
Books for professionals by professionals®

The Apress series of iPhone Projects books features experienced app develop-
ers presenting their own work in their own words. You get firsthand accounts

of what it takes to design, implement, and launch some of the finest applications
available from Apple’s iTunes App Store.

iPhone Advanced Projects, the third book in this series, tackles some advanced as-
pects of iPhone development. The first generation of iPhone applications has hit the
App Store, and now it’s time to optimize performance, streamline the user interfaces,
and make every successful iPhone app just that much more sophisticated.

Your guides for this exploration of the next level of iPhone development include the
following:

		 • Ben Britten Smith, discussing particle systems using OpenGL ES

		 • Joachim Bondo, demonstrating his implementation of correspondence 		
	 gaming in the most recent version of his chess application, Deep Green

		 • Tom Harrington, implementing streaming audio with Core Audio, one of 		
	 many iPhone OS 3 APIs

		 • Owen Goss, debugging those pesky errors in your iPhone code with an eye 		
	 toward achieving professional-strength results

		 • Dylan Bruzenak, building a data-driven application with SQLite

		 • Ray Kiddy, illustrating the full application development life cycle with
	 Core Data

		 • Steve Finkelstein, marrying an offline e-mail client to Core Data

		 • Peter Honeder and Florian Pflug, tackling the challenges of networked 		
	 applications in WiFi environments

		 • Jonathan Saggau, improving interface responsiveness with some of his 		
	 personal tips and tricks, including “blocks” and other esoteric techniques

		 • Joe Pezzillo, pushing the frontiers of iPhone OS 3’s new Apple Push 		
	N otification Service (APNS) that makes the cloud the limit for iPhone apps

		 • Noel Llopis, taking mere programmers on a really advanced developmental 		
	 adventure into the world of environment mapping with OpenGL ES

It’s a full banquet of treats, so dig in where the morsels look most tempting. There’s
plenty here for every palate. Apress also offers a nourishing first course with its
best-selling Beginning iPhone 3 Development: Exploring the iPhone SDK. And we’re
always on the lookout for what’s new and even tastier, so feel free to share your
most nourishing apps with us. We’d love to be able to add them to the next volume
of iPhone Projects.

This book is for all iPhone application developers with any level of experience or com-
ing from any development platform who wants to see how an advanced app is made.
Take what you learn in this book and use it to create the next great iPhone app!

iPhone Advanced Projects

Companion
eBook
Available

	 Companion eBook	 See last page for details on $10 eBook version

US $39.99

Shelve in
Mobile Computing/Mac Programming

User level:
Intermediatewww.apress.com

SOURCE CODE ONLINE

ISBN 978-1-4302-2403-7

9 781430 224037

53999

this print for content only—size & color not accurate

  CYAN
  MAGENTA

 YELLO W
  BLACK
 PAN TONE 123 C

 SPO T MATTE

Re
la

te
d

 T
it

le
s

spine = 0.875 " 392 page count

Development Tales of
iPhone App Masters

iPhone
Advanced Projects

Joachim Bondo  |  Dylan Bruzenak  |  Steve Finkelstein  |  Owen Goss   
Tom Harrington  |  Peter Honeder  |  Florian Pflug  |  Ray Kiddy

Noel Llopis  |  Joe Pezzillo  |  Jonathan Saggau  |  Ben Britten Smith
Preface by Glenn Cole

iPhone Advanced Projects

■■■

Dave Mark, Series Editor
Joachim Bondo
Dylan Bruzenak
Steve Finkelstein
Owen Goss
Tom Harrington
Peter Honeder

Ray Kiddy
Noel Llopis
Joe Pezzillo
Florian Pflug
Jonathan Saggau
Ben Britten Smith

2ii

iPhone Advanced Projects

Copyright © 2009 by Dave Mark, Joachim Bondo, Dylan Bruzenak, Steve Finkelstein, Owen Goss, Tom Harrington,
Peter Honeder, Ray Kiddy, Noel Llopis, Joe Pezzillo, Florian Pflug, Jonathan Saggau, Ben Britten Smith

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2403-7

ISBN-13 (electronic): 978-1-4302-2404-4

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a
trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with
no intention of infringement of the trademark.

Lead Editor: Clay Andres
Technical Reviewer: Glenn Cole
Developmental Editor: Douglas Pundick
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell, Gary Cornell,

Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann, Ben Renow-
Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Kelly Moritz
Copy Editor: Kim Wimpsett
Compositor: MacPS, LLC
Indexer: Julie Grady
Artist: April Milne

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York,
NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or visit
http://www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–
eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in this work.

The source code for this book is available to readers at http://www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

iii

To my lovely wife, Leonie.
— Ben Britten Smith

To my wife, Malena, who once again gave me the support I hadn’t earned.
— Joachim Bondo

To everyone I know and to everyone I haven’t met yet.
— Dylan Bruzenak

To all of my family and friends for their support and patience with my demanding schedule. To my loving
wife, Michelle, who sustains me and encourages me to take risks. Finally, this one is for my grandmother,

Asya; you will live forever in all our hearts.
— Steve Finkelstein

To the iPhone game developers on Twitter for sharing so much and being such a supportive community.
— Noel Llopis (@snappytouch on Twitter)

I’m so grateful to so many people I can’t possibly hope to name them all individually, so, en masse, let me
thank the blessing that is my family (especially my son), the unstoppable geniuses at Apple, the folks at

Apress who patiently awaited my writing, the incredibly supportive Mac and iPhone indie developer
community, all my clients and customers, my business partners and colleagues, and, of course, the great

ineffable spirit of the universe that makes everything possible.
Thank you!

— Joe Pezzillo

To my family, my friends, the island “La Palma,” and the one who introduced me to it.
— Florian Pflug

To Dr. Michele, who doesn’t let me call her doctor. Thanks for making me
type.

— Jonathan Saggau

4iv

Contents at a Glance

■Contents at a Glance .. iv

■Contents .. v

■Foreword ... xi
■About the Technical Reviewer .. xii

■Preface ... xiii
Ben Britten Smith .. 1
■Everything You Ever Wanted to Know About Particle Systems .. 3
Joachim Bondo .. 37
■Chess on the ’Net: Correspondence Gaming with Deep Green .. 39
Tom Harrington .. 63
■Audio Streaming: An Exploration into Core Audio .. 65
Owen Goss ... 99
■You Go Squish Now! Debugging on the iPhone ... 101
Dylan Bruzenak .. 139
■Building Data-Driven Applications with Active Record and SQLite .. 141
Ray Kiddy ... 181
■Core Data and Hard-Core Design .. 183
Steve Finkelstein ... 209
■Smart In-Application E-mail with Core Data and Three20 ... 211
Florian Pflug and Peter Honeder .. 247
■How iTap Tackles the Challenges of Networking .. 249
Jonathan Saggau ... 277
■Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness .. 279
Joe Pezzillo .. 311
■Demystifying the Apple Push Notification Service ... 313
Noel Llopis ... 345
■Environment Mapping and Reflections with OpenGL ES .. 347
■Index ... 365

v

Contents

■Contents at a Glance ... iv
■Contents .. v
■Foreword .. xi
■About the Technical Reviewer ... xii
■Preface ... xiii

Ben Britten Smith ... 1
■CHAPTER 1: Everything You Ever Wanted to Know
 About Particle Systems .. 3

Adding Life to Your Game with Particles ..5
Basic Particle Systems and You ...7

Overview of the Sample Code ...8
Basic Game Flow ...9
The Anatomy of a Particle System ..10
Code! Finally! ..12
Slight Tangent About Degenerates ..15
Back to the Code ...16
Random Numbers and Initial Conditions ...19
Emitting Particles ..20

Tweaking Your Particle System ...21
May the Force Be with Your Particles ...25

Amazing Technicolor Dream Particle ...28
Off on a Tangent: Lerping ..28
Color-Changing Particles ...30

Summary ..35

■ CONTENTS

6vi

Joachim Bondo...37
■Chapter 2: Chess on the ’Net: Correspondence
 Gaming with Deep Green ..39

Deep Green, an Already Awesome Application ..40
The Tasks at Hand..42

Inviting a Friend to a Game ...43
Accepting the Invitation ..43
Making a Move..43
Getting Notified ...43

The Tools of the Trade..44
Stop Talking, Start Coding! ..45

Installing the Tools ..45
Coding the Web Service ..47
Accepting the Challenge on the Device...54
Making a Move..57

Summary..61

Tom Harrington ..63
■Chapter 3: Audio Streaming: An Exploration into Core Audio ...65

Hey, I Could Write an App to Play Music ..66
MPMoviePlayerController: Hey, This Is Easy! Right?..66
Finding a Better Approach..68

The System-Sound Way ..69
AVAudioPlayer: The Not-Available-in-Beta Way..69

Doing It the Cowboy Way with Core Audio ...74
Getting Halfway There: Audio Queue Services ..74
Getting the Rest of the Way There: Audio File Stream Services..81

Putting It All into an App...93
One More Thing...93

Launch It! ...96
iPhone 3.0 and Further Work ...96
Summary..97

Owen Goss..99
■Chapter 4: You Go Squish Now! Debugging on the iPhone..101

Assumed Knowledge..102
Objective-C vs. C and C++...104
While You’re Writing That Code..105

Custom Asserts ...105
Custom Logging ..107
Using #define ..108

Crash!...109
Getting a Crash Log from Your Testers ...109
You Have Been Saving Your dSYM Files, Right? ...110
Symbolicating a Crash Log..110

■ CONTENTS

vii

Using atos ...111
Reproducing Rare Crashes...112

Thread ...112
System ..113
Race Conditions ..113

The Scientific Method of Debugging ..113
Forming a Hypothesis ...113
Creating a Test for Your Hypothesis..114
Proving or Disproving Your Hypothesis ...115
Increasing the Probability of the Crash ...115

So, You Have a Call Stack ..115
Starting Code...115
What Is a Memory Stomp? ..118
Identifying a Mem Stomp ..122
Tools to Detect Memory Problems ..123
Watching Variables ...131
Link Map Files ...135

Summary..137

Dylan Bruzenak ..139
■Chapter 5: Building Data-Driven Applications with
 Active Record and SQLite ...141

A Short Road Off a High Cliff (How I Got Here) ..141
Ready! Set! Wait, What? (Why I Decided to Write a To-Do Application) ...142
Data-Driven Applications on the iPhone...143
Active Record: A Simple Way of Accessing Data ..144
Writing a Database Wrapper Around the C API: ISDatabase ..144

Setting Up the Example Project...145
Creating and Initializing the Database ..148
Opening a Database Connection ...149
Making Simple Requests...152

More Advanced SQL ...158
Preventing Duplicate Create Statements ..158
Handling Parameters...160
Refactoring and Cleanup...162
Grouping Statements into Transactions ..163

Writing a Simple Active Record Layer: ISModel ...164
Maintaining the Database Connection ..165
The Model Object: Grocery Item..165
How Groceries Are Mapped...166
Saving ...168
Updating..170
Deleting ...170
Finding Grocery Items ...171
Putting It All Together..174

■ CONTENTS

8viii

Simple Migration Handling...176
Alternative Implementations ..179
Summary..180

Ray Kiddy ...181
■Chapter 6: Core Data and Hard-Core Design ...183

Where Did Core Data Come From?...184
The Client Is King ..184

A Very First Core Data App ...185
First, Steal Code (Not Music!)..186
A View to an Object, Any Object ..187
Our Very First Crash, or Perhaps Not! ...193

CoreData Tutorial for iPhone OS: Managing Model Migrations ..194
The Easy Migrations Are Easy ...194
Adding a New Entity ..197

Using Key-Value Coding to Create a Reusable Object..199
Remote Databases: It’s All Net!..203
Summary..206

Steve Finkelstein ..209
■Chapter 7: mart In-Application E-mail with
 Core Data and Three20 ...211

Planning a Simple Offline SMTP Client...212
Creating the User Interface ..213

Diving into Xcode ..213
Setting Up Instance Variables in OfflineMailerAppDelegate.h...215
Initializing the UIApplication Delegate...217

Working with Core Data ...218
Understanding the Core Data Stack ..221
Adding Three20 ...221

Journeying Through the User Interface..224
Managing Top-Level Data with DataManager ..226
Diving into Three20 and TTMessageController ..228
Composing and Sending Messages ...230
Creating the Core Data Model ..235
Hacking SKPSMTPMessage to Support Threaded Message Sending ..239
Setting Up the NSRunLoop on SKPSMTPMessage ...239
Switching the Bits Back to Online Mode ..241
Summary..244

Florian Pflug and Peter Honeder ..247
■Chapter 8: How iTap Tackles the Challenges of Networking...249

Meet iTap and iTap Receiver..250
iTap ...251
iTap Receiver...251

How the Idea for iTap Emerged and Evolved ...252

■ CONTENTS

ix

The Main Challenges..252
No Physical Buttons on the iPhone ...252
Third-Party Applications Cannot Use USB or Bluetooth ..253
Supporting Both Mac and PC ..254
User-Friendliness Demands Autodiscovery of Computers and Devices..255

WiFi Networking on the iPhone from a Programmer’s Perspective ...255
About the Sample Code...256
Introducing Sockets ..257
Creating a Socket ..258
Using CFSocket to React to Networking Events..262
Querying the Network Configuration...264
Contacting All Devices on the Network ...267
Detecting WiFi Availability...268
Playing by the Power Management Rules...269

The Networking Subsystem of iTap ...271
To use Bonjour or Not to Use Bonjour ...271
Using Notifications to Communicate Between Components ...272
Our Custom Autodiscovery Solution..273

Summary..275

Jonathan Saggau..277
■Chapter 9: Fake It ’Til You Make It: Tips and Tricks for
 Improving Interface Responsiveness ...279

Plotting of Historical Stock Prices with AAPLot..280
Storing Data Between Runs ..283
Using Plists to Persist Data ...284
Saving Data to the iPhone Application Sandbox ...285

Shipping AAPLot with Placeholder Data...286
Extending the App for Multiple Stock Graphs: StockPlot ...288
Concurrency ...292

NSOperation, NSOperationQueue, and Blocks ..293
Installing the Plausible Blocks Compiler and Adding It to the Project...294
Using Blocks, NSOperation, and NSOperationQueue in StockPlot ..295

Displaying Large Amounts of Data Efficiently ..298
Zooming a UIScrollView ...300

UIScrollView Zooming Under the Covers ...300
Resetting Resolution in a UIScrollView after a Zoom Operation..301

Drawing into an Off-Screen Context ..304
Observations, Tips, and Tricks ...309
Summary..310

Joe Pezzillo ..311
■Chapter 10: Demystifying the Apple Push Notification Service...313

What Is the Apple Push Notification Service? ..314
What You’ll Need ..314

■ CONTENTS

10x

Step 1: Create the Client ..314
The Application Delegate ..315
Handling Incoming Notifications ...317
Sounds ..318
Build and Go! Er, Not So Fast... ...318

Step 2: Create the Certificate ...319
A Walk-Through of the Program Portal Process..319
Back to the Portal..328
Add the Mobile Provisioning File for Code Signing ...329

Step 3: Set Up the Server ...331
A Walk-Through of What This Script Does ..333
Download Server File ..334

The Home Stretch ..336
Wiring Up the Client ..336

Additional Considerations/Advanced Topics ..341
Feedback Server ...341
SSL Server Connections ..342
Moving from Development Sandbox to Production ...342
Development vs. Ad Hoc ...343
Mobile Provisioning Files ..343
Debugging ...343
User Experience ..343
Open Source Code...344
Hosted Solutions ...344

Summary..344

Noel Llopis..345
■Chapter 11: Environment Mapping and Reflections
 with OpenGL ES ..347

The Beginnings...347
First Steps: OpenGL Lighting..349
Turning to Environment Mapping...352
Spherical Environment Mapping Implementation ..353
Combining Environment Mapping and Diffuse Textures ..356

Per-Pixel Reflections ...359
iPhone 3GS..362

Summary..363

Index...365

■ CONTENTS

xi

Foreword

Dear Readers,

We started this series of iPhone Projects books because we recognized that there is a community of iPhone
developers all starting from scratch and full of enthusiasm for Apple’s iPhone and iPod touch devices. The
community has come a long way since we became aware of this phenomenon. For one thing, we’re not all starting
from scratch anymore, and this book, as does every book in this series, highlights the work of the more experienced
among us.

But this enthusiasm remains a defining characteristic, along with an eagerness to learn and a willingness
to share. If we were Homeric storytellers, this would be our Trojan War, an image I find particularly apt in this time
of renewed gaming interest. And like the ancient poetic bards, we have some compelling stories to tell. Though,
rather than warriors with shields and spears, these are tales of developer derring-do.

Our heroes are the quietly toiling, Internet-connected, basement-dwelling developers who are the stuff of
iTunes App Store lore. We’ll leave the modern-day mythology, Hollywood sound tracks, and CG animation to the
finished applications. The chapters in this book are real-life stories of highly caffeinated work, relatively sweat-free
code adventurers who dare to push the limits of a cool, little, pocket-sized, life-changing pair of devices known as
the iPhone and the iPod touch. It’s a dirty job, but somebody has to succeed at it.

I have worked with Dave Mark, the series editor and author of several best-selling Apress books, including
Beginning iPhone 3 Development, to find developers who produce efficient and bug-free code, design usable and
attractive interfaces, and push the limits of the technology. Dave’s common-man touch, tell-it-like-it-is sense of
reality, and delight at all that’s cool and wonderful can be felt throughout the series.

And that brings us back to the unique quality of community among iPhone developers. Every chapter is
written by a different developer with their own goals and methods, but they’re all willing to share what they’ve
learned with you. And you’ll learn many things about the design and implementation of great apps, but you’ll also
learn that you are not alone. Every developer gets stuck, has a bad day, and experiences delays and frustrations,
and the lessons learned from these setbacks are as important as the API calls and algorithms that will be part of
your finished products.

And finally, we hope you’ll find the apps presented in these chapters and the stories of how they came to
be both interesting as human drama and as cool as the iPhone and iPod touch themselves. Happy adventuring, and
send us a postcard!

Clay Andres
Apress Acquisitions Editor, iPhone and Mac OS X

clayandres@apress.com

■ CONTENTS

12xii

About the Technical Reviewer

Glenn Cole has been a professional software developer for nearly three decades, from COBOL and IMAGE on the
HP 3000 to Java, Perl, shell scripts, and Oracle on the HP 9000. He is a 2003 alumnus of the Cocoa Bootcamp at the
Big Nerd Ranch. In his spare time he enjoys taking road trips, playing frisbee golf, and furthering his technical
skills.

■ PREFACE

13xiii

Preface

Getting started with iPhone application development is relatively easy thanks to online tutorials and especially to
books like Beginning iPhone Development by Dave Mark and Jeff LaMarche. But sometimes, software is just hard.

A year and a half after receiving an iPhone as a birthday present, I am still amazed. It looks so simple and
it’s so easy to use, but behind it all is a world of complexity.

Apple has worked very hard to document the myriad APIs that make up the iPhone SDK and to provide
sample code, but for some of us it’s still not enough. Even Apple cannot afford to provide a chapter’s worth of
explanation for each sample application. Their tutorials can be quite helpful, such as the one on Core Data, but
what then?

Enter iPhone Advanced Projects.
Ray Kiddy, who worked at Apple for 15 years in various roles, uses Apple’s tutorial on Core Data as a

starting point and builds from there. More than providing just an introduction, Ray shows what it’s like to use Core
Data in the real world.

That’s the difference between documentation and a book such as this. Of course, it doesn’t stop there.
Joachim Bondo, creator of the much-lauded chess application Deep Green, shares his advice and

techniques for implementing correspondence gaming.
Noel Llopis, a ten-year veteran of the gaming industry, author of C++ for Game Programmers, and

instructor of a two-day intensive class in OpenGL programming specifically for the iPhone, lends new meaning to
making your application “shine” with a discussion of reflections and environment mapping in OpenGL. I found it
to be a fascinating topic.

My knowledge of OpenGL is casual at best, but Ben Britten Smith provides such a clear explanation of
particle systems (think smoke and fire) that this was not a hindrance at all. The chapter really was a “blast” to work
through.

I’ve been on a private mailing list with Jonathan Saggau for several years now, and his explanations never
fail to impress. Here, he discusses the difficult topic of improving interface responsiveness. (Be sure to have a copy
of his sample code handy!)

And that’s just the half of it! The projects also include an exploration into Core Audio, a framework for
persisting data with SQLite, strategies for networking, techniques for debugging, the Apple Push Notification
Service (not for the faint of heart), and intelligent in-app e-mail.

Sometimes, software is hard. With these authors as your guides, it should make your work quite a bit
easier.

■ PREFACE

xiv

Organization
This book is organized roughly in order of challenge, not necessarily according to the complexity of the code as
much as the total level of knowledge and effort required.

For example, the Cocoa code that is needed to support the Apple Push Notification Service (APNS) is fairly
brief and straightforward, yet the discussion of APNS does not appear until near the end of the book. Why? The
primary reason for this is the complexity of the surrounding infrastructure, including working with the iPhone
Developer Program Portal and setting up a PHP server appropriately.

Of course, every developer has their own ideas about what is difficult or challenging and what is not, so the
chapter sequence is intended only as a rough guide. Each chapter is independent of the others, so feel free to jump
straight to your projects of interest.

What’s in the Book
The book opens with Ben Britten Smith discussing particle systems using OpenGL. Although it’s not a tutorial on
OpenGL per se, Ben provides enough background and detail so that the code makes sense at a conceptual level
even to those of us with only minimal experience in that area. Take your time in understanding this chapter and the
sample code behind it, and the effort will be well rewarded. Besides, it’s great fun!

Chapter 2 finds Joachim Bondo demonstrating how to implement correspondence gaming such as with
his chess application Deep Green. You’ll see the power of Python in Google App Engine, understand RESTful web
services, implement a custom URL scheme (to support a URL beginning with chess://), and use Django’s template
engine to take advantage of a plist with embedded logic and variable substitution. It’s a mouthful, but Joachim
makes it look easy.

Audio is one of those topics that’s just plain hard. Different requirements mean different APIs; it doesn’t
take much to become overwhelmed by the complexity. In Chapter 3, Tom Harrington shares the results of his
investigation into processing audio streams, starting with the Media Player framework and moving to System
Sound Services and the AV Foundation framework before settling on Core Audio. Audio is hard; take advantage of
Tom’s guidance.

Every iPhone developer who has written a nontrivial application has experienced a difficult-to-find bug. In
Chapter 4, Owen Goss provides advice that goes well beyond using NSLog() and stepping through the debugger.
You’ll want to work through this chapter more than once to be sure you recognize which tools to use and when.

Dylan Bruzenak tackles data-driven applications in Chapter 5 with SQLite and the Active Record design
pattern. Enterprise and cross-platform developers in particular will benefit from this, as will anyone who wants to
keep fine-grained control over the data in their application.

Core Data is new to the iPhone with OS 3.0. It takes the task of data persistence to a seemingly magical
level. (At least that’s how I first experienced it on the Mac side.) In Chapter 6, Ray Kiddy guides us from Apple’s
tutorial on Core Data to its proper use in the real world, highlighting issues that can occur along the way and
showing how to avoid them. Core Data is a big deal; you’ll want to work through this chapter more than once.

In Chapter 7, Steve Finkelstein combines two open source projects with Core Data to build an intelligent
offline email client. It recognizes when the network status changes and uses NSInvocationOperation to keep the
user interface responsive while performing other operations. When sending e-mail, control stays within the
application.

Peter Honeder and Florian Pflug get down to the socket level for networking in Chapter 8. In addition to
discussing the ins and outs of communicating with devices on the network, they also discuss both power
management and the trade-offs between using SCNetworkReachability for detecting a Wi-Fi network vs. rolling
their own autodetection code.

An unresponsive user interface is one of the most frustrating behaviors an application can exhibit. In
Chapter 9, Jonathan Saggau demonstrates techniques that can be used to address this. From
NSOperation/NSOperationQueue to “blocks” (part of Snow Leopard but currently available on the iPhone only via
Plausible Blocks) to drawing into an off-screen context and more, this chapter is very enlightening.

■ PREFACE

15xv

Joe Pezzillo provides step-by-step guidance for setting up APNS in Chapter 10. As Joe notes, the process is
not particularly difficult, but it is lengthy and involved, and that’s just for the creation of the distribution certificate.
The Cocoa code is almost anticlimactic.

The book concludes with a fascinating chapter by Noel Llopis on environment mapping and reflections
using OpenGL. You’ll get more out of the chapter if you first brush off your linear algebra text, but there is still
much to be learned even without it. This is the kind of polish that iPhone users love to see.

You can see that this book is packed with projects that are both relevant and interesting. Take advantage
of the authors’ knowledge to help your application stand above the rest!

Glenn Cole

■ PREFACE

xvi

1

Ben Britten Smith
Company: http: // benbritten.com

Location: Melbourne, Australia

Former Life As a Developer: I have been writing software in one form or another
since gradeschool. Back then I wrote in BASIC and Logo. Over the
intervening quarter century or so I have ranged all over the map, from writing
low level assembly for embedded systems through all the major (and not
so major) languages settling now and again on the big ones, like C, C++, Perl,
Smalltalk, Obj C, PHP, etc.

Somewhere along the way I got involved with a visual effects company called
Spydercam, and wrote their industrial motion control system. This system is still
in heavy use and is used on many feature films. Then in 2005, Spydercam's lead
hardware designer, lead mechanical engineer and I were awarded an Academy
Award for Technical Achievement for our efforts in 3D motion control. Some
interesting trivia: the system we designed is the only one that I am aware of that
runs on a mac, written entirely in native Cocoa/Obj-C.

I am also active in the Multi-touch surface open source community. I wrote an
open source tracker called BBTouch and an open source OSC implementation
called BBOSC.

Life as an iPhone DevelooperMore recently I have relocated from New York City
to live in Melbourne with my wife Leonie. Here I have started offering my
services as a freelance cocoa developer, and once the SDK became public, the
market for iPhone work exploded. I have worked on a half dizen apps that are on
the store now for various clients, titles like SnowDude, Blackout and aSleep.
More recently I have begun collaborating on games of my own design, we just
finished one: SnowFerno. I am currently in development on a follow-on from

2

SnowDude called SkateDude, and a third as yet unnamed Dude project. After
those are done I have two more collaboration projects that are in pre-production,
both games and both 2D platformers.

Key Technologies: Three or four key technologies discussed:

OpenGL

Texture Atlases

Particle Systems

Cool Stuff

3 33

 Chapter

Particle Systems:
More Fun and Easier
Than You Think

When I was hired to write SnowDude, my employers, the Lycette Bros., and I set out a

simple goal: we wanted a nice, clean, simple game that was easy to pick up and fun to

play. There was not a big budget, so simplicity was the rule of the day.

I initially built the game using Core Animation, thinking that would be the quickest and

easiest route to getting our 2D graphics onto the screen. In our early prototypes, this

worked great; however, as we began adding the background elements and all the little

graphic bits that made the game come alive, our performance crashed. I was forced at

this point to reengineer the game model with OpenGL as the rendering API. This gave us

all the performance we needed, and that micro game engine became the basis for many

future projects in OpenGL on the iPhone.

SnowDude was a successful project in our eyes; it didn’t break any App Store sales

records, but the game was stable, clean, simple, and fun. (Go buy it!) The game was a

lateral move for all the parties involved. I had built simple games in the past, but the bulk

of my experience is in real-time motion control systems for feature films. The Lycette

Bros. came from the world of Flash games and developing apps for other mobile

platforms, so SnowDude was not just a game app but a way for everyone involved to

dip their toes into a new platform.

Since then, I have gone on to develop a dozen or so apps for various clients and have

released my first personal project to the app store: SnowFerno, which is a puzzle game

where you take on the persona of a snowball trying to roll its way through hell.

And now, a bit less than a year after the original SnowDude was released, there is

interest in a spin-off (or two), and we are starting to build the first one: SkateDude.

1

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 4

SnowDude was ultimately a fast-paced maze game. You are a snowboarder, and your

goal is to get as far as you can down the “slope,” avoiding various obstacles along the

way. You can avoid the obstacles by either jumping over them or boarding around

them. If you make it to the checkpoint, you get some bonus time, and you can play for a

higher score.

As far as programming complexity, SnowDude was not very. It consists of just a handful

of textured quads, some clever use of the accelerometer, simple collisions, and some

game logic.

When we all came to the table to start talking about SkateDude, we wanted to make it

be a more active game experience. We wanted the obstacle avoidance to be only a

small part of the game play. We decided to add tricks that you can do while in the air

and a more robust control system. We added many more options to earn points, such

as grinding along hand rails or park benches and doing multipart tricks like jumping onto

a rail, grinding along it, and then jumping off and doing a trick before landing. All of

these options add a sense of excitement and give the players an opportunity to feel the

thrill of conquering the challenges.

One thing that we hadn’t nailed down in the early development meetings was how to

visually enhance the game. We didn’t know how we would use the stunning graphics

that the artist was generating to help bring the challenges alive and add a sense of

accomplishment to the game play.

We started playing around with adding particle systems to the game. At first, I just

added some very subtle sparks that shot out from under the skateboard when the player

was grinding across something. This encouraged me to add a few more things. And

then I added a few more systems and then a few more. I added a particle system to the

controls so that if you hit a big jump, the button exploded in a shower of stars. I added a

bunch of sparks that shot off the place where you touched the screen to do a jump. I

added particles everywhere! Well, that was great and added lots of exciting elements,

but I did go a bit far, and we ultimately scaled back to a few simple systems that added

some fun and encouraged the players to want to grind and do tricks by rewarding them

not only with points but with a fun visual system where a bubble with point values would

shoot out from under the board like sparks and float up to join the score at the top of

the screen.

This made the game much more visceral. Now, when you jump and grind across the

various surfaces and edges in the game, you can visually see the points you are racking

up, and the faster you grind or the higher your trick, the more points you get, so the

particle systems that are shooting point bubbles out are exploding at the higher

levels. Figure 1-1 is an early development screenshot of SkateDude; you can see the

sparks coming off the skateboard trucks as well as the point indicators shooting out as

you grind.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 5

Figure 1-1. An early development screenshot from the game SkateDude by the Lycette Bros. This shot shows two
of the particle systems I added to make the game more exciting and visceral.

Adding Life to Your Game with Particles
For the rest of the chapter, I’ll go over particles and how you can use them in subtle and

not-so-subtle ways to add life to your games. I’ll show you how to build your own

particle emitter system in OpenGL and incorporate it into your own projects.

First, what is a particle system, and why would you want to use it? A particle system is a

large collection of small graphics (you guessed it, those are the particles) that when

taken as a whole can simulate effects that would otherwise be very hard to render.

Things like smoke and fire are good examples. Particles are particularly good at

simulating systems that are inherently dynamic and ever-changing.

Fire is a good example. You can simulate an OK fire with an animation, but it will always

have a cartoonish look. If you want a fairly decent simulation of fire, you will want to use

particle systems.

SnowFerno is a good example. Given that you are a snowball in hell, we mostly use

particles to simulate just fire and smoke effects (see Figures 1-2 and 1-3). But fire and

smoke are not the only things you should think about simulating with particle systems.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 6

Figure 1-2. A simple fire and smoke effect using particles. This is one of the particle systems in SnowFerno.

Figure 1-3. SnowFerno was set in Dante’s Inferno, so we had plenty of opportunities to use fire effects.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 7

Particles are often associated with 3D games where the environments are immersive

and players expect things such as realistic weather effects and smoke and fire and

splattering blood and explosions. The list goes on and on. You can achieve all of these

effects with particles.

However, it is also good to think about particles when designing your 2D apps as

well, and not just 2D action games either. I often play some puzzle games to pass the

time, such as Drop7 and AuroraFeint. Both of these use particles to add a bit of

excitement and life to the game. In Figure 1-4, you can see the block-smashing effect in

Aurora Feint.

Figure 1-4. Aurora Feint uses particles to make its block smashing exciting.

Particles do not need to be big flashy things; they don’t have to be grand explosions or

giant fireballs. You can add subtle fun touches to your game interface with some simple

effects as well. Drop7 does this well; when you “crack” one of the unknown numbers, it

breaks open with a simple particle effect. It is so subtle that you might not even notice it,

but it adds that bit of

life and personality that makes the game fun. When you set up a nice long

chain reaction, all those little particle explosions really make it that much

more satisfying.

Basic Particle Systems and You
OK, now you know where you can add particle effects to your games, so now let’s talk

about how to add them.

First, I will presume you have some familiarity with OpenGL. If you don’t know OpenGL,

that is fine; you can still do particles in Core Animation and Core Graphics, so much of

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 8

the conceptual stuff will be applicable. However, OpenGL excels at things like particle

systems because it is so good at moving textures onto the screen very fast. In a Core

Animation particle implementation, you might be able to get a particle system with a few

dozen particles, maybe even 100 for a short while. With OpenGL, you can generate

thousands of particles at once, even on the iPhone.

Overview of the Sample Code
The sample project, called Particles, started its life as a generic OpenGL project

template from Apple. I have added a simple game harness around Apple’s template

code. Originally this code was written for the Beginning Game Development for iPhone,

and the chapters I wrote in that book go into great detail about this code base. Most of

the implementation details are not that important to the discussion of particle systems,

but I will do a brief overview anyway.

Let’s take a look at the basic design:

EAGLView: This is a modified version of the EAGLView you get when you

start a new Xcode OpenGL iPhone project. It is responsible for

OpenGL buffer swapping as well as most of the boilerplate OpenGL

initialization stuff. This is the main view for the application.

SceneObject: This is the base class for anything in the game. It has the

basic instance vars that most everything that needs to be rendered

needs. All rendered objects inherit from this class.

SceneController: This is the main controller for the game. It handles

the game loop. It has a single SceneObject that is the root of all objects

in the current scene. It is a singleton.

InputViewController: Since the input and the main view are basically

the same thing, this view controller handles the EAGLView as well as

wrangling the touch events. The input controller has its own list of

scene objects that get rendered last, in a heads-up display style.

RenderController: This object deals with rendering all the scene

objects. It performs simple culling. The render controller uses a

SceneObject’s mesh to render that object. The mesh is basically the

collection of all the vertex data for a particular model.

MaterialController: This object handles the loading of textures into

OpenGL. It can handle single textures or atlases when accompanied

with a .plist file describing the atlas contents.

GameTypes: This is just a big collection of structs and inline functions

that come in handy. The two types I use the most in the sample code

are BBPoint, an xyz point struct, and BBRange, a range of floats.

The reason that I am not just showing how to build a stand-alone particles project is that

I think it is important to think about how these things fit into the bigger picture. Although

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 9

the sample program does little more than show off some particle effects, it is important

to think of these concepts in the context of a larger application.

The Particles sample project is not a fully realized game engine by any stretch, but it is a

good place to start, and it has much of what you would need to build a simple 3D

application in OpenGL. This makes it a good platform for you to explore the concepts of

particle systems.

Basic Game Flow
Figure 1-5 shows the flow for the game harness. It follows the basic game design

pattern that you are probably familiar with.

Figure 1-5. This is the basic flow for the game harness.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 10

After the app starts up and everything is loaded from the xib files and you are ready to

go, the SceneController is called upon to load the first scene. This scene is simply a

SceneObject that is the parent of all the objects you want to have interact for this scene.

After the scene is “alloced,” the method awake is called on it, and that is where the scene

will call out to the other support objects, like the material controller, to make sure that all

the resources for this scene are loaded. (In this case, this will generally just be textures,

but in the broader case, this might include sound files or game data of some sort.)

When everything is ready, the game loop is started.

The game loop first checks for inputs, and then it calls update: on the scene. The scene

object will update all of its children recursively until the entire scene model has had a

chance to update its state. Finally, the game loop passes the root scene object to the

renderer to be rendered. Then it starts all over again.

At some point in the scene, the update portion of the loop will generate an end-of-scene

notification. (Maybe your character died, you ran out of time, or you hit a button to move

on to the next scene...whatever) The current scene is unloaded, and the next scene is

loaded.

This is a fairly standard game engine design. The big component that’s missing here is a

collision detection system. You will do some simple collision stuff with the particle

systems but nothing too complicated.

The Anatomy of a Particle System
Just in case you have never come in contact with a particle system, I will start with the

basics: what exactly constitutes a particle?

Particles can be any texture and are usually rendered as a textured quad (two triangles).

Depending on the effect you are going for, your particle textures might be

semitransparent like the simple white particle in Figure 1-6. Soft semitransparent

particles will yield “fuzzy” effects quite well. This makes a nice effect because particles

in a high concentration will be brighter and more intense, whereas out on the edges

where there may be only a few particles, the overall effect is dimmer and “blurry.”

Figure 1-6. A simple particle texture. This is about the simplest semitransparent texture you can get. It is just a
white blur, 25 X 25 pixels.

That said, you can get some great effects from fully opaque or hard-edged particles as

well, such as things like marbles rolling across a floor or leaves falling.

Each particle in the system has its own state, and each particle will get its own initial

conditions and then behave based on a set of rules. All of this ordered chaos—a

multitude of particles that are all slightly different but similar—can create some amazing

fluid, living, organic effects.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 11

That is the particle. You also need something that generates the particles, and that is

known as the emitter. The emitter’s job is to build new particles at some predetermined

rate. It has to assign each particle an initial state that meets the requirements for that

particular effect. These are things such as starting position, size, life span, speed, and

direction. After a particle has been created, the emitter then has to keep track of each

particle, and for every rendered frame, it needs to collect all the vertex and UV and any

other rendering data for each particle and build some big arrays to send off to the

renderer.

In many particle effects, each particle has a life span, and once that span is over, the

emitter needs to collect those particles and remove them from the scene.

So, basically the emitter itself has a mini game loop going on. Every time it gets

updated, it needs to create some new particles and add them to its currently active

particle list. Then it goes through all the active particles and moves them or rotates them

or whatever. Then it needs to check to see whether any particles have reached the end

of their life, and if so, it removes them from the active list. Finally, it needs to make the

data arrays from all the particle states.

Here are a few things to keep in mind:

The particle system needs to be able to go through thousands of

particles in a single frame, so you need to find efficient ways to handle

all of the particles and keep them updated.

The emitter may need to emit a few hundred particles every frame,

possibly even a few thousand, so you also need to be very efficient

about creating particles. Allocing objects is a costly process, so you

want to avoid it at all costs.

Hundreds of particles can expire at the same frame, so you need to

also be clever about how you clean up your particles. Memory cleanup

is slow and can affect performance, so you need to be careful about

releasing a zillion particles all at once.

Dynamically mallocing vertex array memory is expensive. You want to

avoid changing the size of your vertex data arrays.

How do you solve these problems?

When your particle emitter is first created, you will need to build a big reserve of

prealloced particle objects. Similarly, you will malloc a big chunk of memory for your

vertex data arrays, big enough to hold the maximum number of particles.

Then during the update loop, when you emit new particles, you just grab them out of the

pool and assign them their initial state. This is so much faster than allocing new objects

on the fly. This becomes especially important for effects such as explosions where you

need to emit lots of particles all at once.

When you build your data arrays for each frame, you just use as much of the vertex data

space as you need and leave the rest as reserve.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 12

Similarly, at the end of the particle life, when you clear them out of the active list, you

simply return the particle objects to the pool.

Figure 1-7 shows this life cycle. Also of note: I used a particle system to generate both

the spark shower and the pool.

Figure 1-7. The particle life cycle. Nonactive particles start in the pool. They are pulled out of the pool and given
some initial state when they are emitted. They live out their exciting particle life until they finally die. They are
then collected and returned to particle limbo to await resurrection.

The downside to this method is that it can be very memory consuming, and the setup

time can be significant if you have many particle systems. The secret is to tune the max

particles for the type of effect you are creating. A blizzard of falling snow might require a

few thousand particles, whereas a subtle foreground of falling leaves may require only a

few dozen.

Code! Finally!
OK, I have rambled on for quite a few pages about the whats and whys of particles. It is

time to get your hands dirty with some code.

First build a particle:

@interface BBParticle : NSObject {
 BBPoint position;
 BBPoint velocity;
 CGFloat life;
 CGFloat size;
 CGFloat grow;
 CGFloat decay;
}

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 13

@property (assign) BBPoint position;
@property (assign) BBPoint velocity;
@property (assign) CGFloat life;
@property (assign) CGFloat size;
@property (assign) CGFloat grow;
@property (assign) CGFloat decay;

This is a very basic particle. The basic state is position, life, and size. velocity, grow,

and decay are the state changers. Particles can be far more complicated than this, and

you will add some more stuff to your particle later, but for now let’s keep it simple.

Next you look inside your particle implementation:

@implementation BBParticle

@synthesize position,velocity;
@synthesize life,size,grow,decay;

-(void)update:(NSTimeInterval)deltaTime
{
 position.x += velocity.x * deltaTime;
 position.y += velocity.y * deltaTime;
 position.z += velocity.z * deltaTime;

 life -= decay * deltaTime;
 size += grow * deltaTime;
 if (size < 0.0) size = 0.0;
}

Very simple. You have a time-based update. You take all of your state and change it by

a fraction equal to the amount of time for this frame. Finally, you check your size. You

don’t want to go into negative size because that will just flip your particle over and make

it grow.

That’s it! You have a nice simple model object with a single data manipulator method.

Next, let’s build a simple particle emitter object. This one is a bit more complicated than

the particle:

@interface BBParticleSystem : BBSceneObject {
 NSMutableArray * childrenParticles;

 GLfloat * uvCoordinates;
 GLfloat * vertexes;

 NSMutableArray * unusedParticles;

 NSInteger vertexIndex;

 BOOL emit;
 CGFloat emitCounter;

 BBRange emissionRange;
 BBRange sizeRange;
 BBRange growRange;

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 14

 BBRange xVelocityRange;
 BBRange yVelocityRange;
 BBRange zVelocityRange;

 BBRange lifeRange;
 BBRange decayRange;

 CGFloat minU;
 CGFloat maxU;
 CGFloat minV;
 CGFloat maxV;

 CGFloat particleRemainder;
}

Wow, that is a fair few instance variables! One thing that you will learn quickly (or may

already know if you have played with emitters before) is that a good particle emitter will

be very flexible, and that requires lots of inputs to tweak to get just the right effect. Lots

of inputs means lots of instance variables.

Let’s get into the implementation:

- (id) init
{
 self = [super init];
 if (self != nil) {
 [self preload];
 }
 return self;
}

That was a simple init method. Basically, you just call preload, which is where you,

well, preload all your particles and memory allocations:

-(void)preload
{
 if (childrenParticles == nil) childrenParticles = [[NSMutableArray alloc] init];
 unusedParticles = [[NSMutableArray alloc] initWithCapacity:kMaxParticles];
 NSInteger count = 0;
 for (count = 0; count < kMaxParticles; count++) {
 BBParticle * p = [[BBParticle alloc] init];
 [unusedParticles addObject:p];
 [p release];
 }

First you create your particle limbo and fill it with particles ready to be jettisoned into life

to burn brightly for a few moments and then be pulled back into the land of the inactive.

 // remember 6 vertexes per particle + UVs
 vertexes = (CGFloat *) malloc(2 * 6 * kMaxParticles * sizeof(CGFloat));
 uvCoordinates = (CGFloat *) malloc(2 * 6 * kMaxParticles * sizeof(CGFloat));
}

Don’t forget to malloc some room for the vertexes and UV coordinates.

I’ll now go off on a tangent momentarily and talk about GL_TRIANGLES vs.

GL_TRIANGLE_STRIP.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 15

Slight Tangent About Degenerates
You are going to be drawing a whole slew of textured quads onto the screen. However,

generally a quad is only four vertexes. So, what is up here?

You are going to be rendering all your particles in the same draw call, and they are not

connected, so you will need to figure out a good way to draw them all.

If you use GL_TRIANGLES, then you are basically just draw each triangle individually. Every

quad is just two triangles and six vertexes. This has the advantage of being very simple

to program.

You could also use GL_TRIANGLE_STRIP and connect each quad with degenerate

triangles. A degenerate triangle is a triangle where the three points lie on a line. You can

see in Figure 1-8 how this works. A triangle with colinear points has no area, so the

renderer will throw it out. The easiest way to connect two meshes with a degenerate

triangle is to just duplicate the last vertex of the first mesh and the first vertex of the

second mesh and then add them together. This basically inserts two colinear triangles

into the strip so that the rendered effect is two separate quads. This means, on average,

each quad requires six vertexes, just like the GL_TRIANGLES method.

Figure 1-8. With GL_TRIANGLES, you have two separate polygons drawn individually. With
GL_TRAINGLE_STRIP, all the polygons are connected, so you have to basically put two degenerate triangles in
between the two separate quads.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 16

Using degenerate triangles makes the code just ever so slightly more complex for very

little practical gain. I always pick the simpler of two choices, so you are going to stay

with GL_TRIANGLES in this chapter.

Back to the Code
You have preloaded your particles, so now you need to assign your textures:

-(void)setParticle:(NSString*)atlasKey
{
 BBTexturedMesh * quad = [[BBMaterialController sharedMaterialController]
quadFromAtlasKey:atlasKey];
 self.mesh = [[BBTexturedMesh alloc] init];
 [(BBTexturedMesh*)mesh setMaterialKey:quad.materialKey];
 [(BBTexturedMesh*)mesh setAtlasKey:quad.atlasKey];

You will grab a prebuilt quad from the material controller (more on this in a moment).

You don’t want to set your mesh to be the same as the quad’s mesh because you are

going to be mucking with the internal bits of our mesh. Instead, you will make a fresh

one and copy over the parts you care about:

 // need to calculate the min and max UV
 CGFloat u,v;
 NSInteger index;
 minU = minV = 1.0;
 maxU = maxV = 0.0;
 CGFloat * uvs = [quad uvCoordinates];
 for (index = 0; index < quad.vertexCount; index++) {
 u = uvs[index * 2];
 v = uvs[(index * 2) + 1];
 if (u < minU) minU = u;
 if (v < minV) minV = v;
 if (u > maxU) maxU = u;
 if (v > maxV) maxV = v;
 }

To be as efficient as possible, you will be building the UV coordinate array alongside the

vertex array during the update phase. To do this, you will need the min/max of your UV

coordinates. You calculate those from the texturedQuad and store them for later:

 mesh.vertexes = vertexes;
 [(BBTexturedMesh*)mesh setUvCoordinates:uvCoordinates];

 mesh.vertexStride = 2;
 mesh.renderStyle = GL_TRIANGLES;
}

Lastly, you point the mesh vertexes and UV coordinates back at your big buffers that

you have already malloced.

OK, there is something called a mesh and a material controller that I haven’t really talked

much about. The mesh is basically just a holder for the OpenGL vertex data arrays. The

render controller uses the mesh to do the final rendering. That is why you need to give it

information like the renderStyle and the vertexSize.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 17

The material controller is a handy class that does all the heavy lifting for loading and

processing texture atlases. In this case, you have a texture atlas file called

particleAtlas.png and a texture metadata file called particleAtlas.xml. The XML file

contains the information required to generate the UV coordinates for all the images in

the atlas. The material controller loads all those textures when the scene is loaded and

stores them in a string-keyed dictionary. So, to get a textured quad from the atlas, you

just ask for it by name, like so:

BBTexturedMesh * quad = [[BBMaterialController sharedMaterialController]
quadFromAtlasKey:atlasKey];

In this case, the quad will be the particle texture that you want to associate with this

emitter.

OK, now you want to set up the update loop in the emitter:

-(void)update:(NSTimeInterval)deltaTime
{
 [super update:deltaTime];

 // update active particles -> move them
 for (BBParticle * kid in childrenParticles) [kid update:deltaTime];

 // build arrays
 [self buildVertexArrays];

 // emit -> add new particles
 [self emitNewParticles:deltaTime];

}

It’s a simple loop: update the current particles, and emit new particles. Changing the

order that you call these methods will have very subtle effects on the working of the

emitter, but mostly any order will work just as well as the next. For instance, I could emit

new particles before I build the arrays. This means that the new particles will get

rendered for one frame before ever moving. This might be what you want. I have put the

emit last so that those particles will not get rendered until they have been updated at

least once.

-(void)buildVertexArrays
{
 vertexIndex = 0;
 for (BBParticle * particle in childrenParticles) {
 // check to see if we have run out of life, or are too small to see
 // and if they are, then queue them for removal
 if ((particle.life < 0) || (particle.size < 0.3)) {
 [self removeChildParticle:particle];
 continue; // skip to the next particle, no need to add this one
 }

This is the heavy lifting method of this class. This is where you do the real work of taking

all your particles and making OpenGL-compatible vertex and UV arrays. You first reset

vertexIndex, which is the instance variable that will keep track of where you are in the

arrays, so it is pretty important.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 18

Next you simply step through each child particle. First you are going to check to see

whether the life has expired or whether the size is too small to bother rendering. In either

case, you will queue this child for removal. In this case, you also skip to the next particle;

there is no reason to add a dead particle to this rendering array.

 // for each particle, need 6 vertexes
 [self addVertex:(particle.position.x - particle.size) y:(particle.position.y -
particle.size) u:minU v:maxV];
 [self addVertex:(particle.position.x + particle.size) y:(particle.position.y -
particle.size) u:maxU v:maxV];
 [self addVertex:(particle.position.x - particle.size) y:(particle.position.y +
particle.size) u:minU v:minV];

 [self addVertex:(particle.position.x + particle.size) y:(particle.position.y -
particle.size) u:maxU v:maxV];
 [self addVertex:(particle.position.x - particle.size) y:(particle.position.y +
particle.size) u:minU v:minV];
 [self addVertex:(particle.position.x + particle.size) y:(particle.position.y +
particle.size) u:maxU v:minV];

Next you build a vertex from the particle’s state. Currently that is just the position. You

are also building the UV arrays at the same time, using the stored UV max and min:

 }
 mesh.vertexCount = vertexIndex;
 [BBSceneController sharedSceneController].totalVerts += vertexIndex;
}

You then set your vertexCount in the mesh object so that it knows how many vertexes

to render. Finally, you are going to jam the particle count into a state variable in the

scene controller. This is a bit of a hack, but I want to be able to display the number of

particles on the screen, because I have another object that comes around later and uses

this to render that number.

It is important to note the order in which you are building these vertexes. Currently, I am

using front-face culling to make the 3D models slightly smaller in terms of vertexes

rendered. However, the 3D models I am using require front-face culling, which means

that the 3D models have clockwise (CW) windings, so I need to build these triangles in

CW order as well.

Astute readers will notice that you are building what amounts to the same array of UV

coordinates every time. In theory, you could just build that array once, since they are all

the same. This is true, and if I didn’t have a plan that involved multiple sets of UV

coordinates in mind for later in the chapter, then it would be silly to build the same array

over and over again.

-(void)addVertex:(CGFloat)x y:(CGFloat)y u:(CGFloat)u v:(CGFloat)v
{
 NSInteger pos = vertexIndex * 2.0;
 vertexes[pos] = x;
 vertexes[pos + 1] = y;
 uvCoordinates[pos] = u;
 uvCoordinates[pos + 1] = v;
 vertexIndex++;
}

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 19

Here is the add vertex method. It just populates the vertex and UV arrays with data and

increments the vertexIndex.

Almost there! Now to emit new particles! But first, let’s talk about random numbers.

Random Numbers and Initial Conditions
One of the defining characteristics of a particle system is that each particle contains its

own unique state. Each new particle put in the system has its own unique initial

conditions as well (and by unique I mean unique-ish). There is actually a pretty good

chance in a particle system that you will have a few particles that are exactly the same,

but I digress.

How do you make each particle unique? As you may have guessed by the title of this

section, one way is with random numbers. However, that is not the only way.

You can (and many have) model your particle effects after real-world systems. You can

define the various characteristics and particle behaviors with systems of equations. For

instance, if you really wanted to model the way a rocket engine ejects mass to provide

thrust, you might build a numeric simulation to take into account the expansion pressure

of the fuel, the nozzle shape, the size of the payload, and the wind speed. You could

then impart this information into your particle system and have a very realistic simulation

of a rocket launching.

However, I find it much easier to just fake it.

Instead of real-world mathematic models, you can just define a range of valid values for

each state variable in a particle. The more unique each particle is, the more interesting

and not fake your systems will look.

This brings us to random numbers. As many know, random numbers are not really all

that random, but for our purposes, semirandom will do fine. To get a nice random

number from a range, you will use one of the handy inline functions that is in the

GameTypes.h file:

static inline CGFloat BBRandomFloat(BBRange range)
{
 // return a random float in the range
 CGFloat randPercent = ((CGFloat)(random() % 10001))/10000.0;
 CGFloat offset = randPercent * range.length;
 return offset + range.start;
}

This just takes one of the range structures as input and returns a float value that lies

somewhere in that range. Easy!

The downside to this approach is that there are lots of little things to tweak to get the

exact effect you want. You will get to see this firsthand later in the chapter.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 20

Emitting Particles
Let’s get back to the particle emitter. You were just about to spawn some new particles

into the world:

-(void)emitNewParticles:(NSTimeInterval)deltaTime
{
 if (!emit) return;
 if (emitCounter > 0) emitCounter -= deltaTime; // if emitCounter == -1, then emit
forever
 if (emitCounter <= 0) emit = NO;

OK, already some strangeness. What is this emitCounter?

Often you want your particle system to simulate some short event instead of a constant

flow of particles. The emitCounter is a handy way to preload an emitter with a set time

before it shuts down. This is especially useful for things like explosions where you want

to emit a very large number of particles in a short time. If you want your particle emitter

to generate constantly for a long time, then you just need to set the emit count to some

very large number, like 10000.

 CGFloat newChance = ([self randomFloat:emissionRange] * deltaTime);
 particleRemainder += newChance;

 if (particleRemainder < 1.0) return;

Next is emissionRange. This range is the number of particles that can be emitted in a

given second. Since this can be very small (maybe you are simulating a leaking faucet

that drips only once every ten seconds), you need to add up all the incremental

“chances” until you get one full particle. This is what the particle remainder is for; it

keeps track of your incremental progress.

 NSInteger newParticleCount = (NSInteger)particleRemainder;
 particleRemainder -= newParticleCount;

OK, you have at least one particle! You put the fraction remains back into

particleRemainder and move on to the actual emitting stage:

 NSInteger index;
 for (index = 0; index < newParticleCount; index++) {
 if ([unusedParticles count] == 0) {
 return;
 }

If you have no more particles, then you simply give up. You will have to wait until some

particles die before you can emit any more. If you find yourself getting into this clause

quite a bit, then you need to increase your max particles.

 BBParticle * p = [unusedParticles lastObject];

 p.position = [self newParticlePosition];
 p.velocity = [self newParticleVelocity];

 p.life = [self randomFloat:lifeRange];
 p.size = [self randomFloat:sizeRange];
 p.grow = [self randomFloat:growRange];

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 21

 p.decay =[self randomFloat:decayRange];

 [self addChildParticle:p];
 [unusedParticles removeLastObject];
 }
}

You grab the last particle in the pool and set the initial conditions using your fancy

random float function. Then you add it to the active particles and remove it from the

pool.

-(BBPoint)newParticlePosition
{
 return self.position;
}

-(BBPoint)newParticleVelocity
{
 return BBPointMake(
BBRandomFloat(xVelocityRange),BBRandomFloat(yVelocityRange),BBRandomFloat(zVelocityRange
));
}

These are just some handy functions to make it easier to build the position and velocity

values. Hmm...why would you need separate methods just to return the position and

build a simple random point? Perhaps you will be modifying these methods later.

That is it for the simple emitter! You now have an emitter that should emit particles from

a single point, each particle having a variable velocity, size, and life.

This may not seem like much, but you can simulate quite a few things with just these

simple states.

Tweaking Your Particle System
Now you have the means to generate some particles, so let’s get to it!

In the sample code, I have set up five scenes and a handy set of buttons to be able to

load each scene. Each one of these scenes has a particle emitter in it, and they are

basically set up to be particle playgrounds. The SceneObject will overlay the scene-

changing buttons as long as you don’t forget to call [super awake] in the subclass awake
method.

First, let’s look at SceneZero. This will be your first and simplest emitter. You will use the

emitter code that you looked at in the past few sections, so you’ll have just velocity
and size and life. You will start with the Hello World of emitters: the explosion:

@implementation BBSceneZero
-(void)awake
{
 [super awake];
 [[BBMaterialController sharedMaterialController] loadAtlasData:@"particleAtlas"];

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 22

First you need to make sure that your materials are available, or who knows what you

might get. You can call this over and over again (for instance, if you leave this scene and

come back, this will get called again) because it will load the texture atlas only once.

 particles = [[BBParticleSystem alloc] init];
 particles.position = BBPointMake(0.0, 0.0, -50.0);
 particles.emissionRange = BBRangeMake(2500,2500);
 particles.emitCounter = 0.1;

Here you are setting the emission range to fall between 2,500 and 5,000 particles a

second. That is a huge amount! This is why you are going to emit particles for only a

tenth of a second.

 particles.xVelocityRange = BBRangeMake(-500, 1000);
 particles.yVelocityRange = BBRangeMake(-500, 1000);
 particles.zVelocityRange = BBRangeMake(-500, 1000);

You will emit particles that are moving between 0 and 500 pixels per second in all

directions.

 particles.lifeRange = BBRangeMake(10.0,0.0);
 particles.decayRange = BBRangeMake(2,0.00);

All the particles will have exactly 10 life, and decay at 2 life per second. This means

each particle will live 20 seconds.

 particles.sizeRange = BBRangeMake(2, 2);
 particles.growRange = BBRangeMake(-1.0, 0.5);

The particles will start between 2 and 4 pixels wide, and they will shrink by somewhere

between 0.5 and 1 pixels per second.

 particles.emit = NO;

The emitter will start dormant.

 [particles setParticle:@"whiteSubtle"];
 [self addChild:particles];
}

Set the particle to your very translucent white blur, and add the particle system to the

child array so that it will get caught by the renderer:

-(void)update:(NSTimeInterval)deltaTime
{
 [super update:deltaTime];
 // check our emit status
 if (particles.emit == NO) {
 particles.emitCounter = .10;
 }
}

In the update method, which is called every frame by the game loop, you will check to

see whether the emitter has been shut down. If so, then you reset the emitCount to be

ready for another explosion:

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 23

-(void)emitButtonDown
{
 particles.emit = YES;
}

Ahh, yes, the emit button. The Scene class provides a big overlay button that lays

overtop the entire screen area, except where the scene-switching buttons are. It

provides a method callback for that big overlay button, and it is called emitButtonDown.

You will use this to your advantage in many scenes. In this case, you are just turning the

emitter on. The emitter will run for 0.1 seconds and then shut itself off. At some point

after that, your update will be called, and you will reset the emitCount so you can start

over again.

This means that just about every time you tap the screen, you will get an explosion of

white particles.

One thing I must apologize for: it is hard to take good screenshots of particle systems.

The beauty of the system is in its ever-changing and fluid nature. A screen capture robs

the system of its best quality: the emitter’s appearance over time. So, you will need to

either be very imaginative or quickly build the app for yourself and try it. Figure 1-9 is a

good example, because a static shot it is just a bunch of white dots, but in motion it is

so much more.

Figure 1-9. Boom! The SceneZero emitter after I hit it about 20 times in quick succession. Note the two numbers
in the lower left. The big one is the number of particles, and the smaller one is the frame rate. I got this in the
simulator. You would be hard-pressed to generate 28,000 particles and keep a 30 fps on the device.

OK, now you have seen the basic explosion, so let’s tweak this particle system to look

like something entirely different.

You will use the same particle, mostly just to illustrate the flexibility of particles. Let’s

tweak this system so it looks like the thruster exhaust from a spaceship.

We will do this in SceneOne. It is already set up with three particle emitters; you just need

to tweak the emission parameters.

Let’s take a look:

 // thruster
 particles.emissionRange = BBRangeMake(50,50);

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 24

We don’t want to emit a kagillion particles every second like the explosion. This system

will go as long as you are touching the screen, so you want to have a decent but not

crazy stream.

 particles.xVelocityRange = BBRangeMake(40, 40);
 particles.yVelocityRange = BBRangeMake(-5, 10);
 particles.zVelocityRange = BBRangeMake(-5, 10);

If you are imagining that this system is thrust exhaust from a ship or a rocket, then it will

mostly be directed in a single direction, in this case, to the right. You want to give the

particles some random velocity in the y and z as well; this will give you a nice cone of

particles.

 particles.growRange = BBRangeMake(-1.5, 0.5);
 particles.sizeRange = BBRangeMake(2, 8);

Since this is exhaust, or a plasma drive or even some energy drive, you want the

particles to get smaller as they go on to give them the appearance of evaporating. So,

you will give them a net negative grow rate between –1.5 and –1.0. You want the initial

size to be fairly wide-ranging. Since you are shrinking about 1-pixel size per second,

then after one second from the emission point, our 2-pixel particles will be a single pixel.

This will give a nice effect mixed in with some bigger ones that never get that small.

 particles.lifeRange = BBRangeMake(5.0, 0.0);
 particles.decayRange = BBRangeMake(1, 1);

Finally, you will define the life span. Give each particle exactly 5 for the life and between

1 and 2 for the decay rate; this means that the particles will live for between 2.5 and 5

seconds. However, they can die sooner if they shrink below a visible size.

There are two more particle systems included in SceneOne. Go ahead and tweak those

and see whether you can make some fun-looking thrust effects.

Figure 1-10 is what I came up with. The top system is the one I described here. (If you

want to have the ships too, just uncomment the [self addShips] call at the end of the

awake method.)

Figure 1-10. Three exhaust particle systems. I added the ships and things for inspiration.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 25

May the Force Be with Your Particles
I haven’t really even touched on the vast number of systems you can simulate with the

simple particle emitter you have so far. I absolutely encourage you to play around with

the particle emitters in SceneOne and see what kinds of things you can come up with.

However, it is time to advance the art of the emitter. It would be groovy if your particles

could be affected by gravity or the wind or both!

It would also be quite nice if you could have the particles emit from something besides a

single point. If you could emit from a larger volume, then you could create things like rain

and snow, not to mention making your thruster emitters a bit nicer.

Let’s start with gravity—or more generally, any force. For our purposes, force can be

considered roughly equivalent to acceleration. (It is really mass ✽ acceleration, but I will

simplify it for our purposes; just don’t tell my college physics professor.)

Just like velocity is a change in position over time, acceleration is simply a change in

velocity over time. Let’s look at adding a force to your particle. You will need a new

instance variable:

@interface BBParticle : NSObject {
 .
 .
 BBPoint force;
 .
 .
}

@property (assign) BBPoint force;
.
.

And a simple addition to the update method:

-(void)update:(NSTimeInterval)deltaTime
{
 velocity.x += force.x * deltaTime;
 velocity.y += force.y * deltaTime;
 velocity.z += force.z * deltaTime;
 .
 .

Easy! Now you need to just add a force var to the emitter and update the emit method:

-(void)emitNewParticles:(NSTimeInterval)deltaTime
{
 .
 .
 .
 NSInteger index;
 for (index = 0; index < newParticleCount; index++) {
 .
 .

 p.force = force;

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 26

 .
 .
 }
}

Wow, that was easy. Let’s see how this can affect the thruster particles:

particles.force = BBPointMake(0.0, -20.0, 0.0);

You just need to add this line to your SceneOne thrusters, and they will all get a constant

negative y acceleration, which may or may not look like gravity. In Figure 1-11, I turned

off the other two emitters so that I could easily see the effect of the force on the top

emitter.

Figure 1-11. The top emitter now with more gravity

Well, that was easy, so let’s go ahead and add an emission volume. This time you only

need to add some stuff to the emitter object:

 BBRange emitVolumeXRange;
 BBRange emitVolumeYRange;
 BBRange emitVolumeZRange;

You will add a few new instance vars to the ParticleSystem object, and then you just

need to change the particlePosition method a wee bit:

-(BBPoint)newParticlePosition
{
 return
BBPointMake(BBRandomFloat(emitVolumeXRange),BBRandomFloat(emitVolumeYRange),BBRandomFloa
t(emitVolumeZRange));
}

This will emit particles randomly in a squareish volume defined by the emit volume

ranges. See Figure 1-12.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 27

Figure 1-12. An emitter emitting stars into a 3D rectangular volume. This is in the sample code in SceneTwo.

Rectangular emission volumes are the easiest way to go and are often enough for what

you need. However, sometimes you do not want that. It might be nicer to be able to

have the particles fill a spherical volume.

// a random position around my position
-(BBPoint)newParticlePosition
{
 if (!sphericalEmissionVolume) return
BBPointMake(BBRandomFloat(emitVolumeXRange),BBRandomFloat(emitVolumeYRange),BBRandomFloa
t(emitVolumeZRange));

You need to add a new property: sphericalEmissionVolume. I have set this to default to

YES because I generally find myself wanting to use the spherical emitters.

 BBPoint rawPos = BBPointMake([self randomFloat:zeroToOne],[self
randomFloat:zeroToOne],[self randomFloat:zeroToOne]);
 if ((rawPos.x * rawPos.x + rawPos.y * rawPos.y + rawPos.z * rawPos.z) > 1.0) rawPos
= BBPointNormalize(rawPos);

OK, here you are going to do some math. If you don’t like math, then look away now.

What you are doing is grabbing three values between 0 and 1. This should give us a

point anywhere in the unit cube. Next you will check to see whether it is inside the unit

radius from 0,0 by checking the length of the vector against 1 (technically 1 squared). If

it falls outside the unit radius, then you normalize it.

 rawPos.x *= [self randomFloat:emitVolumeXRange];
 rawPos.y *= [self randomFloat:emitVolumeYRange];
 rawPos.z *= [self randomFloat:emitVolumeZRange];
 return rawPos;
}

Now you take your normalized vector that is guaranteed to be inside the unit radius and

multiply it by your emit volume ranges. This will result in a point somewhere inside the

spheroid that is bounded by the three emit volume ranges. This works for ellipsoids as

well, so feel free to provide asymmetrical emit ranges. You can see in Figure 1-13 my

new spherical bounding volume.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 28

Figure 1-13. A spherical emission volume. This is in the sample code in SceneTwo.

A side note to the probability geeks in the crowd: this will not give you an even

distribution. It is a bit of a fake to get the points in a known amount of time, though it is

good enough for most things. If you really want a statistically even distribution inside the

sphere (within the limitations of the random number generator), then you can’t just

normalize the vector. Instead, you would want to keep generating random points until

you found one that lies inside the unit radius.

Amazing Technicolor Dream Particle
We are nearing the end of the chapter, and I wanted to cover the final thing that I

consider a “must have” for any particle system: color animation. Color-changing

particles is the final piece of the puzzle that will help bring your particle systems to life.

What do I mean by color animation?

So far, you have been using your textures quad particles without any additional color

information. You have been using whatever color information the texture provided

basically. However, you can just as easily enable the GL_COLOR_ARRAY and send in color

information, tinting your textures to whatever color you want.

This is useful in two ways. First, you can now set a color for your particles, so if you

don’t like the white rocket exhaust for your spaceship, you can change it by just setting

a color instead of using a new texture. Second, you can change

the color of the particle based on its life span (or size or position or whatever you want).

You’ll now learn how to add a fairly standard two-color scheme to your system, based

on the life of the particle. However, there is nothing stopping you from using the same

technique to animate through three or four or five colors.

Off on a Tangent: Lerping
To be able to figure out the value between two colors, you need to be able to interpolate

that value. Interpolation is the process by which you guess the value of an unknown

point based on some known values. Often it is used in curve-fitting and other data

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 29

manipulation fields. There are tons of different forms of interpolation, but you are going

to look at the most simple way: linear interpolation.

Linear interpolation, also known in the graphics/game development/math world as

simply lerp, is a very handy thing to keep in your toolbox of mathematical functions.

Lerping is really very easy, and you have probably done it once or twice before and not

even realized that it had a name. So, even for the math-phobic, this section should be

pretty painless.

I am bringing up lerping in the context of finding a middle color between two other

colors, but it has broad-reaching uses in game development, so I wanted to at least

spend a few paragraphs bringing it to your attention. Lerping is not only good at finding

colors, but it is also fantastically useful for animation and tweening.

Let’s say you have an enemy spaceship that needs to fly from point A to point B. You

can simply lerp the position from A to B over time. Easy! Similarly, lerping is a quick and

simple way to add movement to your objects and game items. When you are using Core

Animation to implicitly animate your layers, whether you are moving the layer around or

rotating it or whatever, Core Animation is lerping your layer from the start value to the

end value. You can use it for lots of things in your games (and as I mentioned, you

probably are, without knowing it).

So, let’s look at a simple lerp function that you should be using for everything:

static inline CGFloat BBLerp(CGFloat start, CGFloat end, CGFloat amount)
{
 if (amount < 0.0) amount = 0.0;
 if (amount > 1.0) amount = 1.0;
 CGFloat spread = end - start;
 return (spread * amount) + start;
}

This is a very simple bounded linear interpolation over the values 0 to 1. If you send in

amount = 0, then you will get back the starting value. If you send in amount = 1, then you

will get the end value. If you send in 0.5, then you will get back the value that is halfway

between start and end. You have probably had to do this before, and this just puts it in a

nice simple form that is useful in a plethora of situations.

You can also add a handy point-to-point lerp (this is what is happening in Figure 1-14):

static inline BBPoint BBPointLerp(BBPoint start, BBPoint end, CGFloat amount)
{
 BBPoint lerped;
 lerped.x = BBLerp(start.x, end.x, amount);
 lerped.y = BBLerp(start.y, end.y, amount);
 lerped.z = BBLerp(start.z, end.z, amount);
 return lerped;
}

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 30

Figure 1-14. Simpler linear interpolation. C is three quarters of the way between A and B.

This is a book about advanced projects, and some might think that lerping is a pretty

basic concept. That is true, it really is, but I wanted to go over it quickly because it is so

handy and simple. And if you haven’t seen it before, it can be a revelation.

Anyway, back to colors.

Color-Changing Particles
To be able to lerp between two points, you will need a start point, an end point, and a

value between 0 and 1 that is my position along that line. In the case of your particles,

you can use the life as a positional indicator, but in order to get a life value between 0

and 1, you will need to know the starting life value.

You will also need a place to put your color values in the particle:

@interface BBParticle : NSObject {
 .
 .
 .
 CGFloat startingLife;
 CGFloat r;
 CGFloat g;
 CGFloat b;
 CGFloat a;
}

.
.
.

@property (assign) CGFloat r;
@property (assign) CGFloat g;
@property (assign) CGFloat b;

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 31

@property (assign) CGFloat a;
@property (assign) CGFloat startingLife;

In the implementation file, you only need to add the properties to be synthesized, and

you will be all done with your new colored particle:

@implementation BBParticle
.
.
@synthesize r,g,b,a,startingLife;
.
.

Next you need to add a handful of new instance variables to your particle system class:

@interface BBParticleSystem : BBSceneObject {
 .
 .
 .

 CGFloat startR;
 CGFloat startG;
 CGFloat startB;
 CGFloat startA;

 CGFloat endR;
 CGFloat endG;
 CGFloat endB;
 CGFloat endA;

 BOOL animateColor;
 .
 .
}

You want to make these properties, so don’t forget to add the @property declarations

and the @synthesize declarations in the implementation file.

The animateColor flag will tell the emitter whether you need to bother building the color

arrays. If you do not plan to use the color feature, be sure to set this to NO. Don’t just set

the colors to white. The color array is 4 floats per vertex, and it will affect your

performance to be pushing all that extra data into the renderer, so turn it off if you do not

need it. I have set animateColor to default to NO in the sample project.

To use the color arrays, you need to make sure that you have a buffer malloced for that,

so at the end of the preload method, add a malloc for the color array:

-(void)preload
{
 .
 .
 .
 colors = (CGFloat *) malloc(4 * 6 * kMaxParticles * sizeof(CGFloat));
}

Also, in the setParticle: method, you need to link the mesh’s color array to your new

buffer:

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 32

-(void)setParticle:(NSString*)atlasKey
{
 .
 .
 .
 mesh.colors = colors;
 mesh.colorSize = 4;
}

Now you have a place to put your colors, and the mesh is all hooked up. Next you just

need to set the color in the particles and generate the color array during your update

loop.

Let’s start at the beginning of the particle life cycle: emitParticles. You need to set the

initial RGBA values on the particle as well as the new startingLife value:

-(void)emitNewParticles:(NSTimeInterval)deltaTime
{
 .
 .
 .
 NSInteger index;
 for (index = 0; index < newParticleCount; index++) {
 .
 .
 .
 p.r = startR; // set the colors
 p.g = startG;
 p.b = startB;
 p.a = startA;
 p.life = BBRandomFloat(lifeRange);
 p.startingLife = p.life; // set so you can do color animation
 .
 .
 .
 }
}

Now your newly minted particles will all have the right initial conditions. Moving to the

next stage of the particle life: the update. This is the update method in the particle

emitter. You don’t actually need to change the individual particle update method.

-(void)update:(NSTimeInterval)deltaTime
{
 // update active particles -> move them
 [super update:deltaTime];
 for (BBParticle * kid in childrenParticles) {
 [kid update:deltaTime];
 if (animateColor) {
 kid.r = BBLerp(startR, endR, (kid.startingLife -
kid.life)/kid.startingLife);
 kid.g = BBLerp(startG, endG, (kid.startingLife -
kid.life)/kid.startingLife);
 kid.b = BBLerp(startB, endB, (kid.startingLife -
kid.life)/kid.startingLife);
 kid.a = BBLerp(startA, endA, (kid.startingLife -
kid.life)/kid.startingLife);

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 33

 }
 }
 // emit -> add new particles
 // build arrays
 [self buildVertexArrays];
 [self emitNewParticles:deltaTime];
 if (animateColor) [(BBTexturedQuad*)[self mesh] setUseColors:YES];
}

There are two new things going on here. First, as you loop through all the child particles,

you will lerp the new color based on how long that particle has lived in relation to its total

life. Then, at the end of the method, you make sure that your mesh is set to use the

color arrays.

Finally, you look at the array construction:

-(void)buildVertexArrays
{
 vertexIndex = 0;
 for (BBParticle * particle in childrenParticles) {
 .
 .
 if (animateColor) {
 [self addColorsR:particle.r g:particle.g b:particle.b a:particle.a
vertexes:6];
 }
 // for each particle, need 2 triangles, so 6 verts
 // first triangle of the quad. Need to load them in clockwise
 // order since our models are in that order
 [self addVertex:(particle.position.x - particle.size) y:(particle.position.y +
particle.size) u:minU v:minV];
 .
 .
 .

It is fairly important that you build the color array before you start adding vertexes. Since

you are setting the same color to each vertex, you can do it all at once, but the

addVertex method increments the vertexIndex, so if you do not do the colors first, you

will lose your place.

As for the actual add colors method, it is pretty straightforward:

-(void)addColorsR:(CGFloat)r g:(CGFloat)g b:(CGFloat)b a:(CGFloat)a
vertexes:(NSInteger)verts
{
 NSInteger index;
 for (index = vertexIndex; index < (vertexIndex + verts); index++){
 NSInteger pos = index * 4.0;
 colors[pos] = r;
 colors[pos + 1] = g;
 colors[pos + 2] = b;
 colors[pos + 3] = a;
 }
}

Just add the same color to the color array for each vertex. Simple!

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 34

You can now try your new color-changing emitter! Open SceneThree, and let’s take a

look at an animated Technicolor dream emitter. Now that you can do color-changing

particles, you can simulate a fairly decent fire.

 particles.position = BBPointMake(0.0, -80.0, -50.0);

You will put the fire at the bottom of the screen, so you have room to burn:

 particles.emissionRange = BBRangeMake(40,50);
 particles.xVelocityRange = BBRangeMake(0, 0);
 particles.yVelocityRange = BBRangeMake(1, 10);
 particles.zVelocityRange = BBRangeMake(0, 0);

This is fire, so mostly it will just be going up, so you will set our x and z velocities to 0:

 particles.emitVolumeXRange = BBRangeMake(-30, 60);
 particles.emitVolumeYRange = BBRangeMake(-5, 10);
 particles.emitVolumeZRange = BBRangeMake(-30, 60);

You will have it emit from a flattened spheroid:

 particles.force = BBPointMake(0.0, 10.0, 0.0);
 particles.growRange = BBRangeMake(-1.5, 1.5);

And give it a nice upward force, since the particles should be lighter than air:

 particles.sizeRange = BBRangeMake(6, 6);
 particles.lifeRange = BBRangeMake(2.5, 0.0);
 particles.decayRange = BBRangeMake(0.5, 0.1);

 // start with a nice pure yellow
 particles.startR = 1.0;
 particles.startG = 1.0;
 particles.startB = 0.0;
 particles.startA = 1.0;
 // end with a dark red
 particles.endR = 0.5;
 particles.endG = 0.0;
 particles.endB = 0.0;
 particles.endA = 1.0;

 particles.animateColor = YES;

And finally, you set the start color to a pure yellow and your end color to a dark red.

Don’t forget to set animateColor to YES:

 // this will make it a rectangular emission volume
 //particles.sphericalEmissionVolume = NO;

 particles.emit = YES;
 [particles setParticle:@"whiteBlur"];

Finally, you set your particle to the good old standby: whiteBlur (which is the brighter

cousin of whiteSubtle).

Figure 1-15 shows the result of the color-changing efforts. The color change really adds

that bit of life that really makes the effect jump out and look great.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 35

Figure 1-15. A pretty decent fire effect, all things considered

Summary
You explored the world of particle generation in this chapter, and I covered the basics:

life, growth, speed, acceleration, and color. These five things are the basis of all particle

systems. If I had more time and space, I could talk about per-particle rotation, moving

particle emitters, particle collisions, and multitexture systems. And those are just a few

of the many permutations that you can add to your particle systems.

I encourage you to go out and experiment—try to add particle rotations and multicolor

animations. Have your system randomly select a set of UVs from a list of textures and

make a multitexture system. Add a collision detection system, and apply it to the

particles so you can simulate realistic effects.

The other thing that I wanted to touch upon was actual particle artwork. For the most

part, I have been using a very simple white blur for all the effects in this chapter (with a

small digression with some poorly drawn stars and thruster options). This was mostly on

purpose to show that the versatility of the particle system lies not in the individual

textures of the particles but in the infinite flexibility of the system and all of the

configuration variables.

That said, the next step is to play with various particle textures to try to achieve the

effect you need. Each texture will give a very different look and feel to the same emitter

settings, so play around. In Figure 1-16 I built four very different effects by just changing

the color and the particle texture of the fire effect.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think 36

Figure 1-16. Playing with the fire effect. Just a few permutations of the color and particle texture have huge
effects on the look of the system.

In the sample code, I left the fourth scene empty. It is your playground. Go crazy and

experiment. Particle systems are very fun to play with, and I spent most of my time while

writing this chapter just tweaking the various effects. Not only did I want to get them to

look good for the chapter, but it was just so much fun to see what the fire would look

like if the yellow were a bit more orange. Or if I could make it look like some evil magic

energies if I changed the colors to go from green to purple (answer: yes!).

37

Joachim Bondo
Company:Cocoa Stuff(one man shop)

Location: Copenhagen, Denmark, Europe

Former Life As a Developer: 27 years of experience in starting up and running smaller software
development companies and developing software using a wide range of programming languages
such as: BASIC, COMAL 80, Pascal, C, C++, Objective-C, SQL, NewtonScript, PHP, JavaScript,
Bash

…in environments such as: THINK C and TCL (Think Class Library), MPW (Macintish
Programmer’s Workshop), Metrowerks CodeWarrior and PowerPlant, 4th DIMENSION, NTK
(Newton Toolkit), Sybase, MySQL, TextMate, Xcode, Cocoa, Cocoa Touch

…on platforms such as: Mac OS 3–8, Newton OS, Palm OS, UNIX (FreeBSD, Mac OS X), Mac OS X
Panther–Leopard, iPhone OS

Life as an iPhone Develooper: Deep Green, chess game, using the official iPhone SDK from Apple
since the day it was released.

What's in This Chapter: Deep Green, or: How I Achieved the Goal of Simplicity

With the focus on creating a beautiful, elegant, and powerful user interface, and in a non-code
language, I’m going through key areas of what have made Deep Green a successful application
on the App Store, featured by Apple in several sections such as What’s Hot and Staff Favorites.

38

Key Technologies:

User Interface Design

Simplicity

Product Statement

39 3939

 Chapter

Chess on the ’Net:
Correspondence Gaming
with Deep Green
As I’m writing this, version 2.0 of my popular chess application, Deep Green, is under

development. One of the big new features is correspondence chess. In other words,

users will be able to play chess with their friends independent of time and place. This is

in contrast to over-the-board chess where you sit at the chessboard at the same time.

So, all from within Deep Green, you’ll be able to invite a friend to a game of chess and

then each make your moves in turn as you normally do. Your moves will be stored in a

database on a central server, and after each move, the system will push a remote

notification to the opponent. The time interval between moves can be anything from

seconds to weeks.

In this chapter, I’ll show you how to code the support for sending an invitation,

accepting the invitation, sending moves back and forth, and storing it all on the server in

a database. I’ll go through what’s needed on the client (that is, the iPhone or iPod touch

device), as well as what’s needed on the server, including the choice of platform,

database, and programming language. I’ll show the mechanics so that you’ll be able to

implement similar functionality for your own applications.

As it turns out, you won’t see a whole lot of code, which is a good thing because it

shows that it’s fairly easy to do some relatively powerful stuff using the chosen

technologies.

But let me first make you a little bit familiar with the application.

2

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green 40

Deep Green, an Already Awesome Application
Deep Green 1.0 was released in December 2008. It created a lot of buzz for its beautiful

and intuitive user interface (see Figure 2-1).

Figure 2-1. Deep Green running on the iPhone

I originally released Deep Green for Apple’s Newton platform in 1998 (see Figure 2-2).

But only ten days later, Steve Jobs closed the whole Newton division down. Although it

put somewhat of a damper on my development efforts, users were still enthusiastic.

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green 41

Figure 2-2. Deep Green running on the Newton

Today, ten years later, there are still Newton users out there who claim they have yet to

see a better handheld device. Despite their claims, it was evident I had to carry Deep

Green over to iPhone OS.

And that was exactly what I decided to do the minute I saw Steve Jobs unveil the

iPhone at Macworld in January 2007. I remember seeing the slide that mentioned Cocoa

as one of the many technologies iPhone was built on. So, later that year, I started coding

Deep Green’s model layer in Cocoa for Mac OS X 10.5. When the SDK was announced

and released in March 2008, I could finally start coding natively for the platform.

Ever since the Newton version, I’ve maintained an extensive list of features I wanted to

implement, and in the long period since then, I’ve added many new ones to the list. As

we’ve become increasingly connected, correspondence chess became an obvious one.

So, even though Deep Green 1.0 for iPhone OS didn’t offer this, it was developed with

this in mind—and much more, of course.

Now that both versions 1.0 and 1.1 are out and pretty much match the Newton version’s

feature set, I’m ready to start implementing some of these long-planned features.

If you want to learn more about Deep Green, and even see it in action, please visit the

home page at http://cocoastuff.com/products/deepgreen/ (see Figure 2-3).

Figure 2-3. Deep Green’s home page

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green 42

And while I’m in the department of shameless self-promoting plugs…if you want to read

about the meticulous user interface design of Deep Green, including what $30,000 can

get you in graphics design, treat yourself to a copy of iPhone Games Projects, also from

Apress. Visit http://apress.com/book/view/1430219688 for more information.

The Tasks at Hand
So, what tasks are involved in making correspondence chess (or pretty much any time-

shifted, turn-based game)? One thing is for sure—you need a central server that stores

all the user data and that each user interacts with.

Although I had planned this feature all along, I hadn’t thought about how to implement it

or what components and technologies to use. So, to start, I had to define what tasks

needed to be supported, which can be boiled down to the following list:

Inviting a friend to a game

Accepting the invitation

Making a move

Getting notified about new moves

I’ll deal with the three first items in this chapter and will keep them relatively simple in

order to focus on the main aspects of implementing this solution. So, for example, when

inviting a friend, Deep Green will allow you to pick a person from your built-in Contacts

application as well as just entering a username or e-mail address. Instead of going into

details about implementing a people picker, I’ll simply assume you have the e-mail

address at hand.

Also, in a real-life solution, you’d have to handle all sorts of security issues and error

scenarios. What happens if there isn’t a usable network connection available? What

happens if the user quits the application before it was able to send the request to the

server? What happens if your friend never receives the invitation or she changed her e-

mail address? What happens if she declines the invitation? How can the server know

you’re you, and not somebody who just knows your e-mail address?

Deep Green handles all such situations. In fact, a large portion of the time and energy

that goes into designing a solution like this is spent on thinking about these odd

scenarios and finding a good solution to them.

But I won’t talk too much about it here, because I’d have to end the chapter before I’d

even get started on the more interesting parts. I will, however, touch on where and how

I’ve added support for these situations, where applicable.

I’ll now explain a little bit more about what each task involves before diving into

the code.

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green 43

Inviting a Friend to a Game
Given an e-mail address of your friend, your user credentials, and a few pieces of

information about the game you’re inviting them to, you’ll send a request to a web

service that you’re going to establish.

The web service will create the game, store it in a database, and send out an e-mail to

your friend, carbon-copied to yourself so you know your request was made and an

invitation was sent out.

The e-mail will contain standard text, explaining what it’s all about, as well as links for

accepting and declining the invitation.

Accepting the Invitation
Your friend will probably accept your challenge by tapping the appropriate link in the

invitation e-mail.

In Deep Green, I implemented a custom URL scheme, deepgreen://, instead of just

using http://. The reason for this is that I wanted Deep Green to make the request to

the web service, not whatever web browser the user happens to use. By doing it this

way, I can supply extra information about the user, available only on the client, and

thereby eliminate a manual registration process.

I’ll show how to implement a custom URL scheme on the iPhone.

Assuming the obvious, that both you and your friend have some variant of Deep Green

installed, the application will launch and will take the appropriate action.

The web service that we’ll develop in this chapter will save the information to the

database under the game and send out an e-mail to both players letting you know the

game is on.

Making a Move
When you make your move, Deep Green sends it, along with game and state

information, to the web service on the server. The server records the move under

the game.

It was an important design goal of mine that the server should not have to know

anything about chess except that the players move in turn. But I didn’t want to have to

code and maintain the chess rules in several places.

Getting Notified
When you make your move, the opponent should know about it. And that’s exactly what

Deep Green does. Since iPhone OS doesn’t allow third-party processes to run in the

background, developers are left to using the Apple Push Notification Service (APNS) in

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green 44

situations like this, where you want to tell the user about an event, even when your app

isn’t running on the user’s device.

I’m not going to cover APNS in this chapter, but I’ll briefly explain what it is because it’s

a very useful feature to implement.

Each iPhone OS device maintains a persistent connection with Apple’s Push Notification

server (cloud). When APNS receives a notification request from a developer’s application

server, it pushes it to the given device that can then display a message, play a sound,

update the app icon badge, or do any combination of these depending on the user’s

preferences.

The tricky part, from your perspective as a developer, is the communication between

your server and APNS. Not only does it require a persistent, raw socket connection, but

it also requires properly issued and applied certificates (and if you’ve been developing

iPhone apps for a while, you know what a circus that can all be).

This can all be done, of course, and I wouldn’t be surprised if third-party services were

available by the time you read this.

If you want to roll your own solution, however, I suggest you read iPhone SDK 3 Projects
from Apress. There’s a whole chapter devoted to this topic.

The Tools of the Trade
Now, how do you tie these things together? How do you establish our web service,

and where? Which database should you be using? How do you communicate with

the server?

Before I knew the answers to these questions, the only thing I knew was that I didn’t

want to host the solution myself. I’ve been doing a lot of LAMP (Linux, Apache, MySQL,

PHP) over the years, but I treasure my sleep (with two little kids, even more so) and

didn’t want to have to worry if my server was up and running. And what about load

balancing? What if users started playing a lot, which I sure hoped they would? Would

the solution scale?

I had no idea until a friend of mine pointed me to Google App Engine. It was a no-

brainer: build your web services using the feature-rich and elegant Python scripting

language, have your objects stored in a high-performance object datastore, deploy

once, and become hosted on Google’s own infrastructure with thousands of servers

worldwide, maintained and monitored for you. Sounds expensive, right? Actually, it’s

free. What’s not to love?

The service is free up to certain quotas, which, at least for a chess game, seem very

generous. Check with the current Google App Engine Terms of Service at

http://code.google.com/appengine/terms.html. Over a certain limit of traffic, you’ll

start being charged. I guess you could say it bears the price of success: more users,

more money.

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green 45

Google App Engine (GAE) lets you install and deploy websites and web applications and

will take care of load balancing and replicating your datastores. You can even serve your

applications securely using https://.

Google also offers a Java SDK, if that’s a better fit for you. I hadn’t seriously used either

Python or Java when I started coding the web service, but I felt Python was a better

choice because of its increased popularity and momentum over the last years, while

Java seemed to have had its days of glory.

Even if you don’t know Python, you’ll quickly realize from my examples that it’s very

easy to pick up, especially if you’ve already used another scripting language such as

PHP. It’s not totally unlike Objective-C either. The official website, http://python.org,

offers a wealth of information but may not necessarily be the easiest place to start. I

ended up buying Dr. Drew McCormack’s e-book for the iPhone, Scientific Scripting with
Python, available from the Mental Faculty at http://www.mentalfaculty.com/
python_scripting. I’m not a scientist, not even a mad one, but with the e-book, I was

up to speed after a few hours of reading.

Stop Talking, Start Coding!
OK, let’s get our hands dirty. We’ll start by implementing the web service on GAE and

then the client code on the iPhone for interacting with the web service.

I’ll do some basic stuff to begin with, so if you want to follow along, take a moment and

sign up with GAE at http://appengine.google.com if you haven’t done so already. As I

said, it’s free. You need to download and install the SDK. I hadn’t used GAE before, so

I’ll quickly take you through the same easy steps I went through—mostly to illustrate

how simple it is.

Installing the Tools
Go to http://code.google.com/appengine/downloads.html, and download the current

version of the SDK. I’m assuming you’re on Mac OS X, because that is where you’re

doing your iPhone development in the first place. If you use another platform for this part

of the development, choose the appropriate download, and follow the installation

instructions on the GAE home page. On the Mac, it’s a few easy steps:

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green 46

1. Open the downloaded disk image (as shown in Figure 2-4), and drag the

GoogleAppEngineLauncher icon to your hard drive.

Figure 2-4. Copy the Launcher application to your local hard drive.

2. Open the Launcher and choose to make command symlinks, as shown

in Figure 2-5. You’ll have to do this only once.

Figure 2-5. Create the command symlinks.

3. You guessed it; there is no step 3.

The application basically sits there and mimics the whole server runtime environment.

This is a huge time-saver because you don’t have to upload your incremental changes

to a server and because you don’t have to set up a test environment on the server while

developing. It also allows you to develop without a connection to the Internet.

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green 47

When you’re ready to deploy, you just click the Deploy button in the toolbar, as shown in

Figure 2-6. I won’t go through the deployment process in this chapter.

Figure 2-6. GoogleAppEngineLauncher ready to serve you

We’re ready. Let’s code….

Coding the Web Service
From here on, you’ll code your web service as it will be on the server. All examples are

run on the local machine. As I said, you don’t have to deploy anything on Google’s

servers until you’re ready to release your code.

Start by clicking the + button to create a new web application. You’ll be prompted for a

name and location, as shown in Figure 2-7.

Figure 2-7. Creating your new web application

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green 48

When you click the Create button, GoogleAppEngineLauncher will create the web

application folder containing three files:

app.yaml: Your application configuration file

main.py: Your web application’s main code file

index.yaml: An automatically generated file that you can ignore for now

If you have a text editor that can open directories, you can simply click the Edit button in

the toolbar (see Figure 2-8) and have all files ready for you to read and edit. In TextMate,

it looks like Figure 2-9.

Figure 2-8. GoogleAppEngineLauncher showing the new application

Figure 2-9. The web application directory in the TextMate editor

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green 49

Using your favorite text editor, open app.yaml. It should look like this:

application: chess
version: 1
runtime: python
api_version: 1

handlers:
- url: .*
 script: main.py

This tells the GAE runtime environment the name of your application and what script file

to execute for all requests matching the regular expression .*.

Let’s create a simple script to test whether it works. Replace the contents of main.py
with the following:

print 'Content-Type: text/plain'
print ''
print 'Checkmate!'

Back in GoogleAppEngineLauncher, start the application by clicking the Run button in

the toolbar (as shown earlier in Figure 2-8). Then click the Browse icon and admire the

result, as shown in Figure 2-10.

 Figure 2-10. The output from your very first web service application

Hey, you just created a GAE web service! Perhaps it’s not the most useful, although who

would have thought you could checkmate in ten lines of code?

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green 50

OK, it’s time for some real code. You’ll be implementing three handlers, one for each of

your requests:

Receive invitation request

Receive invitation accept request

Receive move request

In main.py, now put the mechanisms in place to deal with the requests by making it look

like this:

from google.appengine.ext import webapp
from google.appengine.ext.webapp.util import run_wsgi_app

class GameController (webapp.RequestHandler):
 def get (self):
 opponent = self.request.get ('opponent')
 self.response.headers ['Content-Type'] = 'text/plain'
 self.response.out.write ('Looks like you want to invite ' + opponent)

application = webapp.WSGIApplication (
 [('/', GameController)],
 debug=True)

def main():
 run_wsgi_app (application)

if __name__ == "__main__":
 main()

You’re now taking advantage of some of the Python modules available to you under

GAE in order to make the coding a lot simpler. You’ve created a GameController class,

which for now is being instantiated when you receive a request. It’s the entry point

of your web service that basically provides the methods you need in order to handle

the various requests around the game play. In this case, you’ve implemented only a

get() method.

This is very convenient when testing from the web browser, because it always sends

GET requests when entering a URL in the address field. As you start to make these

requests from the iPhone client, you’ll embrace a more RESTful approach, which means

that you’ll use GET requests for getting data, POST for creating data, PUT for updating,

and DELETE for deleting data. This will make you a good citizen of the modern Web 2.0

world.

To test the previous code, type http://localhost:8080/?opponent=Garry%20Kasparov in

the address field of your browser. The result should look like Figure 2-11.

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green 51

Figure 2-11. Browser output when inviting an opponent

No harm done yet. Even though we know Garry very, very well, he has no clue about our

intentions. But you can now pass parameters to the service, and you’re going to use

some of the built-in modules to make the code simple and clean.

Let’s finish the invitation implementation. Once again, you’ll take advantage of a couple

of the prebuilt modules in the GAE framework. There’s a lot of new stuff, all of which I’ll

explain after the code:

from google.appengine.ext import webapp
from google.appengine.ext.webapp.util import run_wsgi_app
from google.appengine.ext import db
from google.appengine.api import mail

class Game (db.Model):
 inviter = db.StringProperty ()
 invitee = db.StringProperty ()
 created = db.DateTimeProperty (auto_now_add = True)
 moves = db.StringListProperty ()

class GameController (webapp.RequestHandler):
 def post (self):
 game = Game ()
 game.inviter = self.request.get ('inviter')
 game.invitee = self.request.get ('invitee')
 game.put ()
 mail.send_mail (sender = game.inviter,
 to = game.invitee,
 subject = "Hey, let’s play chess!",
 body = "Click here: chess://domain.com/game?action=accept&email=%s&game=%s" %
 (game.invitee, str (game.key ()))
)
 self.redirect ('/games')
 def get (self):
 self.response.out.write ('<html><body>')
 self.response.out.write ('<p>Your games:</p>')
 games = db.GqlQuery ("SELECT * FROM Game ORDER BY created DESC LIMIT 10")

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green 52

 for game in games:
 self.response.out.write ('%s vs. %s (%s)' %
 (game.inviter, game.invitee, str (game.key ())))
 self.response.out.write ('</body></html>')

class EntryForm (webapp.RequestHandler):
 def get (self):
 self.response.out.write ("""<html><body>
 <form action="/game" method="post">
 <div>Opponent: <input type="text" name="invitee"/></div>
 <div>You: <input type="text" name="inviter"/></div>
 <div><input type="submit" value="Invite!"/></div>
 </form>
 </body></html>""")

application = webapp.WSGIApplication ([
 ('/', EntryForm),
 ('/games', GameController),
 ('/game', GameController),
], debug=True)

def main ():
 run_wsgi_app (application)

if __name__ == "__main__":
 main ()

You’re importing two new modules: db and mail for interfacing with the database and for

sending e-mails, respectively.

There are two new classes: the Game model class, which you’re storing to the database

(and later will be retrieving), and EntryForm, which is just a temporary class for checking

in the browser that the code works.

Notice how the application object gets initialized with a list of URLs and corresponding

classes. The application now supports three URLs: /, /games, and /game.

When a client requests the root, an EntryForm object is being instantiated, serving an

HTML form that allows you to enter your friend’s and your own e-mail addresses, as

shown in Figure 2-12.

Figure 2-12. The output generated by the EntryForm class

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green 53

Submitting the form sends a POST request to the /game URL with the two e-mail

addresses as parameters. This is just a temporary mechanism to let you test the API.

Eventually, the client application on the device will send the request.

The POST request is being handled by GameController’s post() method, which then

creates the Game in the data store. That’s the first four lines of the method. That’s pretty

powerful. Notice how you don’t have to make an explicit connection with the database

or verbose INSERT INTO table VALUES () SQL stuff. You’re just creating the Game object,

setting its property values, and then using put() to put it in the datastore. The properties

of the game are defined in its class declaration.

After having created the game in the datastore, you’re sending an invitation to the

opponent per e-mail. The Game’s key is its unique identifier, which you’re using for the

link so that it can be passed around as a parameter when the user taps the link in the

e-mail. This way, the game key will end up as a parameter in your application on

the iPhone.

Finally, the web service redirects to /games, which causes the get() method of the

GameController to be called, and the ten most recent games get listed in reverse

chronological order, as shown in Figure 2-13.

Figure 2-13. The output generated by GameController’s get() method

The web application now illustrates the mechanics, but in a real-world scenario this

wouldn’t be sufficient. As mentioned earlier, you’d have to check for errors (such as

invalid e-mail addresses) and apply some level of security. From the game key, for

example, it would be very easy to guess keys of other ongoing games in the datastore to

which one could add moves, and so on, by sending the “right” URL requests.

In addition, you’d also need more information in the Game class, such as who plays which

color, any time limit per move, any nonstandard start position, and so on. These are

fairly trivial exercises, so I won’t waste space on this here.

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green 54

Accepting the Challenge on the Device
There are still things left to code on the server, such as receiving invitation accepts

and moves, but let’s change the scene a bit to see how to deal with the invitation on

the iPhone.

As I said earlier, the invitation URL uses a custom scheme. In this case, you’re using

chess://, but because this solution is very application specific, using the game key, for

instance, you really should pick a more application-specific URL scheme instead of the

very generic chess:// URL. But again, I’m just illustrating the mechanics rather than

providing a shrink-wrapped product here.

On the device, you want the application to launch when the user taps the chess:// link

in the e-mail. To make that happen, you need to define the scheme, which you just did,

and implement a URL handler in your application. The latter consists of two parts: letting

the iPhone OS know about your capabilities and implementing the code in your

application.

Registering URL Scheme Support with iPhone OS
All you have to do to let the iPhone OS know you can handle a certain URL scheme is to

provide the information in the application’s Info.plist file:

<key>CFBundleURLTypes</key>
<array>
 <dict>
 <key>CFBundleURLName</key>
 <string>com.yourcompany.chessscheme</string>
 <key>CFBundleURLSchemes</key>
 <array>
 <string>chess</string>
 </array>
 </dict>
</array>

By adding these lines, you’re telling iPhone OS that you can handle the chess:// URL

scheme. The CFBundleURLName string is a key that will be used by the system to look up

the localized name for the scheme in your InfoPlist.strings file. This allows you to

provide localized names of the scheme that may be displayed to the user.

Handling the URL Request
When the user taps the chess:// link in the e-mail that the web service sent, Mail.app
will recognize that a URL was tapped and will execute the openURL: method of the

shared application object, [[UIApplication sharedApplication] openURL:url]. iPhone

OS looks up what applications support the URL scheme, picks one of them, and calls its

delegate’s -application:handleOpenURL: method.

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green 55

Here’s an example of how this method could be implemented:

- (BOOL)application:(UIApplication *)application handleOpenURL:(NSURL *)url
{
 if (![[url scheme] isEqualToString:@"chess"])
 return NO;

 NSString *userID;
 NSString *serverURLStr;
 NSURL *serverURL;
 NSDictionary *game;

 userID = [[NSUserDefaults standardUserDefaults] stringForKey:@"userID"];
 serverURLStr = [NSString stringWithFormat:@"http://%@%@?%@&userid=%@",
 [url host], [url path], [url query], userID ? userID : @""];
 serverURL = [NSURL URLWithString:serverURLStr];
 game = [NSDictionary dictionaryWithContentsOfURL:serverURL];
 if (!game) {
 // Deal with the error
 }
 return YES;
}

You’re passed the URL and check that it’s the right scheme. Depending on the path and

query, you can do what’s needed in the given situation. In this case, you’re simply

swapping the URL scheme and, for illustration purposes, getting the user identification

from the user defaults and appending it to the server request. Since the application is

running at this point, you’d also want to load the game and display it to the user,

although that’s not shown here.

The original

chess://example.com/game?action=accept&email=king@example.com&game=key link

becomes an http://example.com/game?action=accept&email=king
@example.com&game=key&userid=123 GET request. When testing this locally during

development, you can use localhost:8080 as the host.

Make sure your application can handle any kind of URL string gracefully, because

anybody can invoke this application by entering some chess://weird/string/here-type

URL in Mobile Safari and have your application execute code.

In the previous code, you’re invoking the request on the server by calling

+dictionaryWithContentsOfURL:. You wouldn’t normally want to do that, because you’d

want to make the server call asynchronous, and you need more error information than

just failure/success. But I wanted to show this cool feature of NSDictionary.

The +dictionaryWithContentsOfURL: call is a convenient way of sending a server

request and getting the result in a handy NSDictionary object structure—in just one line

of code. The call assumes the server returns a string representation of a property list

whose root object is a dictionary.

This brings me to a point I’ve been itching to make about separating code and data

representation on the server.

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green 56

Separating Data and Representation on the Server
This web service focuses on handling the data in its own, proprietary format and

shouldn’t have to care about how a client might want the data represented. It certainly

shouldn’t serve hard-coded HTML or other markup inside its methods.

One nice way of making this separation is by using templates. Google App Engine’s

webapp module includes the Django’s template engine, which provides for a very elegant

separation. Take another look at the earlier get() method with its embedded HTML

code, and compare it with this:

def get (self):
 game = Game.get (self.request.get ('key'))
 template_values = {'game': game}
 path = os.path.join (os.path.dirname (__file__), 'game.plist')
 self.response.out.write (template.render (path, template_values))

You’ll have to import the template module from google.appengine.ext.webapp and the

os module:

import os
from google.appengine.ext.webapp import template

The template.render() call merges the values in the template_values dictionary with

the game.plist template file, which is a slightly modified XML property list file, located in

the application directory on the server:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>inviter</key>
 <string>{{ game.inviter }}</string>
 <key>invitee</key>
 <string>{{ game.invitee }}</string>
 <key>created</key>
 <date>{{ game.created|date:"Y-m-d\Th:i:s\Z" }}</date>
 <key>moves</key>
 <array>
 {% for move in game.moves %}
 <string>{{ move }}</string>
 {% endfor %}
 </array>
</dict>
</plist>

Note how you’re accessing the properties of the game object in the {{}} pairs and how

you’re iterating over the moves with the {% for move in game.moves %}, {% endfor %}
pair.

The output becomes a perfectly valid .plist file that you can use to effortlessly create

NSDictionary objects in your client code, as shown in the -application:handleOpenURL:
method earlier. This saves you from having to manually parse XML files. I’ll show you

another example of this soon.

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green 57

If you want to support other types of output, the client could add a parameter to its

request telling the web service which format it wanted the response in. You’d then add a

template on the server for each supported format.

In the same spirit, since this is a Cocoa-specific template, it makes perfect sense to

make the {{ game.created|date:"Y-m-d\Th:i:s\Z" }} date conversion in the template

and not in the generic server code. The converted date value becomes a valid date

string representation that can be turned into an NSDate object at runtime on the client.

Even though the +dictionaryWithContentsOfURL: is very handy, I’ll show how you can

make the server communication from the client a little bit more robust when adding

moves to the games.

Making a Move
When you’ve made your move, it should be sent from your device to the web service

and appended to the game. Instead of waiting for the request to be sent and the server

to respond, thereby leaving the application irresponsive to the user, we’ll handle the

request asynchronously. It’s a bit more code than the one-liner you used before, but the

user will be happy not having to sit with an application that’s locked up.

NOTE: As an alternative to asynchronous calls, you could use synchronous calls and
encapsulate them in an NSOperation, which is executed on its own thread.

In Deep Green I’ve encapsulated all server communication in a singleton class that

manages a request queue (an NSOperationQueue) and makes sure they’re all dealt with

successfully before being removed from the queue. It notifies if something goes wrong,

giving the implicated controllers a chance to report any error to the user. It persists the

queue to the file system so that it can be re-created in case the user quits the

application before the request has been received by the server. And the server code

handles duplicate requests gracefully to deal with the situations where the application

didn’t get the response from the server and therefore thinks it needs to send the

request again.

On the Device
In the following code example, I’m doing none of the above but simply providing the

skeleton needed to communicate the move from the device to the server. Since this is

being done asynchronously, the entry method doesn’t return anything. No BOOL, no

NSError:

- (void)sendMove:(NSString *)move forGameKey:(NSString *)key
{
 NSString *urlStr;
 NSURLRequest *request;
 NSURLConnection *connection;

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green 58

 urlStr = [NSString stringWithFormat:
 @"http://example.com/game?action=move&move=%@&key=%@", move, key];
 request = [NSURLRequest
 requestWithURL:[NSURL URLWithString:urlStr];
 cachePolicy:NSURLRequestReloadIgnoringLocalAndRemoteCacheData
 timeoutInterval:60.0];
 [request setHTTPMethod:@"PUT"];
 connection = [[NSURLConnection alloc] initWithRequest:request delegate:self];

 if (!connection) {
 // Deal with the error
 } else
 receivedData = [[NSMutableData alloc] initWithCapacity:500];
}

The move is just a string here, and it still doesn’t use any form of security. But the code

shows how to initiate a request.

You’re composing the URL string containing the move and the game key. The server

request is created, ignoring any previously cached data to make sure the request gets

sent to the server. You make it a PUT request so that the proper method, put(), gets

called in the web service code. Being an asynchronous call, initWithRequest:delegate:
returns immediately, and if the connection was made, you allocate an NSMutableData
instance variable to receive the confirmation data from the server.

After this method exits, the program execution resumes to the main event loop, and the

user will be able to use the application again.

But you’re not done yet. You just started the request. You need to prepare for receiving

a number of callbacks during the download process. That’s the price for

“asynchronousity.” You’ll implement the minimum set of required callback methods: -
connection:didReceiveData:, -connectionDidFinishLoading:, -
connection:didReceiveResponse:, and -connection:didFailWithError::

- (void)connection:(NSURLConnection *)connection didReceiveData:(NSData *)data
{
 [receivedData appendData:data];
}

- (void)connectionDidFinishLoading:(NSURLConnection *)connection
{
 [connection release];

 NSDictionary *response;
 NSString *errorString = nil;

 response = [NSPropertyListSerialization
 propertyListFromData:receivedData
 mutabilityOption:NSPropertyListImmutable
 format:NULL
 errorDescription:&errorString];
 [receivedData release];

 if (!response) {
 // Handle the error
 [errorString release];

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green 59

 return;
 }
 // Do something with response
}

- (void)connection:(NSURLConnection *)connection
didReceiveResponse:(NSURLResponse *)response
{
 [receivedData setLength:0];
}

- (void)connection:(NSURLConnection *)connection didFailWithError:(NSError *)error
{
 [connection release];
 [receivedData release];
 // Notify about the error
}

In the -connection:didReceiveData: method, you’re being passed the most recently

downloaded data, which you simply append to whatever is already: in the receivedData
instance variable.

After all data has been downloaded, :you receive the -connectionDidFinishLoading:
call, which gives you a chance to check the server response and clean up. You’re

copying the receivedData into the response variable as an NSDictionary using the

NSPropertyListSerialization class method. And you’re releasing the connection and

receivedData objects. That was the other example I wanted to give on how to very easily

tuck a server response into a native Cocoa object structure. It saves you from parsing

with NSScanner, NSXMLParser, or the like.

The -connection:didReceiveResponse: call c:an be received multiple times during a

connection and most often occurs at server redirects. Each time this happens, any

previously received data should be discarded.

Lastly, -connection:didFailWithError: will be called if an error occurs during the

connection. You should release the memory related to the connection and notify the

relevant controllers, for instance, by using key/value observation (KVO), notifications, or

callbacks.

This is a typical pattern for using NSURLConnection, and even though it’s more code than

the +dictionaryWithContentsOfURL: one-liner, it’s still a modest amount, and it gives

you a clean encapsulation of the various outcomes of the connection.

Next I’ll show you how to deal with the request on the server.

On the Server
When the move is being sent from the device to the server as just illustrated, you’ll want

to update the game in the datastore by appending the move to it. You therefore use the

HTTP PUT method for the request. In the main.py file, a PUT request gets passed to the

put() method:

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green 60

def put (self):
 game = Game.get (self.request.get ('key'))
 game.moves.append (self.request.get ('move'))
 game.put ()
 template_values = {'game': game, 'success': True}
 path = os.path.join (os.path.dirname (__file__), 'move.plist')
 self.response.out.write (template.render (path, template_values))

In this method, you append the move to the game’s list of moves and return another

property list to the client. This is the list that ends up as an NSDictionary in the response
variable in the previous listing using the

+propertyListFromData:mutabilityOption:format:errorDescription: call.

For the sake of completeness, the move.plist template file on the server looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>key</key>
 <string>{{ game.key }}</string>
 <key>success</key>
 {% if success %}
 <true/>
 {% else %}
 <false/>
 {% endif %}
</dict>
</plist>

Note how you come from the native Python success boolean to the property list <true/>
or <false/> version. As per the data/representation separation, the put() method

shouldn’t have to deal with native Cocoa data types, because the next request could

possibly come from a non-Cocoa-aware client. The Cocoa-specific Django templates

deal with the conversion from model to client. In Model/View/Controller lingo, you can

regard the template as a controller.

I have to repeat myself by saying that you shouldn’t just pass a game key to the server

like in the previous examples. It would be way too easy for a hacker to guess other

players’ game keys and add arbitrary moves to them. As a minimum, you should provide

your e-mail address as well and have the server code look up the game on both fields,

assuming it would be quite hard for somebody to guess both the game key and the

player in turn’s e-mail address (except for your opponent, that is). But even better, you

should authenticate the user and communicate via a secure, encrypted connection. I’ll

leave that as an exercise for you, once you have all the other pieces in place.

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green 61

Summary
In this chapter, you took the step from a clean slate to a fully functional client/server

solution ready to being deployed on Google’s industry-leading platform. Admittedly, it’s

a very simplified solution, but it contains the components and design principles you’d

use in a polished App Store application that’s available to millions of iPhone OS users.

What was most surprising to me when I first got the core functionality up and running is

the small amount of code that’s needed to achieve even large and complex tasks. This

is mainly because of the richness of the Python scripting language and the way Google

has embraced it in its App Engine service. Coupled with the solid Cocoa framework, this

chapter dealt with some of the most exciting and powerful technologies available.

It sure is an exciting time to be an iPhone OS user—let alone an iPhone OS developer.

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green 62

63

Tom Harrington
Company: Atomic Bird, LLC

Location: Colorado Springs, CO

Former Life As a Developer: Before switching to iPhone development I spent
several years as an independent Mac OS X software developer, which followed
previous experience developing Linux and embedded system software. My Mac
experience goes back to the earliest days of Mac OS X, before Xcode was called
Xcode and before PowerBooks started being made of metal. My experience leads
me to work “close to the metal”, and even though I was writing Objective-C and
using Cocoa on Mac OS X, my applications all ended up being various
background services and utilities. Working on the iPhone I’ve expanded my
repertoire to cover user interface design as well.

Life as an iPhone Develooper: I’ve mainly worked as an iPhone contractor,
developing applications for clients. The following are currently in the web store
or awaiting approval:

AirMe, a camera app that uploads to numerous photo-sharing
sites.

The iPhone app for MSN’s photoWALL web site.

Mocapay, which takes the place of store gift cards, enabling
users to make purchases with their phone instead of with a
separate card.

64

On my own I wrote an iPhone app for KRCC, a public radio station in Colorado
Springs, CO. This app plays the station’s audio streams and includes an
auto-updating program schedule, and is the basis for the code I present in
this chapter.

What's in This Chapter: The chapter describes my ultimately successful quest to
write an iPhone app that could play streaming internet audio with a custom user
interface. Along the way I review various approaches to audio playback,
including playing system sounds, using AVAudioPlayer and Audio Queue
Services, Finally I settle on Audio File Stream Services as the best solution.
Sample code is included for each technique. Along the way are diversions into
useful related details like how to download data from a web site.

Key Technologies:

Core Audio

Audio File Stream Services

Audio Queue Services

NSURLConnection

65 6565

 Chapter

Audio Streaming: An
Exploration into Core
Audio
I’ve been a Mac OS X developer for several years. But I’m always looking for something

new and interesting, so when the iPhone SDK was announced in March 2008, I jumped

at the opportunity.

And so did everyone else, or so it seemed.

I was also on the lookout for a new way of doing business. For the previous five years I

had worked as an independent software developer, writing Mac software that I sold

directly to end users. Back in March 2008 I wasn’t sure how this would play out in the

iPhone world, so when I saw a local company looking for an iPhone contractor, I

contacted them immediately. With the similarities between iPhone and Mac

development, who could be better placed than an experienced Mac developer? Moving

on Internet time, I was on the job within a couple of days.

And that’s when I really started to think that everyone else in the world had also jumped

at the opportunity. To deploy software to an iPhone—even your own—you need to have

a paid-up membership in Apple’s iPhone developer program. Apple appeared to be

overwhelmed with applicants. After a few weeks, my membership had still not come

through, and my client decided there wasn’t much point continuing until we could test

their app on a real phone.

I wanted to continue exploring the platform, though, so I started looking for an

interesting project I could pursue while waiting for Apple’s gears to turn.

3

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 66

Hey, I Could Write an App to Play Music
Simultaneously, my music library continued its growth.

I’m the kind of person whose iTunes library is so big that it requires its own external hard

drive. I rely on sophisticated schemes involving multiple iTunes smart playlists just to get

a reasonable subset of iTunes music onto my iPhone. I use Last.fm, Pandora, and any

other interesting online music site I can find.

I’m that guy, the one who won prizes several years in a row at Apple’s Worldwide

Developer Conference for recognizing songs played during the “Stump the

Experts” event.

And so it was that my attention turned to a music search web site known as SeeqPod. It

had a search engine that would find playable tracks available on the Internet and play

them in a web browser.

It also had a simple REST-based API that third-party apps could use to make queries

that returned URLs of tracks to play. I had found my project.

Talking to SeeqPod from an application would involve sending requests to its server,

parsing the XML response, presenting these results to the user, and playing audio files

found at URLs in the response.

I had covered all that in previous projects—except for the part about actually playing

the audio.

The URLs I would be dealing with mostly pointed to MP3s. Though I had more than my

share of MP3s in my iTunes library and though I can read music, the technical aspects

of audio encoding were mostly a black box to me. I’d have to figure that out to make this

idea work.

MPMoviePlayerController: Hey, This Is Easy! Right?
It seemed that this capability must be included in the extensive APIs that made up the

iPhone SDK. I had heard talk of something called Core Audio, but to my untrained eyes,

it gave the impression of being a dark, complex system, probably overkill for my fairly

simple needs. I just wanted to play audio files; it’s not like I was planning to write the

next GarageBand, so surely there must be a simpler way.

And there is, sort of. Looking through the documentation, I came across the

MPMoviePlayerController class. It’s designed to be a very simple class to play movies at

a given URL. It’s extremely simple to use.

To use MPMoviePlayer controller, all you need to do is give it a URL and tell it to start

playing. It sends out notifications at times while playing, and one,

MPMoviePlayerPlaybackDidFinishNotification, is useful to avoid leaking the

MPMoviePlayerController object. This is almost the entire API, leaving out only minor

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 67

details such as setting the background color. Listing 3-1 shows a simple example (the

only kind for this class, really).

Listing 3-1. Using MPMoviePlayerController

- (IBAction)playMovie:(id)sender
{
 NSURL *movieURL = …;
 // Create the movie player object
 MPMoviePlayerController *theMovie = [[MPMoviePlayerController alloc] ➥
 initWithContentURL:movieURL];
 // Listen for notifications that the player has finished
 [[NSNotificationCenter defaultCenter] addObserver:self ➥
 selector:@selector(movieFinished:) ➥
 name:MPMoviePlayerPlaybackDidFinishNotification ➥
 object:theMovie];
 // Start playing
 [theMovie play];
}

- (void)movieFinished:(NSNotification *)note
{
 MPMoviePlayerController *theMovie = [note object];
 // Remove self from future notifications
 [[NSNotificationCenter defaultCenter] removeObserver:self ➥
 name:MPMoviePlayerPlaybackDidFinishNotification object:theMovie];
 // Release the player to avoid leaking memory
 [theMovie release];
}

The MPMoviePlayerContoller takes care of putting itself on the screen, downloading the

movie, buffering it as needed, and removing itself from the screen once playback

finishes. If you’ve ever used the iPhone’s YouTube application,

MPMoviePlayerController provides the same user experience when playing a video,

including the playback and volume controls.

Movies generally include sound, so I wondered if it would play a music-only file. And it

does. It plays them in a simple but rather dull full-screen view, as shown in Figure 3-1,

which is not exactly ideal. But it’s so simple to use that it’s tempting to make

compromises with it in order to get off easy with the audio playback.

Figure 3-1. MPMoviePlayerController’s user interface when playing an audio-only file.

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 68

At this point, I felt like I was on easy street, because I had knocked out the only part of

the app that looked like it might be difficult and the day wasn’t even half over. I

proceeded to implement a basic search UI and a back end to send search requests and

parse the results. And it was good. For a little while, anyway.

Before long, the app was crashing, badly enough that I needed to force-quit the iPhone

Simulator (because I was still not part of the iPhone developer program). I started my

detective work to find out why. I soon found that certain URLs would reliably crash the

application when MPMoviePlayer attempted to play them. In most cases, I’d expect

programmer error, so I carefully reviewed what I was doing. I found nothing that I could

be sure was wrong. I tried the URLs in Safari and at the command line with curl, but

that seemed OK. In fact, if I downloaded the audio file to my Mac and started

MPMoviePlayerController with a file:// URL, everything seemed fine.

I looked in the phone’s system console to see whether there were any clues. It was

pretty unequivocal:

Apr 11 15:24:21 atomicbird SimpleMediaPlayerAudio[15153]: -[AVController ➥
failPlayback:reason:notifyClient:]: item with path [omitted] failed to ➥
open with err -12784
Apr 11 15:24:21 atomicbird SimpleMediaPlayer[15153]: ERROR!!! Please file a Radar!!!

I’m always hesitant to blame my app crashes on the underlying frameworks, because

they’re almost always my fault. But if the framework specifically asks me to file a bug

against it, who am I to argue? So, I filed a bug and waited. In the meantime, Apple

apparently found my application behind a file cabinet somewhere and admitted me to

the iPhone developer program.

Several weeks and a couple of iPhone SDK betas later, the bug was reported as fixed. I

rejoiced and went back to my audio experimentation. I soon found that, although

MPMoviePlayer seemed more reliable than in the past, it still exhibited the same

symptoms at times—not always, and not even most of the time, but it still was way too

often for me to keep using it. And besides, I wasn’t thrilled with the UI.

Finding a Better Approach
Clearly something else was needed. I had initially latched on to

MPMoviePlayerController because it was so easy to use that I hardly needed to think.

Other options existed, and in order to evaluate them I had to clarify my needs:

I needed a solution that would play audio files as they downloaded. I

didn’t want to make the user sit and wait while I downloaded an entire

MP3 to a file before I started playing it. MPMoviePlayerController
would start playing as soon as it had enough bytes buffered, and I

wouldn’t consider anything with unnecessary extra delays.

The solution had to handle a variety of audio formats, including those

likely to be found by SeeqPod searches.

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 69

Ideally it should be easy to use, because that’s how it’s supposed to

be with Cocoa Touch, right? This was more of a goal than a hard

requirement, because I wasn’t sure where the search might lead.

Browsing the documentation, I found several likely candidates.

The System-Sound Way
The first candidate was AudioServicesPlaySystemSound(), which I came across in

Apple’s Audio & Video Coding How-To’s documentation. It said right there that this

function is intended for only sounds of 30 seconds or less, but it gave me the possibly

mistaken impression this was not a hard limit. It’s almost as easy to use as

MPMoviePlayerController, as Listing 3-2 shows.

Listing 3-2. Using AudioServicesPlaySystemSound

// Set up a system sound object
NSString *url = … // URL pointing to an audio file
SystemSoundID mySoundID;
AudioServicesCreateSystemSoundID((CFURLRef)url, &mySoundID);

// Play the system sound object. This function call will return immediately.
AudioServicesPlayAlertSound(mySoundID);

// Clean up the system sound object (do this later, for example in –dealloc).
AudioServicesDisposeSystemSoundID(mySoundID);

Aside from its simplicity, though, it didn’t serve my needs. It’s certainly simple, but it’s

limited to loading sounds from file URLs, which meant that I’d have to download a full

track before playing it. I also found that it was limited to playing only WAV, AIFF, and

CAF files, and it wouldn’t decode MP3s or other compressed formats. I didn’t bother

finding out whether the 30-second limit was real or just a suggestion, because I was

already looking for an alternative.

AVAudioPlayer: The Not-Available-in-Beta Way
If you’re looking through the iPhone SDK documentation today, the AVAudioPlayer class

looks like a potential candidate for my needs. It drops the 30-second limit of system

sounds, and it’ll play a much wider variety of formats.

I didn’t investigate AVAudioPlayer, though, not because of any technical limitations but

because of a notice you might miss at the top of its class documentation—the part that

says “Available in iPhone OS 2.2 and later.” By this time I was working on a late beta of

iPhone OS 2.0. Developers working on jail-broken phones had access to AVAudioPlayer
and much more from APIs that were present but undocumented and unsupported. I had

ambitions of getting into the App Store eventually, though, and Apple wouldn’t have

been very likely to let me get away with it. Apps have been rejected from the store for

much less.

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 70

In the interest of completeness, though, Listing 3-3 demonstrates a simple use of

AVAudioPlayer. In this case, there’s a lot more to the API than the listing shows, but the

basics of setting up the player and getting it going are quite similar to previous

examples. If AVAudioPlayer meets your needs, you’ll find it offers a rich API for control

and monitoring of audio playback.

Listing 3-3. Simple AVAudioPlayer Example

- (IBAction)play:(id)sender
{
 NSURL *url = … // Valid file:// URL
 NSError *error = nil;
 // Create the player and set its delegate to self
 audioPlayer = [[AVAudioPlayer alloc] initWithContentsOfURL:url error:&error];
 audioPlayer.delegate = self;
 // Check that the player was created before playing
 if ((audioPlayer == nil) || (error != nil)) {
 [audioPlayer release];
 } else {
 [audioPlayer play];
 }
}

// AVAudioPlayerDelegate method
- (void)audioPlayerDidFinishPlaying:(AVAudioPlayer *)player successfully:(BOOL)flag
{
 // Don’t leak memory
 [audioPlayer release];
}

Just to be sure I hadn’t missed an easy fix, I tried using the code from Listing 3-3 with

an HTTP URL. It turns out they’re not kidding about using only file URLs. The

initWithContentsOfURL:error: method returned nil, and the error parameter indicated

initialization had failed with a “file not found” error.

As a result, AVAudioPlayer didn’t meet my needs even if it had been available when I

started work on this project. It gets tantalizingly close, covering the audio formats I

needed and offering detailed control over audio playback. The lack of any way to play

downloaded data before the data was complete makes it unsuitable for my situation.

As an inveterate hacker, I tried to trick AVAudioPlayer into doing what I needed. In

addition to initialization from a URL, AVAudioPlayer can be initialized from an NSData
object. I decided to try the following experiment:

1. Start with a URL pointing to an MP3, and begin downloading it.

2. As bytes arrive, append them to an NSMutableData object (which is a

subclass of NSData and should therefore be acceptable to

AVAudioPlayer).

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 71

3. When enough bytes have been downloaded, create an AVAudioPlayer

and start it playing. If “enough bytes” means I’ve buffered enough data,

the player should be able to continue playing bytes that were available

even as I was simultaneously adding new bytes at the end of the

NSMutableData object.

The drawback to this scheme would be that the entire audio file would end up being

stored in memory by the time downloading was complete. But my gut feel was that the

kind of songs I was likely to be playing would not be so large as to make this a problem.

I’d end up having an NSMutableData object containing a few megabytes of data by the

time I was done, but when I was done, I’d just release it and move on.

Listing 3-4 outlines the scheme.

Listing 3-4. Attempting to Fool AVAudioPlayer

// In the class's interface
NSURLConnection *audioConnection;
NSMutableData *audioData;
AVAudioPlayer *audioPlayer;

// In the class's implementation
// See if we can feed NSURLConnection data into an AVAudioPlayer
- (IBAction)playData:(id)sender
{
 NSURL *url = … // an HTTP URL pointing to an MP3
 audioData = [[NSMutableData alloc] init];
 audioConnection = [[NSURLConnection alloc] ➥
 initWithRequest:[NSURLRequest requestWithURL:url] ➥
 delegate:self];
}

- (void)connection:(NSURLConnection *)connection didReceiveData:(NSData *)data
{
 // Add the new data to the audioData object
 [audioData appendData:data];
 if (audioPlayer == nil) {
 NSError *error = nil;
 // Attempt to create the player with the available data
 audioPlayer = [[AVAudioPlayer alloc] initWithData:audioData ➥
 error:&error];
 if ((audioPlayer == nil) || (error != nil)) {
 NSLog(@"Error creating player: %@", error);
 [audioPlayer release];
 } else {
 [audioPlayer play];
 }
 }
}

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 72

It didn’t work out as expected, though. The network connection received 1,440 bytes at

a time, so initially the audio player couldn’t be created because there weren’t enough

bytes in the data object. Buffering wouldn’t make the situation any better though,

because AVAudioPlayer reads audio file length from the audio file header and then

crashes if it can’t read to the end. The end result is that the only buffer that’s big enough

is one that’s at least as big as the file being played, which effectively means that playing

during download is impossible.

DOWNLOADING DATA WITH NSURLCONNECTION

I’ve written several iPhone applications to date, and every one of them has needed to connect to a web site
at some point, either to upload data or to download data.

There’s more than one way to download data from a URL on the iPhone, but I’ve found
NSURLConnection to hit the sweet spot between ease of use and power. It offers two basic schemes,
synchronous and asynchronous downloading.

The synchronous approach is easy but, being synchronous, blocks execution until the connection is
finished. That makes it suitable only for use on a background thread, because blocking the main thread
means locking up your user interface. That’s not a good idea even on a fast connection. If the iPhone is in
an area with EDGE coverage, there’s a good chance of the connection taking so long that users will think
the app has crashed.

The asynchronous approach solves this by dealing with the network in the background and notifying you of
progress through delegate methods. In effect, it gives you the advantage of using a background thread but
does so transparently. You start it up and then go about whatever other business needs taking care of, and
it’ll call you back when anything interesting happens. Listing 3-5 shows how to begin the process.

Listing 3-5. Starting a Download with NSURLConnection

// In the class interface

NSMutableData *receivedData;

NSURLConnection *myConnection;

// In the class implementation

- (void)startDownload

{

 NSURL *url = …; // Valid URL

 NSURLRequest *request = [NSURLRequest requestWithURL:url];

 // Create a data object to hold data returned by the connection

 receivedData = [[NSMutableData alloc] init];

 // Create the connection, which will start loading immediately

 myConnection= [[NSURLConnection alloc] ➥
 initWithRequest:request ➥
 delegate:self];

}

Upload data, if any, would be attached to the NSURLRequest object, which is a lot more flexible
than I’m demonstrating here. It has a mutable subclass, aptly named NSMutableURLRequest, which has
methods for setting the HTTP method, request body, and header fields. By using NSMutableURLRequest,
you can extend this sample code to work with a wide variety of web services.

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 73

The minimal set of delegate methods covers those that receive data from the connection and those that
are called when the connection has finished or failed. Listing 3-6 shows a simple implementation of these
methods. See the NSURLConnection class documentation for information on others.

Listing 3-6. Delegate Methods for NSURLConnection

// NSURLConnection delegate method

- (void)connection:(NSURLConnection *)connection didReceiveData:(NSData *)data

{

 // This method may be called repeatedly

 [receivedData appendData:data];

}

// NSURLConnection delegate method

- (void)connectionDidFinishLoading:(NSURLConnection *)connection

{

 // This method will be called once, if no errors occurred.

 //All data has been received and the connection is closed.

 // Call any methods that process the received data (e.g. XML parsing) here.

 [receivedData release];

 receivedData = nil;

 [myConnection release];

 myConnection = nil;

}

// NSURLConnection delegate method

- (void)connection:(NSURLConnection *)connection

 didFailWithError:(NSError *)error

{

 // This method is called once, if an error occurred.

 // The “error” argument contains information about the error.

 [receivedData release];

 receivedData = nil;

 [myConnection release];

 myConnection = nil;

}

In addition, Listing 3-7 shows an additional delegate method that can be used to retrieve the HTTP status
code, if the URL scheme was HTTP. The response argument is declared as an NSURLResponse object, but
if the protocol is HTTP, it will actually be a subclass, NSHTTPURLResponse, which contains the HTTP
status. You might prefer to allocate the NSMutableData object in this method instead of when starting
the connection and do so only if the status code indicates HTTP success (200). An empty NSMutableData
object takes up so little space that it’s more a matter of style than anything else.

Listing 3-7. Getting the HTTP Status

// NSURLConnection delegate method

- (void)connection:(NSURLConnection *)connection ➥
didReceiveResponse:(NSURLResponse *)response

{

 [receivedData setLength:0];

 // See if it’s an NSHTTPURLResponse and typecast it if it is.

 if ([response isKindOfClass:[NSHTTPURLResponse class]]) {

 NSHTTPURLResponse *httpResponse = (NSHTTPURLResponse *)response;

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 74

 NSLog(@"HTTP Status: %d", [httpResponse statusCode]);

 }

}

Doing It the Cowboy Way with Core Audio
Using MPMoviePlayer or one of the other APIs I had tried would have been the easy way.

But as the legendary Ranger Doug would say, “It wouldn’t be the cowboy way.” Clearly,

it was time for Core Audio. All along it had been lurking in the SDK, an API so powerful I

dreaded I might hurt myself trying to use it.

This was going to be a learning experience, and I hoped it wouldn’t be the kind where

you learn not to do something again after inciting a disaster. Not really knowing where to

begin, I opened up Xcode’s documentation viewer and typed Core Audio into the

search field.

The results were kind of overwhelming at first. I tried to start with the simple stuff, but

before I had finished the first page of “Core Audio Overview,” it was already talking

about setting up a Core Audio–based recording studio in a diagram containing about 15

different blocks, none of which I had the first clue about. After spending some time

exploring the documentation, skipping stuff I didn’t understand or that seemed not

relevant to my project, I decided that the most likely option was something called Audio

Queue Services. The documentation for this API described a scheme for playing audio

files via Core Audio, so I started following along, implementing my own code to parallel

the documented scheme.

Getting Halfway There: Audio Queue Services
Reading though the documentation and the sample code, I gradually realized that the

Audio Queue Services approach was designed around reading audio from a file, as with

previous methods I’d tried. I pressed on anyway. The sample code didn’t seem to grab

the entire audio file at once—instead, it used a collection of buffers that would be

successively filled with part of an audio file and then played. By cycling through the

buffers, the entire file would gradually be played. That sounded like a promising

approach, since I expected that once I knew what I was doing, I could modify the code

to take data from the network instead of from a file.

The general approach is a repeating cycle in which you read a chunk of audio data from

a file into a buffer and add it to an audio queue. The audio queue plays the buffer and

then calls a callback function, which repeats the process until no more file data remains.

Figure 3-2 illustrates this cycle.

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 75

Figure 3-2. Audio Queue Services playback cycle

Apple provides a sample application that illustrates this approach, which is called

SpeakHere.

A WORD ON PROGRAMMING LANGUAGES

In the course of discussions with other iPhone developers, I’ve met a surprising number of people who
don’t simply prefer to stick to Objective-C for iPhone development but who regard pure C APIs with
something approaching fear and dread. If that’s not you, fantastic, but it’s an attitude that I’ve encountered
much more than I would have expected.

For some people, this feeling goes so far that they’d prefer not to do something if using C is the only way.
I’m not sure what the source of this feeling is, but if you’re going to use Core Audio, you’ll need to
recognize one very important detail: Core Audio is entirely a C-based API. No Objective-C is involved.

Of course, Objective-C is a proper superset of C, so you already know C at least as well as you know
Objective-C. You will, of course, have to use C-style arrays instead of NSArray, and you’ll encounter
malloc/free-style memory management. Not to mention potentially using pointers in new and
unfamiliar ways. The callback function shown in Figure 3-2 is a C function that you would implement. But
you can and should use Objective-C for most other aspects of your application, and Core Audio code will
integrate well.

If this sounds dangerous, error prone, or just distasteful, relax. You can do this. There is no monster hiding
under this bed.

BEWARE THE SIMULATOR

If you’ve done any significant amount of iPhone development work, you’ve probably run across cases
where the iPhone Simulator differs from working on a real iPhone or iPod touch. Often it’s something
obvious like the lack of a camera or the fact that the simulator’s Core Location data always shows the
current location to be at Apple’s headquarters.

With Core Audio, it’s less obvious but no less important. Developing Core Audio code on the iPhone
Simulator is a recipe for frustration and confusion, because although code often fails to work as expected,
it doesn’t fail in a manner that’s immediately obvious as being a simulator issue. You may find, for
example, that a key Core Audio function call never returns, for no readily apparent reason, and that while

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 76

it’s busy doing who-knows-what it also draws 90 percent or more of your Mac’s CPU. Application bugs are
often your own fault, so it’s natural to try to analyze your code to see where you went wrong.

But then you try the same code on a phone, and it just works.

I’ve filed bugs with Apple about this, but as of this writing, they’re unresolved in any released version of
the iPhone SDK. With any luck the situation will improve in a future release. Until then, if you choose to
work in the simulator and you find that your Core Audio code is not working quite as expected, try working
on a real device first before spending too much time trying to find the bug.

Listing 3-8 shows a class declaration for a class that uses Audio Queue Services to play

audio files. A number of instance variables are necessary to track audio format and

maintain the audio queue. Property declarations are a matter of style, but some kind of

setter and getter methods will be useful later.

Listing 3-8. Class Declaration for a Class Using Audio Queue Services

@interface SimpleAQPlayViewController : UIViewController {
 AudioStreamBasicDescription mDataFormat;
 AudioQueueRef mQueue;
 AudioQueueBufferRef mBuffers[kNumberBuffers];
 AudioFileID mAudioFile;
 UInt32 bufferByteSize;
 SInt64 mCurrentPacket;
 UInt32 mNumPacketsToRead;
 AudioStreamPacketDescription *mPacketDescs;
 BOOL mIsRunning;
}

@property (readwrite) UInt32 mNumPacketsToRead;
@property (readwrite) AudioFileID mAudioFile;
@property (readwrite) AudioStreamPacketDescription *mPacketDescs;
@property (readwrite) SInt64 mCurrentPacket;
@property (readwrite) AudioQueueRef mQueue;
@property (readwrite) BOOL mIsRunning;

- (IBAction)play:(id)sender;

The play method to start audio playback is designed to be the target of a button or

other user interface item. Listing 3-9 shows its implementation. There are a lot of steps,

but it’s not as complicated as it might look. The following are the key details to be aware

of:

Core Audio has its own API for opening, reading, and closing files. This

starts with AudioFileOpenURL. The third argument to this call is a hint

about the file type. Usually, AudioFileOpenURL can work out the file

type for itself, so you pass 0 to indicate you’re not giving it any hints. If

the code was intended to use a specific file type, you could pass a

format-specific value here, such as kAudioFileMP3Type or

kAudioFileAIFFType. Other Core Audio file management calls will

appear later.

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 77

AudioQueueNewOutput() creates the playback queue. The queue

doesn’t read the file directly. Instead, the second argument,

AQOutputCallback, is the callback function shown in Figure 3-2. It will

read data from the file into buffers and add those buffers to the queue.

The third argument to AudioQueueNewOutput() is an argument to the

callback function, which can be any data you find useful in that

function. In this case, I’m passing self so that the callback function

will be able to make Objective-C method calls on my audio playback

class.

You need to set the buffer size used when reading data from the file.

Choosing a buffer size is a balancing act. Buffers that are too small will

mean the callback function gets more calls, which means more time

spent filling buffers. In an extreme case, the callback could be called

so frequently that audio playback would stutter. At the other extreme,

larger buffers require more memory, and memory is always at a

premium on the iPhone. In this case, I used a utility method,

DeriveBufferSize(), to find the right buffer size for a certain amount

of time, as determined by the audio format. It’s also reasonable to just

use a fixed buffer size, if you expect to deal only with certain

encodings. Deriving sizes on the fly allows more flexibility, but greater

flexibility is not always necessary.

Audio data needs to be handled slightly differently depending on

whether it is encoded with a constant bit rate (CBR) or a variable bit

rate (VBR). VBR packets may vary in size, so Code Audio uses packet

descriptors to track the size and other information about individual

packets. CBR packets are all the same, so this is not necessary. It’s

important to note that Core Audio will treat compressed formats such

as MP3 as VBR data even if they are encoded at a constant bit rate.

Uncompressed formats like AIFF will be treated as CBR data.

The play method calls the callback function directly before starting

playback to prime the queue with its initial set of buffers.

Playback begins with the call to AudioQueueStart(). It continues only

so long as the application’s run loop is executing. If you play audio on

the main thread of an iPhone app, this happens automatically.

Background threads don’t automatically have a run loop, though, so if

you use a background thread, you’d need to create your own run loop

for playback to continue beyond the initial priming of the queue.

Listing 3-9. Starting Audio Playback Using Audio Queue Services

- (IBAction)play:(id)sender
{
OSStatus result;

 // Open the audio file from an existing NSString path
 NSURL *sndFileURL = [NSURL fileURLWithPath:path];

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 78

 AudioFileOpenURL((CFURLRef)sndFileURL, kAudioFileReadPermission, 0, &mAudioFile);

 // Get the audio format
 UInt32 dataFormatSize = sizeof(mDataFormat);
 AudioFileGetProperty(mAudioFile, kAudioFilePropertyDataFormat,
 &dataFormatSize, &mDataFormat);

 // Create the playback queue
 AudioQueueNewOutput(&mDataFormat, AQOutputCallback, self,
 CFRunLoopGetCurrent(), kCFRunLoopCommonModes, 0, &mQueue);

 // Get buffer size, number of packets to read
 UInt32 maxPacketSize;
 UInt32 propertySize = sizeof (maxPacketSize);
 // Get the theoretical max packet size without scanning the entire file
 AudioFileGetProperty(mAudioFile, kAudioFilePropertyPacketSizeUpperBound,
 &propertySize, &maxPacketSize);
 // Get sizes for up to 0.5 seconds of audio
 DeriveBufferSize(mDataFormat, maxPacketSize, 0.5, &bufferByteSize,
 &mNumPacketsToRead);

 // Allocate packet descriptions array
 bool isFormatVBR = (mDataFormat.mBytesPerPacket == 0 || ➥
 mDataFormat.mFramesPerPacket == 0);
 if (isFormatVBR) {
 mPacketDescs = (AudioStreamPacketDescription*) ➥
 malloc (mNumPacketsToRead * sizeof (AudioStreamPacketDescription));
 } else {
 mPacketDescs = NULL;
 }

 // Get magic cookie (for compressed formats like MPEG 4 AAC)
 UInt32 cookieSize = sizeof(UInt32);
 OSStatuscouldNotGetProperty = AudioFileGetPropertyInfo(mAudioFile,
 kAudioFilePropertyMagicCookieData, &cookieSize, NULL);
 if ((couldNotGetProperty == noErr)&& cookieSize) {
 char* magicCookie = (char *) malloc (cookieSize);
 AudioFileGetProperty(mAudioFile, kAudioFilePropertyMagicCookieData,
 &cookieSize, magicCookie);
 AudioQueueSetProperty(mQueue, kAudioQueueProperty_MagicCookie,
 magicCookie, cookieSize);
 free(magicCookie);
 }

 // Allocate and prime audio queue buffers
 mCurrentPacket = 0;
 for (int i = 0; i < kNumberBuffers; ++i) {
 AudioQueueAllocateBuffer(mQueue, bufferByteSize, &mBuffers[i]);
 AQOutputCallback(self, mQueue, mBuffers[i]);
 }

 // Start and run queue
 mIsRunning = true;

 AudioQueueStart(mQueue, NULL);
}

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 79

The function in Listing 3-10 is the callback function shown in Figure 3-2 and attached to

the audio queue in Listing 3-9. The purpose of this function is to read data from the

audio file into a buffer and then add it to the audio queue. Or if no more data is available

(as indicated by the value returned by AudioFileReadPackets in its numPackets
argument), arrange to stop playback. Data is read using the second part of Core Audio’s

file API, AudioFileReadPackets().

Listing 3-10. Audio Queue Services Callback Function

void AQOutputCallback(void *userData, AudioQueueRef inAQ, ➥
 AudioQueueBufferRef inBuffer) {

 SimpleAQPlayViewController *self = (SimpleAQPlayViewController *)userData;
 UInt32 numBytesReadFromFile;
 UInt32 numPackets = self.mNumPacketsToRead;

 // Read up to numPackets packets from the file.
 AudioFileReadPackets (self.mAudioFile, false, &numBytesReadFromFile, ➥
 self.mPacketDescs,self.mCurrentPacket, ➥
 &numPackets, inBuffer->mAudioData); ➥

 if (numPackets > 0) {
 // Set the byte count to the number of bytes actually read from the file.
 inBuffer->mAudioDataByteSize = numBytesReadFromFile;
 // Add the buffer to the audio queue.
 AudioQueueEnqueueBuffer(self.mQueue, inBuffer,
 (self.mPacketDescs ? numPackets : 0), self.mPacketDescs);
 self.mCurrentPacket += numPackets;
 } else {
 // If no packets were read, stop the queue.
 [self stopPlaying];
 }
}

The callback function also illustrates a way of bridging the gap back to the audio

playback class. Since you previously called AudioQueueNewOutput with self as the

callback function argument, a reference to the object is passed to the callback as

userData. By typecasting this to a pointer to the audio playback class, it’s possible to

make Objective-C method calls to that object from the C callback function. This is why it

was important to have getter and setter methods (even synthesized ones) for some of

the instance variables declared in Listing 3-8. In this callback, you need to be able to

access these variables from outside the scope of the class interface.

Listing 3-11 shows the utility function used to determine buffer size in the play method.

Listing 3-11. Determining an Optimum Buffer Size

void DeriveBufferSize(AudioStreamBasicDescription ASBDesc,
 UInt32 maxPacketSize,
 Float64 seconds,
 UInt32 *outBufferSize,
 UInt32 *outNumPacketsToRead) {

 // Set limits on buffer size. Max size = 128kBmin size = 16kB
 static const int maxBufferSize = 0x20000;
 static const int minBufferSize = 0x4000;

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 80

 if (ASBDesc.mFramesPerPacket != 0) {
 Float64 numPacketsForTime = ASBDesc.mSampleRate / ➥
 ASBDesc.mFramesPerPacket * seconds;
 *outBufferSize = numPacketsForTime * maxPacketSize;
 } else {
 *outBufferSize = MAX(maxBufferSize, maxPacketSize);
 }

 if (*outBufferSize > maxBufferSize && *outBufferSize > maxPacketSize)
 *outBufferSize = maxBufferSize;
 else {
 if (*outBufferSize < minBufferSize) {
 *outBufferSize = minBufferSize;
 }
 }
 *outNumPacketsToRead = *outBufferSize / maxPacketSize;
}

Finally, Listing 3-12 shows the stop function called by the callback function once all

audio data has been read. This method gets called from the callback function as soon

as AudioFileReadPackets indicates that no more audio data is available. When that

happens, there may still be unplayed buffers in the queue, so you don’t want to stop

playback immediately. Fortunately, AudioQueueStop() deals with this—passing false as

the second argument indicates that playback should not stop until all buffers have been

processed.

You do know that you’ve read all the available audio data, though, so you can call

AudioFileClose(), the last part of Core Audio’s file API, to close the file.

Listing 3-12. Stopping Audio Queue Services Playback

- (void)stopPlaying
{
 AudioQueueStop(self.mQueue, false);
 self.mIsRunning = false;

 // All data has been read from the file, so close it
 AudioFileClose (mAudioFile);
}

This was great. I now had code that would play any audio file supported by the iPhone

with not a lot of code. It wouldn’t take over the user interface like

MPMoviePlayerController. And it looked like I was on the right track for streaming. True,

I was still tied to reading audio data from files, but I was only doing that as a way to get

audio buffers that I could feed into a queue. If I could arrange to get those buffers from a

network connection, I’d have achieved my goals for the project.

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 81

Getting the Rest of the Way There: Audio File Stream
Services
Taking raw data from a network connection and getting it into something playable by an

audio queue took me back to the iPhone SDK documentation. However, the

documentation was somewhat opaque, at least to me. I’m sure it’s great if you know a

thing or two about digital audio encoding, but if you’ve been following along from the

start, you know that I was not such a person. Audio File Stream Services is a Core Audio

API that’s designed for the case where you want to play audio but don’t have the entire

audio file available. I’d need to learn to use it.

I had what looked like a better option than the documentation, though. I attended

WWDC 2007, and I had the session videos. Looking through them, I found that there

had been a session covering exactly this topic—session 404, “Queueing, Streaming,

and Extending Core Audio.” I eagerly watched it and found that the API actually started

to make sense.

Some details were left out, though, with the expectation that attendees would refer to

the session’s sample code to fill in the details. I didn’t have the sample code, and it was

not available on Apple’s web site any more. To overcome this, I started a two-pronged

approach. First, from the session video, I knew which parts of the API I needed to puzzle

out into working code, so I went back to the documentation with renewed focus.

Second, I started a campaign of asking every developer I knew if they had the sample

code and would they please send me a copy if they did. Between e-mail, IRC, Twitter,

and face-to-face discussions, I eventually got my request passed along to a friend of a

friend who had the code. I now had everything I needed to complete the application.

Streaming audio is somewhat more complicated than playing a complete audio file,

because the lack of file data translates into a lack of information about what you’re

trying to play. You can’t create an audio queue until you know the exact audio format,

and you can’t know the audio format until you have enough of the file to read its

properties. But how do you know when that happens? Downloading an arbitrary number

of bytes and hoping for the best is not a good solution.

The solution involves two callback functions instead of the one you saw earlier. One of

them is called the property listener callback, because the audio stream calls it whenever

new property information is available. Properties can include things such as the audio

data format and the packet size, but the most useful one for streaming is the “ready to

produce packets” property, a flag that indicates all metadata has been read and that

audio data is available.

That’s when the second callback—the audio data callback—comes into play. The audio

stream passes audio packets to this callback, which bundles them up into buffers and

adds them to the audio queue.

The AudioFileStreamParseBytes() function is responsible for taking incoming raw data

and making sense of it, calling the two callback functions as necessary. The general flow

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 82

then is to read data, pass it to the parser, and receive audio data in your callback

functions. The callback functions will almost always be called multiple times as data is

received. Figure 3-3 illustrates how this operates once playback has started.

Figure 3-3. Playing streaming audio with Audio File Stream Services

Figure 3-3 also shows yet another callback, here called the post-play callback. As with

Audio Queue Services, you’re creating buffers of audio data that you then add to the

audio queue. Once a buffer has been played, though, it can’t be passed back to the

audio data callback, because it’s expecting audio packets from the parser. So, instead,

the audio queue passes the buffer to another callback function so that you can take care

of cleaning it up. You could choose to allocate new buffers on the fly and then release

the memory in this callback. This might tend to use a lot of memory, though, unless you

strictly limited the number of buffers that were permitted to exist at any one time. A

simple way to accomplish this is to preallocate a pool of buffers. The audio data

callback takes an existing buffer from the pool or blocks if none is available. When you

add a buffer to the audio queue, you mark it as being in use, and after it has been

played, you clear the “in-use” setting and return it to the pool.

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 83

An important consideration with this new callback is that Audio Queue Services will

invoke the callback on a separate thread, which is created to handle the actual

playback. Once playback completes, the post-play callback is called on this same

thread. Any code you include in the callback needs to be aware of the fact that it’s

running on a different thread than the rest of the code. You’ll use an NSCondition object

to synchronize threads and to safely handle the audio buffer pool.

Listing 3-13 shows the interface for a simple audio streaming class. It starts with

declarations for the number and size of buffers. In this case I’m using fixed values

instead of using the utility function from earlier to try to optimize the sizes. This means

that I don’t know exactly how much playback time will be contained in each buffer, but it

also means that I’ll know exactly how much memory I’m using for buffers. I could just

rely on the DeriveBufferSize() function from earlier imposing its maximum size limits. In

the constrained iPhone environment, I prefer to make the memory requirements as

predictable as possible, and fixed sizes make that possible. If you’d like the same

predictability but aren’t sure what makes for a good size, you might use the

DeriveBufferSizes() during development to get a feel for how big the buffers need to

be and then set your fixed values to something comparable to its results.

The class interface defines a structure called PlayQueueData, which is used by the class

to manage audio buffers. It contains the buffer itself (the AudioQueueBufferRef) as well

as several other associated items that need to go along with it. The NSConditionobject,

for example, is used when marking buffers as in use and to block the code from

enqueueing a new buffer when all existing buffers are in use. Instances of the streaming

class will create an array of PlayQueueData structs.

As the interface suggests, this class is initialized with a URL pointing to an audio source

and will rely on an NSURLConnection to download the data from that source.

Listing 3-13. Audio Streaming Class Interface

// Number of audio queue buffers we allocate
#define kNumAQBufs 3
// Number of packet descriptions in our array
#define kAQMaxPacketDescs 512
// Use a hard-coded buffer size.
#define kAQBufSize 1048576 /* 1 MB, or 2**20 */

// Data structure containing an audio queue buffer as well as its associated data.
typedef struct PlayQueueData {
AudioQueueBufferRef buffer;
 NSCondition *queuedCondition;
 UInt32 packetCount;
 AudioStreamPacketDescription packetDescriptors[kAQMaxPacketDescs];
 size_t bytesFilled;
 BOOL inUse;
} PlayQueueData_t;

@interface SimpleStreamer : NSObject {
 NSURL *url;
 NSURLConnection *networkConnection;

 AudioFileStreamID myAudioStream;

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 84

 AudioQueueRef playQueue;

 BOOL queueStarted;
 BOOL queueRunning;

 PlayQueueData_t *playQueueDataRecs;
 unsigned int currentBufferIndex;
}

@property (readonly) NSURL *url;
@property (readwrite) AudioQueueRef playQueue;
@property (readwrite) BOOL queueRunning;
@property (readwrite) BOOL queueStarted;
@property (readwrite) unsigned int currentBufferIndex;
@property (readwrite) PlayQueueData_t *playQueueDataRecs;

- (id)initWithURL:(NSURL *)url;
- (void)play;
- (void)stop;

@end

BUFFERING ON MOBILE DEVICES

It’s important to make sure that you buffer enough audio data to handle changing network conditions.
Because the iPhone is a mobile device, apps need to be designed to handle the possibility that the device
is in motion while the app is running. That might mean unexpected transitions between 3G and EDGE
networks, for example, or just a weak signal and lower data rates at times. This is much more important
on the iPhone than with desktop computers and even laptops, which are merely portable but less likely to
be used in motion.

The iPhone is surprisingly robust in these situations. When the network changes from 3G to EDGE or back,
network connections usually will not drop. Instead, they’ll stall briefly before resuming. In a streaming app,
this means you’ll stop receiving incoming bytes for a while but that your network connection should
eventually pick up and start sending data again. It’s during this stall time that your audio buffers are most
useful. There’s no guarantee of how long the stall will last, but in my testing I’ve found that small buffers
won’t be up to the task. Planning for one to two seconds of downtime is nowhere near sufficient to avoid
audio dropouts. Make the buffers as large as you think you can afford.

A side effect of buffering is that, in the case of a live audio stream, your playback may lag compared to
the original audio. That’s a necessary consequence of planning to keep playback going in changing
network situations.

Listing 3-14 shows the initializer for the streaming class. This is where the array of

PlayQueueData structures is allocated, although the audio buffers they contain are still

NULL at this point. They can’t be allocated until you know something about the audio

format, so you’ll leave that until you have that information.

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 85

Listing 3-14. Initializing the Audio Streaming Object

- (id)initWithURL:(NSURL *)audioUrl
{
 if (self = [super init]) {
 url = [audioUrl retain];
 playQueueDataRecs = (PlayQueueData_t *)malloc(sizeof(PlayQueueData_t) *
 kNumAQBufs);
 }
 return self;
}

Listing 3-15 shows the starting point for audio playback. This is a very short method,

especially in comparison to the one used earlier in the Audio Queue Services example.

The reason is that with streaming audio you don’t have an audio file at first, so you can’t

start looking at its audio format or other characteristics yet. Instead, you just create the

AudioFileStreamID myAudioStream and then start the network connection. The second

and third arguments to AudioFileStreamOpen() are the property listener and audio data

callback functions, which will be called as soon as the stream has enough data to start

making sense of the incoming data.

The fourth argument to AudioFileStreamOpen() is a hint about the audio format, which

you saw earlier in the Audio Queue Services code. In this case I’m passing 0, which

implies that the stream should attempt to determine the format.

Listing 3-15. Starting the Stream

- (void)play
{
 // Create audio stream using callback functions.
 // Third argument is an optional hint to file type.
 AudioFileStreamOpen(self, propertyListenerCallback, audioDataCallback, 0,
 &myAudioStream);

 // Create the network connection
 NSURLRequest *networkRequest = [NSURLRequest requestWithURL:self.url];
 networkConnection = [[NSURLConnection alloc] initWithRequest:networkRequest
 delegate:self];
}

Note that I’ve used the trick of passing self again here, so that the callback functions

will be able to make method calls on the streaming object.

The NSURLConnection created in Listing 3-15 will connect and begin receiving data as

soon as it has been created. Since I’ve set self as the connection’s delegate, the

connection will supply this data in the connection:didReceiveData: method on the

streaming object. Recall that this method may be called many times, often with as little

as 1KB to 2KB of data. Listing 3-16 shows this method. Whenever this happens, I pass

the data to the parsing function. The first argument, myAudioStream, is the stream object

I created earlier. The parsing function will use this argument to find the callbacks that I

registered for it.

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 86

Listing 3-16. Receiving Data from the Network and Parsing It

// NSURLConnection delegate method
- (void)connection:(NSURLConnection *)connection didReceiveData:(NSData *)data
{
 // Pass incoming bytes to audio stream parser.
 AudioFileStreamParseBytes(myAudioStream, [data length], [data bytes], 0);
}

When enough data has been received, it will be possible to start determining properties

of the audio. The property callback will be called for each one. The property information

continues to be available after the callback, though, so although the property listener will

be called as soon as the data format is known, it’s still possible to look up this property

on the audio stream later. It’s not necessary to store this information in your own

variables. As a result, the property listener function will do nothing until the stream is

ready to produce audio packets, at which point it can look up all the information you

need. This property indicates that all metadata has been received and that playback can

begin. Listing 3-17 shows the property listener callback.

Listing 3-17. Property Listener Callback for Audio File Stream Services

void propertyListenerCallback (void *inClientData,
AudioFileStreamID inAudioFileStream,
AudioFileStreamPropertyID inPropertyID,
 UInt32 *ioFlags)
{
 SimpleStreamer *self = (SimpleStreamer *)inClientData;
 OSStatus err = noErr;
 UInt32 propertySize;

 if (inPropertyID == kAudioFileStreamProperty_ReadyToProducePackets) {
 // The stream is ready to produce audio packets

 // Get the audio format
 AudioStreamBasicDescription dataFormat;
 propertySize = sizeof(dataFormat);
 err = AudioFileStreamGetProperty(inAudioFileStream, ➥
 kAudioFileStreamProperty_DataFormat, &propertySize, &dataFormat);

 // Create the play queue
 AudioQueueRef playQueue;
 err = AudioQueueNewOutput(&dataFormat, postPlayCallback,
 self, NULL, kCFRunLoopCommonModes, 0, &playQueue);
 [self setPlayQueue:playQueue];

 // Set up audio buffer structures
 for (int i=0; i<kNumAQBufs; i++) {
 self.playQueueDataRecs[i].queuedCondition = ➥
 [[NSCondition alloc] init];
 err = AudioQueueAllocateBuffer(playQueue,
 kAQBufSize, &(self.playQueueDataRecs[i].buffer));
}
 self.currentBufferIndex = 0;

 // Lock the initial buffer, which is where we'll start writing data.
 NSCondition *queuedCondition = ➥
 (NSCondition *)self.playQueueDataRecs[0].queuedCondition;

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 87

 [queuedCondition lock];
 self.playQueueDataRecs[0].inUse = YES;
 [queuedCondition unlock];

 // Get the magic cookie (for compressed formats like MPEG 4 AAC)
 // from the file stream and set it on the audio queue
 err = AudioFileStreamGetPropertyInfo(inAudioFileStream, ➥
 kAudioFileStreamProperty_MagicCookieData, &propertySize, NULL);
 void *magicCookie = calloc(1, propertySize);
 err = AudioFileStreamGetProperty(inAudioFileStream,
 kAudioFileStreamProperty_MagicCookieData,
 &propertySize,
 magicCookie);
 if (err == noErr) {
 err = AudioQueueSetProperty(playQueue,
 kAudioFileStreamProperty_MagicCookieData,
 magicCookie,
 propertySize);
 }
 free(magicCookie);
 }
}

The property listener callback starts by checking its inPropertyID argument to see what

new property information is available. If it’s not

kAudioFileStreamProperty_ReadyToProducePackets, it does nothing. When the stream is

ready to produce packets, it finishes the setup that wasn’t possible earlier when the

stream was created. First it looks up the audio format property and creates the play

queue. This makes use of the self variable both to set the play queue on the streaming

object and to pass self along in AudioQueueNewOutput so that it will be available in the

postPlayCallback() function.

Next the callback creates the audio buffers, since you now have enough information to

do so. You’ll create the buffers once and reuse them as many times as needed. It sets

self’s currentBufferIndex to 0 so that the first buffer in the array will be current and

marks that buffer as being in use.

Now, the playback queue has been created, and you’re ready to start playing audio. As

new data comes in, you’ll continue to pass it to AudioFileStreamParseBytes(). This will

lead to calls to the audio data callback, the aptly named audioDataCallback(). Listing 3-

18 shows this function.

Listing 3-18. Audio Data Callback

void audioDataCallback (void *inClientData,
 UInt32 inNumberBytes,
 UInt32 inNumberPackets,
 const void *inInputData,
 AudioStreamPacketDescription *inPacketDescriptions)
{
 SimpleStreamer *self = (SimpleStreamer *)inClientData;

 // Run through the incoming packets.
 for (int i=0; i<inNumberPackets; i++) {
 @synchronized(self) {

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 88

 if (self.queueStarted && (!self.queueRunning)) {
 // Stop if the queue is not running.
 return;
 }
 }

 // Get size and offset of the current packet's data
 SInt64 packetOffset = inPacketDescriptions[i].mStartOffset;
 SInt64 packetSize = inPacketDescriptions[i].mDataByteSize;

 // See if there's enough byte space left in the current buffer.
 size_t bufSpaceRemaining = kAQBufSize - ➥
 self.playQueueDataRecs[self.currentBufferIndex].bytesFilled;
 if (bufSpaceRemaining < packetSize) {
 // Not enough space in the current buffer, so enqueue it and
 // go to the next buffer.
 enqueueCurrentBuffer(self);
 }

 // Copy data to the audio queue buffer
 AudioQueueBufferRef fillBuf = elf.playQueueDataRecs➥
 [self.currentBufferIndex].buffer;
 memcpy((char*)fillBuf->mAudioData + ➥
 self.playQueueDataRecs[self.currentBufferIndex].bytesFilled, ➥
 (const char *)inInputData + packetOffset, packetSize);
 // Fill out packet description
self.playQueueDataRecs[self.currentBufferIndex].packetDescriptors[self.playQueueDataRecs
[self.currentBufferIndex].packetCount] = inPacketDescriptions[i];

self.playQueueDataRecs[self.currentBufferIndex].packetDescriptors[self.playQueueDataRecs
[self.currentBufferIndex].packetCount].mStartOffset = ➥
 self.playQueueDataRecs[self.currentBufferIndex].bytesFilled;
 // Keep track of bytes and packets filled in the current buffer
 self.playQueueDataRecs[self.currentBufferIndex].bytesFilled += ➥
 packetSize;
 self.playQueueDataRecs[self.currentBufferIndex].packetCount += 1;

 // See if we've run out of packet space
 size_t packetDescriptorsRemaining = kAQMaxPacketDescs - ➥
 self.playQueueDataRecs[self.currentBufferIndex].packetCount;
 if (packetDescriptorsRemaining == 0) {
 // No more packet descriptors in the current buffer,
 // so add it to the queue.
 enqueueCurrentBuffer(self);
 }
 }
}

The audio data callback’s purpose is to receive parsed audio packets and accumulate

them in the current buffer. When the buffer fills, it adds it to the audio queue via a utility

function called enqueueCurrentBuffer().

Incoming data in this callback can consist of an arbitrary number of audio packets, with

the actual number depending on how much data has been received from the network.

The body of the function loops through the packets one at a time. It starts by checking

to see whether the current buffer has enough space to hold the packet’s data. If not, it

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 89

calls enqueueCurrentBuffer, which adds the current buffer to the queue and moves on

to the next buffer.

Once that’s done, you know that the current buffer can hold the current packet—

whether or not it’s the same buffer that was current before you checked the remaining

buffer capacity. To copy the audio data into the current buffer, you get a reference to the

AudioQueueBufferRef field of the current PlayQueueData struct. The call to memcpy()
copies bytes from the incoming packet to the buffer. You then add details describing the

current packet and update the current count of packets and bytes in the current buffer.

Finally, there’s a second check on the current buffer—this time to see whether there’s

room for any more packets. As with the previous check, if the current buffer is full, you

drop into enqueueCurrentBuffer to add the buffer to the queue and move on to the

next one.

Adding data to the queue is done in a utility function called from audioDataCallback(),

because you need to call this code in a couple of different places, and it’s long enough

that just duplicating it would be ugly. Listing 3-19 shows the enqueueCurrentBuffer()
function.

Listing 3-19. Enqueueing the Current Buffer

void enqueueCurrentBuffer(SimpleStreamer *self)
{
 OSStatus err = noErr;

 @synchronized(self) {
 if ((self.queueStarted == YES) && (self.queueRunning == NO)) {
 // If the queue has stopped, don't enqueue any more data.
 return;
 }
 }

 // Mark the current buffer as "in use".
 self.playQueueDataRecs[self.currentBufferIndex].inUse = YES;
 // Set the data size of the buffer.
 AudioQueueBufferRef fillBuf = ➥
 self.playQueueDataRecs[self.currentBufferIndex].buffer;
 fillBuf->mAudioDataByteSize = ➥
 self.playQueueDataRecs[self.currentBufferIndex].bytesFilled;
 // Add the buffer to the queue
 err = AudioQueueEnqueueBuffer([self playQueue],
 fillBuf,
 self.playQueueDataRecs[self.currentBufferIndex].packetCount,
 self.playQueueDataRecs[self.currentBufferIndex].packetDescriptors);
 if (err) {
 // Could not enqueue buffer
 return;
 }

 // Start the playback queue, if it's not running.
 [self startQueue];

 // Go to the next buffer

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 90

 self.currentBufferIndex++;
 if (self.currentBufferIndex >= kNumAQBufs) {
 self.currentBufferIndex = 0;
 }

 // If the new current buffer is in use, wait for it to be returned to the pool.
 NSCondition *queuedCondition = (NSCondition *) ➥
 self.playQueueDataRecs[self.currentBufferIndex].queuedCondition;
 [queuedCondition lock];
 @synchronized(self) {
 if (self.queueStarted && (!self.queueRunning)) {
 // Don't wait on the buffer if the queue has stopped.
 return;
 }
}
 while (self.playQueueDataRecs[self.currentBufferIndex].inUse) {
 [queuedCondition wait];
 }
 [queuedCondition unlock];
}

The main purpose of enqueueCurrentBuffer is to take the current buffer and pass it to

AudioQueueEnqueueBuffer() so that it can be played. The rest is housekeeping and

maintenance details that need to be handled to keep the queue running smoothly.

First, you make sure the current buffer is marked as being in use and add the data to the

queue. Immediately after that, you call a method named –startQueue to make sure audio

is actually playing. Up until this point, you’ve been managing data packets and buffers,

but this is where the sound starts coming out of the speakers. Listing 3-20 shows the

startQueue method.

Now that you’ve enqueued the current buffer, it’s time to move on to the next one. You

do this by incrementing currentBufferIndex, taking care not to let it get larger than the

number of existing buffers. If you’re less familiar with C, this is one place the difference

can be apparent. If you had been using an NSArray and you went beyond the array

bounds, you’d immediately get a runtime error. C-style arrays follow the C approach of

assuming that you know what you’re doing, so going past the end of an array might go

unnoticed at first. You’d end up accessing whatever data happened to be in memory

just after the array and potentially changing it. This usually leads to a crash, but it’s not

always immediate—it means you have some bogus data, somewhere, that will be a

problem if you try to use it. Avoiding the problem is easy enough, though, so in this case

you just make sure that currentBufferIndex is always less than or equal to kNumAQBufs,

the number of buffers that you created back in –init.

If you have a fast network connection, it’s possible that data is coming over the network

connection faster than you’re playing it. In that case, the buffers start filling up, with

each being added to the queue. Eventually you could reach a state where all existing

buffers are in use. If you moved on to the next one at that point, you’d overwrite some

of the audio that’s already in the queue. The best that can be said about that situation

is that it would sound really bad. This possibility is handled at the end of

enqueueCurrentBuffer(). Each buffer is marked as “in use” when it’s added to

the queue, and this setting is cleared once the buffer has been played. Once the

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 91

current buffer index has been incremented, enqueueCurrentBuffer() checks to see

whether the next buffer is still in use. If so, it means you need to wait until it has

been played.

This is handled with an NSCondition object, which is part of the PlayQueueData structure

you’ve been using. If you call –wait on this object, execution will block until someone

calls –signal on the same object. That will happen later, in the post-play callback

function. Since enqueueCurrentBuffer() is called from the audio data callback, this also

means that no packets will be added to the buffer until the condition is signaled. If you

worked your way back up the call stack, it turns out that this also means that

AudioFileStreamParseBytes() won’t return until the current buffer has been played. The

entire chain of reading data and getting it played is put on hold until the current buffer

has been played.

The startQueue method serves to call AudioQueueStart if and only if the queue has not

been started yet. It’s called from enqueueCurrentBuffer() because you want to start the

queue as soon as you’ve added a buffer to the queue.

Listing 3-20. Starting the Playback Queue

// Start the audio queue, if it's not already playing
- (void)startQueue
{
 if (!queueStarted) {
 AudioQueueStart(playQueue, NULL);
 @synchronized(self) {
 queueStarted = queueRunning = YES;
 }
 }
}

Now that you’re getting audio from the network, parsing it, and playing it, the only thing

that remains is to make sure you don’t run out of buffers. This is the job of the post-play

callback, which you registered in propertyListenerCallback() when you created the

audio queue. Listing 3-21 shows this.

Listing 3-21. Post-Play Callback Function

void postPlayCallback (void *aqData,
AudioQueueRef inAQ,
AudioQueueBufferRef inBuffer)
{
 SimpleStreamer *self = (SimpleStreamer *)aqData;
 PlayQueueData_t *currentBufferData = NULL;

 // Find the playQueueDataRecs entry corresponding to inBuffer.
 for (int i=0; i<kNumAQBufs; i++) {
 if (self.playQueueDataRecs[i].buffer == inBuffer) {
 currentBufferData = &(self.playQueueDataRecs[i]);
 break;
 }
 }

 if (currentBufferData != NULL) {
 // Mark the buffer as being available, so it'll

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 92

 // be available for new audio data.
 NSCondition *queuedCondition = ➥
 (NSCondition *)currentBufferData->queuedCondition;
 [queuedCondition lock];
 currentBufferData->inUse = NO;
 // Reset the packet and byte count on the buffer.
 currentBufferData->packetCount = ➥
 currentBufferData->bytesFilled = 0;
 // Signal the condition in case enqueueCurrentBuffer
 // is waiting on it.
 [queuedCondition signal];
 [queuedCondition unlock];
 }
}

The first thing you need to do is locate the structure containing the audio buffer. The

inBuffer argument gives you the actual audio buffer, but you need the full

PlayQueueData structure that contains it. It might seem that you could just use the

currentBufferIndex value to look it up, but if you’re still getting audio data over the

network, then it’s almost certainly been incremented by the time this function is called.

So, you use a loop, running through each structure until you find the right one. You have

only three of them, so this will be quick.

Once you’ve found the right structure, you make sure it’s ready for use for new audio

data. You set the “in use” flag to NO and reset the count of packets and bytes to zero.

You don’t need to release any memory here, because the buffers were allocated once

back in propertyListenerCallback() and can be reused until you don’t need them

anymore. Resetting the packet and byte counts gets us back to the beginning of the

buffer, ready to copy new data in.

Finally, you get the NSCondition object and call its –signal method. This will handle the

case described previously where enqueueCurrentBuffer was blocked because of a lack

of available buffers. Calling –signal here will unblock enqueueCurrentBuffer and allow it

to continue.

THE AUDIO SESSION

Besides dealing with the audio stream, it’s important to be aware of the Audio Session API. Audio sessions
are the iPhone’s system for specifying how your application works with regard to the audio hardware and
other audio applications. For example, the Audio Session API allows you to specify whether your
application should continue playing music when the user turns off the iPhone’s screen. It also lets you
control whether your application will interrupt audio being played by the iPod application and lets your app
respond to audio interruptions such as incoming phone calls.

In this example, I’m leaving these details at the system defaults. It’s still necessary to initialize the audio
session though, or the app won’t get access to the audio hardware. You initialize the session only once—
there’s no corresponding deinitialize method—so I decided to do this in the streaming classes’
+initialize method (Listing 3-22). This method will be automatically called by the system as soon as
the class is loaded by the application.

Listing 3-22. Initializing the Audio Session

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 93

+ (void)initialize

{

 AudioSessionInitialize(NULL, NULL, NULL, NULL);

}

Passing NULL for all arguments gets access to the audio hardware without specifying any custom
configuration.

Putting It All into an App

Remember Alice? This is a song about Alice.

Arlo Guthrie, “Alice’s Restaurant”

I didn’t finish the SeeqPod application immediately. Soon my membership in the iPhone

developer program came through, and I got busier than I could remember being working

on iPhone contracts. The SeeqPod idea got moved to the back burner. And then, when I

needed the back burner, the idea got put in the fridge to finish later. Time passed, as it is

wont to do.

When I was able to return to the project, I made an awful discovery: SeeqPod had shut

down its audio search system. Its web site was not clear about when or if it might return.

I like learning new stuff and writing interesting new code that stretches my abilities. But

I’m also practical, and I hate doing all that and having no use for the result.

Fortunately, audio streaming code is useful enough that it’s not a solution that has to

look hard for a problem to solve. While chatting in IRC one day, someone mentioned the

idea of writing a custom iPhone app for a radio station. And the light bulb went on again.

I’ve been a member of KRCC, a local public radio station, for something like 17 years. Its

broadcasts were available online. And I had met Delaney Utterback, the station

manager, and was pretty sure he’d like the idea. I contacted him, he was all for it, so I

went to work applying my streaming code to their broadcasts.

One More Thing
For some reason, it didn’t work. I’d start downloading data and passing it to the parser,

but the parser never indicated that it was ready to produce packets. In fact, it never

even notified me that it had worked out the audio format of the stream.

The reason turned out to be a simple but significant difference between my initial goal

and my current one. SeeqPod had provided URLs to complete audio files. But KRCC’s

broadcast stream—as with most live streams—was a continuous sequence of audio

data. The key difference is that an audio file contains a header segment that includes

information about the audio encoding, while a continuous stream doesn’t have this

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 94

information. Maybe it was provided once, when the stream started, but it wasn’t

available to me. Figure 3-4 illustrates the difference.

Figure 3-4. Audio file layout compared with audio stream data layout

It turns out that this is one of the cases where you need to give audio file stream

services a hint about the file type. KRCC’s stream is basically a never-ending MP3 file,

but without the header information, Core Audio couldn’t figure that out. Previously I

didn’t bother with this, because it wasn’t necessary when dealing with complete files.

To get audio playing, I gave my audio streaming class a new instance variable that could

be used to provide a hint about the audio format. This changed the class interface, as

shown in Listing 3-23.

Listing 3-23. Modified Class Interface with Hinting Property

@interface SimpleStreamer : NSObject {
 NSURL *url;
 NSURLConnection *networkConnection;

 AudioFileStreamID myAudioStream;
 AudioQueueRef playQueue;

 AudioFileTypeID fileTypeHint;

 BOOL queueStarted;
 BOOL queueRunning;

 PlayQueueData_t *playQueueDataRecs;
 unsigned int currentBufferIndex;
}

@property (readonly) NSURL *url;
@property (readwrite) AudioQueueRef playQueue;

@property (readwrite) AudioFileTypeID fileTypeHint;

@property (readwrite) BOOL queueRunning;
@property (readwrite) BOOL queueStarted;
@property (readwrite) unsigned int currentBufferIndex;
@property (readwrite) PlayQueueData_t *playQueueDataRecs;

Instance variables have a default value of 0, so if I didn’t provide a hint, the code would

fall back on the previous behavior of trying to work out the format from the available

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 95

data. I made one change to the play method to specify the hint when creating the

stream, as shown in Listing 36-24.

Listing 3-24. Modified play Method with Hinting

- (void)play
{
 // Create audio stream using callback functions.
 // Third argument is an optional hint to file type.
 AudioFileStreamOpen(self, propertyListenerCallback,
 audioDataCallback,

 self.fileTypeHint,

 &myAudioStream);

 // Create the network connection
 NSURLRequest *networkRequest = [NSURLRequest requestWithURL:self.url];
 networkConnection = [[NSURLConnection alloc] initWithRequest:networkRequest
 delegate:self];
}

To provide a hint, I’d set the fileTypeHint property after creating the streaming object

but before starting playback, as Listing 3-25 shows.

Listing 3-25. Providing a Hint for Audio Streaming

- (IBAction)play:(id)sender
{
streamer = [[SimpleStreamer alloc] initWithURL:url];
streamer.fileTypeHint = kAudioFileMP3Type;
 [streamer play];
}

That was all it took. With this simple change I was able to play KRCC’s Internet stream

(and incidentally any stream the iPhone is capable of playing).

In some cases hinting may not be sufficient, though. I’ve seen some streams where,

despite hinting, audio file stream services misidentified the stream format. Since it was

trying to interpret one format as some other format, it was unable to play the audio.

There are a couple of approaches to this, both of which involve modifying the property

listener function in Listing 3-17.

The first approach would be to specify the format yourself. The code in Listing 3-17

makes use of the hint but works out the details for itself. Although I hint that the stream

is MP3, I let Core Audio work out the sample rate, whether it’s stereo or mono, and so

on. But I don’t have to do that. I could fill in these details myself, by setting up the values

in an AudioStreamBasicDescription on my own instead of by looking them up using the

kAudioFileStreamProperty_DataFormat key. If I know what stream I’m working with, I

would presumably know all the necessary encoding details.

But if you’ve been following along, you know that I probably don’t want to do that. I’m

not an expert at audio encoding, and there’s a reasonable chance I’d get something

wrong. In addition, it’s a possibility that the audio stream I’m playing might change at

some point, say to a higher bit rate. If I’ve specified one rate and the stream changes to

another one, my app will unexpectedly break.

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 96

An alternative approach, possibly cruder but more reliable in the field, is to look up the

format as you’ve been doing and then compare that with the hint you provided. The

AudioStreamBasicDescription you look up in Listing 3-17 is a C struct, and one of its

fields is called mFormatID. That tells you what format Core Audio thinks the stream is. By

comparing that to your hint, you can work out whether Core Audio has at least found the

correct encoding. If it did, great, and if it didn’t, close the network connection and start

over. Core Audio gets the encoding right most of the time, so although restarting like

this is not elegant, it’s effective.

Launch It!
SeeqPod had made me somewhat wary, but I was pretty sure KRCC would be around

for a while. It had survived several decades already. So, now I had an app I could

actually launch. And so I did (Figure 3-5). And the people at the radio station loved it. On

the day the app made it into Apple’s store I dropped by the station, and they put me on

the air to talk about it. Cool!

Figure 3-5. KRCC application showing available audio streams

iPhone 3.0 and Further Work
I originally did the work I’ve described with various versions of iPhone OS 2.1. Since

then, iPhone OS 3.0 has been released. All of the code I’ve described works just as well

with 3.0 as with earlier versions. The only difference that may be of interest is the

addition of the AVAudioSession class.

AVAudioSession provides an Objective-C API for dealing with audio sessions. In Listing

3-22 you initialized the audio session for the app but left all session options at their

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 97

default values. AVAudioSession implicitly initializes the audio session the first time it’s

asked to do anything, so Listing 3-22 could be modified to just ask for the system’s

shared AVAudioSession object, as in Listing 3-26.

Listing 3-26. Initializing the Audio Session via the shared AVAudioSession Object

+ (void)initialize
{
 AudioSessionInitialize(NULL, NULL, NULL, NULL);
}

Where AVAudioSession may come in handy is if you want to customize the behavior of

the audio session and if you prefer to work in Objective-C rather than C. As I mentioned

previously, the audio session lets you customize how your app’s audio playback

interacts with other apps and with the hardware. AVAudioSession doesn’t add any new

capabilities in this area, but it’ll let you use Objective-C instead of C for these aspects of

your app.

Summary
Audio playback can be easy or hard, depending on your needs. I found that I needed the

hard way, but I figured it out, and I hope this helps you do the same.

In many cases, it’s possible to use one of the easier approaches, and in those cases

there’s not much reason to bother with the Core Audio approach I’ve described. The

streaming code will work just as well for locally stored files (via file:// URLs) as it does

for remote files. But AVAudioPlayer is an excellent and simpler choice for playing audio

files included in your application. If that’s what you’re doing, then there’s no reason to

complicate matters.

The Core Audio approach is still best if you’re playing music downloaded from the

Internet—whether it’s a live broadcast or an audio file available at a web site. For the live

broadcast it’s the only option, and for the static file this approach makes it possible to

begin playback without waiting while you download the entire file first.

I also talked about the AVAudioSession class in light of the iPhone OS 3.0 release.

Good luck with your audio projects. And don’t be afraid of C!

CHAPTER 3: Audio Streaming: An Exploration into Core Audio 98

99

Owen Goss
Company: Streaming Colour Studios

Location: Toronto, Ontario, Canada

Former Life As a Developer: Lead User Interface Programmer at Electronic Arts
Canada on five PSP games. Gameplay Programmer at Electronic Arts Canada on
one PSP game. Lead User Interface Programmer at Propaganda Games on one
Xbox 360 and PS3 game. Senior Gameplay Programmer at Propaganda Games
partially on one Xbox 360 and PS3 game.

Life as an iPhone Develooper: Creator of Dapple (Games: Puzzle, Family)

Dapple is entirely OpenGL-ES. Dapple is approximately 80% C++ and 20%
Objective C.

What's in This Chapter: Chapter Title: “You Go Squish, Now! Debugging on the
iPhone”

Custom Debugging Macros

Using Crash Logs

Reproducing Rare Crashes

Memory Stomps

malloc_error_break

NSZombieEnabled

Enable Guard Malloc

Watching Variables

Link Map Files

Conclusions

100

Key Technologies:

iPhone Crash Logs

XCode Debugger

iPhone Simulator & Device

101 101101

 Chapter

You Go Squish Now!1
Debugging on the iPhone
It all started with an idea. You downloaded the SDK, you taught yourself Objective-C,

you built your app, and now you’ve found a horrible crash. Debugging tricky crashes can

be challenging and can try your patience. However, it can also be a lot of fun when

approached in the right way.

In this chapter, I’ll walk you through some advanced debugging concepts and

techniques for the iPhone.

Before coming to the iPhone, I worked for about five years in the console games

industry building PlayStation Portable, Xbox 360, and PlayStation 3 games. While

working in that industry, I spent much of my time as a lead user interface programmer.

User interface programming is an interesting job because it touches almost all aspects

of the game in some way. This meant I got to do a lot of debugging in a lot of different

areas of the game. This proved to be an invaluable skill as I progressed in my career. In

addition to my role as a UI programmer, I also was a senior game-play programmer

dealing with physics and math systems, as well as low-level optimizations and

debugging on PlayStation 3’s multiprocessor system.

Last year I set out on my own and formed my own company, Streaming Colour Studios.

We released our first game, Dapple, in February 2009 for the iPhone. Dapple is a color-

matching game where players have to mix paint colors to make matches (see Figure 4-

1). It’s a challenging twist on the match-three genre of game.

1 “You go squish now!” is a line from The Simpsons episode “Treehouse of Horror V”

directed by Jim Reardon and written by Greg Daniels, Dan McGrath, David Cohen, and

Bob Kushell. Original airdate in North America: October 30, 1994.

4

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 102

Figure 4-1. Dapple for iPhone and iPod touch

I started working with the iPhone because I saw it as an opportunity to develop the

kinds of games that I wanted to make, with little overhead, and publish them on a

powerful gaming machine. When I started working with the iPhone, I quickly realized that

much of what I had learned about debugging on large console games could be applied

to iPhone development. Nasty crash bugs caused by memory stomps are just as likely

to happen in an iPhone app as in any major console title. In discovering this, the major

challenge was learning how to apply the tricks and techniques I had previously learned

to Xcode and the iPhone hardware.

I’m pleased to be able to share some of the knowledge I have picked up over the years.

My first tip is perhaps the most important: remember that debugging can be fun! I know,

I must be crazy to say something like that, but it’s true. Entering into debugging with the

right frame of mind can help you find your bugs much more quickly and painlessly.

Instead of looking at debugging as a chore, imagine yourself as a code detective, trying

to get to the bottom of the Mysterious Case of the Random Crash!

Got your pipe and Sherlock Holmes hat on? Good. Let’s dig in!

Assumed Knowledge
Before I go any further, I want to go over some of the things I’m going to assume you

already understand. These are things I’m not going to cover in this chapter, but they are

all concepts and tools that you should already be using to debug your apps. If you are

unsure of how to do any of these things, I’ll wait right here while you read up on them:

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 103

You know how to run your app in the debugger, both in the simulator

and on your iPhone or iPod touch device.

You understand how to read a call stack and know what it’s telling

you.

You know how to set a breakpoint on a line of code in Xcode.

You know how to examine the value in a variable in the debugger.

TIP You can find information on the previous techniques in Apple’s “Xcode Debugging Guide”
(http://developer.apple.com/documentation/DeveloperTools

/Conceptual/ XcodeDebugging/).

Though not required for this chapter, two more techniques are extremely helpful to

understand:

You know where to find the Expressions window and how to use it.

You know where to find the Memory Browser and how to use it.

TIP: You can find information on both the Expressions window and the Memory Browser in the
“Viewing Variables and Memory” section of the “Xcode Debugging Guide”
(http://developer.apple.com/documentation/DeveloperTools/Conceptual/Xco
deDebugging/600-Viewing_ Variables_and_Memory/variables_and_

memory.html). Figure 4-2 shows an example of both.

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 104

Figure 4-2. An example of the Expressions window and Memory Browser when stopped at a breakpoint

In essence, I’m assuming that you already know how to track down and fix simple bugs

and that you already understand the basics of the debugger. I’m assuming that what

you’re looking for now is information on how to track down those really nasty bugs—the

ones that keep you up at night. If you’re clear on all this, then let’s get started!

Objective-C vs. C and C++
iPhone development is very exciting. One of the reasons that I was so excited by my

early forays into iPhone development was the ability to mix Objective-C and C/C++. This

allows you, as a developer, to use whatever language you feel most comfortable with.

For example, my game, Dapple, uses Objective-C for only the most top-level classes

that operate at the view and view controller levels. Everything at a lower level is done in

C++. I chose this approach because I knew C++ much better than Objective-C when I

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 105

started. It also allowed me to more closely manage my memory usage. However, there

are a few issues to consider when looking at your language choices:

Objective-C provides a lot of memory protection for you. Built-in

classes such as NSArray and NSMutableArray make sure that you don’t

overrun buffers. However, these classes come at a cost of a slight

increase in memory and potential performance overhead when using

them.

C++ allows you to manage memory more directly, but it is much easier

to introduce memory bugs with it.

Some of the topics I’ll cover in this chapter will apply only to Objective-C code or only to

C/C++ code, because there are certain techniques that work with only one or the other.

However, much of what I’ll be discussing applies to either language. I will point out

where something applies to only one language.

While You’re Writing That Code
I first want to cover the tasks that you can do while you’re writing your code. It’s a good

idea to build up a library of debugging code that is at your disposal. You’ll want to do

this early on so that you can use this code throughout development. Doing so will help

you catch bugs sooner and make tracking them down a lot easier.

Custom Asserts
Asserts are checks that you can put in your app that cause the application to halt if it

fails a condition. C++ has a built-in call that you can use, as does Objective-C. For

example, in C++, the following assert checks to see whether the condition is true:

assert(myVariable == someOtherVariable);

If it is true, then everything continues. If it’s false, then the program will halt in the

debugger (usually by forcing a crash).

NOTE: Objective-C provides two assert methods: NSAssert and NSCAssert. NSAssert
should be used only in Objective-C methods, while NSCAssert can be used only in C methods.

Both can be removed from code by defining NS_BLOCK_ASSERTIONS as a preprocessor

macro.

The problem with using the built-in C++ assert call is that ideally you want your asserts

to be active only while you’re debugging. You want a way to disable all of your asserts

when you go to ship your app. Asserts are invaluable in helping you track down

variables that are out of bounds and other common problems, but in your shipped

product, they’re just taking up valuable CPU cycles, because your app should be bug-

free by that point. Right?

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 106

The best way to deal with this is to create custom assert code. In this section, you’ll

create a custom assert macro that can be disabled via a build-time preprocessor define.

First, create a header file that’s going to hold the macros you’re about to write. I’m going

to call mine MyDebug.h so that I know these are my debugging functions, but you can

call it whatever you’d like. Then you can include this header wherever you need it.

Add the following code to the header file, and then I’ll talk about what it’s doing:

#if defined(APP_STORE_FINAL)
 #define MY_ASSERT(STATEMENT) do { (void)sizeof(STATEMENT); } while(0)
#else
 #define MY_ASSERT(STATEMENT) do { assert(STATEMENT); } while(0)
#endif

Look at the first line of code:

#if defined(APP_STORE_FINAL)

This line is checking to see whether something called APP_STORE_FINAL is defined. The

reason you don’t see this defined anywhere in the code is that you’ll add this as a

compile-time define, but only to your build that’s ready for distribution or submission to
the App Store. If you don’t already have a build target for distribution/submission, create

that now. Open the build target properties for your distribution build, and find the

Preprocessor Macros Not Used in Precompiled Headers entry. Enter

APP_STORE_FINAL into the field (see Figure 4-3).

Figure 4-3. Setting APP_STORE_FINAL in the built target settings

The next line of code defines a macro that will be used when APP_STORE_FINAL is

defined. You might be asking, “Hey, why not just define it to be nothing at all?” Good

question! The problem with that approach is that you might have a variable used in your

assert that is used only in the assert. If you’re compiling with Treat Warnings as Errors,

you could get a whole bunch of errors when you turn off your custom asserts. The

following line of code generates a very small amount of assembly while still avoiding

those build warnings:

 #define MY_ASSERT(STATEMENT) do { (void)sizeof(STATEMENT); } while(0)

The do…while loop that exists around the macro body is there to avoid nasty scoping

errors that can come up if you were to use your custom assert inside an if statement

without braces, for example.

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 107

Finally, you can clearly see that when you’re building your debug build, your custom

assert just uses the standard assert function (with the do…while wrapped around it for

safekeeping):

 #define MY_ASSERT(STATEMENT) do { assert(STATEMENT); } while(0)

NOTE: This code is based on code from Charles Nicholson’s blog. You can read the full article

(with even more suggestions for custom asserts) at

http://cnicholson.net/2009/02/stupid-c-tricks-adventures-in-assert/.

Fantastic! Now you have a custom assert that can be compiled out in your final build!

Very handy! You can use it like this:

MY_ASSERT(result == true && "Result returned false, but we need it to be true!");

In this example, if the variable result is ever false, then the assert will fail, and program

execution will halt in the debugger. The text string is just there so that you can

remember why this particular assert is there.

The other advantage of writing your own custom assert code is that you can perform

other actions in debug builds when an assert fires. Do you always want to print out the

values in your game’s state machine prior to an assert firing? You can do that and know

that it will be compiled out before releasing.

Custom Logging
You’re now going to use that handy APP_STORE_FINAL define you have set up to create a

custom logging function that can be compiled out. It’s basically the same as the earlier

custom assert, so I’ll just show the code here so you can put it into your debugging

header file:

#if defined(APP_STORE_FINAL)
 #define MY_LOG(format, ...)
#else
 #define MY_LOG(format, ...) CFShow([NSString stringWithFormat:[NSString \
 stringWithUTF8String:format], ## __VA_ARGS__]);
#endif

NOTE The __VA_ARGS__ identifier was introduced in the C99 standard. As such, all versions
of Xcode used to build iPhone apps should support it. However, if you’re attempting to use this

with much older compilers for other projects, it may fail to compile.

There are a couple of things to note here. First, I’ve chosen to use CFShow instead of

NSLog here because CFShow doesn’t print out a lot of extra date and time information to

the console, allowing for faster output of lots of debug text. You can change it to NSLog if

you prefer to have the date and time print with each message.

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 108

Second, you can see that I’m assuming that MY_LOG will be passed a cstring as a

parameter. I chose this because I have a lot of cstrings in my C++ code. You can

replace it with the following code, if you want to always pass it an NSString instead:

#define MY_LOG(format, ...) CFShow([NSString stringWithFormat: format, \
 ## __VA_ARGS__]);

You’ll notice that MY_LOG compiles to nothing when APP_STORE_FINAL is defined. This is

done because it’s unlikely that you would declare a variable just for the sake of logging,

so the odds of this generating a warning are slim. If it does cause a problem, you can

use a technique similar to the assert macro to fix the errors.

Using #define
The use of #define in this section isn’t code that will go into your debugging header, but

rather it’s something to keep in mind. If you end up writing big blocks of debugging

code (for example, when logging complex data structures to track down a problem),

don’t just delete that code when you’re done! If you need it again in the future, you’ll

regret having deleted it. Instead, try using #define to block it out.

I make extensive use of this in my code for logging complex data structures or debug

rendering. It’s quite handy, especially if you need to turn on debugging code in several

places in your code at once. If you have a class where you have debug code written in

several places, create a #define at the top of your class. Here’s an example:

#define ENABLE_SOME_NAME_DEBUG 1

Then, wherever you need to run debug code on your data structure, wrap it with this:

#if (ENABLE_SOME_NAME_DEBUG)
 // Do my debug code here
#endif

Now you can turn that debugging code off and on just by changing

ENABLE_DATA_STRUCTURE_DEBUG_LOGS to 0 or 1, respectively. You can set up multiple

kinds of debugging code and wrap sections with differently named #defines, allowing

you to turn on/off specific debug functionality as you go. For example, in my game

Dapple, I have the following at the top of my game logic class (the one that searches the

board for matches):

#define ENABLE_ALL_FUNCTION_TRACE 0
#define ENABLE_SEARCH_RESULTS_VISUAL_DEBUG 0
#define ENABLE_ENTIRE_SEARCH_PATH_VISUAL_DEBUG 0
#define ENABLE_CELL_POSITION_VISUAL_DEBUG 0
#define ENABLE_TEST_BOARD_STARTUP 0
#define ENABLE_END_GAME_IMMEDIATELY 0
#define ENABLE_AI_DECISION_OUTPUT 0

Each of those defines allows me to turn on specific debugging code without having to

remember the four places in the code where I need to enable the debugging

functionality. Hooray! For example, turning on ENABLE_CELL_POSITION_VISUAL_DEBUG
allows me to output the positions of all my sprites every frame for animation debugging.

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 109

Figure 4-4 shows the output. Note that I’m using the SC_LOG macro that was mentioned

earlier for the output.

Figure 4-4. Dapple running in the simulator with one of the debug #define values turned on

Crash!
No matter how hard you might try to write bug-free code, sooner or later you’ll run into

problems. Whether you experience a problem while running your app locally or one of

your beta testers has a crash, you need to know how to track it down and fix it.

Getting a Crash Log from Your Testers
Chances are that one of your testers will find a crash you’ve never seen before. After all,

that’s why you have other people testing your app in the first place. The first thing you’ll

want to do is get them to send you a crash log from their device. Ask them to plug their

iPhone or iPod touch into their computer; this will transfer the crash log files to their

computer. Where those files are depends on their operating system (according to the

Apple Developer Connection):

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 110

Mac OS X: ~/Library/Logs/CrashReporter/MobileDevice/
<Device_Name>

Windows XP: C:\Documents and Settings\<Username>\Application
Data\Apple computer\Logs\CrashReporter\<Device_Name>

Windows Vista: C:\Users\<Username>\AppData\Roaming\Apple
computer\Logs\CrashReporter\MobileDevice\<Device_Name>

Have them find the crash log for your app (the one that ends in .crash) with a date and

time that closely matches the time of the crash (if they can remember). If they can’t

remember, you can always have them send you all the crash logs with your app’s name.

TIP: When you have a tester send you a crash log, make sure they let you know what build
number they were running. Chances are you have sent out several builds, and not every tester
is going to update to the latest build. Knowing which build crashed can save you a lot of

headache.

You Have Been Saving Your dSYM Files, Right?
When you’re running your app in the debugger, the reason you get nice text names for

the functions in your call stack (instead of hex memory addresses) is that you have

debug symbols included in the app. The iPhone does this in a great way by building

your debug symbols into a file with a .dSYM extension every time you compile. You’ll find

it in the same directory that your .app file was generated when you built.

TIP: Every time you create a build to send to testers, archive the .dSYM file along with

the app!

That tip is so important I’m going to say it again. Every time you create a build to send to

testers, archive the .dSYM file along with the app!

Why is this so important? It’s important because the dSYM file is what will allow you to

get a readable call stack from a crash log instead of just a bunch of hex memory

addresses. Chances are, when a user gets a crash, the crash log they send you will

contain just the memory addresses of the functions in the call stack. However, if you

have the dSYM file that matches the build they were running, you can “symbolicate” the

crash and get a human-readable call stack out of it!

Symbolicating a Crash Log
Lucky, there exists a script that will help you to symbolicate a crash! It’s called

symbolicatecrash. You can find it here:

/Developer/Platforms/iPhoneOS.platform/Developer/Library/Xcode/Plug-ins/ ➥

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 111

iPhoneRemoteDevice.xcodeplugin/Contents/Resources/symbolicatecrash

NOTE: In iPhone OS 3.0, symbolicatecrash has been moved to a new location:
/Developer/Platforms/iPhoneOS.platform/Developer/Library/PrivateFramew

orks/DTDeviceKit.framework/Versions/A/Resources/.

However, you might want to copy it into a location that’s part of your path so that you

can just execute it by typing symbolicatecrash into a terminal instead of the whole

path.

CAUTION: There are known bugs in symbolicatecrash for iPhone OS 2.x. Bryan Henry has

posted a fixed version of the script at http://openradar.appspot.com/6438643.

You run symbolicatecrash from the command line. Open a terminal window, and pass it

a crash file as a parameter. If you need to symbolicate it against a specific dSYM file,

you can pass that in as an optional parameter:

> symbolicatecrash MyApp.crash Build1234.dSYM

That should dump out a call stack that’s in a human-readable format, allowing you to

see where your app crashed. It should turn something like this:

Thread 0 Crashed:
0 OpenAL 0x33abdbb8 0x33aac000 + 72632
1 OpenAL 0x33ab77c8 0x33aac000 + 47048
2 Dapple 0x000046ce 0x1000 + 14030

into something like this:

Thread 0 Crashed:
0 OpenAL 0x33abdbb8 OALSource::Play() + 76
1 OpenAL 0x33ab77c8 alSourcePlay + 224
2 Dapple 0x000046ce 0x1000 + 14030 SoundEngineEffect::Start() line 1047

That top of a call stack is from the nastiest crash I encountered during the development

of Dapple. I’ll talk more about this particular crash in the “ Reproducing Rare Crashes”

section.

Using atos
If you’re having problems with symbolicatecrash or if you want to go at it old-school,

you can try your hand with atos. This is the command that symbolicatecrash uses at its

heart. atos lets you find a symbol name for a given memory address.

To use atos, you need to put an app and its corresponding dSYM in the same directory.

You’ll want to copy the app and dSYM file that you archived when you sent the build to

your testers into the same directory as your crash log file. Copy just the memory

addresses from the crash log into a new text file, and place that file in the same

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 112

directory. On a terminal, navigate to the directory where you have everything, and issue

a command like this:

atos -o MyApp.app/MyApp -arch armv6 -f stackAddresses.txt

NOTE: You need to run atos on the actual app binary, so you need to pass it the path to the
binary inside the .app file. The .app file is actually a directory (in other words, a bundle) that

contains a bunch of files. The binary is found inside the bundle.

NOTE: The architecture I passed in was armv6. If you’re working with an iPhone 3GS, you

may need to use armv7.

The result should be a dump of all the function calls that happened inside your app.

atos, in this case, won’t pull up the symbols for any of the framework methods that were

called. However, it should give you enough information to move forward.

Reproducing Rare Crashes
What if the crash your testers are reporting is extremely rare and you’ve never seen it

yourself? Fixing a bug can really be done only once you know how the bug happens in

the first place. The first thing you should do is attempt to reproduce the crash.

Sometimes when you get a crash log from a tester, they will have sent you very detailed

reproduction steps to make the crash happen, and therefore you’ll be able to reproduce

it easily. However, often you’ll get an email that says, “I was doing something, and it

crashed. I think it was after I hit this button.” Sometimes you might get nothing at all. If

this is the only person who has ever seen the crash and it happened only once, you

might have trouble reproducing (reproing) the bug. If you have a symbolicated crash log,

it’s the only thing you have to go on, so use it.

If you have a crash log from a rarely occurring crash, here are some things you want to

think about while you’re examining the crash log:

Which thread is crashing

Which app system the crash occurred in

Race conditions

Thread
The first thing you want to do is look at which thread is crashing. This will give you

important clues about what might be causing the problem. Is it the main thread that

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 113

crashed? Is it the audio thread that crashed? Is it one of your other spawned threads

that crashed?

Knowing which thread died is important, not only because you’ll want to be looking at

that thread’s call stack but also because it will give you an idea of what might have gone

wrong.

System
Now that you know which thread crashed, look at the system that the crash occurred in.

Did it die in the rendering system? Audio system? Animation system? Some other

system? This will help you narrow your scope when you’re trying to reproduce the crash.

Race Conditions
Race conditions is almost a dirty word, but it needs to be mentioned. Look at all the

threads that are running, and look at their states. Are two threads in the same system at

the same time? Are two threads both trying to do something that could cause a race

condition? Always be aware of thread interactions if you have an app that’s using

multiple threads of execution.

The Scientific Method of Debugging
You’ve had a chance to examine the crash log, and you’ve thought about things. I like to

use a simplified version of the scientific method to track down these kinds of bugs. Yes,

debugging is just like high-school science class:

1. Form a hypothesis.

2. Create a test for your hypothesis.

3. Prove or disprove your hypothesis.

By following these three steps, your goal is to find a way to increase the probability of

the crash and therefore determine the cause more quickly.

Forming a Hypothesis
The first step is to form a hypothesis based on all the available data. Based on the crash

log information and what your tester has told you, come up with an idea of what might

be going wrong. It should be something specific.

To help illustrate this, I’m going to use an example that occurred late in the development

of Dapple. Just after the alpha phase, I received a crash log from one of my testers. He

said that he was playing the game normally, he scored a big combo, and the game

crashed. He was nice enough to provide me with a crash log. The main thread had

crashed trying to play a sound effect. The top of the call stack looked like this:

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 114

Exception Type: EXC_BAD_ACCESS (SIGSEGV)
Exception Codes: KERN_INVALID_ADDRESS at 0xc0000003
Crashed Thread: 0

Thread 0 Crashed:
0 OpenAL 0x33abdbb8 OALSource::Play() + 76
1 OpenAL 0x33ab77c8 alSourcePlay + 224
2 Dapple 0x000046ce 0x1000 + 14030 SoundEngineEffect::Start() line 1047

What was curious to me was that the crash happened inside OpenAL and not inside my

own sound code. Given that this happened after a large combo, my hypothesis was this:

“The crash happened because OpenAL was given too many sound effects to play at

once.”

Creating a Test for Your Hypothesis
Once you have a hypothesis, you need to design a test for it. If you know the repro steps

for the crash, and you can get it to happen, great. However, with rare crashes, only one

person might have seen it happen once. Or perhaps it has happened only a handful of

times. In these cases, I often find it helpful to create specific tests to hammer only the

hypothesis.

Returning to the Dapple example, I had suspected that the crash was being caused by

too many sound effects being played at the same time. I had 20 people testing the

game, and they had been playing it for weeks. The crash had happened twice. I knew

that I wouldn’t be able to rely on being lucky enough to happen to catch it in the

debugger. So, I created some test code. The pseudo-code for the test was this:

Loop 1000 times
{
 PlaySound(1)
 PlaySound(2)
 PlaySound(3)
 PlaySound(4)
 PlaySound(5)
}

I made sure that the loop was called every single frame of execution. The result would

be 1,000 PlaySound calls being made every frame for each of 5 different sound effects,

totaling 5,000 sound calls per frame.

TIP: This is one of those places where those debug #defines I mentioned earlier come in
handy. In this case, I wrapped the code with an #if (ENABLE_AUDIO_CRASH_TEST) so that I
could enable the test any time I wanted. This also allowed me to disable it for shipping without

losing the test code.

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 115

Proving or Disproving Your Hypothesis
Once you have written your test code, let it run! If you think the crash is timing or

memory related, you may need to let it run a while. If your test code reproduces the

crash, then great! You now have a way to repro the crash quickly, which also means that

you have a way to test any potential fix you put into your code.

I built my test code and let it run. After two minutes, the program crashed with the same

crash log my tester had sent me! Success! I now had a way to reproduce the bug, and it

seemed to prove my hypothesis. I put some code into place to stop the audio system

from playing the same sound more than once per frame. When I reran the test with the

new fix in place, I let it run for 30 minutes without a crash. I called it fixed.

Increasing the Probability of the Crash
The important lesson here is that, in these rare crash cases, if you can increase the

probability of the bug happening in your test case, you can more quickly determine the

cause and more quickly test a solution.

It is possible that with a rare crash like this you may never feel completely confident that

the bug has been fixed. The best you can do is prove to yourself, if your test case is

sufficiently rigorous, that you have fixed the bug with a high enough probability.

So, You Have a Call Stack
So, you’ve symbolicated the crash file your tester sent you, or you managed to catch the

crash in the debugger. You have a handy call stack that shows you where the app

crashed. Great! You’ve looked at all the obvious answers, but none of them yields any

results. Now what?

What I’m going to do now is walk you through several techniques for debugging some of

the nastier, more obscure memory bugs you might encounter. These kinds of bugs are

the ones that I find the most challenging, so it’s good to have as many tools as possible

at your disposal for recognizing them and then tracking them down.

To start, you’ll write some basic code that I’ll have you add to as we go. Each time you

add some code, it will cause a very specific kind of bug, and I’ll show you a new

technique for finding the bug.

Starting Code
In Xcode, create a new iPhone view-based project, and call it MemoryBugs. First, add

a new NSObject class, and call it TestClass (have it create the source and header files

for you).

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 116

TestClass.h

#import <Foundation/Foundation.h>
@interface TestClass : NSObject {
 NSString* myString;
}

@property (nonatomic, retain) NSString* myString;

- (void)doNothing;

@end

TestClass.m

#import "TestClass.h"
@implementation TestClass

@synthesize myString;

- (void)doNothing
{
 // Do nothing
}

- (void)dealloc
{
 [myString release];
 [super dealloc];
}

@end

The TestClass you just created is just a simple class I’ll use to demonstrate some

memory problems you can run into with an Objective-C class.

Now create a C++ class. The easiest way to do this is add a new file based on NSObject.

When asked for the class name, enter TestCPPClass.mm (note the mm extension) and

have it generate the corresponding header. Replace the entire contents of the generated

files (removing all the Objective-C that Xcode generates automatically for you) with the

following code.

TestCPPClass.h

class TestCPPClass
{
public:
 // Constructor
 TestCPPClass();

 // Destructor
 ~TestCPPClass();

 void DoSomething();

 void ForceBufferOverrun();
private:

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 117

 int mSomeNum;
 int mOverrunMe[16];
 int mIGetStomped;
};

NOTE: If you’re not used to C++, make sure you put that semicolon (;) at the end of the class

declaration, after the closing brace!

TestCPPClass.mm

#import "TestCPPClass.h"

TestCPPClass::TestCPPClass()
: mSomeNum(0)
, mIGetStomped(0)
{
 mIGetStomped = -1;
}

TestCPPClass::~TestCPPClass()
{
}

void TestCPPClass::DoSomething()
{
 ++mSomeNum;
}

void TestCPPClass::ForceBufferOverrun()
{
 // Write one too many ints into the array
 for (int i = 0; i < 17; i++)
 {
 mOverrunMe[i] = i;
 }

 // The loop above will have written the value "16" into mIGetStomped,
 // since it lies directly after the array in memory.
 NSLog(@"mIGetStomped = %d", mIGetStomped);
}

This class will be used to demonstrate how to track some bugs you can run into in C++

code.

NOTE: For your ViewController class to be able to use this C++ class, you need to rename
MemoryBugsViewController.m to MemoryBugsViewController.mm. This tells the
compiler to treat it as an Objective-C++ class. Alternatively, in Project view, you can click

MemoryBugsViewController.m and select Get Info. On the General tab, change the File

Type drop-down from sourcecode.c.objc to sourcecode.cpp.objcpp.

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 118

Find your MemoryBugsViewController class, and add a private member variable for the

C++ class you just created in the header.

MemoryBugsViewController.h

...
@interface MemoryTestViewController : UIViewController {
 struct TestCPPClass* mTestCpp;
}
...

Note the use of the keyword struct. This is your C++ class. To use it within an

Objective-C class, it needs to be declared with the struct keyword. If you leave the

struct out of the declaration, the compiler will generate an error.

At the top of your MemoryBugsViewController class implementation, include the following

two classes.

MemoryBugsViewController.mm

...
#import "MemoryBugsViewController.h"

#import "TestClass.h"
#import "TestCPPClass.h"

...

Finally, inside your MemoryBugsViewController class implementation, find the

viewDidLoad method, and uncomment it.

MemoryBugsViewController.mm

...
// Implement viewDidLoad to do additional setup after loading the view, typically
// from a nib.
- (void)viewDidLoad {
 [super viewDidLoad];
}
...

You will be adding code to viewDidLoad each time you look at a new kind of bug.

What Is a Memory Stomp?
If you look at the TestCPPClass code, you’ll notice that I mention that one of the values

will get “stomped.” The term memory stomp is used when something changes a value in

memory that it wasn’t supposed to change.

Mem stomps (as I’ll refer to them) occur in a lot of different ways, but in my experience

these are the three most common ways you’ll encounter a mem stomp:

Buffer overruns

Calling a method on an object that has been deleted

Returning from a callback into an object that has been deleted

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 119

Buffer Overruns
This is one of the most common ways to cause a mem stomp in C/C++. However, you’ll

recall that at the beginning of the chapter I mentioned that NSArray and NSMutableArray
make this hard to do. This is because once you’ve create an NSArray, you can’t change

the contents, and the NSArray will generate errors if you try to write out of bounds of the

array. This is extremely useful. The NSMutableArray, on the other hand, will grow in a

safe way if you try to write beyond the bounds of the existing array, making things safer

for you (at a potential performance cost).

However, in C/C++, overrunning a buffer is as simple as iterating one too many times in

a loop. For example:

int myInts[8];
for (int i = 0; i <= 8; i++)
{
 myInts[i] = i;
}

If you’re not thinking about what you’re doing, that code might look OK at first glance,

but I just wrote nine values into an array that can hold only eight values. Whatever 4

bytes live in memory right after my array just got the integer value 8 written into them

(see Figure 4-5).

Figure 4-5. An example of a buffer overrun

Buffer overruns are tricky because oftentimes there might not be anything allocated right

after the buffer in memory and so it won’t have any noticeable effect. Or you might end

up writing a value into memory that is within an acceptable range for the variable you

just stomped.

I’ll go into more detail on tracking these bugs down later.

Calling a Deleted Method
This kind of mem stomp is less common, but I’ve seen it happen a fair bit. The usual

sequence of events is as follows:

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 120

1. An object is created.

2. The object is used.

3. The object is deleted.

4. Something that didn’t know the object was deleted calls a method on

that object.

Sometimes your app will crash immediately when this happens. However, sometimes

the object will have been deleted, but the memory on the heap hasn’t been allocated to

something else yet. So, the result is that the variable still points to what looks like an

object in memory, and the function call “works.” In doing so, if that method starts

changing member variables, it can now be changing memory on the heap that it doesn’t

own anymore, resulting in a stomp of other newly allocated objects.

For an example of one of these situations, see Figure 4-6.

Figure 4-6. An example of calling a method on a deleted object

Like I said, this one isn’t as common, but it’s important to be aware that it can happen

so that you at least look for it once you’ve exhausted other options.

Returning to a Deleted Object
This kind of mem stomp is a lot harder to have happen in Objective-C than C/C++

because of the reference counting of pointers that takes place. Using retain and

release means that objects that are still needed don’t get deleted too soon. However,

it’s quite easy to get this to happen in C/C++ when you’re dealing with callbacks and

function pointers, and you can get it to happen in Objective-C if you’re not managing

your memory properly.

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 121

The most common place I’ve run into this kind of mem stomp is with animation systems.

The usual sequence of events is something like this:

1. Object A creates an animation instance.

2. Object A sets a callback to itself so that it is notified when the animation

completes.

3. Object A triggers the animation.

4. The animation runs.

5. The animation completes and calls Object A’s callback.

6. Inside the callback, Object A causes an app state change that requires

that the animation gets deleted.

7. The animation object gets deleted.

8. The callback completes and returns into the animation object (which has

now been deleted).

9. The animation object does some cleanup code, which involves

modifying some member variables.

10. What it’s actually doing is changing memory that has been allocated to

something else now.

I have typically run into these kinds of problems when transitioning between front-end

menu screens and in-game state (and vice versa) in games. It’s not uncommon for an

animation to play in response to user input and at the end of the animation trigger a

state change. For a simplified example, see Figure 4-7. Of course, this kind of mem

stomp can occur in other ways, so just be aware

of it.

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 122

Figure 4-7. An example of returning from a callback into a deleted object

Identifying a Mem Stomp
Mem stomp bugs are fairly rare, compared to other kinds of bugs, but they can be the

most difficult to track down and fix. One of the important first steps is learning how to

recognize when something might be a mem stomp. However, it is also important not to

leap to the mem stomp conclusion too soon. Look for the simple explanations first. Then

if you can’t find a simple explanation, start looking at the harder ones.

Here are a few things to look for that might indicate a mem stomp:

The app suddenly crashes, but the crash happens at a different point

each time you run the app. (This could also indicate a timing/threading

problem or could indicate multiple different crashes.)

The app behaves in a random, incorrect manner after consistent

events. (For example, your game starts with a random, nonzero score

every time you load into the game from the menus.)

Unexpected values show up in variables after unrelated events. (For

example, game state data changes after you load an image into

memory.)

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 123

You see the following message show up in your console: malloc: ***
error for object 0×XXXXXX: Non-aligned pointer being freed (see

the “Enable Guard Malloc” section for more information).

CAUTION: A memory stomp won’t always cause a crash. Oftentimes it will just cause strange
behavior. If the stomp writes a valid value into some other variable, the program might not

crash; it might just behave erratically.

During the development of Dapple, I ran into a strange problem: upon entering the

game, playing for a short time, and then quitting back to the main menu, sometimes one

of the menu items would show up in white, as shown in Figure 4-8. It turned out to be a

stomp being caused by a callback returning to the animation system after the state

change from in-game to the front end had occurred, after the animation system had

been deleted. The animation system was stomping over an image object in memory.

Figure 4-8. An example from Dapple of the strange behavior that can occur as a result of a memory stomp

Tools to Detect Memory Problems
Now I’ll walk you through several tools at your disposal for tracking down nasty

memory-related bugs.

malloc_error_break
malloc_error_break is a symbol that you can, and should, set a breakpoint on. This

handy method will print out warning messages to your console when certain memory

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 124

“weirdness” occurs. The log message will advise you to set a breakpoint on the function

and rerun the app. I recommend that you always have a breakpoint set on this symbol. It

will help you track down several kinds of memory problems as soon as they occur!

TIP: Always have a breakpoint set on malloc_error_break to catch certain memory

problems as soon as they occur.

malloc_error_break will tell you when a few important things happen:

You have double-released an Objective-C object.

You try to release memory that may have been stomped.

At this point, crack open MemoryBugsViewController.mm, and add the following code to

viewDidLoad:

- (void)viewDidLoad {
 [super viewDidLoad];

 // Test case for double release - malloc_error_break
 NSDate* date = [NSDate date];
 [date release];
 [date release];

}

In this example, you can clearly see that date is being released twice (three times if you

count the autorelease that would have happened at the end of the method). However, in

your own, more complicated app, the fact that something is being released twice might

not be so obvious.

Compile and run the code, and you should see that the app actually crashes. However,

there are instances where your app will double-free (that is, attempt to release or free

the same memory twice) and continue merrily on its way, even though you’ve done

something potentially dangerous. If you open the console window (Shift-Command-R by

default in Xcode), you’ll see that you should have something like this printed after

running:

MemoryBugs(5745,0xa04cc720) malloc: *** error for object 0x525250: double free
*** set a breakpoint in malloc_error_break to debug

The app is telling you to set a breakpoint in malloc_error_debug, so do that now. To set

a breakpoint on a symbol for which you don’t have source code, you’ll use the

Breakpoints window. Open the Breakpoints window (Option-Command-B by default).

Scroll to the bottom of the window, and you should see a blue box with the text

“Double-Click for Symbol” next to it, as shown in Figure 4-9.

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 125

Figure 4-9. Adding a symbol breakpoint

Double-click in that box, and you’ll be prompted to enter a symbol name. Enter

malloc_error_break, and press Enter. The Breakpoints window should now show a new

breakpoint set on that function.

Run the app again (via Run ➤ Debug), and this time, you should hit the breakpoint. If you

look at the call stack in the debugger, you should see something like Figure 4-10.

Figure 4-10. Debugger halting on second release because malloc_error_break was triggered

If you click the call stack at [MemoryBugsViewController viewDidLoad], you’ll see that

the breakpoint was hit on the second release of the date object. This tells you exactly

where the problem occurred. Now you can figure out why it was released twice and fix

your bug!

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 126

NSZombieEnabled
NSZombieEnabled is a fantastic tool for tracking down tricky memory problems with

Objective-C objects.

NOTE: NSZombieEnabled can be used when debugging both in the simulator and on a

device.

NSZombieEnabled is an environment variable that you set up for your app. What it does is

tell the app to never actually release memory when you call release. Instead, objects

that get released have their types changed to _NSZombie. The result is that if something

tries to act on that object after it has been freed, the debugger will break to the line that

caused the error, instead of potentially crashing somewhere completely different.

CAUTION: Never, ever, leave this turned on when you don’t need it. It means that your

memory allocations aren’t freed properly and could result in your app using a significant
amount of memory. I recommend that you set up the argument and leave it disabled, except

when you want to test with it enabled.

First, add the following code to the MemoryBugsViewController class’s viewDidLoad
method, and comment out the test from the previous section:

// Implement viewDidLoad to do additional setup after loading the view, typically
// from a nib.
- (void)viewDidLoad {
 [super viewDidLoad];

 // Test case for double release - malloc_error_break

 /*

 NSDate* date = [NSDate date];
 [date release];
 [date release];

 */

 // Test case for NSZombie
 TestClass* testInstance = [TestClass alloc];
 [testInstance release];
 NSLog(@"Test Class's myString = %@", testInstance.myString);

}

The example code is clearly doing something stupid: it’s trying to get the value of a

property for an object that has already been released. If you build and run this code in

the debugger, it should crash. In this case, the call stack should be inside viewDidLoad,

and it’s easy to see why it crashed. However, this kind of bug won’t always crash at the

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 127

point where the problem occurred. Sometimes it will crash later or in a different area of

code. This can make tracking down the line that caused the problem quite difficult.

However, NSZombieEnabled comes to the rescue! To enable this handy tool, in the

project viewer find your MemoryBugs executable in the Groups & Files pane, and

double-click it to open up the executable info window (see Figure 4-11).

Figure 4-11. Double-click the MemoryBugs executable to bring up the executable info window.

When the executable info window opens, click the Arguments tab at the top of the

screen. The bottom pane of this window should be labeled “Variables to be set in the

environment.” Click the + at the bottom to add a new variable. Name it NSZombieEnabled,

and set its value to YES (see Figure 4-12).

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 128

Figure 4-12. Setting NSZombieEnabled

Now build and run the app again. You should see the following print out in the console

window:

2009-05-04 10:26:53.905 MemoryBugs[19558:20b] *** -[TestClass myString]: message
sent to deallocated instance 0x536560

and program execution should halt. If you look at the call stack, you’ll see that it halted

at the line where the program tried to access the released object.

Although this is a very simple example, NSZombieEnabled can help you track down much

more complicated memory violations. It’s a great place to start if you’re seeing what you

suspect is a memory stomp.

However, sometimes this won’t turn anything up. Perhaps your bug is being caused by a

C/C++ class instance. If this is the case, then NSZombieEnabled won’t be able to help

you, because it tracks only Objective-C allocations and releases. If the problem has to

do with an object that has been newed/deleted, then you need a different tool.

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 129

Enable Guard Malloc
Enable Guard Malloc to the rescue! Maybe! Enable Guard Malloc is a similar

tool to NSZombieEnabled, but it tracks problems with new and delete or with malloc and

free. This can be used to track down memory violations in your

C++ classes.

Enable Guard Malloc puts memory guards around memory every time it is allocated or

freed. The net effect of this is that it can detect when something tries to use memory

that has been freed/deleted. This is very useful for tracking down those callback bugs

mentioned earlier.

TIP: Have you ever see the following error message print out in your console: malloc: ***
error for object 0×XXXXXX: Non-aligned pointer being freed? Then you most
likely have a memory stomp. By default, the iPhone allocates new memory to aligned

boundaries, so if it tries to free memory that’s not aligned, there’s a good chance that a
memory stomp has occurred. If you see that error message, turn on Enable Guard Malloc and

rerun the app in the debugger. It may help you find the problem.

Add the following to your viewDidLoad code, and comment out the last code you added:

// Implement viewDidLoad to do additional setup after loading the view, typically
// from a nib.
- (void)viewDidLoad {
 ...

 // Test case for NSZombie

 /*

 TestClass* testInstance = [TestClass alloc];
 [testInstance release];s
 NSLog(@"Test Class's myString = %@", testInstance.myString);

 */

 // Test case for Enable Guard Malloc - delete and use
 mTestCpp = new TestCPPClass();
 delete mTestCpp;
 mTestCpp->DoSomething();
}

Again, this is clearly a simple example; an object is being used after it has been deleted.

However, this kind of thing can crop up in code quite easily without it being so obvious.

This can be especially problematic if two threads act on the same object in a non-

thread-safe way. This is also quite easy to do in complex callback mechanisms.

Make sure that NSZombieEnabled is still set to YES, and then build and run the code. Did

you see what happened? Absolutely nothing. The program ran fine. NSZombieEnabled
wasn’t able to catch this because you used new to instantiate your C++ class. Also

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 130

notice that the program didn’t crash. This is where memory problems can be awful to

track down. Depending on what DoSomething() is actually doing and when it was called

after mTestCpp has been deleted, it could have stomped over memory that had been

allocated to a different object.

First, disable NSZombieEnabled (refer to the previous section to see how to find it) by

deselecting the check box next to it. Now turn Enable Guard Malloc.

NOTE: Unfortunately, Enable Guard Malloc can be used only with the simulator. It cannot be

used to debug on your device.

Make sure you set your target to build for the simulator. Then go to the Run menu and

turn on Enable Guard Malloc, right at the bottom of the menu, as shown in Figure 4-13.

Figure 4-13. Activating Enable Guard Malloc for the simulator

TIP: If Enable Guard Malloc is grayed out in the Run menu, it is probably because the build
target is still set to Device instead of Simulator. Make sure the target is set to Simulator, and

try again.

Build and run the app again. This time the app should halt in the debugger. If everything

went according to plan, then the debugger should have halted at this line:

void TestCPPClass::DoSomething()
{

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 131

 ++mSomeNum; // Debugger should have halted here

}

The debugger is halting here this time because it’s at this point that Enable Guard

Malloc has caught something trying to write to memory that has been freed. In this

function, mSomeNum is a member variable of an object that has been deleted. By trying to

increment it, what’s actually happening is that some 4-byte chunk of memory that no

longer belongs to the mTestCpp object is being incremented.

CAUTION: Running with Enable Guard Malloc turned on will most likely cause any remotely
complex app to run extremely slowly, because it does extra processing for every memory

allocation and free. Turn it on only when you need it to track down a problem.

In this example, because DoSomething() is being called immediately after the object was

deleted, chances are this isn’t going to do anything dangerous. However, if the call to

DoSomething() was made after other memory had been allocated on the heap, this code

might now be incrementing memory that belongs to some other object. Memory stomp!

Luckily, Enable Guard Malloc caught the problem as soon as something tried to access

memory it didn’t own anymore. However, it’s up to you to figure out why this object was

deleted before you thought you were finished with it. The best way I know to do this is to

put a breakpoint in the object’s destructor and watch where it gets hit. From there you

can usually track it back to problem.

CAUTION: Enable Guard Malloc won’t find all of your memory stomps. It will find instances

only where memory that has been marked as freed is changed.

Watching Variables
I’ve covered a few tools that are available to you for tracking down some memory bugs.

However, sometimes a stomp will happen without causing any of the memory violations

that the previous tools will detect. In this case, the bug can be extremely tricky to track

down. The first step in the process is determining which variable (or variables) is being

stomped. That is left as an exercise for you, because that’s just good, old-fashioned

debugging.

If you know that a particular variable is being stomped (or even just changed and you

don’t know why), one of the most useful tools for debugging this is a variable watch.

Xcode allows you to put a watch on any given variable. Setting a watch on a variable

halts execution any time something changes the value stored by the variable.

Watches can be incredibly useful if something unexpected is changing the value of one

of your variables in memory. It can also be useful if something is stomping memory and

you know what memory is being stomped, but you don’t know from where.

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 132

CAUTION: If the variable that is being changed gets changed multiple times per frame of
execution in a valid way, then setting a watch probably won’t tell you much, because execution
will halt so frequently that you can’t tell what’s going on. If this is the case, the first thing to do

is look at the class declaration for clues about what sits next to it in memory. If you’re dealing

with a global object, or code memory, the “Map Files” section might help.

Open MemoryBugsViewController.mm, and add some more new code to the viewDidLoad
method (and comment out the old code again):

// Implement viewDidLoad to do additional setup after loading the view, typically
// from a nib.
- (void)viewDidLoad {
 ...

 // Text case for Enable Guard Malloc - delete and use

 /*

 mTestCpp = new TestCPPClass();
 delete mTestCpp;
 mTestCpp->DoSomething();

 */

 // Test case for buffer overrun
 mTestCpp = new TestCPPClass();
 mTestCpp->ForceBufferOverrun();
 delete mTestCpp;

}

If you look at the code in ForceBufferOverrun(), you’ll see that the function writes 17

ints into an array that’s only of size 16. This stomps the contents of the member variable

directly after the array in the class. If you look at the class header, you’ll see that

mIGetStomped sits directly after the array in memory, so it’s what gets stomped.

If you build and run this code, you’ll see that everything runs totally fine. Look at the

console output, though, and you should see this:

mIGetStomped = 16

Nowhere in the code do you explicitly set the value of mIGetStomped to 16, but the buffer

overrun does that. If you run this code with NSZombieEnabled turned on or Enable Guard

Malloc turned on, it will still run fine. This is because you’re not trying to access freed

memory. The method stomped only the memory that belongs to the same class, so the

previous tools I covered don’t do anything.

However, all is not lost! This is one of those situations where watching a variable can

pinpoint exactly what’s going on. I will assume that you’ve found out that it’s the

contents of mIGetStomped that are being stomped (which is why you added that handy

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 133

NSLog into the function—how thoughtful!). To figure out what is doing the stomping, set a

watch on mIGetStomped. To do this, first set a breakpoint in the constructor for

TestCPPClass so that the program will halt execution somewhere before the stomp

happens. Build and run in the debugger.

The app should halt when the TestCPPClass object is instantiated for the first time, in the

constructor, where you put your breakpoint. Open the debugger window (Command-

Shift-Y by default in Xcode), and find the mIGetStomped variable in the Variable pane.

Right-click (or Ctrl-click) mIGetStomped, and select Watch Variable from the menu (see

Figure 4-14).

Figure 4-14. Setting a watch on a variable

Once the watch has been set, a small magnifying glass icon will appear next to the

variable in the debugger (see Figure 4-15).

Figure 4-15. The magnifying glass next to mIGetStomped tells you that it’s being watched.

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 134

Now that you have set the watch, continue execution of the program. If you set your first

breakpoint on the line in the constructor where mIGetStomped is assigned the value –1,

then you will see the program halt as soon as mIGetStomped becomes –1. This is

expected, so click OK, and then continue execution of the app.

The program execution should halt a second time with a message that looks like what

you see in Figure 4-16.

Figure 4-16. The watched variable detecting a bad change in value

Clearly, mIGetStomped should never be assigned the value 16, so this is where the stomp

occurred. Click OK, and look at where the program counter is. It will have halted at the

next instruction after the line that caused the value to change. Look at the value of i in

the debugger, and you’ll see that it’s 16. This means that the previous instruction was

when i was 16 and the program executed:

mOverrunMe[i] = i;

If you look at the declaration of mOverrunMe, you’ll see that it’s declared as an int array of

size 16. This means that only indices of 0–15 are valid, so when i = 16, the program

stomps the next 4 bytes in memory, or mIGetStomped.

Now that you know which line of code caused the stomp, it’s just a matter of fixing the

loop so that it doesn’t overrun the buffer.

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 135

Again, this is a very simple example, but the method can be applied to find much more

complicated memory stomps.

NOTE: The default behavior, if you put a watch on a pointer, is to just watch the value of the
pointer. That means that the debugger will halt only if the address that the pointer is pointing to

changes. This is often not what you want. You can instead tell the debugger to watch the entire
contents of the object to which the pointer points. To do this, while debugging and at a
breakpoint, find the memory address for the object you want to watch. Open the Expressions

window, and use an expression in this format: *(<class_name>*)(<mem_address>). For
example, enter *(TestCPPClass*)(0xb482ffb0). Then right-click the expression, and choose
Watch Variable. Now when any member of the object changes, the program will halt. Be

careful, though, because this can slow the debugger significantly!

Link Map Files
But, Owen, you say. What if the variable that’s being stomped gets changed all over the

place in a legitimate way? I can’t have the program halt every time something changes

the variable!

To that I say, fine, you’re right. If you’re in this situation, you’re in a tight spot, and

tracking the stomp down is going to be hard work; I won’t lie. One last tool I want to

share with you is the link map file. This can sometimes point you to a problem if you’ve

exhausted all the earlier techniques and you still don’t know what’s causing the

problem. This is kind of a last-resort tool that I use. It’s rare that I use it, and it’s rare that

it helps. However, it did once help me find a memory stomp I had been tracking for three

days straight, so I won’t discredit it.

A link map file is a file that you can optionally build at link time that dumps out a memory

map of the symbols in your binary. The file contains a list of all the symbols in the binary

along with their memory addresses, showing you how the binary will be arranged in

memory when the executable is loaded.

For the previous example, the stomp happened within the class, so looking at the class

declaration in the header should have given you a good idea of what was causing the

stomp. If you look at the header, you’ll see that the mOverrunMe array sits directly in front

of mIGetStomped, so there was a good chance that a buffer overrun was causing the

stomp. The variable watch confirmed that.

However, there will be some memory stomps that happen because of a global

variable or code. The link map file can give you hints about what might be causing

those problems.

To use a link map file, you first need to set up your build target to create the file. Open

the target for your Debug build of MemoryBugs, and select the Build tab. Type link into

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 136

the search field, and you will get a reduced listing of build options. There are two that

you should pay attention to (see Figure 4-17).

Figure 4-17. Settings to pay attention to for building link map files

The first to look at is the Path to Link Map File field. Look at the path where it will place

the link map file, because you will need to find it after you build it. The second is the

check box Write Link Map File, which is probably deselected. Select it now, and close

the target info window.

NOTE: The link map file will be different based on the architecture you’re building for. If you’re
tracking the bug on your device, build the link map file for the device. If you’re debugging on
the simulator, build the link map file for the simulator. The text file that is generated will have

the architecture that it was built for in the file name (i386 for Intel Macs, armv6 for

iPhone/iPod touch).

Build the app again, and then navigate in the browser to the directory that was specified

in the Path to Link Map File field. Open the text file that was generated, and you’ll see

the map of the binary. It should look something like this (this is a link map file generated

for device, which is why the memory addresses are so low):

...
Address Size File Name
0x00002000 0x0000004C [1] start
0x0000204C 0x00000020 [1] dyld_stub_binding_helper
0x0000206C 0x00000084 [2] _main

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 137

0x000020F0 0x00000090 [3] -[MemoryBugsAppDelegate ➥
 applicationDidFinishLaunching:]
0x00002180 0x0000008C [3] -[MemoryBugsAppDelegate dealloc]
0x0000220C 0x00000028 [3] -[MemoryBugsAppDelegate viewController]
0x00002234 0x00000048 [3] -[MemoryBugsAppDelegate setViewController:]
0x0000227C 0x00000028 [3] -[MemoryBugsAppDelegate window]
0x000022A4 0x00000048 [3] -[MemoryBugsAppDelegate setWindow:]
...

In the file you can see the layout of all the classes and functions as well as the layout of

any global data that exists.

I’ll be honest: it’s not often that I end up digging into a link map file to help fix a bug.

However, there have been times where the link map file provided the only clue as to

what was happening. For the odd time that you need that clue about what lies next to

something else in memory, you’ll be thankful that you know

it’s there.

Summary
Thanks for sticking with me through the chapter. I know that, to many people,

debugging isn’t the most exciting or glamorous topic in the world. However, debugging

is a skill that must be learned, just like any other. It can take years of practice, and even

then you’ll still run into bugs you’ve never seen before. The programmers I’ve worked

with who were the best debuggers are the ones who have done it the most. They’re also

the ones who enjoy it the most. It comes back to what I said at the beginning: if you go

into it with the right frame of mind, it can make things a lot easier on you.

Don’t be frustrated if the concepts I’ve covered aren’t immediately obvious or if you’re

not quite sure when to use one tool over another. Just try things, and you’ll gradually

learn what the best approach is for a certain kind of problem.

As I wrap things up, I want to offer a couple of final thoughts. Look for patterns. Often a

bug will follow a similar pattern to other bugs you’ve seen before. But be adaptable.

Sometimes a bug will look like nothing you have seen before. Just do your best, take a

deep breath, and dive in.

Good hunting!

CHAPTER 4: You Go Squish Now! Debugging on the iPhone 138

139

Dylan Bruzenak
Company: Idea Swarm

Location: Minneapolis, MN

Former Life As a Developer: IdeaSwarm, Inc. 1 year. Owner

Developer of the WhatNext task management iPhone application
and the AppViz iPhone Sales tracking application for the Mac.

Tech: Objective-c, Core Data, SQLite

Adobe Systems, Computer Scientist (consultant), 1 year, 1
month

Developed task management tools, build tools, and did installer
work for the Adobe Photoshop Lightroom project.

Tech: Java, Ruby on Rails, SQL, InstallShield, Build Forge,
Javascript, HTML/CSS, Perl

Adobe Systems, Whitebox QE (consultant), 4 months

Whitebox QE for the LiveCycle Java platform.

Tech: Java, JBoss, IBM WebSphere, BEA WebLogic, Apache
Web Server, load balancing, JMS,

United Health Group, Developer (consultant), 4 months

Developed the http://www.urnparentsteps.com/ application with
a small team.

Tech: Java, Spring, Hibernate, Javascript, HTML/CSS

Fidelity National Financial, consultant, 10 months

Worked on the Touchpoint Sales and Service application for
banks.

Tech: XML, Java, Javascript, HTML/CSS

Value Vision Media, Java Programmer, 1 year 3 months

140

Worked on various internal applications including reporting and
shipping tracking applications.

Tech: Java, Swing, Spring, Hibernate, Javascript, HTML/CSS,
Ruby, XML, XSLT

Life as an iPhone Develooper:

WhatNext – Task and List Manager

What's in This Chapter: This chapter includes a walk through of developing an
Active Record style database wrapper around the SQLite APIs included in the
iPhone SDK. The user should leave with an understanding of SQL handling on
the iPhone and the code necessary to easily incorporate this storage method into
their applications.

Key Technologies:

SQL

SQLite

Active Record

141141

 Chapter

Stick Around:
Building Data-Driven
Applications with SQLite
Welcome. I’ll be your guide on a wondrous journey through the depths of SQLite

support on the iPhone. My intent with this chapter is to demystify the C API and wrap it

in some more lovable Objective-C. I will then show you how to add a deliciously simple

Active Record mapping layer on top to facilitate communication with your object model.

I’m assuming that you have some knowledge of SQL going into this chapter, but you

don’t need anything too advanced and certainly nothing specific to SQLite. But first…

A Short Road Off a High Cliff
(How I Got Here)
I entered the Objective-C ecosphere the same way many new iPhone developers do:

I took a leap of faith.

By early 2008 I had entrenched myself in the Java and sometimes Ruby consulting

communities, doing some interesting work interspersed between standard internal

business projects. A year previously I had been lucky enough to get a contract with

Adobe Systems doing tools work for the Adobe Photoshop Lightroom project in the

Arden Hills, Minnesota, office. I loved it there, but unfortunately my contract was coming

to an end, and I needed to look for something else to keep the spring rain from making

my life very uncomfortable. I was faced with a difficult choice: return to consulting, take

a full-time job offered by a friend of mine working on some exciting new stuff for a large

company, or strike out on my own again as I had longed dreamed of doing. After a long

couple of weeks of oscillating, staring at my bank statements, and counting and

recounting my meager savings, I decided to go my own way. The siren song of

developing on a platform that I loved and building software for myself again lured me

5

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 142

into a land of ridiculous hours and high potential. Eventually I had decided that the

opportunity of the platform was too great to risk letting it pass me by.

And so, I set off to build my first iPhone application.

Ready! Set! Wait, What? (Why I Decided to Write a
To-Do Application)
The first few weeks found me drifting. I was having trouble deciding on one idea to

pursue. My hard drive is littered with cast-off source—skeletons of ideas that never quite

made it far enough to capture my attention. I was having trouble getting things done

with the call of spring outside. I was having trouble scheduling my work without the

pressure of external deadlines, which I had come to rely on over the years. Consulting

had made me strong in some ways but weak in others, and I was running headlong into

a confrontation with those weaknesses.

When I confront a problem, the first thing that I generally do is take a stab at it myself. I

try to think of a solution without a lot of external help; I think that this allows a bit more

creativity and understanding of the problem space before getting locked into seeing

things through the results and ideas of others. It also lets me exercise my reckless

streak. This wasn’t working so well for me here, so I turned to my second step: research.

I bought a number of popular books on scheduling, time and task management, and

personal motivation. I hopped from system to system, never quite finding one with the

correct balance of time put in to work coming out. I also needed something that worked

on my phone, something that I could carry with me everywhere. WhatNext was born.

My initial design was complex and had pieces from the various systems that I had tried.

After working with it for a while and assessing what I knew some of my potential

competitors were working on, and with the date for the store launch hurtling toward me,

I decided to go simpler. I pared WhatNext down to just my essential needs. It left an

application that is simple to use and does exactly what I need it to do. Figure 5-1 shows

the main view for WhatNext.

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 143

Figure 5-1. WhatNext—a super simple task manager

Data-Driven Applications on the iPhone
WhatNext is a data-driven application. This type of application revolves around

collecting data from various sources and displaying it to the user. The source could be

anything, but some typical sources are the user themselves (think of list applications),

some form of web service (weather stats, RSS feeds, and so on), or a built-in data set of

some kind that you might ship with your application (geological surveys, molecule data,

and so).

One of the first questions that I come to when designing any data-driven application is,

how do I store and retrieve the various bits of data that I’ll be accumulating and

displaying? Thankfully, the iPhone SDK has several good ways of storing data. One of

the most versatile and robust ways is to use a SQL database.

You may already be familiar with SQL, as I was, especially if you’ve come from the web

world or a number of other industries where it is the de facto standard for data storage.

It was built from the ground up to handle the specific task of working with data, with the

end result that you can often take whole paragraphs of code and reduce them to a

single statement in SQL. It is also fast, well documented, and dependable.

The iPhone SDK includes a SQL database called SQLite. It is small, durable, and

extremely fast, and including it is as simple as including the associated library into your

Xcode project.

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 144

Active Record: A Simple Way of
Accessing Data
One of my early experiments in the iPhone ecosystem involved adapting the SQLite

Books example code from Apple’s site to work with my own data model. The example

uses raw SQL and the SQLite C APIs and was relatively straightforward to adapt, but I

found myself constantly having to drop out of Objective-C and my higher-level domain

model thinking to think about SQL and C. That kind of context switching was costing me

development brain cycles, so I set out to solve the problem.

I ended up creating a higher-level framework that takes care of most of the raw SQL

work by mapping to and from simple objects in my domain model. The framework

makes it easy to create, find, save, and delete these objects while minimizing the

amount of SQL that has to be written and maintained. It is based on the Active Record

design pattern.

In the Active Record pattern, each database table is represented by a class in your

application. The individual instances of this class represent rows in the table. There are

class methods for retrieving instances of these objects, and the instances themselves

contain the methods responsible for deleting, saving, and updating themselves. This

provides a simple and natural API for handling most data access needs and also allows

for dropping down to custom SQL if you need to do something more complex. Here’s

an example of working with an Active Record object:

GroceryItem *bread = [[[GroceryItem alloc] init] autorelease];
bread.name = @"Bread";
bread.number = [NSNumber numberWithInt: 2];
[bread save];

To find all grocery items, you would use this:

NSArray *items = [GroceryItem findAll];

Deleting, updating, and finding a specific item is just as easy.

In the rest of this chapter, I’ll be walking you through implementing an Active Record

framework. However, before you can get to this implementation, you first need to

simplify working with the C APIs. I’ll cover that in the next section.

Writing a Database Wrapper Around the C API:
ISDatabase
Writing an Active Record implementation, even a simple one, can be fairly complex. It

isn’t helped by having to drop down to C every time you have to run a SQL statement.

To make things a bit easier, you will first be creating a wrapper around the C APIs for

SQLite to take care of some common “housekeeping” issues:

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 145

Managing the opening and closing of the database

connection

Handling transactions (groups of SQL statements that should

be run together and fail together if any single statement fails)

Processing SQL statements and returning wrapped results

Handling parameters

Managing memory

The wrapper will do all of these tasks, allowing you to display a data-driven interface

such as the one shown in Figure 5-2.

Figure 5-2. Where you’re going

Setting Up the Example Project
First you’ll need a project for the code to live in. Create a new navigation-based

application using File ➤ New Project in Xcode. Name the project GroceryList.

Right-click the target for your application, and choose Get Info. Switch to the General

tab. Click the plus button at the bottom to add a Linked Library, and choose

libsqlite3.dylib. This will link in the SQLite framework. Close the info window, and

drag the libqlite3.0.8.6.dylib entry from the tree view in your main window to the

Frameworks folder. Your project tree should look like the one shown in Figure 5-3.

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 146

Figure 5-3. The GroceryList project

Next open RootViewController.h, and add an NSArray property called results. This

property will contain the list to be displayed in the UITableView that was created by

default by the project template as the main view. RootViewController.h should look like

this:

#import <UIKit/UIKit.h>

@interface RootViewController : UITableViewController {
 NSArray *results;
}

@property (nonatomic, retain) NSArray *results;
@end

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 147

Make sure to @synthesize this property in the RootViewController.m file and release it in

the dealloc method. Find and replace the implementations of the following functions in

the .m file as well:

- (void)viewDidLoad
{
 [super viewDidLoad];
 self.results = [NSArray arrayWithObjects: @"Apple", @"Banana", nil];
}

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection: _
 (NSInteger)section
{
 return [results count];
}

- (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath: _
 (NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"GroceryCell";

 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil)
 {
 #if __IPHONE_OS_VERSION_MIN_REQUIRED >= 30000
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] autorelease];
 #else
 cell = [[[UITableViewCell alloc] initWithFrame:CGRectZero _
 reuseIdentifier:CellIdentifier] autorelease];
 #endif
 }

 #if __IPHONE_OS_VERSION_MIN_REQUIRED >= 30000
 cell.textLabel.text = [results objectAtIndex:indexPath.row];
 #else
 cell.text = [results objectAtIndex:indexPath.row];
 #endif
 return cell;
}

The iPhone version check here lets you use the recommended methods for the iPhone

3.0 SDK while remaining compatible with older versions.

Building and running should show you a simple list of grocery items, as shown in

Figure 5-4.

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 148

Figure 5-4. A simple grocery list

Creating and Initializing the Database
Next you’ll create the file that contains the code that wraps the database methods.

Create a new NSObject subclass. I used my company name prefix and kept it simple,

naming the class ISDatabase.

The following functions will use three properties that must be declared in the header.

Your header should start out looking like this:

#import <sqlite3.h>

@interface ISDatabase : NSObject {
 NSString *pathToDatabase;

 BOOL logging;

 sqlite3 *database;
}

@property (nonatomic, retain) NSString *pathToDatabase;
@property (nonatomic) BOOL logging;

- (id) initWithPath: (NSString *) filePath;
- (id) initWithFileName: (NSString *) fileName;
@end

Remember to @synthesize these in the .m file. Next, you’ll create some simple init
functions to aid in creating a database in the resources directories for the application:

- (id) initWithPath: (NSString *) filePath
{

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 149

 if(self = [super init])
 {
 self.pathToDatabase = filePath;

 [self open];
 }

 return self;
}

- (id) initWithFileName: (NSString *) fileName
{
 NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, _
 NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];

 return [self initWithPath: [documentsDirectory _
 stringByAppendingPathComponent:fileName]];
}

The first init function creates and opens a connection to a database at the given path;

the second is a convenience function that creates or opens a database in the application

documents directory with the given file name.

Opening a Database Connection
All data in a SQLite database is stored in a single cross-platform file on disk. To work

with a SQLite database, you first have to open a connection and specify the database

file. When done working with the database, you should close that connection. You’ll add

two functions to do this:

 - (void) close
{
 if(sqlite3_close(database) != SQLITE_OK)
 {
 [self raiseSqliteException:@"failed to close database with message '%S'."];
 }
}

- (void) open
{
 //opens database, creating the file if it does not already exist
 if(sqlite3_open([self.pathToDatabase UTF8String], &database) != SQLITE_OK)
 {
 sqlite3_close(database);
 [self raiseSqliteException:@"Failed to open database with message '%S'."];
 }
}

These are pretty straightforward. open opens the connection and stores the database

handle in the database property. They report errors by calling the raiseSqliteException
function:

- (void) raiseSqliteException: (NSString *) errorMessage

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 150

{
 [NSException raise:@"ISDatabaseSQLiteException" format:errorMessage, _
 sqlite3_errmsg16(database)];
}

This calls sqlite3_errmsg16, which takes the database handle and returns the error

message in plain English. This is then wrapped in an NSException and raised.

You then clean up the database connection in the dealloc (along with pathToDatabase):

- (void) dealloc
{
 [self close];
 [pathToDatabase release];

 [super dealloc];
}

If you compile now, you will see two warnings appear. The first warning is in the init
method, as shown in Figure 5-5.

Figure 5-5. You’ve been warned.

The compiler needs to be informed about methods that are declared later in the class

that are used earlier, such as the open method here. The other warning is similar,

informing you that the compiler cannot find the raiseSqliteException: method. Instead

of rearranging the methods to fit the demands of the machine rather than readability,

add a private category to contain these method declarations. Add the following to the

top of the ISDatabase.m file:

@interface ISDatabase(PrivateMethods)
- (void) open;
- (void) raiseSqliteException: (NSString *) errorMessage;
@end

Recompile, and the warnings are no more.

Now that you’ve completed these methods, you can see them in action. Open

GroceryListAppDelegate.h, and add ISDatabase as a forward class and a property

called database to hold the database instance. GroceryListAppDelegate.h should look

like this:

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 151

#import <UIKit/UIKit.h>

@class ISDatabase;

@interface GroceryListAppDelegate : NSObject <UIApplicationDelegate> {
 UIWindow *window;
 UINavigationController *navigationController;

 ISDatabase *database;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet UINavigationController *navigationController;
@property (nonatomic, retain) ISDatabase *database;

@end

Import ISDatabase.h in GroceryListAppDelegate.m, and also add @synthesize database.

Remember to release the database property in the dealloc function as well. Replace the

following method:

- (void)applicationDidFinishLaunching:(UIApplication *)application {
 database = [[[ISDatabase alloc] initWithFileName:@"TestDB.sqlite"] autorelease];
 NSLog(@"The database opened properly!");

 // Configure and show the window
 [window addSubview:[navigationController view]];
 [window makeKeyAndVisible];
}

Running the project now will display the console output similar to Figure 5-6.

Figure 5-6. The database is open for business.

If the database file fails to open, it will raise an exception, so reaching the log statement

indicates that everything worked properly.

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 152

Making Simple Requests
After opening the database, you’ll want to make some requests in SQL. These range

from creating the initial tables to data access operations. This is considerably more

involved and takes up the majority of the lines of code for this class.

The simplest statement has no parameters: Select * from GroceryItem. You can create

a function in ISDatabase.m to handle these statements:

- (NSArray *) executeSql: (NSString *) sql
{

This is the function declaration; it takes a SQL string and returns an NSArray of

NSDictionary objects. Each dictionary object represents one result row. If there are no

results, then an empty array will be returned.

NSMutableDictionary *queryInfo = [NSMutableDictionary dictionary];
[queryInfo setObject:sql forKey:@"sql"];

Store the SQL in a dictionary for use in error reporting.

NSMutableArray *rows = [NSMutableArray array];

Declare the array that will contain the result rows:

if(logging)
{
 NSLog(@"SQL: %@ \n", sql);
}

If the logging parameter is set to YES, log the SQL message here. This can be useful for

tracking down bugs and performance optimization.

sqlite3_stmt *statement = NULL;
if(sqlite3_prepare_v2(database, [sql UTF8String], -1, &statement, NULL) == _
 SQLITE_OK)
{

This creates the sqlite3_stmt variable and “prepares” it. The preparation step compiles

the SQL into a bytecode program that SQLite can understand. It initializes the statement

variable with a pointer to the prepared statement that can be used to step through the

results. It returns either SQLITE_OK or an error code. We won’t handle error codes

explicitly here, instead relying on the exception handling to report these errors. There are

certain other cases that you may want to handle; you can find them in the SQLite

documentation at http://www.sqlite.org/c3ref/c_abort.html.

BOOL needsToFetchColumnTypesAndNames = YES;
NSArray *columnTypes = nil;
NSArray *columnNames = nil;

These variables are used to cache the column names and types for the statement. While

processing a result set from the database, each column for each row will need to be

mapped to an Objective-C type for return and stored in an NSDictionary with the

column name as the key. Looking up the column name for the key and the type for

mapping the value can be costly for larger result sets, so you look them up for the first

row and remember them for each subsequent row:

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 153

while (sqlite3_step(statement) == SQLITE_ROW)
{

You then step through each result using sqlite3_step, which returns SQLITE_ROW if a row

has been returned or SQLITE_DONE if the statement is finished executing:

if(needsToFetchColumnTypesAndNames)
{
 columnTypes = [self columnTypesForStatement: statement];
 columnNames = [self columnNamesForStatement: statement];
 needsToFetchColumnTypesAndNames = NO;
}

Get the column types and the column names on the first time through this loop:

NSMutableDictionary *row = [[NSMutableDictionary alloc] init];
[self copyValuesFromStatement: statement toRow: row queryInfo: queryInfo _
 columnTypes: columnTypes columnNames: columnNames];

Create the row dictionary, and copy the results from the statement into the row:

 [rows addObject:row];
 [row release];
}

Add the row to the results, and release the row. This won’t clean up the memory since

the rows still retain a reference to the row dictionary, but it is slightly faster than waiting

for the autorelease pool to iterate over the row objects to release them:

}else{
 sqlite3_finalize(statement);
 [self raiseSqliteException: [[NSString stringWithFormat:@"failed to execute _
 statement: '%@' with message: ", sql] stringByAppendingString:@"%S"]];
}

If there is an error, delete the prepared statement, releasing any associated memory,

and raise an exception:

 sqlite3_finalize(statement);
 return rows;
}

This deletes the prepared statement and returns the row results. Make sure to add the

executeSql: method declaration to ISDatabase.h.

To retrieve the column names for the statement, you iterate from 0 to the number of

columns (retrieved using sqlite3_column_count) and call sqlite3_column_name for each

column. You then take the C string returned and wrap it in an NSString.

- (NSArray *) columnNamesForStatement: (sqlite3_stmt *) statement
{
 int columnCount = sqlite3_column_count(statement);

 NSMutableArray *columnNames = [NSMutableArray array];
 for(int i = 0; i < columnCount; i++)
 {
 [columnNames addObject:[NSString _
 stringWithUTF8String:sqlite3_column_name(statement, i)]];
 }

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 154

 return columnNames;
}

It’s important to note that for SELECT statements like SELECT SUM(number) FROM
GroceryItem, the column name will actually be SUM(number). This also picks up on SQL

aliases.

Similarly, you iterate over the columns to get the types:

- (NSArray *) columnTypesForStatement: (sqlite3_stmt *) statement
{
 int columnCount = sqlite3_column_count(statement);

 NSMutableArray *columnTypes = [NSMutableArray array];
 for(int i = 0; i < columnCount; i++)
 {
 [columnTypes addObject:[NSNumber numberWithInt:[self _
 typeForStatement:statement column:i]]];
 }

 return columnTypes;
}

To get the actual type, you use typeForStatement:column:, like so:

- (int) typeForStatement: (sqlite3_stmt *) statement column: (int) column
{
 const char * columnType = sqlite3_column_decltype(statement, column);

 if(columnType != NULL)
 {
 return [self columnTypeToInt: [[NSString stringWithUTF8String: columnType] _
 uppercaseString]];
 }

 return sqlite3_column_type(statement, column);
}

typeForStatement:column: returns an integer defining the column type. First it checks

the declared type of the column using sqlite3_column_decltype, which returns the

string associated with the column by the database schema. This is the type you declare

for the column when creating the table. Then this type is converted to a standard type

using columnTypeToInt:. If there is no declared type for the column (this occurs when

using some calculated fields), use the type of the value instead, returned by

sqlite3_column_type.

columnTypeToInt is a simple mapping, defined like so:

- (int) columnTypeToInt: (NSString *) columnType
{
 if([columnType isEqualToString:@"INTEGER"])
 {
 return SQLITE_INTEGER;
 }else if([columnType isEqualToString:@"REAL"])
 {
 return SQLITE_FLOAT;

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 155

 }else if([columnType isEqualToString:@"TEXT"])
 {
 return SQLITE_TEXT;
 }else if ([columnType isEqualToString:@"BLOB"])
 {
 return SQLITE_BLOB;
 }else if ([columnType isEqualToString:@"NULL"])
 {
 return SQLITE_NULL;
 }

 return SQLITE_TEXT;
}

You default to text if none of the other types work. SQLite is a bit unique among

databases in that it stores types dynamically; column types do not actually restrict the

type of data stored in a column. This can make mapping from SQLite tables to

Objective-C types difficult; for the purposes of ISDatabase, it is assumed that every

column will be marked with an appropriate type from the previous list. These are added

as part of the SQL CREATE statement for the given table.

executeSql: calls copyValuesFromStatement:toRow:columnTypes:columnNames: to map

the results from the prepared statement to a specific row in the dictionary:

- (void) copyValuesFromStatement: (sqlite3_stmt *) statement toRow: _
(NSMutableDictionary *) row queryInfo: (NSDictionary *) queryInfo columnTypes: _
(NSArray *) columnTypes columnNames: (NSArray *) columnNames
{
 int columnCount = sqlite3_column_count(statement);

 for(int i = 0; i < columnCount; i++)
 {
 id value = [self valueFromStatement:statement column:i queryInfo: queryInfo_
 columnTypes: columnTypes];

 if(value != nil)
 {
 [row setValue: value forKey: [columnNames objectAtIndex:i]];
 }
 }
}

This function steps through each column in the statement and calls

valueFromStatement:column:queryInfo:columnTypes: for each column. The results are

stored in the row NSMutableDictionary with the column name as the key. Getting and

wrapping the value is a little more complex:

- (id) valueFromStatement: (sqlite3_stmt *) statement column: (int) _

column queryInfo: (NSDictionary *) queryInfo columnTypes: (NSArray *) columnTypes
{
 int columnType = [[columnTypes objectAtIndex:column] intValue];

 //force conversion to the declared type using sql conversions; this saves some
 //problems with NSNull being assigned to non-object values
 if(columnType == SQLITE_INTEGER)
 {

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 156

 return [NSNumber numberWithInt:sqlite3_column_int(statement, column)];
 }else if(columnType == SQLITE_FLOAT)
 {
 return [NSNumber numberWithDouble: sqlite3_column_double(statement, _
 column)];
 }else if(columnType == SQLITE_TEXT)
 {
 const char *text = (const char *) sqlite3_column_text(statement, column);
 if(text != nil){
 return [NSString stringWithUTF8String: text];
 }else{
 return nil;
 }
 }else if (columnType == SQLITE_BLOB)
 {
 //create an NSData object with the same size as the blob
 return [NSData dataWithBytes:sqlite3_column_blob(statement, column) _
 length:sqlite3_column_bytes(statement, column)];
 }else if (columnType == SQLITE_NULL)
 {
 return nil;
 }

 NSLog(@"Unrecognized SQL column type: %i for sql: %@", columnType, [queryInfo _
 objectForKey:@"sql"]);

 return nil;
}

For each type, you use a specific SQLite function to retrieve the value and then convert

that value as necessary before wrapping it in an Objective-C type and returning it. If the

type is not recognized, you log the error and return nil. This skips the column for this

result row.

If you compile now, a bunch of warnings will pop up letting you know that the methods

are out of the order that the compiler expects. Update the PrivateMethod category at the

top of this class to look like the following to get rid of these warnings:

@interface ISDatabase(PrivateMethods)
- (void) open;
- (void) raiseSqliteException: (NSString *) errorMessage;
- (NSArray *) columnNamesForStatement: (sqlite3_stmt *) statement;
- (NSArray *) columnTypesForStatement: (sqlite3_stmt *) statement;
- (int) typeForStatement: (sqlite3_stmt *) statement column: (int) column;
- (int) columnTypeToInt: (NSString *) columnType;
- (void) copyValuesFromStatement: (sqlite3_stmt *) statement toRow:
(NSMutableDictionary *) row queryInfo: (NSDictionary *) queryInfo columnTypes:__
 (NSArray *) columnTypes columnNames: (NSArray *) columnNames;
- (id) valueFromStatement: (sqlite3_stmt *) statement column: (int) column_
 queryInfo: (NSDictionary *) queryInfo columnTypes: (NSArray *) columnTypes;
@end

You are now ready to execute some SQL statements. Replace the

applicationDidFinishLaunching: in GroceryListAppDelgate.m with the following:

- (void)applicationDidFinishLaunching:(UIApplication *)application
{

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 157

 self.database = [[[ISDatabase alloc] initWithFileName:@"TestDB.sqlite"] _
 autorelease];
 [database executeSql:@"create table GroceryItem(primaryKey integer primary key _
 autoincrement, name text NOT NULL, number integer NOT NULL)"];
 [database executeSql:@"insert into GroceryItem (name, number) _
 values('apples', 5)"];
 [database executeSql:@"insert into GroceryItem (name, number) _
 values('oranges', 3)"];

 [window addSubview:[navigationController view]];
 [window makeKeyAndVisible];
}

This code creates a simple database and populates it with a row.

Next you need to update RootViewController.m to load the list of items from the

database. Add ISDatabase.h to the imports, and replace the following function:

- (void)viewDidLoad {
 [super viewDidLoad];
 GroceryListAppDelegate *appDelegate = (GroceryListAppDelegate *)[[UIApplication _
 sharedApplication] delegate];
 self.results = [appDelegate.database executeSql:@"SELECT * from GroceryItem"];
}

This will be returning an array of NSDictionary objects, so you need to update

tableView:cellForRowAtIndexPath: to get the value stored under the name key. Change

the following line:

cell.textLabel.text = [results objectAtIndex:indexPath.row];

to the following:

cell.textLabel.text = [[results objectAtIndex:indexPath.row] objectForKey:
 @"name"];

and change this:

cell.text = [results objectAtIndex:indexPath.row];

to the following:

cell.text = [[results objectAtIndex:indexPath.row] objectForKey: @"name"];

Running this code now (but only once; more on this shortly) will produce the view shown

in Figure 5-7.

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 158

Figure 5-7. A data-backed view

More Advanced SQL
Now that you have basic SQL statements running, you can move on to processing more

complex statements. This section will cover making the code less brittle, handling

parameters, adding some nice convenience methods to make your life easier, and finally

grouping statements into transactions.

Preventing Duplicate Create Statements
Try running the code from the previous section again. You’ll be unpleasantly surprised

by the error message in Figure 5-8.

Figure 5-8. Running again presents this nice exception.

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 159

You see this exception because the setup code in the previous section is brittle. If you

run it more than once with the same database, it will throw an error on an attempt to re-

create the table GroceryItem, which already exists. The simplest fix is to alter the create

statement to be create table IF NOT EXISTS GroceryItem (primaryKey integer
primary key autoincrement, name text NOT NULL, number INTEGER NOT NULL). This

prevents the table from being re-created and gets rid of the exception, but you’ll still get

duplicate data from the inserts.

A better fix involves checking to see whether the table already exists before running the

schema creation code. Add the following functions to ISDatabase:

- (NSArray *) tables
{
 return [self executeSql:@"select * from sqlite_master where type = 'table'"];
}

- (NSArray *) tableNames
{
 return [[self tables] valueForKey:@"name"];
}

This queries the sqlite_master table that is automatically created by SQLite and used to

manage the metadata for the database. This uses a neat feature of the NSArray class. If

you call valueForKey: on an NSArray, it will in turn call valueForKey: for each of its

member objects, returning a new NSArray containing the results. In this case, those

results are the names of the tables.

Add tableNames to ISDatabase.h.

Now change applicationDidFinishLaunching: to the following:

- (void)applicationDidFinishLaunching:(UIApplication *)application
{
 self.database = [[[ISDatabase alloc] initWithFileName:@"TestDB.sqlite"] _
 autorelease];

 if(![[database tableNames] containsObject:@"GroceryItem"])
 {

 [database executeSql:@"create table GroceryItem(primaryKey integer primary _
 key autoincrement, name text NOT NULL, number INTEGER NOT NULL)"];
 [database executeSql:@"insert into GroceryItem (name, number) _
 values('apples', 5)"];
 [database executeSql:@"insert into GroceryItem (name, number) _
 values('oranges', 3)"];

 }

 [window addSubview:[navigationController view]];
 [window makeKeyAndVisible];
}

The check for the table name inserted around the schema creation code prevents the

tables from being re-created and the rows from being reinserted. Reruns should now

show the same view every time without crashing.

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 160

Handling Parameters
The next step to SQL dominance is adding the ability to handle parameters. The most

obvious way is to use stringWithFormat: to create a SQL string and insert the

parameters right into the string. Unfortunately, this is brittle and tends to be painful

because you have to guard against and add escapes for a number of custom cases that

may not be immediately obvious. Fortunately, SQLite allows you to “bind” parameters to

a SQL string and takes care of all the necessary checking and escaping for you.

To allow this, you’ll add a function that takes a SQL statement and an array of

parameters. Add the following function before the previous executeSql: function:

- (NSArray *) executeSql: (NSString *) sql withParameters: (NSArray *) parameters _
{
 NSMutableDictionary *queryInfo = [NSMutableDictionary dictionary];
 [queryInfo setObject:sql forKey:@"sql"];

 if(parameters == nil)
 {
 parameters = [NSArray array];
 }

 //we now add the parameters to queryInfo
 [queryInfo setObject:parameters forKey:@"parameters"];

 NSMutableArray *rows = [NSMutableArray array];

 if(logging)
 {
 //log the parameters
 NSLog(@"SQL: %@ \n parameters: %@", sql, parameters);
 }

 sqlite3_stmt *statement = nil;
 if(sqlite3_prepare_v2(database, [sql UTF8String], -1, &statement, NULL) _
 == SQLITE_OK)
 {
 [self bindArguments: parameters toStatement: statement queryInfo: _
 queryInfo];

 BOOL needsToFetchColumnTypesAndNames = YES;
 NSArray *columnTypes = nil;
 NSArray *columnNames = nil;

 while (sqlite3_step(statement) == SQLITE_ROW)
 {
 if(needsToFetchColumnTypesAndNames)
 {
 columnTypes = [self columnTypesForStatement: statement];
 columnNames = [self columnNamesForStatement: statement];
 needsToFetchColumnTypesAndNames = NO;
 }

 id row = [[NSMutableDictionary alloc] init];
 [self copyValuesFromStatement: statement toRow: row queryInfo: _
 queryInfo columnTypes: columnTypes columnNames: columnNames];

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 161

 [rows addObject:row];
 [row release];
 }
 }else{
 sqlite3_finalize(statement);
 [self raiseSqliteException: [[NSString stringWithFormat:@"failed to _
 execute statement: '%@', parameters: '%@' with message: ", sql, _
 parameters] stringByAppendingString:@"%S"]];
 }

 sqlite3_finalize(statement);
 return rows;
}

Add this function to ISDatabase.h as well.

Besides a little additional logging, the big difference here is the call to

bindArguments:parameters:toStatement: after sqlite3_prepare_v2. As described, this

function takes the array of parameters and binds them to the prepared statement:

- (void) bindArguments: (NSArray *) arguments toStatement: _
 (sqlite3_stmt *) statement queryInfo: (NSDictionary *) queryInfo
{
 int expectedArguments = sqlite3_bind_parameter_count(statement);

 NSAssert2(expectedArguments == [arguments count], @"Number of bound parameters _
 does not match for sql: %@ parameters: '%@'",
 [queryInfo objectForKey:@"sql"], [queryInfo objectForKey:@"parameters"]);

 for(int i = 1; i <= expectedArguments; i++)
 {
 id argument = [arguments objectAtIndex:i - 1];
 if([argument isKindOfClass:[NSString class]])
 sqlite3_bind_text(statement, i, [argument UTF8String], -1, _
 SQLITE_TRANSIENT);
 else if([argument isKindOfClass:[NSData class]])
 sqlite3_bind_blob(statement, i, [argument bytes], [argument length], _
 SQLITE_TRANSIENT);
 else if([argument isKindOfClass:[NSDate class]])
 sqlite3_bind_double(statement, i, [argument timeIntervalSince1970]);
 else if([argument isKindOfClass:[NSNumber class]])
 sqlite3_bind_double(statement, i, [argument doubleValue]);
 else if([argument isKindOfClass:[NSNull class]])
 sqlite3_bind_null(statement, i);
 else
 {
 sqlite3_finalize(statement);
 [NSException raise:@"Unrecognized object type" format:@"Active record _
 doesn't know how to handle object:'%@' bound to _
 sql: %@ position: %i", argument, [queryInfo _
 objectForKey:@"sql"], i];
 }
 }
}

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 162

You first check to make sure that the number of parameters that the statement expects

matches the number of parameters passed into the method. The assert will raise an

exception if this is not the case.

Next you cycle over the number of expected arguments and bind the parameters one by

one. You determine the class of the argument and execute a specific SQLite function for

each type. If the class of the argument is not one that you support, you release the

statement and raise an exception.

Add the bindArguments:parameters:toStatement method to the PrivateMethods
category.

Refactoring and Cleanup
Now that you have this function, you can do a bit of cleanup.

executeSql: is really a simpler case of executeSql:withParameters:, so let’s change it

to reflect this:

- (NSArray *) executeSql: (NSString *) sql
{
 return [self executeSql: sql withParameters: nil];
}

Next we’ll add a convenience function to allow parameters to be specified using variable

arguments similar to the NSArray arrayWithObjects: method.

- (NSArray *) executeSqlWithParameters: (NSString *) sql, ...
{
 va_list argumentList;
 va_start(argumentList, sql);
 NSMutableArray *arguments = [NSMutableArray array];
 id argument;

 while(argument = va_arg(argumentList, id))
 {
 [arguments addObject: argument];
 }

 va_end(argumentList);

 return [self executeSql:sql withParameters: arguments];
}

Add this function to ISDatabase.h.

Note that this list should take only object arguments and always be nil terminated, just

like NSArray arrayWithObjects:. You can try this by modifying viewDidLoad in

RootViewController.m. Change the executeSQL line to the following:

self.results = [appDelegate.database executeSqlWithParameters:@"SELECT * from
GroceryItem _
 where number < ?", [NSNumber numberWithInt:5], nil];

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 163

Build and run. Figure 5-9 shows the resulting view.

Figure 5-9. Another riveting data-backed view

Grouping Statements into Transactions
No database implementation is complete without support for transactions. Transactions

allow multiple SQL statements to be grouped so that they can be submitted or reverted

as a group, preventing partial commits and corrupted data structures in the case that a

statement fails. Transaction support is easy in SQLite. Add these three functions to

ISDatabase.m:

- (void) beginTransaction
{
 [self executeSql:@"BEGIN IMMEDIATE TRANSACTION;"];
}

- (void) commit
{
 [self executeSql:@"COMMIT TRANSACTION;"];
}

- (void) rollback
{
 [self executeSql:@"ROLLBACK TRANSACTION;"];
}

Add these three methods to ISDatabase.h.

You use the IMMEDIATE transaction type here. This is generally sufficient for most needs.

There are other transaction types that may be useful in certain situations. These are

summarized in Table 2-1.

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 164

Table 2-1. SQLite Transaction Types

Transaction Type Description

IMMEDIATE Database locks are acquired when the BEGIN statement is

issued. This prevents other threads or processes from writing

to the database until the transaction is committed or rolled

back.

DEFERRED This is the default transaction type. No locks are acquired

until the database is written to or read from. Reading creates a

shared lock that allows other threads to also read; writing

creates a reserved lock that prevents other threads from

writing to the database until the transaction is committed or

rolled back.

EXCLUSIVE This type of locks prevents other threads or processes from

reading or writing to the database until the transaction is

committed or rolled back.

Now you’ll add transactions to the schema creation code in GroceryListAppDelegate.m
applicationDidFinishLaunching:

if(![[database tableNames] containsObject:@"GroceryItem"])
{

 [database beginTransaction];

 [database executeSql:@"create table GroceryItem (primaryKey integer _
 primary key autoincrement, name text NOT NULL, number INTEGER NOT NULL)"];
 [database executeSql:@"insert into GroceryItem (name, number) _
 values('apples', 5)"];
 [database executeSql:@"insert into GroceryItem (name, number) _
 values('oranges', 3)"];

 [database commit];

}

Writing a Simple Active Record Layer: ISModel
Easy access to raw SQL result sets is only half the battle; the other half is mapping the

returned results into your object model. In times of yore, developers created manual

mappings between the NSDictionary/HashMap/What-Have-You and each model object.

Every time an object or table changed, the mapping code had to change.

Objective-C’s message-driven nature and key/value coding make this significantly

easier. In this section, I’ll walk you through creating a flexible mapping layer that handles

this automatically. This requires extension from a base class; to continue with my

naming convention, I called this class ISModel. The header for ISModel with the

properties starts out looking like this:

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 165

@class ISDatabase;

@interface ISModel : NSObject {
 NSUInteger primaryKey;
 BOOL savedInDatabase;
}

@property (nonatomic) NSUInteger primaryKey;
@property (nonatomic) BOOL savedInDatabase;

@end

primaryKey is the unique ID of the object; savedInDatabase keeps track of whether this

object has already been saved or not. Add ISDatabase.h to the list of imports and the

following synthesize statements in the ISModel.m file:

@synthesize primaryKey;
@synthesize savedInDatabase;

Maintaining the Database Connection
The Active Record design pattern involves using “finder” class methods on the model

classes to retrieve the model objects from the database. To do this, they will need a

reference to the database connection. It has to be either passed in to the method or

stored somewhere that is available to all the model classes that require it. I use a static

variable in the ISModel class to contain this (add this before the @implementation line):

static ISDatabase *database = nil;

Since this connection is global to all ISModel classes in the implementation, you need to

add some class-level setters and getters for this property:

+ (void) setDatabase: (ISDatabase *) newDatabase
{
 [database autorelease];
 database = [newDatabase retain];
}

+ (ISDatabase *) database
{
 return database;
}

These will need to be called with the database before any of the ISModel SQL methods

are called. Add the declarations to ISModel.h so that you can call them from outside the

class.

The Model Object: Grocery Item
Next you create a simple subclass of ISModel with two properties:

#import "ISModel.h"

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 166

@interface GroceryItem : ISModel {
 NSString *name;
 NSNumber *number;
}

@property (nonatomic, retain) NSString *name;
@property (nonatomic, retain) NSNumber *number;

@end

And do this in the implementation:

@synthesize name, number;

- (void) dealloc
{
 [name release];
 [number release];
 [super dealloc];
}

This is all the code you’ll need to create a model that can work with the database.

Everything else is handled by the ISModel superclass.

How Groceries Are Mapped
Before you can get to the various SQL operations for ISModel, you’ll need to add some

basic methods to get the metadata for the class. This will tell you how to map instances

of the class to rows and columns in a database table. Unless otherwise stated, the

following methods should be added to the ISModel.m file. First up is retrieving the name

of the associated table:

+ (NSString *) tableName
{
 return NSStringFromClass([self class]);
}

Here you’re relying on the convention that the table name will be the same as the class

name. This method could be altered to allow for other naming conventions such as

custom table prefixes, but you’ll keep it simple here.

To do the mapping, you need a list of column names:

- (NSArray *) columns
{
 if(tableCache == nil)
 {
 tableCache = [[NSMutableDictionary dictionary] retain];
 }

 NSString *tableName = [[self class] tableName];
 NSArray *columns = [tableCache objectForKey:tableName];

 if(columns == nil)
 {
 columns = [database columnsForTableName: tableName];

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 167

 [tableCache setObject: columns forKey: tableName];
 }

 return columns;
}

This relies on a static variable you add to the top of ISModel:

static NSMutableDictionary *tableCache = nil;

You cache the column names so that you don’t have to retrieve them from the database

each time you run a SQL statement. Column names are retrieved from ISDatabase using

a new function defined in ISDatabase.m:

- (NSArray *) columnsForTableName: (NSString *) tableName
{
 NSArray *results = [self executeSql: [NSString stringWithFormat:_
 @"pragma table_info(%@)", tableName]];

 return [results valueForKey:@"name"];
}

This function uses the table_info SQLite pragma command to return the list of column

names.

Add columnsForTableName: to ISDatabase.h.

For many methods, SQLite handles the primary key column for you, so it is useful to

have a convenience method to get the list of columns without the key. Add the following

to ISModel.m:

- (NSArray *) columnsWithoutPrimaryKey
{
 NSMutableArray *columns = [NSMutableArray arrayWithArray: [self columns]];
 [columns removeObjectAtIndex:0];

 return columns;
}

To persist the properties, you need their values in the same order as the columns:

- (NSArray *) propertyValues
{
 NSMutableArray *values = [NSMutableArray array];
 for(NSString *columnName in [self columnsWithoutPrimaryKey])
 {
 id value = [self valueForKey: columnName];

 if(value != nil)
 {
 [values addObject: value];
 }else{
 [values addObject:[NSNull null]];
 }
 }
 return values;
}

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 168

Let’s add some code to test that everything is working as expected. Add the following

method:

- (void) testProperties
{
 NSLog(@"column names: %@", [self columns]);
 NSLog(@"column names without primary key: %@", [self _
 columnsWithoutPrimaryKey]);
 NSLog(@"propertyValues: %@", [self propertyValues]);
}

First you need to tell ISModel which database to use. Import ISModel.h in

GroceryListAppDelegate.m, and add the following line before the addSubview: call:

[ISModel setDatabase:database];

Then switch to RootViewController.m. Import GroceryItem.h, and add the following

lines to the bottom of viewDidLoad:

GroceryItem *item = [[[GroceryItem alloc] init] autorelease];
item.name = @"Kiwi";
item.number = [NSNumber numberWithInt: 20];
[item testProperties];

Compile and run (ignore the warning about testProperties for now), and you should see

something similar to Figure 5-10.

Figure 5-10. Console output showing the model information

After verifying that this works, delete the testProperties function in ISModel.m and the

test code you just added in RootViewController.m viewDidLoad.

Saving
The first operation you’ll look at is saving an instance of this object to the database.

You’ll start from the save method and work your way through each required piece. This

is in ISModel.m. The following is the code for saving:

- (void) beforeSave
{

}

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 169

- (void) save
{
 [[self class] assertDatabaseExists];

 [self beforeSave];

 if(!savedInDatabase)
 {
 [self insert];
 }else{
 [self update];
 }
}

Add save to the header. This function first checks to see whether the database exists

using the following:

+ (void) assertDatabaseExists
{
 NSAssert1(database, @"Database not set. Set the database using [ISModel _
 setDatabase] before using ActiveRecord.", @"");
}

This raises an exception if the database has not been set before this code is run. Add

this near the top of the file to prevent warnings from being generated every time you call

it.

Next the beforeSave callback is called; this allows subclasses to add custom behavior

for each object when it is saved.

The code then checks to see whether the object has already been saved. If it has not,

insert is called, creating a new row in the database for this object. Otherwise, update is

called, saving the object state to the existing database row. You insert a row by

delegating to ISDatabase:

- (void) insert
{
 NSMutableArray *parameterList = [NSMutableArray array];

 NSArray *columnsWithoutPrimaryKey = [self columnsWithoutPrimaryKey];

 for(int i = 0; i < [columnsWithoutPrimaryKey count]; i++)
 {
 [parameterList addObject: @"?"];
 }

 NSString *sql = [NSString stringWithFormat:@"insert into %@ (%@) values(%@)", _
 [[self class] tableName], [columnsWithoutPrimaryKey componentsJoinedByString: _
 @","],[parameterList componentsJoinedByString:@","]];

 [database executeSql: sql withParameters: [self propertyValues]];
 savedInDatabase = YES;
 primaryKey = [database lastInsertRowId];
}

Create a new PrivateMethods category at the top of the ISModel file similar to what you

did for ISDatabase. Add this method to it.

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 170

insert gets a list of the columns, excluding the primary key (which is handled

automatically by SQLite), and steps through them, adding a ? placeholder for each. You

then construct the SQL statement using the column names and the placeholders.

executeSql: takes the statement and the list of property values and does the actual

save to the database. The object is then marked as saved, and the primary key is

retrieved and stored in the primaryKey property using a new method that you need to

define in ISDatabase.m and expose in ISDatabase.h:

- (NSUInteger) lastInsertRowId
{
 return (NSUInteger) sqlite3_last_insert_rowid(database);
}

This returns the primary key of the last inserted row.

Updating
If you’ve already saved the object, you need to update the existing row instead of

inserting a new one:

- (void) update
{
 NSString *setValues = [[[self columnsWithoutPrimaryKey] _
 componentsJoinedByString:@" = ?, "] stringByAppendingString:@" = ?"];
 NSString *sql = [NSString stringWithFormat:@"update %@ set %@ where primaryKey _
 = ?", [[self class] tableName], setValues];
 NSArray *parameters = [[self propertyValues] arrayByAddingObject: [NSNumber _
 numberWithUnsignedInt:primaryKey]];

 [database executeSql: sql withParameters: parameters];
 savedInDatabase = YES;
}

This runs a simple SQL update statement. Add this method to the PrivateMethods
category.

Deleting
Deleting an object is equally simple:

- (void) beforeDelete
{

}
- (void) delete
{
 [[self class] assertDatabaseExists];
 if(!savedInDatabase)
 {
 return;
 }

 [self beforeDelete];

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 171

 NSString *sql = [NSString stringWithFormat:_
 @"delete from %@ where primaryKey = ?", [[self class] tableName]];
 [database executeSqlWithParameters: sql, _
 [NSNumber numberWithUnsignedInt:primaryKey], nil];
 savedInDatabase = NO;
 primaryKey = 0;
}

You mark the object as not saved and clear out the primary key. You also call another

stub callback function, beforeDelete.

Add delete to ISModel.h.

Let’s add some test code to make sure that you can create, update, and delete objects.

Switch to RootViewController.m, and replace viewDidLoad with the following:

- (void)viewDidLoad {
 [super viewDidLoad];
 GroceryListAppDelegate *appDelegate = (GroceryListAppDelegate *)[[UIApplication
 sharedApplication] delegate];

 NSString *sql = @"SELECT * from GroceryItem";
 GroceryItem *kiwi = [[[GroceryItem alloc] init] autorelease];
 kiwi.number = [NSNumber numberWithInt:5];
 kiwi.name = @"Kiwi";
 NSLog(@"items before save: %@", [[appDelegate database] executeSql:sql]);
 [kiwi save];
 NSLog(@"items after save: %@", [[appDelegate database] executeSql:sql]);
 kiwi.name = @"Kiwifruit";
 [kiwi save];
 NSLog(@"items after update: %@", [[appDelegate database] executeSql:sql]);
 [kiwi delete];
 NSLog(@"items after delete: %@", [[appDelegate database] executeSql:sql]);

 self.results = [appDelegate.database executeSqlWithParameters:@"SELECT * _
 from GroceryItem where number < ?", [NSNumber numberWithInt:5], nil];
}

Compile and run. You should see a list of items for each change printing out in the

console. The kiwi item is added, updated, and then deleted. Once you’ve run it, undo

these changes.

Finding Grocery Items
You can now create, update, and delete your grocery items, but all of that is pretty

useless if you can’t get them back out of the database. In this section, you’ll add

methods to look up your model objects. In Active Record, these are usually referred to

as finder methods, or just finders.

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 172

All the finders should be added to the ISModel.m class and its header file. You’ll start

with the most specific, on which the others are based:

+ (NSArray *) findWithSql: (NSString *) sql withParameters: (NSArray *) parameters
{
 [self assertDatabaseExists];

 NSArray *results = [database executeSql:sql withParameters: parameters
 withClassForRow: [self class]];

 [results setValue:[NSNumber numberWithBool:YES] forKey:@"savedInDatabase"];

 return results;
}

This takes a simple SQL statement that may contain placeholders and a list of

parameters to bind to the statement and calls a new function in ISDatabase:
executeSql:withParameters:withClassForRow. ISDatabase will return an NSArray of

results that are instances of the provided class. Their properties will be automatically

set.

In ISDatabase, change the executeSql:withParameters: method signature to the

following:

- (NSArray *) executeSql: (NSString *) sql withParameters: (NSArray *) _
 parameters withClassForRow: (Class) rowClass

Add this as a new signature to the header, rather than replacing the existing signature.

We’ll be adding a new executeSql:withParameters method shortly.

Next find the following line in this method:

id row = [[NSMutableDictionary alloc] init];

Change this to the following:

id row = [[rowClass alloc] init];

Values are now set on instances of the passed-in class rather than always being set on

NSMutableDictionary objects. Setting values into an instance of the model object class

directly using key-value coding saves you a copy step from the dictionary to the final

class. This results in a significant performance boost for larger data sets that justifies the

added complexity.

The copyValuesFromStatement:toRow:queryInfo:columnTypes:columnNames: function

needs its signature changed as well, changing the toRow parameter type from

NSMutableDictionary to id. Remember to update the PrivateMethods category at the

top of the file as well.

- (void) copyValuesFromStatement: (sqlite3_stmt *) statement toRow: _
 (id) row queryInfo: (NSDictionary *) queryInfo columnTypes: _
 (NSArray *) columnTypes columnNames: (NSArray *) columnNames

Finally, add the following convenience method, replacing the old method with the same

signature:

- (NSArray *) executeSql: (NSString *) sql withParameters: (NSArray *) parameters

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 173

{
 return [self executeSql:sql withParameters:parameters withClassForRow: _
 [NSMutableDictionary class]];
}

Now that you have the base finder method, you can add a few more that make certain

types of lookups easier. Add the following to ISModel.m:

+ (NSArray *) findWithSqlWithParameters: (NSString *) sql, ...
{
 va_list argumentList;
 va_start(argumentList, sql);

 NSMutableArray *arguments = [NSMutableArray array];
 id argument;
 while(argument = va_arg(argumentList, id))
 {
 [arguments addObject: argument];
 }

 va_end(argumentList);

 return [self findWithSql:sql withParameters: arguments];
}

+ (NSArray *) findWithSql: (NSString *) sql
{
 return [self findWithSqlWithParameters:sql, nil];
}

+ (NSArray *) findByColumn: (NSString *) column value: (id) value
{
 return [self findWithSqlWithParameters:[NSString stringWithFormat:@"select *
 from %@ where %@ = ?", [self tableName], column], value, nil];
}

+ (NSArray *) findByColumn: (NSString *) column unsignedIntegerValue:_
 (NSUInteger) value
{
 return [self findByColumn:column value: [NSNumber numberWithUnsignedInteger:_
 value]];
}

+ (NSArray *) findByColumn: (NSString *) column integerValue: (NSInteger) value
{
 return [self findByColumn:column value: [NSNumber numberWithInteger:value]];
}

+ (NSArray *) findByColumn: (NSString *) column doubleValue: (double) value
{
 return [self findByColumn:column value: [NSNumber numberWithDouble:value]];
}

+ (id) find: (NSUInteger) primaryKey
{
 NSArray *results = [self findByColumn: @"primaryKey" _
 unsignedIntegerValue: primaryKey];

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 174

 if([results count] < 1)
 {
 return nil;
 }
 return [results objectAtIndex:0];
}

+ (NSArray *) findAll
{
 return [self findWithSql: [NSString stringWithFormat:@"select * from %@", _
 [self tableName]]];
}

Add all of these to the header file. You now have the methods you need to do any type

of lookup you want, including custom SQL lookups when you need them. I try to put

most SQL statements used with findWithSql: into the subclass as additional finder

methods. This keeps the SQL from leaking out into my controller layer.

Putting It All Together
Now that you have the create, read, update, and delete (CRUD) operations complete,

you are ready to get rid of the raw SQL in the example and start working directly with the

model objects. Add GroceryItem.h to the import statements for

GroceryListAppDelegate.m. Replace applicationDidFinishLaunching:

(void)applicationDidFinishLaunching:(UIApplication *)application
{
 database = [[[ISDatabase alloc] initWithFileName:@"TestDB.sqlite"] autorelease];

 if(![[database tableNames] containsObject:@"GroceryItem"])
 {
 [database beginTransaction];
 [database executeSql:@"create table GroceryItem(primaryKey integer primary_
 key autoincrement, name text NOT NULL, number integer NOT NULL)"];
 [database executeSql:@"insert into GroceryItem (name, number)_
 values('apples', 5)"];
 [database executeSql:@"insert into GroceryItem (name, number)_
 values('oranges', 3)"];
 [database commit];
 }

 [ISModel setDatabase:database];

 NSArray *results = [GroceryItem findByColumn:@"name" value:@"Bananas"];

 if([results count] < 1)
 {
 GroceryItem *bananas = [[[GroceryItem alloc] init] autorelease];
 bananas.name = @"Bananas";
 bananas.number = [NSNumber numberWithInt: 10];
 [bananas save];
 }

 // Configure and show the window
 [window addSubview:[navigationController view]];

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 175

 [window makeKeyAndVisible];
}

In RootViewController.m, remove the ISDatabase.h import statement, and change the

viewDidLoad function to the following, which is simpler:

- (void)viewDidLoad {
 [super viewDidLoad];
 self.results = [GroceryItem findAll];
}

Add the following line to the top of tableView:cellForRowAtIndexPath:

GroceryItem *result = [results objectAtIndex:indexPath.row];

Further down in the function, change the following:

cell.textLabel.text = [[results objectAtIndex:indexPath.row] objectForKey: @"name"];

to this:

cell.textLabel.text = [NSString stringWithFormat:@"%@: %@", result.name,
 result.number];

Also change the following:

cell.text = [[results objectAtIndex:indexPath.row] objectForKey: @"name"];

to this:

cell.text = [NSString stringWithFormat:@"%@: %@", result.name, result.number];

You’re now displaying the number of items as well. Running this should produce the

view in Figure 5-11.

Figure 5-11. A grocery list backed by Active Record. Now with 100 percent more bananas!

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 176

Simple Migration Handling
I don’t think any persistence implementation is complete without some discussion of

migrating from one version of a database schema to another. I try to keep migrations

simple. I rely on a new table, which I usually call ApplicationProperties, that stores the

current version of the schema and any other properties I want to store for the entire

application. I then check that version number on launch, and if an old version is

detected, I run the necessary SQL to do the migrations. I stay away from using the

actual model classes during the migration, because that can cause compatibility issues

if you ever delete or rename a model class that would prevent the migrations from

running.

First, create a subclass of ISDatabase called ExampleDatabase. This will contain all the

application-specific database handling and migration code.

Add ISModel to the import statements for ExampleDatabase.m, and add the following

init method:

- (id) initWithMigrations
{
 if(self = [super initWithFileName:@"Example.sqlite"])
 {
 [self runMigrations];
 [ISModel setDatabase:self];
 }

 return self;
}

Add this to the header file as well.

This creates a database file in your app’s documents directory with the name

Example.sqlite and sets the ISModel database so that Active Record will work properly.

Next add the method to actually run the migrations:

- (void) runMigrations
{
 [self beginTransaction];

 NSArray *tableNames = [self tableNames];

 if(![tableNames containsObject: @"ApplicationProperties"])
 {
 [self createApplicationPropertiesTable];
 [self createGroceryItemTable];
 //add any other version 1 schema creation code here
 }

 [self commit];
}

You wrap the entire migration in a transaction. If any step fails, all the changes are rolled

back. This prevents some steps from failing and later steps from succeeding that would

put the database in an inconsistent state that is very difficult to recover from.

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 177

The first check is just for the existence of the ApplicationProperties table. Subsequent

migration steps will check the version number to determine whether a migration should

be run. Put all your initial schema creation code in this block.

Individual tables and changes are broken out into their own functions to make it easier

to see the general flow of the migration separate from the sometimes-complex

implementation details. Add the following implementation functions:

- (void) createApplicationPropertiesTable
{
 [self executeSql:@"create table ApplicationProperties (primaryKey integer _
 primary key autoincrement, name text, value integer)"];
 [self executeSql:@"insert into ApplicationProperties (name, value) _
 values('databaseVersion', 1)"];
}

- (void) createGroceryItemTable
{
 [self executeSql:@"create table GroceryItem (primaryKey integer primary key _
 autoincrement, name text NOT NULL, number INTEGER NOT NULL)"];
 [self executeSql:@"insert into GroceryItem (name, number) values('apples', 5)"];
 [self executeSql:@"insert into GroceryItem (name, number) _
 values('oranges', 3)"];
}

At the top of the file, add a new PrivateMethods category:

@interface ExampleDatabase(PrivateMethods)
- (void) runMigrations;
- (void) createApplicationPropertiesTable;
- (void) createGroceryItemTable;
@end

Now change the application delegate applicationDidFinishLaunching: to the following:

- (void)applicationDidFinishLaunching:(UIApplication *)application {
 self.database = [[[ExampleDatabase alloc] initWithMigrations] autorelease];

 NSArray *results = [GroceryItem findByColumn:@"name" value:@"Bananas"];

 if([results count] < 1)
 {
 GroceryItem *bananas = [[[GroceryItem alloc] init] autorelease];
 bananas.name = @"Bananas";
 bananas.number = [NSNumber numberWithInt: 10];
 [bananas save];
 }

 [window addSubview:[navigationController view]];
 [window makeKeyAndVisible];
}

Remove the ISDatabase and ISModel import statements, and add ExampleDatabase.h.

Compile and run. A new database file will be created and migrated to version 1, creating

the initial tables and populating them. Subsequent runs will see that

ApplicationProperties already exists and skip that migration step.

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 178

Next you will make a small change to the schema, adding a new column to GroceryItem
called price. Add the following to runMigrations in ExampleDatabase.m, before the

commit:

if([self databaseVersion] < 2)
{
 [self setDatabaseVersion:2];
 [self addPriceToGroceryItemTable];
}

Add the function addPriceToGroceryItemTable:

- (void) addPriceToGroceryItemTable
{
 [self executeSql: @"alter table GroceryItem add price real"];
}

Add the following convenience functions:

- (void) updateApplicationProperty: (NSString *) propertyName value: (id) value
{
 [self executeSqlWithParameters: @"update ApplicationProperties set value = ? _
 where name = ?", value, propertyName, nil];
}

- (id) getApplicationProperty: (NSString *) propertyName
{
 NSArray *rows = [self executeSqlWithParameters: @"select value from _
 ApplicationProperties where name = ?", propertyName, nil];

 if([rows count] == 0)
 {
 return nil;
 }

 id object = [[rows lastObject] objectForKey:@"value"];
 if([object isKindOfClass: [NSString class]])
 {
 object = [NSNumber numberWithInteger:[(NSString *)object integerValue]];
 }
 return object;
}

- (void) setDatabaseVersion: (NSUInteger) newVersionNumber
{
 return [self updateApplicationProperty:@"databaseVersion" value:[NSNumber _
 numberWithUnsignedInteger: newVersionNumber]];
}

- (NSUInteger) databaseVersion
{
 return [[self getApplicationProperty:@"databaseVersion"] unsignedIntegerValue];
}

Add these methods to the PrivateMethods category:

@interface ExampleDatabase(PrivateMethods)
- (void) runMigrations;
- (void) createApplicationPropertiesTable;

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 179

- (void) createGroceryItemTable;
- (void) addPriceToGroceryItemTable;
- (void) updateApplicationProperty: (NSString *) propertyName value: (id) value;
- (id) getApplicationProperty: (NSString *) propertyName;
- (void) setDatabaseVersion: (NSUInteger) newVersionNumber;
- (NSUInteger) databaseVersion;
@end

These functions allow you to easily set and get any database property with helper

functions for the database version property. Running the code now will migrate the

database to version 2 and throw an error; we forgot to add the price property to the

GroceryItem model class. Add it as an NSNumber property. All columns in the database

must have corresponding properties on the model objects. The inverse is not true; the

model can have “transient” properties that are not stored in the database.

Running the application again will work as expected. That’s it! Adding new migrations is

a simple as adding a little bit of SQL. All previous versions will upgrade seamlessly, and

you are free to migrate data and update other resources inside the migrations

as well.

CAUTION: You should note that although supported by SQLite, access from multiple threads is
not recommended. This Active Record code makes no attempt to handle multiple threads. In
particular, access to the same database handle from multiple threads will result in errors being
thrown. I recommend that you have one thread that handles all your SQL access.

Alternative Implementations
There are several alternatives to this implementation that are worth considering.

For very simple data storage needs, you may be able to get by with serializing your data

to a plist file using the NSCoder APIs. This has the advantage of being as simple as a call

to writeToFile:atomically:. The disadvantage is that the entire data set has to be

loaded into memory each time, and there is no built-in way to search through the

objects and bring back just the necessary set. This isn’t recommended for storing more

than a handful of records.

If your application has higher data demands, there are other higher-end alternatives as

well. It seems like every time I check, there are a few more floating around to handle

this. The two I’m familiar with are FMDB and Apple’s implementation of an object graph

persistence framework: Core Data.

FMDB is roughly equivalent to the ISDatabase class, with some code to handle more

automatic retries, the option to store prepared statements for a speed boost, and

handling for more SQLite error states. It’s a solid implementation, and you wouldn’t be

remiss in using this as the basis for an Active Record variant of your own.

Core Data is Apple’s persistence framework. It has built-in Xcode support for creating

schemas and migrations visually. It is fast, robust, and available as of iPhone SDK 3.0.

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite 180

Being used to SQL, I find myself more comfortable in that world. If you’re less familiar

with SQL, then this should be the first persistence framework that you try if you are

looking for something to handle the heavy lifting for you. I suggest using the SQLite

persistence store option; it is generally better at handling larger data sets efficiently and

has no real drawbacks.

Summary
In this chapter, you went through building a simple Active Record implementation from

the ground up. You started with the SQLite C APIs and built a wrapper around them to

make data access using SQL less of a chore. From there, you used a simple class as the

basis for saving and retrieving your model objects from the database. Then you took a

quick foray into the world of migrations, making sure that you can build on earlier

versions of your database when moving to the next version of your application. Finally, I

discussed a few alternatives to this implementation.

I hope you now have a good working knowledge of the SQLite APIs available on the

iPhone and a good basis for building a data-driven application. I look forward to hearing

about what you do with it!

181

Ray Kiddy
Company: Consultant, Ganymede Resources

Location: Sunnyvale, CA

Former Life As a Developer: Data Application and UI development, 15 years in
Apple, 7 in the WebObjects team in Developer Tools. Managed servers when
gopher was still cool. Developed Cocoa applications, Xcode plugins, Server
Admin UI, deployment tools for web applications. Developer for extensions and
custom web UI in Firefox, worked at Mozilla after Apple. Studying mathematics
at SJSU.

Life as an iPhone Develooper: ClickAccuracy (Developer Utility), Collectionator,
iPhoneSmart Analytics framework/infrastructure, MindOverMatter game suite

What's in This Chapter:

Modeling with CoreData

Dealing with Schema Migration

A “Flexible Schema” Object Class

Connecting to Remote Databases

Testing Data iPhone Apps

182

Key Technologies:

CoreData

Xcode

MigrationManager

NSKeyValueCoding

183 183183

 Chapter

Core Data and Hard-Core
Design
The iPhone is an amazing device for getting information at a moment’s notice. Whether I

am waiting for a train, waiting in line for coffee, or waiting on hold for someone to pick

up the phone, thoughts come to me, and I may need to answer a question quickly in

order to do something useful with the thought. If I wait until later, when I have more time,

then I have often forgotten the idea or question.

The iPhone has a lot of data applications, suited to whatever particular task you have.

And if you have that niche market idea or that odd situation where people want to

organize information in some particular way, then you can create your own data

application for them. The iPhone has tools that make it surprisingly easy to design

these apps so that you can let users use your interface and reuse their data in

interesting ways.

The key to designing a good data application for the iPhone is simplicity. For most data

people, this cuts across the grain. Every time I create a data application, I want the

application to know everything, do everything, hold the users in its hands, and make

them feel comfortable because absolutely everything is taken care of by the application.

The iPhone interface is constrained, though. You absolutely cannot do everything, no

matter how much you want to do so. You must do just what your users need at that

moment and nothing more.

Making your application responsive and flexible is more important than handling every

situation. So, how can the tools that we have available help us create the right kind of

application? It turns out that if you want to focus on the user experience and not on the

database and if you want to think about the user workflow and not tables and columns

and joins, then Core Data will be your friend.

6

CHAPTER 6: Core Data and Hard-Core Design 184

Where Did Core Data Come From?
It turns out that Core Data did not just leap, fully grown, out of someone’s head in

Cupertino. Core Data is not even new with Mac OS X 10.4, where it first appeared within

Apple. Core Data has a long interesting history, and, really, you never know when you

will need an extra acronym or two to put on your resume.

Core Data was first added to the iPhone SDK with version 3.0. Core Data appeared in

Mac OS X in Tiger (Mac OS X 10.4), but it actually has a much longer history than that. It

was first developed at NeXT Computer as the DBKit framework in 1992, which then

became the Enterprise Object Framework (EOF) in 1994. EOF was used to develop

flexible applications on NeXT’s operating systems, NeXTStep and OpenStep. You could

build these applications for NeXT systems, Windows NT, or Solaris. Realizing that

objects can be displayed via HTML as easily as via a custom application interface, the

engineers at NeXT added WebObjects as a display layer for EOF.

EOF is an object-relational mapping (ORM) framework. It is well designed, is robust,

encourages Model View Controller (MVC) design patterns, and was the conceptual

forerunner of much later work in the industry. When I was at Apple, I heard that Sun

attempted to purchase EOF and, when it could not, decided to create the JDBC library.

And this may even be true. Additionally, Microsoft has been trying to create tools that

match what is provided in WebObjects and EOF and has hired many of the software

designers who worked at NeXT.

EOF and WebObjects were ported to Java in 1997 so that applications could run on any

platform on which a Java VM was available. This got Apple out of the job of supporting,

for example, an HP/UX version of the framework. It was very successful, it generated

sales of Mac OS X Server machines, and there were active discussion groups among

users of EOF and WebObjects that were more active than with almost any other Apple

technology. Apple has never been comfortable with the enterprise market, though, and

WebObjects has the stigma of being an “enterprise technology.” WebObjects and EOF

entered a long period of...quiet. The online store still used it, so Apple depended on it for

money but was not sure about how to market it to other businesses. Personally, I believe

that Steve Jobs will be comfortable talking about “the enterprise” when Pixar is making

a Star Trek movie and not one day before.

The Client Is King
Core Data is, in a way, the step backward that was needed to make a step forward.

From when I was at Apple, I know the company has always been about making shiny,

pretty applications. It wants the “Wow!” in everything it does. It was never clear how

EOF fit into that. It organizes your data for you? Really? That’s nice. Yawn....

EOF had a history, with the EOF Application of the OpenStep days, as a client-access

technology, so performance had been tuned for that usage. But it was ported to Java

and then was used for very large applications at Apple and in companies such as

Bell South and Deutsche Bank. The Apple Store still uses it, and the iTunes Store is a

WebObjects application modified to push out XML instead of HTML. So, it was also

CHAPTER 6: Core Data and Hard-Core Design 185

tuned for long-running processes, large data sets, and a long mean time between

failures (MTBF).

Tuning for both quick and agile client access and for long-running server processes is a

contradiction. This contradiction was never been resolved in WebObjects/EOF. With

Core Data, though, Apple ported EOF back to Objective-C. Objective-C is a very flexible

dynamic language and runtime, and this helped bring back the old efficiencies. It was

now clear where the goal of the performance tuning should be. Core Data is only about

the client. Many Mac OS X applications do not track MTBF in their testing, for example,

and it is even less of a concern on the iPhone.

Core Data provides very deep classes for very little effort. You do not need to think

about tables but rather entities, which are just “things.” You do not need to think about

columns or joins but rather attributes and relationships. And these attributes and

relationships are abstractly defined, in much the same way you see attributes defined in

Eiffel. A join between two tables in a database has to follow some rules and be defined

in a certain way, but a relationship in a Core Data entity may merely be a method that

returns a collection of multiple...things. These things can be described in different ways.

Key-Value Coding (KVC) and Key-Value Observing (KVO) are protocols for tracking or

retrieving data from an object. As long as an object responds to the protocols, it can do

almost anything it wants.

A Very First Core Data App
When I first got an iPhone and looked at the database apps, I knew there was work to

do there. Well, at first I could not find any database apps. Then I realized that finding

things in the usual way on the App Store is a joke, so after plowing through a bunch of

stuff, I realized there was still a lot to do. What could I do first? First, I wanted to do my

usual “keep track of everything” application. I have created this application on different

platforms with different languages and tools, and, somehow, it is never finished. Hm.

Perhaps I should try something simpler, with a slightly more manageable scope. A to-do

application? Another one? How about something else?

An application for the iPhone can be finely tuned to some task. It is harder to make an

iPhone app that does something big. What about event planning? Event planners need

to be able to keep track of events they are planning, keep track of what they need to

have for an event, and export this information to something outside the phone. What will

I need to track in order to create successful events? I have absolutely no idea! But, it is

important that I know that I do not know this.

It is easy, sometimes far too easy, to take the fact that I understand software and use

that to convince myself that I understand something else, such as event planning. I can

make an application that is better than just a “take a note” application. How much

better? For $1.99 on the App Store, how much better does it have to be? I will just make

sure that whatever data the user puts in, they can get to it somewhere else. Letting the

user reuse their own data is never, ever a bad thing. I decided to make a simple

application to track events and their locations. But I can create a schema that is flexible

enough to be modified for other uses as well.

CHAPTER 6: Core Data and Hard-Core Design 186

First, Steal Code (Not Music!)
The first rule of being an effective software developer is that you need to know how to

steal code from people who are smarter than you are. In that spirit, I made my job easier

by starting with a project that Apple has provided in the iPhone SDK. I always look for

tutorials and try them so I can learn by doing and not just reading. You can find the

“Core Data Tutorial for iPhone OS” tutorial in the iPhone Developer Connection at

http://developer.apple.com, which is a very good place to start. I am using the GM

version of the iPhone SDK v 3.0, and this is what I will be referring to when I say “the

iPhone SDK.”

The tutorial that Apple provides steps you through the process of building the Locations

project. This project, as Apple has developed it, programmatically creates objects,

stores the objects in a database, and displays a list of those objects. Apple has written

some very good documentation here, and we should take advantage of that. But you

cannot assume that the documentation is very complete. The path that Apple has laid

out in that project is very clear, but there are several small steps you can take from there

that will lead you into very deep weeds. I will be trying to show you how to get out of

those weeds. I got covered in thorns here, and perhaps you will not need to do the

same. Go to the tutorial and step through the process until you can build and run the

application without crashes. There were a few problems with the tutorial, but they have

been corrected in the GM version of iPhone SDK, so everything in the tutorial works

as advertised.

One of the first things I wanted to do after the Locations project was built was rename

the eventsArray ivar. I ended up not doing this. If you do decide to rename any of the

ivars that you are using for properties, be careful. Make backup copies of your project

before you begin. I experimented with renaming eventsArray with the GM version of the

iPhone SDK, and it worked. However, when I was using one of the beta versions of the

SDK, I managed to crash Xcode as I was doing this. I am not sure whether I forgot

something as I was renaming things in the code or whether there was a bug in Xcode.

Using the @property and @synthesize tokens gives you some autogenerated code. For

example, you will see in Apple’s code that it calls the setEventsArray: method. This is a

method created for you because of the @synthesize token in the RootViewController
implementation. This is explained in the “Introduction to the Objective-C 2.0

Programming Language” document provided with the iPhone SDK. These method

names are created so that they follow the rules of the KVC protocol. KVC is powerful,

but KVC problems can be obnoxiously hard to diagnose. KVC lets you define an

interface using strings, and those strings are opaque to the compiler, but the strings

must match up with something at runtime. Errors may appear only at runtime, and the

paths by which they occur can seem…obfuscated. With the power of the abstractions,

you pay a price.

The tutorial application is very simple, and it initializes the database and sets up a lot of

things like magic. In particular, the UINavigationController does a lot for you, and the

tutorial relies quite a bit on the default behavior of this object. As you add to the

application, you will have to go back and understand some of what has been given to

CHAPTER 6: Core Data and Hard-Core Design 187

you and fill in some details. But you can see, from Figure 6-1, that the tutorial has given

you a start.

Figure 6-1. The Locations project, before customization, with default table view and navigation controller
behaviors

But this does not do very much. You can add a data record and delete records, but you

cannot edit anything. You cannot drill down into any object. But it does store data.

(Yawn....) Let’s go get some coffee, shall we? (Queue intermission music.)

All right, we’re back! One obvious way to extend the app is to let the user drill down into

a particular object instance. You could have a new type of view for this, or you could just

use another UITableViewController subclass. Of course, this will need an array, not just

one object. But I am going to treat the object as an array of attributes. I am going to use

KVC to examine the object. This will work with any NSManagedObject subclass and not

just this particular object.

A View to an Object, Any Object
You can make this controller more useful by making it more general. Right now, it is

displaying the event object in a very specific way. You may also notice that the “smarts”

about the way the event is being displayed is in the RootViewController class. However,

turning the numbers and dates in the object into displayable strings is not really a job for

the view. It would be more in keeping with the principles of the MVC design if the Event
class itself knew how to display an event. You can thus simplify the

tableView:(UITableView *)tableView cellForRowAtIndexPath: method by pushing that

logic to the Event class.

Now the RootViewController method will look like this:

CHAPTER 6: Core Data and Hard-Core Design 188

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @"Cell";
 // Dequeue or create a new cell UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) cell = [[[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleSubtitle reuseIdentifier:CellIdentifier] autorelease];

 cell.textLabel.text = [[eventsArray objectAtIndex:indexPath.row] description];
 cell.detailTextLabel.text = [[eventsArray objectAtIndex:indexPath.row]
subdescription];

 return cell;
}

The Event class now contains the following:

#import "Event.h"

@implementation Event

@dynamic longitude;
@dynamic latitude;
@dynamic creationDate;

- (NSString *)description {

 static NSDateFormatter *dateFormatter = nil;

 if (dateFormatter == nil) {
 dateFormatter = [[NSDateFormatter alloc] init];
 [dateFormatter setTimeStyle:NSDateFormatterMediumStyle];
 [dateFormatter setDateStyle:NSDateFormatterMediumStyle];
 }

 return [dateFormatter stringFromDate:[self creationDate]];
}

- (NSString *)subdescription {

 static NSNumberFormatter *numberFormatter = nil;

 if (numberFormatter == nil) {
 numberFormatter = [[NSNumberFormatter alloc] init];
 [numberFormatter setNumberStyle:NSNumberFormatterDecimalStyle];
 [numberFormatter setMaximumFractionDigits:3];
 }

 return [NSString stringWithFormat:@"%@, %@",
 numberFormatter stringFromNumber:self.latitude],
 numberFormatter stringFromNumber:self.longitude]];
}

@end

CHAPTER 6: Core Data and Hard-Core Design 189

The table given in the Locations tutorial does not respond when you click a row, but you

want something to happen. The UINavigationController gives you an easy way to

manage different kinds of views that are related to a hierarchy of objects. It allows you to

maintain a stack of view controllers. When your UI is constrained, as it is on an iPhone,

you need to make views that are simple, are obvious, and do just what you need them to

do. Since a view can do only so much, you need a lot of views, and it turns out that

managing the views on a stack is amazingly useful. If you respond to a click in a table

row by creating another UIViewController subclass, you can push the new view

controller onto the stack. The UINavigationController will take care of setting up a

“back” button in the navigation bar. When the user clicks this button, the new view

controller will be automatically popped, and you will be back to the top level of your

object tree.

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath
*)indexPath {
 [tableView deselectRowAtIndexPath:indexPath animated:NO];

 EventViewController * eventController = [[EventViewController alloc] init];
 [eventController setEvent:[eventsArray objectAtIndex:indexPath.row]];
 [[LocationsAppDelegate delegate].navigationController
pushViewController:eventController animated:YES];
 [eventController release];
}

You can create the EventViewController class now. It needs to be a subclass of

UIViewController. It is useful to test the behavior at this point, before you add anything

to your new class. If you test your application at this point, you will see the list of objects

on the left when you launch (or a similar list), and then you will see the blank view on the

right when you click a row. But you can verify that you can pop into this view and then

hit the Locations button in the navigation bar, and you will pop back to the list of

objects. As you can see in Figure 6-2, you can click any of the rows and come back out

of the view and then click another object and do it again.

CHAPTER 6: Core Data and Hard-Core Design 190

Figure 6-2. The Locations project with an empty EventViewController

Let’s change the EventViewController so that it is a subclass of the

UITableViewController class and add a few properties. Now the interface file will be

thus:

#import <UIKit/UIKit.h>

@interface EventViewController : UITableViewController {

 NSArray * attributeNames;
 NSManagedObject * event;
}

@property (nonatomic,retain) NSArray * attributeNames;
@property (nonatomic,retain) NSManagedObject * event;

@end

You may be looking at the earlier declaration for the event and be wondering why you

are using an NSManagedObject here instead of the Event class itself. At first, I did use the

Event class, and then I had to import the header in the implementation files and use the

class tag for it in the interface files, but I realized I was not doing anything with Event
that an NSManagedObject could not do. This makes the EventViewController a very

reusable class. You can use the table view in such a way that it can display any object at

all. I could be talking about an Event object or a Book object or a BottleOfWhiskey
object. It does not matter. Put them into your array, and this view controller will display

each attribute of the object, each in its own row. OK, this may not seem cool the first

time you are doing this, but the more code you have written, the more you get excited

about truly reusable view controllers.

CHAPTER 6: Core Data and Hard-Core Design 191

The following are the UITableViewDelegate methods that you need to put in the

EventViewController implementation file. You also need a viewDidLoad method to do

some setup:

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section
{
 return [[[event entity] attributesByName] count];
}

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString * CellIdentifier = @"Cell";

 // Dequeue or create a new cell
 //
 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleSubtitle
reuseIdentifier:CellIdentifier] autorelease];
 }

 cell.textLabel.text = [[event valueForKey:[self.attributeNames
objectAtIndex:indexPath.row]] description];
 cell.detailTextLabel.text = [self.attributeNames objectAtIndex:indexPath.row];

 return cell;
}

- (void)viewDidLoad {

 [super viewDidLoad];

 self.title = [[event entity] name];

 self.attributeNames = [[[event entity] attributesByName] allKeys];
}

With no more work than this, you can see in Figure 6-3 that you now have a much more

interesting object view.

CHAPTER 6: Core Data and Hard-Core Design 192

Figure 6-3. Now you see attribute names and values from any NSManagedObject.

You can use the UINavigationController here again and do something elegant. You

created an EventViewController, a subclass of a UITableViewController, and pushed it

in on top of the RootViewController. You can push other kinds of UIViewController
objects onto this stack as well. So, you can create a view and controller that takes an

attribute of an NSManagedObject and allows you to edit it. Most significantly, you can look

at the type of data you have in the attribute and push on a UIViewController subclass

configured to allow you to edit an attribute of that type.

For now, I have done this in the simplest manner possible. I created a

KeyValueViewController class and a KeyValueView class. Make sure you drag both the

header and implementation files for both of these classes from the downloaded code to

your project. I override the layoutSubviews method of the KeyValueView and

programmatically add the UI elements I need for editing the attributes. I am just

displaying the values as strings by calling the description method on them, and then,

when the value is changed in the text field, I have to use the edited string and create a

new object of the appropriate type for the attribute. Every data type has a string

serialization and some way to get that object from a string serialization, so this should

always be possible.

There are more interesting views for particular data types that you could create. An

obvious one would be a map that you could click to set the latitude and longitude

attributes or a date picker. The point is that you can look at the type of the attribute for

the data in the selected row and, for each type, come up with the appropriate view

controller. Dynamically create that view controller and push it onto the navigation

controller’s stack, and everything works wonderfully.

CHAPTER 6: Core Data and Hard-Core Design 193

Our Very First Crash, or Perhaps Not!
The NSManagedObject has many tools that come with it that allow you a lot of flexibility.

Most people start out thinking of an entity as a wrapper for a table and attributes as

wrappers for columns. You can stop there and still do powerful applications. But a lot

more is possible. Be careful, though, because there are also some hidden traps. Every

framework has them. You know this. The designers document these things, but are they

proud of them? Do they make the documentation as easy to find or as obvious as they

can? Perhaps not.

Before you do anything else here, you should make a small fix to your application that

will prevent a crash and spare you the confusion it causes. Replace the

persistentStoreCoordinator static method in the LocationsAppDelegate class with this:

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator {

 if (persistentStoreCoordinator != nil) { return persistentStoreCoordinator; }

 NSURL *storeUrl = [NSURL fileURLWithPath: [[self applicationDocumentsDirectory]
stringByAppendingPathComponent: @"Locations.sqlite"]];

 NSError *error;
 NSDictionary * options = NSDictionary dictionaryWithObjectsAndKeys:
 [NSNumber numberWithBool:YES], NSMigratePersistentStoresAutomaticallyOption,
 [NSNumber numberWithBool:YES], NSInferMappingModelAutomaticallyOption,
 nil];
 persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc]
initWithManagedObjectModel: [self managedObjectModel]];
 if (![persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType
configuration:nil
 URL:storeUrl
 options:options
 error:&error]) {
 // Handle error
 }

 return persistentStoreCoordinator;
}

Then click the xcdatamodel file in your project, and select the Design ➤ Data Model ➤

Add Model Version menu option. Do not worry, for now, about what it does. It will make

sense soon. The tutorial from Apple had you pass nil for the options: parameter of the

addPersistentStoreWithType:configuration:URL:options:error method and did not

talk about versions of the data model. But now that you have done these two things, you

have gained some breathing space.

When I was working on this, before I knew how to deal with it, making changes to my

schema caused me a major upset. At this point, I wanted to modify the Event entity that

I had created. I added an attribute to my entity, which quickly led to a crash.

It seemed simple enough to do what I wanted. I innocently thought, “Hey, I want to add

this other thing to my Event entity....” Just dive into that shiny, bright graphical editor,

CHAPTER 6: Core Data and Hard-Core Design 194

and a few clicks later you created the whatever attribute, built the app, ran it, and

. . . oops.

Locations[20398:20b]*** Terminating app due to uncaught exception
'NSInternalInconsistencyException', reason: 'This
NSPersistentStoreCoordinator has no persistent stores. It cannot perform a
save operation.'

Hm. What is “no persistent stores”? But they were there just a minute ago, weren’t they?

This does not seem very persistent. What happened? And what am I now reading at the

end of the tutorial?

NOTE: One important item to remember is that, if you change the schema in your managed
object model, your application typically won’t be able to open files you created with an earlier
version.

CoreData Tutorial for iPhone OS: Managing Model
Migrations
The problem is that I modified the schema in the project, but the database as it was last

used by my application, and how it appears in the iPhone’s database files, does not

match the new schema. But I cannot save objects into my new schema until I run the

application. But I cannot run the application, because the database as it was last used

by my application does not match the new schema. But I cannot save objects into my

new schema until I run the application. And around and around we go.

The implications of this issue for the applications you ship to your users are profound,

and I think it is worthwhile to understand what you can do about this issue and

understand what it will cost you if you do not plan for it. You may think, right now, that

you can define the schema for your application, and there will be no need to change it in

the future. Not only is that probably not true, but if you do not do the right thing when

there is a schema change, your application will crash. The user will have only one

option. They will have to delete your application, getting rid of all of its data, and

redownload the application again, without the data they had entered. Well, we hope they

will redownload the application again. They may not.

The Easy Migrations Are Easy
Migrating schemas in any database systems is complicated, but automatic migrations

can make it relatively painless.

I actually think it was a bit irresponsible for Apple to not include this option in the code in

its tutorial. That first tutorial leads developers down a set path, a simple path, a clear

path, but it is a path that leads directly to a cliff. The developers will try to change their

schema, and their app will crash. Are the steps to take at this point documented? Yes,

CHAPTER 6: Core Data and Hard-Core Design 195

but they are not very easy to find, given the severity of the error. The error says “no

persistent stores,” and this does not lead one to immediately look to the “Core Data

Model Versioning and Data Migration Programming Guide,” which Apple has published

to lead you away from the cliff...or to lead you off the rocks at the bottom of the cliff.

Apple engineers have told me that this “automatic” schema migration will handle most

of what users will want to do. I believe them. They are justifiably proud of what it can do.

But I do not know why they then sought to hide this functionality under a basket.

But let’s look at what you have been given. Using this option’s dictionary means that if

the changes you make to your model are relatively simple, then the application’s

PersistentStoreCoordinator instance will be able to figure out what to do. Or not. The

problem here is that Apple knows that, really, migrating databases is incredibly hard. Or

rather, it is one of those problems where handling the first 90 percent is deceptively

easy, handling the next 8 percent gets obnoxious surprisingly quickly, and dealing with

some part of the last 2 percent will take more years than the age of the universe to figure

out. So, Apple has given you a black box. It is probably a very smart black box. After all,

the people who used to make NeXT workstations know how to make black boxes. Let’s

look at your project now. You had an xcdatamodel file, and now it has become an

xcdatamodeld directory, with two xcdatamodel files in it. If you click the disclosure

triangle next to the Locations.xcdatamodeld, you will see that one of the files is “current”

and one is not. You can see that the file that is “current” is marked with a green check

mark (see Figure 6-4).

Figure 6-4. Now you have two xcdatamodel files, one current and one not so current.

CHAPTER 6: Core Data and Hard-Core Design 196

The first thing I always do when Xcode creates files with names like this is give the files

better names. I renamed the Locations.xcdatamodel file to Locations01.xcdatamodel
and renamed Locations 2.xcdatamodel to Locations02.xcdatamodel. You know, over

the years, if you count up all the bugs in Xcode that were triggered by a space in a path

or a resource name, there are just too many to count. Really, life is too short to take risks

like that.

After you rename these files, take a moment to build and run the application. It should

run without an error. But remember, you still have not made any changes to the schema.

Before you do make any changes, select the Locations02.xcdatamodel file in Xcode,

and select Design ➤ Data Model ➤ Set Current Version. The green check mark moves

to the second file, and now you can make changes to this second file. For example, you

can add a whatever attribute of type String, and then you would see the whatever
attribute in the application and could even assign a value to it.

Well, I’m sure glad that’s over! Actually, let’s not get too excited. Make sure you do not

run your application yet, because you are not finished making changes. You might want

to take this opportunity to see what kinds of changes you can make to your schema and

what kinds of things will cause problems. While you are developing your application and

running it to debug something and then making changes and running it again, there are

definitely ways to cause yourself a problem.

If you experiment with this now, you will probably be able to avoid more problems later.

For example, if you create a second schema, set that schema to current, make changes

to the second schema and run, you are good. If you switch the “current” marker back to

the first schema, delete the second schema file, and build and run, you will crash. Why?

The reason this crashes is that it could migrate your schema back from the second

version to the first, but you deleted the second version. So, no migration is possible.

Stop and think about this to make sure it makes sense to you. You need to get rid of the

second schema version, but do not delete it until you set the “current” marker back to

the first version and run the app. After you run the app successfully, then you can delete

the second version of the schema. For the automatic migration to work, both the “from”

and the “to” models have to exist in the project. And if you have run with the second

version of the schema, do not just make other changes to it. Otherwise, you will back in

the same place I was with my first change.

If you are iteratively making changes to the second version of the schema, you need to

do things in a particular order. You can create your second version, make a change, and

build and run the application. If you want to make another change to your second

version, you need to switch back to the first version, build and run the application again,

and only then you will be able to switch the “current” marker back to the second version

and make any other change to that second version without causing a crash.

CHAPTER 6: Core Data and Hard-Core Design 197

Adding a New Entity
Adding an entity is one of the changes that the system can handle for you, so let’s at

least do this much.

Select the latest (and presumably current) version of your data model, and add another

entity to the data model. It is a PartyFavor entity, and I want to create attributes in it for

a name (a String), a quantity (an Integer 16), and a price (a Decimal). Now I want to

create my relationships. To make this clearer, do these steps in this order:

1. Click the Event entity and create a partyFavors relationship. Do not

worry about making any changes to it.

2. Click the PartyFavor entity, and create an event relationship.

3. Click the partyFavors relationship in the Event entity. Select the To

Many Relationship check box.

4. Set the Destination Entity drop-down menu to PartyFavor.

5. Then set the Inverse Relationship drop-down menu to event.

This last step actually finishes the job for you. It is very useful to use this “inverse

relationship” feature in Core Data. In EOF, relationships had only an implicit inverse

relationship. Developers usually had an inverse relationship for any relationship, but the

two relationships were separate, and historically there were many problems when

people created a relationship and an inverse that was misconfigured in some way. It is

much harder to make this mistake in Core Data.

You can now create the new sources for the PartyFavor class and create new sources

for the Event class. There is an odd thing that Xcode does here that you will see in a

moment. When you select the File ➤ New File menu item, Xcode does not always allow

you to pick the Managed Object Class template to create the file. One of the ways to

make sure Xcode does allow you to pick that template is to click the xcdatamodel file.

So, click the current xcdatamodel file. Then select the File ➤ New File menu item, and

the multipane wizard launches. In the first pane, you are asked to select the target, but

there is only one target in this project. In the second pane of the wizard, select both the

Event and PartyFavor entities. Then it will create the source files for you. Oddly, Xcode

will then put the sources in the Resources group of your project. Actually, they are inside

the xcdatamodeld directory. But if you think about it, you will realize that you had the

xcdatamodel file selected. So, Xcode only followed your suggestion, right? Of course, if

you had not selected the xcdatamodel file, then Xcode (currently) would not offer you the

use of the Managed Object Class template. It’s strange looking, but in this case, what

Xcode is doing is OK. Remember that, a while back, you added two methods to the

Event class. You want to move the description and subdescription methods that you

added to Event to the new Event sources, the one inside the xcdatamodeld. Remember

to copy over the method declarations in the interface file as well. Now, your project

should look like Figure 6-5.

CHAPTER 6: Core Data and Hard-Core Design 198

Figure 6-5. You have added the new sources. It looks strange, but Xcode in the beta versions of the iPhone SDK
did something worse, so really, it is not so bad.

After editing the new copy of Event.h and Event.m, be sure to delete the old copies and

move the files up to the Classes group in your project, as shown in Figure 6-6.

Figure 6-6. The project is looking quite a bit less strange now.

CHAPTER 6: Core Data and Hard-Core Design 199

Using Key-Value Coding to Create a Reusable Object
Instead of going into more detail about what you can do to be sure that you can always

migrate an object, and there would be a lot of detail, let’s ask whether there is a way you

can avoid having to change a schema. Surely not! You can write your application now

and try to imagine everything you need to keep track of, but once people start using it,

they are going to have suggestions. One of the downsides of putting an application out

into the world is that you then have to deal with users, and users have suggestions and

report bugs and behave in other inconvenient ways. You have to deal with users who

have entered data into your application and who do not want you to upgrade your app in

such a way that their data gets deleted.

When I was working on EOF and WebObjects for Apple, I created a class that uses KVC

in an unusual way. I am going to use this trick again to make it so that the Event entity

will not have to be changed, even when you want to see new attributes in the UI. To do

this, add another entity to your schema. It will be helpful to create a third version of your

schema at this point and add the entity in that version. Call the new entity EventExtra.

Add an attribute called name and an attribute called value. These are both of type String.

After you are done, your new Locations03.xcdatamodel file should look like Figure 6-7.

Figure 6-7. You’re going to use the EventExtra entity in an unusual manner.

You are going to rely on something that the NSManagedObject gives you that most people

do not take full advantage of. It is the fact that the KVC protocol has two methods for

recovering from the use of nonexistent keys when reading from or writing to an object.

Most developers do not override these methods, and the default behavior of these

methods is to throw an exception. But these methods can be overridden, and they can

be used to dynamically modify the attributes of an entity.

First, save your schema, and verify that your application works as it did before. You will

see that the object has the same attributes. Adding a new relationship did not change

that. Here is what you need to add to your Event.m file:

CHAPTER 6: Core Data and Hard-Core Design 200

- (id)valueForUndefinedKey:(NSString *)name {

 NSArray * extra = [[self extras] allObjects];
 for (int idx = 0; idx < [extra count]; idx++) {
 if ([name isEqualToString:[[extra objectAtIndex:idx] valueForKey:@"name"]]) {
 return [[extra objectAtIndex:idx] valueForKey:@"value"];
 }
 }
 return nil;
}

- (void)setValue:(id)value forUndefinedKey:(NSString *)name {

 // Look for existing object for this name. If one exists, replace its value.
 NSArray * extra = [[self extras] allObjects];
 for (int idx = 0; idx < [extra count]; idx++) {
 if ([name isEqualToString:[[extra objectAtIndex:idx] valueForKey:@"name"]]) {
 [[extra objectAtIndex:idx] setValue:value forKey:@"value"];

 return;
 }
 }
 // If an object for this name does not exist, create one.
 NSManagedObject * eventExtra =
 [NSEntityDescription insertNewObjectForEntityForName:@"EventExtra"
inManagedObjectContext:[self managedObjectContext]];
 [eventExtra setValue:name forKey:@"name"];
 [eventExtra setValue:value forKey:@"value"];
 [self addExtrasObject:eventExtra];
}

Think for a moment about what you can do with the Event entity now. Right now, its

attributes are creationDate, latitude, and longitude. But suppose that one event is a

child’s birthday party and another is for Oktoberfest. In the first case, you can use code

like this:

[kidsEvent setObject:@"Bruno" forKey:@"clownName"];

For the second case, you can use code like this:

 [oktoberEvent setObject:[NSNumber numberWithInt:2]
forKey:@"dancingBearsCount"];

So, in the first case, the entity seems to have the attributes creationDate, latitude,

longitude, and clownName, and, in the second case, the entity seems to have the

attributes creationDate, latitude, longitude, and dancingBearsCount. Does this seem a

little silly? Of course! But the point is that you can dynamically choose some new

attribute for your Event entity and just stick the data in there, and it will work.

You do, though, have a detail to consider. You have to override the method that you use

to get your list of available attributes for an entity. You can start with the list of attributes

for your entity that is supplied to you by Core Data, but that no longer gives you the

entire story. Now you have to look at the contents of the EventExtra entity. You have to

return the distinct list of attributes that exist, so you have to get all the name entries from

CHAPTER 6: Core Data and Hard-Core Design 201

all of those objects, create a nonduplicative list of names from this, and add that to what

you have gotten from Core Data. You can add this method to your Event.m:

- (
 NSArray *)attributeNames {

 NSEntityDescription * extrasEntity = [[[[self entity] managedObjectModel]
entitiesByName] objectForKey:@"EventExtras"];

 NSFetchRequest * request = [[NSFetchRequest alloc] init];

 [request setEntity:extrasEntity];

 NSArray * fetchResults = [[self managedObjectContext] executeFetchRequest:request
error:nil];

 NSMutableSet * extraAttributes =
[[NSMutableSet alloc] initWithSet:[NSSet setWithArray:[[[self entity] attributesByName]
allKeys]]];

 NSArray * foundNames = [fetchResults valueForKey:@"name"];
 for (int idx = 0; idx < [foundNames count]; idx++) {
 if ([foundNames objectAtIndex:idx] != [NSNull null])
 [extraAttributes addObject:[foundNames objectAtIndex:idx]];
 }

 return [extraAttributes allObjects];
}

Now, you need to change the methods in EventViewController.m that use the list of

attributes:

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section
{
 return [[event attributeNames] count];
}

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString * CellIdentifier = @"Cell";

 // Dequeue or create a new cell
 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleSubtitle
reuseIdentifier:CellIdentifier] autorelease];
 }

 cell.textLabel.text = [[event valueForKey:[[event attributeNames]
objectAtIndex:indexPath.row]] description];
 cell.detailTextLabel.text = [[event attributeNames] objectAtIndex:indexPath.row];

 return cell;
}

CHAPTER 6: Core Data and Hard-Core Design 202

Now you have an object into which you can create new attribute values, but you have no

UI to do this in your application. It is easy enough, though, to add this. When you are

looking at a single object and seeing the list of its attributes and values, you want a way

to add an attribute. If you look back at RootViewController.m, you will see how this can

be done. You can add a + button, something the UINavigationController makes it easy

to do. Add this code to the viewDidLoad method of the EventViewController.m:

 addButton = [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemAdd target:self
action:@selector(addAttribute)];
 addButton.enabled = YES;
 self.navigationItem.rightBarButtonItem = addButton;

That code is calling the addAttribute method, and you still need to add that to

EventViewController.m as well.

- (void)addAttribute {
 KeyValueController * eventController = [[KeyValueController alloc] init];

 [eventController setAttributeName:@"extra"];
 [eventController setEvent:self.event];

 [[LocationsAppDelegate delegate].navigationController
pushViewController:eventController animated:YES];
 [eventController release];

Since the KeyValueView uses a UITextField for the attribute’s name as well as the

attribute’s value, this is all you need to do to get a working application. Now you may

never change the Event entity again. If you have code in your interface that creates data

for a new key and that calls the object with a new key to retrieve the data, the Event
object will automatically appear to have an attribute of that name. In Figure 6-8, I have

added an extraName attribute with the value extraValue.

Figure 6-8. Event with the dynamically created, potentially more interesting, attribute and value.

CHAPTER 6: Core Data and Hard-Core Design 203

It may seem that you are assuming here that anything that you are going to add to your

Event entity is of type String. This does not turn out to be true. Remember that you can

override the default setters in your NSManagedObject subclass. So, although it is true that

the “database” view of the newly added attribute is that it is a String, you can write

methods for getting and setting a value of whatever type you want. There are, if

anything, too many things you can do with just a name of an attribute. Since you do not

want to change the Event entity, you cannot add the attributes to the diagram that the

xcdatamodel gives you, but almost everything else will work. Want to use NSBindings,

recently brought to the iPhone with OS 3.0, on a UI element? The keys for the bindings

are just strings, and they go through the same key/value interfaces that you have

implemented on your event. To make all the bindings work, you may have to implement

code for a relatively new addition to Core Data, that being KVO. But even without that,

you will be surprised by how many things will just work.

Remote Databases: It’s All Net!
One way to give yourself some flexibility while adding power to your application is to not

just store your users’ data on the iPhone but store it on the Internet as well. Given the

pervasive connectivity of the iPhone, it is also easy to do.

You can set up connections to remote databases in a few ways. In the first application I

had published on the App Store, it would upload only very small sets of numbers. I

packaged these into URLs and opened a connection to a web application that I had

running. The web application would peel off the GET parameters of the URL and store

them in a MySQL database. The web application was a trivial Perl CGI, and there was

not much to it.

Later I used the NSMutableURLRequest class so that data could be sent up as a POST.

This enables the transfer of more data. For example, since I use WebObjects

applications on the server side, I use the NSPropertyListSerialization class on an

iPhone to serialize an arbitrarily complex dictionary or array. I can pass the resulting

plist up as a POST request, and the WebObjects app can read the plist directly. One

could just as easily serialize the data on the iPhone as XML and parse the XML on

the server.

This code will take a dictionary, which can include arrays, other dictionaries, and other

objects and generate a plist for it, which can be sent to a remote machine.

- (void)exportData:(id)sender {

 NSData * plistData = [NSPropertyListSerialization
dataFromPropertyList:(id)[NSDictionary dictionaryWithObject:YourDictionaryHere
forKey:@"parameters"] format:NSPropertyListXMLFormat_v1_0 errorDescription:nil];

 NSMutableURLRequest * request = [[NSMutableURLRequest alloc] init];
 [request setURL:[NSURL URLWithString:@”YourURLHere”]];
 [request setHTTPMethod:@"POST"];
 [request setHTTPBody:plistData];

CHAPTER 6: Core Data and Hard-Core Design 204

 NSURLConnection * theConnection = [[NSURLConnection alloc]
initWithRequest:request delegate:self];

 [theConnection release];

}
}

// We need to implement these two methods in this class if we want to be notified of the
success or failure of the NSURLConnection above
//
-(void)connection:(NSURLConnection *)connection didReceiveResponse:(NSURLResponse
*)response { }
-(void)connection:(NSURLConnection *)connection didFailWithError:(NSError *)error { }

You may believe that a plist (or property list) is an Apple-only technology, but there is a

CPAN module, Mac::PropertyList::SAX, that gives you exactly what you need:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>parameters</key>
 <array>
 <dict>
 <key>X</key>
 <real>127.17512512207031</real>
 <key>Y</key>
 <real>394.22320556640625</real>
 </dict>
 <dict>
 <key>X</key>
 <real>161.1126708984375</real>
 <key>Y</key>
 <real>193.724853515625</real>
 </dict>
 <dict>
 <key>X</key>
 <real>57.804325103759766</real>
 <key>Y</key>
 <real>371.4683837890625</real>
 </dict>
 </array>
</dict>
</plist>

This structure can be read with a Perl CGI. The script has some funkiness

from metacharacters in the plist, and when I wrote this script, I used the

-best-possible-way=false flag:

CHAPTER 6: Core Data and Hard-Core Design 205

% cat test.cgi
#!/usr/bin/perl

use Mac::PropertyList::SAX qw(parse_plist);
use CGI;

my $q = CGI->new;

print $q->header();
print $q->start_html('Your Title Here');

$r = $q->Dump;

$r =~ s/\</</g;
$r =~ s/\>/>/g;
$r =~ s/\"/\'/g;
$r =~ s/<br \/>//g;

if ($r =~ /<\!DOCTYPE plist PUBLIC/) {
 $r = $&.$';
 if ($r =~ /<\/plist>/) { $r = $`.$&; }
}

my $data = parse_plist($r);

$vals = $$data{'parameters'};
for ($idx = 0; $idx < scalar(@$vals);$idx++) {
 print "coord[".$idx."] = (".$$vals[$idx]{'targetX'}.",
".$$vals[$idx]{'targetY'}.")".$q->br;
}

When you send this plist in a POST to this script, the resulting page will be as follows:

coord[0] = (127.17512512207031, 394.22320556640625)
coord[1] = (161.1126708984375, 193.724853515625)
coord[2] = (57.804325103759766, 371.4683837890625)
OK

There is something to think about when you are transmitting data across the network.

You must be careful about whether the UI of the app reflects the network connectivity.

If the app transmits data, you may want to not have side-effects of the transmission,

such as progress bars, in the UI of your application. The Human Interface Guidelines

from Apple say that if connectivity is apparent in your application, then you must alert

the user when the network is not available.

Apple’s interpretation of this can seem odd. If you have a game and you load high

scores onto a server, think about what will happen if the network is not available. If you

are showing the user something from the online system when they get a high score, for

example, then you may have a problem. Every time your application is being used and

the network is or becomes unavailable, Apple is going to say that you need to notify the

user. They may hit high scores only once a month, and they may end up getting this

notification every time they drive under a bridge, but that does not matter. Or, you could

not have anything from the Internet visible to the users when they hit a high score, and

then you will not need to worry about it.

CHAPTER 6: Core Data and Hard-Core Design 206

Or you might be transmitting analytics, information about how often your app is being

used or how it is being used. If you have something in your UI that tells the user about

this or shows them when transmissions are occurring, you could have trouble. Apple has

asked that an alert pop up, letting users know that the data will be transmitted, giving

them a way to opt out, and letting them know what happens when the network is down.

Or you can have analytics data come from your app to the network, say absolutely

nothing to the user about it, as a legion of applications on the App Store do, and you

have no problem at all.

It may be smartest to assume that, if the network is down, you should be able to wait

an arbitrarily long time before you are able to transmit, and it may be best to not involve

the user in the decision about when to transmit. It is easiest to get through the

App Store check if you design your application so that a lack of connectivity has no

visible effect.

Also, I wish that we could stop there and just ignore the fact that using encryption on an

iPhone can be a problem. Unfortunately, if you want to use a 128-bit HTTPS connection

in your application and you want to sell or provide it for free outside the United States,

Apple wants you to have a license to export it. You may be able to transmit data in the

clear or with nonrestricted encryption technologies. All I can say is that I am fairly

bureaucracy-phobic, but it is not as hard to deal with the U.S. Commerce Department

as you think it might be. You can even get an account on an online system for

requesting licenses. I wish we did not have to deal with this, but Apple has set up the

rules for the App Store the way it wants. Right now, it behooves us to play the game

their way. At some point, we may become more interested in other technologies or find

other ways to distribute applications. Until then, here we are.

Summary
Core Data makes it possible to use the database on the iPhone to store information

without resorting to SQL. It can be easy to work with if you avoid falling into a few traps.

Migrating data schemas leads to some complications, and I have demonstrated two

different ways of dealing with the issues. You can use the automatic schema migration,

as is provided by Xcode, and you can create a generic object that will allow you to hold

many different kinds of objects in one type of data object.

The KVC protocol is simple, but it is a powerful tool for abstracting and separating

concerns in an application. Data schemas should be kept as simple as possible. Users

have complex needs, but smart designs can let the user interfaces change while the

model objects remain unchanged. Different kinds of views can be presented, but the

information coming back from them can be kept simple. Different applications can be

served by one database schema. As users’ needs evolve and applications become more

complex, that simplicity will make progress easier.

And we have information, of course, that we want to share. The “mostly connected”

nature of the iPhone makes it possible to share data across the network at any time, but

applications have to be agile to deal with the real world, where people move around

faster than software can figure out how to switch their networks, where sun spots cause

CHAPTER 6: Core Data and Hard-Core Design 207

outages, and where people cannot really ever be “always connected.” Smart designs

can make our applications agile enough to cope with interruptions without making the

user wait, watching a spinning ball.

Designing data applications will never be easy, but with all the kinds of games, puzzles,

tools, “find it” apps, and “track it” apps that the world seems to want, the iPhone does

make it fun.

CHAPTER 6: Core Data and Hard-Core Design 208

209

Steve Finkelstein
Company: Lime Medical LLC

Location: New York, New York

Former Life As a Developer: I’m language and platform agnostic and embrace
any technology that is best fit for the job at hand. One day I might be fiddling
with with automation on my FreeBSD/Linux servers using Perl – other days I’ll be
configuring Cisco Catalyst switches. Some of my specialties include backend
server programming (C, Objective-C, PHP, Perl, SQL), Web Services (SOAP,
REST), client-side programming (Cocoa, Cocoa-Touch, JavaScript, CSS, HTML).
I’m mostly concentrating on iPhone and Web development at the time of this
writing, but I also have vast experience in working for media companies such as
About.com (part of The New York Times Company) and Community Connect Inc.

Life as an iPhone Develooper: My first application is not available at the time of
this writing. It will be a medical charge capture application and released late
summer.

What's in This Chapter: This chapter focuses on strategies for taking an
application that’s dependent on network connectivity, and having it function
while it is offline. We’ll be building a sample e-mail client that has one task in
mind, drafting and sending messages. We will show how to work with the System
Configuration Framework and Apple’s Reachability class in order to detect when
we’re offline. We’ll also use some fantastic open source libraries such as
Three20, FMDB and SKPSMTP in order to achieve our goals. Our Offline Mailer
will continue to function independently of network status.

210

Key Technologies:

System Configuration Framework

Three20

FMDB

SMTP

211 211211

 Chapter

Smart In-Application
E-mail with Core Data
and Three20
The first time I purchased a cell phone, it resembled something Zach Morris would wield

in an episode of Saved By the Bell. (In the event the name Zach Morris does not spark

some neurons, think of a device that’s discernibly colossal in size.) Those days, mobile

devices were in a primitive state. Extremely fundamental usage was all that was

incorporated into the hardware. You needed to be able to make and receive a phone

call, and as long as you were capable of doing that, you were thrilled!

It has been a long time since the advent of the “Zach Morris phone.” The transformation

has been nothing short of brilliant. Our phones are mini-computers that we use not only

to communicate but as a tool to keep our life organized while we’re on the go. I cannot

even begin to fathom how my everyday life would continue to exist without the iPhone.

The iPhone isn’t just a tool that facilitates phone calls to your mother who complains

that you never reach out to her. It’s a behemoth of a platform that’s capable of gaming,

keeping up with social media, following the news, managing your diabetes, sending and

receiving e-mail, and much more.

I personally am a zealot when it comes to the likes of applications such as Facebook,

Instapaper, Things, NYTimes, Twitterrific, Mail, and Wikipanion. Just a side note, I love

Tweetie and Twitterrific so much that I typically flip a coin on a daily basis when deciding

what Twitter client to use. The one prudent point I want to make here, though, is the

following: all of these applications have one thing in common. Can you think of what the

common functionality is? It might not be apparent at first as you think, “What does a

news app have in common with Facebook?” The answer is straightforward, though—

these apps continue to work when you’re in an area without Edge, 3G, or WiFi coverage.

I, for one, took it for granted that every single time I would go through the Lincoln Tunnel

or ride the subway in New York City that I could continue reading the news on the

7

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 212

NYTimes App. And I took it for granted that I could write an important e-mail for work

and have it delivered to a remote SMTP server once my connectivity had resumed. I also

adore the capability that I have to flag articles from folks I follow on Twitter and save

them to Instapaper. Then, once I’m airborne to a foreign destination, I’m reading

everything while in airplane mode. Although the aforementioned applications are nice to

have, what do we do when a mission-critical application is not capable of functioning

because a physician practices in an outpatient facility that lacks any network

connectivity? The physician might want to take notes or look up allergies that a

particular medication might give to the patient they’re visiting. I can personally vouch for

this particular use case—some demographics are substantially more forgiving than

others. Depending on who you’re building applications for, not having the capability to

continue operating an application might mean the difference between retaining a paying

customer and having them go to your competitor.

Planning a Simple Offline SMTP Client
In this chapter, I’m going to take you—a resilient iPhone programmer—on a journey to

better your application with ideas on how to take it offline. Since we iPhone developers

never give up on a problem no matter how egregious it might appear on the surface,

you’re going to delve into a sample application I had some fun building. The example

that I have built is called OfflineMailer. This OfflineMailer implements the very basics of

an SMTP client. It meets the following criteria:

Capable of sending an e-mail to multiple recipients in your Address

Book.

Capable of taking your messages and storing them in persistent

storage for later viewing.

Capable of determining the availability of an Edge, 3G, or WiFi

network.

Capable of taking any draft messages written in offline mode and

keeping them around until you have network connectivity available

again. Once network connectivity is available, you will send the

messages.

Simple viewing of messages in an offline queue and of sent messages.

Given the stringent criteria I have to meet working on medical applications, I would have

loved to have a chapter such as this available for my own personal reading when I first

started mobile programming. Although it appears complicated on the surface, you’ll

quickly see how trivial it really is to build this type of application. The best part of it all is

that I’m going to provide a brief introduction to one of my favorite open source iPhone

projects—Three20 by the venerable Joe Hewitt (http://github.com/joehewitt/
three20/tree/master). In addition to Three20, I’ll cover the other open source projects

I’ve incorporated into the demo application.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 213

Three20 is an Objective-C library that has very well-written classes that include the likes

of a photo viewer and an HTTP disk cache in addition to the capability to style labels

and UIViews. Joe Hewitt is one of the original authors of Firefox, is the creator of

Firebug, and is the engineer of the Facebook iPhone App. Simply put, the guy is brilliant,

and in the years I’ve been developing, his work has affected me directly.

I originally began writing this project by using a notoriously powerful open source project

known as FMDB. FMDB, written by Gus Mueller, is a bunch of well-written Objective-C

classes around SQLite. With the iPhone 3.0 SDK now available and not covered by the

NDA, I’ve rewritten the chapter to incorporate Core Data. For those of us who must still

support 2.x devices, I will provide the original code that I used with FMDB to you. The

fundamentals for the two approaches remain closely knit in theory. If you’re building an

application for 3.0, I highly encourage the route of Core Data for reasons that I’ll talk

about in this chapter.

Finally, one of the most critical components of the project in this chapter is an open

source package named SKPSMTP, released by developer Ian Baird. SKPSMTP allows

for sending SMTP e-mails from within your iPhone application.

If you’ve noticed a common trend, I’m a huge advocate of open source, and I embrace it

in my work whenever I can. Open source has been a prominent player in helping me

learn how experts write professional software. As long as you follow projects that are

credible, open source can change your outlook on how you write software in addition to

helping you improve the software you’re already working on.

Creating the User Interface
I’m going to take for granted that you already know how to create basic user interfaces

for your iPhone. If you need some help with building user interfaces, either

programmatically or with Interface Builder, I highly recommend picking up a copy of

Beginning iPhone Development: Exploring the iPhone SDK (Apress, 2008) by Dave Mark

and Jeff LaMarche. Dave and Jeff are pioneers in the software vertical and make

learning how to program on the iPhone really fun. They’re also my inspiration and the

reason I’ve had the opportunity to write this chapter.

Diving into Xcode
Let’s kick things off with Xcode. Xcode is the lovable IDE that you’re going to build the

sample application in. I’ve avoided building any of the user interface elements in

Interface Builder to make this chapter slightly easier to follow. This does not by any

means imply that I do not support Interface Builder. Quite the contrary, I use it

extensively whenever I can. With that said, I do prefer building my views with code

whenever the interfaces are trivial.

In Xcode, create a new project, and choose the Navigation-Based Application template,

as shown in Figure 7-1. I named my application OfflineMailer, so I suggest you do so

also in order to make identifying symbols from the text easier.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 214

NOTE: If you do not have MacFUSE and its associated developer tools installed, you will not
see the respective templates available in your Xcode build. Do not worry—that is not a
requirement for this demonstration.

Figure 7-1. Choosing the Navigation-Based Application for the sample application

Next, you need to add a few packages to your application including both FMDB

(downloadable from http://code.google.com/p/flycode/source/checkout) and Apple’s

Reachability set of classes. Reachability is a set of classes that Apple provides as a

sample to determine the network state of an iPhone or iPod touch device. I use this set

of classes exclusively in my projects, because they’re well written and plug in to any

existing project with ease. If you have an iPhone developer account, the sample code is

available at http://developer.apple.com/iphone/library/samplecode/Reachability/
index.html. Otherwise, feel free to grab it from the source code that goes with this

chapter.

In your Groups & Files pane, add a new group underneath the Classes folder. Let’s

call it Network. In Network, you need to add two files from Apple’s sample code—

Reachability.h and Reachability.m. Let’s move forward to some code now, shall we?

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 215

Setting Up Instance Variables in
OfflineMailerAppDelegate.h
In OfflineMailerAppDelegate.h, you have some instance variables, properties, and

instance methods to add. Make sure your code looks like Figure 7-2.

Figure 7-2. This is what OfflineMailerAppDelegate’s header file looks like when it’s completed.

Here are some critical components to the architecture. You’ve added three instance

variables to track the network state of your application. NetworkStatus is an enum

defined by the Reachability set of classes. The enum provides you with an elegant

interface that returns values for the different network states your device may be in. An

iPod touch will never be able to speak through a carrier data network interface, but it will

be capable of obtaining a WiFi connection. You also set a Boolean here that simply

holds the state of the network. I’ll get to what exactly managedObjectModel,

managedObjectContext, and persistentStoreCoordinator are soon.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 216

Finally, you set two instance methods:

(void)reachabilityChanged:(NSNotification *)notification;
(void)updateNetworkStatus;

The reachabilityChanged: message gets invoked whenever the status of your network

changes. This method is responsible for dispatching a message to updateNetworkStatus
so that it may update your ivar (instance variables) states accordingly. Figure 7-3 shows

what both of those methods look like in OfflineMailerAppDelegate.m.

Figure 7-3. The reachabilityChanged: and updateNetworkStatus methods

NSNotification is one of my favorite classes that is available in the Foundation

framework. Notification programming is a very powerful tool to use in iPhone and Mac

development. If you’ve ever heard of the Observer pattern, then you’re already ahead of

the game in understanding what behavior this family of classes has. In the application

delegate, you registered with the NSNotificationCenter, a singleton object that exists

throughout the entire application, to invoke the selector reachabilityChanged: whenever

the kNetworkReachabilityChangedNotification is triggered. That notification name is

defined in Reachability.m.

Ultimately what happens is that every time the network state changes, you invoke

updateNetworkStatus. This method will set the network state accordingly. Later

whenever you want to know whether you have access to the network, you simply query

the application delegate with the following code:

if (appDelegate.hasNetworkConnection) {
 // We have network connectivity!
} else {
 // We lack network connectivity!
}

Simple, huh? I told you this would be easier than you originally thought it would be.

Later, you’ll also see how I include a visual representation of a light bulb that imitates the

current state of the network. The light bulb will glow a vibrant yellow when you have

access. It will dim whenever the network state changes on the fly. I’ll show you how that

is done later as well.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 217

When the application finishes launching, you do a few other things in

applicationDidFinishLaunching: to set up your app. Let’s take a look at what the code

in applicationDidFinishLaunching: looks like; see Figure 7-4.

Figure 7-4. OfflineMailerAppDelegate.m’s applicationDidFinishLaunching: method

Initializing the UIApplication Delegate
OfflineMailerAppDelegate conforms to the UIApplicationDelegate protocol. As such, it

receives the applicationDidFinishLaunching: notification once an application has

launched and initializes. Delegates implement this method to typically set up the window

and its respective subviews. In addition to that, you write some code of your own, as

described next.

First, you check whether the user who’s using your application has gone into the

Settings application to set up their mail server settings. Here the user is expected to

know the hostname of their SMTP server. SMTP is the acronym for Simple Mail Transfer

Protocol, the protocol used to relay e-mail. The user needs to put in their username and

password, where applicable. If the user doesn’t put in their SMTP server, you prompt

them with a warning on the screen.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 218

To avoid being used as a spam relay, most SMTP servers will enforce user

authentication. Also, here you set up a default SMTP port. However, not every SMTP

server listens in on 25. For instance, my ISP blocks all outbound port 25 connections

that use the TCP protocol. TCP/25 is the standard protocol/port that’s defined in RFC

821 (http://www.faqs.org/rfcs/rfc821.html) for SMTP. For me to write and test this

application, I had to open my SMTP server to listen on TCP port 2500. How to do that

is unfortunately beyond the scope of this chapter. There are plenty of informative web

sites and books that detail how to do this in the server of your choice, my preference

being Postfix.

One other note I’d like to add here is that the iPhone developer community has gone

through extensive back and forth threads on whether settings should be included

directly inside your application or in the Settings application. I advocate putting Settings

that are rarely changed into the Settings app. Ones that get frequently changed such as

turning volume in your app on or off should go directly in the app itself. Craig

Hockenberry of Twitterrific fame has put up a great blog post that you can read more

about at http://furbo.org/2009/
04/30/matt-gallagher-deserves-a-medal/. I love this blog post because Craig links to

two of my other heroes, Loren Brichter of Tweetie fame and the venerable Matt

Gallagher of http://www.cocoawithlove.com fame. I highly recommend you check out

all three of these programmers—they’re super smart and inspire me every time I write

any code.

Working with Core Data
Let’s now jump into some of the cool parts of this project. In this section, you’ll jump in

and get your feet wet with Core Data. You initially should have created your application

with the “Use Core Data for storage” option, as depicted in Figure 7-5.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 219

Figure 7-5. New project template with “Use Core Data for storage” option

What this does is create several utility methods in your AppDelegate. The code for the

methods looks something like this:

/**
 applicationWillTerminate: saves changes in the application's managed object context
before the application terminates.
 */
- (void)applicationWillTerminate:(UIApplication *)application {
 NSError *error;
 if (managedObjectContext != nil) {
 if ([managedObjectContexthasChanges] && ![managedObjectContextsave:&error]) {
 // Handle error.
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 exit(-1); // Fail
 }
 }
}

/**
 Returns the managed object context for the application.
 If the context doesn't already exist, it is created and bound to the persistent store
coordinator for the application.
 */
- (NSManagedObjectContext *)managedObjectContext {

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 220

if (managedObjectContext != nil) {
returnmanagedObjectContext;
 }

NSPersistentStoreCoordinator *coordinator = [selfpersistentStoreCoordinator];
if (coordinator != nil) {
managedObjectContext = [[NSManagedObjectContextalloc] init];
 [managedObjectContextsetPersistentStoreCoordinator: coordinator];
 }
returnmanagedObjectContext;
}

/**
 Returns the managed object model for the application.
 If the model doesn't already exist, it is created by merging all of the models found in
the application bundle.
 */
- (NSManagedObjectModel *)managedObjectModel {

 if (managedObjectModel != nil) {
 returnmanagedObjectModel;
 }
 managedObjectModel = [[NSManagedObjectModelmergedModelFromBundles:nil] retain];
 returnmanagedObjectModel;
}

/**
 Returns the persistent store coordinator for the application.
 If the coordinator doesn't already exist, it is created and the application's store
added to it.
 */
- (NSPersistentStoreCoordinator *)persistentStoreCoordinator {

 if (persistentStoreCoordinator != nil) {
 returnpersistentStoreCoordinator;
 }

 NSURL *storeUrl = [NSURLfileURLWithPath: [[selfapplicationDocumentsDirectory]
stringByAppendingPathComponent: @"offlinemailer.sqlite"]];

 NSError *error;
 persistentStoreCoordinator = [[NSPersistentStoreCoordinatoralloc]
initWithManagedObjectModel: [selfmanagedObjectModel]];
 if
(![persistentStoreCoordinatoraddPersistentStoreWithType:NSSQLiteStoreTypeconfiguration:n
ilURL:storeUrl options:nilerror:&error]) {
 // Handle error
 }

 returnpersistentStoreCoordinator;
}

You might be thinking there is a great deal of new stuff here. And you’re right—if you’ve

never built a Mac application with the Core Data stack before, there is quite a bit of new

API code being thrown at you here. Although the complexity of what Core Data achieves

underneath the hood is massive, understanding the API isn’t all that tedious.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 221

Understanding the Core Data Stack
Let’s chat a few about the relevant Core Data stack objects here including the managed

object model (MOM), managed object context (MOC), and the persistent store

coordinator. Although one chapter, let alone a few paragraphs, cannot explore all of

Core Data, I plan on taking you on a quick tour of the technology to help you understand

what exactly Core Data is and how you can use it. There’s an abundance of information

on the Internet, including the ADC, which covers Core Data in detail. If you’re interested

in learning more about the topic after you’ve read this chapter, I highly recommend

searching for Bill Dudney’s and Marcus Zarra’s work on Core Data. Both of these

developers are highly regarded in the Mac and iPhone communities. I’ve had the

pleasure of learning how to write my first iPhone application sitting in Bill Dudney’s class

over at Pragmatic Studios.

Ultimately these objects work in a hierarchy that is responsible for retrieving data from

persistent storage, modifying the data, ensuring integrity, and finally presenting it to the

application in a requested context. Core Data also gives the fascinating capability of

working very aggressively to cache objects whenever it can. This works really well

when you’re working with a large data set. Regarding the persistent storage, Core Data

is capable of using a SQLite back end, memory, or binary. For our purposes, we’ll

use a SQLite back end, which is evident in the persistentStorageCoordinator
accessor method.

The persistentStorageCoordinator speaks to a persistent object store underneath the

hood. Don’t worry about the persistent object store, though, because you won’t be

accessing it directly here. The persistent storage coordinator will take care of that for

you. All you have to know is that the persistent storage coordinator communicates with

the managed object model to help you understand what the data looks like that it is

asked to delegate to the persistent object store (POS).

The MOM contains information to your model classes, which I’ll cover shortly. The

object you will interact with mostly is the MOC. You ask the MOC to grab your model

objects for you. You manipulate your objects through it including insertions and

deletions. You also eventually ask the managed object context to save your data. Once

that happens, the managed object context shoots all the information it needs to down

the stack that composes Core Data. Reference the previous code to see how that stack

is built and communicates with each other.

I can’t express how condensed the overview of Core Data is here. It doesn’t do this

framework justice. There are books written on the topic alone, so make sure you do your

Googling if you want to learn more.

Adding Three20
While I’m here, you should also go ahead and get your project set up with the Three20

library in addition to the SystemConfiguration framework. Joe Hewitt has posted

awesome instructions on how to add Three20 to a project. You will need to have Git

available (downloadable from http://code.google.com/p/

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 222

git-osx-installer/) if you want to clone the Three20 repo. You’re also more than

welcome to just follow along in the code I’ve already provided. Here’s what you need to

do in order to install it in your own projects:

1. Clone the three20 Git repository: git clone

git://github.com/joehewitt/three20.git. Make sure you store the

repository in a permanent place because Xcode will need to reference

the files every time you compile your project.

2. Locate the Three20.xcodeproj file under three20/src. Drag

Three20.xcodeproj, and drop it onto the root of your Xcode project’s

Groups & Files pane. A dialog box will appear. Make sure “Copy items”

is deselected and that Reference Type is set to Relative to Project. Then

click Add.

3. Link the Three20 static library to your project. Click the

Three20.xcodeproj item that has just been added to the sidebar. In the

details pane, you will see a single item: libThree20.a. Select the check

box on the far right of that item (Figure 7-6).

Figure 7-6. libThree20.a is added as a target to your application. Take note of the check box that’s enabled
underneath the target symbol in the top right.

4. Add Three20 as a dependency of your project, so Xcode compiles it

whenever you compile your project. Expand the Targets section of the

sidebar, and double-click your application’s target. On the General tab,

you will see a Direct Dependencies section. Click the + button, select

Three20, and click Add Target (see Figure 7-7).

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 223

Figure 7-7. Three20 is a direct dependency to the application.

5. Add the bundle of images and strings to your app. Locate

Three20.bundle under three20/src, and drag and drop it into your

project. A dialog box will appear. Make sure Create Folder References is

selected, “Copy items” is deselected, and Reference Type is set to

Relative to Project. Then click Add.

6. Add the CoreAnimation framework to your project. Right-click the

Frameworks group in your project (or equivalent), and select Add ➤

Existing Frameworks. Then locate QuartzCore.framework, and add it to

the project.

7. Finally, tell your project where to find the Three20 headers. Open your

project settings, and go to the Build tab. Look for Header Search Paths,

and double-click it. Add the relative path from your project’s directory to

the three20/src directory.

8. While you are in Project Settings, go to Other Linker Flags under the

Linker section, and add -ObjC and -all_load to the list of flags.

9. You’re ready to go. Just #import "Three20/Three20.h" anywhere you

want to use Three20 classes in your project.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 224

I have made the most current source of Three20 available with the sample code

provided for this chapter. However, by the time you read this chapter, it’s possible that

new features and bug fixes have been submitted. I highly encourage you to visit the

site’s home page on GitHub and check it out.

Journeying Through the User Interface
Enough with installing libraries. Let’s get back into code! If you recall in my musings

before, once settings are properly added to the Settings of the application, you will bring

up the initial screen of your application. AccountViewController.h and

AccountViewController.m are responsible for this, as shown in Figure 7-8.

Figure 7-8. The target device has at least Figure 7-9. The application does not have network
 one form of network connectivity. connectivity and is thus considered offline.

The light bulb is glowing yellow because this screenshot was taken while my simulator

had access to the Internet. Should you shut off the Internet while the app is running, it

would look like Figure 7-9.

The code for making that happen is trivial. Since you want to update the user interface

for the UIViewController whenever the network status is changed, you create a

superclass called OfflineViewController. The source for OfflineViewController is

available in its respective classes, OfflineViewController.h and

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 225

OfflineViewController.m. The most important methods to take heed of are the

following:

// Implement viewDidLoad to do additional setup after loading the view.
- (void)viewDidLoad {
 [super viewDidLoad];

 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(reachabilityChanged:)
 name:@"kNetworkReachabilityChangedNotification"
 object:nil];

 [[Reachability sharedReachability] setHostName:[[DataManager sharedManager]
hostName];
 [self updateNetworkStatus];
}

// for subclasses to implement
- (void)reachabilityChanged:(NSNotification *)note
{}

// for subclasses to implement
- (void)updateNetworkStatus
{}

Every UIViewController that subclasses OfflineViewController should implement

these methods. They will be invoked every time the network status changes. The

respective code in the AccountViewController class is implemented like the following:

- (void)updateNetworkStatus
{
 NSLog(@"Network Status Has Been Changed");
 currentNetworkStatus = [[Reachability sharedReachability] remoteHostStatus];
 [lightBulbView setImage:[self lightBulb]];

 if (currentNetworkStatus == ReachableViaWiFiNetwork || currentNetworkStatus ==
ReachableViaCarrierDataNetwork) {
 // Check the offline queue since we're on the network.
 NSInteger queueCount = [[DataManager sharedDataManager]
numberOfMessagesInQueue];
 if (queueCount) {
 [[DataManager sharedDataManager] flushQueue];
 }
 }
}

- (UIImage *)lightBulb
{
 return (currentNetworkStatus == NotReachable)
 ? [UIImage imageNamed:@"light_bulb_off.png"]
 : [UIImage imageNamed:@"light_bulb_on.png"];
}

There is a reference to a class in the previous code that I have not yet discussed by the

name of DataManager. For now, all you need to know is that DataManager is the class

that’s responsible for proxying all the communication to the database and network.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 226

Whenever the network state changes, NSNotificationCenter fires off a message to

everyone observing the kNetworkReachabilityChangedNotification notification.

Remember that both the application delegate and any class that subclasses

OfflineViewController will be an observer. Here all you do is simply swap images when

the network’s state changes. I set up an ivar with a coinciding property named

lightBulbView. lightBulbView is an instance of UIImageView that you can access

anywhere throughout the instance of AccountViewController. When the network state

changes, you invoke the following:

[lightBulbView setImage:[self lightBulb]];

Again, it’s far from rocket science. And the purpose of this chapter is not to teach UI

design. In fact, I’ve intentionally left the UI here as cookie-cutter as possible so that you

can concentrate on code. That, and the real secret is I make a better ballerina than a

designer. I have no business touching software such as Photoshop or Illustrator;

however, there are plenty of hungry graphic designers out there if you’re in a similar

position. I also use sites such as http://www.istockphoto.com and

http://www.smashingmagazine.com extensively in order to pick up visually stimulating

icons and graphics.

Just to quickly go over what’s happening on the screen here, you have a few key

elements. On the UIToolbar on the bottom left, you have a compose message button in

addition to the aforementioned network connectivity light bulb icon. The UITableView
consists of two key players: Offline Queue and Sent Mail. These entities will also display

a visual indicator for the number of items available in either the offline cache or the

number of messages sent over the network. Since you haven’t written the first message

yet, you do not display a count. You will find this very similar to Apple’s Mail.app
behavior. Finally, the title simply consists of the username I use for my SMTP server

followed by the SMTP server’s hostname.

Managing Top-Level Data with DataManager
When building this demo, I needed a convenient class that would handle the

management of delivering messages. The class would also contain utility methods that

would assist view controllers in knowing how many messages are in the offline queue

and how many have been sent over the wire.

Before diving into the DataManager class, I should make it a point that some folks are

strongly opinionated about solving the common problem of putting top-level data into a

singleton the way I’m doing so here. The pros and cons for doing so are outside the

context of this chapter. For this chapter’s purposes, however, this suits the architecture

well. I will leave you with another great article by Matt Gallagher that further explores this

topic: http://cocoawithlove.com/2008/11/singletons-appdelegates-and-top-
level.html. Now, let’s dip into both DataManager.h and DataManager.m.

The first requirement of the DataManager class was that it should be instantiated only

once. That’s where the singleton design pattern comes in and saves the day. (See the

Cocoa Fundamentals Guide at http://developer.apple.com for more information about

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 227

singletons.) Finally, the class could also be accessed by multiple threads, so you need

to make sure you set up locks where applicable. Let’s get to some code to see the nitty-

gritty details of how the DataManager class is created:

static DataManager *dataMgr = nil;

First you declare a static instance of the DataManager class named dataMgr. If you recall

your basic C programming, you declare this static variable so that the dataMgr variable is

not available to other source files. It is locally scoped to the DataManager class.

// Initialize the singleton instance if needed and return
+(DataManager *)sharedDataManager
{
 @synchronized(self) { // thread safe init
 if (dataMgr == nil) {
 [[self alloc] init];
 }
 }
 return dataMgr;
}

+ (id)allocWithZone:(NSZone *)zone
{
 @synchronized(self) {
 if (dataMgr == nil) {
 dataMgr = [super allocWithZone:zone];
 return dataMgr; // assignment and return on first allocation
 }
 }
 return nil; //on subsequent allocation attempts return nil
}

The sharedDataManager method is how you access the singleton object. Any class that

wants an instance of DataManager will simply call [DataManager sharedDataManager].

They will not need to worry about multiple copies or data corruption when accessing the

DataManager from multiple threads. The @synchronized() directive sets a lock on a

section of code so that a single thread can execute the rest of the instructions in the

block without worrying about other threads accessing the data. Any secondary threads

trying to access the method will be blocked until the thread accessing the block of code

exits the last statement in the @synchronized() block. The self argument passed to the

@synchronized() directive is the actual mutex that the lock is set on. If you’re familiar

with POSIX threads, better known as pthreads, you should be familiar with mutexes. You

will find the rest of the auxiliary code for a singleton class available in the source code.

- (void)loadDefaultSettings
{
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];

 self.hostName = [defaults objectForKey:@"hostName"];
 self.smtpPort = [defaults objectForKey:@"smtpPort"];
 self.smtpPassword = [defaults objectForKey:@"smtpPassword"];
 self.smtpUserName = [defaults objectForKey:@"smtpUserName"];

 if (self.smtpPort == nil) {
 self.smtpPort = [NSNumber numberWithInt:DEFAULT_SMTP_PORT];

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 228

 }
}

The DataManager is also responsible for loading the default settings from

NSUserDefaults. This is only ever a read-only operation for our purposes. If you pay

close attention, you might notice something similar between the NSUserDefaults class

and the DataManager. That’s right, the NSUserDefaults class is also a singleton class.

Notice the choice of selector name for accessing an instance of the class?

Now that you have established the bare bones of the DataManager, let’s take a subtle

fork in the road before digging into the meat of the class. For the rest of the code to

make sense, you need to take a look at Three20 classes that communicate with the

DataManager.

Diving into Three20 and TTMessageController
Let’s get back to the AccountViewController.m file. This is the initial screen where user

interaction happens. When building this demo, I wanted to ensure the experience for

you would be smooth and simple. That’s something that even the most advanced power

users can appreciate. In doing so, I needed a clean interface that would allow me to

compose my e-mail messages. I knew that at the time of this writing, the SDK did not

allow me to access the Mail application without also leaving my application. This is when

I ran into Joe Hewitt’s exemplary open source library named Three20.

Three20 is a set of Objective-C classes that you can reuse in your applications to either

enhance its UI, add a photo picker that looks like Apple’s, style your labels like you

would with CSS, and do many other outstanding things. It’s simply brilliant how trivial it

was for me to build a compose e-mail view with the powerful functionality I required for

this demo, including the capability to add multiple recipients, search my Address Book,

add a subject, and be able to write text that I can easily scroll through. To do that, you’ll

use the Three20 class TTMessageController. Here is how you instantiate it when the

composeMessage: selector is invoked:

- (void)composeMessage:(id)sender
{
 id recipient = [[[TTTableField alloc] initWithText:nil url:TT_NULL_URL]
autorelease];
 TTMessageController* controller = [[TTMessageController alloc]
 initWithRecipients:[NSArray arrayWithObject:recipient]];
 self.messageController = controller;
 messageController.delegate = self;
 messageController.dataSource = dataSource;

 [controller release];

 [self presentModalViewController:messageController animated:YES];
}

Initially, you do not want any recipients to populate your recipient row. So, you use an

instance of TTTableField as a “dummy” placeholder. The TTMessageController needs to

be initialized with the initWithRecipients: methods, and here is where you provide the

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 229

recipient object. You assign the instance of AccountViewController as a delegate, and

you assign a dataSource of TTAddressBookDataSource. TTAddressBookDataSource is not

part of the Three20 library. It is a class I’ve put together so that you can take advantage

of pulling contacts from your Address Book. That adds a more realistic touch to the

application. TTAddressBookDataSource resides in Classes ➤ Data Management ➤
TTAddressBookDataSource.h/TTAddressBookDataSource.m. One of my other favorite tricks

is to use Cmd+D. There you can type in any file or symbol name you’re searching for.

The most interesting method in TTAddressBookDataSource looks like the following:

+ (TTAddressBookDataSource *)abDataSourceForSearch:(BOOL)forSearch
{
 ABAddressBookRef addressBook = ABAddressBookCreate();
 NSArray *peopleArray = (NSArray *)ABAddressBookCopyArrayOfAllPeople(addressBook);
 NSMutableArray *allContacts = [NSMutableArray array];

 for (id person in peopleArray) {
 if ([(NSString *)ABRecordCopyValue(person, kABPersonOrganizationProperty)
autorelease]) continue;
 NSMutableString *firstName = [(NSString *)ABRecordCopyValue(person,
kABPersonFirstNameProperty) autorelease];
 NSMutableString *lastName = [(NSString *)ABRecordCopyValue(person,
kABPersonLastNameProperty) autorelease];
 ABMutableMultiValueRef multiValueEmail = ABRecordCopyValue(person,
kABPersonEmailProperty);

 NSString *email = nil;
 if (ABMultiValueGetCount(multiValueEmail) > 0) {
 email = [(NSString *)ABMultiValueCopyValueAtIndex(multiValueEmail, 0)
autorelease];
 } else {
 continue;
 }

 Contact *aContact = [[[Contact alloc] initWithFirstName:firstName
lastName:lastName email:email] autorelease];
 [allContacts addObject:aContact];
 }

 TTAddressBookDataSource *dataSource = [[[TTAddressBookDataSource alloc]
initWithNames:allContacts] autorelease];

 if (!forSearch) {
 [dataSource rebuildItems];
 }

 CFRelease(addressBook);

 return dataSource;
}

What this code does is creates a reference to the Address Book and its respective

database. You then return an array of all the people in your Address Book using the

following code:

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 230

NSArray *peopleArray = (NSArray*)ABAddressBookCopyArrayOfAllPeople(addressBook);

NOTE: Organizations you add to your Address Book will not be returned by this invocation!
That might be clear by the verbose name of the function; however, it was something that had
me stumped when I first started writing code with the AddressBook framework. The rest of the
code should be rather self-explanatory. There is excellent documentation on programming with
the AddressBook framework in the ADC. Feel free to use this as a reference in order to
incorporate the AddressBook framework in your application.

Composing and Sending Messages
So up to this point, you have seen the building blocks to put this application together.

However, I haven’t just yet touched the novel parts of dealing with offline operations.

This is where we start chewing bubble gum and taking names.

When you’re composing your message, you’ll notice that the controller has a built-in

search that’s very similar to Apple’s. You get that great-looking dim overlay on top of

your Address Book that sits between the keyboard and the search bar, as shown in

Figure 7-10.

Figure 7-10. A rudimentary search user interface that resembles the search used by Apple in the Contacts
application

You’ll also see an attractive user interface when you enter a contact name in the To field

that has a match in the Address Book, as Figure 7-11 reflects.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 231

Figure 7-11. The result of all of the contacts that contain the substring “s”as it is entered into the search field
above

Let’s give this a spin. Assuming you have a properly configured SMTP server set up and

input into Settings, go ahead and add some dummy contacts into your simulator’s

Contacts if you’re running in a simulator environment. If you’re on your actual device,

you should be all set there. After composing a message, your screen should look like

Figure 7-12.

Figure 7-12. The user interface after one message has been successfully sent over the network

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 232

Neat, huh? There’s the visual indicator, showing a very Apple Mail-esque blue-pill tablet

with the amount of messages sent. Here’s what gets fired off after you hit Send:

- (void)composeController:(TTMessageController*)controller
didSendFields:(NSArray*)fields
{
 NSMutableArray *contacts = [[NSMutableArray alloc] initWithCapacity:0];
 TTMessageRecipientField *toField = [fields objectAtIndex:0];

 for (id recipient in toField.recipients) {
 Contact *aContact = [dataSource contactWithName:recipient];
 [contacts addObject:aContact];
 }
 [[DataManager sharedDataManager] sendEmailWithFields:fields forContacts:contacts];

 [contacts release];
}

Here you use Three20’s class TTMessageRecipientField in order to establish the list of

destination users you’ll be messaging. You then go through each individual recipient and

instantiate a Contact object.

NOTE: The Contact class is a trivial resource that I wrote as a wrapper of key/value pairs.
The source code is available in Classes/Model/Contact.h/m. On the other hand, the
Message class is a special class in that it is coupled with Core Data. I’ll discuss that shortly.

When you’re ready, you use DataManager as a pass-through proxy to figure out what to

do with the message:

- (void)sendEmailWithFields:(NSArray *)fields forContacts:(NSArray *)contacts
{
 // message subject
 TTMessageSubjectField *subjField = [fields objectAtIndex:1];

 // email body
 TTMessageTextField *bodyField = [fields objectAtIndex:2];

 // recipients
 NSMutableString *recipients = [[NSMutableString alloc] init];
 NSInteger cnt = [contacts count];
 for (int i=0; i < cnt; ++i) {
 NSString *anEmail = nil;
 if (i == cnt - 1)
 anEmail = [NSString stringWithFormat:@"%@", (Contact *)[[contacts
objectAtIndex:i] email]];
 else
 anEmail = [NSString stringWithFormat:@"%@,", (Contact *)[[contacts
objectAtIndex:i] email]];

 [recipients appendString:anEmail];
 }

 NSDictionary *data = [NSDictionary dictionaryWithObjectsAndKeys:recipients,
@"recipients", subjField.text, @"subject", bodyField.text, @"body", nil];

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 233

 if (self.appDelegate.hasNetworkConnection) {
 NSInvocationOperation *onlineEmailOperation = [[NSInvocationOperation alloc]
initWithTarget:self selector:@selector(emailInvocationOperation:) object:data];
 [networkOperationQueue addOperation:onlineEmailOperation];
 [onlineEmailOperation release];
 } else {

 //
 // get the next id for messageid, its unique identifier.
 //
 NSString *newId = [selfgetNewMessageID];

 //
 // Create a new Message object and add it to the Managed Object Context.
 //
 Message *message = (Message
*)[NSEntityDescriptioninsertNewObjectForEntityForName:@"Message"inManagedObjectContext:m
anagedObjectContext];

 // configure the message object using KVC, a common pattern
 // when using Core Data.
 [message setValue:recipients forKey:@"to"];
 [message setValue:bodyField.text forKey:@"body"];
 [message setValue:subjField.text forKey:@"subject"];
 [message setValue:newId forKey:@"messageID"];
 [message setValue:[NSNumbernumberWithInt:0] forKey:@"dateSent"];
 [message setValue:[NSNumbernumberWithBool:NO] forKey:@"status"];

 NSLog(@"newId in queue: %@", newId);

 NSError *error = nil;
 if (![managedObjectContextsave:&error]) {
 // handle the error
 } else {
 [[NSNotificationCenterdefaultCenter]
postNotificationName:kMessageQueuedSuccessfullyobject:nil];
 }
 }
}

The interesting code here is where you refer to your application delegate (appDelegate)

and ask it what state of your network is in:

If (self.appDelegate.hasNetworkConnection) {
 // do network stuff.
} else {
 // cache stuff.
}

Look familiar? That’s because it is. And again, it’s not rocket science—it’s trivial at best.

The idea here is to demonstrate how some of the most advanced applications use

simple implementation interfaces such as this to operate.

Now in this particular example you were online, so what you do here is instantiate an

NSInvocationOperation object with the following:

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 234

NSInvocationOperation *onlineEmailOperation = [[NSInvocationOperation alloc]
initWithTarget:self selector:@selector(emailInvocationOperation:) object:data];

We then add it to our networkOperationQueue:

[networkOperationQueue addOperation:onlineEmailOperation];

NSInvocationOperation is one of my favorite classes that is available in the Foundation

framework. It simply takes one of the selectors and encapsulates the instructions within

to run in a threaded environment. And although it’s not a true concurrent operation, you

have the full benefit of freeing your GUI thread from getting locked because of the work

that’s going on in the invocation. This gives the user greater feedback in the application

and allows them to either continue writing more messages or view their queue.

Our emailInvocationOperation: method looks like the following:

- (void)emailInvocationOperation:(id)data
{
 NSAutoreleasePool *aPool = [[NSAutoreleasePool alloc] init];
 NSString *body = [data objectForKey:@"body"];
 NSString *recipients = [data objectForKey:@"recipients"];
 NSString *subject = [data objectForKey:@"subject"];
 NSString *messageID = [data objectForKey:@"messageID"];

 if (!messageID) {
 // No message created yet? Let's create it.
 NSNumber *currentTime = [self currentTimeStamp];
 messageID = [self getNewMessageID];

 Message *message = (Message *)[NSEntityDescription
insertNewObjectForEntityForName:@"Message" inManagedObjectContext:managedObjectContext];

 [message setValue:recipients forKey:@"to"];
 [message setValue:body forKey:@"body"];
 [message setValue:subject forKey:@"subject"];
 [message setValue:messageID forKey:@"messageID"];
 [message setValue:currentTime forKey:@"dateSent"];

 NSLog(@"messageID in emailInvocationOperation: %@", messageID);

 NSError *error = nil;
 if (![managedObjectContext save:&error]) {
 // handle the error
 }
 }

 SKPSMTPMessage *smtpMsg = [[SKPSMTPMessage alloc] init];
 smtpMsg.fromEmail = @"you@example.com ";
 smtpMsg.toEmail = recipients;
 smtpMsg.relayHost = self.hostName;
 smtpMsg.requiresAuth = YES;
 smtpMsg.login = @"self.login ";
 smtpMsg.pass = @"self.password";
 smtpMsg.subject = subject;
 smtpMsg.wantsSecure = YES;

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 235

 //
 //Upon a successful callback of messageSent:
 // we want to update this particular row from the database.
 //
 smtpMsg.messageID = messageID;

 smtpMsg.delegate = self;
 NSDictionary *plainText =
 [NSDictionary
dictionaryWithObjectsAndKeys:@"text/plain",kSKPSMTPPartContentTypeKey,

body,kSKPSMTPPartMessageKey,@"8bit",kSKPSMTPPartContentTransferEncodingKey,nil];

 smtpMsg.parts = [NSArray arrayWithObjects:plainText,nil];
 [smtpMsg send];

 [smtpMsg release];
 [aPool drain];
}

What’s happening here is the emailInvocationOperation: selector is being invoked on a

secondary thread. As such, I like to create an additional instance of NSAutoreleasePool
since I’ll be allocating some objects in this thread and I’d like the autorelease pool to get

drained when execution finishes here.

When you invoked emailInvocationOperation, you passed along a dictionary of data

about the message.

This metadata gives you the opportunity to do your record keeping to know what

message you’re currently dealing with. Speaking of the Message class, you’re probably

asking yourself where this class came from and why I haven’t spoken about it yet. If

you’re asking that, you’re asking the right questions. Let’s jump into your first glance at

an implementation of NSManagedObject.

Creating the Core Data Model
When you created the project as a Core Data–enabled project, Xcode’s template magic

should have created a file called OfflineMailer.xcdatamodel. Double-click it, and you

should get something that looks like Figure 7-13.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 236

Figure 7-13. The simple Core Data model

If there were a few more entities (entities in Core Data are better known as models), I

would have something that resembles an ERD diagram. In this figure, I have created a

Message entity by clicking the + button in the upper-left corner of Figure 7-13. The

Message entity has several attributes (better known as properties). Basically, try to think

of entities as eventually being turned into tables in a SQLite implementation with

attributes acting as columns.

As depicted in Figure 7-13, you can see I added several attributes to the Message entity.

These properties include a body, dateSent, messageID, status, subject, and a “to” field.

Note that each one has a correlated type. Also, notice I disabled the Optional field in all

of the attributes, as depicted in Figure 7-14.

Figure 7-14. The Attribute pane of the Core Data model indicating that the attribute “body” is not optional.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 237

There’s a great deal of information I can get into about what’s going on here, but you

must remain focused on the task at hand. I haven’t even scratched the surface of Core

Data by not mentioning relationships and their relevance between entities. It makes me

want to jump into another several chapters dedicated to Core Data, but that’s a luxury I

cannot afford.

What’s most important is for me to show you how to create your Model class after

creating this entity. What you should do next is click the Message entity, then press

Cmd+N, and select Managed Object Class from the menu, as depicted in Figure 7-15.

Figure 7-15. Selecting Managed Object Class as an available template

You’ll notice a new Message class has been created for you. All this work has been done

with very little effort. There shouldn’t be anything new to you in the generated class

except for Message’s base class (NSManagedObject) and perhaps the @dynamic directive.

All the @dynamic directive does is promise the compiler (or Core Data in this case) that

you’ll supply the implementation for the properties at compile time. NSManagedObject is

simply a generic class that Core Data molds as a model for you.

Now you’ll dive back into emailInvocationOperation:. You’re about to inhale the fresh

aura that Core Data emits. In the next several lines, you’re going to avoid the hassle of

going back and forth between objects and SQL. That is a process that can grow tedious

and error-prone. This is handled much more elegantly with the advent of Core Data.

First, you’re checking to see whether you have a messageID. The messageID helps you

identify a unique message in a pool of messages. If you have experience with

databases, this is a fairly similar approach to using an autoincrement field. The code for

getNewMessageID looks like the following:

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 238

- (NSString *)getNewMessageID
{
 NSString *newId = @"1";

 NSEntityDescription *entity =
 [NSEntityDescription entityForName:@"Message"
inManagedObjectContext:managedObjectContext];
 NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];
 [fetchRequest setEntity:entity];
 NSString *predicateString = @"messageID = max(messageID)";
 NSPredicate *predicate = [NSPredicate predicateWithFormat:predicateString];
 [fetchRequest setPredicate:predicate];

 NSError *error = nil;
 NSArray *allMessages = [managedObjectContext executeFetchRequest:fetchRequest
error:&error];
 if ([allMessages count] > 0) {
 Message *message = [allMessages objectAtIndex:0];
 NSString *messageID = [message valueForKey:@"messageID"];
 NSNumberFormatter *numberFormatter =
 [[[NSNumberFormatter alloc] init] autorelease];
 NSNumber *num = [numberFormatter numberFromString:messageID];
 newId = [NSString stringWithFormat:@"%d", [num intValue] +1];
 }

 [fetchRequest release];

 return newId;
}

This method contains some new classes, so let’s go over them briefly. First you use

NSEntityDescription to describe what objects you’re particularly interested in working

with. In this case, it’s the only Core Data class you have, so you set the entity name

Message. The NSFetchRequest is where you retrieve our data from storage. It’s also where

you can set a predicate using NSPredicate.

If you’re a database person, it might help you to think of the NSPredicate class as a

wrapper around the SQL keyword WHERE. It is used to look for a specific domain of

objects that are available from a much larger pool of objects. I highly recommend

looking up the documentation for this class and getting better acquainted with it.

It’s fairly simple to use; as you can see in the predicateString variable, you set a format

of messageID = max(messageID). What this does is retrieve one instance of message (if

you have one) with the highest messageID value. You simply take that value, increment it

by one, and return it. This will give the caller the capability to set the value for the next

Message object.

After you fetch the new ID, you useNSEntityDescription to inject a new Message object

into your managed object context. The entity you’re creating is named in

insertNewObjectForEntityForName:. You then use a common pattern of Key Value

Coding (KVC) to properly initialize your message object. Finally, you save the state of the

context. Note that I’m not doing any real error handling here besides leaving a template

for where you would normally do it. If this were a production application, you most

certainly would want to fill in this code here in the event of an error.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 239

Hacking SKPSMTPMessage to Support Threaded
Message Sending
You’ve gotten this far, but you have yet to see the workhorse of what’s responsible for

handling the gamut of paramount details behind the scenes. The SKPSMTPMessage is an

open source library that is a simple but well-working wrapper that sends messages via

SMTP on the iPhone and Mac.

CAUTION: Applications that tend to replicate Apple’s functionality such as Mail.app stand
the risk of being rejected from the App Store. We use this simply as a demo for the book.

The instantiation of the SKPSMTPMessage class is straightforward. You should be able to

understand its usage by reading the source in DataManager.m. I made some minor

modifications to SKPSMTPMessage in order to make it work with this app. First, I do the

following:

smtpMsg.messageID = messageID;

I added the following instance variable to SKPSMTPMessage.h:

NSString *messageID;

The reason for this is simple—after the message delegate receives a messageSent: or

messageFailed: callback that is defined in the SKPSMTPMessageDelegate, I need to know

which message it is. You could have an infinite amount of messages queued (although

your ISP might end up knocking on your door if you should ever try to reach this

egregious quantity…), and whenever one fails or succeeds, you need to update your

database.

Setting Up the NSRunLoop on SKPSMTPMessage
There’s one more change you have to make to SKPSMTPMessage that isn’t as

straightforward to understand without a brief explanation, so I’ll talk about that here. The

SKPSMTPMessage class includes a multitude of sources such as NSOutputStream,

NSInputStream, and NSTimer that work just fine in a main thread but require slightly more

configuration in a secondary thread. The reason for that is most of the time there is an

object that works behind the scenes that manages these input sources for you without

you even knowing. It all happens automagically if you create your application with one of

Xcode’s sample templates and an instance of UIApplication is created for you. That

magic object is known as NSRunLoop.

When you manage secondary threads with input sources and instances of NSTimer, you

need to create your own NSRunLoop, and you need to run it periodically to check for

events. NSTimers that get fired off without a properly configured NSRunLoop will never

work. So, in order to make this work, I simply created an NSRunLoop that runs in a loop

and processes the input sources until the thread exits:

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 240

while (self.runningLoop) {
 [rl runUntilDate:[NSDate dateWithTimeIntervalSinceNow:1]];

}

That should satisfy SKPSMTPMessage in a secondary thread. Let’s do something slightly

more interesting now. Let’s fire up the application, let’s turn off the WiFi/Internet, and

let’s send a message with no connectivity. In fact, write two or three messages and see

what happens. Your screen should look something like Figure 7-16.

Figure 7-16. An offline state of the application, with new messages incrementing the Offline Queue count

NOTE: The blue-like pill is a nifty user interface element you see available in many
applications such as Apple’s Mail.app and many third-party apps in the App Store. To see
how it’s built, take a look at Classes/View/Elements/
BlueBadge.h/m. The source is freely available by developer Leon Ho on
http://github.com/leonho/iphone-libs/tree/master.

Don’t you just love it when you’re interacting with an application that doesn’t crash or

give you an obtrusive UIAlertView complaining that there isn’t any Internet available?

It’s a beautiful and simple concept. Let’s see what’s going on to make this happen:

if (self.appDelegate.hasNetworkConnection) {
 NSInvocationOperation *onlineEmailOperation = [[NSInvocationOperation alloc]
initWithTarget:self selector:@selector(emailInvocationOperation:) object:data];
 [networkOperationQueue addOperation:onlineEmailOperation];
 [onlineEmailOperation release];
 } else {

//

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 241

 // get the next id for messageid, its unique identifier.
 //
 NSString *newId = [self getNewMessageID];

 //
 // Create a new Message object and add it to the Managed Object Context.
 //
 Message *message = (Message *)[NSEntityDescription
insertNewObjectForEntityForName:@"Message" inManagedObjectContext:managedObjectContext];

 // configure the message object using KVC, a common pattern
 // when using Core Data.
 [message setValue:recipients forKey:@"to"];
 [message setValue:bodyField.text forKey:@"body"];
 [message setValue:subjField.text forKey:@"subject"];
 [message setValue:newId forKey:@"messageID"];
 [message setValue:[NSNumber numberWithInt:0] forKey:@"dateSent"];
 [message setValue:[NSNumber numberWithBool:NO] forKey:@"status"];

 NSLog(@"newId in queue: %@", newId);

 NSError *error = nil;
 if (![managedObjectContext save:&error]) {
 // handle the error
 } else {
 [[NSNotificationCenter defaultCenter]
postNotificationName:kMessageQueuedSuccessfully object:nil];
 }
 }

Some of this code should look familiar. That’s because it is—I already went over it. The

only difference here is you’ve failed a network connection check for which the

SystemConfiguration framework has so kindly been programmed to report.

The most important thing to note here is to set the status of [NSNumber
numberWithBool:NO] in the Message object. If you recall, status is the attribute you set as

a BOOL in the entity. This status will help you determine whether a message has already

been sent to its recipients. With a BOOL of NO, the message is still in the queue.

Switching the Bits Back to Online Mode
So, you have a bunch of messages queued now. That’s fine and dandy, but it does you

no use unless your recipients ultimately receive the message you’ve crafted to them

during your flight to the sunny beaches of Antigua where you’re going to build your

ultimate iPhone app from a beach-based villa, right? OK, OK, we can dream.

So, let’s get back into reality here and reenable the Internet connection, or whatever

means you’re using to connect. After reconnecting, you should see something like

Figure 7-17.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 242

Figure 7-17. Returning online after spending some time in an offline state

You guessed it—you have a notification that is listening and waiting for a change in the

network state. Upon reconnecting, you see whether there are any messages in the

offline queue and take the appropriate action:

- (void)updateNetworkStatus
{
 currentNetworkStatus = [[Reachability sharedReachability] remoteHostStatus];
 [lightBulbView setImage:[self lightBulb]];

 if (currentNetworkStatus == ReachableViaWiFiNetwork || currentNetworkStatus ==
ReachableViaCarrierDataNetwork) {
 // Check the offline queue since we're on the network.
 NSInteger queueCount = [[DataManager sharedDataManager]
numberOfMessagesInQueue];
 if (queueCount) {
 [[DataManager sharedDataManager] flushQueue];
 }
 }
}

and finally flushQueue:

- (void)flushQueue
{
 NSLog(@"Flushing queue");

 if (self.appDelegate.hasNetworkConnection) {
 NSArray *messages = [self getResultSetFromQueue];
 for (Message *message in messages) {
 NSMutableDictionary *data = [NSMutableDictionary new];
 [data setValue:[message valueForKey:@"body"] forKey:@"body"];
 [data setValue:[message valueForKey:@"to"] forKey:@"recipients"];

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 243

 [data setValue:[message valueForKey:@"messageID"] forKey:@"messageID"];
 [data setValue:[message valueForKey:@"subject"] forKey:@"subject"];

 NSInvocationOperation *onlineEmailOperation = [[NSInvocationOperation alloc]
initWithTarget:self selector:@selector(emailInvocationOperation:) object:data];
 [networkOperationQueue addOperation:onlineEmailOperation];

 [onlineEmailOperation release];
 [data release];
 }
 }
}

Here you query for all the objects that have not yet been sent (remember the status
attribute I spoke about earlier?) using the -getResultSetFromQueue method:

- (NSArray *)getResultSetFromQueue
{
 NSFetchRequest *request = [[NSFetchRequest alloc] init];
 NSEntityDescription *entity = [NSEntityDescription entityForName:@"Message"
inManagedObjectContext:managedObjectContext];
 [request setEntity:entity];

 NSPredicate *pred = [NSPredicate predicateWithFormat:@"status == NO"];
 [request setPredicate:pred];

 NSError *error = nil;
 NSArray *fetchResults = [managedObjectContext executeFetchRequest:request
error:&error];
 if (fetchResults == nil) {
 // handle error here.
 }

 [request release];

 return fetchResults;
}

-getResultSetFromQueue should start looking awfully familiar to you if it hasn’t already.

What you’re doing in here is very similar to what you saw before in the getNewMessageID
method. This time, you’re simply setting the predicate to look like the following:

 NSPredicate *pred = [NSPredicate predicateWithFormat:@"status == NO"];

For each individual message, you wrap the data into an NSInvocationOperation selector

and add it to the networkOperationQueue.

NOTE: Some MTAs might raise a suspicious flag if you queue a high number of messages and
send them all simultaneously without any throttling. I’ve left a comment here where you could
set a throttle in order to avoid hearing from the BOFH that’s administrating the recipient’s or
sender’s mail server.

Finally, once a message is sent, the messageSent: delegate is invoked on the main

thread:

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 244

- (void)messageSent:(SKPSMTPMessage *)smtpMessage
{
 NSLog(@"delegate - message sent for message id: %@", [smtpMessage messageID]);

 NSString *messageID = [smtpMessage messageID];

 // retrieve Message based on ID
 Message *message = [self getMessageWithID:messageID];

 // Update status to sent and current timestamp.
 NSNumber *currentTime = [self currentTimeStamp];

 [message setValue:currentTime forKey:@"dateSent"];
 [message setValue:[NSNumber numberWithBool:YES] forKey:@"status"];

 NSError *error = nil;

 if (![managedObjectContext save:&error]) {
 // handle error;
 }

 // post a notification to alert the client that the message has been sent.
 [[NSNotificationCenter defaultCenter] postNotificationName:kMessageSentSuccessfully
object:nil];
}

Here you simply update the timestamp of the message you’re sending once it has been

successfully sent. You also make sure to set the status to a Boolean YES so you do not

resend it in the future. After that is done, you remember to save the

managedObjectContext. Finally, you post a notification so that the

AccountViewController can invoke reloadData on its tableView and your badges can

redraw themselves with the correct counts.

You also now have the capability of persisting messages queued and sent whenever

your application is shut down. At your convenience, you can log back in and reread

what you’ve already sent and what you have in the queue (if you’re offline).

Summary
You worked with several fascinating technologies in this chapter, most of them open

source with very relaxed licenses. I was able to build this demo without having to write

too much of my own code. I’m a huge advocate of not reinventing what smarter people

have already done better than I could. In this chapter, you worked with Three20,

SKPSMTP, and various Cocoa Touch technologies.

You had the opportunity to work with Core Data and understand the basic objects that

are used frequently with the entire Core Data stack. You also took a look at how you can

leverage Core Data in order to make your application usable even when you’re entirely

dependent on Internet connectivity to do anything useful. Adding even subtle offline

caching can dramatically increase the sales of your next iPhone app, and your users will

appreciate it.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 245

I hope this introduction to persisting data using Core Data and working with offline

applications has inspired you to build the next killer application that I can use while I’m

riding on the train, flying on a plane, or commuting home on the bus through the Lincoln

tunnel. To keep up with my updates, you may follow me on Twitter via @stevefink or

subscribe to my blog where I’ll be holding tech-related musings (it’s currently under

construction at the time of this writing) via http://www.stevefink.net.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20 246

247

Florian Pflug
Peter Honeder

Company: Florian is working self-employed as a software developer.
Peter is co-owner of “Honeder Lacher Wallner Softwareentwicklung OEG”,
a software development company.

Location: Vienna, Austria

Former Life As a Developer:

Florian:

C and C++ programming, mostly on Unix-based systems.

Network programming, using C, C++ or one of various scripting
languages like e.g. Ruby.

Database Design and Development, mostly using PostgreSQL
(www.postgresql.org)

GUI programming using the Qt toolkit (www.qtsoftware.com)

Peter:

Multi-platform software development (mostly Windows, Mac,
Linux)

Network Programming

GUI programming with Qt

Developing Plug-Ins for Adobe InDesign

248

Life as an iPhone Develooper: Our Applications:

iTap

iTap Volume

What's in This Chapter:

And introduction to iTap and the main challenges we faced

A discussion of WiFi networking on the iPhone, focused on the
requirements of iTap and similar applications

Auto-discovery of other WiFi devices. We look at both Bonjour
and the proprietary solution of iTap.

A few programming tricks, most notably using notifications to
achieve better modularization

Key Technologies:

BSD networking API

Core Foundation networking API

Multicasting

Notifications

249 249249

 Chapter

How iTap Tackles the
Challenges of Networking
Both of us have always been intrigued by developing applications for mobile devices. In

the past, we looked at all kinds of mobile devices, but they either lacked major hardware

or software features or did not provide convenient means of selling the application. All

the rumors regarding Apple months before actually presenting the App Store and the

new iPhone 3G to the public made us curious.

Our first step into iPhone development was to apply for the iPhone development

program on Apple’s web site. Although our initial steps were taken at the end of May

2008, our application was not accepted until the second week of August. The ability to

test programs live on our first iPhone increased our motivation to start development.

iTap was born around the end of August 2008 when the first initial prototype was

finished and showed a lot of potential. What brought us to develop iTap was a simple

requirement of our own: the ability to control our computer while using it to watch

movies on a beamer without getting up from the couch.

Completely separately, we thought about developing such an application every time we

watched movies with our girlfriends or other friends. Without some kind of wireless

keyboard and mouse, having to get up each time you want to turn the volume up or

down gets annoying over time. Being software developers, instead of simply buying

such devices, we asked ourselves, “Couldn’t we somehow use the iPhone for that?”

Equipped with an advanced touchscreen, WiFi networking, and a rich API, the iPhone

turned out to be the optimal device for this endeavor.

As you can see in Figure 8-1, the main GUI of iTap is very simple. After loading, it shows

instructions for the available gestures that fade out after some seconds to clean the

screen. The image on the right is a bit more complicated; it shows the iPhone keyboard

and some extra buttons such as cursor keys, the ESC key, and multimedia controls.

8

CHAPTER 8: How iTap Tackles the Challenges of Networking 250

Figure 8-1. iTap’s main GUI

Meet iTap and iTap Receiver
You can very likely already imagine how iTap works, but in Figure 8-2 we will provide an

overview of each of the components involved.

Figure 8-2. Overview of the connection between iTap and the iTap receiver

CHAPTER 8: How iTap Tackles the Challenges of Networking 251

iTap
Effectively, iTap turns any iPhone or iPod touch into a wireless keyboard and touchpad.

The iTap iPhone application translates the user’s intended pointer movements or

keypresses into network packets sent over the WiFi to a computer.

Since neither Mac OS X nor Windows support WiFi-based input devices, the iTap

receiver application needs to run on the computer to be controlled. The receiver

receives the network packets sent by iTap and synthesizes appropriate mouse

movement or keypress events.

This way, users can remote control any application on their computers, most notably

media players of all sorts and presentations in Keynote or PowerPoint.

Our iTap receiver is a multiplatform application that runs on Mac OS X as well as

Windows.

iTap Receiver
The iTap receiver provides very few interactive features. It mainly allows you to see a

running iTap on an iPhone or iPod touch within a list of visible devices. Using the Pair

button, you grant a device permission to control the computer (see Figures 8-3 and 8-4.)

Figure 8-3. Receiver main screen with one device Figure 8-4. Windows version of the iTap receiver
paired (Mac)

Later we added other features to the receiver. Most notably, we display the IP addresses

of the host where the receiver runs and provide better methods for synthesizing keys on

Mac OS 10.4, Mac 10.5, and Windows.

Communication between the iTap receiver and iTap on the device is done through UDP

packets. Many problems and difficulties that severely impact the complexity of support

issues arise because of different and unpredictable network configurations.

You can see that this discussion of features and usability requirements leads to

problems especially in the area of networking. We will discuss our solutions to these

problems in the later parts of this chapter in more detail.

CHAPTER 8: How iTap Tackles the Challenges of Networking 252

How the Idea for iTap Emerged and Evolved
Our first iTap prototype showed potential but had many drawbacks. Most notable were

the lack of keyboard controls and a network implementation that simply used

broadcasts to send all the data. We concentrated on networking and usability for the

first version, and thus we added keyboard controls with the first update in the App Store

some weeks after the initial release.

Many discussions regarding which features to include in the first version spread out

during a break from our day jobs on holiday on a Spanish island during September. A

temperature of nearly constant 23 degrees Celsius (73 Fahrenheit) and the possibility of

going to the beach any time combined with working on the terrace created many new

ideas and sped up the development of iTap drastically. We can only recommend

creating first versions of iPhone projects during a holiday without business distractions.

One of the most important things we focused on was usability. It is a key to success for

nearly all iPhone applications. Looking back to the beginning of our development clearly

shows that much of the positive feedback from our users came from the fact that we

concentrated on usability.

The Main Challenges
Compared to other projects we did in our pasts of long-time software development, iTap

was a small-scale project. We’ll summarize the main challenges because, even for a

small project like iTap, it is never wise to underestimate the quality requirements that are

necessary to be successful.

No Physical Buttons on the iPhone
iPhones have really small screens. Even for applications like iTap, the screen is not very

large if stuffed with all kinds of controls for settings, mouse buttons, special functions

like scrolling, and so on. The solution was simply to make use of as many gestures as

possible to provide the user with a good set of features while having the screen as

empty as possible.

It may not sound obvious, but an empty screen is exactly what we tried to achieve with

iTap. Only a completely empty screen would provide the user with the possibility of

moving the mouse cursor while looking at his TV screen (and not at his iPhone) and not

accidentally hitting buttons at the same time. We designed iTap to be as easy to use as

possible in the dark and without looking at it.

Not only did this decision influence how the GUI was presented to the user, but we even

restricted the application to not automatically rotate its GUI when the iPhone is rotated.

It was quite logical to us that without looking at your device you would not want it to

rotate automatically.

Our feature set for the mouse controls always included at least left button and right

button presses as well as moving the mouse and two-finger scrolling. Right button clicks

CHAPTER 8: How iTap Tackles the Challenges of Networking 253

are triggered using a two-finger touch. We quickly developed a small state machine for

the first version that included all of these features, but thorough testing on all platforms

showed that tuning thresholds for the different inputs was difficult but necessary to

provide good user experience.

To facilitate multitouch gestures, we created a user interface that showed a mock-up of

an actual notebook touchpad. In addition to left/right button clicks and two-finger

scrolling gestures, we implemented a three-finger downward swipe gesture to activate

the virtual keyboard.

To provide users with the choice of how to create mouse events, we allow iTap to

display a single button or two buttons (left and right). This is not our default configuration

for iTap, but Windows users especially sometimes prefer seeing buttons instead of

working only with gestures.

Third-Party Applications Cannot Use USB or Bluetooth
Both USB and Bluetooth are interfaces largely inaccessible from third-party

applications. Especially for communicating with other computers in a network, the only

option is WiFi.

Although iPhone OS 3.0 supports peer-to-peer networking via Bluetooth, this support is

mostly limited to networking between iPhones (and iPod touches). The only exception is

the tethering option in iPhone OS 3.0, which establishes a network connection between

the iPhone and a computer to allow the computer to share the iPhone’s Internet

connection. Since this network connection is very similar to a WiFi connection from an

application’s point of view, iTap is able to use it to communicate with the computer.

iPhone applications, however, cannot exercise any control over this connection, and

hence the burden of setting it is solely on the user. Given these constraints, WiFi

remains the most important means of communication between the iPhone and a

computer.

Getting iTap to work on any WiFi network that users may have at home or at work

quickly emerged as our main concern. Our first prototypes simply sent all data using

broadcasts, which is an easy way to do prototyping. UDP broadcasts provided a way to

test all the usability features of iTap without spending a single hour on configuration or

complicated autodiscovery.

Broadcasts on the other side quickly emerged to be a big problem for practical use on

wireless networks. One of the main reasons is that access points can and will delay

sending broadcasts because they try to send them blocked and with less priority. This

results in strange behavior when sending mouse movement events; specifically, they

start to lag, and this delay makes such an application nearly unusable.

An interesting observation was that controlling a computer connected by a cable to the

access point where the iPhone was connected through WiFi resulted in very low network

delays even when sending everything as broadcasts. But controlling, for example, a

CHAPTER 8: How iTap Tackles the Challenges of Networking 254

notebook computer connected to the same WiFi network instead of by cable

immediately had severe latency problems in the order of 20ms to 100ms delays.

The solution to this problem was simple; just perform autodiscovery using broadcasts or

multicasts and then communicate directly between iTap and its receiver application.

Directly in this context means sending data directly to the other peer’s IP address.

Supporting Both Mac and PC
iTap needs the iTap receiver to handle data sent from the device through the network

and to synthesize input. The nature of supporting more than one platform creates a

whole new set of challenges that can be tracked down differently.

One approach is of course to develop two separate applications and to optimize the

visual appearance and installation process of each application for the respective

platform. This essentially doubles the effort required to develop and maintain the

application compared to supporting only a single platform.

Because we have developed many multiplatform applications in the past, it was no

question that we were going to use all the tools, libraries, and possibilities available to

create applications looking, installing, and behaving like native ones but also share as

many lines of code as possible between the different platforms.

The following were the requirements of the iTap receiver with respect to multiplatform

development:

Easy to install

Simple to use (and no alien platform look and feel)

Multiplatform (at least Mac OS X and Windows)

These requirements set strict limitations on which technologies to use and how to

implement a version to be released. Simplicity during the install process already limits

how it will be distributed through our web site and how it appears to the user. The Mac

OS X version comes as a DMG image where you can simply install the iTap receiver by

dragging it to your Applications folder. To enhance user convenience, the Applications

folder is already prelinked to the default view of the DMG file.

The Windows version is deployed with an installer where we used the Windows Installer

XML (WIX) toolkit (http://wix.sourceforge.net/) originally developed by Microsoft to

create a proper Windows Installer .msi file. The WIX toolkit additionally provides features

to add firewall exceptions to the Windows integrated firewall, which proved to be a very

important feature to reduce the number and complexity of support requests.

Qt was our choice for the GUI development. It provides all the features required for well-

designed applications that are simple to roll out. We also both already had experience

developing applications based on Qt from past business software projects that came

in handy.

CHAPTER 8: How iTap Tackles the Challenges of Networking 255

Multiplatform requirements also set limits on how to develop the networking protocol to

run on OS X, Windows, and the iPhone itself and on how to implement all kinds of GUIs

for OS X and Windows. Implementing all networking code in C++ classes using BSD

sockets, which are available on all three platforms, solved many of our problems.

User-Friendliness Demands Autodiscovery of Computers
and Devices
The usability of both iTap and the iTap receiver is very important. In the optimal case,

they simply find each other; you pair your device with the receiver and are immediately

able to control your computer.

iTap is supposed to work out of the box, without any hassles involved in network

configuration and especially without entering any kind of IP address. Because we cannot

predict which kind of router or access point a user connects to, you can imagine that

there were many problems to solve. Not only do home networks provide enough

difficulties for proper network communication, there are also university campus

networks and company networks with severe restrictions that are even more difficult to

solve. You can read our solutions to many of these problems in the following sections of

this chapter.

WiFi Networking on the iPhone from a
Programmer’s Perspective
Before we cover the details of the different networking APIs on iPhone OS, we’ll first

give you the big picture (see Figure 8-5).

Figure 8-5. Relationship of the different networking APIs on iPhone OS

With iPhone OS having inherited its networking stack from BSD Unix (as did Mac OS X),

it comes as no surprise that the principal networking API of iPhone OS is just the same

socket-based API initially invented for Unix.

Since Unix predates the widespread adoption of graphical user interfaces and therefore

event-driven programming, BSD sockets don’t integrate well with such applications.

iPhone OS therefore offers two flavors of wrappers around raw BSD sockets. The first,

CFSocket, is part of the C-based Core Foundation framework. The second is its

CHAPTER 8: How iTap Tackles the Challenges of Networking 256

Objective-C counterpart called NSSocketPort, which is part of the Objective-C-based

Foundation framework.

On top of these, both the Core Foundation framework and the Foundation framework

offer additional support for network programming. For example, both frameworks make

it quite easy both to browse services offered via Bonjour and to publish your own

services.

About the Sample Code
Most of the code presented throughout this chapter is in the form of small utility

functions. All these functions are assumed to be part of the class NetworkDiscovery, a

complete implementation of which is included in the sample code posted on this book’s

home page. Figures 8-6 and 8-7 show the sample application in action, first detecting

an instance of the iPhone Simulator on the same network and then running without WiFi

connectivity.

Figure 8-6. The sample application detecting itself Figure 8-7. The sample application warning about
and an iPhone Simulator on the network WiFi unavailability

Over the course of the next two sections, we’ll show how to gradually develop this class

until it has the ability to send and receive datagrams via a WiFi network, to enumerate

the available network interfaces, and to send multicast datagrams to all other devices on

the network. To keep the printed code samples concise, we’ve stripped them of all error

handling and all comments. Where possible, each piece of sample code resembles

exactly one of the functions provided by this class, though some longer functions are

discussed in more easily digestible pieces.

Listing 8-1 shows the declaration for this class. We’ve chosen to reproduce the full

declaration here, even though the purpose of the individual instance variables will

CHAPTER 8: How iTap Tackles the Challenges of Networking 257

become clear only over the course of the next sections. This avoids having to update the

declaration with each bit of sample code separately.

Listing 8-1. The Declaration of NetworkDiscovery Without Its Member and Class Functions

@interface NetworkDiscovery : NSObject {
 NSMutableDictionary* peers;

 int socket_bsd;
 CFSocketRef socket_cf;
 CFRunLoopSourceRef socket_runloopsource;

 NSTimer* timer;
 BOOL previousHelloResult;
}

While compiling the sample code for this chapter, we had to balance our urge to include

as much of iTap’s networking code with the need to keep the code as concise and easy

to understand as possible. The biggest deviation between the actual code found in iTap

and the sample code presented here is in the choice of language. The networking

subsystem of iTap is mostly written in C++ since that allowed us to share more code

between iTap and the receiver application. The sample code, on the other hand, uses

Objective-C exclusively to reach an audience as broad as possible.

Introducing Sockets
Let’s now take a closer look at the socket-based networking API iPhone OS inherited

from Unix. Following the gist of Unix, this API models a network connection as a file-like

entity that can be read from and written to just like any regular file. A file handle referring

to a network connection instead of an on-disk file is called a socket. Sockets come in

different flavors, depending on their underlying network protocol. The flavor is

determined at creation time by the socket’s address family, socket type, and protocol.

Address Family
The address family distinguishes between protocols with different address formats. We’ll

always be using AF_INET, which selects the Internet Protocol (IP) with the usual 32-bit IP

addresses. To use IPv6, you’d use AF_INET6 instead.

Socket Type
The socket type selects the kind of network connection represented by the socket.

SOCK_STREAM requests a connection resembling a stream of single bytes, received in the

same order they are sent. SOCK_DGRAM, on the other hand, requests a datagram-oriented

connection that transmits datagrams as a whole, guaranteeing neither that they will be

received at all nor in which order. For sockets using the Internet address family

(AF_INET), SOCK_STREAM will trigger the use of TCP for the connection, while SOCK_DGRAM
sockets will use UDP.

CHAPTER 8: How iTap Tackles the Challenges of Networking 258

Protocol
In theory, this parameter allows you to choose the precise protocol used to transfer the

data over the network. However, for AF_INET-type sockets, your only choice is between

TCP and UDP, which is already determined by the socket type. You should therefore

just use zero to let iPhone OS select the appropriate protocol.

Creating a Socket
Sockets are created with the function socket() taking the address family, the socket

type, and the specific protocol as parameters. Here is how you’d create a datagram

socket using the Internet Protocol address family:

socket_bsd = socket(AF_INET, SOCK_DGRAM, 0);

Local and Remote Addresses
Resembling a network connection, a socket usually has two associated addresses. The

local address is the address sent data originates from, while the remote address is the

address to which it is sent. Conversely, a socket receives only that data sent from the

remote address to its local address. Each address family has an associated datatype

used to represent addresses of this family. For IP addresses, that datatype is struct
sockaddr_in. If you were using IPv6, the correct datatype would be struct
sockaddr_in6. A generic socket address structure, called struct sockaddr, is used in

declarations of functions meant to be used with different address families. When calling

such functions, you nevertheless have to pass a pointer to a specific kind of socket

address structure. In our case, that will be struct sockaddr_in. To help such functions

find the actual kind of socket address passed, all of the socket address structures store

their length in the first field and their address family in the second (called sin_len and

sin_family for struct sockaddr_in). As the names imply, the former contains the size of

the structure (sizeof(struct sockaddr_in) in our case), while the latter contains the

address family the address belongs to (AF_INET in our case).

Since sockets represent single network connections, not whole devices, the IP address

alone is only one part of a socket’s address. The other, the port, ranges from 1 to 65535.

Although an IP socket address structure contains a field sin_addr, for historic reasons

this field does not directly contain the IP address. Instead, it contains a structure called

in_addr with a single field called s_addr that contains the actual address as a 32-bit

integer value.

To access the port, you don’t have to jump through such hoops. The field sin_port
directly contains the port as a 16-bit short integer value. Listing 8-2 contains the

implementation of a helper function that fills out a struct sockaddr_in.

CHAPTER 8: How iTap Tackles the Challenges of Networking 259

CAUTION: Both sin_addr and sin_port always store their values in network byte order
independent from the byte ordering used otherwise. To convert between this and the iPhone’s
native byte ordering, use one of these four functions: htonl(), host-to-network for 32-bit
integers; ntohl(), network-to-host for 32-bit integer; htons(), host-to-network for 16-bit
short integer; or ntohs(), network-to-host for 16-bit short integers.

Listing 8-2. Filling Out a struct sockaddr_in

+ (void)sockaddr_in:(struct sockaddr_in*)sa_in setAddress:(in_addr_t)addr ➥
port:(in_port_t)port {
sa_in->sin_len = sizeof(struct sockaddr_in);
 sa_in->sin_family = AF_INET;
 sa_in->sin_addr.s_addr = htonl(addr);
 sa_in->sin_port = htons(port);
}

BYTE ORDERING

On most CPUs on the market today, memory is addressed in quantities of bytes; each position in memory
contains exactly one byte of data. For data types needing more than one byte of memory, like port
numbers (which range from 1 to 65535 and hence need two bytes of storage) or IP addresses (which need
four bytes), different storage layouts of the individual bytes are possible. The bytes constituting an integer
are commonly sorted by powers of two corresponding to the bits they contain.

Ordering the bytes by ascending powers of two is called little endian for “little end first.” 0xABCD would be
stored as 0xCD followed by 0xAB, for example, since the byte 0xCD represents the powers 20 to 27, while
0xAB represents the powers 28 to 216.

Ordering the bytes by descending powers of two is called big endian for “big end first.” 0xABCD would
now be stored as 0xAB followed by 0xCD. Since this byte ordering is often used when transferring data
over a network, it is also commonly referred to as network byte ordering.

Note that these ordering issues also apply to IP addresses since they can be interpreted as integers. To get
the integer representation of an IP address, simply write the individual octets out in binary (or hexadecimal)
and join them together to obtain one large number. For example, the address 1.2.3.255 corresponds to the
integer 0x010203FF. This address would therefore be stored as 0xFF 0x03 0x02 0x01 on little endian
systems and as 0x01 0x02 0x03 0xFF on big endian ones.

CHAPTER 8: How iTap Tackles the Challenges of Networking 260

Setting a Socket’s Local and Remote Address
The BSD networking API offers two functions to set a socket’s local and remote

address:

bind() sets the local address. To receive data directed to any one of

the active network interfaces, use the special value INADDR_ANY instead

of an actual IP address. If your application does not require a specific

port, you may put zero in the field sin_port. iPhone OS will assign a

random port to your application in this case. Listing 8-3 gives a

practical example.

connect() sets the remote address. In the case of a stream-oriented

socket, a connection will immediately be opened, and the returned

value will indicate whether establishing that connection was

successful. For datagram-oriented sockets, calling this function will

not trigger any network traffic. The returned value indicates only

whether the address was valid. For datagram-oriented sockets,

connect() is probably useful if you use the sockets to communicate

with only a single peer.

Listing 8-3. Setting Up a Socket to Receive Datagrams Sent to Port 1234 on an Arbitrary Interface

struct sockaddr_in addr;
[NetworkDiscovery sockaddr_in:&addr setAddress:INADDR_ANY port:1234];
bind(socket_bsd, (const struct sockaddr*)&addr, sizeof(addr));

Sending and Receiving Data
With a socket being just a special kind of file handle, you can use the usual read() and

write() system calls to send and receive data. For datagram-oriented connections, you

might want to use sendto() and recvfrom() instead. sendto() allows you to specify a

different remote address for each datagram you send, while a plain write() will always

use the address set by connect(). recvfrom() serves a similar purpose, returning the

source address of a datagram alongside its content. Figure 8-8 shows the two most

common uses of the API for datagram-oriented sockets. We use sendto() in Listing 8-4

to implement sendData:toAddress:port:, which sends an NSData instance over the

network.

NOTE: You can still use sendto() and recvfrom() even if you set a remote address using
connect(). The use of recvfrom() is limited in this case, however, since such a datagram
socket will drop all datagrams arriving from sources other than its remote address.

CHAPTER 8: How iTap Tackles the Challenges of Networking 261

Figure 8-8. Communication with multiple peers vs. communications with a single peer

Listing 8-4. Using sendto to Transmit the Contents of an NSData Instance

- (BOOL)sendData:(NSData*)data toAddress:(in_addr_t)a port:(in_port_t)p{
 struct sockaddr_in addr;
 [NetworkDiscovery sockaddr_in:&addr setAddress:a port:p];

 return (sendto(socket_bsd, data.bytes, data.length, 0, ➥
(const struct sockaddr*)&addr, sizeof(addr)) == data.length);
}

Raw BSD Sockets vs. User Experience
Achieving the best possible user experience is an important factor in the success of an

iPhone application. One key factor of good user experience is to never take the control

out of the user’s hands, which turns out to be hard to achieve using raw BSD sockets

alone. Let’s look into the problem before we turn to the next section for a solution.

Studying the read() and write() system calls in more detail quickly brings up the

question of how these system calls react if the desired requests cannot be carried out

immediately. For example, consider what happens if your application calls read() (or

recvfrom(), for that matter) but no datagram is currently available to be delivered to

your application.

By default, read() will wait for data to arrive before returning to your application. During

this waiting period, your application will not be reacting to any user input; after all, from

its point of view, it’s still executing the read() system call and has never returned to the

run loop.

Alternatively, you can set the O_NONBLOCK flag of the socket via the F_SETFL command of

the fcntl() system call. This will cause system calls to return the error EAGAIN instead of

waiting. However, you will still get no indication of when the next piece of data will arrive

(in case of a read) or when the network will be ready to send more data (in case of a

write). Your only option is to repeatedly retry the operation until you either give up or it

eventually succeeds.

CHAPTER 8: How iTap Tackles the Challenges of Networking 262

Neither option fits the event-driven programming model of iPhone applications very well.

For sending datagrams, however, using sendto() (or write()) is an acceptable choice as

long as the rate of datagrams is low enough for the network interface to keep up.

Using CFSocket to React to Networking Events
As you saw earlier, raw BSD sockets do not fit very well into the event-driven world of

iPhone programming. Luckily, Core Foundation provides a bridge between these worlds

in the form of CFSocket.

A CFSocket object exposes its underlying BSD socket via the function

CFSocketGetNative()and can even be created from a raw BSD socket with

CFSocketCreateWithNative(). This gives you the option to either use CFSocket as a mere

adapter to integrate a raw BSD socket into your application’s run loop or instead use the

Core Foundation wrapper functions extensively and revert to the BSD API only when

absolutely necessary.

We’ve taken the first approach throughout this chapter since we will require some

functionality that is not accessible from higher layers. For your own projects, we advise

you to stick with whatever makes your code more consistent.

Reacting to Incoming Datagrams
When you create a CFSocket, you need to provide a callback function to be called

whenever this occurs:

The new data arrives and is ready to be read (kCFSocketReadCallBack).

The callback has to read the data itself, and the necessary call to

read() is guaranteed not to block your application.

The new data arrived and was read (kCFSocketDataCallBack). The data

is passed to the callback as a CFDataRef.

The socket is ready to queue more data for transmission

(kCFSocketWriteCallBack). The next write() is guaranteed not to

block your application.

A new peer establishes a connection (kCFSocketAcceptCallBack). The

socket representing the newly established connection is passed to the

callback as a pointer to a CFSocketNativeHandle. You can use

CFSocketCreateWithNative to create a CFSocket from that. This event

occurs only on stream-oriented sockets.

Trying to establish a connection to a peer (kCFSocketConnectCallBack)

ends. This event occurs as a result of trying to establish a connection

in the background using CFSocketConnectToAddress(). If an error

occurs, a pointer to an SInt32 containing the error code is passed to

the callback. This event occurs only on stream-oriented sockets.

CHAPTER 8: How iTap Tackles the Challenges of Networking 263

To aid you with accessing per-socket data structures inside your callback function,

CFSocket provides a way to pass an arbitrary pointer to your callback. You specify this

pointer via the info member of the CFSocketContext structure passed to CFSocketCreate
or CFSocketCreateWithNative. To have CFSocket track how many references it holds to

the entity pointed to by info, you need to provide pointers to a retain function and a

release function in the respective fields of CFSocketContext. For example, if info
pointed to a Core Foundation object, you might set the retain field to point to CFRetain()
and the release field to CFRelease().

In the example in Listing 8-5, we use the info field to store a reference to the Objective-

C object owning the socket. Since the socket is deleted during deallocation of the

object, we do not require Core Foundation to track its references to it and hence just set

the retain and release members to NULL.

Inside the callback shown in Listing 8-6 (which must be a plain C function), we convert

info back to an Objective-C reference and send it the message

onDatagram:fromAddress:port:.

NOTE: A lot of basic Core Foundation data types are bridged toll-free to their Objective-C
counterparts, meaning you can simply treat the Core Foundation reference as an Objective-C
object reference. We use this in the code samples to convert between CFDataRef and its
Objective-C counterpart NSData.

Listing 8-5. Creating a CFSocket from a Raw BSD Socket to Handle Incoming Datagrams

CFSocketContext ctx;
ctx.version = 0;
ctx.info = self;
ctx.retain = NULL;
ctx.release = NULL;
ctx.copyDescription = NULL;
socket_cf = CFSocketCreateWithNative(
 kCFAllocatorDefault,
 socket_bsd,
 kCFSocketDataCallBack,
 NetworkDiscovery_CFSocketCallBack,
&ctx
);

Listing 8-6. The Callback Function

static void NetworkDiscovery_CFSocketCallBack(

 CFSocketRef,
 CFSocketCallBackType callbackType,
 CFDataRef addr,
 const void *data,
 void *info
) {
 const struct sockaddr_in* src=(const struct sockaddr_in*)CFDataGetBytePtr(addr);
 if (callbackType == kCFSocketDataCallBack)
 [(NetworkDiscovery*)info onDatagram:(NSData*)data
 fromAddress:ntohl(src->sin_addr.s_addr)

CHAPTER 8: How iTap Tackles the Challenges of Networking 264

 port:ntohs(src->sin_port)];
}

Querying the Network Configuration
Being able to just send and transmit data over the network might not be sufficient for

your application, and it certainly isn’t for iTap, as you will see when we go into the

details of autodiscovery. We’ll therefore look into how to use the BSD networking API to

query the network configuration. For the sake of brevity, we’ll concentrate on two

specific tasks: getting the names of all the available network interfaces and querying

their flags.

Introducing IO Controls
At first glance, functions to query or modify the network configuration seem to be

suspiciously absent from the BSD networking API. They all deal with either setting up or

shutting down sockets (like socket(), bind(), close(), …) or data transmission (like

read(), write(), sendto(), …).

However, once again, the key is to take the Unix inheritance of this API into account. On

Unix, a file handle is not only something you can read from and write to but also

something you can send certain requests to. These requests are called IO controls and

are invoked with the function ioctl(). And they turn out to be the key to getting at the

iPhone’s network configuration.

As you can see in Listing 8-7, the IO control mechanism is designed to be quite generic

because the number and types of a request’s parameters depend on the request in

question. We will now look into how to call a specific request: the one that lists all

available network interfaces.

Listing 8-7. The ioctl()Function

int ioctl(int socket_bsd, unsigned long request, ...);

Querying the Names of the Available Interfaces Using the
SIOCGIFCONF IO Control
SIOCGIFCONF requires a single parameter that must be a pointer to a structure fittingly

called ifconf. Take a look at Listing 8-8 to see how this structure is defined in the

header net/if.h.

Listing 8-8. The Definition of struct ifconf

struct ifconf {
 int ifc_len; /* size of associated buffer */
 union {
 caddr_t ifcu_buf;
 struct ifreq *ifcu_req;
 } ifc_ifcu;
};

CHAPTER 8: How iTap Tackles the Challenges of Networking 265

#define ifc_buf ifc_ifcu.ifcu_buf /* buffer address */
#define ifc_req ifc_ifcu.ifcu_req /* array of structures returned */

As a rule, IO controls do not allocate memory, not even to store the results they return.

Similarly, they do not take ownership of pointers you pass to them. This is the reason for

the rather strange definition of struct ifconf. When making the SIOCGIFCONF request,

you need to provide the IO control with a memory area to store its results in. To set that

buffer, you use the union member ifc_ifu.ifcu_buf or its abbreviation ifc_buf. After

the IO control returns, this buffer will contain one struct ifreq struct after the other,

one for each network interface on the device. You can access the first of these

structures with ifc_ifcu.ifcu_req or its abbreviation ifc_req.

Unfortunately, accessing the subsequent structure is a bit more involved. Let’s first

show you part of the definition of struct ifreq, reproduced in Listing 8-9.

Listing 8-9. The Definition of struct ifreq

struct ifreq {
 char ifr_name[IFNAMSIZ]; /* if name, e.g. "en0" */
 union {
 struct sockaddr ifru_addr;
 /* Other union members not relevant for SIOCGIFCONF */
 } ifr_ifru;
#define ifr_addr ifr_ifru.ifru_addr /* address */
/* Other abbreviations for union members not relevant for SIOCGIFCONF */

If our earlier discussion of address families and their associated socket address

structure is still fresh on your mind, you will find this ifru_addr member highly

suspicious. After all, struct sockaddr itself isn’t capable of holding any socket’s

address; it’s merely used as a placeholder for one of the actual address structures like

struct sockaddr_in.

Consequently, none of the structures returned by SIOCGIFCONF actually contains a struct
sockaddr. Instead, each structure contains a socket address structure matching the

address family of the interface described by this structure. Since the length of these

socket address structures differs, so does the length of the ifreq structures containing

them. To be able to scan the ifreq structures placed into the buffer we provided, we’ll

need to find a way to compute their lengths, preferably without hard-coding knowledge

about each and every socket address structure into our application.

Luckily, looking back at the discussion of address families not only uncovers the

problem but also provides a solution. Remember that every address structure, no matter

what address family it belongs to, stores its own length in its first field. Even the

placeholder struct sockaddr declares that field, naming it sa_len.

You can therefore use this field to move from one structure in the buffer to the next; you

simply need to move the pointer by IFNAMSIZ bytes plus whatever the sa_len field says

is the size of the address structure. Using the second field common to every address

structure, the address family, you can skip interfaces that do not have an Internet

address assigned.

To actually invoke the SIOCGIFCONF IO control, you have to make two additional

decisions. Since you’ll need to provide a buffer to the IO control to store the result in,

CHAPTER 8: How iTap Tackles the Challenges of Networking 266

you’ll have to decide how much memory to allocate. Unfortunately, you cannot query

the size required to store the information for all available interface. You therefore need to

call the IO control repeatedly with increasing buffer sizes until the empty space left at

the end of the buffer is larger than any additional struct ifreq might be. Only then can

you be sure not to miss an interface because of a too small buffer.

You’ll also need a socket to perform the IO control on. In our sample code, we simply

create a dummy datagram socket without any addresses assigned, but you could also

reuse an existing datagram socket.

The sample code for this chapter found on the home page contains the function

interfaceNamesAddresses, which returns an NSArray of NSDictionarys each containing

the name and address of one network interface.

Querying an Interface’s Flags Using the SIOCGIFFLAGS IO Control
Just having a name and an associated address is not all there is to an interface.

Networking interfaces might have additional capabilities and be in different states (for

example, active or inactive). These properties are represented by the interface flags

listed in Table 7-1, queried with the help of SIOCGIFFLAGS, as shown in Listing 8-10.

Table 7-1. Interface Flags

Name Description

IFF_UP The interface is active.

IFF_LOOPBACK The interface does not represent a real network. Usually this

has the address 127.0.0.1.

IFF_POINTOPOINT The interface represents a remote connection to a single peer.

Such interfaces are used to connect to the Internet via the

carrier and for VPN connections.

IFF_MULTICAST The interface allows sending datagrams to groups of hosts.

Listing 8-10. Using the SIOCGIFFLAGS to Query an Interface’s Flags

+ (short) interfaceFlags:(NSString*)interface {
 int sock = socket(AF_INET, SOCK_DGRAM, 0);

 struct ifreq req;
 [interface getCString:req.ifr_name
 maxLength:IFNAMSIZ
 encoding:NSASCIIStringEncoding];

 ioctl(sock, SIOCGIFFLAGS, &req);
 return req.ifr_flags;
}

CHAPTER 8: How iTap Tackles the Challenges of Networking 267

Other Interesting IO Controls
Table 7-2 lists other IO controls concerned with retrieving the configuration details of a

specific interface.

Table 7-2. Network-Related IO Controls

Name Description

SIOCGIFCONF Gets the list of available interfaces

SIOCGIFFLAGS Gets the flags of a specific interface

SIOCGIFADDR Gets the address of a specific interface

SIOCGIFNETMASK Gets the netmask of a specific interface

SIOCGIFBRDADDR Gets the broadcast address of a specific interface

Contacting All Devices on the Network
Usually, sockets model network connections between exactly two peers. But to discover
possible peers, you need a way to contact all devices at once, without knowing their IP

addresses in advance.

Multicasts provide a way to do just that. Additionally, to the unique IP address assigned

to every device, a device on a network may join one or more so-called multicast groups.

These groups correspond to special IP addresses in the range 224.0.0.0 to

239.255.255.255. Once joined, the device receives not only those datagrams targeted at

its own IP address but also those targeted at the group’s multicast address.

A special multicast address, 224.0.0.1 (INADDR_ALLHOSTS_GROUP), corresponds to the all-

hosts multicast group. This group includes all devices on a network segment without

requiring the device to explicitly join.

Multicasts are sent by simply passing a multicast address as the destination address to

sendto(). Without further specification, however, the iPhone will only send the multicast

datagram out on the default network interface, not on all available ones! In our

experience, this causes the multicast to not get sent to the WiFi network under some

circumstances, even though the iPhone shows the WiFi connection to be active.

To work around this, you need to manually override the network interface used for

multicasts. This can be done on a per-socket basis by modifying the IP_MULTICAST_IF
option of the socket using the setsockopt() function provided by BSD networking API,

as shown in Listing 8-11.

CHAPTER 8: How iTap Tackles the Challenges of Networking 268

Listing 8-11. Using IP_MULTICAST_IF to Override the Outgoing Network Interface Before Sending a Multicast

- (BOOL)multicastData:(NSData*)data toGroup:(in_addr_t)mcGroup ➥
port:(in_port_t)dstPort onInterfaceWithAddress:(in_addr_t)ifaceAddr {
 struct in_addr sin_addr;
 sin_addr.s_addr = htonl(ifaceAddr);
 setsockopt(socket_bsd, IPPROTO_IP, IP_MULTICAST_IF, &sin_addr, sizeof(sin_addr));

 return [self sendData:data toAddress:mcGroup port:dstPort];
}

Refer to the sample code for this chapter on the book’s home page for the function

multicastData:toGroup:port: that sends the multicast out on all available networking

interfaces by combining multicastData:toGroup:port:onInterfaceWithAddress: with

interfaceNamesAddresses.

Detecting WiFi Availability
The iPhone SDK contains the SCNetworkReachability framework to help you determine

whether a certain peer is reachable or not given the current network configuration. By

being integrated with the application’s run loop, SCNetworkReachability not only

supports one-time queries of a certain peer’s state but also lets you register a callback

function to be called whenever that state changes.

However, as powerful a tool SCNetworkReachability is for monitoring a single peer, it is

not as well suited for monitoring the general availability of a WiFi network. Essentially,

SCNetworkReachability answers questions like “Will datagrams originating from a

certain local address be able to reach a certain remote address?” Even though these can

be extended to “Will datagrams originating from any local address be able to reach a

certain remote address?” and “Is a certain local address assigned to this device at all?”

by leaving one of the addresses blank, these questions still focus on the reachability of

individual addresses.

NOTE: The reachability status is never probed for by actually sending out packets. It instead
represents a theoretical result based on the device’s routing tables and VPN configuration.
Therefore, although a negative reachability result does guarantee that datagram transmission
will fail, a positive one does not guarantee they will succeed.

We’ll therefore turn to the BSD networking API for a different approach to detecting WiFi

availability. We’ve already established how to enumerate all available network interfaces

and their assigned addresses, implemented in the function interfaceNamesAddresses.

Furthermore, we’ve shown how to query an interface’s flags by using the SIOCGIFFLAGS
IO control. The following facts allow us to judge WiFi availability by scanning for an

active, non-point-to-point network interface that supports multicasting and isn’t a

loopback interface:

The network connection to the carrier (via GRPS, EDGE, or UMTS) is

established via PPP and hence has the flag IFF_POINTOPOINT set.

CHAPTER 8: How iTap Tackles the Challenges of Networking 269

The WiFi interface always supports multicasting and hence has the

flag IFF_MULTICAST set.

The loopback interface with the address 127.0.0.1 has the flag

IFF_LOOPBACK set.

The flag IFF_UP shows whether an interface is activated or

deactivated.

Since the interfaces fulfilling these criteria are exactly the ones we’d want to send out

multicast datagrams on, we can conveniently integrate both functionalities into one

function multicastData:toGroup:port:, shown in Listing 8-12. The function returns YES if

it managed to multicast the datagram on at least one suitable interface, which is exactly

the indicator for WiFi availability we need.

Listing 8-12. Multicasting on All Suitable Interfaces and Detecting WiFi Availability

- (BOOL)multicastData:(NSData*)data toGroup:(in_addr_t)mcGroup ➥
port:(in_port_t)dstPort {
BOOL result = NO;

 short flags_on = IFF_MULTICAST | IFF_UP;
 short flags_off = IFF_POINTOPOINT | IFF_LOOPBACK

 for(NSDictionary* ifc in [NetworkDiscovery interfaceNamesAddresses]) {
 NSString* ifc_name = [iface objectForKey:@"name"];
 short ifc_flags = [NetworkDiscovery interfaceFlags:ifc_name];
 if (((ifc_flags & f_on) == flags_on) && !(ifc_flags & f_off)) {
 NSNumber* ifc_addr = (NSNumber*)[ifc objectForKey:@"address"];
 BOOL ifc_result = [self multicastData:data
 toGroup:mcGroup
 port:dstPort
 onInterfaceWithAddress:iface_addr.unsignedIntValue];
 result = result || iface_result;
 }
 }
 return result;
}

Playing by the Power Management Rules
On a portable device like the iPhone, sophisticated power management throughout the

whole operating system is an important part of the overall user experience. Since the

WiFi radio is amongst the biggest consumers of power, applications using the WiFi

extensively need to respect a few power management rules to provide the best user

experience possible.

Informing iPhone OS About Your Application’s Networking
Requirements
By default, iPhone OS won’t assume that your application depends on the availability of

a WiFi network. This has multiple consequences:

CHAPTER 8: How iTap Tackles the Challenges of Networking 270

If the iPhone is not already connected to a WiFi network at the time

your application is launched, iPhone OS will not make any effort to

establish such a connection while your application is running. This is

true even if your application tries to connect to peers that are

unreachable without an active WiFi connection.

If your application runs for longer than about 30 minutes, iPhone OS

might shut down the WiFi radio. Open connections to peers and even

active transmissions do not stop it from doing so.

If your application is of limited or no use without an active WiFi connection, you will need

to convince iPhone OS to make a bigger effort to provide one. You do that by adding

the key UIRequiresPersistentWiFi with the boolean value true to the Info.plist file of

your application.

Doing so has two effects:

If no WiFi connection exists at the time your application is launched,

iPhone OS will either connect to an available WiFi network

automatically or ask the user to choose from the list of available

networks. The user does have the ability to cancel this selection

process, though, in which case no WiFi will be available to your

application.

The WiFi radio will not be shut down while your application is running.

It will, however, be put into a power-saving mode if you cease sending

and receiving data.

However, setting this key has the potential of substantially increasing the power

consumption of the iPhone while your application is running. To alleviate this effect, it is

important to cease sending and receiving data whenever possible.

Minimizing Power Consumption While the iPhone Is Locked
Without special consideration, the currently active application will keep running while the

iPhone is locked. However, since your application is neither visible nor operable while

the device is locked, continuing to use the WiFi network during that time will drain the

battery without any benefits for the user.

If locking is imminent, UIApplication will send the message

applicationWillResignActive to its delegate. This method should do its best to prevent

any part of the application from using the WiFi network unless there is a clear advantage

of doing so even while locked.

Upon unlocking, UIApplication sends applicationDidBecomeActive to its delegate. This

is the place to reallow transmission and reception of packets.

Implementing your network protocol as a singleton class (a class with only one instance,

like for example UIApplication) makes it easy to do that. For example, the

NetworkDiscovery class discussed throughout this chapter provides two class-level

CHAPTER 8: How iTap Tackles the Challenges of Networking 271

functions called setup and shutdown, which we use in Listing 8-13 to create and destroy

the one instance of this class.

Listing 8-13. Ceasing to Transmit and Receive Datagrams While the Device Is Locked

- (void)applicationWillResignActive:(UIApplication *)application {
 [NetworkDiscovery shutdown];
}

- (void)applicationDidBecomeActive:(UIApplication *)application {
 [NetworkDiscovery setup];
}

The Networking Subsystem of iTap
We will now give you a tour through the code of one of iTap’s core components: the

networking subsystem. After reading the previous sections, you are well adept at the

inner workings of the iPhone networking APIs. Having discussed most of the core

networking-related function of iTap, we will now focus on the bigger picture. We’ll

explain some of the design decisions we faced while implementing iTap and show you

how we integrated the networking component into the rest of the application. Our code

samples will again closely follow the downloadable version of the sample code.

To use Bonjour or Not to Use Bonjour
One of the first decisions we faced while designing the networking subsystem of iTap

was whether to use Bonjour for autodiscovery or to implement our own protocol for that.

Here is what Bonjour has to offer to the programmer:

The ability to publish services—identified by a type and a name—on

connected networks

The ability to browse for services published by others

Notifications if new services are added or removed by others

The same APIs work on both Mac OS X and iPhone OS

This functionality is available via both an Objective-C API consisting of the classes

NSNetService and NSNetServiceBrowser and a C-based API called CFNetService, which

is part of Core Foundation. The service browsing and publishing parts of Bonjour are

based on an extension of the DNS protocol used to translate names to IP addresses on

the Internet called DNS-SD. A third API, also available on both iPhone OS and Mac OS

X, provides raw access to DNS-SD.

NOTE: Since Apple provides extensive documentation and sample code covering both APIs, we
will not provide additional code samples here.

CHAPTER 8: How iTap Tackles the Challenges of Networking 272

Since supporting both Mac OS X and Windows was one of the goals of iTap right from

the start, let’s take a look at the state of Bonjour on Windows:

Although Bonjour is an integral part of Mac OS X and iPhone OS, it

isn’t on Windows. To use Bonjour in a Windows application, you either

need to require your users to download and install Bonjour for

Windows themselves or include that step in the installation process of

your application. This would preclude any “download-and-run” version

of the iTap receiver for Windows.

Both higher-level APIs to Bonjour are too deeply tied to other core

frameworks on Mac OS X and iPhone OS to be usable on Windows.

The only API remaining is the raw DNS-SD one. This is what the iTap

receiver would need to use if iTap were based on Bonjour.

In the end, we thought that although Bonjour might have some technical merits, from a

user’s point of view rolling our own solution was clearly beneficial. Forcing our Windows

users to install a whole new system component just to use our receiver application just

didn’t seem right. Besides, each additional component used is an additional component

to support. Since we anticipated that supporting iTap in all kinds of different networking

environment would not be an easy task, we were reluctant to add yet another possible

source of problems.

Using Notifications to Communicate Between Components
To keep the code of a larger application as easy to understand and extend as possible,

you will usually strive to separate the application into separate components. Ideally,

these components are largely self-contained and able to perform their task with as little

knowledge about other parts of the application as possible. Trying to adhere to this ideal

proves to be difficult in practice, though. For example, take a look at our little sample

application called Discover.

This application contains two components: the NetworkDiscovery class introduced

earlier and a UITableView plus its view controller NetworkDiscoveryPeerTable. It’s the

responsibility of NetworkDiscovery to monitor WiFi availability and to detect other

instances of Discover running on the same network. The table view and its associated

view controller are responsible for visualizing this information.

Given this separation of responsibilities, you need a way for the NetworkDiscovery class

to inform NetworkDiscoveryPeerTable about changes to the list of peers or to WiFi

availability.

You could of course let NetworkDiscovery store a reference to the instance of

NetworkDiscoveryPeerTable somewhere and simply send that instance some message

to signal an event. But doing so would mean abandoning the modularity of the

application that you seek to achieve. For example, imagine the application contained

some button that you wanted to be visible only if at least one other device is detected.

Since that button would presumably not be managed by our table view controller, you’d

CHAPTER 8: How iTap Tackles the Challenges of Networking 273

need to extend NetworkDiscovery to store a reference to a second object too and to

signal events to both of them.

Fortunately, the iPhone SDK provides a much better solution for propagating such

events between different components, called notifications.

Notifications are arbitrary strings that are posted to some notification center. Other

components may indicate their interest in certain notifications by registering as an

observer, specifying an object instance and an Objective-C message selector. The

notification center will then send the specified message to the specified object instance

if the observed notification is posted.

Although it is possible to create an arbitrary number of notification centers, it is usually

sufficient to just use the application’s default notification center returned by

[NSNotificationCenter defaultCenter].

Listing 8-14 shows how to register as an observer, requesting the function

onPeersChanged: to be called should the notification PeersChanged be posted by any

other component. By specifying something other than nil for the parameter object:,

you could restrict your observation to notification posted by a specific sender.

Listing 8-14. Registering as an Observer

[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(onPeersChanged:)
 name:@"PeersChanged"
 object:nil];

NetworkDiscovery would then need to post said notification to signal a change to the list

of peers to only every other component in the application. Listing 8-15 shows an

example of how to post such a notification.

Listing 8-15. Posting a Notification

[[NSNotificationCenter defaultCenter] postNotificationName:@"PeersChanged"
object:self];

NOTE: Notifications are delivered immediately upon being posted. The
postNotificationName:object: functions returns only after delivering the notification to
all registered observers.

Our Custom Autodiscovery Solution
Having decided to roll our own autodiscovery solution, the next step was to design one.

To reduce the amount of possible problems with strange network configurations and

strict firewall policies, we’ve tried to keep our protocol as simple as possible.

Each device uses multicasting to send its name out periodically on all available network

interfaces to the all-hosts multicast group. The previously introduced function

multicastData:toGroup:port: handles that job nicely. The system header netinet/in.h

CHAPTER 8: How iTap Tackles the Challenges of Networking 274

even defines the constant INADDR_ALLHOSTS_GROUP containing the multicast address of

the all-hosts group in a form suitable for our function. Should

multicastData:toGroup:port: be unable to find any suitable network interface to send

the datagram on, we alert the user that no WiFi network connection is currently

available. The sample code developed so far allows for a quite concise implementation

of this algorithm, as you can see in Listing 8-16.

Listing 8-16. Sending the Device Name Out on All Network Interfaces and Triggering a Notification Should That
Fail

BOOL result = [self multicastData:[[[UIDevice currentDevice] name]
 dataUsingEncoding:NSUTF8StringEncoding]
 toGroup:INADDR_ALLHOSTS_GROUP
 port:DISCOVERY_PORT];

if (result && !previousHelloResult)
 [[NSNotificationCenter defaultCenter] postNotificationName:@"WiFiAvailable"
 object:self];
else if (!result && previousHelloResult)
 [[NSNotificationCenter defaultCenter] postNotificationName:@"WiFiNotAvailable"
 object:self];

previousHelloResult = result;

Upon receiving a datagram, we extract the device name and store it together with the

time of reception. If the device name is already known, we overwrite the previously

stored timestamp. NSMutableDictionary turns out to be the most convenient way of

storing these names and their associated times. Listing 8-17 shows the corresponding

source code.

Listing 8-17. Reception of a Datagram

NSString* peer = [[[NSString alloc] initWithData:data
 encoding:NSUTF8StringEncoding]
 autorelease];
NSNumber* time = [NSNumber numberWithDouble:CFAbsoluteTimeGetCurrent()];

BOOL peer_added = ([peers objectForKey:peer] == nil);
[peers setObject:time forKey:peer];

if (peer_added)
 [[NSNotificationCenter defaultCenter] postNotificationName:@"PeersChanged"
 object:self];

Finally, we check periodically to see whether any device’s timestamp is older than some

multiple of the sending interval. Should this be the case, we assume the device has

vanished and remove it from the list. Since NSMutableDictionary instances must not be

modified while they are traversed, the code in Listing 8-18 builds a new

NSMutableDictionary and swaps it with the original one at the end.

Listing 8-18. Purging of Vanished Devices from the Peers List

CFAbsoluteTime now = CFAbsoluteTimeGetCurrent();
NSMutableDictionary* peers_new = [[NSMutableDictionary alloc] init];
for(NSString* peer in peers) {
 CFAbsoluteTime time = [((NSNumber*)[peers objectForKey:peer]) doubleValue];
 if (time > now - 3.0*DISCOVERY_INTERVAL)

CHAPTER 8: How iTap Tackles the Challenges of Networking 275

 [peers_new setObject:[peers objectForKey:peer]
 forKey:peer];
}
BOOL peer_removed = (peers.count != peers_new.count);
[peers release];
peers = peers_new;

if (peer_removed)
 [[NSNotificationCenter defaultCenter] postNotificationName:@"PeersChanged"
 object:self];

Summary
Implementing a WiFi touchpad application like iTap poses unique challenges, both from

a technical as well as from a user interface point of view.

From a user interface perspective, the most challenging aspects of the iPhone platform

are probably the lack of physical buttons and the limited screen real estate compared to

a full-blown computer. Power consumption was also a big concern of ours, since users

do not react too well to battery-draining applications.

From a technical perspective, we had to deal with subtle differences between the vast

number of WiFi networks out there, while still autodetecting available devices and

computers in nearly all cases and staying compatible with both Mac OS X and Windows.

To conserve screen real estate and to allow our users to use the iTap touchpad blindly,

we’ve adhered to a reductionist user interface philosophy, relying heavily on gestures

instead of on-screen buttons.

On the technical side, we bypassed most of the higher-level layers of the iPhone

networking stack including Bonjour and got our hands dirty with raw POSIX UDP

sockets and multicasting. This allowed us to engineer a network protocol for iTap that

both supports autodetection and works with Windows as well as Mac OS X. To get

multicasting to work reliably, we had to turn to the introspection capabilities of the

POSIX API to enumerate the available network interfaces and query their states. This

work also allowed us to build a WiFi detection algorithm more tailored to iTap’s needs

than the SCNetworkReachability framework is.

Although not strictly dealing with iPhone development per se, the Qt toolkit

(www.qtsoftware.com) proved to be the perfect toolkit to implement our receiver

application with. Although we still had to write a fair amount of platform-specific code to

support the iTap receiver on both Mac OS X and Windows, using the Qt GUI toolkit

saved us from having to code two completely separate applications for these two

platforms.

Last but not least, we’ve found NSNotification and friends to be an invaluable tool in

the struggle to keep our code clean and modular.

We hope that we’ve managed to pass some of the knowledge we gained while

developing iTap on to you, and we hope to see a great number of new and exciting

iPhone applications soon!

CHAPTER 8: How iTap Tackles the Challenges of Networking 276

277

Jonathan Saggau
Company: Sounds Broken inc

Location: New York, NY

Former Life As a Developer: I started writing code in BASIC on the TANDY
1000HX my parents bought when I was young. Throughout High School in Iowa, I
was keenly interested in both computers and music, programming video games
for the TI-82 and writing a checkbook balancer in Pascal. Throughout my
undergraduate and graduate studies in music composition, I used Mathematica
and Python to generate musical possibilities, eventually developing a psycho-
acoustical model as a means to model my orchestrations of acoustic music and
to generate electronic sound as well as an automated musical pattern
recognition engine. After graduate school, I became interested in Cocoa
programming through PyObjc and started taking classes at the Big Nerd Ranch
in Atlanta. Since then, I have been freelancing as a Cocoa and iPhone developer
and loving every minute of it.

Life as an iPhone Develooper: I’m a subcontractor on several projects through
my own company and, more often, through a private development firm. My
company’s first solo application, gogoDocs, should be on the app store very
soon. It is an online and offline reader for the popular Google docs service.
Come visit us at gogodocs.com for updated information.

What's in This Chapter: Perceived speed and interface responsiveness on the
iPhone, especially when dealing with data stored on the Internet or when dealing
with large data sets can present serious challenges. In this chapter, you’ll step
through the development of two applications, one that deals with downloading

278

and displaying stock price information stored remotely on yahoo.com and
another that implements a large image viewer in a scroll view.

Key Technologies:

Optimization techniques

Concurrency

UIScrollView

NSOperation / NSOperationQueue

Open source technologies: Plausible Blocks and Core-Plot

279 279279

 Chapter

Fake It ’Til You Make It:
Tips and Tricks for
Improving Interface
Responsiveness
Why do some native applications seem so fast while others do not? There is an old

adage in auto racing. “Speed is money. How much do you want to spend?” It doesn’t

take long for iPhone programmers to rub up against a similar problem, one perhaps

expressed as, “Speed is time. How much do you have left to spend before release?”

Given the limitations of processor power, RAM, and network bandwidth, not to mention

battery drain, writing iPhone applications that display lots of data is hard. Clever

caching, prefetching of data, and optimized drawing are the keys to removing the

variable response times that make an app that’s consuming nonlocal or large amounts

of data seem slow to the user.

How can you avoid a “death by 1,000 paper cuts” user experience when you have a lot

of data to display? Most of the applications that Apple ships on the iPhone access

network services, and many of them deal with large data sets. Mail pulls and caches

potentially large amounts of data from your mail server, the Maps application loads tiles

from Google Maps, and the Weather application requests the latest weather on demand;

even the Calendar and Contacts applications can sync with data stored on servers

hosted by Microsoft, Google, Yahoo, and Apple. Many well-reviewed third-party

applications also pull large quantities of data from the cloud in one way or another.

Facebook, Pandora, AIM, Yahoo Instant Messenger, and many others have developed

offerings that are robust and responsive. Writing an application for the iPhone that

displays large amounts of potentially nonlocal data is not easy. You’ve probably

experienced an application that seems to start and stop working depending on your

network connection or how much information you’ve loaded. Users of native iPhone

9

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 280

applications have different expectations with regard to interface responsiveness than

they do when browsing the Web. It’s difficult to satisfy a user who tolerates multiple

page loads while using a browser but who may not tolerate a slow-scrolling table view

or a view that takes a few seconds to download data and render in a native application.

I am keenly interested in iPhone application responsiveness. As a freelance iPhone

developer primarily writing various applications that connect to database or HTTP

servers, I have had a lot of opportunity to watch my first stabs at cloud-based

applications seem abysmally slow to respond to user input because the app is busy

downloading or parsing data. Since a lot of my time is spent talking to servers, I have

amassed a fair number of tricks to make applications seem faster than they really are,

from prefetching data to caching to drawing to off-screen contexts in separate threads. I

am excited to share some of those tricks with you.

In this chapter, I’ll show how to improve the responsiveness of two projects. The first

project starts out as an app that displays historical AAPL stock information from

Yahoo.com and graphs closing prices over time similar to Apple’s own Stocks

application. As you add functionality, I’ll discuss some strategies as well as some of the

trade-offs involved with various methods of caching information from remote data

sources. By the time you’re done, the application will cache and update the stock prices

of several stocks while remaining usable and responsive to the user. The second project

deals with displaying large amounts of information in a scroll view that is generated and

drawn programmatically. In that project, I’ll show how to solve some common

performance and user experience problems related to drawing large amounts of data.

Plotting of Historical Stock Prices with AAPLot
In this section, you’ll start with a simple application that charts the last few months of

Apple stock prices. You can find the code in 01AAPLPlotFirstPlot in the book’s

download.

AAPLot uses a simple web service from Yahoo.com to download historical stock data in

comma-separated format. Type the following URL into a web browser
http://ichart.yahoo.com/table.csv?s=AAPL&a=3&b=19&c=2009&d=6&e=12&f=2009&g=d&ig
nore=.csv. You should see text that looks something like this:

Date,Open,High,Low,Close,Volume,Adj Close

2009-06-18,136.11,138.00,135.59,135.88,15237600,135.88
2009-06-17,136.67,137.45,134.53,135.58,20377100,135.58
2009-06-16,136.66,138.47,136.10,136.35,18255100,136.35
2009-06-15,136.01,136.93,134.89,136.09,19276800,136.09
2009-06-12,138.81,139.10,136.04,136.97,20098500,136.97
2009-06-11,139.55,141.56,138.55,139.95,18719300,139.95
2009-06-10,142.28,142.35,138.30,140.25,24593700,140.25
2009-06-09,143.81,144.56,140.55,142.72,24152500,142.72
2009-06-08,143.82,144.23,139.43,143.85,33255400,143.85

Most of the work for AAPLot is concentrated in two objects: APYahooDataPuller, which

downloads, parses, and stores the data from Yahoo.com, and AAPLotViewController,

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 281

which displays the data in a plot. Listing 9-1 shows the method from APYahooDataPuller
that constructs a URL with a target start date and an end date.

Listing 9-1. Constructing a URL String to Retrieve Stock Data from Yahoo.com

-(NSString *)URL;
{

 unsigned int unitFlags = NSMonthCalendarUnit | NSDayCalendarUnit |
NSYearCalendarUnit;

 NSCalendar *gregorian = [[NSCalendar alloc] \
 initWithCalendarIdentifier:NSGregorianCalendar];

 NSDateComponents *compsStart = [gregorian components:unitFlags
fromDate:targetStartDate];
 NSDateComponents *compsEnd = [gregorian components:unitFlags
fromDate:targetEndDate];

 [gregorian release];

 NSString *url = [NSString
stringWithFormat:@"http://ichart.yahoo.com/table.csv?s=%@&", \
 [self
targetSymbol]];
 url = [url stringByAppendingFormat:@"a=%d&", [compsStart month]-1];
 url = [url stringByAppendingFormat:@"b=%d&", [compsStart day]];
 url = [url stringByAppendingFormat:@"c=%d&", [compsStart year]];

 url = [url stringByAppendingFormat:@"d=%d&", [compsEnd month]-1];
 url = [url stringByAppendingFormat:@"e=%d&", [compsEnd day]];
 url = [url stringByAppendingFormat:@"f=%d&", [compsEnd year]];
 url = [url stringByAppendingString:@"g=d&"];

 url = [url stringByAppendingString:@"ignore=.csv"];
 url = [url stringByAddingPercentEscapesUsingEncoding:NSUTF8StringEncoding];
 return url;
}

On application launch, the AAPLotViewController creates an APYahooDataPuller
instance. It downloads and parses the CSV data and then calls the

APYahooDataPullerDelegate method dataPullerDidFinishFetch: of the

AAPLotViewController. The view controller then draws a plot into a layer of its view.

NOTE: I’ll be using quite a lot of free and open source code in the examples for this chapter, all
of which have licenses that allow for redistribution and commercial use. The plotting library
used in AAPLot is from Core Plot, which is an impressive new project by a group of developers
interested in graphing, charting, and plotting for the iPhone and the Mac. During WWDC 2009,
Apple sponsored a code-a-thon to jump-start its development. One of its stated goals is to
maintain a tight integration with Apple’s core technologies like Core Animation, Core Data, and
Cocoa Bindings. You can read more and download the latest code at
http://code.google.com/p/core-plot/.

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 282

Build and run the AAPLot example. Depending on whether you have an Internet

connection, you should see something that looks like one of the two images shown in

Figure 9-1.

Figure 9-1. AAPLot with and without an Internet connection

It’s already a modestly useful application. You might want to add some text to warn the

user if there was a problem while trying to retrieve the graph from the Internet. You

could also remove the empty graph from the UI when there isn’t a connection, call it a

day, and release. You certainly wouldn’t be the first to be tempted to do that. Even

Apple’s Stocks application is not usable without an Internet connection, as shown in

Figure 9-2.

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 283

Figure 9-2. Apple’s Stocks application as it appears without an Internet connection

Storing Data Between Runs
My company’s soon-to-be-released application, gogoDocs, is an online and offline

reader for documents stored on the popular Google Docs service. When you start the

application, it reads a list of the user’s documents from a plist stored on disk the last

time it ran and displays the information in a table view before attempting to fetch an

updated feed. In earlier development versions, we didn’t show the cached list on launch

unless the user was offline, thinking that the user would rather see the new data that

was soon to be downloaded. This proved to be a mistake. Beta testers were much

happier with the application when we loaded the cached feed on launch, allowing the

user to interact with the application while any new information downloads in the

background. This taught us that stale information is often better than no information. A

simple, and often big, usability win is to cache any downloaded information to disk and

present that data to the user as a placeholder before attempting to download any new

data. This will make the application appear to load faster because the user will not have

to wait for new data to download before interaction with your app; they can view and

possibly interact with the data that your application downloaded last time it was run.

With data that can get stale fairly quickly, like stock prices, it is still better to show the

user something rather than nothing, while perhaps signaling in an unobtrusive way that

the data is a little stale.

To add caching logic to the AAPLot application, you will add a mechanism to save to

and load from disk a given set of financial data. On launch, you’ll show the cached data

and then attempt to download new data. If you are able to get new data, you’ll compare

it to your old data, and you’ll overwrite the old data and update the UI only if it’s stale.

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 284

WRITING TO THE IPHONE’S NAND FLASH MEMORY

With the iPhone’s NAND flash memory, writing is expensive both in terms of speed and in terms of
hardware lifetime. It will eventually wear out with use. Apple recommends that you write to disk only when
necessary. Since our application checks to see whether the data is stale, it is unlikely to download stock
data more than once or twice per day, so you can reasonably store it to disk when it arrives. If your data
were more often malleable, you might consider storing it only when the application closes or if you ran out
of memory. In gogoDocs, we only download and write the updated feed if its last changed date is later than
that of our cached information. This keeps the application from making unnecessary writes to the flash
memory. Apple supplies a convenience method in your application’s delegate where you can save data
before the app closes:

 -applicationWillTerminate:

Using Plists to Persist Data
Dumping NSDictionary objects to plists has proven to be a simple way of persisting

small amounts data that I use often. It’s especially useful when you have control over the

server because you can have the server send you a plist that you can persist more or

less directly. In an open source library called TouchEngine for communicating with

Google App Engine that I’m working on with Noah Gift, a great Python programmer, we

chose to use plists as our communication medium, and we automatically cache any plist

that we get on the iPhone from the Google servers. We are automatically loading the

cached data from the plists before we fetch new data. TouchEngine is available from

Google Code at http://code.google.com/p/touchengine/.

In AAPLot, you are already using an array of NSDictionary objects to store your data

within the APYahooDataPuller, so it is trivial to persist them because an NSDictionary or

an NSArray can be written to disk as a property list as long as it contains only property

list objects (instances of NSData, NSDate, NSNumber, NSString, NSArray, or NSDictionary).

The NSDecimalNumbers are subclasses of NSNumber, so you can store those with one

caveat: they’re going to get converted to floating point first, which will reduce their

precision. For demonstration purposes, I’ll just round them when reading them back in.

The precision you lose might cause a graph line to move by a pixel, which isn’t a big

deal for this application. Let’s add some caching methods to APYahooDataPuller.

First you’ll add a method called plistRep that returns a dictionary representation of the

APYahooDataPuller’s data. Then you’ll add a method that writes that dictionary to a file,

calling the built-in NSDictionary writeToFile:atomically: method. You should also take

this opportunity to further modify APYahooDataPuller to better model your new strategy.

Since you are caching the startDate and endDate values to disk and will need them for

comparison later, you will want to add a few instance variables to track the dates you

want from the server and also the symbol you’re looking for, which may be different from

those you’re loading from the cache, and you’ll also want to change the designated

initializer accordingly. You should change the behavior with respect to notifying the

delegate. Since you are caching financial data, it’s possible that the target startDate,

endDate, and symbol will match that which is already cached. If that is the case, you

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 285

won’t need to reload the graph, and you should probably not even notify your delegate.

You’ll change the interface with the delegate so that you notify only when the financial

data changes as a result of a fetch.

Listing 9-2 shows the code for inserting the instance variables of the APYahooDataPuller
object into a dictionary and then writing that dictionary to a plist on disk, which you can

load the next time the user runs the application.

Listing 9-2. Inserting Instance Variable Values into an NSDictionary Object and Writing It to a Plist on Disk

- (NSDictionary *)plistRep
{
 NSMutableDictionary *rep = [NSMutableDictionary dictionaryWithCapacity:7];
 [rep setObject:[self symbol] forKey:@"symbol"];
 [rep setObject:[self startDate] forKey:@"startDate"];
 [rep setObject:[self endDate] forKey:@"endDate"];
 [rep setObject:[self overallHigh] forKey:@"overallHigh"];
 [rep setObject:[self overallLow] forKey:@"overallLow"];
 [rep setObject:[self financialData] forKey:@"financalData"];
 return [NSDictionary dictionaryWithDictionary:rep];
}

- (BOOL)writeToFile:(NSString *)path atomically:(BOOL)flag;
{
 NSLog(@"writeToFile:%@", path);
 BOOL success = [[self plistRep] writeToFile:path atomically:flag];
 return success;
}

Saving Data to the iPhone Application Sandbox
When your application is installed on the iPhone or the iPhone Simulator, its sandbox

includes several directories. Take a look at Figure 9-3. The Library directory includes a

Preferences directory where preferences are stored as plist files. The Caches directory

stores cached data between runs but is not backed up when iTunes connects to the

phone. The tmp directory holds temporary files while the application is running and is

cleared between runs. The Documents directory contains user data. It is backed up by

iTunes during a sync and restored during a restore from backup. I tend to use the

Documents directory for cached data that isn’t too big, like plist files, as well as data the

user generates because I prefer the user to be able to use my and my clients’

applications directly after a restore from backup. The iTunes sync time for your

application will increase the more information you store in the Documents directory, so

try to avoid caching really large files there if you can help it.

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 286

Figure 9-3. iPhone application directory structure

You can get the path to the Documents directory using this code snippet:

NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
NSUserDomainMask, YES);
NSString *documentsDirectory = [paths objectAtIndex:0];

For AAPLot, you append AAPL.plist to the path stored in the documentsDirectory
variable when you store the plist data file.

Build and run the application while connected to the Internet. It should look about the

same as before. Now disable your Internet connection and run the application again.

The graph should render just as it did before using the data that was cached to disk on

the first run. If the graph does not draw when you run the application without an Internet

connection, you’re likely reinstalling the application and overwriting the Documents

folder with an empty one each time you install it. Instead of running the app using

Xcode’s build and run, try running the application by touching or clicking it on the phone

or in the simulator without reinstalling. If your application stores more critical data,

perhaps business documents, your users will appreciate having their content available

to them at any time, regardless of their Internet connection status.

Shipping AAPLot with Placeholder Data
You never get a second chance to make a first impression. If a user downloads your

application on the App Store and then finds himself without an Internet connection the

first time he uses it, having nothing to look at can be disappointing. That user may never

run your application again. Many applications would benefit from having some kind of

default local data, even if it is just something to show the user what it will look like when

they are able to get fresh data. One fantastic application that I use often, FileMagnet

from Magnetism Studios (http://www.magnetismstudios.com/FileMagnet), is a file

viewer that makes it simple to synchronize files from your computer to your iPhone for

viewing. They ship the application and each update with a document outlining what’s

new in the application. This allows a new user to experience the application in action

before importing any documents while at the same time allows the veteran user see

what new features are available. It’s a very nice touch.

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 287

To ship a default version of the AAPL.plist with your application, you will first need to

retrieve one from the simulator. The iPhone Simulator loads its library of applications

and data from your home directory in ~/Library/Application Support/iPhone
Simulator/User/Applications/. Each application is housed in a directory named with a

UUID. The easiest way to find your AAPL.plist is to empty this directory, build and run

your application, and then retrieve it from the newly created directory. The iPhone

Simulator will empty the directory for you. Open the iPhone Simulator, and then select

Reset Content and Settings from the iPhone Simulator menu.

Make sure your Internet connection is live, and build and run the application in the

simulator. You’ll find AAPL.plist in the ~/Library/Application\ Support/iPhone\
Simulator/User/Applications/SOMELONGUUID/Documents/ directory. Copy it into the

AAPLot code directory. Now add it as a resource in Xcode. You can set Reference Type

to Default. Make sure that Add To Target is also selected so Xcode knows to copy it

during the build. See Figure 9-4.

Figure 9-4. Adding AAPL.plist to AAPLot in Xcode

Now you need to write a method that checks to see whether AAPL.plist is in the

Documents directory, and if it is not, you should instead load the plot from the

application’s resources folder.

-(NSString *)faultTolerantPathForSymbol:(NSString *)aSymbol
{
 NSString *docPath = [self pathForSymbol:aSymbol];
 if (![[NSFileManager defaultManager] fileExistsAtPath:docPath]) {
 //if there isn't one in the user's documents directory, see if we ship with this
data
 docPath = [[[NSBundle mainBundle] resourcePath] \

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 288

 stringByAppendingPathComponent:[NSString
stringWithFormat:@"%@.plist", aSymbol]];
 }
 return docPath;
}

-(NSDictionary *)dictionaryForSymbol:(NSString *)aSymbol
{
 NSString *path = [self faultTolerantPathForSymbol:aSymbol];
 NSMutableDictionary *localPlistDict = [NSMutableDictionary
dictionaryWithContentsOfFile:path];
 return localPlistDict;
}

Remove all applications as before from the simulator so you can see how the application

behaves when it is used for the first time. Now disable your Internet connection again.

Build and run. The default AAPL.plist should load even though the application is freshly

installed with no previously fetched data. You can find the version of AAPLot that

includes all of these caching changes in Examples/03AAPLPlotDefaultData of the book’s

download.

In a shipping application, indicating to the user that the data they’re seeing is stale and

warning them that the application would really benefit from an Internet connection is a

good idea. See Apple’s Reachability sample code at

http://developer.apple.com/iphone/library/samplecode/Reachability/index.html for

information on how to test for the availability of a server on the Internet. See also the

Human Interface Guidelines for the iPhone available at
http://developer.apple.com/iphone/library/documentation/userexperience/conceptu
al/mobilehig/Introduction/Introduction.html.

Extending the App for Multiple Stock Graphs:
StockPlot
Now I’ll show how to reuse some of the objects from the AAPLot application in an app

called StockPlot that loads a whole bunch of stocks into a table that the user can select

to push a graph onto the screen. Things get rather more complicated when there is a lot

of data to download and store. The gogoDocs application I mentioned before

downloads and caches a list of preferred documents each time the user is connected

to the Internet to make sure important documents are always available offline. When

we decided to add this multiple document download feature to the application, which

was previously downloading one document at a time on demand, the UI would grind

to a halt.

The earlier strategy of download, then parse, then cache, and then display from the

AAPLot application might not hold up when you try it with a lot of stocks at the same

time. Let’s also see what happens when you try to load graphs in response to user

input. You can find StockPlot in Examples/04StockPlotConcurrentDownloads.

StockPlot will ship with Yahoo, Microsoft, Google, and Apple stock data and will attempt

to download more than a dozen other technology companies’ prices on launch. The

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 289

RootViewController of the project handles table view loading and

APYahooDataPullerDelegate duties. It loads a summary of whatever data it can find in its

array of APYahooDataPuller objects, which it creates at launch. Each APYahooDataPuller
object in the array will continue to act just like it did in AAPLot by loading from disk,

downloading, and notifying of changed data; you’ll just have a large number of them.

The RootViewController object also has a small amount of code to limit the number of

concurrent downloads to three connections at a time. Build and run it on the simulator. It

should look like Figure 9-5. If you’re online (and you don’t blink), you will see the little

exclamation point cautionary icons that you’re using to indicate stale data in the table

cells replaced by progress indicators while the corresponding APYahooDataPuller object

downloads; then they disappear once fully loaded. If you click a table cell, the now-

familiar graph is rendered and animated onto the screen through the canonical

UINavigationController view controller–pushing methods.

Figure 9-5. StockPlot loading data from Yahoo.com

Now install and run it on your device. It seems like it’s pretty slow to download, huh? It’s

nothing like the simulator experience. The user interface even freezes in fits and starts

while the data comes in; you can’t even scroll the table view most of the time. Once

everything is downloaded, the interface is really responsive. You could choose to

download only the data you need for the table view on launch, but that would only push

the lack of responsiveness somewhere else, which would bring you dangerously close

to death by 1,000 paper cuts. It would probably take quite a while to load the data for a

given graph on demand. You should also try to build and run a release configuration to

see whether perhaps the sluggish UI has anything to do with a certain lack of compiler

optimizations. Nope. Let’s run StockPlot in the Shark profiler to see whether we can find

out what’s slowing things down.

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 290

During the development of gogoDocs, we had a similar problem. On the device, the UI

would freeze periodically. After running the application through Shark, we saw that the

parsing of access control (document sharing and outside access) XML data from Google

was freezing the UI intermittently because that was all running on the main thread and

getting in the way of UI drawing. There is nothing more disheartening than watching your

previously responsive app suddenly start to stutter while scrolling through a table view.

We ended up moving the ACL downloading and parsing into a background thread. Now

the UI is very smooth.

Shark is Apple’s profiler. Attach it to a running process, and it takes a snapshot of what

portion of your binary is running at regular intervals. Shark shows you a sort of weighted

statistical table of how many times through a given method or line of code it counted.

The more times it sampled your code in a given area, the more time your code spends in

that area. You should always run Shark on a release build of your application because

you will want to profile the compiler-optimized code with which your application will

ship. There is one problem. The default settings for release also strip debugging

symbols from your binary, which makes Shark look more like a hexadecimal puzzle

game for those who can solve Rubik’s Cube, of which I am certainly not one. Now copy

the release build configuration into one called Profiler by opening the Project menu in

Xcode and clicking Edit Project Settings; then select the Configurations tab and

duplicate the Release configuration.

Then in the Build tab, deselect the boxes for stripping debug symbols, as shown in

Figure 9-6.

Figure 9-6. Removing symbol stripping from the StockPlot build settings

You have one thing left to do before you can test the downloading problem. Once your

application is running, it takes a little while to attach the profiler. To test the

problematical code, you need a way of attaching Shark at the very start of the

application run. Although it might seem easy to drop a breakpoint in gdb in your main()

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 291

function, I have had some trouble getting Shark to connect while gdb is also attached.

Instead, you’ll drop a ten-second sleep() call in applicationDidFinishLaunching. That

should give you enough time to attach Shark.

You can usually find Shark.app in /Developer/Applications/Performance Tools/. Run it,

and select Network/iPhone Profiling from the Sampling menu. Delete the copy of

StockPlot with cached data from your phone by using the Xcode organizer or directly on

the iPhone. Connect your iPhone to your computer, and build and run the application.

Once it’s running (and sleeping), you can select the check mark in the menu next to the

name of your iPhone, select TimeProfile (WTF) from the Config drop-down, and select

StockPlot from the Target drop-down. As soon as you see log messages indicating

download activity, hit the Start button; once the messages stop, hit the Stop button. If

you are a coffee drinker, now is a good time to go make a cup. This part takes a little

time because a lot of the processing that Shark needs in order to figure out what

happened during the profiling run is actually performed on the device itself.

After you finish your coffee and once Shark and your iPhone are finished, you might see

a window with all kinds of hexadecimal jibberish that I promised wouldn’t happen. If so,

you will need to symbolicate the time profile by telling Shark where the symbol-rich

binary is located on your filesystem. Select File ➤ Symbolicate, and then navigate to the

build directory corresponding to your Profiler build settings, as shown in Figure 9-7.

Make sure you see “type: ARM” on the window when you select it. Now Shark should

have familiar method names. Poking around in the trace, you can see that most of the

work is being done in parsing the comma-separated strings and writing the plists to

disk. That makes sense. You’re using an asynchronous download, so that shouldn’t

freeze your UI, but the string parsing and caching to disk blocks the main thread. See

Figure 9-8.

Figure 9-7. Pointing Shark to a symbolicated binary

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 292

Figure 9-8. Shark profile showing the data parsing and plist writing bottlenecks

Even if you ship with 20 plists (which I probably would for this application), they’ll almost

definitely be stale once the application gets into users’ hands. You don’t want your

application to be this unresponsive the first time it is run. What can you do about this?

You have several options. At the moment, you’re downloading and parsing all three

months worth of data from Yahoo, because that’s the easiest thing to do. You could

figure out how much data you already have on disk and download only the missing data.

You are also spending a fair amount of time converting NSNumbers to the

NSDecimalNumbers you need for Core Plot. You could change Core Plot to accept

NSNumbers, or you could change your storage to CoreData, which retrieves

NSDecimalNumbers without conversion. The problem with these optimizations, some of

which you may choose to do before shipping, is that they will all incur unpredictable

amounts of overhead on the main thread. Thus, you would have to test a lot of use

cases. It may also prove difficult to predict just how much data you’ll need. If your user

uses your application often enough to pull down small chunks (in this case, fewer days)

of data, which is not guaranteed, you might do well to avoid downloading duplicate

data. You might also want to allow the user to add stocks to plot, which would definitely

require a lot of parsing the first time the stock data is downloaded; it also adds yet

another stock to the queue on application launch. Perhaps you would do well to try to

pull the processing off of the main thread so you can unblock the user interface once

and for all, thus freeing yourself from all of these problems at once.

Concurrency

“Cause it’s gonna be the future soon. And I won't always be this way.
When the things that make me weak and strange get engineered away.”

—Lyrics for The Future Soon by Jonathan Coulton

Wait a tick. Did I just suggest multithreading?

OK, threading is hard, but the engineers at Apple and elsewhere keep making it easier

for us. We have all of these cores on our desktops because the hardware engineers

keep slicing silicon, so concurrency keeps getting more and more important. Who

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 293

knows? Perhaps one day we’ll all be walking around with multicore processors in our

phones. If so, you’ll be ready to write software for them.

NSOperation, NSOperationQueue, and Blocks
NSOperationQueue and NSOperation remove much of the pain of multithreading.

NSOperationQueue is a sort of thread pool that maintains an array of pending

NSOperation objects that it schedules to run in a background thread based on a number

of factors from system hardware to system state to the relative priority of a given

NSOperation. You can even declare one NSOperation dependent on the completion of

another. You normally subclass NSOperation to override one method, main, which is

where you put the work you want on a background thread. It’s called when the

operation is run. The only things we as programmers have to be wary of in this situation

are the usual data access caveats. Try not to mutate data at the same time you’re

reading it. There are tools for this, too. We can use the various permutations of

performSelectorOnMainThread:, and @synchronized() directives are useful, too. Before

you dig in, I highly recommend reading Apple’s concurrency document at
http://developer.apple.com/Cocoa/managingconcurrency.html.

There is a helpful tool in other languages for this kind of problem called blocks. Blocks

are another name for closures, with which you may have familiarity with from using

Ruby, LISP, Python, Smalltalk, and others. They’re like function pointers that take a

(usually const) snapshot of their local stack variables so you can run them later with the

information you shove in them now. They’re little portable units of computation that

carry their state around and are extraordinarily useful with concurrent operations.

Because they have a snapshot of their state, they’re easier to deal with in a concurrent

environment. Useful though they may be, they don’t officially exist yet. They’re being

added to Objective-C by the folks who are bringing us the open source Clang and LLVM

projects. (See http://lists.cs.uiuc.edu/pipermail/cfe-dev/2008-August/002670.html
and http://www.macresearch.org/cocoa-scientists-part-xxvii-getting-closure-
objective-c.) There is no guarantee, though it seems likely, that Apple will bring them to

the iPhone.

These additions to the Objective-C language and runtime are free and open source, and

they’ve been implemented in GCC 4.2, so it is actually quite possible to backport them

to the iPhone, so of course they have been. Plausible Blocks from Plausible Labs is

available at http://code.google.com/p/plblocks/ and is, as of this writing, shipping its

second beta of a gingerly patched version of the standard, stable GCC 4.2 compiler that

ships with the OS X Leopard (10.5) and iPhone software development kits. I have found

it to be very stable, and it works with both iPhone OS 3.0 and 2.2.1 targets. There is

some example code for their use on the primary author’s GitHub repository available at

http://github.com/landonf/block_samples/tree/master. Next you’ll install the

Plausible Blocks compiler and add its static framework to your project so you can easily

place your downloading, parsing, and saving code in a block to be executed by an

NSOperation to be scheduled by an NSOperationQueue (in the house that Jack built). If or

when Apple does add blocks support to the iPhone, switching from Plausible Blocks will

be simple. You’ll revert to Apple’s compiler and remove the Plausible blocks framework

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 294

from your project. All of the things that make your application weak and strange are

being gradually engineered away, and you’re even using future technology!

Installing the Plausible Blocks Compiler and Adding It to
the Project
First, download the latest disk image of the Plausible Blocks compiler and frameworks

from http://code.google.com/p/plblocks/downloads/list. Mount the disk image, and

run the included package. This installs the patched compiler as an Xcode plug-in.

Now copy the iPhone Runtime folder, which includes the static framework you’ll need to

link against, into the StockPlot project. Double-click the StockPlot target, select the

General tab, and click the plus (+) button in the lower-left corner of the window to add a

new linked library. Click Add Other in the resulting sheet, and navigate to and select the

framework for addition, as shown in Figure 9-9.

Now you need to tell Xcode to use the special compiler. Double-click the StockPlot

target to open the Build Settings window. Select the Build tab. Select All Configurations

from the upper-left drop-down. Now select the GCC 4.2 (Plausible Blocks) compiler, as

shown in Figure 9-10. You now have blocks support.

Figure 9-9. Adding the PLBlocks.framework to the StockPlot project

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 295

Figure 9-10. Switching to the Plausible Blocks patched version of GCC

You’ll use some convenience categories and objects from the Plausible Blocks sample

code mentioned earlier. They’re included with the sample code in

Examples/05StockPlotParallelDownloads in files called NSThread+PLBlocks.h/m and

NSOperationQueue+PLBlocks.h/m. Add them to the StockPlot project.

Using Blocks, NSOperation, and NSOperationQueue in
StockPlot
To get asynchronous downloading, parsing, and saving, the first thing you need to do is

make something synchronous. Go figure. The downloading code is using

NSURLConnection to download the data asynchronously from Yahoo. NSURLConnection
doesn’t like to be launched asynchronously from any thread other than the main thread

because that would be silly. This isn’t a big deal, because you’re going to place all

downloading, parsing, and saving in a background thread using the

NSOperation/NSOperationQueue objects. This has the added benefit of making the

downloading code simpler. Instead of asynchronously adding data to an NSMutableData
object and defining a bunch of NSURLConnectionDelegate methods, you need only call

the NSURLConnection sendSynchronousRequest:returningResponse:error: method. It

blocks execution while downloading and can be run from a nonmain thread, which is

exactly what you want. Every time you call a delegate method from the background

thread, you make sure that the delegate gets called on the main thread. Usually, you

would use the performSelectorOnMainThread:... family of calls, but it’s easier to wrap

them in a block and have the new category on NSThread execute the block on the main

thread. Listing 9-3 shows the new “blockified” fetchIfNeeded method.

Listing 9-3. APYahooDataPuller.m

-(void)fetchIfNeeded
{
 if (self.loadingData) return;

 //Check to see if cached data is stale
 if ([self staleData])

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 296

 {
 self.loadingData = YES;
 NSString *urlString = [self URL];
 NSLog(@"Fetching URL %@", urlString);
 NSURL *url = [NSURL URLWithString:urlString];
 NSURLRequest *theRequest=[NSURLRequest requestWithURL:url

cachePolicy:NSURLRequestUseProtocolCachePolicy
 timeoutInterval:60.0];
 // create the connection with the request
 // and start loading the data
 NSURLResponse *theResponse;
 NSError *theError;
 [self downloadWillStart];
 self.receivedData = [NSURLConnection sendSynchronousRequest:theRequest
 returningResponse:&theResponse
 error:&theError];
 if(theError)
 {
 self.loadingData = NO;
 self.receivedData = nil;
 NSLog(@"err = %@", [theError localizedDescription]);
 [[NSThread mainThread] pl_performBlock: ^{
 if(delegate && [delegate
respondsToSelector:@selector(dataPuller:downloadDidFailWithError:)])
 {
 [delegate performSelector:\
 @selector(dataPuller:downloadDidFailWithError:)
 withObject:self
 withObject:theError];
 }
 }];
 [self connectionEnded];
 }
 else
 {
 self.loadingData = NO;
 NSString *csv = [[NSString alloc] initWithData:self.receivedData
encoding:NSUTF8StringEncoding];
 [self populateWithString:csv];
 [csv release];
 self.receivedData = nil;
 [self writeToFile:[self pathForSymbol:self.symbol] atomically:NO];
 [self connectionEnded];
 }
 }
}

This method is called from the RootViewController’s updateDownloadStatus method

from within a pl_addOperationWithBlock method that has been added to

NSOperationQueue. This method adds a PLBlockOperation to the queue and schedules it

for execution. The NSOperation object subclass PLBlockOperation that gets instantiated

here copies the block you pass it into an ivar and simply executes it in its main method.

(Blocks are also Objective-C objects, but they must be copied rather than retained.)

Since all the stack variables are copied into the block, you don’t need to worry if they

change or go out of scope before the block is called.

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 297

-(void)updateDownloadStatus
{
 while ([stocksToDownload count])
 {
 APYahooDataPuller *dp = [stocksToDownload objectAtIndex:0];
 NSOperationQueue *q = [(StockPlotAppDelegate *) [[UIApplication
sharedApplication] delegate]
globalQ];
 [q pl_addOperationWithBlock: ^{
 [dp fetchIfNeeded];
 }];
 NSUInteger idx = [stocks indexOfObject:dp];
 NSUInteger section = 0;
 NSIndexPath *path = [NSIndexPath indexPathForRow:idx inSection:section];
 UITableViewCell *cell = [self.tableView cellForRowAtIndexPath:path];
 if(nil != cell)
 [self setupCell:cell forStockAtIndex:idx];
 [stocksToDownload removeObject:dp];
 }
}

Uninstall, build, and run on the device. NSOperationQueue tends to be conservative on

the iPhone, so you’ll probably see stock information downloaded one symbol at a time;

the application will remain responsive throughout.

Just for fun, let’s reinstall and run it through Shark again. If you’ve deleted it, add that

temporary call to sleep() as well.

You can see in Figure 9-11 that the application didn’t really run any faster; you’ve just

parallelized it. Multithreading isn’t so painful after all. Welcome to

the future.

Figure 9-11. This Shark profile shows StockPlot running the PLBlockOperation in the background.

NOTE: Apple has not officially announced any intention to bring blocks to the iPhone, though
it’s a fair bet that Apple will do so once blocks are added to the desktop runtime and compiler
collection. You should very thoroughly test any application using a nonstandard compiler and
be prepared for things to break in spectacular and unexpected ways. That said, Plausible
Blocks appears well on its way to release-level stability.

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 298

Displaying Large Amounts of Data Efficiently
How easily the iPhone UI can be brought to its knees by performing something as

seemingly simple as downloading, processing, and caching data to disk! Now you’re

going to really make it hurt by throwing it an application that has to work very hard to

draw anything at all. One of my clients has an application that pulls potentially dozens of

high-resolution images from a database server into an image-browsing view not unlike

that of Apple’s Photos application. To load something into the image viewer quickly, we

prefetch a set of low-resolution thumbnail images from the database and scale them to

fit the screen. As the user thumbs through the images, the application downloads the

current high-resolution image and those to the left and right thereof. As each large

image arrives, the application replaces the low-resolution image on screen with the high-

resolution image. For the application to remain responsive, image decoding and drawing

are handled in a background thread by pushing the images to off-screen CGContextRefs.

To solve a similar problem in this section, you’ll examine a project for drawing a vertical

succession of very large images into a zoomable scroll view. So that you might

encounter some of the difficulties inherent in dealing with large amounts of data, you’ll

add an admittedly somewhat contrived requirement: the images cannot be presliced,

thumbnailed, or otherwise massaged outside of the device. All drawing code must use

the original very large PNG images shown in Figure 9-12 bundled with the application. If

you can make this example perform reasonably well, you’ll have a reusable framework

for drawing any processor-intensive tiled scroll view while maintaining UI

responsiveness.

Figure 9-12. Images for BigViewThing.app © NASA

You’ll begin with a modified version of Apple’s ScrollViewSuite sample code available at
http://developer.apple.com/iphone/library/samplecode/ScrollViewSuite/index.html
called BigViewThing. The original Apple sample is designed to draw view tiles that are

chunks of a larger image; it shows how to reuse view objects in two dimensions similar

to the way the UITableView dequeues and enqueues rows in one dimension. In the case

of Apple’s sample, the smaller image chunks are meant to ship with the application.

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 299

BigViewThing is already partially implemented as a result of being derived from this

sample code. It handles double-tap to zoom, suspends tile redraws when the user is

interacting with the view, and draws only on-screen tiles. It’s in the

Examples/06BigViewThingOriginal directory of the sample code. Build it and run. There

are quite a number of large images in it, so it will take a while to copy over to the device.

Once you have it running on your phone, you’ll notice a few issues. Whenever a new tile

comes on the screen, it takes a while to render. The image doesn’t redraw at higher

resolution when you zoom. It remains grainy. Let’s profile it in Shark to see what is

happening. There is no need to add a sleep() to this application because the

performance problems appear throughout rather than just on startup. Start the

application, and attach Shark. Remember, the longer you sample, the longer you will

wait for results, so scroll around enough to get it to draw just a couple of images.

As you can see in Figure 9-13, almost all the application’s execution time is being used

in decompressing and drawing the PNG images. Our goal with this demonstration

application is to simulate what happens when drawing very heavy, data-intensive views.

You never know when a user is going to try to load a giant document or image into your

application. Some developers, myself included, have run into this problem using Apple’s

UIWebView. It was designed to render small e-mail attachments in various formats in the

Mail application and to render web content. Several document reader applications fail

when the user tries to load a large document because they are trying to leverage

UIWebView to draw heavy content. It clearly isn’t designed for such content. We ended

up writing our own memory- and CPU-optimized document view for some common files

in gogoDocs because the UIWebView could not handle drawing some of the larger ones.

Figure 9-13. This Shark profile shows –[BigViewPageView drawrect:] taking up most of the execution time.

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 300

Zooming a UIScrollView
One thing that UIWebView performs very well is its sharp redrawing of zoomed content

after a zoom is finished. In BigViewThing, you’re currently allowing the scroll view to

zoom for you and leaving the content alone when zooming is finished. This default

behavior results in an unpleasant grainy appearance because the UIScrollView that you

use to host the content simply applies a scaling affine transform to the content view. It’s

also expanding or contracting its own content size relative to the new drawn size of the

overall view. UIScrollView does this for performance reasons. If it takes three seconds

(and it does take that long right now in our application) to draw a view into a given

square of pixels, imagine what it might look like to animate resizing by redrawing. One-

third of a frame per second is subpar to say the least.

Search the Internet for UIScrollView zooming reset resolution, and you’ll find a lot of

developers pulling their hair out trying to get this to look right. A little caveman NSLog
experimentation to figure out what the UIScrollView is really doing can reveal what’s

happening under the covers when you, say, pinch to zoom or directly set the zoomScale
property of a UIScrollView.

UIScrollView Zooming Under the Covers
When the user attempts a zoom, UIScrollView first checks to see whether

minimumZoomScale and maximumZoomScale are not equal to one another. It also checks the

current zoomScale to see whether it can zoom. If parameters allow for zooming,

UIScrollView then asks the UIScrollViewDelegate for a view to scale during the zoom

with the viewForZoomingInScrollView: method call. You return the content view in the

BigViewThing project. As the zoom scale changes, the UIScrollView does two things:

It sets an affine transform on the view it is zooming to scale it up or

down without redrawing. It’s a “square” transform that maintains

aspect ratio, so there is no distortion.

It resets its own contentSize, contentOffset, and zoomScale so as to

hold the content in place relative to the point about which it is zooming

(in the case of pinching, that point was halfway between your fingers

when you put them down). See Figure 9-14.

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 301

Figure 9-14. The UIScrollView default zoom simply stretches the ContentView, leaving pixelated images.

If the zoom was performed with a pinch gesture or through the setZoomScale:animated:
methods, it calls scrollViewDidEndZooming:withView:atScale: on its delegate when the

zooming ends. However, it does not call this delegate method if the animated: argument

was NO because the zoom is set instantly when you call the method. The UIScrollView
assumes that you know that it finishes zooming right away in that case. After zooming,

the UIScrollView leaves the affine transform on the view, and it leaves the stretched

contentSize, contentOffset, and zoomScale in place, which is why the view seems

grainy. It’s still being stretched when you zoom.

Resetting Resolution in a UIScrollView after a Zoom
Operation
Armed with knowledge of some of the internal workings of UIScrollView, you can now

reset the drawing after a zoom by implementing and calling an updateResolution
method when zoom finishes. Updating resolution on the content of a UIScrollView after

zoom can be tricky because the state of the UIScrollView is a little awkward and

counterintuitive at that point. There is an affine transform scaling the content. The

zoomscale, contentSize, view frame, and contentOffset are all set such that they take

into account the zoom scale and the transformation on the view. Because the view is

being resized by a transform, its frame wasn’t changed during zooming. We’ll reset the

resolution of the zoomed view by removing the stretching affine transform and resizing

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 302

its fame so that the number of pixels that it occupies is equal to the number of pixels

that are being drawn. You’ll need to take care to reset the underlying parameters of the

scroll view so as to reposition the view that now has a larger frame so that it appears to

simply sharpen in place. The following is a step-by-step algorithm for resetting

resolution after a zoom:

1. Take a snapshot of the current (scaled) contentSize and contentOffset.

2. Take a snapshot of the current (unscaled) content view’s frame size; it’s

being scaled by an affine transform, so its actual frame size is the same

as it was before zooming.

3. Take a snapshot of the current minimum and maximum zoom scales.

4. If your scroll view is its own delegate as it is in BigViewThing, call super

to set the minimum and maximum zoom scales both to 1.0 because

setting zoom on self will eventually call updateResolution again; infinite

recursion is so last year.

5. Set the current zoom scale to 1.0, which will rescale the content size

internally back to the size of the content view, and reset the affine

transform on the content view to unity.

6. Calculate new content offset by scaling the stretched/zoomed offset

you took a snapshot of in step 1. You want the new content to appear in

the same place in the scroll view:

7. newContentOffset.x *= (oldContentSize.width / contentViewSize.width);

8. newContentOffset.y *= (oldContentSize.height /

contentViewSize.height);

9. Divide the old minimum and maximum zoomScale by the new zoom

scale. This scales the original minimum and maximum zooms relative to

the new content size. If minimum zoom were 1.0 and maximum zoom

were 2.0, when the user zooms to 2.0 and I reset, my new minimum

zoom would be .5, and my new maximum zoom would be 1.0.

10. Set the content view’s frame.size to the contentSize you took a

snapshot of in step 1. This is a little counterintuitive. The numeric values

of the new content size are being reset to the same values as those the

scroll view calculated for the transformed zoomed view but are now

reinterpreted in a new overall scroll view frame. Essentially, Apple

already did the math for you, so you’re reusing its values in a new

context.

11. Set the scroll view’s contentSize to the scaled contentSize you took a

snapshot of in step 1. This stretches the overall size of the view to

match the new zoom level (but without any affine transform applied).

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 303

12. Call the setNeedsLayout method on the scroll view. This will cause

layoutSubviews to be called where you can reset the content view’s

internal subview geometry.

The following is an implementation of the previous steps that you’ll add to the

BigViewScrollView. You’ll call it whenever zooming finishes.

- (void)updateResolution {
 //LogMethod();
 isdblTapZooming = NO;
 float zoomScale = [self zoomScale];

 CGSize oldContentViewSize = [contentView frame].size;
 //zooming properly resets contentsize as it happens.
 CGSize newContentSize = [self contentSize];

 CGPoint newContentOffset = [self contentOffset];
 float xMult = newContentSize.width / oldContentViewSize.width;
 float yMult = newContentSize.height / oldContentViewSize.height;

 newContentOffset.x *= xMult;
 newContentOffset.y *= yMult;

 float currentMinZoom = [self minimumZoomScale];
 float currentMaxZoom = [self maximumZoomScale];

 float newMinZoom = currentMinZoom / zoomScale;
 float newMaxZoom = currentMaxZoom / zoomScale;

 //don't call our own set..zoomScale, cause they eventually call this method.
 //Infinite recursion is uncool.
 [super setMinimumZoomScale:1.0];
 [super setMaximumZoomScale:1.0];
 [super setZoomScale:1.0 animated:NO];

 [contentView setFrame:CGRectMake(0, 0, newContentSize.width,
newContentSize.height)];
 [self setContentSize:newContentSize];
 [self setContentOffset:newContentOffset animated:NO];

 [super setMinimumZoomScale:newMinZoom];
 [super setMaximumZoomScale:newMaxZoom];

 // throw out all tiles so they'll reload at the new resolution
 [self reloadData]; //calls setNeedsLayout, among other things for
housekeeping
}

Build and run Examples/07BigViewThingZoomAddition in the simulator. The images

should clear up after a zoom. Speaking of the simulator, this demo application takes a

very long time to install on the device because it’s copying all the images over USB each

time. Since you are about to spend some time focusing on a single performance

bottleneck in the code, image drawing, you can simulate this slowness in the simulator

with a call to sleep(). Avoiding the copy of those PNG files will make debugging go a

little faster while simulating the problem reasonably well. Also, I tend to forget to remove

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 304

these sleep() calls when compiling for the iPhone and wonder why everything slows

down when I move back to the device, so let’s #define this one to only compile into the

simulator target. Add the following to drawRect in BigPageView.m:

 if(!drawingSuspended)
 {
 CGContextSetFillColorWithColor(context, [[UIColor whiteColor]
colorWithAlphaComponent:0.5].CGColor);
 CGImageRef tempImage = [UIImage imageNamed:self.imageName].CGImage;
#if TARGET_IPHONE_SIMULATOR
 sleep(2.5);
#endif
 CGContextDrawImage(context, tempbounds, tempImage);
 drawnPageOnce = YES;
 }

Build and run in the simulator. You should see similar sluggishness compared to running

on the phone. Let’s tackle that problem now.

Drawing into an Off-Screen Context
Given our self-imposed limitations, we can’t make the drawing much faster without

digging into OpenGL. Even then, you’ll have to decode the images and throw them up

into texture memory no matter what you do, so the drawing itself would be fast, but you

know from the Shark profile that the decoding is what takes a long time. It’s time to take

the NSOperationQueue and blocks magic to the next level and parallelize the drawing

work by putting it into a background thread.

NOTE: Danger, Will Robinson! UIKit is not thread-safe. Try to draw to screen from another
thread, and bad things might happen. Ugly things are almost guaranteed to happen. You can,
however, draw your images into off-screen buffers (actually, cgContexts) and then grab the
pixels that you need to throw on the screen once the buffer is filled with data. There is nothing
stopping you from filling that data asynchronously and reading it from the main thread in order
to draw it, as shown in Figure 9-15.

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 305

Figure 9-15. BigViewPageView draws into an off-screen CGContextRef in the background.

Here is the step-by-step exercise:

a. The first time one of the BigViewPageView objects is asked to

draw, it will create a cgContext type instance variable into which

it will quickly draw the half opaque white background that you

are currently drawing as a placeholder when the

BigViewPageView is inactive, like so:

-(void)initOffscreenContext // do this on the MAIN thread
{
 CGSize layerSize = [self bounds].size;
 layerSize.height = floorf(layerSize.height);
 layerSize.width = floorf(layerSize.width);

 CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();
 CGContextRef ctx = (CGContextRef) [(id) CGBitmapContextCreate(NULL, layerSize.width,
layerSize.height, \
 8, layerSize.width*4, colorSpace,
kCGImageAlphaPremultipliedLast) autorelease];
 CGColorSpaceRelease(colorSpace);
 CGContextTranslateCTM(ctx, 0, layerSize.height);
 CGContextScaleCTM(ctx, 1.0, -1.0);

//scale is #defined to .94 elsewhere. It causes the images to draw with a little empty
space in between each one.
 CGFloat tx = layerSize.width * (1.0 - scale) * 0.5;
 CGFloat ty = layerSize.height * (1.0 - scale) * 0.5;
 CGRect tempbounds = CGRectZero;
 tempbounds.size = layerSize;
 tempbounds = CGRectIntegral(CGRectInset(tempbounds, tx, ty));
 CGContextSetShadow(ctx, CGSizeMake(5,5), 5);

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 306

 CGContextSetFillColorWithColor(ctx, [[UIColor whiteColor]
colorWithAlphaComponent:0.5].CGColor);
 CGContextFillRect(ctx, tempbounds);
 self.offscreenContext = (id) ctx;
}

2. It will draw whatever is in the off-screen context to the screen in

drawRect:

-(void)drawRect:(CGRect)rect
{
 //NSLog(@"drawRect");
 CGContextRef context = UIGraphicsGetCurrentContext();
 CGContextRef osc = (CGContextRef) self.offscreenContext;
 UIGraphicsPushContext(osc);
 CGImageRef tempImage = CGBitmapContextCreateImage (osc);
 UIGraphicsPopContext();
 if(tempImage)
 {
 CGContextDrawImage(context, self.bounds, tempImage);
 CGImageRelease(tempImage);
 drawnPageOnce = YES;
 }
}

3. It will generate an NSOperation (that calls a block, naturally) that will fill

a new cgContext with the image data you will need:

-(void)createOffscreenCtx
{
 NSOperationQueue *q = [(BigViewThingAppDelegate *) [[UIApplication
sharedApplication] delegate]
globalQ];
 PLBlockOperation *op = [PLBlockOperation blockOperationWithBlock:^{
 //imgRef = [[UIImage imageNamed:imageName] CGImage];
 NSString* bundlePath = [[NSBundle mainBundle] bundlePath];
 UIImage *img = [UIImage imageWithContentsOfFile:[NSString
stringWithFormat:@"%@/%@", bundlePath,

imageName]];
 CGImageRef imgRef = [img CGImage];

 CGSize layerSize = [self bounds].size;
 layerSize.height = floorf(layerSize.height);
 layerSize.width = floorf(layerSize.width);
 CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();
 CGContextRef ctx = (CGContextRef) [(id) CGBitmapContextCreate(NULL,
layerSize.width,
 layerSize.height, 8,
 layerSize.width*4, colorSpace,
 kCGImageAlphaPremultipliedLast) autorelease];
 CGColorSpaceRelease(colorSpace);
 CGContextTranslateCTM(ctx, 0, layerSize.height);
 CGContextScaleCTM(ctx, 1.0, -1.0);

 CGFloat tx = layerSize.width * (1.0 - scale) * 0.5;
 CGFloat ty = layerSize.height * (1.0 - scale) * 0.5;

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 307

 CGRect tempbounds = CGRectZero;
 tempbounds.size = layerSize;
 tempbounds = CGRectIntegral(CGRectInset(tempbounds, tx, ty));
 CGContextSetShadow(ctx, CGSizeMake(5,5), 5);
#if TARGET_IPHONE_SIMULATOR
 sleep(2.5); //fake slow drawing on the simulator
#endif
 CGContextDrawImage(ctx, tempbounds, imgRef);
 self.offscreenContext = [[(id) ctx retain] autorelease];
 NSLog(@"Image loaded for %d", pageToDraw);
 //when we’re done filling, we need to redisplay content
 [self performSelectorOnMainThread:@selector(setNeedsDisplay) withObject:nil
waitUntilDone:NO];
 }];
 [q addOperation:op];
}

4. When the NSOperation finishes, it will call setNeedsDisplay on the view

in the main thread so the view knows to draw the image data to

screen. You can do this in real time. Drawing from a buffer is fast.

5. Any time the BigViewPageView is asked to drawRect, it pulls the image

data from the current cgContext for drawing; it’s also filling new

cgContexts in the background if you change the expected drawing size

of the image through some bizarre action like zooming. Before the new

buffer is ready, your image will stretch to fill and probably pixelate for a

moment while the NSOperation is preparing new data.

The sample code in Examples/08BigViewThingOperationQueueRegular has all the

additional code. It also prints the contents of the NSOperationQueue on a timer to show

you what is in there. Build and run in the simulator. The application should remain

responsive.

Or is it? Every time I zoom in or zoom out on an image, the view pushes another

NSOperation onto the queue. If you watch the log messages printing the contents of the

NSOperationQueue, you will see that there are an ever-growing number of operations for

each view getting pushed when there is a lot of zooming going on. This makes the app

seem like it’s updating less and less often. The queue eventually clears but not after

drawing a given image several times, usually at zoom levels not currently needed for

drawing.

Wouldn’t it be nice to be able to cancel only certain pending operations on the

NSOperationQueue? You can. You just call the cancel method on your NSOperation
object; the queue will eventually (but not immediately) remove it, but it will never actually

run it. You can add a weak reference to the NSOperation subclass to point back to the

BigViewPageView object that placed it on the queue and then ask each NSOperation that

belongs to you to cancel before you add another operation to the queue. This way, you

can be sure that there is little wasted CPU time.

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 308

NOTE: In this implementation, an operation in progress cannot be canceled, so it’s still
possible that the queue will have to run two operations for a given view in fairly rapid
succession.

Once you have that weak reference, it’s easy to create a category on NSOperationQueue
to cancel all pending NSOperations in the queue filtered by an NSPredicate.

- (void)cancelOperationsFilteredByPredicate:(NSPredicate *)predicate;
{
 NSArray *ops = [[self operations] filteredArrayUsingPredicate:predicate];
 for (NSOperation *op in ops)
 {
 if(![op isExecuting] && ![op isFinished] && ![op isCancelled])
 {
 [op cancel];
 }
 }
}

If you notice that the NSOperation objects stay in the queue for a while, that is OK. When

NSOperationQueue decides that it is time to run a given operation, it will call start on the

NSOperation and wait for that operation to finish executing. If isCancelled returns YES,

the NSOperation will tell the NSOperationQueue that it is finished right away without ever

calling the main method. Add the operation cancellation code into your

BigViewPageView:

-(void)createOffscreenCtx
{
 NSOperationQueue *q = [(BigViewThingAppDelegate *) [[UIApplication
sharedApplication] delegate]

globalQ];
 NSPredicate *filter = [NSPredicate predicateWithFormat:@"SELF.interestedObject ==
%@", self];
 [q cancelOperationsFilteredByPredicate:filter];
 PLBlockOperation *op = [PLBlockOperation blockOperationWithBlock:^{
//BUNCH of drawing code here
}];
 [op setInterestedObject:self];
 [q addOperation:op];

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 309

NOTE: NSpredicate is an extraordinarily useful class that uses key-value coding to perform
queries on objects. I tend to think of them as structured queries for Cocoa objects, often used
to filter arrays based on some parameter or parameters of the objects it contains. Cocoa
programmers have enjoyed NSPredicate’s power for some time, but it has only recently
come to the iPhone in the 3.0 SDK. It’s also an important part of the magic of Core Data. You
can find more information on NSPredicate in Apple’s Predicate Programming Guide available
at http://developer.apple.com/mac/library/documentation/Cocoa/
Conceptual/Predicates/Articles/pUsing.html.

BigViewThing is not finished yet. You’ve just implemented something similar in behavior

to CATiledLayer. Perhaps CATiledLayer would be even more performant than the

NSOperationQueue code your using now. NSOperation can have an attached priority.

Perhaps you could place a series of low-priority operations on the drawing queue to fill

the cgContext buffers with a low-resolution version of each image so that the user’s off-

screen tiles will get drawn in the background using idle CPU cycles, thus removing the

gray placeholders. When you zoom back and forth between different levels, you might

not really need to rerender each time. Perhaps the default scaling transform from a big

zoomed-in image to a small zoomed-out image looks OK to you without a redraw. Buffer

size issues aside, perhaps you could allow a delay in redrawing the tiles at a smaller size

when the user zooms out by lowering the priority of that operation. That way, operations

that dramatically change the user experience will run first.

Observations, Tips, and Tricks
iPhone programming is embedded systems programming. Although you can expect

Cocoa Touch devices to become faster and faster over time, programming for the

iPhone is closer to that of a Nintendo DS or a LART box than a desktop computer. Our

examples will seem slow before you optimize on the new, faster iPhone 3GS, just less

so than on the original device. It’s always helpful to learn some embedded system

programmers’ tricks by programming for even more limited devices like LARTs or SBCs.

You can often sort of “fake it ’til you make it” when it comes to code that requires a lot

of system resources. UI response variability is particularly annoying; users don’t know

why your app is slow on the Edge network. “Sometimes it’s slow; sometimes it’s not. I

dunno why.” is a phrase to which I’m becoming perhaps too accustomed, but I strive

never to hear it. Clever caching of data while remaining responsive to the user’s input

through concurrent programming can make an application shine, even when it isn’t

really doing anything more than what it did before.

iPhone devices are severely memory constrained, disk read/write speed constrained,

and bandwidth constrained when compared to their bigger iron cousins. Remember that

UI and data share RAM, so you might get memory warnings at seemingly strange times.

You’ll notice some CPU and memory monitoring code in some of the example code.

CHAPTER 9: Fake It ’Til You Make It: Tips and Tricks for Improving Interface Responsiveness 310

You can use it in your application to anticipate memory resource shortages and modify

your application’s behavior. Once you do get a memory warning, you receive a short

warning, and then the system kills your app without prejudice or allowing you to save

precious user data, so be prepared to strip down your views and your data at a

moment’s notice. There is rudimentary handling of that in the BigViewThing example.

Look at the method called memoryWentBoom.

Summary
In this chapter, you learned how to make asynchronous or data-intensive applications

seem more responsive to the user. With the AAPLot and StockPlot applications, you

learned how to persist data between runs and for offline use, and you learned to ship

your application with some placeholder information so users can get an idea of how

your application will act when adding their own stuff. You also learned how to use

NSOperationQueue as a means to put processing of downloaded data into the

background, and you got a look at the Core Plot library to plot data. With BigViewThing,

you learned the ins and outs of zooming in a UIScrollView and a method to sharpen

your drawing when the user zooms in. You also peered into the future with the Plausible

Blocks library, and you learned how to make an application that deals with massive

images as responsive as possible by dropping operations into a background thread

using blocks.

Dealing with large amounts of data on a limited device like the iPhone presents a

challenge. It’s a challenge for which we happily carry plenty of tools to solve but for

which there is rarely a simple, singular answer. I hope this chapter has added a wrench

or two to that toolbox.

311

Joe Pezzillo
Company: Push IO LLC

Location: Boulder, Colorado

Former Life As a Developer: Joe has been programming Cocoa/Obj-C on Mac OS
X since 2001, and was a lead researcher at the Apple Electronic Media Lab for
the three years of its existence in the mid-90s. After that, Joe started one of the
earliest and most popular Internet Radio companies in 1996 and still does an
occasional volunteer afternoon music DJ shift on KGNU, the AM/FM community
radio station in Boulder/Denver. Joe has been exploring computers since he was
9 years old, sneaking into the campus computer lab to play games on the
terminals, and his first home computer was an Apple][+.

Life as an iPhone Develooper: Joe is the co-founder of Push.IO, a startup building
"smart infrastructure for smart phone developers." For the last year he's been
doing enterprise iPhone development, building native iPhone applications for a
Fortune 100 financial services company.

What's in This Chapter: This chapter walks the user through the implementation
of Apple’s Push Notification Service for their iPhone applications. We look at the
client methods, the certificate and provisioning process, and finally the server
component required to make it all work, wrapping it all up into a sample project
that includes both client and server code.

312

Key Technologies:

Apple Push Notification Service (APNS)

CocoaTouch/Objective-C methods for implementing APNS

The iPhone Developer Program Portal process for creating Push
certificates

The PHP Server Code needed to send notifications

 313

313

 Chapter

Demystifying Apple’s
Push Notification Service
Like so many things, my involvement with this technology all goes back to a quote

frequently attributed to Mark Twain: “When everyone is looking for gold, it’s a good time

to be in the pick and shovel business.”

I first heard this expression while I was working for Apple in the mid-90s. The Web 1.0

gold rush was on, and the R&D group I was part of was one of the few groups in the

company doing anything Internet related at the time.

We were lucky to be under the direction of a senior R&D executive, who in his first

meeting with our group laid out Mark Twain’s wisdom perfectly: “We will make picks

and shovels.”

The lightbulb went on.

One could certainly argue that not only has Apple since gone on to make picks and

shovels (how many web sites are developed on Macs?), it has also struck gold more

than once, too. In fact, it has struck so much gold, it’s practically a bank!

That easy yet insightful advice has stuck with me ever since, and when it became

obvious that the iPhone had become its own gold rush, I couldn’t help but wonder,

“What is the picks and shovels play?”

At the first Satellite iPhoneDevCamp Colorado in 2008, I met Dan Burcaw, and we

discovered we were both asking this question and went around for a couple months

with ideas.

Finally, Dan was in the room in Cupertino when Apple announced iPhone OS 3.0, and

we realized that the new features Apple was providing were going to need people who

could provide the back-end server support—the picks and shovels, if you will. Dan’s

background in servers (he cofounded the company that created the Yellow Dog Linux

distribution) and mine in Internet broadcast (see U.S. patent 6434621), combined with

both our prior experiences working at Apple, made us think this could be the perfect

entry point.

10

CHAPTER 10: Demystiying Apple’s Push Notification Service 314

By the time you’ve finished this chapter, you’ll have a working implementation of a

simple Apple Push Notification Service client on your iPhone that talks to a remote

server and allows you to send notifications to all users of this particular app.

What Is the Apple Push Notification Service?
Simply, the Apple Push Notification Service (APNS) is a way to send text alerts, custom

sounds, and badge counts to your application on users’ devices encouraging them to

use your app, even if your app isn’t running at the moment.

APNS has a number of advantages:

Free—no SMS charges, free to use, free to develop

Can invoke your app

Can make your app play a sound or show a badge

Doesn’t require background processing

Easy to add to your app

What You’ll Need
You’ll need to be a full member of the Apple Developer Program, with the ability to

generate certificates (in other words, a Team Agent). You’ll also need an iPhone or iPod

touch capable of receiving notifications. I’ll also presume you have a remote server

where you will run the back end for this application.

 Although this chapter will walk you through the entire process from end to end, I’d still

say that it’s basically mandatory that you read Apple’s Remote Notification
Programming Guide. It is the official documentation, after all.

Also, access to the forums will be invaluable as you implement this. Not only are there

dozens of source code samples for a variety of languages, you’ll also see what issues

other developers are encountering and how they resolve them.

I’m also going to presume that you’ve already developed at least one iPhone

application, even if it’s just a “Hello World” app, so that you know how to use Xcode,

create a project, deploy your app to your device, and have some familiarity with the

iPhone Developer Program Portal.

Step 1: Create the Client
Open Xcode, and make a new project using the View-based Application template; let’s

call it Push2. I wanted the final product on the phone to be called 2Push2, so I went to

the Target Build properties of my new project and changed the Product Name field to

2Push2 for all configurations. There are two primary parts of this app: the part that

interacts with APNS and the part that interacts with the user. The meat of push

notifications is going to take place in the application delegate. For the user interface, I’ll

also show how to make a view controller that allows you to see and send messages.

CHAPTER 10: Demystiying Apple’s Push Notification Service 315

The Application Delegate
In the Push2AppDelegate.m file, you’ll add what are basically the three required methods.

I’ll get to the actual code in the next section, but to give you an idea of how little work

you have to do to add APNS to your application, these are the only three methods you

have to add to your existing code to get started:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

- (void)application:(UIApplication *)application
didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)deviceToken

- (void)application:(UIApplication *)application
didFailToRegisterForRemoteNotificationsWithError:(NSError *)error

Part of the appeal of push notifications is that they can help bring users back into your

application even if it is not running, but if you want to also be able to handle notifications

while your app is open, then you’ll want to add this fourth method:

- (void)application:(UIApplication *)application
didReceiveRemoteNotification:(NSDictionary *)userInfo

Registration

The first step in the process is to tell the iPhone OS what kinds of notifications you want

to receive, which can be any combination of badges, sounds, and alerts. So, the first of

the three methods you need to tackle are these:

(BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

Open the Push2AppDelegate.m file, and add the code for this new method:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 // other setup tasks here....
 [[UIApplication sharedApplication]
registerForRemoteNotificationTypes:(UIRemoteNotificationTypeAlert |
UIRemoteNotificationTypeSound)];

 // [self updateWithRemoteData]; // freshen your app!

 // RESET THE BADGE COUNT
 application.applicationIconBadgeNumber = 0;

 // ...
 // call the original applicationDidFinishLaunching method to handle the basic view
setup tasks
 [self applicationDidFinishLaunching:application];

 return YES;
}

CHAPTER 10: Demystiying Apple’s Push Notification Service 316

didFinishLaunchingWithOptions is a new method in iPhone OS 3.0, intended to replace

applicationDidFinishLaunching and recommended by Apple as a replacement for that

old method since it handles both the delivery of the push notification payload to your

application and the case that your application is opened by a custom URL protocol

handler. It’s important to note that when you use this new method, your old

applicationDidFinishLaunching will not get called. Since the Xcode template already

includes a placeholder applicationDidFinishLaunching that handles presenting the

view, you’ll note that you still call that as the last step in this new method.

It’s in this method that you call UIApplication’s registerForRemoteNotificationTypes
to set up the types of notifications you’re interested in receiving.

This registers the application with the system to get notifications. Call the

registerForRemoteNotificationTypes method with the set of options you want to

support—alerts (text dialogs), sounds, and badges. Use the “or” command (the pipe) to

combine these values:

 UIRemoteNotificationTypeBadge,
 UIRemoteNotificationTypeSound,
 UIRemoteNotificationTypeAlert,

NOTE: You can see that in this example I’m registering to receive alert and sound notifications.

You’ll also notice that you might start loading the freshest data from your remote server

here, and you’re updating the badge count to 0, removing any badge from the

application’s icon on the home screen.

When registerForRemoteNotificationTypes returns successfully, the app will now be

able to receive notifications even when it’s not running! You should make sure that you

call this method every time your application launches because there is a chance that the

device token will change, for example, if the user has restored their device from a

backup. This also means that if the user has restored from a backup, they must run your

application to start receiving notifications again. There’s no harm in calling this method

every time, since if the device token hasn’t changed, the OS knows and will simply

return you to the still-current device token.

Device Token Acquisition

Once the system has successfully registered your app, you will get called back

(asynchronously) and given a token specific to both this application and this device in

the second method you have to implement:

- (void)application:(UIApplication *)app
didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)devToken {
 [self sendDeviceTokenToRemote:devToken]; // send the token to your server
}

From here, you need to pass this token to your server. I’ll show an example of how to do

this in the demo application using its simple server script, but for now, make a note that

CHAPTER 10: Demystiying Apple’s Push Notification Service 317

you’ll need to implement your own version of the hypothetical

sendDeviceTokenToRemote: method that’s shown here.

Check for Errors

There’s also an error callback method you should choose to implement to handle the

case when you do not get a token, which is especially useful during debugging:

- (void)application:(UIApplication *)app
didFailToRegisterForRemoteNotificationsWithError:(NSError *)err {
 NSLog(@"Failed to register, error: %@", err);
}

 So, after implementing these three methods, you’re now set up to handle the case that

your application is called as the result of the user selecting the View button in a text alert

or unlocking their phone immediately after receiving a text alert.

But what about when your application receives a notification while it is already running?

To handle this case, you also need to implement the following method in the

AppDelegate:

- (void)application:(UIApplication *)application
didReceiveRemoteNotification:(NSDictionary *)userInfo

You’ll use this to update the user interface if a new notification comes in while the app is

running.

Handling Incoming Notifications
When the payload finally arrives in your application ready for use, it comes in the form of

a dictionary. It’s so easy! When either one of the following two methods gets called,

you’ve got a notification. Either the following gets called as a result of launching the app

after a notification comes in, and then the launchOptions
UIApplicationLaunchOptionsRemoteNotificationKey will have the notification value in

the aps key:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

or the following gets called as a result of a notification arriving while the app is running,

in which case the userInfo NSDictionary object will have the notification value in the aps
key:

- (void)application:(UIApplication *)application
didReceiveRemoteNotification:(NSDictionary *)userInfo

The notification is itself a dictionary with the included components, so the following

gives you the text of the notification alert in the alert variable:

NSDictionary *aps = [userInfo valueForKey:@"aps"];
NSString *alert = [aps valueForKey:@"alert"];

CHAPTER 10: Demystiying Apple’s Push Notification Service 318

You can also send your own custom data in the notification, as I’ll demonstrate later in

the chapter.

Sounds
As you’ve already seen, one of the notification types you can make use of is a custom

sound, and even better, it’s very easy to implement!

Since it’s the system that plays these sounds, they have to be in one of the standard

system sound formats (linear PCM, Law/aLaw, or MA4) and file types (.aiff, .wav,

.caf).

The Apple Push Notification Programming Guide also shows how to use the afconvert
command-line tool to prepare standard system sounds for use, too. For example, here’s

how they show converting the system sound Submarine for use:

afconvert /System/Library/Sounds/Submarine.aiff ~/Desktop/sub.caf -d ima4 -f
caff -v

Once your audio is prepared, simply add it to the Xcode Resources group, and it will be

built into your application bundle and be available to APNS.

Then, with the sound file in your app’s bundle, you simply reference that sound file in the

JSON payload you send from your server to APNS, which I’ll cover in the “Step 3: Set

Up the Server” section of this chapter.

Note that if the user has their phone muted, then it will vibrate in lieu of playing the

sound.

Although sounds can be an incredibly useful way to notify your users, do consider the

experience your users might have if either your application is causing sounds to play

constantly or your application is just one of many that are causing sounds to play.

Remember that the user can turn off notifications in the system Settings application, and

you can pretty much presume they will if they become too annoying.

Build and Go! Er, Not So Fast...
Now, with all of this done (and I haven’t even gotten to the interface yet), you might be

tempted to build and run the application, which is a fine thing to do, except you’ll

probably encounter one of the first requirements. You must be able to deploy to a

device, because APNS does not work on the simulator:

2009-07-26 19:45:38.880 2Push2[12444:20b]
didFailToRegisterForRemoteNotificationsWithError:Error Domain=NSCocoaErrorDomain
Code=3010 UserInfo=0xd2a170 "remote notifications are not supported in the simulator"

Switching over to the device trying to build will then lead you to one of two errors. In

Xcode while building, you’ll get this error:

Code Sign error: a valid provisioning profile matching the application's Identifier
'com.yourcompany.2push2' could not be found

CHAPTER 10: Demystiying Apple’s Push Notification Service 319

Or in the console when running, you’ll get this error:

2009-07-26 19:52:55.415 2Push2[3046:207]
didFailToRegisterForRemoteNotificationsWithError:Error Domain=NSCocoaErrorDomain
Code=3000 UserInfo=0x12faa0 "no valid 'aps-environment' entitlement string found for
application"

Both of which will be addressed by creating the certificate in the next section.

Step 2: Create the Certificate
In this section, I’ll walk through all the steps necessary to generate the required server-

side development SSL certificate and mobile provisioning files for use with your push

notification application.

If you have already made distribution certificates for yourself for ad hoc or App Store

distribution, this will build on your experience. If you haven’t already made certificates

for yourself, although this isn’t particularly difficult, it’s a lengthy, involved process, so I

recommend starting with just an ad hoc certificate before leaping right in to APNS.

 There are a couple of key things to keep in mind about the setup. First, there’s a secret

certificate file that lives on your server that talks to Apple’s APNS. This certificate

identifies you and your application so that Apple can both trust you as the originator of

the notification and know that the device has asked to receive the notification.

Second, there’s also going to be a custom mobileprovision file that identifies your

application to the system to receive its notifications.

 In addition, you will need to use a custom, unique application ID in the program portal.

You cannot use a wildcard application ID for this, because each application needs to be

addressed individually.

Once you have created this certificate, it will be used to authenticate and encrypt your

connection to Apple’s push notification servers using SSL.

Because the topic is encryption, which is a genuinely tough subject and because there

are so many steps (that can go wrong), creating certificates is one of the most dreaded

tasks in iPhone development. If you’re new to this, follow along the first time through,

which will demystify the process along the way, and just get it done.

A Walk-Through of the Program Portal Process
In your web browser, go to this location:

http://developer.apple.com/iphone/

Log in using your Team Agent account.

From here, on the right side near the top, you’ll see the iPhone Developer Program

Portal link.

CHAPTER 10: Demystiying Apple’s Push Notification Service 320

NOTE: If you don’t see the program portal option, then it’s possible that either you are not
signed in as the Team Agent or you are not yet fully enrolled in the program. You’ll need to be
enrolled and signed in as Team Agent to complete this section of the process.

Click the link to go to the program portal.

The program portal is where you manage all your certificate-related details, from devices

to app IDs to provisioning profiles. I’ll presume you already have your basic

development certificate set up and that you’ve previously deployed code to the device

at a minimum and ideally for distribution.

The first step here is to create an app ID (Figure 10-1).

Figure 10-1. The program portal screen for creating a new app ID

I’m going to use com.pushio.2push2 for my app ID.

Enter the information required, enter a brief description, let it generate a new bundle

seed ID, and enter the reverse-domain notation app bundle ID (that’s the

com.pushio.2push2 string for me), as shown in Figure 10-2.

CHAPTER 10: Demystiying Apple’s Push Notification Service 321

Figure 10-2. Entering a description and the bundle identifier

Then, you’ll see your new app ID in the list on the main manage App IDs page, as shown

in Figure 10-3.

Figure 10-3. Your new app ID in the list on the main manage app IDs page

Choose Configure, and then enable your app for APNS. Select the check box next to

”Enable for Apple Push Notification service,” as shown in Figure 10-4. Then click the

Configure button.

CHAPTER 10: Demystiying Apple’s Push Notification Service 322

Figure 10-4. Select the “Enable for Apple Push Notification service” check box.

For this app, click the Configure button for the Development Push SSL Certificate

option. You’re now prompted to launch the Keychain Access application and generate a

certificate signing request (CSR), as shown in Figure 10-5, so let’s do that!

Figure 10-5. The APNS SSL Certificate Assistant walks you through the required steps.

CHAPTER 10: Demystiying Apple’s Push Notification Service 323

As the assistant tells you, once in Keychain Access, select Keychain Access ➤
Certificate Assistant ➤ Request a Certificate from a Certificate Authority, as shown in

Figure 10-6.

Figure 10-6. Choosing the Request a Certificate from a Certificate Authority menu in Keychain Access

Enter a valid e-mail address, a memorable name for this development certificate (so you

can easily identify the key pair), leave the CA Email Address field blank, and choose to

save it to disk, as shown in Figure 10-7. Click Continue, and it will prompt you for where

to save the file. For this exercise, save it to your desktop as 2Push2-Development-
APNS.certSigningRequest.

Figure 10-7. Creating the CSR for the development push SSL certificate

CHAPTER 10: Demystiying Apple’s Push Notification Service 324

When done, it will tell you that your certificate request has been created on disk. Now

switch back to the program portal.

Here, the assistant is waiting to choose the CSR file you just created. Select Choose

File, and find the new CSR file you saved on the desktop, as shown in Figure 10-8.

Figure 10-8. Attach the CSR you just created with the Choose File button.

When that is done, it will present you with a new certificate file to download, as shown in

Figure 10-9.

CHAPTER 10: Demystiying Apple’s Push Notification Service 325

Figure 10-9. Download the new certificate file, and rename it to something more memorable.

Download this file, which will be saved as aps_developer_identity.cer.

Immediately rename it to something that will help you identify the file later, such as

2push2-aps_developer_identity.cer. Double-click this file, which will then open in

Keychain Access.

Add it to the login keychain as prompted, as shown in Figure 10-10.

Figure 10-10. Add the certificate you just downloaded to the login keychain.

CHAPTER 10: Demystiying Apple’s Push Notification Service 326

One of the key reasons to name that certificate you just created with a memorable

common name is because it will be showing up in the keychain access list along with

other such certificates, and you need to be able to tell them apart easily, as shown in

Figure 10-11.

Figure 10-11. The certificate with the renamed private key is easier to find in Keychain Access.

Now, here’s the tricky part that’s most likely needed by your server, such as in this case

where you’ll use a remotely hosted PHP script to do the back-end processing.

Select the certificate, and choose Export. It will prompt you for a name and location to

save the file. Once again, put it on the desktop for now, with a name you’ll recognize

later, such as 2Push2-Dev-Cert.p12. Save it in the .p12 format. When prompted for a

password for the certificate, as shown in Figure 10-12, do not enter one (more on this

later). Click OK.

Figure 10-12. For now, do not enter a password on this screen; just click OK.

Next, you are the prompted for your login password to authorize the export. Enter the

password you use to log in to your machine here (you do use a password to log in to

your machine, yes?), as shown in Figure 10-13.

CHAPTER 10: Demystiying Apple’s Push Notification Service 327

Figure 10-13. Your login password gets entered here, just to authorize the export.

Your password is not being added to the certificate; it is only being used to authorize the

export of the APNS certificate, which is sensitive data and should be protected from

disclosure. Click Allow to authorize this for this one time only.

You should now have this sensitive file on your desktop. It is sensitive because it

contains the private key that you created earlier that uniquely identifies you to Apple to

authorize notifications.

You now need to take one more step on this file to get it ready for use on the server, and

that’s to convert it from the .p12 format to the .pem format. (PEM stands for Privacy

Enhanced Mode.)

This is not hard but does require you to make a trip into the Terminal.app file.

From the Terminal prompt, you’ll need to navigate to where the .p12 file lives. You last

left it on the desktop, so enter cd ~/Desktop to navigate to your desktop.

Then, enter the following command, as shown in Figure 10-14:

openssl pkcs12 -in 2Push2-Dev-Cert.p12 -out 2push2-dev-cert.pem \
 -nodes -clcerts

When it asks you to enter the import password, enter nothing. Instead, simply hit Return.

Figure 10-14. Convert the .p12 file to a .pem file for the server using openssl on the command line

I named the output file 2push2-dev-cert.pem to help keep track of what it is. You may

want to shorten the name.

CHAPTER 10: Demystiying Apple’s Push Notification Service 328

Note that the resulting file is extremely sensitive and should be protected from

disclosure.

Keep the .pem file handy, because you’ll use it again during step 3.

Back to the Portal
OK, you’re not quite done yet; you need to go back to the Apple program portal and

create one more file.

Click the Provisioning link in the left column, which will take you to your Development

Provisioning Profiles list, as shown in Figure 10-15.

Figure 10-15. The Development Provisioning Profiles list in the program portal

Click New Profile.

Enter a useful profile name, choose your development certificate, select the app ID you

created earlier, and select the devices on which you want to be able to do development

of this application, as shown in Figure 10-16.

CHAPTER 10: Demystiying Apple’s Push Notification Service 329

Figure 10-16. Set up the certificate, app ID, and devices for the development provisioning profile.

NOTE: Once you use a device for APNS development, it is “locked” into push development
mode. Switching back to Distribution (that is, ad hoc) mode may require a restore of the device.
If you search Apple’s iPhone Developer Forums about this topic, you’ll find plenty of discussion.
Some have reported that you can simply run an app that you got from the App Store that is in
distribution mode to switch your device. Your mileage may vary.

Submit the new provisioning profile setup, and wait for a moment while it’s generated;

then download your new mobileprovision file. In this case, it’s called

2Push2DevAPNS.mobileprovision.

Add the Mobile Provisioning File for Code Signing
Double-click that file. Xcode will open, and the file will appear in the mobileprovision
files list. You may want to quit and restart Xcode immediately after this step, just to

make sure that it “takes” the file and recognizes it before the next step.

Next, go back to your iPhone client application, 2push2.xcodeproj, and open the target

settings (click the target in the left list, and then click the big blue “i” button at the top of

the screen).

In the inspector window that opens, choose the Build tab at the top. Select your

mobileprovisioning file that you just created, as shown in Figure 10-17.

CHAPTER 10: Demystiying Apple’s Push Notification Service 330

Figure 10-17. Selecting the new code-signing identity in Xcode in the Targets ➤ Info ➤ Build pane.

If it’s there but not selectable, double-check to make sure that the app ID matches your

bundle ID under the Properties pane of the same Target Info inspector window.

Build and run your app, and you should see two juicy bits. The first is that the device

token is now appearing in your console log output:

2009-07-26 22:56:57.840 2Push2[3272:207]
didRegisterForRemoteNotificationsWithDeviceToken:<7c8f50b4 51ef62e1 6c068b42 b3425e47
839be4c6 5aeac1cd db0ede0f 85467304>

The second is that your application should have prompted the user to allow push

notifications, as shown in Figure 10-18.

CHAPTER 10: Demystiying Apple’s Push Notification Service 331

Figure 10-18. The iPhone OS prompt to confirm the user wants push notifications from your application.

Now, you have everything you need to set up the server.

Step 3: Set Up the Server
This, along with the user interface to it, is actually where you’re going to have some fun

with this application.

This is really the ultimate magic of push notifications. It’s not the technology itself; it’s

what developers do with it. Sure, getting your AIM messages and tweets is actually

already really great, and there will be so much more that people create.

I’m going to show how to do this in PHP mostly because it’s accessible to a wide range

of programmers even in other languages, but there are lots and lots of options on the

forums for all your favorite languages.

NOTE: This PHP example code by Jerome Poichet (http://frencaze.com) is available on
the Apple Developer Forums, used with permission. See
https://devforums.apple.com/message/50461.

There are two places where you must make changes to this script,

ENTER_DEVICE_TOKEN_HERE and CERTIFICATE_FILENAME:

<?php
$pass = ''; // Passphrase for the private key (.pem file)
$token64 = 'ENTER_DEVICE_TOKEN_HERE'; // base64 encoded device token

// The actual notification payload

CHAPTER 10: Demystiying Apple’s Push Notification Service 332

$body = array();
$body['aps'] = array('alert' => 'Greetings from Joe!', 'sound' =>
'sound.aif', 'badge' => 1);

/* End of Configurable Items */

$ctx = stream_context_create();
stream_context_set_option($ctx, 'ssl', 'local_cert', 'CERTIFICATE_FILENAME.pem');
stream_context_set_option($ctx, 'ssl', 'passphrase', $pass);

$fp = stream_socket_client('ssl://gateway.sandbox.push.apple.com:2195', $err, $errstr,
60, STREAM_CLIENT_CONNECT, $ctx);
if (!$fp) {
 print "Failed to connect $err $errstr\n";
 return;
}

$payload = json_encode($body);
// Thank you to the Perl example - MODIFIED
$msg = chr(0) . chr(0) . chr(32) . pack('H*', $token64) . chr(0) . chr(strlen($payload))
. $payload;

fwrite($fp, $msg);
fclose($fp);

You’re doing something really simple here, and that is sending a text alert notification to

a single device that is hand-coded into the script.

There are a few key things to note in this script:

There’s an SSL connection made to the sandbox server,

gateway.sandbox.push.apple.com on port 2195, using the SSL server

certificate created in the previous section.

The $body['aps'] associative array has the values for the three

different types of notifications that can be sent. Specifically, alert is

the text for what should appear on the screen in the alert dialog box,

sound is the name of the sound file you want played, and badge is an

integer for the count to be displayed as a badge on your application’s

icon.

This script is using the json_encode function to convert a PHP array

into a JSON encoding.

The $msg variable serializes the data being sent to the APNS servers in

the required format: two null (zero) bytes, an ASCII space, the token

“packed” into hexadecimal, another null byte, the payload length, and

finally, the JSON payload itself.

The iPhone OS generates the device token and provides it to the application in the

didRegisterForRemoteNotificationsWithDeviceToken method you saw earlier. Our

example app shows it on-screen and prints it to the console. You’ll want to copy and

paste it either from the iPhone application to an e-mail or from the console directly. If

CHAPTER 10: Demystiying Apple’s Push Notification Service 333

you copy it from the console, remember to remove the brackets (< >) and spaces so you

have one long 64-character string that you paste into the PHP script.

Yes, this way of approaching things is a bit ugly, but otherwise the chapter would have

been about web services and not APNS!

NOTE: For more information about web services on the iPhone, refer to Joachim Bondo’s
chapter.

A Walk-Through of What This Script Does
First, the script offers an option for a password, but you’re leaving it blank (as you have

throughout the process). If you want to add a password to your certificate, then you

would also need to supply that password here, which if you hard-code it may create an

additional security issue.

Next, it sets up the value of the device token, which you copied and pasted in from the

console output or e-mail.

Then it sets up the payload for the notification. Here, you’re sending only a text alert.

Once the variables are set up, the script opens an SSL socket connection to the Apple

sandbox server on the appropriate port, encodes the token and message, writes it

through the socket, and then closes the connection.

To try this, save this script on your server as apns_test.php, copy the .pem certificate file

you created earlier into a directory outside your web-accessible directory, and adjust the

path to the CERTIFICATE_FILENAME and path appropriately. For example, I might put it in

my home directory, and then the path might be something like this:

/home/joe/2push2_dev_cert.pem

NOTE: Do not store the .pem file in a web-readable directory!

Now, run the PHP script, and if everything goes according to plan, it should look

likeFigure 10-19.

CHAPTER 10: Demystiying Apple’s Push Notification Service 334

Figure 10-19. Your first push notification! (suitable for framing)

Congratulations, you’re pushing!

Download Server File
Now, I could spend the rest of the book writing about how to build a server for this, but

I’m already running long, so I’m providing sample code you can use to host the server

side of this application.

You can most likely test this PHP script on your own laptop, but you’ll want to make

sure it’s on a host that’s accessible from the Internet if you want multiple users of your

app to be able to have access.

Download the server script for your own use here:

http://2push2.us/apress/server/

Using this script will require some basic knowledge of PHP hosting and MySQL to get

the script uploaded, running, and connected to a database. The SQL command to

create the single needed devices table is included in the script.

Install this script (apress.php) and the appropriate development certificate file by

uploading them to your host.

There are a few things you’ll need to change in the script:

The Server address
The certificate file path
Your MySQL host, username and password

If you call this script without any arguments, it will return usage information:

CHAPTER 10: Demystiying Apple’s Push Notification Service 335

Apress.php

Sample server program for use with Apress Push Notification Chapter
Usage:
?token=DEVICE_TOKEN&cmd=(reg|msg)&(name|msg)=(USERNAME OR MESSAGE)

 e.g.

Register a token:
?token=1d19fc527407d39bcd1d69deff7a3e7abe569d7a8c7b0c69b0b3d30269c0b8d1&cmd=reg&name=tes
t

Send a message:
?token=1d19fc527407d39bcd1d69deff7a3e7abe569d7a8c7b0c69b0b3d30269c0b8d1&cmd=msg&msg=Hell
o,%20World!

Test it using the included sample arguments to make sure it’s installed and working.

If registration is working, the script should return the following:

Write token to registrations
success registering

Sending is harder to test from the web page without a valid device token. It will be easier

to test once you set up the client application, so let’s get to that next.

If you try it, you should see “Send message” followed by at least one device token and

then a “success” message. If you don’t get success, you’re likely to see something like

this:

Warning: stream_socket_client() [function.stream-socket-client]: unable to connect to
ssl://gateway.sandbox.push.apple.com:2195 (Connection timed out) in
/home/content/html/apress/apress.php on line 209
Failed to connect 110 Connection timed out

which basically means that your server couldn’t connect to the Apple server, and that’s

possible for one of a couple primary reasons:

Your host doesn’t support connections over port 2195.

Your certificate is set up wrong. (Do you have the wrong file name in

variable? Is it in a directory that the script can read? Is it the correct

certificate for app, such as the correct app ID/bundle name,

development vs. production certificate?)

NOTE: It is not good practice to leave the security certificate in the same directory as the
script, such as in a web-accessible location.

CHAPTER 10: Demystiying Apple’s Push Notification Service 336

The Home Stretch
With the new server script and the certificate file up on the host, you’re ready to finish

the application and start pushing something interesting!

You’ll recall the app specification—an iPhone application that distributes push

notifications from any user to all users of the app.

So, now that you’ve sent a notification through the system, you can add the finishing

touches to your app.

The server API for this test is a simple GET call where you set the msg parameter to the

message you want to send (it has to be URL encoded, and the server will truncate it

after 140 characters).

There are two other parameters. One is the device token of the sending device so that

you can authenticate that the message came from a registered user of the app, and the

other is a command argument so you can tell the difference between the process of

registration and sending a message.

That is, if you send this:

http://SERVER/DIRECTORY/apress.php?token=DEVICE_TOKEN&cmd=msg&msg=Hello%20World!

then in your application’s console output, you should see this:

2009-08-07 00:22:40.624 2Push2[1142:207] didReceiveRemoteNotification:{
 aps = {
 alert = "test says: Hello, World!";
 };
 custom = test;
}

And here, you also see what it looks like when you attach your own custom values to the

APNS payload, in this case the username string in the “custom” field.

NOTE: I’m going to make a bunch of changes in the Cocoa code for the iPhone application.
You can save yourself from typing this all in by downloading the project and code files at
http://2push2.us/apress/client.

Wiring Up the Client
You want to be able to send to the UI elements on-screen and know when the button

has been pressed.

First, create the outlets and actions that you’re going to connect to in

Push2ViewController.h.

In particular, add IBOutlets for a UITextView and UILabel and an IBAction for a button:

CHAPTER 10: Demystiying Apple’s Push Notification Service 337

IBOutlet UITextView *messageTextView;
IBOutlet UILabel*deviceTokenField;
IBOutlet UITextField *usernameField;

-(IBAction)handleSendButton:(id)sender;

Next, switch to Interface builder and add the UITextView, a UILabel, a UITextField (for

the username), and a UIButton.

Then wire these all up in Interface Builder, as shown in Figure 10-20.

Figure 10-20. The objects, layout, and connections in Interface Builder for our sample application

Then in the code, you have a few details for talking back and forth between the push

notification methods and the user interface, as well as the remote server.

Here’s what that looks like in the ViewController code:

-(IBAction)handleSendButton:(id)sender
{
 NSLog(@"handleSendButton");

 // make a get request to our script with the msg parameter set
 // msg=URLENCODEDSTRING;

 CFStringRef outString = CFURLCreateStringByAddingPercentEscapes(kCFAllocatorDefault,
(CFStringRef)messageTextView.text, NULL, NULL, kCFStringEncodingUTF8);

 NSString *urlFormatString =
@"http://2push2.us/apress/apress.php?token=%@&cmd=msg&msg=%@";

 NSURL *composedURL = [NSURL URLWithString:[NSString
stringWithFormat:urlFormatString,deviceTokenField.text,(NSString *)outString]];

 NSLog(@"composedURL:%@", composedURL);

 NSString *result = [NSString stringWithContentsOfURL:composedURL];

CHAPTER 10: Demystiying Apple’s Push Notification Service 338

 NSLog(@"result:%@", result);

 CFRelease(outString);

}

-(void)handleSetDeviceTokenField:(NSString *)inDeviceToken
{
 NSLog(@"handleSetDeviceTokenField:%@", inDeviceToken);

 deviceTokenField.text = inDeviceToken;
}

-(void)handleDidReceiveRemoteNotification:(NSDictionary *)userInfo
{

 NSDictionary *aps = [userInfo valueForKey:@"aps"];
 NSString *alert = [aps valueForKey:@"alert"];

 messageTextView.text = alert;

}
And in the App Delegate where we interact with the notifications, here are the three key
methods:
- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{

 // register for remote notifications
 UIRemoteNotificationType types = UIRemoteNotificationTypeBadge |
UIRemoteNotificationTypeSound | UIRemoteNotificationTypeAlert;
 [application registerForRemoteNotificationTypes:types];

 // because we implement didFinishLaunchingWithOptions, the "old" entry method
doesn't get called
 [self applicationDidFinishLaunching:application];

 return YES;

}

- (void)application:(UIApplication *)application
didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)deviceToken
{

 NSLog(@"didRegisterForRemoteNotificationsWithDeviceToken:%@", deviceToken);

 NSString *inDeviceTokenStr = [deviceToken description];
 NSString *tokenString = [inDeviceTokenStr
stringByTrimmingCharactersInSet:[NSCharacterSet characterSetWithCharactersInString:@"<
>"]];
 tokenString = [tokenString stringByReplacingOccurrencesOfString:@" "
withString:@""];

CHAPTER 10: Demystiying Apple’s Push Notification Service 339

 // send it to the remote server

 // we don’t have the username yet

 NSString *hostString = @"http://2push2.us/apress/apress.php";
 NSString *nameString = @"2Push2User";
 NSString *argsString = @"%@?token=%@&cmd=reg&name=%@";
 NSString *getURLString = [NSString
stringWithFormat:argsString,hostString,tokenString,nameString];
 NSString *registerResult = [NSString stringWithContentsOfURL:[NSURL
URLWithString:getURLString]];

 NSLog(@"registerResult:%@", registerResult);

 // display it in the field on the view controller
 [self.viewController handleSetDeviceTokenField:tokenString];

}

- (void)application:(UIApplication *)application
didReceiveRemoteNotification:(NSDictionary *)userInfo
{
 NSLog(@"didReceiveRemoteNotification:%@", userInfo);
 [self.viewController handleDidReceiveRemoteNotification:userInfo];

}

NOTE: As you switch between development and ad hoc distribution versions of your
application, be sure to clean out (or change) your device tokens table, because you can’t use
development device tokens on the production service!

Now, you’re ready to resume your development and test where you left off in the server

section earlier.

CHAPTER 10: Demystiying Apple’s Push Notification Service 340

Figure 10-21. The 2Push2 client application user interface

Let’s take a look at it in action.

Presuming you’ve handled the certificates, built the app, uploaded the server script, and

done all the preliminary testing as suggested, you should finally be up and running,

ready to test the app.

First, load the server script to your remote server and, while you’re at it, the certificate

(.pem) file. The server script is how the app will register its device token to receive

notifications, so the server-side has to be in place before the client-side app is run.

Second, run the iPhone application. Optionally, install this on several devices right now

to increase the fun!

Third, send notifications!

For convenience sake, when you now load the server script without any arguments, it

will present you with the first device_token in the database instead of a placeholder, and

thus you can copy and paste the “Send Message” example arguments and send a

message right from your browser.

From here, there’s plenty more you can do to build out this application or anything else

you want to do with the Apple Push Notification Server.

I truly can’t wait to see what you come up with!

CHAPTER 10: Demystiying Apple’s Push Notification Service 341

Additional Considerations/Advanced Topics
Now that you have the basics handled, let’s make sure to also touch on a couple more

important points about using APNS.

Feedback Server
Even with everything that’s already in place, there’s still one last step to finish to be able

to say that everything is complete.

The feedback server is an Apple-provided facility for determining whether there are any

devices that have dropped from your service, usually because of uninstalling your app.

Apple requests that you periodically check the feedback server, get the device tokens of

these dropped users that it provides you, and then discontinue sending to those tokens.

Jake Olefsky (http://www.toodledo.com) has posted a prototype feedback server script

in PHP and with his permission I’m including it here. You can find the original at

https://devforums.apple.com/message/92559#92559.

Here’s how you do it:

<?php

function iPhoneGetUninstalledTokens() {
 global $certPassphrase;

 $ctx = stream_context_create();
 stream_context_set_option($ctx, 'ssl', 'local_cert', '/path/to/production.pem');
 stream_context_set_option($ctx, 'ssl', 'passphrase', $certPassphrase);
 $fp = stream_socket_client('ssl://feedback.push.apple.com:2196', $err, $errstr, 60,
STREAM_CLIENT_CONNECT, $ctx); //for sandbox: feedback.sandbox.push.apple.com:2196

 if(!$fp) {
 echo "Failed to connect $err $errstr\n";
 } else {
 $contents = stream_get_contents($fp);
 if($contents){
 echo "Feedback Received";
 }else{
 echo "Failed to receive Feedback";
 }

 }
 fclose($fp);

 return $contents;
}

$data = iPhoneGetUninstalledTokens();

$tuples = strlen($data)/38;

CHAPTER 10: Demystiying Apple’s Push Notification Service 342

for($i=0;$i<$tuples;$i++) {
 $offset = $i*38;

 $time = substr($data,$offset,4);
 $time = hexdec(bin2hex($time)); //unix timestamp

 $len = substr($data,$offset+4,2);
 $len = hexdec(bin2hex($len)); //always 32

 $token = substr($data,$offset+6,32);
 $token = bin2hex($token); //hex token

 echo $time." ".$len." ".$token;

 //put your removal code here
 //$q = "DELETE FROM apresschapter.apressdevices WHERE device_token = '$token'";
 // Execute MySQL Query and test result

}
?>

It’s important to check the Feedback service regularly to update your database of invalid

device tokens.

SSL Server Connections
Try to leave your connections open! Don’t be opening/closing your socket to Apple

frequently. You want to send as many notifications through on each connection as you

can. If you get disconnected, simply reconnect and keep sending. Do not open a new

connection for each notification, since the connection setup is a comparatively

expensive operation and Apple may interpret your repeated connections as a type of

denial-of-service attack.

Moving from Development Sandbox to Production
When you’re ready to switch from development to distribution (either for ad hoc testing

or for final App Store deployment), you’ll repeat the same process of creating the

certificate as you did in “Step 2: Create the Certificate” of this chapter, only this time,

you’ll create a distribution version of the SSL certificate instead of a development

version.

After generating the Production Push certificate and provisioning file, the other key

change you need to make is to switch from using the sandbox server to the production

server at gateway.push.apple.com on the same port (2195). You'll need to keep track of

your development and production certificates to make sure you're using the right

version for deployment. You also need to make sure that you're not mixing device

tokens from development with those for production. You'll use the production service for

both Ad Hoc and App Store (or Enterprise) deployments.

CHAPTER 10: Demystiying Apple’s Push Notification Service 343

Development vs. Ad Hoc
If you make the switch from development to distribution (ad hoc), and then your app

immediately crashes when you launch it, you may need to restore your phone from

scratch so that it can get into distribution mode. The “easiest” solution for this problem

is to have multiple devices and keep them separated by mode (development or

distribution); your second device can be an iPod Touch or a WiFi-only previous-

generation phone that you kept after an upgrade. See the note in the “Back to the

Portal” section earlier in this chapter for more information on this issue.

Mobile Provisioning Files
If you don’t get notifications, try deleting your app, deleting the mobileprovision file

from the device, and then reinstalling from Xcode. To delete your mobileprovision file,

go to the Settings.app and then General ➤ Profiles.

If you get the following error:

2009-07-27 00:25:34.089 2Push2[98:207]
didFailToRegisterForRemoteNotificationsWithError:Error Domain=NSCocoaErrorDomain
Code=3000 UserInfo=0x12e3f0 "no valid 'aps-environment' entitlement string found for
application"

it probably means you don’t have the correct mobileprovision file selected for

development. Instead of one for an existing device, you should be using the new one

created with the APNS app ID.

It’s likely you’ll switch between development and distribution modes during your

development phase, and this can be tricky. Remember to make sure that the version of

the iPhone application you are using (development or distribution) matches your remote

SSL certificate and your tokens.

Debugging
The best resource for learning more about debugging APNS is session 120 from WWDC

2009, which you can get on ADC on iTunes. It’s also the only way to get the inside story

on the #squawk hashtag.

User Experience
This is a development chapter focused on implementing code, but do consider the user

experience of push notifications. The user can easily turn off all notifications for your

application in the Settings application, so be careful not to give them a reason to do so!

Badges are the least intrusive option you can use; they’re a simple visual indication that

there is something new. Sounds can be a fantastic feedback mechanism for your users

but can be easily overdone. Text alerts are possibly the most intrusive given that they

need to be acted upon (dismissed or accepted) but can also convey the most targeted

CHAPTER 10: Demystiying Apple’s Push Notification Service 344

information in a glance. Remember, too, that your application will be sharing your user’s

device with other applications that will be sending notifications.

Open Source Code
You’ll find lots of open source code that you can use as the basis for your own server-

side implementation; one of the best examples is PHP APNS available on Google Code:

http://code.google.com/p/php-apns/

This is a great example of a message queue–based daemon written in PHP using

memcacheq and available under the LGPL license and including fully public domain code.

Hosted Solutions
You'll find quite a bit of information on the forums about hosting your own servers or

using a third-party service.

If you have an enterprise-class APNS (or other server-related) project you need handled,

I of course encourage you to call on Push IO. Drop me a line at joe@push.io.

Summary
I’ve covered a lot of material in this chapter, starting with the new methods in iPhone OS

3.0 that support push notifications, then the process of creating a server certificate to

communicate with Apple’s servers, server-side code in PHP for capturing device tokens

and sending notifications, and, of course, a working client-side implementation on the

iPhone.

Push notifications are one of the most exciting new features in iPhone OS 3.0 because

they have the unique ability to keep your users informed about information they care

about and encourage them to engage with your application, even while your app is not

running.

Already a variety of innovative and practical services are being built around the Apple

Push Notification Service, from letting you know what your friends are doing

(Foursquare) to getting the latest real-time discussions (via Twitter clients) to reminding

you of important events (Powerybase’s NotifyMe application) to keeping you up-to-date

on your favorite sports (as in the 91st PGA application).

I hope this chapter has given you everything you need to begin implementing push

notifications in your own applications and that you’ll send me examples of the cool

things you do with this new capability.

345

Noel Llopis
Company: Snappy Touch

Location: San Diego, CA

Former Life As a Developer: Cut my teeth many years ago on Z80 assembly and
having to save programs on cassette tapes. Developed games professionally in
just about every platform out there in the last ten years: Windows, PSX, Xbox,
PS2, Xbox 360, and PS3. My main areas of expertise are game engines, computer
graphics, and asset pipelines. Past games include:

The Bourne Conspiracy (Xbox360, PS3) (2008)

Darkwatch (PS2, Xbox) (2005)

MechAssault 2 (Xbox) (2004)

MechAssault (Xbox) (2002)

Battleship: Surface Thunder (PC) (2000)

Missile Command (PC, PSX) (1999)

Life as an iPhone Develooper:

Flower Garden. Games. Uses a mix of OpenGL and UIKit.

Tea Time. Utilities. Part of my one-day-app-experiment.

346

What's in This Chapter:

OpenGL specular lighting

Introduction to environment mapping

Spherical environment mapping

Normal environment mapping

Environment map plus reflection mask to control reflection per
pixel

Key Technologies:

OpenGL

Texture combiners

Multi-pass rendering

 347

347

 Chapter

Shine On: Environment
Mapping and Reflections
with OpenGL ES
The moment I first got my hands on an 8-bit computer, it was instant attraction on both

sides, and it quickly blossomed into a love affair with game development that continues

to this day. Since then, I’ve always kept up with the latest hardware at the forefront of

games technology, pushing each new platform to its limits to get the most amazing

graphics yet.

So, it was quite a change when I went from working on game console graphics to doing

iPhone development full-time. It felt like I was trading a Formula 1 car for a scooter. The

scooter was much slower than the car, but it was nimble, light, and maneuverable. It

was a lot more fun to drive!

The Beginnings
Coming from the traditional AAA game console world of big-budget titles and loud

explosions, I wanted to create a new experience on the iPhone. I wanted something that

was creative and could be shared with friends, and I wanted something that fit the usage

patterns of a mobile device and took full advantage of the device (touch input,

accelerometer, Internet connection, and so on). That’s how Flower Garden for the

iPhone got started (see Figure 11-1).

11

CHAPTER 11: Shine On: Environment Mapping and Reflections with OpenGL ES 348

Figure 11-1. The final look of the flowers in Flower Garden

The basic concept behind Flower Garden came together pretty quickly: the user could

plant different types of seeds and water and care for them over time, and the seeds

would grow into full plants and blossom. Then, the flowers could be cut, arranged into

bouquets, and sent to anyone through e-mail and Facebook.

To get started, I learned all I could about flower morphology, created a PC prototype of

the flower-growing technology, and ported everything to the iPhone. That whole process

took about a month and a half. The rest was a matter of fleshing out the application:

creating different seed types, coming up with an intuitive interface, cutting flowers and

sending bouquets, and adding the plant-caring element.

At that point, the rendering of the flowers was very simple. I had decided not to go for a

realistic look because the techniques I would need to apply just weren’t possible on an

iPhone without pixel shaders and powerful graphics hardware. So, instead I went for a

fairly plain, almost illustrated look to the flowers using OpenGL ES 1.1, which is available

in all models of the iPhone and iPod touch. The animation of the flowers swaying in the

wind and reacting to the touch was very effective and really made those simple

renderings come alive.

It was all coming along great, but something started bothering me: as I worked with the

graphic designer on the look of the garden and the landscape in the background, the

flowers started looking out of place. It’s not that the flowers had gotten worse; they were

still the simple, cartoony flowers they were at the beginning. But they were now

surrounded by an almost photorealistic environment. It was like putting Mickey Mouse in

a film noir picture, and the contrast was jarring. They just didn’t belong there.

CHAPTER 11: Environment Mapping and Reflections with OpenGL ES 349

First Steps: OpenGL Lighting
This was an iPhone game, not a big console title, so I couldn’t afford to waste

a single day of development on something that wasn’t going to have a big impact in the

final program. Even worse, I didn’t want to spend time on something that I wasn’t sure

was possible or something that wasn’t going to look good in the end.

Even so, I knew that if I made those flowers look more realistic, they would not only fit

much better in their surroundings but would make Flower Garden a much more

graphically interesting application. It was worth a shot.

So, why did the flowers look so plain, and what could I do about it? At this point, the

petals and leaves had no shading at all, just a texture used to blend between two

different colors. The stem and the head of the flower, because they’re more rounded

and solid, were rendered with standard diffuse and ambient reflection.

Both ambient and diffuse reflection are standard lighting models in OpenGL ES 1.1. With

ambient reflection, a surface is uniformly shaded depending on the light color and

intensity. Diffuse reflection, on the other hand, changes the shading on the surface

depending on the angle between the light direction and the surface normal. The

following equation describes the color of a surface with diffuse reflection:

Cd = max(0, L ⋅ N) ✽ Cl

Cd is the color of the diffuse reflection, L is the vector from the surface to the light, N is

the surface normal, and Cl is the color of the light. Notice that the color specifically

depends on the dot product between L and N, which means it’s directly related to the

cosine of the angle between those two vectors. When the dot product is negative (L and

N are pointing away from each other), there is no diffuse reflection.

The following code creates an OpenGL light with diffuse properties and a global ambient

light:

glEnable(GL_LIGHT0);
float diffuseColor[] = { 0.8f, 0.8f, 0.7f, 1.0f };
glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuseColor);

float ambientColor[] = { 0.6f, 0.6f, 0.6f, 1.0f };
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambientColor);

The sample program included with this chapter renders a 3D model of a car under

different light conditions. You can build it, run it, and spin the object around to

appreciate how the shading changes with the angle between the surface and the light.

You can also toggle the different lighting approaches described in this chapter by

pressing the top arrows. Figure 11-2 shows the program displaying a model lit with

ambient and diffuse reflections.

CHAPTER 11: Shine On: Environment Mapping and Reflections with OpenGL ES 350

Figure 11-2. Model lit with standard, OpenGL ambient and diffuse reflection lighting

Looking at real plants and flowers, it’s very obvious that there’s a lot more to lighting

than what I was doing. Plants are shinier, and petals are somewhat translucent, almost

ethereal sometimes. Leaves almost sparkle, especially when they’re wet, and they

change as they move in the wind or you look at them from different angles. What I

needed was some sort of specular highlights on the leaves that would really make them

come alive.

Specular highlights are the bright spots that appear on shiny or wet surfaces when

affected by a strong light. Look at the rippling surface of the water on a sunny day, and

you’ll see plenty of specular highlights.

With diffuse reflections, the shading on an object is completely determined by the

cosine of the angle between the surface normal and the light. Specular lighting depends

on the viewer position and adds an exponential drop-off factor, so the object is much

brighter when the surface reflects the light straight into the viewer, and it drops off very

quickly after that. That behavior is described in the following equation:

Cs = max(0, s ⋅ N)shininess
✽ Cs

Here, Cs is the specular color contribution, N is the surface normal, and Cs is the color of

the specular light source. What’s new here is s, which is an average of the vector from

the surface to the viewer position and the vector from the surface to the light.

Fortunately, OpenGL ES 1.1 also includes a specular lighting model. The theory was that

I should be able to turn that on and get all the sparkles I wanted. Before, when the

petals were completely unlit, the vertices didn’t need to contain a normal as part of their

structure. Now, as you can see in the specular reflection equation, I needed that normal

to compute the highlights, so I had to extend the vertex format to include them as well.

CHAPTER 11: Environment Mapping and Reflections with OpenGL ES 351

Finally, all I had left to do was to tweak the lighting parameters (primarily the shininess

exponential factor) until I got the desired results.

The following code adds a specular color to an OpenGL light:

float specularColor[] = { 0.9f, 0.9f, 1.0f, 1.0f };
glLightfv(GL_LIGHT0, GL_SPECULAR, specularColor);

The material also needs to have the specular parameters turned on, and the shininess is

controlled from there:

float specularMatColor[] = { 1.0f, 1.0f, 1.0f, 1.0f };
glMaterialfv(GL_FRONT, GL_SPECULAR, specularMatColor);
float shininess[] = { 50.0f };
glMaterialfv(GL_FRONT, GL_SHININESS, shininess);

Unfortunately, the standard specular lighting didn’t end up looking as dazzling as I was

hoping. I could even say it made things much worse. Figure 11-3 shows the sample

program with specular lighting turned on.

Figure 11-3. Model with per-vertex specular highlights. Not pretty!

The biggest problem with specular lighting on the iPhone is that it’s computed at a

vertex level. So, the highlight is calculated at each vertex and is then interpolated along

the pixels between vertices. This means that if you try to make the highlight bright and

sharp, you’re going to end up with something that looks like smeared chalk across your

mesh—that is, unless you have a mesh so dense that there’s almost a vertex at each

pixel, but that would be too much for the iPhone graphics hardware to handle, and

performance would suffer.

Another problem is that doing the specular lighting calculation at each vertex isn’t

cheap. That’s not a big deal because the frame rate was affected only a bit, but the

CHAPTER 11: Shine On: Environment Mapping and Reflections with OpenGL ES 352

problem is that you get only one specular highlight per light source. Look at a shiny

object again, and chances are you’ll see multiple highlights for different light sources in

the room you’re in. If I wanted to add more highlights, I would need to add more lights to

the scene, and that would again become prohibitively expensive.

This was clearly a dead end of a solution. I had to look for a different approach.

Turning to Environment Mapping
What I was trying to accomplish with specular lighting was to give the object some shiny

spots where the light from the scene reflected off the surface. Environment mapping is a

computer graphics technique I used in some of my past games to get similar shiny

effects, so maybe I could use it here as well to good effect.

An environment map is a texture that contains information about the scene surrounding an

object. This texture is then applied to a mesh in such a way as if it is reflecting the scene

around it. You don’t want to make the object a perfect mirror, but you can encode the

bright spots from the lights around us in the environment map and then combine them

somehow on the object to give the impression of shiny spots.

Environment mapping is a great technique that creates visually interesting scenes with

very little overhead or extra work on the developer’s part. One of the main drawbacks of

environment mapping is that they capture the surrounding scene from a single location,

so moving objects would have incorrect reflections, or the environment map itself would

have to be recomputed in real time, which can be quite expensive. Fortunately, in the

case of Flower Garden, the pot with flowers is at a fixed location. The camera can

change positions, and the flowers can move in the wind, but they aren’t changing

positions enough to be a problem, so environment mapping seems like a perfect

solution.

In many kinds of graphics hardware, this can be a really easy solution. All you have to do

is provide an environment map, turn on the environment-mapping mode, and off you go.

Unfortunately, there was a snag in my plan: the iPhone hardware doesn’t support

environment mapping.

All is not lost, though. The hardware might not do it automatically for you, but that

doesn’t mean you can’t roll up your sleeves and, with some extra work, do it yourself.

To accomplish that, you need to take a close look at the math behind environment

mapping.

Capturing the scene around you on a single, flat texture is a challenging task. It’s very

similar to the problem of trying to create an accurate projection of the surface of the

globe of the earth onto a piece of paper (except that in this case you see the scene from

inside the sphere, not from the outside). No matter what approach you take, the scene is

going to have some amount of distortion. That might be a problem if you’re trying to

render a smoothly, reflecting mirror ball, but all I was going to use it for was to add some

shiny spots on the leaves, so accuracy was not a goal.

CHAPTER 11: Environment Mapping and Reflections with OpenGL ES 353

In computer graphics, there are two common techniques for mapping a scene onto a

texture: spherical environment mapping and cube environment mapping. In this case,

you’ll map the scene surrounding you as mapped on a sphere centered at your location.

In the other case, the scene will be mapped into each of the six sides of a cube centered

at your location. For this implementation, I went with spherical mapping because it is a

bit faster to compute, and the resulting quality is plenty for these needs.

Spherical Environment Mapping Implementation
Assume that the lights around your scene are not changing, so you can create a

spherical environment map offline and use it every frame during your rendering. Figure

11-4 shows an example of a spherical environment map. Notice that the object itself is

usually not part of the environment map, just the objects and lights surrounding it.

Figure 11-4. Sample spherical environment map

Ultimately, what you want is to generate a second set of texture coordinates that

indexes into the right place in the environment map based on the eye position and on

the surface normal. If the surface were a perfect mirror, what would you see? To find

out, you could cast a ray from the eye to the surface and then bounce it off the

surface taking the normal into account. This new vector is called a reflection vector (see

Figure 11-5).

CHAPTER 11: Shine On: Environment Mapping and Reflections with OpenGL ES 354

Figure 11-5. Reflection vector

Mathematically, a reflection vector is computed with the following formula:

E is the unit eye vector, and N is the unit normal vector. The incident vector is the vector

from the eye position to the point on the surface of the model. Because the incident

vector changes for each point on the mesh, it needs to be recomputed for each vertex.

Also, since the reflection vector depends on the eye position, it will change as the

camera moves around the object (or the object changes position relative to the camera),

so you need to recompute it every frame.

Once you have this reflection vector, you can apply a formula to index into your

environment map. This is the standard formula for spherical environment mapping:

That’s quite a bit of work to do for each vertex, especially with those square roots on the

iPhone CPU. Fortunately, you can make some approximations again that will let you

speed things up significantly.

The key observation is that you could “fake” the reflection vector by simply using the

normal vector at each vertex. The reflection wouldn’t be physically accurate, but it would

reflect something, which is good enough. That by itself isn’t enough, though: if you use

only the normal vector, the reflection wouldn’t change as the camera moves around the

object or the object changes position. To fix that, you need to rotate the vertex normal

by the camera transform. Finally, you discard the z component of the normal and scale

and bias the x and y components so they are between 0 and 1. The results are the

texture coordinates corresponding to the environment mapping as seen from the correct

viewpoint. This technique is sometimes referred to as normal environment mapping,

because it uses the normals of the model instead of the true reflection vectors.

CHAPTER 11: Environment Mapping and Reflections with OpenGL ES 355

The normal environment mapping equation is shown here. F is the world to view the

“forward” vector, and U is the world to view the “up” vector.

That still seems like quite a bit of work. Why go to all that trouble instead of using the

reflection vector? Well, now you can perform that computation on the GPU, which is

much better suited than the CPU for that type of work. To accomplish that, you need to

change your vertex format to include all three parameters for the normal vector, load the

OpenGL texture transform with the camera transform, and apply it to the second set of

texture coordinates.

The new vertex format becomes as follows:

struct NewVertex
{
 float x, y, z;
 float nx, ny, nz;
 float u0, v0;
 float u1, v1, t1;
};

The following code sets up the texture transform:

 glMatrixMode(GL_TEXTURE);
 float mat[] = {

 0.5f ✽ worldToView[0].x, -0.5f ✽ worldToView[1].x, 0, 0,

 0.5f ✽ worldToView[0].y, -0.5f ✽ worldToView[1].y, 0, 0,

 0.5f ✽ worldToView[0].z, -0.5f ✽ worldToView[1].z, 0, 0,

 0.5f, 0.5f, 0, 1};
 glLoadMatrixf(mat);

Figure 11-6 shows the results of applying spherical environment mapping to the model.

The results are even good enough to make it into an almost perfect mirror.

CHAPTER 11: Shine On: Environment Mapping and Reflections with OpenGL ES 356

Figure 11-6. Model with fully reflective, spherical environment mapping

Combining Environment Mapping and Diffuse
Textures
When I started out, my goal was not to make mirror-like objects but to add shiny,

reflective areas to petals and leaves. To do that, you need to combine

the diffuse texture with the environment mapping you computed in the

previous section.

Up until now, it’s possible that you just used one texture unit on the iPhone.

But to add environment mapping to an object, you’re going to have to load

both texture units available on the iPhone and create the final result by using texture

combiners.

Like most things with OpenGL, the current texture unit is determined by a state. By

default that unit is set to the first one, so all texture operations apply to that unit. The

following code loads up two textures, one in each texture unit:

glActiveTexture(GL_TEXTURE0);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, diffuseTexture);
glActiveTexture(GL_TEXTURE1);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, environmentMap);

This vertex type has now two sets of texture coordinates, one for each texture. That

way, you can index them independently of each other.

CHAPTER 11: Environment Mapping and Reflections with OpenGL ES 357

Finally, now that you have both textures loaded, you can decide which part of each

texture to display for each vertex. But what should the final result look like? How should

those textures be combined to create the final color? The answer lies in the texture

combiners.

A texture combiner allows you to combine the parameters that contribute to the color of

each pixel. The iPhone has two texture combiners, and each combiner can operate on

at most three inputs. Those inputs can be the color read from a texture, a constant color

you set yourself, or the results from a previous combiner. The actual operations they can

perform are restricted to simple combinations of additions and multiplications. They’re

listed in Table 11-1.

Table 11-1. Texture Combiner Operations

GL_COMBINE Function

GL_REPLACE Arg0

GL_MODULATE Arg0 ✽ Arg1

GL_ADD Arg0 + Arg1

GL_ADD_SIGNED Arg0 + Arg1 - 0.5

GL_INTERPOLATE Arg0 ✽ (Arg2) + Arg1 ✽ (1-Arg2)

GL_SUBTRACT Arg0 - Arg1

GL_DOT3_RGB 4 ✽ ((Arg0_r - 0.5) ✽ (Arg1_r - 0.5) + (Arg0_g - 0.5)
✽ (Arg1_g - 0.5) + (Arg0_b - 0.5) ✽ (Arg1_b - 0.5))

When working with texture combiners, I find it easier to visualize them instead of

thinking of them in terms of mathematical operations. For example, Figure 11-7 shows

the setup to display an object with a diffuse texture and some amount of reflection

added on top.

CHAPTER 11: Shine On: Environment Mapping and Reflections with OpenGL ES 358

Figure 11-7. Texture combiners set up to add an environment map on top of a diffuse texture

The following is the code to set up OpenGL in that state:

glActiveTexture(GL_TEXTURE0);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_MODULATE);
glTexEnvi(GL_TEXTURE_ENV, GL_SRC0_RGB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_SRC1_RGB, GL_PRIMARY_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR);

glActiveTexture(GL_TEXTURE1);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_ADD);
glTexEnvi(GL_TEXTURE_ENV, GL_SRC0_RGB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_SRC1_RGB, GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR);

Which one do you find easier to understand, the diagram or the OpenGL code? I

thought so.

Figure 11-8 shows the results of adding the environment map on top of the diffuse

texture.

CHAPTER 11: Environment Mapping and Reflections with OpenGL ES 359

Figure 11-8. Model rendered with an environment map added to the diffuse texture

Per-Pixel Reflections
At this point, you have objects with a diffuse texture and an environment map applied on

top of it. This is already a huge improvement over objects without environment maps at

all. However, when I implemented this technique with the plants, the leaves were not

shiny enough. They were a bit reflective, but they didn’t have shiny spots that stood out,

which is the effect I originally set out

to find.

The reason for this is that the environment map is applied uniformly to the whole object.

Some places in the environment map will be brighter than others, but the surface of the

object is equally reflective everywhere. Look at the objects around you, especially if

there are any wet ones, and you’ll quickly see that some parts are more reflective than

others. For example, dry spots are not very reflective, and the fleshy parts of a leaf are

much more reflective than the stem.

Before we go any further, let’s look at the equation that determines how you’re rendering

each pixel of a model with the environment map technique so far:

C = L ✽ T + E

Here, C is the final pixel color, L is all the incident light colors, T is the value of the

texture at that point, and E is the color contribution from the environment map reflected

at that point.

You can implement different amounts of reflection with a specular mask: a grayscale

texture that is white where the object is fully reflective and is black where it doesn’t

reflect at all. Intermediate gray values indicate how shiny it is at each spot. All you have

CHAPTER 11: Shine On: Environment Mapping and Reflections with OpenGL ES 360

to do is multiply this specular mask with the environment map, and you’ll get variable

amounts of reflection or shininess.

The new rendering equation looks like this:

C = L ✽ T + E ✽ M

M is the specular mask. Simple enough? Unfortunately, there’s a wrinkle in our plans.

You have three textures: T, E, and M. But the iPhone 3G has only two texture units!

One common solution is to combine the specular mask into the alpha channel of the

diffuse texture. That will keep the number of textures down to two so you can fit

everything in a single pass. However, sometimes the alpha channel will already be in

used to indicate transparency. It is also possible that a texture combiner is already in

use if you’re doing something more than a plain diffuse texture. In the case of Flower

Garden, petals were rendered by interpolating two colors based on another texture,

so a full texture combiner was used up, and I couldn’t fit that plus the masked

environment map.

When that happens, the solution is to break up the rendering into two passes. The first

pass draws the model with the original, diffuse texture, and the second pass draws the

same polygons again but adds the environment map multiplied by the specular texture.

This makes the rendering significantly more expensive, but the final effect is well worth

it. Also, this frees one texture unit during the first pass, so you can use it as a detail map,

light map, or any other technique that requires an extra texture.

The new rendering equation is the following (each pass is in parentheses):

C = (L ✽ T) + (E ✽ M)

Figure 11-9 shows the new texture combiner setup.

CHAPTER 11: Environment Mapping and Reflections with OpenGL ES 361

Figure 11-9. Texture combiner setup for a two-pass rendering. The first pass has lighting plus a diffuse texture,
and the second pass adds an environment map modulated by a mask.

When you do any kind of two-pass rendering, you have to be careful how you draw the

triangles to avoid any kind of z-fighting (rendering artifacts caused by rendering two

polygons on top of each other). You should always render the same geometry in both

passes, and the second pass should use the depth-test function GL_EQUAL to render only

those pixels that match the depth currently on-screen.

glDepthFunc(GL_EQUAL);

Figure 11-10 shows the model rendered with this technique. Notice how some parts are

more reflective than others.

CHAPTER 11: Shine On: Environment Mapping and Reflections with OpenGL ES 362

Figure 11-10. Model rendered in two passes, with lighting plus a diffuse texture in the first and an environment
map with a mask on the second

iPhone 3GS
Per-pixel environment mapping is still a valid technique on the iPhone 3GS. Everything

I’ve covered will run on the 3GS and will run faster because of its more powerful

graphics hardware. But you can go beyond this and implement it in a simpler and even

faster way to take full advantage of the new hardware.

To start with, the iPhone 3GS supports OpenGL ES 2.0, which means you have a fully

programmable shader pipeline. That means you don’t have to deal with texture

combiners anymore, and you can write your pixel-rendering equation directly on a

fragment shader.

It also means you can perform true spherical environment mapping, computing the

correct reflection vector at each vertex (or pixel).

Finally, you can take advantage of the fact that the 3GS has eight texture units and do

the whole rendering in a single pass. Because of this, per-pixel reflections on the 3GS

will run much faster than on the original 3G. The following is the vertex and shader code

for a per-pixel environment map implemented with OpenGL ES 2.0:

// Vertex shader
uniform mat4 u_mvpMatrix;
uniform mat3 u_cameraTransform;
uniform vec4 u_ambientLightColor;
uniform vec4 u_directionalLightColor;
uniform vec3 u_directionalLightDir;

attribute vec4 a_position;

CHAPTER 11: Environment Mapping and Reflections with OpenGL ES 363

attribute vec3 a_normal;
attribute vec2 a_texCoord;

varying vec2 v_texCoord0;
varying vec2 v_texCoord1;
varying vec4 v_lighting;
void main()
{

 gl_Position = u_mvpMatrix ✽ a_position;

 v_texCoord0 = a_texCoord;

 vec3 transNormal = u_cameraTransform ✽ a_normal;

 v_texCoord1 = vec2(transNormal);

 float ndotl = max(0.0, dot(a_normal, u_directionalLightDir));

 v_lighting = u_ambientLightColor + u_directionalLightColor✽ndotl;

}

// Fragment shader
precision mediump float;
uniform sampler2D u_diffuseMap;
uniform sampler2D u_envMap;
uniform sampler2D u_envMask;
uniform float u_shininess;

varying vec2 v_texCoord0;
varying vec2 v_texCoord1;
varying vec4 v_lighting;
void main()
{
 vec4 diffuseColor = texture2D(u_diffuseMap, v_texCoord0);
 vec4 envMapColor = texture2D(u_envMap, v_texCoord1);
 vec4 envMaskColor = texture2D(u_envMask, v_texCoord1);
 gl_FragColor = diffuseColor✽v_lighting + (envMapColor ✽ envMaskColor) ✽
u_shininess;
}

Summary
It was a long road all the way from having the initial vision of how I wanted the flowers to

look until it was implemented and running at a good frame rate. The results show the

effort I put into it are definitely worth it, and the shiny look of the flowers was definitely

one of the reasons people liked Flower Garden.

Environment mapping is a very flexible technique that produces impressive results with

very little extra effort. The whole scene around an object is captured in a single

environment map and applied to the object depending on the viewer’s position. The use

of normal environment mapping uses the normal at the surface instead of the reflection

vector, allowing you to move expensive computations from the CPU to the graphics

CHAPTER 11: Shine On: Environment Mapping and Reflections with OpenGL ES 364

hardware, making it even faster. Finally, applying a reflection mask to the environment

map creates much more realistic images by specifying the amount of reflection in

different areas.

Applying environment mapping transforms any scene and makes it stand out. It’s

definitely a tool that graphics programmers should have in their toolboxes.

365

365

Index

■A
AAPLot, 280–292

caching logic, 283
data persistence, 284–285
extending, 288–292
placeholder data for, 286–288
plotting historical stock prices with, 280–282
storing data between runs, 283

AAPLotViewController class, 280–281
AccountViewController class, 225, 229, 244
AccountViewController.h file, 224
AccountViewController.m file, 224, 228
Active Record, 144

finder methods, 171–174
mapping layer, writing, 164–175

addAttribute method, 202
address family, 257
AddressBook framework, 230
addVertex method, 33
Adobe Photoshop Lightroom project, 141
AF_INET, 257
AF_INET6, 257
afconvert command-line tool, 318
ambient reflection, 349
animate:or flag, 31
.app file, 112
app ID, 321
App IDs page, 321
APP_STORE_FINAL, 106–107
app.yaml, 48–49
Apple Developer Program, 314
Apple Push Notification Server (APNS), 43, 313–344

advanced topics, 341–344
advantages of, 314
application delegate, 315–317
building and deploying, 318
certificate creation, 319–331
client application, 336–340
client creation, 314–319
debugging, 343

defined, 314
enabling application for, 321
feedback server, 341–342
handling incoming notifications, 317
hosted solutions, 344
mobile provisioning files, 343
moving from development to distribution, 342–

343
open source code, 344
setting up server, 331–335
sounds, 318
SSL server connections and, 342
user experience and, 343

application delegate (appDelegate), 233
application object, 52
applicationDidFinishLaunching method, 177, 217,

316
applicationWillResignActive method, 270
aps_developer_identity.cer file, 325
APYahooDataPuller, 280–285, 289
APYahooDataPullerDelegate, 281
AQOutputCallback, 77
asserts

built-in, 105
custom, 105–107

asynchronous calls, 57, 58
asynchronous data downloading, 72
atos command, 111–112
audio buffer pool, 83
audio buffers, 83
audio data callback, 81, 87–88
audio files, 93
Audio File Stream Services, 81–92
audio format property, 87
audio playback/streaming, 65–97

app for, 93–96
audio format and, 94–95
AudioServicesPlaySystemSound(), 69
AVAudioPlayer class, 69–72
determining buffer size, 79–80
iPhone OS 3.0 and, 96
MPMoviePlayerController class, 66–68

Index366

stopping, 80
with Core Audio, 74–93

Audio File Stream Services, 81–92
Audio Queue Services, 74–80

Audio Queue Services, 74–80
callback function, 79
class declaration using, 76
playback cycle, 75
starting audio playback, 77–79
stopping playback, 80

Audio Session API, 92–93
audio streaming. See audio playback/streaming
audio streams, 95
audioDataCallback() method, 87–89
AudioFileClose() method, 80
AudioFileOpenURL() method, 76
AudioFileReadPackets(), 79–80
AudioFileStreamOpen() method, 85
AudioFileStreamParseBytes() method, 81, 87, 91
AudioQueueBufferRef class, 83
AudioQueueEnqueueBuffer() method, 90
AudioQueueNewOutput() method, 77, 79, 87
AudioQueueStart() method, 77
AudioQueueStop() method, 80
AudioServicesPlaySystemSound() method, 69
AudioStreamBasicDescription, 95
Aurora Feint, 7
autodiscovery

Bonjour for, 271–272
custom solution for, in iTap, 273–275

automatic migrations, 194
AVAudioPlayer class, 69–72
AVAudioSession class, 96

■B
beforeDelete function, 171
beforeSave callback, 169
big endian, 259
bind() function, 260
bindArguments:parameters:toStatement: method,

161–162
blocks, 293–297
Bluetooth

support for, 253
third-party applications and, 253–254

$body['aps'] associative array, 332
Bonjour, 271–272
breakpoints, on malloc_error_break, 123–125
BSD networking API, 264–269
BSD sockets, 255, 261–263
buffer overruns, 119

buffer sizes, 77, 79–80, 83
buffering, on mobile devices, 84
buffers

audio, 83, 88–92
preallocating, 82

build target, 106
byte ordering, 259

■C
C API, creating wrapper around, 144–157
C language, 75, 104
C++

asserts in, 105
vs. Objective-C, 104

C++ class, creating, 116–118
Caches directory, 285
call stacks, 115
callbacks, 58
C-based Core Foundation framework, 255
CBR (constant bit rate), 77
certificate signing request (CSR), 322–324
CERTIFICATE_FILENAME, 331–333
CFBundleURLName string, 54
CFShow, 107
CFSocket, 255, 262–263
CFSocketConnectToAddress() function, 262
CFSocketContext, 263
CFSocketCreateWithNative() function, 262
CFSocketGetNative() function, 262
cgContext, 305–309
CGContextRefs, 298
closures, 293
Cocoa, 41
Cocoa data types, 60
code

#define, 108–109
custom asserts, 105–107
custom logging, 107–108
debugging, 105–109, 115–116
separating data representation and, 56, 57

color-changing particles, 28–35
column names, 166–167
column types, 154–155
columnTypeToInt:, 154
components, communication between using

notifications, 272–273
concurrency, 292–297
connect() function, 260
connection:didFailWithError: method, 58–59
connection:didReceiveData: method, 58–59, 85
connection:didReceiveResponse: method, 58–59

Index 367

connectionDidFinishLoading: method, 58–59
connectivity issues, 212
constant bit rate (CBR), 77
Contact class, 232
copyValuesFromStatement:toRow:queryInfo:columnTy

pes:columnNames: function, 172
Core Animation, 3
Core Audio, 66, 74–93

Audio File Stream Services, 81–92
Audio Queue Services, 74–80
on iPhone Simulator, 75

Core Data, 179, 183–207, 213
application development, 185–194
classes, 185
creating reusable objects, 199–203
history of, 184–185
model migrations, 194–198
model, creating, 235– 238
remote databases and, 203–206
stack objects, 221
tutorial, 186, 189, 193–198
working with, 218–224

Core Foundation data types, 263
Core Plot, 281, 292
correspondence chess, 39–61

accepting invitations, 43, 54–57
coding, 47–60
Google App Engine and, 44–47
inviting friend to game, 42–43, 50–53
making moves, 43, 57–60
notifications, 43
tasks, 42–44

crash logs
from rarely occurring crashes, 112
from testers, 109–110
symbolicating, 110–111

crashes, 109–115
hypothesis about, 113–115
increasing probability of, 115
reproducing, 112–113
sudden, 122
testing, 114–115

CREATE statements, 155, 158–159
create, read, update, and delete (CRUD) operations,

174
CSR (certificate signing request), 322–324
cstrings, 108
currentBufferIndex, 90–92
custom asserts, 105–107
custom logging, 107–108
custom URL scheme, in Deep Green, 43

■D
Dapple, 101, 104, 123
data

displaying large amounts of, 298–299
downloading, with NSURLConnection, 72–73
managing, with DataManager, 226–228
placeholder, 286–288
saving, to iPhone application sandbox, 285–286
sending and receiving, 260
separating code and, 56–57

data access, with Active Record, 144
data applications, 183. See also Core Data
data migrations, 194–198
data model, adding new entity to, 197
data persistence, with plists, 284–285
data sources, 143
data storage, 143
database connections

maintaining, 165
opening, 149–151

databases
creation and initialization, 148–149
deleting objects, 170–171
lookups, 171–174
making simple requests, 152–157
migration handling, 176–179
preventing duplicate create statements, 158–159
remote, 203–206
saving objects, 168–170
updating objects, 170

data-driven applications, 141–180
Active Record layer, writing, 164–175
alternative implementations, 179
database creation and initialization, 148–149
migration handling, 176–179
opening database connection, 149–151
setting up, 145–147

datagram-oriented connections, 260
datagrams, 256
DataManager class, 225–228, 232
dataPullerDidFinishFetch() method, 281
datastores, replicating, 45
date conversion, 57
db module, 52
dealloc function, 147, 150–151
debug symbols, 110
debugging, 101–137

APNS, 343
atos commmand and, 111–112
background knowledge for, 102–104
code, 115–116
crashes, 109–113

Index368

custom asserts, 105–107
custom logging, 107–108
.dSYM files and, 110
with link map files, 135–137
memory stomps, 118–137
scientific method of, 113–115
symbolicatecrash script for, 110–111
techniques for, 115–137
tools, 123–131
turning on/off, 108
using #define, 108–109, 114
using variable watch, 131–135
while writing code, 105–109

Deep Green
correspondence chess, 39–61

accepting invitations, 43, 54–57
coding, 47–60
Google App Engine and, 44–47
inviting friend to game, 42–43, 50–53
making moves, 43, 57–60
notifications, 43
tasks, 42–44

development of, 41
home page, 41
on Newton platform, 41
user interface, 40–42

DEFERRED transaction type, 164
#define, 108–109, 114
degenerate triangles, 15–16
delete statement, 170
deleted methods, calling, 119–120
deleted objects

calling method on, 120
returning, 120–122

DeriveBufferSize() function, 77, 83
Development Provisioning Profiles list, 328
Development Push SSL Certificate option, 322
device token acquisition, 316
devices, contacting all, on network, 267–268
+dictionaryWithContentsOfURL:, 55–57
didFinishLaunchingWithOptions method, 316
didRegisterForRemoteNotificationsWithDeviceToken

method, 332
diffuse reflection, 349–350
diffuse textures, environment mapping and, 356–363
Discover application, 272
Django templates, 60
DMG file, 254
DNS-SD protocol, 271
Documents directory, 285
documentsDirectory variable, 286
drawing, into off-screen context, 304–309
.dSYM files, 110
@dynamic directive, 237

■E
EAGAIN error, 261
EAGLView, 8
e-mail, in-application, 211–245

composing and sending messages, 230–235
Core Data for, 218–221, 235–238
DataManager, 226–228–230
switching to online mode, 241–44
threaded messages, 239
Three20 and, 221–224, 228
user interface, 211–218, 224–226

e-mail messages
composing and sending, offline, 230–235
threaded, sending, 239

emailInvocationOperation: selector, 235, 237
embedded systems programming, 309
emissionRange, 20
emit button, 23
emitCounter, 20
emitter, 11

adding force, 25– 27
building, 13–14
explosion, 21– 23
particle emitting, 20–21
update loop for, 17

Enable Guard Malloc, 129–131
ENABLE_DATA_STRUCTURE_DEBUG_LOGS, 108
encryption, 206, 319
enqueueCurrentBuffer() function, 88–91
ENTER_DEVICE_TOKEN_HERE, 331
Enterprise Object Framework (EOF), 184
entities, 197, 236
EntryForm class, 52
EntryForm object, 52
environment mapping, 352–364

diffuse textures and, 356–363
normal, 354
per-pixel, 359–363
spherical, 353–356, 362

error codes, 150–152
errors

See also debugging
scoping, 106

Event class, 187–190, 197
EventExtra entity, 199–200
eventsArray ivar, 186
EventViewController class, 189–191
EventViewController.m file, 202
EXCLUSIVE transaction type, 164
executeSql: method, 153, 155, 162, 170
executeSql:withParameters: method, 162, 172
explosion particle emitter, 21–23

Index 369

Expressions window, 103–104

■F
F_SETFL command, 261
fcntl() system call, 261
feedback server, 341–342
fetchIfNeeded method, 295
FileMagnet, 286
fileTypeHint property, 95
finder class methods, 165
finder methods, 171–174
Flower Garden

development of, 347– 349
environment mapping, 353–363
lighting, 349–352

FMDB, 179, 213–214
ForceBufferOverrun() method, 132
Foundation framework, 234

■G
game keys, 60
Game model class, 52
game.plist template file, 56
GameController class, 50, 53
GameTypes, 8
gaming, correspondence, 39–61

accepting invitations, 43, 54–57
coding, 47–60
Google App Engine and, 44–47
inviting friend to game, 42–43, 50–53
making moves, 43, 57– 60
notifications, 43
tasks, 42–44

GET requests, 50
get() method, 50, 53, 56
getNewMessageID, 237
-getResultSetFromQueue method, 243
GL_COLOR_ARRAY, 28
GL_TRIANGLE_STRIP method, 15
GL_TRIANGLES method, 15
gogoDocs application, 283–284, 288
Google App Engine (GAE), 44–47

webapp module, 56
Google Docs service, 283
GoogleAppEngineLauncher, 48–49

■H
handleOpenURL: method, 55–56
handlers, 50
Hewitt, Joe, 213
htonl() function, 259
htons() function, 259
HTTPS connections, 206
hypothesis, about crash, 113–115

■I
ifreq structures, 265
IMMEDIATE transaction type, 163
INADDR_ANY, 260
index.yaml, 48
Info.plist file, 54
init functions, 148–150
initWithRecipients: method, 228
InputViewController, 8
insert, 169–170
instance variables, 215–217
Instapaper, 212
interface flags, 266
interface responsiveness

AAPLot, 280–292
concurrency and, 292–297
displaying large amounts of data, 298–299
drawing into off-screen context, 304–309
expectations of, 280

interfaceNamesAddresses, 268
interpolation, 28–30
IO controls, 264–267

network-related, 267
SIOCGIFCONF, 264–266
SIOCGIFFLAGS, 266

ioctl() function, 264
IP addresses

byte ordering, 259
multicasts and, 267

IP socket address structure, 258
IP_MULTICAST_IF option, 267
iPhone

application sandbox, saving data to, 285–286
challenges in developing for, 252–255
development for, 104
screen size, 252

iPhone 3GS
environment mapping and, 362
Open GL ES 2.0 and, 362

iPhone development program, 249

Index370

iPhone OS
audio playback in, 96
networking APIs, 255–256
networking requirements and, 269–270
registering URL scheme support with, 54

iPhone OS 3.0, 96
iPhone Simulator, 75, 256, 287
iPhone version check, 147
ISDatabase class, 144–157
ISModel class, 164–175
iTap

autodiscovery solution in, 255, 273–275
connection between iTap receiver and, 250
development of, 249, 252–255
GUI, 250–252
multiplatform support, 254–255
networking subsystem of, 271–275
overview, 251
power management and, 269–270
querying network configuration, 264–267
WiFi networking and, 253, 255–271

iTap receiver, 251, 254

■J
Java SDK, 45
json_encode function, 332

■K
Keychain Access application, 322, 325–326
Key-Value Coding (KVC), 185, 199–203
Key-Value Observing (KVO), 185
KeyValueView class, 192
KeyValueViewController, 192
kNetworkReachabilityChangedNotification notification,

226
KPSMTP, 213
KRCC application, 96
KVC protocol, 186, 199

■L
lerping, 28–30
Library directory, 285
lighting

OpenGL, 349–352
specular, 350–352

linear interpolation, 28–30

link map files, 135–137
little endian, 259
load balancing, 45
local address, 258–260
Locations project, 186, 189
LocationsAppDelegate class, 193
logging, custom, 107–108
login keychain, 325
lookups, 171–174

■M
.m file, 148
MacFUSE, 214
mail module, 52
Mail.app behavior, 226
main.py file, 48
malloc_error_break, 123–125
malloc: *** error for object 0×XXXXXX: Non-aligned

pointer being freed, 123, 129
managed object context (MOC), 221
managed object model (MOM), 221
managedObjectContext, 244
mapping. See environment mapping
mapping layer, writing, 164–168
material controller, 16
MaterialController, 8
memory constraints, 309
Memory Browser, 103–104
memory bugs, 105
memory protection, in Objective-C, 105
memory stomps, 119–123

buffer overruns, 119
calling a deleted method, 119–120
debugging, 131–137
defined, 118–121
identifying, 122–123
link map files and, 135–137
returning a deleted object, 120–122
tools to detect, 123–131
variables and, 131–135

MemoryBugsViewController class, 118
memoryWentBoom method, 310
mesh, 16
Message class, 232, 235–237
messageID, 237
messageSent: delegate, 243
mIGetStomped, 132–134
migration handling, 176–179
migrations, managing model, 194–198
mobile devices, buffering on, 84
mobile provisioning files, 319, 329, 331, 343

Index 371

Model class, 237
model classes, database connection references, 165
model migrations, 194–198
model objects, 165–166

deleting, 170–171
looking up, 171–174
mapping, 166–168
retrieving, 165
saving, 168–170
updating, 170
working directly with, 174–175

move.plist template file, 60
MPMoviePlayerController class, 66–68
$msg variable, 332
.msi file, 254
multicast datagrams, 256
multicasts/multicasting, 267–269, 273
multiplatform applications, 254
multiple documents, downloading, 288
multiple threads, 179
multithreading, 292–297
mutexes, 227

■N
naming conventions, 166
NAND flash memory, 284
navigation-based application, 145
network byte order, 259
network changes, 84
network configuration, querying, 264–267
network connections, 253
network connectivity, 212
network interfaces

flags, 266
querying names of available, 264–266

network protocols, 258
network state, changes in, 216, 224–226
NetworkDiscovery class, 256–257, 272–273
NetworkDiscoveryPeerTable, 272
networking, 249–275

CFSocket and, 262–263
contacting all devices on network, 267–268
iTap subsystem, 271–275
multicasts, 267–269
socket-based, 257–263
WiFi, 255–271

detecting availability, 268–269
power management and, 269–270

networking APIs, 255–256
networkOperationQueue, 243
NetworkStatus, 215

Newton platform, 41
NeXTStep, 184
normal environment mapping, 354
notifications, 44, 272–273
NS_BLOCK_ASSERTIONS, 105
NSArray arrayWithObjects: method, 162
NSArray class, 105, 119, 152, 159
NSArray property, 146
NSAssert method, 105
NSAutoreleasePool, 235
NSBindings class, 203
NSCAssert method, 105
NSCoder APIs, 179
NSCondition object, 83, 92
NSDate object, 57
NSDecimalNumbers, 284, 292
NSDictionary objects, 56, 59–60, 152, 157, 284–285
NSEntityDescription class, 238
NSException class, 150
NSFetchRequest class, 238
NSHTTPURLResponse, 73
NSInvocationOperation class, 233
NSLog class, 107
NSManagedObject class, 190–193, 203, 235–237
NSMutableArray class, 105, 119
NSMutableData instance variable, 58
NSMutableData object, 70, 73
NSMutableDictionary object, 155, 172, 274
NSMutableURLRequest class, 72, 203
NSNetService class, 271
NSNetServiceBrowser class, 271
NSNotification class, 216
NSNotificationCenter, 216, 226
NSNumbers class, 292
NSObject class, 115, 148
NSOperation objects, 57, 293–297, 308–309
NSOperationQueue class, 293–297, 307–308
NSPredicate class, 238, 309
NSPropertyListSerialization class, 59, 203
NSRunLoop object, 239–241
NSSocketPort class, 256
NSString class, 108, 153
NSURLConnection class, 59, 72–73, 83, 85, 295
NSURLRequest object, 72
NSURLResponse object, 73
NSUserDefaults class, 228
NSZombieEnabled class, 126–128
ntohl() function, 259
ntohs() function, 259
NYTimes App, 212

Index372

■O
O_NONBLOCK flag, 261
Objective-C, 75, 164, 185

asserts in, 105
vs. C and C++, 104
types, 155–156

Objective-C class, creating, 115–116
Objective-C-based Foundation framework, 256
object-relational mapping (ORM) framework, 184
objects. See also specific types

deleting, 170–171
reusable, creating, 199–203
saving, 168–170
updating, 170
viewing, 187–192

Observer pattern, 216
observers, 273
offline applications (OfflineMailer)

SMTP client
composing and sending messages, 230–235
Core Data, 218–224, 235–238
DataManager class, 226–228
planning, 212–213

setting up instance variables, 215–217
SKPSMTPMessage class, 239–241
switching to online mode, 241–244
TTMessageController class, 228–229
user interface, 213–218, 224–226

OfflineMailer.xcdatamodel, 235
OfflineMailerAppDelegate.h file, 215–217
OfflineViewController class, 224–226
open source, 213
open source code, 213, 244
open() function, 149
OpenGL, 347–364

environment mapping with, 347–364
lighting, 349–352
particle systems and, 8–9

OpenGL ES 1.1, 348–349
OpenGL ES 2.0, iPhone 3GS and, 362
OpenStep, 184
openURL: method, 54–55
os module, 56

■P
parameter values, 172
parameters, handling, in SQL, 160–162
particle emitter. See emitter
particle life cycle, 11–12

particle systems, 3–36
assigning textures, 16
basics of, 10–12
building, 12–19
code, 12–19, 21–24
color-changing particles, 28–35
emitting particles, 20–21
explosion emitter, 21–23
implementation, 14
initial conditions, 19
introduction to, 5–7
OpenGL and, 8–9
Particles (example)

basic game flow, 9–10
code, 12–19
code overview, 8–9

random numbers and, 19
update loops, 17
variations, 23–27

particle textures, 10
particles, 10

building, 12
color-changing, 28–35
emitting, 20–21
uniqueness of, 19

peer-to-peer networking, 253
.pem format, 327–328
per-pixel environment mapping, 362–363
per-pixel reflections, 359
persistence framework, 180
persistent object store (POS), 221
persistent storage, Core Data and, 221
persistent store coordinator, 221
persistentStorageCoordinator, 221
PersistentStoreCoordinator instance, 195
persistentStoreCoordinator method, 221
pl_addOperationWithBlock method, 296
placeholder data, 286–288
Plausible Blocks compiler, 293–295
play method, 77, 95
playback queue, starting, 91
PlayQueueData, 83
PlayQueueData structure, 83–84, 89, 91–92
PLBlockOperation, 296–297
plist file, 56, 179
plistRep method, 284
plists, 284–285
port numbers, 259
POSIX threads (pthreads), 227
POST requests, 53, 203
post() method, 53
post-play callback function, 82, 87, 91–92
power management, 269–270
predicateString variable, 238

Index 373

Preferences directory, 285
primary key column, 167, 170
primaryKey property, 170
PrivateMethod category, 156
PrivateMethods category, 172
program portal, 320
@property declarations, 31
property listener callback, 81, 86–87
@property token, 186
property values, 167
propertyListenerCallback(), 91–92
push notifications. See also Apple Push Notification

Service
custom sounds for, 318
handling incoming, 317
propmting user to allow, 330
received, while application is running, 317
registration of, 315–316
script for, 331–335

push notification service. See Apple Push Notification
Service

Push2AppDelegate.m file, 315
PUT requests, 58–59
put() method, 58–60
Python scripting language, 44–45

■Q
Qt, 254
Qt toolkit, 275
queues, request, 57

■R
race conditions, 113
raiseSqliteException: method, 149–150
random numbers, 19
Reachability classes, 214–215
reachabilityChanged: method, 216
read() function, 260–261
receivedData instance variable, 59
rectangular emission volumes, 27
recvfrom() function, 260
refactoring, 162–163
reflection vector, 353–354
registerForRemoteNotificationTypes method, 316
remote address, 258–260
remote databases, 203–206
RenderController, 8
request handlers/handling, 50, 57
requests

making, of SQLite database, 152–157
queues, 57
on the server, 59–60

response variable, 59–60
RESTful approach, 50
reusable objects, creating, 199–203
RFC 821, 218
RootViewController class, 187–188, 289
RootViewController.h file, 146
RootViewController.m file, 157

■S
save method, 168–170
SceneController class, 8
SceneObject class, 8
SCNetworkReachability framework, 268
scoping errors, 106
SeeqPod, 66, 93
SELECT statements, 152–154
self variable, 87
semitransparent particles, 10
sendDeviceTokenToRemote: method, 317
sendto() function, 260, 267
server

dealing with requests on, 59–60
separating code and data representation on, 56–

57
setting up, for APNS application, 331–335

setEventsArray: method, 186
setNeedsLayout method, 303
setsockopt() function, 267
Settings application, 218
sharedDataManager method, 227
Shark, 290–292, 297–299
Simple Mail Transfer Proto: (SMTP), 217
sin_addr, 259
sin_port, 259
singleton design pattern, 226
SIOCGIFADDR IO control, 267
SIOCGIFBRDADDR IO control, 267
SIOCGIFCONF IO control, 264–267
SIOCGIFFLAGS IO control, 266–268
SIOCGIFNETMASK IO control, 267
SkateDude, 4
SKPSMTPMessage class, 239–241
sleep() method, 303
SMTP client, offline

composing and sending, 230–235
Core Data, 218–224, 235–238
DataManager class, 226–228
planning, 212–213

Index374

SKPSMTPMessage class, 239–241
switching to online mode, 241–244
TTMessageController class, 228–229
user authentication with, 218
user interface, 213–218, 224–226

SMutableDictionary, 274
SnowDude, 3
SnowFerno, 3, 5
SOCK_DGRAM sockets, 257
SOCK_STREAM sockets, 257
socket() function, 258
sockets

address family, 257
BSD, 261
CFSocket, 262–263
creating, 258–262
introduction to, 257–258
IO controls and, 266
local and remote addresses, 258–260
protocol, 258
sending and receiving data, 260
types, 257

specular lighting, 350–352
specular mask, 359
spherical emission volumes, 27
spherical environment mapping, 353–356, 362
SQL

advanced, 158–164
cleanup, 162–163
CREATE statements, 155, 159–159
executing statements, 156–157
grouping statements into transactions, 163–164
handling parameters, 160–162
logging messages, 152
refactoring, 162–163
SELECT statements, 152–154

SQL database, 143
SQLite databases, 143

column types, 155
creating and initializing, 148–149
deleting objects, 170–171
error codes, 152
handling parameters, 160–162
lookups, 171–174
making simple requests, 152–157
opening database connection, 149–151
preventing duplicate create statements, 158–159
refactoring and cleanup, 162–163
saving objects, 168–170
transaction support in, 163–164
updating objects, 170

SQLITE_DONE, 153
sqlite_master table, 159
SQLITE_OK, 152

SQLITE_ROW, 153
sqlite3_column_decltype, 154
sqlite3_errmsg16, 150
sqlite3_step, 153
sqlite3_stmt variable, 152
SSL certificates, creating for APNS application, 319–

331
SSL server certificates, 332
SSL server connections, 342
startQueue method, 91
StockPlot, 288–297
Stocks application, 283
storage layouts, for bytes, 259
streaming audio, 81–95
Streaming colour Studios, 101
stringWithFormat: method, 160
struct ifconf, 264–265
struct ifreq, 265–266
struct keyword, 118
struct sockaddr, 258
struct sockaddr_in datatype, 258, 265
struct sockaddr_in6 datatype, 258
symbolicatecrash script, 110–111
symlinks command, 46
@synchronized() method, 227
synchronous calls, 57
synchronous data downloading, 72
@synthesize declarations, 31, 147–148, 186
system crashes, 113
SystemConfiguration framework, 241

■T
table names, retrieving, 166
TCP protocol, 218
template module, 56
template_values dictionary, 56
template.render() call, 56
templates, 56, 60
Terminal.app file, 327
TestCPPClass, 133
testers, crash logs from, 109–110
testing, crashes, 114–115
texture atlases, 17
texture combiner, 356–361
threaded message sending, 239
threads, crashing, 112
Three20, 212, 221–224, 228–229, 232
tmp directory, 285
top-level data, managing with DataManager, 226–

228
toRow parameter, 172

Index 375

TouchEngine, 284
transactions, grouping SQL statements into, 163–164
TTAddressBookDataSource class, 229
TTMessageController class, 228–229
TTMessageRecipientField class, 232
typeForStatement:column: method, 154

■U
UDP packets, 251
UIApplication, 270
UIApplicationDelegate proto:, 217–218
UIImageView, 226
UIKit, 304
UINavigationController class, 186, 189, 192, 289
UIRequiresPersistentWiFi, 270
UIScrollView, 300–304
UITableView, 226, 272
UITableViewController class, 190
UITableViewDelegate methods, 191
UIViewController class, 189, 192, 225
UIWebView, 299–300
Unix, 255, 264
update statement, 169–170
updateDownloadStatus method, 296
updateNetworkStatus method, 216
updateResolution method, 301–304
URL requests, handling, 54–55
URL scheme, registering support with iPhone OS, 54
usability, 252
USB, third-party applications and, 253–254
useNSEntityDescription class, 238
user authentication, with SMTP servers, 218
user experience, 261–262
user interface, for offline SMTP client, 213–218, 224–

226

■V
valueForKey: method, 159

__VA_ARGS__ identifier, 107
variable bit rate (VBR), 77
variable watch, 131–135
variables, memory stomps and, 131–135
vertex data arrays, 16
vertexCount variable, 18
vertexIndex variable, 17, 33
view controllers, 187–192
ViewController class, 117
viewDidLoad method, 118, 126, 132, 175

■W
web application, creating new, 47–50
web services, 333. See also Deep Green
webapp module, 56
WebObjects, 184
WhatNext application, 142–143
WiFi, 253–254
WiFi networking, 255–271

CFSocket and, 262–263
detecting availability, 268–269
power management and, 269–270

Windows Installer XML (WIX) toolkit, 254
write() function, 260–261

■X, Y
xcdatamodel files, 193, 195–197
Xcode, 213–214

■Z
z-fighting, 361
zoom operation, resetting resolution after, 301–304

Offer valid through 4/10.

233 Spring Street, New York, NY 10013

	MarkFM_Final.pdf
	Mark001A.pdf
	Mark001B.pdf
	Mark002A.pdf
	Mark002B.pdf
	Mark003A.pdf
	Mark003B.pdf
	Mark004A.pdf
	Mark004B.pdf
	Mark005A.pdf
	Mark005B.pdf
	Mark006A.pdf
	Mark006B.pdf
	Mark007A.pdf
	Mark007B.pdf
	Mark008A.pdf
	Mark008B.pdf
	Mark009A.pdf
	Mark009B.pdf
	Mark010A.pdf
	Mark010B.pdf
	Mark011A.pdf
	Mark011B.pdf
	Mark_Index.pdf

