

Building Micro-Frontends
Scaling Frontend Projects and Teams

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

Luca Mezzalira

Building Micro-Frontends
by Luca Mezzalira

Copyright Luca Mezzalira © 2021. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Jennifer Pollock

Development Editor: Angela Rufino

Production Editor: Christopher Faucher

Interior Designer: David Futato

Cover Designer: Karen Montgomery

October 2021: First Edition

Revision History for the Early Release

2020-02-20: First Release

2020-06-10: Second Release

2020-08-14: Third Release

2021-01-25: Fourth Release

2021-05-11: Fifth Release

http://oreilly.com/

See http://oreilly.com/catalog/errata.csp?isbn=9781492082996 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
Building Micro-Frontends, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not
represent the publisher’s views. While the publisher and the author have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all
responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

978-1-492-08292-7

http://oreilly.com/catalog/errata.csp?isbn=9781492082996

Preface

At the beginning of December 2016, I was taking my first trip to Tokyo.
It should have lasted just a week, but as I would discover, I would need to
travel to the Japanese capital many more times in the following weeks.

I clearly remember walking to the airplane and mentally preparing my to-do
list for the impending 12-hour flight. By now I’d been travelling for a
couple of weeks, on the opposite side of the world: attending a couple of
conferences in the Bay area and then another event in Las Vegas.

The project I was working at that time was an over-the-top platform similar
to Netflix, but dedicated to sports, with daily live and on-demand content
available in multiple countries and on more than 30 different devices (web,
mobile, consoles, set-top-boxes and smartTVs).

It was near the end of the year, and as a Software Architect I had to make a
proposal for a new architecture that would allow the company to scale to
hundreds of developers distributed in different locations, without reducing
the current throughput and enhancing it as much as I could.

When I was setted in my seat, I became relatively calm. I was still tired
from the Vegas trip, and a bit annoyed at the 12 hours I would have to spend
on the airplane, but excited to see a mystical country like Japan for the first
time.
A few minutes later I had my first glass of Champagne. For the first time in
my life, I was in business class, with a very comfortable seat and a lots of
space for working.
Definitely the best place to start such a long journey.

At the end of the first hour, it was time to get my laptop out of my backpack
and start working on “the big plan”, I still had more than 10 hours of flight
time during which I could start working on this huge project that would
serve millions of customers around the world. I didn’t know at that time that

the following hours would deeply change the way I would architect cross-
platform applications for frontend.

In this book I want to share my journey into the Micro-Frontends world, all
the lessons and tips for getting a solid Micro-Frontends architecture up and
running, finally the PROs and CONs of this approach.
These lessons will allow you to evaluate if this architecture would fit your
current or next project.
So now it’s time for your journey to begin.

The Frontend Landscape
I remember a time when web applications were called RIAs or Rich
Internet Applications, to differentiate them from the traditional, and more
static, corporate websites. Nowadays we can find many “RIAs”, or simply
web applications, across the World Wide Web.

Now, many SaaS (Software as a Service) with more or less complex UIs
allow us to print our business cards on demand, watch our favorite movies
or live events, order a few pepperoni pizzas for us and our guests, manage
our bank accounts from our comfortable sofas, and do many, many other
things that make our life easier on a daily basis.

As CTOs, architects, tech leads, or simply developers, when we start a
greenfield project, we can create a single-page application or an isomorphic
one (also called a universal application), or instead work with a bunch of
static pages that run in our cloud or on-premise infrastructure.

Yet despite this broad range of opportunities in front of us, not all of them
are fitting for any project.
Instead, we need to understand first what challenges we are going to face
before taking a direction.

But before jumping straight to the topic of this book, let’s analyze the
current architectures available to us when we work on a frontend
application.

Single-Page Applications
Single-page applications (or SPAs) are probably the most used
implementations by many companies. They consist of a single or a small
number of JavaScript files that encapsulate the entire frontend application
usually downloaded up front.

When the web servers or the Content Delivery Network (CDN) serve the
HTML index page, the SPA loads the JavaScript, CSS, and any additional
files needed for displaying any part of our application.

There are many benefits of using SPAs; for instance, the client downloads
the application code once at the beginning of its life cycle and the entire
logic is available up front.
Also SPAs usually communicate with APIs for exchanging data with the
persistent layer of the backend.

An SPA avoids multiple round trips to the server for loading additional
application logic and renders all the views instantaneously during the
application life cycle.
Both features enhance the user experience and simulate what we usually
have when we interact with a native application for mobile devices or
desktop, where we can jump from one part of our application to another
without waiting too long.

In addition, an SPA fully manages the routing mechanism on the client side.
Usually every time the application changes a view, it rewrites the URL in a
meaningful way to allow users to share the page link or bookmark the URL
for starting the navigation from a specific page. SPAs also allow us to
decide how we are going to split the application logic between server and
client. We can have a “fat client” and a “thin server” where the logic is
mainly stored on the client side and the server side is used as persistence
layer, or a “thin client” and a “fat server” where the logic is mainly
delegated to the backend, and the client doesn’t perform any smart logic but
just reacts to the state provided by the APIs.

Over the past of several decades, different school of thoughts have
prevailed on whatever far or thin clients are better solutions.
Despite these arguments altough, both approaches have their own PROs and
CONs. It always depends on the type of application we are creating.
I personally found it very valuable to have a thin client and a fat server
when I was targeting cross-platform applications, so I was able to design a
feature once and have all clients deployed on multiple targets react to the
application state stored on the server.
At the same time, I often used a fat client and a thin server when I had to
create desktop applications where the offline persistence layer was an
essential feature; therefore, rather than writing the state logic twice, I
managed it only in one place and used the server for data synchronization.

However, SPAs have some disadvantages for a certain type of applications.
Technically speaking, the first time to load usually takes longer than for
other architectures, because we are downloading the entire application
instead of only what the user needs to see
If not well designed, this could become a killer for our applications,
especially, when they are loaded with an unstable or unreliable connection
on mobile devices like smartphones and tablets.

Nowadays there are several ways to mitigate this problem caching the
content directly on the client. In particular Progressive Web Apps are
providing a set of new techniques, based on service workers, a script that
your browser runs in the background, separate from a web page, for
enhancing the user experience of an SPA serves on mobile devices with
flaky or totally absent connections. Another potential issue caused by SPAs
is that are not SEO-friendly; in fact, when a crawler is trying to understand
how to navigate the application or website, it won’t have an easy job
indexing all the contents served by an SPA unless we prepare alternative
ways for fetching it.

Usually when we want to provide better indexing for an SPA, we tend to
create a custom experience strictly for the crawler.
For instance, Netflix lowers its geo-fencing mechanism when the user-agent
requesting their web application is identified as a crawler, instead serving

content similar to what a user would watch based on the country specified
in the URL. This is a very handy mechanism considering that the crawlers
engine is often based in a single location from which it indexes a website all
over the world.
As mentioned earlier, SPAs download all the application logic in one go,
but this also can lead to potential memory leaks when the user is jumping
from one view to another if the code is not well implemented and is not
correctly disposing of the unused objects.

In large applications this could be a real problem that might lead to several
days or weeks of application hardening in order to make the SPA code
functional.
It could be even worse if the device that loads the SPA doesn’t have a great
hardware, like a smart TV or a set-top-box.
Too often I have seen applications running smoothly on a MacBook Pro
quad-core and then failing miserably when run on a low end device.

The last disadvantage to mention when we work with SPAs is on the
organizational side.
When an SPA is a large application managed by distributed or colocated
teams working on the same codebase, different areas of the same
application could end up with a mix of approaches and decisions that could
confuse team members.
Also the communication overhead teams will use to coordinate between
themselves is often a hidden cost of the application.

Many times we completely forget about calculating the inefficiency of our
teams, not because they are not capable of developing an application, but
because the company structure or architecture doesn’t enable them to
express in the best way possible, slowing down the operations and the
implementation of any new feature.

Isomorphic Applications
Isomorphic applications, or universal applications, are web applications
where the code between server and client is shared and can run in both

contexts.

This technique brings some benefits when used in the right way. It is in
particular is convenient when the time to interaction, A/B testing, and SEO
are essential characteristics for the application.

Isomorphic applications can be designed in different ways.
Because these web applications share code between server and client, the
server, for instance, can do the rendering part for the page requested by the
browser, retrieve the data to display from the database or from one or
multiple APIs, aggregate it together, and then pre-render it with the
template system used for generating the view, in order to serve to the client
a page that doesn’t need additional round trips for requesting data to
display.

This will definitely enhance the time to interaction, considering the page
requested is pre-rendered on the server and is partially or fully interpreted
on the backend. This spares a lot of roundtrips on the frontend, so we won’t
need to load additional resources (vendors, application code, etc.) and the
browser will interpret a static page with almost everything inside.

Also, as mentioned, using isomorphic applications can improve an SEO
strategy, because the page is server-side rendered without the need for
additional server requests when served.
The crawler is going to request the page and receives it fully prepared on
the server, ready to be indexed by the search engine without any problem.
Isomorphic applications share the code between contexts, but how much
code is really shared? To answer this question depends on the context.

For instance, we can use this technique in a hybrid approach where we
server-side render part of the page in order to benefit from the time to
interact and then lazy loading additional JavaScript files for having the
benefits of the isomorphic application as well as the single page application
where the files loaded within the HTML page served allow to add
sophisticated behaviours to a static web page, transforming this page in a
SPA. We can also have a more purist approach where we always render the

page and its state on the server providing only a page to display for the
browser, really depends on the complexity of the project we are facing.

With this approach, we can decide how much code is shared on the backend
based on the project’s requirements.
For instance, we can render just the views, inlining the CSS and the bare
minimum JavaScript code to have an HTML skeleton that is loaded very
quicly by the browser, or completely delegate the rendering and data
integration onto the server, pheraps because we have more static pages than
heavy interactivity on the client side. We can also have a mixed approach
where we divide the application into multiple SPAs with the first view
rendered on the server side, and then some additional JavaScript to
download for managing the application behaviors, the models and also the
routing inside the SPA.

Routing is another interesting part of an isomorphic application because we
can decide to manage it on the server-side, only serving a static page every
time the user is interacting with a link on the client.
Or we can have a mixed approach if we use the benefits of server side
rendering only for the first view, then load an SPA, where in this case the
server will do a macro routing that serves different SPAs, each SPA has its
own routing system for navigating between views. Another benefit of this
approach is that we are not limited only to template libraries, but virtual
DOM implementations like React, Preact, or similar, also can benefit from
this approach. Many other libraries and frameworks have started to offer the
server-side rendering approach out of the box like Vue with Nuxt.js,
Meteor, or Angular, for instance. Also, we don’t need to have a Node.js
backend for working with isomorphic apps but we can use the technology
we are more familiar with for serving our APIs like Go or PHP for instance.
Isomorphic applications therefore won’t have much of an impact on your
existing backend technology stack.

The last thing to mention about isomorphic applications is that we can
integrate A/B testing platforms nicely without much effort. In the past year
or so, many A/B testing platforms had to catch up with the frontend
technologies in not only supporting UI libraries like JQuery but also in

embracing virtual DOM libraries like React or Vue. They also have to make
their platforms ready for hybrid mobile applications as well as native ones.

The strategy these companies adopted is to manage the experiments on the
server side where the developers have full control of the experiments to run
on the clients. This is obviously a great advantage if you are working with
an isomorphic application because you can pre-render on the server the
specific experiment you want to serve to a specific user. Those solutions
can also communicate with the clients via APIs in the case of native mobile
applications and SPAs for choosing the right experiment.

Isomorphic applications could also suffer from scalability problems if a
project is really successful and visited by millions of users. Considering we
are generating the HTML page pre-rendered on the server, it means we need
to create the right caching strategy in order to minimize the impact on the
servers.
In this case, if the responses are highly cacheable, CDNs like Akamai,
Fastly, or Cloudfront could definitely improve the scalability of our
isomorphic applications by avoiding all the requests hitting origin servers.

Organisation wise, an isomorphic application suffers of similar problems
we can find on an SPA where the code base is unique and maintained by
one or multiple teams.

There are ways to mitigate the communication overhead if a team is
working on a specific area of the application without any overlap with other
teams. In this case we can use architecture like Backend for Frontends
(BFF) for decoupling the API implementation and allow each team to
maintain their own layer of APIs specific to a target.

Static-Page Websites
Before entering the main topic of this book, it is worth mentioning the
static-page website, where every time the user clicks on a link we are
loading a new static page.
Fairly “old school”, I know, but still in use with some twists.

Usually this approach is useful for quick websites that are not meant to be
online for a long period of time, such as ones where freelancers can
promote their skills or simply for advertising a specific product or service
we want to highlight without using the corporate website.

In the last few years this type of websites has mutated into a single page
that expands vertically instead of loading different pages. Another trend in
this last case is to lazy-load the content of the website, waiting till the user
scrolls to a specific position of the website and then loading the content.

The same technique is used with hyperlinks, where all the links are anchors
inside the same page and the user is browsing quickly between bits of
information available on the website. These kinds of projects are usually
created by small teams or individual contributors; the investment for the
company is fairly low on the technical side, and it’s a good playground for
developers to experiment with new technologies and new practices or to
consolidate existing ones.

Micro-Frontends
Micro-Frontends are an emerging architecture, clearly inspired by
microservices architecture.
The main idea behind them is to break down “the monolith” into smaller
parts, allowing an organisation to spread the amount of work with
autonomous teams, colocated or distributed, without the need to slowing
down their delivery throughput.

As we know, encapsulating an API inside a microservice is actually the
easiest part.
When we realize there is way more to take care of, we will understand the
complexity of the microservices architecture that not only adds high
flexibility and good encapsulation between domains, but also an overall
complexity around the observability, automation, and discoverability of a
system.

Micro-Frontends probably are not suitable for all projects; nevertheless,
they can alert us to a new way to structure our frontend applications,
solving some of the key challenges we have encountered in the past not
only from a technical perspective but also from an organizational one.

Too often I have seen great architectures on paper that didn’t translate well
in the real world because the creator didn’t take into account the
environment (company’s structure, culture, developers skills, timeline, etc.)
where the project should have been built.
As Conway’s law, mentioned in many books, claims:

“Any organization that designs a system (defined more broadly here
than just information systems) will inevitably produce a design whose
structure is a copy of the organization’s communication structure.”

The Conway’s law could be mitigated with the “Inverse Conway
Maneuver,” which recommends that teams and organizations be structured
on our desired architecture and not vice versa.

I truly believe that mastering different architectures and investing time on
understanding how many systems work allows us to mitigate the impact of
Conway’s law, because it gives us enough tools in our belt to solve different
challenges, not only technical ones but organizational too.

Micro-Frontends in combination with microservices and a strong
engineering culture, where everyone is responsible for their own
domain and the final result as well, could result in a real silver bullet -
complex to build but foolproof when used.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

Email bookquestions@oreilly.com to comment or ask technical questions
about this book.

For news and information about our books and courses, visit
http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

http://oreilly.com/
http://oreilly.com/
mailto:bookquestions@oreilly.com
http://oreilly.com/
http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
First of all, I’d like to thank my family, my girlfriend Maela, and my
daughter Emma for everything we share and the strength I receive from
them to move forward every single day. Thanks to all the people who
inspire me on a daily basis in any shape or form of communication.

A huge thank to DAZN, who allowed me to apply a Micro-Frontends
architecture and to explore the benefits of it end to end trusting my ideas
and judgement.
I also thank all my incredible colleagues who challenged and helped me on
delivering our platform on more than 30 different targets. Last but not least,
thanks to O’Reilly for the opportunity to write about Micro-Frontends, in
particular to Jennifer Pollock and Angela Rufino for all the support I had
during this journey.

http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Chapter 1. The Frontend
Landscape

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 1st chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at
Building.microfrontends@gmail.com.

I remember a time when web applications were called rich internet
applications (RIAs) to differentiate them from the traditional, and more
static, corporate websites. Nowadays we can find many RIAs, or web
applications, across the World Wide Web.

Today, a lot of software as a service (SaaS) with more or less complex user
interfaces (UIs) allows us to print our business cards on-demand, watch our
favorite movies or live events, order a few pepperoni pizzas for us and our
guests, manage our bank accounts from our comfortable sofas, and do
many, many other things that make our lives easier.

As CTOs, architects, tech leads, or developers, when we start a greenfield
project, we can create a single-page application or an isomorphic one,
whose code can run both in the server and the client, or even work with a
bunch of static pages that run in our cloud or on-premise infrastructure.

While we now have such a broad range of options, not all of them are fit for
every job. To make the right decision for our projects, we need to
understand the challenges we will face along the way.

Before we jump into the topic of this book, let’s analyze the current
architectures available to us when we work on a frontend application.

Micro-Frontends Applications
Micro-frontends are an emerging architecture inspired by microservices
architecture.

The main idea behind them is to break down a monolithic codebase into
smaller parts, allowing an organization to spread out the work among
autonomous teams, whether collocated or distributed, without the need to
slow down their delivery throughput.

However, thinking about parallelism in the backend world, designing an
application program interface (API) and encapsulating the logic into a
microservice is actually the easiest part. When we realize there is
significantly more to take care of, we will understand the complexity of the
microservices architecture that adds not only high flexibility and good
encapsulation between domains but also an overall complexity around the
observability, automation, and discoverability of a system.

For instance, after creating the business logic of a service, we need to
understand how a client should access our API, if it’s an internal
microservice that should communicate with other microservices we need to
identify a security model.

Then we need to deal with the traffic that consumes our microservice,
implementing techniques for spike traffic like autoscaling or caching for
instance.

We also need to understand how our microservice may fail, we may fail
gracefully without affecting the consumers and just hiding the functionality

on the user interface, otherwise we need to have resilience across multiple
availability zones or regions.

Working with microservices simplify the business logic to handle, however
we need to handle an intrinsic complexity at different levels like
networking, persistence layer, communication protocols, security and many
others.

This is also true for micro-frontends, if the business logic and the code
complexity are reduced drastically, the overhead on automation,
governance, observability and communication have to be taken into
consideration.

As with other architectures, micro-frontends are not suitable for all projects;
nevertheless, they can provide a new way to structure our frontend
applications, solving some key scalability challenges we have encountered
in the past not only from a technical perspective but also from an
organizational one.

Too often I have seen great architectures on paper that didn’t translate well
into the real world because the creator didn’t take into account the
environment (company’s structure, culture, developers skills, timeline, etc.)
where the project would have been built.

Melvin Conway’s Law said it best:

“Any organization that designs a system (defined more broadly here than
just information systems) will inevitably produce a design whose structure
is a copy of the organization’s communication structure.”

Conway’s Law could be mitigated with the Inverse Conway Maneuver,
which recommends that teams and organizations be structured according to
our desired architecture and not vice versa.

I truly believe that mastering different architectures and investing time on
understanding how many systems work allow us to mitigate the impact of
Conway’s Law, because it gives us enough tools in our belt to solve both
technical and organizational challenges.

Micro-frontends, combined with microservices and a strong engineering
culture, where everyone is responsible for their own domain, may result in a
real silver bullet—complex to build but foolproof when used.

This architecture can be used in combination with other backend
architecture such as a monolith backend or service oriented architecture
(SOA), although micro-frontends suit very well when we can have a
microservices architecture, allowing us to define slices of an application
that are evolving together.

In this book, we are going to explore the possibilities provided by this
architectural style and how to design a coherent architecture for our
applications.

Single-Page Applications
Single-page applications (SPAs) are probably the most used
implementations. They consist of a single or a few JavaScript files that
encapsulate the entire frontend application, usually downloaded upfront.

When the web servers or the content delivery network (CDN) serves the
HTML index page, the SPA loads the JavaScript, CSS, and any additional
files needed for displaying any part of our application.

Using SPAs has many benefits. For instance, the client downloads the
application code just once, at the beginning of its lifecycle, and the entire
application logic is then available upfront for the entire user’s session.

SPAs usually communicate with APIs by exchanging data with the
persistent layer of the backend also known as the server side. They also
avoid multiple round trips to the server for loading additional application
logic and render all the views instantaneously during the application life
cycle.

Both features enhance the user experience and simulate what we usually
have when we interact with a native application for mobile devices or

desktop, where we can jump from one part of our application to another
without waiting too long.

In addition, an SPA fully manages the routing mechanism on the client side.

What this means is, every time the application changes a view, it rewrites
the URL in a meaningful way to allow users to share the page link or
bookmark the URL for starting the navigation from a specific page. SPAs
also allow us to decide how we are going to split the application logic
between server and client. We can have a “fat client” and a “thin server,”
where the client side mainly stores the logic and the server side is used as
persistence layer, or we can have a “thin client” and a “fat server,” where
the logic is mainly delegated to the backend and the client doesn’t perform
any smart logic but just reacts to the state provided by the APIs.

Over the past several decades, different schools of thought have prevailed
on whether fat or thin clients are a better solution.

Despite these arguments, however, both approaches have their pros and
cons. The best choice always depends on the type of application we are
creating.

For example, I found it very valuable to have a thin client and a fat server
when I was targeting cross-platform applications. It allowed me to design a
feature once and have all the clients deployed on multiple targets react to
the application state stored on the server.

When I had to create desktop applications where storing some data offline
was an essential feature, I often used a fat client and a thin server instead.
Rather than managing the state logic in two places, I managed it in one and
used the server for data synchronization.

However, SPAs have some disadvantages for certain types of applications.
The first load time is usually longer than other architectures because we are
downloading the entire application instead of only what the user needs to
see. If the application isn’t well designed, the download time could become
a killer for our applications, especially when they are loaded with an

unstable or unreliable connection on mobile devices, like smartphones and
tablets.

Nowadays we can cache the content directly on the client in several ways to
mitigate the problem. A technique worth a mention is for sure the
progressive web apps.

Progressive web apps provide a set of new possibilities based on service
workers, a script that your browser runs in the background separate from a
web page for enhancing the user experience of a client application served
on desktop and mobile devices with flaky or totally absent connections.

Thanks to service workers we can now create our caching strategy for a
web application, with native APIs available inside the browsers.

This pattern is called offline first, or cache first, and it’s the most popular
strategy for serving content to the user. If a resource is cached and available
offline, return it first before trying to download it from the server. If it isn’t
in the cache already, download it and cache it for future usage. As simple
like that but very powerful for enhancing the user experience in our web
application, especially on mobile devices.

Another disadvantage relates to search engine optimization (SEO). When a
crawler, a program that systematically browses the World Wide Web in
order to create an index of data, is trying to understand how to navigate the
application or website, it won’t have an easy job indexing all the contents
served by an SPA unless we prepare alternative ways for fetching it.

Usually, when we want to provide better indexing for an SPA, we tend to
create a custom experience strictly for the crawler.

For instance, Netflix lowers its geofencing mechanism when the user-agent
requesting its web application is identified as a crawler rather than serving
content similar to what a user would watch based on the country specified
in the URL. This is a very handy mechanism considering that the crawler’s
engine is often based in a single location from which it indexes a website all
over the world.

Downloading all the application logic in one go can be a disadvantage as
well because it can lead to potential memory leaks when the user is jumping
from one view to another if the code is not well implemented and does not
correctly dispose of the unused objects. This could be a serious problem in
large applications, leading to several days or weeks of code refactoring and
improvements in order to make the SPA code functional.

It could be even worse if the device that loads the SPA doesn’t have great
hardware, like a smart TV or a set-top box. Too often I have seen
applications run smoothly on a MacBook Pro quad-core and then fail
miserably when running on a low-end device.

SPAs last disadvantage is on the organizational side. When an SPA is a
large application managed by distributed or colocated teams working on the
same codebase, different areas of the same application could end up with a
mix of approaches and decisions that could confuse team members. The
communication that overhead teams use to coordinate between themselves
is often a hidden cost of the application.

We often completely forget about calculating the inefficiency of our teams,
not because they are not capable of developing an application but because
the company structure or architecture doesn’t enable them to express it in
the best way possible, slowing down the operations, creating external
dependencies, and overall generating friction during the development of a
new feature.

Also, the developers may feel a lack of ownership considering many key
decisions may not come from them considering the codebase of a large SPA
may be started months if not years before they join the company.

All of these situations are not presented in form of an invoice at the end of
the months but they impact on the teams throughput considering that a
complex codebase may slow down drastically the teams potential of
delivery.

Isomorphic Applications

Isomorphic or universal applications are web applications where the code
between server and client is shared and can run in both contexts.

This technique brings some benefits when used correctly. It is particularly
beneficial for the time to interaction, A/B testing, and SEO, for instance,
thanks to the possibility to generate the page on the server-side, a crawler
can index the final page faster which leads us to have full control on how
fast Isomorphic applications can be designed in different ways.

These web applications share code between server and client, allowing the
server, for instance, to render the page requested by the browser, retrieve
the data to display from the database or from one or multiple APIs,
aggregate it together, and then pre-render it with the template system used
for generating the view in order to serve to the client a page that doesn’t
need additional round trips for requesting data to display.

Because the page requested is pre-rendered on the server and is partially or
fully interpreted on the backend, the time to interaction is enhanced. This
avoids a lot of round trips on the frontend, so we won’t need to load
additional resources (vendors, application code, etc.) and the browser can
interpret a static page with almost everything inside.

An SEO strategy can also be improved with isomorphic applications
because the page is server-side rendered without the need for additional
server requests. When served, it provides the crawler an HTML page with
all the information inside ready to be indexed immediately without
additional round trips to the server.

Isomorphic applications share the code between contexts, but how much
code is really shared? The answer depends on the context.

For instance, we can use this technique in a hybrid approach, where we
render part of the page on the server side to improve the time to interact and
then lazy-load additional JavaScript files for the benefits of both the
isomorphic application and the SPA. The files loaded within the HTML
page served will add sophisticated behaviors to a static web page,
transforming this page into an SPA.

With this approach, we can decide how much code is shared on the backend
based on the project’s requirements.

For example, we can render just the views, inlining the CSS and the bare
minimum JavaScript code to have an HTML skeleton that the browser can
load very quickly, or we can completely delegate the rendering and data
integration onto the server, perhaps because we have more static pages than
heavy interactivity on the client side. We can also have a mixed approach,
where we divide the application into multiple SPAs with the first view
rendered on the server side and then some additional JavaScript
downloaded for managing the application behaviors, models, and routing
inside the SPA.

Routing is another interesting part of an isomorphic application because we
can decide to manage it on the server side, only serving a static page any
time the user interacts with a link on the client.

Or we can have a mixed approach. We can use the benefits of server-side
rendering for the first view, and then load an SPA, where the server will do
a macro routing that serves different SPAs, each with its own routing
system for navigating between views. With this approach we aren’t limited
to template libraries; we can use virtual document object model (DOM)
implementations like React or Preact. Many other libraries and frameworks
have started to offer server-side rendering out of the box, like Vue with
Nuxt.js, Meteor, and Angular.

As you can see, isomorphic applications won’t have much of an impact on
your existing backend technology stack.

The last thing to mention about isomorphic applications is that we can
integrate A/B testing platforms nicely without much effort.

A/B testing is the act of running a simultaneous experiment between two or
more variants of a page to see which one performs the best.

In the past year or so, many A/B testing platforms had to catch up with the
frontend technologies in not only supporting UI libraries like JQuery but
also embracing virtual DOM libraries like React or Vue. Additionally, they

have to make their platforms ready for hybrid mobile applications, as well
as native ones.

The strategy these companies adopted is to manage the experiments on the
server side where the developers have full control of the experiments to run
on the clients. This is obviously a great advantage if you are working with
an isomorphic application because you can pre-render on the server the
specific experiment you want to serve to a specific user. Those solutions
can also communicate with the clients via APIs with native mobile
applications and SPAs for choosing the right experiment.

But isomorphic applications could suffer from scalability problems if a
project is really successful and visited by millions of users. Because we are
generating the HTML page pre-rendered on the server, we will need to
create the right caching strategy to minimize the impact on the servers.

In this case, if the responses are highly cacheable, CDNs like Akamai,
Fastly, or Cloudfront could definitely improve the scalability of our
isomorphic applications by avoiding all the requests hitting origin servers.

Organization-wise, an isomorphic application suffers similar problems as an
SPA whose code base is unique and maintained by one or multiple teams.

There are ways to mitigate the communication overhead if a team is
working on a specific area of the application without any overlap with other
teams. In this case, we can use architecture like Backends for Frontends
(BFF) for decoupling the API implementation and allow each team to
maintain their own layer of APIs specific to a target.

Static-Page Websites
Another option for your project is the static-page website, where every time
the user clicks on a link you are loading a new static page. Fairly old
school, I know, but it’s still in use—with some twists.

A static-page website is useful for quick websites that are not meant to be
online for a long period, such as ones that advertise a specific product or

service we want to highlight without using the corporate website, or that are
meant to be simple and easier to build and maintain by the end user.

In the last few years, this type of website has mutated into a single page that
expands vertically instead of loading different pages. Some of these sites
also lazy-load the content, waiting until the user scrolls to a specific
position to load the content.

The same technique is used with hyperlinks, where all the links are
anchored inside the same page and the user is browsing quickly between
bits of information available on the website. These kinds of projects are
usually created by small teams or individual contributors. The investment
on the technical side is fairly low, and it’s a good playground for developers
to experiment with new technologies and new practices or to consolidate
existing ones.

JAMStack
In recent years a new frontend architecture raised a good success called
JAMStack (JavaScript, APIs, and Markup).

JAMstack is intended to be a modern architecture, to help create fast and
secure sites and dynamic apps with JavaScript/APIs and pre-rendered
markup, served without web servers.

In fact the final output is a static artifact composed by HTML, CSS and
JavaScript, basically the holy trinity of frontend development.

The artifact can be served directly by a CDN considering the application
doesn’t require any server-side technology to work. One of the simplest
way for serving a JAMStack application is using Github pages for hosting
the final result

In this category we can find famous solutions like Gatsby.js, Next.js or
Nuxt.js.

The key advantages of these architectures are better performances, cheaper
infrastructure and maintenance considering they can be served directly by a

https://jamstack.org/
https://pages.github.com/
https://www.gatsbyjs.org/
https://nextjs.org/
https://nuxtjs.org/

CDN, great scalability because we serve static files, higher security due to
decrease of attack surface and easy integration with headless CMS.

JAMStack is a great companion for many websites we have to create
especially considering the frictionless developer experience.

In fact, frontend developers can focus only on the frontend development
and debugging, this usually means a more focused approach on the final
result.

Summary
Over the years, the frontend ecosystem has evolved to include different
architectures for solving different problems. A piece has been missing,
though: a solution that would allow scale projects with tens or hundreds of
developers working on the same project. Micro-frontends are that piece.

Micro-frontends will never be the only architecture available for frontend
projects. Yet they provide us with multiple options for creating projects at
scale.

Our journey in learning micro-frontends starts with their principles,
analysing how these principles should be leveraged inside an architecture,
and how much they resemble microservices.

Chapter 2. Micro-Frontends
Principles

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 2nd chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at
Building.microfrontends@gmail.com.

At the beginning of my career, I remember working on many software
projects where small or medium-size teams were developing a monolithic
application with all the functionalities of a platform available in a single
artifact, the product produced during the development of a software, and
deployed to a web server.

When we have a monolith, we write a lot of code that should harmoniously
work together. In my experience, we tend to pre-optimize or even over-
engineer our application logic. Abstracting reusable parts of our code can
create a more complex codebase and sometimes the effort of maintaining a
complex logic doesn’t pay off in the long run. Unfortunately, something that
looked straightforward at the time could look very unwieldy a few months
later.

In the past decade, public cloud providers like Amazon Web Services
(AWS) or Google Cloud started to gain traction. Nowadays they are popular
for delegating what is increasingly becoming a commodity, freeing up
organizations to focus on what really matters in a business: the services
offered to the final users.

Although cloud systems allowed us to scale our projects in an easier way
than before, monoliths, unfortunately, require us to scale not just a single
part of our system but the entire system, causing many headaches if the said
system is not modularized or written with high standards.

Furthermore, working on a monolith codebase with distributed teams and
co-located ones could be challenging, particularly after reaching medium or
large team sizes because of the communication overhead and centralized
decisions where a few people decide for everyone.

In the long run, companies with large monoliths usually slow down all the
operations needed to advance any new feature, losing the great momentum
they had at the beginning of a project where everything was easier and
smaller with few complications and risks.

Also, with monolith applications, we have to deploy the entire codebase
every single time, which comes with a higher chance of breaking the
application program interfaces (APIs) in production, introducing new bugs,
and making more mistakes, especially when the codebase is not rock solid
or extensively tested.

Solving these and many other challenges its staff faces, a company might
move from complex monolith codebases to multiple smaller codebases and
scoped domains called microservices.

Nowadays microservices architecture is a well-known, established pattern
used by many organizations across the world.

Microservices split a unique codebase into smaller parts, each of them with
a subset of functionalities compared to a monolith. This business logic is
embraced by developers because the problem solved by a microservice is
simpler than looking at thousands of lines of code.

Another significant advantage is that we can scale part of the application
and use the right approach for a microservice instead of a one-size-fits-all
approach similar to a monolith. However, there are also some pitfalls to
working with microservices. The investment on automation, observability,
and monitoring has to be completed to have a distributed system under
control. Another pitfall is the wrong definition of a microservice’s
boundary, for instance, having a microservice that is too small for
completing an action inside a system relying on other microservices causing
a strong coupling between services and forcing them to be deployed
together every time. When this phenomenon is extended across multiple
services we risk to end with a big ball of mud or a system that is so complex
that it is hard to extend.

Microservices bring many benefits to the table but could bring many cons
as well. In particular, when we are embracing them in a project, the
complexity of having a microservice architecture could become more
painful than beneficial. Considering the amount of architecture available in
software development, we should pick microservices only when needed and
not choose them recklessly just because it is the latest and greatest
approach.

Micro-frontends are an emerging approach to defining software deliveries
along business and responsibility boundaries in contrast to the monolithic
approaches we have taken with Web development in the past. Keep in mind,
however, that just like microservices aren’t a universal answer to all
software decomposition, neither are micro-frontends. To understand where
they fit in and even what they are, let’s look at some of the forces that are
pushing us in this direction.

Monolith to Microservices
When we start a new project or even a new business offering a service
online, the first iteration should be used for understanding if our business
could succeed or not.

Usually, we start by identifying a tech stack, a list of tech services used to
build and run a single app, that is familiar to our team. By minimizing the
bells and whistles around the system and concentrating on the bare
minimum we’re able to quickly gather information about our business idea
directly from our users. This is also called an MVP or minimum viable
product.

Often we design our API layer as a unique codebase (monolith) so we need
to set up one continuous integration or continuous delivery pipeline for the
project. Integrating observability in a monolith application is quite easy; we
just need to run an agent per virtual machine or container for retrieving the
health status of our application servers. The deployment process is trivial,
considering we need to handle one automation strategy for the entire APIs
layer, one deployment and release strategy and when the traffic starts to
increase we can scale our machine horizontally, having as many application
servers as needed to fulfill the users’ requests.
That’s also why monolithic architecture are often a good choice for new
projects considering we can focus more on the business logic of an
application instead of investing too much effort on other aspects such as
automation for instance.

Where are we going to store our data? We have to decide which database
better suits our project needs—a graph, a NoSQL, or a SQL database?
Another decision that must be made is whether we want to host our
database on a cloud service or on-premises. We should select the database
that will fit our business case better.
For instance if we need to create a concrete view of data to populate a user
interface probably having a NoSQL database would make more sense than
any other database, at the same time we can say that using a graph database
for mapping relations between users like in a social network application
would be a better fit for this kind of database.

Finally, we need to choose a technology for representing our data, such as
within a browser or a mobile application. We can pick the best-known
JavaScript framework available or our favorite programming language; we

can decide to use server-side rendering or a Single Page Application
architecture; then we define our code conventions, linting, and CSS rules.

At the end, we should end up with what you can see in Figure 2-1:

Figure 2-1. Monolith Application with Single Page Application

Hopefully, the business ideas and goals behind our project will be validated
and more users will subscribe to our online service or buy the products we
sell.

Moving to Microservices
Now imagine that thanks to the success of our system, our company decides
to scale up the tech team, hiring more engineers, QAs, scrum masters, and
so on.

While monitoring our logs and dashboards, we realize not all our APIs are
scaling organically. Some of them are highly cacheable, so the content
delivery network (CDNs) are serving the vast majority of the clients. Our

origin servers are under pressure only when our APIs are not cacheable.
Luckily enough, they’re not all our APIs, just a small part of them.

Splitting our monolith starts to make more sense at this point, considering
the internal growth and our better understanding of how the system works.

Embracing microservices also means reviewing our database strategy and,
therefore, having multiple databases that are not shared across
microservices; if needed, our data is partially replicated, so each
microservice reduces the latency for returning the response.

Suddenly we are moving toward a consistent ecosystem with many moving
parts that are providing more agility and less risk than before.

Each team is responsible for its set of microservices. Team members can
make decisions on the best database to choose, the best way to structure the
schemas, how to cache some information for making the response even
faster, and which programming language to pick for the job. Basically we
are moving to a world where each team is entitled to make decisions and be
responsible for the services they are running in production, where a generic
solution for the entire system is not needed besides the key decisions, like
logging and monitoring, as we can see from Figure 2-2.

Figure 2-2. Microservices with Single Page Application

However, we are still missing something here. We are able to scale our
APIs layer and our persistent layers with well-defined patterns and best
practices, but what happens when our business is growing and we need to
scale our frontend teams, too?

Introducing Micro-Frontends
So far on the frontend, we didn’t have many options for scaling our
applications, for several reasons. Up to a few years ago, there wasn’t a
strong need to do so because having a fat server, where all the business
logic runs, and a thin client, for

displaying the result of the computation made available by the servers, was
the standard approach.

This has changed a lot in the past few years. Our users are looking for a
better experience when they are navigating in our web platforms, including
more interactivity and better interactions.

Companies have arisen that provide services with a subscription model, and
many people are embracing those services. Now it’s normal to watch videos
on demand instead of on a linear channel, to listen to our favorite music
inside an application instead of buying CDs, to order food from a mobile
app instead of calling a restaurant.

This shift of behaviors requires us to improve our users’ experience and
provide a frictionless path to accomplish what a user wants without
forgetting quality content or services.

In the past we would have approached those problems by dividing parts of
our application in a shared components library, abstracting some business
logic in other libraries so they could be reused across different parts of the
application. In general, we would have tried to reuse as much code as
possible.

I’m not advocating against solutions that are still valid and fit perfectly with
many projects, but we encounter quite a few challenges when embracing
them.

For instance, when we have a medium or large team of developers, all the
rules applied to the codebase are often decided once, and we stick with
them for months or even years because changing a single decision would
require a lot of effort across the entire codebase and be a large investment
for the organization.

Also, many decisions made during the development could result in trade-
offs due to lack of time, ideal consistency, or simply laziness. We must
consider that a business, like technology, evolves at a certain pace and it’s
unavoidable.

Code abstraction is not a silver bullet either; prematurely abstracting code
for reuse often causes more problems than benefits. I have frequently seen
abstractions make code thousands of times more complicated than
necessary to be reused just twice inside the same project. Many developers
are prone to over-engineering some solutions, thinking they will reuse them
tens if not hundreds of times, but in reality they use them far fewer times.
Using libraries across multiple projects and teams could end up producing
more complexity than benefits such as making the codebase more complex
or requiring more effort on manual testing or adding overhead in
communications.

We also need to consider the monolith approach on the frontend. Such an
approach won’t allow us to improve our architecture in the long run,
particularly if we are working on platforms meant to be available for our
users for many years or if we have distributed teams in different time zones.

Asking any business to extensively revise the tech it uses will cause a large
investment upfront before it gets any results.

Now the question becomes quite obvious: Do we have the opportunity to
use a well-known pattern or architecture that offers the possibility of adding
new

features quickly, evolving with the business, and delivering part of the
application autonomously without big-bang releases?

I picture something like Figure 2-3:

Figure 2-3. Micro-architectures combined, this is a high-level diagram showing how Microservices
and Micro-frontends can live together

The answer is yes, we can definitely do it and it’s where micro-frontends
come to rescue.

This architecture makes more sense when we deal with mid-large
companies and during the following chapters we are going to explore how
to successfully structure our micro-frontends architectures.

However, first we need to understand what are the main principles behind
micro-frontends to leverage as a guidance during the development of our
projects.

Microservices Principles
At the beginning of my journey into micro-frontends, I stepped back from
the technical side and looked at the principles behind other architectures for
scaling a soft‐
ware project. Would those principles be applicable to the frontend too?

Microservices’ principles offer quite a few useful concepts. Sam Newman
has highlighted these ideas in his book - Building Microservices (O’Reilly).
I’ve summarized the theories in Figure 2-4:

https://learning.oreilly.com/library/view/building-microservices/9781491950340/

Figure 2-4. Microservices principles

Let’s discuss the above principles and see how they apply to the frontend.

Modeled Around Business Domains
Modeling around business domains is a key principle brought up by
domain-driven design (DDD). It starts from the assumption that each piece
of software should reflect what the organization does and that we should
design our architectures based on domains and subdomains, leveraging
ubiquitous languages shared across the business.

When working from a business point of view, this provides several benefits,
including a better understanding of the system, an easier definition of a
technical representation of a business domain, and clear boundaries on
which a team should operate. We will discuss this topic extensively in the
next chapters.

Culture of Automation
Considering that microservices are a multitude of services that should be
autonomous, we need a robust culture of automating the deployment of
independent units in different environments. In my experience this is a key
process for leveraging micro‐ services architecture; having a strong
automation culture allows us to move faster and in a reliable way.

Hide Implementation Details
Hiding implementation details when releasing autonomously is crucial. If
we are sharing a database between microservices, we won’t be able to
change the database schema without affecting all the microservices relying
on the original schema. DDD teaches us how to encapsulate services inside
the same business domain, exposing only what is needed via APIs and
hiding the rest of the implementation. This allows us to change internal
logic at our own pace without impacting the rest of the system.

Decentralize All the Things
Decentralizing the governance empowers developers to make the right
decision at the right stage to solve a problem. With a monolith, many key

decisions are often made by the most experienced people in the
organization. These decisions, however, frequently lead to trade-offs
alongside the software lifecycle. Decentralizing these decisions could have
a positive impact on the entire system by allowing a team to take a technical
direction based on the problems they are facing, instead of creating
compromises for the entire system.

Deploy Independently
Independent deployment is key for microservices. With monoliths, we are
used to deploying the entire system every time, with a greater risk of live
issues and longer times for deploying and rolling back our artifacts. With
microservices, however, we can deploy autonomously without increasing
the possibility of breaking our entire API layer. Furthermore, we have solid
techniques, like blue-green deployment or canary releases that allow us to
release a new version of a microservice with even less risk, which clears the
path for new or updated APIs.

Isolate Failure
Because we are splitting a monolith into tens, if not hundreds, of services, if
one or more microservices becomes unreachable due to network issues or
service failures, the rest of the system should be available for our users.
There are several patterns for providing graceful failures with microservices
and the fact that they are autonomous and independent just reinforces the
concept of isolating failure.

Highly Observable
One reason that you would favor monolithic architecture in comparison to
microservices is that it is easier to observe a single system than a system
split in multiple services. Microservices provide a lot of freedom and
flexibility, but this doesn’t come for free; we need to have an eye on
everything through logs, monitors, and so on. For example, we must be
ready to follow a specific client request end to end inside our system.

Keeping the system highly observable is one of the main challenges of
microservices.

Embracing these principles in a microservices environment will require a
shift in mindset not only for your software architecture but also for how
your company is organized. It involves moving from a centralized to a
decentralized paradigm, enabling cross-functional teams to own their
business domains end to end. This can be a particularly huge change for
medium to large organizations.

Applying Principles to Micro-frontends
Now that we’ve grasped the principles behind microservices, let’s find out
how to apply them to a frontend application.

Modeled Around Business Domains
Modeling micro-frontends to follow DDD principles is not only possible
but also very valuable. Investing time at the beginning of a project to
identify the different business domains and how to divide the application
will be very useful when you add new functionalities or depart from the
initial project vision in the future. DDD can provide a clear direction for
managing backend projects, but we can also apply some of these techniques
on the frontend. Granting teams full ownership of their business domain can
be very powerful, especially when product teams are empowered to work
with technology teams.

Culture of Automation
As for the microservices architecture, we cannot afford to have a poor
automation culture inside our organization; otherwise any micro-frontends
approach we are going to take will end up a pure nightmare for all our
teams. Considering that every micro-frontends project contains tens or
hundreds of different parts, we must ensure that our continuous integration
and deployment pipelines are solid and have a fast feedback loop for

embracing this architecture. Investing time in getting our automation right
will result in the smooth adoption of micro-frontends.

Hide Implementation Details
Hiding implementation details and working with contracts are two essential
practices, especially when parts of our application need to communicate
with each other. It’s crucial to define upfront a contract between teams and
for all parties respect that during the entire development process. In this
way each team will be able to change the implementation details without
impacting other teams unless there is an API contract change. These
practices allow a team to focus on the internal implementation details
without disrupting the work of other teams. Each team can work at its own
pace, without external dependencies, creating a more effective integration.

Decentralization over Centralization
Decentralizing a team’s decisions finally moves us away from a one-size-
fits-all approach that often ends up being the lowest common denominator.
Instead, the team will use the right approach or tool for the job. As with
microservices, the team is in the best position to make certain decisions
when it becomes an expert in the business domain. This doesn’t mean each
team should take its own direction but rather that the tech leadership
(architects, principal engineers, CTOs) should provide some guardrails
between which team can operate without needing to wait for a central
decision. This leads to a sharing culture inside the organization becoming
essential for introducing successful practices across teams.

Deploy Independently
Micro-frontends allow teams to deploy independent artifacts at their own
speed. They don’t need to wait for external dependencies to be resolved
before deploying.

When we combine this approach with microservices, a team can own a
business domain end to end, with the ability to make technical decisions

based on the challenges inside their business domain rather than finding a
one-size-fits-all approach.

Isolate Failure
Isolating failure in SPAs isn’t a huge problem due to their architecture, but
it is with micro-frontends. In fact, micro-frontends may require composing
a user interface at runtime, which may result in network failures or 404s for
one or more files. To avoid impacting the user experience, we must provide
alternative content or hide a specific part of the application.

Highly Observable
Frontend observability is becoming more prominent every day, with tools
like Sentry and LogRockets providing great visibility for every developer.
Using these tools is essential to understanding where our application is
failing and why. For microservices, where anything can fail at any given
point, being able to resolve the issue quickly is far more important than
preventing problems, This moves us toward a paradigm where we can
better invest our resources by remaining ready to address system failures
than trying to completely prevent them. As with all microservices’
principles, this is applicable to the frontend, too.

The exciting part of recognizing these principles on the front- and backend
is that, finally, we have a solution that will empower our development
teams to own the entire range of a business domain, offering a simpler way
to divide labor across the organization and iterate improvements swiftly into
our system.

When we start this journey into the micro-world we need to be conscious of
the level of complexity we are adding to a project, which may not be
required for any other projects.

There are plenty of companies that prefer using a monolith over
microservices because of the intrinsic complexity they bring to the table.
For the same reason we must understand when and how to use micro-
frontends properly, as not all projects are suitable for them.

Micro-frontends are not a silver bullet
It’s very important that we use the right tool for the right job. Too often I
have seen projects failing or drastically delayed due to poor architectural
decisions.

We need to remember that:

NOTE
Micro-frontends are not appropriate for every application because of their nature
and the potential complexity they add at the technical and organizational levels.

Micro-frontends are a sensible option when we are working on software
that requires an iterative approach and long-term maintenance, when we
have projects that require a development team of over 30 developers or
when we want to replace a legacy project in an iterative way.

However, they are not a silver bullet for all frontend applications, such as
server-side rendering, SPAs, or even single HTML pages.

Micro-frontends architecture has plenty of benefits but also has plenty of
drawbacks and challenges. If the latter exceed the former, micro-frontends
are not the right

approach for a project. We will explore the pros and cons of this
architecture later in the book.

Summary
In this chapter we introduced what micro-frontends are, what their
principles are, and how those principles are linked to the well-known,
established microservices architecture.

Next, we will explore how to structure a micro-frontends project from an
architectural point of view and the key technical challenges to understand
when we design our frontend applications using micro-frontends.

Chapter 3. Micro-Frontend
Architectures and Challenges

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 3rd chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at
Building.microfrontends@gmail.com.

A micro-frontend represents a business domain that is autonomous,
independently deliverable, and owned by a team. The key takeaways in this
description, which will be discussed later, are closely linked to the
principles behind micro-frontends:

Business domain representation

Autonomous codebase

Independent deployment

Single-team ownership

Micro-frontends offer many opportunities. Choosing the right one depends
on the project requirements, the organization structure, and the developer’s
experience.

In these architectures, we face some specific challenges to success bound
by similar questions, such as how we want to communicate between micro-
frontends, how we want to route the user from one view to another, and,
most importantly, how we identify the size of a micro-frontend.

In this chapter, we will cover the key decisions to make when we initiate a
project with a micro-frontends architecture. We’ll then discuss some of the
companies using micro-frontends in production and their approaches.

Micro-frontends Decisions Framework
There are different approaches for architecting a micro-frontends
application. To choose the best approach for our project, we need to
understand the context we’ll be operating in.

Some architectural decisions will need to be made upfront because they will
direct future decisions, like how to define a micro-frontend, how to
orchestrate the different views, how to compose the final view for the user,
and how micro-frontends will communicate and share data.

These types of decisions are called the micro-frontends decisions
framework. It is composed of four key areas:

defining what a micro-frontend is in your architecture

composing micro-frontends

routing micro-frontends

communicating between micro-frontends

Define Micro-frontends
Let’s start with the first key decision, which will have a heavy impact on the
rest. We need to identify how we consider a micro-frontend from a
technical point of view.

We can decide to have multiple micro-frontends in the same view or having
only one micro-frontend per view (Figure 3-1).

Figure 3-1. Horizontal vs. vertical split

With the horizontal split, multiple micro-frontends will be on the same
view. Multiple teams will be responsible for parts of the view and will need
to coordinate their efforts. This approach provides a greater flexibility
considering we can even reuse some micro-frontends in different views,
although it also requires more discipline and governance for not ending up
with hundreds of micro-frontends in the same project.

In the vertical split scenario, each team is responsible for a business
domain, like the authentication or the catalog experience. In this case,
domain-driven design (DDD) comes to the rescue. It’s not often that we
apply DDD principles on frontend architectures, but in this case, we have a
good reason to explore it.

DDD is an approach to software development that centers the development
on programming a domain model that has a rich understanding of the
processes and rules of a domain.

DDD starts from the assumption that each software should reflect what the
organization does and architectures should be designed based on domains

and subdomains leveraging ubiquitous languages shared across the
business.

Applying DDD for frontend is slightly different from what we can do on the
backend, certain concepts are definitely not applicable although there are
others that are fundamental for designing a successful micro-frontends
architecture.

For instance, Netflix’s core domain is video streaming; the subdomains
within that core domain are the catalogue, the sign-up functionality, and the
video player.

There are three subdomain types:

Core subdomains: These are the main reasons an application
should exist. Core subdomains should be treated as a premium
citizen in our organizations because they are the ones that deliver
value above everything else. The video catalog would be a core
subdomain for Netflix.

Supporting subdomains: These subdomains are related to the core
ones but are not key differentiators. They could support the core
subdomains but aren’t essential for delivering real value to users.
One example would be the voting system on Netflix’s videos.

Generic subdomains: These subdomains are used for completing
the platform. Often companies decide to go with off-the-shelf
software for them because they’re not strictly related to their
domain. With Netflix, for instance, the payments management is
not related to the core subdomain (the catalog), but it is a key part
of the platform because it has access to the authenticated section.

Let’s break down Netflix with these categories (Table 3-1).

Table 3-1. Subdomains examples

Subdomain type Example

Core subdomain Catalog

Supportive subdomain Voting system

Generic subdomain Sign in or sign up

Domain-Driven Design with Micro-Frontends
Another important term in DDD is the bounded context: a logical boundary
that hides the implementation details, exposing an application programming
interface (API) contract to consume data from the model present in it.

Usually, the bounded context translates the business areas defined by
domains and subdomains into logical areas where we define the model, our
code structure, and potentially, our teams. Bounded context defines the way
different contexts are communicating with each other by creating a contract
between them, often represented by APIs. This allows teams to work
simultaneously on different subdomains while respecting the contract
defined upfront.

Often in a new project, subdomains overlap bounded context because we
have the freedom to design our system in the best way possible. Therefore,
we can assign a specific subdomain to a team for delivering a certain
business value defining the contract. However, in legacy software, the
bounded context can accommodate multiple subdomains because often the
design of those systems was not thought of with DDD in mind.

The micro-frontends ecosystem offers many technical approaches. Some
implementations are done with iframes, while others are done with
components library or web components. Too often we spend our time
identifying a technical solution without taking the business side into
consideration.

Think about this scenario: three teams, distributed in three different
locations, working on the same codebase.

These teams may go for a horizontal split using iframes or web components
for their micro-frontends. After a while, they realized that micro-frontends
in the same view need to communicate somehow. One of those teams will
then be responsible for aggregating the different parts inside the view. The

team will spend more time aggregating different micro-frontends in the
same view and debugging to make sure everything works properly.

Obviously, this is an oversimplification. It could be worse when taking into
con‐ consideration the different time zones, cross-dependencies between
teams, knowledge sharing, or distributed team structure.

All those challenges could escalate very easily to low morale and frustration
on top of delivery delays. Therefore we need to be sure the path we are
taking won’t let our teams down.

Approaching the project from a business point of view, however, allows you
to create an independent micro-frontend with less need to communicate
across multiple subdomains.

Let’s re-imagine our scenario. Instead of working with components and
iframes, we are working with single page applications (SPAs) and single
pages.

This approach allows a full team to design all the APIs needed to compose
a view and to create the infrastructure needed to scale the services
according to the traffic. The combination of micro-architectures,
microservices, and micro-frontends provides independent delivery without
high risks for compromising the entire system for release in production.

The bounded context helps design our systems, but we need to have a good
understanding of how the business works to identify the right boundaries
inside

our project.

As architects or tech leads, our role is to invest enough time with the
product team or the customers so we can identify the different domains and
subdomains, working collaboratively with them.

After defining all the bounded contexts, we will have a map of our system
representing the different areas that our system is composed of. In Figure 3-
2 we can see a representation of bounded context. In this example the
bounded context contains the catalogue micro-frontends that consumes

APIs from a microservices architecture via a unique entry point, a backend
for frontend, we will investigate more about the APIs integration in chapter
9.

In DDD, the frontend is not taken into consideration but when we work
with micro-frontends with a vertical split we can easily map the frontend
and the backend together inside the same bounded context.

Figure 3-2. This is a representation of bounded context

I’ve often seen companies design systems based on their team’s structure
(Conway’s Law states “organizations which design systems are constrained
to produce designs which are copies of the communication structures of
these organizations.” Instead, they needed their team structure to be flexible
enough to adapt to the best possible solution for the organization in order to
reduce friction and move faster toward the final goal: having a great
product that satisfies customers (Inverse Conway’s Maneuver recommends
evolving your team and organizational structure to promote your desired
architecture.)!

How to define a bounded context
Premature optimization is always around the corner, which can lead to our
subdomains decomposing where we split our bounded contexts to
accommodate future integrations. Instead, we need to wait until we have
enough information to make an educated decision.

Because our business evolves over time, we also need to review our
decisions related to bounded contexts.

Sometimes we start with a larger bounded context. Over time the business
evolves and eventually, the bounded context becomes unmanageable or too
complex. So we decide to split it.

Deciding to split a bounded context could result in a large code refactor but
could also simplify the codebase drastically, speeding up new
functionalities and development in the future.

To avoid premature decomposition, we will make the decision at the last
possible moment. This way we have more information and clarity on which
direction we need to follow. We must engage upfront with the product team
or the domain experts inside our organization as we define the subdomains.
They can provide you with the context of where the system operates.
Always begin with data and metrics.

For instance, we can easily find out how our users are interacting with our
application and what the user journey is when a user is authenticated and
when they’re not. Data provides powerful clarity when identifying a
subdomain and can help create an initial baseline, from where we can see if
we are improving the system or not.

If there isn’t much observability inside our system, let’s invest time to
create it. Doing so will pay off the moment we start identifying our micro-
frontends.

Without dashboards and metrics, we are blind to how our users operate
inside our applications.

Let’s assume we see a huge amount of traffic on the landing page, with 70%
of those users moving to the authentication journey (sign in, sign up,
payment, etc.). From here, only 40% of the traffic subscribes to a service or
uses their credentials for accessing the service.

These are good indications about our users’ behaviors in our platform.
Following DDD, we would start from our application’s domain model,
identifying the subdomains and their related bounded context and using
behavioral data to guide us on how to slice the frontend applications.

Allowing users to download only the code related to the landing page will
give them a faster experience because they won’t have to download the
entire application immediately, and the 40% of users who won’t move
forward to the authentication area will have just enough code downloaded
for understanding our service.

Obviously, mobile devices with slow connections only benefit from this
approach for multiple reasons: less data is downloaded, less memory is
used, less JavaScript is parsed and executed, resulting in a faster first
interaction of the page.

It’s important to remember that not all user sessions contain all the URLs
exposed by our platform. Therefore a bit of research upfront will help us
provide a better user experience.

Usually, the decision to pick horizontal instead of vertical depends on the
type of project we have to build.

In fact, horizontal split serves better static pages like catalogs or e-
commerce, instead of a more interactive project that would require a
vertical split.

Another thing to be considered is the skills set of our teams, usually, a
vertical split suits better for a more traditional client-side development
experience, instead, the horizontal split requires an investment upfront for
creating a solid and fast development experience to test their part as well
trying inside the overall view.

Micro-frontends composition
There are different approaches for composing a micro-frontends application
(Figure 3-3).

Figure 3-3. Micro-frontends composition diagram

In this diagram we can see three different ways to compose a micro-
frontends architecture:

Client-side composition

Edge-side composition

Server-side composition

Starting from the left of our diagram, we have a client-side composition,
where an application shell loads multiple micro-frontends directly from a
content delivery network (CDN), or from the origin if the micro-frontend is
not yet cached at the CDN level. In the middle of the diagram, we compose

the final view at the CDN level, retrieving our micro-frontends from the
origin and delivering the final result to the client. The right side of the
diagram shows a micro-frontends composition at the origin level where our
micro-frontends are composed inside a view, cached at the CDN level, and
finally served to the client.

Let’s now see how we can technically implement this architecture.

Client-Side Composition
In the client-side composition case, where an application shell loads micro-
frontends inside itself, the micro-frontends should have a JavaScript or
HTML file as an entry point so the application shell can dynamically
append the document object model (DOM) nodes in the case of an HTML
file or initializing the JavaScript application with a JavaScript file.

We can also use a combination of iframes to load different micro-frontends,
or we could use a transclusion mechanism on the client side via a technique
called client-side include. Client-side include lazy-loads components,
substituting empty placeholder tags with complex components. For
example, a library called h-include uses placeholder tags that will create an
AJAX request to a URL and replace the inner HTML of the element with
the response of the request.

This approach gives us many options, but using client side includes has a
different effect than using iframes. In the next chapters we will explore this
part in detail.

NOTE
According to Wikipedia, in computer science, transclusion is the inclusion of part or all
of an electronic document into one or more other documents by hypertext reference.
Transclusion is usually performed when the referencing document is displayed and is
normally automatic and transparent to the end user. The result of transclusion is a single
integrated document made of parts assembled dynamically from separate sources,
possibly stored on different computers in disparate places.

An example of transclusion is the placement of images in HTML. The server asks the
client to load a resource at a particular location and insert it into a particular part of the
DOM

Edge-Side Composition
With edge-side composition, we assemble the view at the CDN level. Many
CDN providers give us the option of using an XML-based markup language
called Edge Side Include (ESI). ESI is not a new language; it was proposed
as a standard by Akamai and Oracle, among others, in 2001. ESI allows a
web infrastructure to be scaled in order to exploit the large number of points
of presence around the world provided by a CDN network, compared to the
limited amount of data center capacity on which most software is normally
hosted. One drawback to ESI is that it’s not implemented in the same way
by each CDN provider; therefore, a multi-CDN strategy, as well as porting
our code from one provider to another, could result in a lot of refactors and
potentially new logic to implement.

Server-Side Composition
The last possibility we have is the server-side composition, which could
happen at runtime or at compile time. In this case, the origin server is
composing the view by retrieving all the different micro-frontends and
assembling the final page. If the page is highly cacheable, the CDN will
then serve it with a long time-to-live policy. However, if the page is
personalized per user, serious consideration will be required regarding the
scalability of the eventual solution, when there are many requests coming
from different clients. When we decide to use server-side composition we
must deeply analyze the use cases we have in our application. If we decide

https://en.wikipedia.org/wiki/Transclusion
https://www.w3.org/TR/esi-lang

to have a runtime composition, we must have a clear scalability strategy for
our servers in order to avoid downtime for our users.

From these possibilities, we need to choose the technique that is most
suitable for our project and the team structure. As we will learn later on in
this journey, we also have the opportunity to deploy an architecture that
exploits both client-side and edge-side composition—that’s absolutely fine
as long we understand how to structure our project.

Routing micro-frontends
The next important choice we have is how to route the application views.

This decision is strictly linked to the micro-frontends composition
mechanism we intend to use for the project.

We can decide to route the page requests in the origin, on the edge, or at
client-side (Figure 3-4.4).

Figure 3-4. 4 - Micro-frontends routing diagram

When we decide to compose micro-frontends at the origin, therefore a
server-side composition on the right of Figure 3-4.4, we are forced to route
the requests at origin considering the entire application logic lives in the
application servers.

However, we need to consider that scaling an infrastructure could be non
trivial, especially when we have to manage burst traffic with many requests
per second (RPS). Our servers need to be able to keep up with all the
requests and scale horizontally very rapidly. Each application server then
must be able to retrieve the micro-frontends for the composing page to be
served.

We can mitigate this problem with the help of a CDN. The main downside
is that when we have dynamic or personalized data, we won’t be able to
rely extensively on the CDN serving our pages because the data would be
outdated or not personalized.

When we decide to use edge-side composition in our architecture, the
routing is based on the page URL and the CDN serves the page requested
by assembling the micro-frontends via transclusion at edge level.

In this case, we won’t have much room for creating smart routing—
something to remember when we pick this architecture.

The final option is to use client-side routing. In this instance, we will load
our micro-frontends according to the user state, such as loading the
authenticated area of the application when the user is already authenticated
or loading just a landing page if the user is accessing our application for the
first time.

If we use an application shell that loads a micro-frontend as an SPA, the
application shell is responsible for owning the routing logic, which means
the application shell retrieves the routing configuration first and then
decides which micro-frontend to load.

This is a perfect approach when we have complex routing, such as when
our micro-frontends are based on authentication, geo-localization, or any

other sophisticated logic. When we are using a multipage website, micro-
frontends may be loaded via client-side transclusion. There is almost no
routing logic that applies to this kind of architecture because the client
relies completely on the URL typed by the user in the browser or the
hyperlink chosen in another page, similar to what we have when we use
edge-side include approach.

We won’t have any scalability issue in either case. The client-side routing is
highly recommended when your teams have stronger frontend skills so that
it becomes natural having a client-side routing over a backend
configuration.

Those routing approaches are not mutually exclusive, either. As we will see
later in this book, we can combine those approaches using CDN and origin
or client-side and CDN together.

The important thing is determining how we want to route our application.
This fundamental decision will affect how we develop our micro-frontends
application.

Micro-frontends communication
In an ideal world, micro-frontends wouldn’t need to communicate with each
other because all of them would be self-sufficient. In reality, it’s not always
possible to notify other micro-frontends about a user interaction, especially
when we work with multiple micro-frontends on the same page.

When we have multiple micro-frontends on the same page, the complexity
of managing a consistent, coherent user interface for our users may not be
trivial. This is also true when we want communication between micro-
frontends owned by different teams. Bear in mind that each micro-frontend
should be unaware of the others on the same page, otherwise we are
breaking the principle of independent deployment.

In this case, we have a few options for notifying other micro-frontends that
an event occurred. We can inject an eventbus, a mechanism that allows
decouple components to communicate with each other via events sent via a

bus,in each micro-frontend and notify the event to every micro-frontend. If
some of them are interested in the event dispatched, they can listen and
react to it (Figure 3-5).

Figure 3-5. Event emitter and custom events diagram

To inject the eventbus, we need the micro-frontends container to instantiate
the eventbus and inject it inside all of the page’s micro-frontends.

Another solution is to use Custom Events. These are normal events but with
a custom body, in this way we can define the string that identifies the event

https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Creating_and_triggering_events

and an optional object custom for the event. Following an example

new CustomEvent('myCustomEvent', { someObj: “customData” });

The custom events should be dispatched via an object available to all the
micro-frontends, such as the window object, the representation of a window
in a browser. If you decide to implement your micro-frontends with iframes,
using an eventbus would allow you to avoid challenges like which window
object to use from inside the iframe, because each iframe has its own
window object. No matter whether we have a horizontal or a vertical split
of our micro-frontends, we need to decide how to pass data between views.

Imagine we have one micro-frontend for signing in a user and another for
authenticating the user on our platform. After being successfully
authenticated, the sign-in micro-frontend has to pass a token to the
authenticated area of our platform. How can we pass the token from one
micro-frontend to another? We have several options.

We can use a web-storage-like session, local storage, or cookies (Figure 3-
6). In this situation, we might use the local storage for storing and retrieving
the token independently. The micro-frontend is loaded because the web
storage is always available and accessible, as long as the micro-frontends
live in the same subdomain.

Figure 3-6. Sharing data between micro-frontends in different views

Another option could be to pass some data via query strings - for example,
www.acme.com/products/details?id=123 the text after the question mark
represents the query string, in this case the ID 123 of a specific product
selected by the user - and retrieves the full details to display via an API
(Figure 3-7). Using query strings is not the most secure way to pass
sensitive data, such as passwords and user IDs, however. There are better
ways to retrieve that information if it’s passed via the HTTPS protocol.
Embrace this solution carefully.

http://www.acme.com/products/details?id=123

Figure 3-7. Micro-frontends communication via query strings or URL

To summarize, the micro-frontends decisions framework is composed of
four key decisions: identifying, composing, routing, and communicating.

In this table you can find all the combinations available based on how you
identify a micro-frontend.

Table 3-2. Micro-frontends decisions framework summary

Micro-frontends definition Composition Routing Communication

Horizontal Client-side

Server-side Edge-side

Vertical Client-side

Server-side

Client-side Server-side Edge-side

Client-side Server-side Edge-side

Event emitter Custom events Web storage Query strings

Web storage Query strings

Micro-Frontends in Practice
Although micro-frontends are a fairly new approach in the frontend
architecture ecosystem, they have been used for a few years at medium and
large organizations. and many well-known companies have made micro-
frontends their main system for scaling their business to the next level.

Zalando
The first one worth mentioning is Zalando, the European fashion and e-
commerce company. I attended a conference presentation made by their
technical leads, and I have to admit I was very impressed by what they have
created and released open source.

More recently, Zalando has replaced the well-known OSS project called
Tailor.js with Interface Framework. Interface Framework is based on
similar concepts to Tailor.js but is more focused on components and
GraphQL instead of Fragments.

HelloFresh
HelloFresh, a digital service that provides ready-to-cook food boxes with a
variety of recipes from all over the world, is another good example.

Inspired by Zalando’s work, HelloFresh is now serving a multitude of SPAs
orchestrated by URL.

In an interesting approach to flexibility of components, the SPAs are
assembled and rendered on the servers, then cached at the CDN level,
providing flexibility for generating the SPAs.

This approach also allows the development teams to be responsible for their
own technology stacks; each SPA could have a different one, and each team
is fully independent from the others.

AllegroTech
In 2016, Polish e-tailer and auction site AllegroTech came up with OpBox,
a project that allows nontechnical people to merge UI representations
(a.k.a., components) with data sources inside the same page.

At first, AllegroTech tried to work with multiple components assembled at
runtime with ESI lang, but the system didn’t provide the desired level of
consistency. Furthermore, they had a few problems with managing specific
library versions. For instance, one component could have been developed
with React v13 and another one with v15, both rendered on the same page.

In the OpBox project, Allegro’s teams had the opportunity to decouple the
rendering part of a component (the view) from the data in order to render.
As long as the contract between the component and the data source
matched, they were able to assemble data and different components

https://jobs.zalando.com/tech/blog/front-end-micro-services/?gh_src=4n3gxh1
https://allegro.tech/2016/03/Managing-Frontend-in-the-microservices-architecture.html
https://www.w3.org/TR/esi-lang

together, which enhanced their ability to do A/B testing and gather data
from there.

But it’s the additional abstraction between how the page is composed and
the components to display that really stands out in this implementation. In
fact, a JSON file describes the page and the components needed, and the
renderer then composes

the page as configured inside the JSON file.

Obviously two or more components on the same page could also react to a
specific user interaction or to a change in a set of data, thanks to an
eventbus implementation that signals the change to all the components that
are listening to it.

Spotify
In this list of case histories, I can’t neglect to mention Spotify.

For its desktop application, Spotify has assembled multiple components
living in separate iframes that communicate via a “bridge” for the low-level
implementation made with C++.

If we inspect the Spotify desktop application, we can easily find the
multiple parts composing this application. Each single .spa file is composed
by an html file, multiple css files, a manifest.json, **and a JavaScript
bundle file minimized and optimized (Figure 2-8).

https://docs.google.com/drawings/u/1/d/srOqMCJWnBIaT2VKsyRwo7w/i
mage?w=481&h=177&rev=1&ac=1&parent=1oLWU66mMvCW-van-
37Sb-SEZqx9nJLgz

Figure 2-8. Spotify micro-frontend artifact

Those files will be loaded inside an iframe to compose the final application
UI.

This approach was used at the beginning for the web instance of the Spotify
player, but it was abandoned due to its poor performance, and Spotify has
since moved back to an SPA architecture similar to what they have for the

https://docs.google.com/drawings/u/1/d/srOqMCJWnBIaT2VKsyRwo7w/image?w=481&h=177&rev=1&ac=1&parent=1oLWU66mMvCW-van-37Sb-SEZqx9nJLgz
https://labs.spotify.com/2019/03/25/building-spotifys-new-web-player/

TV application. This doesn’t mean the approach can’t work, but the way it
was designed caused more issues for the final users than benefits.

SAP
Another company that is using iframes for its applications is SAP. SAP
released luigi framework, a micro-frontends framework used for creating an
enterprise application that interacts with SAP. Luigi works with Angular,
React, Vue, and SAPUI—basically the most modern and well-adopted
frontend frameworks, plus a well-known one, like SAPUI, for delivering
applications interacting with SAP. Since enterprise applications are B2B
solutions, where SEO and bandwidth are not a problem, having the ability
to choose the hardware and software specifications where an application
runs makes iframes adoption easy. If we think of the memory management
provided by the iframes out of the box, the decision to use them makes a lot
of sense for that specific context.

OpenTable
Another interesting approach is OpenTable’s Open Components project,
embraced by Skyscanner and other large organizations and released open
source.

Open Components are using a really interesting approach to micro-
frontends: a registry similar to the Docker registry gathers all the available
components encapsulating the data and UI, exposing an HTML fragment
that can then be encapsulated in any HTML template.

A project using this technique receives many benefits, such as the team’s
independence, the rapid composition of multiple pages by reusing
components built by other teams, and the option of rendering a component
on the server or on the client.

When I have spoken with people who work at OpenTable, they told me that
this project allowed them to scale their teams around the world without
creating a large communication overhead. For instance, using micro-
frontends allowed them to smooth the process by repurposing parts

https://github.com/opencomponents/oc

developed in the United States for use in Australia—definitely a huge
competitive advantage.

DAZN
Last but not least is DAZN, a live and video-on-demand sports platform
that uses a combination of SPAs and components orchestrated by a client-
side agent called boot‐ strap.

DAZN’s approach focuses on targeting not only the web but also multiple
smart TVs, set-top boxes, and consoles.

Its approach is fully client side, with an orchestrator always available
during the navigation of the video platform to load different SPAs at
runtime when there is a change of business domain.

These are just some of the possibilities micro-frontends offer for scaling up
our co-located and/or distributed teams. More and more companies are
embracing this paradigm, including New Relic, Starbucks, and Microsoft.

Summary
In this chapter we discovered the different high-level architectures for
designing micro-frontends applications. We dived deep into the key
decisions to make: define, compose, orchestrate and communicate.

Finally, we discovered that many organizations are already embracing this
architecture in production, with successful software not merely available
inside the browsers but also in other end uses, like desktop applications,
consoles, and smart TVs.

It’s fascinating how quickly this architecture has spread across the globe. In
the next chapter I will discuss how to technically develop micro-frontends,
providing real examples you can use within your own projects.

Chapter 4. Build and Deploy
Micro-Frontends

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 4th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at
Building.microfrontends@gmail.com.

In this chapter, we discuss another commonality between micro-frontends
and microservices: the importance of a solid automation strategy.

The microservices architecture adds great flexibility and scalability to our
architecture, allowing our APIs to scale horizontally based on the traffic our
infrastructure receives and allowing us to implement the right pattern for
the right job instead of having a common solution applied to all our APIs as
in a monolithic architecture.

Despite these great capabilities, microservices increase the complexity of
managing the infrastructure, requiring an immense amount of repetitive
actions to build and deploy them.

Any company embracing the microservices architecture, therefore, has to
invest a considerable amount of time and effort on their continuous

integration (CI) or continuous deployment (CD) pipelines (more on these
below).

Given how fast a business can drift direction nowadays, improving a CI/CD
pipeline is not only a concern at the beginning of a project; it’s a constant
incremental improvement throughout the entire project lifecycle.

One of the key characteristics of a solid automation strategy is that it creates
confidence in artifacts’ replicability and provides fast feedback loops for
developers.

This is also true for micro-frontends.

Having solid automation pipelines will allow our micro-frontends projects
to be successful, creating a reliable solution for developers to experiment,
build, and deploy.

In fact, for certain projects, micro-frontends could proliferate in such a way
that it would become non-trivial to manage them.

One of the key decisions listed in the micro-frontends decision framework,
discussed in chapter 3, is the possibility to compose multiple micro-
frontends in the same view (horizontal split) or having just one micro-
frontend per time (vertical split). With the horizontal split, we could end up
with tens, or even hundreds of artifacts to manage in our automation
pipelines. Therefore, we have to invest in solutions to manage such
scenarios.

Vertical splits also require work, but it’s near to the traditional way to set up
automation for single page applications (SPAs). The major difference is
you’ll have more than one artifact and potentially different ways to build
and optimize your code.

We will deep dive into these challenges in this chapter, starting with the
principles behind a solid and fast automation strategy, and how we can
improve the developer experience with some simple but powerful tools.
Then we’ll analyze best practices for continuous integration and micro-
frontends deployment and conclude with an introduction to fitness functions

for automating and testing architecture characteristics during different
stages of the automation pipelines.

Automation Principles
Working with micro-frontends requires constantly improving the
automation pipeline. Skipping this work may hamper the delivery speed of
every team working on the project, and decrease their confidence to deploy
in production or, worse, frustrate the developers as well as the business
when the project fails.

Nailing the automation part is fundamental if you’re going to have a clear
idea of how to build a successful continuous integration, continuous
delivery, or continuous deployment strategy.

NOTE
Continuous Integration vs. Continuous Delivery vs. Continuous Deployment

An in-depth discussion about continuous integration, continuous delivery, and
continuous deployment is beyond the scope of this book. However, it’s important to
understand the differences between these three strategies.

Continuous Integration defines a strategy where an automation pipeline kicks in for
every merge into the main branch, extensively testing the codebase before the code is
merged in the release branch.

Continuous Delivery is an extension of continuous integration where after the tests, we
generate the artifact ready to be deployed with a simple click from a deployment
dashboard.

Continuous Deployment goes one step further, deploying in production the artifacts built
every code committed in the version of control system.

If you are interested in learning more, I recommend reading Continuous Delivery,
available on Safari Books Online.

To get automation speed and reliability right, we need to keep the following principles
in mind:

https://learning.oreilly.com/library/view/continuous-delivery-reliable/9780321670250/

Keep the feedback loop as fast as possible.

Iterate often to enhance the automation strategy.

Empower your teams to make the right decisions for the micro-
frontends they are responsible for.

Identify some boundaries, also called guardrails, where teams
operate and make decisions while maintaining tools
standardization.

Define a solid testing strategy.

Let’s discuss these principles to get a better understanding of how to
leverage them.

Keep a Feedback Loop Fast
One of the key features for a solid automation pipeline is fast execution.
Every automation pipeline provides feedback for developers.Having a quick
turnaround on whether our code has broken the codebase is essential for
developers for creating confidence in what they have written.

Good automation should run often and provide feedback in a matter of
seconds or minutes, at the most. It’s important for developers to receive
constant feedback so they will be encouraged to run the tests and checks
within the automation pipeline more often.

It’s essential, then, to analyze which steps may be parallelized and which
serialized. A technical solution that allows both is ideal.

For example, we may decide to parallelize the unit testing step so we can
run our tests in small chunks instead of waiting for hundreds, if not
thousands, of tests to pass before moving to the next step.

Yet some steps cannot be parallelized. So we need to understand how we
can optimize these steps to be as fast as possible.

Working with micro-frontends, by definition, should simplify optimizing
the automation strategy. Because we are dividing an entire application into

smaller parts, there is less code to test and build, for instance, and every
stage of a CI should be very fast.

However, there is a complexity factor to consider.

Due to maintaining many similar automation pipelines, we should embrace
infrastructure as code (IaC) principles for spinning new pipelines without
manually creating or modifying several pipelines.
In fact, IaC leverages the concept of automation for configuring and
provisioning infrastructure in the same way we do for our code.
In this way, we can reliably create an infrastructure without the risk of
forgetting a configuration or misconfiguring part of our infrastructure.
Everything is mapped inside configuration files, or code, providing us with
a concrete way to generate our automation pipelines when they need to be
replicated.
This becomes critical when you work with large teams and especially with
distributed teams, because you can release modules and scripts that are
reusable between teams.

Iterate Often
An automation pipeline is not a piece of infrastructure that once defined
remains as it is until the end of a lifecycle project.

Every automation pipeline has to be reviewed, challenged, and improved.
It’s essential to maintain a very quick automation pipeline to empower our
developers to get fast feedback loops.

In order to constantly improve, we need to visualize our pipelines. Screens
near the developers’ desks can show how long building artifacts take,
making clear to everyone on the team how healthy the pipelines are (or
aren’t) and immediately letting everyone know if a job failed or succeeded.

When we notice our pipelines take over 8-10 minutes, it’s time to review
them and see if we can optimize certain practices of an automation strategy.

Review the automation strategy regularly: monthly if the pipelines are
running slowly and then every 3-4 months once they’re healthy. Don’t stop

reviewing your pipelines after defining the automation pipeline. Continue to
improve and pursue better performance and a quicker feedback loop; this
investment in time and effort will pay off very quickly.

Empower Your Teams
At several companies I worked for, the automation strategy was kept out of
capable developers’ hands. Only a few people inside the organization were
aware of how the entire automation system worked and even fewer were
allowed to change the infrastructure or take steps to generate and deploy an
artifact.

This is the worst nightmare of any developer working in an organization
with one or more teams.

The developer job shouldn’t be just writing code; it should include a broad
range of tasks, including how to set up and change the automation pipeline
for the artifacts they are working on, whether it’s a library, a micro-
frontend, or the entire application.

Empowering our teams when we are working with micro-frontends is
essential because we cannot always rely on all the micro-frontends having
the same build pipeline because of the possibility of maintaining multiple
stacks at the same time.
Certainly, the deployment phase will be the same for all the micro-frontends
in a project. However, the build pipeline may use different tools or different
optimizations, and centralizing these decisions could result in a worse final
result than one from enabling the developers to work in the automation
pipeline.

Ideally, the organization should provide some guardrails for the
development team. For instance, the CI/CD tool should be the company’s
responsibility but all the scripts and steps to generate an artifact should be
owned by the team because they know the best way to produce an
optimized artifact with the code they have written.

This doesn’t mean creating silos between a team and the rest of the
organization but empowering them for making certain decisions that would
result in a better outcome.

Last but not least, encourage a culture of sharing and innovation by creating
moments for the teams to share their ideas, proof of concepts, and solutions.
This is especially important when you work in a distributed environment.
Slack and Microsoft Teams meetings lack everyday, casual work
conversations we have around the coffee machine.

Define Your Guardrails
An important principle for empowering teams and having a solid
automation strategy is creating some guardrails for the teams, so we can
make sure they are heading in the right direction.

Guardrails for the automation strategy are boundaries identified by tech
leadership, in collaboration with architects and/or platform or cloud
engineers, between which teams can operate and add value for the creation
of micro-frontends.

Guardrails for the automation strategy are usually defined by architects
and/or Platform or cloud engineers in collaboration with tech leaders.

In this situation, guardrails might include the tools used for running the
automation strategy, the dashboard used for deployment in a continuous
delivery strategy, or the fitness functions for enforcing architecture
characteristics.

Introducing guardrails won’t mean reducing developers’ freedom. Instead,
it will guide them toward using the company’s standards, abstracting them
as much as we can from their world, and allowing the team to innovate
inside these boundaries.

We need to find the right balance when we define these guardrails, and we
need to make sure everyone understands the why of them more than the
how. Usually creating documentation helps to scale and spread the
information across teams and new employees.

As with other parts of the automation strategy, guardrails shouldn’t be
static. They need to be revised, improved, or even removed, as the business
evolves.

Define Your Test Strategy
Investing time on a solid testing strategy is essential, specifically end-to-end
testing, for instance, imagine when we have multiple micro-frontends per
view with multiple teams contributing to the final results and we want to
ensure our application works end-to-end.

In this case we must also ensure that the transition between views is
covered and works properly before deploying our artifacts in production.

While unit and integration testing are important, with micro-frontends there
aren’t particular challenges to face. Instead end-to-end testing has to be
revised for applying it to this architecture. Because every team owns a part
of the application, we need to make sure the critical path of our applications
is extensively covered and we achieve our final desired result. End-to-end
testing will help ensure those things.

We will dig deeper into this topic later in this chapter, but bear in mind that
automating your testing strategy guarantees your independent artifacts
deployment won’t result in constant rollbacks or, worse, runtime bugs
experienced by your users.

Developers Experience (DX)
A key consideration when working with micro-frontends is the developers
experience (DX). While not all companies can support a DX team, even a
virtual team across the organization can be helpful. Such a team is
responsible for creating tools and improving the experience of working with
micro-frontends to prevent frictions in developing new features.

WHAT DOES DEVELOPERS EXPERIENCE MEAN?
DX is usually one or more teams dedicated to studying, analyzing, and
improving how developers get their work done.

Specifically such teams observe which tools and processes developers
use to accomplish their daily work providing support for improving the
development lifecycle across the entire organization.

One of DX’s main goals is to simplify the development and process of
building, testing, and deploying artifacts in different environments.

At this stage, it should be clear that every team is responsible for part of the
application and not for the entire codebase. Creating a frictionless developer
experience will help our developers feel comfortable building, testing, and
debugging the part of the application they are responsible for.

We need to guarantee a smooth experience for testing a micro-frontend in
isolation, as well inside the overall web application, because there are
always touch points between micro-frontends, no matter which architecture
we decide to use.

A bonus would be creating an extensible experience that isn’t closed to the
possibility of embracing new or different tools during the project lifecycle.

Many companies have created end-to-end solutions that they maintain
alongside the projects they are working on, which more than fills the gaps
of existing tools when needed. This seems like a great way to create the
perfect developer experience for our organization, although businesses
aren’t static, nor are tech communities. As a result, we need to account for
the cost of maintaining our custom developers’ experience, as well as the
cost of onboarding new employees.

It may still be the right decision for your company, depending on its size or
the type of the project you are working, but I encourage you to analyze all
the options before committing to building an in-house solution to make sure
you maximize the investment.

Horizontal vs. Vertical split
The decision between a horizontal and vertical split with your new micro-
frontends project will definitely impact the developers’ experience.

A vertical split will represent the micro-frontends as single HTML pages or
SPAs owned by a single team, resulting in a developer experience very
similar to the traditional development of an SPA. All the tools and
workflows available for SPA will suit the developers in this case. You may
want to create some additional tools specifically for testing your micro-
frontend under certain conditions, as well. For instance, when you have an
application shell loading a vertical micro-frontend, you may want to create
a script or tool for testing the application shell version available on a
specific environment to make sure your micro-frontend works with the
latest or a specific version.

The testing phases are very similar to a normal SPA, where we can set unit,
integration, and end-to-end testing without particular challenges. Therefore
every team can test its own micro-frontends, as well as the transition
between micro-frontends, such as when we need to make sure the next
micro-frontend is fully loaded. However, we also need to make sure all
micro-frontends are reachable and loadable inside the application shell. One
solution I’ve seen work very well is having the team that owns the
application shell do the end-to-end testing for routing between micro-
frontends so they can perform the tests across all the micro-frontends.

Horizontal splits come with a different set of considerations.

When a team owns multiple micro-frontends that are part of one or more
views, we need to provide tools for testing a micro-frontend inside the
multiple views assembling the page at runtime. These tools need to allow
developers to review the overall picture, potential dependencies clash, the
communication with micro-frontends developed by other teams, and so on.

These aren’t standard tools, and many companies have had to develop
custom tools to solve this challenge. Keep in mind that the right tools will
vary, depending on the environment and context we operate in, so what
worked in a company may not fit in another one.

Some solutions associated with the framework we decided to use will work,
but more often than not we will need to customize some tools to provide
our developers with a frictionless experience.

Another challenge with a horizontal split is how to run a solid testing
strategy. We will need to identify which team will run the end-to-end testing
for every view and how specifically the integration testing will work, given
that an action happening in a micro-frontend may trigger a reaction with
another.

We do have ways to solve these problems, but the governance behind them
may be far from trivial.

The developer experience with micro-frontends is not always
straightforward. The horizontal split in particular is challenging because we
need to answer far more questions and make sure our tools are constantly
up to date to simplify the life of our developers.

Frictionless Micro-Frontends blueprints
The micro-frontend developer experience isn’t only about development
tools, of course, we must also consider how the new micro-frontends will
be created.

The more micro-frontends we have and the more we have to create, the
more speeding up and automating this process will become mandatory.

Creating a command-line tool for scaffolding a micro-frontend will not only
cover implementation, allowing a team to have all the dependencies for
starting writing code, but also take care of collecting and providing best
practices and guardrails inside the company.

For instance, if we are using a specific library for observability or logging,
adding the library to the scaffolding can speed up creating a micro-frontend
—and it guarantees that your company’s standards will be in place and
ready to be used.

Another important thing to provide out of the box would be a sample of the
automation strategy, with all the key steps needed for building a micro-

frontend. Imagine that we have decided to run static analysis and security
testing inside our automation strategy. Providing a sample of how to
configure it automatically for every micro-frontend would increase
developers’ productivity and help get new employees up to speed faster.

This scaffolding would need to be maintained in collaboration with
developers learning the challenges and solutions directly from the trenches.
A sample can help communicate new practices and specific changes that
arise during the development of new features or projects, further saving
your team time and helping them work more efficiently.

Environments strategies
Another important consideration for the DX is enabling teams to work
within the company’s environments strategy.

The most commonly used strategy across midsize to large organizations is a
combination of testing, staging, and production environments.

The testing environment is often the most unstable of the three because it’s
used for quick tries made by the developers. As a result, staging should
resemble the production environment as much as possible, the production
environment should be accessible only to a subset of people, and the DX
team should create strict controls to prevent manual access to this
environment, as well as provide a swift solution for promoting or deploying
artifacts in production.

An interesting twist to the classic environment strategy is spinning up
environments with a subset of a system for testing of any kind (end-to-end
or visual regression, for instance) and then tearing them down when an
operation finishes.

This particular strategy of on-demand environments is a great addition for
the company because it helps not only with micro-frontends but also with
microservices for testing in isolation end-to-end flows.

With this approach we can also think about end-to-end testing in isolation
of an entire business subdomain, deploying only the microservices needed

and having multiple on-demand environments, saving a considerable
amount of money.

Another feature provided by on-demand environments is the possibility to
preview an experiment or a specific branch containing a feature to the
business or a product owner.

Nowadays many cloud providers like AWS can provide great savings using
spot instances for a middle-of-the-road approach, where the infrastructure
cost is by far cheaper than the normal offering because some machines
aren’t available for a long time. Spot instances are a perfect fit for on-
demand environments.

Version of Control
When we start to design an automation strategy, deciding a version of
control and a branching strategy to adopt is a mandatory step.

Although there are valid alternatives, like Mercurial, Git is the most popular
for a version of control system. I’ll use Git as a reference in my examples
below, but know that all the approaches are applicable to Mercurial as well.

Working with a version of control means deciding which approach to use in
terms of repositories.
Usually, the debate is between monorepo and polyrepo, also called multi-
repo. There are benefits and pitfalls in both approaches., You can emply
both, though, in your micro-frontend project, so you can use the right
technique for your context.

Monorepo

https://aws.amazon.com/ec2/spot/

Figure 4-1. 1 Monorepo example where all the projects live inside the same repository

Monorepo (figure 7.1) is based on the concept that all the teams are using
the same repository, therefore all the projects are hosted together.

The main advantages of using monorepo are:

Code reusability: Sharing libraries becomes very natural with this
approach. Because all of a project’s codebase lives in the same
repository, we can smoothly create a new project, abstracting some
code and making it available for all the projects that can benefit
from it.

Easy collaboration across teams: Because the discoverability is
completely frictionless, teams can contribute across projects.
Having all the projects in the same place makes it easy to review a
project’s codebase and understand the functionality of another
project. This approach facilitates communication with the team
responsible for the maintenance in order to improve or simply
change the implementation pointing on a specific class or line of
code without kicking off an abstract discussion.

Cohesive codebase with less technical debt: Working with
monorepo encourages every team to be up-to-date with the latest
dependencies versions, specifically APIs but generally with the
latest solutions developed by other teams, too.
This would mean that our project may be broken and would require
some refactoring when there is a breaking change, for instance.
Monorepo forces us to continually refactor our codebase,
improving the code quality, and reducing our tech debt.

Simplified dependencies management: With monorepo, all the
dependencies used by several projects are centralized, so we don’t
need to download them every time for all our projects. And when
we want to upgrade to the next major release, all the teams using a
specific library will have to work together to update their codebase,
reducing the technical debt that in other cases a team may

accumulate.
Updating a library may cost a bit of coordination overhead,
especially when you work with distributed teams or large
organizations.

Large-scale code refactoring: Monorepo is very useful for large-
scale code refactoring. Because all the projects are in the same
repository, refactoring them at the same time is trivial. Teams will
need to coordinate or work with technical leaders, who have a
strong high-level picture of the entire codebase and are responsible
for refactoring or coordinating the refactor across multiple projects.

Easier onboarding for new hires: With monorepo a new
employee can find code samples from other repositories very
quickly.
Additionally, a developer can find inspiration from other
approaches and quickly shape them inside the codebase.

Despite the undoubted benefits, embracing monorepo also brings some
challenges:

Constant investment in automation tools: Monorepo requires a
constant, critical investment in automation tools, especially for
large organizations.
There are plenty of open-source tools available but not all are
suitable for monorepo, particularly after some time on the same
project, when the monorepo starts to grow exponentially.

Many large organizations must constantly invest in improving their
automation tools for monorepo to avoid their entire workforce
being slowed down by intermittent commitment on improving the
automation pipelines and reducing the time of this feedback loop
for the developers.

Scaling tools when the codebase increases: Another important
challenge is that automation pipelines must scale alongside the
codebase.

Many whitepapers from Google, Facebook and Twitter claim that
after a certain threshold, the investment in having a performant
automation pipeline increases until the organization has several
teams working exclusively on it.
Unsurprisingly, every company aforementioned has built its own
version of build tools and released it as open-source, considering
the unique challenges they face with thousands of developers
working in the same repository.

Projects are coupled together: Given that all the projects are easy
to access and, more often than not, they are sharing libraries and
dependencies, we risk having tightly coupled projects that can exist
only when they are deployed together. We may, therefore, not be
able to share our micro-frontends across multiple projects for
different customers where the codebase lives in different
monorepo. This is a key consideration to think before embracing
the monorepo approach with micro-frontends.

Trunk-based development: Trunk-based development is the only
option that makes sense with monorepo. This branching strategy is
based on the assumption that all the developers commit to the same
branch, called a trunk. Considering that all the projects live inside
the same repository, the trunk main branch may have thousands of
commits per day, so it’s essential to commit often with small
commits instead of developing an entire feature per day before
merging. This technique should force developers to commit
smaller chunks of code, avoiding the “merge hell” of other
branching strategies.

Although I am a huge fan of trunk-based development, it requires
discipline and maturity across the entire organization to achieve
good results.

Disciplined developers: We must have disciplined developers in
order to maintain the codebase in a good state.
When tens, or even hundreds, of developers are working in the

https://trunkbaseddevelopment.com/

same repository, the git history, along with the codebase, could
become messy very quickly.
Unfortunately, it’s almost impossible to have senior developers
inside all the teams, and that lack of knowledge or discipline could
compromise the repository quality and extend the blast radio from
one project inside the monorepo to many, if not all, of them.

Using monorepo for micro-frontends is definitely an option, and tools like
Lerna help with managing multiple projects inside the same repository. In
fact, Lerna can install and hoist, if needed, all the dependencies across
packages together and publish a package when a new version is ready to be
released. However, we must understand that one of the main monorepo
strengths is its code-sharing capability. It requires a significant commitment
to maintain the quality of the codebase, and we must be careful to avoid
coupling too many of our micro-frontends because we risk losing their
nature of independent deployable artifacts.

Git has started to invest in reducing the operations time when a user invokes
commands like git history or git status in large repositories. And as
monorepo has become more popular, Git has been actively working on
delivering additional functionalities for filtering what a user wants to clone
into their machine without needing to clone the entire git history and all the
projects folders.

Obviously, these enhancements will be beneficial for our CI/CD, as well,
where we can overcome one of the main challenges of embracing a
monorepo strategy.

https://lerna.js.org/

SPARSE-CHECKOUT
In Q1 2020, Git introduced the sparse-checkout command (Git >2.25)
for cloning only part of a repository instead of all the files and history
of a repository.

Reducing the amount of data to clone for running fast automation
pipelines would solve one of the main challenges of embracing
monorepo.

We need to remember that using monorepo would mean investing in our
tools, evangelizing and building discipline across our teams, and finally
accepting a constant investment in improving the codebase. If these
characteristics suit your organization, monorepo would likely allow you to
successfully support your projects.

Many companies are using monorepo, specifically large organizations like
Google and Facebook, where the investment in maintaining this paradigm is
totally sustainable.

One of the most famous papers on monorepo was written by Google’s
Rachel Potvin and Josh Levenberg. In their concluding paragraph they
write:

“Over the years, as the investment required to continue scaling the
centralized repository grew, Google leadership occasionally considered
whether it would make sense to move from the monolithic model.
Despite the effort required, Google repeatedly chose to stick with the
central repository due to its advantages.

“The monolithic model of source code management is not for everyone.
It is best suited to organizations like Google, with an open and
collaborative culture. It would not work well for organizations where
large parts of the codebase are private or hidden between groups.”

https://cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-in-a-single-repository/fulltext

Polyrepo

Figure 4-2. 2 Polyrepo example where we split the projects among multiple repositories

The opposite of a monorepo strategy is the polyrepo (figure 7.2), or multi-
repo, where every single application lives in its own repository.

Some benefits of a polyrepo strategies are:

Different branching strategy per project: With monorepo, we
should use trunk-based development, but with a polyrepo strategy
we can use the right-branching strategy for the project we are
working on.
Imagine, for instance, that we have a legacy project with a different
release cadence than other projects that are in continuous
deployment. With a polyrepo strategy, we can use git flow in just
that project, providing a branching strategy specific for that
context.

No risk of blocking other teams: Another benefit of working with a
polyrepo is that the blasting radius of our changes is strictly
confined to our project. There isn’t any possibility of breaking
other teams’ projects or negatively affecting them because they
live in another repository.

Encourages thinking about contracts: In a polyrepo environment,
the communication across projects has to be defined via APIs. This
forces every team to identify the contracts between producers and
consumers and to create governance for managing future releases
and breaking changes.

Fine-grained access control: Large organizations are likely to work
with contractors who should see only the repositories they are
responsible for or to have a security strategy in place where only
certain departments can see and work on a specific area of the
codebase.
Polyrepo is the perfect strategy for achieving that fine-grained
access control on different codebases, introducing roles, and
identifying the level of access needed for every team or
department.

Less upfront and long-term investment in tooling: With a polyrepo
strategy we can easily use any tool available out there. Usually, the

https://nvie.com/posts/a-successful-git-branching-model/

repositories are not expanding at the same rate as monorepo
repositories because fewer developers are committing to the
codebase.
That means your investment upfront and in maintaining the build
of a polyrepo environment is far less, especially when you
automate your CI/CD pipeline using infrastructure as code or
command-line scripts that can be reused across different teams.

Polyrepo also has some caveats:

Difficulties with project discoverability: By its nature, polyrepo
makes it more difficult to discover other projects because every
project is hosted in its own repository. Creating a solid naming
convention that allows every developer to discover other projects
easily can help mitigate this issue.
Unquestionably, however, polyrepo can make it difficult for new
employees or for developers who are comparing different
approaches to find other projects suitable for their researches.

Code duplication: Another disadvantage of polyrepo is code
duplication. For example, a team creates a library that will be used
by other teams for standardizing certain approaches, but the tech
department is not aware of that library.
Often, there are libraries that should be used across several micro-
frontends, like logging or observability integration, but a polyrepo
strategy doesn’t facilitate code-sharing if there isn’t good
governance in place. It’s helpful, then, to identify the common
aspects that may be beneficial for every team and coordinate the
codesharing effort across teams. Architects and tech leaders are in
the perfect position to do this, since they work with multiple teams
and have a high-level picture of how the system works and what it
requires.

Naming convention: In polyrepo environments, I’ve often seen a
proliferation of names without any specific convention; this
quickly compounds the issue of tracking what is available and

where.
Regulating a naming convention for every repository is critical in a
polyrepo system because working with micro-frontends, and
maybe with microservice as well, could result in a huge amount of
repositories inside our version of control.

Best practice maintenance: In a monorepo environment, we have
just one repository to maintain and control. In a polyrepo
environment, it may take a while before every repository is in line
with a newly defined best practice.
Again, communication and process may mitigate this problem, but
polyrepo requires you think this through upfront because finding
out these problems during development will slow down your
teams’ throughput.

Polyrepo is definitely a viable option for micro-frontends, though we risk
having a proliferation of repositories. This complexity should be handled
with clear and strong governance around naming conventions, repository
discoverability, and processes.

Micro-frontends projects with a vertical split have far fewer issues using
polyrepo than those with a horizontal split, where our application is
composed of tens, if not hundreds, of different parts.

In the context of micro-frontends, polyrepo also makes it possible to use
different approaches from a legacy project. In fact, we may introduce new
tools or libraries just for the micro-frontends approach, while keeping the
same one for the legacy project without the need of polluting the best
practices in place in the legacy platform.
This flexibility has to be gauged against potential communication overhead
and governance that has to be defined inside the organization; therefore if
you decide to use polyrepo, be aware of where your initial investment
should be: communication flows across teams and governance.

A possible future for a version of control systems

Any of the different paths we can take with a version of control systems
won’t be a perfect solution, just the solution that works better in our
context. It’s always a tradeoff.

However, we may want to try a hybrid approach, where we can minimize
the pitfalls of both approaches and leverage their benefits.

Because micro-frontends and microservices should be designed using
domain-driven design, we may follow the subdomain and bounded context
divisions for bundling all the projects that are included on a specific
subdomain (figure 7.3).

Figure 4-3. 3 A hybrid repositories approach, where we can combine monorepo and polyrepo
strengths in a unique solution.

In this way, we can enforce the collaboration across teams responsible for
different bounded contexts and work with contracts while benefiting from
monorepo’s strengths across all the teams working in the same subdomain.

Thisapproach might result in new practices, new tools to use or build, and
new challenges, but it’s an interesting solution worth exploring for micro-
architectures.

Continuous Integration strategies
After identifying the version of the control strategy, we have to think about
the continuous integration (CI) method.

Different CI implementations in different companies are the most
successful and effective when owned by the developer teams rather than by
an external guardian of the CI machines.

A lot of things have changed in the past few years. For one thing,
developers, including frontend developers, have to become more aware of
the infrastructure and tools needed for running their code because, in reality,
building the application code in a reliable and quick pipeline is part of their
job.

In the past I’ve seen many situations where the CI was delegated to other
teams in the company, denying the developers a chance to change anything
in the CI pipeline. As a result, the developers treated the automation
pipeline as a black box— impossible to change but needed for deploying
their artifacts to an environment.

More recently, thanks to the DevOps culture spreading across organizations,
these situations are becoming increasingly rare.

ABOUT DEVOPS
DevOps is the combination of cultural philosophies, practices, and tools
that increases an organization’s ability to deliver applications and
services at high velocity.

Under a DevOps model, development and operations teams are no
longer siloed. Sometimes, they’re merged into a single team, where the
engineers work across the entire application lifecycle, from
development and test to deployment and operations, and develop a
range of skills that aren’t limited to a single function.

Nowadays many companies are giving developers ownership of automation
pipelines.
That doesn’t mean developers should be entitled to do whatever they want
in the CI, but they definitely should have some skin in the game because
how fast the feedback loop is closed depends mainly on them.

The tech leadership team (architects, platform team, DX, tech leaders,
engineers managers, and so on) should provide the guidelines and the tools
where the teams operate, while also providing certain flexibility inside
those defined boundaries.

In a micro-frontends architecture, the CI is even more important because of
the number of independent artifacts we need to build and deploy reliably.

The developers, however, are responsible for running the automation
strategy for their micro-frontends, using the right tool for the right job.
This approach may seem like overkill considering that every micro-frontend
may use a different set of tools. However, we usually end up having a
couple of tools that perform similar tasks, and this approach allows also a
healthy comparison of tools and approaches, helping teams to develop best
practices.

More than once I would be walking the corridors and overhear
conversations between engineers about how building tools like Rollup have
some features or performances that the Webpack tool didn’t have in certain

scenarios and vice versa. This, for me, is a sign of a great confrontation
between tools tested in real scenarios rather than in a sandbox.

It’s also important to recognize that there isn’t a unique CI implementation
for micro-frontends; a lot depends on the project, company standards, and
the architectural approach.

For instance, when implementing micro-frontends with a vertical split, all
the stages of a CI pipeline would resemble normal SPA stages.

End-to-end testing may be done before the deployment, if the automation
strategy allows the creation of on demand environments, and after the test is
completed, the environment can be turned off.

However, a horizontal split would require more thought on the right
moment for performing a specific task. When performing end-to-end
testing, we’d have to perform this phase in staging or production, otherwise
every single pipeline would need to be aware of the entire composition of
an application, retrieving every latest version of micro-frontends, and
pushing to an ephemeral environment—a solution very hard to maintain
and evolve.

Testing Micro-Frontends
Plenty of books discuss the importance of testing our code, catching bugs or
defects as early as possible, and the micro-frontends approach is no
different.

TESTING STRATEGIES
I won’t cover all the different possible testing strategies, such as unit
testing, integration testing, or end-to-end testing. Instead, I’ll cover the
differences from a standard approach we are used to implementing in
any frontend architectures.

If you would like to become more familiar with different testing
strategies, I recommend studying the materials shared by incredible
authors like Kent Beck or Uncle Bob, especially:

Clean Code — Robert C. Martin

Test-Driven Development: By Example — Kent Beck

Working with micro-frontends doesn’t mean changing the way we are
dealing with frontend testing practices, but they do create additional
complexity in the CI pipeline when we perform end-to-end testing.

Since unit testing and integration testing are the same in terms of the micro-
frontends architecture we decide to use for our project, we’ll focus here on
end-to-end testing, as this is a bigger challenge in regards to micro-
frontends.

End-to-End Testing
End-to-end testing is used to test whether the flow of an application from
start to finish is behaving as expected. We perform them to identify system
dependencies and ensure that data integrity is maintained between various
system components and systems.

End-to-end testing may be performed before deploying our artifacts in
production in an on-demand environment created at runtime just before
tearing the environment down. Alternatively, when we don’t have this
capability in-house, we should perform end-to-end tests in existing
environments after the deployment or promotion of a new artifact.

https://learning.oreilly.com/library/view/clean-code/9780136083238/
https://learning.oreilly.com/library/view/test-driven-development/0321146530/

In this case, the recommendation would be embracing testing in production
when the application has implemented feature flags allowing to turn on and
off a feature and granting the access to test for a set of users for performing
the tests.

Testing in production brings its own challenges, especially when a system is
integrating with 3rd party APIs.
However, it will save a lot of money on environment infrastructure,
maintenance and developers’ resources.

I’m conscious not all the companies or the projects are suitable for this
practice, therefore using the environments you have available is the last
resort.
When you start a new project or you have the possibility to change an
existing one, take in consideration the possibility to introduce features flags
not only for reducing the risk of bugs in front of users but also for testing
purposes.

Finally, some of the complexity brought in by micro-frontends may be
mitigated with some good coordination across teams and solid governance
overarching the testing process.

As discussed multiple times in this book, the complexity of end-to-end
testing varies depending on whether we embrace a horizontal or vertical
split for our application.

Vertical Split End-to-End Testing Challenges
When we work with a vertical split, one team is responsible for an entire
business subdomain of the application. In this case, testing all the logic
paths inside the subdomain is not far from what you would do in an SPA.

But we have some challenges to overcome when we need test use cases
outside of the team’s control, such as the scenario in figure 7.4.

Figure 4-4. 4 - An end-to-end testing example with a vertical split architecture

The catalogue team is responsible for testing all the scenarios related to the
catalogue, however, some scenarios involve areas not controlled by the
catalogue team, like when the user signs out from the application and
should be redirected to the sign-in micro-frontend or when a user wants to
change something in their profile and should be redirected to the “my
account” micro-frontend.

In these scenarios, the catalogue team will be responsible for writing tests
that cross their domain boundary ensuring that the specific micro-frontend
the user should be redirected to loads correctly.

In the same way, the teams responsible for the sign-in and “my account”
micro-frontend will need to test their business domain and verify that the

catalogue correctly loads as the user expects.

Another challenge is making sure our application behaves in cases of deep-
linking requests or when we want to test different routing scenarios.

It always depends on how we have designed our routing strategy, but let’s
take the example of having the routing logic in the application shell as in
figure 7.4.

The application shell team should be responsible for these tests, ensuring
that the entire route of the application loads correctly, that the key
behaviours like signing in or out of work as expected and that the
application shell is capable of loading the right micro-frontend when a user
requests a specific URL.

Horizontal Split End-to-End Testing Challenges
Using a horizontal split architecture raises the question of who is
responsible for end-to-end testing the final solution.

Technically speaking, what we have discussed for the vertical split
architecture still stands, but we have a new level of complexity to manage.

For instance, if a team is responsible for a micro-frontend present in
multiple views, is the team responsible for end-to-end testing all the
scenarios where their micro-frontends is present?

Let’s try to shed some light on this with the example in figure 7.5.

Figure 4-5. 5 - An end-to-end testing example with a horizontal split architecture.

The payments team is responsible for providing all the micro-frontends
needed for performing a payment inside the project. In the horizontal split
architecture, their micro-frontends are available on multiple views. In figure
7.5, we can see the payment option micro-frontend that will lead the user to
choose a payment method and finalize the payment when they’re ready to
check out.

Therefore, the payment team is responsible for making sure the user will be
able to pick a payment option and finalize the checkout, showing the
interface needed for performing the monetary transaction with the selected
payment option in the following view.

In this case, the payment team can perform the end-to-end test for this
scenario, but we will need a lot of coordination and governance for

analyzing all the end-to-end tests needed and then assigning them to the
right teams to avoid duplication of intent, which is even more difficult to
maintain in the long run.

The end-to-end tests also become more complex to maintain due to the fact
that different teams are contributing to the final output of a view, and some
tests may become invalid or broken the moment other teams are changing
their micro-frontends.

That doesn’t mean we aren’t capable of doing end-to-end testing with a
horizontal split, but it does require better organization and more thought
before implementing.

Testing Technical Recommendations
For technically implementing end-to-end tests successfully for horizontal or
vertical split architecture, we have three main possibilities.

The first one is running all the end-to-end tests in a stable environment
where all the micro-frontends are present. We delay the feedback loop if our
new micro-frontend works as expected, end to end.

Another option is using on-demand environments where we pull together
all the resources needed for testing our scenarios. This option may become
complicated in a large application, however, particularly when we use a
horizontal split architecture. This option may also cost us a lot when it’s not
properly configured (as described earlier).

Finally, we may decide to use a proxy server that will allow us to end-to-
end test the micro-frontend we are responsible for. When we need to use
any other part of the application involved in a test, we’ll just load the parts
needed from an environment, either staging or production, in this case, the
micro-frontends and the application shell not developed by our team.

In this way, we can reduce the risk of unstable versions or optimization for
generating an on-demand environment. The team responsible for the end-
to-end testing won’t have any external dependency to manage, either, but
they will be completely able to test all the scenarios needed for ensuring the
quality of their micro-frontend.

WEBPACK DEV SERVER PROXY CONFIGURATION
For completeness of information, Webpack, as with many other
building tools, allows us to configure a proxy server that retrieves
external resources from specific URLs, like static files, or even
consuming APIs in a specific environment.

This feature may come useful for setting up our end-to-end testing in a
scenario where we want to run it during the CI pipeline.

The configuration is very trivial, as you can see in the following
example:

// In webpack.config.js

{

devServer: {

proxy: {

'/api’: {

target: ‘https://other-server.example.com',

secure: false

}

}

}

}

// Multiple entry

proxy: [

{

context: ['/api-v1/**', '/api-v2/**'],

target: ‘https://other-server.example.com',

secure: false

}

]

More information about the webpack proxy setup is available in the
webpack documentation.

When the tool used for running the automation pipeline allows it, you can
also set up your CI to run multiple tests in parallel instead of in sequence.
This will speed up the results of your tests specifically when you are
running many of them at once; it can also be split in parts and grouped in a
sensible manner. If we have a thousand unit tests to run, for example,
splitting the effort into multiple machines or containers may save us time
and get us results faster.

This technique may be applied to other stages of our CI pipeline, as well.
With just a little extra configuration by the development team, you can save
time testing your code and gain confidence in it sooner.

Even tools that work well for us can be improved, and systems evolve over
time. Be sure to analyze your tools and any potential alternatives regularly
to ensure you have the best CI tools for your purposes.

Fitness Functions
In a distributed system world where multiple modules make up an entire
platform, the architecture team should have a way to measure the impact of
their architecture decisions and make sure these decisions are followed by
all teams, whether they are co-located or distributed.

In their book Building Evolutionary Architecture, Neal Ford, Rebecca
Parson, and Patrick Kua discuss how to test an architecture’s characteristics
in CI with fitness functions.

A fitness function:

https://github.com/webpack/docs/wiki/webpack-dev-server#proxy
https://learning.oreilly.com/library/view/building-evolutionary-architectures/9781491986356/

“provides an objective integrity assessment of some architectural
characteristic(s).”

Many of the steps defined inside an automation pipeline are used to assess
architecture characteristics such as static analyses in the shape of
cyclomatic complexity, or the bundle size in the micro-frontends use case.
Having a fitness function that assesses the bundle size of a micro-frontend
is a good idea when a key characteristic of your micro-frontends
architecture is the size of the data downloaded by users.

The architecture team may decide to introduce fitness functions inside the
automation strategy, guaranteeing the agreed-up outcome and trade-off that
a micro-frontends application should have.

Some key architecture characteristics I invite you to pay attention to when
designing the automation pipeline for a micro-frontends project are:

Bundle size: Allocate a budget size per micro-frontend and
analyze when this budget is exceeded and why. In the case of
shared libraries, also review the size of all the libraries shared, not
only the ones built with a micro-frontend.

Performance metrics: Tools like lighthouse and webperf allow us
to validate whether a new version of our application has the same
or higher standards than the current version.

Static analysis: There are plenty of tools for static analysis in the
JavaScript ecosystem, with SonarQube probably being the most
well-known. Implemented inside an automation pipeline, this tool
will provide us insights like cyclomatic complexity of a project (in
our case a micro-frontend). We may also want to enforce a high
code-quality bar when setting a cyclomatic complexity threshold
over which we don’t allow the pipeline to finish until the code is
refactored.

Code coverage: Another example of a fitness function is making
sure our codebase is tested extensively. Code coverage provides a
percentage of tests run against our project, but bear in mind that

this metric doesn’t provide us with the quality of the test, just a
snapshot of tests written for public functions.

Security: Finally, we want to ensure our code won’t violate any
regulation or rules defined by the security or architecture teams.

These are some architecture characteristics that we may want to test in our
automation strategy when we work with micro-frontends.

While none of these metrics is likely new to you, in a distributed
architecture like this one, they become fundamental for architects and tech
leads to understand the quality of the product developed, to understand
where the tech debt lays, and to enforce key architecture characteristics
without having to chase every team or be part of any feature development.

Introducing and maintaining fitness functions inside the automation strategy
will provide several benefits for helping the team provide a fast feedback
loop on architecture characteristics and the company to achieve the goals
agreed on the product quality.

Micro-frontends specific operations
Some automation pipelines for micro-frontends may require additional
steps compared to traditional frontend automation pipelines.

The first one worth a mention would be checking that every micro-frontend
is integrating specific libraries flagged as mandatory for every frontend
artifact by the architecture team.

Let’s assume that we have developed a design system and we want to
enforce that all our artifacts must contain the latest major version.
In the CI pipeline, we should have a step for verifying the package.json file,
making sure the design system library contains the right version. If it
doesn’t, it should notify the team or even block the build, failing the
process.

The same approach may be feasible for other internal libraries we want to
make sure are present in every micro-frontend, like analytics and

observability.

Considering the modular nature of micro-frontends, this additional step is
highly recommended, no matter the architecture style we decide to embrace
in this paradigm, for guaranteeing the integrity of our artifacts across the
entire organization.

Another interesting approach, mainly available for vertical split
architecture, is the possibility of a server-side render at compile time instead
of runtime when a user requests the page.

The main reason for doing this is saving computation resources and costs,
such as when we have to merge data and user interfaces that don’t change
very often.

Another reason is to provide a highly optimized, and fast-loading page with
inline CSS and maybe even some JavaScript.

When our micro-frontend artifact results in an SPA with an HTML page as
the entry point, we can generate a page skeleton with minimal CSS and
HTML nodes inlined to suggest how a page would look, providing
immediate feedback to the user while we are loading the rest of the
resources needed for interacting with micro-frontend.

This isn’t an extensive list of possibilities an organization may want to
evaluate for micro-frontends, because every organization has its own
gotchas and requirements. However, these are all valuable approaches that
are worth thinking about when we are designing an automation pipeline.

Deployment Strategies
The last stage of any automation strategy is the delivery of the artifacts
created during the build phase.

Whether we decide to deploy our code via continuous deployment, shell
script running on-prem, in a cloud provider, or via a user interface,
understanding how we can deploy micro-frontends independently from
each other is fundamental.

By their nature, micro-frontends should be independent. The moment we
have to coordinate a deployment with multiple micro-frontends, we should
question the decisions we made identifying their boundaries.

Coupling risks jeopardize the entire effort of embracing this architecture,
generating more issues than value for the company due to the complicated
way of deploying them.

With micro-architectures, we deploy only a small portion of code without
impacting the entire codebase. As with micro-frontends and microservices,
we may decide to move forward to avoid the possibility of breaking the
application and, therefore, the user experience. We’ll present the new
version of a micro-frontend to a smaller group of users instead of doing a
big-bang release to all our users.

For this scope, the microservices world uses techniques like blue-green
deployment and canary releases, where part of the traffic is redirected to a
new microservice. Adapting these key techniques in any micro-frontends
deployment strategy is worth considering.

Blue-Green Deployment versus Canary Releases
Blue-green deployment starts with the assumption that the last stage of our
tests should be done in the production environment we are running for the
rest of our platform.

After deploying a new version, we can test our new code in production
without redirecting users to the new version while getting all the benefits of
testing in the production environment.

When all the tests pass, we are ready to redirect 100% of our traffic to the
new version of our micro-frontend.

This strategy reduces the risk of deploying new micro-frontends because we
can do all the testing needed without impacting our user base.

Another benefit of this approach is that we may decide to provision only
two environments, testing and production; considering that all the tests are

running in production with a safe approach, we’re cutting infrastructure
costs not having to support the staging environment.

As you can see in figure 7.6, we have a router that should aim for shaping
the traffic toward the right version.

Figure 4-6. 6 Blue-green deployment

In canary releases, we don’t switch all of the traffic to a new version after
all tests pass. Instead, we gradually ease the traffic to a new micro-frontend
version. As we monitor the metrics from the live traffic consuming our new
frontend, such as increased error rates or less user engagement), we may
decide to increase or decrease the traffic accordingly (figure 7.7).

Figure 4-7. 7 Canary release

In both approaches, we need to have a router that shapes the traffic (for a
canary release) or switches the traffic from one version to another (blue-
green deployment).

The router could be some logic handled on the client side, server side, or
edge side, depending on the architecture chosen.

We can summarize the options available in the following table (table 7.1).

Blue-Green Deployment or Canary Release mechanism

Client-side routing Application shell

 Configuration passed via static JSON or backend APIs

Edge-side routing Logic running at the edge (e.g. AWS Lambda@Edge)

Server-side routing Application server logic

 API Gateway
 Load Balancer

Table 7.1 This table shows the router options available for canary releases
and blue-green deployments

Let’s explore some scenarios for leveraging these techniques in a micro-
frontends architecture.

When we compose our micro-frontends at a client-side level using an
application shell, for instance, we may extend the application shell logic,
loading a configuration containing the micro-frontends versions available
and the percentage of traffic to be presented with a specific version.

For instance, we may want to load a configuration similar to the following
example for shaping the traffic, issuing a cookie or storing in web storage
the version the user was assigned to and changing it to a different version
when we are sure our micro-frontend doesn’t contain critical bugs.
{
 "homepage":{
 "v.1.1.0": {
 "traffic": 20,
 "url": "acme.com/mfes/homepage-1_1_0.html"

 },
 "v.1.2.2": {
 "traffic": 80,
 "url": "acme.com/mfes/homepage-1_2_2.html"
 }
 },
 "signin":{
 "v.4.0.0": {
 "traffic": 90,
 "url": "acme.com/mfes/signin-4_0_0.html"
 },
 "v.4.1.5": {
 "traffic": 10,
 "url": "acme.com/mfes/signin-4_1_5.html"
 }
 }
 ...
}

As you can see...

For another project, we may decide that introducing a canary release
mechanism inside the application shell logic is not worth the effort, moving
this logic to the edge using the lambda@edge, which is only available on
AWS cloud.

The interesting part of moving the canary release mechanism to the edge is
not only that the decision of which version to serve the user is made to the
closest AWS region so latency is reduced but also, architecturally speaking,
we are decoupling an infrastructure duty from the codebase of our
application shell.

LAMBDA@EDGE CANARY RELEASES
During AWS:ReInvent 2019 I had the opportunity to be part of a talk
about the implementation done inside DAZN for handling canary
releases, strangler pattern, and dynamic rendering.
That talk is available on YouTube if you are interested in the details of
how to implement a similar solution using edge computing.

https://youtu.be/fT-5RHTtFNg

With a horizontal split implementation, where we assemble at runtime
different micro-frontends, introducing either blue-green or canary should be
performed at the application server level when we compose the page to be
served.

We may decide to do it at the client-side level as well. However, as you can
imagine, the amount of micro-frontends to handle may matter and mapping
all of them may result in a large configuration to be loaded client-side. So
we create a system for serving just the configuration needed for a given
URL to the client-side.

Other options include releasing different compositions logic and testing
them using an API gateway or a load balancer for shaping the traffic toward
a server cluster hosting the new implementation and the one hosting the
previous version.
In this way, we rely on the infrastructure to handle the logic for canary
release or blue-green deployment instead of implementing, and
maintaining, logic inside the application server.

As you can see, the concept of the router present in figures 7.6 and 7.7 may
be expressed in different ways based on the architecture embraced and the
context you are operating in.

Moreover, the context should drive the decision; there may be strong
reasons for implementing the canary releases at a different infrastructure
layer based on the environment we operate in.

Strangler pattern
Blue-green deployment and canary releases help when we have a micro-
frontends architecture deployed in production.
But what if we are scaling an existing web application and introducing
micro-frontends?

In this scenario, we have two options: we either wait until the entire
application is rewritten with micro-frontends or we can apply the

microservices ecosystem’s well-known strangler pattern to our frontend
application.

The strangler pattern comes from the idea of generating incremental value
for the business and the user by releasing parts of the application instead of
waiting for the wholly new application to be ready.

Basically, with micro-frontends, we can tackle an area of the application
where we think we may generate value for the business, build with micro-
frontends, and deploy them in the production environment living alongside
the legacy application.

In this way, we can provide value steadily, while the frequent releases allow
you to monitor progress more carefully, drifting toward the right direction
for our business and our final implementation.

Using the strangler pattern is very compelling for many businesses, mainly
because it allows them to experiment and gather valuable data directly from
production without relying solely on projections.

The initial investment for the developers teams is pretty low and can
immediately generate benefit for the final user.

Moreover, this approach becomes very useful for the developers for
understanding whether the reasoning behind releasing the first micro-
frontends was correct or needs to be tweaked, because it forces the team to
think about a problem smaller than the entire application and try the
approach out end to end, from conception to release, learning along the way
which stage they should improve, if any.

As we can see in figure 7.8, when a user requests a page living in the micro-
frontends implementation, a router is responsible for serving it. When an
area of the application is not yet ready for micro-frontends, the router would
redirect the user to the legacy platform.

https://martinfowler.com/bliki/StranglerFigApplication.html

Figure 4-8. 8 A strangler pattern where the micro-frontends live alongside the legacy application so
that we can create immediate value for the users and the company instead of waiting for the entire

application to be developed.

Every time we develop a new part of the application, it will replace another
part of the legacy application until the whole legacy application is
completely replaced by the micro-frontends platform.

Implementing the strangler pattern has some challenges, of course. You’ll
need to make some changes in the legacy application to make this
mechanism work properly, particularly when the micro-frontends
application isn’t living alongside the legacy application infrastructure but
may live in a different subdomain.

For instance, the legacy application should be aware that the area covered
by the micro-frontends implementation shouldn’t be served anymore from
its codebase but should redirect the user to an absolute URL so the router
logic will kick in again for redirecting the user to the right part of the
application.

Another challenge is finding a way to quickly redirect users from micro-
frontends to another in case of errors. A technique we used for rolling out
our new micro-frontends platform was to maintain three versions of our
application for a period of time: the legacy, the legacy modified for co-
existing with the micro-frontends (called the hybrid), and the micro-
frontends platform. With this approach, we could always serve the hybrid
and the micro-frontends platform, and in the extreme case of an issue we
weren’t able to fix quickly, we were able to redirect all the traffic to the
legacy platform.

This configuration was maintained for several months until we were ready
with other micro-frontends. During that time, we were able to improve the
platform as expected by the business.

In some situations, this may look like an over-engineered solution, but our
context didn’t allow us to have downtime in production, so we had to find a
strategy for providing value for our users as well for the company. The
strangler pattern let us explore the risks our company was comfortable
taking and then, after analyzing them, design the right implementation.

Observability
The last important part to take into consideration in a successful micro-
frontends architecture is the observability of our micro-frontends.
Moreover, observability closes the feedback loop when our code runs in a
production environment, otherwise we would not beable to react quickly to
any incidents happening during prime time.

In the last few years, many observability tools started to appear for the
frontend ecosystem such as Sentry or LogRocket, these tools allow us to
individuate the user journey before encountering a bug that may or may not
prevent the user to complete its action.

Observability it’s not a nice to have feature, nowadays it should be part of
any releasing strategy, even more important when we are implementing a
micro-frontends architecture.

Every micro-frontend should report errors, custom and generic, for
providing visibility when a live issue happens.

In that regard, Sentry or LogRocket can help in this task providing the
visibility needed, in fact, these tools are retrieving the user journey,
collecting the JavaScript stack trace of an exception, and clustering into
groups.

We can configure the alerting of every type of error or warning in these
tools dashboard and even plug these tools with alerting systems like
pagerduty.

It’s very important to think about observability at a very early stage of the
process because it plays a fundamental role in closing the feedback loop for
developers especially when we are dealing with multiple micro-frontends
composing the same view.
These tools will help us to debug and understand in which part of our
codebase the problem is happening and quickly drive a team to the
resolution providing some user’s context information like browser used,
operating system, user’s country and so on.

All this information in combination with the stack trace provides a clear
investigation path for any developer to resolve the problem without
spending hours trying to reproduce a bug in the developer’s machine or in a
testing environment.

Summary
We’ve covered a lot of ground here, so a recap is in order.
First, we defined the principles we want to achieve with automation
pipelines, focusing on fast feedback and constant review based on the
evolution of both tech and the company.

Then we talked about the developer experience. If we aren’t able to provide
a frictionless experience, developers may try to game the system or use it
only when it’s strictly necessary, reducing the benefits they can have with a
well-designed CI/CD pipeline.

We next discussed implementing the automation strategy, including all the
best practices, such as unit, integration, and end-to-end testing; bundle size
checks; fitness functions; and many others that could be implemented in our
automation strategy for guiding developers toward the right software
quality.

After building our artifact and performing some additional quality reviews,
we are ready to deploy our micro-frontends. We talked about testing the
final results in production using canary or blue-green deployment to reduce
the risk of presenting bugs to the users and releasing as quickly and as often
as possible without fear of breaking the entire application.

Finally, we discussed using the strangler pattern when we have an existing
application and want to provide immediate value to our business and users.
Such a pattern will steadily reduce the functionalities served to the user by a
legacy application and increase the one in our micro-frontends platform.

Chapter 5. Backend Patterns for
Micro-Frontends

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 6th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at
Building.microfrontends@gmail.com.

You may think that micro-frontends are a possible architecture only when
you combine them with microservices because we can have end-to-end
technology autonomy.

Maybe you’re thinking that your monolith architecture would never support
micro-frontends, or even that having a monolith on the API layer would
mean mirroring the architecture on the frontend as well.

However, that’s not the case. There are several nuances to take into
consideration and micro-frontends can definitely be used in combination
with microservices and monolith.

In this chapter, we review some possible integrations between the frontend
and backend layers, in particular, we analyze how micro-frontends can
work in combination with a monolith or modular monolith backend, with
microservices, and even with the backend for frontend (BFF) pattern.

Also, we will discuss the best patterns to integrate with different micro-
frontends implementations, such as the vertical split, the horizontal split
with a client-side composition, and the horizontal split with server-side
composition.

Finally, we will explore how GraphQL can be a valid solution for micro-
frontends as a single entry point for our APIs.

Let’s start by defining the different APIs approaches we may have in a web
application. As shown in figure 9.1, we focus our journey on the most used
and well-known patterns.

This doesn’t mean micro-frontends work only with these implementations.
You can devise the right approach for a WebSocket or hypermedia, for
instance, by learning how to deal with BFF, API gateway, or service
dictionary patterns.

Figure 5-1. 1 - Micro-frontends and API layers

The patterns we analyze in this chapter are:

Service dictionary. The service dictionary is just a list of services
available for the client to consume. It’s used mainly when we are
developing an API layer with a monolith or modular monolith
architecture; however, it can also be implemented with a
microservices architecture with an API gateway, among other
architectures. A service dictionary avoids the need to create shared
libraries, environment variables, or configurations injected during
the CI process or to have all the endpoints hardcoded inside the
frontend codebase.
The dictionary is loaded for the first time when the micro-frontend
loads, allowing the client to retrieve the URLs to consume directly
from the service dictionary.

API gateway. Well known in the microservices community, an
API gateway is a single entry point for a microservices
architecture. The clients can consume the APIs developed inside
microservices through one gateway.
The API gateway also allows centralizing a set of capabilities, like
token validation, API throttling, or rate-limiting.

BFF. The BFF is an extension of the API gateway pattern, creating
a single entry point per client type. For instance, we may have a
BFF for the web application, another for mobile, and a third for the
Internet of Things (IoT) devices we are commercializing.
BFF reduces the chattiness between client and server aggregating
the API responses and returning an easy data structure for the
client to be parsed and render inside a user interface, allowing a
great degree of freedom to shape APIs dedicated to a client and
reducing the round trips between a client and the backend layer.

These patterns are not mutually exclusive, either; they can be combined to
work together.

An additional possibility worth mentioning is writing an API endpoints
library for the client side. However, I discourage this practice with micro-
frontends because we risk embedding an older library version in some of
them and, therefore, the user interface may have some issues like outdated
information or even APIs errors due to dismissal of some APIs. Without
strong governance and discipline around this library, we risk having certain
micro-frontends using the wrong version of an API.

Domain-driven design (DDD) also influences architectures and
infrastructure decisions. Especially with micro-architectures, we can divide
an application into multiple business domains, using the right approach for
each business domain.

For instance, it’s not unusual to have part of the application exposing the
APIs with a BBF pattern and another part exposing with a service
dictionary.
This level of flexibility provides architects and developers with a variety of
choices not possible before. At the same time, however, we need to be
careful not to fragment the client-server communication too much, instead
introducing a new pattern when it provides a real benefit for our
application.

Working with a Service Dictionary
A service dictionary is nothing more than a list of endpoints available in the
API layer provided to a micro-frontend. This allows the API to be
consumed without the need to bake the endpoints inside the client-side code
to inject them during a continuous integration pipeline or in a shared library.

Usually, a service dictionary is provided via a static JSON file or an API
that should be consumed as the first request for a micro-frontend (in the
case of a vertical-split architecture) or an application shell (in the case of a
horizontal split).

A service dictionary may also be integrated into existing configuration files
or APIs to reduce the round trips to the server and optimize the client

startup.
In this case, we can have a JSON object containing a list of configurations
needed for our clients, where one of the elements is the service dictionary.

An example of service dictionary structure would be:
{
“my_amazing_api”: {
 “v1”: "https://api.acme.com/v1/my_amazing_api",
 “v2”: "https://api.acme.com/v2/my_amazing_api",
 “v3”: "https://api.acme.com/v3/my_amazing_api"
},
 “my_super_awesome_api”: {
 “v1”:
"https://api.acme.com/v1/my_super_awesome_api"
 }
}

As you can see, we are listing all the APIs supported by the backend.
Thanks to API versioning, we can handle cross-platforms applications
without introducing breaking changes because each client can use the API
version that suits it better.
One thing we can’t control in such scenarios is the penetration of a new
version in every mobile device. When we release a new version of a mobile
application, updating may take several days, if not weeks, and in some
situations, it may take even longer.

Therefore, versioning the APIs is important to ensure we don’t harm our
user experience.

Reviewing the cadence of when to dismiss an API version, then, is
important.
One of the main reasons is that potential attacks may harm our platform’s
stability.
Usually, when we upgrade an API to a new version, we are improving not
only the business logic but also the security. But unless this change can be
applicable to all the versions of a specific API, it would be better to assess
whether the APIs are still valid for legitimate users and then decide whether
to dismiss the support of an API.

https://api.acme.com/v1/my_amazing_api
https://api.acme.com/v1/my_amazing_api
https://api.acme.com/v3/my_amazing_api
https://api.acme.com/v1/my_amazing_api

To create a frictionless experience for our users, implementing a forced
upgrade in every application released via an executable (mobile, smart TVs,
or consoles)may be a solution, preventing the user from accessing older
applications due to drastic updates in our APIs or even in our business
model.

Therefore, we must think about how to mitigate these scenarios in order to
create a smooth user experience for our customers.

Endpoint discoverability is another reason to use a service dictionary.
Not all companies work with cross-functional teams; many still work with
components teams, with some teams fully responsible for the frontend of an
application and others for the backend.

Using a service dictionary allows every frontend team to be aware of what’s
happening in other teams. If a new version of an API is available or a
brand-new API is exposed in the service dictionary, the frontend team will
be aware.

This is also a valid argument for cross-functional teams when we develop a
cross-functional application.

In fact, it’s very unlikely that inside a two-pizza team we would be able to
have all the knowledge needed for developing web, backend, mobile (iOS
and Android), and maybe even smart TVs and console applications.

A TWO-PIZZA TEAM
According to Jeff Bezos, CEO of Amazon, if a team can’t be fed with
two pizzas, it’s too big.

The introduction of the two-pizza rule in Amazon meant every team
should be no larger than eight or nine people, which two pizzas would
be enough to feed them!

The reasoning behind this rule isn’t to save money on pizzas. It’s based
on the number of links between people inside a team.
There is a formula for calculating the links between members in a
group: n(n-1)/2 where n corresponds to the number of people.

For instance, if a team has six people, there will be 15 links between
everyone. Double the team to 12 members, and there will be 66 links.

Complexity grows exponentially, not linearly, creating a higher risk of
missing information across all the team’s members.

Using a service dictionary allows every team to have a list of available APIs
in every environment just by checking the dictionary.

We often think the problem is just a communication issue that can be
resolved with better communication. However, look again at the number of
links in a 12-person team. Forgetting to update a team regarding a new API
version may happen more often than not. A service dictionary helps
introduce the discussion with the team responsible for the API, especially in
large organizations with distributed teams.

Last but not least, a service dictionary is also helpful for testing micro-
frontends with new endpoint versions while in production.

A company that uses a testing-in-production strategy can expand that to its
micro-frontends architecture, thanks to the service dictionary, all without
affecting the standard user experience.

We can test new endpoints in production by providing a specific header
recognized by our service dictionary service. The service will interpret the

header value and respond with a custom service dictionary used for testing
new endpoints directly in production.

We would choose to use a header instead of a token or any other type of
authentication, because it covers authenticated and unauthenticated use
cases. Let’s see a high-level design on what the implementation would look
like (figure 9.2).

Figure 5-2. 2 - A high-level architecture on how to use a service dictionary for testing in production

In figure 9.2 we can see that the application shell consumes the service
dictionary API as the first step. But this time, the application shell passes a
header with an ID related to the configuration to load.

In this example, the ID was generated at runtime by the application shell.

When the service dictionary receives the call, it will check whether a header
is present in the request and if so, it will try to load the associated
configuration stored inside the database.

It then returns the response to the application shell with the specific service
dictionary requested. The application shell is now ready to load the micro-
frontends to compose the page.

Finally, the custom endpoint configuration associated with the client ID is
produced via a dashboard (top right corner of the diagram) used only by the
company’s employees.

In this way we may even extend this mechanism for other use cases inside
our backend, providing a great level of flexibility for micro-frontends and
beyond.

The service dictionary can be implemented with either a monolith or a
modular monolith. The important thing to remember is to allow
categorization of the endpoints list based on the micro-frontend that
requests the endpoints.

For instance we can group the endpoints related to a business subdomain or
a bounded context. This is the strategic goal we should aim for.

A service dictionary makes more sense with micro-frontends composed on
the client side rather than on the server side. BFFs and API gateways are
better suited for the server-side composition, considering the coupling
between a micro-frontend and its data layer.

MODULAR MONOLITH
A modular monolith is a concept from the 1960s where the code is
actually compartmentalized into separate modules. Moving to a
modular monolith may be enough for some companies to continue
evolving the API layer instead of doing a full migration to
microservices. In his book Monolith to Microservices, Sam Newman
provides many insights into migrating a monolithic backend to
microservices and discusses the concept of the modular monolith as a
potential first step for our migration journey.

Let’s now explore how to implement the service dictionary in a micro-
frontend architecture.

Implementing a Service Dictionary in a Vertical-Split
Architecture
The service dictionary pattern can easily be implemented in a vertical-split
micro-frontends architecture, where every micro-frontend requests the
dictionary related to its business domain.

However, it’s not always possible to implement a service dictionary per
domain, such as when we are transitioning from an existing SPA to micro-
frontends, where the SPA requires the full list of endpoints because it won’t
reload the JavaScript logic till the next user session.

In this case, we may decide to implement a tactical solution, providing the
full list of endpoints to the application shell instead of a business domain
endpoints list to every single micro-frontend. With this tactical solution, we
assume the application shell exposes or injects the list of endpoints for
every micro-frontend.

When we are in a position to divide the services list by domain, there will
be a minimum effort for removing the logic from the application shell and
then moving into every micro-frontend as displayed in figure 9.3.

Figure 5-3. 3 With vertical-split architecture we can retrieve the service dictionary directly inside a
micro-frontend, dividing the endpoints list by business domain.

The service dictionary approach may also be used with a monolith backend.
If we determine that our API layer will never move to microservices, we
can still implement a service dictionary divided by domain per every micro-
frontend, especially if we implement a modular monolith.

Taking into account figure 9.3, we can derive a sample of sequence
diagrams like the one in figure 9.4. Bear in mind there may be additional
steps to perform either in the application shell or in the micro-frontend
loaded, depending on the context we operate in. Take the following
sequence diagram just as an example.

Figure 5-4. 4 Sequence diagram to implement a service dictionary with a vertical-split architecture

As the first step, the application shell loads the micro-frontend requested, in
this example the catalogue micro-frontend.

After mounting the micro-frontend, the catalogue initializes and consumes
the service dictionary API for rendering the view. It can consume any
additional APIs, as necessary.

From this moment on, the catalogue micro-frontend has access to the list of
endpoints available and uses the dictionary to retrieve the endpoints to call.

In this way we are loading only the endpoints needed for a micro-frontend,
reducing the payload of our configuration and maintaining control of our
business domain.

Implementing a Service Dictionary in a Horizontal-Split
Architecture
To implement the service dictionary pattern with a micro-frontends
architecture using a horizontal split, we have to pay attention to where the
service dictionary API is consumed and how to expose it for the micro-
frontends inside a single view.

When the composition is managed client side, the recommended way to
consume a service dictionary API is inside the application shell or host
page. Because the container has visibility into every micro-frontend to load,
we can perform just one round trip to the API layer to retrieve the APIs
available for a given view and expose or inject the endpoints list to every
loaded micro-frontend.

Consuming the service dictionary APIs from every micro-frontend would
negatively impact our applications’ performance, so it’s strongly
recommended to stick the logic in the micro-frontends container as shown
in figure 9.5.

Figure 5-5. 5 - The service dictionary should always be loaded from the micro-frontends container in
a horizontal-split architecture

The application shell should expose the endpoints list via the window
object, making it accessible to all the micro-frontends when the technical
implementation allows us to do it. Another option is injecting the service
dictionary, alongside other configurations, after loading every micro-
frontend.

For example, using module federation in a React application requires
sharing the data using React context APIs. The context API allows you to
expose a context, in our case the service dictionary, to the component tree
without having to pass props down manually at every level.

The decision to inject or expose our configurations is driven by the
technical implementation.

Let’s see how we can express this use case with the sequence diagram in
figure 9.6.

Figure 5-6. 6 - This sequence diagram shows how a horizontal-split architecture with client-side
composition may consume the service dictionary API.

https://reactjs.org/docs/context.html

In this sequence diagram, the request from the host application, or
application shell, to the service dictionary is at the very top of the diagram.

The host application then exposes the endpoints list via the window object
and starts loading the micro-frontends that compose the view.

Again, we may have a more complex situation in reality. Adapt the
technical implementation and business logic to your project needs
accordingly.

Working with an API gateway
An API gateway pattern represents a unique entry point for the outside
world to consume APIs in a microservices architecture.

Not only does an API gateway simplify access for any frontend to consume
APIs by providing a unique entry point, but it’s also responsible for requests
routing, API composition and validation, and other edge functions, like
authentication and rate limiting.

An API gateway also allows us to keep the same communication protocol
between clients and the backend, while the gateway routes a request in the
background in the format requested by a microservice (see figure 9.7).

Figure 5-7. 7 - An API gateway pattern simplifies the communication between clients and server and
centralizes functionalities like authentication and authorization via edge functions.

Imagine a microservice architecture composed with HTTP and gRPC
protocols. Without implementing an API gateway, the client won’t be aware
of every API or all the communication protocol details. Instead of using the
API gateway pattern, we can hide the communication protocols behind the
API gateway and leave the client’s implementation dealing with the API
contracts and implementing the business logic needed on the user interface.

Other capabilities of edge functions are rate limiting, caching, metrics
collection, and log requests.

Without an API gateway, all these functionalities will need to be replicated
in every microservice instead of centralized as we can do with a single entry
point.

Still, the API gateway also has some downsides.

As a unique entry point, it could be a single point of failure, so we need to
have a cluster of API gateways to add resilience to our application.

Another challenge is more operational. In a large organization, where we
have hundreds of developers working on the same project, we may have
many services behind a single API gateway. We’ll need to provide solid
governance for adding or removing APIs in the API gateway to prevent .

Finally, if we implement an additional layer between the client and the
microservice to consume, we’ll add some latency to the system.

The process for updating the API gateway must be as lightweight as
possible, making investing in the governance around this process a
mandatory step. Otherwise, developers will be forced to wait in line to
update the gateway with a new version of their endpoint.

The API gateway can work in combination with a service dictionary, adding
the benefits of a service dictionary to those of the API gateway pattern.

Finally, with micro-architectures, we are opening a new scenario, where it
may be possible and easier to manage and control because we are splitting
our APIs by domain, having multiple API gateways to gather a group of
APIs for instance.

One API entry point per business domain
Another opportunity to consider is creating one API entry point per
business domain instead of having one entry point for all the APIs, as with
an API gateway.

Multiple API gateways enable you to partition your APIs and policies by
solution type and business domain.
In this way, we avoid having a single point of failure in our infrastructure.
Part of the application can fail without impacting the rest of the
infrastructure. Another important characteristic of this approach is that we
can use the best entry point strategy per bounded context based on the
requirements needed, as shown in figure 9.8.

Figure 5-8. 8 - On the left is a unique entry point for the API layer; on the right are multiple entry
points, one per subdomain.

So let’s say we have a bounded context that needs to aggregate multiple
APIs from different microservices and return a subset of the body response
of every microservice. In this case, a BFF would be a better fit for being
consumed by a micro-frontend rather than handing over to the client doing
multiple round trips to the server and filtering the APIs body responses for
displaying the final result to the user.

But in the same application, we may have a bounded context that doesn’t
need a BFF.
Let’s go one step further and say that in this subdomain, we have to validate
the user token in every call to the API layer to check whether the user is
entitled to access the data.

In this case, using an API gateway pattern with validation at the API
gateway level will allow you to fulfill the requirements in a simple way.

With infrastructure ownership, choosing different entry points for our API
layer means every team is responsible for building and maintaining the
entry point chosen, reducing potential external dependencies across teams,
and allowing them to own end-to-end the subdomain they are responsible
for.

This approach may require more work to build, but it allows a fine-grain
control of identifying the right tool for the job instead of experiencing a
trade-off between flexibility and functionalities. It also allows the team to
really be independent end to end, allowing engineers to change the
frontend, backend, and infrastructure without affecting any other business
domain.

A client-side composition, with an API gateway and a
service dictionary
Using an API gateway with a client-side micro-frontends composition
(either vertical or horizontal split) is not that different from implementing
the service dictionary in a monolith backend.

In fact, we can use the service dictionary to provide our micro-frontends
with the endpoints to consume, with the same suggestions we provided
previously..

The main difference, in this case, will be that the endpoints list will be
provided by a microservice responsible for serving the service dictionary or
a more generic client-side configuration, depending on our use case.

Another interesting option is that with an API gateway, authorization may
happen at the API-gateway level, removing the risk of introducing libraries
at the API level, as we can see in figure 9.9.

Figure 5-9. 9 - A vertical-split architecture with a client-side composition requesting data to a
microservice architecture with an API gateway as entry point.

Based on the concepts shared with the service dictionary, the backend
infrastructure has changes but not the implementation side. As a result, the
same implementations applicable to the service dictionary are also
applicable in this scenario with the API gateway.

Let’s look at one more interesting use case for the API gateway.

Some applications allow us to use a micro-frontends architecture to provide
different flavors of the same product to multiple customers, such as
customizing certain micro-frontends on a customer-by-customer basis.

In such cases, we tend to reuse the API layer for all the customers, using
part or all of the microservices based on the user entitlement. But in a
shared infrastructure we can risk having some customers consuming more
of our backend resources than others.

In such scenarios, using API throttling at the API gateway will mitigate this
problem by assigning the right limits per customer or per product.

At the micro-frontends level we won’t need to do much more than handle
the errors triggered by the API gateway for this use case.

A server-side composition with an API gateway
A microservices architecture opens up the possibility of using a micro-
frontends architecture with a server-side composition.

NOTE
Remember that with a server-side composition we identify our micro-frontends with a
horizontal split, not a vertical one

Figure 5-10. 10 - An example of a server-side composition with a microservices architecture

As we can see in figure 9.10, after the browser’s request to the API
gateway, the gateway handles the user authentication/authorization first,
then allows the client request to be processed by the UI composition service
responsible for calling the microservices needed to aggregate multiple
micro-frontends, with their relative content fetched from the microservices
layer.

For the microservices layer, we use a second API gateway to expose the
API for internal services, in this case, used by the UI composition service.

Figure 5-20.11 illustrates a hypothetical implementation with the sequence
diagram related to this scenario.

Figure 5-11. 11 - An example of server-side composition with API gateway

After the API gateway token validation, the client-side request lands at the
UI composition service, which calls the micro-frontend to load. The micro-
frontend service is then responsible for fetching the data from the API layer
and the relative template for the UI and serving a fragment to the UI
composition layer that will compose the final result for the user.

This diagram presents an example with a micro-frontend, but it’s applicable
for all the others that should be retrieved for composing a user interface.

Usually, the microservice used for fetching the data from the API layer
should have a one-to-one relation with the API it consumes, which allows
an end-to-end team’s ownership of a specific micro-frontend and
microrservice.

There are several micro-frontend frameworks with a similar
implementation, such as the interface framework from Zalando,
OpenComponents, Project Mosaic, and Ara Framework based on Airbnb
Hypernova.

Working with the BFF pattern
Although the API gateway pattern is a very powerful solution for providing
a unique entry point to our APIs, in some situations we have views that
require aggregating several APIs to compose the user interface, such as a
financial dashboard that may require several endpoints for gathering the
data to display inside a unique view.

Sometimes, we aggregate this data on the client side, consuming multiple
endpoints and interpolating data for updating our view with the diagrams,
tables, and useful information that our application should display. Can we
do something better than that?

Another interesting scenario where an API gateway may not be suitable is
in a cross-platform application where our API layer is consumed by web
and mobile applications.

Moreover, the mobile platforms often require displaying the data in a
completely different way from the web application, especially taking into
consideration screen size.

In this case, many visual components and relative data may be hidden on
mobile in favor of providing a more general high-level overview and
allowing a user to drill down to a specific metric or information that
interests them instead of waiting for all the data to download.

https://jobs.zalando.com/en/tech/blog/front-end-micro-services/?gh_src=22377bdd1us
https://opencomponents.github.io/
https://www.mosaic9.org/
https://ara-framework.github.io/website/docs/nova-architecture

Finally, mobile applications often require a different method for aggregating
data and exposing them in a meaningful way to the user. APIs on the
backend are the same for all clients, so for mobile applications, we need to
consume different endpoints and compute the final result on the device
instead of changing the API responses based on the device that consumes
the endpoint.

In all these cases, BFF, as described by Phil Calçado (formerly of
SoundCloud), comes to the rescue.

The BFF pattern develops niche backends for each user experience.

This pattern will only make sense if and when you have a significant
amount of data coming from different endpoints that must be aggregated for
improving the client’s performance or when you have a cross-platform
application that requires different experiences for the user based on the
device used.

This pattern can also help solve the challenge of introducing a layer
between the API and the clients, as we can see in figure 9.12.

https://philcalcado.com/2015/09/18/the_back_end_for_front_end_pattern_bff.html

Figure 5-12. 12 - On the left a microservices architecture consumed by different clients; on the right
a BBF layer exposing only the APIs needed for a given group of devices, in this case, mobile and web

BFF.

Thanks to BFF we can create a unique entry point for a given device group,
such as one for mobile and another for a web application.

However, this time we also have the option of aggregating API responses
before serving them to the client and, therefore, generating less chatter
between clients and the backend because the BFF aggregates the data and
serves only what is needed for a client with a structure reflecting the view
to populate.

Interestingly, the microservices architecture’s complexity sits behind the
BFF, creating a unique entry point for the client to consume the APIs
without needing to understand the complexity of a microservices
architecture.

BFF can also be used when we want to migrate a monolith to
microservices. In fact, thanks to the separation between clients and APIs,
we can use the strangler pattern for killing the monolith in an iterative way,
as illustrated in figure 9.13. This technique is also applicable to the API
gateway pattern.

Figure 5-13. 13 - The red boxes represent services extracted from the monolith and converted to
microservices. The BFF layer allows the client to be unaware of the change happening in the

backend, maintaining the same contract at the BFF level.

Another interesting use case for the BFF is aggregating APIs by domain, as
we have seen for the API gateway.

Creating a BFF for a group of devices could have multiple BFF calling the
same microservices. When not controlled properly, this can harm platform
stability. Obviously, we may decide to introduce caches in different layers
for mitigating traffic spikes, but we can mitigate this problem another way.

Following our subdomain decomposition, we can identify a unique entry
point for each subdomain, grouping all the microservices for a specific
domain together instead of taking into consideration the type of device that
should consume the APIs.

This would allow us to have similar service-level agreements (SLAs) inside
the same domain, control the response to the clients in a more cohesive
way, and allow the application to fail more gracefully than having a single
layer responsible for serving all the APIs, as in the previous examples.

Figure 5-20.14 illustrates how we can have two BFFs, one for the catalogue
and one for the Account section, for aggregating and exposing these APIs to
different clients. In this way, we can scale the BFFs based on their traffic.

Figure 5-14. 14 - This diagram shows how to separate different domain-driven design subdomains.

Gathering all the APIs behind a unique layer, however, may lead to an
application’s popular subdomains requiring a different treatment compared
to less-accessed subdomains.

Dividing by subdomain, then, would allow us to apply the right SLA
instead of generalizing one for the entire BFF layer.

Sometimes BFF raises some concerns due to some inherent pitfalls such as
reusability and code duplication.

In fact, we may need to duplicate some code for implementing similar
functionalities across different BFF, especially when we create one per
device family. In these cases, we need to assess whether the burden of
having teams implementing similar code twice is greater than abstracting
(and maintaining) the code.

A client-side composition, with a BFF and a service
dictionary
Because a BFF is an evolution of the API gateway, many of the
implementation details for an API gateway are valid for a BFF layer as
well, plus we can aggregate multiple endpoints, reducing client chatter with
the server.

It’s important to iterate this capability because it can drastically improve
application performance.

Yet there are some caveats when we implement either a vertical split or a
horizontal one.

For instance, in figure 9.15, we have a product details page that has to fetch
the data for composing the view.

Figure 5-15. 15 - A wireframe of a product page

When we want to implement a vertical-split architecture, we may design the
BFF to fetch all the data needed for composing this view, as we can see in
figure 9.16.

Figure 5-16. 16 - Sequence diagram showing the benefits of the BFF pattern used in combination
with a vertical split composed on the client side

In this example, we assume the micro-frontend has already retrieved the
endpoint for performing the request via a service dictionary and that it
consumes the endpoints, leaving the BFF layer to compose the final
response.

In this use case we can also easily use a service dictionary for exposing the
endpoints available in our BFF to our micro-frontends similar to the way
we do it for the API gateway solution.

However, when we have a horizontal split composed on the client side,
things become trickier because we need to maintain the micro-frontends’

independence, as well as having the host page domain as unaware as
possible.

In this case, we need to combine the APIs in a different way, delegating
each micro-frontend to consume the related API, otherwise, we will need to
make the host page responsible for fetching the data for all the micro-
frontends, which could create a coupling that would force us to deploy the
host page with the micro-frontends, breaking the intrinsic characteristic of
independence between micro-frontends.

Taking into consideration these micro-frontends and the host page may be
developed by different teams, this setup would slow down features
development rather than leveraging the benefits that this architecture
provides us.

BFF with a horizontal split composed on the client side could create more
challenges than benefits in this case. It’s wise to analyze whether this
pattern’s benefits will outweigh the challenges.

A server-side composition, with a BFF and service
dictionary
When we implement a horizontal-split architecture with server-side
composition and we have a BFF layer, our micro-frontends implementation
resembles the API gateway one.

The BFF exposes all the APIs available for every micro-frontend, so using
the service dictionary pattern will allow us to retrieve the endpoints for
rendering our micro-frontends ready to be composed by a UI composition
layer.

Using GraphQL with micro-frontends
In a chapter about APIs and micro-frontends, we couldn’t avoid mentioning
GraphQL.

https://graphql.org/

GraphQL is a query language for APIs and a server-side runtime for
executing queries by using a type system you define for your data.

GraphQL was created by Facebook and released in 2015. Since then it has
gained a lot of traction inside the developers’ community.

Especially for frontend developers, GraphQL represents a great way to
retrieve the data needed for rendering a view, decoupling the complexity of
an API layer, rationalizing the API response in a graph, and allowing any
client to reduce the number of round trips to the server for composing the
UI.

Because GraphQL is a client-centric API, the paradigm for designing an
API schema should be based on how the view we need to render looks
instead of looking at the data exposed by the API layer.

This is a very key distinction compared to how we design our database
schemas or our REST APIs.

Two projects in the GraphQL community stand out as providing great
support and productivity with the open source tools available, such as
Apollo and Rely.

Both projects leverage GraphQL, adding an opinionated view on how to
implement this layer inside our application, increasing our productivity
thanks to the features available in one or both, like authentication, rate
limiting, caching, and schema federations.

GraphQL can be used as an API gateway, acting as a proxy for specific
microservices, for instance, or as a BFF, orchestrating the requests to
multiple endpoints and aggregating the final response for the client.

Remember that GraphQL acts as a unique entry point for your entire API
layer. By design GraphQL exposes a unique endpoint where the clients can
perform queries against the GraphQL server. Because of this, we tend to not
version our GraphQL entry point, although if the project requires a
versioning because we don’t have full control of the clients that consume
our data, we can version the GraphQL endpoint. Shopify does this by

https://www.apollographql.com/
https://relay.dev/
https://shopify.dev/concepts/about-apis/versioning

adding the date in the URL and supporting all the versions up to a certain
period.

GraphQL simplifies data retrieval for the clients, allows us to query only
the fields needed in a view based on client type (e.g., mobile or web), and
simplifies the maintenance and evolution of the GraphQL layer compared
to more complicated backend ecosystems.

The data graph is reachable via a unique endpoint. When a new
microservice is added to the graph, the only change for the client to make
would be at the query level, also minimizing maintenance.

The schema federation
Schema federation is a set of tools to compose multiple GraphQL schemas
declaratively into a single data graph.

When we work with GraphQL in a midsize to large organization, we risk
creating a bottleneck because all the teams are contributing to the same
schema.

But with a schema federation we can have individual teams working on
their own schemas and exposing them to the client as unique entry points,
just like a traditional data graph.

Apollo Server exposes a gateway with all associated schemas from other
services, allowing each team to be independent and not change the way the
frontend consumes the data graph.

This technique comes in handy when we work with microservices, though it
comes with a caveat.

A GraphQL schema should be designed with the UI in mind, so it’s
essential to avoid silos inside the organization. We must facilitate the initial
analysis engaging with multiple teams and follow all improvements in order
to have the best implementation possible.

Figure 5-20.17 shows how a schema federation works using the gateway as
an entry point for all the implementing services and providing a unique

entry point and data graph to query for the clients.

Figure 5-17. 17 - A sequence diagram showing how schema federation exposes all the schemas from
multiple services

Schema federation represents the evolution of schema stitching, which has
been used by many large organizations for similar purposes. It wasn’t well
designed, however, which led Apollo to deprecate schema stitching in favor
of schema federation.

More information regarding the schema federation is available on Apollo’s
documentation website.

Using GraphQL with micro-frontends and client-side
composition
Integrating GraphQL with micro-frontends is a trivial task, especially after
reviewing the implementation of the API gateway and BFF.

With schema federations, we can have the teams who are responsible for a
specific domain’s APIs create and maintain the schema for their domain and

https://www.apollographql.com/docs/apollo-server/features/schema-stitching/
https://www.apollographql.com/docs/apollo-server/federation/introduction/

then merge all the schemas into a unique data graph for our client
applications.

This approach allows the team to be independent, maintaining their schema
and exposing what the clients would need to consume.

When we integrate GraphQL with a vertical split and a client-side
composition, the integration resembles the others described above: the
micro-frontend is responsible for consuming the GraphQL endpoint and
rendering the content inside every component present in a view.

Applying such scenarios with microservices become easier thanks to
schema federation, as shown in figure 9.18.

Figure 5-18. 18 - A high-level architecture for composing a microservice backend with schema
federation. The catalogue micro-frontend consumes the graph composed by all the schemas inside

the GraphQL server.

In this case, thanks to the schema federation, we can compose the graph
with all the schemas needed and expose a unique data graph for a micro-
frontend to consume.

Interestingly, with this approach, every micro-frontend will be responsible
for consuming the same endpoint. Optionally, we may want to split the BFF
into different domains, creating a one-to-one relation with the micro-
frontend. This would reduce the scope of work and make our application
easier to manage, considering the domain scope is smaller than having a
unique data graph for all the applications.

Applying a similar backend architecture to horizontal-split micro-frontends
with a client-side composition isn’t too different from other
implementations we have discussed in this chapter.

As we see in figure 9.19, the application shell exposes or injects the
GraphQL endpoint to all the micro-frontends and all the queries related to a
micro-frontend will be performed by every micro-frontend.

Figure 5-19. 19 - A high-level architecture of GraphQL with schema federation. When we implement
it with a micro-frontends architecture with horizontal split and a client-side composition, all micro-

frontends query the graph layer.

When we have multiple micro-frontends in the same or different view
performing the same query, it’s wise to look at the query and response
cacheability at different levels, like the CDN used, and otherwise leverage
the GraphQL server-client cache.

Caching is a very important concept that has to be leveraged properly;
doing so could protect your origin from burst traffic so spend the time.

Using GraphQL with micro-frontends and a server-side
composition
The last approach is using a GraphQL server with a micro-frontends
architecture with horizontal split and a server-side composition.

When the UI composition requests multiple micro-frontends to their relative
microservices, every microservice queries the graph and prepares the view
for the final page composition (see figure 9.20).

https://www.apollographql.com/blog/automatic-persisted-queries-and-cdn-caching-with-apollo-server-2-0-bf42b3a313de

Figure 5-20. 20 - A high-level architecture for a micro-frontends architecture with a server-side
composition where every micro-frontend consumes the graph exposed by the GraphQL server

In this scenario, every microservice that will query the GraphQL server
requires having the unique entry point accessible, authenticating itself, and
retrieving the data needed for rendering the micro-frontend requested by the
UI composition layer.

This implementation overlaps quite nicely with the others we have seen so
far on API gateway and BFF patterns.

Best practices
After discussing how micro-frontends can fit with multiple backend
architectures, we must address some topics that are architecture-agnostic
but could help with the successful integration of a micro-frontends
architecture.

Multiple micro-frontends consuming the same API
When we work with a horizontal-split architecture, we may end up having
similar micro-frontends in the same view consuming the same APIs.

In this case, we should challenge ourselves to determine whether
maintaining separate micro-frontends brings any value to our system.
Would grouping them in a unique micro-frontend be better?

Usually, such scenarios should indicate a potential architectural
improvement. Don’t ignore that signal; instead, try to revisit the decision
made at the beginning of the project with the information and the context
available, making sure performing the same API request twice inside the
same view is acceptable. If not, be prepared to review the micro-frontends
boundaries.

APIs come first, then the implementation

Independent of the architecture we will implement in our projects, we
should apply API-first principles to ensure all teams are working with the
same understanding of the desired result.

An API-first approach means that for any given development project, your
APIs are treated as “first-class citizens.”

As discussed at the beginning of this book, we need to make sure the API
identified for communicating between micro-frontends or for client-server
communication are defined up front to enable our teams to work in parallel
and generate more value in a shorter time.

In fact, investing time at the beginning for analyzing the API contract with
different teams will reduce the risk of developing a solution not suitable for
achieving the business goals or a smooth integration within the system.

Gathering all the teams involved in the creation and consumption of new
APIs can save a lot of time further down the line when the integration starts.
At the end of these meetings, producing an API spec with mock data will
allow teams to work in parallel.
The team that has to develop the business logic will have clarity on what to
produce and can create tests for making sure they will produce the expected
result, and the teams that consume this API will be able to start the
integration, evolving or developing the business logic using the mocks
defined during the initial meeting.

Moreover, when we have to introduce a breaking change in an API, sharing
a request for comments (RFC) with the teams consuming the API may help
to update the contract in a collaborative way. This will provide visibility on
the business requirements to everyone and allow them to share their
thoughts and collaborate on the solution using a standard document for
gathering comments.

RFCs are very popular in the software industry. Using them for
documenting API changes will allow us to scale the knowledge and
reasoning behind certain decisions, especially with distributed teams where
it is not always possible to schedule a face-to-face meeting in front of a
whiteboard.

https://tools.ietf.org/html/rfc825

RFCs are also used when we want to change part of the architecture,
introduce new patterns, or change part of the infrastructure.

API consistency
Another challenge we need to overcome when we work with multiple teams
on the same project is creating consistent APIs, standardizing several
aspects of an API, such as error handling.

API standardization allows developers to easily grasp the core concepts of
new APIs, minimizes the learning curve, and makes the integration of APIs
from other domains easier.

A clear example would be standardizing error handling so that every API
returns a similar error code and description for common issues like wrong
body requests, service not available, or API throttling.

This is true not only for client-server communication but for micro-
frontends too. Let’s think about the communication between a component
and a micro-fronted or between micro-frontends in the same view.
Identifying the events schema and the possibility we grant inside our system
is fundamental for the consistency of our application and for speeding up
the development of new features.
There are very interesting insights available online for client-server
communication, some of which may also be applicable to micro-frontends.
Google and Microsoft API guidelines share a well-documented section on
this topic, with many details on how to structure a consistent API inside
their ecosystems.

Web socket and micro-frontends
In some projects, we need to implement a WebSocket connection for
notifying the frontend that something is happening, like a video chat
application or an online game.

Using WebSockets with micro-frontends requires a bit of attention because
we may be tempted to create multiple socket connections, one per micro-

https://cloud.google.com/apis/design
https://github.com/microsoft/api-guidelines

frontend. Instead, we should create a unique connection for the entire
application and inject or make available the WebSocket instance to all the
micro-frontends loaded during a user session.

When working with horizontal-split architectures, create the socket
connection in the application shell and communicate any message or status
change (error, exit, and so on) to the micro-frontends in the same view via
an event emitter or custom events for managing their visual update.

In this way, the socket connection is managed once instead of multiple
times during a user session. There are some challenges to take into
consideration, however.

Imagine that some messages are communicated to the client while a micro-
frontend is loaded inside the application shell. In this case, creating a
message buffer may help to replay the last N messages and allow the micro-
frontend to catch up once fully loaded.

Finally, if only one micro-frontend has to listen to a WebSocket connection,
encapsulating this logic inside the micro-frontend would not cause any
harm because the connection will leave naturally inside its subdomain.

For vertical-split architectures, the approach is less definitive. We may want
to load inside every micro-frontend instead of at the application shell,
simplifying the lifecycle management of the socket connection.

The right approach for the right subdomain
Working with micro-frontends and microservices provides a level of
flexibility we didn’t have before.
To leverage this new quality inside our architecture we need to identify the
right approach for the job.

For instance, in some parts of an application, we may want to have some
micro-frontends communicating with a BFF instead of a regular service
dictionary because that specific domain requires an aggregation of data
retrievable by existing microservices but the data should be aggregated in a
completely different way.

Using micro-architectures, these decisions are easier to embrace due to the
architecture’s intrinsic characteristic. To grant this flexibility, we must
invest time at the beginning of the project analyzing the boundaries of every
business domain and then refine them every time we see complications in
API implementation.

In this way, every team will be entitled to use the right approach for the job
instead of following a standard approach that may not be applicable for the
solution they are developing.

This is not a one-off decision but it has to evolve and revise with a regular
cadence to support the business evolution.

Designing APIs for cross-platform applications
Nowadays we are developing cross-platform applications more often than
not.
Mobile devices are part of our routine. They help us accomplish our daily
tasks and a tablet may have already replaced our laptop for working.

When we approach a cross-platform application and we aren’t using a BFF
layer to aggregate the data model for every device we target, we need to
remember a simple rule: move the configurations as much as you can on the
API layer.

With this approach, we will be able to abstract and control certain behaviors
without the need to build a new release of our mobile application and wait
for the penetration in the market.

For example, let’s say you need to create a polling strategy for consuming
an API and react to the response every few minutes. Usually, we would just
define the interval in the client application. However, in some use cases,
this implementation may become risky, such as when you have very bursty
traffic and you want to create a mechanism to back off your requests to the
server instead of throttling or slowing down the communication between
server and client.
In this case, moving the interval value to the body response of the API to

pull would allow you to manage situations like that without distributing a
new version of the mobile application.

This also applies to micro-frontends, where we may have multiple micro-
frontends that should implement similar logic. Instead of implementing
inside the client-side code, consider moving some configurations on the
server and implementing the logic for reacting to the server response.

In this way, we will be able to solve many headaches that may happen in
production and that affects our users with a simple and strategic decision.

Summary
We have covered how micro-frontends can be integrated with multiple API
layers.
Micro-frontends are suitable with not only microservices but also monolith
architecture.
There may be strong reasons why we cannot change the monolithic
architecture on the backend but we want to create a new interface with
multiple teams. Micro-frontends may be the solution to this challenge.

We discussed the service dictionary approach that could help with cross-
platform applications and with the previous layer for reducing the need for
a shared client-side library that gathers all the endpoints. We also discussed
how BBF can be implemented with micro-frontends and a different twist on
BFF using API gateways.

In the last part of this chapter, we reviewed how to implement GraphQL
with micro-frontends, discovering that the implementation overlaps quite
nicely with the one described in the API gateway and BFF patterns.

Finally, we closed the chapter with some best practices, like approaching
API design with an API-first approach, leveraging DDD at the
infrastructure level for using the right technical approach for a subdomain,
and designing APIs for cross-platform applications by moving some logic
to the backend instead of replicating into multiple frontend applications.

Chapter 6. Automation Pipeline
for Micro-Frontends: A Use
Case

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 7th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at
Building.microfrontends@gmail.com.

Now that we’ve discussed the theory of a micro-frontends automation
pipeline, let’s review a use case, including the different steps that should be
taken into consideration based on the topics we covered. Keep in mind that
not all the steps or the configuration described in this example have to be
present in every automation strategy because companies and projects are
different.

Setting the Scene
ACME Inc. empowers its developers and trusts them to know better than
anyone else in the organization which tools they should use for building the
micro-frontends needed for the project. Every team is responsible for

setting up a micro-frontend build, so the developers are encouraged to
choose the tools needed based on the technical needs of micro-frontends
and on some boundaries, or guardrails, defined by the company.

The company uses a custom cloud automation pipeline based on docker
containers, and the cloud team provides the tools needed for running these
pipelines.

The project is structured using micro-frontends with a vertical split
architecture, where micro-frontends are technically represented by an
HTML page, a JavaScript, and a CSS file.

Every development team in the organization works with unit, integration,
and end-to-end testing, a decision made by the tech leaders and the head of
engineering to ensure the quality and reliability of code deployed in
production.

The architecture team, which is the bridge between product people and
techies, requested using fitness functions within the pipeline to ensure the
artifacts delivered in the production environment contain the architecture
characteristics they desire. The team will be responsible for translating
product people’s business requirements to technical ones the techies can
create.

The development teams decided to use a monorepo strategy, so all the
micro-frontends will be present in the same repository. The team will use
trunk-based development for its branching strategy and release directly
from the main branch instead of creating a release branch.

The project won’t use feature flags, it was decided to defer this decision for
having less moving parts to take care of, so manual and automating testing
will be performed in existing environments already created by the DX team.

Finally, for bug fixing, the teams will use a fix-forward strategy, where they
will fix bugs in the trunk branch and then deploy.

The environments strategy present in the company is composed of three
environments: development (DEV), staging (STAG), and production

(PROD), as we can see in figure 8.1.

Figure 6-1. 1 - An example of an environments strategy

The DEV environment is in continuous deployment so that the developers
can see the results of their implementations as quickly as possible. When a
team feels ready to move to the next step, it can promote the artifact to user
acceptance testing (UAT). At this stage, the UAT team will make sure the
artifact respects all the business requirements before promoting the artifact
to production where it will be consumed by the final user.

Based on all this, figure 8.2 illustrates the automation strategy for our use
case project up to the DEV environment. It’s specifically designed for
delivering the micro-frontends at the desired quality.

Figure 6-2. 2 - High-level automation strategy design

A dashboard built in house will promote artifacts across environments. In
this way, the developers and QAs have full control of the different steps for
reviewing an artifact before it is presented to users.

Such an automation strategy will create a constant, fast feedback loop for
the developers, catching potential issues as soon as possible during the
continuous integration phase instead of further down the line, making the
bug fixing as cheap as possible.

DEFECT COSTS RISE OVER TIME

Remember, the cost of detecting and fixing defects in software
increases exponentially over time in the software development
workflow.

That’s because when a developer is working on a feature, the code
developed is fresh in their brain; a code change is fairly trivial.
When a developer catches bugs in production, months may have passed
since the developer worked on that code. In the meantime the developer
will have worked on several other projects or features, so remembering
the entire logic and approach their team took will take time.

Finding bugs in production costs you more than just time. It hurts the
company’s credibility and costs more money than just investing in a fast
feedback loop at the beginning.

The National Institute of Standards and Technology estimates the cost
of fixing bugs in production to be 25 times more expensive than
catching them during the development phase.

https://deepsource.io/blog/exponential-cost-of-fixing-bugs/

The automation strategy in this project is composed of six key areas, within
which there are multiple steps:

1. Version of control

2. Pipeline initialization

3. Code-quality review

4. Build

5. Post-build review

6. Deployment

Let’s explore these areas in detail.

Version of Control
The project will use monorepo for version of control, so the developers
decided to use Lerna, which enables them to manage all the different micro-
frontend dependencies at the same time. Lerna also allows hoisting all the
shared modules across projects in the same node_modules folder in the root
directory, so that if a developer has to work on multiple projects, they can
download a resource for multiple micro-frontends just once.
Dependencies will be shared, so a unique bundle can be downloaded once
by a user and will have a high time-to-live time at CDN level. Considering
the vendors aren’t changing as often as the application’s business logic,
we’ll avoid an increase of traffic to the origin.

ACME Inc. uses GitHub as a version of control, partially because there are
always interesting automation opportunities in a cloud-based version of
control like GitHub.
In fact, GitHub has a marketplace with many scripts available to be run at
different branching lifecycles. For instance, we may want to apply linting
rules at every commit or when someone is opening a pull request. We can
also decide to run our own scripts if we have particular tasks to apply in our

https://lerna.js.org/
https://github.com/marketplace

codebase during an opening of a pull request, like scanning the code to
avoid any library secrets being presented or for other security reasons.

Pipeline Initialization
The pipeline initialization stage includes several common actions to
perform for every micro-frontend, including:

Cloning the micro-frontend repository inside a container

Installing all the dependencies needed for the following steps

In figure 8.3 we can see the first part of our automation pipeline where we
perform two key actions: cloning the micro-frontend repository and
installing the dependencies via yarn or npm command, depending on each
team’s preference.

Figure 6-3. 3 - Pipeline initialization stage, showing two actions: cloning the repository and
installing the dependencies

The most important thing to remember is to make the repository cloning as
fast as possible. We don’t need the entire repository history for a CI process,
so it’s a good practice to use the command depth for retrieving just the last
commit. The cloning operation will speed up in particular when we are
dealing with repositories with years of history tracked in the version of
control.
git clone -–depth [depth] [remote-url]

An example would be:
git clone -–depth 1 https://github.com/account/repository

Code-Quality Review

During this phase, we are performing all the checks to make sure the code
implemented respects the company standards.

Figure 6-6.4 shows several stages, from static analysis to visual tests. For
this project, the company decided not only to cover unit and integration
testing but also to ensure that the code was maintainable in the long term,
the user interface integration respects the design guidelines from the UX
team, and the common libraries developed are present inside the micro-
frontends and respect the minimum implementations.

Figure 6-4. 4 - Code-quality checks like unit testing, static analysis, and visual regression tests

For static analysis, ACME Inc. uses SonarQube with the JavaScript plugin.
It retrieves many metrics, including cyclomatic complexity (CYC), which
tech leaders and architects who aren’t working every day in the codebase
need in order to understand the code quality produced by a team.

Often underestimated, CYC can provide a lot of useful information about
how healthy your project is. It provides a score on the code complexity
based on the number of branches inside every function, which is an
objective way to understand if the micro-frontend is simple to read but
harder to maintain in the long run.

Take this code example for instance:
const myFunc = (someValue) =>{
 // variable definitions
 if(someValue === “1234-5678”){ //CYC: 1 - first branch
// do something
} else if(someValue === “9876-5432”){ //CYC: 2 - second branch
 // do something else
} else { //CYC: 3 - third branch
 // default case
}
// return something
}

This function has a CYC score of 3, which means we will need at least
three unit tests for this function. It may also indicate that the logic managed
inside the function starts to become complex and harder to maintain.

By comparison, a CYC score of 10 means a function definitely requires
some refactoring and simplification; we want to keep our CYC score as low
as possible so that any change to the code will be easier for us but also for
other developers inside or outside our team.

Unit and integration testing are becoming more important every day, and
the tools for JavaScript are becoming better. Developers, as well as their
companies, must recognize the importance of automated testing before
deploying in production.

With micro-frontends we should invest in these practices mainly because
the area to test per team is far smaller than a normal single-page application
and the related complexity should be lower. Considering the size of the
business logic as well, testing micro-frontends should be very quick. There
aren’t any excuses for avoiding this step.

ACME Inc. decided to use Jest for unit and integration testing, which is
standard within the company. Since there isn’t a specific tool for testing
micro-frontends, the company’s standard tool will be fine for unit and
integration tests.

The final step is specific to a micro-frontends architecture: checking on
implementing specific libraries, like logging or observability, across all the
micro-frontends inside a project.

When we develop a micro-frontends application, there are some parts we
want to write once and put them in all our micro-frontends.
A check on the libraries present in every micro-frontend will help enforce
these controls, making sure all the micro-frontends respect the company’s
guidelines and we aren’t reinventing the wheel.

Controlling the presence inside the package.json file present in every
JavaScript project is a simple way to do this; however, we can go a step
further by implementing more complex reviews, like libraries versions,
analysis on the implementation, and so on.

It’s very important to customize an automation pipeline introducing these
kinds of fitness functions to ensure the architectural decisions are respected
despite the nature of this architecture. Moreover, with micro-frontends
where sharing code across them may result in way more coordination than a
monolithic codebase, these kinds of steps are fundamental for having a
positive end result.

Build
The artifact is created during the build stage. For this project, the teams are
using webpack for performing any code optimizations, like minifying,
magnifying, and, for certain cases, even obfuscating the code.

Micro-frontends allow us to use different tools for building our code; in
fact, it may be normal to use webpack for building and optimizing certain
micro-frontends and using Rollup for others. The important thing to
remember is to provide freedom to the teams inside certain boundaries. If

https://jestjs.io/
http://webpack.js.org/

you have any particular requirements that should be applied at build time,
raise them with the teams and make sure when a new tool is introduced
inside the build phase—and generally inside the automation pipeline—it
has the capabilities required for maintaining the boundaries.

Introducing a new build tool is not a problem per se, because we can
experiment and compare the results from the teams. We may even discover
new capabilities and techniques we wouldn’t find otherwise.

Yet we don’t have to use different tools. It’s perfectly fine if all the teams
agree on a set of tools to use across the entire automation pipeline; however,
don’t block innovation. Sometimes we discover interesting results from an
approach different from the one agreed to at the beginning of the project.

Post-Build Review

Figure 6-5. 5 - In the post-build review, we perform additional checks before deploying an artifact to
an environment.

The post-build stage (figure 8.5) is the last opportunity to confirm our
artifact has all the performance characteristics and requirements ready to be
deployed in production.

A key step is storing the artifact in an artifacts repository, like Nexus or
Artifactory. You may also decide to use a simpler storage solution, like an
Amazon Web Services (AWS) S3 bucket.

The important thing is to have a unique source of truth where all your
artifacts are stored.

ACME Inc. decided to introduce additional checks during this stage: end-
to-end testing and performance review.

Whether these two checks are performed at this stage depends on the
automation strategy we have in place and the capability of the system. In
this example, we are assuming that the company can spin up a static
environment for running end-to-end testing and performance checks and
then tear it down when these tests are completed.
End-to-end testing is critical for micro-frontends. In this case where we
have a vertical split and the entire user experience is inside the same
artifact, testing the entire micro-frontend like we usually do for single-page
applications is natural.

However, if we have multiple micro-frontends in the same view with a
horizontal split, we should postpone end-to-end testing to a later stage in
order to test the entire view.

When we cannot afford to create and maintain on-demand environments,
we might use web servers that are proxying the parts not related to a micro-
frontend.

For instance, webpack’s dev server plugin can be configured to fetch all the
resources requested by an application during end-to-end tests locally or
remotely, specifying from which environment to pull the resources when
not related to the build artifact.

If a micro-frontend is used in multiple views, we should check whether the
code will work end to end in every view the micro-frontend is used in.

Although end-to-end testing is becoming more popular in frontend
development, there are several schools of thought about when to perform
the test.
You may decide to test in production—as long all the features needed to
sustain testing in that environment are present. Therefore, be sure to include
feature flags, potential mock data, and coordination when integrating with
third parties to avoid unexpected and undesirable side effects.

Performance checks have become far easier to perform within an
automation pipeline, thanks to CLI tools now being available to be wrapped

inside a docker container and being easy to integrate into any automation
pipeline.

There are many alternatives, however. I recommend starting with
Lighthouse CLI or Webhint CLI. The former is available inside any recent
version of Chrome, while the latter allows us to create additional
performance tests for enhancing the list of tests already available by default.

With one of these two solutions implemented in our automation strategy, we
can make sure our artifact respects key metrics, like performance,
accessibility, and best practices.

Ideally we should be able to gather these metrics for every artifact in order
to compare them during the lifespan of the project.

In this way, we can review the improvements and regressions of our micro-
frontends and organizing meetings with the tech leadership for analyzing
the results and determining potential improvements, creating a continuous
learning environment inside our organization.

With these steps implemented, we make sure our micro-frontends deployed
in production are functioning (through end-to-end testing) and performing
as expected when the architectural characteristics were identified.

Deployment
The last step in our example is the deployment of a micro-frontend. An
AWS S3 bucket will serve as the final platform to the user, and Cloudfront
will be our CDN. As a result, the CDN layer will take the traffic hit, and
there won’t be any scalability issues to take care of in production, despite
the shape of user traffic that may hit the web platform.

An AWS lambda will be triggered to decompress the tar.gz file present in
the artifacts repository, and then the content will be deployed inside the dev
environment bucket.

Remember that the company built a deployment dashboard for promoting
the artifacts through different environments. In this case, for every

https://developers.google.com/web/tools/lighthouse/
https://webhint.io/

promotion, the dashboard triggers an AWS lambda for copying the files
from one environment to another.

ACME Inc. decided to create a very simple infrastructure for hosting its
micro-frontends, neatly avoiding additional investments in order to
understand how to scale the additional infrastructure needed for serving
micro-frontends.

Obviously, this is not always the case. But I encourage you to find the
cheapest, easiest way for hosting and maintaining your micro-frontends.
You’ll remove some complexities to be handled in production and have
fewer moving parts that may fail.

Automation Strategy Summary
Every area of this automation strategy (figure 8.6) is composed of one or
more steps to provide a feedback loop to the development teams for
different aspects of the development process from different testing
strategies, like unit testing or end-to-end testing, visual regression, bundle-
size check, and many others. All of these controls create confidence in the
delivery of high-quality content.

This strategy also provides developers with a useful and constant reminder
on the best practices leveraged inside the organization, guiding them to
delivering what the business wants.

Figure 6-6. 6 - The end-to-end automation strategy diagram

The automation strategy shared in this chapter is one of many a company
may decide to use. Different micro-frontends architectures will require
additional or fewer steps than the ones described here. However, this
automation strategy covers the main stages for ensuring a good result for a
micro-frontends architecture.

Remember that the automation strategy evolves with the business and the
architecture, therefore after the first implementation, review it often with
the development teams and the tech leadership. When the automation serves
the purpose of your micro-frontends well, implementation has a greater
chance to be successful.

As we have seen, an automation strategy for micro-frontends doesn’t differ
too much from a traditional one used for an SPA.

I recommend organizing some retrospectives every other month with
architects, tech leaders, and representatives of every team to review and
enhance such an essential cog in the software development process.

And since every micro-frontend should have its own pipeline, the DX team
is perfectly positioned to automate the infrastructure configurations as much
as possible in order to have a frictionless experience when new micro-
frontends arise. Using containers allows a DX team to focus on the
infrastructure, providing the boundaries needed for a team implementing its
automation pipeline.

Summary
In this chapter, we have reviewed a possible automation strategy for micro-
frontends which

discussed many concepts from the previous chapter.Your organization may
benefit from some of these stages but bear in mind that you need to
constantly review the goals you want to achieve in your automation
strategy. This is a fundamental step for succeeding with micro-frontends.
Avoid it, and you may risk the entire project.

Micro-frontends’ nature requires an investment in creating a frictionless
automation pipeline and enhancing it constantly.

When a company starts to struggle to build and deploy regularly, that’s a
warning that the automation strategy probably needs to be reviewed and
reassessed.

Don’t underestimate the importance of a good automation strategy, it may
change the final outcome of your projects.

Chapter 7. Discovering Micro-
Frontends Architectures

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 8th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at
Building.microfrontends@gmail.com.

Micro-frontends can be architected in different ways. In the previous
chapter, we have learnt about the decisions framework, the foundation for
any micro-frontends architecture.

In this chapter, we apply what we have learnt so far reviewing possible
micro-frontends architectures and analyzing the different approaches and
when to use them in real case scenarios.

Micro-Frontends Decisions Framework
Applied
The decisions framework helps you to filter the architecture or framework
to use for a micro-frontends project based on the characteristics of your
project (figure 4.1).

Figure 7-1. The Micro-Frontends decisions framework addresses the challenges you are facing and
provides a clear path for choosing a technical solution for a project.

Horizontal Split

Your project may have a single domain (payment methods for instance) that
should be presented across several views or you need to optimize your
project for search engines using Server-Side Rendering (SSR) to optimize
the final output, these are some of the cases where using a horizontal split
can help you to achieve the goals of the project.

Choosing to implement multiple micro-frontends in the same view
(horizontal split) allows you to embrace different composition techniques
such as a client-side, edge-side or server-side composition.

Client-side composition would be a wise choice when your teams are more
familiar with the frontend ecosystem or when your project is subject to high
traffic with significant spikes so you won’t need to deal with scalability
challenges on the frontend layer. Edge-Side composition, instead, can be
used for a project with static content but high traffic in order to delegate the
scalability challenge to the Content Delivery Network (CDN) provider
instead of dealing internally. As we have discussed in the previous chapter
there are some challenges in embracing this architecture style (not all the
CDN supports it and a rough developer experience) but projects like online
catalogues with no personalized content may be a good candidate for this
approach.

Another approach is the Server-Side composition where we have the most
control of our output. This approach is great for highly indexed websites
such as news websites or when you have a website with a fixed layout
similar to PayPal or American Express websites where both are using this
composition approach.

There are obviously some underlying challenges of every composition
approach that we are going to investigate further in this chapter.

For every composition pattern there is a routing strategy associated with it,
obviously you can technically apply any routing to any composition,
however the most common in every architecture I’ve seen so far is the one
associated with the composition layer. Therefore in the case of a client-side
composition, the vast majority of the times, the routing happens at the
client-side level. Sometimes its capabilities can be augmented using

computation logic at the edge (using Lambda@Edge in case of AWS or
Workers in CloudFlare) but it’s not a common practice for the client-side
routing.

When we decide to use an edge-side composition we associate a HTML
template per view so every time a user loads a new page, a new template
will be composed in the CDN retrieving multiple micro-frontends that
compose the final view.

Similar logic for the server-side routing where the application server knows
which template is associated with a specific route and the routing and
composition happens in the server-side layer.

These choices are filtering the possibilities you have for building a micro-
frontends project.

In fact, when you decide to take the client-side composition and routing you
can implement it with an application shell loading multiple micro-frontends
in the same view, iframes or web components. Every approach has its own
characteristics and we should be careful to select the right one.

In case you select the edge-side composition and routing the only solution
available is using edge-sides include. The edge solution may be changed in
the future when cloud providers extend their edge services and provide
more computational and storage resources like they are starting in these
years. However, before having a solid and battle tested solution available
worldwide it may take quite a few years, therefore let’s keep an eye on the
evolution of these technologies but don’t bet on them right now (2021)
unless you have strong requirements that are pushing towards this approach.

Finally, when you decide to go through the server-side composition and
routing you can technically use server-side includes or server-side rendering
for your applications. Using this last approach allows you great flexibility,
therefore technically you can do what you want, however the most used
implementations are the ones mentioned above.

As you can see I didn’t mention the fourth decisions of the framework, how
the micro-frontends communicate.

Mainly because when we select a horizontal split you have to remember to
avoid sharing any state across micro-frontends but used the techniques
mentioned in the previous chapter, therefore event emitter, custom events,
reactive streams or any other technique using the observer pattern for
decoupling the micro-frontends and maintain their independent nature.

Instead, when we have to communicate between different views, using
querystring parameter, for sharing information such as product identifiers,
or web storage/cookes, for more persistent information such as users tokens
or local users settings, are the default option without the need of consuming
a backend API and avoiding additional round trips to the server.

OBSERVER PATTERN
The Observer Pattern (also known as Publish-Subscribe Pattern) is a
behavioral design pattern which defines a one-to-many relationship
between objects such that, when one object changes its state, all
dependent objects are notified and updated automatically. An object
with a one-to-many relationship with other objects who are interested in
its state is called the subject or publisher. Its dependent objects are
called observers or subscribers. The observers are notified whenever the
state of the subject changes and can act accordingly. The subject can
have any number of dependent observers which it notifies, and any
number of observers can subscribe to the subject to receive such
notifications.

Vertical Split
The vertical split path is more limited and probably well known by frontend
developers that are used to write Single Page Application (SPA).

This type of split is helpful when your project requires a consistent
evolution of the user interface and a fluid graphics across multiple views.
Using this approach, provides the closest developer experience to a SPA
and therefore tools, best practices and patterns can be used inside a micro-

frontend, learning the external communication with other parts of the
system mainly.

Despite technically you can serve vertical split micro-frontends with server-
side composition, so far all the implementations I have explored have a
client-side composition where an application shell is responsible for
mounting and unmounting micro-frontends. The relation between a micro-
frontend and the application shell is always 1 to 1, therefore the application
shell loads only one micro-frontend per time.

The routing is usually split in two parts, a global routing used for loading
different micro-frontends is handled by the application shell (figure 4.2).

Figure 7-2. The application shell is responsible for the global routing between micro-frontends

Moreover the local routing between views of the same micro-frontend is
managed by the micro-frontend itself, having full control of the

implementation and evolution of the views present inside the micro-
frontend (figure 4.3).

Figure 7-3. A micro-frontend is responsible for the routing between views available inside the micro-
frontend itself

For implementing an architecture with a vertical split micro-frontend, the
application shell loads an HTML or JavaScript as entry point; the
application shell shouldn’t share any business domain logic with the other
micro-frontends and it should be technology agnostic, therefore don’t use
any specific framework for building an application shell but try to use
Vanilla JavaScript in case you built your own implementation. The
application shell is always present during the users sessions because it’s
responsible for orchestrating the web application as well as exposing some
lifecycle APIs for micro-frontends in order to react when they are fully
mounted or unmounted.

When vertical split micro-frontends have to share information such as
tokens or user preferences, with other micro-frontends, they can use
querystring or web storages like the horizontal split ones are doing when a
view changes.

Architecture Analysis
After this brief overview of the different architectures associated with the
decisions framework pillars, it’s time to analyze the technical
implementations and understand the implementation challenges and
benefits.

First, we review the different implementations available more in detail and
then, for every architecture, we assess different architecture characteristics
so you will be able to select the right approach for any project based on the
requirements and predominant characteristics you want to emphasize within
the architecture.

The architecture characteristics we analyze for every implementation are:

Deployability

how reliably and easily a micro-frontend can be deployed into an
environment

Modularity

degree to which a system’s components may be separated and
recombined, often with the benefit of flexibility and variety in use.

Simplicity

the quality or condition of being easy to understand or do. If a piece of
software is considered “simple”, then chances are it has been found to
be easy to understand and easy to reason about

Testability

degree to which a software artifact supports testing in a given test
context. If the testability of the software artifact is high, then finding
faults in the system by means of testing is easier.

Performance

indicator of how well a software system or component meets its
requirements for timeliness. Timeliness is measured in terms of
response time or throughput.

Developer Experience

it describes the experience developers have when they use your product,
be it client libraries, SDKs, frameworks, open source code, tools, API,
technology or service.

Scalability

attribute that describes the ability of a process, network, software or
organization to grow and manage increased demand

Coordination

it is the unification, integration, synchronization of the efforts of group
members so as to provide unity of action in the pursuit of common
goals.

A one-point rating in the characteristics ratings table means the specific
architecture characteristic isn’t well supported in the architecture, whereas a
five-point rating means the architecture characteristic is one of the strongest
features in the architecture style.

Architecture and Trade-offs
As you will read in many parts of this book, I’m a big believer that the
perfect architecture doesn’t exist, it’s always a trade-off. The trade-offs are

not merely technical, but also based on business requirements and
organization structure.

Modern architecture doesn’t take into consideration only the technical
aspects but also other forces that contribute to the final outcome. It’s
important to recognize the social-technical aspects and optimize for the
context we operate in instead of researching for the “perfect architecture”.

In Fundamentals of Software Architecture, Neal Ford and Mark Richards
highlighted very well the new modern architecture practices and invite the
readers to optimize for the less worse architecture.

From chapter 4 of Fundamentals of Software Architecture: “Never
shoot for the best architecture, but rather the least worst
architecture.”

My advice before nailing any architecture is investing time to understand
the context you operate in, the teams structure and the communication
flows between teams. Don’t underestimate these aspects because you may
risk to create a great technical proposition but not suitable for the company
you work for. The same when you see case studies from other companies
embracing specific architectures. They may operate in a different way
compared to your working place and often the case studies focus on how
these companies solved a specific problem that may or may not overlap
with your challenges.

Read, research, try, engage with different people in the community for
understanding the forces behind certain decisions, these steps will avoid
making wrong assumptions and you will become more aware of the
environment you are working in.

This is also the reason why you will see multiple different approaches for
micro-frontends, every architecture is optimized for solving specific
technical and organizational challenges. There isn’t right or wrong in
architecture but just the best trade-off for your own context.

https://learning.oreilly.com/library/view/fundamentals-of-software/9781492043447/
https://learning.oreilly.com/library/view/fundamentals-of-software/9781492043447/ch04.html#ch-architecture-characteristics-defined

Vertical Split Architectures
The main implementation of vertical split micro-frontends is with a client-
side composition and routing using an application shell, a light and generic
layer that should avoid holding any business domain logic or implementing
the bare minimum.

Technically speaking we can use a vertical split micro-frontends
architecture also with other composition types, however all the projects that
identify their micro-frontends with the vertical split, are composing and
routing on the client-side.

This approach is fantastic for teams who want to approach micro-frontends
for the first time and they have a solid background on building SPA because
they are going to have a familiar development experience with not many
twists.

Application Shell
The application shell is a persistent part of a micro-frontends application
that shepherds a user session from the beginning to the end.

In fact, the application shell is the first thing downloaded when an
application is requested and it’s responsible for loading and unloading
micro-frontends based on the endpoint requested by a user.

Moreover, the application shell usually consumes a configuration, in the
form of a static JSON file or provided by a backend service, containing the
information of which endpoint is associated to a specific micro-frontend.
You can also embed the routes inside your application shell code, however
this would mean deploying a new application shell version everytime a
route change occurs.

The application shell loads one micro-frontend per time in this architecture,
so there is no need of creating a mechanism for encapsulating conflicting
dependencies between micro-frontends because there won’t be any clash
between libraries or CSS styles (figure 4.4).

Figure 7-4. Vertical split architecture with client-side composition and routing using the application
shell

The application shell is nothing more than a simple HTML page with logic
wrapped in a JavaScript file and it may or not include some CSS styles for
the initial load, for instance for showing a spinner or any other loading
animation.

Every entry point of a micro-frontend is represented by a single HTML
page containing the logic and style of a single view or a small SPA
containing a bunch of routes that includes all the logic needed for allowing
a user to consume an entire subdomain of our application without the need
to load a new micro-frontend.

This approach is favorable when we want to create a consistent experience
for our users and we want to provide the full control to a single team. A
clear sign that this may be the right approach for your application is when

we analyze the different user interface of our website or web application
and there aren’t many repetitions of elements across multiple views but
every part of the application may be represented by an application itself.

It’s also a simple approach for frontend developers used to develop SPA
considering the tools and practices are similar for building micro-frontends
in this way.

Identifying micro-frontends are quite trivial when we have a clear
understanding how the users are interacting with the application, maybe
using tools like Google Analytics, and when we can group services and
micro-frontends in the same bounded context, developed by one or a few
teams.

If we don’t have this information, the first investment to make is
understanding how the users are interacting with our platform and then
reviewing how to structure the architecture and accordingly the
organization’s structure.

When we approach this architecture, there isn’t a high reusability of micro-
frontends, therefore it’s unlikely that a vertical split micro-frontend will be
reused in the same application in another context.

However, inside every micro-frontend we can decide to reuse components
that are complex or used in several places on our platform (think about a
design system), generating a modularity that may help avoiding duplication.

It’s definitely more likely that micro-frontends may be reused in different
applications maintained by the same company. For instance, imagine you
have multiple software as a service to develop and you want to have a
similar user interface with some changes for every product you sell. This is
another scenario where you will be able to reuse vertical split micro-
frontends, reducing the code fragmentation and evolving the system
independently based on the business requirements.

Challenges
In this architecture pattern there are many challenges we face during the
implementation phase.

Independently from the domain specific ones, there are common challenges
we have to overcome, some of them have an immediate answer, some
others are more dependent by the context.

Sharing State

The first challenge we face when we work with micro-frontends in general
is how to share states between micro-frontends. With a vertical split
architecture, the need for sharing information is by far less than when we
have multiple micro-frontends in the same view, anyway the needs still
stand.

There are certain types of information that we may want to share across
multiple micro-frontends in particular when we have multiple vertical split
micro-frontends inside an authenticated area of our platform.

A classic example is sharing volatile data that are fine stored in the browser,
such as the audio volume level for the media contents played by a user or
the recent fonts used for editing a document. Usually these data are shared
via the web storage, either the local or session storage, depends for how
long you need to store them.

When we talk about more sensitive information such as personal user data
or authentication token, we need a way to retrieve this information from a
public API and then share across all the micro-frontends interested in this
information.

In this case, a best practice is at the beginning of a user’s session, the first
micro-frontend loaded to the user would retrieve the data, stored in a web
storage with a timestamp for when the data was retrieved.

Then, every micro-frontend that requires these data can retrieve directly
from the web storage, however if the timestamp is older than a certain
amount of time, the micro-frontend can request the data again.

In this way, we are sure to retrieve the data needed for a user, share with
other micro-frontends and in case it is needed, refreshing them from any
other micro-frontend.

Finally, it’s important to highlight that every micro-frontend will have
access to the selected web storage, considering the application loads one
micro-frontend per time, there is no strong requirement to pass through the
application shell for storing data in the web storage. However, when your
application relies heavily on the web storage and you decide to implement
some security checks for validating the space available or type of message
stored, you may want to re-evaluate the decision and possibly create an
abstraction via the application shell that will expose an API for storing and
retrieving data and it will centralize where the data validation happens
providing meaningful errors to every micro-frontend in case a validation
fails.

Multi-Frameworks approach

This is one of the controversial points for using micro-frontends, many
people think that embracing this architecture would force them to use
multiple UI frameworks like React, Angular or Svelte.

However what is true for frontend applications written in a monolithic way,
it’s also true for micro-frontends.

Despite being technically doable implementing multiple UI frameworks in a
SPA, we won’t do that due to performance issues and potential
dependencies clashes.

This applies to micro-frontends as well, therefore in general it’s not
recommended using a multi-framework implementation for this architecture
style either.

Instead, follow the best practices such as reduce the external dependencies
as much as you can, import only what you use and not entire packages that
may increase the final JavaScript bundle and make sure you are using
libraries without security vulnerabilities.

This is a good rule of thumb, however there are some use cases where
having a muti-framework approach with micro-frontends becomes less
important than the benefits of developing and deploying iteratively your
application.

Imagine you start a porting of a frontend application from a SPA to micro-
frontends.

One approach that helps you to provide value for your business and users
would be working on a micro-frontend and deploying alongside the SPA
codebase.

This approach helps in multiple ways, first of all we will have a team
finding best practices for approaching the porting such as libraries to re-use,
how to setup the automation pipeline, how to share code between the micro-
frontends they are responsible for and many others.

Secondly, after creating the minimum viable product (MVP), the micro-
frontend can be shipped to the final user retrieving metrics, and comparing
with the older version.

In a situation like this, asking a user to download multiple UI frameworks is
less problematic than developing for several months the new architecture
without understanding if the direction taken is leading to a better result.

Validating your assumptions is crucial for generating the best practices
shared by different teams inside your organization. Increasing the feedback
loop, bringing code to production as fast as possible is demonstrating the
best approach for overcoming future challenges with micro-architectures in
general. The same reasoning is applicable to other libraries used in the same
application but in different versions

Multi-Frameworks approach

This is

Composition -> how

Team composition and communication

Evolving architecture (splitting the micro-frontends)

Design system / code sharing -> libraries

Developers experience

Testing

SEO

PWA

Performance (check MFE in action)

Frameworks available
There are some frameworks available for embracing this architecture,
however building an application shell by your own it won’t require too
much effort, either for building or maintaining as long you keep the
application shell decoupled from every micro-frontend. Injecting domain
code in the application shell it’s not only a bad practice but also it may
invalidate the all effort and investment of using micro-frontends in the long
run.

Two frameworks that are fully embracing this architecture are Single SPA
and Qiankun. Qiankung is built on top of Single SPA, adding some
functionality that in the latest releases of Single SPA are available also in
this most popular option.

Considering they are almost identical, I’m going to focus on Single SPA,
being more well-known than the other, describing how it works and what
are its key characteristics.

Finally, we may have another option, despite it not coming to your mind
immediately. Module Federation may be a good alternative for
implementing a vertical split architecture considering all the mounting and
unmounting mechanism, the dependencies management, the orchestration
between micro-frontends and many other features are already available to
use. Also it’s built on top of WebPack, and other famous bundlers like
Rollup, therefore if your projects are already using WebPack it may be a
good alternative to look at without the need of learning new frameworks for
composing and orchestrating all the micro-frontends of your project.

Use Cases

https://single-spa.js.org/
https://qiankun.umijs.org/

This architecture style is a good solution when you have frontend
developers implementing it with experience on SPAs development. It may
scale up to certain extent when we look to the organizational approach, for
instance, if you have hundreds of frontend developers working on the same
frontend application, probably an horizontal split may suit the organization
scalability considering you can modularize even further your application.

It’s a great architecture when you aim for user interface and user experience
consistency, considering every team is responsible for a specific business
domain, often seen as user experience, and they can develop this experience
end to end without the need to coordinate with other teams.

Another key indicator for leaning towards this architecture style is the level
of reusability you want to have across multiple micro-frontends. For
instance, if you reuse mainly components of your design system and some
libraries like logging or payments, this may be a great architecture fit for
your project. However, if part of your application is replicated in multiple
domains, probably an horizontal split may be a better solution to
implement. Again, understand your context to make the best trade-off.

Also, this architecture is my first recommendation when you start
embracing micro-frontends because it doesn’t introduce too much
complexity, it has a smooth learning curve for frontend developers, it
distributes the business domains to tens of frontend developers without any
problem and it doesn’t require huge upfront investment in tools but more in
general in the developer experience.

Architecture Characteristics
Deployability (5/5): considering every micro-frontend is a single HTML
page or a SPA, we can easily deploy our artifacts on a cloud storage or an
application server, sticking a CDN in front of it and we don’t have to think
about it anymore. Well-known approach, used for several years by many
frontend developers for delivering their web applications.

Modularity (2/5): this architecture is not the most modular one, we have a
certain degree of modularization and reusability but more at the code level,

components or libraries, then at micro-frontend level despite few
exceptions. Also, there is a clear approach when we need to divide a
vertical split micro-frontend in smaller units, however it requires a good
effort for decoupling all the shared dependencies implemented when it was
an unique logical unit.

Simplicity (4/5): considering the main aim of this approach is reducing the
teams cognitive load, creating domain experts using well-known
approaches with some twists, the simplicity for a frontend developer is
intrinsic considering there aren’t too many shifts of mindset and new
techniques to learn for embracing this architecture.

Testability (3/5): compared to SPAs, this approach shows some weakness
in the application shell end to end testing, however apart from that edge
case, the different type of testing per micro-frontend is bread and butter for
any frontend developer.

Performance (3/5): there is the possibility to share the common libraries
for a vertical split architecture, it requires a minimum of coordination
across teams but taking into account it’s very unlikely having hundreds of
micro-frontends with this approach, it becomes easy creating a deployment
strategy decoupling the common libraries from the micro-frontend business
logic and maintain the commonalities in sync across multiple micro-
frontends.

Compared to other approaches such as server-side rendering, there is a
delay on downloading the code of a micro-frontend because the application
shell should initialize the application with some logic that may impact the
load of a micro-frontend when it’s too complex or makes many roundtrips
to the server.

Developer Experience (4/5): when a team is familiar with SPA tools, they
won’t suffer this shift of mindset embracing the vertical split. There may
find some challenges during end to end testing, but all the other engineering
practices as well as tools may remain the same.

The teams may feel the need to build additional tools (CLI, desktop apps,
dashboards…) for filling some gaps for their specific context. However the

out-of-the-box tools available should be enough for starting the
development and they can defer the decisions to build new tools if and
when a strong case arises.

Scalability (5/5): The scalability aspect of this architecture is so great that
we can even forget about it when we serve our static content via a CDN and
we configure the time-to-live accordingly the assets we are serving, higher
time for assets that doesn’t change often like fonts or vendor libraries and
lower time for assets that change often like the business logic of our micro-
frontends. This architecture can scale almost “indefinitely” based on CDN
capacity that usually is great enough for serving billions of users
simultaneously. In certain cases, when it is an absolute must avoiding single
point of failure, you can even create a multiple CDN strategy where your
micro-frontends are served by multiple CDN providers. Despite being more
complicated it solves the problem elegantly without investing too much
time creating custom solutions.

Coordination (4/5): This architecture, compared to others, enables a strong
decentralization of decision making as well as autonomy of each team.

Usually the touching points between micro-frontends are minimum when
the domain boundaries are well defined. Therefore there isn’t too much
coordination needed apart from an initial investment for defining the
application shell APIs and keeping them as domain unaware as possible.

In table 4.1 we can find a synthetic view of every architecture
characteristics and their associated score for this micro-frontends
architecture:

T
a
b
l
e
7
-
1
.
A
r
c
h
i
t
e
c
t
u
r
e
c
h
a
r
a
c
t
e
r
i
s
t

i
c
s
s
u
m
m
a
r
y
f
o
r
d
e
v
e
l
o
p
i
n
g
a
m
i
c
r
o
-
f
r
o
n
t
e

n
d
s
a
r
c
h
i
t
e
c
t
u
r
e
u
s
i
n
g
v
e
r
t
i
c
a
l
s
p
l
i
t
a
n
d

a
p
p
l
i
c
a
t
i
o
n
s
h
e
l
l
a
s
c
o
m
p
o
s
i
t
i
o
n
a
n
d
o
r
c
h

e
s
t
r
a
t
o
r
.

 Architecture Characteristics

 Score (1 - lowest, 5 - highest)

Deployability 5/5

Modularity 2/5

Simplicity 4/5

Testability 3/5

Performance 3/5

Developer Experience 4/5

Scalability 5/5

Coordination 4/5

Horizontal Split Architectures
Client-side

Application Shell

Iframes

Web components

Server-side

Edge-Side

Summary
In this chapter we have applied the micro-frontends decisions framework to
multiple architectures. Defining the four pillars offered by this mental
model helps us to filter our choices and select the right architecture for a
project.

We have analysed different micro-frontends architectures, highlighting their
challenges and scoring the architecture characteristics so we can easily
select the right architecture based on what we have to optimize for.

Finally we understood that the perfect architecture doesn’t exist, we have to
find the less worse architecture based on the context we operate in. In the
next chapter we will take a step further and we analyse a technical
implementation and focus our attention to the main challenges we may
encounter in a micro-frontends implementation.

Chapter 8. From Monolith to
Micro-Frontends: A Case Study

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 10th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at
Building.microfrontends@gmail.com.

In the last few weeks, you’ve researched and reviewed articles, books, and
case studies and completed several proofs of concept. You’ve spoken with
your managers to find the best people for the project, and you’ve even
prepared a presentation for the CTO explaining the benefits you can get
from introducing micro-frontends in your platform.

At last, you’ve received confirmation that you have been granted the
resources to prepare a plan and start migrating your legacy platform to
micro-frontends.

Great job!

It’s been a long few weeks and you’ve done an amazing job, but this is only
the start of a large project.

Next, you will need to prepare an overall strategy, one that’s not too
detailed but not too loose. Too detailed, and you’ll spend months just trying
to nail everything down. Too loose, and you won’t have enough guidance.
You need enough of a strategy to get started and a North Star to follow
during the journey whenever you discover, and, trust me, you will, new
challenges and details you didn’t think about until that point.

In the meanwhile, you also have a platform to maintain in production,
which the product team would like to evolve because the re-platforming to
micro-frontends shouldn’t block the business. The situation is not the
simplest ever, but you can mitigate these challenges and find the right trade-
off to make everyone happy and the business successful while the tech
teams are migrating to the new architecture.

In this chapter we will see what’s next. We have learned a lot about how to
design and implement micro-frontends, but I feel this book would not be
complete without looking at migration from a monolithic application to a
micro-frontends one, by far the most common use case of this architecture.
I believe any project should start simple. Then over the course of the
months or years, when the business and the organization are growing, the
architecture should evolve accordingly to support the evolving business
needs. There may be some scenarios where starting a new application with
micro-frontends may help the business move in the right direction, such as
when you have an application that is composed of several modules that you
can ship them all together along with some customization for every
customer. But the classic use case of micro-frontends is the migration from
a legacy frontend application to this new approach.

In this chapter, I will share with you a story that stitches together all the
information we have discussed in this book.

The Context
ACME Inc. is a fairly new organization that, in only a few years, has gained
popularity for its video-streaming service across several countries in the
world. The company is growing fast. In the last couple of years it has

moved from hundreds of employees to thousands, all across the globe, and
the tech department is no exception.

The streaming platform is currently available on desktop and mobile
browsers, as native application, and on some living-room devices, like
smart TVs and consoles.

Currently the company is onboarding many developers in different
locations across Europe. Having all the developers in Europe was a
strategic decision to avoid slowing down the development across distributed
teams while having some hours of overlap for meetings and coordination.

Due to the tech department’s incredible growth from tens to hundreds of
people, tech leadership reviewed and analyzed the work done so far, finally
embracing a plan to adapt their architecture to the new phase of the
business. Leadership acknowledged that maintaining the current
architecture would slow down the entire department and wouldn’t allow the
agility required for the current expansion the business is going through.

Technology Stack
The current platform uses a three-tier application deployed in the cloud,
composed of a single database with read replicas (they have more reads
than writes in their platform), a monolithic API layer with auto-scaling for
the backend that scales horizontally when traffic increases, and a single-
page application (SPA) for the frontend.

Figure 8-1. The ACME platform is a three-tier web application

A three-tier application allows the layers to be independently scaled and
developed, however, ACME is scaling and increasing in complexity, as well
as increasing the teams working on the same project. This architecture is
now impacting the day-to-day throughput and generating communications
overhead across teams that may lead to more complexity and coordination
despite not being necessary in other solutions.

As the tech leadership team rightly points out, in this new phase of the
business the tech department needs to scale with more developers and with
more features than before. A task force with different skill sets reviews how
the architectures — frontend and backend — should evolve in order to

unblock the teams and allow the company to scale in relation to business
needs.

After several weeks, the task force proposed migrating the backend layer to
microservices and the frontend to micro-frontends. This decision was based
on the capabilities and principles of these architectures. They will allow
teams to be independent, moving at their own speed, scaling the
organization as requested by the business, choosing the right solution for
each domain, and scaling the platform according to the traffic on a service-
by-service basis, leveraging the power of cloud vendors.

From here, we’ll focus our discussion on the frontend part. There will be
some references on how the frontend layer is decoupled from the backend
using the service dictionary approach discussed in chapter 9.

Platform and Main User Flows
The frontend is composed of the following views:

Landing Page

Sign In

Sign Up

Payment

Remember Email

Remember Password

Redeem Gift Code

Catalogue (with video player)

Schedule

Search

Help

My Account

To provide us enough information to understand how the migration to
micro-frontends will work, we will analyze the authentication flow for
existing customers, the creation of a subscription flow for new customers,
and the experience inside the platform for authenticated customers. Many of
these suggestions can be replicated for other areas of the application or
applied with small tweaks.

When a new user wants to subscribe to the video-streaming platform, they
follow these steps (figure 10.2):

1. The user arrives on the landing page, which explains the value
proposition.

2. They then move to the sign-up page, where they create an account.

3. On the next page, the user adds their payment information.

4. The user can then access the video platform.

Figure 8-2. New user subscription flow

When an existing user wants to sign in on a new platform (browser or
mobile device, for instance) to watch some content, they will (figure 10.3):

1. Access the platform in the landing page view

2. Select the signin button, which redirects them to the signin view

3. Insert their credentials

4. Access the authenticated area and explore the catalogue

Figure 8-3. Existing users authenticating in a new platform (browser or mobile devices for instance)

Once a user is authenticated, they can watch video content and explore the
catalogue following these steps (figure 10.4):

1. They start at the catalogue to choose the content to view.

2. When content is selected, the user sees more details related to the
content and the possibility to search for similar content or just play
the content.

3. When the user chooses to play the content, they are redirected to a
view with only the video player.

4. When the user wants to search for specific content not available in
the catalogue view, they can choose to use the search functionality.

Figure 8-4. Existing users can navigate content via the catalogue or search functionality and then
play any content after discovering the details of what they are about to watch.

These are the main flows, which should be enough to explore how to
migrate to micro-frontends. Obviously, there are always more edge cases to
cover, especially when we implement errors management, but we won’t
cover these in this chapter.

The application is written with Angular, with a continuous integration
pipeline and a deployment that happens twice a month because it is strictly
coupled with the backend layer. In fact the static files are served by the
application servers where the APIs live, therefore every time there is a new
frontend version the teams have to wait for the release of a new application
server version. The release doesn’t happen very often due to the
organization’s slow release cycle process.

The final artifact produced by the automation pipeline is a series of
JavaScript, Cascading Style Sheet (CSS) files with an HTML entry point. In
the continuous integration process the application has some unit testing, but
the code coverage is fairly low (roughly 30%), and the automation process

takes about 15 minutes to execute end to end to create an artifact ready to
be deployed in production.

The organization is using a three-environment strategy: testing, staging, and
production. As a result, the final manual testing happens in the staging
environment before being pushed into production, another reason why
deployments can’t happen too often. The user acceptance testing
department (UAT) does not have enough resources, compared to the
developers who handle platform enhancement. Due to the simple
automation process put in place, some developers on different teams are
responsible for maintaining the automation pipelines; however, it’s more of
an additional task to shoehorn into their busy schedules than an official role
assigned to them. This sometimes causes problems because resolving issues
or adding new functionalities in the continuous integration process may
require weeks instead of days or hours.

Finally, the platform was developed with observability in mind, not only on
the backend but also on the frontend. In fact, both the product team and the
developers have access to different metrics to understand how users interact
with the platform so they can make better decisions for enhancing the
platform’s capabilities. They are also using an observability tool for
tracking JavaScript runtime errors inside their frontend stack.

Technical Goals
After deciding to move their frontend platform to micro-frontends, the tech
leadership identified the goals they should aim for with this investment.

The first goal is maintaining a seamless experience for developers despite
the architectural changes. Degrading a frictionless developer experience,
available with the SPA, could lead to a slower feedback loop and decrease
the software quality. Moreover, the leadership decided that it doesn’t want
to reinvent the wheel either, so it will be acceptable to create some tools for
filling certain gaps but not a complete custom developer experience that
may prevent new tools from being embraced in the future. It’s important to

fix the automation strategy for reducing the feedback loop that now takes
too long.

Another key project goal is to decouple the micro-frontends and allow
independent evolution and deployment. Micro-frontends that are tightly
coupled together must be released all together. Every micro-frontend should
be an independent artifact deployable in any environment.

Moreover, tech leadership wants to reduce the risk of introducing bugs or
defects in production, easing the traffic toward new micro-frontends
versions. This way developers can test with real data in production but not
affect the entire user base.

An additional goal is to generate value as soon as possible to demonstrate to
the business the return of value of their investment. Therefore a strategy for
transitioning the SPA to micro-frontends has to be defined in a way that
when a micro-frontends is available, it will initially work alongside the
monolith.

The tech leadership has also requested tracking the onboarding time for new
joiners in order to understand whether this approach extends developer
onboarding time. The team will need to figure out a way to reduce this
period, perhaps by creating more documentation or using different
approaches.

The last goal for this project is finding the right organization setup for
reducing external dependencies between teams and reducing the
communication overhead that could increase due to the company’s massive
growth.

Migration Strategy
Based on tech leadership’s requirements and goals, the teams started to
work on a plan for migrating the entire platform to micro-frontends.

The first step was embracing the micro-frontends decisions framework,
outlined in chapter 2. The first four decisions—defining what a micro-

frontend is in your architecture, composing micro-frontends, routing micro-
frontends, and communicating between micro-frontends—will lead the
entire migration toward the right architecture for the context.

As discussed in several chapters of this book, the micro-frontends decisions
framework gives us a skeleton to architect a micro-frontends project on to.
All the other decisions will build on top of this frame, creating a reliable
structure.

Micro-Frontends Decisions Framework Applied
The first decision of the framework is how a micro-frontend will look. The
ACME teams decided on a vertical split, where micro-frontends represent a
subdomain of the entire application (figure 10.5).

Figure 8-5. A vertical split micro-frontend, where the application shell loads only one micro-
frontends at a time

The teams took into account the following characteristics for their context
before deciding to use a vertical split:

Similar developer experience

Because the current platform is a SPA, a vertical split allows developers
to work similarly to how they have worked so far but with a smaller
context and less code to be responsible for.

Low component reusability

The teams have identified that not many components are similar across
the different subdomains. This clearly indicates that the reusability of
micro-frontends, a plus of a horizontal split approach, it’s not needed. A
light design system will ensure consistency across micro-frontends, and
it doesn’t create a huge overhead of dealing with it.

Better integration with current automation strategy

The vertical split fits very well with the current automation strategy,
considering right now ACME is building a SPA. The teams have
enhanced their automation pipelines for building multiple SPAs without
the need to create custom tools for embracing this architecture style.
They will need to use infrastructure as code for automating the process
of building their pipelines and replicating them without human
intervention.

No risk of dependency clashes

In a vertical split we always load one micro-frontend at a time, due to its
nature. As a result, the teams won’t have to deal with dependency
clashes, like different versions of the same library, because there will be
dependencies of just one micro-frontend, reducing the possibility of
runtime errors and bugs in production. There also won’t be any CSS
style clash because only one stylesheet per micro-frontend will load.

A consistent user experience

Creating a consistent user experience is easier with a vertical split
because the same team is working on one or multiple views inside the
same SPA. Obviously, a level of coordination is required for
maintaining consistency across micro-frontends, but it’s definitely less
prone to errors than having multiple micro-frontends in the same view
developed by multiple teams.

Reduction of cognitive load

For ACME, a vertical split will decrease its developers’ cognitive load,
because they’ll only have to master and maintain a part of the platform.
This choice also won’t dilute the decisions made by developers inside
their business subdomain. However, every developer should have an
overall understanding of the platform architecture so that when they’re
on call they can understand the touching points of their business domain
and recognize where a bug may appear despite not inside their domain.

Faster on boarding process

As the tech leadership requested, using this approach will lead to a
faster onboarding process because the teams can use well-known,
standard tools and won’t need to create their own to build, test, and
deploy micro-frontends.
Also, because teams will be responsible for only a part of the platform,
less coordination with other teams will be required. New joiners can hit
the ground faster, with less information needed to start. Finally, every
team will be encouraged to create a starter kit and induction for every
new joiner to speed up the learning process and make a person capable
of contributing to the base code in the fastest way possible.

The second decision of the framework is related to the composition of the
micro-frontends. In this case, the best approach is composing them on the
client side considering they are using a vertical split approach.

This means that the teams will have to create an application shell that is
responsible for mounting and unmounting micro-frontends, exposing some
APIs to allow communication between micro-frontends and ensuring it will
always be available during the user session (figure 10.6).

A server-side composition was rejected immediately due to the traffic
spikes, which required more effort to support and maintain than the simple
infrastructure they would like to use for this project.

Figure 8-6. Client-side composition, where the application shell is responsible for loading and
unloading one micro-frontend at a time.

The third decision is the routing of micro-frontends, that is, how to map the
different application paths to micro-frontends. Because ACME will use a
vertical split and is composing on the client side, the routing must happen
on the client side, where the application shell knows which micro-frontend
to load based on the path selected by the user. This mechanism also has to
handle the deep-linking functionality; if a user shares a movie’s URL with
someone else, the application shell should load the application in exactly
that state (figure 10.7).

Figure 8-7. When the user signs in from the /account path, they are redirected to the authenticated
area (/catalogue). The application shell owns the logic for unloading the current micro-frontend and

loading the next one based on the URL.

When an unauthorized user tries to access an authenticated part of the
system via deep linking, the application shell should validate only if the
user has a valid token. If the user doesn’t have a valid token, it should load
the landing page so the user can decide to sign in or subscribe to the
service.

Last but not least, ACME teams have to decide how micro-frontends
communicate with each other. With a vertical split, communication can
happen only via query string or using web storage. ACME decided to
mainly leverage the web storage and use the application shell as a proxy for
storing the data. In this way the application shell can verify the space
available and make sure data won’t be overridden by other micro-frontends
(figure 10.8).

Figure 8-8. The application shell is responsible for storing data in the local storage and exposing
several APIs to the micro-frontends for storing and retrieving data.

Let’s summarize the decisions made by the teams in the following table
10.1:

T
a
b
l
e
8
-
1
.
S
u
m
m
a
r
y
o
f
A
C
M
E

a
r
c
h
it
e
c
t
u
r

a
l
d
e
c
i
s
i
o
n
s

Micro-Frontends Decisions Framework

Define micro-frontends Vertical split

Compose micro-frontends Client side via application shell

Routing micro-frontends Client side via application shell

Communication between micro-frontends Using web storage via application shell

Splitting the SPA in Multiple Subdomains
After creating their micro-frontends framework, the ACME tech teams
analyzed the current application’s user data to understand how the users
were interacting with the platform. This is another fundamental step that

provides a reality check to the teams. Often what tech and product people
envision for platform usage is very different from what users actually do.

The SPA was released with a Google Analytics integration, and the teams
were able to gather several custom data points on user behavior for
developing or tweaking features inside the platform. These data are
extremely valuable in the context ACME operates because they help
identify how to slice the monolith into micro-frontends.

Looking at user behaviors, the teams discovers the following:

New users

Users who are discovering the platform for the first time follow the
sign-up journey as expected. However, there are significant drops in
visualization from one view to the next.

As we can see in table 10.2, all the new users access the landing page,
but only 70% of that traffic moves to the next step, where the account is
created. At the third step (payment), there is a drop of an additional
10%. At the last step, only 30% of the initial traffic has converted to
customer.

T
a
b
l
e
8
-
2
.
N
e
w

u
s
e
r
t
r
a
ff
i
c
p
e
r
v
i
e
w

i
n

A
C
M
E

p
l
a
tf
o
r
m

View Traffic

Landing Page 100%

Sign Up 70%

Payment 60%

Catalogue 30%

Unauthenticated existing users

Existing users who want to authenticate on a new browser or another
platform, such as a mobile device, usually skip the landing page, going

straight to the sign-in URL. After signing in, they have full access to the
video catalogue, as seen in table 10.3:

T
a
b
l
e
8
-
3
.
U
n
a
u
t
h
e
n
ti
c
a
t
e
d
e
x
i
s
ti
n
g
u
s
e

r
t
r
a
ff
i
c
p
e
r
v
i
e
w

f
o
r
a
c
c
e
s
s
i
n
g
A
C
M
E

p
l
a
tf

o
r
m

View Traffic

Landing Page (as entry point) 25%

Sign In (as entry point) 70%

Authenticated existing users

Probably the most interesting result is that authenticated users are not
signing out. As a result, they won’t see the landing page or sign-in/sign-
up flows anymore. They occasionally explore their account page or the
help page. But a vast majority of the time, authenticated users are
staying in the authenticated area and not navigating outside of it (see
table 10.4).

T
a
b
l
e
8
-
4
.
A
u
t
h
e
n
ti
c
a
t
e
d
e
x
i
s
ti
n
g
u
s
e
r
s

t
r
a
ff
i
c
p
e
r
v
i
e
w

f
o
r
a
c
c
e
s
s
i
n
g
A
C
M
E

p
l
a
tf
o

r
m

View Traffic

Landing Page 0%

Sign In 1%

Sign Up 0%

Catalogue 92%

My Account 4%

Help 2%

This is extremely valuable information for identifying micro-frontends. In
fact ACME developers can assert the following:

The landing page should immediately load for new users, giving
them the opportunity to understand the value proposition.

Landing page, sign-in, and sign-up flows should be decoupled
from the catalogue since authenticated users only occasionally
navigated to other parts of the application.

My Account and Help don’t receive much traffic.

Since there is a considerable drop of new users between landing
page and sign-up flows, it’s very likely the business would like to
iterate often to bridge the chasm and move more users through the
sales funnel.

Another important aspect is understanding how the current architecture can
be split into multiple subdomains following domain-driven design practices.
Taking into consideration the whole platform, not only the client-side part,
the teams identified some subdomains and relative bounded context.

For the frontend part, the subdomains that the teams took into consideration
for their final decisions are:

Value proposition

a subdomain for sharing all the information needed to make a decision
for subscribing to the platform.

Onboarding

a subdomain focused on subscribing new users and granting access to
the platform for existing users. This may be split into smaller
subdomains, such as payment methods, user creation, and user
authentication, in the future should complexities arise, but for now they
will be one subdomain.

Catalogue

a core subdomain where ACME gathers the essential part of its business
proposition, such as the catalogue, video player, and all the controls for
allowing users to consume content respecting the rights holders
agreements.

User management

a subdomain where the user can change account preferences, payment
methods, and other personal information.

Customer support

a subdomain for helping new and existing users to solve their problems
in any part of the platform.

With this information in mind and the decisions made for approaching this
project using the micro-frontends decisions framework, the teams identified
the migration path with the following micro-frontends (figure 10.9).

Figure 8-9. Migration path: from SPA to micro-frontends

Landing page

Considering that the landing page is viewed by all new users, the teams
want to have a super-fast experience where the page is rendered in a
blink of the eye. It needs its own micro-frontend so all the technical best
practices for a highly cacheable micro-frontend with a small size to
download can be applied.

Authentication

This micro-frontend is composed of all the actions an unauthenticated
user should perform before accessing the catalogue, such as moving
from sign in to sign up view, retrieving their credentials, and so on.

Catalogue

This is an authenticated area frequently viewed by authenticated users.
The teams want to expedite the experience for these users when they
return to the platform, so they encapsulate it in a single micro-frontend.

My Account

This micro-frontend is a combination of information available in
different domains of the backend, allowing users to manage their
account preferences. It’s available only for authenticated users.
Considering the small traffic and the cross-cutting nature of this
domain, ACME decided to encapsulate it in a micro-frontend.

Help

Like the My Account micro-frontends, Help has low traffic, a different
use case from other micro-frontends, and highly cacheable content
(because Help pages are not changed very often). Encapsulating this
subdomain in a micro-frontend allows ACME to use the right
infrastructure for optimizing this part of the platform.

Application shell

This is the micro-frontends orchestrator. Because ACME decided to use
a vertical split with a client composition, this element is mandatory to

build. The main caveat is trying to keep it light and as decoupled as
possible from the rest of the application so that all the other micro-
frontends can be independent and evolve without any dependency on
the application shell.

Technology Choice
Because the Angular SPA was developed some years ago with patterns and
assumptions that were best practices at that time, ACME tech teams
investigated their relevance, as well as new practices that might make
developers’ life easier and more productive. The teams agreed to use React
and they have discovered in the reactive programming paradigm a
development boost during their proof of concepts.

Although Redux allows them to embrace this paradigm using libraries such
as redux-observable, they found in MobX State Tree an opinionated and
well-documented reactive state management that works perfectly with
React and allows state composition so they can reuse states across multiple
views of the same micro-frontend. This will enhance the reusability of their
code inside the same bounded context.

Thanks to the nature of the vertical split micro-frontends, which loads only
one micro-frontend at a time, there is no need to coordinate naming
conventions or similar agreements across multiple teams. The teams will
mainly share best development practices and approaches to make the micro-
frontends similar and allow team members to understand the code base of
other micro-frontends or even join a different team.

The micro-frontends will be static artifacts, therefore highly cacheable
through a content delivery network (CDN), so there’s no need of runtime
composition on the server side. The delivery strategy will need to change,
however, because of this aspect. Currently, ACME is serving all the static
assets directly from the application server layer. Because the API
integrations are happening on the client side, there will be no need to
continue maintaining the application servers for serving static contents but
only for exposing the backend API.

https://redux-observable.js.org/
https://mobx-state-tree.js.org/intro/philosophy

ACME decided to use an object storage like AWS S3, storing all the
artifacts to serve in production in a regional bucket and enhancing the
distribution across all the countries they need to serve using a CDN such as
AWS Cloudfront. This will simplify the infrastructure layer, reducing the
possible issues happening in production due to misconfiguration or
scalability. Additionally, the frontend has a different infrastructure than the
API layer, allowing the frontend developers to evolve their infrastructure as
needed. This new infrastructure allows every team to deploy their micro-
frontend artifacts (HTML, CSS, JS files) in a S3 bucket and have them
automatically available for the application shell to load them.

Another goal for this migration is reducing the risk of bugs in production
when a new micro-frontends version is deployed while immediately
creating value for the users and the company without waiting for the entire
application to be rewritten with the new architecture. Considering the
simple frontend infrastructure adopted for the project, the ACME teams
decided to leverage Lambda@Edge, a serverless computation layer offered
by AWS (see chapters 7 and 8), for analyzing the incoming traffic and
serving a specific artifact to the application shell, implementing de facto a
frontend canary release mechanism at the infrastructure level that won’t
impact the application code but will run in the cloud (figure 10.10).

Figure 8-10. Simple infrastructure based on S3 bucket, Lambda@Edge, and a CDN like Cloudfront
distribution with point of presence (PoP) available all over the world

Thanks to this implementation, ACME can also apply the strangler pattern
(see chapter 7) for gradually moving to micro-frontends while maintaining
the legacy application. In fact they can use the application URL for
triggering the Lambda@Edge that will serve the legacy or application shell
to the user (figure 10.11).

Figure 8-11. Strangler pattern applied at the infrastructure level using Lambda@Edge for funneling
the traffic toward either the legacy or micro-frontend application

In the configuration file loaded by the Lambda@Edge at the initialization
phase, developers mapped the URLs belonging to the legacy application
and the ones to the micro-frontends application. Let’s clarify this with an
example.

Imagine that the catalogue micro-frontend is released first, because at this
stage you want all or part of the traffic going toward the micro-frontend

branch (see the figure 10.11). The authentication remains inside the legacy
application, so after the user signs in or signs up, the SPA will load the
absolute URL for the catalogue (e.g., www.acme.com/catalogue). This
request will be picked up by Cloudfront, which will trigger the
Lambda@Edge and serve the application shell instead of the SPA artifact.

This plan acknowledges that during the transition phase, a user will
download more library code than before because they’re downloading two
applications at the end. However, this won’t happen for existing users; they
will always download the micro-frontend implementation, not the legacy
one.

As you can see, there is always a trade-off to make. Because ACME’s goal
was finding a way to mitigate bugs in production and generate value
immediately, these were the points they have to optimize for, especially if
this is just a temporary phase until the entire application is switched to the
new architecture. At this stage, ACME teams have made enough decisions
to start the project. They decide to create a new team to take care of the
catalogue micro-frontend, which will be the first to be deployed into
production when ready.

The teams know that the first micro-frontend will take longer to be ready
because on top of migrating the business logic toward this new architecture
style, the new team has to define the best practices for developing a micro-
frontend that other teams will follow. For this reason the catalogue team
starts with some proofs of concept to nail down a few details, such as how
to share the authentication token between the SPA and the micro-frontend
initially and then between micro-frontends when the application is fully
ported to this pattern, or how to integrate with the backend APIs with
consideration for the migration on that side as well as the potential impact
to API endpoints, contracts, and so on.

Initially, the team splits the work in two parts. Half of the team works on
the automation pipeline for the application shell and the catalogue micro-
frontends. The other half focuses on building the application shell. The shell
should be a simple layer that initializes the application retrieving the

configuration for a specific country and orchestrates the micro-frontends
lifecycle, such as loading and unloading micro-frontends or exposing some
functions for notifying when a micro-frontend is fully loaded or about to be
unloaded.

The first iteration of this process will be reviewed and optimized when
more teams join the project. The automation and application shell will be
enhanced as new requirements arise or new ideas to improve the application
are applied.

Implementation Details
After identifying the next steps for the architecture migration, ACME has to
solve a few additional challenges along the migration journey. These
challenges, such as authentication and dependencies management, are
common in any frontend project. Implementing the following features in a
micro-frontend architecture may have some caveats that are not similar in
other architectures. The topics we’ll dive deeply into are:

Application shell responsibilities

Integration with the APIs that takes into account the migration to
microservices that is happening in parallel

Implementation of an authentication mechanism

Dependencies management between micro-frontends

Components sharing across multiple micro-frontends

Introduction of design consistency in the user experience

Canary releases for frontend

Localization

In this way we cover the most critical aspects of a migration from a SPA to
micro-frontends. This doesn’t mean there aren’t other important
considerations, but these topics are usually the most common ones for a

frontend application and applying them at scale is not always as easy as we
think.

Application Shell Responsibilities
The application shell is a key part of this architecture. It’s responsible for
mounting and unmounting micro-frontends, initializing the application. It’s
also responsible for sharing an API layer for the micro-frontends to store
and retrieve data from the web storage and triggering lifecycle methods.
Finally, the application shell knows how to route between micro-frontends
based on a given URL.

Application initialization
The first thing the application shell does is consume an API for retrieving
the platform configuration stored in the cloud. It consumes an API returning
features flags, a services dictionary with a few endpoints used for validating
tokens before granting the access to an authenticated area and a list of
micro-frontends available to mount.

After consuming the configuration from the backend, the application shell
performs several actions:

1. Expose the relevant part of the configuration to any micro-
frontends appending it to a window object so that every mounted
micro-frontend will have access to it.

2. Check business logic: If there is a token in web storage, validate it
with the API layer. Route the user to the authenticated area if
they’re entitled or to the landing page if they’re not.

3. Mount the right micro-frontend based on the user’s state (whether
they’re authenticated).

Communication bridge
The application shell offers a tiny set of APIs that every micro-frontend will
find useful for storing or retrieving data or for dealing with lifecycle

methods.

There are three important goals addressed by the application shell exposing
these APIs:

1. Exposing the lifecycle methods for micro-frontends frees up
memory before it is unmounted or removes listeners and starts the
micro-frontend initialization when all the resources are loaded.

2. Being the gatekeeper for managing access for the web storage in
this way, the underlying storage for a micro-frontend won’t matter.
The application shell will decide the best way to store data based
on the device or browser it is running on. Remember that this
application runs on web, mobile, and living room devices, so there
is a huge fragmentation of storage to take care of. It can also
perform checks on memory availability and return consistent
messages to the user in case all the permissions aren’t available in
a browser.

3. Allow micro-frontends to share tokens or other data using in-
memory or web storage APIs.

All the APIs exposed to micro-frontends will be available at the window
object in conjunction with the configurations retrieved consuming the
related API.

Mounting and Unmounting micro-frontends
Since ACME’s micro-frontends will have HTML files as an entry point, the
application shell needs to parse the HTML file and append inside itself the
related tags. For instance, any tag available in the body element of the
HTML file will be appended inside the application shell body. In this way,
the moment an external file tag is appended inside the application shell
document object model (DOM), such as JavaScript or a CSS file, the
browser fetches it in background. There is no need to create custom code
for handling something that is already available at the browser level.

To facilitate this mechanism, the teams decided to add an attribute in the
HTML elements of every micro-frontend for signaling which tags should be
appended and which should be ignored by the application shell.

Sharing state
A key decision made by ACME was that the sharing state between micro-
frontends has to be as lightweight as possible. Thus, no domain logic should
be shared with the application shell that should be only used for storing and
retrieving data from web storage. Because the vertical split architecture
means only one micro-frontend can load at a time in the application shell,
the state is very well encapsulated inside the micro-frontend. Only a few
things are shared with other micro-frontends, such as access tokens and
temporary settings that should expire after a user ends the session. Some
components will be shared across multiple micro-frontends, but in this case
there won’t be any shared states, just well-defined APIs for the integration
and a strong encapsulation for hiding the implementation details behind the
contract.

Global and local routing
Last but not least, the application shell knows which micro-frontend to load
based on the configuration loaded at runtime, where a list of micro-
frontends and their associated paths is available. In this configuration, every
micro-frontend has a global path that should be linked to it. For example,
the authentication micro-frontend is associated with acme.com/account,
which will load when a user types the exact URL or selects a link to that
URL.

When a micro-frontend is a SPA, it can manage a local route for navigating
through different views. For instance, in the authentication micro-frontend
the user can retrieve a password or sign up to the service. These actions
have different URLs available, so that the logic will be handled at the
micro-frontend level. The application shell is completely unaware, then, of
how many URLs are handled inside the micro-frontend logic.

In fact, the micro-frontend appends a parameter belonging to a view to the
path. The sign-up view, for instance, will have the following URL:
acme.com/account/signup. The first part of the URL is owned by the
bootstrap (global routing), while the sign-up part is owned by the micro-
frontend. In this way the application shell will have a high-level logic for
handling a global routing for the application, and the micro-frontend will be
responsible for knowing how to manage the local routing and evolving,
avoiding the need to change anything in the application shell codebase.

Migration strategy
During the migration period, the application shell will live alongside the
SPA. In this way ACME can deliver incremental value to their user, testing
that everything works as expected and redirecting traffic to the SPA if it
finds some bugs or unexpected behavior in the new codebase. The trade-off
will be in the platform performances because the user will download more
code than formerly. However, this method will enable one of the key
business requirements: reduce the risk of introducing the micro-frontends
architecture. In combination with the canary release, this will make the
migration bulletproof to massive issues, thanks to several levers the teams
can pull if any inconveniences are found during the migration journey.

Backend Integration
Because ACME is migrating the backend layer from a monolith to
microservices, the first step will be a lift and shift, in which they will
migrate endpoint after endpoint from the monolith to microservices. Using
a strangler fig pattern, they will redirect traffic to either the monolith or a
new microservice. This means the API contract between frontend and
backend will remain the same in the first release. There may be some
changes, but they will be the exception rather than the rule.

This approach allows ACME to work in parallel at different speeds between
the two layers. However, it may also create a suboptimal solution for data
modeling. The drastic changes required to accommodate microservices’
distributed nature means some services may not be as well designed as they

https://martinfowler.com/bliki/StranglerFigApplication.html

can be. For the ACME teams, though, this is an acceptable trade-off,
considering there are a lot of moving parts to define and learn on this
journey. The tech teams agreed to revisit their decisions and design after the
first releases to improve the data modeling and APIs contracts.

Based on this context, the development and platform teams agreed to use
load balancers to funnel the traffic to the monolithic or microservices layer,
so that the client won’t need to change much. Every change will remain at
the infrastructure level. Deciding the best way to roll out a new API version
can be done without making the client aware of all these changes.

The client will fetch the list of endpoints at runtime via the configuration
retrieved initially by the application shell, eliminating the need to hardcode
the endpoints in the JavaScript codebase.

Integrating Authentication in Micro-Frontends
One of the main challenges implementing micro-frontends architecture is
dealing with authentication, especially with a shared state across multiple
micro-frontends. The ACME teams decided to ensure that the application
shell is not involved in domain logic, keeping every micro-frontend as
independent as possible. Thanks to the vertical split approach, sharing data
between micro-frontends is a trivial action because they can use web
storage or query string for passing persistent data (e.g., simple user
preferences) or volatile data (e.g., product ID).

ACME uses the local storage in its SPA for storing basic user preferences
that don’t require synchronization across devices, such as the video player’s
volume level and the JSON web token (JWT) used for authenticating the
user. Because the developers want to generate immediate value for their
users and company, they decided to stick with this model and deliver the
authenticated area of the catalogue alongside the SPA. When a user signs up
or signs in within the SPA, the JWT will be placed in the local storage.
When the application shell loads the catalogue micro-frontend, the micro-
frontend will then request the token through the application shell and
validate it against the backend (see figure 10.12).

Figure 8-12. During the migration, the SPA authenticates a user and stores the token in the local
storage, which the authenticated micro-frontend retrieves once loaded.

Due to the local storage security model, the SPA, the application shell, and
all the micro-frontends have to live in the same subdomain because the
local storage is accessible only from the same subdomain. Therefore, the
SPA will have to be moved from being served by an application server to
the S3 bucket, where the new architecture will be served from.

LOCAL STORAGE SECURITY MODEL
The data processed using the local storage object persists through
browser shutdowns, while data created using the session storage object
will be cleared after the current browsing session.

It’s important to note that this storage is origin specific. This means that
a site from a different origin cannot access the data stored in an
application’s local database.

For instance, if we store some website data in the local storage on the
main domain www.mysite.com, the data stored won’t be accessible by
any other subdomain of mysite.com (e.g., auth.mysite.com)

Thanks to this approach, ACME can treat the SPA as another micro-
frontend with some caveats. When it finally replaces the authentication part
and finishes porting to this new architecture, every micro-frontend will have
its own responsibility to store or fetch from the local storage via the
application shell (figure 10.13).

Figure 8-13. When the frontend platform is fully migrated to micro-frontends, every micro-frontend
will be responsible for managing part of the users authentication.

After the architecture migration, ACME will revisit where to store the JWT.
The usage of local storage exposes the application to cross-site scripting
(XSS) attacks, which may become a risk in the long run when the business
becomes more successful and more hackers would be interested in attacking
the platform.

CROSS-SITE SCRIPTING (XSS)
Cross-site scripting (XSS) attacks are a type of injection in which
malicious scripts are injected into otherwise benign and trusted
websites. XSS attacks occur when an attacker uses a web application to
send malicious code, generally in the form of a browser-side script, to a
different end user. Flaws that allow these attacks to succeed are
widespread and occur anywhere a web application uses input from a
user within the output it generates without validating or encoding it.

An attacker can use XSS to send a malicious script to an unsuspecting
user. The end user’s browser has no way of knowing that the script
should not be trusted and will execute it. Because the browser thinks the
script came from a trusted source, the malicious script can access any
cookies, session tokens, or other sensitive information the browser
retains and uses with that site. These scripts can even rewrite the
content of the HTML page.

Dependencies Management
ACME decided to share the same versions of React and MobX with all the
micro-frontends, reducing the code the user has to download. However, the
teams want to be able to test new versions on limited areas of the
application so they can test new functionalities before applying them to the
entire project. They decided to bundle the common libraries and deploy to

the S3 bucket used for all the artifacts. This bundle doesn’t change often
and therefore is highly cacheable at the CDN level (figure 10.14).

Figure 8-14. Every micro-frontend builds and deploys its own JavaScript dependencies, apart from
the common libraries, which have a separate automation strategy.

Other teams that want to experiment with new common libraries versions
can easily deploy a custom bundle for their micro-frontend alongside the
other final artifact files and use that version instead of the common one.

In the future, ACME’s teams are planning to enforce bundle size budgets in
the automation pipelines for every micro-frontend to ensure there won’t be
an exploit of libraries bundled together, which increases the bundle size and
the time to render the whole application. This way, ACME aims to keep the
application size under control while keeping an eye on the platform
evolution, allowing the tech teams to innovate in a frictionless manner.

Integrating a Design System
To maintain user interface (UI) consistency across all micro-frontends, the
tech teams and the user experience (UX) department decided to revamp the
design system available for the SPA using web components instead of
Angular. Migrating to web components allows ACME to use the design
system during the transition from monolith to distributed architecture,
maintaining the same look and feel for the users.

The first iteration would just migrate the components from Angular to web
components maintaining the same UI. Once the transition is completed,
there will be a second iteration where the web components will evolve with
the new guidelines chosen by the UX department.

The initial design system was extremely modular, so developers can pick
basic components to create more complex one. The modularity also means
the design system library will not be a huge effort to migrate and the
implementation will be as quick as it was before.

Due to the distributed nature of the new architecture, ACME decided to
enforce at the automation pipeline level using a fitness function a validation
that every micro-frontend should use the latest version of the design system
library. In this way, they will avoid potential discrepancies across micro-
frontends and force all the teams to be up to date with the latest version of

the design system. The fitness function will control the existence of the
design system in every micro-frontend’s package.json and then validate the
version against the most up-to-date version in case the design system
version is older than the current one. The build automation will be blocked
and return a message in the logs, so the team responsible for the micro-
frontend will know the reason why their artifact wasn’t created.

Sharing Components
ACME wants a fast turnaround on new features and technical
improvements to reduce external dependencies between teams. At the same
time, it wants to maintain design consistency and application performance,
so it will share some components across micro-frontends. The guidelines
for deciding whether a component may be shared is based on complexity
and the evolution, or enhancement, of a component.

For example, the footer and header formerly changed once a year. Now,
however, these components will change based on user status and the area a
user is navigating. The solution applied for the header and footer will be
created with the different modular elements exposed by the design system
library. These two elements won’t be abstracted inside a component, since
the effort to maintain this duplication is negligible and there are only a few
micro-frontends to deal with. These decisions may be reverted quickly,
however, if the context changes and there are strong reasons for abstracting
duplicated parts into a components library.

To avoid external dependencies for releasing a new version or bug fix inside
a component, the teams decided to load components owned by a single
specialized team, like the video player components, at runtime. A key
component of this platform, the video player evolves and improves
constantly, so it’s assigned to a single team that specializes in video players
for different platforms. The team optimizes the end-to-end solution, from
encoders and packagers to the playback experience. Because the header and
footer will load at runtime, they won’t need to wait until every micro-
frontend updates the video player library. The video player team will be

responsible for avoiding contract-breaking changes without the need to
notify all the teams consuming the component.

ACME will make an exception for the design system. Although it’s built by
a team focused only on the consistency of the user experience, the design
system will be integrated at development time to allow developers to
control the use of different basic components and to create something more
sophisticated inside their micro-frontends. All the other components will be
embedded inside a micro-frontend at development time, like any other
library, like React or MobX (Figure 10.15).

Figure 8-15. In a micro-frontend, complex components owned by a single team are loaded at
runtime, while all the others are embedded at compile time. The only exception is the design system

due to its modular nature.

None of the components created inside each team will be shared among
multiple micro-frontends. If there are components that might simplify

multiple teams’ work if shared, a committee of senior developers, tech
leads, and architects will review the request and challenge the proposal
according to the principle defined at the beginning of the project.

These principles will be reviewed every quarter to make sure they are still
aligned with the platform evolution and business roadmap.

Implementing Canary Releases
Another goal of this project is being able to release often in production and
gather real data directly from the users. It’s a great target to aim for, but it’s
not as easy to reach as we may think.

Based on its infrastructure for serving frontend artifacts, ACME decided to
implement a canary release mechanism at the edge, so that it can extend the
logic of its Lambda@Edge once the migration is completed, adding logic to
manage the micro-frontend releases.

ACME will also need to modify the application shell to request specific
micro-frontend versions and delegate retrieving the exact artifact version to
the Lambda@Edge. The tech teams decided to identify every micro-
frontend release using semantic versioning (semver), This allows them to
create unique artifacts, appending the semver in the filename, and easily
avoid caching problems when they release new versions.

SEMANTIC VERSIONING
Given a version number MAJOR.MINOR.PATCH, increment the:

MAJOR version when you make incompatible API changes,

MINOR version when you add functionality in a backwards compatible
manner, and

PATCH version when you make backwards compatible bug fixes.

Additional labels for pre-release and build metadata are available as
extensions to the MAJOR.MINOR.PATCH format.

https://semver.org/

As we can see in figure 10.16, first the application shell retrieves a
configuration from the APIs. The configuration contains a map of available
micro-frontends versions where only the major version is specified (e.g.,
1.x.x). This allows the teams to upgrade the application while maintaining
backwards compatibility. They also only need to upgrade the major version
when a breaking change updates the configuration file served by the APIs.

When the artifact request hits Cloudfront, a Lambda@Edge that retrieves a
list of versions available for the micro-frontends is triggered; the traffic
should then be redirected to a specific version. The logic inside the lambda
will associate a random number, from 1 to 100, to every user. If a user is
associated with 20% and 30% of the traffic should be redirected to a new
version of the requested micro-frontend, that user will see the new version.
All the users with a value higher than 30 will see the previous version.

Figure 8-16. Sequence diagram describing how ACME implements canary releases for micro-
frontends

The lambda returns the selected artifact and generates a cookie where the
random value associated with the user is stored. If the user comes back to
the platform, the logic running in the lambda will validate just the rule
applied to the micro-frontend requested and evaluate whether the user
should be served the same version or a different one based on the traffic
patterns defined in the configuration. As a result, both authenticated and
unauthenticated traffic will have a seamless experience during the canary
exploration of an artifact.

Using this mechanism, ACME can reduce the risk of new releases without
compromising fast deployment because they can easily move users from
newer versions to an older one simply by modifying the configuration
retrieved by the Lambda@Edge.

Localization
The ACME application has to render in different languages based on the
user’s country. By default the application will render in English, but the
product team wants the user to be able to change the language in the
application and have the choice persist for authenticated users inside their
profiles settings, creating a seamless experience for the user across all their
devices.

In this new architecture, ACME tech teams have to consider two forces:

Every micro-frontend has a set of labels to display in the UI, some
of which may overlap with other micro-frontends, such as common
error messages.

Every micro-frontend represents a business subdomain so the
service has to return just enough labels to display for that specific
subdomain and not much more, otherwise resources will be
wasted.

ACME tech teams decided to modify the dictionary API available in the
monolith to return only the labels needed inside a micro-frontend. In this
way, the SPA can still receive all the labels available for a given language

and the micro-frontend will only receive the label needed for its subdomain
during the transition (figure 10.17). At migration completion, all the micro-
frontends will consume the microservices API instead of the legacy
backend, and there won’t be a way to retrieve all the labels available in the
application through the legacy backend.

Figure 8-17. The micro-frontend consumes a new API for fetching the labels to display in the
interface through a new microservice. The SPA will consume the API from the legacy backend.

When a micro-frontend consumes the dictionary API, it has to pass the
subdomain as well as the language and country related to the labels in the
request body in order to display them in the user interface. When it receives
the request, the microservice will fetch the labels from a database based on
the user’s country, favorite language, and the micro-frontend subdomain.

Because micro-frontends are not infinite and the platform supports less than
a dozen languages, having a CDN distribution in front of the microservice
will allow it to cache the response and absorb the requests coming from the
same geographical area.

Being able to rely on the monolith via a different endpoint during micro-
frontend development creates a potential fallback, if needed. It allows older
versions of native applications on mobile devices to continue working
without any hiccups.

Summary
In this chapter we have gathered all the insights and suggestions shared
across the book and demonstrated how they play out in a real-world
example. Sharing the reasoning behind certain decisions, the why, is
fundamental for finding the right trade-off in architecture and, really, in any
software project. When you don’t know the reasons for certain decisions
inside your organization, I encourage you to find someone who can explain
them to you. You will be amazed to discover how much effort is spent
before finding the right trade-offs between architecture, business outcomes,
and timing.

You will see in your career that what works in one context won’t work in
another because there are too many factors stitching the success of the
project together, such as people skills, environment, and culture. Common
obstacles include the seniority of the engineers, company culture,

communication flows not mapping team interactions, dysfunctional teams,
and many more.

When we develop any software project at scale, there are several aspects we
need to take into consideration as architects and tech leaders. With this
chapter I wanted to highlight the thought process that moved ACME from a
SPA to micro-frontends because these are decisions and challenges you may
face in the real world. Some of the reasoning shared in these pages may
help you to take the right direction to project success.

One thing that I deeply like about micro-frontends is that we finally have a
strong say on how to architect our frontend applications. With SPAs, we
followed well-known frameworks that provided us speed of development
and delivery because they solved many architectural decisions for us. Now
we can leverage these frameworks and contextualize them using their
strengths in relevant parts of our projects.

We still have a lot to explore with micro-frontends, including finding the
right balance of both technology and people. I find this aspect both
extremely challenging and fascinating. Nowadays we have the opportunity
to shape this ecosystem with tools, practices, and patterns. The only limit is
our imagination.

Appendix A. What does the
community think about micro-
frontends?

Throughout this book, we have discussed what micro-frontends are, how
we can create a micro-frontends architecture, and what the socio-technical
impact of this paradigm is.

NOTE
As explained in Chapter 1, many companies implemented micro-frontends in production
in many different ways.

I interviewed several industry professionals who are embracing micro-
frontends in their organizations to share the breadth of uses.

Following are interviews with tech leads, architects, and developers sharing
their development challenges with micro-frontends projects.

Enjoy the interviews!

Please introduce yourself.

I’m Felipe Guizar, a senior software engineer at Wizeline. I have over five
years of experience working mainly with content publishing platforms for
big media companies.

What is your experience with micro-frontends?

I haven’t had the opportunity to implement micro-frontends in a greenfield
project yet. However, I’ve worked on several projects that migrated
websites to new technologies.

On those projects, we agreed that migrating from scratch was not a good
business approach because we can’t deliver new features until we finish the
migration. Instead,we decided to look for an approach to gradually migrate
the websites and set the basis for integrating new features easily,
introducing micro-frontends to our solutions.

What benefits and pitfalls did you encounter in your journey with
micro-frontends?

Context:

Frontend technologies (FE) evolve very fast. For instance, I’ve seen
companies that started developing their applications using old
frameworks/libraries (AngularJS, BackboneJS) years ago. At some point,
new frameworks were introduced in the FE world (React, VueJs), and then
developers started learning and choosing those as their main tech stack.

For those companies, it’s difficult to keep developers engaged and hire
developers who are glad to maintain applications using old technologies.

Benefits:

Micro-frontends help to evolve applications along with the technologies.
However, it’s not only about bringing the application up to date in terms of
technology; it’s also about aligning the company tech stack with the
developer’s expertise.

Pitfalls:

This architecture adds more complexity for managing different pipelines,
versioning and integrating the micro-frontends in the host application.
Additionally, managing authentication is one of the trickier parts.

Did you contribute to any OSS project related to micro-frontends? If
so, which one?

Yes, I’m the creator of Ara Framework.

Ara Framework makes developing micro-frontends easier by integrating
any view library (React, VueJS, Svelte) on any web technology/framework,
such as NuxtJS, GatsbyJS, WordPress, Flask, and more.

When would you suggest using micro-frontends, and when we should
avoid them?

I believe having good knowledge of the business domains is necessary to
identify each micro-frontend’s boundaries; otherwise, it leads to bad
abstractions that can introduce more complexity for integrating and
communicating them.

At the end of your last micro-frontends project, what worked and what
didn’t?

Server-side includes using a proxy server works well for integrating non-
authenticated micro-frontends in non-JavaScript frameworks. This approach
helps us to migrate partial views from WordPress to React along with the
content necessary to render those views.

In the early days of the project, we tried to use authenticated micro-
frontends using server-side rendering through the SSL proxy server (Nova
Proxy). We faced issues forwarding the authentication header, but we
realized we could just render those views from the client side using a kind
of client-side includes (Nova Bridge).

https://ara-framework.github.io/website/docs/nova-architecture

https://ara-framework.github.io/website/docs/nova-bridge

Also, centralizing the SSL proxy server created the main point of failure.
We tackled it by using the server as a sidecar proxy.

https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar

What are the must-have tools for developers to have an efficient
experience with micro-frontends?

A command-line interface (CLI) for scaffolding, running services locally,
and easily deploying micro-frontends.

For example, Ara Framework has a CLI to create new micro-frontends for
different view libraries, and commands to run Nova Proxy and Nova
Cluster locally.

What would you suggest for a person who wants to embrace this
architecture?

Evaluate the problems you’re trying to solve against the challenges you’ll
face implementing this architecture.

What was the impact of introducing micro-frontends to developers who
didn’t know about them? What challenges have you faced?

It encouraged developers to be more involved in the business side,
promoting a common language that improves communication. It also
encouraged developers to be more involved in making architectural
decisions.

However, when micro-frontends were announced in 2019 in the
ThoughtWorks Radar as an “adopt technique” in the social networks, there
were some misunderstandings about the main goal of micro-frontends. It’s
still challenging to introduce the architecture to developers biased by those
comments.

What was the developer experience like in your last project?

As I mentioned before a CLI tool significantly improves the developer
experiences. However, we needed to extend the Ara CLI to automate
deployments and provisioning infrastructure necessary to run the
application.

Many developers are concerned about performance and design
consistency with micro-frontends. What are your suggestions for
overcoming these challenges?

I believe performance issues related to loading several micro-frontends
views on the same page is a sign that micro-frontends boundaries are not
well defined. A user flow can involve several subdomains but the user only
interacts with one at a time. For example, when a user navigates to the
product listing page (product subdomain) and chooses a product, they
finally go to the payment page (payment subdomain).

I recommend lazy-loading each micro-frontend entry point based on routing
(routes usually represent a subdomain involved in a user flow).

Obviously, there are cases when we have several subdomains on the same
page. For example, in an article page, we have the content itself (content
subdomain) and the comments and rating section (content feedback
subdomain). Users mainly view an article to read the content. Micro-
frontends give us the flexibility to server-side render the content and make
it available as soon the user opens the page, and we can let the browser
client-side render the other sections on demand (lazy-loading based on
scrolling).

Regarding design consistency, I suggest using design systems with reusable
components that are domain agnostic. Atomic design is a good
methodology for implementing design systems in micro-frontends.

What are the first steps for working with micro-frontends?

Define the micro-frontends’ boundaries based on the business subdomains,
and identify subdomains that interact together in the user flows.

Can you share the main thing to avoid when working with micro-
frontends?

Avoid thinking of micro-frontends as components we can deploy and
integrate independently (we can use Module Federation instead). Micro-
frontends are views that represent a business subdomain.

What are the main challenges in embracing this architecture from your
perspective?

- Identifying the business subdomains and defining the micro-
frontend boundaries

- Looking for an approach to aggregate them in the host application

- Handling authentication and authorization

Would you like to share some useful resources about micro-frontends?

Luca’s resources: https://medium.com/@lucamezzalira/micro-
frontends-resources-53b1ec7d512a,

Ara’s articles https://ara-framework.github.io/website/blog/

My articles: https://medium.com/js-dojo/micro-frontends-using-
vue-js-react-js-and-hypernova-af606a774602;
https://medium.com/js-dojo/serverless-micro-frontends-using-vue-
js-aws-lambda-and-hypernova-835d6f2b3bc9; and
https://itnext.io/strangling-a-monolith-to-micro-frontends-
decoupling-presentation-layer-18a33ddf591b

This curated list of resources:
https://github.com/rajasegar/awesome-micro-frontends

Micro-frontends in three words…

Evolutionary, resilient, agile

===================================

Please introduce yourself.

I’m Anthony Frehner. I currently work as a frontend architect, which means
I have the privilege of working on just about anything related to the
frontend :). I’ve spoken at React Rally, I’m helping drive the W3C CSS
proposal for “vhc” units (name subject to change), and I’m a core-team
member of single-spa. You can find me on GitHub at github.com/frehner
and Twitter at twitter.com/aahfrena.

What is your experience with micro-frontends?

I was introduced to micro-frontends (MFEs) when I joined CanopyTax,
which is the company where Joel Denning and Bret Little (the creators of
single-spa and related tools) worked. It was an amazing transition to be in a
place where anywhere from six to twelve— depending on the situation—
squads were able to work autonomously. (Squads is a term that was taken
from the Spotify model, but essentially they’re full teams that are centered
around a feature instead of being organized by role.)

https://medium.com/@lucamezzalira/micro-frontends-resources-53b1ec7d512a
https://ara-framework.github.io/website/blog/
https://medium.com/js-dojo/serverless-micro-frontends-using-vue-js-aws-lambda-and-hypernova-835d6f2b3bc9

I left Canopy because another company was interested in setting single-spa
up for two reasons: 1) to enable future growth and scale, and 2) to help
gradually sunset their legacy application and write new code, while running
both side-by-side. I like to think we were successful at both, and the
company was later acquired.

I think that was one of the first implementations of single-spa which used
SystemJS 3.0 with import maps, so it was fun to see how these new
standards greatly simplified the infrastructure required for single-spa. That
infrastructure would also later help form the foundation for single-spa’s
“recommended setup.”

My current company is currently investigating using single-spa because it
acquired a company that built a tool in a different frontend framework than
the one we use, and we would like to potentially integrate the two without
having to do a major rewrite of either.

What benefits and pitfalls did you encounter in your journey with
micro-frontends?

You’ve heard this a thousand times, but MFEs aren’t a silver bullet. That
being said, they have some great pros and a couple of cons to be aware of:

Pros:

* Team/squad independence. No release trains, code freezes, merge
conflicts, long-lived feature branches, QA frustration with testing
environments changing/not changing, etc.

* A shared infrastructure that means that everyone is always on the
latest version of a library. For example, designers love it because
changes to your style guide go out instantly to the whole app.

* A (variable) amount of freedom to experiment and let the best
technologies rise out of those experiments, instead of being stuck
on the legacy technology because of either the fear of trying
something and it failing or not wanting to rework your whole app.

* Lazy loading built in, which means a better and faster user
experience.

* Bundle sizes and speeds comparable to a monolithic app. There’s
a misconception that MFEs are significantly bigger and slower
than a monolith, and that’s simply not true.

* Ability to seamlessly combine legacy software with new
software and to integrate software that may have come through an
acquisition with in-house software.

* An amazing developer experience. You only have to run a single
MFE locally at a time while all the others can just run their
production code. Nearly every single developer that I’ve worked
with has mentioned how much better the DX is for them over a
monolithic setup.

* For single-spa at least, it’s based on web standards: ES modules,
import maps, etc.

* Teams that are focused on vertical slices of the app translates into
teams that are specialized and know their feature set really well.

However, there are some cons as well:

* On rare occasions, you will need to do an update on all your
MFEs, which is a monotonous task.

* The shared infrastructure can be a double-edge sword. For
example, it’s great to have your styleguide update for everyone at
the same time, until you accidentally break something and now it’s
broken everywhere.

* This is minor, but you need to ensure that your CSS is scoped so
that one MFE’s CSS doesn’t conflict with another’s.

* The infrastructure takes a bit more work than just building a
monolith. However, to put it into perspective, in my experience the

vast majority (~90%) of DevOp’s time was spent working on the
backend’s microservices infrastructure

Did you contribute to any OSS projects related to micro-frontends? If
so, which one?

I’m a core-team member of single-spa, so I’ve worked on the library itself
as well as the documentation, browser plugin, example repos, and so on,
and I am active in the Slack channel. I’ve been a participant in other
projects related to MFEs, namely SystemJS, the Import Map specification,
and webpack’s Module Federation plugin.

When would you suggest using micro-frontends, and when we should
avoid them?

I generally don’t recommend them for small teams of one to five
developers. That being said, there are still situations where that can make
sense. Beyond that, it really comes down to how comfortable (or willing to
learn) you are with frontend architecture, such as CI/CD pipelines and
webpack/rollup configurations.

At the end of your last micro-frontends project, what worked and what
didn’t?

Almost everything went well, except for one thing: the decision to support
multiple frameworks by using web components. In practice that turned into
everyone still only using one framework, but at the cost of additional time
and overhead to support web components instead of using framework-
specific components. My recommendation is to stick to just one framework
when at all possible.

What are the must-have tools for developers to have an efficient
experience with micro-frontends?

With single-spa, it’s really just about getting the infrastructure up and
running; after that, the tools used on a day-to-day basis are exactly the same
as a monolith.

For the infrastructure, you need to understand import maps and
webpack/rollup configuration and have a way to scope your CSS.

It’s also important to understand coupling and cohesion and how they relate
to microservices. You want MFEs that are highly cohesive and have low
coupling in order to succeed.

What would you suggest for a person who wants to embrace this
architecture?

Ask yourself for what purpose do you want this infrastructure: If you’re
doing it because you’re a small team but you want independent deploys, it
may not be worth the effort.

What was the impact of introducing micro-frontends to developers who
didn’t know about them? What challenges have you faced?
When I’ve had genuine conversations with developers about it, they
generally are open to the idea but don’t know how to set it all up in practice.
After helping them out, they’re almost always excited about it all and love
it.

I’ve had conversations with people that are very hesitant about certain
aspects (e.g. “the infrastructure is difficult” or “what about consistent
styles?”) and the conversations generally go well, even if they still decide to
not implement them. That’s ok! Not everyone is up to the task of spending a
couple days to work on infrastructure, but at least some misconceptions
were dispelled.

And then there’s been conversations with people who are completely
unwilling to listen and just want to make memes about MFEs. In those
situations, there hasn’t been much I could say that would help them
understand.

What was the developer experience on your last project?

Excellent. There are open source tools for doing MFE overrides with
single-spa, so that makes working on a MFE easy. Additionally, running
only a portion of your whole app locally means that when you hit the save

button, webpack takes only a fraction of a second to update instead of
multiple seconds to recompile.

Many developers are concerned about performance and design
consistency with micro-frontends, what are your suggestions for
overcoming these challenges?

Regarding performance, you mainly just need to put constraints on your
team\, such as saying “We’ll only support Vue, not any other framework.”
Just doing that will take care of 90% of your performance issues; the other
10% is no different than taking care of performance for a monolith.

As far as design consistency goes, that’s actually a strawman put up by
people who haven’t used modern MFEs. You’ll find that your designs will
actually be more consistent when you only have to deploy your styleguide
once and it’s updated for all apps everywhere, instead of needing to npm-
install your style guide in each app.

What are the first steps for working with micro-frontends?

Go to one of the example websites that exist for single-spa, and set up an
override for one MFE. Try it out, and see what you like and don’t like. Then
find us on GitHub, Twitter, or on Slack and ask questions.

Can you share the main thing to avoid when working with micro-
frontends?

Just because you can have multiple frameworks, doesn’t mean you should.
It’s still recommended to try and stick to one framework if at all possible.

What are the main challenges in embracing this architecture from your
perspective?

Your willingness to be open to new ideas, and to work on infrastructure
such as CI/CD pipelines and webpack/rollup. You also need to understand
when you should create a new MFE versus adding to an existing one.

Would you like to share some useful resources about micro-frontends?

We try to keep the single-spa website up to date. Also, the single-spa Slack
channel is open to anyone, and we frequently talk about tech-related things

besides single-spa in the #randomstuff channel. The book Building
Microservices is a good reference, even though it’s very backend focused.

Micro-frontends in three words…

Enables team independence

Please introduce yourself.

Joel Denning, frontend software dev and independent consultant. I’ve
authored single-spa and maintain a lot of other open source, too. I made
more than 4,000 GitHub contributions in the last year.

What is your experience with micro-frontends?

I’ve implemented micro-frontends at five companies, and consulted with
several dozen more. I created several example repositories
(github.com/vue-microfrontendss, github.com/react-microfrontends,
github.com/polyglot-microfrontends). I talk to people every day in the
single-spa Slack workspace and GitHub issue queues about implementing
micro-frontends.

Which benefits and pitfalls did you encounter in your journey with
micro-frontends?

Pros:

1. 1. Independently deployed micro-frontends are a huge
organizational win. This is the primary benefit in my opinion.

2. 2. Incremental migration between frameworks, with “strangler
pattern.” If you can convert your existing app into a Micro-
Frontend, you can start adding new micro-frontends without
rewriting the old one. This lets you introduce the new framework
without the cost of rewriting everything.

3. 3. Ability to hire developers with a larger range of talents, since
they can work in more technologies rather than living with the one
set chosen for a monolith.

4. 4. Ability to use the “best tool for the job.” Does that React library
solve everything? Use it. Does that Vue library solve everything?
Use it.

Cons:

1. 1. Conceptual complexity. It takes a while to explain what’s going
on to everyone.

2. 2. Technical complexity. Separate CI processes, in-browser module
loader, Module Federation, and so on.

3. 3. Possibility for duplicated dependencies between micro-
frontends, which is worse for performance than a single monolithic
build. There are solutions to this, but they are often not
implemented perfectly.

4. 4. Deployment dependencies between micro-frontends are a new
thing to consider that don’t exist if you have a single deployable.

Did you contribute to any OSS project related to micro-frontends? If
so, which one?

Yes, single-spa and all its helper projects (single-spa-react, single-spa-vue,
single-spa-angular, import-map-deployer, import-map-overrides, systemjs,
etc.).

When would you suggest using micro-frontends and when we should
avoid them?

Use micro-frontends when:

- You’re trying to migrate away from an old framework or
monolith.

- You want independent deploys for separate dev teams.

- You want some level of independent technical decision-making
for separate dev teams (which date formatting lib to install, which
react css lib, or perhaps even which UI framework).

- You want to split your UI into highly cohesive, loosely coupled
sections. This comes from the Building Microservices O’Reilly
book.

Avoid micro-frontends when:

- You don’t want to do micro-frontends.

- Your monolith is working well for you.

- There is only one dev on the project.

- Separate deployments cause more pain than benefit, due to
deployment dependencies. This occurs especially when you have
very few developers.

- Your micro-frontends regularly engage in heavy, chatty
communication. If the micro-frontends are talking to each other all
the time, perhaps you should not be using micro-frontends.

- Your dev team does not have the technical expertise, time, or
desire to manage a more complex system.

At the end of your last micro-frontends project, what worked and what
didn’t?

What worked:

- We created a separately deployable project with its own
package.json, build, and CI process. This was a huge win over our
PHP/Laravel monolith that built react with an old version of node
and gulp.

- We were able to free ourselves from many of the technical
decisions of the past.

- We were able to create a style guide/component library that lets
us collaborate with UX a lot easier.

What didn’t work:

- DevOps was very resistant and took a lot of convincing. The new
CI pipelines and infrastructure took a long time to build.

- Some devs confuse micro-frontends with react. They were new to
and couldn’t tell what things came from what.

What are the must-have tools for developers to have an efficient
experience with micro-frontends?

- import-map-overrides: It allows you to develop one micro-
frontend at a time, instead of running all of them locally.

- single-spa: The most popular open source framework for micro-
frontends that I’m aware of.

- import-map-deployer: A clear way to achieve independent
deployments for your separate projects.

- import maps: A separate name of the micro-frontend from its url.
This is important for independent deploys.

- systemjs: For in-browser module and import maps polyfill
support.

What would you suggest for a person who wants to embrace this
architecture?

Look at your backend code’s architecture and evaluate whether it is
working for you. It often makes sense for your backend and frontend
architecture to match. If one is a monolith, the other should be. If one is
microservices, the other should also be microservices.

Look at how your organization gets things done. If your organization’s
culture is geared toward product ownership, team autonomy, and distributed
decision-making, then micro-frontends might make sense. If it’s more of a
centralized decision-making process, then it might not make sense.

What was the impact of introducing micro-frontends to developers who
didn’t know about them? What challenges have you faced?

Where are the lines between micro-frontends and a UI framework? What is
doing what? How do the pieces fit together? What does this repo (or that
repo) do? What’s the mental model for the whole system?

What was the developer experience on your last project?

See https://github.com/joeldenning/import-map-overrides. You do `npm
install` and `npm start`. Then you go to a deployed environment and set up
an override so that it uses your local version of the micro-frontend instead
of the deployed version.

Many developers are concerned about performance and design
consistency with micro-frontends. What are your suggestions for
overcoming these challenges?

For shared dependencies, see https://single-spa.js.org/docs/recommended-
setup#shared-dependencies

For design consistency, create a shared style guide module and/or choose a
design system such as bootstrap. See https://single-
spa.js.org/docs/microfrontends-concept#types-of-microfrontends and
https://github.com/react-microfrontends/shared-dependencies.

What are the first steps for working with micro-frontends?

1. 1. Create a POC to help you decide whether you want to do it.

2. 2. Convert your existing app to be a single micro-frontend. Release
that to production.

3. 3. Pull out shared navigation into its own micro-frontend. Release
that to production.

4. 4. Implement your next new feature as its own micro-frontend.
Release that to production.

5. 5. Pull out a small part of your monolithic app into its own micro-
frontend. Release that to production.

Can you share the main thing to avoid when working with micro-
frontends?

- Splitting them up too much or incorrectly, such that they’re all
highly coupled

- Shared, single deployment for all your micro-frontends

What are the main challenges in embracing this architecture from your
perspective?

1. 1. Converting your existing code into a Micro-Frontend, so that
future code can be split into separate micro-frontends.

2. 2. Setting up CI/CD

3. 3. Organizational buy-in, trust, and training

Would you like to share some useful resources about micro-frontends?

This YouTube playlist is great: https://www.youtube.com/playlist?
list=PLLUD8RtHvsAOhtHnyGx57EYXoaNsxGrTU.

Micro-frontends in three words…

Microservices for frontends

Please introduce yourself.

Zack Jackson, principal engineer of lululemon.

I focus on distributed JavaScript application architecture and how to scale a
company’s codebase, teams, and platforms. I’m passionately involved in
open source! I created the first code-split SSR system for React, and I’m the
creator of webpack 5’s flagship feature, Module Federation.

What is your experience with micro-frontends?

I have exclusively built micro-frontend stacks for companies since 2015.
The largest stack I’ve built consisted of 150 separate micro-frontends. It
consisted of a shared component library; feature-based components used the
component library but most features were deployed independently as a

micro-frontend. The range of what the micro-frontends were made of was
pretty wide. Some were a single component, some were full features, and
others were whole pages or user flows.

I designed the Starbucks inventory management platform, used by all its
stores. This stack consisted of six separate micro-frontend applications with
helper services for authentication.

At lululemon, I am building a powerful stack that leverages an AppShell
and Module Federation and that enables drag-and-drop refactors as features
or code that can be moved between servers with no need for regression or
extra engineering time. I’ve extended Module Federation beyond managing
seamless micro-frontend experiences, into analytics, A/B testing, and
configuration management—all while remaining standalone and
independently deployable at any time providing evergreen code to
consumers.

What benefits and pitfalls did you encounter in your journey with
micro-frontends?

One pitfall was poor code sharing. Sharing vendor code is manual and
primitive, causing centralized dependency on an external set of vendors,
and upgrading package versions is complex as breaking changes would
require all micro-frontends to be prepared for the upgrade of a shared
vendor.

Another was poor UX. When moving between micro-frontends, a page will
reload. There are very few solutions to sharing global state or making
micro-frontends work as well as a monolithic SPA. Huge amounts of time
can go into improving the UX.

The benefits of micro-frontends outweigh the pitfalls at scale. Code can be
deployed independently, builds are faster, regressions are easier to run, and
the blast radius of a critical failure is well contained. It saves engineering
time and company money, as features can be delivered at a fast rate, unlike
in a monolith, where the rate of delivery slowly degrades as the codebase
increases in size and complexity. Micro-frontends remove the harsh
requirement of communication and coordination overhead between teams.

They are also cheaper to run and scale because you can use cheaper, less-
powerful servers. Unlike a monolith, you can scale per page or per
component on cheaper hardware instead of scaling expensive and powerful
hardware to meet the base demands and memory consumption of the entire
monolith.

Micro-frontends are far more agile and they safeguard companies against
site-wide critical failures. Redundancy layers can be built easier, and teams
can model a platform to fit their needs instead of using a one-fits-all model
that monolithic platforms enforce.

Did you contribute to any OSS project related to micro-frontends? If
so, which one?

Next.js, webpack 5 Core, single-spa, React Static, and Module Federation
extensions and enhancements.

When would you suggest using micro-frontends, and when we should
avoid them?

Small companies will likely not benefit from the engineering overhead.
Larger companies with challenges at scale or companies with multiple
teams who rapidly deploy are likely best suited to benefit from distributed
JavaScript applications.

Regardless of use case and scale, it’s very important to design your platform
from the ground up to handle scale. If you foresee rapid scale in the future,
designing a system that can be migrated into a distributed application model
is key. You’ll save time and money by avoiding a full-scale rewrite.

At the end of your last micro-frontends project, what worked and what
didn’t?

Automatic vendor sharing was challenging, routing between the separate
apps and making that route transition seamless were a major challenge, and
maintaining authentication sessions and sharing state were very challenging
as well. My current micro-frontend project has been designed to avoid these
issues by rethinking how applications interface with each other and are
designed in general.

What are the must-have tools for developers to have an efficient
experience with micro-frontends?

Webpack 5 Module Federation is a massive unlock, single-spa provides a
strong orchestration layer, Next.js with a custom AppShell, and yarn
workspaces that serve as sub-apps is a robust design pattern, which can
enable scale and can integrate with Module Federation if or when needed.
Micro is another fantastic tool for creating an ingress to route a user to the
correct micro-frontend as well. Leveraging monorepos keeps code
organized but will still have the pitfall of having only one master branch,
bottlenecking deployments. Semantic-release is vital for micro-frontend
architecture, where semver plays an important role in the scalability and
reliable code distribution.

What would you suggest for a person who wants to embrace this
architecture?

Give Module Federation a try. Most importantly, design a system that
supports scale. Think about monorepos, feature binding, how bound a page
or feature is to a specific server, and how hard it would be to split some of
the app into another micro-frontend at a later point in time. Avoid hard
binding to a server; build software that can be easily migrated to a new
stack. Globals like shared state should encapsulate a page or feature,
keeping it independent and unbound to the server. Moving a page or feature
to another server instance should be built in a way that will provide any
globals needed out the box, not involve multiple copy-pastes of various
parts of the application. Gitlab CI is powerful and a strong contender for
sophisticated infrastructure requirements.

What was the impact of introducing micro-frontends to developers who
didn’t know about them? What challenges have you faced?

Development time and efficiency usually quadruples. Introducing the
pattern has given development teams a better experience and the ability to
move more code through the pipeline at a faster rate. Challenges revolved
around performance concerns from SRE and getting developers used to
working in more than one repo at the same time. In highly granular MFE

stacks, it can be a learning curve to run multiple MFEs locally and to get
used to having several IDEs open, depending on what feature is being
developed.

What was the developer experience on your last project?

Kubernetes, custom router and auth layers, shared global packages, special
script to boot and run all MFE’s in one place for full workflow use.

Many developers are concerned about performance and design
consistency with micro-frontends. What are your suggestions for
overcoming these challenges?

Webpack 5 Module Federation is the best solution to this problem. There
are no performance concerns or design consistency issues. Code is shared at
runtime; it’s evergreen.

A non-webpack-5 solution would be to use renovate bot and depend on
abstraction for distribution or having the micro-frontends supply a render
API to allow other applications to retrieve HTML and other resources over
a network call. Ultimately, these are better ways to share feature and vendor
code along with automation around upgrading dependencies.

What are the first steps for working with micro-frontends?

Figure out how it’s going to scale. Centralize shared code, utilities, and data
calls. Make sure the platform layer does not become fragmented when
managing several independent servers. Think about routing and how you
will map various routes to their MFEs.

Can you share the main thing to avoid when working with micro-
frontends?

Not abstracting core code to npm. Copy pasting server infrastructure, which
leads to maintenance challenges and fragmentation at the platform level.
Either an application shell or server shell should exist, which holds high-
level aspects, like auth, user state, tooling, and translation configurations.

What are the main challenges in embracing this architecture from your
perspective?

Avoiding UX degradation in favor of DX improvement, neither should be
compromised. Thinking out how your MFE stack is going to look and work
in one year’s time with over 10 stacks: does it architecturally scale?

Would you like to share some useful resources about micro-frontends?

https://medium.com/@ScriptedAlchemy/webpack-5-module-federation-a-
game-changer-to-javascript-architecture-bcdd30e02669?
source=friends_link&sk=c779636999c8644a7fc0df3aaa96223e

Micro-frontends in three words…

Cheap, flexible, scalable

Please introduce yourself.

My name is Erik Grijzen. I’m from The Netherlands, but currently living in
Barcelona, Spain where I work for New Relic, a company that has an
observability platform that gives its customers insights on how their
systems and software are running in real time.

About three years ago, shortly after I joined the company, I’ve been
working on a new project to build a completely new platform UI, using a
micro-frontend architecture. As of today, I’m still working and evolving
this project as a lead software engineer on the team and the technical
product manager for the UI of the platform.

I’ve worked as a software engineer for many years in a variety of different
companies throughout my career. My focus has always been more on the
frontend side of things, which is what I’m most passionate about.

What is your experience with micro-frontends?

My experience with micro-frontends has been solely working on this new
platform within New Relic over the last three years. Let me give you some
context on how we ended up deciding to use this architecture because I
think this is quite interesting and I believe many other companies find
themselves in a similar position.

New Relic is a fast-growing company and in the last 10 years, it has built
many different products. All these products were built separately as

monolithic single-page applications that were linked together through one
common navigation. This approach was very successful until more or less
three years ago, when we discovered that we had several problems related
to the consistency of our user experience, extensibility of our UI, and the
way we did UI development within our company. Let me go over each one
of these problems to explain them a bit more in depth.

Many of our customers were starting to have more and more complex
systems because they were adapting to a microservices architecture and
moving towards the cloud. As a result of this, our users were forced to
switch constantly between our separate applications to troubleshoot
problems in their systems. Despite all the best efforts of our UI engineers,
our products were all working and looking slightly different (in some cases
very different), which led to undesirable user experiences. On top of that,
switching between applications also caused our users to lose the context of
the issues that they were troubleshooting, which was an even bigger
problem.

The landscape of technology (software, tools, programming languages,
integrations, open-source, etc.) that our customers wanted to instrument and
observe was (and still is) exploding. It’s almost impossible to keep up, so it
was clear that we wanted a new approach where we could provide new
functionality for our users in an easy and fast manner. Besides that, we also
noticed that some customers had very specific use cases that only applied to
them. To also cover these cases, we wanted to provide a way to make our
user interfaces programmable so that they could extend the platform for
their specific needs.

We also saw that inside our company, many UI engineers were doing a lot
of duplicate efforts regarding project setup, tooling, configuration, etc. We
wanted to reduce the toil and boilerplate that each team has to go through to
build new features so that they could spend more time on building
innovative and creative product solutions for our users.

It turned out that a micro-frontends architecture was a perfect fit for us to
tackle these problems. Users are demanding more unified product

experiences, but it’s not easy to build a product with hundreds of UI
engineers at the same time, especially when they are located in different
offices around the world and in different time zones. And in our case,
allowing customers to build on top of the platform as well made the
problem even more difficult. In the end, we decided that a micro-frontend
architecture was how we wanted to scale our UI development within our
organization.

What benefits and pitfalls did you encounter in your journey with
micro-frontends?

In our experience, this architecture has very similar benefits and downsides
that you can expect from using a microservices architecture on the backend.
However, there are a few exceptions to this due to the nature of how
browsers work.

Let’s start with the benefits. I believe the main topics that we should cover
where we noticed the biggest differences are the following:

* Team autonomy

* Small and decoupled codebases

* Modeled around a business domain

* Automation and standardization

To scale the UI development inside our organization, the most important
thing we wanted to achieve was for teams to work autonomously. They
should be able to deploy new code whenever and as many times as they
want without depending on any other team. Each team should be cross-
functional, meaning they have every role (designer, frontend engineer,
backend engineer, QA engineer, etc.) on the team to build the functionality
they want, so that they can do a complete end-to-end implementation. This
means they have full ownership and can take all the responsibility for one
or more related micro-frontends that are part of a specific business domain.
This is important because this allows parallel development without slowing
down when more and more teams are working on our platform.

To achieve this autonomy from a technical point of view, the micro-
frontends must be loosely coupled, so that they don’t depend on each other
and whenever they interact they should have clear contracts. Each micro-
frontend is also small in size so that they are easier to reason about (you
don’t need to know the whole system), easier to test and you can easily add,
change or remove them over time.

Our micro-frontends are modeled around a business domain or subdomain,
because this aligns better with the structure of our business. It creates fewer
team dependencies, gives teams more autonomy, and improves the
communication to make quick decisions so that teams can iterate over
features faster. To give a more concrete example, one team could be
organized around the domain of NodeJS application monitoring. They are
highly specialized and are subject matter experts on that topic, which
typically results in higher-quality code and better solutions for our end
users.

With our micro-frontend architecture setup, we moved from several
monolithic single-page applications to many small micro-frontends that are
composed at runtime into one unified platform. This resulted in an
explosion of a lot of small codebases, which are each owned by separate
teams. It was very important to be prepared for this because this
architecture introduces a lot of repetitive work and duplication. That’s why
it’s very important to have the proper infrastructure, tools, and
standardization in place. We automated every step in the development
process, from project creation and pipeline build to continuous integration
and continuous deployment, basically providing everything that the team
needs, so they can focus on building functionality that our users love.

Let’s move now to some of the pitfalls we encountered using micro-
frontends. In our journey the two hardest parts were:

* UX consistency

* Performance

Every architecture comes with tradeoffs. I don’t think we have a perfect
solution to make the UI always consistent and performant, but we try to
mitigate the downsides as much as we can. In most cases, this means
putting certain constraints in place and reducing the autonomy of teams. For
example, we have a constraint in place that every team should use a specific
version of the ReactJS library to build their user interfaces. This obviously
limits the teams from using any technology they want, but we think it’s
worth it because this constraint reduces the performance costs a lot for our
users. We don’t want to limit innovation in the organization, but when we
try out new technologies and we carefully evaluate the impact it has on the
system, we then update the organization standards and move this innovation
to the platform level, so that everyone can benefit from it.

When you have many teams working on the same platform, the consistency
of the UI is at risk. To reduce this downside as much as possible, we think
it’s critical to at least have a design system in place. This won’t magically
make everything consistent, but I think without it, you will definitely be in a
world of trouble. In our experience, this design system is best owned and
maintained by one team. This doesn’t mean others cannot contribute, but
there’s one team making sure it aligns with the bigger picture. We’ve tried
an open source model where everyone could contribute to the design
system, but this didn’t work out for us, because when everyone is
responsible for it, nobody is responsible for it. Maintenance work, bug
fixes, and keeping everything aligned with the bigger picture are especially
hard to do in this setup. To further improve consistency, we also
implemented an SDK that all micro-frontends have access to. This SDK has
all the UI components from our design system and provides several APIs to
standardize certain patterns such as navigating around the platform.

To make sure our platform stays as performant as possible, we have several
things in place. First of all, the platform is built with the application shell
model which makes it very minimal and fast loading to achieve a good
initial perceived performance for the users. When the platform is loaded, we
lazy-load the micro-frontends based on the client-side routing, which allows
us to only load the minimal JavaScript and CSS necessary to render the

screen. To reduce the payload size of the assets we load and memory
consumption of the application, we think it’s necessary to deduplicate the
frontend dependencies as much as possible. On the platform level, we
provide some dependencies (i.e., ReactJS) that we are sure every micro-
frontend is going to need. We do that by defining those dependencies as
webpack externals so that these don’t get bundled up for each micro-
frontend. This alone reduces the bundle sizes by an incredible amount. For
each repository that contains micro-frontends, we are code-splitting the
bundles so that we can lazy-load them incrementally at runtime inside the
platform. The last thing we do is provide the before mentioned SDK on the
platform level by injecting it in each micro-frontend. This reduces the need
to use other NPM dependencies, which should decrease bundle sizes even
more.

Did you contribute to any OSS project related to micro-frontends? If
so, which one?

No, I’m not contributing to any open source projects at the moment. I
looked into several of the bigger micro-frontend frameworks and libraries a
while back, but none of them really matched with how we wanted this
architecture to look like for our platform.

I’ve been asked several times if we will open source what we’ve built at
New Relic. Unfortunately, we don’t have any plans to do so. I also think
that what we have right now is too tailored for our needs and we would
have to change it quite a bit before it would make sense to release it to the
public.

When would you suggest using micro-frontends, and when we should
avoid them?

Using an architecture like this comes with a lot of tradeoffs that have to be
evaluated carefully and need to make sense for your project and company.
Typically the benefits outweigh the downsides when you need to scale your
UI development to a lot of teams, which normally only happens for mid-
sized to large companies. So my recommendation is to not use this
architecture for small projects or companies. If you’re not sure you need

micro-frontends, you most likely don’t need them. Just start simple; you can
always slowly migrate to micro-frontends over time when there’s a need for
them.

At the end of your last micro-frontends project, what worked and what
didn’t?

I never officially completed a project using micro-frontends. We are
continuing to evolve the architecture of the platform as the product and
organization change over time. I consider it nearly impossible to get the
architecture right from the start, so you are guaranteed to encounter things
that are not working as you might expect. Our current architecture is very
different than the one we started with three years ago.

What really worked well for us, was to set up some ways to regularly
communicate and get feedback from other teams. This was very crucial in
adjusting over time and refining the balance on several architectural topics.
I think we have been too restrictive in some areas and we had to put some
more restrictions in other places to get the results that we wanted. We try to
keep a close eye on what’s not working for us and adjust over time to
improve the situation.

What are the must-have tools for developers to have an efficient
experience with micro-frontends?

This depends on a lot of things because there are many ways you could
implement micro-frontends based on the requirements of the project, its
business requirements, and how your company is organized. But generally
speaking, you want to make it as easy as possible for teams to be
successful, whatever that implies in your context.

At New Relic, we’ve built a command-line interface that uses our internal
infrastructure and tools to give teams everything they need to develop
features fast. Almost everything you can think of is automated, from project
creation to the final deployment to production. We are in a very competitive
market, so for us, it’s vital to have a fast time to market, be able to quickly
iterate on features based on the feedback from the user and spend as little

time as possible on technical configuration, setup, and other repetitive
boilerplate.

What would you suggest for a person who wants to embrace this
architecture?

Micro-frontends are not a silver bullet. Just like with any architecture, there
are many tradeoffs to be made. You have to find the right balance between
those tradeoffs that works best for your project, company culture, and
organization. What typically happens is that you go from one or several big
codebases to many small codebases. That’s why I think it’s important as a
company to make sure you first have the necessary infrastructure, tooling,
and standardization in place to support this architecture before you make
the change.

What was the impact of introducing micro-frontends to developers who
didn’t know about them? What challenges have you faced?

I think people don’t talk about this a lot, but introducing micro-frontends
can be quite a cultural and organizational change that requires kind of a
shift in the way you work. This might come as a surprise sometimes to
developers who never worked with such an architecture. For us, this was a
change that happened slowly over time, so as more and more teams
onboarded to work on top of the new platform, the company and the people
slowly transitioned to this new way of working.

Especially for the teams that were building micro-frontends on top of the
platform in the early stages, it was not always easy. They didn’t always
have everything they needed and there were still dependencies and things
that were blocking them from completing their work. This has improved a
lot over time, with better communication, documentation, resources, and
better tooling in place to support developers from day one.

What was the developer experience on your last project?

To build micro-frontends on top of our platform, you have to use a
command-line interface. Both our customers and internal teams can use this
to extend the platform with all different kinds of micro-frontends. This CLI

automatically takes care of the project setup, pipeline build, continuous
integration, and continuous delivery. This allows for very rapid feature
development; you can go from idea to production within hours.

When you create a new project it automatically scaffolds the repository
with all the required dependencies, structure, configuration, version control,
and integration with internal tools. By default there are many NPM scripts
configured to take care of typical developer experience, such as local
development, linting, prettifying, bundling, testing, and other automated
tasks to make sure that what you build will work within the platform. When
you do pull requests we automatically generate URLs to test the changes
against the platform, which makes code review much smoother. Finally,
when a pull request gets merged we automatically create a release for our
continuous delivery system, which makes it easy to deploy a specific
version to any environment, do rollbacks, and so forth.

Many developers are concerned about performance and design
consistency with micro-frontends. What are your suggestions for
overcoming these challenges?

I’ve already explained how we are trying to tackle these two challenges.
Like I mentioned before, we don’t have a perfect solution, but we try to
reduce the downsides as much as we possibly can in the context of how we
implement micro-frontends in New Relic.

My suggestion would be to carefully evaluate the importance of these
topics; based on that you can define the appropriate constraints on the
autonomy of the teams that are building micro-frontends. The more
constraints you put in place, the more you can reduce the downsides. You
will probably end up with a middle-ground solution that is best suited for
your project and organization.

What are the first steps for working with micro-frontends?

It’s hard to give specific recommendations on how to start working with
micro-frontends because this depends so much on the type of project,
culture, organization, and the size of the company. The way we have

organized, set up, and architectured our UI development with micro-
frontends might be a complete disaster for another company.

Some general recommendations when you get started:

* Make sure you find the right balance of trade offs that work for
you.

* Make sure to communicate and get feedback, so you can adjust
architectural decisions to overcome challenges.

* Make sure you have enough infrastructure, tooling, and
standardization in place that supports this architecture.

Can you share the main thing to avoid when working with micro-
frontends?

The main goal of micro-frontends is to scale the UI development within the
organization. So the main thing to avoid is creating dependencies between
teams or blocking the development of teams in any way.

What are the main challenges in embracing this architecture from your
perspective?

I think the main challenge is to tackle some difficult tradeoff decisions,
where you are forced to choose between the autonomy of teams and the
user experience of the end users. This is not always easy, but I think with
time you will always find a good middle ground for each of these tradeoffs.

Would you like to share some useful resources about micro-frontends?

If you are reading this, you already have the best resource at hand. I would
also recommend the talks that you can find on YouTube from Luca,
especially for people that are new to micro-frontends.

Micro-frontends in three words...

Scaling UI development

Please introduce yourself.

David Leitner is co-founder of SQUER Solutions, a Viennese software
company, and describes himself as an enthusiastic software professional
who works on various projects using a bunch of different stacks and
environments. He spends much of his time on the frontlines tackling the
challenges of scaling software and complex domains. A software engineer
with more than 10 years’ experience, David prefers his code simple and
small instead of clever and edgy. David enjoys sharing his knowledge as
speaker at conferences, as a podcast co-host, and as a lecturer for his post-
diploma courses at the University of Applied Sciences Technikum Vienna.

In 2016 David was one of the first who dealt with the topic of micro-
frontends intensively and proposed his ideas to international conferences.

What is your experience with micro-frontends?

When consulting with our customers, we always stress that microservices
are about end-to-end verticals that enable independent deployments of
autonomous parts of an application at a high pace. Following this idea, it
was clear from the very beginning that we had to somehow make this
possibility on the frontend parts of these architectures, as well. We
experimented in a dozen of projects with different approaches, including
simple ones, like linked applications, but also more sophisticated ideas, like
the integration on the client side with web components.

What benefits and pitfalls did you encounter in your journey with
micro-frontends?

One big lesson was the impact on the look and feel of huge frontend
applications. Thus, a Micro-Frontend architecture must go hand-in-hand
with a strong understanding and maturity in design systems. In addition,
you also have to deal with the classical issues of distributed systems, like
performance and latency. For example, over the years we discovered that a
shared caching layer on the frontend is a good idea; it was a game changer
for how we designed our micro-frontend architectures. And last but not
least, it’s nearly always a wise decision to start with a monolith-first
approach.

Did you contribute to any OSS project related to micro-frontends? If
so, which one?

Unfortunately, I have not actively contributed to one of them so far, mainly
because we almost never use off-the-shelf frameworks for our micro-
frontend architectures. We try to keep the dependencies small and stuck to
basic web standards, like web components, to build micro-frontends.

When would you suggest using micro-frontends, and when we should
avoid them?

It’s really hard to answer this question without any further context, but, I
think it is important that as with every new architecture or technology,
micro-frontends should not be an end in itself. Still, in our experience at
SQUER Solutions, it shows its benefits mainly when the team size gets too
big to work on one codebase in the frontend, when resilience issues start to
erase, or when the time to market is below expectations.

At the end of your last micro-frontends project, what worked and what
didn’t?

I think we started to have the maturity that allowed us to spot the right
points where the frontend should be split up. But especially for client-side
integration, it’s a daily challenge to let the integration module of your
micro-frontend architecture not sprawl too big and become a bottleneck.

What are the must-have tools for developers to have an efficient
experience with micro-frontends?

In most cases the concept of monorepo makes a lot of sense: a single repo
for all the micro-frontend projects, especially to share and ensure
consistency for commonly used UI components. Besides this, each module
that is used inside the micro-frontend architecture should, of course, strictly
follow semantic versioning, and the team should have a common
understanding about breaking changes.

What would you suggest for a person who wants to embrace this
architecture?

As mentioned before, start with a monolith-first approach. Only start to use
micro-frontends once you understand the domain well enough to split them
up reasonably.

What was the impact of introducing micro-frontends to developers who
didn’t know about them? Which challenges have you faced?

I have seen similarities to the introduction of micro services a few years
ago, which makes total sense, as in both cases distributed architectures are
introduced. The new challenges are therefore to design micro-frontends to
be backward compatible and to enforce asynchronous communication over
synchronous one.

What was the developer experience on your last project?

I think a solid CI/CD pipeline is essential. In a micro-fronted architecture,
most of the complexity moves from a developer’s machine to the build-and-
deployment process. Thus, a feature in such an architecture is delivered
once it’s deployed to production, not once it’s committed to the version-
control system. All the tooling should support and align with this thinking.

Many developers are concerned about performance and design
consistency with micro-frontends. What are your suggestions for
overcoming these challenges?

Basically, it can be said that these concerns are absolutely justified. The
question should be whether other advantages of micro-frontends outweigh
these problems for a specific use case. My rule of thumb for performance is
the more we strive for performance in a micro-frontend architecture, the
more we must move the integration to the client. For design consistency, a
mature design system can usually overcome most of the challenges.

What are the first steps for working with micro-frontends?

Don’t be too opinionated, search for diverse resources that will help you
make decisions. In addition, conference talks are a good source for
practitioners’ reports and learning from the mistakes others have already
made.

Would you like to share some useful resources about micro-frontends?

As mentioned before, I usually like to listen and learn from the experiences
of others; conference videos on YouTube are a good way to get those
insights. In addition, the micro-frontend introduction on Martin Fowler’s
blog is a good jump start to this topic. Well, and of course the book you are
holding in your hands!

Micro-frontends in three words…

Go for it!

Please introduce yourself.

My name is Philipp Pracht. I work as an architect and product owner at
SAP, located in Munich, and I’m a proud father and husband.

What is your experience with micro-frontends?

I’m currently working on project Luigi (luigi-project.io), a technology-
agnostic micro-frontend framework for admin and business UIs. Before
that, I was working on the user interface part of YaaS (a microservice-
centric platform and commerce-as-a-service solution), where we
successfully established a micro-frontend architecture back in 2014, before
the term “micro-frontends” even existed.

What benefits and pitfalls did you encounter in your journey with
micro-frontends?

The main benefit is the efficiency boost for any large-scale UI development
landscape with multiple teams. In my previous project, I was part of the
team responsible for the UI. There were more than 20 teams developing
microservices. After we established a micro-frontend architecture (again, it
wasn’t called that back then) and asked the service teams to take ownership
of their UI parts, I was extremely impressed and surprised by how well it
worked out. After a short technical introduction, all teams were able to
develop and release completely independently, and we never heard back
from most of them. It just worked.

The main pitfalls were not on a technical level but rather with some people
who did not really stick to the philosophy of micro-frontends, or even of
independent, self-empowered teams in general. Sometimes this led to long-
lasting and unproductive discussions.

Did you contribute to any OSS project related to micro-frontends? If
so, which one?

Apart from Luigi, which is open source, I contributed to Kyma (kyma-
project.io), a platform based on Kubernetes for extending applications with
serverless functions and microservices. Luigi started out as a Kyma side
project, with the goal of extracting the micro-frontend architecture of
Kyma’s admin console into a framework so that it can be reused in other
applications. Of course, Kyma is now using Luigi.

When would you suggest using micro-frontends, and when we should
avoid them?

In general, there is a correlation between the (predicted) functional scope
and the benefits of using a micro-frontend architecture. If you are certain
your UI will have a fixed set of UI components and will be developed by
only one team, then you should go with a conventional approach. For all
other scenarios, you should check if there is a micro-frontend framework
out there that can help you. Even small projects can benefit from something
like Luigi, as it offers some extra features that go beyond a pure micro-
frontend framework.

At the end of your last micro-frontends project, what worked and what
didn’t?

On a technical level, everything worked and there were no major issues.

What are the must-have tools for developers to have an efficient
experience with micro-frontends?

Tools for reliable development and testing environments are key.
Developers should feel confident at all times that what they are currently
implementing will work in the bigger context. For example, in my previous

project we offered a CLI tool with which developers could run an emulated
main application with their micro-frontend included.

An excellent IDE is also a must.

What would you suggest for a person who wants to embrace this
architecture?

As with any hype, read about the topic first, then lean back and think about
it from different angles. Think about the possible impact for people in
different roles and try to come to a good understanding of where micro-
frontends would be a good fit—not only from a technical point of view but
also when it comes to organization structures and people.

What was the impact of introducing micro-frontends to developers who
didn’t know about them? What challenges have you faced?

From my experience with introducing Luigi, developers were happy with it
in general. probably because Luigi helps where help is needed but doesn’t
impose anything—developers still had full freedom within their boundaries.
In my previous project, though, there were situations where developers had
problems focusing only on their part.

What was the developer experience on your last project?

In project Luigi, we created a tool called Luigi Fiddle (fiddle.luigi-
project.io), a playground where you could try out most of our core
functionality. It turned out to be pretty helpful, especially for onboarding
new developers.

Many developers are concerned about performance and design
consistency with micro-frontends. What are your suggestions for
overcoming these challenges?

This depends heavily on the approach you choose, especially the
performance topic. For example, Luigi has various mechanisms (like the
“viewgroups” concept, caching, preloading) to mitigate performance issues
for the end user. With concerns about design consistency, I was a bit
surprised when I found out people consider this an issue. I usually ask them

how they ensure design consistency in an app that doesn’t use micro-
frontends, and the answer is something like “This is not a problem, because
we have the same CSS.” Eventually most of them realize that you can also
share CSSs across different applications. You could also develop Angular
components that are not consistent with the rest of the app, so it is the
developer who ensures consistency, because he wants his piece of UI
looking good in its context.

What are the first steps for working with micro-frontends?

Think about how you want to subdivide your UI, then have a look at Luca
Mezzalira’s micro-frontends decision framework.

Also, check if there is already a framework out there that fits your
requirements.

Can you share the main thing to avoid when working with micro-
frontends?

Avoid introducing a monolithic layer somewhere else in your stack, because
you lose most of the benefits from micro-frontends. Micro-frontends work
best with micro services.

From your perspective, what are the main challenges in embracing this
architecture?

The main challenge would be if your organization structure isn’t a good fit.
Your management has to set up a structure where dedicated units (a single
dev team in the easiest case) can independently deliver end-to-end features.

Would you like to share some useful resources about micro-frontends?

All publications from Luca Mezzalira, of course.

There is also a good explanation of micro-frontends on martinfowler.com.
And of course you can look at luigi-project.io and our YouTube channel,
where you can find luigi-specific content, as well as some general
information about micro-frontends.

Micro-frontends in three words…

Divide and conquer!

About the Author
Luca Mezzalira is the VP of Architecture at DAZN with more than 15 years
of experience, a Google Developer Expert on Web Technologies and the
London JavaScript community Manager. He has the chance to work on
cutting-edge projects for mobile, desktop, web, TVs, set-top boxes and
embedded devices. Luca is currently designing the DAZN platform with his
team, a sports video platform based on the cloud that enables millions of
users to watch live and on-demand content. He has long experience
working with Micro-Frontends, having introduced the architecture at
DAZN for the web platform as well as for living room devices, which has
provided a high level of flexibility, delivery speed, and independence for
DAZN’s distributed teams. Luca is also the author of Front-End Reactive
Architectures published by APress

In his spare time, he writes for national and international technical
magazines and editors. He is also a technical reviewer for APress, Packt
Publishing, Manning Publications, Pragmatic Bookshelf and O’Reilly
Media.

Luca was speaker and/or keynote speaker at: O’Reilly media webinars,
O’Reilly Software Architecture (New York, San Francisco and London),
O’Reilly Fluent (San Jose), O’Reilly Oscon (London), AWS Re:Invent (Las
Vegas), QCon (London), SDD (London), Google Developers Summit
(Krakow), Google DevFest (London), UXDXConf (Dublin), Frontend Devs
Love (Amsterdam), Voxxed Days (Belgrad), JeffConf (Milan), International
Javascript Conference (Munich and London), JS Poland (Warsaw),
Codecamp (Cluj), Code Europe (Wroclaw), JSDay (Verona), CybercomDev
(Łódź), Jazoon Conference (Bern), JDays (Göteborg), Codemotion (Milan),
FullStack Conference (London), Bitshift (Bergen), React London
UserGroup (London), Scrum Gathering (Prague), Agile Cymru (Cardiff),
Scotch on the rocks (Edinburgh and London), 360Max (San Francisco),
PyCon (Florence), Lean Kanban Conference (London), Adobe Creative
Suite CS 5.5 - Launch event (Milan), Mobile World Congress (Barcelona)
and many others

https://www.linkedin.com/in/lucamezzalira
https://media.dazn.com/
https://goo.gl/ywAmsx

1. Preface

a. The Frontend Landscape

b. Single-Page Applications

c. Isomorphic Applications

d. Static-Page Websites

e. Micro-Frontends

f. Conventions Used in This Book

g. O’Reilly Online Learning

h. How to Contact Us

i. Acknowledgments

2. 1. The Frontend Landscape

a. Micro-Frontends Applications

b. Single-Page Applications

c. Isomorphic Applications

d. Static-Page Websites

e. JAMStack

f. Summary

3. 2. Micro-Frontends Principles

a. Monolith to Microservices

b. Moving to Microservices

c. Introducing Micro-Frontends

d. Microservices Principles

i. Modeled Around Business Domains

ii. Culture of Automation

iii. Hide Implementation Details

iv. Decentralize All the Things

v. Deploy Independently

vi. Isolate Failure

vii. Highly Observable

e. Applying Principles to Micro-frontends

i. Modeled Around Business Domains

ii. Culture of Automation

iii. Hide Implementation Details

iv. Decentralization over Centralization

v. Deploy Independently

vi. Isolate Failure

vii. Highly Observable

f. Micro-frontends are not a silver bullet

g. Summary

4. 3. Micro-Frontend Architectures and Challenges

a. Micro-frontends Decisions Framework

i. Define Micro-frontends

ii. Domain-Driven Design with Micro-Frontends

iii. How to define a bounded context

iv. Micro-frontends composition

v. Routing micro-frontends

vi. Micro-frontends communication

b. Micro-Frontends in Practice

i. Zalando

ii. HelloFresh

iii. AllegroTech

iv. Spotify

v. SAP

vi. OpenTable

vii. DAZN

c. Summary

5. 4. Build and Deploy Micro-Frontends

a. Automation Principles

i. Keep a Feedback Loop Fast

ii. Iterate Often

iii. Empower Your Teams

iv. Define Your Guardrails

v. Define Your Test Strategy

b. Developers Experience (DX)

i. Horizontal vs. Vertical split

ii. Frictionless Micro-Frontends blueprints

iii. Environments strategies

c. Version of Control

i. Monorepo

ii. Polyrepo

iii. A possible future for a version of control systems

d. Continuous Integration strategies

i. Testing Micro-Frontends

ii. End-to-End Testing

iii. Fitness Functions

iv. Micro-frontends specific operations

e. Deployment Strategies

i. Blue-Green Deployment versus Canary Releases

ii. Strangler pattern

iii. Observability

f. Summary

6. 5. Backend Patterns for Micro-Frontends

a. Working with a Service Dictionary

i. Implementing a Service Dictionary in a Vertical-
Split Architecture

ii. Implementing a Service Dictionary in a
Horizontal-Split Architecture

b. Working with an API gateway

i. One API entry point per business domain

ii. A client-side composition, with an API gateway
and a service dictionary

iii. A server-side composition with an API gateway

c. Working with the BFF pattern

i. A client-side composition, with a BFF and a
service dictionary

ii. A server-side composition, with a BFF and
service dictionary

d. Using GraphQL with micro-frontends

i. The schema federation

ii. Using GraphQL with micro-frontends and client-
side composition

iii. Using GraphQL with micro-frontends and a
server-side composition

e. Best practices

i. Multiple micro-frontends consuming the same
API

ii. APIs come first, then the implementation

iii. API consistency

iv. Web socket and micro-frontends

v. The right approach for the right subdomain

vi. Designing APIs for cross-platform applications

f. Summary

7. 6. Automation Pipeline for Micro-Frontends: A Use Case

a. Setting the Scene

i. Version of Control

ii. Pipeline Initialization

iii. Code-Quality Review

iv. Build

v. Post-Build Review

vi. Deployment

vii. Automation Strategy Summary

b. Summary

8. 7. Discovering Micro-Frontends Architectures

a. Micro-Frontends Decisions Framework Applied

i. Horizontal Split

ii. Vertical Split

b. Architecture Analysis

i. Architecture and Trade-offs

ii. Vertical Split Architectures

iii. Horizontal Split Architectures

c. Summary

9. 8. From Monolith to Micro-Frontends: A Case Study

a. The Context

i. Technology Stack

ii. Platform and Main User Flows

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4niqkt/7ll4kx_pdf_out/OEBPS/Images/ch07.html#discovering_micro_frontends_architectures

iii. Technical Goals

b. Migration Strategy

i. Micro-Frontends Decisions Framework Applied

ii. Splitting the SPA in Multiple Subdomains

iii. Technology Choice

c. Implementation Details

i. Application Shell Responsibilities

ii. Backend Integration

iii. Integrating Authentication in Micro-Frontends

iv. Dependencies Management

v. Integrating a Design System

vi. Sharing Components

vii. Implementing Canary Releases

viii. Localization

d. Summary

10. A. What does the community think about micro-frontends?

	Preface
	The Frontend Landscape
	Single-Page Applications
	Isomorphic Applications
	Static-Page Websites
	Micro-Frontends
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. The Frontend Landscape
	Micro-Frontends Applications
	Single-Page Applications
	Isomorphic Applications
	Static-Page Websites
	JAMStack
	Summary

	2. Micro-Frontends Principles
	Monolith to Microservices
	Moving to Microservices
	Introducing Micro-Frontends
	Microservices Principles
	Modeled Around Business Domains
	Culture of Automation
	Hide Implementation Details
	Decentralize All the Things
	Deploy Independently
	Isolate Failure
	Highly Observable

	Applying Principles to Micro-frontends
	Modeled Around Business Domains
	Culture of Automation
	Hide Implementation Details
	Decentralization over Centralization
	Deploy Independently
	Isolate Failure
	Highly Observable

	Micro-frontends are not a silver bullet
	Summary

	3. Micro-Frontend Architectures and Challenges
	Micro-frontends Decisions Framework
	Define Micro-frontends
	Domain-Driven Design with Micro-Frontends
	How to define a bounded context
	Micro-frontends composition
	Routing micro-frontends
	Micro-frontends communication

	Micro-Frontends in Practice
	Zalando
	HelloFresh
	AllegroTech
	Spotify
	SAP
	OpenTable
	DAZN

	Summary

	4. Build and Deploy Micro-Frontends
	Automation Principles
	Keep a Feedback Loop Fast
	Iterate Often
	Empower Your Teams
	Define Your Guardrails
	Define Your Test Strategy

	Developers Experience (DX)
	Horizontal vs. Vertical split
	Frictionless Micro-Frontends blueprints
	Environments strategies

	Version of Control
	Monorepo
	Polyrepo
	A possible future for a version of control systems

	Continuous Integration strategies
	Testing Micro-Frontends
	End-to-End Testing
	Fitness Functions
	Micro-frontends specific operations

	Deployment Strategies
	Blue-Green Deployment versus Canary Releases
	Strangler pattern
	Observability

	Summary

	5. Backend Patterns for Micro-Frontends
	Working with a Service Dictionary
	Implementing a Service Dictionary in a Vertical-Split Architecture
	Implementing a Service Dictionary in a Horizontal-Split Architecture

	Working with an API gateway
	One API entry point per business domain
	A client-side composition, with an API gateway and a service dictionary
	A server-side composition with an API gateway

	Working with the BFF pattern
	A client-side composition, with a BFF and a service dictionary
	A server-side composition, with a BFF and service dictionary

	Using GraphQL with micro-frontends
	The schema federation
	Using GraphQL with micro-frontends and client-side composition
	Using GraphQL with micro-frontends and a server-side composition

	Best practices
	Multiple micro-frontends consuming the same API
	APIs come first, then the implementation
	API consistency
	Web socket and micro-frontends
	The right approach for the right subdomain
	Designing APIs for cross-platform applications

	Summary

	6. Automation Pipeline for Micro-Frontends: A Use Case
	Setting the Scene
	Version of Control
	Pipeline Initialization
	Code-Quality Review
	Build
	Post-Build Review
	Deployment
	Automation Strategy Summary

	Summary

	7. Discovering Micro-Frontends Architectures
	Micro-Frontends Decisions Framework Applied
	Horizontal Split
	Vertical Split

	Architecture Analysis
	Architecture and Trade-offs
	Vertical Split Architectures
	Horizontal Split Architectures

	Summary

	8. From Monolith to Micro-Frontends: A Case Study
	The Context
	Technology Stack
	Platform and Main User Flows
	Technical Goals

	Migration Strategy
	Micro-Frontends Decisions Framework Applied
	Splitting the SPA in Multiple Subdomains
	Technology Choice

	Implementation Details
	Application Shell Responsibilities
	Backend Integration
	Integrating Authentication in Micro-Frontends
	Dependencies Management
	Integrating a Design System
	Sharing Components
	Implementing Canary Releases
	Localization

	Summary

	A. What does the community think about micro-frontends?

