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Preface

Time series analysis is a cornerstone across various domains, including finance, health-
care, environmental science, and cybersecurity. As time series increase in velocity, variety,
and volume, so does the challenge of extracting meaningful events within them. While
events can be classified into anomalies, change points, and motifs, event detection is the
process of identifying these events. It is a usual practice to study anomalies, change points,
and motifs separately. Some books address these research areas isolated, but the literature
lacks a broad view of event detection.

This book, Event Detection in Time Series, fills this gap by providing fundamental and
state-of-the-art methods for detecting events in time series. It bridges theory and practice,
presenting key concepts alongside practical examples with accessible code for real-world
problems. Whether you are a researcher, practitioner, or student, this book guides you
through the core concepts, methods, and challenges in event detection.

The structure of this book reflects the multifaceted nature of the subject. We begin
with an introduction covering the definition of these three different types of events. Then,
we explore time series analysis methods and data preprocessing techniques that form
the foundation for event detection. Subsequent chapters delve into the fundamentals of
anomalies, change points, and motifs. Later on, the following two chapters are driven by
online event detection and evaluation metrics. The last chapter summarizes the overarch-
ing challenges and future directions. We also provide an appendix covering Harbinger, our
framework to support time series event detection, so readers can quickly start practicing.
We hope this book will inspire further research and development in this subject.

We are indebted to the many researchers whose work has laid the groundwork for the
advances discussed in this book. We also acknowledge the support of our institutions,
colleagues, and families, who have made this work possible. First, we thank Prof. Patrick
Valduriez for his deep and outstanding review. He gave us many advice, which enriched
our writing a lot. We also thank our partners from Inria, mainly Florent Masseglia and
Reza Akbarinia, who helped us to develop maturity on the subject. We also thank Profs.
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your time reviewing the book.
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Heraldo Borges, Lais Baroni, Luciana Escobar, Janio Lima, Jessica Souza, Lucas Tavares,
Leonardo de Carvalho, and Murillo Dutra.
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1Introduction

1.1 Overview

Time series analysis focuses on examining the entirety of the data collected over time. How-
ever, in many practical scenarios, it is essential to highlight and examine specific sequences
of observations, known as events [29]. Time series events are instants or intervals in the
time series where observations change in a manner that is considered important for analysis
or decision-making processes. The interpretation of an event can vary significantly across
different domains. For example, in weather time series, events could be intervals of heavy
rainfall or severe storms, while in economic time series, significant market shifts, such as
sudden drops or gains, are important events. Events can also mean a security breach, unusual
network traffic spikes, a machine breakdown, or a system failure that disrupts normal oper-
ations in an industrial setting [214].

In information theory, time series events can be understood as intervals marked by signif-
icant entropy changes, suggesting that these segments contain more information than others.
This definition allows analysts to identify and quantify the impact of these events more pre-
cisely [31]. Furthermore, time series events can be classified into three main types, each with
distinct characteristics: anomalies, change points, and motifs. Anomalies are observations
that differ significantly from typical observations, change points indicate significant shifts
in the time series trend or volatility, and motifs are recurring approximate sequences in the
time series. These types are explained and formalized in Sect. 1.2.

Each type of event requires specific analytical methods and tools for detecting and inter-
preting events. Time series event detection systematically identifies intervals representing
significant deviations from typical observations or predefined conditions, i.e., detecting
intervals with a significant change in the entropy. The goal is to pinpoint the exact moments
or periods of their occurrences [304]. Detecting events in time series requires studying
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advanced and specialized methods. This topic has been extensively explored over the years
and has increasingly attracted more interest over the last decade [39].

To get started defining these concepts, let us provide some basic formalization. A time
series X is a sequence of n observations, <x1, x2, x3, . . . , xn>, where x1 and xn represent,
respectively, the observations of the series at the first (oldest) and last (newest) instants [95].
The length n of a time series X is |X |. A specific time series observation is referenced as xt ,
indexed in time by t (t ∈ {1, . . . , n}). It is common to interpret the sequences that compose
a time series as a time series process [259].

A time series is studied as a function of past observations [129]. When observations
are related to a single variable, a time series is referenced as univariate. Conversely, it is a
multivariate time series when observations are related to two or more variables.

The frequency of a time series defines when the observations are regularly collected.
For instance, a yearly time series gives the observations collected each year. This case
characterizes a low-frequency time series when observations are collected daily or slowly.
Conversely, high-frequency time series are those in which the collection of observations
occurs more than once during the day.

Consider the Yearly Global Temperature Time Series (YGT) depicted in Fig. 1.1. It is an
example of a univariate time series. It is available from theNational Centers For Environment
Information (NOAA), which provides comprehensive data collections of global coverage
over land (Global Historical Climatology Network-Monthly) and ocean (Extended Recon-
structed Sea Surface Temperature) surface [206]. YGT has been available since 1850 and
is relevant to the discussion about global warming [204]. YGT is useful for presenting the
outcomes of event detection methods in the following sections.

Fig. 1.1 YGT (in degrees Celsius) obtained from NOAA [206]
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Event detection can be organized according to how the time series are processed, i.e.,
identifying past events (offline), discovering events in real time (online), and even predicting
future events. It is a basic function in surveillance and monitoring systems, gaining much
attention in application domains involving critical systems [228]. The event detection prob-
lem is targeted in applications based on sensor data analysis [76], which can be observed in
chemistry, reflection seismic, and oil drilling and exploration, where monitoring operations
are essential. Furthermore, event detection is important for practical applications that affect
day-to-day life, such asmedical diagnosis, disease outbreaks, fault detection, structural dam-
age identification, intrusion detection, fraud detection, wireless networks, and astronomy
object detection.

The event detectionmethods in the literature adopt five general groups: regression, classi-
fication, clustering, statistical, and domain-based. Unfortunately, assessing event detection
methods is complex [325]. Thus, many authors have analyzed, compared, and reviewed
several methods [212].

Event detection in time series is a wide and dynamic area of research. However, most
papers focus on particular aspects of the problem, such as detecting only a specific type of
event [281]. Furthermore, they do not generally formalize events and their different types.
Although online event detection is becoming increasingly important [191, 207], most event
detection algorithms do not address streaming applications [325].

This chapter introduces, using a taxonomy that we have developed, the principles associ-
ated with event detection, which are analyzed according to event type specializations, event
detection methods, and evaluation metrics. We formalize point events as a generalization
for anomalies and change points and cover the definition of motifs and discords. The tax-
onomy provides a context for the reviewed literature (see Fig. 1.2) and was built based on
a systematic search of relevant papers. First, papers on event detection for time series were
searched using a query string involving the keywords “event detection” and “time series”.
A second search was performed to find papers on the specific area of event prediction using
the keywords “event prediction” and “time series”. Furthermore, survey papers on event
detection and event prediction were gathered based on snowballing.1 Finally, an additional
snowballing search was performed on detection performance metrics due to their increasing
importance.

The taxonomy is divided into five major categories. The first two categories present the
type of events and the general data structure associated with them. The following categories
group the events according to their detection scenarios,methods, and performance evaluation
of detection methods. These categories are detailed in the next sections.

1 Snowballing, also known as citation chaining, is the process of searching the references (backward)
and the citations (forward) of a paper to identify other relevant papers.
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Fig. 1.2 Taxonomy of time series events

1.2 Types of Events

Events are pervasive in real-world time series. As mentioned before, they can be character-
ized as anomalies [212], change points [281], motifs (i.e., repeated sequences in the time
series) [252], and discords (i.e., atypical sequences in the time series) [311]. The first two
commonly occur in an instant. Events related to intervals are generally studied as motifs
or discords [177]. Event detection methods are mostly specialized in identifying a specific
type of event. When some methods can detect multiple events in time series [27], they are
related to detecting anomalies and change points [63].

Let us start with a general formalization of point events. Let xt be observations for a time
series X . A Temporal Component (TC) for xt is expressed as tc(xt ). The TC can refer to
the observation itself, its instant trend, and its instant volatility, respectively, represented as
xt , tr(xt ), and v(xt ). Consider a typical time series in which the autoregressive assumption
holds [119]. A TC for xt is expected to relate relatively to previous observations. Such
assumption can be expressed as ep(tc(xt ), k) = E(tc(xt ) | tc(xt−1), . . . , tc(xt−k)), where
ep is the expected (E) TC for xt from the previous k TC. Using the same assumption, it
is expected that a TC for xt can be explained from the following observations. It is similar
to the autoregressive assumption applied to a reversed time series [173]. Thus, a given
tc(xt ) is related to the following k observations. Such assumption can be expressed such as
e f (tc(xt ), k) = E(tc(xt ) | tc(xt+1), . . . , tc(xt+k)), where e f is the expected (E) TC for xt
from the following k TC.
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Point events {t} in a time series X can be expressed as e(X , k, σ ) using Eq.1.1, where k
represents the length of nearby observations and σ is a tolerance threshold. Suppose an TC
for xt escapes the expected value above σ based on the previous or following k observations.
In that case, it can be considered an event. Equation1.1 also considers an event if the expected
TC from the previous and following k observations differ above a threshold σ .

e(X , k, σ ) = {t, |tc(xt ) − ep(tc(xt ), k)| > σ

∨ |tc(xt ) − e f (tc(xt ), k)| > σ

∨ |ep(tc(xt ), k) − e f (tc(xt ), k)| > σ }
(1.1)

1.2.1 Anomalies

Anomalies are observations that do not conform to the typical ones in the time series [243].
Anomalies and outliers are often interchanged [121], but some authors make a slight dif-
ference between them, relating outliers to the statistical perspective of the data distribution
[289]. An outlier can be defined as an observation (or subset of observations) that appears
inconsistent with the remainder of the observations. It is compatible with the chosen data
distribution, albeit very uncommon [212]. On the other hand, anomalies seem to obey a dif-
ferent distribution than the typical observations [212]. Since this distinction is blurred, for the
sake of simplicity, they can be understood as similar concepts with the caveat that anomalies
are events that we intend to detect, while outliers are usually unwanted observations that we
intend to discard.

Anomalies can be caused by various factors, such as errors in data collection, changes
in underlying trends or patterns, or external factors, such as weather events or economic
shifts [326]. They appear as unexpected spikes, dips, or irregular patterns indicating critical
incidents, such as system failures, economic events, or emergent behaviors in complex envi-
ronments [219]. Anomalies can be formalized as in Eq.1.2. In this case, an event identified
in xt can be considered an anomaly if it escapes expected TC before and after instant t
according to the σ threshold.

a(X , k, σ ) = {t, |tc(xt ) − ep(tc(xt ), k)| > σ ∧ |tc(xt ) − e f (tc(xt ), k)| > σ } (1.2)

Noise Anomalies
Noise anomalies, or residual anomalies, are the simplest type of anomalies. They correspond
to unexpected or abnormal variations in the residual component of a time series, which is
the part of the time series that is not considered by the seasonal and trend components (see
Chap.2 for time series components and time series decomposition).

Noise anomalies can be formalized as follows. Let X̂ be an estimate of a time series
X produced by adjusting a model α, with x̂t = α(xt ). From X̂ , it is possible to derive
the residual time series W (< ω1, . . . , ωn >), with ωt = xt − x̂t . When the model is well-
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adjusted, it is expected that W has a Gaussian distribution with zero mean (in this case, it
is considered a Gaussian white noise) [283]. Noise anomalies (na) can be identified using
statistical distribution tests (sdt) over the residual time series W , as described in Eq.1.3.

na(X) = sdt(W ), ωt = xt − x̂t (1.3)

The simplest sdt assumes that W follows a Gaussian distribution and is a parametric
analysis. Considering that W and sd(W ) are, respectively, the mean and standard deviation
of W , anomalies are observations that are below W − 3 · sd(W ) or above W + 3 · sd(W )

[125]. Equation1.4 characterizes the instants in which observations do not conform to the
Gaussian distribution.

sdt(W ) = {t, ωt /∈ [W − 3 · sd(W ),W + 3 · sd(W )} (1.4)

A more general solution for sdt does not assume thatW follows a particular distribution
(nonparametric analysis). In this case, box plot analysis is adopted and can be described using
Eq.1.5, where Q1(W ) and Q3(W ) are the first and third quartiles, respectively, and I QR
is the interquartile distance [6]. The equation characterizes the instants where observations
are atypical in a box plot analysis.

sdt(W ) = {t, ωt /∈ [Q1(W ) − 1.5 · I QR(W ), Q3(W ) + 1.5 · I QR(W )]} (1.5)

Figure1.3 shows the occurrence of noise anomalies (marked as red) from the YGT,
considering the residual time series obtained from an adjusted ARIMA model (ARIMA
is covered in Chap.2). As can be observed, such anomalies correspond to local minimum

Fig. 1.3 Anomalies observed at YGT from the residual analysis of an ARIMA model
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and maximum values concerning the modeled time series. Anomalies are fully addressed in
Chap.3.

1.2.2 Change Points

Change points are time intervals in a time series where there is a significant change in the
statistical properties, e.g., changes in mean, variance, correlation, or other parameters that
characterize the time series distribution [112]. They represent a transition between different
states in a process that generates the time series [272]. In this case, a change point event
identified at time t follows the expected TC observed before or after t , but not both at the
same time according to cp(X , k, σ ) in Eq.1.6. It can also refer to a significant difference
between the expected TC before and after instant t .

cp(X , k, σ ) = {t, ( |tc(xt ) − ep(tc(xt ), k)| > σ �
|tc(xt ) − e f (tc(xt ), k)| > σ )

∨ |ep(tc(xt ), k) − e f (tc(xt ), k)| > σ }
(1.6)

Change points are also related to concept drift [294], in particular, when considering
multivariate time series D, such that X (X ⊂ D) is a predictor to Y (Y ∈ D). It is possible
to define change point detection as a concept drift hypothesis test. The null hypothesis H0

characterizes the absence of drift, and the alternative hypothesis HA negates H0. Formally,
H0 and HA are as in Eq.1.7, where Pn(t) is the probability density function for D of obser-
vations nearby n(t) [23]. Such observations could be a sliding window (see Chap.2 for
definition) containing t .

H0 : ∀ t, k (t �= k) | Pn(t) ≈ Pn(k)

HA : ∀ t ∃ k (t �= k) | Pn(t) �= Pn(k)
(1.7)

From this perspective, change point detection is related to monitoring concept drifts.
Figure1.4 shows the occurrence of change points (marked as dashed gray lines) from the
YGT considering using the Chow test statistic [319]. As observed, trends before and after
change points are significantly different. Change point detection is deeply addressed in
Chap.4.

1.2.3 Motifs and Discords

Some events in time series can also be observed by the presence of motifs and discords.
Time series motifs are sequences of significantly similar observations within a time series.
They correspond to recurring patterns with some distinctive shape in the time series [177].
In other words, a motif is an approximately repeated subsequence within a longer time
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Fig. 1.4 Change points observed at YGT using Chow test statistic [319]

series. Conversely, discords are sequences that do not repeat in the time series. They are
significantly different sequences from the remainder of the observations.

Motifs can be used to understand the underlying structure of a time series and identify
important features such as trends, seasonal patterns, or outliers [279]. They become more
interesting whenever these sequences provide more information than typical time series
observations. In these cases, they do not occur so many times. Identifying motifs can be
useful in various applications, including anomaly detection, classification, and predicting
future observations.

Figure1.5 shows a small fraction of a patient’s heartbeat in an electrocardiogram. It is
available at MIT-BIH [227] and contains many similar sequences due to regular heartbeats.
These common subsequences are motifs. However, three irregular heartbeats are depicted in
Fig. 1.5. They correspond to labeled sequences annotated by specialists related to arrhythmia
signals. The beginning of each sequence is marked in green, and the following observations
of each sequence aremarked in purple. The interesting question is how to discover them auto-
matically. Furthermore, they can be a motif if interpreted as three similar rare subsequences
or as three discords if considered significantly different.

Given a sequenceq and a time series X ,q is amotif in X , if andonly ifq occurs in X at least
σ times [44]. The general method for discovering motifs is related to directly exploring time
series distances or correlations between subsequences. Such brute force exploration yields
quadratic complexity O(n2). Thus, indexing-based methods based on Symbolic Aggregate
approXimation (SAX) [176] and hashing have been used to improve computation timewhile
introducing similarity tolerance for the sequences. Recently, state-of-the-art methods, such
as matrix profile [312], have adopted enhanced data structures for fast computation. The
formalization of motifs and discords is presented in Chap.5.
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Fig. 1.5 Three labeled sequences of an electrocardiogram. They might correspond to a motif with
three occurrences or three different discords

1.3 Data Structure

Both time series and events can be represented in various data structures depending on the
context and purpose of the analysis [146]. One common data structure for time series is a
simple table ormatrix,where each row represents a specific time, and each column represents
a variable or feature being measured at that time. Under this structure, an additional column
can represent the presence of events, with the characterization of the type of event. It is a
typical format for many time series and associated events [146].

Another common data structure for time series is a specialized object or class in a pro-
gramming language or statistical software package. These objects are specifically designed
to handle time series and often have built-in functions and methods for manipulating and
analyzing the data. Examples include the Pandas library in Python or the TS object in R. In
addition to these basic structures, more advanced techniques such as decomposition or state
space models can represent and analyze time series, particularly when dealing with multiple
variables or complex dependencies over time [259].

1.3.1 Granularity

Events fall into two categories: point and interval [32]. They are related to the granularity
of the time series. Point events are individual observations interpreted as events concerning
the rest of the time series. In other words, they are discrete events recorded at a particular
timestampor time interval. Point events are represented in a timestampedevent data structure.
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Fig.1.6 Examples of global temperature time series under different granularity between 1971–1980:
aMonthly global temperature (MGT); b Yearly global temperature (YGT)

This structure stores information about each event, including the time it occurred and any
associated data.

Interval events refer to events that occur over a defined period rather than at a specific time.
They are recorded as a start and end time along with the time series. Examples of interval
time series events include continuous daily rainfall or high hourly electricity consumption.

Analyzing interval events requires differentmethods than those for analyzingpoint events.
One approach is to aggregate the data into larger time intervals and then analyze these
aggregates using point event methods, such as the previously mentioned ARIMA. The YGT
presented so far is derived from the Monthly Global Temperature Time Series (MGT).
Figure1.6 shows a sample of theMGT. Figure1.6a shows theMGT from January 1971 until
December 1980. Figure1.6b shows the YGT for the same period. It is temporal aggregated
from the MGT. The value for the YGT is the mean of MGT each year.

1.3.2 Dimensionality

Event detection might occur in univariate or multivariate time series. A univariate time
series is a time series in which only one variable is measured in each observation. This
variable can be a continuous or discrete numeric value measured at regular or irregular
intervals. Univariate time series events are represented as a sequence of values over time.
The simplest data structure used to represent it is a vector. Although simple, univariate time
series events are important as they can provide valuable insights into various phenomena.

A multivariate time series is one in which multiple variables are measured in each obser-
vation. Each variable can be continuous, discrete, or categorical values. Examples of mul-
tivariate time series events include a city’s hourly temperature, humidity, and wind speed
readings. Multivariate time series events are represented as a matrix or table with multiple
columns, each column representing ameasured variable and each row representing an obser-
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Fig. 1.7 Examples of time series dimension representation: a univariate time series as vector; b
univariate time series with timestamp column; c multivariate time series

vation or measurement taken at a specific time. Unlike relational tables, the order of data
is relevant. Figure1.7 illustrates the representation of different time series, where Fig. 1.7a
shows the univariate YGT as a vector. Figure1.7b shows the YGTwith an additional column
to characterize the time associated with each observation. Figure1.7c shows a multivariate
time series, with a column for the YGT and the worldwide crude oil production. One might
be interested in finding associations among the different dimensions in a multivariate time
series, e.g., if an association exists between crude oil consumption and the global temperature
increase.

1.4 DetectionMethods

Several methods for event detection, including Machine Learning (ML) and big data pro-
cessing, have been described and compared [32, 60]. In addition to the five general groups
(regression, classification, clustering, statistical, and domain-based), event detection meth-
ods can be classified into theory-driven or data-driven. Theory-driven models are based on
established theories, principles, or concepts from a particular field. These models aim to rep-
resent and explain real-world phenomena by explicitly incorporating theoretical constructs
into the model. Conversely, data-driven models are created by analyzing large time series.
While theory-driven methods are mostly in domain-based and statistics-based analysis, ML
generally enables data-driven methods.

Data-driven methods based on ML are not necessarily restricted to certain kinds of prob-
lems and do apply to time series event detection. Some of themain data-drivenmethods used
for event detection are K-Nearest Neighbors Conformal Anomaly Detector (KNN-CAD),
K-Means, Neural Network (NNET), Support Vector Machine (SVM), Extreme Learning
Machines Network (ELM), Convolutional Neural Network For Time Series (Conv1D), and
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Long Short-Term Memory Neural Network (LSTM). In particular, NNET, ELM, SVM,
Conv1D, and LSTM are used for time series prediction [202].

Data-driven methods can also be organized according to how they learn from data. In
supervised learning, the methods assume the availability of a training dataset with labeled
instances (for example, the indication that each observation has an associated event or not).
In semi-supervised learning, they assume that the training data only label instances for the
typical observations. On the other hand, methods that operate in unsupervised learning do
not require labels in training data and, thus, are most widely applicable. The methods in this
category implicitly assume that typical instances are more frequent than anomalies [60].

Domain-based methods use expert knowledge or established models of the domain prob-
lem to identify new data samples that are not typical in case they differ enough from what
is expected. Examples in this group include a specialized time–frequency method using
domain-specific theory for finding events in a seismic time series [105], or the identification
of human fall events based on a model of body posture evolution [321].

1.5 Detection Scenarios

The detection scenarios are an important characterization of the condition in which the
event detection methods are used. They drive the requirements for data management, com-
putational resources, and constraints of the event detection methods. We can organize the
detection scenarios into three major classes: offline event detection, online event detection,
and event prediction.

Offline event detection is when events are discovered after the time series has been
collected. It involves analyzing the time series retrospectively to identify patterns or changes
that may indicate the occurrence of an event. The process of offline event detection involves
two major steps. First, the time series is preprocessed. Then, a time series analysis method
is applied to identify events. Once potential events have been identified, further analysis is
done to confirm whether they are real events or false positives. This analysis can involve
additional data sources, expert knowledge, or further statistical testing.

Online event detection is when events are discovered in a time series as the observations
are collected. It requires continuous monitoring of the time series. The process comprises
the two major steps depicted in offline detection. However, it has computational constraints
to enable real-time reactions when potential events are discovered. For example, predictive
maintenance can detect changes in a machine that may indicate a potential failure, allowing
maintenance to be scheduled proactively.

More formally, let X be a streaming time series composed of a continuous stream of
inputs: < . . . , xt−2, xt−1, xt , xt+1, xt+2, . . . >. At each time t , a model trained on previous
observations < . . . , xt−2, xt−1 > is used to determine whether the current observations of
the system are unusual. This determination must be made by the next input xt+1. For this,
the time series model must be continuously updated [9].
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Unlike offline event detection, data is not split into static train/test sets, and algorithms
cannot look ahead. Practical applications impose additional challenges. When the sensor
streams are large in number or when data comes at high velocity, there is little opportu-
nity for expert intervention, manual parameter tweaking, and manual data labeling. Thus,
operating in an unsupervised, automated fashion is necessary [9]. Furthermore, in streaming
applications, early detection of events is often important, where events are identified as soon
as possible.Detection of events canprovide information that is important to decision-making.
This information must be given early enough that it is actionable, preventing possible crit-
ical system failures. However, there is still a tradeoff between early detections and false
positives. An algorithm that often makes inaccurate detections is likely to be ignored.

Finally, time series event prediction forecasts future events based on historical time series.
It uses statistical, ML, or deep learning methods to model the patterns and trends in the time
series and make predictions about future events [45]. The process involves several steps.
First, the time series is preprocessed and cleaned to remove any noise or outliers that could
affect the accuracy of the analysis. Then, various time series analysis methods are applied
to model the patterns and trends in the data. These methods can be from ARIMA to deep
learning models such as LSTM.

Once themodel has been trained andvalidated, it can be used to predict future events. Time
series event prediction is used in various applications, including finance and healthcare. In
healthcare, for example, it can be used to forecast patient outcomes or the spread of diseases.

1.6 Detection Evaluation

The evaluation of event detection methods is related to determining the effectiveness of the
algorithms, which differ according to the computational time and memory used.

1.6.1 Accuracy

The evaluation of time series event detection assesses the accuracy and effectiveness of event
detection algorithms in identifying events in time series. It involves comparing the output
of an algorithm with ground truth data, which experts have manually labeled to indicate the
occurrence of events. The evaluation of event detection algorithms is challenging due to the
subjective nature of event labeling and the lack of ground truth labels in many applications.
The evaluation involves several metrics, which are calculated using the ground truth data
and the output of the algorithm to evaluate the accuracy of the event detection algorithm.
These metrics include precision, recall, F1-score, and area under the receiver operating
characteristic curve (AUC-ROC). Precision is the ratio of true positive events to the total
detected events. At the same time, recall is the ratio of true positive events to the total
number of actual events. The F1-score is a weighted average of precision and recall that
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considers both metrics. The AUC-ROC measures the algorithm’s ability to discriminate
between positive and negative events [245].

An important aspect of any event detection method is how the events are reported. The
outputs produced by event detection methods are either scores or labels. Scoring detection
methods assign an anomaly score to each instance in the data, which varies according to
the degree to which that instance is considered an anomaly. On the other hand, labeling
detection methods assign a label (typical or anomalous) to each data instance [264].

Detection methods may have different performances under different time series [98],
which calls for performance comparison. However, benchmarking and comparing event
detection performance is hard [215]. Standard classification metrics are generally used to
evaluate the performance of an algorithm to distinguish between typical and atypical data
samples that can be directly adopted for point events. However, many real-world event
occurrences extend over some time and have an interval. Therefore, some authors expand
the well-known Precision and Recall metrics to assess the accuracy of detection algorithms
for interval events [276].

1.6.2 Computational Resources

Event detection methods vary according to the computational resources required. The com-
plexity of time series event detection can be analyzed using several metrics, including time
complexity, space complexity, and computational complexity. Time complexity is the time
required to execute the algorithm on a given input size. In contrast, space complexity refers
to the amount of memory the algorithm requires. Computational complexity refers to the
resource requirements, including time, memory, and other computational resources.

Several methods can be used to manage the complexity of time series event detection.
They include optimizing the algorithm and its implementation, using parallel processing to
distribute the computational workload, and using data reduction techniques to reduce the
size of the time series.

1.7 Book Structure

The taxonomy in Fig. 1.2 lists the main concepts analyzed in depth in the following chapters.
Figure1.8 gives the general structure of the book. Chapter 2 provides the basics of time
series analysis. It covers time series decomposition, time series preprocessing, and time
series prediction, which are supporting methods for event detection.

Chapter3 introduces the categories of anomalies and describes the main anomaly detec-
tion methods. Chapter4 introduces the categories of change points and the main change
point detection methods. It also covers concept drift in time series. Chapter5 presents time
series indexing and similarity, which are the main enabling concepts for motif discovery.
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Fig. 1.8 Book structure

Later, the chapter covers the main motif discovery methods. Chapter6 deals with online
event detection. It starts by comparing online with offline detection. Then, it distinguishes
between online detection (detecting events as soon as possible) and online prediction (pre-
dicting events before their occurrences). Chapter7 covers the main evaluation metrics on
event detection. It also presents time tolerance and specific event metrics, such as sequences
and online event detection. Finally, Chap.8 summarizes the research area and the main
challenges presented in the book.

The book also includes AppendixA that describes Harbinger, which is our framework
for event detection.2 Harbinger is open source and available as an R package. All examples
presented in this book were built on it and can be run using it.

2 Available at https://cefet-rj-dal.github.io/harbinger.

https://cefet-rj-dal.github.io/harbinger
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2.1 Time Series Components

Time series can be studied according to their major components, organized into three types:
(i) trend (βt ); (ii) seasonality (πt ); (iii) residual (ωt ) as described by Eq.2.1 [139].

xt = βt + πt + ωt . (2.1)

The trend component refers to the time series’s long-term movement or direction. It
represents the underlying pattern or trend of the data, independent of any seasonal or cyclical
fluctuations. When the trend is linear, it is a monotonic function or a function in which there
can be atmost one extremewithin a given data period [195]. The trend is taken as a disposition
of the time series,which remains in future observations [100]. The trend can be rising, falling,
or stable over time. For example, a country’s gross productmay steadily increase over several
years, indicating a positive trend. A neonatal death rate may steadily decrease over time,
indicating a negative trend. Both these situations are important for policymakers. Thus, the
relevance of positive or negative trends is much more related to the semantics of the studied
time series rather than its values [139].

Accurate analysis requires identifying and accounting for trends in time series. There are
severalmethods to determine the trend component. The simplest is through linear regression,
which involves choosing an average line for the time series.Othermethods, includingmoving
averages andmore advanced ones, are presented later in this chapter. It is a common practice
to remove the trend component of the time series (in a process called detrending) to enable
focusing on the remaining time series components [119].

Seasonality refers to patterns that repeat at fixed intervals, such as daily, weekly, monthly,
or yearly. These patterns usually relate to periodical factors influencing the underlying
data. For example, sales may increase every December due to Christmas, or beverages and
ice cream sales may increase during summer. Seasonality is also expressed according to

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
E. Ogasawara et al., Event Detection in Time Series, Synthesis Lectures on Data
Management, https://doi.org/10.1007/978-3-031-75941-3_2
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amplitude, frequency, and phase. Amplitude refers to the magnitude of seasonal variation.
Frequency refers to the length of the seasonal cycle. Finally, the phase refers to the timing
of seasonal peaks and troughs within each cycle [139].

The residual is the difference between the time series and the sumof the trend and seasonal
components. The residual component represents the random or unpredictable fluctuations
that the trend or seasonal components cannot explain. It can be referred to as a stochastic
process [259]. It is sometimes called “noise” in the time series.When the noise has aGaussian
distribution with zero mean, it is called Gaussian white noise [283].

Figure2.1 shows the decomposition of theYGT from1970 until 2023. The decomposition
is produced using the forecast R package [139]. The trend component is extracted using a
moving average. The seasonal component is computed by averaging through the defined
frequency. Since it is a monthly time series, the frequency is 12. The residual component is
determined by removing the trend and seasonal components of the time series. The figure
also shows that the temperature has a rising trend. The seasonal component has a major
sinusoidal yearly (with some spikes). The mean of residual equals zero, and its variance is
limited, which seems to be a white noise [283].

Fig. 2.1 YGT decomposed using R package forecast [139], showing the time series, its trend, sea-
sonal, and residual components
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2.2 Stationarity

Most methods applied for time series analysis assume that observations of a time series have
a level of regularity over time, which is addressed with the concept of stationarity [119]. A
widely adopted definition of stationarity establishes that given a time series X [119]:
i The mean function, E(X) = μ, is constant and does not depend on time.
ii The variance function, V AR(X) = E

(
(X − μ)2

) = σ 2, is constant and does not depend
on time.

iii The autocovariance function, γ (Xs, Xt ), between the time-shifted time series Xt and Xs

depends only on the difference |s − t |.

In a stationary time series, the statistical properties of the mean, variance, and covariance
remain constant over time [308]. These constraints are important since they enable statistical
inference based on any sampled time series subset [129]. It is a time series where the data
is unaffected by external factors such as trends, seasonality, or other patterns. Figure2.2a
shows an example of a stationary time series, where one may observe mean and variance
functions independent of time.

A time series that does not follow a constraint that a stationary process imposes is con-
sidered nonstationary. It may manifest in many ways but implies that its mean or variance
functions depend on time t [247]. The changes are often due to deterministic trends, struc-
tural breaks, level shifts, or changes in variance (a condition known as heteroscedasticity).
They can also be due to the presence of unit roots [129].

A trended time series is the simplest form of nonstationarity, with stationary behavior
around a deterministic trend [247]. This trend shifts the mean of a time series, causing it
to increase or decrease over time. The deviations of a systematic trend may be a stationary
variable, known as a detrended variable, which may be analyzed instead of the original time
series. In that case, usual stationary models are applicable [129]. A time series that has this
behavior is called trend stationary. Figure2.2b is an example of a trend stationary time series.

Structural breaksmay also cause nonstationarity to occur at specific points in time, usually
due to environment changes [247]. Theymay eventually result in level shifts in a time series,
which cause the mean function to differ in separate time series intervals. In that case, a time
series can be partitioned to separately analyze each data portion with different statistical
properties, provided that the timing of a structural break is known [129]. Figure2.2c shows
an example of a level stationary time series where one can see the level shifts of the mean
function.

Another cause of nonstationarity is the change in variance over time, known as het-
eroscedasticity [247]. Heteroscedasticity arises from environmental changes that increase
or decrease the volatility of time series observations over time. The time series that has this
condition is called heteroscedasticity. An example of a heteroscedastic time series is shown
in Fig. 2.2d, where different variance properties on the first and last portions of the series
are easily observable.
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Fig. 2.2 Examples of time series (adapted from Salles et al. [247]): stationary (a); trend stationary
(b); level stationary (c); heteroscedastic (d); and difference stationary (e). Except for a, all examples
are related to nonstationary time series. The solid and dashed black lines indicate the time series mean
and variance functions

An important nonstationarity often observed is caused by a unit root in the characteris-
tic polynomial of a time series model [247]. Without a unit root, time series observations
tend to fluctuate around deterministic components such as a mean or a trend. Conversely,
observations do not revert to a historical level when a unit root is present and may wander in
any direction. The presence of a unit root implies that the time series suffers from the influ-
ence of long-run components or stochastic trends [129]. In that case, removing a stochastic
trend by applying a process called differencing is often helpful to coerce such time series
to stationarity. Therefore, nonstationary time series that have unit roots are also known as
difference stationary [45]. Figure2.2e represents the so-called random walk model [259].

The mean and variance evaluation for stationary time series are relatively intuitive. The
test for autocovariance can be computed using Autocorrelation Function (ACF) and Partial
Autocorrelation Function (PACF) of the residuals of an First-Order Autoregressive Model
(AR(1)) model along with the corresponding confidence intervals for a pair of compared
lags [119]. Such discussion is outside the scope of this book, but it can be visually explored
by plotting ACF. The ACF measures the correlation between a time series and its lagged
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values, i.e., measures how much observations in a time series are related to their previous
observations. Whenever ACF is above the dashed threshold, that particular lag is related to
the current value. While working with stationary time series, as lags increase, ACF rapidly
decreases to zero. Conversely, in nonstationary time series, such convergence goes slowly or
may not occur. Figure2.3a–e shows a visual example ofACF for the examples of Fig. 2.2 (sta-
tionary, trend stationary, level stationary, heteroscedastic, nonstationary), whereas Fig. 2.3f
shows an example of YGT. For both Fig. 2.2a and d, the ACF rapidly goes to zero. The
other examples indicate potential nonstationary time series from the perspective of ACF.
The heteroscedasticity of Fig. 2.2d is not captured by ACF.

Well-established statistical tests can be used in time series to test stationarity. The Aug-
mented Dickey–Fuller and Phillips–Perron Tests investigate whether a time-ordered set of
observations contains a unit root and is, therefore, nonstationary [93]. These tests have the
null hypothesis of nonstationary time series. Suppose the p-value is lower than a predefined
significance level (5%). In that case, it goes to the alternative hypothesis of stationary time
series. Besides, the Breusch–Pagan Test evaluates a linear regression model of the time
series to check for heteroscedasticity [119]. Since none of these tests checks all aspects of
nonstationarity, they are usually applied in conjunction to confirm the stationarity of a time

Fig. 2.3 Examples of the ACF for stationary time series of Fig. 2.2a (a), 2.2b (b), 2.2c (c), 2.2d (d),
and 2.2e (e) and the ACF of YGT (f)
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Table 2.1 Tests for nonstationarity time series. Marked values correspond to the nonstationarity of
the time series detected by the statistical test

Time series Augmented
Dickey–Fuller test

Phillips–Perron test Breusch–Pagan test

Stationary

Trend stationary

Level stationary X

Heteroscedastic X

Difference stationary X X X

YGT X

series. Table2.1 evaluates the time series of Fig. 2.2 and the YGT. All series marked with X
are considered nonstationary according to the respective test. Since the trend stationary time
series is a simple case of nonstationarity, none of these tests consider it nonstationary. The
level stationary case is detected by the Augmented Dickey–Fuller Test. The heteroscedastic-
ity is only detected by the Breusch–Pagan Test. All three applied tests detect the difference
stationary. The YGT is only marked as nonstationary by the Breusch–Pagan Test.

The dependence of a time series on past data may occur frequently by multiples of
some underlying seasonal lag S. In that case, a time series exhibits periodic components.
Therefore, its statistical properties, such as mean and variance, may periodically change,
creating a dependence on time t , thus making seasonality another form of nonstationarity
often found in time series [308].

If not properly addressed, any nonstationarity can have a severe impact on time series
modeling, leading to fallacious statistical inferences and bad or unexpected results. The next
section categorizes some relevant data preprocessing for the event detection subject. Many
of them are prepared to address nonstationary time series.

2.3 Data Preprocessing

Data preprocessing is an important activity in any application of data analytics. It commonly
encompasses more than 60% of the data mining process. Data cleaning, feature selection,
sampling, outlier removal, normalization, and data transformation are commonly performed
during preprocessing [235]. Themain goal of data preprocessing is to guarantee the quality of
the data before it is fed to any learning algorithm [108]. This context encompasses problems
of classification (prediction of discrete data) and regression (modeling or prediction of
continuous data) [125]. This chapter focuses on transformation methods that target the
regression problem, which are useful for modeling and aiding the actual regression of the
time series. These tasks are relevant during time series event detection.While there are many
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tasks involved during the time series preprocessing, it is possible to summarize the most
common ones as follows:

• Data cleaning: It is the basis for data analytics activities [298]. It involves handling
missing values, outliers, and errors in the data. Missing values can be filled in using
techniques such as interpolation or imputation. Some outliers can be detected using
statistical methods. They are commonly removed or smoothed. However, outliers in the
scope of this book are generally addressed as anomalies and are the data wanted to be
discovered. They are presented in Chap.3.

• Temporal aggregation: Depending on the frequency of the data, it may need to be resam-
pled to a lower frequency to match the desired analysis time frame. Temporal aggregation
is covered in Sect. 2.3.1.

• Data transformation: It involves creating new features or variables from the existing
data to capture additional information or relationships. It includes trend components
extraction, variance stabilization, detrending and differencing, and decomposition [259],
which are covered in Sects. 2.3.2, 2.3.3, 2.3.4, and 2.3.5.

• Sliding window: The basic idea is to divide a time series into smaller subsequences,
which provide ways to perform time series analysis or modeling on each subsequence
separately [209]. Sliding windows are covered in Sect. 2.3.6.

• Data normalization: It involves scaling the data to a common range or unit to be compared
or combinedwith other data or to supportMLmethods. Normalization techniques include
Standard Score Normalization (Z-Score), Min-Max, and log transformation [125]. Data
normalization is covered in Sect. 2.3.7.

• Data splitting: Partitioning the data into training, validation, and testing sets is important
to enabling model build and evaluation [139]. Data splitting is covered in Sect. 2.3.8.

2.3.1 Temporal Aggregation

Temporal aggregation refers to summarizing time series from higher to lower frequencies,
as shown in Fig. 2.4. It can be applied to higher (such as minutes, hours, and parts of the day)
or lower frequency time series (days, weeks, months, quarters, and years). The purpose of
temporal aggregation is to reduce the level of detail in the data, which can help to simplify
analysis and visualization, as well as to remove noise or fluctuations that may be present at
the finer time scales.

Temporal aggregation is applied in many fields, such as finance, economics, and environ-
mental monitoring. Data is often collected at high frequencies but may need to be analyzed
or reported at lower frequencies. However, temporal aggregation can also result in loss of
information and may affect the accuracy of statistical models or forecasts [205].

Let X be a time series taken at equidistant time intervals, for example, the YGT. One
may often be interested in studying not monthly (which may be interfered with by season
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Fig. 2.4 Temporal aggregation according to frequency level

effects) but every year, which are temporal aggregations from monthly data [278]. Taking
xi as observations of X , a non-overlapping aggregatedm-period time series Ym is defined in
Eq.2.2, where y j are observations of Ym is the aggregated time series and m corresponds to
the m-period aggregates of X , i.e., the order of aggregation. Thus, in our previous example,
t represents the time unit of the month, and m is 12 [295].

y j =
m· j∑

t=m( j−1)+1

xt
m

(2.2)

Figure2.5a shows MGT, whereas Fig. 2.5b shows YGT. As observed, YGT preserves
the average observation of MGT each year, removing seasonal components associated with
monthly values.

2.3.2 Trend Component Extraction

TheLinear Regression is the simplest andmost rigidmethod for extracting trend components
from a time series. It can be described by Eq.2.3, where x̂t is the trend at time t . Parameters
α and β are obtained from mean square error adjustment, and ωt is the residual from this
Linear Regression adjustment [145]. Figure2.6a shows an example of Linear Regression
applied to YGT.

x̂t = αt + β + ωt (2.3)

The Moving Average Smoother is widely used, in particular, in finance and economet-
rics, to highlight seasonality and long-term trends in a time series [259]. Moving Average
Smoother can detect the evolving trend of a time series by minimizing random noise [209]
and can also be used for seasonal adjustment of a time series. One of the simplest forms of
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Fig. 2.5 Temporal aggregation: MGT (a); YGT computed from MGT (b)

the Moving Average Smoother is represented by Eq.2.4, where k is the order of the moving
average. Figure2.6b shows an example of Moving Average Smoother applied to YGT.

x̂t = 1

k

t+k−1∑

i=t

xi , 1 ≤ t ≤ n − k + 1 (2.4)

There are more advanced techniques for extracting the underlying trend components of
time series, some of which we present in Sect. 2.3.5. Other techniques involve segmenting
the time series when changes in the trend occur, as presented in Chap.4.

2.3.3 Variance Stabilization

Variance stabilization is a technique used in time series analysis to transform data with
non-constant variance into data with constant variance. In many time series, the variance
changes, making it difficult to analyze the data using traditional statistical methods. The
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Fig.2.6 Extracting trend components from YGT: Linear Regression (a); Moving Average Smoother
(b)

Fig. 2.7 Variance stabilization applied to YGT: Logarithmic Transform (a); BCT (b)

most used methods for addressing variance stabilization are the Logarithmic Transform and
BCT [78].

The Logarithmic Transform tends to suppress fluctuations that occur over portions of
a time series that present higher values [259], and its simple formulation can be seen in
Eq.2.5, where x̂t is the transformed version of the original time series value xt . Often in
macroeconomics, a time series is a natural log-transformed (setting b = e) to minimize
effects of nonstationarity and heteroscedasticity (non-constant variability [119]) and induce
symmetry and normality. The estimated coefficients of a logged time series can also be inter-
preted as elasticity. These advantagesmake natural logs one of themost applied Logarithmic
Transform. Figure2.7a shows an example of Logarithmic Transform applied to YGT.

x̂t = logb xt (2.5)
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The BCT, as in Eq.2.6, provides a more objective method for determining a suitable
power transformation of a time series [313]. However, it requires calculating the numeric
argument λ related to the data distribution function, which is not always known and can
only be applied to positive valued data [78]. Figure2.7b shows an example of BCT applied
to YGT.

x̂t =
{(

xtλ − 1
)
/λ, λ �= 0,

log xt , λ = 0
(2.6)

2.3.4 Detrending and Differencing

The transformations of Detrending (or trend removal) and Simple Differencing are widely
used in combination with time series modeling methods. The Detrending transformation
involves determining and removing an inherent trend observed in a time series [259]. The
observed trend is estimated and defined by a deterministic functional form, which may
be represented as a fixed component in a time series model [301]. A general Detrending
transformation is shown in Eq.2.7, where ηt is the determined trend component and, in
this case, x̂t represents the variability series, i.e., the residue of the time series after trend
removal. Figure2.8a shows an example of detrending using linear regression.

Fig.2.8 Detrending versus differencing:Detrending ofYGTusingLinearRegression (a); Detrending
of YGT using Moving Average Smoother (MAS) (b); Simple Differencing of YGT (c); Percentage
Change Transform (PCT) of YGT (d)
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x̂t = xt − ηt (2.7)

This method assumes that the deterministic trend is always appropriate, which is fre-
quently not the case in many applications, in particular, involving nonstationary processes
[78]. Moving Average Smoother (MAS) is usually adopted to overcome this drawback as a
way to smooth out random fluctuations in data and identify underlying trends. Equation2.8
computes the moving average ηt for time series X . Parameter k is the order of the average,
as the number of previous observations used to compute the moving average and introduces
inertia to the MAS. The higher the k, the more observations are needed to follow a change
in the time series trend. The first k − 1 points for ηt are not defined due to the absence of
observations to compute the MAS. An example of MAS for the YGT is shown in Fig. 2.8b.

ηt =
∑k−1

i=0 xt−i

k
(2.8)

TheSimpleDifferencingmethod brings some advantages compared toDetrending since it
does not require a parameter estimation process and is capable of generating a stationary time
series when having stationary behavior around a deterministic or stochastic trend [259]. A
first Simple Differencing transformation, written as in Eq.2.9, can eliminate a linear trend, a
second SimpleDifferencing eliminates a quadratic trend, and so on. For SimpleDifferencing
of higher order, the backshift operator (B) is used, as seen in Eq.2.10, where ∇d is the d-th
differencing and the operator (1 − B)d is adapted for higher orders of d [259]. An example
of Simple Differencing for the YGT is shown in Fig. 2.8c.

x̂t = ∇xt = xt − xt−1 (2.9)

∇d = (1 − B)d , Bkxt = xt−k (2.10)

The Percentage Change Transform can be an alternative to Simple Differencing, assum-
ing considerable stability in the relative percentage of change between the two following
observations of a time series [78]. In that case, Eq.2.11 is true if the percentage change is
restricted to an interval [−100ρ, 100ρ], with 0 ≤ |ρ| < 1 being a small acceptable threshold.
Figure2.8d shows an example of Percentage Change Transform applied to YGT.

x̂t ≈ log

(
xt
xt−1

)
(2.11)

2.3.5 Decomposition

Decomposition-based transformations originate in signal processing techniques such as
frequency-domain analysis [181], decomposing a time series into components (signals)
having different scales (frequencies), and targeting to capture the intrinsic dynamics of a time
series [197]. For example, a time series can be decomposed into short-term (high-frequency),
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seasonal, and long-term (low-frequency) components. An advantage is that explaining only a
few signal components is generally simpler andmore physicallymeaningful than a collection
of estimatedmodel parameters [259]. Furthermore, the derived components may be easier to
model, which can simplify the time seriesmodeling [91]. Decompositionmay be achieved in
a frequency-only or a time–frequency domain,which enables the preservation of information
regarding localized changes. Special cases of time series decomposition are based onmoving
average iterations or pattern mapping (i.e., deriving patterns of a time series to simplify its
modeling and filter trends and long-termvariations [91]). The following subsections describe
some of the most frequently used decomposition-based transformation methods.

2.3.5.1 Frequency-Domain Decomposition
Time series analysis in the frequency domain is often based on Fourier Transform [149],
which creates a frequency-based representation (a spectrum) of a time series in terms of
Fourier basis functions. The Fourier Transform of a time series X , in this case, represented
as a function of time xt , can be formulated as in Eq.2.12, where F(ξ) represents the Fourier
spectrum, ξ is a frequency component, and j is the imaginary number j = √−1 [181].

F(ξ) =
∫ +∞

−∞
xt e

− jξ t dt, e− jξ t = cos ξ t − j sin ξ t (2.12)

Fast Fourier Transform (FFT) is often used to compute a sequence’s Discrete Fourier
Transform as it is much faster than computing the Discrete Fourier Transform using the
standard Fourier Transform method [77]. It is, in particular, useful in time series analysis,
where it can be used to identify periodic patterns in the data by decomposing the time series
into harmonics. An example of decomposition using FFT, applied to YGT, is shown in
Fig. 2.9.

Figure2.9a shows that the YGT contains 90 harmonics, which, combined, can recover
the entire YGT with imperceptible error. However, it is interesting to use a small number of
harmonics to capture the main trend, using periodogram [51]. A technique is to establish a
frequency threshold, for example, by visually inspecting the periodogram and identifying the
frequency values where the spectral density drops off sharply or appears to level off. Another
technique is to evaluate the appropriate number of harmonics by model selection criteria,
such as Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC) [139].
Figure2.9b shows the periodogram for YGT. A frequency threshold is set at 0.06. It led to
the adoption of the major nine harmonics.

These nine harmonics can capture major trends and seasonal components of YGT as
shown in Fig. 2.9c. However, this reduced number of harmonics cannot completely fit the
YGT in the borders. In general, when using a small number of harmonics, the FFT provides
a better approximation of the time series in the middle of the series. A common practice
to address these border effects is to avoid the initial and final observations [47]. Dashed
lines in Fig. 2.9c present that FFT is better adjusted after the first and before the last nine



30 2 Time Series Analysis

Fig.2.9 The decomposition of YGT using FFT: FFTwith all 90 harmonics (a); periodogram of YGT
filtered frequency at 0.06 leading to 9 harmonics (b); FFT with all nine harmonics (c); residual of
YGT for FFT with nine harmonics (d)

observations. Finally, Fig. 2.9d shows the residual of YGT and the FFTwith nine harmonics.
Again, the residuals are more significant at the beginning and end of the series.

2.3.5.2 Time–Frequency Decomposition
Wavelets are finite basis functions localized in both time and frequency. TheWavelet Trans-
form decomposes a time series (signal) by correlating it with a family of wavelets, providing
an extremely flexible time–frequency representation [164]. It decomposes a time series X ,
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which is again regarded as a function of time xt , into the wavelet series x̂t in Eq.2.13 [149].
The component ζt and its coefficient b represent the scale part of the wavelet series (respon-
sible for modeling trends and seasonality). In contrast, the componentψt and its coefficient c
represent the detail part of the wavelet series (corresponding to noise or random deviations)
at scale (decomposition level) l and position k. L is the defined maximum decomposition
level.

x̂t =
n∑

k=1

bl,kζl,k t +
L∑

l=1

n∑

k=1

cl,kψl,k t (2.13)

The Wavelet Transform can be implemented as a DWT [75]. The DWT uses a filter
to decompose a signal into different frequency components and works by convolving the
signal with two sets of filters: Low-Pass Filter and High-Pass Filter. The Low-Pass Filter
and High-Pass Filter filters are designed using the scaling and wavelet functions of a given
wavelet family [222].

Figure2.10 applies the Haar Filter for the YGT. Figure2.10a shows the ζ (t) component
of DWT (trend and seasonal), whereas Fig. 2.10b shows the ψ(t) component (residual).

Fig.2.10 Decomposition of YGT using DWTwith Haar Filter filter: ζ (t) component of DWT (trend
and seasonal) (a); the ψ(t) component (residual) (b)
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Similarly to the Discrete Fourier Transform, the adjustment is better in the middle of the
time series and faces some adjustment problems at the borders.

Since finite wavelets are irregular and asymmetric [149], the Wavelet Transform is, in
particular, suited for analysis of nonlinear, noisy, and nonstationary time series, with rapidly
changing observations [24]. If the wavelet transform is applied to a nonstationary time
series, the resulting decomposed series behaves better than the original series and is more
easily and accurately modeled, even by simple linear models like ARIMA. Predictions of
the original time series with increased accuracy can be obtained by applying the inverse
Wavelet Transform to the predictions of the decomposed series [75].

Similar to theWavelet Transform, theEmpiricalModeDecomposition (EMD) is amethod
for nonlinear and nonstationary time series decomposition, generating a time–frequency
representation of the series [290]. The basic principles of EMD are described as follows
[101]:

1. Identify all extremes of a time series X .
2. Interpolate between minima (resp. maxima), ending up with two envelopes: emin(X)

and emax(X).
3. Compute the average time series m(X) = emin(X)+emax(X)

2 .
4. Extract the detail d(X) = x(X) − m(X).
5. Iterate on the residual m(X).

EMD is useful for decomposing a time series. When the detail time series d(X) has zero
mean, it can be considered an Intrinsic Mode Function (IMF). IMFs are more stable compo-
nents that can be more easily modeled [269]. The last residual is considered a major trend
component of the time series. However, some of the last IMF identified in the EMD can
also be used to model the trend components. The first IMF is associated with the time series
residual components. Figure2.11a uses the residual of IMFs, capturing the trend of YGT,
while Fig. 2.11b shows the first IMF, which stands for the time series residual for the YGT.

EMD does not depend on predetermined (wavelet) functions since its basis functions are
derived directly from the time series, thus making it adaptive and completely data-driven
[290]. Conversely, EMD is recursive and does not perform well when separating time series
components with similar frequencies.

2.3.6 SlidingWindows

Sliding windows are widely used in time series analysis to enable local processing [210].
They provide support forMLmethods [294] and can be used to supportmemorymanagement
of the time series [183], i.e., the ability to forget past data.

The simplest way to formalize a sliding window is by building it from subsequences.
A subsequence of size p obtained from a time series X that ends at the i position can be
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Fig.2.11 Decomposition of YGT using EMD: EMD residual components, which stands for the time
series trend (a); EMD only the first IMF, which stands for the time series residual (b)

represented by seqi,p(X), which is a continuous sequence of values < xi−(p−1), xi−(p−2),

. . . , xi >, where |seqi,p(X)| = p and p ≤ i ≤ |X |. Subsequences enable the analysis of
data samples to evaluate local properties [71].

A sliding window explores all possible subsequences of a time series [209]. A sliding
window of size p for a time series X is a function swp(X) that produces a matrix W of
size (|X | − p + 1) by p. Each line wi in W is the i th subsequence of size p from X . Given
W = swp(X), ∀wi ∈ W , wi = seqi,p(X) [44].

Figure2.12 shows theYGT from2000 until 2023, with both the time series and its colored
representation. Each rectangle corresponds to an observation. The colors are associated with
the values. Lighter colors correspond to lower temperatures (close to 14.25), while darker
colors correspond to higher temperatures (close to 15). Figure2.12 also shows a colored
example of a sliding window of size 3. Each triple of t , t − 1, and t − 2 corresponds to
a separate sliding window with three rectangles aligned vertically. It starts in the third
observation with its first complete sliding window. Figure2.12 lists observations of the first
five sliding windows.
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Fig. 2.12 Subsequences and sliding windows of time series (adapted from Ogasawara et al. [209])

2.3.7 Data Normalization

Data normalization transforms data into a regular scale to make it more consistent and easier
to compare. Normalization of time series is important because the values in the series may
vary widely over time. It can be applied to the entire time series or sequences of the series
to reduce the impact of outliers, make it easier to compare trends over time, and ease the
use of certain analysis methods, such as ML algorithms [210].

The normalization techniques during data transformation includeMin-Max, Z-Score, and
decimal scaling. TheMin-Maxmethod normalizes the values of a time series X according to
its minimum and maximum values, converting a value xi of X to x̂i in the range [low, high]
(see Eq.2.14). It is common to set low equal to 0 and high equal to 1.

x̂i = (high − low) · xi − min(X)

max(X) − min(X)
+ low (2.14)

The decimal scaling normalization moves the decimal point of the values of a time series
X according to its maximum absolute value. Hence, a value a of xi is normalized to x̂i as
described in Eq.2.15, where d is the smallest integer such that max(|x̂i |) < 1.

x̂i = xi
10d

(2.15)

In the Z-Score normalization, the values of a time series X are normalized according to
their mean (μ(X)) and standard deviation (σ(X)). A value xi of X is normalized to x̂i as
described in Eq.2.16.
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x̂i = xi − μ(X)

σ (X)
(2.16)

These techniques are useful in stationary environments but are limited to nonstationarity.
They may be effective if differentiation is applied before normalization. Data normaliza-
tion can also be applied after sliding windows transformation [130]. In this case, instead
of considering the complete time series for normalization, it normalizes each window, con-
sidering only its statistical properties. The rationale behind this technique is that decisions
are usually based on recent data. The sliding windows technique can always normalize data
in the desired range, yet assuming that the time series volatility is uniform, which is not
true in many phenomena [15]. To overcome sliding window limitations, we have proposed
Adaptive Normalization to address nonstationarity, especially to supportMLmethods [209].
The general process of Adaptive Normalization encompasses the following steps:

1. Compute the moving average for each sliding window.
2. Compute the residual of each sliding window with respect to its moving average.
3. Compute the distribution of residuals for all sliding windows and remove all windows

with outliers according to box plot criteria [125].
4. Normalize all sliding windows using this Min-Max extracted from the cleaned distribu-

tion of residuals of all sliding windows.

Figure2.13 shows the effects of using different normalization techniques. Figure2.13a shows
the YGTmarking a subsequence of size five between 1924 and 1928, while Fig. 2.13b shows
the normalization of that sequence using global Min-Max. Since observations are close to

Fig. 2.13 Time series normalization
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the lowest values of YGT, the normalization values are close to 0. The main problem with
using the global Min-Max is that the minimum and maximum values of the out-of-sample
dataset may lead to values higher than one and lower than zero, which may not be supported
by ML models [209].

Figure2.13c shows the effect of using differentiation before data normalization. The
limitation of globalMin-Max is not a problem for this technique. However, the differentiated
time series can differ considerably from the original one. For example, values could decrease
due to a decrease in the growth rate, even though the time series increases.

Figure2.13d shows the Min-Max applied to each sliding window, where all sliding win-
dows distribute values between 0 and 1. The drawback is that this normalization may stretch
values with small changes in the same way as values with big changes. Such a characteristic
might inhibit the performance of ML models. Figure2.13e shows the Adaptive Normaliza-
tion, where differentiation is first applied to the moving average and then Min-Max using
the minimum and maximum values for all sliding windows. Thus, Adaptive Normalization
can preserve the original time series shape and spread values between 0 and 1, considering
the ratio of values changes inside the sliding window.

2.3.8 Data Splitting

Splitting the data involves dividing the available time series into sets for training, validation,
and testing purposes. It allows evaluating the model’s accuracy and prevents overfitting,
which occurs when it is too complex and captures noise or random fluctuations in the
training data, leading to a poor generalization of new observations [125]. The most common
technique is to use sliding windows [139], which involves selecting a fixed interval for
training the model and then using the trained model to predict subsequent observations. The
process is repeated for the entire time series, with the sliding window moving forward at a
fixed interval each time.

In addition to the training data, the validation data is used to tune the model’s hyperpa-
rameters, such as the number of lagged values to include. In contrast, the testing data is used
to evaluate the final performance of the model. A common splitting ratio is 2

3 for training
and 1

3 for testing. The optimal ratio may vary depending on the size and complexity of the
time series [125].

While training and validating or training and testing, a distinct difference exists between
traditional cross-validation techniques and time series cross-validation. Time series cross-
validation is a technique for evaluating the performance of a time series model by testing it
on a sequence of data that is distinct from the training data. It is a variation of the traditional
cross-validation method used in ML but designed specifically for time series. In time series
cross-validation, the data is divided into consecutive sequences, where each consecutive
sequence is used for evaluation (validation or testing). The remaining prior sequences are
used as the training set. This process is repeated for each sequence, and the results are
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averaged to estimate the model’s performance. Thus, the key difference between time series
cross-validation and traditional cross-validation is that the sequences are selected based on
their temporal ordering rather than randomly. Such selection occurs since time series has a
temporal structure, where each observation depends on previous observations, and random
sampling can introduce bias and unrealistic assumptions [139].

Figure2.14a shows theYGT from2000 until 2022, separating 2000 until 2018 for training
and separating the last four observations for testing. To ease visualization, we use the colored
representation for the time series. As shown in Fig. 2.14b, a one-step-ahead prediction uses
the model built from the training set to predict the following observation. The one-step-
ahead prediction with time series cross-validation uses the model built during the training
set to predict the first observation of testing. The second prediction uses the built model
sliding one step as if the first testing observation was known to predict the second. This

Fig.2.14 Training and test example: splitting between training and test (a); one-step-ahead prediction
with time series cross-validation (b); three-step-ahead prediction with time series cross-validation (c)
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process is repeated for all testing observations. The average error of prediction for all testing
observations measures the Prediction Performance.

Figure2.14c shows a three-step-ahead prediction that uses the model built from the train-
ing set to predict the following three observations. The average prediction error for the three
predictionsmeasures the Prediction Performance. The three-step-ahead predictionwith time
series cross-validation uses the model built during the training set to predict the first three
observations. The second prediction uses the built model sliding one step as if the first testing
observation was known to predict the following three observations. This process is repeated
until all testing observations are explored. The average error of all predictions (six in this
example) measures the Prediction Performance [139].

Finally, we consider the scenario where the time series model is built using a sliding
window. This scenario corresponds to the typical scenario of ML. Figure2.15 depicts the
colored series converted to a sliding window. The sliding window size equals three and
contains 23 sequences. The sliding window data is also split. The model is built using only
the 17 sequences dedicated to training. In a one-step-ahead prediction, the model uses the
last sequence before testing to predict the first test observation. Then, the model uses the first
testing sequence to predict the second observation, and the process is repeated until the last
prediction is made [209]. A similar process also occurs for n-step-ahead prediction using a
sliding window, where the step-ahead uses predicted sequences instead of real observations.

Fig. 2.15 Training test for sliding window size equals three with one-step-ahead time series cross-
validation
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2.4 Time Series Prediction

Time series prediction encompasses both problems of classification (prediction of discrete
data) and regression (prediction of continuous data) [54]. This section focuses on the problem
of time series prediction through regression. For simplicity, we refer to prediction and
regression interchangeably. The models adopted for time series prediction generally fall into
the categories of statistical or MLmodels [246]. The accuracy of the predictions depends on
the quality of the historical data, the appropriateness of themodel, and the assumptionsmade
about the underlying processes driving the time series [139]. Figure2.16 shows a general
time series prediction process. It encompasses five main activities. It provides a general
framework for predicting a time series based on a particular setup of preprocessing methods
and prediction models. They are briefly described here, and some parts are detailed in the
following sections.

The first activity in Fig. 2.16 refers to acquiring the time series and performing data
preprocessing by applying time series transformation methods, such as those described in
earlier sections. It also includes data normalization and sliding windows transformation.
These transformations change the time series domain values, and their parameters must be
stored to support later detransformation to the original domain. For time series prediction,
splitting the time series into a training and test set is also important duringActivity 1. All data
preprocessing parameters should be computed during training and reapplied from the tune-
values of training during the test. The model is built using the training slice and evaluated

Fig. 2.16 Time series
prediction process (adapted
from Salles et al. [246])
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using the unseen test set. However, when the goal is to adjust a model for the time series,
the model does not need to be partitioned into a training and test set.

Activity 2 addresses model training. The prediction methods very often require hyper-
parameter optimization. In such a case, the training slice is again split into a novel training
and validation set. Alternative models exploring hyperparameter values are built using the
novel training and evaluated using the validation set. Once hyperparameters are fixed, a
single model is built using the entire training time series. Then, the model is available for
use. Activity 3 refers to the model prediction. Since the predicted values are not in the time
series domain, they cannot be directly evaluated, so data postprocessing is needed. Activity
4 corresponds to the postprocessing of predictions, reversing transformations applied to the
time series in Activity 1. Finally, Activity 5 evaluates prediction errors yielded by the model
and model fitness metrics. If the results are inadequate, this process can be revised to refine
models. If prediction performance needs to be improved, this entire processmay be repeated.
This process iteratively improves the quality of predictions (for time series prediction) or
model adjustment (for time series modeling).

Evaluating the performance of a predictive model can be done in several ways. The most
commonmeasures areMean Square Error (MSE) and SymmetricMeanAbsolute Percentage
Error (sMAPE). The MSE for n predictions is described by Eq.2.17. The sMAPE is an
accuracy measure based on percentage (or relative) errors. For n predictions, it is described
in Eq.2.18 [139], where the absolute difference between actual xi and predicted x̂i values
is divided by half the sum of absolute values of the actual xi and the predicted x̂i values.
The Residual Sum Squared (RSS) is the sum of squared differences between actual xi and
predicted x̂i values (see Eq.2.19). Finally, R-Squared (R2), also known as the coefficient of
determination, is the proportion of the variance in the dependent variable that is predictable
by a model [70]. It is described in Eq.2.20.

MSE = 1

n

n∑

i=1

(
x̂i − xi

)2
, (2.17)

SMAPE = 100

n

n∑

i=1

2|xi − x̂i |(|xi | + |x̂i |
) (2.18)

RSS =
n∑

i=1

(x̂i − xi )
2 (2.19)

R2 = 1 −
∑n

i=1 (x̂i − xi )
2

∑n
i=1 (x − xi )2

(2.20)

For both MSE and sMAPE, the minimum values are 0, and the maximum is infinite (∞).
The lower the values, the better the prediction. Regarding R2, the minimum value is minus
infinite (−∞), and the maximum is 1. The higher the value of R2, the better the prediction.
The R2 may be more informative than MSE and sMAPE for regression analysis [70].
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2.4.1 Statistical Models

Simple Differencing can be used together with the linear Autoregressive Moving Average
(ARMA) model, producing one of the most important time series linear prediction mod-
els, ARIMA [45], which can model stochastic trends [78]. An ARIMA(p, d, q) model is
composed of an Autoregressive (AR) and a Moving Average (MA) modeling process (rep-
resented by p and q, respectively) with the application of a preliminary Simple Differencing
(I) (represented by the order d) to handle nonstationarity in time series [119]. ARIMAmod-
els assume that an observation of a time series, xt , can be described as a function of its p past
values and its q past white noise values [259]. The latter is represented as ωt , a Gaussian
white noise series with mean zero and variance σ 2

ω. Let θ (B) and φ (B) be the AR and MA
operators, respectively, and B is the backshift operator. The ARIMA model is denoted in
Eq.2.21 [45].

θ (B) (1 − B)d xt = φ (B) ωt . (2.21)

Figure2.17 shows an ARIMA model used for prediction. The time series is split into
a training and test set. The test size equals four. The ARIMA model is adjusted using the
training size, leading to an ARIMA(1, 1, 3). The adjusted model is plotted as blue dashed
lines, and the real observations are plotted as black dots. The last four observations are plotted
as red dashed lines corresponding to the four-step-ahead prediction (Fig. 2.17).Duringmodel
adjustment, the R2 equals 0.92; during step-ahead prediction, the R2 equals −1.05.

Other statistical methods are used to model the time series, such as an inherent trend
or seasonality. These models may be combined with transformations such as detrending or
differencing to achieve stationarity. Examples of models falling into this category are set

Fig. 2.17 ARIMA prediction model for the training slice of YGT with four-step-ahead prediction
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by the Structural Model [73], Holt-Winter’s Exponential Smoothing [91], Taylor’s Double
Seasonal Holt-Winter, Exponential Smoothing State SpaceModel (ETS), Theta Forecasting,
and the Generalized Autoregressive Conditional Heteroscedasticity Model (GARCH).

First, the Structural Model is representative of this category. Structural Model consists of
terms such as trend and seasonal. These terms may provide a straightforward interpretation
of a time series. A general Structural Model is given in Eq.2.22, where ηt is the trend term,
χt is the cycling term, and ωt is the error term. Trend terms may be stochastic and can be
estimated using an ARIMA process.

xt = ηt + χt + ωt (2.22)

Structural Model models may also be considered special cases of state space models
and can be represented as such [73]. Thus, their parameters can be estimated by a Kalman
filter [308]. A basic example of a state space model is given in Eq.2.23, which consists of
two parts: a so-called state equation (Eq.2.23a) and an observation equation (Eq.2.23b).
The latter is added since ẋt (considered a state vector) is assumed not directly observable.
Instead, one can only observe xt , a linear transformation of ẋt with the addition of noise.
Here At is a measurement matrix, ε is a coefficient matrix, and ωt and υt represent noise
[259].

ẋt = ε ẋt−1 + ωt , (2.23a)

xt = At ẋt + υt (2.23b)

There are several forecasting frameworks based on the classical model of exponential
smoothing. A general exponential smoothing model is expressed as in Eq.2.24, where xt ,
obtained by the function of time f , is based on the fitting function vector ft , the coefficient
vector κt (T is the transpose operator), and a white noise ωt . The ft depends on its past
values and the transition matrix M [194].

xt = κt
T ft + ωt , ft = M ft−1 (2.24)

Methods based on exponential smoothing, such as Holt-Winter’s Exponential Smoothing
method, can be used for nonlinear modeling of heteroscedastic time series [91]. The Holt-
Winter’s Exponential Smoothing method estimates level, slope, and seasonal terms at each
time [290]. Despite taking a long processing time to determine a few parameters, it can
represent trend, seasonality, and randomness effectively [14].

Another model for estimating heteroscedastic time series is the GARCH. A time series
may be explained as a GARCH(p, q) model by Eq.2.25a, where μt is a mean function,
σt is the conditional standard deviation, and ωt is a noise series. The ωt is considered an
Independent And Identically Distributed (I.I.D.) variable that follows a normal distribution
N(0, 1) [55]. The conditional variance σ 2

t is defined by Eq.2.25b with α and β as coefficients
[78]. AlthoughGARCHmodels are useful for treating non-constant variability in time series,
they are not able to capture long memory properties and highly irregular behavior [267].
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xt = μt + σtωt (2.25a)

σ 2
t = α0 +

p∑

j=1

α jσ
2
t− j +

q∑

j=1

β j x
2
t− j (2.25b)

2.4.2 Machine LearningModels

ML have been used for nonlinear time series prediction in many fields [69]. The models
generated by ML are universal approximators, as they can approximate any continuous
function to arbitrary precision and can be used for modeling time series properties.

Figure2.18 depicts the general architecture adopted to build MLmodels, taking a sliding
window as input for a set of lagged observations. The number of lagged values is a hyper-
parameter for ML models, each having a specific set of hyperparameters. The output is the
next observation for that sliding window. Thus, it uses the present time series value and its
sw − 1 predecessors < xi−sw+1, . . . , xi−1, xi >, to approximate the next value xi+1. The
model is built using the training set. If hyperparameters need to be adjusted, the candidate
ML model is built by splitting the training set into a novel training and validation set. Once
the hyperparameters are established, ML model can be built using the entire training set.
The built model can be used later for testing.

The most relevant ML methods are NNET [130], Multilayer Perceptron (MLP) [186],
ELM [137], SVM [69], Random Forest Regression [49], and the deep learning models
Conv1D and LSTM [128, 172].

A NNET is a bioinspired computational method for recognizing structural data pat-
terns through neurons connected through synapses. The synapses have associated weights
representing the relevance of the connection [130]. Usually, NNET has a feed-forward archi-
tecture [130]. During a training process, approximation errors are backpropagated to adjust

Fig. 2.18 Typical ML model for time series prediction (adapted from Ogasawara et al. [210])
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synaptic weights. A practical time series prediction process would involve setting neural
network parameters, such as the number of input entries, hidden layers, and neurons in hid-
den layers [210]. NNET with error backpropagation has been employed for nonlinear time
series prediction, outperforming traditional statistical methods such as ARIMA in functional
approximation. A fully connected NNET is referenced as MLP, and it is probably the most
common network architecture currently in use [186].

The slow learning speed of networks such as NNET and MLP has been a bottleneck
in their applications, which is due to slow gradient-based learning algorithms and iterative
tuning of network parameters [137]. Unlike traditional implementations, the ELM network
adopts a learning algorithm that randomly chooses hidden neuron nodes and analytically
determines output weights. Thus, there is no need for any iterative tuning or setting of
parameters like learning rate, momentum, or epochs, making learning time very fast [137].

The SVMcan recognize patterns in both linear and nonlinear data. Usually, in a regression
supported by SVM, a linear learning machine approximates a nonlinear function in a kernel-
induced feature space. The system’s capacity is controlled by a parameter that does not
depend on the dimensionality of the space [130].

Random Forest Regression is based on the combination of decision tree classifiers, or
the ensemble of base models, that acts as a “forest”. After the formation of the forest, the
model may combine the predictions of each tree additively or by average. The results are
returned as the estimated time series prediction values [49]. The generalization error for a
forest converges if there is a sufficiently large number of trees, which decreases the chance
of overfitting.

The idea behind deep learning is to discover multiple levels of representation, expecting
high-level resources may represent a more abstract semantics of the data [120]. A Conv1D is
an architecture composed of three distinct layers: an input layer, a convolutional layer, and a
pooling layer, which reduces the size of the input data. The convolution layers in a time series
can be applied as an extractor of characteristics implicit in the data. Equation2.26 shows
a convolution process, where g is the input layer, h is one of the k filters that a Conv1D
optimizes for an aim function during the learning process at time t , ∗ is the convolution
operator, and n is a hidden layer in the neural network.

(g ∗ h)[n] =
k∑

t=0

g[k − t]h[t] (2.26)

LSTM networks have the same properties as conventional recurring networks. However,
they can store information for long periods when processing a time sequence. The memory
points of an LSTM network are called cells. Cells can carry information until the end of
a sequence or identify information the network should forget after some processing step
[113].

Figure2.19 shows a LSTM with four input neurons model for the YGT. Like in the
example of Fig. 2.17, the time series is split into a training and test set (size equals four).
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Fig. 2.19 LSTM with four input neurons for YGT with four-step-ahead prediction

The adjusted model is plotted as blue dashed lines, and the real observations are plotted as
black dots. The last four observations are plotted as red dashed lines corresponding to the
four-step-ahead prediction. Duringmodel adjustment, the R2 equals 0.92; during step-ahead
prediction, the R2 equals −0.13.

It is important to compareMLmodels with baseline statistical models such as ARIMA to
infer the adequacy of the prediction model. Furthermore, ML is also affected by time series
preprocessing activities. Thus, during such comparison, given an input time series, values
predicted by a particular setup of preprocessing methods and ML models (and their param-
eters) are compared to the ones found by statistical models. Such benchmarking raises the
relative quality of predictions and infers adequate preprocessing-model setups for a partic-
ular time series [250]. From examples of Figs. 2.17 and 2.19, ARIMA was comparable with
LSTM during training, with R2 equals 0.92 for model adjustment, but LSTM significantly
outperformed ARIMA during test (−0.13 vs. −1.05).

2.4.3 LLMs

The success of Large Language Models (LLMs) in Natural Language Processing (NLP)
has inspired adaptations for the time series domain. Using LLMs for time series prediction
involves several key aspects. Language and time series models aim to predict future patterns
by understanding the sequential structure of the data. In language models, this involves
predicting the next token in a sequence, while in time series models, it involves predicting
the next values in the series [147].
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Time series values are mapped to tokens through scaling and discretization, which, in
the context of LLMs, are called quantization. It allows the continuous time series to be
represented in a form compatible with language models, which operate on discrete tokens
from a fixed vocabulary. Scaling involves normalizing the values in the time series to a
common scale to facilitate optimization. Mean scaling is often used, where each value is
normalized by the mean of the absolute values in the historical context. Then, quantization
discretizes the scaled values into bins, each represented by a unique token, converting the
continuous data into a sequence of discrete tokens [30].

Pretrained language models, particularly those based on the transformer architecture, are
used without modification. The tokenized time series is fed into these models, which predict
the next token in the sequence. The models are trained using the cross-entropy loss, which
measures the difference between the predicted token distribution and the actual token. The
goal is to minimize this loss, improving the model’s ability to predict future values in the
time series [128].

The output of the language model is a probabilistic distribution over the possible next
tokens. Multiple tokens are sampled from this distribution during inference to generate
a probabilistic forecast. These tokens are then mapped back to numerical values through
dequantization and unscaled to obtain the forecasted values. LLMs can leverage their pre-
training on diverse time series to perform well on new, unseen time series without additional
task-specific training, an ability known as zero-shot learning [115].

Synthetic data is generated using techniques like Gaussian processes and data augmen-
tation methods like TSMixup to address the scarcity of high-quality time series. Such data
enhances the diversity and robustness of the training data, improving the model’s gener-
alization capabilities [30]. These principles allow LLMs to handle the task of time series
forecasting by adapting their capabilities in sequence modeling to predict future values in
time series [10].

2.4.4 Graph-BasedModels

Graph-Based Models for time series are innovative methods that leverage relational infor-
mation embedded in graphs to support time series prediction. Graph structures represent
dependencies among time series, where nodes correspond to individual time series and edges
represent pairwise relationships. This method embeds relational information as an inductive
bias in the forecasting model, allowing the model to focus on relevant dependencies and
local correlations [189].

SpatiotemporalGraphNeuralNetworks (STGNNs) use themessage-passing (MP) frame-
work, where node representations are updated based on information from their neighbors. It
facilitates the propagation of temporal and spatial information. Architectures integrate tem-
poral and spatial processing in variousways, such as time-then-space (TTS), space-then-time
(STT), and time-and-space (T&S) models [65].
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Global models train on collections of time series, sharing parameters across all series
to improve scalability and leverage larger time series for better generalization [303]. Local
models introduce node-specific components or embeddings to account for local effects
and patterns in individual time series. Hybrid methods combine global and local models,
balancing the benefits of parameter sharing and node-specific customization [65].

Learnable embeddings capture node-specific information, conditioning the representa-
tions on the individual characteristics of the time series. These embeddings are incorporated
into the model’s encoding and decoding steps to enhance the specificity and accuracy of
predictions [180].

Scalability considerations focus on designing architectures that can handle large col-
lections of time series and graphs with many nodes and edges, ensuring computational
efficiency. Applications of graph-based models extend to various real-world domains, such
as traffic forecasting, energy analytics, and air quality monitoring. These models demon-
strate practical utility and effectiveness in diverse contexts, instilling confidence in their
potential [324].

2.5 Conclusion

This chapter provided a comprehensive overview of time series analysis, beginning with
the fundamental components and progressing through preprocessing techniques and pre-
diction methods. Understanding the key components of time series—trend, seasonality, and
residual—is important for event detection and leads to more accurate data analysis. Trends
indicate the long-term direction of the series, seasonality captures periodic fluctuations, and
residuals account for random variations. Recognizing and decomposing these elements is a
key step in accurate data analysis.

The chapter explained the concept of stationarity, which is central to time series analysis.
Many methods assume that the statistical properties of the series remain constant over time.
A stationary series has a constant mean, variance, and autocovariance. However, real-world
time series often exhibit nonstationary behavior due to trends, level shifts, heteroscedasticity,
or unit roots. Identifying and addressing nonstationarity is essential to avoid misleading
inferences and improve model accuracy.

Data preprocessing is a critical step in preparing time series for analysis. This chapter
covered various preprocessing techniques, including data cleaning, temporal aggregation,
trend extraction, variance stabilization, detrending, differencing, and decomposition. Each
method improves the quality of the data, making it suitable for modeling and analysis.
Techniques such as sliding windows and data normalization help manage the temporal
structure of the data and ensure consistency across different scales and models. These last
two are enabling techniques to support ML methods.

Time series prediction involves using historical data to forecast future values. The chapter
outlined a process for time series prediction, from data acquisition and preprocessing to
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model training, prediction, postprocessing, and evaluation. It presents metrics such as MSE,
sMAPE, and R2, which assess the accuracy and effectiveness of the models.

The chapter also presented statistical andMLmodels for time series prediction. Statistical
models, such as ARIMA, state space models, exponential smoothing, and GARCH, provide
frameworks for understanding and predicting time series. ML models, including neural
networks, support vector machines, random forests, and deep learning architectures like
Conv1D and LSTM, offer tools for capturing nonlinear patterns in the data. In addition to
traditional methods, the chapter introduced cutting-edge methods such as LLMs and Graph-
Based Models. All elements presented here are building blocks to support the time series
event detection.
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3.1 Anomalies

Anomaly detection has been drawing attention for many years due to its impact in many
domains, such as fault diagnosis in industry, water quality, outbreaks in health, and fraud
detection [59, 182]. Anomalies are observations that do not fit the typical time series obser-
vations and seem to be generated by a different process. However, the actual definition and
characterization of anomalies might differ among various works. They are also known as
outliers and discords [56, 177].

There is a slight difference between anomaly detection and outlier analysis. In outlier
analysis, outliers are treated as undesired data, associated with noise and error [5], and
are removed before the main data mining function during data preprocessing [125]. Con-
versely, anomalies are atypical observations worth studying. Examples include fraud and
fault detection, where the goal is to detect and analyze the anomalies [39].

We have built a taxonomy of anomalies, which can be organized according to their type,
circumstances in which they occur, their dimension, and interpretation. It is depicted in
Fig. 3.1. Furthermore, anomaly detection is driven by how detection models learn from data.

3.1.1 Point and Sequence Anomalies

Anomalies can be classified by their type: point or sequence [40]. A point anomaly is a
single observation that significantly differs from the remainder of the time series. Figure3.2a
shows a point anomaly (either in green or red) of the temperature in Celsius for each week in
Seattle during 2019. The observation in green corresponds to a labeled anomaly identified by
specialists and was correctly detected by Forward And Backward Inertial Anomaly Detector
(FBIAD) using a slidingwindow size of 12 [173]. The observationsmarked in red correspond
to false positives.
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Fig. 3.1 Anomaly taxonomy organized according to type, circumstance, time series dimension,
interpretation, and model learning

Fig. 3.2 Point and sequence anomalies examples: maximum temperature of each week in Seattle in
2019 (a), synthetic time series (b)

A sequence anomaly corresponds to a sequence of observations significantly different
from the remainder of the time series [39]. Figure3.2b shows an example of a sequence
anomaly of size three (marked in blue) for a synthetic time series. It represents the same
temperature data for Seattle in 2019, but we modified the temperatures between weeks 24
and 26. These changes lead to a sequence anomaly from weeks 24 to 26, with atypical high
temperatures.
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3.1.2 Contextual and Out-of-Context Anomalies

Anomalies can be classified according to the circumstances in which they occur. Consider
an anomaly that occurs at time t . It is called a contextual anomaly when the observation at
time t is not atypical by itself [203] but is considered anomalous when looking at nearby
observations. For example, 26 ◦C in a day is a common temperature in Seattle during summer.
However, such a temperature is anomalous in winter, as reported by local newspapers.1

An example of a contextual anomaly is shown in Fig. 3.2a, based on data extracted from
Weather Underground.2 Conversely, an out-of-context anomaly is not related to the temporal
occurrence of the observation [60], as shown by the blue observations in Fig. 3.2b.

3.1.3 Univariate andMultivariate Anomaly Detection

Anomalies can be classified according to the dimension in which they occur, within uni-
variate or multivariate time series [320]. In univariate time series, an anomaly is an atypical
observation that occurs at time t . On the other hand, an anomaly in a multivariate time series
can be an unusual combination of observations at a given time t . Figure3.3a and b exempli-
fies a multivariate time series scenario, where the shown two variables are generated using
the standard normal distribution for illustration. Both series can be analyzed using univariate
methods for anomaly detection. The observations in Fig. 3.3a and b marked as red or green
correspond to detections obtained using the ARIMA model.

The extreme values in Fig. 3.3a and b are usually anomalies. However, certain combi-
nations of observations can be statistically anomalous but are not captured by individual
time series analysis. This scenario opens room for multivariate anomaly detection methods.
Figure3.3c shows a PCA-based anomaly detection method applied to the multivariate time
series. The PCA for these two variables is computed, and the residual between observations
and the PCA is checked for atypical values, marked in green and red. The blue points in
Fig. 3.3a and b correspond to observations that were atypical in the combination of the two
series, where observations in green in Fig. 3.3 matched those detected by both univariate and
multivariate methods. The observations marked as blue in Fig. 3.3a and b were detected by
the multivariate method but not by the univariate method. Conversely, observations marked
as blue in Fig. 3.3c were detected by univariate methods but not by multivariate methods.
Thus, combining univariate methods is not enough to capture certain anomalies obtained in
multivariate analysis. However, multivariate time series anomaly detection does not replace
univariate anomaly detection, which should be combined.

1 https://github.com/eogasawara/TSED/wiki.
2 https://www.wunderground.com.

https://github.com/eogasawara/TSED/wiki
https://www.wunderground.com
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Fig. 3.3 Multivariate example: two standard normal distribution variables (a) and (b), residual of
PCA multivariate anomaly detection method (c)

3.1.4 Labeled and Unlabeled Time Series

A time series might have labeled information about each observation, indicating whether
it is an anomaly, which is called a labeled time series. However, when there is no such
label, it is an unlabeled time series, in which anomalies can be evaluated using statistical
analysis, yet subject to interpretation [143]. When the time series is labeled, such labels are
commonly provided by human experts. However, there are two difficulties in providing these
labels. First, some anomalies might be missed during labeling. Second, the indication of the
anomaly might be registered imprecisely (at an incorrect time), leading to a lag between the
anomaly and the actual time it occurred [296].

3.1.5 Supervised, Semi-supervised, and Unsupervised

Detection models aim at discovering anomalies and can be classified according to how
they learn from data: (i) supervised, (ii) semi-supervised, and (iii) unsupervised [60]. In
supervised learning, the time series has a label associated with each observation, indicating
if it is an anomaly or typical data. When a model is trained in supervised learning, it is
expected to determine the class label of a novel observation. Thus, supervised learning
separates the time series into training and testing sets, which is a common practice in data
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mining [125]. This separation makes sense in online anomaly detection, where the entire
time series is used for training and new upcoming data is tested.

There aremajor challenges in supervised learning for anomaly detection. First, anomalies
are, by definition, rare in the time series. This scarcity raises the traditional imbalanced class
distribution problem [125]. Techniques such as data augmentation inject artificial anomalies
into a time series to obtain a labeled training time series [320] as a way to address this issue.
The second challenge concerns obtaining time series with labels, which raises the issues
previously mentioned [56].

In semi-supervised learning, the training data is assumed to have only instances of typical
data. Since it does not require anomaly class labels, the methods based on semi-supervised
learning aremore used thanmethods based on supervised learning [270]. Finally, no training
data is required in unsupervised learning, i.e., the methods based on unsupervised learning
assume that anomalies are distant from typical observations. Since it is less constrained
learning, it is the most adopted one [331].

3.2 Methods for Anomaly Detection

This section covers the main anomaly detection methods, which are grouped into six cat-
egories: regression, classification, clustering, statistical, spectral, and information theory.
Figure3.4 describes a synthetic time series that compares methods under a controlled situa-
tion and separates the time series into training (between 1 and 75) and testing (between 76
and 101). We have made representative anomaly detection methods available through our
publicly Harbinger R package (see AppendixA).

Fig.3.4 Synthetic time series for comparison of methods (Example 18 available at Harbinger [211])
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3.2.1 Regression-Based

Regression-based anomaly detection is based onmodel deviation, which refers to identifying
anomalies where there is a deviation between the actual observations of the time series and
the predicted observations by amodel. First, a statistical orMLmodel is fitted to the available
data. Then, anomalies are identified as the observations that significantly deviate from the
fitted model.

Consider a time series X whose observations are represented as xt (1 ≤ t ≤ |X |). A
regression model can be built, providing a prediction (or estimation) for each observation
x̂t . The distance between observations and estimations can be modeled as a residual time
series ωt , such that ωt = distance(xt , x̂t ). An anomaly is an observation that significantly
deviates from the estimation, i.e.,ωt > γ , where γ stands for a threshold tomodel deviations.
Regression-based anomaly detection is sensitive to the method adopted to model the time
series and the function used to measure the distance between the predicted and observed
values [163].

Figure3.5 shows an example of a time series organized as a sliding window of size 5.
The four lagged terms of the time series xt−4 to xt−1 are used to predict xt . The prediction
is expressed as x̂t . In this case, ωt corresponds to the difference between x̂t and xt . The
distribution of ωt is analyzed for noise anomalies (see Chap.1).

As expected, the way distance is computed interferes with whether the anomalies are
detected. A typical method is to compute the absolute difference between observations and
estimations, where the error is relatively easy to interpret and has the same scale as the
data. The squared difference between observations and estimations is also well-known and
adopted, and since the differences are squared, large errors are highlighted.

Observations not conforming to distance distribution are registered as anomalies in regres-
sion methods. The simplest way to identify if an observation is an anomaly is by assuming
a Gaussian distribution for the distance [288]. When using the Gaussian distribution, a
parametric analysis is assumed, and observations that are distant from the mean (ω ± 3σω)

Fig. 3.5 Example of model
deviation detection using
sliding windows
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are anomalies, where ω and σω stand for the mean and the standard deviation of distance,
respectively.

An alternative to the parametric analysis is to use Grubb’s test [114], known as the
maximum normed residual test, which is a statistical test used to detect anomalies in a time
series by identifying data points that are significantly different. It compares the suspected
outlier to the sample mean and standard deviation. If the difference between the suspected
outlier and the mean is significantly larger than expected based on the standard deviation,
the data point is considered an outlier [277].

The box plot rule is the simplest nonparametric statistical test to support detecting anoma-
lies, considering that distant observations are relative to the first quantile (Q1) and third
quantile (Q3). The Inter Quartile Range (IQR) equals Q3 – Q1. Atypical observations are
not between the interval defined by Q1 – 1.5×IQR and Q3 + 1.5×IQR. This interval con-
tains 99.3% of observations [125]. The lower constraint does not make sense in anomaly
detection for regression-based methods, as it stands for very precise models concerning the
observations. Thus, only distances greater than Q3 + 1.5×IQR are registered as anomalies.

Extreme value theory is amore advancedmethod for evaluating distance distribution from
themodel. It computes a typical time series boundary for observations, as it adopts a density-
based comparison to detect any significant changes in the distribution of the observations
[273]. Thismethod is adopted in online anomalydetection since it does notmake assumptions
on the distance distribution [260].

The quality of the model used is also relevant for regression-based anomaly detection.
The simplest methods used to model the series include trend models (or followers), which
include FFT, Wavelet Transform, Moving Average Smoother, FBIAD [173], Empirical
Mode Decomposition (EMD), Refined Empirical Mode Decomposition (REMD) [266],
and splines. The first six methods are rigid because their modeling assumption provides
inertia [119] while the last one is flexible, adjusting smoothly to the data [145].

Various methods exist to model time series for statistical and ML [239]. The former
includes Linear Regression and ARIMA. The latter includes Random Forest Regression,
XGBoosting, SVM, MLP, ELM, K-Nearest Neighbors (KNN), Conv1D, and LSTM. These
representative methods are covered in Chap.2. Figure3.6 exemplifies a regression-based
anomaly detector using ARIMA, where the model adjusted to the time series is represented
in dashed blue. The residuals at anomalies are significantly different from the remainder
of the residuals. Surrounding anomalies, the ARIMA model is slightly influenced, and
the distance between the adjusted model and the time series is higher than usual. As the
anomaly’s influence decreases, the model adjusts to the time series.

Recent works in statistical methods include Triple Exponential Smoothing and Median
Method [253]. Triple Exponential Smoothing handles trends and seasonal components by
smoothing the data at three levels, whereasMedianMethod uses themedian value of the con-
text sliding window to forecast the next data point. Conversely, recent works in Deep Learn-
ing methods include Deep Anomaly Detection (DeepAnT), Deep Network Anomaly Pre-
diction (DeepNAP) [161], LSTM Anomaly Detection, and Telemanom. DeepAnT employs
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Fig. 3.6 Anomaly detection using ARIMA

Convolutional Neural Network (CNN), whereas LSTMAnomaly Detection [187] and Tele-
manom [138] are LSTM-based detectors. Health Echo State Networks applies echo state
networks [67].

Finally, hybrid and ensemblemethods combinemultiplemethods to leverage each other’s
strengths for anomaly detection in time series. For example, Hybrid KNN improves upon
the standard KNN by combining the strengths of multiple KNN algorithms, leveraging both
local and global properties to enhance anomaly detection [263]. Torsk combines statistical
and deep learning methods [131]. Similarly, Anomaly Detection-Linear Time Invariant uses
multiple linear models to forecast future points, capturing underlying trends and seasonality
[300].

3.2.2 Classification-Based

Classification-based anomaly detection involves training a classification model on a labeled
time series.Methods in this category performbinary classification of time series observations
as falling into a typical or anomaly class based on previously learned patterns. Figure3.7a
shows an example of a time series organized as a sliding window of size 5. During the
model building, the labels for the presence of anomalies should be known and used during
training. All lagged terms of the time series xt−4 to xt are used to predict the class label for
the anomaly et . The model’s prediction is êt . Some metrics for evaluating anomalies, such
as f1, are used to measure the model’s accuracy during training, leading to the confidence
of the model prediction during testing. As shown in Fig. 3.7b, no labeled data is provided
during testing.
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Fig.3.7 Example of classification-based detection using sliding windows: a during training, labeled
data is available; b during testing, no labeled data is available

Anomaly detection using classification models is in the category of supervised learning,
where Logistic Regression, Naive Bayes, Decision Tree, Random Forest, SVM, NNET,
LSTM, andConv1Dbeing themain traditional classifiers [60, 125].As previouslymentioned
in supervised learning, classification is used more for online anomaly detection since it
requires training and testing phases. The training phase uses observations and labels to build
the model, whereas the testing phase uses the model with new upcoming observations [276].
Online event detection is covered in Chap.6.

Figure3.8 shows anomaly detection using an SVM classifier. The model uses SVM with
a radial kernel with ε = 0 and cost = 80. In this example, during training, all anomalies
were confirmed, but during testing, only the first anomaly (observation 80)was detected. The
other anomaly was marked as a false negative. In this family, Phase-Space Support Vector
Machine (Phase-Space-SVM) is a popular method for anomaly detection in time series, in
particular when labeled anomalies are rare [185].

3.2.3 Clustering-Based

Clustering is a data mining function that groups similar data instances into clusters [170]. It
is based on unsupervised learning [9]. Clustering-based anomaly detection refers to identi-
fying and grouping anomalies that exhibit similar patterns. In this process, a set of features
or attributes is extracted from the data, and clustering algorithms are used to group data
according to their similarity. Outlier samples are identified through a clustering method by
comparing them against typical sample clusters. The clustering-based anomaly detectors
assume anomalies are related to outlier samples [192].

Figure3.9 shows an example of clustering-based anomaly detection using a sliding win-
dow, where each sliding window is assigned to a cluster r̈c. Each cluster has a representative
sequence for distance evaluation, such as a centroid. All sliding windows are evaluated
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Fig. 3.8 Anomaly detection using SVM classifier

Fig. 3.9 Example of clustering-based detection using sliding windows

according to a distance metric (such as Euclidean Distance) concerning the representa-
tive sequence. The distance distribution analysis characterizes the presence or absence of
an anomaly. As it computes the distance of the entire sliding window, Clustering-based
anomaly detection can be used for both point and sequence anomaly detection.

Several clustering-based anomaly detection methods have been developed. They can be
classified into two major categories: (i) density-based and (ii) distance-based [81, 253]. The
density-based category assumes that typical observations belong to a cluster. Conversely,
anomalies donot belong to any cluster [81]. This assumption relies on clusteringmethods that
are not obliged to assign a cluster to each observation. These methods are optimized to find
similar data. The ones that do not fit such similarities are anomalies.More formally, methods
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within this category consider that a sequence w (of size l) with less than κ close neighbors
are anomalies. Close neighbors are the ones with a distance smaller or equal to γ . In this
way, wt is an outlier in a time series X if and only if |{∀w ∈ sw(X , l), d(w,wt ) ≤ γ }| < κ

[39].
Density-based methods include Density-Based Spatial Clustering of Applications with

Noise (DBScan) [96], ROCK [118], DBStream (DBStream), Local Outlier Factor (LOF),
and Connectivity-Based Outlier Factor (COF). This category also includes methods that
separate typical data from anomalies based on the size of the clusters. Typical data belongs
to large clusters, whereas anomalies belong to smaller clusters. The DBStream is tailored
for evolving data streams and uses a density-basedmethod to formmicro-clusters, which are
then merged into larger clusters over time. This method computes anomaly scores based on
the distance between data points and their closest micro-cluster centroids, making it suitable
for dynamic environments like network traffic monitoring and financial fraud detection due
to its ability to adapt to new patterns and discard outdated information [124].

LOF compares the local density of a data point to that of its neighbors, identifying points
with significantly lower density as anomalies. This local density comparison makes LOF
quite effective in detecting anomalies in time series with varying density distributions [50].
Conversely, COF measures the average chaining distance to capture the connectivity of a
point with its neighbors. Points with lower connectivity are considered anomalies, making
this method effective in detecting anomalies in time series with irregular structures [34].

The distance-based category assumes that typical data are close to clustering represen-
tatives. A common method considers centroids, such as K-Means [144], as the clustering
representatives. The centroid of each cluster is defined by the algorithm iteratively by aver-
aging sequences within each cluster [39]. Anomalies are distant from their closest cluster
centroid. Thus, the method consists of clustering data and computing the distance between
observations and their respective centroids.Medoids are also an alternative for the clustering
representatives adoption [152].

Figure3.10 shows an example of anomaly detecting using clustering. It applies aK-Means
using k and sequence size equals three and one, respectively. Since it is an unsupervised
learning method, it computes the centroids using the entire time series. Sequences that are
far away from centroids are marked as anomalies. It correctly found five out of the eight
anomalies presented in the example.

This category also supports semi-supervised learning. In this case, typical data are clus-
tered using Self-Organizing Maps (SOM) and Expectation Maximization (EM) [64, 170].
This categoryorganizes clusters of typical data. Then, newobservations are compared against
the clusters. An anomaly score is obtained for them. This is why the training time series
should not have anomalies. Otherwise, these methods would be unable to detect them [39].
Also, clustering is sensitive to the distance adopted. Other measures, such as the well-known
DynamicTimeWarping (DTW) [86], can replace traditional EuclideanDistance. SeeChap.5
for details on DTW.
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Fig. 3.10 Anomaly detection using K-Means with k equals 3 and sequence size equals 1

There is a broad new set of scalable anomaly detectors for clustering-based detectors,
such as Scalable Adaptive Online Nonparametric Anomaly Detection (SAND) and Singular
SpectrumAnalysis (SSA). They are designed to handle large time series and real-time appli-
cations. SAND uses a nonparametric method to model typical observations and dynamically
adjusts its parameters based on incoming observations,making it quite effective for real-time
applications where data evolves. This adaptability enables SAND to maintain high accuracy
in detecting anomalies in dynamic environments [43]. Conversely, SSA decomposes time
series into interpretable components such as trend, oscillatory components, and noise. It
then reconstructs the series to identify anomalies as deviations from the expected pattern
[309].

3.2.4 Statistical-Based

Statistical-based anomaly detection methods allow for identifying anomalies or situations
deviating from the expected observations, involving the analysis of the data and using sta-
tistical tests to detect changes, anomalies, or patterns indicative of potential problems or
failures. They may include time series analysis, hypothesis testing, and regression analysis.

The main principle of statistical anomaly detection is that typical observations occur in
high-probability regions of a statistical model while anomalies occur in the low-probability
regions [6, 145]. Models can be either parametric or nonparametric. For parametric models,
there are two basic steps. In the first step, the statistical model is fitted to the data. There are
many measures to evaluate model fitting, including MSE, sMAPE, R2, and AIC [46, 288].
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In the second step, the residual for each test instance is used to determine anomalies, based
on the same principles of regression-based models, but using statistical assumptions [48].

Under the nonparametric model analysis, the histogram-based methods fall into the sim-
plest methods, using histograms to maintain a profile of typical observations. This method
is also known as frequency-based or counting-based. Like classification models, they are
more appropriate for online event detection. The histogram is built using the training set,
and new observations are tested to determine whether they fall into any one of the bins of the
histogram. The observation is typical if it falls in a frequent bin or is anomalous otherwise
[60]. The bin intervals used to build the histogram are key for anomaly detection. If they
are too short, many typical observations fall in empty or rare bins, resulting in a high false
alarm rate. If they are too large, many anomalous observations might fall in frequent bins,
resulting in a high false negative rate [39].

The histogram-based methods have limitations, especially when dealing with high-
dimensional or multi-modal data. In such cases, creating histograms becomes challenging
as it may require dividing the data into many bins, leading to sparse histograms and loss of
detail. These methods might find difficulty in capturing the relationship among dimensions
[60].

Figure3.11 shows anomalies detected using the histogrammethod. Anomalies are obser-
vations that fall outside bin intervals or observations present in bins with low frequency.
In the former criteria, anomalies are values less than −2 or greater than 1.5. In the latter,
anomalies are values in bins 1, 2, and 7 (between −2 and −1 or 1 and 1.5). Some of the
anomalies in the training set were removed from the example of Fig. 3.11 since they would
be too frequent. Due to their high frequency, the histogram would fail to find them in such
a case.

Fig.3.11 Anomaly detection using histogram (a). Computed histogram in the training set to support
anomaly detection (b)
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An advantage of statistical methods is that they adopt statistically justifiable solutions for
anomaly detection. An additional benefit is their ability to define a confidence interval that
separates anomalies from typical observations. Conversely, the disadvantage of statistical
methods is the implicit assumption that the data is generated from a particular distribution,
which often does not hold, especially for nonstationary or high-dimensional real-world time
series [48]. Advanced statistical-based methods include the ones based on Probability Den-
sity Function (PDF). The estimated PDFmodels the typical observations. A new observation
in a low-probability area of the PDF is declared an anomaly [140].

3.2.5 Spectral-Based

Spectral-based anomaly detection methods try to find an approximation of a time series
using a combination of attributes that capture the main variability of the data. This category
of methods is based on the premise that data can be embedded into a lower-dimensional
space. In this reduced subspace, typical observations and anomalies appear significantly
different. Thus, spectral anomaly detection methods adopt the general principle of deter-
mining subspaces (such as embeddings and projections) where the anomalous instances can
be easily identified [92]. Such methods can work in an unsupervised and semi-supervised
setting [60].

Intuitively, spectral-based anomaly detection is suitable for analyzing multivariate time
series, in which case, the embedding naturally reduces the number of dimensions. However,
it is also applicable to univariate time series. Considering the sliding window sw for a time
series of size p, each lagged term is expressed as an individual dimension. Thus, lagged
terms could be embedded similarly to multivariate time series.

One of the simplest spectral methods is to use PCA to project data in lower-dimensional
spaces [2]. The goal is to analyze the projection of each data instance along the principal
components, a typical instance satisfying the correlation structure of the data and the pro-
jection. On the other hand, anomalies significantly deviate from the PCA representation [39,
220]. An example of anomaly detection using PCA is shown in Fig. 3.3c.

Recently, autoencoders, i.e., neural networks that learn the most significant features of
a training set [8], have become the most used spectral methods [192, 219, 234]. Since
anomalies often correspond to non-representative features, autoencoders fail to reconstruct
them, providing distances between encoded and original sequences [3]. Figure3.12 shows
an example of an autoencoder anomaly detection method with a neural network of five
inputs. The output layer produces five observations, which should be the same as the input.
The key point of the autoencoder neural network is the hidden layer structure, which has an
hourglass shape. This property is themain principle of this spectral-based anomaly detection,
as the encoder layer with fewer neurons than the input has enough information to decode the
output values. Anomalies are observations output from the autoencoder that are significantly
different from the input. Because of that, manymethods train the neural network using semi-
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Fig. 3.12 Autoencoder neural network

Fig. 3.13 Anomaly detection using an autoencoder with input size equals 3 and encoder layer size
equals 1

supervised learning, i.e., the training time series has only typical observations. Each layer
might be fully connected to the following. However, for the sake of readability, the example
of Fig. 3.12 is not fully connected.

Figure3.13 shows an example of anomaly detection using an autoencoder. It uses an
input size of three neurons, an encoder layer of size 1, and an output size of three. Since it
is based on reconstruction error, even though the last two anomalies of the time series were
not present in the training set, the model could identify them.
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Many new deep learning methods are based on autoencoders, including LSTM-based
autoencoders [219, 234] and Variational Autoencoder with a Gated Recurrent Unit. The
input of the model is a sequence of observations containing xt and p preceding observations
(< xt−p+1, . . . , xt >). The output is the reconstructed (< x̂t−p+1, . . . , x̂t >) [268]. It is also
possible to extract features within overlapping sliding windows (e.g., statistical features)
before applying the autoencoder to account for temporal dependencies [158].

3.2.6 Information Theory-Based

Information theory-basedmethods analyze the time series context based on information the-
ory concepts, such as Kolmogorov Complexity and entropy [36, 60]. The general assump-
tion is that anomalies are rare, and typical observations provide little information, whereas
anomalies introduce more information and entropy to the sample analyzed.

The general principle can be formalized as follows. Let S be a set of all sequences of
size p of a time series X , i.e., S = sw(X , p). The information of these sequences can be
represented as I (S). Anomaly detection methods based on information theory aim to find
a subset A of S such that |I (S) − I (S − A)| is maximized. The sequences present in A
are considered anomalies. To compute the information I , the size of the compressed data
file (using any standard compression algorithm) can be used to measure the Kolmogorov
Complexity [155].

3.3 AdvancedTopics

3.3.1 Volatility Anomalies

Volatility refers to the degree of variation or fluctuation in a time series, which can be mea-
sured using statistical methods such as standard deviation or variance. Volatility anomalies
are unexpected or atypical fluctuations in the volatility of a time series. Thus, capturing the
estimated instantaneous volatile each time becomes important, which can be achieved with
models such as Autoregressive Conditional HeteroscedasticityModel (ARCH) andGARCH
(see Chap.2). The latter is an econometric model that is the most well-known and applied
model for addressing volatility [55].

Volatility anomalies (va) can be formalized by specializing Eq.1.2 introduced in Chap.1
to the volatility component, as described in Eq.3.1. In this case, an event identified at time
t can be considered a volatility anomaly if TC for the volatility component (v) escapes the
expected volatility before (ep(v(xt ))) and after (e f (v(xt ))) instant t .

va(X , k, σ ) = {t, |v(xt ) − ep(v(xt ), k)| > σ ∧ |v(xt ) − e f (v(xt ), k)| > σ } (3.1)
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Fig. 3.14 Synthetic time series with increased volatility between observations 79 and 99

Figure3.14 shows a synthetic time series example with a sequence of observations with
increased volatility, with a GARCH anomaly detector. The model finds some anomalous
observations within the sequence limited by the two dashed lines, but a false positive is also
detected at the beginning of the time series.

Studying volatility anomalies requires methods to identify subtle patterns and relation-
ships that traditional methods might miss. For example, where high volatility is associated
with risk in finance, most time series exhibit nonlinear properties, as their volatility varies
widely. Therefore, detecting volatility anomalies is an enabling tool to support risk manage-
ment systems.

3.3.2 Multivariate Time Series

In many cases of multivariate time series, the data might come from different sources or
contain different attributes. Multivariate anomaly detection goes beyond univariate meth-
ods by considering the relationships and dependencies among multiple variables. Research
in methods that handle multivariate data have increased in recent years, because of the
importance of considering interdependencies between variables to detect anomalies [99].

A baseline method for multivariate analysis is to use univariate methods to detect anoma-
lies in each time series. The observation at time t is considered typical only if all individual
time series do not detect an anomaly at time t . It is considered anomalous if any time series
contains an anomaly at time t . Although simple, this baseline method leverages the strengths
of univariate analyses while applying them in a multivariate context [268].



66 3 Anomaly Detection

Regression-basedmethods for multivariate anomaly detectionmodel the typical observa-
tions [287]. Observations that deviate significantly from the model are indicated as anoma-
lies. Suchmethods integratemultiple variables, capturing their relationships to detect anoma-
lies more effectively. In this group of methods, KNN has been used for anomalies based on
the distance of observations to their nearest neighbors in the dimensional space.

Clusteringmethods, either distance-based or density-based, have also been used. Anoma-
lies are detected as observations that do not belong to any cluster, the ones that belong to
small clusters, and those that are significantly distant from representative observations in
each cluster [170].

Spectral-based methods are used to reduce dimensionality and provide feature learning.
PCA is adopted to enable univariate time series analysis when the dimensions are reduced to
one. Even when the reduced dimensions are still greater than one, both univariate and mul-
tivariate methods can be applied [148]. Besides, autoencoders have been adopted to identify
anomalies by measuring the reconstruction error concerning the original observations [219].
Autoencoders are able to address complex data that have nonlinear relationships.

Some multivariate time series can be challenging to analyze, requiring more advanced
methods. This is the case for spatial-time series, encompassing data that evolve in space
and time [99]. In this context, the goal is to identify anomalies that significantly deviate
from typical spatial–temporal observations [26, 265]. When observations are related to a
moving object, the goal is to discover themost anomalous trajectories [166, 315, 321]. These
advanced methods are used in applications such as surveillance and transportation, where
understanding movement patterns is essential.

Research papers on this topic often benchmark univariate or multivariate algorithm fami-
lies in mixed time series (univariate and multivariate), which can obscure whether multivari-
ate solutions are superior to multivariate time series.When a comparison of methods is made
using univariate and multivariate time series, such benchmarks fail to highlight the strengths
of multivariate anomaly detection algorithms. Works, such as CoMuT, introduce multivari-
ate time series with correlation anomalies and are better suited to showcase the advantages of
multivariate methods [297]. Furthermore, the results show that univariate solutions excel at
detecting point and sequence anomalies, indicating that effective anomaly detection should
employ univariate and multivariate algorithms to detect all anomalies comprehensively.

3.3.3 Graph-BasedMethods

Graph Neural Networks (GNN) are methods for analyzing multivariate time series by lever-
aging the data structure as a graph, capturing the relationships between variables, and treating
each variable as a node and the relationships as edges. Multivariate Time series Anomaly
Detection usingGraphAttentionNetwork (MTAD-GAT) is a representativemethod that uses
this data structure [85, 323]. However, GNN-basedmethods face challenges when trained on
data with anomalies, as they may overfit to noisy patterns if the training data lacks annota-
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tions for anomalies [327]. Recent work introduces a technique to filter out anomalies before
training [28].

Fused Sparse Autoencoder and Graph Net (FuSAGNet) combine Sparse Autoencoder
and Graph Neural Network to model the relationships within multivariate time series [127].
FuSAGNet provides sparse latent patterns fromhigh-dimensional time to improve the graph-
based forecasting model. Such combining enables anomaly detection of high multidimen-
sional time series. Graph-Augmented Normalizing Flow (GANF) is another method that
integrates GNN with distribution analysis to identify anomalies in multivariate time series
[79]. Such a wide variety of ways to model multidimensional time series provides novel
opportunities to tackle spatial–temporal and multivariate time series anomaly detection.

3.3.4 ExtremeValues

A particular type of anomaly occurs in a time series where some values are considered above
or below some thresholds. However, they refer to significant observations of the monitored
phenomenon. Observations falling into this category are named after extreme values and
are considered to be generated by some extreme event process. Examples of extreme events
include extrememeteorological conditions, such as heatwaves, strong rainfall, and tsunamis,
leading to extreme wave heights. From a probabilistic point of view, extreme events are
naturally scarce and have low frequency. They are denoted by a few point values in the
historical curve of the monitored phenomenon. When events are independent of each other
or happen at least so far apart to keep any dependency, they are considered I.I.D.. As an
example of application, a city hall may plan to build a bikeway at height along its beach
coast. To avoid being hit by the waves, estimating the value for the highest waves that could
reach the coast would be interesting so that bikeway riders are secured.

Given the low frequency of extreme events, a distribution function that models the under-
lying phenomenon adopting the representation of a Gaussian distribution places extreme
values on both sides of the distribution tails. Thus, estimating extreme values from a history
of measurements suffers from the effects of the central limit theorem and tends to be biased
by more frequent normal measurements. In this context, dealing with anomalies of extreme
values requires a special method. A straightforward method is to extract extreme values
from the set of historical observations computed as a max function described in Eq.3.2,
where n is the number of observations in a block, and xi is an observation, for instance, the
daily maximum wave height at day i . Moreover, xi is univariate, so we can easily define an
ordering among its values.

Mn = max{x1, x2, . . . , xn} (3.2)

The probability of an extreme event to occur, given Eq.3.2 and a bound on the normal
values z, can be computed as in Eq.3.3 where F(z) is a distribution function, which is,



68 3 Anomaly Detection

unfortunately, unknown. An alternative is to compute an approximation of F(z) given by
the extreme data only.3

Pr(Mn ≤ z) = Pr{x1 ≤ z} × · · · × Pr{xn ≤ x} = F(z)n (3.3)

Three extremedistributions functions (knownasGumbel,Fréchet, andWeibulldistribu-
tions) can be generalized using theGeneralized ExtremeValue (GEV) family of distributions
[74], depicted in Eq.3.4. The three variations of Generalized Extreme Value are obtained
by considering different shapes for the distribution’s tails, given by the ζ shape parameter.
While G decays exponentially for the Gumbel distribution, it follows a polynomial shape
for the Fréchet one.

G(z) = exp

{
−

[
1 + ζ

(
z − μ

σ

)]−1
ζ

}
(3.4)

In addition to the ζ shape parameter, themodel includes a locationμ and a scale parameter
σ to fit the three extreme distribution functions. The GEV distribution with its param-
eters models the distribution of extreme values in time series. The extreme values are
extracted from the studied time series using either the Block or the Peak over Threshold
methods. The Block method considers a set of m blocks of size n. For each M block,
Mm = {Mn,1, Mn,2, . . . , Mn,m}, an extreme value is computed, for instance by evaluating
a Max or Min function on the block values. Alternatively, the Peak over Thresholds (PM)
extraction method selects values above or below a tuned threshold. The extraction process
produces a time series of extreme values Z = {Z1, Z2, . . . , Zm}.4

We exemplify this process by considering a scenario of forecast of extreme rainfall in
the city of Rio de Janeiro [231]. We build a dataset comprising the precipitation volume
captured by a rain gauge from the city administration, at 15-minute intervals, from 2019 to
2022. Figure3.15 exemplifies the results of applying a PM extraction method. The threshold
was set to a value of 5mm/observation.

Once the extreme value time series have been computed, we can fit the GEV function
to the series, optimizing an estimate loss function, such as Maximum likelihood estimate
[256].

Finally, the model estimates the probability of the extreme event occurring for a list
of return periods, i.e., the probability of the extreme events as the period of consideration
increases. In our example of Fig. 3.15, the return value for each return period is depicted in
Table3.1.

The extreme value theory described here exemplifies a particular scenario where anoma-
lous values in time series compose a new time series interpreted as generated by a different
and relevant process for decision-makers in various domains such as risk minimization and
disaster prevention. In the context of the taxonomy depicted in Fig. 3.1, extreme value time
series are classified as univariate and unsupervised.

3 The model can equally represent minimum values by adapting the aggregating function.
4 For ζ �= zero.
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Fig.3.15 Extreme values extracted from a rainfall dataset covering the period of 2019–2022 from a
rain gauge in Rio de Janeiro City. The Extracted values were computed using the Peak over Threshold
method

Table 3.1 Return values for
increasing periods of 30
days. For a period of 2 × 30
days, the probability of
exceedance of having an
extreme event of rainfall is
8.437%

Return period Return value

1 5.470

2 8.437

5 12.366

10 15.336

25 19.262

3.4 Further Readings

Due to the importance of this subject and its numerous applications, several surveys on
anomaly detection have been published, especially in the last decade [42, 76, 212, 277,
325]. Some surveys target specific data structures, such as sequences [61] and graphs [13,
240]. On the other hand, others target data characteristics, such as categorical data [270],
high-dimensional big data [277], and sequence anomalies [62]. Someworks focus on specific
methods, such as probabilistic methods [19] and deep learning [18, 81, 214], while others
are driven to a particular context, such as finance [11], autonomous electric vehicles [90],
power distribution network [328], and outlier analysis from the computer science perspective
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[6]. Some works combine the benefits of many different methods using ensembles [52, 167,
238, 329]. Finally, some surveys focus on benchmarking a broad range of anomaly detection
methods [4, 11, 121, 143, 202, 215–217, 253, 254].

3.5 Conclusion

This chapter presented the fundamentals of anomaly detection. It distinguished anomaly
detection from outlier analysis, noting that anomalies are unusual observations of inter-
est, whereas outliers are often considered noise. The chapter also explained the difference
between point anomalies, single observations that deviate significantly from the rest, and
sequence anomalies, which involve a sequence of observations that differ from the rest of
the time series.

The chapter described contextual anomalies, which are anomalies based on their context,
and out-of-context anomalies, which are unrelated to temporal occurrence. It also differen-
tiates between univariate and multivariate anomaly detection, illustrating how multivariate
methods can detect anomalies missed by univariate methods. The section on labeled and
unlabeled time series explained how labeled time series have information indicatingwhether
each observation is an anomaly, while unlabeled time series lack this information and rely
on statistical analysis for anomaly detection.

The chapter covered anomaly detectors based on supervised, semi-supervised, and unsu-
pervised learningmethods. Supervised learning uses labeled data to buildmodels that predict
anomalies, while semi-supervised learning uses labeled data for typical observations. On
the other hand, unsupervised learning assumes typical data is more frequent than anomalies.
The methods for anomaly detection were grouped into six general categories: regression,
classification, clustering, statistical, spectral, and information theory-based, each with prac-
tical applications. Each method was explained with examples to illustrate its application in
detecting anomalies.

Regression methods are based onmodel deviation detection, where significant deviations
from predicted observations identify anomalies. Classification methods use ML algorithms
to classify observations as typical or anomalous based on learned patterns. Clustering meth-
ods group similar data instances and identify anomalies based on their distance to cluster
centroids or absence in any cluster. Statistical methods use tests andmodels to detect anoma-
lies,while spectralmethods project data into lower-dimensional spaces to identify anomalies.
Information theory-based methods analyze anomalies based on their information content.

The chapter also covered advanced topics in anomaly detection. It introduced methods
for detecting volatility anomalies in time series using models like GARCH and described
detection methods for multivariate time series. The chapter highlighted the benefits and
differences of univariate and multivariate methods. It explored graph-based methods for
anomaly detection in multivariate time series, leveraging relationships between variables
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modeled as a graph. Finally, it focuses on detecting extreme values in time series, presenting
methods like the GEV family of distributions to model and estimate these values.

As shown in this chapter, anomaly detection in time series is a vibrant research area with
a constant proliferation of novel methods. This dynamic is due to the increasing complexity
and volume of data generated in finance, healthcare, IoT, and social networks, which demand
more precise methods. However, anomaly detection still presents challenges like scalability,
result interpretation, and adaptation to different contexts and data types.
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4.1 Change Points

Detecting changes in time series, observed as changes in dynamics (distribution or autocorre-
lation), is important for effective monitoring. When changes are abrupt, the observation that
separates each time series interval with different dynamics is considered the change point.
However, identifying the exact observation where a change occurs may not be clear or fea-
sible when changes are gradual. Change point detection involves finding these observations
that mark the transition between different time series dynamics [23].

Figure4.1 shows a time series with four change points (cpAB , cpBC , cpCD , cpDE ),
separating the time series into five segments (from A to E), each corresponding to a different
time series dynamic. The cpAB characterizes a change in volatility, the cpBC marks an abrupt
change, and the last two change points correspond to gradual changes.

There is a need to distinguish between offline and online change point analysis. In an
offline scenario, the goal is to detect when different time series dynamics occur, while
in online analysis, the aim is to identify changes in the time series dynamics as quickly
as possible. This distinction is important for guiding reactions to undesirable phenomena.
Additionally, labels that characterize anomalous observations or change points might not be
immediately available in online analysis after the data is produced [271].

Another key aspect that drives most change point detection methods is the prior knowl-
edge of the number of change points in the time series. If the number of change points is
known, the task becomes identifying when they occur, which pertains to offline analysis.
For example, analyzing hospital admissions due to respiratory issues during a pandemic
could involve detecting when new COVID-19 waves affect each hospital. If the number of
change points is unknown, the problem involves determining the correct number of seg-
ments in the time series. Returning to the previous example, it involves discovering if and
when new waves of COVID-19 appear. Over-detection may lead to false positives, while
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Fig. 4.1 A synthetic example of a time series with four change points

under-detection can result in false negatives. Addressing this dichotomy is an optimization
problem aimed at distinguishing strong change points from weaker or spurious ones.

We have built a taxonomy for major change point detection methods, organized based on
how change points are searched and representative detectors. It was adapted from Truong
et al. [281]. In the taxonomy, the different types of search include segmentation, regression,
and sliding windows (Fig. 4.2).

The search based on segmentation aims to minimize the distances among observations
within each segment or maximize the distances between segments. When the number of
change points (m) is known, a naive solution is to explore all possible segment partitions by
brute force. If a segment is representative, the distances among its observations should be
low, similar to clustering analysis.Differentm values need to be exploredwhen the number of
segments is unknown. Increasingm continuously might reduce the distance of observations,
potentially leading to each observation forming an individual segment. A penalty for each

Fig. 4.2 Change point taxonomy (adapted from Truong et al. [281])



4.2 Change Point Methods 75

increase in the number of segments is used. Methods based on segmentation include At
Most One Change (AMOC) [159] and Pruned Exact Linear Time (PELT) [160], detailed in
Sect. 4.2.

The search for change points using regression involves exploring breakpoints in the time
series by building a regression model for each candidate segment and measuring the quality
of each segment using metrics like RSS. The lower the RSS, the better the established
breakpoint. This leads to an optimization problem of finding the right breakpoints that
minimize the RSS, usually supported by dynamic programming. Methods in this category
include extensions of Chow Test (F Test) [25] and Generalized Fluctuation Test (GFT) [88],
detailed in Sect. 4.2.

Finally, the search based on sliding windows involves computing all possible subse-
quences of a specified size p within the time series to detect change points. Inside each
sequence, the goal is to check if a single change point exists. Many methods reside in this
category, including some based on segmentation and regression [94]. Most sliding window
methods search for a breakpoint and test whether the two segments within the window are
significantly different. Methods in this category include Seminal Change Point (SCP) [123]
and Change Finder (CF), detailed in Sect. 4.2. We have made representative change point
detection methods available through our publicly Harbinger R package (see AppendixA).

4.2 Change Point Methods

This section explores the main methods, including AMOC [133], PELT [160], Chow Test
[150], GFT [88], SCP [123], and CF [272]. At the end of this section, these detectors are
compared for better comprehension using the synthetic time series presented in Fig. 4.1.

4.2.1 AMOC,BinSeg, and PELT

AMOC
AMOC focuses on finding a single change point in a time series X . Consider a time series X
of size n, segmented into two parts at time k (X1:k, Xk+1:n), where 1 < k < n − 1. If there
is a change at time k, the distributions of both segments differ from the entire time series X
[159].

Each candidate segment is modeled using Maximum Likelihood Estimation with a spe-
cific PDF, such as Gaussian. The evaluation is a hypothesis test: the null hypothesis (H0)
indicates no change point, and the alternative hypothesis (H1) suggests a change point at
time k. A statistical likelihood test (assuming a normal distribution) evaluates a change in
the mean [133]. The likelihood ratio method computes the maximum log-likelihood (ML)
under the null (Eq.4.1) and alternative (Eq.4.2) hypotheses. In both equations, the p(·)
function represents the probability density function of the sequences. For Eq. 4.1, θ0 is the
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maximum likelihood of the parameters. Equation4.2 provides themaximum likelihood from
both sequences separated at time k, with estimated parameters (θ1 and θ2, respectively) [257].

ML(X) = log
(
p(X1:n|θ̂0)

)
(4.1)

ML(X , k) = log
(
p(X1:k |θ̂1)

)
+ log

(
p(Xk+1:n|θ̂2)

)
(4.2)

From both Eqs. 4.1 and 4.2, it is possible to compute λ as described in Eq.4.3, which gives
the optimal k from all possible change point locations. Assuming a threshold cp, the null
hypothesis is rejected when λ > cp. In this case, k is a change point for X . The challenge
is to establish the value for the cp threshold.

λ = 2
((
argmaxk∈{2,...,n−1}ML(X , k)

) − ML(X)
)

(4.3)

The test proposed by Hinkley [133] is later expanded to support changes in variance,
with a more general test combining mean and variance tests [159]. Besides, there are also
alternatives to model the PDF that use different assumptions and parameters [317].

BinSeg
Binary Segmentation (BinSeg) is a method that uses a recursive and greedy algorithm on top
of AMOC. The algorithm starts with an initial AMOC application and then runs AMOC on
each subsequence produced from previous change point detections. This process is repeated
until a stop criterion ismet [281]. This greedy algorithmoften provides a good approximation
with a O(nlogn) complexity.

PELT
The PELT method is an exact segmentation search using dynamic programming and some
assumptions for efficiency [160]. The first assumption is that the number of change points
increases linearly as the time series grows. The second assumption is that change points are
spread throughout the time series rather than appearing close together. These assumptions
result in a complexity of O(n2) [257].

4.2.2 ChowTest and GFD

Chow Test
The Chow Test test is driven by detecting structure change. It considers a time series X that
can be modeled using linear regression, as described in Eq.4.4, where yt is the observation
of the dependent variable, xt represents the independent variables, and ωt denotes white
noise. The Chow Test test focuses on testing the null hypothesis of no structural change, i.e.,
H0 : βt = β0, against the alternative hypothesis that βt varies over time [318, 319]. Several
tests have been developed to evaluate this hypothesis,with F statistics-based tests particularly
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prominent. These tests, such as the supF , primarily target the alternative hypothesis of a
single unknown breakpoint due to their ease of interpretation.

yt = βt xt + ωt (4.4)

The original idea for a structural change test was introduced by Chow [72], assuming that
there is a change point. The method involves fitting separate regressions for two subsamples
defined by the change point tk and rejecting the null hypothesis when the F statistic exceeds
a certain threshold [319]. Assume n is the number of time series observations, and r is the
number of regressors in the linear model. An Ordinary Least Squares model is fitted for the
observations before and after the potential change point tk , estimating 2r parameters and
computing the Error Sum Squared (ESS). Another Ordinary Least Squares model for all
observations, with a RSS, is computed, estimating r parameters. The F statistic is given by
Eq.4.5 [319].

F = (RSS − ESS)

ESS/(n − 2r)
(4.5)

Methods based on the supF test compute F statistics for all potential change points within
an interval, defined by ta ≤ t ≤ tb, where ti and t f represent the first and last available time
points, respectively. The null hypothesis of not having a change point is rejected when the
F statistic becomes significantly high.

GFT
GFT is an alternative method for detecting change points based on regression, as defined by
Eq.4.4. It can identifymultiple change points simultaneously, as it does not assume a specific
deviation pattern from the null hypothesis. The method involves adjusting a model to the
data and extracting an empirical process that captures the variations in residuals or parameter
estimates. When no change point is detected (i.e., the null hypothesis holds), these variables
adhere to central limit theorems, defining their boundaries with a fixed probability denoted
as α. When a change point is detected (alternative hypothesis), the process’s fluctuations
generally increase [318].

As an example, consider anOrdinaryLeast Squares-basedCumulative SumControl Chart
(CUSUM) test, as introduced by Ploberger and Krämer [229]. This test relies on cumulative
sums of standard Ordinary Least Squares residuals (ωi ), defined by Eq.4.6. In this context,
W (·) represents standard Brownian motion. The limiting process of W 0

n (u) resembles the
standard Brownian bridge W 0(u) = W (u) − uW (1). Under a single-shift alternative, this
process is expected to peak around the change point [318, 319].

W 0
n (u) = 1

σ̂
√
n

�nu�∑
i=1

ω̂i , (0 ≤ u ≤ 1) (4.6)
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4.2.3 Seminal Change Point and Change Finder

SCP
The SCP for detecting change points has become a reference in the literature [123] for
sliding window-based methods. For a time point in a sliding window, models are adjusted to
segments before and after that point. A change point is determined if the total fitting errors
are significantly reduced compared to when no change point exists. In its simplest version,
the method uses linear regression to adjust the data, with the adjustment error measured in
terms of square errors [272].

Figure4.3 illustrates how themethodworks. The blue line represents the regression for the
entire window, with the candidate change point observation marked in gray. The regressions
for observations before and after the candidate observation are marked in green and red,
respectively. If the sum of residuals for all observations concerning the blue regression
is significantly higher than that of residuals from before and after regressions, then the
candidate observation is, in fact, a change point.

Change Finder
The creation of SCP has enabled the development of many other sliding window-based
methods, such as CF [272]. CF consists of two phases. In the first phase, given a time series
X , a model α is adjusted using an autoregressive model, such as AR. Let ωi = (xi − x̂i )2,
which represents the squared residual from the model. Outliers in this residual series W are
directly marked as anomalies.

The insight of CF is to compute a moving average for the residual series W , represented
as the Z time series. This procedure provides inertia for the residuals. Z is modeled again
using an autoregressivemodel, such asAR, resulting in the Ẑ series. This produces a residual
series R, where ri = zi − ẑi . Outliers in R are considered change points.

Fig. 4.3 Detection strategy of SCP



4.2 Change Point Methods 79

4.2.4 Comparison of Change Point Detectors

Figure4.4 shows the synthetic time series from Fig. 4.1 with detections made by AMOC,
BinSeg, PELT, Chow Test, GFT, SCP, and CF using ARIMA. Green marks indicate correct
detections (true positives), blue marks indicate undetected events (false negatives), and red
marks indicate incorrect detections (false positives).

AMOC detects changes in mean and variance, making a single detection for the time
series, which occurs close to time 400. This makes sense as the mean of the prior segment
is higher than the mean after the detection, which is close to zero. BinSeg makes a recursive
application of AMOC for each segment (before and after detection) when it makes sense.
The first change point detection is close to the actual change point, and the second is correctly
detected, but it detects many points in a downtrend between 300 and 400. PELT, similar to
BinSeg, detects 11 change points, with many detections between 300 and 400 due to the
constant change in the mean. Chow Test detects a single change point, driven by structural

Fig. 4.4 A comparison of change point detectors using the synthetic example
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changes in the time series, identifying the change close to 200 due to the significant trend
change. GFT, targeting trend changes, makes the correct detection at time 200 and two
detections close to times 300 and 400, though it misses the first variance change. SCP using
a sliding window of 60 makes two detections: a correct one at time 300 and a close one at
time 200. The method is sensitive to the sliding window size. Using the ETS model, the CF
detects a single change point close to time 200, being sensitive to the adopted method and
sliding window size.

4.3 Concept Drift

Concept drift is the online monitoring of changes that occur in a streaming time series.
Consider a multivariate time series D containing independent variables (X ) and a target
variable (Y ), where D is organized into batches with a varying distribution χ , relating
X → Y . A concept for D at a batch i (SDi ) is defined as the probability of the distribution
χ for D, described in Eq.4.7.

concept(SDi ) = p(χi ) (4.7)

A concept drift between batches i and i + 1 is defined as a statistically significant differ-
ence between the probabilities p(χi ) and p(χi+1), described in Eq.4.8 [294].

p(χi ) �= p(χi+1) (4.8)

We have built a taxonomy for concept drift, organized by category and type of drift.
It is presented in Fig. 4.5. Detectors are organized by type and method, and drift handling
approaches are included.

4.3.1 Category andTypes of Drifts

Drifts are categorized as virtual or real. Virtual drifts involve changes in the distribution of
X or Y without changing the concept χ . Real drifts involve changes in the concept χ , with
or without changes in the distribution of X or Y . For example, if a model M is built from X
to predict Y (M(X) → Ŷ ), a real drift is characterized by a significant change in the error
rate between Y and Ŷ .

Concept drifts are also classified as abrupt, incremental, gradual, and reoccurring.
Figure4.6 illustrates these four types of concept drift. The time series is organized into four
batches (SD1, . . . , SD4) of size eight. Observations marked in red correspond to change
points, while dashed black lines indicate a change in the concept between consecutive
batches.
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Fig.4.5 Taxonomy of concept drift, including the type of drift, drift detector type, detector method,
and drift handling approach

Fig.4.6 Different types of concept drift: abrupt (a), incremental (b), gradual (c), and reoccurring (d)
(adapted from Bayram et al. [35])

In an abrupt drift, the concept changes significantly in the following batches, as shown
in Fig. 4.6a from batch SD2 to SD3. Incremental drift occurs smoothly, with observations
transitioning from one concept to another, as depicted in Fig. 4.6b from batch SD2 to SD4.

Gradual drift, shown in Fig. 4.6c, involves the concept intermittently changing from one
concept to another until it stabilizes at the new concept. The concept starts changing at batch
SD2 but only stabilizes at the new concept at batch SD4. Reoccurring drift, illustrated in
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Fig. 4.6d, depicts periodic behavior where the concept switches back to the previous one,
occurring between batches SD1 to SD2, SD2 to SD3, and later from SD3 to SD4.

4.3.2 Detector Type

Changes in time series distribution may result in having more events in the time series when
the concept drifts occur. Furthermore, event detection models might be vulnerable to the
presence of concept drifts. Thus, detecting and handling drifts is a relevant subject associated
with event detection, enabling a specific action to avoid increasing errors in online learning
systems after a drift is observed. There are three main categories of drift detection [35]: data
distribution, error rate, and multiple hypothesis tests.

Data distribution-based methods use statistical inference and analysis of feature distribu-
tion to detect significant output class proportion changes concerning input variables. Once
a new batch arrives, the distribution of the batch is compared with the distribution of the
data used to train the models [142]. They are connected to change point detection methods
based on distribution.

Error rate methods use a learning algorithm (statistical or ML) [145] and indicate a drift
based on the error rate of prediction results. Once a new batch arrives, an inference is made.
The predictions are used and later evaluated to determine whether they are correct. A drift
is assumed to exist once the error obtained from this batch is significantly higher than the
previously observed errors [106].

Finally, themultiple hypothesis tests are based on data distribution and error ratemethods.
Thus, they are built as an ensemble of methods, i.e., they can be parallel-checked, and the
most voted result indicates the presence of a drift. Alternatively, the test can be structured as
a stack. A fast detector with more chance of having false positives triggers another detector,
which is more time-consuming but potentially more accurate [183].

4.3.3 Handling Approach

The handling approach establishes how models are adjusted as time evolves as a way to
address concept drift. Consider a multivariate time series (D) partitioned into batches of
size b. SD1 and SDn correspond to the first and last batches of D, respectively. Yet, a
batch of size b at time i is formally defined as SDi =< D(i−1)·b+1, . . . , Di ·b >, such that
|SDi | = b. It can target the detection and handling of concept drift.

From these concepts, it is possible to define three approaches to handle concept drift: (i)
baseline; (ii) passive; (iii) active. In the baseline approach, a model is built using the
first batch. The trainedmodel is continuously used. No action is taken when drift occurs, and
the trained model might increase its error when inferencing newer batches. It corresponds to
Fig. 4.7a, where the first batch (SD1) is used for training a model (indicated as a red square)
for inferencing all other batches (SD2 to SDn).
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Fig. 4.7 Drift handling approaches. a: baseline; b: passive; c: active

In a passive approach, it is assumed that drift always occurs. Thus, batch SDi is used
for training the model to inference batch SDi+1. This scenario is shown in Fig. 4.7b, where
models are constantly updated (they are presented in different colors). The drawback of this
approach is that it might retrain models, even if no drift occurred in the time series [107].

Finally, the active approach applies drift detection whenever a new batch is introduced.
If no drift is detected, the previously trained model is still used. However, when drift occurs,
a new model is built using the previous batches. Figure4.7c depicts this scenario. A new
model (in orange) is used if drift occurs between batches two and three. Otherwise, the
previous model (presented in red) is preserved. In this approach, two extreme scenarios
may occur. The first is that the same model can be used from the first batch to the last one,
resembling the baseline approach. The difference is that a model is only kept if no drift has
been detected. The second is continuously retraining in all batches, resembling the passive
approach. Again, such a decision is based on whether drift is observed whenever a new batch
is introduced [142]. Moreover, some methods may change the size of the batches using soft
computing (fuzzy systems) to identify drifts and adapt accordingly [184].

4.4 Concept Drift Methods

This section covers the main methods within the broad range of concept drift detectors [126,
183]. Figure4.8 shows the overall framework for drift detection, which encompasses four
steps: data retrieval, modeling, dissimilarity measure, and hypothesis test. The data retrieval
step establishes how data is collected from streaming and passed to drift detection. The data
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Fig. 4.8 General framework for drift detection (adapted from [183])

modeling targets creating a model to support drift detection. It might demand extracting
features and conducting transformations that might increase the performance or accuracy of
drift detectors. The dissimilarity measures aim to measure the difference between previous
and new batches. It quantifies the severity of the drift to support the hypothesis test. The last
step evaluates the statistical significance of the change observed in the dissimilarity step to
characterize a drift. We have made representative concept drift detection methods available
through our publicly Heimdall R package,1 a framework for concept drift detection.

The methods are organized into two groups: error rate and distribution. The former
includes Drift Detection Method (DDM), Hoeffding Drift Detection Method (HDDM),
CUSUM, and EWMA For Concept Drift Detection (ECDD). They are driven to detect real
drifts, as the relationship between predictors and predictand changes. The latter includes
Mean Comparison Drift Detection (MCDD), Kullback–Leibler Divergence (KLD), Kol-
mogorov–Smirnov Windowing (KSWIN), Page’s Cumulative Sum Test (Page-Hinkley),
and Adaptive Windowing (ADWIN). This group analyzes changes in the distribution of
predictors. To this extent, they are, by definition, targeting virtual drifts.

4.4.1 DDM and HDDM

DDM
TheDDMuses a binomial distribution tomodel the number of classification errors in a batch
bt . DDMcalculates, for each instance i in the data stream, the probability ofmisclassification

1 https://cran.r-project.org/web/packages/heimdall/index.html.

https://cran.r-project.org/web/packages/heimdall/index.html
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pi and its standard deviation σi . If the distribution of samples is stationary, the model
maintains its performance [111]. Suppose the error rate of the learning algorithm increases
significantly. In that case, it suggests changes in the class distribution, indicating that the
current model is inconsistent with the current data, thus providing a signal of concept drift.

While monitoring a time series, DDM calculates the values of pi for each instance.
When pi + σi reaches its minimum value, it stores pmin and σmin. Then, DDM checks two
conditions to detect whether the system is in the alert or concept drift level: the alert level is
triggered when pi + σi ≥ pmin + 2σmin. Beyond this level, it stores instances anticipating a
possible concept drift. The concept drift level is triggered when pi + σi ≥ pmin + 3σmin. At
this level, DDM resets the variables (pmin and σmin) and the induced model. Subsequently,
a new model is built using the instances stored since the alert level has been triggered.

DDM performs well in detecting gradual and abrupt changes but struggles to detect drifts
in incremental scenarios. In this case, storing samples can be accumulated over time before
the concept drift level is triggered [111].

HDDM
The HDDM [103], like DDM, Fast Hoeffding Drift Detection Method (FHDDM) [224],
and McDiarmid Drift Detection Method [225], belongs to a group of methods that include
drift detection methods based on prediction error analysis. The HDDM method monitors
an estimated performance based on classifier errors using Hoeffding’s inequality. It adapts
step four of the general framework for drift detection (depicted in Fig. 4.8) to introduce
Hoeffding’s inequality.

Consider a batch b of observations xi , such that xi ∈ [li , hi ], with i ∈ {1, . . . , |b|}. Con-
sider also X as the computed mean of observations. For any ε threshold (ε > 0), Eq.4.9
indicates a boundary for the probability of the computed mean being different from the
expected mean (E[X ], computed from previous batches) by a ε threshold.

Pr{X − E[X ] ≥ ε} ≤ e
− 2ε2∑n

i=1(hi−li )
2

(4.9)

Equation4.10 enables estimating the error ε for a significance level of δ. HDDM estab-
lishes bounds to check the distance or inequality between the error distributions during
predictions. In other words, the difference between the number of false positives or false
negatives at batch i is compared to those in a measurement taken at i + 1 to indicate concept
drift.

εδ =
√

1

2n
ln

(
1

δ

)
. (4.10)
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4.4.2 CUSUM

CUSUM is a sequential analysis method [107], designed to detect changes in distribution
using a criterion for deciding when to take corrective action. As the name suggests, the
CUSUM involves the calculation of a cumulative sum (hence the term sequential) time series
Z . Considering the general framework, the hypothesis test is verified when Z significantly
deviates from zero.

The time series Z uses an additional quality time series (ω). An example of ω is the
residual, i.e., the difference between the model and time series. In this case, observations
from a time series zt are assigned from previous values zt−1, ωt , and a magnitude parameter
δ. It is described in Eq.4.11. When the value of zt exceeds a certain predefined threshold, it
is identified as a change point, characterizing a concept drift.

zt =
{
0, t = 1

max (0, zt−1 + ωt − δ) , t > 1
(4.11)

For problems of binary classification (having or not an event), δ can be set to zero in
Eq.4.11 and ωt should be 1, in case of an error, and −1, otherwise.

4.4.3 ECDD andMCDD

ECDD
ECDD applies an inertia-based drift detection. It uses the Exponentially Weighted Moving
Average (EWMA) as an inertial follower adopted formonitoring time series. The exponential
property progressively gives less weight to older data points as they move back in time. A
parameter λ determines the rate at which older data enters the statistic. EWMA is represented
in Eq.4.12 as zt . From the properties of EWMA, the mean and standard deviation for the
inertial time series Z at a time t are characterized in Eq.4.13. The μzt corresponds to the
time series mean (μXt ) at time t [242]. The EWMA is a preprocessing step for the general
framework depicted in Fig. 4.8.

zt =
{

μt , t = 1

λ · μt + (1 − λ) · μt−1, t > 1
(4.12)

μzt = μXt , σzt =
√

λ

2 − λ
(1 − (1 − λ)2t )σXt (4.13)

In ECDD, before a change point μt = μa , the time series varies around the follower zt .
When a change occurs, the value of μt changes to μb and zt gradually moves toward μb. In
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this case, it is possible to establish a control limit L to determine how much zt must diverge
from μa before characterizing a concept drift. Such limit is established by Eq.4.14.

zt > μa + L · σzt (4.14)

MCDD
The MCDD method compares the mean and variance of a given predictor variable a in
previous batches (Bt−1) and the current batch (bt ). It determines whether to use a parametric
or nonparametric test based on the distribution of the samples. Considering a memory size
m, Bt−1(a) = {bt−m+1(a), . . . , bt−1(a)} is the set of previous batches for the variable a.
Considering also that the current batch for the variable a is bt (a), if the expected value
for bt (a) is significantly different than the expected set of batches Bt−1(a) (i.e., E(bt ) �=
E(Bt−1)), a drift is detected. Otherwise, no drift is observed [110].

4.4.4 Page-Hinkley and KSWIN

Page-Hinkley
The Page-Hinkley test is a variation of CUSUM [107]. It considers a cumulative time series
Z expressed as zt , accumulating the difference between the values xt and the mean of X up

to time t (xt ). Equation4.15 characterizes the Page-Hinkley test (PH), where xt =
∑t

i=1 xi
t

and δ correspond to the magnitude of the allowable changes.

zt =
t∑

i=1

(xi − x̄i − δ) (4.15)

This difference signals a drift when it exceeds the threshold δ, which depends on the
acceptable false alarm rate. Increasing δ results in fewer false alarms (false positives) but
may lead to missed (false negatives) or delayed change detection.

KSWIN
Considering two consecutive batches (bt−1, bt ), theKSWIN test is a nonparametric statistical
test that compares the distributions of two data samples to determine if they differ signif-
icantly. The KS test statistic is the maximum absolute difference between the Cumulative
Distribution Function (CDF)s of the two samples.

The statistical test adopts the null hypothesis (H0) that the two batches come from the
same distribution. The alternative hypothesis (H1) establishes that the two batches come
from different distributions. Suppose the maximum absolute difference between the two
empirical CDFs exceeds the critical value at a significance level p-value (often set at 0.05).
The null hypothesis is refuted, indicating a drift in the data distribution [236].
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4.4.5 KLD

The KLD is a drift detection method that compares the probability distributions of two sam-
ples: older andmost recent.Given twoprobability distributions P (older) and Q (most recent)
of a discrete random variable X that presented in a batch with b buckets, {x1, x2, . . . , xb},
where b is the number of buckets, the KLD is defined as Eq.4.16, where P and Q are the
probability distributions of the two samples.

DKL(P(X)||Q(X)) =
B∑

i=1

P(xi ) · ln
(
P(xi )

Q(xi )

)
(4.16)

The KLD can be understood as a measure of the expected excess surprise using the actual
distribution versus the expected distribution as a divergence. To apply this method to detect
drifts, the algorithm keeps two batches (present and past) and calculates the KLD each
time new data is included, and the state is updated. The method indicates that drift occurs
whenever the KLD is above a specific threshold (such as 0.9).

4.4.6 ADWIN

ADWIN [38] uses variable-sized slidingwindows, recomputed online based on the observed
rate of change in the datawithin thesewindows. Thewindow (W ) dynamically expandswhen
there is no clear change in the context and contracts when a change is detected. If a change
is identified, it eliminates an outdated portion of the window.

ADWIN relies on the use of Hoeffding’s bound [37] to detect drift, comparing the average
difference between two sub-windows (W0 for older instances and W1 for recent instances)
within W . If the average difference is statistically significant, then ADWIN removes all
instances from W0 that are considered to represent the old concept and only retains W1 for
the next test.

4.4.7 Comparison of Drift Detectors

To better understand the methods, let us compare them using the example of Fig. 4.1. The
time series plots correspond to the predictor variable X . Let us assume a response variable Y ,
such that yi = true whenever xi is greater than four and yi = f alse otherwise. Let us also
introduce a naive prediction model M(X) that predicts all values as negative ŷi = true, ∀i .
This model is right when time series values are below four and incorrect otherwise. In this
case, drift detection is evaluated whenever an observation is processed.

Figure4.9 shows the detections made by the main methods previously presented, which
are organized in two scenarios. The methods based on error rate evaluate the model errors
(DDM, HDDM, CUSUM, ECDD) as each observation arrives. The methods based on distri-
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Fig. 4.9 Concept drift detection using DDM

bution evaluation (MCDD, KLD, KSWIN, Page-Hinkley, and ADWIN) analyze X to check
for changes in distribution during batch processing.

Regarding the error rate methods, the DDM detects drift close to time 200 when the pre-
diction model significantly increases the error. No drift is observed when the error decreases
at time 400. The HDDM, similarly to DDM, detects drift at time 200 when the prediction
model increases the error significantly. However, it is also detected between 300 and 400
since the error decreased in time 400. The CUSUM makes a detection close to time 300
when the error rate is close to maximum. Finally, the ECDD detects change points regularly
when the model error increases (at a time close to 200) until it recovers a low error (at a time
close to 400).

Regarding the distribution-based methods, the MCDD detects drifts relatively close to
the labeled concept drift in the time series. The KSWIN behaves very similar toMCDD. The
detection of KSWIN is usually slightly more distant thanMCDD. Nevertheless, the KSWIN
detects the first drift at the right moment (time 100). As expected, the Page-Hinkley can only
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detect abrupt changes in mean. The drift is discovered close to time 200. Using KLD, it is
possible to observe that the first drift is detected in the presence of volatility change. The
second one is close to the intervalswhere the distribution gets stabilized. Finally, theADWIN
cannot detect the volatility change at time 100 but reacts to other drifts with a certain delay.

Benchmarking drift detector methods has received attention recently, with works explor-
ing various methods (real and virtual) and types of drifts (gradual, abrupt, and incremental)
[244]. Some general observations can be drawn using a broad comparison, but the choice of
the best algorithm depends on the specific requirements and the type of drift to be detected.
Furthermore, the general behavior might not reproduce directly in specific domains, as it
can be observed in flight [110], IoT [1], and security [116].

4.5 AdvancedTopics

4.5.1 Multivariate and Spatial–Temporal Time Series

Thenumber of dimensions can increase the difficulty of detecting change points. Some recent
works focus on detecting change points in multivariate time series. For instance, Prabuchan-
dran et al. [232] model compositional time series with a parametric Dirichlet distribution,
which allows identifyingmultiple change points by iteratively detecting single change points
within a sliding window and using a permutation test to assess their significance. Similarly,
Hlávka et al. [134] use empirical characteristic functions to detect changes in pairs of multi-
variate time series. Their method projects vector observations into a one-dimensional space
and uses distance-based criteria and resampling procedures to detect changes in online and
offline scenarios.

Like multivariate time series, spatial–temporal time series require sophisticated methods
for detecting drifts and change points. Several studies have focused on addressing these
challenges. Amador Coelho et al. [22] use quadtrees to monitor the spatial distribution of
data in the feature space. A separate quadtree represents each class in a binary classification
problem, andmisclassified data triggers an inspection of the corresponding quadtree to detect
concept drift. Similarly, Liu et al. [178] focus on detecting regional density changes in data
streams, introducing a local drift degree (LDD) metric to measure the likelihood of regional
drifts. Theyuse a regional drift adaptation algorithm (LDD-DSDA) tomerge existing training
data with recently buffered data. Their method synchronizes density discrepancies based on
LDDmeasurements with non-drifted data, reducing the risk of overestimating drift regions.
Chen et al. [68] propose a change point detection method that combines multinomial logit
models with multidimensional latent Dirichlet allocation (LDA) to decompose attributes
into a mixture of activities. A Dirichlet multinomial regression (DMR) accounts for the
changing regularity of activity prevalence. Their method is evaluated using bike-sharing
data in New York City, capturing both spatiotemporal activities (departure days, times, and
destinations) of commuting behavior and significant changes over time.
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Some works are targeted to specific domains such as sports and industry. Kim et al.
[162] introduce SoccerCPD, a spatial–temporal change point detection method specifically
designed for analyzing soccer matches. This method differentiates between tactical forma-
tion changes and role changes in teams, distinguishing them from temporary adjustments
made during the game. Florez et al. [102] introduce CatSight, a method for detecting change
points in spatial–temporal multivariate time series tailored for industrial monitoring. Cat-
Sight uses the Common Spatial Pattern method to project multivariate temporal data into
a new space that maximizes the variance difference between classes before and after drift.
This transformation enables the extraction of the most discriminative features, which are
then used by conventional ML classifiers to detect changes in the data stream.

4.5.2 Spectral-BasedMethods

In recent years, spectral-based methods have gained attention for concept drift and change
point detection, including PCA and autoencoders. They add value to address the high dimen-
sions of multivariate time series. PCA-based methods provide dimensionality reduction to
support concept drift detection [1]. Autoencoders have been recently explored to support
concept drift detection. Some works are based on reconstruction error analysis, including
[169], where the Mann–Whitney U Test compares reconstruction losses between a refer-
ence window and recent data. Upon detecting a drift, the autoencoder is retrained with new
data to maintain performance in nonstationary environments. Other methods are based on
the latent space of autoencoders [171]. While it detects anomalies based on reconstruction
errors, concept drift is detected based on changes in the latent space using statistical tests.

Recent works also utilize autoencoders for change point detection in time series. De Ryck
et al. [84] detect change points by learning time-invariant features that remain stable within
segmentswithout change points. Theirmethod preprocesses time serieswith discrete Fourier
transforms to capture time-domain and frequency-domain information and trains autoen-
coders to distinguish between time-invariant and instantaneous features. Change points are
identified using a dissimilarity measure based on the Euclidean distance between time-
invariant features of consecutive windows. Gupta et al. [122] develop a three-phase archi-
tecture for real-time change point detection: Deep Adaptive Input Normalization (DAIN) to
normalize the data adaptively, Recursive Singular Spectrum Analysis (SSA) to decompose
and smooth the data, and an autoencoder to detect change points by analyzing reconstruc-
tion errors. The errors are compared against a dynamically adjusted threshold to identify
significant mean, variance, frequency, and autocorrelation changes. Both methods ensure
accurate and flexible detection of change points in nonstationary time series.
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4.6 Further Reading

Several surveys and books on change points are available. Aminikhanghahi and Cook [23]
present a survey for change point detection methods and Truong et al. [281] review meth-
ods for multivariate time series change points. Additionally, Chen and Gupta [66] present
parametric methods for detecting change points. Sayed-Mouchaweh et al. [251] compre-
hensively review recent developments and methodologies associated with building models
in nonstationary scenarios.

Baburoglu et al. [33] provide a bibliometric review of concept drift from 1980 to the
present, offering a comprehensive view of the subject. Hoens et al. [135] present approaches
for handling concept drift in imbalanced classification problems. Gama et al. [107] and
Khamassi et al. [157] review adaptive learning processes in data stream scenarios. Pratama
et al. [233] present incremental learning methods using recurrent fuzzy neural networks.
Bayram et al. [35] review model degradation under concept drift, and Han et al. [126]
compare passive versus active approaches for tackling concept drift.

Despite the prevalence of deep learning in building predictionmodels, addressing concept
drift poses challenges such as computational cost and the absence of new data to adapt deep
learning models. Xiang et al. [302] summarize concept drift adaptation methods under the
deep learning framework. Several studies focus on time series, including You et al. [314]
and Herbert et al. [132], which discuss orchestrating training and updating recurrent models
under concept drift scenarios. Yuan et al. [316] present concept drift adaptation for abrupt,
gradual, and recurrent types of drift. Wang et al. [292] evaluated transfer learning to support
deep learning adaptability to concept drift. Finally, we have proposed theDJEnsemblemodel
selection approach for reacting to variations in the time series distribution. The approach
adapts to time series concept drift by selecting an ensemble of pre-trained models whose
training data distribution mostly resembles the input time series distribution [223].

4.7 Conclusion

This chapter presented the fundamentals of change points, characterized by changes in time
series dynamics (distribution or autocorrelation). It also covered the difference between
offline and online analysis, with offline focusing on identifying past changes and online
aiming to detect changes as early as possible.

The chapter explored several representative change point detection methods, such as
AMOC, BinSeg, PELT, Chow Test, GFT, SCP, and CF. Their usage in a synthetic example
helps to illustrate the properties in detecting various changes, providing insights into their
practical applications and limitations.

The chapter also covered concept drifts, which are changes in the relationship between
independent and dependent variables over time. Drifts are classified as virtual or real and
organized based on their occurrences, which are abrupt, incremental, gradual, and reoccur-
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ring. Drift detection methods are organized based on data distribution, error rate, or multiple
hypothesis tests. The chapter also presented the main drift handling approaches, includ-
ing baseline (no action), passive (continuous model updating), and active (model updating
upon detecting drift). Main drift detection methods are presented, including DDM, HDDM,
CUSUM, ECDD, MCDD, KSWIN, Page-Hinkley, and ADWIN.

Advanced topics ended this chapter by covering multivariate and spatial–temporal time
series. As a trend, many novel methods, especially those based on spectral methods, are
expected to support multivariate, spatial–temporal, trajectory, and streaming time series.
Novel methods might also adopt a high level of time series preprocessing to support non-
stationarity.
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5.1 Motifs

Motif discovery identifies recurring sequences in a time series, where the repeated subse-
quence is initially unknown and discovered through scanning. Motif discovery has broad
applications, including anomaly detection, where identifying recurring patterns highlights
deviations from the typical observations are often signaled as anomalies [282].

In financial time series analysis, motif discovery informs trading strategies and risk man-
agement by uncovering patterns in vast time series, such as stock prices and trading vol-
umes [285], whereas in bioinformatics, motif discovery is essential for identifying repeated
sequences in genomic sequences [258]. Similarly, in environmental monitoring, detecting
recurring patterns in sensor data related to temperature, humidity, or pollution levels helps
understand environmental changes and address issues such as climate change [230].

In this context, we formalize and detail the general concepts related to motif discovery.
Still, before formalizing it, we present the concept of sequence occurrences in a time series,
from which the definition of a motif is derived. Let q be a sequence of size p. ConsiderW as
the set of sliding windows of size p obtained from a time series X . As described in Eq.5.1,
the set of occurrences of q in X is the set of windows wi of W that are similar to q [252].

occurs(q, X) = {wi } | ∀wi ∈ W ,wi ≈ q (5.1)

The sequence q is a motif in X with support σ if and only if q occurs in X at least σ

times, as described in Eq.5.2. The length p of a motif q is also known as word size [44].

moti f (q, X) ⇐⇒ |occurs(q, X)| ≥ σ (5.2)

Some definitions of motifs require that their occurrences should not be trivial. The
sequences in occurs(q, X) should have minimal overlaps regarding the time they occur,
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Fig. 5.1 Basic taxonomy for motif discovery

usually achieved using exclusion zones (between 50 and 80%) among them [199]. The
most significant motif (1-motif) in X is the most occurred subsequence, disregarding trivial
matches formed by overlapping subsequences. Consequently, the k-motif is the kth most
occurred motif in the time series [176]. Another important aspect is the motif’s signifi-
cance in a time series. If a motif q occurs too frequently, it loses the expected property
of being previously unknown. Initially, such subsequences are characterized as motifs but
may be classified as false motifs if they have little relevance and offer minimal or no useful
information [71].

We have organized the main concepts influencing motif discovery in a taxonomy (see
Fig. 5.1) that includes time series indexing, similarity functions, and discovery methods, all
described in the following sections.

5.2 Time Series Indexing

Many proposed methods for discovering motifs in time series are computationally intensive
[221]. Therefore, various time series indexing techniques are used to improve the effec-
tiveness of motif discovery methods in reducing computational resources. These techniques
include data preprocessing, such as normalization and encoding, to enhance the performance
and precision of the results [199].

Normalization
Certain properties like scale must be verified before similarity searches, making normal-
ization an important step in data preprocessing [156]. A detailed description of various
normalization techniques is presented in Chap.2 and summarized as follows.

One of the most widely used normalization techniques is the Z-Score, which results in
a time series with a mean of zero and a variance of one. Other normalization techniques
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include Min-Max, unit length, and mean normalization. The Min-Max scales data to a
specified range (e.g., [0, 1]) [210]. Unit length normalization scales data points so that the
entire time series has a length of one, while mean normalization adjusts data by subtracting
the mean and dividing by the range [217].

Advanced normalization techniques, such as Adaptive Scaling and Adaptive Normal-
ization, introduce resilience to nonstationarity. Adaptive Scaling computes a scaling factor
between pairs of time series to improve their comparability, while Adaptive Normaliza-
tion dynamically adjusts the scaling factor based on local characteristics of the time series,
enhancing comparability between different time series [209]. Each method addresses spe-
cific distortions that may aid the motif discovery process [217].

Piecewise Aggregate Approximation
PiecewiseAggregateApproximation (PAA) is a temporal aggregation technique that reduces
the number of observations in a time series. Given a time series X with n observations, the
number of observations is reduced to n′, resulting in X ′. Each observation in X ′ is the mean
of equally time observations concerning X , where X is partitioned into k segments, such
that k = n

n′ . Equation5.3 characterizes this transformation [305]. The overall complexity of
PAA is O(n + k).

x ′
j =

n′· j∑

t=n′( j−1)+1

xt
n′ (5.3)

Figure5.2a shows a fraction of patient #102 heartbeat in an electrocardiogram1 nor-
malized with Z-Score. Figure5.2b illustrates PAA applied to that patient’s heartbeat using
n′ = 20.

Symbolic Aggregation Approximation
Time series observations are typically real values, and processing them directly in numerical
representation may not be efficient for motif discovery [82]. Discretization methods, such
as SAX, represent a range of values as symbols, enabling the technique to support exact
match search to speed up motif discovery. SAX partitions the time series into ranges, each
associated with a particular symbol [176]. The SAX alphabet size determines the number of
partitions for the domain, and all values are replaced by their respective associated symbol.
Given a time series X with n observations and an alphabet (a1, . . . , am) of sizem, the values
of X are divided into m ranges (e.g., [−∞, β1], . . ., [βm−1, ∞]) according to the Gaussian
distribution function, with each value xi mapped to an alphabet value ak [175]. Equation5.4
describes the transformation from a time series X to a SAX-based time series Y using an
alphabet of size m. The overall complexity of SAX is O(n + m · log(m)).

1 Available at MIT-BIH [227].
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Fig.5.2 Fraction of patient #102 heartbeat in an electrocardiogram fromMIT-BIH normalized using
Z-Score (a), PAA applied to the heartbeat example using n′ = 20 (b). The figure also presents the
SAX encoding thresholds for an alphabet size of five

yt =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a1, xt ∈ [−∞, β1],
a2, xt ∈ [β1, β2],
· · ·
am, xt ∈ [βn−1, ∞]

(5.4)

It is common to applySAX[175] after applyingPAAas the temporal aggregationprovided
by PAA decreases the influence of the residual component of a time series. This enables
the discovery of motifs that are more related to trend and seasonal components and, as
a consequence, are more representative of a phenomenon. Furthermore, SAX indexing is
usually applied on a sliding window basis, where the sliding window size is known as word
size. Figure5.2b shows intervals for converting a patient’s heartbeat in an electrocardiogram
into the SAX alphabet of size five. Considering a word size of four, the first sequence would
be ADAA. This example illustrates SAX, but a larger alphabet size should be adopted for
motif discovery using real-world data.
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Other Indexing Techniques
Recent indexing techniques include Graph-based Indexing, Deep Learning-Based Index-
ing, and Hybrid-based Indexing [217]. Graph-based Indexing uses enhanced adaptive PCA
combined with hierarchical navigable Small World graphs to cluster time series and build
graphs for each cluster. This technique accelerates indexing, significantly reduces memory
usage, and maintains high accuracy in similarity searches.

Deep Learning-Based Indexing uses deep learning architectures based on SEAnet to
enhance time series indexing. SEAnet leverages neural networks to learn data series embed-
dings, capturing intricate patterns and relationships and facilitating faster and more accurate
similarity searches than traditional methods. SEAnet is effective for high-dimensional and
complex time series requiring high precision and speed [12].

Hybrid-based Indexing combines traditional indexing techniques, such as PAA and SAX,
with modern techniques such as Deep Learning-Based Indexing and Graph-based Indexing.
Hybrid-based Indexing leverages the strengths of each technique to balance precision and
computational efficiency, applying PAA and SAX for initial data reduction and discretiza-
tion, followed by deep learning embeddings or graph-based clustering, resulting in scalable
time series indexing frameworks [177].

5.3 Similarity Measures

Motif identification relies on evaluating the similarity between time series subsequences
to identify motif candidates, with several authors proposing efficient methods for this pur-
pose [199, 279]. These methods are based on measuring the distance between time series
and sequences, where higher similarity corresponds to lower distance. These measures are
categorized into distance-based and elastic measures, as presented below.

5.3.1 Distance-BasedMeasures

Distance-based measures, or lock-step measures, compare corresponding points in two time
series,maintaining a one-to-one correspondence throughout the series [217]. The i th point of
one time series is aligned and comparedwith the i th point of another time series, maintaining
a one-to-one correspondence throughout the entire series. Common lock-step measures
include the Euclidean Distance and the Hamming Distance.
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Euclidean Distance
The most widely used distance measure in time series analysis is the Euclidean Distance,
which measures the distance between points from different sequences. Given two sequences
q and q ′, both of size p, the Euclidean distance EDist(q, q ′) is obtained by Eq.5.5.

EDist(q, q ′) =
√√√√

p∑

i=1

(qi − q ′
i )
2 (5.5)

Hamming Distance
The Hamming Distance between two sequences of equal length is the number of positions at
which corresponding observations differ, thus measuring the minimum number of substitu-
tions required to change one sequence into another. A Hamming Distance(q, q ′) is obtained
by Eq.5.6, derived from the sum of distances between each Hamming Item, as described in
Eq.5.7. The distance between two items (x and y) is zero when equal and one otherwise.

HDist(q, q ′) =
p∑

i=1

H I tem(qi , q
′
i ) (5.6)

H I tem(x, y) =
{
1, x 
= y,

0, x = y
(5.7)

Other Distance-Based Measures
Other significant distance-based measures for time series analysis include Manhattan Dis-
tance, Canberra Distance, and Chebyshev Distance. Manhattan Distance, also known as
L1-norm or City Block Distance, sums the absolute differences between corresponding
points in two sequences, offering robustness to outliers. Canberra Distance, a weighted
version of Manhattan Distance, emphasizes differences where values are small, providing
sensitivity to minor changes. Chebyshev Distance, or L∞-Norm, measures the greatest dif-
ference between corresponding elements of the sequences, focusing on maximum deviation
and offering robustness in scenarios where large differences are critical. These measures
maintain a one-to-one correspondence between points in the series [217].

5.3.2 Elastic Measures

Elastic measures compare time series by allowing for nonlinear alignments between
sequences, accommodating variations in timing and phase. Unlike distance-based mea-
sures (such as Euclidean Distance), which require a one-to-one correspondence between
points [87], elastic measures handle time series with different lengths, speeds, or slight tem-
poral distortions. This is particularly true when observing the same phenomenon multiple
times where differences in elapsed time are expected [54]. This occurs in applications such
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as speech recognition, motion capture analysis, and financial market monitoring, as they
capture underlying similarities despite temporal misalignments [217]. DTW is the most
well-known elastic measure, aligning sequences by warping their time axes to minimize the
distance between corresponding points. Other examples include Edit Distance with Real
Penalty and Move–Split–Merge.

Dynamic Time Warping
DTW is a widely used elastic measure. It uses dynamic programming to align time-phased
time series by building a matrix of quadratic distances between points. A path through the
matrix that minimizes the total cumulative distance finds the best match between the series.
When the goal is to compute the measure (not the warping path), then the matrix can be
replaced by loading two columns simultaneously (one of each at a time series).

DTW can be computed by measuring the number of editions needed to transform one
sequence into another. Given two sequences q and q ′, respectively, with sizes p and p′,
DTW measures the editing needed to transform q and q ′. Editing operations for each pair
of observations include: (i) replacing the next element of q with the next element of q ′; (ii)
elongating an element, matching the next element of q to the last element of the already-
matched prefix of q ′ or vice versa. DTW computes the minimal transformation cost by
filling the entries of a p × p′ matrix (dtwq,q ′

). Assuming no elongation operation and the
univariate time series scenario, Eq. 5.8 describes DTW between two sequences q and q ′,
with a further lookup on the pre-computed matrix expressed in Eq.5.9.

DTWDist(q, q ′) = dtwq,q ′
p,p′ (5.8)

dtwq,q ′
i, j = min(|qi − q ′

j | + dtwq,q ′
i, j−1, |qi − q ′

j | + dtwq,q ′
i−1, j , 2|qi − q ′

j | + dtwq,q ′
i−1, j−1)

(5.9)
Figure5.3 shows DTW between two sequences: T1 =< 1, 3, 2, 4, 3 > and T2 =<

1, 2, 3, 3, 4 >. The DTW between the two sequences is 3. Figure5.3a provides the dtw
matrix, enabling follow-up on the computed distance. The solution for the computation of
dtwT1,T2

3,4 is expressed in Fig. 5.3b, which is equal to 2.

Edit Distance with Real Penalty

Edit Distance with Real Penalty is another elastic measure designed to compare time series
by considering alignment and the magnitude of differences between points. Edit Distance
with Real Penalty introduces a real penalty for gaps, aligning sequences with insertions and
deletions. This method is effective in applications where both temporal alignment and mag-
nitude deviations are important, such as speech and gesture recognition. By incorporating
penalties for alignment errors, Edit Distance with Real Penalty ensures that comparisons
reflect underlying patterns [109].

Move–Split–Merge
Move–Split–Merge addresses the shortcomings of traditional DTW by allowing flexible
operations, such as moving, splitting, and merging points. This measure effectively handles
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Fig. 5.3 DTW between two sequences: T1 (< 1, 3, 2, 4, 3 >) and T2 (< 1, 2, 3, 3, 4 >) (adapted
from Buza [54])

time series with structural variations and complex temporal patterns, offering superior clus-
tering and classification tasks. Move–Split–Merge enhances the robustness of time series
analysis by accommodating various forms of temporal distortions and structural changes
[136].

Other Elastic Measures
Other elastic measures handle temporal distortions and structural variations, including
Longest Common Subsequence, TimeWarp Edit Distance, Edit Distance on Real Sequence,
WeightedDynamicTimeWarping (WeightedDTW), andFastDynamicTimeWarping (Fast-
DTW). The Longest Common Subsequence identifies the longest subsequences that can be
matched between two different time series, useful in noisy data applications. Time Warp
Edit Distance integrates both time and amplitude dimensions to compare sequences, bal-
ancing alignment flexibility and penalization of distortions. Edit Distance on Real Sequence
extends traditional edit distance concepts by incorporating real-valued penalties, effective
in varying data precision scenarios. Weighted DTW introduces weights to penalize cer-
tain alignments, enhancing robustness against over-compression. Finally, FastDTW offers
a scalable approximation of DTW, significantly reducing computational complexity while
maintaining alignment accuracy, making it suitable for large-scale time series [136, 217].

Lower Bounds
Lower bounds are fundamental in time series similarity searches, especially when using
elastic distancemeasures. Elasticmeasures, such asDTWorEditDistancewithReal Penalty,
allow flexible alignments and distortions but are computationally expensive. Lower bounds
offer a quick, approximate distance measure that can eliminate non-promising candidates
before exact computations are performed, significantly reducing computational load [218].

A lower bound provides a distance estimate that is always less than or equal to the actual
elastic distance between two time series. This ensures that if the lower bound distance
between a query and a candidate time series exceeds the current best match, the candidate
can be discarded without further computation. This approach speeds up the overall search
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process by reducing exact distance calculations. Effective lower bounds are tight, meaning
their values are close to the actual elastic distances, maximizing pruning power.

Various methods construct lower bounds tailored to specific elastic measures. For exam-
ple, LB_Keogh, a well-known lower bound for DTW, uses envelope-based summaries of
the time series, constructing upper and lower envelopes around the query time series, then
computing the distance to the candidate series. This method effectively captures the global
shape of the series while providing a quick distance estimate. Other lower bounds, such as
LB_Improved, enhance this method by considering the projection of the candidate series
onto the query envelopes, improving tightness at the cost of increased computation [168].

Effective lower bounds balance tightness and computational efficiency. While tighter
lower bounds provide better pruning, they can bemore complex and costly to compute. Thus,
lower bounds have been proposed to strike an optimal balance, providing substantial pruning
benefits without excessive overhead. The Generalized Lower Bounding framework offers
a structured method for creating effective lower bounds across various elastic measures,
enhancing time series similarity search efficiency and accuracy [218]. A key innovation
is its ability to construct cache summaries for query and target time series, using these
summaries to compute lower bounds. By leveraging these summaries, Generalized Lower
Bounding approximates the distance between time series, pruning non-promising candidates
before performing more expensive elastic distance computations.

5.4 Motif Discovery Methods

Motif discoverymethods can be broadly organized intomain groups: Brute-ForceDiscovery,
Index-Based Discovery, Random-Projection Discovery, Early-Abandon Discovery (EAD),
and Matrix Profile (MP). Methods based on indexing are also called approximate methods,
while those that compute the distance between sequences to discovermotifs are termed exact
methods [200].

Motif discovery approaches also differ in their focus. Some methods aim to find pairs of
the most similar subsequences, such as those based on the MP, which is the state of the art
for pairwise-based motif discovery. Others provide a broader search, encompassing sets of
sequences that are approximately similar according to an established threshold [252]. We
havemade representative motif discovery methods available through our publicly Harbinger
R package (see AppendixA).

5.4.1 Brute-Force Discovery

The Brute-Force Discovery method is the simplest but has a high computational cost, in
particular, for discovering longer sequences in large time series [200]. It is best suited
for discovering shorter sequences. This method is exhaustive, performing all possible
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comparisons between subsequences in a time series, ensuring complete coverage and
accuracy [279].

Algorithm5.1 outlines a Brute-Force Discovery method for motif discovery. The process
begins by normalizing the time series X using Z-Score. It then extracts all pairs of sequences
of sizeq and computes their distance. If the distance is below ε, the occurrences are associated
with the sequence p. When a sequence p has occurrences greater than or equal to σ , it is
identified as a motif. Assuming n is the length of the time series, the complexity is O(n2)
times the complexity of the distance function.

1: procedure BruteForce(X , q, σ, ε)
2: X ′ ← zscore(X)

3: moti f s ← ∅
4: for i ← 1 to |X ′| − q do
5: p ← subseq(X ′, i, q)

6: occurences ← i
7: for j ← i + 1 to |X ′| − q do
8: p′ ← subseq(X ′, j, q)

9: if dist(p, p′) < ε then
10: occurences ← occurrences ∪ j

11: if |occurrences| ≥ σ then
12: moti f s ← moti f s ∪ < p, occurrences >

13: return moti f s

Algorithm 5.1: Brute-Force Discovery principle

5.4.2 Index-Based Discovery

The Index-Based Discovery method introduces a tolerance for motif discovery by indexing
time series using PAA, SAX, or both, rather than computing exact distances between sub-
sequences. These indexes incorporate a search tolerance for motifs. The Enumeration Of
Motifs Through Matrix Approximation algorithm is a representative example of this cate-
gory [221], with some improvements incorporating hash principles during motif discovery
[305].

Algorithm5.2 outlines an Index-Based Discovery method for motif discovery. It nor-
malizes the time series, applies PAA and SAX, and then computes the sliding window
for the indexed time series Y ′. Motifs are efficiently identified by grouping and filtering
sequences with occurrences greater than or equal to σ . The complexity of the algorithm is
O(n · log(n)).
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Fig. 5.4 Most similar motif with a word size of 25 detected using Index-Based Discovery for the
patient #102 heartbeat in an electrocardiogram from MIT-BIH time series

1: procedure I ndex Based(X , a, k, q, σ )
2: X ′ ← zscore(X)

3: Y ← PAA(X ′, k)
4: Y ′ ← SAX(Y , a)

5: W ← sw(Y ′, q)

6: moti f s ← group_by_having(W , σ )

7: return moti f s

Algorithm 5.2: Index-Based Discovery discovery

Figure5.4 shows motif discovery using SAX with Index-Based Discovery for patient
#102’s heartbeat in an electrocardiogram from MIT-BIH. Motifs are detected in regular
heartbeats, while heartbeats between 3500 and 4200 lack those regular motifs.

5.4.3 Random-Projection Discovery

The Random-Projection Discovery method addresses large time series by reducing dimen-
sionality and randomly sampling data, optimizing execution time and computational
resources in motif identification [53, 71]. In Random-Projection Discovery, similar sub-
sequences are searched using hash-based methods for matching specific random elements
of the sequence, often incorporating sliding windows and SAX. The method adds a toler-
ance for Hamming Distance, inspired by genetic principles related to DNA sequences with
a certain degree of mutation allowed [53].

Algorithm5.3 outlines the Random-Projection Discovery method. It assumes an indexed
time series Y , checks a motif length q, and uses a maximumHamming Distance of ext and a
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minimum support σ . After initial indexing, a slidingwindowof size q + ext is created, and q
columns are randomly projected fromW . Motifs are then identified by filtering observations
with occurrences greater than or equal to σ .

1: procedure RandomProjection(X , q, ext, σ )
2: Y ← index(X) � Assuming Z-Score and SAX
3: W ← sw(Y , q + ext)
4: W ′ ← project(W , q)

5: moti f s ← group_by_having(W ′, σ )

6: return moti f s

Algorithm 5.3: Random-Projection Discovery discovery

One interaction is insufficient for large motifs, as subsequences may not fully map as
motifs, covering only a small part of the sequence. To address this, the Random-Projection
Discovery process is applied multiple times, with a collision matrix built for different exe-
cutions. The motif identification selects indexes with the highest values in the collision
matrix, representing potential motifs, although this property is probabilistic [71]. Random-
Projection Discovery can also be applied directly to numeric time series, speeding up cases
where sequences are not motifs [305].

5.4.4 Early-Abandon Distance

The EAD methods optimize Brute-Force Discovery by abandoning distance computations
early when the partial distance exceeds the accepted error ε. For example, in computing
Euclidean distance (Euclidean Distance), rather than applying the square root after all com-
ponents are computed, the accepted error ε2 is squared, and the sum of each component
is checked to see if it exceeds ε2 [200]. This method has two advantages: faster distance
checking and reduced search space by avoiding trivialmotifs fromneighboring observations.
In contrast, the general complexity remains the same as Brute-Force Discovery, empirical
evaluations on real data showing significant computational savings [200].

5.4.5 Matrix Profile

TheMP is a distance-based data structure representing the distance of a sequence of size q to
the most similar subsequence in the time series. It can use numeric data directly and employs
a matrix to support subsequence comparisons, identifying similar sequences (motifs) [311].
It is called MP because a naive implementation computes all pairwise distances for all
sequences in the time series, storing them in an n-by-n matrix. The minimum value in
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each column, excluding values near the diagonal, forms an n-length vector, the MP. This
data structure also includes a MP Index, which records the location of the closest matching
subsequence for each subsequence [83, 312].

MP enables all-pairs-similarity-search on two different time series. In this case,MPbuilds
a vector containing the z-normalized Euclidean distances between each subsequence from
the first series and its closest matching subsequence from the second. Formally, given two
normalized time series of n observations, Y and Y ′, and a subsequence length q, the MP M
is a matrix in Rn−q+1, and a MP index is a vector I in Rn−q+1. Ii contains the index of the
start of the subsequence of Y ′ with length q that best matches subseq(Y , i, q), while Mi

contains the corresponding distance. In a self-join where Y = Y ′, an additional constraint,
the exclusion zone, prevents trivial matches [311].

A notable feature of the MP is its ability to detect discords, which are anomalous or
unusual subsequences in the time series. By identifying the highest values in the MP, sub-
sequences dissimilar to their nearest neighbors can be flagged as potential discords [83].

The MP was originally introduced alongside the Scalable Time Series Anytime Matrix
Profile (STAMP) algorithm [311], which calculates the MP over a time series, as depicted in
Algorithm5.4. Internally, STAMP uses the MASS similarity search algorithm, which itera-
tively calculates the distance of each subsequence of a time series X to every subsequence
of another time series X ′ using the FFT distance function for fast computation [312].

1: procedure STAMP(X , X ′ = nil, q)
2: Y ′ ← Y ← zscore(X)

3: if X ′ 
= nil then
4: Y ′ ← zscore(X ′)
5: M ← infs, I ← zeros
6: for i ← 1 to |Y ′| − q do
7: seq ← subseq(Y ′, i, q)

8: Di ← MASS(seq,Y )

9: Mi , Ii ← eleMin(M, I , Di , i : (i + q − 1))

10: return {P, I }

Algorithm 5.4: STAMP Algorithm

Algorithm5.4 works as follows. At line 5, the MP M and MP index I are initialized.
From lines 6 to 9, distance profiles D are computed using each subsequence seq from Y ′.
The pairwise minimum for each element in D is compared with the paired element in M
(e.g., min(Di , Mi ) for i = 1 to |Y ′|). As the minimum pair operations are performed, Ii is
updated with seq when Di ≤ Mi . Finally, the result M and I are returned at line 10.

When Y = Y ′, STAMP computes the MP for general similarity join, ignoring trivial
matches in D during the element-wise minimum (eleMin) at line 9. The overall complexity
of the algorithm isO(n2 logn),wheren is the length of the time series. Since all subsequences
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Fig. 5.5 Most similar motif with word size of 25 detected using MP for the patient #102 heartbeat
in an electrocardiogram from MIT-BIH time series

are compared using the MASS algorithm, the n log n factor comes from the FFT distance
subroutine invoked inside MASS. A later refinement, SCRIMP, improves the complexity,
leading to a O(n2) algorithm. Although both STAMP and SCRIMP may appear slow, they
are anytime algorithms, meaning they can compute a good approximation to the MP even
in massive time series while converging toward the true MP.

Figure5.5 shows motif discovery using MP with STAMP for patient #102’s heartbeat in
an electrocardiogram from MIT-BIH. Similar to the SAX Index-Based Discovery method,
motifs are detected in regular heartbeats, while heartbeats between 3500 and 4200 lack
regular motifs.

5.5 AdvancedTopics

This section explores advanced topics in motif discovery, including multivariate time series,
variable motif size, motif ranking, big data, and novel data structures.

5.5.1 Multivariate Motif Discovery

Various approaches address multivariate time series, which can be grouped into four main
categories: (i) dimensionality reduction; (ii) combination of discovery; (iii) indexed-based
discovery; (iv) exact match [179, 190, 291, 310]. These solutions can be applied separately
or together.

Reduction of dimensionality. This straightforward approach applies dimensional reduc-
tion techniques, such as PCA, to transform a multivariate problem into a univariate
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one [274]. In some cases, due to many dimensions, time series are first projected onto a
lower-dimensional subspace and then subjected to dimensionality reduction techniques for
univariate motif discovery.

Combination of discovery. Univariate motif discovery methods are applied to each
dimension of themultivariate time series independently, treating each as a separate univariate
time series. The identified motifs are combined using logical operations (AND or OR) to
form multivariate motifs [284].

Indexed-based. Indexed-based methods discretize the data and provide temporal aggre-
gation for time series using SAX and Discrete Fourier Transform for discretization and PAA
for temporal aggregation, speeding up themotif discovery process inmultivariate time series
[262].

Exact match. Exact match methods rely on distance measures to capture the dissimi-
larity between multivariate time series using a particular distance (e.g., Euclidean, DTW,
correlation). These distances are then used within clustering or pattern-matching algorithms
to identify motifs [16, 311].

5.5.2 Variable Motif Size

In the methods presented so far, the motif discovery methods are based on a fixed motif
size (i.e., the length of the desired subsequences is fixed). However, some methods enable
discovery without specifying the motif size or by establishing a range of motif sizes to
search [193, 208]. For example, Tang and Liao [275] find motifs of size k (fraction of a
larger motif) and then concatenate discovered motifs to search for more complex ones.
Mueen [198] presents a method for discovering varying-sized motifs using the concept of
cover, similar to generating candidates in sequence mining. Linardi et al. [177] introduce a
framework that provides an exact motif discovery algorithm, finding all motifs and discords
in a range of motif sizes.

5.5.3 RankingMotifs and Occurrences

After motif discovery, an important task is sorting motifs according to their relevance [58].
A standard classification method is k-motif, which considers the number of occurrences in
a time series. Motifs can also be sorted by relevance, with those resembling a straight line,
i.e., constant observations, being lower-ranked or discarded depending on the data domain
[71].

Various methods have been proposed to evaluate motif significance and relevance. One
approach is information gain, which measures the likelihood of a motif’s occurrence [58].
Log-odds consider the rarity of a motif by comparing its occurrences with the expected
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chance basedonprobabilistic distribution [307].Castro andAzevedo [58] propose estimating
motif frequency based on Markov Chain models, comparing actual and expected frequency
using hypothesis tests.

Some motif discovery methods naturally rank motifs by similarity, such as MP, which
returns pairs of motifs ranked by similarity [311]. Other methods rank motifs using different
metrics, potentially influenced by the type of time series studied. Borges et al. [44] propose
ranking motifs based on a balance among occurrences, motif signal entropy (for indexed
motifs), and occurrence density, with closer occurrences ranked higher.

5.5.4 Big Data

Big data brings unique challenges for motif discovery, such as improving distance com-
putation. For example, Rakthanmanon et al. [237] and Alaee et al. [17] enhance DTW
computation for motif discovery. Alaee et al. [17] introduced SWAMP, based on MP. Fur-
thermore, Mueen et al. [201] proposed a disk-aware algorithm for discovering exact motifs
in large time series.

Other works focus on processing indexed time series. Castro and Azevedo [57] intro-
duced iSAX (iSAX) for motif discovery using PAA and SAX. Some works also address
the speed of processing time series collected in streaming environments. Fuchs et al. [104]
introduced SwiftMotif, designed for streaming data. Novel methods to improve large time
series management include the mSTAMP algorithm, which builds on MP [330].

5.5.5 Novel Data Structures andMethods

Many new data structures empower motif discovery usingMP, such as contextMP, Scalable
Time series Ordered-search Matrix Profile (STOMP), and AAMP. Context MP establishes
a searching constraint for MP, enabling the discovery of structures temporally close to each
other [83].

STOMP is similar to STAMP [154] and can be seen as a highly optimized nested loop
search with repeated calculation of distance profiles as the inner loop. However, STOMP
performs an ordered search, reducing time complexity by O(n log n) by exploiting the
locality of searches.

AAMP [12] is an efficient algorithm for computing MP with pure (non-normalized)
Euclidean distance, avoiding the need for Z-Score normalization. Major improvements and
novel applications of MP are detailed in Keogh [153].
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5.6 Conclusion

This chapter covered motif discovery, the process of identifying recurring sequences within
a time series. It provided fundamental concepts, formalizing motifs and the conditions for
their occurrence. The chapter presented major preprocessing techniques for handling the
computational complexity of motif discovery, including normalization using Z-Score to
standardize data, PAA to reduce dimensionality by averaging segments of the time series,
and SAX to convert time series into symbolic representations for easier pattern recogni-
tion. Advanced indexing techniques, such as graph-based, deep learning-based, and hybrid
methods, were also presented to enhance the efficiency of motif discovery.

Similarity assessment is critical for motif discovery. Distance-based measures like
Euclidean and Hamming distances offer direct comparisons, while elastic measures, such
as DTW, Edit Distance with Real Penalty, and Move–Split–Merge, enable nonlinear align-
ments. Lower bounds provide approximate distance measures to prune non-promising can-
didates, improving computational efficiency.

The chapter detailed the main motif discovery methods: Brute-Force Discovery, which
compares all possible subsequences; Index-Based Discovery, which enhances efficiency
using indexing techniques like PAAandSAX;Random-ProjectionDiscovery,which reduces
computational load through dimensionality reduction and probabilistic methods; EAD,
which optimizes brute-force methods by terminating calculations that exceed a threshold;
and MP, which uses a matrix to find and rank similar subsequences.

Advanced topics were also introduced, including multivariate motif discovery, variable
motif size, motif ranking, big data processing, and novel data structures and methods. These
topics highlight new opportunities for innovative methods and techniques, such as address-
ing nonstationary time series, handling multivariate and spatial–temporal data, filtering and
ranking motifs to speed up discovery, and combining index-based and distance-based meth-
ods as a promising direction for future research.
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6.1 OnlineVersus Offline Scenarios

Event detection is the process of discovering events in a time series, whether by recogniz-
ing past events (offline detection) [214], detecting real-time events (online detection) [32],
or predicting future events before they occur (online prediction) [325]. It is fundamental
in surveillance and monitoring systems and has gained significant research attention, in
particular, in applications involving large time series from critical systems [140].

Various methods have been developed for time series event detection [81], each with
distinct characteristics or assumptions about time series distribution. In classification-based
event detection, a time series is divided into training and test sets, with the test set containing
recent data [139]. The model is built using the training set, often partitioned using time
series cross-validation to optimize hyperparameters, and evaluated with the test set [125].
This traditional scenario is depicted in Fig. 6.1a.

Event detection from streaming data involves continuous observations. The data times-
tamp must be considered even if the entire stream is stored in batches. Training uses past
data to predict more recent data, mimicking streaming scenarios. Figure6.1b shows the i-th
batch (training data) used to build a model for evaluation with the next batch (i + 1) (test
data). For example, this methodology is crucial when studying concept drift.

6.2 Online Detection

Online detection identifies events as observations arrive in a streaming scenario. Unlike
offline event detection, where the entire time series is available, online detection requires
sequential analysis of each observation as it arrives, with all processing and learning con-
ducted online. In this case, an online or streaming time series X is composed of continuous
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Fig. 6.1 Characterization of training and testing during classification: a traditional scenario; b:
streaming scenario (adopted from Giusti et al. [110])

input:< . . . , xt−2, xt−1, xt , · · · >. At each time t , a model trained on previous observations
< . . . , xt−2, xt−1 > determines whether the current behavior is unusual with the arrival of
the next input xt+1. The time series model might be continuously updated [9].

In online detection, time series is not split into static train/test sets, and algorithms cannot
look ahead. Thus, operating in an unsupervised or semi-supervised manner is often neces-
sary. Early detection of events in streaming applications is important, providing actionable
information to prevent possible system failures. However, there is a tradeoff between fast
detections and false positives, in which frequent inaccurate detections may lead to the algo-
rithm alerts being ignored [228].

Applications requiring uninterrupted monitoring of network infrastructure events might
quickly generate real-time data (fast data) [80]. In fast data, information undergoes dynamic
changes within short intervals ranging from seconds to milliseconds. A substantial volume
of data arrives continuously, making streamed data analytics critical for event analysis and
decision-making [32].

Detecting events in fast data has significant applications across various industries, yet
providing resilient solutions remains challenging [32]. Current approaches for online detec-
tion can be categorized into two groups based on their modeling methods. The first group
includes static models trained on large data samples and deployed on data streams, remain-
ing unchanged during execution. The second group involves dynamic models initialized on
a data sample and then incrementally updated as new data arrives.

Accommodating large volumes of streaming data in a machine’s main memory is often
infeasible. Full-memory approaches, depicted in Fig. 6.2a, which consider all observations
(batches) seen so far, are impractical [142]. Hence, solutions that maintain only a fraction
of the data are required.

Data models can be retrained using recent data batches or trained incrementally by con-
tinuous updates. Incremental algorithms process input examples individually (or batch by
batch) and update the data model after receiving each example. The model update for any
new data batch is based on the previous one (Fig. 6.2b). Incremental algorithms may also
access previous or most representative samples using partial (windowed) memory, as shown
in Fig. 6.2c [107].
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Fig. 6.2 Memory management for online event detection: full-memory, no-memory, or windowed
memory. Solid batches are used for training. Dashed batches are being tested. Adapted from Iwashita
and Papa [142]

Learning algorithms often need to operate in dynamic environments that can change
unexpectedly. A desirable property of these algorithms is their ability to incorporate new
data, leading to the stability–plasticity dilemma [89]. How can a learning system remain
adaptive to significant changes while stable in response to irrelevant changes?

If the data-generating process is nonstationary, the underlying concept may change over
time. Learning in nonstationary environments requires adaptivemethods that monitor under-
lying changes and adaptmodels accordingly. Given that this holds formost practical applica-
tions, algorithms that effectively and efficiently learn from and adapt to evolving or drifting
environments are essential. Adaptive learning algorithms extend incremental learning sys-
tems by adapting to changes in the data-generating process over time [251].

There is an intrinsic relationship between nonstationarity and concept drift [107]. When
concept drift occurs, it is possible to characterize a time t when the concept of sequences
before t differs from that of sequences after t . Concept drifts happen unexpectedly, but
changes may occur abruptly, incrementally, or gradually, or previously seen concepts may
reoccur. Models must adapt to new definitions of typical data. Adaptive learning involves
real-time updating of predictive models to respond to concept drifts [107].

Adaptive learning algorithms are based on either active or passive learning. Active learn-
ing algorithms aim to detect concept drift, which is related to detecting change point events.
Passive learning algorithms update the model with each new data input, regardless of drift,
and may struggle to detect change points [89].
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Event detection for online applications is fundamentally different from offline detection.
Most existing event detection algorithms do not directly apply to streaming applications
[9], creating a demand for reliable online detection methods. Over the past decade, interest
in online detection applications has grown, driven by the need to analyze IoT sensor data
and automated system monitoring [32]. Besides event detection in streaming data, some
problems require fast and real-time reactions, known as fast event detection.

6.3 Online Prediction

Event detection and online detection identify historical or ongoing events. Online prediction,
on the other hand, forecasts future events, helping mitigate potential issues through early
warnings. Online prediction is similar to time series prediction but focuses on predicting
whether a target event will occur within a future time window [151].

Online prediction methods use historical time series data to build a predictive model,
which is then used for online predictions. These methods generally apply ML, data mining,
pattern recognition, or statistical methods. Despite extensive research, online prediction
methods are still in their infancy [325] and rely on time series prediction based on either
classification or regression.

Online Prediction Using Time Series Classification
Online prediction using time series classification is commonly adopted [306]. Sequences
and features extracted from preceding observations are analyzed to deduce temporal patterns
for event anticipation. The prediction process involves applying the learned model to new
time series observations to predict event labels.

Online time series prediction works are growing rapidly in the big data era. However, the
need for labels (due tomany unlabeled instances) and unbalanced data affect methods adher-
ing to time series classification. Supervised learning methods require time and resources to
gather labels (computationally or by experts) and instances of the rare anomalous class to
support model training [196].

Online Prediction Using Time Series Regression
Combining event detection and time series regression supports online prediction. Events
are detected from predicted time series observations. The historical time series X = <

x1, . . . , xt > is used to predict future sequences X̂ =< xt+1, . . . , xt+h >. Once the model
is trained, prediction occurs, leading to a predicted time series X̂ . Then, events are identified
using X̂ through unsupervised or supervised event detection methods [325]. Event detection
from time series regression has been studied in the context of online prediction, identifying
events such as change points based on what the time series model expects [255]. Time series
regression usually requires data preprocessing, as described in Chap. 2.
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6.4 AdvancedTopics

Only a few papers survey online detection methods. Notable examples include Zhang et al.
[322], Ariyaluran Habeeb et al. [32], and Munir et al. [202]. Zhang et al. [322] investigate
anomalydetection inwireless sensor networks, including limited resources anddecentralized
detection in such environments. Ariyaluran Habeeb et al. [32] provide a comprehensive
survey of real-time big data processing methods for anomaly detection, emphasizing the
scalability and demands for handling large, high-velocity, data streams. Munir et al. [202]
highlight the tradeoffs among accuracy, computational efficiency, and the ability to adapt to
evolving data of traditional and deep learning-based anomaly detection methods.

Additionally, Almeida et al. [21] describe general methods applied to time series analysis
in big data environments, including both batch and streaming scenarios, while Fahrmann et
al. [97] describe anomaly detection in smart environments, including IoT sensor data and
the constraints of real-time processing in resource-limited settings.

Survey papers present analytical reviews of event monitoring and anticipation methods
in time series [196]. Mehrmolaei and Keyvanpour [191] review general systems for event
prediction, focusing on methods that support event prediction across application domains
such as healthcare and finance. They give attention to both supervised and unsupervised
learning methods. Other works, such as Salfner et al. [245], describe online failure predic-
tion methods, including algorithms designed to predict system failures in real time through
continuously monitoring system variables. Zhao [325] presents a systematic survey of event
predictionmethods in big data. He addresses challenges in processing large-scale time series,
providing examples from disaster prediction, crime detection, and healthcare monitoring.
Both Salfner et al. [245] and Zhao [325] offer taxonomies for event detection. They high-
light methods for handling concept drift and adapting models in response to evolving data
distributions in real-time contexts.

Online event detection based on classification requires a significant number of observa-
tions for training. Since anomalous events are rare compared to typical observations, time
series are often imbalanced. Moreover, time series can change gradually (incremental drift)
or abruptly (sudden drift) in nonstationary environments. In this context, unsupervised learn-
ing methods, such as time series regression, offer advantages because they do not require
labeled data and can adapt to changes in the data distribution [207].

Most event detection methods have lags in detections due to the inherent delay between
the analysis of previously collected observations and the arrival of new ones. These methods
require inspecting recent observations before determining whether an event has occurred.
Such waiting for new data introduces latency in real-time systems [23].

Offline and online event detection methods present different challenges. In offline sys-
tems, batches are processed at once, while online systems continuously process incoming
streams. However, online methods can still adapt and benefit from established offline meth-
ods.Methods developed for batchprocessing canbemodified toworkwith streaming through
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incremental learning. They can also use sliding windows to mitigate detection delays while
maintaining scalability and accuracy [241].

A single time series may contain various types of events, including anomalies, change
points, and motifs. Event detection methods are usually targeted to a single type of event.
For example, anomaly detection methods might overlook change points, while change point
detection methods might not account for anomalies or motifs. By combining specialized
detection methods (anomaly detection, change point detection, and motif discovery) using
hybrid methods, for example, it is possible to gain a better understanding of the different
types of events occurring in a time series [23, 107, 207].

There is a growing demand for a formal definition of the different types of events. The
challenge arises from the fact that while some events can be identified based on the direct
analysis of the arrival observations, full and accurate detection requires additional incoming
observations to confirm the event and its type. This challenge is true for change points and
complex anomalies since early indicators might not be sufficient to distinguish between
typical fluctuations and significant changes. The precise classification of event types can
only be reliably performed after a specific lag of k observations. In such scenarios, models
need to balance the urgency of detection with the accuracy of event classification, which
can be difficult when dealing with concept drift or evolving time series in streaming context
[97, 141].

In online multivariate time series anomaly detection, novel methods often diverge from
traditional classification models due to the complexity and dynamism of multivariate data
streams. Ntroumpogiannis et al. [207] present a comprehensive analysis of emerging meth-
ods, especially when handling high-dimensional real-time evolving data. They can be cate-
gorized as Distance-based, Tree-based, and Projection-based methods.

Distance-based methods are effective for real-time anomaly detection but may struggle
with high-dimensional data. Iglesias Vázquez et al. [141] present the continuous monitor-
ing of Distance-based Outliers (COD) method that identifies anomalies by continuously
tracking the real-time distances between observations in a stream. This method is driven for
dynamic environments where relationships between observations may change and detection
of anomalies may occur without the need for retraining on static data. Similarly, Tran et al.
[280] introduce the Core Point-based Outlier Detection (CPOD) method, which improves
real-time outlier detection through the usage of core points. Core points summarize local
regions in the data stream. CPOD reduces the computational cost associated with continu-
ously monitoring all time series observations while maintaining high accuracy in detecting
anomalies. Such focus on core points enables CPOD to adapt to changes in the data distri-
bution.

Tree-based methods detect anomalies in large and complex datasets by partitioning the
data space. Agrahari et al. [7] review the Half Space Trees (HS-Tree) method, which utilizes
a hierarchical structure to detect novel patterns and anomalies in nonstationary environ-
ments. The HS-Tree method is designed for scenarios where the data distribution evolves.
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It incrementally updates the model without requiring retraining on the entire dataset. The
method recursively partitions the data to isolate anomalies in multidimensional time series.

Guha et al. [117] introduce the Robust Random Cut Forest (RRCF) method, which
leverages random cuts in multidimensional space to identify anomalies. RRCF builds an
ensemble of cut trees that provides a scalable solution for real-time anomaly detection.
Each tree isolates anomalies based on their relative depth in the tree. This method detects
individual and collective anomalies across large, high-dimensional datasets.

Regarding Projection-based methods, Pevný [226] introduces the Lightweight Online
Detector of Anomalies (LODA). LODA is a method that utilizes random projections
to reduce the dimensionality of data, enabling its usage for anomaly detection in high-
dimensional data streams. LODA projects the data into multiple one-dimensional subspaces
and builds histograms to model the distribution. Anomalies are detected based on data devi-
ation from the typical observations in these subspaces. Using multiple random projections,
LODA detects anomalies from different components of the time series while maintaining a
low computational cost.

Manzoor et al. [188] present XStream, which is a projection-based method designed to
adjust to evolving data stream features dynamically. XStream applies random projections to
support real-time streaming processing. It continuously updates its model as new observa-
tions arrive. By balancing detection accuracy with computational efficiency, XStream can
handle high-dimensional data streams, especially when feature space or data distribution
changes over time.

Although most papers evaluate detection quality using standard classification measures
such as precision, recall, and accuracy, these metrics are often inadequate for qualitatively
analyzing the temporal bias of detection algorithms, i.e., their tendency to anticipate or
delay event detections. Temporal bias is important since early or late detections can have
implications (inability to address an issue or false alarms). Standard classification metrics
do not capture this aspect well, as they focus primarily on binary outcomes (correct or
incorrect classification) without considering when the event was detected relative to its
actual occurrence. Moreover, standard classification measures are not fully applicable in
online scenarios, where events must be detected as soon as they happen, if not before, with
minimal delay. In such cases, detection timing is critical. Metrics should account for the
detection accuracy and elapsed time [213].

6.5 Conclusion

This chapter presented the fundamentals of online event detection in time series. It high-
lighted the distinctions between online and offline detection. Unlike offline methods, where
the entire dataset is available for analysis, online event detection operates in real time.
Observations are processed as they arrive. This fundamental difference demands memory
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management, concept drift handling, and adaptable algorithms. These demands must not
sacrifice computational performance.

The chapter also examined online prediction as an extension of event detection, fore-
casting future events based on time series classification and regression. Online prediction
methods go beyond identifying past and ongoing events, offering an anticipatory capability
and mitigating potential risks through early warnings.

This chapter also covered detection methods based on distances, trees, and projections.
Many open research questions remain in online event detection and prediction. A key explo-
ration area lies in efficientmemorymanagement, continuousmodel updates, and copingwith
concept drift. Balancing detection speed with accuracy is another persistent issue. While
faster methods can lead to false positives, slower methods might miss critical events alto-
gether. There are many opportunities for novel methods, including hybrid approaches that
combine anomaly detection, change point detection, and motif discovery to achieve more
comprehensive insights from streaming time series.
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7.1 Basic Metrics

In time series analysis, an event often indicates a significant change in observations at
a particular instant or over a specific interval, representing a phenomenon with defined
relevance in a given domain. Event detection aims to identify such events through data
analysis and is critical in surveillance and monitoring systems, particularly in applications
involving time series and sensor data analysis.

Numerous methods have been proposed for event detection [325], including anomaly
detection [81] and change point detection [281]. Regardless of the method used, the way
events are reported is important. Assuming events are labeled, standard classificationmetrics
such as accuracy, recall, precision, and F1 are typically employed [20]. Although accuracy
is a specific metric, the term detection accuracy is often used to refer to a method’s ability
to detect events correctly.

Assessing event detection performance is essential for determining a method’s suitability
for a specific application. Detection performance refers to how well a method predicts the
class label of data instances in event detection [276]. Table7.1 summarizes the standard
classification evaluation metrics, including accuracy, recall, specificity, precision, F1, and
Fβ [125].

The formulas in Table7.1 depend on P and N , which refer to the number of positive
instances (data instances of the main class of interest) and negative instances (all others). In
event detection, positive instances indicate the occurrence of an event (event = yes), while
negative instances indicate typical observations (event = no). Table7.1 also shows four key
metrics for comparing the class labels yielded by the detection method with the known class
labels of the data instances: T P , T N , FP , and FN .

The T P metric represents the number of true positives or positive instances correctly
labeled by the method. Similarly, T N refers to the number of true negatives or negative
instances correctly labeled by the method. On the other hand, FP represents the number
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Table 7.1 Standard event detection performance metrics [125]

Metric Formula

Accuracy, recognition rate
T P + T N

P + N

Error rate, misclassification rate
FP + FN

P + N

Precision
T P

T P + FP

Recall, sensitivity, true positive rate
T P

P

F1, F-score, harmonic mean of precision and
recall

2 × precision × recall

precision + recall

Specificity, true negative rate
T N

N

Fallout, false positive rate
FP

N

Fβ , where β is a non-negative real number
(1 + β2) × precision × recall

beta2 × precision + recall

Table 7.2 Standard confusion matrix for event detection

Detected events Total

Yes No

Known events Yes T P FN P

No FP T N N

Total P ′ N ′ P + N

of false positives or negative instances incorrectly labeled as positive. Finally, FN refers
to the number of false negatives, or positive instances mislabeled as negative [125, 245].
These metrics are typically summarized in a confusion matrix (see Table7.2), which is a
useful tool for analyzing how well a detection method can recognize the positive (event)
class. T P and T N indicate correct labeling, while FP and FN indicate mislabels. Totals
are also provided. Besides P and N , P ′ represents the number of data instances labeled as
positive, and N ′ represents the number of instances labeled as negative. Given a time series
X , the total number of instances is T P + T N + FP + T N = P + N = P ′ + N ′ = |X |.

The standard classification-based event detection performance metrics listed in Table7.1
allow for specific performance analysis of the detection methods. The accuracy metric
reflects howwell themethod recognizes data instances of both classes (positive andnegative).
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Table 7.3 Example of detections in a time series with ten observations

Time Detector Score Actual

1 F 0.10 F

2 F 0.20 F

3 F 0.30 T

4 F 0.40 F

5 F 0.45 F

6 F 0.46 T

7 F 0.47 T

8 F 0.49 T

9 T 0.50 F

10 T 0.60 T

The error rate is the complement of accuracy. Sensitivity and specificity reflect how well
the method can recognize positive instances (event = yes) and negative instances (event =
no), respectively. Fallout is the complement of specificity. Precision and recall are widely
adopted metrics: precision reflects exactness (the percentage of instances labeled as positive
that are so), while recall reflects completeness (the percentage of positive instances labeled
as such). A perfect precision score (1.0) indicates that every instance labeled as an event by
the method is a known event, while a perfect recall score (1.0) indicates that every known
event was labeled as such. Precision and recall are combined in the F1 and Fβ metrics. The
F1 metric is the harmonic mean of precision and recall, giving them equal weight. The Fβ

metric, on the other hand, assigns β times as much weight to recall as to precision. Both F1
and Fβ metrics are useful for evaluating the quality of event detection [276].

Consider the example of event detection shown in Table7.3, which involves ten obser-
vations, two marked as detections. Events are labeled at times 3, 6, 7, 8, and 10. The true
positives (T P), true negatives (T N ), false positives (FP), and false negatives (FN ) are 1,
4, 1, and 4, respectively. As a result, accuracy, precision, recall, and F1 were 0.5, 0.5, 0.2,
and 0.28, respectively.

Event detection methods frequently use the Operating Characteristic Curve (ROC) curve
to visualize a method’s ability to discriminate between positive instances (events) and neg-
ative instances (nonevents) by plotting the true positive rate (tpr ) against the false positive
rate ( f pr ). The ROC curve is, in particular, useful when the detector provides an event score
between 0 and 1 rather than a simple binary indication of event detection. To generate the
ROC curve, tpr and f pr are sorted according to the event score.

To illustrate the concept of event score, consider a regression-based anomaly detector that
relies on the error distribution between a fitted regressionmodel and actual observations. The
absolute error distribution can be normalized, and a threshold can be established to define
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Fig. 7.1 ROC curves (a) and AUC-PR (b) for Example in Table7.3

an anomaly. The normalized value represents the anomaly score, where values closer to 1
indicate a higher likelihood of an event, and values closer to 0 indicate a lower likelihood.

Detection methods with ROC curves closer to the upper left corner of the ROC space are
the most accurate [125]. Furthermore, the accuracy of the methods can be compared using
the Area Under The Curve (AUC), which summarizes the ROC curve into a single metric.
The AUC can be computed using the trapezoidal rule. A perfect method achieves an AUC
of 1, while a randommethod performs at 0.5. The ROC curve for the example in Table7.3 is
depicted in blue in Fig. 7.1a. The AUC equals 0.76, positioning it between a perfect method
(in green) and a random method (in red).

AUC =
∫ 1

0
tpr( f pr) d f pr ∈ [0, 1] (7.1)

Similar to the ROC curve, the Precision–Recall Curves (AUC-PR) is defined as the area
under the precision–recall curve, where recall is plotted on the x-axis and precision on the
y-axis. In particular, theAUC-PR is useful in binary classification problemswith imbalanced
time series, which is common in event detection scenarios. When the AUC-PR approaches
0.5, it indicates poor detection capabilities, whereas values closer to 1 indicate a more
accurate detector [215]. The AUC-PR is presented in Fig. 7.1b, with an AUC-PR value of
0.74, positioned between 0.5 and 1.

Another specific metric used in event detection is the Normal Precision@k, which rep-
resents the precision of the top k points with the highest anomaly scores. It can be inter-
preted as the precision of a method with a threshold. Considering that precision is com-
puted as precision = T P

T P+FP , the Normal Precision@k introduces a constraint such that
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T P + FP = k. Because of this constraint, FP is penalized, resulting in a standalonemetric
that does not require combination with recall for analysis [264].

7.2 TimeTolerance

Themetrics presented so far focus on accurately detecting point events. However, inaccuracy
in event detection does not necessarily indicate a poor result, particularly when detections
occur close to the actual events. This is especially true when labels are manually marked,
which may involve inherent imprecision. This section provides an example of the challenge
of evaluating inaccurate event detections and highlights the need to introduce time tolerance
in the evaluation process. Consider a time series X (inspired from real-world oil exploration
dataset [286]) containing an event at time t , as shown in Fig. 7.2. When two detection
methods, A and B, are applied to X , the user must choose the most suitable method for the
underlying application. Both methods detect events close to E1, with method A detecting
an event at time 12 and method B detecting an event at time 10. However, neither method
detects the event at time 11 exactly. Furthermore, only method B detects an event close to
E2 (at time 21). Based on the basic metrics, both methods would be deemed inaccurate and
potentially disposable.

However, inaccuracies in detecting an event can often result from its preceding or linger-
ing effects. For instance, consider the adoption of a new policy in a business.While a domain
specialist may consider the time of policy enforcement as a company event, its effects on
profit may only become detectable months later. Conversely, preparations for policy adop-
tion may be detectable in the months leading up to its actual enforcement. Furthermore,

Fig.7.2 Example of evaluating the detection of events at times 11 (E1) and 20 (E2). Methods A and
B detect events at times 10 and 12 concerning E1. Method B is the only method that detects an event
close to E2
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when accurate detections are not feasible, detection applications often require events to be
identified as soon as possible [165] or early enough to enable necessary actions to miti-
gate potential critical system failures or urban problems resulting from extreme weather
events. In this context, the results of methods A and B would be valuable to the user. While
method B seems to anticipate the event, its detection occurs afterward. On the other hand,
the detection by method A is temporally closer to the event, possibly more representative
of its effects. However, since this analysis uses the entire time series, it is impossible to
guarantee this property. From Fig. 7.2, it can only be inferred that both methods A and B
detect events at time 30, which for online event detection could be too late (see Sect. 7.4 for
further discussion).

Evaluating event detection is challenging. Standard classification metrics do not account
for the concept of time, which is fundamental in time series analysis, and do not reward
early detection [9] or any relevant neighboring detections. In the rest of this chapter, “neigh-
boring” or “close” detections refer to detections whose temporal distance from events falls
within a desired threshold.Most research only rewards true positives (exact matches in event
detection), with all other results being harshly and equally discredited.

There is a need to introduce time tolerance into the traditional concept of detection
accuracy and evaluate methods while considering neighboring detection. However, state-
of-the-art metrics designed for scoring anomaly detection are limited [261], often biased
toward results preceding events, like those produced by method B. We have provided a step
forward in addressing some of these issues by developing Soft Evaluation Event Detection
(SoftED), introduced below.

SoftED
The SoftED [249] is a metric designed to assess the performance of event detection methods
in time series with time tolerance. The idea behind SoftED is to introduce flexibility into
traditional classification metrics (hard metrics).

Figure7.3 illustrates the concept of SoftED, highlighting the key distinction between
standard hard evaluation and the proposed soft evaluation. The standard hard evaluation
involves binary outcomes, indicating whether a detection precisely matches an actual event.
In contrast, the soft evaluation metrics measure the degree to which a detection is associated
with a specific event.

SoftED introduces time tolerance by computing the relevance of detection to a specific
event, which is determined by an event membership function μe j (t), as defined in Eq.7.2.
The function considers an acceptable time range represented by the constant k.

μe j (tdi ) = max

(
min

(
tdi − (te j − k)

k
,
(te j + k) − tdi

k

)
, 0

)
(7.2)

Figure7.4a depicts the event membership function μe j (t). For each detection di , the
function evaluates the temporal closeness to the corresponding event e j . The degree to
which a detection di is relevant to an event e j is determined by μe j (tdi ), with a higher value
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Fig. 7.3 Comparison between standard hard and soft evaluation of event detection

Fig.7.4 SoftED evaluationmapping. a represents an event membership functionμe j (t). b represents
μe j (t) for detections d1 and d2. c illustrates one detection to many events, motivating the first
constraint of SoftED. d shows many detections to a single event, motivating the second constraint of
SoftED

indicating temporal closeness to a true positive (TP) regarding e j . This concept is illustrated
in Fig. 7.4b, where μe j (t) is evaluated for two detections, d1 and d2, produced by a specific
detectionmethod. In this context, SoftED evaluates the extent towhich a detection represents
an event or, in other words, its temporal closeness to a hard TP. For instance, detection d1 is
closer to a TP. At the same time, d2 falls outside the tolerance range and might be considered
a false positive.

SoftED introduces two constraints to maintain consistency with standard hard metrics.
The first constraint stipulates that a given detection di should have only one associated
score, and the second one is that the total score associated with a specific event e j must not
exceed 1.
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Table 7.4 SoftED metrics

TPs =
m∑
j=1

μe j (d̂e j ) FNs = m − TPs

FPs =
m∑
j=1

(
1 − μe j (d̂e j )

)
TNs = (|t | − m) − FPs

Consider the scenario in Fig. 7.4c, where one detection is evaluated for multiple close
events. The detection d1 is assessed for events e1, e2, and e3, resulting in three distinct
membership evaluations (μe1(td1),μe2(td1), andμe3(td1)). However, tomaintain consistency
with hard metrics, a given detection d1 should not have more than one score. Otherwise,
d1 would be rewarded multiple times, potentially surpassing the score of a perfect match,
which is 1.

This problem can be addressed as a bipartite graph matching problem [77], where
a time series contains a set of detections D = {d1, d2, . . . dn} and a set of events E =
{e1, e2, . . . , em}. The edges are the membership function for detection di associated with
the event e j . Representative detections (d̂e j ) are scored based on the solution of the bipar-
tite graph matching problem, while all other detections receive a score of 0. According to
Fig. 7.4d, e1 is best represented by detection d1, given the maximummembership evaluation
of μe1(td1). This definition ensures that the total score for detections of a specific method
does not surpass the number of real events m in the time series X . Equation7.3 maintains
the reference to a perfect detection Recall score according to traditional hard metrics. Fur-
thermore, it penalizes false positives and multiple detections for the same event e j .

m∑
j=1

μe j (d̂e j ) ≤ m (7.3)

The scores computed for each event derive soft versions of the hard metrics TP, FP,
TN, and FN, as outlined in Table7.4. The soft metrics, including TPs , FPs , TNs , and FNs ,
maintain the same properties and scale as traditional hardmetrics. They enable the derivation
of soft versions of scoring methods such as Sensitivity, Specificity, Precision, Recall, and
F1. Importantly, SoftED metrics retain the same interpretability while accounting for time
tolerance, which is essential in event detection applications.

The SoftED metrics are available in our Harbinger (see AppendixA), allowing the com-
putation of both hard and soft metrics.

Other Works
The Numenta Anomaly Benchmark (NAB) provides a scoring algorithm for evaluating
and comparing the efficacy of anomaly detection methods [165]. The NAB score metric is
computed based on anomaly windows of observations centered around each event in a time
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series. Given an anomaly window, NAB uses the sigmoid scoring function to compute the
weights of each anomaly detection. It rewards earlier detections within a given window and
penalizes FP . NAB also allows for the definition of application profiles: standard, reward
low FP , and reward low FN . Based on the window size, the standard profile gives relative
weights to T P , FP , and FN .

The NAB scoring system brings challenges for its use in real-world applications. For
example, the anomaly window size is automatically defined as 10% of the time series size,
divided by the number of events it contains—values generally not known in advance, espe-
cially in streaming environments. Furthermore, some definitions and arbitrary constants
exist in the scoring equations [261]. Finally, score values increase with the number of events
and detections. Every user can tweak the weights in application profiles, making it difficult
to interpret and benchmark results from other users or setups.

7.3 Interval-Based Evaluation

We now consider the scenario in which an event is interval-based. One can adopt the metrics
for point events as if each observation is computed independently. However, this approach
may lose important aspects of the event’s semantics. The choice of evaluation metric should
be guided by the nature of the time series and the specific requirements of the task at hand.
Using thewrongmetrics can lead to incorrect conclusions about an algorithm’s performance,
potentially leading to poor decisions about its use in real-world applications, such as event
size and partial event detection. Specificmetrics have been developed to address these issues.

For sequence events, a general evaluation prioritizes longer events, such as extended
anomalies, which could indicate more severe problems that are more important to detect.
This is why long anomalies contribute more to the final score than shorter ones in many
metrics. Furthermore, certain metrics emphasize partial detection.While many conventional
metrics aim to accurately predict each time point to correctly identify the location and
duration of an event (known as covering), it is often more important, or at least sufficient, to
detect any portion of the event (referred to as partial detection). It is essential to note that a
human reviewing the detectionsmay not identify an event if it is subtle and lasts much longer
than the detection itself, making the detection’s location and duration significant [264]. This
applies to both extended anomalies and short change points.

Most metrics found in the literature are designed to evaluate point anomaly detection.
However, many real-world events extend over an interval (range-based). Motivated by this,
some works extend the well-known scores (precision, recall, and F1) to address interval-
based anomalies [215, 276], which, in most cases, can be generalized for interval-based
events. These include Point-Adjusted f-score, Delay thresholded Point-Adjusted f-score,
Segment-wise f-score, and Range-based f-score, which are explained below.

The Point-Adjusted f-score assumes that if a human can examine and identify the entire
event if a single point within an event segment is accurately detected, the entire contiguous
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segment is marked as an event in the prediction before calculating the instant score. The
Delay thresholded Point-Adjusted f-score is an adaptation of the Point-Adjusted f-score
metric, where a labeled event is only considered detected if an event is detected within the
first k time steps of the event. Otherwise, all points in the event are marked as false negatives,
even those detected as events.

The Segment-wise f-score treats a contiguous segment of an event as a single event. One
true positive is recorded for each true event segment with at least one detected event, one
false negative for the remaining true event segments, and one false positive for any detected
interval-based event without any true event observations. A limitation of this metric is that
extending the length of a detected event does not worsen the scores.

The Range-based f-score computes recall for each labeled event using a formula that
scores how well the labeled event is detected. The score is the average ratio of observations
detected across all labeled events. Similarly, local precision is computed for each detected
event by scoring how well a detected event corresponds to the labels. These scores are then
averaged across all detected events. This metric introduces the concept of partial coverage.

7.4 Online Detection Evaluation

In many cases, especially in studies and applications where real-time systems require imme-
diate attention to detected events, detecting a potential event early is crucial. Late detection
is ineffective in such scenarios since it is too late to address the problem. Therefore, metrics
should prioritize early event detection over later detections when selecting algorithms for
identifying anomalies quickly [264].

This section clarifies the notion of detecting events in the early stages. Consider detection
methods A and B applied to an online time series X . This example examines how these
methods detect events as each new observation is made. Figure7.5 illustrates offline and
online evaluations. At time 11, shown in Fig. 7.5a, the event E1 appears in the time series.
However, neither method A nor method B detects it.

In Fig. 7.5b, at time 13, Method B detects an event close to E1 (with a difference of one
observation). Furthermore, it takes two observations to detect it. At this point, Method A
still does not detect the event.

By time 15, as shown in Fig. 7.5c, Method A finally detects an event close to E1, with
a difference of two observations. This detection is not as close as Method B’s detection
and takes four observations to detect. It is important to note that detecting an event before
it occurs does not necessarily mean anticipating detection but is related to the detection’s
timing. Anticipation involves detecting the event before it occurs, which would be related
to event prediction.

Finally, at time 28, both methods fail to detect event E2. Both methods make detections
close to event E1 (with a difference of one observation). However, Method A shows incon-
sistent detections. At time 15, it detects the event at time 9 concerning E1, but at time 28, it
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Fig.7.5 Evaluation of two event detection methods in an online time series: time 11 (a), time 13 (b),
time 15 (c), and time 28 (d)

detects the event at time 10 concerning E1. During online event detection, actual detections
may change over time. We have proposed two novel metrics to address this issue: Detection
Probability and Detection Lag [174].

To explain these concepts, assume that a time series arrives in batches (b j ), each con-
taining s observations. In a fully online context, s can be as small as one observation.
Furthermore, in a streaming scenario, it is possible to adopt either a fixed memory approach,
where the system preserves m batches in memory, or a full-memory approach, where all n
time series observations are preserved. Note that n increases as each new batch b j arrives.

The Detection Probability metric assesses the likelihood of detecting an event in a time
series by evaluating each observation xi across batches during processing. If xi appears in
batchb j , it is available for detectionbf (xi ) times, defined as eitherm (partialmemory) or � n

s �
(full memory). The set Bi contains the most recent batches where xi is present, allowing
a detector to conduct multiple evaluations to determine if xi is an event. The detection
frequency d f (xi ), representing the number of times xi is marked as an event, ranges from
0 to b f (xi ). The Detection Probability metric is computed as the ratio of d f (xi ) to b f (xi ).
For instance, if x3 and x5 are present in 7 batches, with d f (x3) = 2 and d f (x5) = 6, their
respective DPs are 0.29 and 0.86.

TheDetection Lagmetric assesses the early detection capability ofmethods bymeasuring
the lag between the first reading of an observation and its detection as an event. For an
observation xi in a time series X , sbi represents the start batch, and f dbi is the first detection
batch. The lag, Lagsi , is computed as f dbi − sbi . For example, if x9 starts appearing in batch
3 and is detected in batch 4, then Lag39 equals 1. Different batch sizes can be compared using
an alternative Detection Lag value in the number of observations, computed by ( f dbi −
sbi + 1) · s.
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7.5 Benchmarks

Just as important as adopting the right metrics is using appropriate benchmark time series to
evaluate the performance of available and novel methods [216]. Some issues regarding the
quality of available benchmark time series can provide a false sense of progress in the field.
Many commonly used benchmark time series suffer from flaws such as trivial anomalies,
unrealistic anomaly density, mislabeled ground truth, and a high ratio of anomalies at the end
of the time series. To address these issues, the UCR Anomaly Archive provides a repository
of curated time series for event detection evaluation [299]. Other repositories uses real-world
labeled time series [286].

Metrics such as Relative Contrast and Normalized Clustered Events have been developed
to supportmeasuring the quality of the time series used for benchmarking [215]. TheRelative
Contrast computes the ratio of the expectation of themean distance between events, as closer
events tend to be more challenging to detect. The Normalized Clustered Events establishes
the distance ratio between typical sequences and event subsequences. A larger NC indicates
that abnormal points are closer together, increasing the difficulty of anomaly detection.

7.6 AdvancedTopics

This section highlights additional works related to analyzing and comparing event detection
performance. Sorbo and Ruocco [264] present a comprehensive survey of evaluation met-
rics for anomaly detection. Recent works have also focused on developing benchmarks for
evaluating anomaly detection methods. Jacob et al. [143] provide a comprehensive bench-
mark for explainable anomaly detection over high-dimensional time series. Conversely, a
benchmark to assess the benefits and limitations of anomaly detectors and detection metrics
was provided by Boniol et al. [41].

Standard classification metrics are generally used to evaluate methods’ ability to dis-
tinguish typical from anomalous observations. Aminikhanghahi and Cook [23] review tra-
ditional metrics for change point detection, such as sensitivity, G-mean, F-metric, ROC,
PR-Curve, and MSE. Detection evaluation metrics have also been explored in the areas
of sequence data anomaly detection [62], time series mining and representation [87], and
sensor-based human activity learning [293].

Metrics in the literature are mainly designed to evaluate the detection of point anomalies.
However, many real-world events extend over intervals (range-based). Motivated by this,
Tatbul et al. [276] and Paparrizos et al. [215] extend the well-known Precision and Recall
metrics and the AUC-based metrics to measure the accuracy of detection algorithms for
range-based anomalies. Other recentmetrics developed for detecting range-based time series
anomalies are also included in the benchmark by Boniol et al. [41]. Furthermore, Wenig
et al. [296] published a benchmarking toolkit for algorithms designed to detect anomalous
subsequences in time series [40, 43].
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7.7 Conclusion

This chapter covered event detection methods, focusing on point and interval events. Tradi-
tional metrics such as accuracy, recall, precision, and F1 were presented, highlighting their
limitations for event detection. The chapter also covered time tolerance, showing the need
for metrics that reward near-miss detections, not just exact matches.

The chapter presented SoftED, ametric that provides time tolerance and scores detections
based on their temporal closeness to actual events. It also introduced interval-based metrics,
including the Point-Adjusted f-score, the Delay thresholded Point-Adjusted f-score, the
Segment-wise f-score, and the Range-based f-score. These metrics also account for partial
detection.

Early event detection is important in real-time systems. The chapter introduced new
metrics like Detection Probability and Detection Lag to evaluate the performance of online
event detection methods, focusing on the timeliness and consistency of detections. Recent
works (including benchmarks and surveys) were also covered. Besides, combining time
tolerance, online event detection, and interval-based metrics is a roadmap for novel studies.
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8.1 Overall Research Area

Time series event detection is a broad and active research area that includes anomaly detec-
tion, change point detection, and motif discovery. Numerous research papers have been
published in this area. We conducted a systematic map study of the area to better understand
the scientific production in event detection. Four major queries were executed on Scopus,
including journal papers, conference papers, reviews, and books. These queries, executed
on November 29th, 2023, focus on time series by including the “time series” constraint to
target concepts related to event detection within this context.

The first query focuses on the general concept of event detection, including both event
detection and prediction, i.e., (“event detection” or “event prediction”) and “time series”.
This query returns 693 documents, summarized in Table8.1.

The second query focuses on anomalies, i.e., (“anomaly”) and “time series”, which is
the most studied area. It returns 9635 documents, comprising 6679 papers, 2825 conference
papers, 110 reviews, and 21 books. The third query focuses on change points in time series,
including change points and concept drift, i.e., (“change point” or “concept drift”), and
“time series”. It returns 2310 documents, including 1719 papers, 555 conference papers, 29
reviews, and seven books. The final query focuses on motifs, i.e., “motif” and “time series”,
returning 693 documents, 388 journal papers, 296 conference papers, and nine reviews.

Figure8.1 illustrates the evolution of this research area, with the y-axis presenting the
number of documents (on a logarithmic scale) indexed in Scopus. Since anomaly detection
is the most studied subarea, it is unsurprising that the first paper dates back to before 1960.
After 1980, there was a significant increase in published documents related to change points,
with general event detection beginning around 2000 and motif studies commencing in 2003
at a steady rhythm. The similar exponential growth of these areas is evident in the log scale
on the y-axis.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
E. Ogasawara et al., Event Detection in Time Series, Synthesis Lectures on Data
Management, https://doi.org/10.1007/978-3-031-75941-3_8
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Table 8.1 Publications according to event detection areas

Type Event detection Anomaly Change point Motif

Article 364 6679 1719 388

Conference paper 324 2825 555 296

Review 5 110 29 9

Book – 21 7 –

Fig. 8.1 Number of publications (in logarithm scale) in event detection according to its main areas

Table 8.2 Intersection between areas

Areas Amount

Event detection–Anomaly 89

Event detection–Change point 13

Event detection–Motif 4

Anomaly–Change point 215

Anomaly–Motif 65

Change point–Motif 7

Since some document overlap is expected among these areas, Table8.2 clarifies this
aspect. Thefirst interestingobservation is the connectionbetweengeneral event detection and
its subareas (anomaly, change point, and motif). The major intersection of event detection is
related to anomalies (89out of 693documents),which includesmore than12%ofdocuments.
Both change points and motifs are also related to event detection.
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The second analysis explores how anomalies, change points, and motifs relate. This
investigation is interesting since some change point methods can also find anomalies. As
expected, the major intersections are related to anomalies with change points. Other rela-
tionships exist between anomalies and motifs (65 documents) and change points and motifs
(7 documents).

To provide a qualitative perspective of the subjects presented in the documents, Fig. 8.2
depicts aword cloud for the 100most frequent words (after removing English stopwords and
applying basic text mining preprocessing) in the queried documents. Since the query string
always includes “time series”, these words were also removed from the analysis. There are
four word clouds: Fig. 8.2a relates to general event detection (including event prediction),
while Fig. 8.2b–d is related to anomalies, change points (with concept drift), and motifs,
respectively.
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Fig.8.2 Word cloud for the top 100 frequent words in event detection: major area of event detection
(a), anomaly (b), change point (c), and motif (d)
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One important difference between general event detection and the other subareas is the
presence of fewer terms for application areas. General event detection hasmore terms related
to datamining,ML, and systems. However,many climate-related terms in the area of anoma-
lies indicate that many published papers are domain-driven. Change point papers usually
contain many statistical terms, as statistical theories support many of these methods.

Motif documents have a different general vocabulary, with many terms associated with
patterns, subsequences, and specific data mining functions. Notably, in Fig. 8.2a–c, the word
“detection” is prominent. In contrast, in Fig. 8.2d, the related concept of “discovery” stands
out.

8.2 Open Challenges in Event Detection

Throughout the book, several research challenges have been identified in event detection.
While some have been partially addressed, many opportunities exist for further exploration
and innovation. This section summarizes the main open challenges we believe will be tar-
geted by the research community in the next years. It includes multivariate time series,
scalability and big data integration, online event detection, metrics for event detection,
explainability and interpretability in event detection, unified view of event detection, trans-
fer learning, robustness against adversarial attacks, associating among events, and energy-
efficient event detection.

Multivariate Time Series
Multivariate time series tend to become increasingly common, as manymodern data sources
like IoT devices and sensors often capture several variables over time. Although multivari-
ate methods, such as vector autoregressive models and extensions of anomaly detection
methods, have been developed, they still face significant limitations when dealing with
high-dimensional time series. The curse of dimensionality poses a major challenge in this
context, and building effective event detection methods is needed to capture the interdepen-
dencies and relationships among these variables.

Data preprocessing techniques, including transformation, decomposition, and dimen-
sionality reduction, have been used to support detection models by reducing complexity
and extracting meaningful features from the time series. They tend to be more and more
applied. Additionally, ensemble models that combine univariate and multivariate methods
have space to improve accuracy, especially when combined with novel data preprocessing.
In this context, there is a demand for the interpretability of such solutions, especially in
domains like healthcare, where understanding how events are detected is as important as
providing the right detection.

Scalability and Big Data Integration
As the volume of data generated from sensors, social media, and other sources grows, scal-
ability is becoming an important challenge in event detection. Traditional methods struggle
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to process large-scale and high-dimensional time series. There is an open room for build-
ing novel methods integrating big data frameworks like Apache Spark, Apache Kafka, and
Apache Flink. The goal is to provide speedup in event detection solutions, especially in
real-time and streaming time series.

However, many problems remain regarding optimizing these technologies for building
event detection workflows. One major issue is ensuring that distributed computing systems
can process large time series in real time, especially when events need to be detected as they
occur. Developing parallel and distributed systems solutions for time series event detection
in large-scale applications is a research roadmap.

Online Event Detection
The challenge of detecting events as soon as possible in online (real-time) scenarios has
increased with the rise of data stream systems. Online event detection methods must process
time series on the fly without processing the entire time series. This constraint makes detect-
ing real-time events, such as change points and motifs, difficult. While detecting anomalies
might seem simpler, identifying them near change points or in concept drift might lead to
misclassifications.

Lightweight and efficient algorithms that adapt to dynamic environments are relevant
in many applications, including fraud detection, industrial monitoring, and cybersecurity
applications. It is common to use adaptive windowing or sliding windows as an enabling
technique to support detector development. Combining these solutions while handling con-
cept drift is very important. The goal is to support continuous model updates without too
much retraining.

Metrics for Event Detection
Evaluating the performance of event detectionmethods is critical and challenging, especially
when considering interval events. Providing time tolerance is important for applications
like network traffic monitoring or fault detection in industrial systems, where detecting the
interval-based event is needed for timely interventions. Somemetrics provide time tolerance
for point events, but time-tolerant metrics for interval events are still lacking. Novel metrics
should provide a uniform basis to support interval and point events. They should also be
adequate for measuring online and streaming time series detection performance. Such met-
rics must evolve dynamically in online detection scenarios as more data becomes available.

Explainability and Interpretability in Event Detection
With the growing use of machine learning in event detection, a significant challenge is sup-
porting the explainability and interpretability of detectors. Detectors based on deep learn-
ing, such as LSTM and CNN, often operate as “black boxes,” making it difficult to explain
detected events. Understanding why detections occur is sensitive in fields like healthcare,
finance, and cybersecurity.

Developing interpretable models or enhancing the transparency of existing models is
important for increasing trust and adoption in real-world scenarios. Methods such as SHap-
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ley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations
(LIME) can inspire solutions to provide explainability to detectors. They can be supported
by interactive visualization tools that can help users better understand detections and the
reasons behind model decisions.

Unified View of Event Detection
Event detection is partitioned into distinct types: anomaly detection, change point detection,
and motif discovery. Focusing on only one type of event may limit our understanding of
real-world time series. They often exhibit these three types of events simultaneously. For
instance, anomalies and change points are often related, as change points frequentlymanifest
anomalous observations. A unified view integrating methods from different types of events
could provide a more holistic view of time series dynamics. Besides, combining methods
from different types could enhance the detection accuracy and robustness of a broader event
detector.

Transfer Learning and Cross-Domain Adaptability
Another emerging challenge is the application of transfer learning and domain adaptation to
event detection. Most event detection models are trained on specific datasets, which limits
their applicability to new domains. In this case, transfer learning could be applied to adjust
models for related time series, especially when labels are scarce or unavailable. Adapting
these methods to multivariate time series is still an underexplored area.

The rise of LLMshas recently opened newopportunities for empowering transfer learning
in time series event detection. LLMs discretize time series and treat them as sequences of
tokens analogous to sentences. These models can be pre-trained on vast datasets and fine-
tuned for specific tasks with minimal labeled data.

Robustness Against Adversarial Attacks
In fields such as cybersecurity and finance, time series event detectors might be exposed
to adversarial attacks. In this scenario, small, imperceptible changes to input data can
deceive the model into making incorrect predictions. Ensuring that event detectors (espe-
cially machine learning models) are robust against such attacks is a growing challenge.

Associating Among Events
Associating events with one another is similar to sequence mining, a data mining task that
discovers patterns in ordered data.Applying this principle to time series event detection could
help identify causal relationships between events. For instance, detecting a series of small
anomalies could indicate the likelihood of a significant future change point in a financial
market. However, mining these relationships, especially in high-dimensional, multivariate
time series, is computationally intensive and demands scalable solutions, as previously men-
tioned.
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Energy-Efficient Event Detection
Energy efficiency becomes needed in event detection in resource-constrained environments,
such as IoT devices or edge computing. Many existing algorithms require substantial com-
putational resources, which may not be feasible in low-power devices. Developing energy-
efficient methods that can operate in such constraints is important for deploying solutions
in applications in smart cities, wearables, and sensor networks.
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Considering all the challenges presented, testing state-of-the-art methods to solve event
detection problems is essential. A solution that evaluates numerous alternative methods and
seamlessly enables the development of novel ones is necessary to advance the area. In this
spirit, we developed the Harbinger software [248], which is available as an R Package.1

Harbinger is a comprehensive framework designed to detect events within a time series,
offering a unified environment for identifying time series anomalies, change points, and
motifs. It includes a diverse array of methods for event detection, together with functions
for visualizing and assessing the detected events, making it an essential tool for time series
analysis. It is organized into anomaly detection, change point detection, andmotif discovery.

To install Harbinger, just use the following command:

1 install .packages("harbinger")

and load the package with:

1 library(harbinger)

The library includes a sample time series to help explore its usage. For example, the code
below plots the global temperature yearly time series (YGT) provided in Chap.1:

1 data(examples_harbinger)
2 yts <− examples_harbinger$global_temperature_yearly$serie
3 ts .plot ( yts )

Anomaly Detection
Harbinger uses various methods for anomaly detection, including ML models such as
Conv1D, ELM, MLP, LSTM, Random Forest Regression, and SVM. It also includes clas-
sification models like Decision Tree, KNN, Naive Bayes, and Random Forest and cluster-

1 https://cefet-rj-dal.github.io/harbinger.
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ing methods such as K-Means, DBScan, and DTW. Additionally, statistical methods like
ARIMA, FBIAD, and GARCH are incorporated.

For a full list of methods and examples, refer to the package documentation.2 The fol-
lowing example demonstrates anomaly detection using ARIMA:

1 model <− hanr_arima()
2 model <− f i t (model, yts )
3 detection <− detect (model, yts )
4 grf <− har_plot (model, yts , detection )
5 plot ( grf )

In this example, an ARIMA detector is established, fitted to the time series, and used to
detect anomalies. The results are then plotted.

Change Point

For change point detection, Harbinger employs methods such as AMOC, PELT, Chow Test,
GFT, SCP, and CF. The following example uses the Chow Test test method:

1 model <− hcp_chow()
2 model <− f i t (model, yts )
3 detection <− detect (model, yts )
4 grf <− har_plot (model, yts , detection )
5 plot ( grf )

In this example, a Chow test detector is established, fitted to the time series, and used to
detect change points. The results are then plotted.

Motif Discovery

Harbinger uses methods such as Index-Based Discovery and Matrix Profile for motif dis-
covery, effectively identifying recurring patterns in time series. These methods are useful
in various applications, including finance, healthcare, and IoT data analysis. Harbinger also
supports multivariate time series.

For example, the following code demonstrates motif discovery using Index-Based Dis-
covery on patient #102’s heartbeat data from the MIT-BIH time series:

1 library(harbinger)
2 data(examples_motifs)
3 data <− examples_motifs$mitdb102
4 ts .plot (data$serie )

2 https://cran.r-project.org/web/packages/harbinger/readme/README.html.

https://cran.r-project.org/web/packages/harbinger/readme/README.html
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The following code performs motif discovery:

1 model <− hmo_sax(26, 25)
2 model <− f i t (model, data$serie )
3 detection <− detect (model, data$serie )
4 print(detection [detection$event , ] )
5 grf <− har_plot (model, data$serie , detection )
6 plot ( grf )

Evaluation

Harbinger offers evaluation metrics for detections, including traditional and soft computing
(SoftED). The following example demonstrates the evaluation using a labeled synthetic time
series and a ML regression model from the DAL Toolbox:

1 data(examples_anomalies)
2 ts <− examples_anomalies$simple
3
4 set . seed(1)
5 library(daltoolbox)
6 mlpmodel <− ts_mlp( ts_norm_gminmax() ,
7 input_size=5, size=3, decay=0)
8 model <− hanr_ml(mlpmodel)
9 model <− f i t (model, ts$serie )
10 detection <− detect (model, ts$serie )
11
12 evaluation <− evaluate (model, detection$event ,
13 ts$event)
14 print(evaluation$confMatrix)

event
detection TRUE FALSE
TRUE 0 6
FALSE 1 94

The example above shows the evaluation results. The following code uses SoftED with
a time tolerance of five observations:
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1 result <− evaluate (model, detection$event ,
2 ts$event , evaluation=har_eval_soft (sw_size=5))
3 print( result$confMatrix)

event
detection TRUE FALSE
TRUE 0.8 5.2
FALSE 0.2 94.8

Updates and More Examples

New methods are constantly being introduced in Harbinger. As of mid-2024, there are
more than 50 methods for anomaly detection, change point detection, and motif discovery.
Additionally, all examples presented in this book using Harbinger are available on GitHub
(https://github.com/eogasawara/TSED). This repository provides practical examples and
use cases, helping users quickly get started with the framework and apply it to their data.

https://github.com/eogasawara/TSED
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