominant role 
compared to low-pressure plasmas. Additionally, heat transfer characteristics can 
vary depending on whether the plasma exhibits laminar or turbulent flow, as well as 
whether it behaves as a continuum or a free molecular flow. The specific terms used 
in the fundamental equations will be explained in detail. 

8.3.1 Effect on Transport Coefficient 

Physical properties, particularly transport coefficients, are strongly influenced by 
ionization, as they depend on collision processes between particles. For instance, the 
electrical conductivity σ and the Hall coefficient β of plasma can be expressed using 
the following equations based on the charged particle model. 

σ = 
e2ne 
meνe 

(8.41) 

β = 
eB 

meνe 
(8.42)
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where e is the elementary charge of the electron. This collision process is deter-
mined by the potential between particles. The potential between charged particles is 
the Coulomb potential, which is an electrostatic field. Coulomb collisions are very 
likely to occur, resulting in a small transport coefficient, and the presence of charged 
particles has a negative effect on transport phenomena. Therefore, the physical prop-
erty values of plasma do not change monotonously with temperature and have a 
maximum and minimum. 

8.3.2 Effect on Thermal Conductivity 

Electrons have a mass of 9.109 × 10−31 kg, making them significantly lighter than 
molecules and atomic ions. Since the speed of thermal motion is inversely propor-
tional to the square root of mass, electrons, having such a small mass, exhibit 
extremely high velocities. Because transport coefficients are proportional to this 
thermal velocity, electrons play a crucial role in enhancing transport phenomena, 
in contrast to the effects of Coulomb collisions described earlier. However, due to 
their small mass, electrons contribute minimally to momentum transfer, resulting in 
a negligible effect on the viscosity coefficient. On the other hand, electrons play a 
significant role in thermal conductivity. Since they carry an equivalent amount of 
energy as heavier particles while moving at much higher speeds, they facilitate the 
transfer of a large amount of heat within the plasma. 

8.3.3 Effects of Ionization and Chemical Reactions 

In plasma, ionization reactions, where neutral particles dissociate into ions and elec-
trons, and recombination reactions, where ions and electrons combine to form neutral 
particles, continuously take place. Ions and electrons from high-temperature regions 
diffuse into lower-temperature regions, where they recombine and release ionization 
energy. In other words, ionization energy is transported through the mutual diffusion 
of ion–electron pairs and neutral particles. This mechanism plays a significant role 
in the overall heat transfer process within plasma. A similar phenomenon, where 
reaction energy is transported via diffusion, can also be observed in heat transfer 
processes involving reactive fluids, where chemical reactions contribute to energy 
exchange.
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8.3.4 Effects of Electromagnetic Fields 

The existence of charged particles in plasma indicates that it behaves as a conductive 
gas, with electrical conductivity comparable to that of metals. As a result, electromag-
netic forces exert influence on the plasma, performing work that alters heat transfer 
characteristics. Additionally, when an electric current flows through the plasma, 
Joule heating occurs, further contributing to thermal energy generation. In cases 
where current enters or exits a material, energy transfer takes place, and anisotropic 
effects emerge. The properties of heat transfer differ significantly between the direc-
tion perpendicular to the magnetic field and the direction parallel to it. Consequently, 
the presence of an electromagnetic field has a substantial impact on the overall heat 
transfer process in plasma. 

8.3.5 Effect of Joule Heating 

When an electric field is present in plasma, current flows, leading to the generation 
of Joule heat, which increases the temperature within the plasma field. Furthermore, 
if there is a potential difference between the plasma and a solid object, such as a 
container wall or an electrode, current flows between the plasma and the object. In 
both cases, the electric field influences the amount of current that flows, which in 
turn affects the amount of heat transfer. 

In conventional solid conductors, Joule heat is calculated as the product of resis-
tance and the square of the current. Similarly, plasma, which acts as a gaseous 
conductor, follows the same principle. At a microscopic level, the mechanism of 
Joule heating in plasma can be explained as follows: first, charged particles, such as 
ions and electrons, gain energy from the electric field, leading to an increase in their 
kinetic energy. This energy is then transferred to neutral gas molecules through colli-
sions. As these collisions occur, the energy is further distributed among surrounding 
particles. When collisional energy transfer is sufficiently efficient, all particles even-
tually reach the same energy state, resulting in an equilibrium plasma. In contrast, in 
a nonequilibrium plasma, the heat transfer process is insufficient, leading to signif-
icant acceleration of electrons due to their much lower mass compared to ions and 
neutral particles. This causes the electron temperature to be much higher than that 
of the heavier species, maintaining a nonequilibrium state. 

The amount of Joule heat generated per unit volume per unit time, denoted as 
qj, is given by the equation of qj = J2/σ = σ E2, where J represents the current 
density, σ is the electrical conductivity, and E is the electric field strength. From 
this equation, it is evident that Joule heat is transferred to fluid particles via charged 
particles, primarily electrons. 

Additionally, in low-pressure plasmas, where collisions between particles are 
infrequent, the mean free path is long, and collisional energy transfer is often insuf-
ficient for complete thermalization. As a result, the increase in kinetic energy of
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Fig. 8.3 Relationship 
between plasma pressure, 
electron temperature T e, and  
gas temperature Tg 
(nonequilibrium plasma, 
1 Torr is 133.3 Pa) in DC 
discharge of mercury and 
rare gas mixture at different 
gas pressures and the same 
current [30] 

charged particles does not always lead to a corresponding rise in overall plasma 
temperature. Figure 8.3 illustrates the relationship between plasma pressure, elec-
tron temperature T e, and gas temperature T g. Because electrons transfer only a small 
amount of energy to heavier particles per collision, the energy gained from the elec-
tric field primarily serves to accelerate electrons. This often leads to a nonequilibrium 
plasma state, where the electron temperature remains significantly higher than the 
temperature of the gas molecules and ions. 

In contrast, in atmospheric pressure plasmas, where collisions between parti-
cles occur frequently, an equilibrium plasma state is more likely to be established. 
However, nonequilibrium plasma with a high electron temperature can still be gener-
ated by rapidly accelerating electrons using techniques such as the application of 
high-voltage pulses at high frequencies between electrodes. This method enables 
electrons to gain energy efficiently from the electric field while minimizing thermal-
ization with heavier particles. The time-averaged power consumption required for 
generating such nonequilibrium plasmas is relatively low, making them particularly 
suitable for applications that leverage their high chemical activity, such as exhaust 
gas treatment. 

8.3.6 Meaning of Terms in the Fundamental Equations 

Next, we describe the characteristic terms that appear in the fundamental equa-
tions and introduce additional equations. Unlike conventional conservation equa-
tions in fluid dynamics, plasma behavior is influenced by electromagnetic effects, 
including ionization reactions, current flow, and magnetic field generation. As a 
result, additional terms are incorporated into the basic equations to account for these 
phenomena. 

Equation of motion (8.20): 

• J × B: This body force acts perpendicular to both the current and magnetic field, 
which is the Lorentz force.
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• ρeE: Electrostatic force. If there is a charge density, this body force is exerted by 
the electric field. 

Energy equation of heavy particle (8.21)–(8.24): 

• Sc: Generation term of chemical reaction heat including ionization reaction. 
• ne

∑

k 
εknkKk represents the interphase energy transfer from electrons to heavy 

particles. 

Transport equations of chemical species (8.25)–(8.30): 

• In Eq. (8.25) for chemical species, not only chemical reactions but also ionization 
reactions are considered. 

• M iωi generation term. In reactive fluids, the components change due to reactions; 
thus, the conservation equation for the changing components requires terms for 
the generation and extinction rates associated with reactions. 

• Equations (8.29) and (8.30) regarding ionization reactions are newly introduced. 

Transport equations of electrons (8.31) and (8.32): 

• These equations are newly introduced to represent the law of conservation of 
electron generation and vanishing. 

• ∇ · Ge: Transfer term due to the electric field. This term is necessary in the electron 
transport equation because the electrons are forced to move by the electric field. 

• Se: An electron generation term. This term is required in the electron transport 
equation. 

Energy equation of electrons (8.33): 

• Newly introduced as the law of conservation of energy for electrons. 
• Pelec = J · E: Joule heating. When current flows in plasma, Joule heat is generated 

per unit volume and is given by the product of current density and electric field 
strength. 

• ∇ · (5/2)T eGe: Electron enthalpy transfer due to current by drift flux model. 
• Ra: Radiant energy. Plasma is hot and emits electromagnetic waves by several 

mechanisms. Higher densities and higher temperatures result in greater heat 
transfer. 

8.3.7 Boundary Conditions for Current Flow and Heat 
Transfer 

The heat transfer associated with the inflow and outflow of electric current to and 
from an object can be evaluated as a boundary condition based on the following 
mechanism. When ions reach the surface of an object, they capture electrons from 
the surface and undergo recombination (current inflow), releasing ionization energy. 
In this process, the energy imparted to the object is determined by subtracting the
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energy required to extract electrons (work function) from the total ionization energy. 
Consequently, the heat transfer rate qi per unit time and unit area is given by: 

qi = 
Ji 
e 

(Ei − φw) (8.43) 

where J i is the ion current density, e is the unit charge, Ei is the ionization energy, 
and ϕw is the work function. In contrast, when electrons are absorbed by the object 
(current outflows), an energy corresponding to the work function is transferred to the 
solid, and the heat flux qe is 

qe = 
Je 
e 

φ (8.44) 

where Je is the electron current density. By analyzing the basic equation system, 
Eqs. (8.43) and (8.44) can be used to calculate, for example, the transfer of heat 
due to the inflow and outflow of current from the plasma to the object through the 
electrode, an example of which will be described later. 

8.4 Analysis Example of Fundamental Equations Systems 

Next, the author describes an analysis of a real system that the author’s group 
performed using the above basic system of equations. We are interested in heat 
transfer and fluid flow emitted from a glass melting furnace [24], thermal fluid 
dynamics of streamers in atmospheric pressure plasma flow [25–27], and exhaust 
gas from semiconductor manufacturing equipment using inductively coupled plasma 
(ICP). Four example analyses included the heat transfer and pyrolysis of CF4 [28] 
and the supersonic flow in nonequilibrium magnetohydrodynamic (MHD) generators 
[29]. From a computational cost perspective, each analysis does not incorporate all 
terms in the fundamental equations. Instead, approximations are made by neglecting 
terms that have minimal impact on the overall results. Additionally, the compu-
tational approach varies significantly depending on the specific flow and plasma 
conditions. The numerical methods used for nonequilibrium plasma, thermal equi-
librium plasma, supersonic flow, and subsonic flow differ fundamentally, requiring 
tailored analytical techniques for each case. To provide clarity, each section begins 
with a self-contained summary, highlighting the key aspects of the analysis and 
relevant information. Readers seeking further details are encouraged to refer to the 
corresponding research papers for a more comprehensive explanation.
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8.4.1 Heat Transfer and Fluid Flow of Emission from Glass 
Melting Furnace 

As a basic example of flow, heat conduction, and convective heat transfer, we consider 
a heat transfer and fluid flow of emission from glass melting furnace [24]. 

Figure 8.4 shows a schematic of the glass bottle manufacturing factory system 
and the dry exhaust gas treatment process. The raw materials of glass such as silica 
sand, limestone, soda ash, sodium sulfate (Na2SO4), etc. are melted in a glass melting 
furnace at approximately 1500 °C using a fossil fuel such as city gas or C-heavy oil. 
Because of technical issues of glass melting, the furnace cannot be used for city gas 
firing alone. C-heavy oil is used at a ratio of approximately 1/4–1/3, which results in 
SOx generation. In a bottle manufacturing system, the melted glass is transformed 
into a bottle shape using a mold and then it is slowly cooled for distortion removal. 
Subsequently, it is used to develop a glass bottle product. However, the exhaust 
gas emitted by combustion contains air pollutants such as SOx derived from raw 
materials and fuels, NOx generated by high-temperature air combustion, and dust 
(mainly scattered materials). Therefore, exhaust gas treatment facilities are installed 
to reduce environmentally hazardous substances. The exhaust gas from the glass 
melting furnace passes through a thermal storage apparatus and is introduced into a 
downstream reaction tower called a stabilizer or a reactor. In this reaction tower, an 
aqueous solution of sodium hydroxide (NaOH) is sprayed, and SOx in the exhaust 
gas is removed. The removed SOx is converted to sodium sulfite (Na2SO3), which is 
oxidized and recovered as Na2SO4 and reused as a glass raw material. The generated 
fine particles of Na2SO4 and dust are removed by a dry electrostatic precipitator (EP) 
and a bag filter (BF), which are located downstream and are used as dust collectors. 
The dust is transported to the glass melting furnace by a chain conveyor. The cleaned

Fig. 8.4 Schematic of glass bottle manufacturing system and dry exhaust gas treatment system
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exhaust gas is discharged from the stack. However, because the exhaust gas contains 
a large amount of sticky dust produced by raw materials and high-concentration 
SOx, De-NOx equipment has not been able to improve. NOx regulations (NOx < 350 
ppm at O2 = 15%) have been complied with by the reduction of NOx due to low 
air ratio combustion at the source side. However, because NOx reduction in low air 
ratio combustion is accompanied by a deterioration in fuel efficiency, the demand 
for energy-saving NOx reduction technology has increased.

A numerical design was used for the prediction of the system. Numerical simu-
lation was carried out inside the two-phase chemical reaction flow of the stabilizer. 
Water-cooled O3 is injected before the gas passes through the stabilizer. Figure 8.5 
shows the analysis model. The simulated exhaust gas flows from the pipe (z = 0 mm) 
connected to the reactor (stabilizer). Water is then sprayed from a three-fluid nozzle 
installed at a position of z = 2050 mm and a two-fluid nozzle installed at a position 
of z = 4050 mm to form a local cooling area in the reactor. Further, ozone is ejected 
from the three-fluid nozzle to oxidize NO in the simulated exhaust gas. The treated 
simulated exhaust gas flows out through the pipe (z = 14,900 mm) connected to the 
upper part of the reactor. The gas does not flow out from the bottom of the reactor 
(z = −  4900 mm). Heat dissipation and non-slip conditions at wall boundaries are 
used as boundary conditions. A steady three-dimensional simulation is performed 
using the finite volume method. CFD-ACE+ was used as the simulation software.

For the calculation of the thermal motion of spraying water droplets, the discrete 
particle method is simulated in the computational domain by solving the Lagrange 
equation. For the evaporation model, a water droplet is considered spherical and the 
temperature distribution inside the droplet is considered uniform without considering 
the circulation inside the droplet. The equation of motion of the droplet is expressed 
as follows: 

mi 
dvi 
dt 

= CDρd(u − vi)|u − vi| Ai 

2 
+ mig (8.45) 

where i, m, CD, ρd, vi, and Ai are the droplet number, droplet mass, drag coefficient, 
droplet density, droplet velocity, and droplet projection surface area, respectively. The 
first term on the right side is the drag force that a single water droplet receives from 
the gas. The reaction force of the drag force, integrated over the number of droplets 
in one cell in Cartesian coordinates, is the drag force, that the gas receives. When a 
water droplet moves through gas at a high temperature, the droplet evaporates, and 
energy is exchanged. The energy equation for a droplet is expressed as follows: 

miCp 
dTi 
dt 

= πd2 s − ṁevaL (8.46) 

where Cp, s, d, ṁeva, and L are the specific heat of the droplet, sensible heat transferred 
to the droplet, diameter of the droplet, evaporation rate of the droplet, and latent heat, 
respectively.
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Fig. 8.5 Three-dimensional analysis model for the stabilizer

The water droplet diameter, d, which decreases with evaporation, is expressed as 
follows: 

d
(
d3 
0 − d3

)

dt
= 

6 

πρd 
ṁeva (8.47) 

where subscript 0 denotes the start of the simulation iteration. The gas, density, 
velocity, temperature, pressure, and concentration of the species are obtained; the 
droplet trajectory, diameter, velocity, and temperature are obtained using Eqs. (8.45)– 
(8.47). 

Numerical results are shown. Figure 8.6a, b shows the temperature distribution. 
It is found that the simulated exhaust gas flows in at 488 °C, is cooled by water 
spray from the three-fluid nozzle and the two-fluid nozzle, and flows out of the outlet 
at 260 °C. The exhaust gas flows out in a dry state due to the high temperature of 
260 °C. At a position of z = 2050 mm (where the three fluid nozzles are mounted), a 
local cooling area is formed, and the simulated exhaust gas is cooled to a minimum 
temperature of 60 °C. Even at the spray position of z = 4050 mm (where the two-
fluid nozzles are mounted), a local cooling area is still formed, and the gas is cooled 
to a minimum temperature of 100 °C. It is also found that the simulated exhaust
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gas density increases with the decrease in the temperature so that a cooling region 
extends to the upstream (z = 1000 mm) from the spray position of the first stage. 

Figure 8.6c, d shows vz or w distribution. A strong upward flow near the wall 
(x < − 1750 mm) is obtained. This is caused by the flow from the inlet colliding 
with the wall. The upward flow near the walls are also confirmed. This is due to the 
large vortex created by the convection of the simulated exhaust gas cooled by the

Fig. 8.6 Temperature 
distributions of gaseous 
phase, a x–z cross section 
b y–z cross section, and 
counter of velocity in the 
z-direction, c x–z cross 
section d y–z cross section 
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three-fluid and two-fluid nozzles. It is found that NO2 is diffused by the convection 
field generated by the cooling and advects by the upward flow. 

8.4.2 Thermo-Fluid Dynamics of Streamers in Atmospheric 
Pressure Plasma 

Next, as an example of atmospheric nonequilibrium plasma streamer and nonequi-
librium heat transfer, we consider environmental cleaning nonthermal plasma (NTP) 
obtained with nanosecond pulse corona discharge. Such a discharge and plasma 
reactor are widely used in basic experiments for environmental cleaning, such as 
those flowing exhaust gas through the reactor to clean it, as shown in Fig. 8.7. 

8.4.2.1 Numerical Model and Analysis Method 

For the analysis, we utilized the CFD-ACE+ software, a widely used computational 
fluid dynamics (CFD) simulation system specifically designed for analyzing plasma

Fig. 8.7 Model for 
numerical analysis of the 
plasma reactor [27] 
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reaction flows [25–27]. The plasma module within this system has undergone exten-
sive enhancements by numerous researchers, primarily for applications in plasma 
chemical vapor deposition (CVD). However, its use in environmental protection tech-
nologies is a relatively recent development. In this section, we outline the analytical 
methodology using a two-dimensional modeling approach. 

The model used in the numerical analysis conducted in this study is similar to 
that of a coaxial dielectric barrier-type atmospheric NTP reactor employed in our 
experimental study; it is shown in Fig. 8.7. It is also used in our experiments on 
pollution control. This is a coaxial-type plasma reactor that comprises a centered 
wire electrode (1.5 mm diameter, positive polarity) supported by a perforated poly-
tetrafluoroethylene plate and a quartz glass tube (30 mm inner diameter and 34 mm 
outer diameter), which is surrounded by a copper mesh grounded electrode. The 
reactor is energized by a nanosecond-pulse high-voltage power supply. 

Figure 8.8 shows the nonuniform computational grids and cells used in the simu-
lation. The reactor is set up so that the r-axis is the radial direction of the reactor and 
the z-axis is the axial direction of the high-voltage wire electrode. The total number 
of cells is 1950 (65 in the r-direction and 30 in the z-direction). A three-dimensional 
(r, θ, z) numerical model is employed, and only the radial r-direction is spatially 
considered to be axisymmetric (∂/∂θ = 0). In other words, it is a model in which 
physical quantities are averaged in the θ-direction, and it is possible to understand 
the detailed structure of nonuniform streamers in the z-direction. In the radial direc-
tion, the calculation region encompassed r = 0.75–17 mm and is divided into 65 
nonuniform cells. The surface of the high-voltage wire electrode is positioned at r 
= 0.75 mm, while the surface of the grounded electrode is placed at r = 17 mm. 
The region corresponding to r = 15–17 mm is a dielectric barrier quartz glass. The 
mesh size is smaller near the high-voltage wire electrode because of larger gradients 
of physical quantities. In the axial direction, the calculation region encompasses z = 
0–15 mm and is divided into 30 uniform cells. The plasma is induced in the region 
corresponding to r = 0.75–15 mm.

8.4.2.2 Analysis Procedure 

A total of 197 gas phase reactions for 25 chemical species (N, N+,N2,N2 
+, N2(a1Σu +), 

N2(A3Σu +), N2(B3Πg), N2(X3Πu), N3 
+, N4 

+, O, O(1D), O(1S), O+, O−, O2, O2**, 
O2(a1Δ), O2(b1Σ), O2 

+, O2
−, O2(v), O3, O3

−, and O4 
+) and 21 surface reactions 

on the inner glass wall surface are analyzed in an air plasma under atmospheric 
pressure on the basis of the results presented in previous studies [9, 25, 31, 32]. 
The values of the electron collision cross-section for the momentum transfer of 
ozone, used for the ozone formation reaction are improved. The chemical model and 
many reaction rates used are provided as supplementary material provided by Ref. 
[27]. All calculation conditions and boundary conditions are determined based on 
experimental conditions. 

Figure 8.9 shows the pulse voltage waveform applied to the reactor. The waveform 
is approximated as a sinusoidal function with a peak-to-peak voltage of 34 kV and a



8.4 Analysis Example of Fundamental Equations Systems 149

Fig. 8.8 Computational grids and cells [27]

Fig. 8.9 Waveform of the 
nanosecond-pulse applied 
voltage [27] 

period of 600 ns; these values were determined by experiments. The use of a pulsed 
voltage with a very short rise time (~ 100 ns) and short duration (~ 1 ms) is known to 
be useful for efficient gas cleaning. The calculations in this study consider the effects 
of the high-speed rise of the applied voltage and multiple streamer propagation. At 
the interface between the plasma and dielectric barrier (i.e., the quartz glass region), 
the following conditions are used to solve Poisson equation (8.39): 

[εrε0(∇φ)n] = σS (8.48)
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[(∇φ)t] = 0 (8.49) 

where the square parentheses indicate the difference at the interface, (∇ϕ)n and (∇ϕ)t 
are normal and tangential components of the electric field, respectively, and σs is used  
for the surface charge density. 

The system of governing equations is simultaneously solved by the CFD-ACE+ 
solver. The fluid, heat, and species transport equations of Eqs. (8.19–8.30) are solved 
using the time-implicit SIMPLEC method [33]. A Sharfetter–Gummel (exponential) 
scheme is used for the plasma analysis of Eqs. (8.31–8.33) [30]. An implicit Poisson 
equation solver is used for electrical potential analysis of Eq. (8.39). 

The initial conditions are set as follows: temperature T = 300 K, electron temper-
ature T e = 0.2 eV under quasi-neutrality condition, uniform electron number density 
ne = 8 × 108 m−3, electric potential ϕ = 0, and N2: O2 = 79: 21. The viscosity is 
calculated from Sutherland’s law. The Schmidt and Prandtl numbers are set as 0.7 
and 0.707, respectively. The thermal conductivity, specific heat, and relative dielec-
tric constant εr of the quartz dielectric barrier are set as 2.0 W/(m K), 1000 J/(kg K), 
and 3.5, respectively. The electric field in the tangential direction Et and electric flux 
in the normal direction Dn are continuous at the interface. The external load C is set 
as 1 × 10−8 F/m. 

The biggest problem in unsteady calculations of plasma flow is the huge difference 
between the time constants of plasma and fluid changes. In the unsteady calculation 
of the plasma flow, the first-order Euler implicit scheme is adopted. In general, plasma 
flows require a small time step because the discharge process proceeds rapidly. In 
our calculations, we set Δt = 3 × 10−12 s = 3 ps. When Δt exceeds this value, the 
calculation diverges. The total number of time steps and final time are 1,000,000 
and 3000 ns, respectively. In this case, the plasma was simulated until the end of 
the second pulse of the applied voltage using a personal computer (CPU: Intel(R) 
Core(TM) i9-9980HK@2.40 GHz, 8 core/12 thread, RAM: 64.0 GB, Precision 5540 
Workstation, Dell Technologies Japan Inc.). It takes approximately 28 days (672 h) to 
obtain the simulation results up to the end of the second pulse. The characteristics of 
the streamer group in the second pulse and the chemical reactions that occur between 
pulses are clarified. Although domain decomposition and adaptive mesh are possible 
in the plasma simulation [34], they are not carried out in the present study. The inflow 
condition is that a laminar flow with a parabolic velocity distribution at a temperature 
of 300 K is introduced at 5 L/min. The viscosity coefficient is calculated using 
Sutherland’s law, with Schmidt and Prandtl numbers of 0.7 and 0.707, respectively. 
The thermal conductivity, specific heat, and dielectric constant of the quartz dielectric 
barrier are set to 2.0 W/(m K), 1000 J/(kg K), and 3.5, respectively. 

8.4.2.3 Calculation Results and Discussion 

Figure 8.10 shows an example of the time-dependent distribution of the electron 
number density ne in the streamer propagation simulation. Figure 8.10a shows  the
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results from t = 72 to 600 ns for the first pulse. Both primary and secondary streamer 
generations can be observed. After the voltage increases on the discharge electrode, 
primary streamers are formed, and the length of the streamer develops to approx-
imately 6 mm at t = 264 ns. However, the lengths of all streamers decrease near 
the peak voltage, from 264 to 408 ns. After 408 ns, secondary streamers begin to 
appear, with six secondary streamers observed at 456 ns, subsequently shortened at 
the end of the first pulse. Inside the primary streamer, the maximum of ne reaches 
9.6 × 1018 m−3 at t = 300 ns. Given that a dielectric barrier wall exists in the reactor, 
the calculated value of ne is lower than those without barriers. The presence of the 
barrier wall makes the diameter of streamers larger and, as a result, nonuniform 
plasma may emerge. All secondary streamers are induced in the same channel in 
which the primary streamers are generated, similar to the experiments described in 
an experimental study [35], where the secondary streamers are always induced in the 
same paths as those of the primary streamers. The secondary streamers appear and 
disappear repeatedly, traveling only part of the distance (1–6 mm) to the wall, in the 
radial r-direction. Moreover, the secondary streamers seem to stay always attached to 
the positive discharge electrode, which is consistent with experimental observations 
[35].

Figure 8.10b shows the status of ne between the first and second pulses. Streamers 
remain from t = 750 to 2400 ns, although no voltage is applied. In addition, the 
value of ne increases until t = 1800 ns; subsequently, it decreases. The length of 
streamers changes because of the changing ne. During this period from t = 750 to 
1800 ns, electron generation is considered to be dominated by the following chemical 
reactions: 

O− + O → O2 + e (8.50) 

O− + O2 → O3 + e (8.51) 

O− 
2 + O → O3 + e (8.52) 

O− 
3 + O → 2O2 + e (8.53) 

The following is an explanation of the increase in ne. Between 750 and 1800 ns, 
the rate constants for chemical reactions (8.50)–(8.53) are higher than 10−7 kmol/ 
m3/s, while the rate constants for the other 193 chemical reactions considered are less 
than 10−10 kmol/m3/s; therefore, these reactions significantly contribute to electron 
generation, and ne increases over this period. 

Figure 8.10b also shows that ne decreases between 1800 and 2400 ns because 
electrons are consumed according to the following chemical reactions: 

e + N+ 
4 → 2N2 (8.54)
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a 

b 

Fig. 8.10 Time-dependent ne distributions in the simulation: a t = 72–600 ns during the first pulse, 
b t = 750–2400 ns between the pulses, and c t = 2472–3000 ns during the second pulse [27]
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c 

Fig. 8.10 (continued)

e + O+ 
4 → 2O2 (8.55) 

The following is an explanation of the decrease in ne. The rate constants for 
chemical reactions (8.50)–(8.53) decrease from 10−5 to 10−7 kmol/m3/s between 
750 and 2400 ns; therefore, the rate of electron production by chemical reactions 
(8.50)–(8.53) decreases. The decrease in the concentrations of O−, O2

−, and O3
− 

between 750 and 2400 ns also contributes to the decrease in the rate of electron 
production. Moreover, the rate constants for chemical reactions (8.54) and (8.55) 
are higher than 10−6 kmol/m3/s between 1800 and 2400 ns. These results show that 
electron consumption exceeds production and consequently ne decreases between 
1800 and 2400 ns. It seems that the plasma channels formed by streamers during 
voltage pulses are preserved or frozen in the time intervals between pulses. However, 
the lengths of streamers change; therefore, they are unsteady and not completely 
frozen. 

Figure 8.10c shows the status of ne for the second pulse from t = 2472 to 3000 ns. 
The value of ne decreases from the start of the second pulse until t = 2700 ns at the 
peak voltage. Given that the electrostatic charge is built up inside the plasma reactor 
after the first pulse, there is scarce formation of apparent primary streamer and few 
streamers. After t = 2712 ns, streamers are apparent again; six short streamers exist 
at 2856 ns. Almost all streamers are induced in the same channel as that in which 
the primary streamers are generated in the first pulse. The streamers appear and 
disappear repeatedly, traveling only part of the distance (1–3 mm) to the wall in the
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Fig. 8.11 Time-dependent ne, electronic potential ϕ, and space-charge r distributions in the 
simulation: a–c ne, ϕ, and  σ at t = 300 ns, d–f ne, ϕ, and  σ at t = 2700 ns [27]

radial r-direction. Moreover, the streamers always remain attached to the positive 
discharge electrode. However, the maximum value of ne for the second pulse reaches 
7.0 × 1017 m−3 in the whole region, decreasing the value of ne from the first pulse. 
In addition, the length of streamers is also shorter. Note that photoionization is not 
considered in the present CFD-ACE+ system; it should be addressed in future work. 
The weak propagation of the streamer could be due to the lack of photoionization. 
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Figure 8.11 shows the detailed instantaneous distributions of ne, electronic poten-
tial ϕ, and space charge σ during the first and second pulses. Details of the electrostatic 
charge build-up are provided in the figure. Figure 8.11a–c show the values of ne, ϕ, 
and σ at 300 ns, which correspond to the moment of the peak voltage in the first 
pulse. Figure 8.11d–f show the values of ne, ϕ, and σ at 2700 ns, corresponding 
to the peak voltage in the second pulse. Figure 8.11a, d show that the streamers 
seem to become suppressed during the second pulse, as opposed to the first pulse. 
In Fig. 8.11b, which depicts the instantaneous electrical potential ϕ at 300 ns, the 
gradient of electrical potential, i.e., the electric field strength, is 24.2 kV/cm at r = 
10 mm. However, in Fig. 8.11e, which shows the instantaneous electrical potential 
ϕ at 2700 ns, the gradient or the electric field strength is 20.1 kV/cm at r = 10 mm. 
Therefore, the electric field strength in the second pulse is 4 kV/cm lower than that 
in the first pulse owing to the space charge build-up, causing streamers in the second 
pulse to be suppressed and ne to be reduced. The suppressed growth of streamers 
can be also observed in Fig. 8.11c, f. It is known from these figures that more space 
charge σ accumulates at 2700 ns than at 300 ns. In particular, σ on the dielectric 
surface (r = 15 mm) is 3.3 × 10−9 C/m3 at 2700 ns in Fig. 8.11f, which is 1.8 
times higher than σ = 1.8 × 10−9 C/m3 at 300 ns in Fig. 8.11c. The difference, Δσ 
= 1.5 × 10−9 C/m3, corresponds to a gradient equal to 0.12 kV/cm. Therefore, we 
conclude that the decrease in the electrical field gradient due to the space and surface 
charge build-up causes the suppression of the streamer evolution in the second pulse. 
This could be the first result obtained from a simulation of the charge build-up for a 
pulse-corona-induced NTP. Even if the streamer originating from the wire does not 
reach the barrier electrode, the surface charge is accumulated on the barrier because 
space charge exists near the dielectric. Neutral particles and space charges are also 
present in the plasma, causing field reduction. Quasi-neutrality in the plasma is not 
completely realized in a DC pulse corona discharge. 

8.4.3 Heat Transfer and Decomposition of CF4 
from Semiconductor Manufacturing 

One notable example of heat transfer mechanisms involving both conduction and 
convection through plasma is observed in the thermal decomposition process of 
exhaust gases from semiconductor manufacturing equipment. Specifically, this 
section examines the heat transfer characteristics and the decomposition of carbon 
tetrafluoride (CF4) using inductively coupled plasma (ICP) technology [28]. 

CF4 is a perfluorocarbon (PFC) widely used in semiconductor etching and 
cleaning processes due to its chemical stability and inert properties. However, CF4 
is a potent greenhouse gas with an extremely high global warming potential (GWP), 
approximately 7390 times that of CO2 over a 100-year time horizon. Because of 
its long atmospheric lifetime—estimated to be around 50,000 years—its accumula-
tion in the atmosphere poses a significant environmental challenge. Consequently,
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effective decomposition methods are necessary to mitigate its environmental impact 
before it is released into the atmosphere. 

In this study, ICP is employed as a highly efficient plasma-based method to facil-
itate the decomposition of CF4 into less harmful byproducts. The fundamental prin-
ciple behind this approach lies in the interaction between high-energy electrons 
in the plasma and CF4 molecules, which leads to molecular dissociation through 
various reaction pathways. The thermal energy generated from ICP is transferred 
via conduction and convection from the plasma to the surrounding gas, ensuring 
sufficient activation energy for the dissociation of CF4. 

The decomposition process primarily involves breaking the C–F bonds in CF4 
molecules, which requires a high energy input due to their strong bond dissociation 
energy (~ 515 kJ/mol). The dissociation reactions in the plasma environment proceed 
as follows: 

CF4 → CF3 + F (8.56) 

CF3 → CF2 + F (8.57) 

CF2 → CF + F (8.58) 

CF + O2 → CO2 + F (8.59) 

F + H2O → HF + OH (8.60) 

Through controlled plasma conditions, CF4 is ultimately converted into carbon 
dioxide (CO2) and hydrogen fluoride (HF), both of which are far less environmen-
tally persistent than CF4 itself. The process is optimized by adjusting the plasma 
power, gas residence time, and the presence of oxidizing agents such as O2 or H2O, 
which enhance the reaction efficiency. 

Given the severe environmental impact of CF4 emissions, its decomposition before 
release into the atmosphere is a crucial step toward achieving sustainable semicon-
ductor manufacturing practices. The use of ICP-based plasma treatment offers a 
promising pathway to effectively reduce CF4 emissions and minimize its contribution 
to climate change. 

8.4.3.1 Analytical Model and Boundary Conditions 

Figure 8.12 illustrates the computational domain used for the analysis. The reactor 
dimensions were chosen to match those used in our experimental setup to ensure 
consistency between simulations and practical observations.

In this system, a gas mixture containing carbon tetrafluoride (CF4) and oxygen 
(O2) flows through the reactor, where a high-frequency current of 2 MHz is applied
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Fig. 8.12 Computational domain for analysis of CF4 decomposition [28]

to the coil. This induces plasma generation within the tube, providing the necessary 
energy to break down CF4 molecules. Through this process, CF4 undergoes decom-
position, facilitated by the high-energy electrons and reactive species present in the 
plasma environment. For the basic equations, we derive and use stationary equations 
obtained by time-averaging physical quantities with nonstationary terms set to 0. 

In addition, assuming an axisymmetric two-dimensional flow in a cylindrical 
coordinate system (r, θ, x), setting the velocity vector u = (ur, 0,  ux) and the gas 
component mass fraction Y i, the vector potential A of the magnetic flux density B is 
introduced by B = ∇  ×  A, and the boundary conditions are given as follows: 

• Inlet boundary condition (gas inlet): 

ur = given, ux = 0, p = p0, T = T0, Yi = given, ∂A/∂x = 0 (8.61) 

where ur is calculated from the mass flow rate given by computational conditions. 
• Outlet boundary condition (gas outlet) 

∂ur/∂x = ∂ux/∂x = 0, p = p0, ∂Yi/∂x = 0, ∂A/∂x = 0 (8.62) 

• Conditions for the centerline of the reactor: 

∂ur/∂r = 0, ux = 0, ∂T /∂r = 0, ∂Yi/∂r = 0, A = 0 (8.63) 

• Inner wall boundary condition: 

ur = ux = 0, ∂T /∂r = 0 (8.64) 

• Outer wall boundary condition: 

ur = ux = 0, ∂Yi/∂r = 0 (8.65) 

• Sidewall boundary condition:
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Table 8.1 Computational 
conditions used for numerical 
simulation (CF4 
decomposition) [28] 

AC voltage frequency (MHz) 2 

Atmospheric temperature (K) 293 

Absolute pressure (Pa) 80 

Power (kW) 2.0 

Mass  flow rate of gas  (g/s) 0.02107 

Initial mass fraction of species CF4 0.5789 

O2 0.42105 

ur = ux = 0, ∂T /∂x = 0, Yi = 0, ∂A/∂x = 0 (8.66) 

• Horizontal wall boundary condition: 

ur = ux = 0, T = T0, Yi = 0, ∂A/∂r = 0, Te = 0 (8.67) 

• Vertical wall boundary condition: 

ur = ux = 0, T = T0, Yi = 0, ∂A/∂x = 0, Te = 0 (8.68) 

8.4.3.2 Computational Conditions 

Table 8.1 shows the computational conditions for the numerical simulation. The AC 
current frequency, pressure, and power are the same as the experimental conditions. 
The mass flow rate and initial chemical species compositions are calculated from the 
CF4 and O2 flow rates. It is assumed that both inlet and outlet temperatures are equal 
to ambient temperature. The viscosity is obtained from Sutherland’s Law. Thermal 
conductivity is selected with 3 W/(m K) for obtaining and stabilizing the calculation. 
Schmidt number is selected at 0.7. The gas temperature, electron temperature, elec-
tron number density, gas velocity, and chemical species number density are simulated 
by using CFD-ACE+ which employs the SIMPLEC method. 

8.4.3.3 Results and Discussion 

Figure 8.13 shows the gas temperature distribution of the ICP reactor. As shown in 
this figure, the gas temperature is shifted slightly downstream of the plasma reactor 
and reaches 575 K. Because the thermal conductivity used in this simulation of 
3 W/(m K) is two orders of magnitude higher than the actual situation, maximum 
gas temperature becomes lower as expected, and the gas temperature distribution is 
diffused in the computational domain.

Figure 8.14 shows the electron temperature distribution in the ICP reactor. The 
electron temperature increases as it moves out toward the inner wall from the center-
line of the reactor. This is attributed to the skin effect, which is the tendency of
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Fig. 8.13 Gas temperature distribution inside the reactor [28]

an alternating electric current to distribute itself within a conductor so that the 
current density near the surface of the conductor becomes greater than that at its 
core, due to RF plasma operation. The electron temperature became 1.33 eV near 
the wall. Although C–F bond dissociation energy is approximately 5 eV, the CF4 
decomposition occurred, because the electron temperature of approximately 6% 
electron exceeded C–F dissociation energy based on the assumption of Boltzmann 
distribution. 

Figure 8.15 shows the electron number density distribution in the ICP reactor, 
which is strongly correlated to the electron temperature. The maximum electron 
number density is located between the inner wall and the centerline, where a ring-
shape distribution is formed.

According to these figures, the distributions of electron number density and elec-
tron temperature differ significantly from that of the gas temperature, indicating a

Fig. 8.14 Electron temperature distribution inside the reactor [28] 
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Fig. 8.15 Electron number density distribution inside the reactor [28]

strong nonequilibrium state. One possible explanation for this discrepancy is the 
cooling effect near the reactor tube wall, which reduces the gas temperature locally. 

Figure 8.16 presents the distribution of CF4 number density throughout the reactor. 
The results show that CF4 undergoes decomposition in the downstream region; 
however, partial recombination occurs near the reactor exit. Due to the complexity 
of the system under investigation, fully quantifying the advantages of the methods 
employed remains challenging. For a more in-depth discussion of the results, please 
refer to the original study [28]. 

Fig. 8.16 Distribution of CF4 number density inside the reactor [28]



8.4 Analysis Example of Fundamental Equations Systems 161

8.4.4 Thermo-Fluid Analysis in Nonequilibrium Plasma 
MHD Generator 

As another example of heat conduction and convective heat transfer through plasmas, 
the analysis of a disk-shaped MHD generator plasma driven by a shock tube is 
considered [29]. Argon heated to a high temperature (approximately 2350 K) by a 
shock tube is passed as a supersonic flow through the flow path of a disk-type MHD 
generator. A small amount of cesium, which is easily ionized in the flow path, is 
added as a seed to form a cesium–argon plasma. A strong magnetic field is applied 
perpendicular to the flow, and a resistance load is connected to the electrodes installed 
in the flow direction of the flow channel to extract Hall current and generate power. 

8.4.4.1 Model for Analysis 

Figure 8.17 shows an analytical model of a disk-type MHD generator. This model 
is a simulation of the experimental device used in the authors’ experiments. The 
generator is divided into three parts: the nozzle section up to r = 110 mm, the MHD 
channel from r = 110 mm to r = 270 mm, and the diffuser beyond r = 270 mm. 
The inflowing high-temperature gas (approx. 2350 K) passes through the throat at 
the position of radius r = 75 mm and becomes supersonic, and Hall current and 
Faraday current are induced by the magnetic field (2.7 T) applied in the z-direction, 
and the current rapidly ionizes the gas in the nozzle, resulting in a nonequilibrium 
state. Power is generated in the MHD channel section by the nonequilibrium plasma 
with high electrical conductivity. The electromotive force is extracted by the load

Fig. 8.17 Model for numerical calculation. A heat transfer from a power-source combustor to Ar 
gas with Cs seeding to obtain higher ionization degree induces nonequilibrium plasma. Direct power 
generation without a turbine is realized [29] 



162 8 Fundamentals of Continuum Thermal Energy Fluid Science

resistance RL connected between the anode and the second cathode. The analysis 
area was set from the throat (r = 75 mm) to the MHD channel exit (r = 277 mm). 
With a heat input of approximately 2000 kW, an output of approximately 300 kW 
can be obtained. It is noted that the term “MHD” corresponds to direct electrical 
power generation by rare gas plasma. 

8.4.4.2 Calculation Procedure 

To solve the conservation equations, we adopted the more accurate Total variation 
diminishing (TVD)-MacCormack method instead of the MacCormack method that 
includes an explicit artificial viscosity term, which has been widely used in the field 
of MHD. In general, it is difficult to formulate MHD conservation equations in TVD, 
but this was relatively easy for this system of equations. Due to the high stability 
and accuracy of TVD, stable solutions were obtained over a wide range of operating 
conditions that were previously difficult to calculate using explicit artificial viscosity 
terms. 

8.4.4.3 Initial and Boundary Conditions 

The calculation conditions were mainly based on the authors’ experiments and are 
shown in Table 8.2. As initial conditions, the fluid system was assumed to be an 
isentropic flow. The initial conditions for the electron temperature were a uniform 
distribution of 2350 K at the throat and 4000 K inside the MHD channel, and a linear 
distribution that changed from 2350 to 4000 K at the nozzle. The initial conditions 
for the number density of electrons and each ion were given as the Saha equilib-
rium solution corresponding to this electron temperature. The spatial increment was 
divided into 405 parts from the throat to the second cathode, and the time increment 
was set to �t = 0.1 μs to be longer than the relaxation time of the electron tempera-
ture and shorter than the relaxation time of the electron number density. This value 
is sufficiently smaller than the value obtained from the Courant–Friedrichs–Lewy 
(CFL) condition, which is a limiting condition for the explicit method. Calculations 
were performed up to 60,000 steps with this time increment. As will be described 
later, except for the case of low load, about 20,000 steps were sufficient to obtain a 
steady-state convergence solution.

As for the boundary conditions, the velocity, density, and total energy of the heavy 
particle fluid system were fixed at the inlet (throat) based on the condition of a Mach 
number of 1. Furthermore, assuming that the electron concentration at the stagnation 
point is in equilibrium with the working gas temperature, the number densities of 
electrons and ions were calculated from the Saha equilibrium condition, and then 
the reaction-frozen condition was assumed from the stagnation point to the throat, 
and the number densities of electrons and ions at the throat were calculated from 
the adiabatic expansion relationship and fixed at these values. In addition, when 
the flow becomes subsonic at the exit of the MHD channel, the condition that the



8.4 Analysis Example of Fundamental Equations Systems 163

Table 8.2 Calculation 
conditions [29] Working gas Ar + Cs 

Stagnation temperature (K) 2350 

Stagnation pressure (MPa) 0.18–0.36 

Seed fraction (8.8–9.0) × 10−4 

Ext. load resistance RL0 (Ω) 0.03–0.06 

Ext. load resistance RL (Ω) 0.038–1.0 

Area ratio of channel 4.2 

Maximum magnetic flux density (T) 2.7

radial gradient of the conservative variables is 0 was imposed as the exit boundary 
condition. 

8.4.4.4 Calculated Results and Comparison with Experiments 

Figure 8.18 shows the distribution of the ionization degree of cesium and argon. 
Cesium ionization progresses rapidly at the nozzle, and is almost completely ionized 
in the MHD channel, generating a uniform plasma in the radial direction. The electron 
concentration is around 6000 K in the MHD channel, and the ionization degree of 
argon is almost 0. 

Figures 8.19 and 8.20 show the calculation results of the radial distribution of static 
pressure and Mach number. In Fig. 8.19, the experimental values are shown with

Fig. 8.18 Distributions of ionization degree of cesium and argon [29] 
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white circles. Although they were not captured in the experiment because there is no 
static pressure hole in the nozzle, in the calculation, a shock wave is generated in the 
nozzle where ionization progresses rapidly. Also, as can be seen from Fig. 8.20, the  
flow is rapidly decelerated before entering the MHD channel and becomes subsonic 
at the channel (anode) entrance (r = 0.1 m). Figure 8.19 shows that the experimental 
and calculated values for the static pressure gradient are almost consistent, but there 
is a slight difference in the values. This is considered to be due to the difference in 
the conditions of the outlet boundary from the experiment. 

Fig. 8.19 Calculated and measured distributions of static pressure [29] 

Fig. 8.20 Calculated 
distributions of Mach 
number [29]
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Figure 8.21 shows a comparison of the calculated and experimental values for the 
relationship between the enthalpy extraction rate E.E. and the load resistance RL. In  
previous results, there was a discrepancy between the experimental and calculated 
values under high and low load conditions. In the present calculation results, the 
agreement between the experimental and calculated values is good, except for one 
experimental value under low load conditions. Figure 8.22 shows the calculated and 
experimental values for the relationship between the output voltage V h and the output 
current Ih. As with Fig. 8.21, the agreement between the experimental and calculated 
values is good, except for one point under low load conditions. 

Fig. 8.21 Calculated and 
measured relations between 
enthalpy extraction and 
external load resistance [29] 

Fig. 8.22 Calculated and 
measured relations between 
output voltage and current 
[29]
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8.5 Conclusions 

The heat transfer mechanisms of equilibrium and nonequilibrium plasmas are 
explained with reference to the basic equation system and concrete examples of 
analyses. Heat transfer phenomena in plasma are extremely complex and intricately 
related to chemical reactions, electromagnetic fields, changes in physical properties, 
and fluid flow. There are difficulties modeling this type of plasma in connection with 
the existence of spatial and temporal multiscale, therefore, the author turns to fluid 
modeling. However, some aspects and results presented in the paper also suggest the 
importance of kinetic effects, especially in the modeling of electron dynamics. It is 
noted that, with the increasing power of supercomputers today, some kinetic codes 
have now been used for several years to model this type of plasma, and especially 
for heat transfer processes in plasmas. In writing this chapter, the author specifically 
used the following books [1–8, 10–23]. 

Chapter 8 Exercises 

Problem 1: Plasma fundamentals in energy systems 

(1) Derive the expression for the electron energy distribution function f (v) in a  
plasma, assuming a Maxwellian distribution, and calculate the most probable 
speed vp for electrons at T e = 10,000 K. (Mass of electron me = 9.11× 10−31 kg, 
Boltzmann constant kB = 1.38 × 10−23 J/K). 

(2) Compute the Debye length λD for a plasma with ne = 1018 m−3 and T e = 
10,000 K. (Electron charge e = 1.6 × 10−19 C, Vacuum permittivity ε0 = 8.85 
× 10−12 F/m). 

(3) If the plasma frequency is ωp, calculate ωp for the same plasma conditions. 

Problem 2: Plasma heat transfer in energy applications 

(1) Derive the energy balance equation for a plasma reactor considering convective 
heat transfer, radiative heat transfer, and Joule heating (qj = σE2). 

(2) A plasma reactor operates with electrical conductivity σ = 103 S/m, electric 
field E = 100 V/m, and plasma temperature T p = 8000 K. If the radiative heat 
loss is qr = εσT p 

4 with ε = 0.8 and σ = 5.67 × 10−8 W/m2, calculate the net 
heat gain per unit volume. 

(3) Compute the Nusselt number Nu for a plasma flow with characteristic length L 
= 0.05 m, thermal conductivity λ = 0.1 W/m K, and heat transfer coefficient h 
= 500 W/m2 K. 

Problem 3: Magnetohydrodynamic (MHD) power generation 

(1) Derive the relationship between Hall parameter β and the electrical conductivity 
tensor in MHD flows. 

(2) An MHD generator operates with a magnetic field strength B = 2 T, velocity 
u = 500 m/s, and number density of ions ni = 1020 m−3. Calculate the electric 
field induced (E = uB).
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(3) If the MHD generator extracts 5 MW of power and operates at 40% efficiency, 
calculate the input thermal energy required. 

Problem 4: CO2 Plasma conversion for synthetic fuels 

(1) Derive  the rate of CO2 dissociation in a plasma reactor using Arrhenius kinetics, 
r = A exp(− Ea/kBT e), where A = 1012 s−1, Ea = 3.5 eV, and T e = 20,000 K. 

(2) A reactor processes 10 mol/s of CO2 with an energy input of 500 kJ/mol. 
Calculate the total power consumption. 

(3) If 60% of the CO2 is converted into CO, calculate the amount of CO produced 
per second. 

Problem 5: Environmental contributions of plasma technology 

(1) A plasma waste-to-energy reactor processes 1000 kg of waste per hour with an 
energy yield of 3 MJ/kg. Calculate the total energy produced in one day. 

(2) If a hydrogen production reactor consumes 1500 W of power and operates at 
85% efficiency, calculate the actual power converted into hydrogen production. 

(3) Estimate the greenhouse gas reduction if a plasma reactor reduces emissions by 
80% in a system emitting 50 tons/year of CO2. 
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Chapter 9 
Gas Turbine Combined Cycle (GTCC) 
and Renewable Energy Technologies 

Abstract This chapter explores the integration of gas turbine combined-cycle 
(GTCC) power generation systems with plasma-based renewable energy technolo-
gies. In liquefied natural gas (LNG)-fueled GTCC plants, achieving zero carbon 
dioxide (CO2) emissions is feasible if the energy efficiency of the non-thermal 
plasma (NTP) CO2 reduction process reaches at least 49%. The chapter provides 
an in-depth analysis of zero-emission power plants, covering key topics such as the 
fundamentals of GTCC systems, carbon monoxide (CO)-based gas turbines, and 
NTP conversion technologies. These technologies facilitate the transformation of 
CO2 into synthetic fuel gases, primarily consisting of CO, through the recircula-
tion of exhaust gases. The discussion focuses on methods to achieve CO2 reduc-
tion in a self-sustaining manner at ambient temperature and atmospheric pressure. 
Specifically, the process of converting CO2 into CO via NTP-based reduction tech-
niques is explained. Experimental evaluations were conducted to assess the CO2 

reduction performance using various gas mixtures. Initially, CO2 is adsorbed from 
a nitrogen-CO2 mixture (approximately 10% CO2 concentration) onto an adsorbent 
material. Following adsorption, the desorbed CO2 is processed using NTP, achieving 
a concentration increase to 10–22% under similar conditions. Laboratory tests have 
demonstrated that NTP technology can achieve an energy efficiency of 20%. These 
results indicate that an efficiency of 49% could be realized for GTCC applications 
by scaling the NTP system to an industrial level. The chapter concludes with key 
findings and a set of exercises for further understanding. 

9.1 Introduction 

Minimizing carbon dioxide (CO2) emissions, a key greenhouse gas, is a fundamental 
approach to addressing global warming. Strategies for atmospheric CO2 reduction 
can be categorized into two primary methods: reducing CO2 emissions at the source 
and capturing CO2 from the atmosphere. Emission reduction can be achieved by 
enhancing the efficiency of energy conversion systems and transitioning to hydrogen-
rich fuels that produce lower CO2 emissions. In power generation facilities, thermal
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efficiency improvements can be realized by implementing gas turbine combined 
cycle (GTCC) plants equipped with advanced gas turbines. Further reduction in CO2 

emissions can be attained through enhancements in thermal efficiency. Therefore, 
advancements in CO2 waste heat recovery technologies and the development of next-
generation gas turbines capable of operating at elevated temperatures are essential 
[1]. 

CO2 emissions from gas turbines can also be mitigated by refining combustion 
processes within current gas turbine systems. These reductions are influenced by fuel 
characteristics following conversion. Increasing interest has been directed towards 
methods that break down and transform CO2 from combustion processes into useful 
fuels. One such method, methanation, which converts CO2 and H2 into methane 
(CH4), has gained substantial attention from researchers and industry stakeholders. 
While this technology holds promise, large-scale methane production and improved 
energy efficiency are necessary for it to effectively contribute to the fight against 
global warming. 

This chapter highlights a technique that converts CO2 into carbon monoxide (CO) 
through nonthermal plasma treatment under atmospheric conditions [2–5]. A widely 
recognized approach to CO2 processing involves the use of nonthermal plasma— 
also referred to as low-temperature plasma—which utilizes high-energy electrons 
and atmospheric discharges to facilitate CO2 reduction into CO at ambient pres-
sure and temperature. Figure 9.1 illustrates the concept of CO2 emission reduction 
in thermal power generation through environmental plasma hybrid technology. In 
this system, CO2 emissions from sources such as vehicles, industrial facilities, and 
ships are directly captured using fans, either by adsorption onto materials or through 
solidification into dry ice. The concentrated CO2 is then released and converted 
into fuel using plasma technologies. Operating under atmospheric pressure and low 
temperature, these plasma processes enable CO2 to be reused as a fuel source in 
gas turbines or engines for thermal power plants. This approach offers the poten-
tial to create a self-sustaining, zero CO2 emission thermal power plant. However, 
when plasma generation for CO2 processing is powered by coal-fired generation, 
the energy required to process a given mass of CO2 often surpasses the energy 
gained from converting the same mass, making it difficult to establish a sustainable, 
emissions-free system.

As a result, the development of a hybrid CO2 capture and plasma treatment tech-
nology capable of achieving the envisioned system in Fig. 9.1 is imperative. A proof 
of concept for a zero-emission thermal power plant has already been established [6], 
with prototype laboratory systems also under development [4, 5]. 

In recent years, natural gas-based GTCC power generation has gained widespread 
global recognition due to its high efficiency and lower emissions. In contrast, coal-
fired power plants are increasingly being phased out due to their substantial CO2 

emissions. Achieving zero CO2 emission power plants can be realized by incorpo-
rating GTCC systems with plasma-based CO2 treatment technologies. The pursuit of 
higher energy efficiency can be accomplished through environmental plasma appli-
cations. If these systems are successfully implemented, they could pave the way for 
zero-carbon societies, helping to mitigate climate change while addressing global
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Fig. 9.1 Concept of zero CO2 emission thermal power generation using environmental plasma 
hybrid technology

energy demands. Additionally, the development of zero CO2 emission thermal power 
plants using environmental plasma hybrid technology could significantly impact 
future research directions. 

This chapter is organized as follows: Sect. 9.2 introduces the concept of natural 
gas combined-cycle power plants and the GTCC framework, where atmospheric 
and exhaust CO2 are captured and converted into fuel to achieve a zero-emission 
system. Section 9.3 provides an overview of low-calorific gas-fired turbines utilizing 
hydrogen-rich gases and CO, which are crucial for fuel diversification. Section 9.4 
discusses CO2-to-fuel conversion through plasma treatment of exhaust gases. Finally, 
Sect. 9.5 summarizes the entire concept, presenting an integrated approach for heat 
energy recovery and low CO2 emissions in natural gas combined-cycle power plants 
utilizing plasma technology. 

9.2 Total CO2 Reduction Power System 

9.2.1 Natural Gas Combined Cycle Power Plant 

Figure 9.2 presents a schamatic diagram of the principles of gas turbine combined 
cycle (GTCC) thermal power plants, which are widely implemented across Japan 
due to their high efficiency. The system consists of a gas turbine capable of oper-
ating at approximately 1700 °C, power generators, a waste heat recovery boiler, an 
energy recovery system based on the Rankine cycle, a De-NOx catalyst for nitrogen
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oxide reduction, an ammonia injection system, and a steam turbine. During power 
generation, the waste heat produced by the gas turbine is captured by the waste 
heat recovery boiler, which then drives the steam turbine through the Rankine cycle 
by utilizing superheated water to generate supplementary electricity. The primary 
pollutant emitted by gas turbines is thermal nitrogen oxides (NOx). To mitigate 
these emissions, ammonia (NH3) is introduced upstream of the De-NOx selective 
catalytic reduction (SCR) unit, which effectively reduces NOx and converts it into 
environmentally harmless compounds. 

At present, CO2 emissions in the exhaust gases remain untreated. To achieve 
significant CO2 reduction, it is essential to enhance the thermal efficiency of waste 
heat recovery systems by developing advanced gas turbines capable of operating at 
higher temperatures [1]. 

GTCC technology integrates multiple thermodynamic cycles, including gas and 
steam turbines, to achieve substantial improvements in overall thermal efficiency. 
Among various configurations, the exhaust heat recovery system depicted in Fig. 9.2 
is extensively utilized in Japan due to its operational simplicity. In this system, the 
high-temperature exhaust gases from the gas turbine are routed to a heat recovery 
boiler, where they transfer energy to heat the feed water, which subsequently drives 
the steam turbine. 

The main features of combined cycle power generation using the exhaust heat 
recovery system are as follows [7].

a. High thermal efficiency (43–60%), with little efficiency loss at partial load. 
b. Short start-up and stop times.

Fig. 9.2 Schematic representation of a gas turbine combined cycle power plant 



9.2 Total CO2 Reduction Power System 173

c. The amount of condenser cooling water per unit output is smaller than that for 
thermal power generation. 

d. The output of the gas turbine is affected by the outside air temperature. 
e. Gas turbines burn at high temperatures; therefore, measures against nitrogen 

oxides (NOx) are necessary. 
f. Steam turbines cannot be operated alone. 
g. Noise is loud, so measures are necessary. 

The basic thermal cycle of gas turbines is the Brayton cycle, whereas that of steam 
turbines is the Rankine cycle. 

Brayton cycle (see Fig. 9.3) 

1 → 2: Compressor (adiabatic compression) 
2 → 3: Combustor (constant pressure heat reception, constant pressure combus-
tion) 
3 → 4: Gas turbine (adiabatic expansion) 
4 → 1: Exhaust (constant pressure heat reception, constant pressure exhaust). 

Rankin cycle (see Fig. 9.3) 

5 → 6: Feed pump (adiabatic compression) 
6 → 7: Exhaust heat recovery boiler (constant pressure heat reception, constant 
pressure superheat) 
7 → 8: Steam turbine (adiabatic expansion) 
8 → 5: Condenser (constant pressure heat reception, constant pressure conden-
sation). 

As illustrated above, the Brayton and Rankine cycles operate in conjunction to 
optimize power generation efficiency by utilizing both direct combustion energy and 
waste heat recovery.

Fig. 9.3 
T–s (temperature-entropy) 
diagram 
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9.2.2 Shaft Configuration and Thermal Efficiency 
of Combined Cycle 

Combined cycle power generation can be categorized by shaft configuration into two 
types: single-shaft and multi-shaft systems [7]. 

In the single-shaft type, one gas turbine and one steam turbine are mechanically 
connected. In the multi-shaft type, the system has multi shafts or multi gas turbines 
and multi steam turbines. This configuration features a steam turbine are combined. 
The characteristics of each type are as follows: 

(1) Characteristics of single-shaft type 

• The steam turbine is with a large capacity and high thermal efficiency at high 
output, making it suitable for base supply capacity. 

(2) Characteristics of multi-shaft type 

• Regular inspections can be conducted on each unit, leading to a high average 
utilization rate. 

• By adjusting the number of operating units, partial-load operation is possible, 
providing high partial-load efficiency and making it suitable for middle 
supply capacity. 

• Since the smaller capacity of the steam turbine results in a shorter start-up 
time compared to the single-shaft type. 

The thermal efficiency, η of combined cycle power generation can be expressed 
as follows. 

If the thermal efficiency of the gas turbine is ηG and the thermal efficiency of 
the steam turbine is ηS, the total input energy is assumed to be 1. The gas turbine 
produces an output of ηG, while the remaining energy, 1 − ηG, is utilized for steam 
turbine power generation. The output from the steam turbine is therefore (1 − ηG)ηS. 

Combining these outputs, the overall thermal efficiency, η, of the combined cycle 
power generation is given by η = ηG + (1 − ηG)ηS. 

Important formula: The thermal efficiency of the combined cycle power genera-
tion 

η = ηG + (1 − ηG)ηS = ηG + ηS − ηGηS (9.1) 

9.2.3 Energy Balance for a Gas Turbine Combined Cycle 

Technologies aimed at converting CO2 into CO offer a significant potential for 
reducing carbon emissions. By utilizing plasma powered by a high-efficiency gas 
turbine combined cycle (GTCC) system, it is possible to establish a near-zero CO2 

emission power generation process [6].
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Figure 9.4 presents an energy balance diagram of a GTCC system, highlighting its 
potential to achieve carbon-neutral power generation. Conventional coal-fired power 
plants generally operate with a relatively low efficiency of up to 45% for supercritical 
plant (higher heating value base), whereas state-of-the-art GTCC plants can reach 
an overall efficiency of up to 64% [8]. For a GTCC system fueled by methane (CH4, 
combustion reaction enthalpy = 891 kJ/mol = 9.23 eV/molecule) and operating at 
an efficiency of 64%, the resulting electrical power is calculated as 9.23 × 0.64 
= 5.91 eV/molecule. If the CO2 from exhaust gases is entirely converted into CO 
through plasma treatment, the minimum required energy would be 279.8 kJ/mol, 
which equals 2.90 eV/molecule. Consequently, in order to achieve net-zero CO2 

emissions, the energy efficiency of plasma-driven CO2 reduction must surpass 2.90/ 
5.91 × 100 = 49%. The remaining energy (5.91 − 2.90 = 3.01 eV/molecule) would 
then have no carbon footprint; however, the total GTCC efficiency would drop from 
64 to 33%. The CO generated from the CO2 conversion can be combined with 
hydrogen to create a synthetic fuel that can be reutilized within the GTCC system. 
An energy efficiency index (η) is introduced in Eq. (9.2): 

η = α 
2.90 

Ev 
= 

2.90 
Ev 
α 

(9.2) 

In this formula, α signifies the efficiency of CO2-to-CO conversion (%), and Ev 

represents the plasma energy needed to process a single CO2 molecule (eV/molecule). 
Achieving zero CO2 emission power generation is feasible when the plasma energy

Fig. 9.4 Energy balance diagram of a gas turbine combined cycle system illustrating the feasibility 
of achieving a zero CO2 emission power generation system 
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applied per molecule (Ev) is less than the generated power per molecule (5.91 eV/ 
molecule): 

Ev 

α 
< 

5.91 

100 
(9.3) 

It is not necessary to achieve a CO2 conversion efficiency of 100%. For example, if 
α = 20%, then five plasma reactors (100/20 = 5) would be required to achieve 
complete CO2 processing. Thus, α can achieve 100% conversion if Ev is increased 
fivefold, maintaining the ratio Ev/α constant. In essence, the condition for zero emis-
sions is η > 2.90/5.91 × 100 = 49%, with the surplus energy available for power 
generation calculated as P = 5.91 − Ev (eV/molecule). The overall efficiency of the 
GTCC system is expressed as follows: 

ηgreen = 
5.91 − Ev 

9.23
× 100 (%) (9.4) 

If the GTCC efficiency ηgtcc is 60%, then η must exceed 52%, resulting in the total 
system efficiency: 

ηgreen = 
5.54 − Ev 

9.23
× 100 (%) (9.5) 

A study conducted by Spencer and Gallimore [6] at the University of Michigan 
demonstrated that nearly 90% of CO2 could be successfully converted into CO using 
diluted argon plasma. While achieving almost complete CO2 reduction (close to 
100%) through atmospheric plasma presents challenges, it remains a feasible goal. 
The feasibility of this approach has been validated through laboratory-scale studies 
[4, 5]. Achieving a target efficiency of 49% may be possible by integrating dielec-
tric barrier discharge (DBD) technology with direct CO2 capture plasma concentra-
tion techniques. Recent experimental findings from Osaka Metropolitan University, 
further discussed in Sect. 9.4, provide additional insights into this approach. Note that 
for supercritical coal-fired power plant the resulting electrical power is calculated as 
393kJ/mol = 4.07 eV/molecule of 45% = 1.83 eV/molecule. This is lower than CO2 

reduction enthalpy of 2.90 eV/molecule. Since coal actually contains less hydrogen 
than methane, the electric power is greater than 1.83 eV/molecule. However, it is 
difficult to significantly exceed 2.90 eV/molecule. Therefore, it is hard to realize 
zero-CO2 emission for the carbon rich coal-fired power plants.



9.2 Total CO2 Reduction Power System 177

9.2.4 Targeted Values for Zero CO2 Emission GTCC 

The research on zero CO2 emission systems focuses on three primary objectives: 

1. Atmospheric CO2 Capture and Concentration Enhancement 

The first objective is to capture CO2 directly from the atmosphere, where its concen-
tration is approximately 400 ppm, and enhance it by 20% (up to 20,000 ppm) using 
just 10% of thermal energy. This method is currently under development and has 
demonstrated a processing speed that is ten times faster than conventional methods, 
such as thermal heating. 

2. Achieving Energy Conversion Efficiency of 49% 

The second goal is to attain an energy conversion efficiency of 49% by integrating 
adsorbent and plasma technologies to produce CO within an environmental plasma 
system. This efficiency represents the minimum requirement to realize a zero CO2 

emission GTCC system. Experimental studies worldwide indicate that achieving an 
energy efficiency of 49% or higher in a zero-emission GTCC thermal power plant 
is feasible. At present, laboratory tests conducted at Osaka Metropolitan University 
have demonstrated an energy efficiency of 34%. Enhancing plasma-to-electric energy 
conversion efficiency, gaining deeper insights into the high-concentration reduction 
process, and scaling up the plasma reactor system could make it possible to achieve 
an efficiency of 49% or greater. 

3. Development and Deployment of a Prototype GTCC System 

The third objective is the design, construction, and operation of a prototype GTCC 
system equipped with environmental plasma devices, small-scale gas turbines, heat 
exchangers, and exhaust gas treatment units. This integrated system aims to establish 
a completely pollution-free thermal power plant with zero CO2 emissions. 

9.2.5 Sub Research Topics 

The following sections discuss key subtopics related to achieving zero CO2 emission 
thermal power generation. 

Subtheme I: Direct Air Capture (DAC) with Plasma Concentration 

The first subtheme focuses on the implementation of a direct air capture (DAC) 
system enhanced by plasma concentration [9]. Figure 9.5 presents a schematic repre-
sentation of the DAC system, which captures and absorbs atmospheric CO2 using an 
adsorbent at a high flow rate. Following the capture process, air is passed through 
the adsorbent at a lower flow rate while being subjected to nonthermal plasma and 
waste heat, facilitating the desorption of CO2 as a gas fuel.

This process takes place in two distinct stages. In the initial phase, atmospheric air 
containing approximately 400 ppm of CO2 is passed through the adsorbent at a high
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Fig. 9.5 Operational principles of the DAC system for plasma-based fuel generation

flow rate (Q), which results in the concentration of CO2 and the release of CO2-free 
air. In the second phase, atmospheric air with a lower flow rate (q < Q) is intro-
duced into the adsorbent containing a catalyst with the help of a fan. Concurrently, 
nonthermal plasma is applied to the adsorbent, leading to the desorption of CO2 

at a concentration up to 100 times higher than its atmospheric level. The desorbed 
CO2 is subsequently processed into synthetic fuels such as CO, H2, and CH4 using 
plasma-enhanced chemical reactions. A prototype system capable of processing gas 
at a rate of Q = 10,000 Nm3/h has been developed to validate the feasibility of this 
concept. 

Figure 9.6 displays the experimental results of increasing the CO2 concentration 
from 1000 ppm to 1.1% (11,000 ppm) using the DAC system [10]. The graph provides 
a time-dependent analysis of CO2 and CO concentrations during the adsorption and 
subsequent desorption phases. The performance of CO2 adsorption and desorption 
achieved using plasma treatment and conventional heating methods is also compared. 
During plasma desorption, CO2 is converted into CO, with the initial inlet concentra-
tion of 1000 ppm reaching a peak of 1.12% (11,200 ppm) after the third desorption 
cycle. Additionally, approximately 400 ppm of CO is generated in each desorption 
cycle.

Figure 9.7 shows the experimental results of increasing CO2 concentration from 
2.75% (27,500 ppm) to 13.5% (135,000 ppm) using the DAC system [10]. The graph 
illustrates the process when the inlet CO2 concentration is 2.75%. After the second 
desorption cycle, the concentration reaches approximately 14%. Plasma-based 
desorption yields consistently higher peak concentrations compared to conventional 
thermal methods.

The experimental results shown in Figs. 9.6 and 9.7 demonstrate that the two-
step DAC approach is capable of enhancing CO2 concentrations by nearly 100-
fold. Furthermore, plasma treatment not only increases CO2 concentration but also 
achieves fuel conversion more efficiently than conventional thermal methods. The 
rapid desorption observed in plasma treatment is attributed to dielectric heating and 
the interactions of induced ions and electrons with the adsorbent material. When 
compared to traditional thermal techniques, plasma processing achieves signifi-
cantly greater CO2 desorption performance. Further investigations were conducted to
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Fig. 9.6 DAC process concentrating 1000 ppm CO2 to 1.1% CO2 [10]

Fig. 9.7 DAC process concentrating 2.75% CO2 to 13.5% CO2 [10]

assess the effectiveness of combining direct CO2 capture with plasma concentration 
technology. 

Subtheme II: Development of Low-Calorific Value Gas-Fired Turbines 

The second subtheme shifts the focus to the advancement of low-calorific gas-fired 
turbines that can operate on a mixture of CO and hydrogen-rich gases, thereby 
promoting fuel diversification. This topic is elaborated in Sect. 9.3 of this chapter.
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Subtheme III: Plasma-Catalyzed CO2 Fuel Processing Systems 

The third subtheme emphasizes the necessity for further research and development 
in plasma-catalyzed CO2 fuel processing systems. This study explores the feasibility 
of achieving zero CO2 emissions in GTCC power plants by leveraging plasma reduc-
tion technology. Key challenges in this domain include enhancing the efficiency of 
CO2 reduction through nonthermal plasma operating under atmospheric pressure and 
ambient temperature conditions. The initial concept involves CO2 adsorption onto 
an adsorbent, followed by plasma-induced desorption at high concentrations, and 
increasing the CO conversion rate to improve overall power generation efficiency. 

9.2.6 CO2 Reduction Methanation 

Methanation [11] and propanation are processes that reduce CO2 in exhaust gases by 
adding H2 to produce hydrocarbon gases such as methane CH4 and propane C2H6 

to form artificial fuels. Technologies that convert CO2 into fuel using a catalytic 
reaction at high pressure and temperature have been developed. However, these 
technologies cannot cost effectively increase methane production. In contrast, envi-
ronmental plasma technology has the potential to produce large amounts of methane 
at low cost. 

The general methanation (Sabatier methanation) is reaction (9.6). 

CO2 + 4H2 → CH4 + 2H2O, �H = −  165 kJ/mol (9.6) 

This is the following two-step reaction. 

CO2 + H2 → CO + H2O, �H = +  41 kJ/mol (9.7) 

CO + 3H2 → CH4 + H2O, �H = −  206 kJ/mol (9.8) 

Reaction (9.7) is the reverse of the water–gas shift reaction, which produces hydrogen 
from CO and steam, and is an endothermic reaction. By employing atmospheric 
pressure plasma for CO2 reduction instead of reaction (9.7), a 25% reduction 
in hydrogen consumption is achieved under atmospheric pressure. Reaction (9.8) 
involves producing methane from synthesis gas. Synthesis gas can be used directly 
as fuel, but methanation may be applied to enhance its heating value. 

To further increase the heating value of fuel, the basics of green liquefied petroleum 
gas (LPG) production technology are explained. Propane production and carbon 
deposition can occur under certain catalytic conditions. 

CO2 + (7/2)H2 → (1/2)C2H6 (ethane) + 2H2O, �H = +  132 kJ/mol (9.9)



9.3 Low-Calorie Gas-Fired Turbines 181

CO2 + 2H2 → C + 2H2O, �H = −  90 kJ/mol (9.10) 

CO2 + H2 → C3H8, propanation, FT synthesis reaction (9.11) 

H2 is produced through the shift reaction or water electrolysis (green hydrogen), 
while CO is generated using plasma CO2 reduction. Enhancing the performance 
of gas turbines that utilize CO or CO2 + H2 as fuel is crucial. This technology is 
exemplified by the gas turbines used in IGCC carbon gasification power generation, 
as explained in the next section. 

9.3 Low-Calorie Gas-Fired Turbines 

9.3.1 Low-Calorie Gas Fuels 

Plasma CO2 reduction technology has the potential to generate carbon monoxide 
(CO), which can be utilized as a fuel for low-calorific gas-fired turbines that operate on 
a CO and hydrogen (H2) mixture as their primary energy source. A notable example 
of this technology is the integrated coal gasification combined cycle (IGCC), which 
achieves an energy conversion efficiency of approximately 44–48% [12, 13], with 
future expectations of reaching around 50% [14]. IGCC utilizes gasified coal as fuel 
and incorporates key components such as a gas turbine, boiler, steam turbine, and 
GTCC. Currently, this technology is undergoing verification testing for potential 
commercialization. 

The coal gasification process generates fuel by partially oxidizing coal at elevated 
temperatures, yielding CO and H2 as the primary products. The composition of 
the resulting gasified fuel largely depends on the method of oxygen supply during 
the gasification process [15]. Typically, oxygen is introduced either in the form of 
atmospheric air or in highly concentrated oxygen. Using high-purity oxygen neces-
sitates an additional production process to remove nitrogen, thereby increasing both 
production and operational costs. However, this method yields a high-calorific gas 
fuel free from nitrogen. In contrast, using air as the oxygen source is a more cost-
effective approach but results in a low-calorific gas fuel containing nitrogen, which 
is a non-combustible component. 

Figure 9.8 presents the compositions of both low- and high-calorific fuel gases 
[16]. In low-calorific gas fuel, combustible components account for approximately 
30% of the total volume, with an energy content of 4.2 MJ/Nm3—roughly one-tenth 
of that found in LNG. Furthermore, due to the high nitrogen content, the flame temper-
ature is relatively low, leading to combustion instability issues. Another challenge 
is the presence of ammonia (NH3) in the fuel, which converts into nitrogen oxides 
(NOx) during combustion. In dry-feed gasification systems, NH3 is not removed 
before combustion, resulting in NOx formation in the gas turbine.
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a b  

Fig. 9.8 Composition of a low-calorific and b high-calorific coal gas fuels [15] 

On the other hand, high-calorific gas fuel contains about 71% combustible compo-
nents, offering a calorific value of approximately 10 MJ/Nm3. However, the increased 
flame temperature associated with high-calorific fuel leads to greater NOx emissions. 
To mitigate NOx formation, nitrogen separated via an air separation unit can be 
injected into the combustion air of the gas turbine to dilute the reaction and suppress 
NOx generation. The subsequent section provides details on the development of a 
gas turbine specifically designed to utilize low-calorific fuels. 

The potential of plasma CO2 reduction technology for processing exhaust gases 
from gas turbines operating on low-calorific fuel is also under evaluation. Assuming 
a CO2-to-CO conversion efficiency of 50%, the carbon content in the fuel (36.3% as 
shown in Fig.  9.8a) would enable the production of up to 18.2% CO. Utilizing the 
water–gas shift reaction (CO + H2O � CO2 + H2) to achieve a CO/H2 ratio similar 
to that of low-calorific gas fuels, the resulting fuel composition would consist of 
13.2% CO and 5.0% H2. This indicates that approximately 58% of the fuel demand 
could be substituted with products generated via plasma reduction technology.

9.3.2 Gas Turbines that Use Low-Calorie Fuels 

Gas turbines operating on low-calorific fuels, as depicted in Fig. 9.8a, encounter 
several challenges, including combustion instability, high NOx emissions, and a 
reduced cooling air supply due to the lower air-to-fuel ratio. To overcome these 
issues, it is essential to incorporate improvements such as enhanced flame retention 
capabilities, advanced NOx reduction combustion technologies, and innovative wall
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cooling systems into the turbine design. A combustor specifically engineered for 
low-calorific fuels, capable of operating at 1773 K, has been reported in previous 
studies [17]. This combustor features an auxiliary combustion chamber along with 
distinct primary and secondary combustion zones. 

In the auxiliary combustion chamber, fuel and combustion air are introduced 
with a swirling motion to ensure stable flame formation under rated load conditions, 
thereby enhancing flame retention performance. The two-stage combustion process, 
which spatially separates the primary and secondary combustion zones, effectively 
minimizes NOx emissions associated with low-calorific gas fuels. Unlike LNG-
based systems, low-calorific fuels necessitate significantly lower air-to-fuel ratios, 
eliminating the requirement for additional air dilution. Furthermore, the tailpipe is 
designed with a dual-layer structure, which allows the cooling air from the tailpipe 
to be recirculated and utilized for cooling the secondary combustion zone. 

This optimized design enables the gas turbine to efficiently produce electricity 
while operating on low-calorific fuels, as illustrated in Fig. 9.8a. 

9.4 Fuel Conversion of CO2 Using Plasma with Gas 
Recirculation 

9.4.1 Introduction of Plasma CO2 Reduction 

Under these research situations, our research group has conducted new laboratory-
scale experimental trials with a novel CO2 reduction treatment system combining 
an adsorbent and a nonthermal plasma (NTP) flow. The concept, as explained in 
[5], involves adsorbing CO2 onto an adsorbent to enhance CO2-to-CO conversion. 
The adsorbed CO2 is desorbed at a high concentration (approximately 20%) and 
then reduced using a nitrogen NTP flow, an effective method for CO2 reduction [4]. 
Previous investigations of nonthermal plasmas demonstrated that the treatment can 
be performed under atmospheric pressure and near room temperature. The apparent 
CO2 conversion increases proportionally with the concentration of the reactant CO2. 
In the current study, we developed a highly efficient CO2 reduction system using 
an adsorbent and NTP flow at the laboratory scale, achieving a maximum reduction 
energy efficiency of 14%. The method is detailed in the next section. 

9.4.2 Experimental Setup and Methods 

Owing to the N2 plasma flow, the CO2 adsorbed by the adsorbent is desorbed mainly 
by heat and reduced to CO by the plasma chemical reactions shown in [4]. 

CO2 → CO + O2/2, �H = 2.9 eV/molecule (9.12)
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Reaction (9.12), which is exothermic, requires energy (ΔH > 2.9 eV/molecule). 
As no atomic carbon (C) is detected during plasma application in this experiment, 
the reduction of CO2 to CO follows reaction (9.12). The concentrations of CO, CO2, 
O2, and CO3 are measured every 10 min using gas detection tubes. At the end of the 
desorption period, valves B, C, and E are opened, and valve D is closed. The gas in the 
flow channel is discharged into the outside air through a MnO2 catalyst to remove O3. 
During both the adsorption and N2 plasma desorption processes, the temperatures 
of the adsorbent and the upstream plasma reactor are monitored every 30 s using 
thermocouples. The upstream plasma reactor temperatures during adsorption and 
reduction processes are approximately 25 °C and 40 °C, respectively. 

Figure 9.9 presents a photograph of the surface discharge NTP reactor. The plasma 
reactor includes twelve surface discharge elements, alternately positioned inside 
the channel and powered by a 10 kHz bipolar pulsed high-voltage power supply. 
Constructed from stainless steel, the reactor features a transparent acrylic obser-
vation window and measures 100 mm in height, 90 mm in width, and 425 mm 
in length. Atmospheric nonthermal plasma is generated at the surface discharge 
elements through surface discharge. The total power consumption is 300 W, and the 
electrodes are oriented toward the upstream gas flow. The CO2 gas flow is primarily 
reduced to CO and carbon particulate matter (PM), although no PM is detected. 

Figure 9.10 presents a schematic of the discharge element. The element consists 
of an alumina-ceramic tube with a tungsten discharge electrode on its surface and a 
counter electrode embedded within the ceramic tube wall. The discharge electrode 
is cooled using a heat-sink fin.

The energy efficiency evaluation method is described as follows. The CO and O2 

concentrations are measured every 10 min using an oxygen analyzer. The experiment 
comprises four cycles, each lasting 140 min for adsorption and 140 min for desorp-
tion. The conversion efficiency, α, for reaction (9.12), represents the proportion of 
CO2 reduced to CO and is defined by Eq. (9.13):

Fig. 9.9 Photograph of surface discharge NTP reactor
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Fig. 9.10 Schematic of discharge element

α = CO 

CO2 + CO 
× 100 (9.13) 

The energy efficiency, η, indicates the ratio of input power used for CO2 reduction 
and is defined by Eq. (9.2). In this system, Ev represents the specific input energy of 
the plasma (eV/molecule) [6], which is calculated using Eq. (9.14): 

Ev = 
P (W) 

1.602×10−19 (J/eV) 
Q (L/min) 
60 (s/min) × 1 

22.4 (L/mol) × 6.02 × 1023 (molecule/mol) × 273.15 (K) 
T (K) 

(9.14) 

where P (W) is the input energy, Q (L/min) is the CO2 flow rate during adsorption, 
and T (K) is the ambient temperature. In this study, the input energy is P = 300 W, the 
CO2 flow rate during the adsorption process is Q = 1.0 L/min, and the environmental 
temperature is T = 20 °C = 293.15 K, which yields a specific input energy of 
Ev = 4.49 eV/molecule. Notably, the experiment is conducted such that the CO 
concentration remains below 12.5% of the lower explosive limit. 

9.4.3 Experimental Results and Discussion 

Figure 9.11 shows the time-dependent CO2 and CO concentrations for various Qd. 
For Qd = 0.54 m3/min, the maximum CO2 desorption concentration is approxi-
mately 16% and the maximum CO concentration is about 4%. For 0.18 m3/min, the 
maximum concentration of CO2 desorption concentration increases to approximately 
19 and the maximum concentration of CO is approximately 5%. For 0.09 m3/min, 
the maximum CO2 desorption concentration reaches approximately 20%, while the
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Fig. 9.11 Effect of 
circulation flow rate Qd on 
time-dependent CO2 and CO 
concentrations during the 
desorption processes: Qd = 
0.09, 0.18, and 0.54 m3/min 
[5] 

maximum CO concentration remains about 5%. The results indicate that CO2 desorp-
tion to increase with decrease in Qd. Formation of achieve a high CO concentration 
of 5%. 

Figure 9.12 shows the time-dependent temperature during the desorption 
processes for various Qd. The temperature in the chamber increases with decrease 
in Qd. It is considered that CO2 desorption and CO production increase with higher 
temperatures due to the thermal energy generated by the plasma. The time-dependent 
conversion efficiency, defined as α = CO/CO2 × 100% is shown in Fig. 9.13. 
It increases monotonically and reaches a maximum of approximately 22% after 
120 min for Qd = 0.18 m3/min. The energy efficiency calculated using Eq. (9.2) for  
the conversion η becomes 14%. 

Figure 9.14 shows a comparison of the conversion efficiency (α) and energy 
efficiency (η) obtained in this study with previously reported results. This graph, 
referenced from Li et al. [18] and other reports [5, 18–32], indicates that while the

Fig. 9.12 Time-dependent 
temperature of the desorption 
processes (adsorbent volume 
= 1.84 L, Qd = 0.09, 0.18, 
and 0.54 m3/min) [5]
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Fig. 9.13 Time-dependent 
conversion defined as CO/ 
CO2 (adsorbent volume = 
1.84 L, Qd = 0.09, 0.18, and 
0.54 m3/min) [5]

surface discharge plasma (SDP) used in this study achieves comparable α and η 
values, gliding arc discharge (GD) treatments demonstrate superior performance. 
Consequently, GD is gaining increased attention. In experiments conducted at the 
Osaka Metropolitan University (OMU) laboratory, an α of 21% is achieved with 
a twofold concentration. If results can be achieved at a fourfold concentration, the 
target value of 49% is expected to be attained. 

Fig. 9.14 CO conversion efficiency α versus energy efficiency η. Toward zero-CO2 thermal power 
generation with plasma CO2 treatment. η > 49% leads to zero CO2 emission in CO2 reduction 
reaction (9.12)
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9.5 Conclusions 

Part of this project’s research and development comprises a grand plan that aims 
to address and prevent future global warming by facilitating the achievement of 
the zero CO2 emissions targets. In this context, the development of gas turbine 
combined cycle (GTCC) natural gas power generation systems using CO2 plasma-
catalyzed fuel processing technologies is highly significant. Compared to thermal 
processes, non-thermal plasma achieves higher CO2 desorption and more efficient 
conversion into fuel. Achieving zero CO2 emissions requires comprehensive research 
and development, in parallel with basic experiments, analyses, performance tests, 
and advancements in plasma reactors, adsorption systems, and CO2 concentration 
technologies. The technologies explored in this study have been tested on a laboratory 
scale. Future research will involve testing on bench-scale machines to refine the 
processes and evaluate the new technologies. 

We plan to integrate this technology into Japanese industries and expand its 
application to research facilities. Companies at the forefront of high-temperature 
gas turbine development have already adopted CO2 capture technologies based on 
physical adsorption, providing a solid foundation for this innovation. 

The findings of this study suggest that zero CO2 emissions in GTCC thermal power 
plants may be achievable using plasma reduction technologies. Despite significant 
technical challenges, the development of innovative techniques has the potential to 
revolutionize efforts toward realizing a zero-carbon society with sustainable energy, 
addressing the urgent issue of global warming. 

Chapter 9 Exercises 

Problem 1: About zero carbon thermal power generation 

Explain Fig. 9.4 and explain whether it can be realized zero-CO2 emission in the 
GTCC system. 

Problem 2: Thermal efficiency and improvement measures I 

There is a heavy-oil-burning thermal power plant with a rated output of 10,000 kW. 
This power plant has been operating continuously for 30 days, during which the 
amount of heavy oil used is 1100 tons, and the sending end power output was 
5000 MWh. Calculate the value (%) for the boiler efficiency of this thermal power 
plant. Note that the calorific value of heavy oil is 44,000 kJ/kg, the turbine room 
efficiency is 47%, the generator efficiency is 98%, and the in-house efficiency is 5%. 

Problem 3: Thermal efficiency and improvement measures II 

Which of the following is incorrect for improving the thermal efficiency of a thermal 
power plant? 

(1) High-temperature, high-pressure steam is used as the steam at the turbine inlet. 
(2) The steam expands sufficiently inside the turbine by lowering the vacuum in the 

condenser, thereby providing a large torque to the turbine impeller.
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(3) A coal economizer is installed to recover exhaust gas energy. 
(4) The wet saturated steam from the high-pressure turbine is reheated in a boiler 

and used again as high-temperature dry saturated steam for the low-pressure 
turbine. 

(5) The steam is taken from the high- and low-pressure turbines and directed to a 
feed water heater to heat the feed water. 

Problem 4: Combined-cycle power generation 

In a combined-cycle power plant using exhaust heat recovery, the thermal effi-
ciency of combined-cycle power generation is 48%. What is the closest value to 
the thermal efficiency (%) of steam-turbine power generation relative to the amount 
of heat contained in the exhaust gas from gas-turbine power generation? Note that 
all exhaust gases from gas turbine power generation are supplied to steam turbine 
power generation. 

Problem 5: CO2 treatment cost calculation 

Perform overall cost estimation of the plasma energy and spent adsorbent. The typical 
price of zeolite 13X per mass is US $6/kg-zeolite 13X. The zeolite 13X can be reused 
over thousands of regeneration or adsorption–desorption cycles to make it a possible 
cost-effective adsorbent. It is assumed that the cost of adsorbent 13X per mass of 
captured CO2 is 19 $/ton-CO2. This chapter explains that a specific energy for CO2 

plasma reduction of 3.38 eV/molecule is at least necessary for a consistent power 
generation system. Please calculate the following values. 

(1) Calculate the energy per unit of CO2 mass treatment (unit is kWh/ton-CO2). 
(2) Calculate the cost of electricity (unit is $/kWh), assuming the cost of 1 kWh is 

0.14$. 
(3) Calculate the ratio of the adsorbent cost to the total energy cost (%). 
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Concluding Remarks 

In conclusion, the book Electrical Sustainable Energy for Mechanical Engineers 
provides a comprehensive overview of key concepts and practical applications rele-
vant to the field of electrical engineering, with a focus on optimizing power transfer 
and energy conversion across various systems. Each chapter builds upon the previous, 
starting from basic principles of direct and alternating current circuits in Chap. 1, 
progressing through detailed analyses of impedance matching using Smith charts 
and complex number calculations in Chaps. 2 through 6, and culminating in sophis-
ticated discussions on energy system principle, heat transfer flow in plasmas and 
CO2 emission reduction technologies in Chap. 7 through 9. 

• Chapters 1–3 focus on fundamental electrical circuit analysis, including DC 
and AC circuits, transient phenomena, and series resonant circuits, equipping 
readers with the necessary tools to understand and manipulate electrical systems 
effectively. 

• Chapter 4 treats the computation of averages in periodic complex signals, setting 
the stage for advanced topics in impedance matching and circuit design discussed 
in subsequent chapters. 

• Chapters 5 and 6 thoroughly explore impedance matching, emphasizing the 
practical application of Smith charts and series and parallel connections, which 
are vital for optimizing the power transfer in electrical circuits. These chapters 
also include real-world problem-solving examples related to transformers and 
induction motors, enhancing the readers’ ability to tackle complex engineering 
challenges. 

• Chapters 7 and 8 transition into the basic and advanced topics of energy system 
principle, heat transfer flow in plasma and the intricate interactions of plasma 
with electromagnetic fields, fluid flow, and chemical reactions, reflecting the latest 
advances in modeling techniques.
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194 Concluding Remarks

• Chapter 9 discusses the application of nonthermal plasma technology in gas 
turbine systems and its significance in achieving zero CO2 emissions, empha-
sizing the role of plasma-catalyzed fuel processing technologies in mitigating 
global warming. 

Throughout the book, the blend of theoretical insights and practical exercises 
ensures a balanced approach, making it accessible and valuable for both students 
and professionals in the field of electrical engineering. The chapters provide a robust 
understanding of how theoretical concepts are applied in real-world scenarios, partic-
ularly in energy-efficient design and sustainable energy solutions. This compre-
hensive treatment of electrical sustainable energy not only enhances technological 
efficiency but also contributes significantly to global efforts towards a zero-carbon 
society.



Appendix 

A.1 Historical Image of Sakai City 

Humans settled in the region of present-day Sakai City, Osaka Prefecture, Japan, 
approximately 10,000 years ago. During the fourth and fifth centuries, the Imperial 
Court was established, and more than 100 emperor tombs were constructed in Sakai 
City. The name “Sakai” translates to “boundary” or “border” in English, reflecting 
its location at the intersection of three small prefectures established at the time.

Between the twelfth and fourteenth centuries, Sakai developed as the main ship-
ping base of western Japan. From the late fifteenth to the late sixteenth centuries, a 
period marked by frequent domestic wars in Japan, Sakai flourished as an interna-
tional trade port. During this era, it became a hub for imported goods and an important 
international trading center. The introduction of firearms from Western countries is a 
notable example. Information disseminated from Sakai to the rest of Japan, making 
it a center of innovation and exchange. Despite Japan’s limited openness to foreign 
countries during this time, Sakai thrived as a unique, semi-independent city known as 
“Saccai,” forming trade relationships with nations such as China and European coun-
tries. A depiction of Sakai during its prosperous sixteenth and seventeenth centuries 
was included in a book by the Dutch missionary and scholar Arnoldus Montanus. 
This image, shown in Fig. A.1 illustrates several ocean-going international ships near 
Sakai Port. 

Following the nineteenth century, Sakai underwent rapid modernization, charac-
terized by the development of modern industries, population growth, urban expan-
sion, and increased traffic, much like other major cities in Japan. Although many 
ruins and prehistoric sites were lost during World War II bombings, Sakai continued 
to develop as a leading industrial city. By the early 1900s, Sakai produced more 
than 80% of Japan’s bicycle parts, earning an international reputation as the “town 
of bicycles.” The bicycle industry persisted after World War II, with traditional 
craftsmanship passed down to modern high-tech bicycle manufacturers, including 
Shimano Inc.
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Figure A.2 shows a photo of historical site Dotou. The Dotou (Earthen Stupa) is 
a culturally significant historical site located in Sakai City, near Osaka Metropolitan 
University. This stupa is part of Onoji Temple, one of the forty-nine temples 
constructed by the renowned Nara-period monk Gyoki. According to the Gyoki 
Chronicles, construction began in 727 (the 4th year of the Shinki era). The stupa is 
also illustrated in the Illustrated Biography of Bodhisattva Gyoki (a National Impor-
tant Cultural Property) from the Kamakura period, depicted alongside the temple’s 
main hall and gate as a “13-tiered earthen stupa.” Excavations have revealed that the 
Dotou is a 13-tiered structure with a square base measuring approximately 153 m 
(503 ft.) on each side and a height exceeding 8.6 m (28.2 ft.). Each tier was originally 
covered with tiles, as confirmed by findings during the survey. Eaves tiles inscribed 
with “Shinki Year 4” were discovered, supporting the historical record in the Gyoki 
Chronicles. Today, the site is preserved with an earthen mound covering the entire 
structure, and 12 tiers have been restored. Approximately 160 m northwest of the 
Dotou, two kilns used to fire the tiles were unearthed. About 460 m to the north 
lies Komo-e-ike (Komo-e pond), a reservoir believed to be Komo-ike (Komo pond), 
constructed by Gyoki before 741 (the 13th year of the Tenpyo era). 

This site, located in proximity to Osaka Metropolitan University, serves as a vital 
cultural and educational resource for both the local community and visitors. Visitors 
can deepen their understanding of ancient Buddhist culture and architecture while 
exploring the surrounding area. Photo of Fig. A.2 included here provide a visual

Fig. A.1 Historical illustration at Sakai Port
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Fig. A.2 Dotou’s grandeur and its serene environment

glimpse of the Dotou’s grandeur and its serene environment. These images capture 
the site’s historical significance and its integration into the urban and cultural fabric 
of Sakai City. 

A.2 Vector and Tensor Notation 

In this book, the notation for vectors and tensors follows the conventions established 
in Ref. [1]. We adopt the Gibbs notation, where vectors are represented by italic bold 
Roman or Greek letters, such as u, H, or  ξ. Second-order tensors are indicated using 
italic bold sans-serif letters, such as T or D. 

The unit vectors along Cartesian coordinates are denoted as i, j, and k, or alter-
natively as e1, e2, and e3. A unit normal vector to a surface is denoted by n, and, for 
closed surfaces, it is conventionally taken to point outward. A unit tangent vector is 
denoted by t. 

The scalar (or dot) product between two vectors is represented by a・b, while 
their vector (or cross) product is denoted as a × b. The cross product produces a 
pseudovector, whose direction reverses under mirror reflection. In contrast, vectors 
like velocity that retain their orientation under mirror reflection are called polar 
vectors.
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A dyad, or the indeterminate product of two vectors a and b, is expressed simply 
by juxtaposing them: ab. If the vectors are expanded in Cartesian components as a 
= axi + ayj + azk and b = bxi + byj + bzk, then their dyadic product results in ab 
= axbxii + axbyij + …. In general, the dyadic product is noncommutative; that is, 
ab and ba are not necessarily equal. 

Thus, three distinct types of products can be formed between two vectors: the 
scalar product a・b, the vector product a × b, and the dyadic (indeterminate) 
product ab. 

A general dyadic D can be expressed as a finite sum of dyads: D = a1b1 + a2b2 
+  · · ·  +  anbn. 

The transpose (or conjugate) of a dyadic is denoted as DT = b1a1 + b2a2 + … + 
bnan. A dyadic is said to be symmetric if D = DT, and antisymmetric if D = −  DT. 

Any dyadic D can be uniquely decomposed into its symmetric and antisymmetric 
parts as: D = Ds + Da, where Ds = (D + DT)/2 and Ds = (D − DT)/2. 

Several operations are also defined for dyadics. The scalar of the dyadic D is: sca 
D = a1・b1 + a2・b2 +  · · ·  , while the vector of the dyadic D is: vec D = a1 × b1 
+ a2 × b2 +  · · ·  . 

The dot product of a vector u with a dyadic D is defined in two forms: u・D = (u 
・a1)b1 + (u・a2)b2 +  · · ·  , and D・u = a1(b1・u) + a2(b2・u) +  · · ·  . Similarly, 
cross products u × D and D × u are defined analogously. 

The unit dyadic I is given by: I = ii + jj + kk. This dyadic acts analogously to 
the number 1 in scalar algebra, satisfying the properties: I・u = u・I = u for any 
vector u. 

When taking products between dyadics, we follow the nesting convention. For 
instance, the dot product between dyads ab and cd is: ab・cd = (b・c)(ad). Similarly, 
the cross product between dyads under the nesting convention becomes: (ab) × (cd) 
= (a・d)(b × c). 

The trace of a second-order tensor T, written as tr T, is the sum of its diagonal 
components: tr T = T ii = T11 + T22 + T33. Importantly, the trace remains invariant 
under coordinate system rotations. Powers of tensors are indicated as T2 = T・T, 
T3 = T・T2, and so on. In addition to the trace tr T, the invariants tr T2, and tr T3 

are also defined. The magnitude of a tensor T is 

|T| =
√
1 

2 
T : TT 

The magnitude of a tensor, particularly if it is symmetric, can be constructed using 
its invariants

√
trT2 /2. 

Finally, the alternator is a special third-order tensor denoted by ε, defined as: ε 
= eiejekεijk, where εijk is the Levi-Civita symbol introduced in Sect. 8.6 of Ref. [1]. 
The alternator facilitates the definition of dual operations. For a vector A, its dual is: 
dual A ≡ ε・A= −  I × A. For a tensor D, the dual is defined by: dual D ≡ −  ε : D/ 
2 = I × D/2.
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Vector Identities. Several fundamental vector identities are used throughout the text. 
These include relations for the gradient, divergence, curl, and Laplacian operators 
applied to scalar and vector fields. Familiarity with these identities is essential for 
manipulating equations in electromagnetism, fluid mechanics, and plasma physics: 

(A × B) · C = A · (B × C) = (C × A) · B 

A × (B × C) = B(A · C) − C(A · B) 

(A × B) · (C × D) = (A · C)(B · D) − (A · D)(B · C) 

∇ ×  ∇φ = 0 

∇ ·  (∇ ×  A) = 0 

∇(φ1φ2) = φ1∇φ2 + φ2∇φ1 

∇ ·  (φA) = φ∇ ·  A + A · ∇φ 

∇ ×  (φA) = φ∇ ×  A + ∇φ × A 

∇(A · B) = A · ∇B + B · ∇A + A × (∇ ×  B) + B × (∇ ×  A) 

∇ ·  (A × B) = B · (∇ ×  A) − A · (∇ ×  B) 

∇ ×  (A × B) = A(∇ ·  B) − B(∇ ·  A) + B · ∇A − A · ∇B 

∇ ×  (∇ ×  A) = ∇(∇ ·  A) − ∇2 A 

A · ∇A = 
1 

2
∇(A · A) − A × (∇ ×  A) 

∇ ·  (∇φ1 × ∇φ2) = 0 

Tensor Identities. Tensor operations involve identities analogous to those for vectors, 
but extend to higher-order derivatives and contractions. Key tensor identities relate 
to the properties of symmetric and antisymmetric tensors, the behavior of tensor 
products, and operations such as the divergence of a tensor field:
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AB · C = A(B · C) 

A · BC = (A · B)C 

∇ ·  (AB) = A · ∇B + B(∇ ·  A) 

A · T = TT · A 

I · A = A · I = A 

∇ ·  (φI) = ∇φ 

∇ ·  (φT) = φ∇ ·  T + ∇φ · T 

∇ ·  Ta = −  
1 

2 
∇ ×  A, where Ta = 

1 

2

(
T − TT

)

and A = vec T 

Integral Theorems. Integral theorems provide a bridge between local differential 
properties and global integral properties. Principal theorems used include: 

1. Divergence theorem: Relates the flux of a vector field across a closed surface to 
the divergence over the volume enclosed. 

(a) For vectors,
∫
V ∇ ·  AdV = ∮

S A · dS 
(b) For tensors,

∫
V ∇ ·  TdV = ∮

S dS · T 
(c) For vectors,

∫
V ∇ψdV = ∮

S ψdS,
∫
V ∇ ×  AdV = ∮

S dS × A 

2. Stokes’s theorem: Connects the circulation of a vector field around a closed loop 
to the curl over the surface it bounds.

∮
S 
(∇ ×  A) · dS =

∮
L 
A · dl 

3. Reynolds’ transport theorem for differentiating a volume integral: Facilitates 
differentiation of integrals over moving volumes, crucial for control volume 
analysis in fluid mechanics. 

D 

Dt

∫
V 

ψdV =
∫
V 

∂ψ 
∂t 

dV +
∮
S 
ψu · dS
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4. Transport theorem for differentiating a surface integral: Extend transport relations 
to surface integral. 

D 

Dt

∫
S 
A · dS =

∫
S

[
DA 
Dt 

− A · ∇u + A(∇ ·  u)

]
· dS 

=
∫
S

[
∂A 
∂t 

+ ∇  ×  (A × u) + u(∇ ·  A)

]
· dS 

5. Transport theorem for line integrals: Extend transport relations to line integrals. 

D 

Dt

∫
L 
A · dl =

∫
L

(
DA 
Dt 

+ A · ∇u
)

· dl 

Reference 

1. R.E. Rosensweig, Ferrohydrodynamics (Cambridge University Press, 1985), 
Appendixes, App. 1, pp. 315–318



Back Cover Text for the Book 

“Discover the Convergence of Mechanical and Electrical Engineering!” 
Step into a textbook designed to aspire mechanical engineers. By harnessing years 

of expertise, the author introduces foundational knowledge of sustainable electrical 
energy and energy conversion principles. This unique resource is tailored for a 15-
week semester, ensuring comprehensive coverage of essential topics beneficial to 
mechanical engineering research related to sustainable electrical energy. However, 
this is not just a textbook; it is also a bridge. Recognizing the gaps in electrical 
engineering knowledge for students entering their final-year projects, this book is 
designed to fill the void. Moving beyond the confines of conventional electrical 
engineering texts, it addresses topics, such as electrical circuits and sustainable 
energy conversion, and even provides techniques related to energy principles, circuit 
matching, and plasma applications. Driven by the author’s commitment to excellence 
and passion for mentoring, this book showcases in-depth research at the intersection 
of electrical and mechanical engineering. With its unique focus on plasma processing 
and electrostatic precipitation, it serves as a foundational guide and gateway for 
advanced applications. To ensure practicality, a treasure trove of specific problems 
with detailed solutions are included, all derived from the author’s extensive collabo-
rative industrial research. Whether you are a student grappling with the complexities 
of electromagnetism, or an engineer keen on expanding your horizons, this text-
book promises a journey that blends the best of both disciplines. Transform your 
understanding of sustainable electrical energy.
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