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Preface

Due to the rapid development of technologies, digital information
playing a key role in our daily life. In the past signal processing
appeared in various concepts in more traditional courses where
the analog and discrete components were used to achieve the
various objectives. However, in the century, with the rapid growth
of computing power in terms of speed and memory capacity and
the intervention of artificial intelligent, machine /deep learning
algorithms introduces a tremendous growth in signal processing
applications. Therefore, digital signal processing has become such
a critical component in contemporary science and technology that
many tasks would not be attempted without it. It is a truly
interdisciplinary subject that draws from synergistic developments
involving many disciplines. The developers should be able to solve
problems with an innovation, creativity and active initiators of
novel ideas. However, the learning and teaching has been changed
from conventional and tradition education to outcome based
education. Therefore, this book prepared on a Problem-based
approach and outcome based education strategies. Where the
problems incorporate most of the basic principles and proceeds
towards implementation of more complex algorithms. Students
required to formulate in a way to achieve a well-defined goals

under the guidance of their instructor.

This book follows a holistic approach and presents discrete-time

processing as a seamless continuation of continuous-time signals



and systems, beginning with a review of continuous-time signals
and systems, frequency response, and filtering. The synergistic
combination of continuous-time and discrete-time perspectives
leads to a deeper appreciation and understanding of DSP concepts

and practices.

This book is organized in Ten chapters as follows: Chapter One,
introduces the basic terminology of signals in digital signal
processing. Classification of signals as well as the elementary
signal are explained in detail. Chapter Two describes the concept
of systems and characterize and analyze the properties of Discrete
systems. Chapter Three covers the sampling process, Quantization,
coding and reconstruction of signals. Chapter Four introduces the
properties of discrete signals and systems. Chapter Five introduces
the z-transform and difference equations and its applications.
Chapter Six explains the frequency analysis of Discrete Signals and
Systems, Frequency Response of Systems and convolution via
frequency domain. Chapter Seven devoted for Discrete Fourier
transform. Chapter Eight deals with various methods used in
Digital filters design. Chapter Nine introduces the wavelet
transforms, Multiresolution Analysis and some applications of
discrete wavelet transform. Chapter Ten deals with adaptive signal
processing and covers Wiener filter, LMS algorithms, RLS

algorithms and ends with applications of adaptive filters.

Author
Othman Omran Khalifa



Dedication

To my family: the soul
of my father, the lovely

mother, wife and children



Chapter

Introduction to Signals

(=

Learming Outcomes of this Chapter

After successful completion of this chapter students will be
able to:

1. understand basic terminology in digital signal
processing.

2. differentiate digital signal processing and analog
signal processing.

3. characterize and analyze the properties of Discrete
time signals.

4 describe signals mathematically and understand how
to perform mathematical operations on signals.

5. describe basic digital signal processing application
areas.




1.1 Introduction

Signals are detectable quantities used to convey information about
time-varying physical phenomena. Common examples of signals are
human speech, temperature, pressure, and stock prices. Electrical
signals, normally expressed in the form of voltage or current
waveforms, are some of the easiest signals to generate and
process. Mathematically, signals are modeled as functions of one
or more independent variables. Examples of independent variables
used to represent signals are time, frequency, or spatial
coordinates. Before introducing the mathematical notation used to
represent signals,

Let us consider a few physical systems associated with the
generation of signals. When we want to observe the real world,
we need a measuring instrument connected to an information
system. A basic block diagram of such a set-up is sketched in
figure 1.1. The first component is a sensor or transducer to convert
the physical quantity we are interested in into an electrical signal.
For instance, for sound we need a microphone to convert
variations in air pressure into an electrical signal. For images we
may use a video camera to obtain a video signal which represents

the brightness in the image when it is scanned line by line.

physical _pusensor |__ge.| Analog-ioDigtd | _ge| ormat g o

quan tity Converor bus
emony

sampling lag—] ormat |og from

aenaration bus

Figure 1.1 Basic model of a measuring instrument



The next block represents the conversion of the electrical signal
into digital numbers. This is realized by an Analog-to-Digital
Converter (ADC). The input range of the ADC is divided into a
large number of intervals of equal size The successive intervals
are numbered to represent the quantized input. So, when the
number k is assigned to the quantized signal, the original value v

was in the interval between and + 1:

V=V <Vikg1l

This process is illustrated in figure 1.2 for 8 quantization intervals.
The number of quantization levels is in general a power of 2.
When we have n bits available the number of quantization levels

is 2n. For example, when the number of bits n = 8 there are 256

intervals, and the resolution is said to be 256.

'l:l]"
7
[ _.-"'T-"\..
*IE TN
4 L o T
3 /( 1 I 1 I
~l 2 7 | l | l |
| l | l |
| I 1 | 1 I
1 2 3 4 5 Bt

Figure 1.2 Quantization process of a 3bit ADC with
8 quantization levels. The successive quantized

values of v for t= 1 through 6 are 1,3,5,6,5,4.

An important decision to be made is the number of quantization
levels (so the number of bits) needed to represent the continuous
signal. This is related to the noise (inaccuracy) present in the

sensor signal. The inaccuracy introduced by the quantization



process should be considerably smaller than the inaccuracy in the

sensor signal itself. The details will be discussed in later chapters.



1.2 Signal Classification

A signal is classified into several categories depending upon the
criteria used for its classification. In this section, we cover the

following categories for signals:



1.2.1 Continuity of the independent and dependent variables

i. Continuous-time signal: The time variable is continuous in the
range in which the signal is defined. If the signal variable is
represented by time variable is t such a signal is denoted as x(t).
However, if a signal is defined for all values of the independent
variable it is called a continuous-time (CT) signal. Consider the
signals shown in figure 1.3. Since these signals vary continuously
with time t and have known magnitudes for all time instants, they

are classified as CT signals.

/NN
R/

Figure 1.3 Continuous-time Signal

ii. Discrete-time signal: The time variable is discrete in the range
in which the signal is defined. If the signal variable is x and the
time variable has been sampled at time instances where n = n'T
then the signal is denoted as n ). A discrete time signal is also
referred to as a sampled signal since it is obtained by directly
sampling a targeted signal. It should be noted that the amplitude
of the sampled signal can take any value within a specified
amplitude range, and we therefore say that the amplitude of
discrete-time signal is continuous. if a signal is defined only at
discrete values of time, it is called a discrete time (DT) signal as
shown in figure 1.4. (e.g the value of a stock at the end of each

month)
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Figure 1.4 Discrete-Time Signal

A digital signal: This is a signal that is discrete in time and
discrete in amplitude. It is represented in the same way as a

discrete-time signal.



1.2.2 Predictability of the dependent variables with respect to the

independent variable.

i. A signal is said to be deterministic if the dependent variable is
predictable at any instance of the independent variable time. The
signal is a signal in which each value of the signal is fixed and
can be determined by a mathematical expression, rule, or table.
Because of this, the future values of the signal can be calculated

from past values with complete confidence.
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Figure 1.5 (a) Discrete-Time Signal v.s Original signal

i. A random signal, on the hand, has an unpredictable dependent
variable at any instance of the independent variable time. Such a
signal can only be defined in terms of its statistical properties. a
random signal has a lot of uncertainty about its behavior. The
future values of a random signal cannot be accurately predicted
and can usually only be guessed based on the averages of sets of
signals for example Electrical noise generated in an amplifier of a
radio/TV receiver.

1
|
Figure 1.5 (b) Random Signal

Example 1.1



Consider the CT signal t ) =t ) plotted in Fig. 1.6(a) as a
function of time Discretize the signal using a sampling interval of

T = 0.25 sec., and sketch the waveform of the resulting DT
sequence for the range -2 =< k <

Solution:

By substituting t = kT, the DT representation of the CT signal is
given
by
For the DT signal has the following values:
x[=8] = x(=8T ) = sin(=2x) = 0,x[1] = x(T) = sin(0.257) = 1/42
x[=7] = x(=7T) =sin(—-1757) = 1/v¥2,x[2] = x(2T) = sin(0.517) =1
x[=6] = x(=6T ) =sin(=157) = 1,x[3] = x(3T) = sin(0.757) = 1/¥2

x[5] = x(=5T) = sin(~1.25%) = 12, x[4] = x(4T) = sin(x) =0

x[-4] = x(—4T) =sin(—m) = 0,%[5] =x(5T) = sin(L25x) = —1/42
x[~3] = %(—3T) = sin(~0757) = —1V,x[6] = x(6T) = stn(15%) =—1

x[-2] =x(—2T) = sin(-05n7) = —1,x[7] = x(7T) = sin(175%) =—1v/2
x[-1] =%(-T) = stn(—0257) = —1/¥2,%[B] = x(8T) = sin(2x) =0,
xP] =x(0) =sin(0) = 0.
Plotted as a function of the waveform for the DT signal is shown
in Fig. 1.6(b), where for reference the original CT waveform is
plotted with a dotted line. We will refer to a DT plot illustrated in

Fig. 1.6(b) as a bar or a stem plot to distinguish it from the CT
plot of which will be referred to as a line plot.

H&] = sin{0 23w}

_. \.\/ N :”..71‘1‘..“:11.:"

Figure (a) CT sinusoidal signal (b) DT sinusoidal signal



1.2.3_Dimensionality_of Signals

All the above classifications of digital signals can further be
classified in terms of their Dimensionality. Here, we will only
elaborate this classification using discrete-time sequences and we

will leave the rest to the student.

i. A one-dimensional signal has only one-independent variable and
one-dependent variable. A discrete-time signal n ) is a one-
dimensional signal as it has only one-independent variable,
discrete-time (n), and one-dependent variable, the amplitude of n
).

ii. A two-dimensional signal has two-independent variables and
one-dependent variable. The samples n and m are taken in the
spatial domain. The two-dimensional signal is discrete in the
spatial domain in two-dimensions. The independent variables are
n, m which define the dependent variable n,m ). A good example
is a photographic image where n,m define the spatial location and
n,m ) defines the grey level at the location.

iii. A three-dimensional signal has three-independent variables and
one-dependent variable. A discrete-time signal n,m, ) is a three-
dimensional signal as it has two-independent variable in the
spatial domain ( n,m ) and one-independent variable in the time
domain. The three-independent variables define the one-dependent
variable, the intensity of n,m, ). An example of a three-dimensional
signal is video signal where a signal at spatial location ( n,m ) is

changing with respect to time .



1.2.4 Periodic vs. Aperiodic_Signals

Periodic signals is a function of time that repeat it self with some

period T to satisfies the following:

(1.1)
The smallest T, that satisfies this relationship is called the
fundamental period.
Likewise, a DT signal said to be periodic if it satisfies:

(1.2)

at all time n and for some positive constant N. The smallest
positive value of N that satisfies the periodicity condition, A signal
that is not periodic is called an aperiodic or signal. Figure 1.7

shows examples of both periodic and aperiodic.



Figure Examples of periodic and aperiodic signals.



1.2.5_Causal vs. Anticausal Signals

Causal Signals are signals that are zero for all negative time.
Causality in systems makes the most sense. Causality in signals
doesn’t make that much sense. Causality in a system determines
whether a system relies on future information of a signal . When
talking about “causality” in signals, we mean whether they are

zero to the left of t = o or zero to the right of t = o.

A causal signal is zero for t < o. However, the reason why this
doesn’t really make sense is that if you have a signal, the time t

= 0 can be chosen arbitrarily.

A continuous time signal t ), is said to be casual if : t ) = o for

every t < o, the signal t ) does not start before t = o.

at) ) x{t)
A _~

] P il t

Figure Examples of causal and non causal signals



1.2.6 Even vs. Odd Signals

An even signal is any signal f such that t ) = ). Even signals can
be easily spotted as they are symmetric around the vertical axis.

Sin(t) is an odd signal.

An odd signal, on the other hand, is a signal f such that t ) =t

) is an even signal. Also, a signal can be even, odd or neither.

glt)

VN A

Figure Sin(t) and Cos(t)

Figure Other examples of Even and Odd signals

Using the definitions of even and odd signals, we can show that
any signal can be written as a combination of an even and odd

signal. That is, every signal has an odd-even decomposition.

(1.3)



1.2.7_Energy_vs. Power Signals

Energy Signal is a signal with finite energy and zero power is

called Energy Signal i.e.for energy signal
0<E<owandP =0

Signal energy of a signal is defined as the area under the square
of the magnitude of the The units of signal energy depends on the
unit of the signal.

Some signals have infinite signal energy. In that case it is more
convenient to deal with average signal

For power signals
0<P<owandE = o

Average power of the signal is given by

(1.5)

For a periodic signal the average signal power is



T is any period of the signal.

Periodic signals are generally power signals



1.3_Elementary_Signals

In this section, we define some elementary functions that will be
used frequently to represent more complicated signals.
Representing signals in terms of the elementary functions

simplifies the analysis and design of linear systems.



1.3.1_Unit Impulse Function

The unit impulse (or Dirac delta function) is a signal that has
infinite height and infinitesimal width. However, because of the
way it is defined, it integrates to one. While in the engineering
world, this signal is quite nice and aids in the understanding of
many concepts, some mathematicians have a problem with it
being called a function, since it is not defined at t = o. Engineers
reconcile this problem by keeping it around integrals, in order to
keep it more nicely defined. The unit impulse is most commonly
denoted as .

The most important property of the unit-impulse is shown in the

following integral:

(1.7)

Representation of Unit impulse  $hted Impukse of Amplitudes

Figure Impulse Function representation

However, the unit impulse train is a sum of infinitely uniformly-

spaced impulses and is given by:
5r{r)=i5{f—ni") , 1 an integer

r=—at



a,(1)

b

ZFE-r | 3 OF

-

Figure Unit impulse train



1.3.2 Unit Step Function

The waveforms for the unit step functions t ) and k | are shown
respectively, in figure 1.13. It is observed that the CT unit step
function t ) is piecewise continuous with a discontinuity at t = o

is defined as follows:

(1.8)

However, the DT function has no such discontinuity is defined as

follows:

1 k=0
“["]‘{u k<0

1| =i

=il L

I AEENRNNDE
(LR
I I

1] N

Figure 1.13 Unit step function




1.3.3_Rectangular Pulse Function

The CT rectangular pulse is defined as follows:

(1:9)

While the DT rectangular pulse is defined as follows:

_[1 k| = N
1=lo  |k|<N

rect k
[EH +1

The waveforms for the CT rectangular pulse and DT rectangular

pulse are shown respectively, in figure 1.14.

ik
fi=rerl= rlH —_—
n s =g

[N NN
¥ bt |

'_T. o = w b [

Figure Rectangular pulse



1.3.4_Signum function

The signum (or function, denoted by , is defined as follows:

(1.10)

The DT signum function, denoted by , is defined as follows:

(1.11)

The waveforms for the CT rectangular pulse and DT rectangular

pulse are shown respectively, in figure 1.15.

Ml = sEnidi
| ] L ]

. JHIRIITES
-,

Figure Signum function




1.3.5_Ramp function

The CT ramp function is defined as follows:

(1.12)

Similarly, the DT ramp function r[k] is defined as follows:

(1.13)

The waveforms for the CT ramp function and DT ramp function

are shown respectively, in Figure 1.16.

A = k]

Figure 116 Ramp function



1.3.6 Sinc function

The CT Sinc function is defined as follows:

(1.14)

Similarly, the DT Sinc function is defined as follows:

(1.15)

The waveforms for the CT ramp function and DT ramp function

are shown respectively, in figure 1.17

L o] = sz
=

. , i, ey M [ T vall
L S e S S S B e J UL B N I .| P I B,
. 'II_ = I L 0 i !

L

Figure 1.17 Sinc function



1.3.7_Exponential Function

Exponential signals are extremely important in signals and systems
analysis because they are eigenfunctions of linear time-invariant

systems (more on this later...)

- Real Exponential Signals Continuous-Time

(1.16)

Case a = o: We simply get the constant signal =

Case a > o: The exponential tends to infinity as (here C>0).

& JC{.I'}
c/

w

Case a < o: The exponential tends to zero as (here C > 0).

Yoox(n
\ C

w

- Real Exponential Signals Discrete-Time

(1.17)



There are six cases to consider (apart from the trivial case a =
0O):a=1,a>1,0<ada<1,a<-1,a=-1and -1 <a < o.

Here we assume that C>o.
Case a = 1: We get a constant signal =

Case a > 1: We get a positive signal that grows exponentially.

xn]

11'1T'|"H

Case 0 < a < 1: The signal is positive and decays exponentially.

Case a < —1: The signal alternates between positive and negative

values and grows exponentially.

x[n]

11“” .
I ‘HH ;




Case a = —1: The signal alternates between + C and - C.

Case —1 < a < o: The signal alternates between positive and

negative values and decays exponentially.

[T



Problems

1.1 For each of the following representations:

Establish if the signal is a CT or a DT signal. Specify the
independent and dependent variables. Think of an information
signal from a physical process that follows the mathematical

representation given in (i). Repeat for the representation in (ii).

1.2 Sketch each of the following CT signals as a function of the

independent variable t over the specified range:

i. +/8) for -1 =2;
ii. +/2) for -1 =2;
iii. for —2 <2;
iv. for -1 <2;
v. for -2 <3;

vi. for -2 <3.

1.3 Sketch the following DT signals as a function of the

independent variable k over the specified range:

i. +/8) for -5 <s;
ii. +/2) for —10 <10;

iii. for -5 <s;



iv. +/8)| for -6 <10;
v. for —10 <10;

vi. for =10 <10.

1.4 Determine if the following CT signals are periodic. If yes,

calculate the fundamental period for the CT signals:

. +/2);
i. +/2)|;

ii. +2

Vi. =2

vii. =1 +sin +/3).

1.5 Determine if the following DT signals are periodic. If yes,

calculate the fundamental period for the DT signals:

1.6 Show that the average power of the CT periodic signal ), with

real-valued coefficient is given by



1.7 Show that the average power of the CT periodic signal is
given by

1.8 Determine if the following CT signals are even, odd, or neither
even nor odd. In the latter case, evaluate and sketch the even

and odd components of the CT signals:

2
. = +

1.9 Determine if the following DT signals are even, odd, or neither
even nor odd. In the latter case, evaluate and sketch the even

and odd components of the DT signals:

+
+



Chapter

Introduction to Systems
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able to:

Learming Outcomes of this Chapter

After successful completion of this chapter students will be

characterize and analyze the properties of Discrete
systems.

understand system properties - lineanty, time
invariance, presence or absence of memory, causality,
bounded-input bounded-output stability, and
mnvertibility

perform the process of convolution between signals
and understand its implication for analysis of linear
time-invariant systems.




2.1 _Introduction

The concept of a system is very similar to that of a signal. One
of the most important distinctions to understand is the difference
between discrete time and continuous time systems. A system in
which the input signal and output signal both have continuous
domains is said to be a continuous system. One in which the
input signal and output signal both have discrete domains is said
to be a discrete system. Of course, it is possible to conceive of
signals that belong to neither category such as systems in which
sampling of a continuous time signal or reconstruction from a
discrete time signal take place A system is also a mapping
between two sets; however, both the domain and the range of a
system are sets of signals. A system is thus a rule for producing
a signal in its range, given a signal from its domain.

Recall also that we classified signals according to their domains
and ranges. For example, a signal whose domain is an interval of
integers and whose range is an interval of reals is called a
discrete-time signal. We can similarly classify systems. Specifically,
we will distinguish two important classes of systems. For a
discrete-time (DT) system, both the range and the domain are
sets of DT signals. For a continuous-time (CT) system, both the

range and the domain are sets of CT signals.

A system can be represented as a block diagram, as in Figure
2.1(a). It is important to remember that the input and output are
not single numbers, they are signals. The specification of a range

and a domain are crucial for defining both signals and systems.



In fact, the actual mapping may be identical for a signal f and a
system the two will however always have different ranges and
domains: the range and the domain for f are sets of numbers

while the range and the domain for S are sets of signals.

Input x, aDT Output (or response) y = $[x], a OT

Signal System S s
s °¥F s

Figure 2.1 (a) A generic block diagram for a system

To illustrate this point, let us consider the example of the
discrete-time function “divide by 3", shown in Figure 2.1 (b). The
two objects are completely different: the function “divide by 3”
takes in a single integer number n and produces a single real
number n/3, whereas the system “divide by 3” takes in a DT
signal x and produces another DT signal y such that y(n) = x(n)/3

for all integer values of n.

value f(n) = ny/3 areal number

Argument 11, an integer Function
I:T;) f="divide by3"* [——— >

Figure 2.1 (b) DT signal “divide by 3”

A specific example of this is given in Figure 2.2: supposing that
the input signal is n ) = n ), the output is another signal, n )= n
)/3. In other words, x is a rule for transforming a single number

into another number; the system changes this rule into



®|n) = ooln

System

S ="dvide by I

Figure 2.2 System “divide by 3” for the specific

case when the input signal is x = cos

Another way of thinking about what a system does is that the
whole graph of the input signal x is fed into S, and it produces
the whole graph of the output signal as depicted in Figure 2.3. To
emphasize that the input of S is the whole signal x, we will be
using to denote the output signal y, rather then The latter
notation is also acceptable, provided you keep in mind that what
it really stands for is: S[x(n) for all i.e. that S operates on all the
samples of x Once the system’s response is known, it can be
evaluated at a particular n: is synonymous with and means the n-

th sample of where y is the response of system S to input

i1

i
L}
—_— Swstem S S—
- s .

Figure 2.3 Another view of what a system is.




2.2 Classification of Systems

Every system can be characterized by its ability to accept an input
such as voltage, pressure, etc. and to produce an output in
response to this input. An example is a filter whose input is a
signal corrupted by noise and interference and whose output is
the desired signal. So, a system can be viewed as a process that
results in transforming input signals into output signals.

First, we review the concept of systems by discussing the
classification of systems according to the way the system interacts
with the input signal. This interaction, which defines the model for
the system, can be linear or nonlinear, time-invariant or time
varying, memoryless or with memory, causal or noncausal, stable
or unstable, and deterministic or nondeterministic. We briefly

review the properties of each of these classes.

There are some fundamental properties that many (but not all!)
systems share regardless if they are C-T or D-T and regardless if

they are electrical, mechanical, etc.

An understanding of these fundamental properties allows an
engineer to develop tools that can be widely applied... rather than
attacking each seemingly different problem a new. There are six

basic categories for systems:

i. Linear and non-linear systems.
ii. Time-invariant and time-varying systems.

iii. Systems with and without memory.



iv. Invertible and non-invertible systems.
v. Causal and non-causal systems.

vi. Stable and unstable systems.



2.2.1 Linear and non-linear systems

The class of linear systems is defined by the principle of
superposition. If and are the response of a system when and x2[n]

are the respective inputs, then the system is linear if and only if

T{x,[n] + x[n]} = T{x;[n]} + T{x;[n]} = »[n] + yz[n]

(2.1)

and

(2.2)

where a is an arbitrary constant. The first property is the additivity
property, and the second the homogeneity or scaling property.
These two properties together comprise the principle of

superposition, stated as:
T{ax,[n] + bxz[n]} = aT {xy[n]} + bT {x;[n]}

(2.3)

for arbitrary constants a and This equation can be generalized to

the superposition of many inputs. Specifically, if

(2.4)

then the output of a linear system will be



where is the system response to the input

Example 2.1 Accumulator System
Accumulator System defined by the input—output equation

is called the accumulator system, since the output at time n is
the accumulation or sum of the present and all previous input
samples. The accumulator system is a linear system. Since this
may not be intuitively obvious, it is a useful exercise to go

through the steps of more formally showing this. We begin by

defining two arbitrary inputs and and their corresponding outputs.

ylnl= ) xfk

Jomm

yalnl = ) k]

k==

When the input is , the superposition principle requires the
output for all possible choices of a and We can show this by

starting from Eq. (2.6):



mn

ya[n] = z x3[k]

=i

= ). (@x (k] + bx,[k])

Km =i

Thus, the accumulator system of Eq. (2.7) satisfies the

superposition principle for all inputs and is therefore linear.

Example 2.2 A Nonlinear System

Consider the system defined by

w(n] = log10 (|x[n]])

The system is not linear. To prove this, we only need to find one
counterexample that is, one set of inputs and outputs which
demonstrates that the system violates the superposition principle.

The inputs are a counterexample.

However, the output for is:
log10(1 + 10) = lag10(11) = logl0(1) + logl0(10) = 1.

Also, the output for the first signal is , whereas for the second, .
The scaling property of linear systems requires that, since , if the
system is linear, it must be true that Since this is not so for Eq.

(2.7) for this set of inputs and outputs, the system is not linear.



2.2.2 Time-varying_and time-invariant systems

A time-invariant system (often referred to equivalently as a shift-
invariant system) is a system for which a time shift or delay of
the input sequence causes a corresponding shift in the output
sequence. Specifically, suppose that a system transforms the input
sequence with values into the output sequence with values Then,
the system is said to be time invariant if, for all the input

sequence with values produces the output sequence with values

Therefore, a DT system with is time-invariant if

x[k — ng] = y[k — ng]
for any arbitrary discrete shift

Example 2.3

Accumulator as a Time-Invariant System

Consider the accumulator from Example 2.2. We define To show
time invariance, we solve for both and and compare them to see

whether they are equal. First,

Next, we find

(2.9)



(2.10)

Substituting the change of variables into the summation gives

(2.11)

Since the index k in Eq. (2.8) and the index in Eq. (2.11) are
dummy indices of summation, and can have any label, Eqgs. (2.8)
and (2.11) are equal and therefore The accumulator is a time-

invariant system.

The following example illustrates a system that is not time

invariant.

Example 2.4
A Compressor System defined by the relation

yin] = x[Mn], ~co oo,

(2.12)

with M a positive integer, is called a compressor. Specifically, it
discards — 1) samples out of i.e., it creates the output sequence
by selecting every M th sample. This system is not time invariant.
We can show that it is not by considering the response to the
input . For the system to be time invariant, the output of the

system when the input is x1[n] must be equal to The output that



results from the input can be directly computed from Eq. (2.12) to
be:

(2.13)

Delaying the output y[n] by samples yields

(2.14)

Comparing these two outputs, we see that is not equal to for all

M and and therefore, the system is not time invariant.

It is also possible to prove that a system is not time invariant
by finding a single counterexample that violates the time-invariance
property. For instance, a counterexample for the compressor is the
case when and For this choice of inputs and thus, it is clear that

for this system.



2.2.3_Static and Dynamic Systems

A DT system is said to be static (memoryless) if its output at
instant n = no depends only on the value of its input at the
same instant n = Otherwise, the DT system is Dynamic (said to
have memory). For example, the system specifies by the input-

output relationship:

(2.15)

is static system as the values of at any particular time no
depends only on the values of at that time. Similarly, a resistor is
a memoryless system: with the input x(t) taken as the current and
with the voltage taken as an output y(t), the input-output

relationship of a resistor is:

(2.16)

where R is the resistor. One particularly simple memoryless
system is the identity system, whose output is identical to its
input. That is, the input-output relationship for the continuous-

time identity system is

y(t) = x(t),
and the corresponding relationship in discrete time is

y[n] = x[n].



An example of a discrete-time system with memory is an
accumulator or summer.

(2.17)

and a second example is a delay

(2.18)

A capacitor is an example of a continuous-time system with

memory, since if the input is taken to be the current and the
output is the voltage, then

(2.19)

where C is the capacitance. Roughly speaking, the concept of
memory in a system corresponds to the presence of a mechanism
in the system that retains or stores information about input
values at times other than the current time.



2.2.4_lInvertible and non-invertible systems

A system is said to be invertible if distinct inputs lead to distinct
outputs. Said another way, a system is invertible if by observing

its output; we can determine its input. For the discrete-time case,
we can construct an inverse system which when cascaded with the
original system yields an output z[n] equal to the input x[n] to the
first system. Thus, the series interconnection in Figure 2.4 has an
overall input — output relationship that is the same as that for

the identity system.

e v ] —— z[n] =x [n]
! rigin: - YEIse .
> Tl System

Svslem

Figure 2.4

For example, the difference between two successive values of the
output is precisely the last input value. Therefore, in this case, the

inverse system is:

(2.20)

The concept of invertibility is important in many contexts. One
example arises in systems for encoding used in a wide variety of
communications applications. In such a system, a signal that we
wish to transmit is first applied as the input to a system known
as an encoder. There are many reasons for doing this, ranging

from the desire to encrypt the original message for secure or



private communication to the objective of providing some
redundancy in the signal (for example, by adding what are known
as parity bits) so that any errors that occur in transmission can
be detected and, possibly, corrected. For lossless coding, the input
to the encoder must be exactly recoverable from the output; i.e.,

the encoder must be invertible.



2.2.5_Causal and non-causal systems

A system is causal if the output at any time depends only on
values of the input sequence at the present and past time. This

implies that if for . That is, the system is nonanticipative.

Example 2.5
The Forward and Backward Difference Systems The system defined
by the relationship

(2.271)

is referred to as the forward difference system. This system is not
causal, since the current value of the output depends on a future
value of the input. The violation of causality can be demonstrated
by considering the two inputs and and their corresponding
outputs [n] = 8[n] - d[n - 1] and for all n. Note that [n] = for ,
so the definition of causality requires that [n] = [n] for n =< o,
which is clearly not the case for n = o. Thus, by this
counterexample, we have shown that the system is not causal.

The backward difference system, defined as

) (2.22)

has an output that depends only on the present and past values
of the input. Because depends only on and , the system is causal
by definition.



Example 2.6

When checking the causality of a system, it is important to look
carefully at the input -output relation. To illustrate some of the
issues involved in doing this, we will check the causality of two

particular systems.

The first system is defined by

(2.23)

Note that the output at a positive time no depends only on the
value of the input signal x[- no] at time , which is negative and
therefore in the past of no. We may be tempted to conclude at
this point that the given system is causal. However, we should
always be careful to check the input-output relation for all times.
In particular, for n < 0, e.g. n = —4, we see that —4] = 4], so that
the output at this time depends on a future value of the input.
Hence, the system is not causal.

It is also important to distinguish carefully the effects of the
input from those of any other functions used in the definition of

the system. For example, consider the system

(2.24)

In this system, the output at any time t equals the input at that
same time multiplied by a number that varies with time.

Specifically, we can rewrite eq. (2.24) as

y(t) = x(t)g(t),



where is a time-varying function, namely Thus, only the current
value of the input x(t) influences the current value of the output ,

and we conclude that this system is causal (and, in fact,
memoryless).



2.2.6 Stable and unstable systems

Stability is another important system property. Informally, a stable
system is one in which small inputs lead to responses that do
not diverge.

Throughout this text, we specifically use bounded-input
bounded-output stability. A system is stable in the bounded-input,
bounded-output (BIBO) sense if and only if every bounded input
sequence produces a bounded output sequence. The input x[n] is

bounded if there exists a fixed positive finite value Bx such that

for all n.

Stability requires that, for every bounded input, there exists a fixed

positive finite value By such that

for all n.

It is important to emphasize that the properties we have defined
in this section are properties of systems, not of the inputs to a
system. That is, we may be able to find inputs for which the
properties hold, but the existence of the property for some inputs
does not mean that the system has the property. For the system
to have the property, it must hold for all inputs. For example, an
unstable system may have some bounded inputs for which the
output is bounded, but for the system to have the property of
stability, it must be true that for all bounded inputs, the output is
bounded. If we can find just one input for which the system

property does not hold, then we have shown that the system does



not have that property. The following example illustrates the

testing of stability for several of the systems that we have defined.

Example 2.7 Testing for Stability or Instability

Testing for Stability or Instability The system of square system is
stable. To see this, assume that the input is bounded such that

for all Then . Thus, we can choose and prove that is bounded.

Likewise, we can see that the system defined in Example 2.2 is
unstable, since for any values of the time index n at which , even
though the output will be bounded for any input samples that are
not equal to zero.

The accumulator, as defined in Example 2.3 is also not stable.
For example, consider the case when which is clearly bounded by

. For this input, the output of the accumulator is

mn

yinl = ) ulk]
k=—co
_ [0, n<=10
B {(n +1), n=0

There is no finite choice for By such that for all n; thus, the

system is unstable.



2.3_lmpulse Response and Convolution

We now take a closer look at LTI systems in the input-output
form and develop a method to compute the output of an LTI
system, given its input. Specifically, we will see that the output is
the convolution of the input with the impulse response. Our plan

for deriving this fact is:

1. Write the input signal as a linear combination (weighted sum)
of shifted unit impulse signals.
2. Use linearity to write the response as the sum of responses to

shifted impulses.

Use time-invariance to find the response to a shifted impulse.
Specifically, the response of a time-invariant system to signal is

the unit impulse response.




Figure 2.5. The signal is represented as a sum of impulse signals.

Let us begin with signal , defined for all integer As shown in

Figure. 1.15, this signal can be represented as follows:
x(n) = x(=1)5-1(n) + x(0)&(n) + x(1)& (n),

where is the unit impulse shifted by i.e. for all integer n and
Similarly, any arbitrary signal can be represented as the following

weighted sum of shifted impulse signals:
%) =4 2D)a() + *(DE() + 2Olm) + HDE) + XDl + ..

for all integer n.

If signal x is put through a linear system we can use the above
equation and the linearity of the system to write the response y

of the system as follows:

y(n) = S[x](n)

= 8Lt 2(~2)6_3 + x(—1)_, + x(0)8 + x(1)6; + x(2)6z +...](")
linearity =...+x(=2)5[8-2](n) + x(=1)S5[E1](n) + x(0)S[Fo](n)
+x(1)S[6,]() + x(2)5[8,](n) +.-

= ) x00S[81)

lp=—on

= Fhe— o (k) (n)

(2.25)

where we denoted by the system’s response to the shifted impulse

If system in addition to being linear, is time-invariant, then;

for all integer n and k,



where h is the response to the unit impulse . Substituting this
into Eq. (2.25) yields:

ym) = D x(k)h(n - k)

k==

which is the formula for the discrete-time convolution. We will use
the following notation to indicate that signal y is the convolution
of signal x with signal The sample of y is then

We have thus shown that the output of a discrete-time LTI
system is the discrete time convolution of the input and the

impulse response.

Example 2.8

Consider the following input-output specification of a system:
for all integer n:
Let us find the response to

The impulse response h of the system is the response to the unit

1, n=10,

h(ﬂ]zﬁ'(ﬂ]+%5(ﬂ—1)= % n=1,



Figure 2.6. lllustration to Example 2.7: the convolution of
h and x is a weighted linear combination of shifted versions

of with the weights given by the samples of

Therefore, the response to x is:

yn) = EEox(k)hin = k) = x(=1)hin + 1)+ x(0h(n) + x(1DAh(n= 1),

for all integer n.

We can evaluate this convolution by directly calculating the linear
combination of shifted versions of We start by plotting as a

function of for each and proceed as shown in Figure 2.6.

A more convenient method is illustrated in Figure 2.7. It
involves plotting signal as a function of and plotting signals as a
function of k, for each n. Here is the basic procedure for

calculating the sample of

(1) flip

(2) for a fixed n, shift h by

(3) for the same fixed multiply by , for each
(

4) Sum the products over
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Figure 2.7. Evaluating the convolution sum of Example 1.6.

Both methods of course lead to the same result:

1 n=-1,2

2 '
y(n) = ;_" n=01

0, otherwise

Example 2.9
To evaluate the convolution of signals and we substitute the two

expressions into the definition of convolution:



o

y(n)=x+h(n) = Z 2'|“|u[n -k

km=—o

i}
- Z 9-1K|

k=m—n

For , the summation is only over nonpositive values of k and
therefore |k| can be replaced with

ym) = i 29 = i 2

k== k==

@ o ) I
- Z = Z [%Jm = 1[311;2

-1 -1

= 2™ forany integer n < 0,

where we substituted m = When n > o, the summation can be
broken into two pieces: one for nonpositive values of k (i.e. for k

from to o) and the other for positive values of k (i.e. for k from
1 to n):

k=—w k=—1

n

L= 2]
=) zm=) 2
m~0

k=1
1 1
__t @' -
T1-1/2 1-1/2

=3 = 27", for any integern > (.

Putting together the two cases,



_f2n+, n<0
y@) = {3 —2" n>0



Problems

For each of the following systems, determine whether the system
is (1) stable, (2) causal, (3) linear, (4) time invariant, and (5)

memoryless:

Vi.

Vil.

viil.

Determine the output of an LTI system if the impulse response

and the input are as follows:



x[n] = u[n]and h[n] = a™u[-n — 1], witha > 1.

V.
h[n] = 2"u[-n — 1] and x[n] = u[n] —u[n — 10].
Use your knowledge of linearity and time invariance to minimize

the work in parts (ii)—(iv).

Consider the input sequence applied to a DT system modelled

with the following input—output relationship:
ylk + 1] = 2y[k] = x[k],

and ancillary condition .

i. Determine the response by iterating the difference equation for .
ii. Determine the zero-state response

iii. Calculate the zero-input response
iv. Verify that
Calculate the convolution for the following pairs of sequences:

I.

k] = ufk + 2] —ufk — 3],  x[k] = u[k + 4] — u[k - 5];
i

x k] = 055ufk], xa[k] = 0.8% uk — 5J;

i



x,[K] = T*ul—k + 2], x[k] = 0.45 u[k — 4];

V.

xfk] = 0.65ufk], x3[K] = sin(mk/2u[—k];
V.

x,[k] = 0.5, x,[k] = 0.8%1|,

2.5. Consider a discrete-time system with input and output The

input-output relationship for this system is
y¥[n] = x[n]x[n — 2].
i. Is the system memoryless?
ii. Determine the output of the system when the input is where A

is any real or complex number.

iii. Is the system invertible?

Consider a discrete-time system with input and output related by

g

yinl = ) xlkl

k=f=mg

where is a finite positive integer.

i. Is this system linear?

ii. Is this system time-invariant?

iii. If is known to be bounded by a finite integer B (i.e., for all it
can be shown that is bounded by a finite humber C. We conclude

that the given system is stable. Express C in terms of Band .

2.7 An LTI system is described by the input—output relation



y[n] = x[n] + 2x[n — 1] + x[n — 2].

i. Determine the impulse response of the system.

ii. Is this a stable system?

iii. Determine the frequency response of the system. Use
trigonometric identities to obtain a simple expression for

iv. Plot the magnitude and phase of the frequency response.
v. Now consider a new system whose frequency response is

Determine , the impulse response of the new system.

2.8 Consider a system with input x[n] and output y[n]. The input-
output relation for the system is defined by the following two

properties:

i. Determine whether the system is time invariant.

ii. Determine whether the system is linear.

iii. Assume that the difference equation (property 1) remains the
same, but the value is specified to be zero. Does this change

your answer to either part or part



Chapter

Sampling,_Quantization

and Reconstruction

(=

Learning Outcomes of this Chapter

After successful completion of this chapter students will be
able to:

1. convert an analog signal to a discrete-time sequence
via sampling

2. construct an analog signal from a discrete-time
sequence.

3. understanding the conditions when a sampled signal
can uniquely present its analog counterpart.

4. understand the Nyquist sampling theorem and the
process of reconstructing a continuous-time signal
from 1its samples.




3.1 _Introduction

Often the domain and the range of an original signal are modeled
as continuous. That is, the time (or spatial) coordinate t is
allowed to take on arbitrary real values (perhaps over some
interval) and the value of the signal itself is allowed to take on
arbitrary real values (again perhaps within some interval). As
mentioned previously in Chapter one, such signals are called
analog signals. A continuous model is convenient for some
situations, but in other situations it is more convenient to work
with digital signals i.e., signals which have a discrete (often finite)
domain and range. The process of digitizing the domain is called
sampling and the process of digitizing the range is called
quantization. Most devices we encounter deal with both analog
and digital signals. Digital signals are particularly robust to noise,
and extremely efficient and versatile means for processing digital
signals have been developed. On the other hand, in certain
situations analog signals are sometimes more appropriate or even
necessary. For example, most underlying physical processes are
analog (or at least most conveniently modeled as analog),
including the human sensorimotor systems. Hence, analog signals
are typically necessary to interface with sensors and actuators.
Also, some types of data processing and transmission are most
conveniently performed with analog signals. Thus, the conversion
of analog signals to digital signals (and vice versa) is an

important part of many information processing systems.



Before we sample any signal, we have to filter the signal to
limit the maximum frequency of the signal as it affects the
sampling rate. Filtering should ensure that we do not distort the
signal, ie remove high frequency components that affect the signal
shape. Sampling is simply the process of measuring the value of
a continuous-time signal at certain instants of time. Typically,
these measurements are uniformly separated by the sampling
period, . If is the input signal, then the sampled signal, is as
follows: . A critical question is the following: What sampling
period, , is required to accurately represent the signal To answer
this question, we need to look at the frequency domain

representations of and



3.2 Signal Sampling

The sampling results in a discrete set of digital numbers that
represent measurements of the signal - usually taken at equal
intervals of time. Note that the sampling takes place after the
hold. This means that we can sometimes use a slower Analogue
to Digital Converter (ADC) than might seem required at first sight.
The hold circuit must act fast - fast enough that the signal is not
changing during the time the circuit is acquiring the signal value -
but the ADC has all the time that the signal is held to make its
conversion. A gain, note that at this point (after sampling), our
signal is not yet completely digital because the values can still
take on any number from a continuous range - that’'s why we use
the terms discrete-time signal here and not digital signal. Figure
3.1 illustrates the process of sampling a continuous sinosoid.
Although it has been drawn in the right plot, the underlying
continuous signal is lost in this process - all we have left after
the sampling is a sequence of numbers. Those numbers
themselves are termed samples in the DSP community - each
such number is a sample in this terminology. This is different
from what a musician usually means when talking about samples
- musicians refer to a short recording of an acoustic event as

sample.

Figure 3.1 Sampling a sinosoid



The samples shown are equally spaced and simply pick off the
value of the underlying analog signal at the appropriate times. If
we let T denote the time interval between samples, then the times
at which we obtain samples are given by nT where Thus, the
discrete-time (sampled) signal is related to the continuous-time
signal by
x[n] = x(n).

It is often convenient to talk about the sampling frequency . If
one sample is taken every T seconds, then the sampling frequency
is Hz. The sampling frequency could also be stated in terms of

radians, denoted by . Clearly,

The type of sampling mentioned above is sometimes referred

|"

to as “ideal” sampling. In practice, there are usually two non-ideal
effects. One effect is that the sensor (or digitizer) obtaining the
samples can't pick off a value at a single time. Instead, some
averaging or integration over a small interval occurs, so that the
sample actually represents the average value of the analog signal
in some interval. This is often modeled as a convolution —
namely, we get samples of , so that the sampled signal is In this
case, represents the impulse response of the sensor or digitizer.
Actually, sometimes this averaging can be desirable. For example,
if the original signal is changing particularly rapidly compared to
the sampling frequency or is particularly noisy, then obtaining
samples of some averaged signal can actually provide a more
useful signal with less variability. The second non-ideal effect is
noise. Whether averaged or not, the actual sample value obtained

will rarely be the exact value of the underlying analog signal at



some time. Noise in the samples is often modeled as adding

(usually small) random values to the samples.

Although in real applications there are usually non-ideal effects
such as those mentioned above, it is important to consider what
can be done in the ideal case for several reasons. The non-ideal
effects are often sufficiently small that in many practical situations
they can be ignored. Even if they cannot be ignored, the
techniques for the ideal case provide insight into how one might
deal with the non-ideal effects. For simplicity, we will usually

assume that we get ideal, noise-free samples.



3.3_Interpolation

Whereas the continuous signal is defined for all values of our
discrete-time signal is only defined for times which are integer
multiples of To reconstruct a continuous signal from the samples,
we must somehow ’'guess’, what value the signal could probably
take on in between our samples. Interpolation is the process of
'guessing’ signal values at arbitrary instants of time, which fall - in
general - in between the actual samples. Thereby interpolation
creates a continuous time signal and can be seen as an inverse
process to sampling. Ideally, we would want our interpolation
algorithm to ’'guess right’ - that is: the continuous signal obtained
from interpolation should be equal to the original continuous
signal. The crudest of all interpolation schemes is piecewise
constant interpolation - we just take the value of one of the
neighbouring samples as guessed signal value at any instant of
time in between. The reconstructed interpolated function will have
a stairstep-like shape. The next better and very popular
interpolation method is linear interpolation - to reconstruct a
signal value we simply connect the values at our sampling
instants with straight lines. Figure 3.2 shows the reconstructed

continuous signals for piecewise constant.
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3.4_The Sampling_Theorem

An analog signal can be reconstructed from its sampled values
un-erroneously, if the sampling frequency is at least twice the
bandwidth of the analog signal. Suppose we sample a band-
limited signal and choose the sampling frequency such that . The
spectra of the continuous-time signal and of the sampled signal
are exemplified in Figure 3.3. Notice that in this case the replicas
in the sampled signal do not overlap. This is the principle of the

Nyquist rate of sampling.
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(b)
Figure 3.3 Sampling of a band limited signal above the Nyquist

(a) Fourier transform of the continuous-time signal; (b) Fourier

transform of the sampled signal.

The Nyquist sampling or the critical sampling rate for a band
limited signal is mathematically defined by Equation 3.1, where is

the maximum frequency of the signal.



(3.1)

By definition, if a band limited signal is sampled at a rate equal
to or greater than the Nyquist sampling frequency . Then the
shape of the Fourier transform of the sampled signal in the range
[-m, m] is identical to the shape of the Fourier transform of the
given signal, except for multiplication of the frequency axis by a
factor T, and multiplication of the amplitude axis by a factor 1 as

shown in Figure 3.3(b).



3.5_Aliasing

Aliasing is caused by sampling at a rate lower than that of the
Nyquist frequency for a given signal. It is an effect that occurs
when a signal is sampled at too low a frequency. What happens
is that the higher frequency components of the signal cannot be
captured because of the low sampling frequency, which results in
overlap in the spectrum.

Now let us consider the case of a band limited signal when it
is sampled at a lower rate than the Nyquist frequency. As an
example, Figure 3.4 illustrates the case of sampling at . Here, the
shape of the Fourier transform of the sampled signal in the range
[-m, ] becomes distorted. Distortion occurs in this frequency
range because two adjacent replicas overlap and their

superposition give rise to the shape illustrated by Figure 3.4 (b).
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Figure Sampling of a band limited signal below the Nyquist rate:
(a) Fourier transform of the continuous-time signal; (b) Fourier

transform of the sampled signal.



3.6 _Antialiasing_Prefilters

An anti-aliasing filter is a filter used before a signal sampler to
restrict the bandwidth of a signal to satisfy the sampling theorem
approximately or completely over the band of interest. However,
aliasing occurs when signals are sampled too infrequently, giving
the illusion of a lower frequency Since most signals are not they
must be made so by lowpass filtering before sampling.

To sample a signal at a desired rate fs and satisfy the
conditions of the sampling theorem, the signal must be prefiltered
by a lowpass analog filter, known as an antialiasing prefilter. The
cutoff frequency of the prefilter, fmax, must be taken to be at
most equal to the Nyquist frequency , that is, . This operation is
shown in figure 3.5.

The output of the analog prefilter will then be bandlimited to
maximum frequency fmax and may be sampled properly at the
desired rate . The spectrum replication caused by the sampling

process can also be seen in figure 3.5.

inpul specium prefiliered spectum

i replicated
] .
[ ¥ ge=prefilter I"% pectum
d f I 'I-r_l'
0 {12 J.,r;-?' S 0
Xt andlog i) sampler anT)
lowpass f————m o ——®= [0 ISP
-.t.1-.1lm prefiller h:unjl:miltd Quanizer dipital
sipnal sipnal sjpnal
atoff £ = F17 rate f,
bl - =JiL

Figure Antialiasing prefiter.



It should be emphasized that the rate fs must be chosen to be
high enough so that, after the prefiltering operation, the surviving
signal spectrum within the Nyquist interval contains all the

significant frequency components for the application at hand.

Consider in a hi-fi digital audio application, we wish to digitize a
music piece using a sampling rate of 40 kHz. Thus, the piece
must be prefiltered to contain frequencies up to 20 kHz. After the
prefiltering operation, the resulting spectrum of frequencies is
more than adequate for this application because the human ear

can hear frequencies only up to 20 kHz.



3.7_Types_of Sampling

Sampling is the processes of converting continuous-time analog
signal, into a discrete-time signal by taking the “samples” at
discrete-time intervals. Sampling analog signals makes them
discrete in time but still continuous valued. A sample refers to a
value or set of values at a point in time and/or space. A sampler
is a subsystem or operation that extracts samples from a
continuous signal.

A theoretical ideal sampler produces samples equivalent to the
instantaneous value of the continuous signal at the desired points.

Typically, discrete-time signals are formed by periodically
sampling a continuous-time signal: The sampling interval is the
sampling period, and is the sampling frequency in samples per

second. Figures 3.7, 3.8 show the sampling process.

x(f) e K o x[k]

¥ 1
Jo = samples/second

0

Figure 3.7 Periodic Sampling
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Figure Sampling Process

There are three types of sampling techniques

— Impulse (ideal) Sampling



— Natural Sampling

— Sample and Hold operation



3.7.1_Impulse (Ideal)_Sampling

Impulse sampling can be performed by multiplying input signal
with impulse train (comb function). Consider the instantaneous

sampling of the analogue signal

o(t)

x (1) %—Aﬂﬂﬂiﬁ(ﬂ

Figure 3.9 Ideal sampling

Impulse sampling can be performed by multiplying input signal
with impulse train of period ‘T. Here, the amplitude of impulse
changes with respect to amplitude of input signal x(t). The output
of sampler is given by

x,(0)=x(t) Y 8(t-nT)

Figure Ideal sampling process

y(t) = x(t) x y(t) = x(t) x impulse train
= x(t) XEia-ed (t —nT)

¥(©) =y () = ) Sx(nt)(t—nT)

m—



To get the spectrum of sampled signal, consider Fourier transform
of equation 1 on both sides

1 oo
Yiw)= T Z X{w — nwy)

Tim—O0

This is called ideal sampling or impulse sampling. You cannot use
this practically because pulse width cannot be zero and the

generation of impulse train is not possible practically.



3.7:2 Natural Sampling

Natural sampling is similar to impulse sampling, except the
impulse train is replaced by pulse train of period i.e. you multiply

input signal to pulse train

as shown below.

[ I -

Y T TS
T

Figure Natural sampling

The output of sampler is

(3.20)

The exponential Fourier series representation of can be given as

(3.21)

Where

Substitute value in equation (3.20)
p(t) =X E%P{nu.'h]c-"“”"*

— 1 e JJrid,
T E:u » 'Pl[nw-‘i )tjﬂ :



Substitute in equation (3.21)

y(t) = =(t) x p(t)
=z(t) x $5 _ Plnw,) et

y(t) = I P(nw,) z(t) et

TE=—00

To get the spectrum of sampled signal, consider the Fourier

transform on both sides.
P.T[y(t)] = F.TIES2 oo Plnw,) a(t) 7]

= 5% P(nw,) F.T [z(t) e/

According to frequency shifting property
F.T[z(t) &™) = X[w — nw,]

s Y] = $E2  Plnw,) Xlw — nw,]



Sample and hold is the most popular sampling method. it
involves two operations: Sample and hold. During transmission,
noise is introduced at top of the transmission pulse which can be

easily removed if the pulse is in the form of flat top.

Here, the top of the samples are flat i.e. they have constant
amplitude. Hence, it is called as flat top sampling or practical
sampling. Flat top sampling makes use of sample and hold

circuit.

(1) 1 Vi)

‘ ‘ ‘ ‘1
e s =

T

Figure Flat Top sampling

Theoretically, the sampled signal can be obtained by convolution
of rectangular pulse p(t) with ideally sampled signal say as shown

in figure 3.13.

(3-22)

Ll

Figure Sampled Signal




To get the sampled spectrum, consider Fourier transform on both

sides for equation (3.20)

Yw] = F.T[P(t) x ys(t)]

By the knowledge of convolution property,

Y] = P(w) ¥5(w)

Here

P(w) =T5a(%F) = 2sinwT/w

Example 3.1

Consider the following signal

x(t) = 3cos(100mt)

i. Find the minimum sampling rate required to avoid aliasing.
ii. If Hz, What is the discrete-time signal after sampling?

iii. If , What is the discrete-time signal after sampling?

iv. What is the frequency F of a sinusoidal that yields sampling

identical to obtained in part iii?

Solution
i. Given, , therefore, Hz
The minimum sampling rate

is Hz



and the discrete-time signal is

100w 1
x(n) = x.(nT) = Emmn = Jecosmn = 3cos(2n (i)n

ii. If Hz, the discrete-time signal is

_ 100m mo_ 1
x(n) = 3cos 200 = 3cos i 33&521:;11

iii. If Hz, the discrete-time signal is

L

x(n) = 3cos 75

n =3ms;£n =3ms(21:—? n =3cas21rin

iv. For the sampling rate, Hz in part iii. So, the analog sinusoidal
signal is



3.8 Quantization

It can be defined that the transformation of a signal into one of
a set of prescribed values. in fact it is objective is to make the
signal amplitude discrete. The output of a sampler is still
continuous in amplitude.

There are two types of Quantization - Uniform Quantization
and Non-uniform Quantization. The type of quantization in which
the quantization levels are uniformly spaced is termed as a
Uniform Quantization. The type of quantization in which the
quantization levels are unequal and mostly the relation between
them is logarithmic, is termed as a Non-uniform Quantization.
There are two types of uniform quantization. They are Mid-Rise
type and Mid-Tread type. The following figures represent the two

types of uniform quantization.

Figure 3.14(a) shows the mid-rise type and figure 3.14 (b)

shows the mid-tread type of uniform quantization.

« The Mid-Rise type is so called because the origin lies in the
middle of a raising part of the stair-case like graph. The
quantization levels in this type are even in number.

« The Mid-tread type is so called because the origin lies in the
middle of a tread of the stair-case like graph. The quantization
levels in this type are odd in number.

« Both the mid-rise and mid-tread type of uniform quantizers are

symmetric about the origin.



waorigin.

Figure 3.14 input-output characteristics of the

two types of the uniform quantizers

Figure 3.14 shows the input-output characteristics of the two types
of the uniform quantizer. In midtread type quantizer, the origin
lies in the middle of the tread of the staircase like graph. In
midrise type, the origin the graph lies in the middle of a rising
part of the staircase like graph. It can be noticed that, both

midtread and midrise graphs are symmetric about the origin.



3.8.1 Quantization Error

For any system, during its functioning, there is always a difference
in the values of its input and output. The processing of the
system results in an error, which is the difference of those values.
The difference between an input value and its quantized value is

called a Quantization Error as shown in figure 3.15.

Figure 3.15 Quantization error

A Quantizer is a logarithmic function that performs
Quantization rounding off the value rounding off the value. An
analog-to-digital converter (ADC) works as a quantizer. When a
signal is quantized, an error is introduced and some information
is lost. The difference between the original sample value and the
rounded value is called the quantization error. The process of
quantization is to approximate to nearer level of voltage/current.
Due to this approximation, there a random amount of difference
occurs between actual and quantized value, named as quantization

error as shown in figure 3.16.
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Figure 3.16 The difference between actual and quantized value,

named as quantization error

The quantization operation introduces an error, because the
infinite amount of different input amplitudes is mapped to a finite
set of discrete quantization levels. The error between the
quantizer’s input and output is termed Quantization noise
nq(t)nq(t). When denoting with s(t)s(t) the input signal and
sq(t)sq(t) the output signal of the quantizer, the following relation
holds:

Quantization operation
Xq (£) = Q[x(®)]

Expression of quantization noise

ng(t) =x(t) — x4(t)
%q(t) = x(t) — ng(2).

Looking at the last equation, the quantization noise can indeed be
understood as a noise on top of the continuous-amplitude signal,

hence its name. Let us create a sine wave and sent it through



the quantizer and let’s look at the quantized signal and the
quantization noise.

signal to quantization noise ratio is given as:
Average Power{x}
Average Power{ng,

(SNR), =



3.9_ldeal Reconstruction

Reconstruction refers using just the samples to return to the
original continuous-time signal. Ideal reconstruction refers to exact
reconstruction of from its samples so long as the sampling
theorem is satisfied. In the extreme case example, this means that
a sinusoid having frequency just less than, can be reconstructed
from samples taken at rate. The block diagram of an ideal

discrete-to-continuous (D-to C) converter is shown in figure 3.17.
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Figure 3.17 Block diagram of a practical reconstruction system

In very simple terms the D-to-C performs interpolation on the
sample values as they are placed on the time axis at spacing

second

Consider placing the sample values directly on the time axis as

shown in figure 3.18.
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Figure 3.18

The D-to-C places the values on the time axis and then must
interpolate signal waveform values in between the sequence
(sample) values. Two very simple interpolation functions are zero-
order hold and linear interpolation With zero-order hold each
sample value is represented as a rectangular pulse of width and
height

Real world digital-to-analog converters (DACs) perform this type of
interpolation. With linear interpolation the continuous waveform
values between each sample value are formed by connecting a line

between the values as shown in figure 3.19.
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Figure 3.19

Both cases introduce errors, so it is clear that something better
must exist

For D-to-C conversion using pulses, we can write

y(t) = z y[nlp(t — nT,)

T =00



where is a rectangular pulse of duration

Therefore, the complete sampling and reconstruction system
requires both a C-to-D and a D-to-C

xla] Ciir=ct vl deal i1}
Connection | - [efn-0 -

DEP Systern Converter

[y vl = 17l t

Figure 3.20 A complete sampling and reconstruction system

With this system we can sample analog signal to produce and at
the very least we may pass directly to then reconstruct the

samples into



3.10 Signal Reconstruction

The process of reconstructing a continuous time signal x(t) from
its samples is known as interpolation. In the sampling theorem
we saw that a signal x(t) band limited to D Hz can be
reconstructed from its samples. This reconstruction is
accomplished by passing the sampled signal through an ideal low
pass filter of bandwidth D Hz

The reconstruction process consists of replacing each sample by a
sinc function, centered at the time of the sample and scaled by
the sample value times and adding all the functions so created.

Suppose the signal is sampled at exactly Nyquist rate Then and .

The requirement cannot be met, in this case we must allow which
means that . This will work till the signal's spectrum does not
have an impulse at fm. (If there is an impulse at fm, it will be
aliased in the sampling process). In this limiting case, the

interppolation is described by the simpler expression.

If a sampled signal has been obtained from a band-limited signal
by sampling at the Nyquist rate (or higher), the signal can be
perfectly reconstructed using the formula:

(3-23)



Interpolation consists of simply of multiplying each sinc function
by its corresponding sample value and then adding all the scaled

and shifted sinc functions.

However, this represents a filter that has an infinite impulse

response, which is therefore non-causal.

Figure 3.21 Impulse response of perfect reconstruction filter

In practice, therefore, it is usual to use the “zero-order hold

“reconstruction filter which has the formula:



Problems

3.1 Consider a sinusoidal signal

x(t) = 3cos(wt + 0.17)
and let us sample it at a frequency

i. Determine and expression for the sampled sequence and
determine its Discrete Time Fourier Transform .

ii. Determine

iii. Recompute from the and verify that you obtain the same

expression as in

3.2 In the system shown, let the sequence be
¥[n]=2 cos{(03m + = /4.

and the sampling frequency be Fs = 4 kHz. Also let the low pass
filter be ideal, with bandwidth Fs/2.

s(1)
] ZOH +| rpr b= V(1)

|

F

]

i. Determine an expression for Also sketch the frequency spectrum
(magnitude only) within the frequency range ;

ii. Determine the output signal

3.3 We want to digitize and store a signal on a CD, and then

reconstruct it at a later time. Let the signal be



x(t)=2 cos(500at — 3sin(10004t) +cos(1500xt)

and let the sampling frequency be Hz.

i. Determine the continuous time signal after the reconstruction.
ii. Notice that is not exactly equal How could we reconstruct the

signal exactly from its samples

3.4 A DSP system for processing sinusoidal signals in the
frequency range o Hz to 4 kHz samples at 20 kHz with an 8-bit
A/D converter. If the input signal is always amplified to such a
level that the full dynamic range of the A/D converter is used,
estimate the SQNR that is to be expected in the frequency range
o to 4 kHz. How would the SQNR be affected by decreasing the
sampling rate to 10 kHz & replacing the 8-bit A/D converter by a
10 bit device?

3.5 In the system shown below, determine the output signal for
each of the following input signals Assume the sampling frequency
Fs = 5 kHz and the Low Pass Filter (LPF) to be ideal with
bandwidth Fs / 2:



) ]

Z0OH [ EF ! '{-ir J

3.6 Instead of using sample and hold (staircase) digital to
analogue reconstruction, a system reconstructs analogue output
signals using pulses of the same height but only seconds wide &
zero in between. This makes the pulses a little bit more like
impulses and reduces the ‘sample & hold’ roll-off effect. Using
pulses of width makes the pulses even more like impulses and
reduces the sample & hold effect still further. Is this a good way

of more accurately converting from digital to analogue form?

3.7 In the system below, let the sampling frequency be Fs = 10
kHz and the digital filter have difference equation

¥[n]=0.25(x[n] + x[n — 1] + x[n —2] + x[n — 3])

Both analog filters (Antialiasing and Reconstruction) are ideal
Low Pass Filters (LPF) with bandwidth Fs / 2.
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a. Sketch the frequency response of the digital filter (magnitude
only);

b. Sketch the overall frequency response of the filter, in the analog
domain (again magnitude only);

c. Let the input signal be

d. Determine the output signal

3.8 Assuming that a 4-bit ADC channel accepts analog input

ranging from o to g5 volts, determine the following: a. number of
quantization levels; b. step size of the quantizer or resolution; c.
quantization level when the analog voltage is 3.2 volts; d. binary

code produced by the ADC; e. quantization error.

3.9 Assuming that a 3-bit ADC channel accepts analog input

ranging from 2:5 to 2.5 volts, determine the following:

i. number of quantization levels;

ii. step size of the quantizer

iii. or resolution;

iv. quantization level when the analog voltage is -1.2 volts
v. binary code

vi. produced by the ADC;

vil. quantization error

3.10 If the analog signal to be quantized is a sinusoidal waveform,
that is,



i. , and if the bipolar quantizer

ii. uses 6 bits, determine

iii. number of quantization levels;

iv. quantization step size or resolution, A, assuming that the
signal range is from -10 to 10 volts;

v. the signal power to quantization noise power ratio.



Chapter

Discrete-Time Signals and Systems

(=

Learming Outcomes of this Chapter

After successful completion of this chapter students will be
able to:

1. understanding deterministic and random discrete-
time signals and ability to generate them.

2. recognize the discrete-time system properties,
namely, memorylessness, stability, causality, linearity
and time-invariance.

3. understanding the relationship between difference
equations and discrete-time signals and systems.




4.1 Discrete-Time Signals

A discrete-time (DT) signal is signal that exists at specific time
instants. The amplitude of a discrete-time signal can be
continuous though. When the amplitude of a DT signal is also
discrete, then the signal is a digital signal. A DT signal can be
either real or complex. While a real signal carries only amplitude
information about a physical phenomenon, a complex signal
carries both amplitude and phase information. A sequence of data
is denoted or simply when the meaning is clear. The elements of
the sequence are called samples. The index n associated with each
sample is an integer. If appropriate, the range of n will be
specified. Quite often, we are interested in identifying the sample
where n = o. This is done by putting an arrow under that

sample. For instance,

{x[n)} ={. . . ,0.351,1.5-0.6, - 2,. . .}
T

The arrow is often omitted if it is clear from the context which
sample is Sample values can either be real or complex. In the
rest of this book, the terms “discrete-time signals” and
“sequences” are used interchangeably. The time interval between
samples is not explicitly shown. It can be assumed to be
normalized to 1 unit of time. So, the corresponding normalized

sampling frequency is 1 Hz.



If the actual sampling interval is T seconds, then the sampling

frequency is given by
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Figure 4.1 The Unit Impulse Sequence




4.1.1 Some Elementary_Sequences

There are some sequences that we shall encounter frequently. They

are described here.



4.1.1.1 Unit Impulse Sequence

The unit impulse sequence is defined by

(4-1)

This is depicted graphically in Figure 4.1. Note that while the
continuous-time unit impulse function is a mathematical object
that cannot be physically realized, the unit impulse sequence can
easily be generated.



4.1.1.2 Unit Step Sequence

The unit step sequence is one that has an amplitude of zero for
negative indices and an amplitude of one for non-negative indices.
It is shown in Figure 4.2.
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Figure 4.2 The Unit Step Sequence



4.1.1.3_The unit ramp_signal

It denoted as and is defined as follows:

u,(n)=

n., form=0

0. form<0

It is shown in Figure 4.3.
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4.1.1.4_Sinusoidal Sequences

A sinusoidal sequence has the form

(4-2)
This function can also be decomposed into its in-phase and
quadrature components.
x[n] = Acosg cos wyn — A sin ¢ sin wgn
(4-3)
(4-4)
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Figure 4.4 sinusoidal sequence



2.1.1.5_Complex Exponential Sequences

Complex exponential sequences are essentially complex sinusoids.

(4.5)
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Figure 4.5 Exponential Sequences



4.1.1.6 Random

Sequences

The sample values of a random sequence are randomly drawn

from a certain probability distribution. They are also called

stochastic sequences. The two most common distributions are the

Gaussian (normal) distribution and the uniform distribution. The

zero-mean Gaussian distribution is often used to model noise.

Figure 4.6 and figure 4.7 show examples of uniformly distributed

and Gaussian

Arnpliaidc

distributed random sequences respectively.
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Figure 4.7 Gaussian distributed random sequence



4.2 Types of Sequences

The discrete-time signals that we encounter can be classified in
several ways. Some basic classifications that are of interest to us
are described below.



4.2.1 Real vs. Complex Signals

A sequence is considered complex at least one sample is complex-

valued.



4.2.2 Finite vs. Infinite Length

Signals Finite length sequences are defined only for a range of

indices, say . The length of this finite length sequence is given by



4.2.3_Causal vs. Anti-casual Signals

A sequence is a causal sequence if = o for n < o.

Symmetric Signals First consider a real-valued sequence Even
symmetry implies that and for odd symmetry for all Any real-
valued sequence can be decomposed into odd and even parts so
that

x[n] = xe[n] + xo[n]

where the even part is given by

x[n] = 5 (xln] + x[-n])

and the odd part is given by

xo[n] = > (x[n] — x[-n])

A complex-valued sequence is conjugate symmetric if The
sequence has conjugate anti-symmetry if Analogous to real-valued
sequences, any complex-valued sequence can be decomposed into

its conjugate symmetric and conjugate anti-symmetric parts:

(4.7)

(4.8)

Periodic Signals A discrete-time sequence is periodic with a period

of N samples if



for all integer values of k. Note that N has to be a positive
integer. If a sequence is not periodic, it is aperiodic or non-
periodic. We know that continuous-time sinusoids are periodic. For

instance, the continuous-time signal

(4.10)

has a frequency of wo radians per second or Hz. The period of

this sinusoidal signal is seconds.

Now consider a discrete-time sequence based on a sinusoid with

angular frequency wo:

(4.1)

If this sequence is periodic with a period of N samples, then the

following must be true:

(4.12)

However, the left hand side can be expressed as



(4.13)

and the cosine function is periodic with a period of 2m and

therefore the right hand side of (4.13) is given by

(4.14)

for integer values of r. Comparing (4.14) with (4.15), we have

(4.15)

where . Since both r and N are integers, a discrete-time
sinusoidal sequence is periodic if its frequency is a rational

number. Otherwise, it is non-periodic.

Example Is periodic? If so, what is the period? The sequence can
be expressed as
x[n] = cos(2m (ﬁ) n)

So in this case, is a rational number and the sinusoidal sequence

is periodic with a period .

Example

Determine the fundamental period of the following sequence:
x[n] = cos(l.lmn) + sin (0.7mn)

Solution

For the cosine function, the angular frequency is



w; = L1lxr = 2r (0.55) = 2rf;

Therefore,

£, = 55 _ 11
2 100 20

and the period is
For the sine function, the angular frequency is

wy, = 0L.7r = 2m (0.35) = 2rnf;

where
35 7
= 10"

and the period is
So the period of

It is interesting to note that for discrete-time sinusoidal
sequences, a small change in frequency can lead to a large

change in period. For example, a certain sequence has frequency

0.51 = 51/100. So its period is 100 samples. Another sinusoidal
sequence with frequency = 0.5 = 50/100 has a period of only 2
samples since can be simplified to 1/2. Thus a frequency
difference of 0.01 can cause the period of the two sinusoidal

sequences to differ by 98 samples.

Another important point to note is that discrete-time sinusoidal
sequences with frequencies separated by an integer multiple of are
identical.



4.2.4_Energy_and Power Signals

The energy of a finite length sequence is defined as

(4.17)

while that for an infinite sequence is

(418)

Note that the energy of an infinite length sequence may not be
infinite. A signal with finite energy is usually referred to as an

energy signal.

Example 4.3.
Find the energy of the infinite length sequence

23 nz=0
x[“]={u, n<0

According to the definition, the energy is given by
E =Zauo2 " =Tl i:'n

To evaluate the finite sum, first consider

(4.19)

Multiplying this equation by a, we have



(4.20)

and the difference between these two equations give:

(4.21)

Hence if

(4.22)

For it is obvious that . For a < 1, the infinite sum is therefore

(4.23)

Making use of this equation, the energy of the signal is

I

Equations (4.22) and (4.23) are very useful and we shall be
making use of them later. The average power of a periodic

sequence with a period of N samples is defined as

(4-24)



and for non-periodic sequences, it is defined in terms of the

following limit if it exists:

(4.25)

A signal with finite average power is called a power signal.

Example 4.4

Find the average power of the unit step sequence

The unit step sequence is non-periodic, therefore the average

power is

’ 1 — 5 -
= " -;;,;_lz” 1"

n=l}
_ K+1
lim -
K=o 20 + 1
oy

Therefore, the unit step sequence is a power signal. Note that its

energy is infinite and so it is not an energy signal.

4.2.5. Bounded Signals: A sequence is bounded if every sample of
the sequence has a magnitude which is less than or equal to a

finite positive value. That is,



4.2.6. Summable Signals : A sequence is absolutely summable if

the sum of the absolute value of all its samples is finite.

(4-27)

A sequence is square summable if the sum of the magnitude

squared of all its samples is finite.



Scaling : Scaling is the multiplication of a scalar constant with
each and every sample value of the sequence. This operation is

depicted schematically in Figure 4.8.

Addition : Addition of two sequences usually refers to point-by-

point addition as shown in Figure 4.9.

x{n] - A - Ax(n]

Figure 4.8 Scalar Multiplication by A.

x[n] - + = y[n]=x[n]+w[n]

i
winl

Figure 4.9 Point-by-point Addition

Delay : A unit delay shifts a sequence by one unit of time as
shown in Figure 4.10. A sequence is delayed by N samples to

produce .

x[n] ~ zZ f ~ x[m—1

Figure 4.10 A Unit Delay



Up/Down Down-sampling by a factor of L (a positive integer) is
an operation by which only one every L-th sample of the original
sequence is kept, with the rest discarded. The schematic for a
down-sampler is shown in Figure 4.11 and 4.12. The down-sampled

signal is given by

(4.29)

x[n] . v L = y[n]

Figure 4.11 Down-sampling by a factor of

3(n) - P L = yin]

Figure 4.12 Up-sample by a factor of

Up-sampling is the opposite operation to down-sampling. It
increases the number of samples of the original sequence by a
certain factor L (a positive integer). This is done by inserting L —

1 zeros between each pair of original samples.
The up-sampler and the up-sampled sequence y[n] is given by:
(4-30)

An interpolated signal can be obtained by passing the up-sampled
signal through a lowpass filter with an appropriate bandwidth. This



process will be discussed in more detail in a later chapter.

Modulation Given two sequences and

(4.31)

Then we say that is modulated by This is analogous to carrier

modulation in communication systems.

Correlation : The correlation, or more precisely cross-correlation,

between two finite length data sequences and is defined by

(4-32)

if each sequence is of length The correlation coefficient r is often
used as a measure of how similar the two sequences are. If they

are very different, then the value of r is low.

The matched filter used in digital communication receivers for
optimal detection is also effectively a correlator between the

incoming and the template signals.



4.4_Discrete-time Systems

A discrete-time system is one that processes a discrete-time input
sequence to produce a discrete-time output sequence. There are

many different kinds of such systems.



4.4.1 Classification of Systems

Discrete-time systems, like continuous-time systems, can be

classified in a variety of ways.

Linearity : A linear system is one which obeys the superposition
principle. For a certain system, let the outputs corresponding to

inputs and are and respectively. Now if the input is given by

(4-33)

where A and B are arbitrary constants, then the system is linear if

its corresponding output is

(4-34)

Superposition is a very nice property which makes analysis much
simpler. Although many real systems are not entirely linear
throughout its operating region (for instance, the bipolar
transistor), they can be considered approximately linear for certain
input ranges. Linearization is a very useful approach to analyzing
nonlinear systems. Almost all the discrete-time systems considered

in this book are linear systems.

Example Are the down-sampler and up-sampler linear systems?

Consider the down-sampler

y[n] = x[nM]



For input x1[n], the corresponding output is . For input , the
output is . Let x[n] be a linear combination of these two inputs

with arbitrary constants A and B so that
x[n] = Ax;[n] + Bxy[n]

The output is given by

y[n] = Ax,[nM] + Bx,[nM]
= Ayi[n] + Byz[n]

Therefore, the down-sampler is a linear system.

Now consider the up-sampler

y[n] = [’:E] ,  n=0,%L$2L,....
0, Otherwise

Let and be the outputs for inputs and respectively.
For

then the output is

yln] = [““‘ [{]+Bnll  n=0+L+2L....
0, Otherwise

= Ay,[n] + By;[n]

Hence the up-sampler is also linear.

Shift Invariance : A shift (or time) invariant system is one that
does not change with time. Let a system response to an input be

If the input is now shifted by (an integer) samples,



(4.35)

then the system is shift invariant if its response to xi[n] is

(4-36)

In the remainder of this book, we shall use the terms linear time-

invariant (LTI) and linear shift-invariant interchangeably.

Example 4.6.
A system has input-output relationship given by

uln] = ) alk]

k=—ou
Is this system shift-invariant?

If the input is now , then the corresponding output is

p[n ')_‘ rq [k



Therefore, the system is shift invariant.
Example Is the down-sampler a shift invariant system?

Let M (a positive integer) be the down-sampling ratio. So for an

input the output is

y[n] = x[nM].

Now if delayed by samples, then
xi[n] = x[n — no)

and the corresponding output is
yi[nl = x[nM - no
=x[n=3)M

If the system is shift invariant, one would expect the output to be

y[n = ng) = x[(n — no) M]

Since this is not the case, the down-sampler must be shift

variant.

The response of a causal system at any time depends only on the
input at the current and past instants, not on any “future”
samples. In other words, the output sample for any only depends

on for

Example Determine if the following system is causal:

yinl = ) (= kyufn— Klx[k]

=



Note that = o for because the unit step sequence is zero for
negative indices. In other words, for a certain for . So the output

can be written as
y[n] = Zie-w(n —k)x[k]

So depends on for and therefore the system is causal.

There are two common criteria for system stability. They are
exponential stability and bounded-input bounded-output (BIBO)
stability. The first criterion is more stringent. It requires the
response of the system to decay exponentially fast for a finite
duration input. The second one merely requires that the output be

a bounded sequence if the input is a bounded sequence.

Example 4.9. Determine if the system with the following input-
output relationship is BIBO stable.

yinl = ) (n—kyufn — kx[k]

k=—co
Consider input

Then

yinl = ) (n—kyuln — K16[K]

k=

= nu[n]



which is unbounded as it grows linearly with Therefore the system
is not BIBO stable.

Example 4.10. Determine if the following system is BIBO stable.
Note that this system is an “averager”, taking the average of the
past M samples.

M=-1

1
y[n] = EZ x(n—k)

k=0

Let the input for some finite value Consider the magnitude of the

output

1 -
lynll = |5Zk xtn—K)
1 -
= ; f—ﬁlx(“ _k)
1
< .- (MB)
=B

Hence the output is bounded and the system is BIBO stable.

Lossy or Lossless : For a passive system that does not generate
any energy internally, the output should have at most the same

energy as the input. So

(4-37)

A lossless system is one which the equality holds.



4.4.2 Linear Shift-lnvariant Systems

An discrete-time LTI system, like its continuous-time counterpart,
is completely characterized by its impulse response. In other
words, the impulse response tells us everything we need to know
about an LTI system as far as signal processing is concerned. The
impulse response is simply the observed system output when the
input is an impulse sequence. For continuous-time systems, the
impulse function is purely a mathematical entity. However, for
discrete-time systems, since we are dealing with sequences of
numbers, the impulse sequence can realistically (and easily) be
generated.



4.4.3_Linear Convolution

Let us consider a discrete-time LTI system with impulse response
as shown in Figure 4.13. What would be the output of the system
if the input is as shown in Figure 4.14?

Figure Impulse Response of the System

Figure 4.14 Input Signal Sequence

Since the system is linear and time invariant, we can make use of
the superposition principle to compute the output. The input
sequence is composed of three impulses. Mathematically, it can be
expressed as

(4-38)

Let



x2[n] = 058[n — 1]
x3[n] = 28[n - 2]

and the system response to each of these inputs are respectively
and

The sample values of are given by
y1[0] = h[0]x1[0] = 0.8
y1[1] = h[1]x1[0] = 0.4
y1[2] = h[2]x1[0] = 0.2
y1[3] = h[3]x1[0] = 0.1

which is the same as the impulse response since is a unit
impulse. Similarly,
y2[1] = h[0]x2[1] = 0.4
y2[2] = h[1]x2[1] = 0.2
y2[3] = h[2]x2[1] = 0.1
y2[4] = h[3]x2[1] = 0.05
and
y3[2] = h[0]x3[2] = 1.6
y3[3] = A[1]x3[2] = 0.8
y3[4] = h[2]x3[2] = 0.4

The system output in response to input is therefore, through

the superposition principle, given by
y[n] = yl[n] + y2[n] + y3[n]
= {0.8,0.8,2,1,0.45,0.2}

Note that



¥[0] = h[0]x[0]

y[1] = h[1]x[0] + h[0]x[1]

¥[2] = h[2]x[0] + A[1]x[1] + h[0]x[2]
¥[3] = h[3]x[0] + A[2]x[1] + h[1]x[2]
y[4] = h[3]x[1] + R[2]x[2]

¥[5] = h[3]x[2]

In general, we have

¥[n] = h[n]x[0] + hln = 1)x[1] +...+ &[1]x[r = 1] + &[0]x[n]

(2.39)

or

(4-40)

Alternatively,

(4-41)

Equations 2.40 and 2.41 are the linear convolution equations for
finite length sequences. If the length of is M and the length of is
then the length of is N + M — 1.

We can further generalize it for infinite length sequences:

(4-42)

(4-43)



These equations are analogous to the linear convolution equation
for continuous-time signals. Note that the linear convolution
equation comes about because of the superposition principles and

therefore applies only to LTI systems.

The convolution equation for discrete-time signals is also called
the convolution sum. It is denoted by ?. So equations 4.42 and

4.43 can be written as

(4-44)

The convolution sum is one of the most important fundamental
equations in DSP.



4.4-4_Properties of Linear Convolution

The convolution sum has three important properties:

1. Commutative

(4-45)

2. Associative

3. Distributive
x[n] * (wn] + y[n]) = x[n] » win] + x[n] * y[n]

(2.47)



Since the impulse response completely characterize an LTI system,
we should be able to draw conclusions regarding the stability of a
system based on its impulse response. We shall consider BIBO
stability here.

Theorem 4.1. A discrete-time LTI system is BIBO stable if its

impulse response is absolutely summable.

Proof. Let the input be bounded, i.e. for some finite value B. The
magnitude of the output is given by

o

Z h[K]x[n — k]‘

k= —tn

< ¥ o h[k]x[n — k]
< B Zxe-wlh[K]|

ly[n]l =

So, the magnitude of is bounded if is finite. In other words, the

impulse response must be absolutely summable.



Theorem 4.2. A discrete-time LTI system is causal if and only if

its impulse response is a causal sequence.

Consider an LTI system with impulse response Two different
inputs and are the same up to a certain point in time, that is for

for some . The outputs and at are given by

e

yalngl = ) hlklx[no - k]

km—tn

= Diea—o h[K]x1[n0 — k] + Eio hlk]x [ng — k]

and

o

yalnol = ). hlilxlng — k]

fem =00

= Tl o hlklxzlng — k] + T hlklxs [ng — k]

Since for , if the system is causal, then the outputs and must be

the same for . More specifically, . Now,

Ef-oh[klxi["ﬂ -kl = Efwh[klxz [“o — k]

because for non-negative values of Since may not be equal to for

, we must have

J:l—wh[k]xl[ﬂ'ﬁ - k] = -:—wh[k]xz[ﬂg —k] =0



which means that for .



Problems

4.1 Determine if the following signals are periodic, and if so

compute the fundamental period.

(a) xin]|=¢
¥ - l. [
(b) xin i lé
. - _"
(c) X .'.'| = -

(d) x{p]l=14+¢"°

(€) X '.'| e + & i

4.2 Simplify the following expressions and sketch the signal.

(a) {n]= 3 35[k—2]+ o]n +1]cos(zn)

k=—un
¥ .
k) dn]= ¥ -L"r'l.l.'—;';'|i"-"'
(¢) x[p|=An=3|5|n=5]|+ ¥ 3o|n-k|

(d) x{n]=cos(zn)[[n)-8[n-1]]-8"[n]+ T ulk-3]

4.3 Determine if each of the following systems is causal,

memoryless, time invariant, linear, or stable. Justify your answer.
(a) V{n]|=3xnlxn-1]
n+2

®) Mnl= Y k]

k=n-2

(c) ¥[n]=4x[3n-2]

F I-
(d) ¥nl= ¥ e ulk)|xn-k]
fo=—
n
() vln|]= 2

L
k=n-3

cos(x k)

4.4 Determine if each of the following systems is invertible. If not,

specify two different input signals that yield the same output. If



so, give an expression for the inverse system.

"
(a) vlnl= 3 k]

k ¥

(b) Mn]=(n—-1)xln]
(c) Vn]=xln]-xln-1]

4.5 Suppose an LTI system with input signal has the response .
Sketch this input signal and output signal, and also sketch the
system response to each of the input signals below.

@ = -1 - - 3
(0) =--11--2+-3
© =- -4

4.6 Using the graphical method, compute and sketch for

1) A n]=5n]=FHn-=3 Mr]=3d]n+1]=3d]n
1 I 1L0=n=3 | L1=nw=3 7T=n=<9
b x{n]= hnl=
0 1.""'I." ] 4_":'-1_-
¢) xn |, foralln, HMn Hal=28[n-11+5n 2]

d) xn]=uln=1]=uln=13]. al] =t|n |+ uln —..;j
qn)=&" (n)-u{n-2]), Hn]=e "uln]
N xn)l=un], Hrl=01/2)"u[r-1]
I._'I l.i.': 'Ir '.l. RIFOW T I,'L'__F.'.
4.7 Determine if the DT LTI system with the following unit-pulse

responses are causal and/or stable.
(@) hn] = Q" uln - 1]

®) hln] = )" u[-n]
© hln] = 2"u[3 — n]
(d) h[n] = 2™r[-n]



Chapter

Z-transform and applications

(=

Learming Outcomes of this Chapter

After successful completion of this chapter students will be
able to:

1. describe the difference between Fourner, Laplace, and
z-transforms.

2. explain the relationship between z-transform pairs.

3. identify overall system behavior from a pole-zero
diagram_

4. compute transform and inverse transform.

5. apply transform for analyzing linear time invarant
(LTT) systems.




5.1 _Introduction

Z-transform plays a similar role in DSP as the Laplace transform
in analog circuits and systems. It is useful for the manipulation of
discrete data sequences and has acquired a new significance in
the formulation and analysis of discrete-time systems. This
mathematical technique date back to the early 1730s when
DeMoivre introduced the concept of a generating function that is
identical with that for the Z-transform. Recently, the development
and extensive applications of the Z-transform are much enhanced
as a result of the use of digital computers It is used extensively
today in the areas of applied mathematics, digital signalprocessing,
control theory, population science, economics. It is used to define
transfer functions and determine responses of systems using a
table look-up process. The role played by the z-transform in the
solution of difference equations corresponds to that played by the
Laplace transforms in the solution of differential equations.

In mathematics and signal processing, the Z-transform (ZT)
converts a discrete time-domain signal, which is a sequence of
real or complex numbers, into a complex frequency-domain

representation.

The ZT is a transformation that maps DT signal into a function

of the complex variable defined as:

(5.1)



The z-transform can also be thought of as an operator } that

transforms a sequence to a function:

(5-2)

In both cases z is a continuous complex variable.

We may obtain the Fourier transform from the z-transform by

making the substitution This corresponds to restricting . Also, with
X(2) = Lo x[n](re’®)™ = LR _oo(x[n]r—")reJom

That is, the z-transform is the Fourier transform of the sequence
For r = 1 this becomes the Fourier transform of The Fourier
transform corresponds to the z-transform evaluated on the unit

circle:

z—plane Im

- Unit circle
Figure 5.1 Z-Plan
The inherent periodicity in frequency of the Fourier transform is

captured naturally under this interpretation. The Fourier transform

does not converge for all sequences—the infinite sum may not



always be finite. Similarly, the z-transform does not converge for
all sequences or for all values of z. The set of values of z for
which the z-transform converges is called the region of

convergence

The Fourier transform of exists if the sum converges. However,
the z-transform of is just the Fourier transform of the sequence .

The z-transform therefore exists (or converges) if

This leads to the condition

(5-4)

for the existence of the z-transform. The ROC therefore consists of

a ring in the z-plane:

z—planc Im

Figure 5.2 Region of Convergence

In specific cases the inner radius of this ring may include the

origin, and the outer radius may extend to infinity. If the ROC



includes the unit circle = 1, then the Fourier transform will

converge. Most useful z-transforms can be expressed in the form:

where and are polynomials in The values of z for which = o are
called the zeros of and the values with = o are called the The
zeros and poles completely specify to within a multiplicative

constant.



5.2 Unilateral Z-transform

In cases where is defined only for , the single-sided or unilateral Z-

transform is defined as:

(5-5)

This is a z-transform of a causal sequence

where z is the complex variable. Here, the summation taken from
n=o0 ton =1 is according to the fact that for most situations,
the digital signal is the causal sequence, that is, = o for n < o.
Thus, the definition in Equation (5.5) is referred to as a one-sided
z-transform or a unilateral transform. In Equation (s.5), all the
values of z that make the summation to exist form a region of
convergence in the z-transform domain, while all other values of z
outside the region of convergence will cause the summation to
diverge. The region of convergence is defined based on the
particular sequence being applied. Note that we deal with the
unilateral z-transform in this book, and hence when performing
inverse z-transform (which we shall study later), we are restricted
to the causal sequence. Now let us study the following typical

examples.

Example s.1.

Given the sequence

Find the z-transform of x(n).



Solution:

From the definition of Equation (5.5), the z-transform is given by

X(z) = Z“[“]Z'" = Z(Z")" =1+@E )+ @E 1)+, ..

=0 =0

This is an infinite geometric series that converges to :

With a conclusion . Note that for an infinite geometric series, we
have when . The region of convergence for all values of z is

given as .

Example s.2.

Considering the exponential sequence
x(n) = a"uin)
Find the z-transform of the sequence x(n).

Solution:
From the definition of the z-transform in Equation (5.5), it follows
that



= e ; ; 3
Xizh=N dum="="% |a= "= 1+ {a="") + {az "4
— o .
=il n=i
Since this is a geometric series which will converze for |az"!| < 1, it is
further expressed as

-4 .
X(z) for |z| > |a|
2 a
I e
TR R
"
SRR SRR,
RN DN
| A LR \k-\\\h'\'\x\\ '\x\\
\\.\'\\\\.y N\\\\\.\'\\\\.
AR AR
NN S
- . =
.
M R S
| . \ o \\
1w l"\\{‘ #\&Y‘Q:‘Q\
I ' Tl o S
1| LR o
SRR . Nhntit
w2 SR,
N

Figure 5.3 Shows the function in Example 5.2 and its ROC

The z-transforms for common sequences are summarized in Table
5.1.

Table 5.1 Table of z-transform pairs.



W e

10

12

13

15

16

17

19

0

n

We list the following table of z-transforms. It can also be used to

Signal, x[n]

d[n]

aln — g

uln]

e "uln|
—u|—n — 1]
nun|
—nu|—n — 1]
n“ufn]
—nu[-n — 1]
nufn]
—n'u[-n — 1]
a"uln]
—a"u|—n — 1]
na“un|

—na u|—n — 1]

n*a" uln]

—n]u-”u[—n 1]

cos|wor )u|n|
sin(won uln|
a" cos{won Juln|

a" sinwsn ) uln|

Z-tramsform, X(Z)
1
—
1
1 — z—1
1
L—g =1
1
1 — 1
= 1
(1 — 13"
e
f1— =z 132
=L 4+ 271
(1—="1)3
2L 4274
1 44 2
-z
=1+ 4z + =)
(1 — =1
i
1 — pz—1?
1
1 — =1
ar !
(1 —az—1)=

ez

(1 — e 1=
az (1 +az—1)
(1 — az )0
az" (1 + ="

(1 — oz 139
1 — =z *cosi(wn)
1 — 2z 'pos(wg) + =2

tEinlwn)
1 — 2z 'ecos(wq) + =2

1 — ez cosluwn)
1 — s cosng) + s
e — " i e )
1 — 2as ' cos(eg) + a2z

find the inverse z-transform.

Example s.3.

ROC
all z

z# 0

|z =1
2| > e
2| <1
2| = 1
lz] <1
|z =1
2] =1
|z =1
2| <1
2| > |af
z| < |a]
2| > |af
z| < |a]
2| > |af
z| < |a]
2| > 1
|z > 1
2| > |af

2| > |a

Find the z-transform for each of the following sequences:



Solution:

a. From Table 5.1, we get

X(z) = Z(10u(n)) = _”]‘_l .

b. Line % in Table 5.1 leads to

Xiz) = 10Z(sin (0.2 )uln))

10sin(0.25m)z 707z
T2 2reos(0.25m 4+ 1 22—14ld4z+ 17

¢. From Line 6 in Table 5.1, we vield

X(z) = Z((0.5\"uln)) = - 55"

d. From Line 11 in Table 5.1, it follows that

. 0.5 x sin{0.257)z
X(z) = Z((0.5)" sin (0.25mmhu(n)) = 5 BREhE

22 =2 x 0.5cos(0.257)z + 0.5

03536z
T A2 1414221025

e¢. From Line 14 in Tahle 5.1, it follows that

_ _ 20z — ¢ cos (0.257))

o 0. lu b —

X(z)=Z(e cos (0.25mm)u(n) ) T2 o0s (0357 ): 1 602
oz = 0.6397)

T 22— 12794z + 08187

Example 5.4

Determine the z-transforms of the signal

0. n

(n) = —a"w(=n - 1 =|
xin) o ul=n ] "

A I
I
—

Solution



o |

A== A==
o0 50
=— Za_":" =1 —Etn_1:}"
n=1 n={

Figure 5.5 The one-sided function of Example 5.4 and its ROC

In signal this definition is used when the signal is

As analog filters are designed using the Laplace transform,
recursive digital filters are developed with a parallel technique
called the z-transform. The overall strategy of these two transforms
is the same: probe the impulse response with sinusoids and
exponentials to find the system’s poles and zeros. The Laplace
transforms deals with differential equations, the s-domain, and the
s-plane. Correspondingly, the z-transform deals with difference
equations, the z-domain, and the z-plane. However, the two
techniques are not a mirror image of each other; the s-plane is
arranged in a rectangular coordinate system, while the z-plane
uses a polar format. Recursive digital filters are often designed by
starting with one of the classic analog filters, such as the

Butterworth, Chebyshev, or elliptic. A series of mathematical



conversions are then used to obtain the desired digital filter. The
Z transform of a discrete time system X[n] is defined as Power

Series.



5.3_Bilateral Z-transform

The bilateral or two-sided Z-transform of a discrete-time signal x[n]
is the function X(z) defined as:

The two-sided (or bilateral) z-transform is again a complex
function of a complex variable, meaning that it can take on
complex values and that its argument is itself a complex variable.
For the two-sided transform, we can consider again a few example
sequences for which the sequence values are non-zero for both

positive and negative index values.

Example 5.5

Consider the following sequence,

Now, using the definition of the z-transform, we have for this

sequence,



¥ 8

Y(z) Z (a™u[n] + b"u[=n - 1]) 27"

L] (==

=] x

E (a"un|) z~" Z (b"u|—n—=1])z~"

n=—ac n=-—-og

x =1

Z a"z=" Z '

n=I0 ==

- SO ()

o o)

-1

e £ (2

n=—oo *

il 3 G)

m=1

-

1
— F

o

b=z’

= ;::3 z| < |b,
——,I| > lal + 5=, 12| < [0

where we must combine the two conditions on jzj, to ensure
convergence of both summations in the expression. Otherwise,
one of the terms in the expression will be invalid, and the

resulting algebraic expression will not be meaningful. Hence, we
have:

e

=g b=z

la| < |z| < |b].



5.4_Poles and Zeros in the Z-Plane

It is quite difficult to analyse since mappings of their magnitude
and phase or real part and imaginary part result in multiple
mappings of 2-dimensional surfaces in 3-dimensional space. For
this reason, it is very common to examine a plot of a transfer
function’s poles and zeros to try to gain a qualitative idea of what
a system does.

Once the Z-transform of a system has been determined, one
can use the information contained in function’s polynomials to
graphically represent the function and easily observe many defining
characteristics. The Z-transform will have the below structure,

based on Rational Functions:

N
=50

where and are polynomials in Assuming M th order polynomials

we have:

(5.7)

In the complex domain a M th order polynomial has exactly M

zeros and we thus may write:



)

where the zeros are the zeros of and the poles of the system, ’s,

are the zeros of

Because a LTI system is completely characterized by its transfer
function the system is also completely characterized by its set of
zeros and poles (together with a gain factor Plotting the zeros
and poles in the complex plane gives the Argand diagram of the

LTI system. In the Argand diagram we can also indicate the ROC
of

Therefore, the Zeros : are value(s) for z where = 0. The complex
frequencies that make the overall gain of the filter transfer

function zero.

Poles : are the value(s) for z where = o. The complex frequencies

that make the overall gain of the filter transfer function infinite.

Example 5.6

Consider the LTI system with transfer function H(z)

“—1892+1
1.8z4+ 0.9

o]

H(z) =

L]

2 =
4

(z - 0.95 — 0.317)(z — 0.95 + 0.315)
(z— 0.9 — 0.3§)(z — 0.9 + 0.35)

The Argand diagram (plot of poles and zeros in the complex

plane) and the frequency response are sketched in figure 5.6.
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5.5_Properties of the z transform

For the following
Z{flnh= Stk =F(2) Zlg,}= T2, =6)

o Linearity:
+ = aF(z) + and ROC is

which follows from definition of

« Time Shifting
If we have
The ROC of is the same as except that there are possible pole

additions or deletions at z = o0 or

Proof:

Let y[n]=f[n—nﬂ]then
¥(e)= 3 rin-mle

Assume then , substituting in the above equation we have:
¥(z)= if[k]z'*'”“ =z"'“F[z]

« Multiplication by an Exponential Sequence



Let then

The consequence is pole and zero locations are scaled by . If the
ROC of is , then the ROC of is

R < |2/z%| < maie.|zglme < |2] < |Zin

Proof:

Y(z)= zz.,r[n]z*‘ ) "’["{;]_ﬂ =X( z]

fE=—h zﬂ

The consequence is pole and zero locations are scaled by If the
ROC of is then the ROC of is

< |z/zo| < m.ie,|zplre < |2| < |Z%ln

. Differentiation of
If we have and ROC =

Proof:

F(z)= if[ﬂ]f‘

_ .-:fF{z)_ -z Z nflnl"" = ‘i‘,—i’i‘f["”]z_lI
_, ﬂ”;{zz) —Z—>nf[n]

« Conjugation of a Complex Sequence



If we have and ROC =
Proof:
Let = f * then
6= Sk Sk T -F )

« Time Reversal

If we have

Let = f * then
0= 3 ak = Sk T o SA00E)") <P )
If the ROC of is < < then the ROC of is
. [T
rp {|1/z |r.:rL ie., " >|Z|}.P'L

When the time reversal is without conjugation, it is easy to show

fl-nl«%—F(1/z) andROCis l} |z| ::=-l
e Ui

A comprehensive summery for the properties is shown in Table 2



The following properties of z-transforms listed in Table 5.2 are well
known in the field of digital signal analysis. The reader will be

asked to prove some of these properties in the exercises.

Table 5.2 Summery of z-transform properties

Sequenoe z - brans form

dafinicion Hro=Hn] L) - ixms"‘
nzl

1 addition ¥+ ¥n Xiz) T ()
2  constentumlilple g cX g
3 lingarlry CHy4 LY, Mzl AT Q=)
4 delayedimic srep wlt-m] g
E-1
5  viwmedelay L cap Ao W[ 1] ix(z)
T
&  viwe deleved shifc Hroy WfE— 0] 2% (o
T rforwerdl tap Hral 2 X (2] - %)
8 Lorweed 2 Taps Mgt z* R e - Xy - ¥y 2
L T
9 cixe forward Hran o [:‘: -5 z.,]
=
10  coxplex trsnslation e M, Kizet
=
11 rrequency scale b, 0 |:E:|
12 dirferenciecion LMy, -EX' ()
13 integration L. _Iﬁ A=
n =
incegrecion shift LI o Ix [
n+x grut

Ti
15 discrece tlwe comwelutlon oy W, m Zx’ ., AlENECE)
]
16  convolucionwith g, - 1 = IR
n ZRI' — [z
=zt
17 iniciel tioe i 1.._1'51 ]

18 rinslvelue liw iy, lin [=- L] X (z)
T =L




5.6 Region of Convergence for the Z-Transform

The region of convergence, known as the is important to
understand because it defines the region where the z-transform

exists. The z-transform of a sequence is defined as:

(5.9)

The ROC for a given is defined as the range of z for which the
z-transform converges. Since the z-transform is a power it

converges when is absolutely summable. Stated differently,

(5.10)

must be satisfied for convergence.



5.6.1 Properties of the Region of Convergence

The Region of Convergence has a number of properties that are

dependent on the characteristics of the signal,

« The ROC cannot contain any By definition a pole is a where is
infinite. Since must be finite for all zz for convergence, there
cannot be a pole in the ROC.

« If is a finite-duration sequence, then the ROC is the entire z-
plane, except possibly z = o or . A finite-duration sequence is a
sequence that is nonzero in a finite interval . As long as each
value of is finite then the sequence will be absolutely summable.
When n2 > o there will be a z — 1 term and thus the ROC will
not include z = 0. When ni<oni<o then the sum will be infinite
and thus the ROC will not include . On the other hand, when
then the ROC will include z=o0 and when the ROC will include .
With these constraints, the only signal, then, whose ROC is the

entire z-plane is .

win

T 0
il U 00
o[ 4
Figure 5.7 An example of a finite duration sequence.

The next properties apply to infinite duration sequences. As noted

above, the z-transform converges when So we can write



X(2)

i [\.q'!

"

o W
"l N |zinje T zn|(lz)"
— — - g

. n o

We can then split the infinite sum into positive-time and negative-

time portions. So

X(z)| < N(z)=+ P(z)

where

NE =Y. leln)l(lz) ™"

e —

And
P(z) = fu;lz[nlmzl}‘“

In order for to be finite, |x[n]||x[n]| must be bounded. Let us then

set
rlr O 1-'|‘
for
n<10
and
|z(n)| < Car}
For

From this some further properties can be derived:



« If is a right-sided sequence, then the ROC extends outward from
the outermost pole in A right-sided sequence is a sequence where
= o for . Looking at the positive-time portion from the above

derivation, it follows that

oo o0 |z
P <G Y (=0 ) (=)
fA=0 m=

Thus in order for this sum to converge, , and therefore the ROC

of a right-sided sequence is of the form .

%inl
0

DN TT?T?---_
T e

Figure 5.8 A right-sided sequence.

0 3 Relz]

++++

Figure 5.9 The ROC of a right-sided sequence.

« If is a left-sided sequence, then the ROC extends inward from
the innermost pole in A left-sided sequence is a sequence where
= o for Looking at the negative-time portion from the above

derivation, it follows that



,111-. nf""-"lm,rw?qJll
vosa 3 ae=a 3 () =a X (%)

Thus in order for this sum to converge, < and therefore the ROC

of a left-sided sequence is of the form <

% [n]

-LJJ n

Figure 5.10 A left-sided sequence.

INA TT ? ..
}

. P
s

&

(RS Tislz]

Figure 5.11 The ROC of a left-sided sequence.

« If is a two-sided sequence, the ROC will be a ring in the z-
plane that is bounded on the interior and exterior by a pole. A
two-sided sequence is a sequence with infinite duration in the
positive and negative directions. From the derivation of the above
two properties, it follows that if converges, then both the positive-
time and negative-time portions converge and thus converges as
well. Therefore the ROC of a two-sided sequence is of the form .



®[n]

.2l T TT 2T ¢ ...
[ é} J} e n

i}

Figure 5.12 A two-sided sequence.

Figure 5.13 The ROC of a two-sided sequence.

Example
Consider the function.

Determine the ROC.

Solution
The z-transform of with an ROC at ,

Figure 5.14 The ROC of



The z-transform of with an ROC at ,

Imlz]

Helz]

Figure 5.15 The ROC of

Due to linearity,

_1 4 1
Z—y It

N 22{2—%}
(2—7) (+3)

By observation there are two zeros, at z = 0 and z = 18, and two
poles, at z = 12, and z = —14. Following the above properties, the
ROC is > 12.

Ire[=]

Figure The ROC of



5.7_lnverse z-Transform

The z-transform of the sequence and the inverse z-transform of

the function are defined as, respectively,

(5.11)

and (5.12)

where ) is the z-transform operator, while ) is the inverse z-
transform operator. The inverse z-transform may be obtained by at

least three methods:

1. Power series expansion
2. Partial fraction expansion and look-up table.

3. Contour integration.



5.7.1 Power Series Method

The is a power series expansion,

X(z) ":r vimiz=" = F =212 4 2(=1)
where the sequence values are the coefficients of in the
expansion. Therefore, if we can find the power series expansion
for the sequence values may be found by simply picking off the

coefficients of

Also, it called long division expansion, consider the function

: 1
X(z) =

= < - |z| > |a.
il / ¥4

-1
Since the ROC is the exterior of a circle, the sequence is right-

sided. We Therefore divide to get a power series in powers of

1+az="14a*z=%+ .-
1 —az ') 1

Or

| —nz

Therefore



xinl a™ulnl.

Example 5.8

Consider the transform.

X(z) =log(1 + az™ 1), |:| > |n|.

Using the power series expansion for log (1 + with < 1, gives

l\|u+1. I —'i'l:

=3

n=1

E-!

The corresponding sequence is therefore;

—1)ntle n>=1
x[n] = (=1 r -

0 n < 0.



5.7.2 Partial Fraction Expansion

Now, we are ready to deal with the inverse z-transform using the
partial fraction expansion and look-up table. The general procedure

is as follows:

1. Eliminate the negative powers of z for the z-transform function
2. Determine the rational function (assuming it is proper) and
apply the partial fraction expansion to the determined rational
function using the formula in Table 5.3.

3. Multiply the expanded function by both sides of the equation to
obtain

4. Apply the inverse z-transform using Table s.1.

The partial fraction format and the formula for calculating the

constants are listed in Table 5.3.:

Table 5.3 Partial fraction(s) and formulas for constant(s).

Pamial fraction with the first-order real pole:

R Xizh

R=(z-p)——
I-p 2 le=p
Partial fraction with the first-order complex poles:
Az A'z A=z P) Xiz)
(z=P) (z=F) T |pmp
P* = complex conjugate of P

A* = complex conjugate of A
Parial fraction with mth-order real poles:
R Rin- R o Xiz)
" I.' IIII A __[_-_P]”J
z—p) (z-pV (z—p) ok — ==t

I Jep

Let us considers the situation of the z-transform function having

first order poles.



Example s5.9.

a. Find the inverse of the following z-transform:

I
A& =0 ha-0sn

Solution:

Eliminating the negative power of z by multiplying the numerator
and denominator by yields

22(1 = z-1)(1 = 0.5z
T - 1Nz-05)
Dividing both sides by z leads to

X(z) =

.J:’[:‘,I z

: (z=Dz=-05)

Again, we write

Xz A B

: T G=D =05

Then A and B are constants found using the formula in Table 5.3,
that is,

X[:}| z |
A=(z—-1) = =12,
< |—] II:'_':~‘.'5]|:—I
B =(z— 052 =_“"” =-1.
= |z=d)3 = r=(.5

Thus



X(z) 2 l
(z=1) (z=0.5)

Multiplying z on both sides gives

g -

X(z) =

(z=1) (z=035)

Using Table 5.1 of the z-transform pairs, the resultant x(n) is :

x(n) = 2u(n) — (0.5)"u(n).
Let us consider the case where has first-order complex poles.

Example s.10.

Find if
) :1{: + 1}
Y& =@ —z+05
Solution
Dividing by we have
o) =+

z  (z=1Nz22=-z+0.5)

Applying the partial fraction expansion leads to



Y(z) B N A N A
z z—-1 (z-05-,0.5) (z—0.5+,0.5)°

We first find

WY@ _ A=+ 1) o Ilx(41)
T (2—z+03)., (12-1+05)

Notice that A and form a complex conjugate pair. We determine A

as follows:

I i -4 2z+1) |
Am=(z=05—-j.5— = =
°=R z |osues (2— Dz —05+70.5) 55,05

- (0.5 +j0.5)(0.5 + 0.5 + 1) 0.5+ j0.5)(1.5 + j0.5)
TS5 —1N05+ 05 -05+05) (—0.5+/0.5)

Using the polar form, we get

(0.707/45°)(1.58114.18.43°)
B (0.707 /135°)(1/90°)
A" = A= 1.58114/161.57°.

= 1.58114/ = 161.57°

Assume that a first-order complex pole has the form

P=05+05 = |P|6=0.707:45 and P* = |[P|/ — 8 =0.T07:— 45",

We have



Applying the inverse z-transform from Table 5.1 leads to

z oy Az Az
win) 47 l(—]' + £ : [J-" Py La (= P+ ’}'

Using the previous formula, the inversion and subsequent
simplification yield

y(n) = du(n) + 2|A|(|P])" cos (n8 + ¢)u(n)
= du(n) + 3.1623(0.7071)" cos (45°n — 161.57°)u(n)

Now, let us deal with the real repeated poles is the next example.

Example 5.11
Find x(n) if

-2

Xiz)= - .

@) (z— 1)(z — 0.5
Solution

Dividing both sides of the previous z-transform by z yields

X z _A+H+ &
z  (z=1¥z=05?2 z—1 z-05" (z—0.5?"

where 4 = (z — I}J(E::i d

1 (z—0.5)7?

ral

Using the formulas for mth-order real poles in Table 5.3, where m

= 2 and p = o:5, to determine B and C yields



1 d | ; X(z)
i 2= ﬂTz{L_ﬂ-ﬁ} z }==u.5

d s z -1
B E (ﬁ) :=1J.$= mLM: -

| d? y X{z2)
;= = z - 0.5)
CmS (1— 1l a=® {I J = } 0.5

4=
Then X(z) =- -

The inverse z-transform for each term on the right-hand side of

the above Equation can be achieved by the result listed in Table
5.1, that is,

z '{;I = u(n),

z- { —:u_ 5} = (0.5)"u(n),

z-'{ - ,,}=2.n|[[l.5}'u{n].

From these results, it follows that

x(1n) = duln) — 4(0.5) " u(n) = 20(0.5Y" uin).



5.7:3_Contour_integration.

Another approach that may be used to find the inverse of is to
use contour integration. This procedure relies on Cauchy’s integral
theorem, which states that if C is a closed contour that encircles

the origin in a counterclockwise direction,

(5.13)
With

.

X(z)= Z x(n)z™"

Fl = — 2

Cauchy’s integral theorem may be used to show that the

coefficients may be found from as follows:

1
v(n) = - r_f X(z2)z""'d-=
e d J f

where C is a closed contour within the region of convergence of
that encircles the origin in a counterclockwise direction. Contour
integrals of this form may often by evaluated with the help of

Cauchy’s residue theorem,
x{n) = L }; X(z):""dz = Z [residues of X(z)z"""at the poles inside {_‘]
: 2y Lk Z | ANZIE poles

If is a rational function of z with a first-order pole at z = «



Res[X(2)z" 'atz = ] = [(1 — ez )X (2)" I]:-m

Contour integration is particularly useful if only a few values of

are needed.



5.8 Transfer Function in the Z-domain

A LTI system is completely characterized by its impulse response
or equivalently the Z-transform of the impulse response H(z)H(z)

which is called the transfer function. Remember:

zln] * h[n] — X(2)H(z).

In case the impulse response is given to define the LTI system

we can simply calculate the Z-transform obtain :math:"

In case the system is defined with a difference equation we could
first calculate the impulse response and then calculating the Z-
transform. But it is far easier to calculate the Z-transform of both

sides of the difference equation.

As an example consider the following difference equation:

y[n] = L.5y[n — 1] — 0.5y[n — 2] + 0.5z|n|.

The Z-transform is a linear transform we can apply the Z-

transform to both sides of the above equation and obtain:

This can be rewritten as:



Y(z) 0.5 z

2




5.9_Application to signal processing



5.9.1 Solution of Difference Equations Using_the z-Transform

To solve a difference equation with initial conditions, we have to
deal with time shifted sequences such and so on. Let us examine
the z-transform of these terms. Using the definition of the z-

transform, we have

22

Z(yn-1)) =) yn-1"

ni=0
== D+y0z" + J 1)z +...
=W =D+ (O + WD) + 272+ )

It holds that
Zivin=1))=y(—-1)+= l}’{;}.

Similarly, we can have

Zipn—2)) = Z_r:u - 2)=""
0

=W -+ — D M0 1)
=y =2+ —-1)z" 4 :'2:;]:[1]} + _p{l]:" L _.,,-{2]:-3 F...)

Zyn=2) =y(-D+ W - Dz +277¥(2)
Zyn—m)) =y(—=m)+p(=m+ Dz +...+p(= z"™Y
+z""¥(z),

where are the initial conditions. If all initial conditions are

considered to be zero, that is,

(5:14)



then Equation (5.12) becomes

Z(yn —m)) =z""Y(2),

The following two examples serve as illustrations of applying the
z-transform to find the solutions of the difference equations. The
procedure is:

1. Apply z-transform to the difference equation.

2. Substitute the initial conditions.

3. Solve for the difference equation in z-transform domain.
4. Find the solution in time domain by applying the inverse z-

transform.

Example 5.12.
A digital signal processing (DSP) system is described by the

difference equation

wn) — 0.50(n — 1) = 5(0.2)"u (n).

Determine the solution when the initial condition is given by

Solution
Applying the z-transform on both sides of the difference equation,

we have

Y(z) = 0.5(( = 1) +z""'¥(2)) = 5Z(0.2u(n)).



Substituting the initial condition and

Z(0.2%u(n)) = z/(z—0.2),

we achieve

Y(z) —05(1 +z7'¥(2)) = 5z/(z— 0.2).

Simplification yields

Y(z) - 0.5z Y(z) = 0.5 + 5z/(z = 0.2).

Factoring out and combining the right-hand side of the equation,
it follows that

Y(z)(1 = 0.5z = (5.5 = 0.1)/(z = 0.2).

Then we obtain

(5.5z = 0.1) B z(5.5z = 0.1)
(1-0.5""%z-0.2) (z—-0.5(z-02)"

¥(z) =

Using the partial fraction expansion method leads to

Y 55-01 _ 4 B
z (z-05(z-02) z-0.5" z-0.2°

Where



¥iz) 585z —-1001 _35x05-0.1

A=(z=035) — — = §8.8333,

gy 2-02 |, 05-02

}"f:ll 8.5z — 01| 5.5% 02 —=0.1
—(z—02 = | = _ _3333,
B=E=0—— =05 |, 02-03 !
Thus
8.8333z -—-33333:
Y(z)= + ;

(z—0.5)  (z-10.2)
which gives the solution as

y(n) = 8.3333(0.5)"u(n) — 3.3333(0.2)"u(n).
Example 5.13.

A relaxed (zero initial conditions) DSP system is described by the

difference Equation

wa)+0.0p(n—=1)=02pn = 2) = x(n) + x(n—1).

a. Determine the impulse response due to the impulse sequence
b. Determine system response due to the unit step function

excitation,

where

Solution:
a. Applying the z-transform on both sides of the difference

equations we yield

Y(z)+0.1¥(z):z"" - 0.2 ,'t”'[z]:_2 = X(z)+ X(2)z~'.



Factoring out Y(z) on the left side and substituting X(z) = Z(d

(n)) = 1 to the right side we achieve:

Y()1 +0.1z7 =027 = (1 +z71).

Then Y(z) can be expressed as

142z
Yiz)= .
@) 1 +0.1z7' - 0.2z2

To obtain the impulse response, which is the inverse z-transform
of the transfer function, we multiply the numerator and

denominator by

Thus

24z Az+1)
2 401z2-02 (z-04)z+0.5)"

F(z)

Using the partial fraction expansion method leads to

¥(z) z+1 A N B
z (z—-04)z+05 z-04 z+05’
¥i(=) z41 0.4+ 1
here A = (z — 0.4 = = = 1.5556
e l[ > =04 :+']-5‘;=u.4 0.4+05 ’
¥iz) 241 —0.5+1 i
B=(z+0.5) = ‘ - _(.5556.
z |ogs z—04_ 45 —05-04

Thus



1.5556z . —0.5556z
z=04) (z+4+0.5°

Yiz) =
@ =1
which gives the impulse response:

y(n) = 1.5556(0.4)"u(n) — 0.5556( — 0.5)"u(n).

b. To obtain the response due to a unit step function, the input

sequence is set to be

and the corresponding z-transform is given by

and notice that

Y(2)+0.1Y(2)z"" —0.2Y(2)z"2 = X(2) + X(2)z".

Then the z-transform of the output sequence y(n) can be yielded

as

F 4z} 2z +1)
[ I N 0.4}z + 0.5)

Using the partial fraction expansion method as before gives



2.2222z  =1.0370z -=0.1852z

YO =——7T+7"03 T 705"

and the system response is found by using Table 5.1:

y(n) = 2.2222u(n) — 1.0370(0.4)" u(n) — 0.1852( — 0.5)"u(n)



5.9.2 Analysis of Linear Discrete Systems

We are able to obtain the transfer function by ignoring initial

conditions. The result is

k

- transfer function

H(z)= iﬁ . %?nbiz—_

E o8 T

where is the transform of the impulse response of a discrete

system.

Stability
Using the convolution relation between input and output of a

discrete systems, we obtain

»"[”]|=‘iﬁ[k}f{n—k <MY Jh(k) <>

where M is the maximum value of The above inequality specifies
that a discrete system is stable if to a finite input the absolute

sum of its impulse response is finite. From the properties of the
Z-transform, the ROC of the impulse response is > 1. Hence, all

the poles of of a stable system lie inside the unit circle.

Causality
A system is causal if — o for n < 0. From the properties of the

Z-transform, is regular in the ROC and at the infinity point. For



rational functions the numerator polynomial has to be at most of

the same degree as the polynomial in the denominator.

The Paley-Wiener theorem provides the necessary and sufficient
conditions that a frequency response characteristic must satisfy in

order for the resulting filter to be causal.



Problems

5.1. Find the z-transform for each of the following sequences:
a. x(n) = du(n)

b. x(n) = (= 0.7)"u(n)

c. x(n) = de Pu(n)

d. x(n) = 4(0.8)" cos(0.1mn)u(n)

e. x(n) = de " sin (0.17m)uln).

Using the properties of the z-transform, find the z-transform for

each of the following sequences:
a. xln) = win) + (0.5 wln)

b, xin) = e NN o5 (0. 1min — 4uln — 4),

where w(n = 4) | for n=4 while win = d)y=0form < 4

5.3 Given two sequences,

x1(n) = 58(n) — 26(n — 2) and

xa(n) = 3d(n — 3).

determine the z-transform of convolution of the two sequences

using the convolution property of z-transform

Xiz)= X(2)X5(2);

determine convolution by the inverse z-transform from the result

in (a)
x(n) = Z-(X,(2)Xa(2)).

Using Table 5.1 and z-transform properties, find the inverse z-

transform for each of the following functions:



10z z -
- i 2 X(Z)=—=
z—1 z+05 - =+ 1.2=+1

a. X(z2)=4-

b. X(z) =-

—5z 10 2= I A
(z=1) (-1 (z-08) z

d. X(2) ~+ —
] (2 1) z 0.5

5.5. Using the partial fraction expansion method, find the inverse

of the following z-transforms:

a. X(z)= 22 0.3z -0.04
b. X(2)= (z —0.2)0(z+04)
C. k{:' (z +U2H:j — I+ :.]5]'
z(z+ 0.5
d. X(z)= : _t ]
(z = 0.1)°(z - 0.6)

A system is described by the difference equation

¥m) 4+ 0.5v(n = 1) = 2(0.8)"u(n).

Determine the solution when the initial condition is y(-1) = 2.

A system is described by the difference equation

y(n) — 0.5p(n — 1)+ 0.06p(n — 2) = (0.4)" Lu(n = 1)

Determine the solution when the initial conditions are y(- 1) = 1

and y(- 2) = 2.

A system is described by the difference equation



. c n—1,
W) —0.5vin— 1)+ 0.060n —2)=(04)""wln—1)

Determine the solution when the initial conditions are y(-1) = 1

and y(- 2) = 2.

Given the following difference equation with the input-output
relationship of a certain initially relaxed system (all initial

conditions are zero),

i) = 0.7Tvin—= 1)+ 0.1p(n = 2) = x(n) + x(n— 1),

a. find the impulse response sequence y(n) due to the impulse
sequence d(n);
b. find the output response of the system when the unit step

function u(n) is applied.

Given the following difference equation with the input-output
relationship of a certain initially relaxed DSP system (all initial

conditions are zero),

wn) — 04y(n— 1)+ 029(n — 2) = x(n) + 0.5x(n — 1),

a. find the impulse response sequence due to an impulse
sequence
b. find the output response of the system when a unit step

function is applied.



Chapter

Frequency_Analysis of Discrete

Signals and Systems
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Learning Outcomes of this Chapter

After successful completion of this chapter students will be

able to:

1.

learn techniques for representing discrete-time
periodic signals using orthogonal sets of periodic
basis functions.

study properties of exponential trigonometric and
compact Fourier series, and conditions for their
existence.

learn the Founer transform for non-periodic signal
as an extension of Fourier series for periodic signals.
study the properties of the Fourser transform_ Understand
the concepts of energy and power spectral density.




6.1 _Introduction

Although the time domain is the most natural, since everything
(including our own lives) evolves in time, it is not the only
possible representation. In most cases we want to know the
frequency content of our signal. Most popular analysis in
frequency domain is based on work of Joseph Fourier. The Fourier
transform is one of several mathematical tools that is useful in
the analysis and design of LTI systems. Another is the Fourier
series. These signal representations basically involve the
decomposition of the signals in terms of sinusoidal (or complex
exponential) components. With such a decomposition, a signal is
said to be represented in the frequency domain.

Will begin with the frequency analysis of signals with the
representation of continuous-time periodic and aperiodic signals by
means of the Fourier series and the Fourier transform, respectively.
This is followed by a parallel treatment of discrete time periodic
and aperiodic signals. The properties of the Fourier transform are
described in detail and a number of time-frequency dualities are

presented.



6.2 Frequency_analysis of a Continuous Time signal

Frequency analysis of a signal involves the resolution of the signal
into its frequency (sinusoidal) components. Where these signal
waveforms are basically functions of time. The role of the prism
is played by the Fourier analysis tools that we will develop: the
Fourier series and the Fourier transform. The recombination of the
sinusoidal components to reconstruct the original signal is
basically a Fourier synthesis problem. The spectrum provides an
“identity” or a signature for the signal in the sense that no other
signal has the same spectrum. As we will see, that attribute is
related to the mathematical treatment of frequency-domain
technique: If we decompose a waveform into sinusoidal
components, in much the same Way that a prism separates white
light into different colors, the sum of these sinusoidal components
results in the original waveform. On the other hand, if any of

these components is missing, the result is a different signal.

The basic motivation for developing the frequency analysis tools
is to provide a mathematical and pictorial representation for the
frequency components that are contained in any given signal. As
in physics, the term spectrum is used when referring to the
frequency content of a signal. The process of obtaining the
spectrum of a given signal using the basic mathematical tools
described in this chapter is known as frequency or spectral analysis.
In contrast, the process of determining the spectrum of a signal
in practice, based on actual measurements of the signal, is called

spectrum This distinction is very important. In a practical problem



the signal to be analyzed does not lend itself to an exact
mathematical description. The signal is usually some information-
bearing signal from which we are attempting to extract the
relevant information. If the information that we wish to extract can
be obtained either directly or indirectly from the spectral content
of the signal, we can perform spectrum estimation the information-
bearing signal, and thus obtain an estimate of the signal
spectrum. In fact, we can view spectral estimation as a type of
spectral analysis performed on signals obtained from physical

sources (e.g., speech, EEG, ECG, etc.).



6.2.1 Fourier Series for Continuous-Time Periodic Signals

In this section we present the frequency analysis tools for
continuous-time periodic signals. Examples of periodic signals
encountered in practice are square waves, rectangular waves,
triangular waves, and of course, sinusoids and complex
exponentials. The basic mathematical representation of periodic
signals is the Fourier series, which is a linear weighted sum of
harmonically related sinusoids or complex exponentials. Jean
Baptiste Joseph Fourier (1768-1830), a French mathematician, used
such trigonometric series expansions in describing the
phenomenon of heat conduction and temperature distribution
through bodies. Although his work was motivated by the problem
of heat conduction, the mathematical techniques that he developed
during the early part of the nineteenth century now find
application in a variety of problems encompassing many different
fields, including optics, vibrations in mechanical systems, system

theory, and electromagnetics.

We know that a linear combination of harmonically related

complex exponentials of the form

is a periodic signal with fundamental period . Hence, we can

think of the exponential signals



(elBkFor k=0,+1,42, ...}

Where determines the fundamental period of and the coefficients

specify the shape of the waveform.

Suppose that we are given a periodic signal with period We can
represent the periodic signal by the series (6.1), called a Fourier
where the fundamental frequency is selected to be the reciprocal
of the given period To determine the expression for the
coefficients }, we first multiply both sides of (6.1) by the complex

exponential.

E—_}'E.rr Fylr

where | is an integer and then integrate both sides of the
resulting equation over a single period, say from o to or more
generally, from to + where is an arbitrary but mathematically

convenient starting value. Thus we obtain

tg+Tp o TS - _
f x[:]z‘”ﬂ-ﬁlf di =f 2 JmIFy E r_.jeu?:.-u,-.r di
i Iy

k=—n0r

(6.2)

To evaluate the integral on the right-hand side of (6.2), we
interchange the order of the summation and integration and

combine the two exponentials. Hence
o0 +T) o |:¢,;2.ﬁ-,,[k—.';-.- :|f|'l+7'ﬁ

Iy » f?nFnli'—“\-r
X : Hdr = | —————
2 ‘“*f ¢ =) o ZnFolk =)

— R k=—e0

(6.3)

Iy



For the right-hand side of (6.3) evaluated at the lower and upper
limits, and + respectively, yields zero. On the other hand, if k = |,

we have

i+ Te

n+Tp
[ dr =t| =T,

iy |f-‘|

Consequently, (6.2) reduces to

tg+Ts
) — & e
f x(t)e  JE R gr = ¢ Tp

Ty

and therefore the expression for the Fourier coefficients in terms

of the given period’ signal becomes

Since is arbitrary, this integral can be evaluated over any interval
of length that is, over any interval equal to the period of the
signal x(t). Consequently, the integra) for the Fourier series

coefficients will be written as

An important issue that arises in the representation of the

periodic signal by the Fourier series is whether or not the series



converges to x(t) for every value of t, that is, whether the signal

and its Fourier series representation

are equal at every value of t. The so-called Dirichlet conditions
guarantee that the series (6.5) will be equal to except at the
values of t for which is discontinuous. At these values of t, (6.5)
converges to the midpoint (average value) of the discontinuity. The

Dirichlet conditions are:

1. The signal has a finite number of discontinuities in any period.
2. The signal contains a finite nhumber of maxima and minima
during any period.

3. The signal is absolutely integrable in any period, that is,

(6.6)

All periodic signals of practical interest satisfy these conditions.

The weaker condition, that the signal has finite energy in one

period,



guarantees that the energy in the difference signal

% =]

e(t) = x(1) — Z cpel Tk For

k=—00

is zero, although x(t) and its Fourier series may not be equal for
all values of t. Note that (6.6) implies (6.7), but not vice versa.
Also, both (6.7) and the Dirichlet conditions are sufficient but not
necessary conditions (i.e., there are signals that have a Fourier

series representation but do not satisfy these conditions).

In summary, if is periodic and satisfies the Dirichlet conditions, it
can be represented in a Fourier series as in (6.1), where the

coefficients are specified by (6.4).

Therefore, the Synthesis and Analysis equation of frequency

Analysis of Continuous-Time Periodic Signal as follows:

(6.8)

and the analysis

In general, the Fourier coefficients are complex valued.
Moreover, it is easily shown that if the periodic signal is real, and

are complex conjugates. As a result, if



Cp = lt.‘klfjﬂk
Then

- j#
Cak = |Ck| /™

Consequently, the Fourier series may also be represented in the

form

(6.10)
where is real valued when is real.

Finally, we should indicate that yet another form for the Fourier
series can be obtained by expanding the cosine function in (6.10)

as
cos(2rk Fot + 6) = cos 2mk Fot cos 8, — sin 2k Fot sin

Consequently, we can rewrite (6.10) in the form

o
x(t) =ap + Z{ak cos 2wk Fogt — by sin 2wk Fgt)
k=1
(6.11)
Where

ap = cj
i1y = 2| ¢y | cos 6

by = 2|cg| sin g,



The expressions in (6.8), (6.10), and (6.11) constitute three
equivalent forms for the Fourier series representation of a real

periodic signal.



6.3_Frequency_Analysis of Discrete-Time Signals

Discrete signals can be represented in the frequency domain by
means of the Fourier Transform (FT), as seen for continuous
signals. In the discrete case, the physical interpretation of the FT
may be less evident, but nevertheless it is a very useful tool. In
this section we repeat the development for the class of discrete-
time signals. As mentioned in previous sections, the Fourier series
representation of a continuous-time periodic signal can consist of
an infinite number of frequency com ponents, where the frequency
spacing between two successive harmonically related frequencies is
and where Tp is the fundamental period. Since the frequency
range for continuous-time signals extends from , it is possible to
have signals that contain an infinite number of frequency com
ponents. In contrast, the frequency range for discrete-time signals
is unique over the interval . A discrete-time signal of fundamental
period N can consist of frequency com ponents separated by
radians or cycles. Consequently, the Fourier series representation of
the discrete-tim e periodic signal will contain at m ost N
frequency com ponents. This is the basic difference between the
Fourier series representations for continuous-time and discrete-time

periodic signals.



6.3.1 Fourier Series for Discrete-Time Periodic Signals

Suppose that we are given a periodic sequence with period N.
that is. for all N, The Fourier series representation for consists of

N harmonically related exponential functions

and is expressed as

(6.12)

where the are the coefficients in the series representation. To
derive the expression for the Fourier coefficients, we use the

following formula:

(6.13)

Note the similarity of (6.13) with the continuous-time counterpart
in (6.3). The proof of (6.13) follow s immediately from the

application of the geometric summation formula

(6.14)

The expression for the Fourier coefficients can be obtained by
multiplying both sides of (6.12) by the exponential and summing

the product from n = o to n = N — 1. Thus;



(6.15)

If we perform the summation over n first, in the right~hand side
of (6.15), we obtain

N=]

E F;E.‘rf..r =i/ _

e

N, k—1=0 &N x2N..
0, otherwise

(6.16)

where we have made use of (6.13). Therefore. the right-hand side
of (6.15) reduces to and hence

| As
)

_ - jinmin/N ! = U I IIIII N = 1
) N 2 r{mhe

(6.17)
Thus, we have the desired expression for the Fourier coefficients

in terms of the signal The equations of analysis and synthesis of
Frequency Analysis of Discrete-Time Periodic Signals as below:

Synthesis equation is:

(6.18)

Analysis equation is



The equation (6.18) is often called the discrete-rime Fourier series
(DTFS). The Fourier coefficients provide the description of x(n) in
the frequency domain, in the sense that ck represents the

amplitude and phase associated with the frequency component.

jlmkn/N NI

spln) =e¢ =¢
where .

Note that the functions are periodic with period N. Hence In view
of this periodicity, it follows that the Fourier coefficients when
viewed beyond the range also satisfy a periodicity condition.

Indeed, from (6.19), which holds for every value of k, we have

{ M= { ¥l
. Pl R et — % N
Chapy = v Zx[nlr"*l"”‘ NomiN = N Z,rfn}eﬂ jakaiN — o
| o

r=i}

(6.20)

Therefore, the Fourier series coefficients form a periodic sequence

when extended outside of the range Hence
Ce+N = Gy

that is, is a periodic sequence with fundamental period Thus the
spectrum of a signal x(n), which is periodic with period N, is a
periodic sequence with period Consequently, any N consecutive
samples of the signal or its spectrum provide a complete

description of the signal in the time or frequency domains.



Although the Fourier coefficients form a periodic sequence, we will
focus our attention on the single period with range . This is
convenient, since in the frequency domain, this amounts to
covering the fundamental range for . In contrast, the frequency
range corresponds to , which creates an inconvenience when N is
odd. Clearly. if we use a sampling frequency the range

corresponds to the frequency range

Example 6.1

Determine the spectra of the signals

a.
b.
c. is periodic with period N = 4 and

xin) = {1, 1, 0,0

Solution

For we have . Since is not a rational number, the signal is not
periodic. Consequently. this signal cannot be expanded in a Fourier
series. Nevertheless, the signal does possess a spectrum. lts

spectral content consists of the single frequency component at .

In this case and hence is periodic with fundamental period N =
6.

From (6.19) we have



5

#=l}
However. can be expressed as

2an 1 1 _.
I(Fl} — COS —— = _e_fZ:ltn,."fr + —e jimnfé

6 2

which is already in the form of the exponential Fourier series in
(6.18). In comparing the two exponential terms in with (6.18), it is
apparent that The second exponential in x(n) corresponds to the

term k = —1 in (6.18) However. this term can also be written a

-2 : i (5— i f
e Jj2rmnj6 — EJ..HIES Ghn /b — E_;.Err[ﬁnhﬁ

which means that . But this is consistent with (6.20), and our
previous observation that the Fourier series coefficients form a

periodic sequence of period N. Consequently, we conclude that:

G =tz=c3=0cy=0

b | =

1
o= 5"55:

a. From (4.2.8). we have

»—
|

=

(2=
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ao=3l+e™2)  x=0.1,2,3

For we obtain

I f|=§f]—f.| ¢o=0 f"-:%”*-'“

= 35

The magnitude and phase spectra are

Figure 4.10 illustrates the spectral content of the signals in (b)

and (c).

S0 1 X S (1 Y L= 0
() (L] ()
Figure 6.1 Spectra of the periodic signals

discussed in Example 6.1 (b) and (c).



6.3.2 Fourier Transform of Discrete-Time Aperiodic_Signals

Just as in the case of continuous-time aperiodic energy signals,
the frequency anal ysis of discrete-time aperiodic finite-energy

signals involves a Fourier transform of the time-domain signal.

The Fourier transform of a finite-energy discrete-time signal x(n) is
defined as

(6.21)

Physically, represents the frequency content of the signal In other

words, is a decomposition of into its frequency components.

We observe two basic differences between the Fourier transform of
a discrete time finite-energy signal and the Fourier transform of a
finite-energy analog signal. First, for continuous-time signals, the
Fourier transform, and hence the spectrum of the signal, have a
frequency range of . In contrast, the frequency range for a
discrete-time signal is unique over the frequency interval of or

equivalently, .

This property is reflected in the Fourier transform of the signal.

Indeed. is periodic with period that is.

(6.22)



Hence is periodic with period . But this property is just a
consequence of the fact that the frequency range for any discrete-
time signal is limited to or (o, ), and any frequency outside this

interval is equivalent to a frequency within the interval.

The second basic difference is also a consequence of the discrete-
time nature of the signal. Since the signal is discrete in time. the
Fourier transform of the signal involves a summation of terms

instead of an integral, as in the case of continuous-time signals.

Since is a periodic function of the frequency variable , it has a
Fourier series expansion, provided that the conditions for the
existence of the Fourier series. described previously, are satisfied.
In fact, from the definition of the Fourier transform of the
sequence given by (6.21), we observe that has the form of a
Fourier series. The Fourier coefficients in this series expansion are

the values of the sequence x(n).

To demonstrate this point. let us evaluate the sequence from .
First, we multiply both sides (6.21) by and integrate over the
interval . Thus we have

’r! X{whe'“"dew = fﬂ [ Z x[n]e“-‘“"] e/ dw

o =1 = = -

(6.23)

The integral on the right-hand side of (6.23) can be evaluated if
we can inter change the order of summation and integration. This

interchange can be made if the series converges uniformly to as .



X,i.{w:‘= Z x{”-}e—!un

n=s=N

Uniform convergence means that, for every , as .. The

convergence of the Fourier transform is discussed in more detail
in the following section. For the moment, let us assume that the
series converges uniformly, so that we can interchange the order

of summation and integration in (6.23). Then

Foo
o 27 m=n
Jwim—n}) — 1
f_"e dw_{ﬂ, m #n

Consequently,

= T tmen Jwx(m). m=n
E xin}f ! T e = [ (m) .
— E' m=n

mE= =0

(6.24)

By combining (6.23) and (6.24). we obtain the desired result that

(6.25)

If we compare the integral in (6.25) with (6.9), we note that this
is just the expression for the Fourier series coefficient for a
function that is periodic with period 2rr. The only difference
between (6.9) and (6.25) is the sign on the exponent in the
integrand. which is a consequence of our definition of the Fourier
transform as given by (6.21). Therefore. the Fourier transform of
the sequence defined by (6.21), has the form of a Fourier series

expansion.






It is customary to describe an LTI discrete-time system in terms
of a linear difference equation with constant coefficients. To
describe such a system in the frequency domain, we must
determine its transfer function in the frequency domain. Consider
an LTI discrete-time system described by the following difference

equation, where the coefficients are constants:
y[n] = Zf_,a;x[n - j1 — Ziaybxyln— kl.p >q

(6.26)

By applying the DTFT on both sides of (6.26) and making use of
the time shifting property of the DTFT, we get
V(€)= X(e7) Zao @m e /™ — ¥ (€/7) oy b€~/

(6.27)

We can then express the transfer function of the LTI discrete-time

system in the frequency domain as

H Ejﬂ} _ v(ef) _ aptagePiaze B0t e faR
X(ef) T 14beIRibye— 0 bye— PR

(6.28)

As expected, the transfer function of an LTI discrete-time system
in the frequency domain is a rational function in the variable .
Recall that the system described by (6.26) in the discrete-time
domain or equivalently by (6.28) in the frequency domain is a

recursive system. Hence its transfer function is a rational



polynomial in the variable . On the other hand, a non-recursive
system will have a transfer function where the denominator is

identically equal to 1.

Example 6.2 The impulse response of an LTI discrete-time system
is given by . If the input to this system is , find the response of
the system using the DTFT.

Solution: Since the given system is LTI, its response is the
convolution of its impulse response sequence and the input
sequence. In the frequency domain, the DTFT of the system
response is the product of the DTFT of its impulse response and
the input. First, we find the DTFT of the impulse response and

the input from our previous discussion. Therefore,

(6.29a)
(6.29b)
The DTFT of the system output is
V(%) = DIFTly{rl} = DTFT{A[mI@x{n]} = H(W(eR) = preastigraiy
(6.30)

The time domain response is the IDTFT of (6.30). One way to
find the IDTFT is to express (6.30) in partial fractions and then

identify each fraction with a real exponential sequence. So,



The residues are given by

(6.32a)

(6.32b)

Note that and . Therefore, the response of the given LTI discrete-

time system is

(6.33)

Example 6.3 An LTI discrete-time system consists of a cascade of

two systems and where,

and (6.34a)

(6.34b)

Determine the value of such that the magnitude of the overall

frequency response of the system is unity.

Solution: In a cascade connection, the output of the first system
is the input to the second system and so on. This implies that
the overall impulse response is the convolution of the impulse
response of the individual sections. Therefore, the DTFT of the
overall system is the product of the individual DTFTs. Thus,



The magnitude of the overall frequency response is given by

|H(&'m]| |_fitcos@)—jsingd | _ f 2+2 cosil —=p=-1

~ ln-peosayrjpsinal ~ \|1+F-2p cosn

(6:36)

A discrete-time LTI system whose magnitude of the frequency

response is a constant is known as an allpass system.

(6-35)



6.4.1 Steady State Response of LTI Discrete-time Systems

We have seen earlier that the particular solution of a linear
difference equation with constant coefficients is proportional to the
input sequence. The complementary solution is in general, a
decaying function. So, when the complementary solution or the
transient response disappears, only the particular solution remains.
This is called the steady state response of the system. In
particular, when the input to an LTI discrete-time system is a
sinusoidal sequence of a specified frequency, its response in the
steady state is the same input sinusoid except that its amplitude
and phase are modified by the value of the transfer function at
that frequency. We can, therefore, express the steady state

response of an LTIl discrete-time system to an input sinusoid as

(6.37)

From equation (4.37) we notice that the amplitude of the output
sinusoid is the magnitude of the transfer function at the input
frequency and the lagging phase angle equals times the input
frequency. If the phase response is linear, then the phase delay
equals the negative of the phase angle divided by the input
frequency. If the phase angle represented by is linear, then the

phase delay or simply the delay is expressed by



Recall that the transfer function is the DTFT of the impulse
response of an LTIl discrete-time system. Since the impulse
response is unique to a given system, the corresponding frequency

response is also unique to the system.

Example 6.4 The impulse response of a discrete-time LTI system

is given by

Find the steady state response of the system if the input is .

Solution: The frequency response or the transfer function of the

given system is the DTFT of its impulse response:

1

H(E‘Fﬂ} = DTﬂ{h[ﬂ]} = DTFT{']‘EH‘H[H]} = m

(6.40)

The transfer function in magnitude-phase form of the given system

is found to be

(6.41a)

(6.41b)



Since the input is a unit amplitude sinusoid at a frequency rad,

the steady state response of the given system is given by

(6.42)

From equations (4.41a) and (4.41b), we find that and the phase
angle is . Therefore, the steady state response of the given system

to the input sinusoid is

(6.43)

The input and the system response are plotted as a function of
the sample index and shown in Figure 6.2 as top and bottom
plots, respectively. The system response is obtained by calling the
function It accepts two sequences as vectors and returns a
sequence that is of length equal to the sum of the lengths of the
impulse response and input minus one. However, we plot the
response in length equal to the input sequence. As can be seen
from the figure, the system response is the same sinusoid as the
input with a change in its amplitude. We also notice a delay of 1
sample in the output sequence due to the phase shift in the

transfer function, which agrees with the analytical result.
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Group delay: When the phase response of an LTI discrete-time
system is not linear, then its phase delay is not constant but is a
function of the input frequency. When a group of sinusoidal
frequencies is present in the input, it is customary to find the
phase delay over this group of frequencies. It is called the group

delay and is defined as

(6.60)

Let us illustrate the calculation of group delay by way of an

example.

Example 6.5 Calculate the group delay of the system in Example
6.9 and plot the result.



Solution: The phase response of the given system is shown in

equation (6.57b). Then, the group delay is given by

(6.61)
To obtain the derivative in equation (6.61), first let us rewrite
(6.57b) as

(6.62)
Now differentiate (6.62) with respect to . Therefore,

1 ﬂ __ —{1—0.5 cos0){0.5 cosil)+(0.5 sin ) {0.5 sin 1)

cos?gdi (1-0.5cos (1)2

(6.63)
From (6.62), we get

(6.64)

Using (6.64) in (6.63) and after algebraic manipulation, we obtain

(6.65)

Using equation (6.65) in (6.61), we finally obtain the expression
for the group delay as



(6.66)

The group delay in (6.66) is shown in Figure 6.3 top plot as a
function in the interval . It accepts the coefficients of the
numerator and denominator polynomials of the transfer function,
both in ascending powers of . The group delay is shown in the
bottom plot in Figure 6.3.

Group delay using analytical result

Group delay using Matlab

&(. in rac
Figure 6.3 Group delay of the system in Example 6.9:
Top plot: group delay obtained from equation (6.66),



6.5_Frequency Response of Systems

Systems are analyzed in the time domain by using convolution. A
similar analysis can be done in the frequency domain. Using the
Fourier transform, every input signal can be represented as a
group of cosine waves, each with a specified amplitude and phase
shift. Likewise, the DFT can be used to represent every output
signal in a similar form. This means that any linear system can
be completely described by how it changes the amplitude and
phase of cosine waves passing through it. This information is
called the system’s frequency Since both the impulse response and
the frequency response contain complete information about the
system, there must be a one- to-one correspondence between the
two. Given one, you can calculate the other. The relationship
between the impulse response and the frequency response is one
of the foundations of signal processing: A system’s frequency
response is the Fourier Transform of its impulse Figure 6-4 illustrates

these relationships.

Keeping with standard DSP notation, impulse responses use lower
case variables, while the corresponding frequency responses are
upper case. Since is the common symbol for the impulse
response, is used for the frequency response. Systems are

described in the time domain by convolution, that is:

= In the frequency domain, the input spectrum is multiplied by

the frequency response, resulting in the output spectrum. As an



equation: X x H = That is, convolution in the time domain

corresponds to multiplication in the frequency domain.

FRBOUENCY
DOMATT

X[1] >| H[f] » Y[f]

Figure 6.4. Comparing system operation in the time and frequency

domains.

Figure 6.5 shows an example of using the DFT to convert a
system’s impulse response into its frequency response. Figure (a)
is the impulse response of the system. Looking at this curve isn't
going to give you the slightest idea what the system does. Taking
a 64 point DFT of this impulse response produces the frequency
response of the system, shown in (b). Now the function of this
system becomes obvious, it passes frequencies between 0.2 and
0.3, and rejects all others. It is a band-pass filter. The phase of
the frequency response could also be examined; however, it is
more difficult to interpret and less interesting. Figure 6.5 (b) is
very jagged due to the low number of samples defining the curve.
This situation can be improved by padding the impulse response
with zeros before taking the DFT. For example, adding zeros to
make the impulse response 512 samples long, as shown in (c),

results in the higher resolution frequency response shown in (d).
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Figure Finding the frequency response from the impulse response.
By using the DFT, a system’s impulse response, (a), can be

transformed into the system’s frequency response, (b). By adding
the impulse response with zeros (c) higher resolution cab be

obtained in the frequency response, (d). Only the magnitude of

the frequency response is

How much resolution can you obtain in the frequency response?
The answer is: infinitely high, if you are willing to pad the impulse
response with an infinite number of zeros. In other words, there
is nothing limiting the frequency resolution except the length of
the DFT. This leads to a very important concept. Even though the
impulse response is a discrete signal, the corresponding frequency
response is An N point DFT of the impulse response provides +
1 samples of this continuous curve. If you make the DFT longer,
the resolution improves, and you obtain a better idea of what the
continuous curve looks like. Remember what the frequency
response represents: amplitude and phase changes experienced by

cosine waves as they pass through the system. Since the input



signal can contain any frequency between o and o.5, the system’s

frequency response must be a continuous curve over this range.



6.6 Convolution via the Frequency Domain

Suppose that you despise convolution. What are you going to do
if given an input signal and impulse response, and need to find
the resulting output signal? Figure 9-8 provides an answer:
transform the two signals into the frequency domain, multiply
them, and then transform the result back into the time domain.
This replaces one convolution with two DFTs, a multiplication, and
an Inverse DFT. Even though the intermediate steps are very
different, the output is identical to the standard convolution

algorithm.

Does anyone hate convolution enough to go to this trouble? The
answer is yes. Convolution is avoided for two reasons. First,
convolution is mathematically difficult to deal with. For instance,
suppose you are given a system’s impulse response, and its
output signal. How do you calculate what the input signal is? This
is called deconvolution and is virtually impossible to understand in
the time domain. However, deconvolution can be carried out in
the frequency domain as a simple the inverse operation of
multiplication. The frequency domain becomes attractive whenever
the complexity of the Fourier Transform is less than the
complexity of the convolution. This isn’t a matter of which you
like better; it is a matter of which you hate less. The second
reason for avoiding convolution is computation For example,
suppose you design a digital filter with a kernel (impulse

response) containing 512 samples. Using a 200 MHz personal



computer with floating point numbers, each sample in the output
signal requires about one millisecond to calculate, using the
standard convolution algorithm. In other words, the throughput of
the system is only about 1,000 samples per second. This is 40
times too slow for high-fidelity audio, and 10,000 times too slow

for television quality video!

The standard convolution algorithm is slow because of the large
number of multiplications and additions that must be calculated.
Unfortunately, simply bringing the problem into the frequency
domain via the DFT doesn’t help at all. Just as many calculations
are required to calculate the DFTs, as are required to directly
calculate the convolution. A breakthrough was made in the
problem in the early 1960s when the Fast Fourier Transform (FFT)

was developed.



Problem

Compute the complex-form Fourier series coefficients and sketch

the magnitude and phase spectra for

(a) the signal that has fundamental period , with .
(b) the signal

x(f)= > (=1)" o(i=2k)

(c) the signal shown below “

A1)

it
s .. L

6.2 Suppose is periodic with fundamental period and complex-form

Fourier series coefficients . Show that

(a) if is odd, , then for all
(b) if is “half-wave odd,” , then for every even integer

(c) if is even, , then for all

Given the LTI system with unit-impulse response , compute the
Fourier series representation for the response of the system to the

input signal

(a)



(b)

A continuous-time periodic signal has Fourier series coefficients

Compute and sketch the magnitude and phase spectra of the

signal

6.5. Compute the discrete-time Fourier series coefficients for the

signals below and sketch the magnitude and phase spectra.

(2)
(b)

For the sets of DTFS coefficients given below, determine the

corresponding real, periodic signal

Kg==1 Xi=0 Xp=1 N3 ==2, Xy=1, By =0, Xpys =X, g =mf3

Suppose is periodic with even fundamental period and DTFS

coefficients If also satisfies , for all show that = o if k is even.



If has fundamental period an even integer, and discrete-time
Fourier series coefficients what are the Fourier series coefficients

for:

(a)

(b) (Assume that and give an example to show why this

assumption is needed.)

For the LTI systems specified below, sketch the magnitude of the
frequency response function and determine if the system is a low-

pass or high-pass filter.

(a)
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Learming Outcomes of this Chapter

After successful completion of this chapter students will be

understanding the relationships between the
transform, discrete-time Fourier transform (DTFT),
discrete Fourier series (DFS), discrete Fourer
transform (DFT) and fast Fourier transform (FFT).
understand the characteristics and properties of DFS
and DFT.

perform discrete-time signal conversion between the
time and frequency domains using DFS and DFT and
their inverse transforms.




7.1 _Introduction

In time domain, representation of digital signals describes the
signal amplitude versus the sampling time instant or the sample
number. However, in some applications, signal frequency content
is very useful otherwise than as digital signal samples. The
representation of the digital signal in terms of its frequency
component in a frequency domain, that is, the signal spectrum,
needs to be developed. Therefore, the discrete Fourier transform
(DFT) is an equation for converting time domain data into
frequency domain data. Discrete means that the signal is sampled
in time rather than being continuous. Therefore, the DFT is an
approximation for the continuous Fourier transform. Figure 7.1
illustrates the time domain representation of a 1,000-Hz sinusoid
with 32 samples at a sampling rate of 8,000 Hz; the bottom plot
shows the signal spectrum (frequency domain representation),
where we can clearly observe that the amplitude peak is located
at the frequency of 1,000 Hz in the calculated spectrum. Hence,
the spectral plot better displays frequency information of a digital
signal. The algorithm transforming the time domain signal
samples to the frequency domain components is known as the
discrete Fourier transform, or DFT. The DFT also establishes a

relationship between the time domains representation
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Figure 7.1 Example of the digital signal and its amplitude

spectrum.

Discrete Fourier Transform (DFT) is the equivalent of the
continuous Fourier Transform for signals known only at instants
separated by sample times (i.e. a finite sequence of data). It is
the family member used with digitized signals. it is It is a
transformation that maps an N-point Discrete-time (DT) signal
into a function of the N complex discrete harmonics.

The general term: Fourier transform, can be broken into four
categories, resulting from the four basic types of signals that can

be encountered.

A signal can be either continuous or discrete, and it can be
either periodic or aperiodic. Aperiodic-Continuous This includes, for
example, decaying exponentials and the Gaussian curve. These
signals extend to both positive and negative infinity without
repeating in a periodic pattern. The Fourier Transform for this type
of signal is simply called the Fourier Transform. Periodic-
Continuous Here the examples include: sine waves, square waves,

and any waveform that repeats itself in a regular pattern from



negative to positive infinity. This version of the Fourier transform
is called the Fourier Series. Aperiodic-Discrete These signals are
only defined at discrete points between positive and negative
infinity, and do not repeat themselves in a periodic fashion. This
type of Fourier transform is called the Discrete Time Fourier
Transform. Periodic-Discrete These are discrete signals that repeat
themselves in a periodic fashion from negative to positive infinity.
This class of Fourier Transform is sometimes called the Discrete
Fourier Series, but is most often called the Discrete Fourier
Transform.

Type of Fourier transform that can be used in DSP is the DFT.
In other words, digital computers can only work with information
that is discrete and finite in length. When you struggle with
theoretical issues, grapple with homework problems, and ponder
mathematical mysteries, you may find yourself using the first three
members of the Fourier transform family. When you sit down to
your computer, you will only use the DFT.

Let be the continuous signal which is the source of the data. Let

samples be denoted f [0],

The Fourier Transform of the original signal, would be :

(7.1)

We could regard each sample f as an impulse having area f Then,

since the integrand exists only at the sample points:



Fgw) = [ T feiwedt 7.2)
= fl0le ™ + fl1]le M + ...+ flkle™T 4 . +f[N = 1]e-iwi-1r

el.e F(jw) = Z flk]e—wkr
=

We could in principle evaluate this for any #, but with only data
points to start with, only final outputs will be significant. You may
remember that the continuous Fourier transform could be
evaluated over a finite interval (usually the fundamental period
rather than from if the waveform was Similarly, since there are
only a finite number of input data points, the DFT treats the data

as if it were periodic (i.e. to to is the same as to .

Hence the sequence shown below in Figure 7.2(a) is considers to

be one period of the periodic sequence in figure 7.2 (b).
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Figure 7.2 (a) Sequence of N=10 _ samples.

(b) implicit periodicity in DFT.



Therefore, the M -point DFT and inverse DFT for a time-limited
sequence x which is non-zero within the limits o < k < -1), is

given by

DFT synthesis equation

for o = k = - 1); (7.3)

DFT analysis equation

foro<r < - (7-4)

By substituting the expression for from the synthesis equation, Egq.
(7.3), the analysis equation, Eq. (7.4), can be formally proved. In
both equations, the length M of the DFT is typically set to be
greater or equal to the length N of the aperiodic sequence Unless
otherwise stated, in case M = N in the discussion that follows.

Collectively, the DFT pair is denoted as

(7.5)

Examples 7.1 and 7.2 illustrate the steps involved in calculating

the DFTs of aperiodic sequences.

Example 7.1
Calculate the four-point DFT of the aperiodic sequence of length
N = 4, which is defined as follows:



x[k] =

_— = ) d
|

Solution
The four-point DFT of x is given by

3
xl’l i Z X [_ﬁ. |E—j[2ikrf4]

k=0
=243 t—ji?.-rr,."ai] -1 t—jt?ni!}r;’ﬂh + 1 % t—ji'.'!mﬁir.l"ﬂ‘

for . On substituting different values of we obtain

r=0 X[0]=24+3-14+1=5;

r=1 X[(1]=2+3x e 00 _ | MWD 4 g o~ieCHH

=243—-j—-UH=-D+1ji=3-2

X[2]=2+3x e—i-’j::i:-.-’dl — 1 3 E—nZwrj\\fiU-n + 1 x c—iri::?uh.u]

=24 3=-1)— LD+ I{-1}==3;
r=3 X[3] =243 x N3O _ | o KRNI | | 0 o~iEZRONI

=243 = H=1}=+ 1{=j) =3+ j2.

Example 7.2
Calculate the inverse DFT of

X[k] = [5.3 - j2,-3,3 + j2]

Solution
Using the inverse DFT of is given by



El
xk] = l Z X[r]eirkri - _I [5 + (3 =j2) = @k} _ 3 o @ HIWERIES)
4 = 4
+ (3 + j2) x el2TORA]
for 0 = £ = 3. On substituting different values of &, we obtain
1
x[0] = Elﬁ +{E3 -3+ (3+j0]=2;
x[1] = _I[5 +(3 _jEJej[zw.m; — 3il2w(2/4) o 3 +j2]ejz2w~r31.m|
4

I -1 I 1 M
=75+ 0G -0 =3=D+ G+l =3

x[2] = _|[5 + (3 _jz:lcjllwﬂpj;db — 3eiZmINT ) 43 +j2].:j[h[3][1:l.|’-4]]
<4
1 . .
=S+ 3 =-2H—-D=3+E+i2N-1)]= -1
x[3] = [5 4 (3 _jZchﬂ:nh,H} _ 3pdEmINII ) +(3+j2e i[:wﬁ][hﬂl]

Bl— b=

[S+ (3 —i20—D— 33—+ +i20i) = 1.

Examples 7.1 and 7.2 prove the following DFT pair:

2 k=10 5 r=1
3 k=1 DET =iz r=1
HE=1_1 F=a Xirl=1 3~ ;-2
i B=13 S4B =3

where both the DT sequence x[k] and its DFT are aperiodic with

length N = 4.



7.2 DFT as matrix multiplication

An alternative representation for computing the DFT is obtained
by expanding Eq. (7.4) in terms of the time and frequency indices

For N = the resulting equations are expressed as follows:

X[0] = x[0] 4 x[1] 4+ x[2] + - -+ x[N = 1],

X(1] = x[0] + x[1]e™¥EM/N) L ¢[2)e=N4m/N)
+ oo 4 x[N — 1]e”XAN=1pm/N)

X[2] = x[0] 4 x[1]e MmN 4 x[2]eiB=/N)
4+ x[N— ll‘:—_'l{li[-'ll—”Tl.'.l'l'I']I

.xlﬂl'l —_ II — -"'Ilul + rl] Ie—jle:nv—“l:;'."qw + _rlz]e_j['ﬂ'l"'._”“f'ﬁll
+ . + .l'l]'\'r — Ie—j[zl:-llr—l.}ll'll—lh.'.hl:l

(7.6)

In the matrix-vector format they are given by

X[0] I I 1 = I x[0]

2xfN W/ N AN N
X011 | pHZ=lN) e Hid=/N} . 2 L /M) x[1]
X121 |1 M MR NN x[2]
XN =1] | & HHN =11 W) e KMN=FiNY e HAN =1HN =11 ) x|N =1]
DFT vecion; X DT mairin: ¥ sigral wecmor: X

(7-7)

Equation (7.7) shows that the DFT coefficients can be computed
by left- multiplying the DT sequence arranged in a column vector

in ascending order with respect to the time index by the DFT
matrix F .



Similarly, the expression for the inverse DFT given in Eq. (7.3) can

be expressed as follows:

m 7 1 1 1 1 X[
1] | eimiN elEINY L G EEN DN X[1]

e[2] o | phes PN N I L X[2]

[N 1] | oH2AN=1miN) o N =1 ) | JKEN =N =1 X[N 11

signal vector: x DFT matnx: ¢=F-1 DFT wector: ¥

which implies that the DT sequence can be obtained by left-
multiplying the DFT coefficients arranged in a column vector in
ascending order with respect to the DFT coefficient index r, by the
inverse DFT matrix G and then scaling the result by a factor . It
is straightforward to show that , where is the identity matrix of
order Example 7.3 repeats Example 7.1 using the matrix-vector

representation for the DFT.

Example 7.3
Calculate the four-point DFT of the aperiodic signal considered in

Example 7.1.

Solution
Arranging the values of the DT sequence in the signal vector we

obtain

where superscript T represents the transpose operation for a

vector. Using Eq. (7.7), we obtain



X[0] 11 | I 7 [ *10]
X[1] I s 1 Bl B x[1]
X[21| |1 eitmNl o—iBmiNy o —il12w/N) xI2]
X[3] | e NmN) o iI2e/N) ojsa/M) | | yf3)
DFT matrix: F

11 1 1 27 S

| e-i@miN)  o=ildm/N)  o=jlEw/N} 3 i=-j2
=11 eidwiiy i@y ojuzmN | [T -3

| e-ilEmiN) o—i12m/N}  o—illBw/N) 1 ] 3452

DFT marrix: F

The above values for the DFT coefficients are the same as the

ones obtained in Example 7.1.

Example 7.4
Calculate the inverse DFT of considered in Example 7.2.

Solution
Arranging the values of the DFT coefficients in the DFT vector we

obtain

X=[5 3-j2 -3 3+j2"

Using Eq. (7.8), the DFT vector X is given by

x[0] 11 1 1 X[0]
«[1] 1|1 el2mim gismiiy  itomiN) || X[1]
(2] | T 3|1 eMmM oimiy  gitlimN) | X(2)
£[3] | eFEmiNY GHI2n/N) llBw/N) X131
11 | i 5 8 2
_L] 1 eawiNY GMew/i)  glOa/M) 3—j2|_1fi2|_| 3
T 4|1 el GHERNY G2 —3 | 4] —4]"]-1
1 eimiN] pHIZw/N}  @illbniN) | | 34 i2 4 1



The above values for the DT sequence are the same as the ones

obtained in Example 7.2.



7.3_Properties of the DFT

In this section, we present the properties of the M -point DFT.
The length of the DT sequence is assumed to be . For , the DT
sequence is zero-padded with zero-valued samples. The DFT

properties presented below.



7:3.1_Periodicity

The M -point DFT of an aperiodic DT sequence with length N

with is itself periodic with period In other words,

for with .

(7-9)



7:3:2_Orthogonality

The column vectors of the DFT matrix defined in Eq. (7.8), form
the basis vectors of the DFT and are orthogonal with respect to

each other such that

M forr=g

Hop _
Fro Ky 0 forr #q,

where (.-) represents the dot product and the superscript H

represents the Hermitian operation.



7:3.3_Linearity

If and are two DT sequences with the following M -point DFT

pairs:

xi[k] s X3[r] and xofk] s Xalrl,

then the linearity property states that
ayx1[k] + axxa[k] 4—E-F—T-—r a Xy [r] + a2 Xa[r],

(7.10)

for any arbitrary constants and which may be complex-valued.



7:3:4_Hermitian symmetry

The M -point DFT of a real-valued aperiodic sequence is
conjugate- symmetric about r = Mathematically, the Hermitian

symmetry implies that

(7.11)

where denotes the complex conjugate of

In terms of the magnitude and phase spectra of the DFT the

Hermitian symmetry property can be expressed as follows:

XM —r]l= X[r]] and < X[M — r] =—< X [r]

(7.12)

implying that the magnitude spectrum is even and that the phase

spectrum is odd.



7:3.5_Time shifting

If x[k] <=5 X[r], then

(7-13)

for an M -point DFT and any arbitrary integer



7.:3.6 Circular convolution

If and are two DT sequences with the following M -point DFT

pairs:

alk] s X,[r] and  xfk] s Xo[r],

then the circular convolution property states that

(7-14)

and

(7-15)

where @ denotes the circular convolution operation. Note that the
two sequences must have the same length in order to compute

the circular convolution.

Example 7.5
Calculated the circular convolution of the two aperiodic sequences
and defined over . Recalculate the result of the circular

convolution using the DFT convolution property.

Solution

The four-point DFTs of the aperiodic sequences and are given by



X=-2+-2-j2Jand H =75 -5+ jg

for . Using Eq. (12.27), the four-point DFT of the circular

convolution between x and is given by

x1[k] ® xa[k] s [60, j20, O — j20].

Taking the inverse DFT, we obtain

x1[k] ® x2[k] = [15,5,15,25],



7.3.7_Parseval’'s theorem

If then the energy of the aperiodic sequence of length N can be
expressed in terms of its M -point DFT as follows:

(7.16)

Parseval's theorem shows that the DFT preserves the energy of

the signal within a scale factor of



7-4_Computational complexity,

We now compare the computational complexity of the time-domain
and DFT- based implementations of the linear convolution between
the time-limited sequences and with lengths and respectively. For
simplicity, we assume that and are real-valued sequences with

lengths and respectively.

Time-domain approach This is based on the direct computation of

the convolution sum

o0

vlk] = x;[k] £ x;[k] = Z xy[m]xs|k — m],

m=—00

which requires roughly x multiplications and x additions. The total
number of floating point operations (flops) required with the time-

domain approach is therefore given by x

DFT-based approach Step 1 of the DFT-based approach computes
two K = + - 1 point DFTs of the DT sequences and The K -point
DFT can be implemented using fast Fourier trans- form (FFT)
techniques with K complex multiplications and K K complex
additions. Since each complex multiplication requires four scalar
multiplications and two scalar additions, a total of six flops are
required per com- plex multiplication. Each complex addition, on
the other hand, requires two scalar additions, leading to two flops

per complex addition. Therefore,



— Step 1 of the DFT-based approach requires a total of log2 K +
log2 K] = log2 K flops.

— Step 2 multiplies DFTs for and Each DFT has a length of K =
+ - 1 points; therefore, a total of K complex multiplications and K
- 1 = K complex additions are required. The total number of
computations required in Step 1 is therefore given by or + — 1)
flops.

— Step 3 computes one inverse DFT based on the FFT

implementation requiring flops.

The total number of flops required with the DFT-based approach

is therefore given by

15Klog,K + 6K = 15Klog-K flops

where K = + - 1. Assuming = the DFT-based approach pro- vides
a computation saving of O(log2 K/K) in comparison with the
direct computation of the convolution sum in the time domain.
Table 7.1 compares the computational complexity of the two
approaches for a few selected values of and We observe that for
sequences with lengths greater than 1000 samples, the DFT-based
approach provides significant savings over the direct computation

of the circular convolution in the time domain.

Table 7.1. Comparison of the computational complexities of the
time-domain versus the DFT-based approaches used to compute

the linear convolution



Computational complexity, Aops

Length K, Length Ky Time domain

af % [k] of x3[k] (2K, x Kz Mops) DFT (15K log; K Nops)
312 5 320 2792
32 16 1024 3916
iz iz 2048 5649

100 3 10000 150171

1N 200 400000 183043

1000 1000 2000 000 328787




7.5_Fast Fourier Transform (FFT)

The fast Fourier transform (FFT) was invented by Cooley and Tukey
in 1965. They discovered that the DFT operation could be
decomposed into a number of other DFTs of shorter lengths. They
then showed that the total humber of computations needed for
the shorter DFTs was smaller than the number needed for the
direct computation. In fact, the number of arithmetic operations
(multiplications and additions) for the direct computation of the
DFT is approximately equal to but for the FFT algorithm reduced
to approximately To take an example, if the DFT require
approximately multiplications and additions, whilst the FFT would

require more than 1000 times fewer.

There are several well-known techniques including the radix-2,
radix-4, split radix, Winograd, and prime factor algorithms that are
used for computing the DFT. These algorithms are referred to as
the fast Fourier transform (FFT) algorithms. In this section, we

explain the radix-2 decimation-in-time FFT algorithm.

To provide a general frame of reference, let us consider the
computational complexity of the direct implementation of the K -
point DFT for the time-limited sequence with length Based on its

definition,

(7.17)



K complex multiplications and K — 1 complex additions are
required to compute a single DFT coefficient. Computation of all
K DFT coefficients requires K 2 complex additions and K 2
complex multiplications, where we have assumed K to be large
such that . In terms of flops, each complex multiplication requires
four scalar multi- plications and two scalar additions, and each
complex addition requires two scalar additions. Computation of a
single DFT coefficient, therefore, requires flops. The total number
of scalar operations for computing the complete DFT is given by

2 flops.

We now proceed with the radix-2 FFT decimation-in-time algorithm.



7.5.1 Derivation of the FFT

The decomposition of the DFT is achieved by breaking a signal
down into two shorter, interleaved subsequences. This process is
more commonly known as (DIT). Suppose a signal exists with N
sample values, where N is an integer power of 2. The signal is
first separated into two subsequences with N/2 samples. One
subsequence contains the samples with even-numbered values of n
in and the other contains those with odd- numbered values of
Writing n(even) = 2m and n(odd) = the DFT can be modified to:

il =
X[k1= Y x2m]- W™ + Y x[2m+1)- W=t
m={ wrel)

(7.18)

From the Argand diagram in Figure 7.2, it can also be shown that
i.e. etc. Hence, the DFT can now be re-written to show that it

can be expressed in terms of two DFTs.

(7.19)

(7.20)




Figure Argand diagram illustrating the roots of unity.

AT ooy _g2mk
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(7.21)

We make the following substitutions

z(2m), where m=0,---, ‘.2- 1,
7(20+1), where [=0,--, 5 —1.

=]
]
=
—
]
=1
L

e,

—
m—

L=
I

Rewriting Eq. (1.31), we get

N w
T-1 32wk =1 Dk

- - T - Im £ o by
XNy = Z xp(m)e T 4 i Z z1(l)e =3
m=(] =0
Ny

N . ¢
= X700 + T X (w),

(7.22)

Where is the -point DFT of the even-numbered samples of and is
the is the -point DFT of the odd-numbered samples of Note that

both of them are : -periodic discrete-time functions.

We have the following algorithm to compute for k = - 1) :

1. Compute for k =0, . . . .. ,

2. Compute for k =0, . . . .. :



3. Perform the computation (1.32) with N complex multiplications

and N complex additions.

Actually, it is possible to use fewer than N complex

multiplications. Let

- _adx=
Wy =¢e7F.

Then
WiE e
— _F_J;E_E.E
—'['i-"‘ﬁ.-
Therefore,
. N N
XM = x8F )+ WEXy(k) for k = 0,3 = 1,
i Iy _'?I'l'r B g = '“'l':
) (A—+ ?) = x$P ) - wEXy(k) for k=0, 3L

A decimation-in-time FFT algorithm divides up the input data into
shorter interleaved subsequences. Take advantage of the symmetry

and periodicity of the complex exponential (let

— symmetry:

— periodicity:

« Note that two length N/2 DFTs take less computation than one
length N DFT:



« Algorithms that exploit computational savings are collectively

called Fast Fourier Transforms

This type of FFT can be performed using many butterfly
operations, as illustrated in Figure 7.3 for the case of . Here it

can be seen that the operations are divided up into .

Figure 7.3 Time-decimated radix-2 FFT, N=_8.

As illustrated in Figure 7.3. This shows that we do not need to

actually perform N complex multiplications, but only .

Figure 7.3 illustrates the recursive implementation of the FFT
supposing that . There is a total of stages of computation, each
requiring complex operations. Hence, the total computational
complexity is . We see that the process ends at a 1-point DFT. A
1-point DFT is the sample of the original signal:



D gl
X(0) = ZJ'{H]:- Ll o) LY z(0).
n=0

The recursive implementation of the FFT supposing that N = .
There is a total of stages of computation, each requiring complex

operations. Hence, the total computational complexity is log

1. For large N, the FFT is much faster than the direct application
of the definition of DFT, which is of complexity

2. The particular implementation of the FFT described above is
called in-time radix-2

3. The number of operations required by an FFT algorithm can be
approximated as CN log where C is a constant. There are many
variations of FFT aimed at reducing this constant-e.g., if N = it
may be better to use a radix-3 FFT.

4. Note that

N=1

{__%DFT[-:"[HH} = {__%z-t"[n]r‘-'[gi'ii"*}

n=l

1 N .
- 4

) n=I{}

which is the IDFT of Thus, the FFT can also be used to compute
the IDFT.



Figure 7.4 The 8-point FFT.
Example 7.6

The 8-point FFT is depicted in Fig. 1.38. The values of the twiddle

factors are:

- -
Wy = 777 =-1.

2T

4

2r

L]

Wa = et 3

Decimation-in-frequency FFTs are in a sense the exact opposite of
the decimation-in-time algorithms; they are simply the consequence
of the symmetry of the Fourier transform. A decimation-in-
frequency FFT, illustrated in Figure 2.4 for the case o N = 8, uses
the opposite approach to the DIT. Here, the output sequence is

decimated rather than the input sequence.



Problems

7.1 Determine analytically the DFT of the following time
sequences, with length :

1 k=0,3
(i) x[k] = with length N = 4;
0 k=12

1 k even
(i) x[k] = with length N = §;
—1 kodd

(iii) x[k] = 0.6% with length N = §;
(iv) x[k] = u[k] — ulk — 8] with length VN = §&;
(v) x[k] = cos(wgk) with wg #£ 2wr/N .

7.2 Determine the DFT of the time-limited sequences specified in

Examples 7.1(i)—(iv) using the matrix-vector approach.

7.3 Determine the time-limited sequence, with length o < k = -1),
corresponding to the following DFTs X which are defined for the
DFT index o <= r = - 1):

i) X =01+ -2 - -2+ 1 - jg4] with N = 4
i) X = 1] with N = 4;

i) X = exp where .
(iii) P IS constant
(iv)

05N r=k.N-=-5k
X[r]= where kg is a constant:
0 elsewhere

v)



kn r=0

Xlrl = jimwrihy ||.'l'\';-l;iniﬂr"‘.':|."."|"r] where ko is a
e i ! r
sin{r/ N')
constant;
(vi)

Xirj=(5) for 0=r=m-1.

7.4 Using MATLAB, compute the DTFT representation based on
the FFT algorithm. Plot the frequency characteristics and compare

the computed results with the analytical results.

() x =
(i) x =
(iii) x = k foro = k <5 and x + 6] =;
(iv)
(v)
1 0=<k<2
x[k]=105 3<k<5 and x[k4+9]=x[k];
0 6<k<8
(vi)
(vii)

7.5 (2) Using the FFT algorithm in MATLAB, determine the DTFT
representation for the following sequences. Plot the magnitude and

phase spectra in each case.

(1) x = for all
(2) x =<1

(3) x ==



(6)

(b) Compare the obtained results with the analytical results.

7.6 Using the FFT algorithm in MATLAB, determine the CTFT
representation for each of the following CT functions. Plot the
frequency characteristics and compare the results with the
analytical results.
(1) x(1) = e u(r):
(ii) x(r) = e,
(iii) x(1) = t*e M u(r);
(iv) x(1) = e~ cos(10m)u(r);
V) x()=e""7%
7.7 Prove the Hermitian property for the DFT.
7.8 Prove the time-shifting property for the DFT.
7.9 Prove the periodic-convolution property for the DFT.
7.10 Prove Parseval’s relationship for the DFT.
7.11 Without explicitly determining the DFT X of the time-limited

sequence.

x=1[68 -5416 227 8 9 44

compute the following functions of the DFT X



(i) X[0]; (iv) ZX[!']:
(i) X[10]; r=0
(iii) X[6]; v) Y IXIr)P,

7.12 Without explicitly determining the the time-limited sequence
for the following DFT:

X=0128+j4 -5 4+ j1 1616 4-j1 -5 8

compute the following functions of the DFT X

9
(i) x[O]; (iv) Y x[k];
(i) x[9]; iy

9

r={)

7.13 Draw the flow graph for a 6-point DFT by subdividing into
three 2- point DFTs that can be combined to compute Repeat for
the subdivision of two 3-point DFTs. Which one provides more

computational savings?

7.14 Draw a flow graph for a 10-point decimation-in-time FFT
algorithm using two DFTs of size 5 in the first stage of the flow
graph and five DFTs of size 2 in the second stage. Compare the
computational complexity of the algorithm with the direct approach

based on the definition.

7.15 Assume that K = 33. Draw the flow graph for a K -point
decimation- in-time FFT algorithm consisting of three stages by

using radix-3 as the basic building block. Compare the



computational complexity of the rithm with the direct approach

based on the definition.



Chapter

Design_of Digital Filters

(=

Learming Outcomes of this Chapter

After successful completion of this chapter students will be
able to:

1. apply the principles of signal analysis to filtering.

2. describe and learn FIR and IIR filters, their frequency
response and characteristics.

3. design and implement FIR and IIIR filters using
different methods, and how to test, analyze and refine
design.




8.1 Introduction

In signal processing, the function of a filter is to remove
unwanted parts of the signal, such as random noise, or to extract
useful parts of the signal, such as the components lying within a
certain frequency range. The idea of filtering is based on the
convolution property of the Fourier Transform. The following block

diagram illustrates the basic idea

Figure 8.1 Filtering process

Therefore, a filter is a device that transmits (or rejects) a
specific range of frequencies. There are two main kinds of filter,
analog and digital. They are quite different in their physical
makeup and in how they work.

An analog filter uses analog electronic circuits made up from
components such as resistors, capacitors and op amps to produce
the required filtering effect. Such filter circuits are widely used in
such applications as noise reduction, video signal enhancement,
graphic equalizers in hi-fi systems, and many other areas. There
are well-established standard techniques for designing an analog
filter circuit for a given requirement. At all stages, the signal being
filtered is an electrical voltage or current which is the direct
analogue of the physical quantity (e.g. a sound or video signal or
transducer output) involved.

A digital filter uses a digital processor to perform numerical

calculations on sampled values of the signal. The processor may



be a general-purpose computer such as a PC, or a specialized
DSP (Digital Signal Processor) chip. Table 8.1 shows the types of

filters in general.

Table 8.1 shows the types of filters.

ﬁ|ters. L L L Lo

Therefore, the analog input signal must first be sampled and
digitized using an ADC (analog to digital converter). The resulting
binary numbers, representing successive sampled values of the
input signal, are transferred to the processor, which carries out
numerical calculations on them. These calculations typically involve
multiplying the input values by constants and adding the products
together. If necessary, the results of these calculations, which now
represent sampled values of the filtered signal, are output through
a DAC (digital to analog converter) to convert the signal back to
analog form.

Note that in a digital filter, the signal is represented by a
sequence of numbers, rather than a voltage or current. There are
four basic filter types; band-pass and Therefore, A digital filter is a
mathematical algorithm implemented in hardware and/or software
that operates on a digital input signal to produce a digital output
signal for the purpose of achieving a filtering objective.

A digital filter uses a digital processor to perform numerical
calculations on sampled values of the signal. The processor may

be a general-purpose computer such as a PC, or a specialized



DSP (Digital Signal Processor) chip. Common filtering objectives

are.

a) to improve the quality of a signal
b) to extract information from signals

c) to separate two or more signals previously combined.

The following list gives some of the main advantages of digital

over analog filters.

(a) A digital filter is i.e. its operation is determined by a program
stored in the processor’'s memory. This means the digital filter can
easily be changed without affecting the circuitry (hardware). An
analog filter can only be changed by redesigning the filter circuit.
(b) Digital filters are easily tested and implemented on a general-

purpose computer or workstation.

(c) The characteristics of analog filter circuits (particularly those
containing active components) are subject to drift and are
dependent on temperature. Digital filters do not suffer from these
problems, and so are extremely stable with respect both to time
and temperature.

(d) Unlike their analogue counterparts, digital filters can handle
low frequency signals accurately. As the speed of DSP technology
continues to increase, digital filters are being applied to high
frequency signals in the RF (radio frequency) domain, which in the
past was the exclusive preserve of analogue technology.

(e) Digital filters are very much more versatile in their ability to
process signals in a variety of ways; this includes the ability of
some types of digital filter to adapt to changes in the

characteristics of the signal.



(f) Fast DSP processors can handle complex combinations of
filters in parallel or cascade (series), making the hardware
requirements relatively simple and compact in comparison with the

equivalent analog circuitry.

There are also two types of Digital filters; Finite impulse
response (FIR) and infinite impulse response (IIR). In general FIR
filters can be designed to have exact linear phase and there is
also great flexibility in shaping their magnitude response. In
addition, FIR filters are inherently more stable and the effects of
quantization errors are less severe than IIR filters. Conversely, IIR
filters require fewer coefficients than FIR filters for a sharp cut-off
frequency response, and analogue filters can only be modelled

using IR filters.



8.1.1. Finite Impulse Response

FIR filters are normally designed to have a linear phase response.
Equation 8.1 and Equation 8.2 define the finite difference equation
and the z-transfer function for the non-recursive FIR filter
respectively. The output of this type of filter is dependent upon

the present and previous inputs.



8.1.2 Infinite Impulse Response

lIR filter design usually concentrates on the magnitude response
and regards the phase response as secondary. Equation 8.3 and
Equation 8.4 define the finite difference equation and the z-transfer
function for the recursive IIR filter respectively. The output of this

filter is dependent upon both previous inputs and outputs.



8.1.3_Filter Specification Requirements

A low-pass filter, as depicted in Figure 8.2 provides a graphical
description of the specifications of a normalized low-pass filter.
The shaded areas pass low frequencies from zero to a cut off
frequency , with approximately unity gain. The frequency range
from zero up to is called the pass band of the filter. The filter is
specifically designed so that any frequencies greater than become
attenuated. The frequency range above is referred to as the stop
band of the filter. Between the pass band and stop band, there is
a region called a transition band and the exact behaviour of the

frequency response in this region is usually of little importance.

148y
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Figure 8.2 A normalized low-pass filter specification.

The parameter is the tolerance of the magnitude response in the
stop-band and the desired magnitude response is always close to
zero. The quantity is known as the stop-band attenuation and is
sometimes expressed in terms of dBs using the following

equation.

Minimum stop-band attenuation, = - )



The parameter is the tolerance of the magnitude response in
the pass-band and the desired magnitude response is close to
unity. The quantity is called the pass-band ripple and can also be

expressed in terms of dBs using the following equation.

Pass-band ripple, = + )



8.2 FIR Digital Filters

FIR filters have characteristics that make them useful in many

applications.

1. FIR filters can achieve an exactly linear phase frequency
response.

2. FIR filters cannot be unstable.

3. FIR filters are generally less sensitive to coefficient round-off
and finite-precision arithmetic than IIR filters.

4. FIR filters design methods are generally linear.

5. FIR filters can be efficiently realized on general or special-

purpose hardware.

However, frequency responses that need a rapid transition between
bands and do not require linear phase are often more efficiently
realized with IIR filters.

The transfer function of an FIR filter, in particular, is given by

Hz D=by+ bz "' +b2)z 2 4. - +b(M)z™

(8.5)

and the difference equation describing this FIR filter is given by

(8.6)

=bh0)xmFb()xtn—-1)+..... +b(M)x(n — M)

(8.7)



In general FIR filters can be designed to have exact linear
phase and there is also great flexibility in shaping their magnitude
response. In addition, FIR filters are inherently more stable, and
the effects of quantization errors are less severe than IIR filters.
Conversely, IIR filters require fewer coefficients than FIR filters for
a sharp cut-off frequency response, and analogue filters can only
be modelled using IR filters. In this section, the properties of the
FIR filters and their design will be discussed. When the input
function x(n) is the unit sample function the output y(n) can be
obtained by applying the recursive algorithm on (8.6). We get the
output y(n) due to the unit sample input d(n) to be exactly the
values ..., The output due to the unit sample function §(n) is the
unit sample response or the unit impulse response denoted by So
the samples of the unit impulse response h(n) which means that
the unit impulse response h(n) of the discrete-time system
described by the difference equation (8.6) is finite in length. That
is why the system is called the finite impulse response filter or the
FIR filter. It has also been known by other names such as the
transversal filter, nonrecursive filter, moving-average filter, and

tapped delay filter. Since h(n) b(n) in the case of an FIR filter, we

M
Hiz -]=me; e {0+ Rz + 27 - hiM ™M)
ol

(8.8)

It is to be remembered that we choose the order of the FIR filter

or degree of the polynomial;

Hiz Y=Y k)™



As and the length of the filter equal to the number of
coefficients in (8.8) is N 1. If we are given H its order is 6,
although only three terms are present and the correct number of
coefficients equal to the length of the filter is 7, because o. It
becomes necessary to point out the notation used in this chapter,
because in some textbooks, we may find H representing the
transfer function of an FIR filter, in which case the length of the
filter is denoted by N and the degree or order of the polynomial
is (N -

Consider the ideal low-pass filter frequency response, as
illustrated in Figure 8.3 below, with a normalized angular cut- off
frequency . Usually, the subscript D is used to distinguish between

the ideal and actual, impulse and frequency responses of a filter.

Hoiii T

:r Lk L, :r [

Figure 8.3 Ideal low-pass filter frequency response

The impulse response of an ideal low-pass filter is found by
substituting and integrating between the limits of the cut-off

frequencies .

o, [oan] [ [k, il R

) i 1 | &” 1 | & e 2jsn{nlld )

hpln)=—— J1-e™d=_—|— = '
ar

1
vl ¥ F I 2 ]
m| o gn ||, Ixl jm jn 4 Jjn

Multiplying both the numerator and denominator by , the Equation

above becomes:



Q  sin(nQ))
h =", «
ol7} T (n€,)

The impulse response of an ideal low-pass filter can also be re-
written by replacing in t above, to obtain it in terms of the
normalized cut-off frequency . This is illustrated in Equation 8.9

below.

In Chapter 7, we found that the Fourier transform of a
rectangular window is a sinc function, which is same for the
impulse response of a low-pass filter, as illustrated in Figure 8.4

below.

Figure 8.4 Impulse response of an ideal low-pass filter.

Example 8.1.
Given the following FIR filter:

y(n) = 0.1x(n) +0.25x(n—-1) +0.2x(n - 2)



Determine the transfer function, filter length, nonzero coefficients,

and impulse response.

Solution:
Applying z-transform on both sides of the difference equation

yields

¥(z) = 0.1X(2)+ 025X (=)=~ + 02X(2)="2

Then the transfer function is found to be

Y(z) 1 2
Hiz)=——=01+025"" + 0.2z~
@) X(z) i

The filter length is K +1 =3 and the identified coefficients are

.bo = [L']., bl =0.25 and .bz = (.2

Taking the inverse z-transform of the transfer function, we have

hin) = 0.18(n) + 0.258(n — 1) + 0.25(n — 2).

This FIR filter impulse response has only three terms.

The foregoing example is to help us understand the FIR filter

format. We can conclude that:

— The transfer function has a constant term, all the other terms

each have a negative power of z, and all the poles are at the



origin on the z-plane. Hence, the stability of filter is guaranteed.
Its impulse response has only a finite number of terms.

— The FIR filter operations involve only multiplying the filter inputs
by their corresponding coefficients and accumulating them; the

implementation of this filter type in real time is straightforward.

From the FIR filter format, the design objective can be to obtain
the FIR filter coefficients such that the magnitude frequency
response of the FIR filter will approximate the desired magnitude
frequency response, such as that of a lowpass, highpass,
bandpass, or bandstop filter. The following sections will introduce
design methods to calculate the FIR filter coefficients.

Digital FIR filters have many favorable properties, which is why
they are extremely popular in digital signal processing. One of
these properties is that they may exhibit linear phase, which
means that signals in the passband will suffer no dispersion.
Dispersion occurs when different frequency components of a signal
have a different delay through a system.

The design of a digital filter is carried out in three steps:

Specifications: they are determined by the applications

Approximations/coefficients calculation: once the specification are
defined, we use various concepts and mathematics that we
studied so far to come up with a filter description that

approximates the given set of specifications (H(z)).

Realization/Implementation: The product of the above step is a

filter description in the form of either a difference equation, or a



system function H(z), or an impulse response h(n). From this
description we implement the filter in hardware or through

software on a computer.

There are many methods to design FIR filters such impulse

response truncation, windowing technique and using frequency



8.2.1 Design of FIR Digital Filters using_Impulse Response
Truncation (IRT)

With reference to Figure 8.4, although decays to either side of
n = o it theoretically continues for ever in both directions. This
reflects a general antithesis between band limitation and time
limitation; since we have chosen a frequency response with a
sharp cut-off (or brick wall response), then the time-domain
response continues forever. To realize such a filter the impulse
response is truncated in some way or other. One approach is to
ignore the small sample values at the ends and shift to begin at
n = o, giving a causal filter as depicted in Figure 8.5.
In general, the more samples we include of the closer we get to
the desired form of , but the less economic the filter becomes
due to the relative number of computations. In practice we must
settle for an approximation to the ideal frequency response. It is
usually customary to truncate the impulse response to N = (2M +
1) terms. In Figure 8.5, the impulse response of the ideal low-pass
filter is truncated to M = g9 samples and is delayed by M

samples.

h|n]

Figure 8.5 Truncated impulse response to 2M+1 samples, with a

delay of M samples.

The z-transfer function of the filter now becomes:



(8.10)

The ideal impulse responses for a low-pass, high-pass, band-pass
and band-stop filters are depicted in Table 8.2 below.

Table 8.2 Ideal impulse responses for various FIR filter types

Filter type hp[n]. n=0 hp[n]. m=1
) sin{nil | "
Livai-pass L7 LM
! nl, '
gin(pLl |
High-pass 1-2F = 1-2F
. © o,
Band-pass sinfrfd, | I sm|nEd, | 2, - 2F
: - mll, nil,
i sinlnld | _ . simlpil, ) | .
Band-stop 1-|2F, s : |-[2F, -2F,
} © nfly rifdy -

Summary of FIR Filter Design Using The IRT Method

1. Choose the ideal frequency response , depending on the type of
filter (e.g. low-pass, high-pass etc), from Table 8.2.

2. Calculate the impulse response of the ideal filter , using the
inverse Fourier transform.

3. Finally, truncate the ideal impulse response to terms.



8.2.2 Design of FIR filters using_windowing_technique.

Windowing method is applied to the impulse response of a FIR
filter to attenuate the Gibb’s oscillations. It is developed to
remedy the undesirable Gibbs oscillations in the passband and
stopband of the designed FIR filter. It is seeking a window
function, which is symmetrical and can gradually weight the
designed FIR coefficients down to zeros at both ends for the
range of . Applying the window sequence to the filter coefficients
gives. Applying the window sequence to the filter coefficients

gives:

hy(m) = h(n).x(n),

where designates the window function. Common window functions

used in the FIR filter design as shown in Table.8.3

Table 8.3 Common window functions (normalized) used in the FIR
filter design.

design. design. design. design. design. design. design.

design. design. design. design.

In addition, there is another popular window function, called
the Kaiser window (its detailed information can be found in
Oppenheim, Schafer, and Buck [1999]). As we expected, the

rectangular window function has a constant value of 1 within the



window, hence does only truncation. As a comparison, shapes of
the other window functions. Figure 8,6 shows the graphical
representation and its frequency spectrum of the mentioned

common windows.

(a) Rectangular window

(b) Hanning window

(c) Hamming window

(c) Blackman Windows

(e) Bartlett Windows

Figure 8.6 Common window and its frequency spectrum

When designing a FIR filter using the window method, it is
customary to start by defining the ideal frequency response of the
filter. Once the ideal frequency response has been obtained, it is
then necessary to obtain the ideal impulse response from the
inverse Fourier transform of the frequency response. The next step
in the design process is to select an appropriate window function
based on the specification of the pass- band and stop-band
tolerances of the filter. The tolerances of a FIR filter ultimately
depend upon the type of window function used for the windowing
but in the design process we always start by assuming that . In
Table 8.3, it was illustrating various window functions and their
corresponding properties to enable in the design of a filter. Once

the appropriate window function has been determined by the



designer based on the filter specification, then the required
number of filter coefficients N can then be calculated. The final
procedure of the design process is to determine the actual filter
coefficients by multiplying the coefficients of the window function
with the corresponding ideal impulse response. This is

mathematically shown in the following equation :

h{n] =win]- hy[n]

Steps to design FIR Filter using Window Method

1. Specify the ideal or desired frequency response of the filter .
2. Obtain the impulse response by evaluating the inverse Fourier
transform.

3. Select an appropriate window function that satisfies pass-band
and attenuation specifications, and determine the number of
coefficients required from the relationship between N and .

4. Determine the values of the window function and calculate the
actual FIR filter coefficients by multiplying the impulse response

with the window function.

Example 8.2

a. Design a 3-tap FIR lowpass filter with a cutoff frequency of 8oo
Hz and a sampling rate of 8,000 Hz using the Hamming window
function.

b. Determine the transfer function and difference equation of the

designed FIR system.



Solution:
a. The normalized cutoff frequency is calculated as
radians

Since in this case, using the equation in Table 7.1 results in

.FJ-l{l.I}=£"I—r form =10
W

il = sin ({1.) _sin (ﬂ.}m:}’ for m 4 1.

nmw nw

The computed filter coefficients via the previous expression are

listed as:

h(0) = % =02

sin [0.2ar x 1] _

0.1871.
1 o

h(l) =

Applying the Hamming window function defined in Table 8.3, we

have

Whaml0) = 0.54 4 0.46 ms(ﬂTﬂ) =1

|
Wil 1) = 0.54 + 0.46 oos( ’; ”) = 0.08.

Using the symmetry of the window function gives

Whan = 1) = Wham(1) = 0.08.



The windowed impulse response is calculated as

by, (0) = M0)wpgmi0) =02 x 1 = 0.2
hy(1) = h(l)wpae( 1) = 0.1871 »x 0.08 = 0.01497
fo( = 1) = h{ = 1)Wham( = 1) = 0.1871 x 0.08 = 0.01497,

Thus, delaying hw(n) by M = 1 sample gives

b0 = b2 = 0.01496 and bl =102

b. The transfer function is achieved as

H(z) = 0.01496 + 0.2z + 0.01496z2

Using the transfer function technique, we have

¥(z)
X(z)

= H(z) = 0.01497 + 0.2z~ + 0.01497z2,

Multiplying leads to

Y(z) = 0.01497X(z) + 0.2z X(z) + 0.01497z2 X(2).

Applying the inverse z-transform on both sides, the difference

equation is yielded as

yin) = 0.01497x(n) + 0.2x(n = 1) +0.01497x(n = 2).

Example 8.3

A lowpass FIR filter has the following specifications:



Passband = o - 1,850 Hz
Stopband = 2,150 - 4,000 Hz Stopband attenuation = 20 dB
Passband ripple = 1 dB Sampling rate = 8,000 Hz

Determine the FIR filter length and the cutoff frequency to be

used in the design equation.

Solution

The normalized transition band as defined and Table 8.3 is given

by;

Af = |2150 — 1850]/8000 = 0.0375.

Again, based on Table 8.3, selecting the rectangular window will
result in a passband ripple of 0.74 dB and a stopband attenuation
of 21 dB. Thus, this window selection would satisfy the design
requirement for the passband ripple of 1 dB and stopband
attenuation of 20 dB. Next, we determine the length of the filter

as

N =0.9/Af = 09/0.0375 = 24,

We choose the odd number N= 25. The cutoff frequency is
determined by (1850 +2150)/2= 2000 Hz. Such a filter has
coefficients are listed in Table 8.4, and its frequency responses

can be found in Figure 8.7 (dashed lines).

Table 8.4 FIR filter coefficients in (rectangular and Hamming

windows).



B: FIR Filter Coefficients

(rectangular window)

Bham: FIR Filter Coefficients
(Hamming window)

by = by = 0.000000
b = by = =0.028937
by = by = 0.000000
by = by = 0L035368
by = by = 0.000000
bs = byg = —0.045473
bg = by = 0.000000
by = b7 = 0063662
fl‘n = bla = (000000
by = bys = =0.106103
b = by = 0.000000
b = by = 0318310
by = 0500000

by = By = 0000000
by = b2y = =0.002769
b = baa = 0000000
by = by = 0007595
by = byg = 0.000000
bs = b = —0.019142
bg = byg = 0.000000
by = by7 = 0041957
by = byg = 0.000000
by = by = =0.091808
bm = bu. = 0.000000
b = b1z = 0.313321
Bz = 0L500000

Magnitude responsa (dB)

Phase (degreas)

Figure 8.7 Frequency responses using the

rectangular and Hamming windows.



8.2.3_Design of FIR filters by frequency sampling

In addition to methods of Fourier transform design and
windowing discussed in the previous section, frequency sampling is
another alternative. The key feature of frequency sampling is that
the filter coefficients can be calculated based on the specified
magnitudes of the desired filter frequency response uniformly in
frequency domain. Hence, it has design flexibility.

To begin with development, we let for , be the causal impulse
response (FIR filter coefficients) that approximates the FIR filter,
and we let for , represent the corresponding discrete Fourier
transform (DFT) coefficients. We obtain by sampling the desired
frequency filter response at equally spaced instants in frequency
domain, as shown in Figure 8.8. Then, according to the definition

of the inverse DFT (IDFT), we can calculate the FIR coefficients:

N=1

S HEWRS, forn=0,1,...,N -1,
k=0

hin) =%

where
(8.11)

We assume that the FIR filter has linear phase and the number of

taps . Equation (8.11) can be significantly simplified as

1 — 2ark(n — M)
hin) = ——— <mrin — M)
Hn) 1.w+|{H°+IEk_]H*°°S( IM+1 )}
form=0,1,..., 2M,

(8.12)



where for represents the magnitude values specifying the desired

filter frequency response sampled at The derivation is

Ty Desired filter frequancy responsa
ik

g | * i
o x 2x

Hiaiiny Diasirad fikar fraquency respansa
|. e
& / T
Hym [HE) | @ o "'“‘“--h_. L R
-

| T,

: >k
o 1 2 3 4 5 B8 T 8

= 1
k
By 3y 25 6y 8y £y 3y Oy Gy 2x

Figure 8.8 Desired filter frequency response and sampled frequency

response.

The design procedure is therefore simply summarized as follows:

1. Given the filter length of , specify the magnitude frequency

response for the normalized frequency range from o to m.

2. Calculate FIR filter coefficients:

(8.14)

3. Use the symmetry (linear phase requirement) to determine the

rest of the coefficients:



Example 8.4
Design a linear phase lowpass FIR filter with 7 taps and a cutoff

frequency of radian using the frequency sampling method.

Solution:

Since and , the sampled frequencies are given by
2 ;
) =—-k radians, k=0, 1,2, 3.

Next we specify the magnitude values at the specified frequencies

as follows:
for {ly = 0 radians, Hy=1.0
for £}, = %-rr radians, Hy = 1.0
for {13 = ;w radians, H> = 0.0
for 013 = g‘ﬂ' radians, H; =0.0.
Figure 8.9 shows the specifications
Hia'2)
'HI? HT
1.0#
H. H,
- -—r ]
o 0.5x 5
Figure 8.9 Sampled values of the frequency response in Example
8.4.

Using Equation (8.14), we achieve



1 k)
hin) =E{I +2 E Hy cos [2mkin —3})’?]}
n=0,1,....3.

k=l

- %{1 + 2cos [2m(n — 3)/7]}

Thus, computing the FIR filter coefficients yields

hi(0) = %{1 + 2cos( — 6m/T)} = —0.11456
h(1) = %{1 + 2cos( —4m/T)} = 0.07928
h(2) = %{ 1 + 2cos( — 2m/7)} = 0.32100

3) = %{1 +2co0s(— 0 x w/T)} = 0.42857.
By the symmetry, we obtain the rest of the coefficients as follows:

= = 0:32100
= = 0:07928
= =-0:11456



8.3_Design of 1IR Filters

IIR filter design primarily concentrates on the magnitude response
of the filter and regards the phase response as secondary. It is a
system where the output of the system not only depend on the
input signals but the past values of the output signals. The IIR
filter characteristic are:

— The system only has both zeros and poles.

— The system has feedback.

— The stability of the system depends on its poles.

The most common design method for digital IIR filters is
based on designing an analogue IIR filter and then converting it
to an equivalent digital filter. There are many classes of analogue
low-pass filter, such as the Butterworth, Chebyshev and Elliptic
filters. The classes differ in their nature of their magnitude and
phase responses. The design of analogue filters other than low-
pass is based on frequency which produce an equivalent high-pass,
band-pass, or band-stop filter from a prototype low-pass filter of
the same class. The analogue IIR filter is then converted into a
similar digital filter using a relevant transformation method. There
are three main methods of transformation, the impulse invariant
method, the backward difference method, and the bilinear



5.3.1 IR Filter Basics

A recursive filter involves In other words, the output values are
calculated using one or more of the previous outputs, as well as
inputs. In most cases a recursive filter has an impulse response
which theoretically continues forever. It is therefore referred to as
an infinite impulse response (lIR) filter. Assuming the filter is
causal, so that the impulse response = o for n < o, it follows
that cannot be symmetrical in form. Therefore, an IIR filter cannot
display pure linear-phase characteristics like its adversary, the FIR

filter. An IIR filter is described using the difference equation,

also gives the IIR filter transfer function as

(8.17)

where and are the — 1) numerator and N denominator coefficients,
respectively. and are the z-transform functions of the filter input
and filter output To become familiar with the form of the IIR

filter, let us look at the following example.

Example 8.5
Given the following IIR filter:

wn) = 0.2x(n) + 04x(n—=1) + 05y(n—1)



Determine the transfer function, nonzero coefficients, and impulse

response.

Solution:
Applying the z-transform and solving for a ratio of the z-transform

output over input, we have

¥(z2) 0.2+04z""

H) =5~ To0s—

We also identify the nonzero numerator coefficients and

denominator coefficient as

=0.2, = 0.4, and = -0.5:

To solve the impulse response, we rewrite the transfer function as

02 D4zt

H(Z) = 1=-0.5z"1 1=-0.5z1

Using the inverse z-transform and shift theorem, we obtain the

impulse response as
h(n) = 0.2(0.5)"u(n) + 0.4(0.5)" *u(n — 1)

The obtained impulse response has an infinite number of terms,

where the first several terms are calculated as



At this point, we can make the following remarks:

1. The IIR filter output depends not only on the current input and
past inputs .. ., but also on the past output(s) .. . (recursive
terms). Its transfer function is a ratio of the numerator polynomial
over the denominator polynomial, and its impulse response has
an infinite number of terms.

2. Since the transfer function has the denominator polynomial, the
pole(s) of a designed IIR filter must be inside the unit circle on
the z-plane to ensure its stability.

3. Compared with the finite impulse response (FIR) filter, the IIR
filter offers a much smaller filter size. Hence, the filter operation
requires a fewer number of computations, but the linear phase is
not easily obtained. The IIR filter is thus preferred when a small
filter size is called for but the application does not require a

linear phase.

The objective of IIR filter design is to determine the filter
numerator and denominator coefficients to satisfy filter
specifications such as passband gain and stopband attenuation, as
well as cutoff frequency/frequencies for the low- pass, highpass,
bandpass, and bandstop filters.

We first focus on the bilinear transformation (BLT) design
method. Then we introduce other design methods such as the
impulse invariant design and the pole-zero placement design.

There are few methods to design IIR filters such as Bilinear
transformation



8.3.2 Bilinear transformation method

One of the most effective and widely used techniques for
converting an analogue filter into a digital equivalent is by means
of the bilinear Figure 8.10 illustrates a flow chart of the BLT
design used in this book. The deign procedure includes the
following steps: (1) transforming digital filter specifications into
analog filter specifications, (2) performing analog filter design, and
(3) applying bilinear transformation and verifying its frequency

response.

Digital fitter
spacifications

1. Transformafion with frequency warnping
| Analog fiter specifications |
v 2 Transformation by lowpass prototype filier
| Analog fiter transter function |
+ 3. Bilnear ransiormation

Digital fitber transfar function
and frequency response verilication

Figure 8.10 General procedure for IIR filter

design using bilinear transformation



8.3.3_Analog_Filter using_lowpass prototype Transformation

Before we begin to develop the BLT design, let us review analog
filter design using lowpass prototype transformation. This method
converts the analog low- pass filter with a cutoff frequency of 1
radian per second, called the lowpass prototype, into practical
analog lowpass, highpass, bandpass, and bandstop filters with
their frequency specifications. Letting be a transfer function of the
lowpass prototype, the transformation of the lowpass prototype
into a lowpass filter is given in Figure 8.11.

As shown in Figure 8.11, designates the analog lowpass filter
with a cutoff frequency of radians/second. The lowpass-prototype
to lowpass-filter transformation substitutes s in the lowpass
prototype function with where v is the normalized frequency of the
lowpass prototype and is the cutoff frequency of the lowpass filter
to be designed. Let us consider the following first-order lowpass

prototype:

(8.18)

Its frequency response is obtained by substituting into Equation
(8.18), that is,

|Hp(jv)| =

1
V4

with the magnitude gain given in Equation (8.2):



|He ()| | Hyp (jes)|

Hf_p{ﬁ}l = HF{-F”’: "‘r'“";
Figure 8.11 Analog lowpass prototype

transformation into a lowpass filter.

We compute the gains at to obtain , 0.0995, and o.01,
respectively. The cutoff frequency gain at equals , which is
equivalent to , and the direct-current (DC) gain is 1. The gain
approaches zero when the frequency goes to This verifies that the
lowpass prototype is a normalized lowpass filter with a normalized
cutoff frequency of 1. Applying the prototype transformation in
Figure 8.11, we get an analogue lowpass filter with a cutoff

frequency of as:

(8.20)

We can obtain the analog frequency response by substituting into

Equation (8.20), that is,

Hijw) =
(Je) jarfa + 1

The magnitude response is determined by



(8.21)

Similarly, we verify the gains at to be 1, , 0.0995, and 0.01
respectively. The filter gain at the cutoff frequency equal and the

DC gain is 1. The gain approaches zero when .

We notice that filter gains do not change but that the filter
frequency is scaled up by a factor of . This verifies that the
prototype transformation converts the lowpass prototype to the
analog lowpass filter with the specified cutoff frequency of without
an effect on the filter gain.

This first-order prototype function is used here for an
illustrative purpose.

We will obtain general functions for Butterworth and Chebyshev
lowpass prototypes in a later section. The highpass, bandpass, and
bandstop filters using the specified lowpass prototype
transformation can be easily verified. We review them in Figures
8.12, 8.13, and 8.14, respectively. The transformation from the
lowpass prototype to the highpass filter with a cutoff frequency
radians/second is given in Figure 8.12, where in the lowpass
prototype transformation. The transformation of the lowpass
prototype function to a bandpass filter with a center frequency , a
lower cutoff frequency , and an upper cutoff frequency in the
passband is depicted in Figure 8.13, where is substituted into the

lowpass prototype.



|Hetiv)] |Hiyae sl

Hypls) = Hels)|, 4,

Figure 8.12 Analog lowpass prototype transformation to the

highpass filter.

Li] 1 ¥ 0O &y @y am i

Har(#) = Hels) | oo, o
&Y

Figure 8.13 Analog lowpass prototype transformation to the

bandpass filter.

Ml
| F[Mlx:w
4] 1

'Hg.s (8) = Hgis) |’_ W
14 @]

Figure 8.14 Analog lowpass prototype
transformation to a bandstop filter

Example 8.6

Given a lowpass prototype



Determine each of the following analogue filters and plot their

magnitude responses from o to 200 radians per second.

1. The highpass filter with a cutoff frequency of 40 radians per
second.
2. The bandpass filter with a center frequency of 100 radians per

second and bandwidth of 20 radians per second.

Solution:

1. Applying the lowpass prototype transformation by substituting s=

into the lowpass prototype, we have an analog highpass filter as

1 s
Hyip(s) T®W_ ] 5+ 40

2. Similarly, substituting the lowpass-to-bandpass transformation

into the lowpass prototype leads to:

| s

24100 - 7 :
HO 4 52 = 205 + 100

Hppls) =

After calculation using programming for plotting the magnitude
responses for highpass and bandpass filters, figure 8.6 displays
the magnitude responses for the highpass filter and bandpass

filter, respectively.
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8.3.4_Bilinear Transformation and Frequency Warping

In this subsection, we develop the BLT, which converts an analog
filter into a digital filter. We begin by finding the area under a
curve using the integration of calculus and the numerical recursive
method. The area under the curve is a common problem in early
calculus courses. As shown in Figure 8.7, the area under the

curve can be determined using the following integration:

(8.22)

where (area under the curve) and x(t) (curve function) are the
output and input of the analog integrator, respectively, and t is
the upper limit of the integration. Applying Laplace transform on

Equation (8.22), we have

and find the Laplace transfer function as

y(n-1)
A0
/ . yin
A

|u (n-1)TnT




Figure 8.7 Digital integration method to calculate the area under

the curve.

Now we examine the numerical integration method shown in
Figure 8.7 to approximate the integration of Equation (8.5) using

the following difference equation:

(8:8)

where T denotes the sampling period. is the output sample that
is the whole area under the curve, while is the previous output
sample from the integrator indicating the previously computed
area under the curve (the shaded area in Figure 8.7). Notice that
and , sample amplitudes from the curve, are the current input
sample and the previous input sample in Equation (8.8). Applying

the z-transform on both sides of Equation (8.8) leads to

Yiz)=z"1¥(2) +

P
5 (X2 +27'X(9).

Solving for the ratio , we achieve the z-transfer function as
(8:9)
Next, comparing Equation (8.9) with Equation (8.7), it follows that
(8:10)

Solving for s in Equation (8.10) gives the bilinear transformation



(8:11)

The BLT method is a mapping or transformation of points from
the s-plane to the z- plane. Equation (8.11) can be alternatively

written as

(8:12)

The general mapping properties are summarized as following:

1. The left-half s-plane is mapped onto the inside of the unit
circle of the z-plane.

2. The right-half s-plane is mapped onto the outside of the unit
circle of the z-plane.

3. The positive jv axis portion in the s-plane is mapped onto the
positive half circle (the dashed-line arrow in Figure 8.8) on the
unit circle, while the negative axis is mapped onto the negative

half circle (the dottedline arrow in Figure 8.8) on the unit circle.

Figure 8.8 Mapping between the s-plane and the



z-plane by the bilinear transformation.

Example 8.7

Assuming that T = 2 seconds in Equation (8.12), and given the

following points:

1., on the left half of the s-plane
2., on the right half of the s-plane
3., on the positive jv on the s-plane

4. , on the negative jv on the s-plane,

Convert each of the points in the s-plane to the z-plane, and

verify the mapping properties (1) to (3).

Solution:

Substituting T =2 into Equation (8.12) leads to

We can carry out mapping for each point as follows:

I+ (=1+p_ 1m0
TA=(=14) 2-j 35:-2657

= 0.4472/116.57°,

since , which is inside the unit circle on the z-plane.



(10— _2-)_ V5e-2657° _ __ .
__l_“_f}_ J - 1/90° —:2-..23'{!].'_—]]&.57,

since , which is outside the unit circle on the z-plane.

_14+j VJaus
Cl=j 20— a5

= 1/90°,

since and _, which is on the positive half circle on the unit circle

on the z-plane.

) 1—j 1= V2/—45

7= = = 1/ —90°,
I =(=j) 1+j /2:45

Since and , which is on the negative half circle on the unit circle

on the z-plane.

As shown in Example 8.7, the BLT offers conversion of an analog
transfer function to a digital transfer function. Example 8.4 shows

how to perform the BLT.

Example

Given an analog filter whose transfer function is



10

H(s) =
) s+ 10

Convert it to the digital filter transfer function and difference
equation, respectively, when a sampling period is given as T =

0.01 second.

Solution:

Applying the BLT, we have

10
H(z)= ”UH;—H:— ‘
.'F+]u:=i_§ﬂ_
Substituting T = 0.01, it follows that
) 10 0.05 0.05(z +1) 0.05z 4 0.05
)= 01 0= 51005~ 2= 1+ 005+ 1) 1.052- 095"
+1 41 : - : i : - T

Finally, we get

_ (0.05z + 0.05)/(1.052) _ 0.0476 +0.0476=""

H(z) = —— = -
(1.05z = 0.95)/(1.05z) | —0.9048z-"

Applying the technique in Chapter 6, we yield the difference

equation as

y(n) = 0.0476x(n) + 0.0476x(n —1) + 0.9048y(n — 1)

Next, we examine frequency mapping between the s-plane and the

z-plane. As illustrated in Figure 8.9, the analog frequency is



marked on the axis on the s-plane, whereas is the digital

frequency labeled on the unit circle in the z-plane.

We substitute and into the BLT in Equation (8.11) to get

2 el — |

J@a =p glod 41

Simplifying Equation (8.13) leads to

i _ET.HTI M
@ T 2 )

Jox

Figure 8.9 Frequency mapping from the
analog domain to the digital domain.

Equation (8.14) explores the relation between the analog frequency
on the axis and the corresponding digital frequency on the unit

circle. We can also write its inverse as:

(8:15)

The range of the digital frequency is from o radian per second to

the folding frequency per second, where is the sampling frequency



in radians per second. We make a plot of Equation (8.14) in
Figure 8.10.

From Figure 8.10 when the digital frequency range is mapped
to the analog frequency range , the transformation appears to be
linear; however, when the digital frequency range is mapped to the
analog frequency range for , the transformation is nonlinear. The
analog frequency range for is compressed into the digital
frequency range . This nonlinear frequencymapping effect is called
frequency warping. We must incorporate the frequency warping
into the IR filter design. The following example will illustrate the

frequency warping effect in the BLT.



8.3.5_Bilinear Transformation Design Procedure

Now we can summarize the BLT design procedure.

1. Given the digital filter frequency specifications, prewarp the
digital frequency specifications to the analog frequency

specifications.

=1 Frequency prewarmping

—» : 2 T
- L. L.
Step 1 . T‘""‘( 5 }
Hiz) - ey (1V5)
Digital lowpass iker 0
specilicalion His)
Step 3 !
Bilinaar tranaformation
2r-1
5=
Tz+1
Step 2 T Anslog owpass liiter specilication
=8/ my
Heis)

Figure 8.11 representation of IIR filter design using the bilinear

transformation.

For the lowpass filter and highpass filter:

(8.18)

For the bandpass filter and bandstop filter:



where

wo = +/Waigh, W = wap — wal

2. Perform the prototype transformation using the lowpass

prototype

From lowpass to lowpass: H(s) = Hp(s)|,_ .

From lowpass to highpass: H(s) = Hp(s)|, s

From lowpass to bandpass: H(s) = Hp(s)| Aol

T

From lowpass to bandstop: H(s) = Hp(s)|,. .

3. Substitute the BLT to obtain the digital filter

H(z) = H(S)| -3z

Example 8.9
Design a digital lowpass Butterworth filter with the following

specifications:

1. 3 dB attenuation at the passband frequency of 1.5 kHz
2. 10 dB stopband attenuation at the frequency of 3 kHz
3. Sampling frequency of 8,000 Hz.



Solution:
First, we obtain the digital frequencies in radians per second:

wgy = 2mf = 2m(1500) = 3000w rad = sec

2nf = 2m(3000) = 6000% rad = sec
T =1/f, = 1/8000 sec

{ﬂm:

Following the steps of the design procedure,

1. We apply the warping equation as

2 T 30004 /3000

wgp=-tan (%) — 16000 x tan (T) =1.0691 x 10* rad /sec.
2 T 60004 /8000

Was=lan (m‘;_ ) = 16000 :-cmn( 2 ):3.362?}( 10* rad /sec.

We then find the lowpass prototype specifications using Table 8.6

as follows:

Vs = G/ gy = 3.8627 x 10*/(1.0691 x 10%)
= 3.6130radkec and 4; = 10dB.

The filter order is computed as

F=1003 1 =1

A= 1D
_ log, (10 —1) _ 0 ecss.
2- log, (3.6130)

2. Rounding n up, we choose n 4 1 for the lowpass prototype.

From Table 8.3, we have



Hp(s) =

-

x

Applying the prototype transformation (lowpass to lowpass) yields
the analog filter

| 1.0691 x 104
+1 st+ag s+ 10691 x 104

Hi(s) = HP{S}L‘-E =—

g

3. Finally, using the BLT, we have

1.0691 = 10¢

H{::’} = .
s+ 1.0691 x 104 s=16000z—1)/(z+1)

Substituting the BLT leads to

10691 = 104

= (1600054 +1.0691 x 10

To simplify the algebra, we divide both numerator and

denominator by 16000 to get

0.6682

ne= (551) +0.6682

Then multiplying (z + 1) to both numerator and denominator

leads to

0.6682(z + 1) _ D.6682z + 0.6682

Hiz)= = .
&) = )4 0.6682(z+ 1) 1.6682z — 0.3318



Dividing both numerator and denominator by (1:6682 __z) leads

to

0.4006 + 0.40062"!
1-0.1989:!

Hiz) =

Figure 8.16 describes the filter frequency responses.

Magnitude respanse (dB)

Phase (degrees)

i ; H i i H H
(1] 500 1000 1500 2000 2500 23000 3500 4000
Fraquancy (Hz)

Figure 8.16 Frequency responses of the
designed digital filter for Example 8.7.



8.4.6 Impulse Invariant Design Method

We illustrate the concept of the impulse invariant design in Figure
8.27. Given the transfer function of a designed analog filter, an
analog impulse response can be easily found by the inverse

Laplace transform of the transfer function.

To replace the analog filter by the equivalent digital filter, we apply
an approximation in time domain in which the digital impulse
response must be equivalent to the analog impulse response.
Therefore, we can sample the analog impulse response to get the
digital impulse response and take the z-transform of the sampled
analog impulse response to obtain the transfer function of the
digital filter. The analog impulse response can be achieved by
taking the inverse Laplace transform of the analog filter H(s), that

is,

hin) = L~ (H(s)).

Now, if we sample the analog impulse response with a sampling

interval of T and use T as a scale factor, it follows that

T-hn) = T - h(1)],_ - 1 = 0.

Taking the z-transform on both sides of Equation (8.38) yields the
digital filter as

H(z) = Z[T - hin)).



The effect of the scale factor T in Equation (8.38) can be
explained as follows. We approximate the area under the curve
specified by the analog impulse function h(t) using a digital sum
given by

(= &
area —f Modt =T R0+ T-KWD)+T-M2)+ -
1]

Note that the area under the curve indicates the DC gain of the
analog filter while the digital sum in Equation (8.40) is the DC
gain of the digital filter.
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Figure 8.27 Impulse invariant design method.

The rectangular approximation is used, since each sample
amplitude is multiplied by the sampling interval T. Due to the
interval size for approximation in practice, we cannot guarantee
that the digital sum has exactly the same value as the one from
the integration unless the sampling interval T in Equation (8.40)
approaches zero. This means that the higher the sampling rate—
that is, the smaller the sampling interval—the more accurately the

digital filter gain matches the analog filter gain. Hence, in



practice, we need to further apply gain scaling for adjustment if it

is a requirement. We look at the following examples.

Example 8.9

Consider the following Laplace transfer function:

H(s) = =

542

Determine using the impulse invariant method if the sampling rate

Solution

Taking the inverse Laplace transform of the analog transfer

function, the impulse response is found to be

h(t)y=L"! L i 2] = 2¢ 2u(h).

Sampling the impulse response with second, we Have
Thin) = T2 ™ u(n) = 0.2¢""*u(n).
Using the z-transform table in Chapter 5, we yield

[

Zle " u(n)] = - _:

And noting that



0.2z 0.2

@) = 5887~ 708871




Problems

Design a 3-tap FIR lowpass filter with a cutoff frequency of 1,500
Hz and a sampling rate of 8,000 Hz using :

i. rectangular window function

i. Hamming window function.

Determine the transfer function and difference equation of the
designed FIR system, and compute and plot the magnitude
frequency response for V = o, p=4, p=2, 3p=4; and p radians.

Design a 3-tap FIR highpass filter with a cutoff frequency of 1,600

Hz and a sampling rate of 8,000 Hz using:

i. rectangular window function

i. Hamming window function.

Determine the transfer function and difference equation of the
designed FIR system, and compute and plot the magnitude
frequency response for V 4 o, p=4, p=2, 3p=4; and p radians.

Design a 5-tap FIR bandpass filter with a lower cutoff frequency of
1,600 Hz, an upper cutoff frequency of 1,800 Hz, and a sampling
rate of 8,000 Hz using :

i. rectangular window function
i. Hamming window function.
Determine the transfer function and difference equation of the

designed FIR system, and compute and plot the magnitude



frequency response for V 4 o, p=4, p=2, 3p=4; and p radians.

Design a 5-tap FIR band reject filter with a lower cutoff frequency
of 1,600 Hz, an upper cutoff frequency of 1,800 Hz, and a
sampling rate of 8,000 Hz using

i. rectangular window function

ii. Hamming window function.

Determine the transfer function and difference equation of the
designed FIR system, and compute and plot the magnitude

frequency response for V 4 o, p=4, p=2,

Given an FIR lowpass filter design with the following

specifications:

Passband = 0-800 Hz,
Stopband = 1,200-4,000 Hz
Passband ripple = 0.1 dB
Stopband attenuation = 40 dB
Sampling rate = 8,000 Hz,
determine the following:

i. window method

ii. length of the FIR filter

iii. cutoff frequency for the design equation.

Given an FIR highpass filter design with the following
specifications:

Passband = o-1,500 Hz Stopband = 2,000—4,000 Hz Passband
ripple = 0.02 dB Stopband attenuation = 60 dB Sampling rate =



8,000 Hz,

determine the following:

i. window method
ii. length of the FIR filter

iii. cutoff frequency for the design equation.

Given an FIR bandpass filter design with the following
specifications:

Lower cutoff frequency = 1,500 Hz Lower transition width = 600
Hz Upper cutoff frequency = 2,300 Hz Upper transition width =
600 Hz Passband ripple = 0.1 dB Stopband attenuation = 5o dB
Sampling rate = 8,000 Hz,
determine the following:

window method

length of the FIR filter cutoff frequencies for the design equation.

Given an FIR bandstop filter design with the following
specifications:
Lower passband = o0-1,200 Hz Stopband = 1,600-2,000 Hz Upper
passband = 2,400-4,000 Hz Passband ripple = 0.05 dB Stopband
attenuation = 60 dB Sampling rate = 8,000 Hz,
determine the following:

window method

length of the FIR filter cutoff frequencies for the design equation.

Given an FIR system
= 0.25 — +

realize using each of the following specified methods:



i. transversal form, and write the difference equation for
implementation
ii. linear phase form, and write the difference equation for

implementation.

Given an FIR filter transfer function
=02+ — + +
perform the linear phase FIR filter realization, and write the

difference equation for implementation.

Determine the transfer function for a s5-tap FIR lowpass filter with
a lower cutoff frequency of 2,000 Hz and a sampling rate of
8,000 Hz using the frequency sampling method.
Determine the transfer function for a s5-tap FIR highpass filter with
a lower cutoff frequency of 3,000 Hz and a sampling rate of
8,000 Hz using the frequency sampling method.
Given the following specifications:

a 7-tap FIR bandpass filter
a lower cutoff frequency of 1,500 Hz and an upper cutoff
frequency of 3,000 Hz
a sampling rate of 8,000 Hz the frequency sampling design

method, determine the transfer function.

Given the following specifications:

a 7-tap FIR band reject filter a lower cutoff frequency of 1,500 Hz
and an upper cutoff frequency of 3,000 Hz a sampling rate of
8,000 Hz, the frequency sampling design method, determine the

transfer function.

In a speech recording system with a sampling rate of 10,000 Hz,

the speech is corrupted by broadband random noise. To remove



the random noise while preserving speech information, the

following specifications are given:

Speech frequency range 0-3,000 kHz Stopband range 4,000-5,000
Hz Passband ripple 0.1 dB

Stopband attenuation 45 dB FIR filter with Hamming window.

Determine the FIR filter length (number of taps) and the cutoff
frequency; use MATLAB to design the filter; and plot the frequency

response.

Given a speech equalizer shown in Figure 8.13 to compensate
midrange frequency loss of hearing:

Sampling rate 8,000 Hz

Bandpass FIR filter with Hamming window

Frequency range to be emphasized = 500-2,000 Hz

Lower stopband = o0-1,000 Hz

Upper stopband = 2,500—4,000 Hz
Passband ripple = 0.1 dB

Stopband attenuation = 45 dB,

determine the filter length and the lower and upper cutoff

frequencies.

put x{n) [ - 4 E:h?tm
i xin =T} i)
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Figure 8.13



Given an analog filter with the transfer function

1000
s+ 1000

H(s) =
convert it to the digital filter transfer function and difference
equation using the BLT if the DSP system has a sampling period
of T =0.001 second.

8.15 The lowpass filter with a cutoff frequency of 1 rad/sec is

given as

1
H = —
,,(s] s5+1

Use and the BLT to obtain a corresponding IIR digital lowpass
filter with a cutoff frequency of 30 Hz, assuming a sampling rate

of 200 Hz.

The normalized lowpass filter with a cutoff frequency of 1 rad/sec

is given as

1
B =53

Use and the BLT to obtain a corresponding IIR digital highpass
filter with a cutoff frequency of 30 Hz, assuming a sampling rate

of 200 Hz.



Consider the normalized lowpass filter with a cutoff frequency of 1

rad/ sec:

1
B = 51

Use Hp(s) and the BLT to design a corresponding IIR digital
notch (bandstop) filter with a lower cutoff frequency of 20 Hz, an

upper cutoff frequency of 40 Hz, and a sampling rate of 120 Hz.

8.18 Consider the following normalized lowpass filter with a cutoff

frequency of 1 rad/sec:

1
H. = —
p(s) s+1

Use Hp(s) and the BLT to design a corresponding IIR digital
bandpass filter with a lower cutoff frequency of 15 Hz, an upper

cutoff frequency of 25 Hz, and a sampling rate of 120 Hz.

Design a first-order digital lowpass Butterworth filter with a cutoff
requency of 1.5 kHz and a passband ripple of 3 dB at a sampling
frequency of 8,000 Hz.

Determine the transfer function and difference equation.

8.20 Design a second-order digital lowpass Butterworth filter with
a cutoff frequency of 1.5 kHz and a passband ripple of 3 dB at a
sampling frequency of 8,000 Hz.

Determine the transfer function and difference equation.



8.21 Consider the following Laplace transfer function: Determine
H(z) and the difference equation using the impulse invariant
method if the sampling rate fs =10 Hz.

1

H = =
p(s) s2+35+2

A speech sampled at 8,000 Hz is corrupted by a sine wave of
360 Hz. Design a notch filter to remove the noise with the
following specifications:

Chebyshev notch filter

Center frequency: 360 Hz

Bandwidth: 60 Hz

Passband and ripple: 0.5 dB

Stopband attenuation: 5 dB at 355 Hz and 365 Hz, respectively.

Determine the transfer function and difference equation.
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Learming Outcomes of this Chapter

After successful completion of this chapter students will be

understand the windowed Fourner transform and
difference between windowed Fourier transform and
wavelet transform.

understand wavelet basis and characterize continuous
and discrete wavelet transforms.

Understand multi resolution analysis and identify
various wavelets and evaluate their frequency
resolution properties.

implement discrete wavelet transforms for few
application such as denoising for IoT networks, signal




9.1 _Introduction

The wavelet transform is a mathematical tool developed mainly
since the middle of the 1980’s. It is efficient for local analysis of
nonstationary and fast transient wide-band signals. The wavelet
transform is a mapping of a time signal to the time-scale joint
representation that is like the short-time Fourier transform, the
Wigner distribution and the ambiguity function. The temporal
aspect of the signals is preserved. The wavelet transform provides
multiresolution analysis with dilated windows. The high frequency
analysis is done using narrow windows and the low frequency
analysis is done using wide windows.

The base of the wavelet transforms, the wavelets, are generated
from a basic wavelet function by dilations and translations. They
satisfy an admissible condition so that the original signal can be
reconstructed by the inverse wavelet transform. The wavelets also
satisfy the regularity condition so that the wavelet coefficients
decrease fast with decreases of the scale. The wavelet transform is

not only local in time but also in frequency.

Wavelet Transform (WT) is particularly suitable for application of
non-stationary signals which may instantaneously vary in time.
Primarily, the received signal is divided into different frequency
components using wavelets. The basis function of WT is scaled
based on frequency and a subset of small waves (known as
mother wavelet) is used for implementing WT. The mother wavelet
is a time-varying window function used for decomposition of into

weighted sets of scaled versions of Consequently, using wavelet



transform in signal processing is the process of the partial
transformation of the spatial domain and the frequency domain, in
order to get useful information accurately from it though corrupted
with noise.

Since different frequency levels are used for WT, it is quite
convenient for analyzing the signal characteristics at different
frequencies and detecting removing corrupting noise. Broadly, there
are two types of WT, Continuous Wavelet Transform (CWT) and
Discrete Wavelet Transform (DWT).



9.2 Continuous Wavelet Transform

Continuous wavelets transform (CWT) measures the congruence
between an analyzing function and actual signal by calculating the
inner product and then integrating the product. The mother
wavelet window function can be shifted and moved over the time-
axis by changing scale and position parameters, thereby including

different frequency components at the different locations.

The wavelet transforms of a continuous-time signal is defined as:

(97)

Thus, the wavelet transform is computed as the inner product of
and translated and scaled versions of a single function , the so-
called wavelet. If we consider to be a bandpass impulse response,
then the wavelet analysis can be understood as a bandpass
analysis. By varying the scaling parameter a the center frequency
and the bandwidth of the bandpass are influenced. The variation
of b simply means a translation in time, so that for a fixed a the
transform (9.1) can be seen as a convolution of with the time-

reversed and scaled wavelet:

W,(ta) = %) « 1_(), UXCERI(Y N

The perfector is introduced in order to ensure that all scaled

functions with have the same energy.



Since the analysis function is scaled and not modulated like
the kernel of the STFT, a wavelet analysis is often called a time-
scale analysis rather than a time-frequency analysis. However, both
are naturally related to each other by the bandpass interpretation.
Figure 9.1 shows examples of the kernels of the STFT and the
wavelet transform. As we can see, a variation of the time delay b
and/or of the scaling parameter a has no effect on the form of
the transform kernel of the wavelet transform. However, the time
and frequency resolution of the wavelet transform depends on a.
For high analysis frequencies (small a) we have good time
localization but poor frequency resolution. On the other hand, for
low analysis frequencies, we have good frequency but poor time
resolution. While the STFT is a constant bandwidth analysis, the
wavelet analysis can be understood as a constant-Q or octave

analysis.

R{y(t)eluut} m{’r[*,"ﬂj:}cl'
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Figure 9.1. Comparison of the analysis kernels of the short-time

Fourier transform (top, the real part is shown) and the wavelet
transform (bottom, real wavelet) for high and low analysis

frequencies.



When using a transform in order to get better insight into the
properties of a signal, it should be ensured that the signal can be
perfectly reconstructed from its representation. Otherwise, the
representation may be completely or partly meaningless. For the
wavelet transform the condition that must be met in order to

ensure perfect reconstruction is

(9-2)

where denotes the Fourier transform of the wavelet. This condition
is known as the admissibility condition for the wavelet . The proof

of (9.2) will be given in Section 9.3.

Obviously, in order to satisfy (9.2) the wavelet must satisfy

(9:3)

Moreover, must decrease rapidly for and for . That is, . must be
a bandpass impulse response. Since a bandpass impulse response
looks like a small wave, the transform is named wavelet

transform.

Calculation of the Wavelet Transform from the Spectrum X(w).

Using the abbreviation

(9-4)



the integral wavelet transform introduced by equation (9.1) can

also be written as

(9-5)

With the correspondences and , and the time and frequency shift

properties of the Fourier transform, we obtain:

W, 0(@) = la| e ¥(aw)

1 t—=b
¥pa(t) = lal 5 (—)
By making use of Parseval’s relation we finally get

(9:7)

Equation (9.7) states that the wavelet transform can also be
calculated by means of an inverse Fourier transform from the

windowed spectrum .

To recover the original signal the first inverse continuous wavelet

transform can be exploited:

x(t) = 3t f fw,(a,b)%ﬁ(%)db—

o0 o0 |alz



is the dual function of and

f B (@) P(w)

|w|

is admissible constant, where hat means Fourier transform

operator. Sometimes, , then the admissible constant becomes:

?|B@)|
- [Pl

|wl

Traditionally, this constant is called wavelet admissible constant. A

wavelet whose admissible constant satisfies

0 =< l:.;,'-'-':m

is called an admissible wavelet. An admissible wavelet implies that

so that an admissible wavelet must integrate to zero.



9.3_Time-Frequency_Resolution

To describe the time-frequency resolution of the wavelet transform
we consider the time-frequency window associated with the
wavelet. According to the time-frequency resolution where the shift

and modulation principle of the Fourier transform is applied.

The correspondence center and the radii and of the window are

calculated and gives.

and

(9.10)

(9.11)

For the center and the radii of the scaled function we have and ,
respectively. This means that the wavelet transform provides

information on a signal its spectrum in the time-frequency window
k] _"'L R Fi

[bt+a-tp—a-A, bda-togta-Ny) x| . .
: “a a a a



(9.12)

The area is independent of the parameters a and b; it is
determined only by the used wavelet . The time window narrows
when a becomes small, and it widens when a becomes large. On
the other hand, the frequency window becomes wide when a
becomes small, and it becomes narrow when a becomes large. As
mentioned earlier, a short analysis window leads to good time
resolution on the one hand, but on the other to poor frequency
resolution. Accordingly, a long analysis window yields good
frequency resolution but poor time resolution. Figure 9.2 illustrates
the different resolutions of the short-time Fourier transform and

the wavelet transform.

Affine Equation (9.1) shows that if the signal is scaled , the
wavelet representation is scaled as well; except this, undergoes no
other modification. For this reason, we also speak of an afine
invariant transform. Furthermore, the wave let transform is
translation invariant, i.e. a shift of the signal leads to a shift of

the wavelet representation by but undergoes no other modification.
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Figure Resolution of the short-time Fourier

transform (left) and the wavelet transform (right).



9.4_Wavelet Series



9.4.1_Dyadic_Sampling

In this section, we consider the reconstruction from discrete
values of the wavelet transform. The following dyadically arranged

sampling points are used:

(9.13)

This yields the values . Figure 8.6 shows the sampling grid.

Using the abbreviation

(9-14)
= 27%F (27"t - nT),
we may write the wavelet analysis as
We (brnpy @) = Wy (20 T,2™) = (2,9,

T

(9.15)

The values form the representation of with respect to the wavelet

and the chosen grid.

Of course, we cannot assume that any set allows reconstruction
of all signals . For this a dual set must exist, and both sets must
span . The dual setn eed not necessarily be built from wavelets.

However, we are only interested in the case where is derived as

(9.16)



from a dual wavelet . If both sets and with span the space ., any

. may be written as

(9.17)

Alternatively, we may write a

Figure 9.3. Dyadic sampling of the wavelet transform.

For a given wavelet the possibility of perfect reconstruction is
dependent on the sampling interval T. If T is chosen very small
(oversampling), the values are highly redundant, and reconstruction
is very easy. Then the functions are linearly dependent, and an
infinite number of dual sets exists. The question of whether a
dual set exists at all can be answered by checking two frame
bounds’ A and B. It can be shown that the existence of a dual

set and the completeness are guaranteed if the stability condition

(9-19)

with the frame bounds is In the case of a tight frame, A =
perfect reconstruction with possible. This is also true if the

samples contain redundancy, that is, if the functions are linearly



dependent. The tighter the frame bounds are, the smaller is the
reconstruction error if the reconstruction is carried out according

to

(9-20)

If T is chosen just large enough that the samples contain no
redundancy at all (critical sampling), the functions are linearly
independent. If (9.19) is also satisfied with , the functions form a
basis for . Then the following relation, which is known as the

biorthogonality condition, holds:

(9.21)

Wavelets that satisfy (9.21) are called biorthogonal wavelets. As a
special case, we have the orthonormal wavelets. They are self-

reciprocal and satisfy the orthonormality condition:

(9-22)

Thus, in the orthonormal case, the functions can be used for both
analysis and synthesis. Orthonormal bases always have the same
frame bounds (tight frame), because, in that case, (9.22) is a

special form of Parseval’s relation.



9.5_Discrete Wavelet Transform (DWT)

If suitable transformation is applied to a group of selected
wavelet, a collection of orthogonal real-valued wavelets will be
generated, a representation of the received signal referred to as
wavelet expansion. In this case, the properties of the generated
wavelets depend on the features of the mother wavelet. Since the
newly generated wavelets are a group of orthogonal wavelets, they
provide a time-frequency localization of the actual input signal,
thereby concentrating the signal energy over a few frequency
coefficients. Scaling and translation of the mother wavelet
generated. If the scaling factor is a power of two, the wavelet
transform technique is referred to as the dyadic-orthonormal
wavelet transform. If the chosen mother wavelet has orthonormal
properties, there is no redundancy in the discrete wavelet
transforms. In addition, this provides the multiresolution algorithm
decomposing a signal into scales with different time and frequency
resolution. In this section, the multiresolution analysis and the
efficient realization of the discrete wavelet transform based on
multirate filter banks will be addressed. This framework has mainly
been developed by Meyer, Mallat and Daubechies for the
orthonormal Since biorthogonal wavelets formally fit into the same
the derivations will be given for the more general biorthogonal

case.



9.5.1 Multiresolution Analysis

In the following we assume that the sets

T-'.-’mn[t'} = 27% T-':!{?_mt - ”‘J1
m,n e L

Umnlt) = 27F @(27™t —n),

(9.23)

are bases for satisfying the biorthogonality condition (9.21). Note
that T = 1 is chosen in order to simplify notation. We will mainly

consider the representation (9.18) and write it as

(9-24)
with
diln) = Wf{?mn:i’!m] = {:I:,':_,erﬁ>: m,n € L

(9-25)

Since a basis consists of linearly independent functions, may be

understood as the direct sum of subspaces

With

W = span {¢(27™t —n), n € Z} ., mel.

(9-27)



Each subspace W, covers a certain frequency band. For the

subband signals we obtain from (9.24):

(9.28)
Every signal can be represented as

(9-29)
Now we define the subspaces as the direct sum of and :

(9-30)

Here we may assume that the subspaces contain lowpass signals
and that the bandwidth of the signals contained in reduces with
increasing m. From (9.27), (9.26), and (9.30) we derive the

following properties:

(i) We have a nested sequence of subspaces

(9.31)

(i) Scaling of by the factor two makes the scaled signal an

element of the next larger subspace and vice versa:

(9-32)



(iii) If we form a sequence of functions by projection of onto the

subspaces this sequence converges towards

lim 5[‘.-.:[_1} = x(1), 'I'i” = L}{R] -rnﬂ:l[:' E Vin.
M——00

(9-33)

Thus, any signal may be approximated with arbitrary precision.
Because of the scaling property (9.32) we may assume that the
subspaces are spanned by scaled and time-shifted versions of a

single function

(9-34)
Thus, the subband signals , are expressed as

(9-35)
With

(9-36)

The function is called a scaling function

Example: Haar Wavelets. The Haar function is the simplest

example of an orthonormal wavelet:

1 for0<t <05
{t) = { —1 for0i<i<l

0 otherwise.
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Figure 9.4. Haar wavelet and scaling function
The corresponding scaling function is

1, for0<t<l1
o(t) = {D, otherwise.

The functions span the subspace and the functions span
Furthermore, the functions span and the functions span The
orthogonality among the basic functions and the orthogonality of

the functions and is obvious, see Figure 8.8.

Example: Shannon Wavelets. The Shannon wavelets are impulse

responses of ideal bandpass filters:

(9-37)

In the frequency domain this is



The scaling function that belongs to the Shannon wavelet is the

impulse response of the ideal lowpass:

(9-39)
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Figure 9.5. Subspaces of Shannon wavelets.

The coefficients in (9.35) can be understood as the sample values
of the ideally lowpass-filtered signal. Figure 8.9 illustrates the
decomposition of the signal space.

The Shannon wavelets form an orthonormal basis for . The
orthogonality between different scales is easily seen, because the
spectra do not overlap. For the inner product of translated

versions of at the same scale, we get



T

1 ! . 3
— | B(w)B(w)e I\~ mg,

/ }{t —m)¢*(t —n)

2w J_
T
— Ei* ﬂ—j[m — thudw
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(9-40)

by using Parseval’s relation. The orthogonality of translated
wavelets at the same scale is shown using a similar derivation.

A drawback of the Shannon wavelets is their infinite support
and the poor time resolution due to the slow decay. On the other
hand, the frequency resolution is perfect. For the Haar wavelets,
we observed the opposite behavior. They had perfect time, but

unsatisfactory frequency resolution.



8.5.2 Wavelet Analysis by Multirate Filtering

Because of the functions can be written as linear combinations of
the basis functions for the spaces and With the coefficients and

the approach is
on(t) = 3 ho(2€ — 1) dre(t) + ha(2£ — ) u(t).
£

(9.41)

Equation (9.41) is known as the decomposition relation, for which
the following notation is used as well:
V2 (2t —n) = ho(2L —n) $(t — £) + hy (26 —n) B(t —£).

£

(9-42)

We now consider a known sequence , and we substitute (9.41)

into (9.35) for m = o. We get
rolt) = gm{nJ dun(t)
= Soo(n) T ho2% =) ¢uelt) + (26 = n) dae(t)
=2 Zeoln) ho(26 = n) dre(t) + . Teo(n) hn (26— n) de(t)
e

— e ———

a(l) di (£)
=z (f) + mlt),

(9.43)

where , and . This method allows us to compute and from :

em+1(€) =3 em(n) ho(2€ — n)
" . ilel
dp41(f) = X em(n) hi(2€ —n)

(9-44)



We see that the sequences and occur with half the sampling rate
of . Altogether, the decomposition (9.44) is equivalent to a two-
channel filter bank analysis with the analysis filters and

Hi@) ——= 2, dilm)
cpl#) —
= () -2 = da(l)
cy{m)
Hy(z) 2,]
Lo Hoto) 2720 E

Figure 9.6. Analysis filter bank for computing the DWT.

If we assume that is a sufficiently good approximation of and if
we know the coefficients we can compute the coefficients , and

thus the values of the wavelet transform using the discrete-time

filter bank depicted in Figure 8.10. This is the most efficient way
of computing the DWT of a signal.



8.5.3_Wavelet Synthesis by Multirate Filtering

Let us consider two sequences and , which allow us to express

the functions and as linear combinations of in the form

(8.45)

or equivalently as

(8.46)

Equations (9.45) and (9.46), respectively, are referred to as the
two-scale relation. For time-shifted functions the two-scale relation

is
(9.47)

difm) —=[f2——+ Gilz)
dzil) _|*_¢.|__' Gilz) fL—- coln)
L ’—:Lml:.ﬂ'i] Gul2) H
—-—? 2 {t2] G 2) J
Figure 9.7. Synthesis filter bank

From (9.47), (9.28), (9.35) we can derive



z(t) =z it) + (i)
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(9-48)

The generalization of (9.48) yield
em(m) =D cmy1(€) goln — 26) + dmi1 () g1 (n — 20).
£

(9-49)

The sequences and may be understood as the impulse responses
of discrete-time filters, and (9.49) describes a discrete-time two-

channel synthesis filter bank. The filter bank is shown in Figure
9.7.



9.6 Discrete Wavelet Transform for denoising_data

The DWT denoising procedure consists of three steps. In the first
step, if the length of the data stream is of length of the order of
power of two, it is transformed to the wavelet domain. In the
second step, coefficients with either zero magnitude or criterion-
based minimized values are selected. In the third or final step,
the minimized coefficients are reverted back to the original
domain from the wavelet domain to extract the denoised data.
DWT-based denoising techniques can be broadly classified into two
categories - linear and non-linear. In linear DWT, signal and noise
are assumed to be belonging to the smooth and the detailed part
of the wavelet domain, where high frequency components are
attenuated. While in non-linear DWT, the filter removes the
coefficients selected in the second stage with amplitudes less than
the threshold. In practicality, non-linear DWT is always preferred
over linear DWT, as linear DWT introduces error due to the
retention of noise components and loss of signal components

owing to wavelet filtering.

Whether linear or non-linear DWT denoising technique is used,
performance depends on the choice of the wavelet family and the
length of the filter. The traditional way for making this choice is
based on visual inspection of the data, for example, Daubechies
wavelets are implemented when the data appears smooth in the
wavelet domain, while Haar or other wavelets are used when the
data appears bursty and discontinuous in the wavelet domain. To

overcome the problems with DWT denoising, correlation denoising



method is used. Correlation denoising method implements wavelet
transformation and filtering in a way such that the correlation
between wavelet coefficients of the signal part and the noise part
is different at each level. However, correlation denoising in its
original form is computationally complex. To reduce complexity,
wavelet threshold denoising method is used. The method is
simple to calculate, and the noise can be suppressed to a large
extent. At the same time, singular information of the original
signal can be preferred well, so it is a simple and effective
method. A brief overview of what happens when DWT is applied

for denoising is demonstrated in figure 9.8.
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The four major components of the DWT denoising technique are:
wavelet-type selection, threshold selection, threshold function
selection and threshold application to the wavelet coefficients.
Wavelet Selection, there is a wide variety of wavelets that can
be used for denoising. Selecting the optimum one depends on the
selection of the matching wavelet filter. Out of different wavelet
transform based denoising methods, only minimum description
length (MDL) method has the flexibility of choosing the filter type.



9.7_Signal denoising_for loT networks

The huge amount of sensor data generated in an loT network are
used to take decisions on a certain observation/ phenomenon
based on real-time processing. The decision-making procedure
often involves detecting the signal energy level transmitted from
the sensors. If the received energy level is higher than a
predefined threshold, the target is detected to be present
phenomenon and vice-versa. However, the sensor data gets
crippled with noise contributed by the wireless environment and
the internal electronics of the sensors, on its way to the data
center for processing. The WPT method will be the best option in
this case for denoising the sensor data, where the original signal
coefficients are preserved while removing the noise within the
signal. The WPT method can decompose a signal in both scale
and wavelet space thereby revealing more details about both the
sensor signals and the crippling noise. If energy correlation
analysis is used in conjunction with WPT, signal energy from the
sensor data can be analyzed and noise can be eliminated by
zooming into the signal characteristics at different time scales.
Advantages of WPT over WT is evident in Figure 9.9. Hence, in
this section, a universal framework is presented for denoising
sensor signals in loT networks. The framework is based on energy
correlation analysis and combines the processes of WP
decomposition, coefficient modification and WP reconstruction. The

functional block diagram for this framework is presented in figure

9-9.
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9.8 Multiresolution Signal Analysis

In this subsection we show an example of multiresolution analysis
for a simple transient signal. Transient signals in the power
system are nonstationary time-varying voltage and current that can
occur because of changes in the electrical configuration and in
industrial and residential loads, and of a variety of disturbances
on transmission lines, including capacitor switching, lightning
strikes and short-circuits. The waveform data of the transient
signals are captured by digital transient recorders. Analysis and
classification of the power system disturbance can help to provide
more stability and efficiency in power delivery by switching
transmission lines to supply additional current or switching
capacitor banks to balance inductive loads and help to prevent
system failures.

The power system transient signals contain a range of
frequencies from a few hertz to impulse components with
microsecond rise times.

The normal 6o Hz sinusoidal voltage and current waveforms
are interrupted or superimposed with impulses, oscillations, and
reflected waves. An experienced power engineer can visually
analyze the waveform data in order to determine the type of
system disturbance. However, the Fourier analysis with its global
operation nature is not as appropriate for the transient signals as
the time-scale joint representation provided by the wavelet

transform.



9.9_Multiresolution Wavelet Decomposition of Transient Signal

The wavelet transform provides a decomposition of power system
transient signals into meaningful components in multiple frequency
bands, and the digital wavelet transform is computationally
efficient. Figure 9.10 shows the wavelet components in the
multiple frequency bands. At the top is the input voltage transient
signal. There is a disturbance of a capacitor bank switching on a
three-phase transmission line. Below the first line are the wavelet
components as a function of the scale and time shift. The scales
of the discrete wavelets increase by a factor of two successively
from scale 1 to scale 64, corresponding to the dyadic frequency
bands. The vertical axis in each discrete scale is the normalized
magnitude of the signal component in voltage. The three impulses
in high frequency band scale 1 correspond to the successive
closing of each phase of the three-phase capacitor bank. scale 2
and scale 4 are the bands of system response frequencies. Scale
4 contains the most energy from the resonant frequency caused
by the addition of a capacitor bank to a primarily inductive circuit.
The times of occurrence of all those components can be
determined on the time axis. Scale 64 contains the basic signal of
continuous 60 Hz.

The wavelet analysis decomposes the power system transient
into the meaningful components, whose modulus maxima then
can be used for further classification. The nonorthogonal
multiresolution analysis wavelets with finite impulse response (FIR)
quadratic spline wavelet filters were used in this example of

application.



One problem in this application and many other applications
with the dyadic wavelet transform is the lack of shift invariance.
The dyadic wavelet transform is not shift invariant. In the wavelet
decomposition the analysis low-pass and high-pass filters are
double shifted by two. If the input signal is shifted by one
sampling interval distance, the output of the dyadic wavelet
transform is not simply shifted by the same distance, but the
values of the wavelet coefficients would be changed dramatically.
This aliasing error is caused by the down-sampled factor of two in
the multiresolution signal analysis. This is a disadvantage of the
dyadic wavelet transform because many applications such as real-
time signal analysis and pattern recognition require shift invariant
wavelet transform. In the above example of application, the
orthonormal quadrature mirror filters have been found sensitive to
translations of the input. Hence, nonorthonormal quadratic spline

wavelets have been used.
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9.10 Signal Detection

The detection of weak signals embedded in a stronger stationary
stochastic process, such as the detection of radar and sonar
signals in zero-mean Gaussian white noise, is a well-studied
problem. If the shape of the expected signal is known, the
correlation and the matched filter provide optimum solution in

terms of the signal-to-noise ratio in the output correlation.
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Figure Wavelet transform of the abnormal electrocardiogram for
scale factor s = 11, 16, 22. The bulge to the right of the second
QRS peak for s = 1/16 indicates the presence of the VLP



In the detection of speech or biomedical signals, the exact shape
of the signal is unknown. The Fourier spectrum analysis could be
effective for those applications, only when the expected signal has
spectral features that clearly distinguishes it from the noise. The
effectiveness of the Fourier spectrum analysis is generally
proportional to the ratio of the signal to noise energy. For short-
time, low-energy transients, the change in the Fourier spectrum is
not easily detected. Such transient signals can be detected by the
wavelet transform. An example of an electrocardiogram signal
detection follows. Figure 9.11 shows the clinical electrocardiogram
with normal QRS peaks and an abnormality called ventricular late
potentials (VLP) right after the second QRS peak. The amplitude
of the VLP signal is about 5% of the QRS peaks. Its duration was
about 0.1 second, or a little less than 10% of the pulse period.
The VLPs are weak signals, swamped by noise, and they occur
somewhat randomly. Figure g9.12. shows the magnitude of
continuous wavelet transform with the cos-Gaussian wavelets of
scale s = 1/11, 1/16 and The peak after the second QRS spike
observed for s = 1/16 is very noticeable and gives a clear

indication of the presence of the VLP.



Problems

9.1 Find (by hand) what the signals and would be for the _lter

bank in Figure Problem g.1. Let . Be sure to show your work.

Figure Problem 9.1

9.2 What is multiresolution (i.e., a wavelet transform having more

than one octave)? Demonstrate this idea with a figure.

9.3 If the down-samplers keep only one of every four values, what
effect would this have on the filter bank? What if the filter bank

structure were modified to have four channels?

Write a function to return the one octave, Daubechies four-
coefficient wavelet transform for a given signal. Include low- and

highpass outputs.

Given the input signal for , write the commands to find the DWT
for 3 octaves. Compare your results with those of the dwt
function. Plot the original function, as well as the approximate
signals.

For the Haar transform, use values (no down sampling), find

signals and given an input of .



Suppose you have a 3-octave DWT. Draw the analysis structure in

terms of filters and down-samplers.

For a four-octave DWT, suppose the input has 1024 samples. How
long would the detail outputs be? How long would the
approximate outputs be? What if down/up-sampling were not
used? For simplicity, you can assume that the filter’s outputs are

the same lengths as their inputs.

9.9. For an input of 1024 samples, how many octaves of the
DWT could we have before the approximation becomes a single
number? For simplicity, you can assume that the filter's outputs

are the same lengths as their inputs.



Chapter

Adaptive Signal Processing
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Learming Outcomes of this Chapter

After successful completion of this chapter students will be
able to:

1. use basic probahlity theory to model random signals
in terms of Random Processes.

2. understand and dernive the Wiener filter for signals
with known second order statistics.

3. formulate the Wiener filter as a constramned

4. use and understand the LMS algorithm for steratively
estimating the Wiener filter weights.

5. derive and apply the RLS algorithm for iteratively
estimating the Wiener filter weights.




10.1_Introduction

Adaptive signal processing is the design of adaptive systems for
signal- processing applications. In signal measurement systems the
information-bearing signal is often contaminated by noise from its
surrounding environment. The noisy observation, can be modelled
as = + where and are the signal and the noise, and m is the
discrete-time index. In some situations, for example when using a
mobile telephone in a moving car, or when using a radio
communication device in an aircraft cockpit, it may be possible to
measure and estimate the instantaneous amplitude of the ambient
noise using a directional microphone. The signal, x(m), may then
be recovered by subtraction of an estimate of the noise from the
noisy signal.

Figure 10.1 shows a two-input adaptive noise cancellation
system for enhancement of noisy speech. In this system a
directional microphone takes as input the noisy signal + and a
second directional microphone, positioned some distance away,
measures the noise . The attenuation factor o and the time delay
C provide a rather over-simplified model of the effects of
propagation of the noise to different positions in the space where
the microphones are placed. The noise from the second
microphone is processed by an adaptive digital filter to make it
equal to the noise contaminating the speech signal, and then

subtracted from the noisy signal to cancel out the noise.
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Figure 10.1. A two-input adaptive noise cancellation system

The adaptive noise canceller is more effective in cancelling out
the low-frequency part of the noise, but generally suffers from the
non-stationary character of the signals, and from the over-
simplified assumption that a linear filter can model the diffusion

and propagation of the noise sound in the space.



10.2 Adaptive Noise Cancellation

One of the most important applications of adaptive filtering is
adaptive noise cancellation (ANC). The background noise is an
important handicap and challenging task. If it is joined with other
distortions, it can seriously damage the service quality. In all
applications that require at least one microphone, the signal of
interest is usually contaminated by background noise and
reverberation. As a result, the microphone signal has to be
“cleaned” with digital signal processing tools before it is played
out, transmitted or stored. So, it is important to cancel the noise
which may combine the signal to obtain a good quality signal,
this may be achieved using adaptive Noise Cancellation which
improves the Signal-to-Noise Ratio at the received noisy signal.

Adaptive noise cancellation is an alternative technique of
estimating signals corrupted by additive noise or interference. It
has advantage that, with no prior knowledge of signal or noise,
levels of noise reject ion are obtainable that would be difficult to
achieve by other signal processing methods of noise removing.
The principle of adaptive noise cancellation is to obtain an
estimate of the noise signal and subtract it from the corrupted
signal.

As shown in the figure, an Adaptive Noise Canceller (ANC) has
two inputs — primary and reference. The primary input receives a
signal s from the signal source.

that is corrupted by the presence of noise n uncorrelated with
the signal. The reference input receives a noise uncorrelated with

the signal but correlated in some way with the noise



The noise no passes through a filter to produce an output n”
that is a close estimate of primary input noise. This noise
estimate is subtracted from the corrupted signal to produce an

estimate of the signal at s”, the ANC system output.
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Figure 10.2 Adaptive Noise Canceller

The adaptive noise cancellation technique uses adaptive filters for
signal The adaptive filter constitutes an important part in
statistical signal processing. Whenever there is a requirement to
process signals that result from operation in an environment of
unknown statistics, the use of an adaptive filter offers an attractive
solution to the problem as it usually provides a significant
improvement in performance over the use of a fixed filter
designed by conventional methods. Furthermore, the use of
adaptive filters provides new signal-processing capabilities that
would not be possible otherwise.

We thus find that adaptive filters are successfully applied in
such diverse fields as communications, control, radar, sonar,

seismology, and biomedical engineering.

An adaptive filter is very generally defined as a filter whose
characteristics can be modified to achieve some end or objective
and is usually assumed to accomplish this modification or

adaptation automatically.






10.3_Adaptive Filtering_Algorithms

Adaptive filtering is the process which is required for echo
canceling in different applications. Adaptive filter is such type of
filter whose characteristics can be changed for achieving optimal
desired output. An adaptive filter can change its parameters to
minimize the error signal by using adaptive algorithms. The error
is the difference between the desired signal and the output signal
of the filter. Therefore, a digital filter that automatically adjusts its
coefficients to adapt input signal via an adaptive algorithm.
Characteristics of adaptive filters: They can automatically adapt
(self-optimize) in the face of changing environments and changing
system requirements. They can be trained to perform specific
filtering and decision-making tasks according to some updating
equations (training rules). An adaptive filter is defined by four

aspects:

1. the signals being processed by the filter.

2. the structure that defines how the output signal of the filter is
computed from its input signal.

3. the parameters within this structure that can be iteratively
changed to alter the filter’s input-output relationship 4. the
adaptive algorithm that describes how the parameters are adjusted

from one time instant to the next.

Figure 10.3 shows a block diagram in which a sample from a

digital input signal is fed into a device, called an adaptive filter,



that computes a corresponding output signal sample at time n.
For the moment, the structure of the adaptive filter is not
important, except for the fact that it contains adjustable
parameters whose values affect how y(n) is computed. The output
signal is compared to a second signal d(n), called the desired
response signal, by subtracting the two samples at time n. This

difference signal, given by:

(10.1)

is known as the error signal. The error signal is fed into a
procedure which alters or adapts the parameters of the filter from
time n to time (n + 1) in a well-defined manner. This process of
adaptation is represented by the oblique arrow that pierces the
adaptive filter block in the figure. As the time index n is
incremented, it is hoped that the output of the adaptive filter
becomes a better and better match to the desired response signal
through this adaptation process, such that the magnitude of
decreases over time. In this context, what is meant by “better” is
specified by the form of the adaptive algorithm used to adjust the
parameters of the adaptive filter. In the adaptive filtering task,
adaptation refers to the method by which the parameters of the
system are changed from time index n to time index + 1). The
number and types of parameters within this system depend on
the computational structure chosen for the system. We now
discuss different filter structures that have been proven useful for

adaptive filtering tasks.
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Figure 10.3 The general adaptive filtering problem

In general, any system with a finite number of parameters that
affect how is computed from could be used for the adaptive filter

in Figure 10.3. Define the parameter or coefficient vector as

wi(n) = [w, (n), wy(n), wa(n), .. e s sevvneee , Wiy () 7

(10.2)

where are the L parameters of the system at time n: With this
definition, we could define a general input-output relationship for

the adaptive filter as :
yin) = f{Wn)yn=1)yn=2).yn=N,xn)xn =1} x(n-M+1))

(10.3)

where ) represents any well-defined linear or nonlinear function
and M and N are positive integers. Implicit in this definition is
the fact that the filter is such that future values of are not
needed to compute While noncausal filters can be handled in
practice by suitably buffering or storing the input signal samples,

we do not consider this possibility.

Although equation 10.3 is the most general description of an

adaptive filter structure, we are interested in determining the best
linear relationship between the input and desired response signals
for many problems. This relationship typically takes the form of a

finite-impulse-response (FIR) or infinite impulse- response (IIR) filter.



Figure 10.3 shows the structure of a direct-form FIR filter, also
known as a tapped-delay-line or transversal filter, where denotes the
unit delay element and each is a multiplicative gain within the
system. In this case, the parameters in correspond to the impulse
response values of the filter at time We can write the output

signal as:

(10.4)

where denotes the input signal vector and denotes vector
transpose. Note that this system requires L multiplies and L - 1
adds to implement, and these computations are easily performed
by a processor or circuit so long as L is not too large and the
sampling period for the signals is not too short. It also requires a
total of memory locations to store the L input signal samples and

the L coefficient values, respectively.
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Figure Structure of an FIR filter.



10.3.1 Least Mean Square (LMS)_Algorithm

It is a class of adaptive filter used to mimic a desired filter by
finding the filter coefficients that relate to producing the least
mean squares of the error signal (difference between the desired
and the actual signal). The simplicity of the Least Mean Square
(LMS) algorithm and ease of implementation makes it the best
choice for many real-time systems. It is a stochastic gradient
descent method in that the filter is only adapted based on the
error at the current time. It was invented in 1960 by Stanford
University professor Bernard Widrow and his first Ph.D. student,
Ted Hoff. The simplicity of the Least Mean Square (LMS)
algorithm and ease of implementation makes it the best choice

for many real-time systems.
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Figure 10.4 Adaptive LMS Filter

The implementation steps for this algorithm can be stated as;

1. Define the desired response and set each coefficient weight to

Zero.

(10.5)



For each sampling instant carry out steps (2) to (4):

2. Move all the samples in the input array one position to the
right, now load the current data sample n into the first position
in the array. Calculate the output of the adaptive filter by

multiplying each element in the array of filter coefficients by the
corresponding element in the input array and all the results are
summed to give the output corresponding to that data that was

earlier loaded into the input array.

(10.6)

3. Before the filter coefficients can be updated the error must be
calculated, simply find the difference between the desired response

and the output of the adaptive filter.

(10.7)

4. To update the filter coefficients multiply the error by the
learning rate parameter and then multiply the result by the filter
input and add this result to the values of the previous filter

coefficients.

(10.8)

where

p: is the step size of the adaptive filter




Is the filter coefficients vector

Is the filter input vector

Then LMS algorithms calculate the cost function J(n) by using the

following equation:

(10.9)

Where (n) is the square of the error signal at time n



10.3.2 The Recursive Least Squares (RLS)_Algorithm

The LMS algorithm has many advantages (due to its
computational simplicity), but its convergence rate is slow. The
LMS algorithm has only one adjustable parameter that affects
convergence rate, the step-size parameter p, which has a limited
range of adjustment in order to insure stability For faster rates of
convergence, more complex algorithms with additional parameters
must be used. The RLS algorithm uses a least-squares method to
estimate correlation directly from the input data. The LMS
algorithm uses the statistical mean-squared-error method, which is
slower. The standard RLS algorithm performs the following

operations to update the coefficients of an adaptive filter.

1. Calculates the output signal of the adaptive filter.

2. Calculates the error signal by using the following equation:

e(m) = d(n)-y(n).

3. Updates the filter coefficients by using the following equation:

(10.10)

Where is the filter coefficients vector and is the gain vector. is

defined by the following equation:

(10.11)



Where M\ is the forgetting factor and P (n) is the inverse
correlation matrix of the input signal. P(n) has the following initial

value P(0):

] 0
i—1
P} - o
0 6

Where § is the regularization factor. The standard RLS algorithm
uses the following equation to update this inverse correlation

matrix.
(10.12)

RLS algorithms calculate by using the following equation

(10.13)

Where N is the filter length and A is the forgetting factor.

This algorithm calculates not only the instantaneous value but also
the past values, such as (n—N+1). The value range of the
forgetting factor is (o, 1]. When the forgetting factor is less than
1, this factor specifies that this algorithm places a larger weight
on the current value and a smaller weight on the past values. The
resulting of the RLS algorithms is more accurate than that of the
LMS algorithms. The LMS algorithms require fewer computational
resources and memory than the RLS algorithms. However, the

eigenvalue spread of the input correlation matrix, or the



correlation matrix of the input signal, might affect the convergence
speed of the resulting adaptive filter. The convergence speed of
the RLS algorithms is much faster than that of the LMS
algorithms. However, the RLS algorithms require more

computational resources than the LMS algorithms.



10.3.3_Wiener Filtering

Wiener filters play a central role in a wide range of applications
such as linear prediction, echo cancellation, signal restoration,
channel equalization and system identification. Wiener filter theory
provides a convenient method of mathematically analysing
statistical noise cancelling problems. The Wiener filter is a popular
technique that has been used in many signal enhancement
methods. The basic principle of the Wiener filter is to obtain
estimate of speech signal from that corrupted by additive noise.
This estimate is obtained by minimizing the Mean Square Error
(MSE) between the desired signal and the estimated signal "s(n).
It is based on a statistical approach. The Wiener filter weights

noisy signal spectrum according to SNR at different frequencies.
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Figure 10.5 Basic of Wiener Filter

Typical filters are designed for a desired frequency response.
However, the design of wiener filter takes a different approach.
One is assumed to have knowledge of the spectral properties of
the original signal and the noise, and one seeks the linear time
invariant filter whose output would come as close to the original
signal as possible.



1. For this transfer function of wiener filter is used in frequency

domain which is expressed as follows:

Fs(w)

H@) =5t T Pato)

Ps(») and Pd(®w) are power spectral densities of clean and noisy

signals respectively.

2. In wiener filter, the signal and noise is assumed uncorrelated

and stationary, and the SNR is given by:

3. Using this definition of SNR, the transfer function of Wiener

filter can be given

1

H(w) = [1 + b,NH]

From the above definition of transfer function, it can be
interpreted that the Wiener filter has fixed frequency response at
all frequencies and needs an estimation of the power spectral

density of clean signal and noise prior to filtering.



10.3.3.1 Adaptive Wiener Filter

This section presents an adaptive implementation of the Wiener
filter which benefits from the varying local statistics of the speech
signal. The designed adaptive wiener filter depends on the
adaptation of the filter transfer function from sample to sample
based on the speech signal statistics (mean & variance). A block

diagram of the approach is as shown in figure below.
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Figure 10.6 Block Diagram of Adaptive Wiener Filter

As we seen above main aim of wiener filter is to find out the
signal estimate. This signal estimate is calculated by multiplying
spectral gain with noisy speech spectrum. This spectral gain
depends upon the priori SNR. This priori SNR follows the shape
of posterior SNR but with delay of one frame. In practical
implementations of speech enhancement systems, the power
spectrum density of the speech and the noise are unknown as
only the noisy speech is available. Then, both the instantaneous
SNR and the a priori SNR have to be estimated.



This instantaneous SNR and the a priori SNR can be estimated
using decision directed approach. The behaviour of the estimator
of the a priori SNR controlled by the parameter a. The
multiplicative gain function is obtained by multiplying functions of
priori SNR with instantaneous SNR. The speech signal spectrum is
calculated by multiplying this multiplicative gain with noisy speech
spectrum. The Multiplicative gain used here is of wiener transfer

function.



10.4_Applications of Adaptive Filters

Perhaps the most important driving forces behind the
developments in adaptive filters throughout their history has been
the wide range of applications in which such systems can be
used. We now discuss the forms of these applications in terms of
more-general problem classes that describe the assumed
relationship between and Our discussion illustrates the key issues

in selecting an adaptive filter for a particular task.



10.4.1 System ldentification

Consider Figure 10.7, which shows the general problem of system
identification. In this diagram, the system enclosed by dashed lines
is a “black box,” meaning that the quantities inside are not
observable from the outside. Inside this box is (1) an unknown
system which represents a general input output relationship and
(2) the signal , called the observation noise signal because it
corrupts the observations of the signal at the output of the

unknown system.
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Figure System identification

Let represent the output of the unknown system with as its input.

Then, the desired response signal in this model is

(10.10)

Here, the task of the adaptive filter is to accurately represent the
signal at its output. If , then the adaptive filter has accurately
modeled or identified the portion of the unknown system that is

driven by



Since the model typically chosen for the adaptive filter is a
linear filter, the practical goal of the adaptive filter is to determine
the best linear model that describes the input-output relationship
of the unknown system. Such a procedure makes the most sense
when the unknown system is also a linear model of the same
structure as the adaptive filter, as it is possible that for some set
of adaptive filter parameters. For ease of discussion, let the
unknown system and the adaptive filter both be FIR filters, such
that

(10.11)

where is an optimum set of filter coefficients for the unknown
system at time In this problem formulation, the ideal adaptation
procedure would adjust such that as . In practice, the adaptive
filter can only adjust such that closely approximates over time.
The system identification task is at the heart of numerous
adaptive filtering applications. We list several of these applications

here.



10.4.2 Channel Identification

In communication systems, useful information is transmitted from
one point to another across a medium such as an electrical wire,
an optical fiber, or a wireless radio link. Nonidealities of the
transmission medium or channel distort the fidelity of the
transmitted signals, making the deciphering of the received
information difficult. In cases where the effects of the distortion
can be modeled as a linear filter, the resulting “smearing” of the
transmitted symbols is known as inter-symbol interference (1SI). In
such cases, an adaptive filter can be used to model the effects of
the channel ISI for purposes of deciphering the received
information in an optimal manner. In this problem scenario, the
transmitter sends to the receiver a sample sequence that is known
to both the transmitter and receiver. The receiver then attempts to
model the received signal using an adaptive filter whose input is
the known transmitted sequence x.n/: After a suitable period of
adaptation, the parameters of the adaptive filter in are fixed and
then used in a procedure to decode future signals transmitted
across the channel.

Channel identification is typically employed when the fidelity of
the transmitted channel is severely compromised or when simpler

techniques for sequence detection cannot be used.



10.4.3_Plant Identification

In many control tasks, knowledge of the transfer function of a
linear plant is required by the physical controller so that a suitable
control signal can be calculated and applied. In such cases, we
can characterize the transfer function of the plant by exciting it
with a known signal and then attempting to match the output of
the plant with a linear adaptive filter. After a suitable period of
adaptation, the system has been adequately modeled, and the
resulting adaptive filter coefficients in can be used in a control
scheme to enable the overall closed-loop system to behave in the
desired manner. In certain scenarios, continuous updates of the
plant transfer function estimate provided by are needed to allow

the controller to function properly.



10.4.4_Echo Cancellation for Long-Distance Transmission

In voice communication across telephone networks, the existence
of junction boxes called hybrids near either end of the network link
hampers the ability of the system to cleanly transmit voice signals.
Each hybrid allows voices that are transmitted via separate lines
or channels across a long-distance network to be carried locally on
a single telephone line, thus lowering the wiring costs of the local
network. However, when small impedance mismatches between the
long distance lines and the hybrid junctions occur, these hybrids
can reflect the transmitted signals back to their sources, and the
long transmission times of the long-distance network—about s for
a trans-oceanic call via a satellite link—turn these reflections into
a noticeable echo that makes the understanding of conversation
difficult for both callers. The traditional solution to this problem
prior to the advent of the adaptive filtering solution was to
introduce significant loss into the long-distance network so that
echoes would decay to an acceptable level before they became

perceptible to the callers.

Unfortunately, this solution also reduces the transmission quality
of the telephone link and makes the task of connecting long
distance calls more difficult. An adaptive filter can be used to
cancel the echoes caused by the hybrids in this situation. Adaptive
filters are employed at each of the two hybrids within the network.
The input x.n/ to each adaptive filter is the speech signal being
received prior to the hybrid junction, and the desired response
signal d.n/ is the signal being sent out from the hybrid across the
long-distance connection. The adaptive filter attempts to model the

transmission characteristics of the hybrid junction as well as any



echoes that appear across the long-distance portion of the
network. When the system is properly designed, the error signal
e.n/ consists almost totally of the local talker’s speech signal,

which is then transmitted over the network.



10.4.5_Acoustic Echo Cancellation

A related problem to echo cancellation for telephone transmission
systems is that of acoustic echo cancellation for conference-style
speakerphones. When using a speakerphone, a caller would like to
turn up the amplifier gains of both the microphone and the audio
loudspeaker to transmit and hear the voice signals more clearly.
However, the feedback path from the device’s loudspeaker to its
input microphone causes a distinctive howling sound if these gains
are too high.

In this case, the culprit is the room’s response to the voice
signal being broadcast by the speaker; in effect, the room acts as
an extremely poor hybrid junction, in analogy with the echo
cancellation task discussed previously. A simple solution to this
problem is to only allow one person to speak at a time, a form
of operation called half-duplex transmission. However, studies have
indicated that half-duplex transmission causes problems with
normal conversations, as people typically overlap their phrases with

others when conversing.

To maintain full-duplex transmission, an acoustic echo canceller is
employed in the speakerphone to model the acoustic transmission
path from the speaker to the microphone. The input signal x.n/ to
the acoustic echo canceller is the signal being sent to the speaker,
and the desired response signal d.n/ is measured at the
microphone on the device. Adaptation of the system occurs
continually throughout a telephone call to model any physical
changes in the room acoustics. Such devices are readily available
in the marketplace today. In addition, similar technology can and

is used to remove the echo that occurs through the combined



radio/room/telephone transmission path when one places a call to

a radio or television talk show.



10.4.6 Adaptive Noise Cancelling

When collecting measurements of certain signals or processes,
physical constraints often limit our ability to cleanly measure the
quantities of interest. Typically, a signal of interest is linearly
mixed with other extraneous noises in the measurement process,
and these extraneous noises introduce unacceptable errors in the
measurements. However, if a linearly related reference version of
any one of the extraneous noises can be cleanly sensed at some
other physical location in the system, an adaptive filter can be
used to determine the relationship between the noise reference
and the component of this noise that is contained in the
measured signal After adaptively subtracting out this component,
what remains in e.n/ is the signal of interest. If several extraneous
noises corrupt the measurement of interest, several adaptive filters
can be used in parallel as long as suitable noise reference signals
are available within the system.

Adaptive noise cancelling has been used for several
applications. One of the first was a medical application that
enabled the electroencephalogram (EEG) of the fetal heartbeat of
an unborn child to be cleanly extracted from the much-stronger

interfering EEG of the maternal heartbeat signal.



10.5_Inverse Modeling

We now consider the general problem of inverse modeling, as
shown in Figure 10.8. In this diagram, a source signal is fed into
an unknown system that produces the input signal for the
adaptive filter. The output of the adaptive filter is subtracted from
a desired response signal that is a delayed version of the source

signal, such that

(10.12)

where is a positive integer value. The goal of the adaptive filter is
to adjust its characteristics such that the output signal is an

accurate representation of the delayed source signal.
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The inverse modeling task characterizes several adaptive filtering

applications, two of which are now described.



10.5.1 Channel Equalization

Channel equalization is an alternative to the technique of channel
identification described previously for the decoding of transmitted
signals across nonideal communication channels. In both cases,
the transmitter sends a sequence that is known to both the
transmitter and receiver. However, in equalization, the received
signal is used as the input signal to an adaptive filter, which
adjusts its characteristics so that its output closely matches a
delayed version of the known transmitted signal. After a suitable
adaptation period, the coefficients of the system either are fixed
and used to decode future transmitted messages or are adapted
using a crude estimate of the desired response signal that is
computed from . This latter mode of operation is known as
decision-directed adaptation.

Channel equalization was one of the first applications of
adaptive filters. Today, it remains as one of the most popular uses
of an adaptive filter. Practically every computer telephone modem
transmitting at rates of 9600 baud (bits per second) or greater
contains an adaptive equalizer. Adaptive equalization is also useful
for wireless communication systems. A related problem to
equalization is deconvolution, a problem that appears in the
context of geophysical exploration. Equalization is closely related to

linear a topic that we shall discuss shortly.



10.5.2 Inverse Plant Modeling

In many control tasks, the frequency and phase characteristics of
the plant hamper the convergence behavior and stability of the
control system. We can use a system of the form in Figure 10.8
to compensate for the nonideal characteristics of the plant and as
a method for adaptive control. In this case, the signal is sent at
the output of the controller, and the signal is the signal measured
at the output of the plant. The coefficients of the adaptive filter
are then adjusted so that the cascade of the plant and adaptive

filter can be nearly represented by the pure delay .



18.5.3_Linear Prediction

A third type of adaptive filtering task is shown in Figure 10.9. In
this system, the input signal is derived from the desired response

signal as

(18.13)

where is an integer value of delay. In effect, the input signal
serves as the desired response signal, and for this reason, it is
always available. In such cases, the linear adaptive filter attempts
to predict future values of the input signal using past samples,

giving rise to the name linear prediction for this task.

din) x(n)
Delay

efn)

o Adaptive
Filter

Figure Linear prediction

L i

If an estimate of the signal at time n is desired, a copy of the
adaptive filter whose input is the current sample can be employed
to compute this quantity. However, linear prediction has several
uses besides the obvious application of forecasting future events,

as described in the following two applications.



10.5.3.1 Linear Predictive Coding

When transmitting digitized versions of real-world signals such as
speech or images, the temporal correlation of the signals is a
form of redundancy that can be exploited to code the waveform
in a smaller number of bits than are needed for its original
representation. In these cases, a linear predictor can be used to
model the signal correlations for a short block of data in such a
way as to reduce the number of bits needed to represent the
signal waveform. Then, essential information about the signal
model is transmitted along with the coefficients of the adaptive
filter for the given data block. Once received, the signal is
synthesized using the filter coefficients and the additional signal
information provided for the given block of data.

When applied to speech signals, this method of signal
encoding enables the transmission of understandable speech at
only 2.4 kb/s, although the reconstructed speech has a distinctly
synthetic quality.

Predictive coding can be combined with a quantizer to enable
higher-quality speech encoding at higher data rates using an
adaptive differential pulse-code modulation (ADPCM) scheme. In both
of these methods, the lattice filter structure plays an important
role because of the way in which it parameterizes the physical

nature of the vocal tract.



10.5.4. Adaptive Line Enhancement

In some situations, the desired response signal consists of a sum
of a broadband signal and a nearly periodic signal, and it is
desired to separate these two signals without specific knowledge
about the signals (such as the fundamental frequency of the
periodic component).

In these situations, an adaptive filter configured as in Figure
10.9 can be used. For this application, the delay is chosen to be
large enough such that the broadband component in x(n) is
uncorrelated with the broadband component in . In this case, the
broadband signal cannot be removed by the adaptive filter through
its operation, and it remains in the error signal after a suitable
period of adaptation. The adaptive filter's output converges to the
narrowband component, which is easily predicted given past
samples. The name line enhancement arises because periodic
signals are characterized by lines in their frequency spectra, and
these spectral lines are enhanced at the output of the adaptive
filter.



10.6 Adaptive Noise Reduction

In many applications, for example at the receiver of a
telecommunication system, there is no access to the instantaneous
value of the contaminating noise, and only the noisy signal is
available. In such cases the noise cannot be cancelled out, but it
may be reduced, in an average sense, using the statistics of the

signal and the noise process.
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Figure 10.10. A frequency—domain Wiener

filter for reducing additive noise

Figure 10.9 shows a bank of Wiener filters for reducing additive
noise when only the noisy signal is available. The filter bank
coefficients attenuate each noisy signal frequency in inverse
proportion to the signal-to-noise ratio at that frequency. The
Wiener filter bank coefficients are calculated from estimates of the

power spectra of the signal and the noise processes.






Problems

10.1 Suppose the desired signal is given as:

d[n] = cos[2mn/Ty).

The reference signal that is applied to the adaptive filter input is

given as

x[n] = sin[2an/T,] + 0.5 cos[2nn/Ty],

where = 5 and = Compute for a second-order system:

(a) and .

(b) The optimal Wiener filter weight.

() The error for the optimal filter weight.
(d) The eigenvalues and the eigenvalue ratio.
(e) Repeat (a)—(d) for a third-order system.

Suppose the desired signal is given as:

dln] = cos{2nn/To] + nfn],

where is a white Gaussion noise with variance 1. The reference

signal that is applied to the adaptive filter input is given as

x[n] = sin[2mn/T,].



where = Compute for a second-order system:

(a) and .

(b) The optimal Wiener filter weight.

(c) The error for the optimal filter weight.
(d) The eigenvalues and the eigenvalue ratio.

(e) Repeat (a)—(d) for a third-order system.

10.3. Suppose the desired signal is given as:

d[n] = cos[4nn/T,]

where is a white Gaussian noise with variance 1. The reference

signal which is applied to the adaptive filter input, is given as

x[n] = sin[2mn/Ty] — cos[4mn/Ty),

with = 5. Compute for a second-order system:

(a) and

(b) The optimal Wiener filter weight.

() The error for the optimal filter weight.
(d) The eigenvalues and the eigenvalue ratio.
(e) Repeat (a)—(d) for a third-order system.

10.4. Consider the process u(n) whose correlation function is |.
Determine the optimum coefficients of the one-step linear forward

predictor of length two. Why is the second coefficient zero?



Consider the AR process

u(n) = 0.75u(n — 1) + v(n),

and a process defined as

y(n) = u(n) + e(n) + 0.5e(n — 1).

Both v(n) and e(n) are white noise with variance 1 and mean o.
Furthermore, they are independent. Determine the Wiener filter

with the structure

"u(n) = woy(n) + wiy(n — 1).

Consider the Wiener filter problem with the observed signal u(n),
the desired signal d(n). Set p = 1 in the method of steepest

descent, where the weight vector is a scalar w(n).

(a) Determine the function J(n).

(b) Determine the Wiener solution wo(n) and the minimum
estimation error Jmin.

(@) Sketch J(n) as a function of w(n).

Consider a so called adaptive line enhancer with a three-tap FIR

filter and the following assumptions:

d(n) = cos(wenT + 8) + v(n),
ul(n) = d(n +4),

(uniformly distributed),



where and = 4. Determine the optimal weights , and the

minimum MSE Jmin for and .

Determine the transfer function of the system shown below with
the input signal d(n) and the output signal e(n), where the
adaptive FIR filter has p coefficients. The signal (interference) u(n)
is given by

u(n) = cos(win + @).

.
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(a) Start with the relation between e(n) and y(n), i.e., Express
using .

(b) Write as complex exponential function using Euler’s formula.
(c) Now we concentrate on the scalar elements of the LMS

update equation i.e.,
wi(n + 1) = wk(n) + pu(n — ke(), k=0,..,p -1

(10.8)

(d) Express the z-transform of using E(z), the z-transform of e(n).

Hint: use the relation
Z{un)} = U(z) = Z{u(n)ej! On} = U(ze—j!0 )
(where Z{:} is the z-transform).

(e) Determine the z-transform of (10.8) and express Wk(z) as a
function of E(z2).



(f) Determine the z-transform and apply the result from d), which

yields as a function of
(g) The transfer function consists of two components where one

can be neglected if p is large enough. Determine the resulting .
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