Development Tales of
iPhone App Masters

M@W/

iPhone
Advanced Projects

Joachim Bondo | Dylan Bruzenak | Steve Finkelstein | Owen Goss
Tom Harrington | Peter Honeder | Florian Pflug | Ray Kiddy
Noel Llopis | JoePezzillo | Jonathan Saggau | Ben Britten Smith

Preface by Glenn Cole

Apress

IPhone Advanced Projects

Dave Mark, Series Editor

Joachim Bondo Ray Kiddy

Dylan Bruzenak Noel Llopis

Steve Finkelstein Joe Pezzillo
Owen GO?»S Florian Pflug

Tom Harrington Jonathan Saggau
Peter Honeder Ben Britten Smith

Apress°

iPhone Advanced Projects

Copyright © 2009 by Dave Mark, Joachim Bondo, Dylan Bruzenak, Steve Finkelstein, Owen Goss, Tom Harrington,
Peter Honeder, Ray Kiddy, Noel Llopis, Joe Pezzillo, Florian Pflug, Jonathan Saggau, Ben Britten Smith

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2403-7
ISBN-13 (electronic): 978-1-4302-2404-4
Printed and bound in the United States of America 987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a
trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with
no intention of infringement of the trademark.

Lead Editor: Clay Andres

Technical Reviewer: Glenn Cole

Developmental Editor: Douglas Pundick

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell, Gary Cornell,
Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann, Ben Renow-
Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Kelly Moritz

Copy Editor: Kim Wimpsett

Compositor: MacPS, LLC

Indexer: Julie Grady

Artist: April Milne

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York,
NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or visit
http://www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales-
eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in this work.

The source code for this book is available to readers at http://www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

To my lovely wife, Leonie.
— Ben Britten Smith

To my wife, Malena, who once again gave me the support I hadn’t earned.
—Joachim Bondo

To everyone I know and to everyone I haven’t met yet.
—Dylan Bruzenak

To all of my family and friends for their support and patience with my demanding schedule. To my loving
wife, Michelle, who sustains me and encourages me to take risks. Finally, this one is for my grandmother,
Asya; you will live forever in all our hearts.

—Steve Finkelstein

To the iPhone game developers on Twitter for sharing so much and being such a supportive community.
— Noel Llopis (@snappytouch on Twitter)

I'm so grateful to so many people I can’t possibly hope to name them all individually, so, en masse, let me
thank the blessing that is my family (especially my son), the unstoppable geniuses at Apple, the folks at
Apress who patiently awaited my writing, the incredibly supportive Mac and iPhone indie developer
community, all my clients and customers, my business partners and colleagues, and, of course, the great
ineffable spirit of the universe that makes everything possible.

Thank you!
—Joe Pezzillo

To my family, my friends, the island “La Palma,” and the one who introduced me to it.
—Florian Pflug

To Dr. Michele, who doesn’t let me call her doctor. Thanks for making me

type.
—Jonathan Saggau

iv

Contents at a Glance

Contents at a Glance iv
Contents v
Foreword xi
About the Technical Reviewer xii
Preface Xiii
Ben Britten Smith 1
Everything You Ever Wanted to Know About Particle Systems 3
Joachim Bondo 37
Chess on the ’Net: Correspondence Gaming with Deep Green 39
Tom Harrington 63
Audio Streaming: An Exploration into Core Audio 65
Owen Goss 99
You Go Squish Now! Debugging on the iPhone 101
Dylan Bruzenak 139
Building Data-Driven Applications with Active Record and SQLite 141
Ray Kiddy 181
Core Data and Hard-Core Design 183
Steve Finkelstein 209
Smart In-Application E-mail with Core Data and Three20 211
Florian Pflug and Peter Honeder 247
How iTap Tackles the Challenges of Networking 249
Jonathan Saggau 277
Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness 279
Joe Pezzillo 311
Demystifying the Apple Push Notification Service 313
Noel Liopis 345
Environment Mapping and Reflections with OpenGL ES 347
Index 365

Contents

Contents at @ GIANCE........cceeeemmeemmeeeeeneeenss s ————————— U

11 1 = 1 U |

FOr@WOIUoiieunsrennnnnnnnssssssssssnsnnnnsssssssnsssnnsnnnnnssssssssssnnnnnnnnnsssssnsssnnnnnnnnnnssssnssnnnnnnnnnnnsnnnnnnnnnnns Xi
About the TechniCal ReVIEWET ..ccuurrrrrmsmmessssssssssssssssnsssssssssssssssnnsssssssssssssnnnnnnnssssssssnsnnnnnnnssssnnns XIl

=] [- OO (| | |

Ben Britten SMIthcciiiiiimmsssssssssmmmmmmmmsssssssssssssssnssssssssssssssssssssssssssssssssssssssnnsnnnnnssssssnssnnnnnnnnnnns |

CHAPTER 1: Everything You Ever Wanted to Know
About Particle SYStemS ...cuveerrnmmesmmmmmsmsnmmmmnssinsnssie s ———————————
Adding Life t0 YOUr GAME With PAITICIEScccevuiuiicicriririrs e e e se e e se s e e et s a s et e s et e b an e et s 5
BasiC Particle SYSEMS @NG YOU.......ccciiviriereririsisesisssess st bbb s e bbb E bbb E b 7
OVerview Of the SAMPIE COUE ...ttt e e s e e e e e b e e e st ee b b et sE AR e e st se e A e e e e st ee b e beae e e nennnal 8
BASIC GAME FIOW.......ccveeererereresesessssssessssesesesessssssssssssssesesesessssssssssssssssessssssssssssssssssenessssassssssssnsssssnesessssssssssnsnsnenenenssssssssesssssnsnsnsnnsanas 9
The Anatomy 0f @ PArTICIE SYSIEMc.cceieiiiiccrcrir e e et a s e e se s e e e A A e d AR et d bR e e e e A s an s e et s 10
Code! Finally!ccccovrrrerencne.
Slight Tangent About Degenerates...
Back to the Code.........ccouvrrerererereneanans .16
Random Numbers and INitial CONAItIONScocoeeererrerereseressssssssese s ssase s s sesessssssssssesesess s s ssssssssssesesnssanas 19
EMIEEING PATICIESvvvcieceriets ettt se et e e s e e e e e A e e e E b e e e E b et e E bRttt b e 20
Tweaking YOUr PArtiCIe SYSIEBIM ..o s sa s et e e e b e e e A Re e e se A e b e e et s A b e be e e e nentnn 21
May the FOrce Be With YOUE PArTICIEScccccceiiiiircicririsn e senss et se s et s st s e st e e e e e ettt b s 25
Amazing TeChNICOIOr Dream PArtiCIEcccceeieiiercccririsis et se et se e e e e e e e s e AR et e A AR et e bean s et s 28
OFf ON @ TANQENE: LEIPING...uiiiireriieiieierireris ettt se s e se e e et se b e e s E e d e e e e e e A e e e e e e e A e e e e e eE e A e be e e ee e e e R e be e e et nentane 28
COlOr-Changing PartiCIES........coccuiuiiiriririineeseses e e s e se s et e e e e e e b s e e e A e e e eE e A e Re e e eeee e A e Re e e ee e e Aebeae e nenenannn 30
£ L1114 OO 35

CONTENTS

JOACKIM BONUO......ciiiurrremmmnnnnnssssssssssnnsnnsssssssssssssnssnnsnsssssssssssnnnnnnnnsssssssssnnnnnnnnnssssssnsnnnnnnnnnnnssssnnndf

Chapter 2: Chess on the ’Net: Correspondence
Gaming with Deep Greencussrsssesmssanssssasssssnnsssanssssnsssssnssssasssssnssssanssssnssssanssssansssanssss 39
Deep Green, an Already Awesome Application

BLILLCEIE: 5T LA T T PR
INVItiNg @ FrieNd 10 @ GAIMEcoceiiiiiiiiriicc s e
ACCEPLING the INVITALION ... e e nn s
Lo T B0 O
LT3 4110 T 7T PP

L L0030 1 o

Stop TalKing, STAMT COUING!c.cuieieieririieces e E R R 45
INSTAIIING T8 TOOIS ...t AR ne e s p e e e 45
COUING the WED SEIVICEcucucececiiiiii iR E e E s E e 47
Accepting the Challenge 0N The DEVICE..........cc it bbb bbb 54
L0 T B0 T 57

311311117 61

Tom Harringtonccooeeeeemmmmmmmsssssssmmmmmssssssssnmmmssnssssssssnsessssssssssnsssnssssssssnssnsnnsssssssnnnnnnsnnssss 09
Chapter 3: Audio Streaming: An Exploration into Core Audiocuccrrmmssesnnmsssesssssssssssnsssansss 69

Hey, | Could Write an AP 0 PIAY MUSICccceuruiricririiiss st sttt s s sttt et b s s et d b s et b as s e g 66
MPMoviePlayerController: Hey, This Is Easy! Right?..........cccinnrins e sssss s et s sesessssssssssesssssssssssssssnsns 66
Finding @ BEHEr APPrOACH..........cucciiecic ettt st e e e e se e e d A As e et d b A et e e b e ae e e et bnaean e n it 68
The SYSTEM-SOUNI WYccveuriieriirr ettt e s s e A A e E bR e d A e A Ae et b b e an ettt ebnan e e n it s 69
AVAudioPlayer: The Not-Available-in-Beta WAycccccccceriiincncnirns s sessssssesssessssssesesssssssssssssssssssssssesssssssasssssssses 69
Doing It the Cowboy Way With COIe AULIOccueeccreriisise sttt s st b s st e b as e et d b ae e et b e bnanan e et s 74
Getting Halfway There: AUAi0 QUEUE SEIVICEScvurerereressrsrseseresesessssssssssssesesessssssssssssssesesessssssssssssssssssessssssassssssssssssssssssasssssssssnns 74
Getting the Rest of the Way There: Audio File STream SEIVICES.........ccuvvriiiniernirirs st se s e ss s sssssssassnnn 81
PULEING £ AILINEO @N ADP...ueiiriitiiecririe et e e e e e e e e d AR e AR e Ae e e E e AR Ae e e d e A e A Ae e e E e A e Aeae e bbb e asan e et s 93
(04T 10 =0 1 11 PR RRSRRR 93
I 11T] 1 1 PO PRSP 96
iPhone 3.0 and Further Work . .
3111 14 OSSR

OWEN GOSS cvvrrrrnnnnnnnsssssssssssnnnnsnssssssssssssnssnnsssssssssssssnnnnnnnsssssssssssnnnnnnnnsssssssssnnnnnnnnnnssssnnsnnnnnnnnnnnsss 39

Chapter 4: You Go Squish Now! Debugging on the iPhone...........ccuccnmsemmmssanssssessssanssssnnnnssa 101

ASSUMEA KNOWIBAGE......c.eucececucuesrtrireesece s s AR RE e bR b e e e e nn 102
ODJECHIVE-C VS. § @NU G+ ...cueuecreerrrsecsesessssesesesss s e e sesss s s e st d s a s e e e e d e e e d e e e e b e e e e s e Re e 104
While YOU’re WIItiNg TRAL COUR.........ccoueuierererereririssesesssse s sase e sa s s a e e 105
LTy 0] T TR 105
LTSy 0 1 0T o 4o TP 107
LU0 0= 1 T 108
L0 T | 109
Getting @ Crash LOg from YOUF TESTEIScccccoviierereriiiissssse s s s s ss s snnas 109
You Have Been Saving Your dSYM Files, RIight? ... ssssssees 110

SYMDOIICAING @ CraSh LOG.......cocvuiurirrrereseseseessssesesese st ssssssssse s s se e ne e nan 110

CONTENTS

0L I L0 11
ReProduCing RArE CraSHES........cccueeiururiierieirises st ss et se bbb e b bbb b 112
Thread.......ocoovceveeererennnns 112
System............ 113
Race Conditionscccovrererenens 113
The Scientific Method of Debugging. .113

Forming a Hypothesis

Creating @ Test for YOUr HYPOTNESIS ..o 114
Proving or DiSproving YOUr HYPOTNESIS ... s 115
Increasing the Probability of the Crash ... s 115
S0, YOU HAVE @ CaIl STACKcueeieeieieeicrecietee ettt e ettt d s e et d s et b e e et ed b e be e et et bebe et et eb b e be e et et e bebe e s 115
B3] € L1 0 115
What IS @ MEMOIY STOMP? ...t ss st s st b R 118
1dentifying @ MEM STOMPccuiiiieice et E s R bbb b 122
Tools t0 Detect MEMOIY PrODIBMS ... bbb 123
L Lo LT R A 1] 131
01 o B TR 135
B3 11111711 O 137

DYIan BruzeNakccussssesssmssssssssssssssssssssnsssssssnssssssnnnssssssnnssssssnnnsssssnnnnssssnnnsnssnnnnnssssnnnussssnnnnssss 1 99

Chapter 5: Building Data-Driven Applications with
Active Record and SQLIteccusesmssanssssanssssnssssasssssnnsssanssssnsssssnssssansssanssssannsssnnnssannnsnnns 141
A Short Road Off @ High Cliff (HOW | GOt HEIE)c.oereiiiiiririniristcsss s 141
Ready! Set! Wait, What? (Why | Decided to Write @ T0-D0o APPliCation)...........cocvererermsercnensnnnrrerseessssss e 142
Data-Driven Applications on the iPhone
Active Record: A Simple Way of Accessing Data
Writing a Database Wrapper Around the C API: ISDatabase ...
Setting Up the Example Project........

Creating and Initializing the DAtADASEcccoururerererisiicsr s nan 148
Opening @ Database CONMNECTION ... bbb 149
MaKiNg SIMPIE REQUESES.....ccueereecurueresiisisisesese e s ss st s A e e A e e e e b b et e nn e 152
L0 =T 1400 T 158
Preventing Duplicate Create STatements ... 158
HaNAIING PAr@MELEIS......cccuieieriicisesiis s AR A AR E e 160
Refactoring and CIEBANUP ..ot e A e e e s 162
Grouping Statements iN0 TrANSACTIONSc.cueiurerireriressires s bbb 163
Writing a Simple Active Record Layer: ISMOTEL ... s ssssssasssnssnsas 164
Maintaining the Database CONMECTIONcccurirurinerinisiriisi s s bbb 165
The Model ODJECE: GrOCEIY IBMccuiiiererice it bbb 165
HOW GrOCEIIES ArE MAPPE......cceiececicriririisi s bR A bR E e 166
3T U/ o OO 168
10 13 170
Deleting...... ..170
Finding Grocery ltems.... .17
PULEING [t All TOGETNET......cceiteccccii e 174

CONTENTS

Simple Migration HANGIINGcocvuiiieieiiis s bbb 176
ARErnative IMPIEMENTALIONScccciieieiircc et e e s s e R e E b eE s R e e e E e s A s Re e e e s b s R s Ra s s b e nennans 179
Summary

T R [1

Chapter 6: Core Data and Hard-Core DeSignc..ccvussesmssasmssssnsssansssssssssssssssassssssnsssanssssanenss 183

Where Did Core Data COME FIOM?.........ccovrerererereeessssrsssesesesessssssssssesesesessssssssssssssssssssssssssssssssesesesssssssasssssssssssenssesenssssssssssssnssassnsnsas 184
LTI =T T [OO 184
A VErY FirSt COre DAt APPccceveuiuiuieriririssseestsss s e ses st s s et e s et se s e ee A e A e Re e e e e A e A e e e eE s A e A e e et eenan R e e et et nentne 185
First, Steal COAE (NOL IMUSIC!).....ccciiiereriieeriririss st res e se st e se s e e et se b e e e s e b e et E b e e e E bR e eeeE bR et e e bR s 186
A View 10 an ODJECE, ANY ODJECT.......ciiccririrrcc ettt e e e e A e AR e e d e A e et e b e R et s 187
Our Very First Crash, or PEFNAPS NOT! ... e as e s a s e e e e st e a e snsannne 193
CoreData Tutorial for iPhone 0S: Managing Model Migrations ..o e sesss e st sss s s sesessssseseses 194
The Easy MIgrations Are EASYcccuiuuererererisieiesessssssssesesesssssssssesessssssssssesessssssssesessssssssssesensssssssssestnssssssssssstsssssssssensessssasasasnssss 194
AdAING @ NBW ENTILYvcucciiiiiiccscriiss s sa s e se s et se e e e e se s a e e e A e A e d AR e e e E A e Aeae e e d A e A e et b e b e anan et it an 197

Summary
Steve FiNKeISTeIN .ouvvuurreeeseeessssssssssssssssnsssssssssssssssssnssssssssssssssnsnnsnnnsssssnsssnnnnnsnnnsssssnsssnnnnnnnnnssnnns 209

Chapter 7: mart In-Application E-mail with
Core Data and Three20ccusernssennsssnmmsssnmsssssssssnsssssnssssssssssnsssssnsssansessanssssnnsssanssssans 2 1 1
Planning @ Simple Offling SIMTP ClENT........cccoiiiieeririrn ettt se s s et d s e e b e et b A et d b At ne bbb e et n 212
Creating the USEr INTEITACE ... bbb bbb bbb 213
Diving into Xcode
Setting Up Instance Variables in OfflineMailerAppDelegate.h...
Initializing the UlApplication Delegate..

WOrKING With COTE DAIAcociuiiieecririrs ettt e £ e e e eE e d e b e e e d bR e e eE e d b Re ettt b e e as 218
Understanding the Core DAt STACK ..o ss s bbb 221
AQAING TAFBE20cueccreeieise ettt sssss s e et ssas s et e s s s as e e e e s A sAsRe e e e eE e A e ReRe e e eE A e e E e A e Ae R e e E e A e AeAe e e E e AeAe et e nE e b e anan e et an 221

Journeying Through the USEE INTEITACE........c.cciiieicririrr s se st et se s e st se s e st se b e e e bbb et e bbb e e et b e 224

Managing Top-Level Data with DataMaANAQETcccceererirreresesessssssssseresesesssssssssssssssesessssssssssssssesesssssssssssssssssssssssssssessssssssssssasssssses 226

Diving into Three20 and TTMESSAGECONITOIIETccccuiuieiereriririnee sttt se s et e s e b et e b b et d bt e et s e e et s 228

CompoSiNg and SENAING IMESSAYESccurueurrresurerissressssasessssessssesiss s sse s a bbb bR E SR s AR SRR s 230

Creating the Core DAta MOGEI ..ottt et e e b e e e e eE £ b eeeE A b et s d b e e et ee bR 235

Hacking SKPSMTPMessage to Support Threaded Message SENAINGcccvvreiererneninniesesereses st ss s sesessssssssssesenens 239

Setting Up the NSRUNLOOP 0N SKPSIMTPIMESSAUEccourererieuererireresssseesesessssssssesesessssssssssesessssssssssesessssssssesessssssssesssessssssssssssesssssssssaes 239

Switching the Bits Back t0 ONlINE MOUEcccocviriiiieiereririn ettt et e s e e e st eb b e se b e 241

£ 1] 11T 11 O 244

Florian Pflug and Peter Honederccouemmmssemmssenssssssmssssssssasssssnsssssnssssanssssnssssanssssnssssanssssanss 24 7
Chapter 8: How iTap Tackles the Challenges of Networking........c.ucccenissesnmnsssssnsssssnssnnsnass 249

Meet iTap @Nd ITAP RECBIVETc.ccceeeririicestsisse et sr st d s e e s d s e d b E e A e R e eEE A e Ae R e E e R e ReRe e e e e s e an e e nnr s 250
I o T OO PSP ST PR RS 251
LI 1o I3 (= ToT 1T O OSSOSO 251
How the Idea for iTap Emerged and EVOIVEM ... ssssssssse s ssssssssesessssssssssssssssessssssasssasaes 252

viil

CONTENTS

L CE L TR =TT 252
No Physical Buttons 0n the iPRONE ... 252
Third-Party Applications Cannot Use USB or Bluetooth253
Supporting Both Mac and PGccevevevevevnnnnnneresesesesssssssesesesenes ..254
User-Friendliness Demands Autodiscovery of Computers and Devices... ..255

WiFi Networking on the iPhone from a Programmer’s Perspective255
About the Sample Code. ...256
INEFOAUCING SOCKETSeovveeeiiiscsiis iR AR E s 257
(G2 L T 0T] OO 258
Using CFSocket to React to NetwWorking EVENES.........cccccirinineninsnisssisisissss s ssss s ss s s ssesas 262
Querying the Network ConfigUIation ... s 264
Contacting All DEVICES 0N the NEWOTKc.cucruriiuresissrissssisss e ss s bbb bbb 267
Detecting WiFi AVAIIADITITY ..o 268
Playing by the Power Management RUIES..........cociiiiinicc s 269

The Networking SUDSYSEEM OF ITAPcuocecuririirrisiri iR 271
To use Bonjour or NOt 0 USE BOMJOUNcuiurereecisssssisnisisesssssssssssss s s ss s bbbt 271
Using Notifications to Communicate Between COMPONENTS ... s sssenas 272
Our Custom AUtOdISCOVETY SOIULION..........ccceruceiririricss i 273

L3111 11 O 275

Jonathan Saggau.......cccusemmmssenmssannmssanmsssnnsssanssssnnssssnssssansssanssssanssssnssssanssssnnsssanssssnnsssannsssansssans @ f 1

Chapter 9: Fake It ’Til You Make It: Tips and Tricks for
Improving Interface ReSPONSIVENESS ...cveemrrmisemmtimsssmnnmssssssnsssssssnssssssssssssssssnsssssnsnssssnnns 219
Plotting of Historical StOCK PriCeS With AAPLOL...........ceieeiiirireririsessss s s 280
Storing Data BETWEEN RUNSouiuieeiieieiieeesesesssss e e s s s e e e s ss e s s e s s e s e e e b e e e eenR e Re e e s neaReRe e E s nenRasnn e e nensann 283
Using Plists to Persist Data ..
Saving Data to the iPhone Application Sandbox . .
Shipping AAPLot with Placeholder Data..............cooovurerenenns ...286

Extending the App for Multiple Stock Graphs: STOCKPIOLccoviererenenrensr e 288
L0041 =T 292
NSOperation, NSOperationQUEUE, and BIOCKSccviirrrerrrisiisesssssssssssssssessssssssssssesssans 293
Installing the Plausible Blocks Compiler and Adding It t0 the Project..........c.oonnncnnsnnisss s 294
Using Blocks, NSOperation, and NSOperationQueue in STOCKPIOLcooiiinnininisess s 295
Displaying Large Amounts of Data EffiCiently ... 298
Z00MING 8 UISCIONVIBWeeeerereiiscssssssssssasss s bR AR AR R R s e 300
UIScrollView Zooming UNAEr the COVEIScrirurineurenesisisisestsssessssasess s sassss s sssssss st ss s st s s 300
Resetting Resolution in a UIScrollView after 8 Z00m OPeration............ouvicnnnnnsssss s sessssssssssssssssssseas 301
Drawing into an Off-SCreen CONEEXE ... 304
0bServations, TIPS, ANA THCKSccecicririeieeie it seete e ettt st et sttt be e et ed b e be e et ed b e be e et eE b e be e e eeebebebe e et et nsebe e s 309
311311117 310

B I8 4| [. 3 I |

Chapter 10: Demystifying the Apple Push Notification Service........ccivmnemmmmmssesnsnssnssnnnnnens 313
What Is the Apple Push Notification Service? .. .
WREE YOU'Il NEEO ..vvvvvvvveeeeeeeessssssssssssessessssssssssssssssssssessssssssssssssssssassssssssssssssssssssesssssssssssssssssessses

ix

CONTENTS

STEP 1: Create the ClIENTcccoeeiieeccceriri ettt d R e bR e e e b e e e e e e b e R s 314
The ApPPlICALION DEIBGALEcccoeeeeeiieccirtet ittt b AR b b Re e bbb e Re e b e b b e as sttt s 315
Handling Incoming Notifications .. 317
SOUNGS ...oveeeeecnrerereesereneseeeaenas ..318
Build and Go! Er, Not So Fast... ..318

Step 2: Create the Certificate...........cccoevvvvrrrnrnne ..319
A Walk-Through of the Program Portal Process.. ..319
BACK 10 T POMTAL.........ecuecieete ettt e et b e E b e R e E bR e e e b b e e e e b e b Re s 328
Add the Mobile Provisioning File for COOE SIGNINGcccrerirmrensrrinisinesrisesi s s s snnas 329

SEEP 32 SEEUP The SEIVET ...ttt e e g R e AR A e e e e e a e e s 331
A Walk-Through of What THiS SCHPE DOESccurerrurerirerisssisesiresssessss s s st bbb b s 333
DOWNIOAU SEIVET Filcucuieierererereicssssssssssseseseessssssssssssesesess s s s sss s e s s e se e R g e e e e R n A e e ne e e e s b e b npnr e e 334

THE HOME SEIEICH ...ttt e e R R d e e AR A e e e A e e ne e e e 336
WiKING UP The ClIENT ..ottt b bbb bbb 336

Additional ConsiderationS/AAVANCEU TOPICScoeerrrrrrereresesesssssssssssesesesesssssssssssssssssssssssssssssssssesessssssssssssssssssssssassssssssessssssssssssassssenes 341
FEEADACK SBIVETcucuieiereseresireeeesessss st es e s s s s e e A £ d e e AR A e e AR A e e e s b b nE e e e 341
SSL SEIVET COMMECTIONSuvueueuesesesrrrsrsseseessssssssssssesesesessssssssssssssssssssssssssesesessssssssssssssssssssnsssnesesesssssssssnsnsnssssssassssssesesesesesessnsassssases 342
Moving from Development SandDOX t0 ProdUCTION.ccuriereneunincsinississ st s s 342
DEVEIOPMENT VS. AU HOCcvieececiirisisiecesi st se st se s et se bbb s E b e e e e e b e R e nE s R e 343
Mobile Provisioning Files343
Debugging........courerenens ..343
User Experience343
OPEN SOUICE COE......c.ciereiuiueucerereste et seses e e e e e e e e se e s e e e st se s b e e e e seeE e Aebe e e eEeE e b e Re e e eE e A e Ae e e e eEeA e Ae e e e eEeAeAe et eesenRese e e e nennns 344
HOSEEU SOIULIONScucuceieierrreseseseecssessss e ss s s s e s e e e b e e e e e e R A A e e e e e e R e A A nEnE e e e e e se s e b nene e e nnas 344

3111411117 TP 344

NOEI LIOPIS 1euuerrussnssssanssssnnsssanssssanssssnnsssanssssnssssannsssanssssnnsssanssssnnssssnssssnnssssnnsssanssssnnsssanssssanssssanss S0

Chapter 11: Environment Mapping and Reflections
With OpenGL ESccciiieemmmnissmsmmnissssnmssssssmsssssssessssssssssssssssnsssssssssssssssssssssnssssnsnssnsss S 1

LILLCe 2 =T LT 347
First STeps: OPENGL LIGNTING.....cccuiuieriririesiscs e sess st s bbb s 349
Turning to ENVIronment MaPPINGccouverurirmsmsmsssssiss e sesesssssssssss s e e e p e ne e 352
Spherical Environment Mapping IMpIeMENTationovveeeeerrnneieen et se s 353
Combining Environment Mapping and DIffUSE TEXIUIESccocurerrureriserinsssisessses e ss s bbb 356

Per-PiXel REfIECLIONSccvieeiccccii bR 359

150 10T TIPS T 362
311311117 363

T - . | ;L 1

Foreword

Dear Readers,

We started this series of iPhone Projects books because we recognized that there is a community of iPhone
developers all starting from scratch and full of enthusiasm for Apple’s iPhone and iPod touch devices. The
community has come a long way since we became aware of this phenomenon. For one thing, we’re not all starting
from scratch anymore, and this book, as does every book in this series, highlights the work of the more experienced
among us.

But this enthusiasm remains a defining characteristic, along with an eagerness to learn and a willingness
to share. If we were Homeric storytellers, this would be our Trojan War, an image I find particularly apt in this time
of renewed gaming interest. And like the ancient poetic bards, we have some compelling stories to tell. Though,
rather than warriors with shields and spears, these are tales of developer derring-do.

Our heroes are the quietly toiling, Internet-connected, basement-dwelling developers who are the stuff of
iTunes App Store lore. We'll leave the modern-day mythology, Hollywood sound tracks, and CG animation to the
finished applications. The chapters in this book are real-life stories of highly caffeinated work, relatively sweat-free
code adventurers who dare to push the limits of a cool, little, pocket-sized, life-changing pair of devices known as
the iPhone and the iPod touch. It’s a dirty job, but somebody has to succeed at it.

I have worked with Dave Mark, the series editor and author of several best-selling Apress books, including
Beginning iPhone 3 Development, to find developers who produce efficient and bug-free code, design usable and
attractive interfaces, and push the limits of the technology. Dave’s common-man touch, tell-it-like-it-is sense of
reality, and delight at all that’s cool and wonderful can be felt throughout the series.

And that brings us back to the unique quality of community among iPhone developers. Every chapter is
written by a different developer with their own goals and methods, but they're all willing to share what they’'ve
learned with you. And you’ll learn many things about the design and implementation of great apps, but you'll also
learn that you are not alone. Every developer gets stuck, has a bad day, and experiences delays and frustrations,
and the lessons learned from these setbacks are as important as the API calls and algorithms that will be part of
your finished products.

And finally, we hope you'll find the apps presented in these chapters and the stories of how they came to
be both interesting as human drama and as cool as the iPhone and iPod touch themselves. Happy adventuring, and
send us a postcard!

Clay Andres
Apress Acquisitions Editor, iPhone and Mac OS X
clayandres@apress.com

Xi

About the Technical Reviewer

Glenn Cole has been a professional software developer for nearly three decades, from COBOL and IMAGE on the
HP 3000 to Java, Perl, shell scripts, and Oracle on the HP 9000. He is a 2003 alumnus of the Cocoa Bootcamp at the
Big Nerd Ranch. In his spare time he enjoys taking road trips, playing frisbee golf, and furthering his technical
skills.

xii

Preface

Getting started with iPhone application development is relatively easy thanks to online tutorials and especially to
books like Beginning iPhone Development by Dave Mark and Jeff LaMarche. But sometimes, software is just hard.

Avyear and a half after receiving an iPhone as a birthday present, I am still amazed. It looks so simple and
it’s so easy to use, but behind it all is a world of complexity.

Apple has worked very hard to document the myriad APIs that make up the iPhone SDK and to provide
sample code, but for some of us it’s still not enough. Even Apple cannot afford to provide a chapter’s worth of
explanation for each sample application. Their tutorials can be quite helpful, such as the one on Core Data, but
what then?

Enter iPhone Advanced Projects.

Ray Kiddy, who worked at Apple for 15 years in various roles, uses Apple’s tutorial on Core Data as a
starting point and builds from there. More than providing just an introduction, Ray shows what it’s like to use Core
Data in the real world.

That’s the difference between documentation and a book such as this. Of course, it doesn’t stop there.

Joachim Bondo, creator of the much-lauded chess application Deep Green, shares his advice and
techniques for implementing correspondence gaming.

Noel Llopis, a ten-year veteran of the gaming industry, author of C++ for Game Programmers, and
instructor of a two-day intensive class in OpenGL programming specifically for the iPhone, lends new meaning to
making your application “shine” with a discussion of reflections and environment mapping in OpenGL. I found it
to be a fascinating topic.

My knowledge of OpenGL is casual at best, but Ben Britten Smith provides such a clear explanation of
particle systems (think smoke and fire) that this was not a hindrance at all. The chapter really was a “blast” to work
through.

I've been on a private mailing list with Jonathan Saggau for several years now, and his explanations never
fail to impress. Here, he discusses the difficult topic of improving interface responsiveness. (Be sure to have a copy
of his sample code handy!)

And that’s just the half of it! The projects also include an exploration into Core Audio, a framework for
persisting data with SQLite, strategies for networking, techniques for debugging, the Apple Push Notification
Service (not for the faint of heart), and intelligent in-app e-mail.

Sometimes, software is hard. With these authors as your guides, it should make your work quite a bit
easier.

xiii

PREFACE

Organization

This book is organized roughly in order of challenge, not necessarily according to the complexity of the code as
much as the total level of knowledge and effort required.

For example, the Cocoa code that is needed to support the Apple Push Notification Service (APNS) is fairly
brief and straightforward, yet the discussion of APNS does not appear until near the end of the book. Why? The
primary reason for this is the complexity of the surrounding infrastructure, including working with the iPhone
Developer Program Portal and setting up a PHP server appropriately.

Of course, every developer has their own ideas about what is difficult or challenging and what is not, so the
chapter sequence is intended only as a rough guide. Each chapter is independent of the others, so feel free to jump
straight to your projects of interest.

What'’s in the Book

The book opens with Ben Britten Smith discussing particle systems using OpenGL. Although it’s not a tutorial on
OpenGL per se, Ben provides enough background and detail so that the code makes sense at a conceptual level
even to those of us with only minimal experience in that area. Take your time in understanding this chapter and the
sample code behind it, and the effort will be well rewarded. Besides, it’s great fun!

Chapter 2 finds Joachim Bondo demonstrating how to implement correspondence gaming such as with
his chess application Deep Green. You'll see the power of Python in Google App Engine, understand RESTful web
services, implement a custom URL scheme (to support a URL beginning with chess://), and use Django’s template
engine to take advantage of a plist with embedded logic and variable substitution. It's a mouthful, but Joachim
makes it look easy.

Audio is one of those topics that’s just plain hard. Different requirements mean different APIs; it doesn’t
take much to become overwhelmed by the complexity. In Chapter 3, Tom Harrington shares the results of his
investigation into processing audio streams, starting with the Media Player framework and moving to System
Sound Services and the AV Foundation framework before settling on Core Audio. Audio is hard; take advantage of
Tom’s guidance.

Every iPhone developer who has written a nontrivial application has experienced a difficult-to-find bug. In
Chapter 4, Owen Goss provides advice that goes well beyond using NSLog() and stepping through the debugger.
You’ll want to work through this chapter more than once to be sure you recognize which tools to use and when.

Dylan Bruzenak tackles data-driven applications in Chapter 5 with SQLite and the Active Record design
pattern. Enterprise and cross-platform developers in particular will benefit from this, as will anyone who wants to
keep fine-grained control over the data in their application.

Core Data is new to the iPhone with OS 3.0. It takes the task of data persistence to a seemingly magical
level. (At least that’s how I first experienced it on the Mac side.) In Chapter 6, Ray Kiddy guides us from Apple’s
tutorial on Core Data to its proper use in the real world, highlighting issues that can occur along the way and
showing how to avoid them. Core Data is a big deal; you'll want to work through this chapter more than once.

In Chapter 7, Steve Finkelstein combines two open source projects with Core Data to build an intelligent
offline email client. It recognizes when the network status changes and uses NSInvocationOperation to keep the
user interface responsive while performing other operations. When sending e-mail, control stays within the
application.

Peter Honeder and Florian Pflug get down to the socket level for networking in Chapter 8. In addition to
discussing the ins and outs of communicating with devices on the network, they also discuss both power
management and the trade-offs between using SCNetworkReachability for detecting a Wi-Fi network vs. rolling
their own autodetection code.

An unresponsive user interface is one of the most frustrating behaviors an application can exhibit. In
Chapter 9, Jonathan Saggau demonstrates techniques that can be used to address this. From
NSOperation/NSOperationQueue to “blocks” (part of Snow Leopard but currently available on the iPhone only via
Plausible Blocks) to drawing into an off-screen context and more, this chapter is very enlightening.

Xiv

PREFACE

Joe Pezzillo provides step-by-step guidance for setting up APNS in Chapter 10. As Joe notes, the process is
not particularly difficult, but it is lengthy and involved, and that’s just for the creation of the distribution certificate.
The Cocoa code is almost anticlimactic.

The book concludes with a fascinating chapter by Noel Llopis on environment mapping and reflections
using OpenGL. You'll get more out of the chapter if you first brush off your linear algebra text, but there is still
much to be learned even without it. This is the kind of polish that iPhone users love to see.

You can see that this book is packed with projects that are both relevant and interesting. Take advantage
of the authors’ knowledge to help your application stand above the rest!

Glenn Cole

http: // benbritten.com

Melbourne, Australia

I have been writing software in one form or another
since gradeschool. Back then I wrote in BASIC and Logo. Over the
intervening quarter century or so | have ranged all over the map, from writing
low level assembly for embedded systems through all the major (and not
so major) languages settling now and again on the big ones, like C, C++, Perl,
Smalltalk, Obj C, PHP, etc.

Somewhere along the way I got involved with a visual effects company called
Spydercam, and wrote their industrial motion control system. This system is still
in heavy use and is used on many feature films. Then in 2005, Spydercam's lead
hardware designer, lead mechanical engineer and | were awarded an Academy
Award for Technical Achievement for our efforts in 3D motion control. Some
interesting trivia: the system we designed is the only one that | am aware of that
runs on a mac, written entirely in native Cocoa/Obj-C.

I am also active in the Multi-touch surface open source community. | wrote an
open source tracker called BBTouch and an open source OSC implementation
called BBOSC.

More recently | have relocated from New York City
to live in Melbourne with my wife Leonie. Here I have started offering my
services as a freelance cocoa developer, and once the SDK became public, the
market for iPhone work exploded. | have worked on a half dizen apps that are on
the store now for various clients, titles like SnowDude, Blackout and aSleep.
More recently | have begun collaborating on games of my own design, we just
finished one: SnowFerno. | am currently in development on a follow-on from

SnowDude called SkateDude, and a third as yet unnamed Dude project. After
those are done | have two more collaboration projects that are in pre-production,
both games and both 2D platformers.

Three or four key technologies discussed:
OpenGL
Texture Atlases
Particle Systems
Cool Stuff

Chapter

Particle Systems:
More Fun and Easier
Than You Think

When | was hired to write SnowDude, my employers, the Lycette Bros., and | set out a
simple goal: we wanted a nice, clean, simple game that was easy to pick up and fun to
play. There was not a big budget, so simplicity was the rule of the day.

I initially built the game using Core Animation, thinking that would be the quickest and
easiest route to getting our 2D graphics onto the screen. In our early prototypes, this
worked great; however, as we began adding the background elements and all the little
graphic bits that made the game come alive, our performance crashed. | was forced at
this point to reengineer the game model with OpenGL as the rendering API. This gave us
all the performance we needed, and that micro game engine became the basis for many
future projects in OpenGL on the iPhone.

SnowDude was a successful project in our eyes; it didn’t break any App Store sales
records, but the game was stable, clean, simple, and fun. (Go buy itl) The game was a
lateral move for all the parties involved. | had built simple games in the past, but the bulk
of my experience is in real-time motion control systems for feature films. The Lycette
Bros. came from the world of Flash games and developing apps for other mobile
platforms, so SnowDude was not just a game app but a way for everyone involved to
dip their toes into a new platform.

Since then, | have gone on to develop a dozen or so apps for various clients and have
released my first personal project to the app store: SnowFerno, which is a puzzle game
where you take on the persona of a snowball trying to roll its way through hell.

And now, a bit less than a year after the original SnowDude was released, there is
interest in a spin-off (or two), and we are starting to build the first one: SkateDude.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

SnowDude was ultimately a fast-paced maze game. You are a snowboarder, and your
goal is to get as far as you can down the “slope,” avoiding various obstacles along the
way. You can avoid the obstacles by either jumping over them or boarding around
them. If you make it to the checkpoint, you get some bonus time, and you can play for a
higher score.

As far as programming complexity, SnowDude was not very. It consists of just a handful
of textured quads, some clever use of the accelerometer, simple collisions, and some
game logic.

When we all came to the table to start talking about SkateDude, we wanted to make it
be a more active game experience. We wanted the obstacle avoidance to be only a
small part of the game play. We decided to add tricks that you can do while in the air
and a more robust control system. We added many more options to earn points, such
as grinding along hand rails or park benches and doing multipart tricks like jumping onto
a rail, grinding along it, and then jumping off and doing a trick before landing. All of
these options add a sense of excitement and give the players an opportunity to feel the
thrill of conquering the challenges.

One thing that we hadn’t nailed down in the early development meetings was how to
visually enhance the game. We didn’t know how we would use the stunning graphics
that the artist was generating to help bring the challenges alive and add a sense of
accomplishment to the game play.

We started playing around with adding particle systems to the game. At first, | just
added some very subtle sparks that shot out from under the skateboard when the player
was grinding across something. This encouraged me to add a few more things. And
then | added a few more systems and then a few more. | added a particle system to the
controls so that if you hit a big jump, the button exploded in a shower of stars. | added a
bunch of sparks that shot off the place where you touched the screen to do a jump. |
added particles everywhere! Well, that was great and added lots of exciting elements,
but | did go a bit far, and we ultimately scaled back to a few simple systems that added
some fun and encouraged the players to want to grind and do tricks by rewarding them
not only with points but with a fun visual system where a bubble with point values would
shoot out from under the board like sparks and float up to join the score at the top of
the screen.

This made the game much more visceral. Now, when you jump and grind across the
various surfaces and edges in the game, you can visually see the points you are racking
up, and the faster you grind or the higher your trick, the more points you get, so the
particle systems that are shooting point bubbles out are exploding at the higher

levels. Figure 1-1 is an early development screenshot of SkateDude; you can see the
sparks coming off the skateboard trucks as well as the point indicators shooting out as
you grind.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

Figure 1-1. An early development screenshot from the game SkateDude by the Lycette Bros. This shot shows two
of the particle systems | added to make the game more exciting and visceral.

Adding Life to Your Game with Particles

For the rest of the chapter, I’ll go over particles and how you can use them in subtle and
not-so-subtle ways to add life to your games. I’ll show you how to build your own
particle emitter system in OpenGL and incorporate it into your own projects.

First, what is a particle system, and why would you want to use it? A particle system is a
large collection of small graphics (you guessed it, those are the particles) that when
taken as a whole can simulate effects that would otherwise be very hard to render.
Things like smoke and fire are good examples. Particles are particularly good at
simulating systems that are inherently dynamic and ever-changing.

Fire is a good example. You can simulate an OK fire with an animation, but it will always
have a cartoonish look. If you want a fairly decent simulation of fire, you will want to use
particle systems.

SnowFerno is a good example. Given that you are a snowball in hell, we mostly use
particles to simulate just fire and smoke effects (see Figures 1-2 and 1-3). But fire and
smoke are not the only things you should think about simulating with particle systems.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

Figure 1-2. A simple fire and smoke effect using particles. This is one of the particle systems in SnowFerno.

Figure 1-3. SnowFerno was set in Dante’s Inferno, so we had plenty of opportunities to use fire effects.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

Particles are often associated with 3D games where the environments are immersive
and players expect things such as realistic weather effects and smoke and fire and
splattering blood and explosions. The list goes on and on. You can achieve all of these
effects with particles.

However, it is also good to think about particles when designing your 2D apps as

well, and not just 2D action games either. | often play some puzzle games to pass the
time, such as Drop7 and AuroraFeint. Both of these use particles to add a bit of
excitement and life to the game. In Figure 1-4, you can see the block-smashing effect in
Aurora Feint.

Figure 1-4. Aurora Feint uses particles to make its block smashing exciting.

Particles do not need to be big flashy things; they don’t have to be grand explosions or
giant fireballs. You can add subtle fun touches to your game interface with some simple
effects as well. Drop7 does this well; when you “crack” one of the unknown numbers, it
breaks open with a simple particle effect. It is so subtle that you might not even notice it,
but it adds that bit of

life and personality that makes the game fun. When you set up a nice long

chain reaction, all those little particle explosions really make it that much

more satisfying.

Basic Particle Systems and You

OK, now you know where you can add particle effects to your games, so now let’s talk
about how to add them.

First, | will presume you have some familiarity with OpenGL. If you don’t know OpenGL,
that is fine; you can still do particles in Core Animation and Core Graphics, so much of

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

the conceptual stuff will be applicable. However, OpenGL excels at things like particle
systems because it is so good at moving textures onto the screen very fast. In a Core
Animation particle implementation, you might be able to get a particle system with a few
dozen particles, maybe even 100 for a short while. With OpenGL, you can generate
thousands of particles at once, even on the iPhone.

Overview of the Sample Code

The sample project, called Particles, started its life as a generic OpenGL project
template from Apple. | have added a simple game harness around Apple’s template
code. Originally this code was written for the Beginning Game Development for iPhone,
and the chapters | wrote in that book go into great detail about this code base. Most of
the implementation details are not that important to the discussion of particle systems,
but | will do a brief overview anyway.

Let’s take a look at the basic design:

B EAGLView: This is a modified version of the EAGLView you get when you
start a new Xcode OpenGL iPhone project. It is responsible for
OpenGL buffer swapping as well as most of the boilerplate OpenGL
initialization stuff. This is the main view for the application.

B SceneObject: This is the base class for anything in the game. It has the
basic instance vars that most everything that needs to be rendered
needs. All rendered objects inherit from this class.

B SceneController: This is the main controller for the game. It handles
the game loop. It has a single SceneObject that is the root of all objects
in the current scene. It is a singleton.

B InputViewController: Since the input and the main view are basically
the same thing, this view controller handles the EAGLView as well as
wrangling the touch events. The input controller has its own list of
scene objects that get rendered last, in a heads-up display style.

B RenderController: This object deals with rendering all the scene
objects. It performs simple culling. The render controller uses a
SceneObject’s mesh to render that object. The mesh is basically the
collection of all the vertex data for a particular model.

B MaterialController: This object handles the loading of textures into
OpenGL. It can handle single textures or atlases when accompanied
with a .plist file describing the atlas contents.

B GameTypes: This is just a big collection of structs and inline functions
that come in handy. The two types | use the most in the sample code
are BBPoint, an xyz point struct, and BBRange, a range of floats.

The reason that | am not just showing how to build a stand-alone particles project is that
| think it is important to think about how these things fit into the bigger picture. Although

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

the sample program does little more than show off some particle effects, it is important
to think of these concepts in the context of a larger application.

The Particles sample project is not a fully realized game engine by any stretch, but it is a
good place to start, and it has much of what you would need to build a simple 3D
application in OpenGL. This makes it a good platform for you to explore the concepts of
particle systems.

Basic Game Flow

Figure 1-5 shows the flow for the game harness. It follows the basic game design
pattern that you are probably familiar with.

1 App
Start

Y

Scene
2 Controller; |«
Load Scene

Start
Game Loop

Y

Scene
3 Awake: Preload materials
Instantiate children scene objects

Game Loop:
check for inputs
update scene
render scene

—

Figure 1-5. This is the basic flow for the game harness.

-

Scene
Over

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

After the app starts up and everything is loaded from the xib files and you are ready to
go, the SceneController is called upon to load the first scene. This scene is simply a
SceneObject that is the parent of all the objects you want to have interact for this scene.

After the scene is “alloced,” the method awake is called on it, and that is where the scene
will call out to the other support objects, like the material controller, to make sure that all
the resources for this scene are loaded. (In this case, this will generally just be textures,
but in the broader case, this might include sound files or game data of some sort.)

When everything is ready, the game loop is started.

The game loop first checks for inputs, and then it calls update: on the scene. The scene
object will update all of its children recursively until the entire scene model has had a
chance to update its state. Finally, the game loop passes the root scene object to the
renderer to be rendered. Then it starts all over again.

At some point in the scene, the update portion of the loop will generate an end-of-scene
notification. (Maybe your character died, you ran out of time, or you hit a button to move
on to the next scene...whatever) The current scene is unloaded, and the next scene is
loaded.

This is a fairly standard game engine design. The big component that’s missing here is a
collision detection system. You will do some simple collision stuff with the particle
systems but nothing too complicated.

The Anatomy of a Particle System

Just in case you have never come in contact with a particle system, | will start with the
basics: what exactly constitutes a particle?

Particles can be any texture and are usually rendered as a textured quad (two triangles).
Depending on the effect you are going for, your particle textures might be
semitransparent like the simple white particle in Figure 1-6. Soft semitransparent
particles will yield “fuzzy” effects quite well. This makes a nice effect because particles
in a high concentration will be brighter and more intense, whereas out on the edges
where there may be only a few particles, the overall effect is dimmer and “blurry.”

Figure 1-6. A simple particle texture. This is about the simplest semitransparent texture you can get. It is just a
white blur, 25 X 25 pixels.

That said, you can get some great effects from fully opaque or hard-edged particles as
well, such as things like marbles rolling across a floor or leaves falling.

Each particle in the system has its own state, and each particle will get its own initial
conditions and then behave based on a set of rules. All of this ordered chaos—a
multitude of particles that are all slightly different but similar—can create some amazing
fluid, living, organic effects.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

That is the particle. You also need something that generates the particles, and that is
known as the emitter. The emitter’s job is to build new particles at some predetermined
rate. It has to assign each particle an initial state that meets the requirements for that
particular effect. These are things such as starting position, size, life span, speed, and
direction. After a particle has been created, the emitter then has to keep track of each
particle, and for every rendered frame, it needs to collect all the vertex and UV and any
other rendering data for each particle and build some big arrays to send off to the
renderer.

In many particle effects, each particle has a life span, and once that span is over, the
emitter needs to collect those particles and remove them from the scene.

So, basically the emitter itself has a mini game loop going on. Every time it gets
updated, it needs to create some new particles and add them to its currently active
particle list. Then it goes through all the active particles and moves them or rotates them
or whatever. Then it needs to check to see whether any particles have reached the end
of their life, and if so, it removes them from the active list. Finally, it needs to make the
data arrays from all the particle states.

Here are a few things to keep in mind:

B The particle system needs to be able to go through thousands of
particles in a single frame, so you need to find efficient ways to handle
all of the particles and keep them updated.

B The emitter may need to emit a few hundred particles every frame,
possibly even a few thousand, so you also need to be very efficient
about creating particles. Allocing objects is a costly process, so you
want to avoid it at all costs.

B Hundreds of particles can expire at the same frame, so you need to
also be clever about how you clean up your particles. Memory cleanup
is slow and can affect performance, so you need to be careful about
releasing a zillion particles all at once.

B Dynamically mallocing vertex array memory is expensive. You want to
avoid changing the size of your vertex data arrays.

How do you solve these problems?

When your particle emitter is first created, you will need to build a big reserve of
prealloced particle objects. Similarly, you will malloc a big chunk of memory for your
vertex data arrays, big enough to hold the maximum number of particles.

Then during the update loop, when you emit new particles, you just grab them out of the
pool and assign them their initial state. This is so much faster than allocing new objects
on the fly. This becomes especially important for effects such as explosions where you
need to emit lots of particles all at once.

When you build your data arrays for each frame, you just use as much of the vertex data
space as you need and leave the rest as reserve.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

Similarly, at the end of the particle life, when you clear them out of the active list, you
simply return the particle objects to the pool.

Figure 1-7 shows this life cycle. Also of note: | used a particle system to generate both
the spark shower and the pool.

Particle Emit!

Pool dials

Figure 1-7. The particle life cycle. Nonactive particles start in the pool. They are pulled out of the pool and given
some initial state when they are emitted. They live out their exciting particle life until they finally die. They are
then collected and returned to particle limbo to await resurrection.

The downside to this method is that it can be very memory consuming, and the setup
time can be significant if you have many particle systems. The secret is to tune the max
particles for the type of effect you are creating. A blizzard of falling snow might require a
few thousand particles, whereas a subtle foreground of falling leaves may require only a
few dozen.

Code! Finally!

OK, I have rambled on for quite a few pages about the whats and whys of particles. It is
time to get your hands dirty with some code.

First build a particle:

@interface BBParticle : NSObject {
BBPoint position;
BBPoint velocity;
CGFloat life;
CGFloat size;
CGFloat grow;
CGFloat decay;

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

@property (assign) BBPoint position;
@property (assign) BBPoint velocity;
@property (assign) CGFloat life;
@property (assign) CGFloat size;
@property (assign) CGFloat grow;
@property (assign) CGFloat decay;

This is a very basic particle. The basic state is position, 1life, and size. velocity, grow,
and decay are the state changers. Particles can be far more complicated than this, and
you will add some more stuff to your particle later, but for now let’s keep it simple.

Next you look inside your particle implementation:
@implementation BBParticle

@synthesize position,velocity;
@synthesize life,size,grow,decay;

-(void)update: (NSTimeInterval)deltaTime
{

position.x += velocity.x * deltaTime;
position.y += velocity.y * deltaTime;
position.z += velocity.z * deltaTime;

life -= decay * deltaTime;

size += grow * deltaTime;

if (size < 0.0) size = 0.0;
}
Very simple. You have a time-based update. You take all of your state and change it by
a fraction equal to the amount of time for this frame. Finally, you check your size. You
don’t want to go into negative size because that will just flip your particle over and make
it grow.

That’s it! You have a nice simple model object with a single data manipulator method.

Next, let’s build a simple particle emitter object. This one is a bit more complicated than
the particle:

@interface BBParticleSystem : BBSceneObject {
NSMutableArray * childrenParticles;

GLfloat * uvCoordinates;
GLfloat * vertexes;

NSMutableArray * unusedParticles;
NSInteger vertexIndex;

BOOL emit;
CGFloat emitCounter;

BBRange emissionRange;
BBRange sizeRange;
BBRange growRange;

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

BBRange xVelocityRange;
BBRange yVelocityRange;
BBRange zVelocityRange;

BBRange lifeRange;
BBRange decayRange;

CGFloat minU;
CGFloat maxU;
CGFloat minv;
CGFloat maxV;

CGFloat particleRemainder;

}

Wow, that is a fair few instance variables! One thing that you will learn quickly (or may
already know if you have played with emitters before) is that a good particle emitter will
be very flexible, and that requires lots of inputs to tweak to get just the right effect. Lots
of inputs means lots of instance variables.

Let’s get into the implementation:
- (id) init
self = [super init];

if (self != nil) {
[self preload];

return self;

}

That was a simple init method. Basically, you just call preload, which is where you,
well, preload all your particles and memory allocations:

- (void)preload
{

if (childrenParticles == nil) childrenParticles = [[NSMutableArray alloc] init];
unusedParticles = [[NSMutableArray alloc] initWithCapacity:kMaxParticles];
NSInteger count = 0;
for (count = 0; count < kMaxParticles; count++) {

BBParticle * p = [[BBParticle alloc] init];

[unusedParticles addObject:p];

[p release];

First you create your particle limbo and fill it with particles ready to be jettisoned into life
to burn brightly for a few moments and then be pulled back into the land of the inactive.

// remember 6 vertexes per particle + UVs
vertexes = (CGFloat *) malloc(2 * 6 * kMaxParticles * sizeof(CGFloat));
uvCoordinates = (CGFloat *) malloc(2 * 6 * kMaxParticles * sizeof(CGFloat));

Don’t forget to malloc some room for the vertexes and UV coordinates.

I’ll now go off on a tangent momentarily and talk about GL_TRIANGLES vs.
GL_TRIANGLE_STRIP.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

Slight Tangent About Degenerates

You are going to be drawing a whole slew of textured quads onto the screen. However,
generally a quad is only four vertexes. So, what is up here?

You are going to be rendering all your particles in the same draw call, and they are not
connected, so you will need to figure out a good way to draw them all.

If you use GL_TRIANGLES, then you are basically just draw each triangle individually. Every
quad is just two triangles and six vertexes. This has the advantage of being very simple
to program.

You could also use GL_TRIANGLE_STRIP and connect each quad with degenerate
triangles. A degenerate triangle is a triangle where the three points lie on a line. You can
see in Figure 1-8 how this works. A triangle with colinear points has no area, so the
renderer will throw it out. The easiest way to connect two meshes with a degenerate
triangle is to just duplicate the last vertex of the first mesh and the first vertex of the
second mesh and then add them together. This basically inserts two colinear triangles
into the strip so that the rendered effect is two separate quads. This means, on average,
each quad requires six vertexes, just like the GL_TRIANGLES method.

v4

V2 ® v5

GL_TRIANGLES \

® v3

v0 v

v2 ".3~v4
\\\v5 v9/,f‘1
\ v6 ® 10

v®

vi \

GL_TRIANGLE_STRIP

[4
vi v8
Figure 1-8. With GL_TRIANGLES, you have two separate polygons drawn individually. With
GL_TRAINGLE STRIP, all the polygons are connected, so you have to basically put two degenerate triangles in
between the two separate quads.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

Using degenerate triangles makes the code just ever so slightly more complex for very
little practical gain. | always pick the simpler of two choices, so you are going to stay
with GL_TRIANGLES in this chapter.

Back to the Code

You have preloaded your particles, so now you need to assign your textures:
-(void)setParticle: (NSString*)atlasKey

BBTexturedMesh * quad = [[BBMaterialController sharedMaterialController]
quadFromAtlasKey:atlasKey];

self.mesh = [[BBTexturedMesh alloc] init];

[(BBTexturedMesh*)mesh setMaterialKey:quad.materialKey];

[(BBTexturedMesh*)mesh setAtlasKey:quad.atlasKey];

You will grab a prebuilt quad from the material controller (more on this in a moment).
You don’t want to set your mesh to be the same as the quad’s mesh because you are
going to be mucking with the internal bits of our mesh. Instead, you will make a fresh
one and copy over the parts you care about:

// need to calculate the min and max UV

CGFloat u,v;

NSInteger index;

minU = minV = 1.0;

maxU = maxV = 0.0;

CGFloat * uvs = [quad uvCoordinates];

for (index = 0; index < quad.vertexCount; index++) {
u = uvs[index * 2];
v = uvs[(index * 2) + 1];

if (u < minU) minU = u;
if (v < minV) minV = v;
if (u > maxU) maxU = u;
if (v > maxV) maxV = v;

}

To be as efficient as possible, you will be building the UV coordinate array alongside the
vertex array during the update phase. To do this, you will need the min/max of your UV
coordinates. You calculate those from the texturedQuad and store them for later:

mesh.vertexes = vertexes;
[(BBTexturedMesh*)mesh setUvCoordinates:uvCoordinates];

mesh.vertexStride = 2;
mesh.renderStyle = GL_TRIANGLES;
}

Lastly, you point the mesh vertexes and UV coordinates back at your big buffers that
you have already malloced.

OK, there is something called a mesh and a material controller that | haven’t really talked
much about. The mesh is basically just a holder for the OpenGL vertex data arrays. The

render controller uses the mesh to do the final rendering. That is why you need to give it
information like the renderStyle and the vertexSize.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

The material controller is a handy class that does all the heavy lifting for loading and
processing texture atlases. In this case, you have a texture atlas file called
particleAtlas.png and a texture metadata file called particleAtlas.xml. The XML file
contains the information required to generate the UV coordinates for all the images in
the atlas. The material controller loads all those textures when the scene is loaded and
stores them in a string-keyed dictionary. So, to get a textured quad from the atlas, you
just ask for it by name, like so:

BBTexturedMesh * quad = [[BBMaterialController sharedMaterialController]
quadFromAtlasKey:atlasKey];

In this case, the quad will be the particle texture that you want to associate with this
emitter.

OK, now you want to set up the update loop in the emitter:
- (void)update: (NSTimeInterval)deltaTime
{

[super update:deltaTime];

// update active particles -> move them
for (BBParticle * kid in childrenParticles) [kid update:deltaTime];

// build arrays
[self buildVertexArrays];

// emit -> add new particles
[self emitNewParticles:deltaTime];

}

It's a simple loop: update the current particles, and emit new particles. Changing the
order that you call these methods will have very subtle effects on the working of the
emitter, but mostly any order will work just as well as the next. For instance, | could emit
new particles before | build the arrays. This means that the new particles will get
rendered for one frame before ever moving. This might be what you want. | have put the
emit last so that those particles will not get rendered until they have been updated at
least once.

-(void)buildVertexArrays
{

vertexIndex = 0;
for (BBParticle * particle in childrenParticles) {
// check to see if we have run out of life, or are too small to see
// and if they are, then queue them for removal
if ((particle.life < 0) || (particle.size < 0.3)) {
[self removeChildParticle:particle];
continue; // skip to the next particle, no need to add this one

}

This is the heavy lifting method of this class. This is where you do the real work of taking
all your particles and making OpenGL-compatible vertex and UV arrays. You first reset
vertexIndex, which is the instance variable that will keep track of where you are in the
arrays, so it is pretty important.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

Next you simply step through each child particle. First you are going to check to see
whether the life has expired or whether the size is too small to bother rendering. In either
case, you will queue this child for removal. In this case, you also skip to the next particle;
there is no reason to add a dead particle to this rendering array.

// for each particle, need 6 vertexes
[self addVertex:(particle.position.x - particle.size) y:(particle.position.y -
particle.size) u:minU v:maxV];
[self addVertex:(particle.position.x + particle.size) y:(particle.position.y -
particle.size) u:maxU v:maxV];
[self addVertex:(particle.position.x - particle.size) y:(particle.position.y +
particle.size) u:minU v:minV];

[self addVertex:(particle.position.x + particle.size) y:(particle.position.y -
particle.size) u:maxU v:maxV];

[self addVertex:(particle.position.x - particle.size) y:(particle.position.y +
particle.size) u:minU v:minV];

[self addVertex:(particle.position.x + particle.size) y:(particle.position.y +
particle.size) u:maxU v:minV];

Next you build a vertex from the particle’s state. Currently that is just the position. You
are also building the UV arrays at the same time, using the stored UV max and min:

mesh.vertexCount = vertexIndex;
[BBSceneController sharedSceneController].totalVerts += vertexIndex;

You then set your vertexCount in the mesh object so that it knows how many vertexes
to render. Finally, you are going to jam the particle count into a state variable in the
scene controller. This is a bit of a hack, but | want to be able to display the number of
particles on the screen, because | have another object that comes around later and uses
this to render that number.

It is important to note the order in which you are building these vertexes. Currently, | am
using front-face culling to make the 3D models slightly smaller in terms of vertexes
rendered. However, the 3D models | am using require front-face culling, which means
that the 3D models have clockwise (CW) windings, so | need to build these triangles in
CW order as well.

Astute readers will notice that you are building what amounts to the same array of UV
coordinates every time. In theory, you could just build that array once, since they are all
the same. This is true, and if | didn’t have a plan that involved multiple sets of UV
coordinates in mind for later in the chapter, then it would be silly to build the same array
over and over again.

- (void)addVertex: (CGFloat)x y:(CGFloat)y u:(CGFloat)u v:(CGFloat)v
{

NSInteger pos = vertexIndex * 2.0;
vertexes[pos] = x;

vertexes[pos + 1] = y;
uvCoordinates[pos] = u;
uvCoordinates[pos + 1] = v;
vertexIndex++;

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

Here is the add vertex method. It just populates the vertex and UV arrays with data and
increments the vertexIndex.

Almost there! Now to emit new particles! But first, let’s talk about random numbers.

Random Numbers and Initial Gonditions

One of the defining characteristics of a particle system is that each particle contains its
own unique state. Each new particle put in the system has its own unique initial
conditions as well (and by unigue | mean unique-ish). There is actually a pretty good
chance in a particle system that you will have a few particles that are exactly the same,
but | digress.

How do you make each particle unique? As you may have guessed by the title of this
section, one way is with random numbers. However, that is not the only way.

You can (and many have) model your particle effects after real-world systems. You can
define the various characteristics and particle behaviors with systems of equations. For
instance, if you really wanted to model the way a rocket engine ejects mass to provide
thrust, you might build a numeric simulation to take into account the expansion pressure
of the fuel, the nozzle shape, the size of the payload, and the wind speed. You could
then impart this information into your particle system and have a very realistic simulation
of a rocket launching.

However, | find it much easier to just fake it.

Instead of real-world mathematic models, you can just define a range of valid values for
each state variable in a particle. The more unique each particle is, the more interesting
and not fake your systems will look.

This brings us to random numbers. As many know, random numbers are not really all
that random, but for our purposes, semirandom will do fine. To get a nice random
number from a range, you will use one of the handy inline functions that is in the
GameTypes.h file:

static inline CGFloat BBRandomFloat(BBRange range)

// return a random float in the range

CGFloat randPercent = ((CGFloat)(random() % 10001))/10000.0;
CGFloat offset = randPercent * range.length;

return offset + range.start;

This just takes one of the range structures as input and returns a float value that lies
somewhere in that range. Easy!

The downside to this approach is that there are lots of little things to tweak to get the
exact effect you want. You will get to see this firsthand later in the chapter.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

Emitting Particles

Let’s get back to the particle emitter. You were just about to spawn some new particles
into the world:

-(void)emitNewParticles: (NSTimeInterval)deltaTime

if (lemit) return;

if (emitCounter > 0) emitCounter -= deltaTime; // if emitCounter == -1, then emit
forever

if (emitCounter <= 0) emit = NO;

OK, already some strangeness. What is this emitCounter?

Often you want your particle system to simulate some short event instead of a constant
flow of particles. The emitCounter is a handy way to preload an emitter with a set time
before it shuts down. This is especially useful for things like explosions where you want
to emit a very large number of particles in a short time. If you want your particle emitter
to generate constantly for a long time, then you just need to set the emit count to some
very large number, like 10000.

CGFloat newChance = ([self randomFloat:emissionRange] * deltaTime);
particleRemainder += newChance;

if (particleRemainder < 1.0) return;

Next is emissionRange. This range is the number of particles that can be emitted in a
given second. Since this can be very small (maybe you are simulating a leaking faucet
that drips only once every ten seconds), you need to add up all the incremental
“chances” until you get one full particle. This is what the particle remainder is for; it
keeps track of your incremental progress.

NSInteger newParticleCount = (NSInteger)particleRemainder;
particleRemainder -= newParticleCount;

OK, you have at least one particle! You put the fraction remains back into
particleRemainder and move on to the actual emitting stage:

NSInteger index;

for (index = 0; index < newParticleCount; index++) {

if ([unusedParticles count] == 0) {
return;

If you have no more particles, then you simply give up. You will have to wait until some
particles die before you can emit any more. If you find yourself getting into this clause
quite a bit, then you need to increase your max particles.

BBParticle * p = [unusedParticles lastObject];

p.position = [self newParticlePosition];
p.velocity = [self newParticleVelocity];
p.life = [self randomFloat:1lifeRange];

p.size
p.grow

[self randomFloat:sizeRange];
[self randomFloat:growRange];

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

p.decay =[self randomFloat:decayRange];

[self addChildParticle:p];
[unusedParticles removelastObject];

}

You grab the last particle in the pool and set the initial conditions using your fancy
random float function. Then you add it to the active particles and remove it from the
pool.

- (BBPoint)newParticlePosition

return self.position;

}
- (BBPoint)newParticleVelocity

return BBPointMake(
BBRandomFloat(xVelocityRange),BBRandomFloat(yVelocityRange),BBRandomFloat(zVelocityRange

)

These are just some handy functions to make it easier to build the position and velocity
values. Hmm...why would you need separate methods just to return the position and
build a simple random point? Perhaps you will be modifying these methods later.

That is it for the simple emitter! You now have an emitter that should emit particles from
a single point, each particle having a variable velocity, size, and life.

This may not seem like much, but you can simulate quite a few things with just these
simple states.

Tweaking Your Particle System

Now you have the means to generate some particles, so let’s get to it!

In the sample code, | have set up five scenes and a handy set of buttons to be able to
load each scene. Each one of these scenes has a particle emitter in it, and they are
basically set up to be particle playgrounds. The SceneObject will overlay the scene-
changing buttons as long as you don’t forget to call [super awake] in the subclass awake
method.

First, let’s look at SceneZero. This will be your first and simplest emitter. You will use the
emitter code that you looked at in the past few sections, so you’'ll have just velocity
and size and life. You will start with the Hello World of emitters: the explosion:

@implementation BBSceneZero
-(void)awake

[super awake];
[[BBMaterialController sharedMaterialController] loadAtlasData:@"particleAtlas"];

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

First you need to make sure that your materials are available, or who knows what you
might get. You can call this over and over again (for instance, if you leave this scene and
come back, this will get called again) because it will load the texture atlas only once.

particles = [[BBParticleSystem alloc] init];
particles.position = BBPointMake(0.0, 0.0, -50.0);
particles.emissionRange = BBRangeMake(2500,2500);
particles.emitCounter = 0.1;

Here you are setting the emission range to fall between 2,500 and 5,000 particles a

second. That is a huge amount! This is why you are going to emit particles for only a

tenth of a second.
particles.xVelocityRange

particles.yVelocityRange
particles.zVelocityRange

BBRangeMake(-500, 1000);
BBRangeMake (-500, 1000);
BBRangeMake (-500, 1000);

You will emit particles that are moving between 0 and 500 pixels per second in all
directions.

particles.lifeRange = BBRangeMake(10.0,0.0);
particles.decayRange = BBRangeMake(2,0.00);

All the particles will have exactly 10 life, and decay at 2 1ife per second. This means
each particle will live 20 seconds.

particles.sizeRange = BBRangeMake(2, 2);
particles.growRange = BBRangeMake(-1.0, 0.5);

The particles will start between 2 and 4 pixels wide, and they will shrink by somewhere
between 0.5 and 1 pixels per second.

particles.emit = NO;
The emitter will start dormant.

[particles setParticle:@"whiteSubtle"];
[self addChild:particles];

Set the particle to your very translucent white blur, and add the particle system to the
child array so that it will get caught by the renderer:

-(void)update: (NSTimeInterval)deltaTime
{

[super update:deltaTime];

// check our emit status

if (particles.emit == NO) {
particles.emitCounter = .10;

}

In the update method, which is called every frame by the game loop, you will check to
see whether the emitter has been shut down. If so, then you reset the emitCount to be
ready for another explosion:

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

-(void)emitButtonDown

particles.emit = YES;

Ahh, yes, the emit button. The Scene class provides a big overlay button that lays
overtop the entire screen area, except where the scene-switching buttons are. It
provides a method callback for that big overlay button, and it is called emitButtonDown.
You will use this to your advantage in many scenes. In this case, you are just turning the
emitter on. The emitter will run for 0.1 seconds and then shut itself off. At some point
after that, your update will be called, and you will reset the emitCount so you can start
over again.

This means that just about every time you tap the screen, you will get an explosion of
white particles.

One thing | must apologize for: it is hard to take good screenshots of particle systems.
The beauty of the system is in its ever-changing and fluid nature. A screen capture robs
the system of its best quality: the emitter’s appearance over time. So, you will need to
either be very imaginative or quickly build the app for yourself and try it. Figure 1-9 is a
good example, because a static shot it is just a bunch of white dots, but in motion it is
so much more.

Figure 1-9. Boom! The SceneZero emitter after | hit it about 20 times in quick succession. Note the two numbers
in the lower left. The big one is the number of particles, and the smaller one is the frame rate. | got this in the
simulator. You would be hard-pressed to generate 28,000 particles and keep a 30 fps on the device.

OK, now you have seen the basic explosion, so let’s tweak this particle system to look
like something entirely different.

You will use the same particle, mostly just to illustrate the flexibility of particles. Let’s
tweak this system so it looks like the thruster exhaust from a spaceship.

We will do this in SceneOne. It is already set up with three particle emitters; you just need
to tweak the emission parameters.
Let’s take a look:

// thruster
particles.emissionRange = BBRangeMake(50,50);

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

We don’t want to emit a kagillion particles every second like the explosion. This system
will go as long as you are touching the screen, so you want to have a decent but not
crazy stream.

particles.xVelocityRange
particles.yVelocityRange
particles.zVelocityRange

BBRangeMake (40, 40);
BBRangeMake(-5, 10);
BBRangeMake(-5, 10);

If you are imagining that this system is thrust exhaust from a ship or a rocket, then it will
mostly be directed in a single direction, in this case, to the right. You want to give the
particles some random velocity in the y and z as well; this will give you a nice cone of
particles.

particles.growRange
particles.sizeRange

BBRangeMake(-1.5, 0.5);
BBRangeMake(2, 8);

Since this is exhaust, or a plasma drive or even some energy drive, you want the
particles to get smaller as they go on to give them the appearance of evaporating. So,
you will give them a net negative grow rate between -1.5 and —1.0. You want the initial
size to be fairly wide-ranging. Since you are shrinking about 1-pixel size per second,
then after one second from the emission point, our 2-pixel particles will be a single pixel.
This will give a nice effect mixed in with some bigger ones that never get that small.

particles.lifeRange = BBRangeMake(5.0, 0.0);
particles.decayRange = BBRangeMake(1, 1);

Finally, you will define the life span. Give each particle exactly 5 for the life and between
1 and 2 for the decay rate; this means that the particles will live for between 2.5 and 5
seconds. However, they can die sooner if they shrink below a visible size.

There are two more particle systems included in SceneOne. Go ahead and tweak those
and see whether you can make some fun-looking thrust effects.

Figure 1-10 is what | came up with. The top system is the one | described here. (If you
want to have the ships too, just uyncomment the [self addShips] call at the end of the
awake method.)

Figure 1-10. Three exhaust particle systems. | added the ships and things for inspiration.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

May the Force Be with Your Particles

| haven’t really even touched on the vast number of systems you can simulate with the
simple particle emitter you have so far. | absolutely encourage you to play around with
the particle emitters in SceneOne and see what kinds of things you can come up with.

However, it is time to advance the art of the emitter. It would be groovy if your particles
could be affected by gravity or the wind or both!

It would also be quite nice if you could have the particles emit from something besides a
single point. If you could emit from a larger volume, then you could create things like rain
and snow, not to mention making your thruster emitters a bit nicer.

Let’s start with gravity—or more generally, any force. For our purposes, force can be
considered roughly equivalent to acceleration. (It is really mass = acceleration, but | will
simplify it for our purposes; just don’t tell my college physics professor.)

Just like velocity is a change in position over time, acceleration is simply a change in
velocity over time. Let’s look at adding a force to your particle. You will need a new
instance variable:

@interface BBParticle : NSObject {

BBPoint force;

}
@property (assign) BBPoint force;

And a simple addition to the update method:
- (void)update: (NSTimeInterval)deltaTime
velocity.x += force.x * deltaTime;

velocity.y += force.y * deltaTime;
velocity.z += force.z * deltaTime;

Easy! Now you need to just add a force var to the emitter and update the emit method:

-(void)emitNewParticles: (NSTimeInterval)deltaTime

NSInteger index;
for (index = 0; index < newParticleCount; index++) {

p.force = force;

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

}
Wow, that was easy. Let’s see how this can affect the thruster particles:

particles.force = BBPointMake(0.0, -20.0, 0.0);

You just need to add this line to your SceneOne thrusters, and they will all get a constant
negative y acceleration, which may or may not look like gravity. In Figure 1-11, | turned
off the other two emitters so that | could easily see the effect of the force on the top
emitter.

Figure 1-11. The top emitter now with more gravity

Well, that was easy, so let’s go ahead and add an emission volume. This time you only
need to add some stuff to the emitter object:
BBRange emitVolumeXRange;

BBRange emitVolumeYRange;
BBRange emitVolumeZRange;

You will add a few new instance vars to the ParticleSystem object, and then you just
need to change the particlePosition method a wee bit:

- (BBPoint)newParticlePosition

return
BBPointMake (BBRandomFloat (emitVolumeXRange),BBRandomFloat (emitVolumeYRange),BBRandomFloa
t(emitVolumeZRange));

}

This will emit particles randomly in a squareish volume defined by the emit volume
ranges. See Figure 1-12.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

Figure 1-12. An emitter emitting stars into a 3D rectangular volume. This is in the sample code in SceneTwo.

Rectangular emission volumes are the easiest way to go and are often enough for what
you need. However, sometimes you do not want that. It might be nicer to be able to
have the particles fill a spherical volume.

// a random position around my position
- (BBPoint)newParticlePosition

if (!sphericalEmissionVolume) return
BBPointMake (BBRandomFloat(emitVolumeXRange),BBRandomFloat(emitVolumeYRange),BBRandomFloa
t(emitVolumeZRange));

You need to add a new property: sphericalEmissionVolume. | have set this to default to
YES because | generally find myself wanting to use the spherical emitters.

BBPoint rawPos = BBPointMake([self randomFloat:zeroToOne],[self
randomFloat:zeroToOne], [self randomFloat:zeroToOne]);

if ((rawPos.x * rawPos.x + rawPos.y * rawPos.y + rawPos.z * rawPos.z) > 1.0) rawPos
= BBPointNormalize(rawPos);

OK, here you are going to do some math. If you don’t like math, then look away now.
What you are doing is grabbing three values between 0 and 1. This should give us a
point anywhere in the unit cube. Next you will check to see whether it is inside the unit
radius from 0,0 by checking the length of the vector against 1 (technically 1 squared). If
it falls outside the unit radius, then you normalize it.

rawPos.x *= [self randomFloat:emitVolumeXRange];

rawPos.y *= [self randomFloat:emitVolumeYRange];

rawPos.z *= [self randomFloat:emitVolumeZRange];

return rawPos;

}

Now you take your normalized vector that is guaranteed to be inside the unit radius and
multiply it by your emit volume ranges. This will result in a point somewhere inside the
spheroid that is bounded by the three emit volume ranges. This works for ellipsoids as
well, so feel free to provide asymmetrical emit ranges. You can see in Figure 1-13 my
new spherical bounding volume.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

Figure 1-13. A spherical emission volume. This is in the sample code in SceneTwo.

A side note to the probability geeks in the crowd: this will not give you an even
distribution. It is a bit of a fake to get the points in a known amount of time, though it is
good enough for most things. If you really want a statistically even distribution inside the
sphere (within the limitations of the random number generator), then you can’t just
normalize the vector. Instead, you would want to keep generating random points until
you found one that lies inside the unit radius.

Amazing Technicolor Dream Particle

We are nearing the end of the chapter, and | wanted to cover the final thing that |
consider a “must have” for any particle system: color animation. Color-changing
particles is the final piece of the puzzle that will help bring your particle systems to life.

What do | mean by color animation?

So far, you have been using your textures quad particles without any additional color
information. You have been using whatever color information the texture provided
basically. However, you can just as easily enable the GL_COLOR_ARRAY and send in color
information, tinting your textures to whatever color you want.

This is useful in two ways. First, you can now set a color for your particles, so if you
don’t like the white rocket exhaust for your spaceship, you can change it by just setting
a color instead of using a new texture. Second, you can change

the color of the particle based on its life span (or size or position or whatever you want).

You'll now learn how to add a fairly standard two-color scheme to your system, based
on the life of the particle. However, there is nothing stopping you from using the same
technique to animate through three or four or five colors.

Off on a Tangent: Lerping

To be able to figure out the value between two colors, you need to be able to interpolate
that value. Interpolation is the process by which you guess the value of an unknown
point based on some known values. Often it is used in curve-fitting and other data

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

manipulation fields. There are tons of different forms of interpolation, but you are going
to look at the most simple way: linear interpolation.

Linear interpolation, also known in the graphics/game development/math world as
simply lerp, is a very handy thing to keep in your toolbox of mathematical functions.

Lerping is really very easy, and you have probably done it once or twice before and not
even realized that it had a name. So, even for the math-phobic, this section should be
pretty painless.

I am bringing up lerping in the context of finding a middle color between two other
colors, but it has broad-reaching uses in game development, so | wanted to at least
spend a few paragraphs bringing it to your attention. Lerping is not only good at finding
colors, but it is also fantastically useful for animation and tweening.

Let’s say you have an enemy spaceship that needs to fly from point A to point B. You
can simply lerp the position from A to B over time. Easy! Similarly, lerping is a quick and
simple way to add movement to your objects and game items. When you are using Core
Animation to implicitly animate your layers, whether you are moving the layer around or
rotating it or whatever, Core Animation is lerping your layer from the start value to the
end value. You can use it for lots of things in your games (and as | mentioned, you
probably are, without knowing it).

So, let’s look at a simple lerp function that you should be using for everything:

static inline CGFloat BBLerp(CGFloat start, CGFloat end, CGFloat amount)
{

0.0;
1.0;

)

if (amount < 0.0) amount
if (amount > 1.0) amount =
CGFloat spread = end - start;

return (spread * amount) + start;

This is a very simple bounded linear interpolation over the values 0 to 1. If you send in
amount = 0, then you will get back the starting value. If you send in amount = 1, then you
will get the end value. If you send in 0.5, then you will get back the value that is halfway
between start and end. You have probably had to do this before, and this just puts it in a
nice simple form that is useful in a plethora of situations.

You can also add a handy point-to-point lerp (this is what is happening in Figure 1-14):

static inline BBPoint BBPointLerp(BBPoint start, BBPoint end, CGFloat amount)
{

BBPoint lerped;

lerped.x = BBLerp(start.x, end.x, amount);

lerped.y = BBLerp(start.y, end.y, amount);

lerped.z = BBLerp(start.z, end.z, amount);

return lerped;

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

Lerp (A,B,0.75)

Figure 1-14. Simpler linear interpolation. C is three quarters of the way between A and B.

This is a book about advanced projects, and some might think that lerping is a pretty
basic concept. That is true, it really is, but | wanted to go over it quickly because it is so
handy and simple. And if you haven’t seen it before, it can be a revelation.

Anyway, back to colors.

Color-Changing Particles

To be able to lerp between two points, you will need a start point, an end point, and a
value between 0 and 1 that is my position along that line. In the case of your particles,
you can use the life as a positional indicator, but in order to get a life value between 0
and 1, you will need to know the starting life value.

You will also need a place to put your color values in the particle:
@interface BBParticle : NSObject {

CGFloat startinglLife;
CGFloat r1;
CGFloat g;
CGFloat b;
CGFloat a;

@property (assign) CGFloat r;
@property (assign) CGFloat g;
@property (assign) CGFloat b;

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

@property (assign) CGFloat a;
@property (assign) CGFloat startinglife;

In the implementation file, you only need to add the properties to be synthesized, and
you will be all done with your new colored particle:

@implementation BBParticle

@synthesize 1,8,b,a,startinglife;

Next you need to add a handful of new instance variables to your particle system class:
@interface BBParticleSystem : BBSceneObject {

CGFloat startR;
CGFloat startgG;
CGFloat startB;
CGFloat startA;

CGFloat endR;
CGFloat endG;
CGFloat endB;
CGFloat endA;

BOOL animateColor;

}

You want to make these properties, so don’t forget to add the @property declarations
and the @synthesize declarations in the implementation file.

The animateColor flag will tell the emitter whether you need to bother building the color
arrays. If you do not plan to use the color feature, be sure to set this to NO. Don’t just set
the colors to white. The color array is 4 floats per vertex, and it will affect your
performance to be pushing all that extra data into the renderer, so turn it off if you do not
need it. | have set animateColor to default to NO in the sample project.

To use the color arrays, you need to make sure that you have a buffer malloced for that,
so at the end of the preload method, add a malloc for the color array:

- (void)preload
{

colors = (CGFloat *) malloc(4 * 6 * kMaxParticles * sizeof(CGFloat));

Also, in the setParticle: method, you need to link the mesh’s color array to your new
buffer:

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

-(void)setParticle: (NSString*)atlasKey
{

mesh.colors = colors;
mesh.colorSize = 4;

Now you have a place to put your colors, and the mesh is all hooked up. Next you just
need to set the color in the particles and generate the color array during your update
loop.

Let’s start at the beginning of the particle life cycle: emitParticles. You need to set the
initial RGBA values on the particle as well as the new startinglLife value:

-(void)emitNewParticles: (NSTimeInterval)deltaTime

NSInteger index;
for (index = 0; index < newParticleCount; index++) {

p.r = startR; // set the colors

p.g = startG;

p.b = startB;

p.a = startA;

p.life = BBRandomFloat(lifeRange);

p.startinglife = p.life; // set so you can do color animation

}

Now your newly minted particles will all have the right initial conditions. Moving to the
next stage of the particle life: the update. This is the update method in the particle
emitter. You don’t actually need to change the individual particle update method.

-(void)update: (NSTimeInterval)deltaTime

// update active particles -> move them
[super update:deltaTime];
for (BBParticle * kid in childrenParticles) {
[kid update:deltaTime];
if (animateColor) {
kid.r = BBLerp(startR, endR, (kid.startinglLife -
kid.life)/kid.startinglLife);
kid.g = BBLerp(startG, endG, (kid.startinglLife -
kid.life)/kid.startinglLife);
kid.b = BBLerp(startB, endB, (kid.startinglLife -
kid.life)/kid.startinglLife);
kid.a = BBLerp(startA, endA, (kid.startinglLife -
kid.life)/kid.startinglLife);

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

}

// emit -> add new particles

// build arrays

[self buildVertexArrays];

[self emitNewParticles:deltaTime];

if (animateColor) [(BBTexturedQuad*)[self mesh] setUseColors:YES];
}

There are two new things going on here. First, as you loop through all the child particles,
you will lerp the new color based on how long that particle has lived in relation to its total
life. Then, at the end of the method, you make sure that your mesh is set to use the
color arrays.

Finally, you look at the array construction:
-(void)buildVertexArrays

vertexIndex = 0;
for (BBParticle * particle in childrenParticles) {

if (animateColor) {
[self addColorsR:particle.r g:particle.g b:particle.b a:particle.a
vertexes:6];

// for each particle, need 2 triangles, so 6 verts

// first triangle of the quad. Need to load them in clockwise

// order since our models are in that order

[self addVertex:(particle.position.x - particle.size) y:(particle.position.y +
particle.size) u:minU v:minV];

It is fairly important that you build the color array before you start adding vertexes. Since
you are setting the same color to each vertex, you can do it all at once, but the
addVertex method increments the vertexIndex, so if you do not do the colors first, you
will lose your place.

As for the actual add colors method, it is pretty straightforward:

-(void)addColorsR: (CGFloat)r g:(CGFloat)g b:(CGFloat)b a:(CGFloat)a
vertexes: (NSInteger)verts

NSInteger index;

for (index = vertexIndex; index < (vertexIndex + verts); index++){
NSInteger pos = index * 4.0;
colors[pos] = r;

colors[pos + 1] = g;
colors[pos + 2] = b;
colors[pos + 3] = a;

}

Just add the same color to the color array for each vertex. Simple!

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

You can now try your new color-changing emitter! Open SceneThree, and let’s take a
look at an animated Technicolor dream emitter. Now that you can do color-changing
particles, you can simulate a fairly decent fire.

particles.position = BBPointMake(0.0, -80.0, -50.0);

You will put the fire at the bottom of the screen, so you have room to burn:

particles.emissionRange = BBRangeMake(40,50);
particles.xVelocityRange = BBRangeMake(0, 0);
particles.yVelocityRange = BBRangeMake(1, 10);
particles.zVelocityRange = BBRangeMake(0, 0);

This is fire, so mostly it will just be going up, so you will set our x and z velocities to 0:

BBRangeMake(-30, 60);
BBRangeMake (-5, 10);
BBRangeMake(-30, 60);

particles.emitVolumeXRange
particles.emitVolumeYRange
particles.emitVolumeZRange

You will have it emit from a flattened spheroid:

particles.force = BBPointMake(0.0, 10.0, 0.0);
particles.growRange = BBRangeMake(-1.5, 1.5);

And give it a nice upward force, since the particles should be lighter than air:

particles.sizeRange = BBRangeMake(6, 6);
particles.lifeRange = BBRangeMake(2.5, 0.0);
particles.decayRange = BBRangeMake(0.5, 0.1);

// start with a nice pure yellow

particles.startR = 1.0;
particles.startG = 1.0;
particles.startB = 0.0;
particles.startA = 1.0;
// end with a dark red
particles.endR = 0.5;
particles.endG = 0.0;
particles.endB = 0.0;
particles.endA = 1.0;

particles.animateColor = YES;

And finally, you set the start color to a pure yellow and your end color to a dark red.
Don’t forget to set animateColor to YES:

// this will make it a rectangular emission volume
//particles.sphericalEmissionVolume = NO;

particles.emit = YES;
[particles setParticle:@"whiteBlur"];

Finally, you set your particle to the good old standby: whiteBlur (which is the brighter
cousin of whiteSubtle).

Figure 1-15 shows the result of the color-changing efforts. The color change really adds
that bit of life that really makes the effect jump out and look great.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

Figure 1-15. A pretly decent fire effect, all things considered

Summary

You explored the world of particle generation in this chapter, and | covered the basics:
life, growth, speed, acceleration, and color. These five things are the basis of all particle
systems. If | had more time and space, | could talk about per-particle rotation, moving
particle emitters, particle collisions, and multitexture systems. And those are just a few
of the many permutations that you can add to your particle systems.

| encourage you to go out and experiment—try to add particle rotations and multicolor
animations. Have your system randomly select a set of UVs from a list of textures and
make a multitexture system. Add a collision detection system, and apply it to the
particles so you can simulate realistic effects.

The other thing that | wanted to touch upon was actual particle artwork. For the most
part, | have been using a very simple white blur for all the effects in this chapter (with a
small digression with some poorly drawn stars and thruster options). This was mostly on
purpose to show that the versatility of the particle system lies not in the individual
textures of the particles but in the infinite flexibility of the system and all of the
configuration variables.

That said, the next step is to play with various particle textures to try to achieve the
effect you need. Each texture will give a very different look and feel to the same emitter
settings, so play around. In Figure 1-16 | built four very different effects by just changing
the color and the particle texture of the fire effect.

CHAPTER 1: Particle Systems: More Fun and Easier Than You Think

Figure 1-16. Playing with the fire effect. Just a few permutations of the color and particle texture have huge
effects on the look of the system.

In the sample code, | left the fourth scene empty. It is your playground. Go crazy and
experiment. Particle systems are very fun to play with, and | spent most of my time while
writing this chapter just tweaking the various effects. Not only did | want to get them to
look good for the chapter, but it was just so much fun to see what the fire would look
like if the yellow were a bit more orange. Or if | could make it look like some evil magic
energies if | changed the colors to go from green to purple (answer: yes!).

Cocoa Stuff (ane man shop)

Copenhagen, Denmark, Europe

27 years of experience in starting up and running smaller software
development companies and developing software using a wide range of programming languages
such as: BASIC, COMAL 80, Pascal, C, C++, Objective-C, SQL, NewtonScript, PHP, JavaScript,
Bash

...in environments such as: THINK C and TCL (Think Class Library), MPW (Macintish
Programmer’s Workshop), Metrowerks CodeWarrior and PowerPlant, 4th DIMENSION, NTK
(Newton Toolkit), Sybase, MySQL, TextMate, Xcode, Cocoa, Cocoa Touch

...0n platforms such as: Mac 0S 3-8, Newton 0S, Palm 0S, UNIX (FreeBSD, Mac 0S X), Mac 0S X
Panther-Leopard, iPhone 0S

Deep Green, chess game, using the official iPhone SDK from Apple
since the day it was released.

Deep Green, or: How | Achieved the Goal of Simplicity

With the focus on creating a beautiful, elegant, and powerful user interface, and in a non-code
language, I'm going through key areas of what have made Deep Green a successful application
on the App Store, featured by Apple in several sections such as What’s Hot and Staff Favorites.

User Interface Design
Simplicity

Product Statement

Chapter

Chess on the ’Net:
Correspondence Gaming
with Deep Green

As I'm writing this, version 2.0 of my popular chess application, Deep Green, is under
development. One of the big new features is correspondence chess. In other words,
users will be able to play chess with their friends independent of time and place. This is
in contrast to over-the-board chess where you sit at the chessboard at the same time.

So, all from within Deep Green, you’ll be able to invite a friend to a game of chess and
then each make your moves in turn as you normally do. Your moves will be stored in a
database on a central server, and after each move, the system will push a remote
notification to the opponent. The time interval between moves can be anything from
seconds to weeks.

In this chapter, I'll show you how to code the support for sending an invitation,
accepting the invitation, sending moves back and forth, and storing it all on the server in
a database. I'll go through what’s needed on the client (that is, the iPhone or iPod touch
device), as well as what’s needed on the server, including the choice of platform,
database, and programming language. I’ll show the mechanics so that you’ll be able to
implement similar functionality for your own applications.

As it turns out, you won’t see a whole lot of code, which is a good thing because it
shows that it’s fairly easy to do some relatively powerful stuff using the chosen
technologies.

But let me first make you a little bit familiar with the application.

39

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green

Deep Green, an Already Awesome Application

Deep Green 1.0 was released in December 2008. It created a lot of buzz for its beautiful
and intuitive user interface (see Figure 2-1).

10:22 AM

Figure 2-1. Deep Green running on the iPhone

| originally released Deep Green for Apple’s Newton platform in 1998 (see Figure 2-2).
But only ten days later, Steve Jobs closed the whole Newton division down. Although it
put somewhat of a damper on my development efforts, users were still enthusiastic.

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green

Figure 2-2. Deep Green running on the Newton

Today, ten years later, there are still Newton users out there who claim they have yet to
see a better handheld device. Despite their claims, it was evident | had to carry Deep
Green over to iPhone OS.

And that was exactly what | decided to do the minute | saw Steve Jobs unveil the
iPhone at Macworld in January 2007. | remember seeing the slide that mentioned Cocoa
as one of the many technologies iPhone was built on. So, later that year, | started coding
Deep Green’s model layer in Cocoa for Mac OS X 10.5. When the SDK was announced
and released in March 2008, | could finally start coding natively for the platform.

Ever since the Newton version, I’ve maintained an extensive list of features | wanted to
implement, and in the long period since then, I've added many new ones to the list. As
we’ve become increasingly connected, correspondence chess became an obvious one.
So, even though Deep Green 1.0 for iPhone OS didn’t offer this, it was developed with
this in mind—and much more, of course.

Now that both versions 1.0 and 1.1 are out and pretty much match the Newton version’s
feature set, I’'m ready to start implementing some of these long-planned features.

If you want to learn more about Deep Green, and even see it in action, please visit the
home page at http://cocoastuff.com/products/deepgreen/ (see Figure 2-3).

enNnn Cocoa Stuff : Deep Green
< | > 4 _Ch[(gi//go(oaslufficomIgtody(ls/deeog_reer{/

(4 l "Q{ 09

roducts Blog Forum About

il Carrier = 5:46 PM -

Deep Green Playback R

e
r
Deep Green is a beautiful and elegant nn 2 nr,}u.n
4 =

iPhone OS chess application for the casual

player. 2 - .

Playing chess has never been such a
pleasant experience. On any platform. Enjoy
the beautifully rendered graphics and
animations in a simplistic and powerful user
interface.

-

> M »l

iPhone App Store

N

Figure 2-3. Deep Green’s home page

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green

And while I'm in the department of shameless self-promoting plugs...if you want to read
about the meticulous user interface design of Deep Green, including what $30,000 can
get you in graphics design, treat yourself to a copy of iPhone Games Projects, also from
Apress. Visit http://apress.com/book/view/1430219688 for more information.

The Tasks at Hand

So, what tasks are involved in making correspondence chess (or pretty much any time-
shifted, turn-based game)? One thing is for sure—you need a central server that stores
all the user data and that each user interacts with.

Although | had planned this feature all along, | hadn’t thought about how to implement it
or what components and technologies to use. So, to start, | had to define what tasks
needed to be supported, which can be boiled down to the following list:

B |Inviting a friend to a game

B Accepting the invitation

B Making a move

B Getting notified about new moves

I’ll deal with the three first items in this chapter and will keep them relatively simple in
order to focus on the main aspects of implementing this solution. So, for example, when
inviting a friend, Deep Green will allow you to pick a person from your built-in Contacts
application as well as just entering a username or e-mail address. Instead of going into
details about implementing a people picker, I'll simply assume you have the e-mail
address at hand.

Also, in a real-life solution, you’d have to handle all sorts of security issues and error
scenarios. What happens if there isn’t a usable network connection available? What
happens if the user quits the application before it was able to send the request to the
server? What happens if your friend never receives the invitation or she changed her e-
mail address? What happens if she declines the invitation? How can the server know
you’re you, and not somebody who just knows your e-mail address?

Deep Green handles all such situations. In fact, a large portion of the time and energy
that goes into designing a solution like this is spent on thinking about these odd
scenarios and finding a good solution to them.

But | won’t talk too much about it here, because I'd have to end the chapter before I'd
even get started on the more interesting parts. | will, however, touch on where and how
I’'ve added support for these situations, where applicable.

Il now explain a little bit more about what each task involves before diving into
the code.

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green

Inviting a Friend to a Game

Given an e-mail address of your friend, your user credentials, and a few pieces of
information about the game you’re inviting them to, you’ll send a request to a web
service that you’re going to establish.

The web service will create the game, store it in a database, and send out an e-mail to
your friend, carbon-copied to yourself so you know your request was made and an
invitation was sent out.

The e-mail will contain standard text, explaining what it’s all about, as well as links for
accepting and declining the invitation.

Accepting the Invitation

Your friend will probably accept your challenge by tapping the appropriate link in the
invitation e-mail.

In Deep Green, | implemented a custom URL scheme, deepgreen://, instead of just
using http://. The reason for this is that | wanted Deep Green to make the request to
the web service, not whatever web browser the user happens to use. By doing it this
way, | can supply extra information about the user, available only on the client, and
thereby eliminate a manual registration process.

Il show how to implement a custom URL scheme on the iPhone.

Assuming the obvious, that both you and your friend have some variant of Deep Green
installed, the application will launch and will take the appropriate action.

The web service that we’ll develop in this chapter will save the information to the
database under the game and send out an e-mail to both players letting you know the
game is on.

Making a Move

When you make your move, Deep Green sends it, along with game and state
information, to the web service on the server. The server records the move under
the game.

It was an important design goal of mine that the server should not have to know
anything about chess except that the players move in turn. But | didn’t want to have to
code and maintain the chess rules in several places.

Getting Notified

When you make your move, the opponent should know about it. And that’s exactly what
Deep Green does. Since iPhone OS doesn’t allow third-party processes to run in the
background, developers are left to using the Apple Push Notification Service (APNS) in

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green

situations like this, where you want to tell the user about an event, even when your app
isn’t running on the user’s device.

I’'m not going to cover APNS in this chapter, but I'll briefly explain what it is because it’s
a very useful feature to implement.

Each iPhone OS device maintains a persistent connection with Apple’s Push Notification
server (cloud). When APNS receives a notification request from a developer’s application
server, it pushes it to the given device that can then display a message, play a sound,
update the app icon badge, or do any combination of these depending on the user’s
preferences.

The tricky part, from your perspective as a developer, is the communication between
your server and APNS. Not only does it require a persistent, raw socket connection, but
it also requires properly issued and applied certificates (and if you’ve been developing
iPhone apps for a while, you know what a circus that can all be).

This can all be done, of course, and | wouldn’t be surprised if third-party services were
available by the time you read this.

If you want to roll your own solution, however, | suggest you read iPhone SDK 3 Projects
from Apress. There’s a whole chapter devoted to this topic.

The Tools of the Trade

Now, how do you tie these things together? How do you establish our web service,
and where? Which database should you be using? How do you communicate with
the server?

Before | knew the answers to these questions, the only thing | knew was that | didn’t
want to host the solution myself. I’ve been doing a lot of LAMP (Linux, Apache, MySQL,
PHP) over the years, but | treasure my sleep (with two little kids, even more so) and
didn’t want to have to worry if my server was up and running. And what about load
balancing? What if users started playing a lot, which | sure hoped they would? Would
the solution scale?

I had no idea until a friend of mine pointed me to Google App Engine. It was a no-
brainer: build your web services using the feature-rich and elegant Python scripting
language, have your objects stored in a high-performance object datastore, deploy
once, and become hosted on Google’s own infrastructure with thousands of servers
worldwide, maintained and monitored for you. Sounds expensive, right? Actually, it’s
free. What’s not to love?

The service is free up to certain quotas, which, at least for a chess game, seem very
generous. Check with the current Google App Engine Terms of Service at
http://code.google.com/appengine/terms.html. Over a certain limit of traffic, you’ll
start being charged. | guess you could say it bears the price of success: more users,
more money.

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green

Google App Engine (GAE) lets you install and deploy websites and web applications and
will take care of load balancing and replicating your datastores. You can even serve your
applications securely using https://.

Google also offers a Java SDK, if that’s a better fit for you. | hadn’t seriously used either
Python or Java when | started coding the web service, but | felt Python was a better
choice because of its increased popularity and momentum over the last years, while
Java seemed to have had its days of glory.

Even if you don’t know Python, you’ll quickly realize from my examples that it’s very
easy to pick up, especially if you’ve already used another scripting language such as
PHP. It’s not totally unlike Objective-C either. The official website, http://python.org,
offers a wealth of information but may not necessarily be the easiest place to start. |
ended up buying Dr. Drew McCormack’s e-book for the iPhone, Scientific Scripting with
Python, available from the Mental Faculty at http://www.mentalfaculty.com/
python_scripting. I’m not a scientist, not even a mad one, but with the e-book, | was
up to speed after a few hours of reading.

Stop Talking, Start Coding!

OK, let’s get our hands dirty. We’ll start by implementing the web service on GAE and
then the client code on the iPhone for interacting with the web service.

I’ll do some basic stuff to begin with, so if you want to follow along, take a moment and
sign up with GAE at http://appengine.google.com if you haven’t done so already. As |
said, it’s free. You need to download and install the SDK. | hadn’t used GAE before, so
I’ll quickly take you through the same easy steps | went through—mostly to illustrate
how simple it is.

Installing the Tools

Go to http://code.google.com/appengine/downloads.html, and download the current
version of the SDK. I’'m assuming you’re on Mac OS X, because that is where you’re
doing your iPhone development in the first place. If you use another platform for this part
of the development, choose the appropriate download, and follow the installation
instructions on the GAE home page. On the Mac, it’s a few easy steps:

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green

1. Open the downloaded disk image (as shown in Figure 2-4), and drag the
GoogleAppEngineLauncher icon to your hard drive.

eno |_ GoogleAppEngineLauncher-1.2.3.422

20

¥ DEVICES
i Snow
i Data
I iDisk
. 'éoogleAprngine... a

» SHARED

¥ PLACES .
E Desk:op CoogleAppEnginelLaunc

[} Documents her.app

T Library

(8l Pictures

H wovies

ﬂ Music

. Downloads 5

Py Acphctiions v | GoogleAppEngineLauncher-1.2.3.422
~Litem, 1.6 MB available - - =S

Figure 2-4. Copy the Launcher application to your local hard drive.

2. Open the Launcher and choose to make command symlinks, as shown
in Figure 2-5. You’ll have to do this only once.

B Make Command Symlinks?

- The Google App Engine SDK contains command-line
= programs used by GoogleAppEngineLauncher.app.
Would you like symbolic links for these programs,
such as dev_appserver.py, to be made in /usr/local/
bin?
This action will replace links which may currently
exist.

An authorization will be required.

(Cancel) (OK)

Figure 2-5. Create the command symlinks.

3. You guessed it; there is no step 3.

The application basically sits there and mimics the whole server runtime environment.
This is a huge time-saver because you don’t have to upload your incremental changes
to a server and because you don’t have to set up a test environment on the server while
developing. It also allows you to develop without a connection to the Internet.

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green

When you’re ready to deploy, you just click the Deploy button in the toolbar, as shown in
Figure 2-6. | won’t go through the deployment process in this chapter.

N6 GoogleAppEngineLauncher (=)

Figure 2-6. GoogleAppEngineLauncher ready to serve you

We’re ready. Let’s code....

Coding the Web Service

From here on, you’ll code your web service as it will be on the server. All examples are
run on the local machine. As | said, you don’t have to deploy anything on Google’s
servers until you’re ready to release your code.

Start by clicking the + button to create a new web application. You’ll be prompted for a
name and location, as shown in Figure 2-7.

(@i Na) GoogleAppEngineLauncher

_ New Application Settings . }

Application Name: chess

Application Directory: /Volumes/Data/Users/joachim { Choose...)

The project directory /Volumes/Data/Users/joachim/chess/ will be created if
necessary, and default project files will be created therein.

Port: 8080 |

Runtime: DevAppServer 1.0

Figure 2-7. Creating your new web application

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green

When you click the Create button, GoogleAppEngineLauncher will create the web
application folder containing three files:

app.yaml: Your application configuration file
main.py: Your web application’s main code file
index.yaml: An automatically generated file that you can ignore for now

If you have a text editor that can open directories, you can simply click the Edit button in
the toolbar (see Figure 2-8) and have all files ready for you to read and edit. In TextMate,
it looks like Figure 2-9.

neo GoogleAppEngineLauncher (=)

| /Volumes/Data/Users/joachim/chess

Figure 2-8. GoogleAppEngineLauncher showing the new application

V| chess
£ app.yam!
£ index.yaml
& main.py

TextMate

wEw] (o]

Line: 1 Column 1 Plain Text ¢ v SoftTabs: 2 s — | Y

Figure 2-9. The web application directory in the TextMate editor

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green

Using your favorite text editor, open app.yaml. It should look like this:

application: chess
version: 1
runtime: python
api_version: 1

handlers:
- url: ¥
script: main.py
This tells the GAE runtime environment the name of your application and what script file
to execute for all requests matching the regular expression . *.

Let’s create a simple script to test whether it works. Replace the contents of main.py
with the following:

print 'Content-Type: text/plain’

print "'

print 'Checkmate!’

Back in GoogleAppEngineLauncher, start the application by clicking the Run button in
the toolbar (as shown earlier in Figure 2-8). Then click the Browse icon and admire the
result, as shown in Figure 2-10.

®Oo http://localhost:8080/
< | » ||+ | hup://localhost:8080/ ¢ | (Q~ Google
Checkmate!

Figure 2-10. The output from your very first web service application

Hey, you just created a GAE web service! Perhaps it’s not the most useful, although who
would have thought you could checkmate in ten lines of code?

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green

OK, it’s time for some real code. You’ll be implementing three handlers, one for each of
your requests:

B Receive invitation request
B Receive invitation accept request
B Receive move request

In main.py, now put the mechanisms in place to deal with the requests by making it look
like this:

from google.appengine.ext import webapp
from google.appengine.ext.webapp.util import run_wsgi app

class GameController (webapp.RequestHandler):
def get (self):
opponent = self.request.get ('opponent')
self.response.headers ['Content-Type'] = 'text/plain’
self.response.out.write ('Looks like you want to invite

+ opponent)

application = webapp.WSGIApplication (
[('/", GameController)],
debug=True)

def main():
run_wsgi app (application)
if _name__ == "_main_":
main()

You're now taking advantage of some of the Python modules available to you under
GAE in order to make the coding a lot simpler. You’ve created a GameController class,
which for now is being instantiated when you receive a request. It’s the entry point

of your web service that basically provides the methods you need in order to handle
the various requests around the game play. In this case, you’ve implemented only a
get() method.

This is very convenient when testing from the web browser, because it always sends
GET requests when entering a URL in the address field. As you start to make these
requests from the iPhone client, you’ll embrace a more RESTful approach, which means
that you’ll use GET requests for getting data, POST for creating data, PUT for updating,
and DELETE for deleting data. This will make you a good citizen of the modern Web 2.0
world.

To test the previous code, type http://localhost:8080/?opponent=Garry%20Kasparov in
the address field of your browser. The result should look like Figure 2-11.

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green

®6o http://localhost:8080/?opponent=Garry%20Kasparov
4 | http://localhost:8080/?opponent=Garry%20Kasparov ¢ | (Q~ Google

Looks like you want to invite Carry Kasparov

Figure 2-11. Browser output when inviting an opponent

No harm done yet. Even though we know Garry very, very well, he has no clue about our
intentions. But you can now pass parameters to the service, and you’re going to use
some of the built-in modules to make the code simple and clean.

Let’s finish the invitation implementation. Once again, you’ll take advantage of a couple
of the prebuilt modules in the GAE framework. There’s a lot of new stuff, all of which Pll
explain after the code:

from google.appengine.ext import webapp

from google.appengine.ext.webapp.util import run_wsgi app
from google.appengine.ext import db

from google.appengine.api import mail

class Game (db.Model):
inviter = db.StringProperty ()
invitee = db.StringProperty ()
created = db.DateTimeProperty (auto now add = True)
moves = db.StringlListProperty ()

class GameController (webapp.RequestHandler):
def post (self):
game = Game ()
game.inviter = self.request.get ('inviter')
game.invitee = self.request.get ('invitee')
game.put ()
mail.send_mail (sender = game.inviter,
to = game.invitee,
subject = "Hey, let’s play chess!",
body = "Click here: chess://domain.com/game?action=accept8email=%s8game=%s" %
(game.invitee, str (game.key ()))

self.redirect ('/games')
def get (self):
self.response.out.write ('<html><body>")
self.response.out.write ('<p>Your games:</p>"')
games = db.GqlQuery ("SELECT * FROM Game ORDER BY created DESC LIMIT 10")

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green

for game in games:
self.response.out.write ('<1li>%s vs. %s (%s)</1li>' %
(game.inviter, game.invitee, str (game.key ())))
self.response.out.write ('</body></html>")

class EntryForm (webapp.RequestHandler):
def get (self):

self.response.out.write ("""<html><body>

<form action="/game" method="post">
<div>Opponent: <input type="text" name="invitee"/></div>
<div>You: <input type="text" name="inviter"/></div>
<div><input type="submit" value="Invite!"/></div>

</form>

</body></html>""")

application = webapp.WSGIApplication ([
('/", EntryForm),
('/games', GameController),
('/game', GameController),
], debug=True)

def main ():
run_wsgi_app (application)
if _name_ == "_main_":
main ()

You're importing two new modules: db and mail for interfacing with the database and for
sending e-mails, respectively.

There are two new classes: the Game model class, which you’re storing to the database
(and later will be retrieving), and EntryForm, which is just a temporary class for checking
in the browser that the code works.

Notice how the application object gets initialized with a list of URLs and corresponding
classes. The application now supports three URLs: /, /games, and /game.

When a client requests the root, an EntryForm object is being instantiated, serving an
HTML form that allows you to enter your friend’s and your own e-mail addresses, as
shown in Figure 2-12.

®enon http://localhost:8080/

ll - l > l,. _+ |3 hutp://localhost:8080/ c
i —_—

Opponent:
You:

Invite!

'(Q' Google !

!E S —— R —— . P R e — _— - _Ei%
Figure 2-12. The output generated by the EntryForm class

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green

Submitting the form sends a POST request to the /game URL with the two e-mail
addresses as parameters. This is just a temporary mechanism to let you test the API.
Eventually, the client application on the device will send the request.

The POST request is being handled by GameController’s post() method, which then
creates the Game in the data store. That’s the first four lines of the method. That’s pretty
powerful. Notice how you don’t have to make an explicit connection with the database
or verbose INSERT INTO table VALUES () SQL stuff. You’'re just creating the Game object,
setting its property values, and then using put() to put it in the datastore. The properties
of the game are defined in its class declaration.

After having created the game in the datastore, you’re sending an invitation to the
opponent per e-mail. The Game’s key is its unique identifier, which you’re using for the
link so that it can be passed around as a parameter when the user taps the link in the
e-mail. This way, the game key will end up as a parameter in your application on

the iPhone.

Finally, the web service redirects to /games, which causes the get() method of the
GameController to be called, and the ten most recent games get listed in reverse
chronological order, as shown in Figure 2-13.

enon http://localhost:8080/games
\l < | > || + IQ http://localhost:8080/games G]\(Q' Google)
Your games:

e me@chess.com vs. opponent3@chess.com (agVjaGVzc3IKCXIER2FIZRgDDA)
e me@chess.com vs. opponent2@chess.com (agVjaGVzc3IKCXIER2FZRgCDA)
e me@chess.com vs. opponent] @chess.com (agVjaGVzc3IKCXIER2FZRgBDA)

Figure 2-13. The output generated by GameController’s get() method

The web application now illustrates the mechanics, but in a real-world scenario this
wouldn’t be sufficient. As mentioned earlier, you’d have to check for errors (such as
invalid e-mail addresses) and apply some level of security. From the game key, for
example, it would be very easy to guess keys of other ongoing games in the datastore to
which one could add moves, and so on, by sending the “right” URL requests.

In addition, you’d also need more information in the Game class, such as who plays which
color, any time limit per move, any nonstandard start position, and so on. These are
fairly trivial exercises, so | won’t waste space on this here.

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green

Accepting the Challenge on the Device

There are still things left to code on the server, such as receiving invitation accepts
and moves, but let’s change the scene a bit to see how to deal with the invitation on
the iPhone.

As | said earlier, the invitation URL uses a custom scheme. In this case, you’re using
chess://, but because this solution is very application specific, using the game key, for
instance, you really should pick a more application-specific URL scheme instead of the
very generic chess:// URL. But again, I’'m just illustrating the mechanics rather than
providing a shrink-wrapped product here.

On the device, you want the application to launch when the user taps the chess:// link
in the e-mail. To make that happen, you need to define the scheme, which you just did,
and implement a URL handler in your application. The latter consists of two parts: letting
the iPhone OS know about your capabilities and implementing the code in your
application.

Registering URL Scheme Support with iPhone 0S

All you have to do to let the iPhone OS know you can handle a certain URL scheme is to
provide the information in the application’s Info.plist file:

<key>CFBundleURLTypes</key>
<array>
<dict>
<key>CFBundleURLName</key>
<string>com.yourcompany.chessscheme</string>
<key>CFBundleURLSchemes</key>
<array>
<string>chess</string>
</array>
</dict>
</array>

By adding these lines, you're telling iPhone OS that you can handle the chess:// URL
scheme. The CFBundleURLName string is a key that will be used by the system to look up
the localized name for the scheme in your InfoPlist.strings file. This allows you to
provide localized names of the scheme that may be displayed to the user.

Handling the URL Request

When the user taps the chess:// link in the e-mail that the web service sent, Mail.app
will recognize that a URL was tapped and will execute the openURL: method of the
shared application object, [[UIApplication sharedApplication] openURL:url]. iPhone
OS looks up what applications support the URL scheme, picks one of them, and calls its
delegate’s -application:handleOpenURL: method.

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green

Here’s an example of how this method could be implemented:
- (BOOL)application: (UIApplication *)application handleOpenURL:(NSURL *)url

if (![[url scheme] isEqualToString:@"chess"])
return NO;

NSString *userID;
NSString *serverURLStr;
NSURL *serverURL;
NSDictionary *game;

userID = [[NSUserDefaults standardUserDefaults] stringForKey:@"userID"];
serverURLStr = [NSString stringWithFormat:@"http://%@%@?%@8userid=%@",

[url host], [url path], [url query], userID ? userID : @""];
serverURL = [NSURL URLWithString:serverURLStr];
game = [NSDictionary dictionaryWithContentsOfURL:serverURL];
if (!game) {

// Deal with the error

}
return YES;
}

You're passed the URL and check that it’s the right scheme. Depending on the path and
query, you can do what’s needed in the given situation. In this case, you’re simply
swapping the URL scheme and, for illustration purposes, getting the user identification
from the user defaults and appending it to the server request. Since the application is
running at this point, you’d also want to load the game and display it to the user,
although that’s not shown here.

The original
chess://example.com/game?action=accept8email=king@example.com&game=key link
becomes an http://example.com/game?action=accept&email=king
@example.comdgame=key&userid=123 GET request. When testing this locally during
development, you can use localhost:8080 as the host.

Make sure your application can handle any kind of URL string gracefully, because
anybody can invoke this application by entering some chess://weird/string/here-type
URL in Mobile Safari and have your application execute code.

In the previous code, you’re invoking the request on the server by calling
+dictionaryWithContentsOfURL:. You wouldn’t normally want to do that, because you'd
want to make the server call asynchronous, and you need more error information than
just failure/success. But | wanted to show this cool feature of NSDictionary.

The +dictionaryWithContentsOfURL: call is a convenient way of sending a server
request and getting the result in a handy NSDictionary object structure—in just one line
of code. The call assumes the server returns a string representation of a property list
whose root object is a dictionary.

This brings me to a point I've been itching to make about separating code and data
representation on the server.

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green

Separating Data and Representation on the Server

This web service focuses on handling the data in its own, proprietary format and
shouldn’t have to care about how a client might want the data represented. It certainly
shouldn’t serve hard-coded HTML or other markup inside its methods.

One nice way of making this separation is by using templates. Google App Engine’s
webapp module includes the Django’s template engine, which provides for a very elegant
separation. Take another look at the earlier get() method with its embedded HTML
code, and compare it with this:

def get (self):
game = Game.get (self.request.get ('key'))
template_values = {'game': game}
path = os.path.join (os.path.dirname (_ file), 'game.plist')
self.response.out.write (template.render (path, template values))

You’ll have to import the template module from google.appengine.ext.webapp and the
os module:

import os
from google.appengine.ext.webapp import template

The template.render() call merges the values in the template_values dictionary with
the game.plist template file, which is a slightly modified XML property list file, located in
the application directory on the server:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertylList-1.0.dtd">
<plist version="1.0">
<dict>
<key>inviter</key>
<string>{{ game.inviter }}</string>
<key>invitee</key>
<string>{{ game.invitee }}</string>
<key>created</key>
<date>{{ game.created|date:"Y-m-d\Th:i:s\Z" }}</date>
<key>moves</key>
<array>
{% for move in game.moves %}
<string>{{ move }}</string>
{% endfor %}
</array>
</dict>
</plist>

Note how you’re accessing the properties of the game object in the {{}} pairs and how
you're iterating over the moves with the {% for move in game.moves %}, {% endfor %}
pair.

The output becomes a perfectly valid .plist file that you can use to effortlessly create
NSDictionary objects in your client code, as shown in the -application:handleOpenURL:
method earlier. This saves you from having to manually parse XML files. I'll show you
another example of this soon.

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green

If you want to support other types of output, the client could add a parameter to its
request telling the web service which format it wanted the response in. You’d then add a
template on the server for each supported format.

In the same spirit, since this is a Cocoa-specific template, it makes perfect sense to
make the {{ game.created|date:"Y-m-d\Th:i:s\Z" }} date conversion in the template
and not in the generic server code. The converted date value becomes a valid date
string representation that can be turned into an NSDate object at runtime on the client.

Even though the +dictionaryWithContentsOfURL: is very handy, I'll show how you can
make the server communication from the client a little bit more robust when adding
moves to the games.

Making a Move

When you’ve made your move, it should be sent from your device to the web service
and appended to the game. Instead of waiting for the request to be sent and the server
to respond, thereby leaving the application irresponsive to the user, we’ll handle the
request asynchronously. It’s a bit more code than the one-liner you used before, but the
user will be happy not having to sit with an application that’s locked up.

NOTE: As an alternative to asynchronous calls, you could use synchronous calls and
encapsulate them in an NSOperation, which is executed on its own thread.

In Deep Green I've encapsulated all server communication in a singleton class that
manages a request queue (an NSOperationQueue) and makes sure they’re all dealt with
successfully before being removed from the queue. It notifies if something goes wrong,
giving the implicated controllers a chance to report any error to the user. It persists the
queue to the file system so that it can be re-created in case the user quits the
application before the request has been received by the server. And the server code
handles duplicate requests gracefully to deal with the situations where the application
didn’t get the response from the server and therefore thinks it needs to send the
request again.

On the Device

In the following code example, I’'m doing none of the above but simply providing the
skeleton needed to communicate the move from the device to the server. Since this is
being done asynchronously, the entry method doesn’t return anything. No BOOL, no
NSError:

- (void)sendMove: (NSString *)move forGameKey:(NSString *)key

NSString *urlStr;
NSURLRequest *request;
NSURLConnection *connection;

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green

urlStr = [NSString stringWithFormat:
@"http://example.com/game?action=move8move=%@8key=%@", move, key];
request = [NSURLRequest
requestWithURL: [NSURL URLWithString:urlStr];
cachePolicy:NSURLRequestReloadIgnoringlocalAndRemoteCacheData
timeoutInterval:60.0];
[request setHTTPMethod:@"PUT"];
connection = [[NSURLConnection alloc] initWithRequest:request delegate:self];

if (!connection) {
// Deal with the error
} else
receivedData = [[NSMutableData alloc] initWithCapacity:500];
}

The move is just a string here, and it still doesn’t use any form of security. But the code
shows how to initiate a request.

You’re composing the URL string containing the move and the game key. The server
request is created, ignoring any previously cached data to make sure the request gets
sent to the server. You make it a PUT request so that the proper method, put(), gets
called in the web service code. Being an asynchronous call, initWithRequest:delegate:
returns immediately, and if the connection was made, you allocate an NSMutableData
instance variable to receive the confirmation data from the server.

After this method exits, the program execution resumes to the main event loop, and the
user will be able to use the application again.

But you’re not done yet. You just started the request. You need to prepare for receiving
a number of callbacks during the download process. That’s the price for
“asynchronousity.” You’ll implement the minimum set of required callback methods: -
connection:didReceiveData:, -connectionDidFinishLoading:, -
connection:didReceiveResponse:, and -connection:didFailWithError::

- (void)connection: (NSURLConnection *)connection didReceiveData:(NSData *)data

[receivedData appendData:datal;

- (void)connectionDidFinishLoading: (NSURLConnection *)connection
[connection release];

NSDictionary *response;
NSString *errorString = nil;

response = [NSPropertylListSerialization
propertylListFromData:receivedData
mutabilityOption:NSPropertylListImmutable
format:NULL
errorDescription:8errorString];
[receivedData release];

if (!response) {
// Handle the error
[errorString release];

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green

return;

// Do something with response

}

- (void)connection: (NSURLConnection *)connection
didReceiveResponse: (NSURLResponse *)response

[receivedData setlLength:0];

- (void)connection: (NSURLConnection *)connection didFailWithError:(NSError *)error

[connection release];
[receivedData release];
// Notify about the error

In the -connection:didReceiveData: method, you’re being passed the most recently
downloaded data, which you simply append to whatever is already: in the receivedData
instance variable.

After all data has been downloaded, :you receive the -connectionDidFinishLoading:
call, which gives you a chance to check the server response and clean up. You’re
copying the receivedData into the response variable as an NSDictionary using the
NSPropertylListSerialization class method. And you’re releasing the connection and
receivedData objects. That was the other example | wanted to give on how to very easily
tuck a server response into a native Cocoa object structure. It saves you from parsing
with NSScanner, NSXMLParser, or the like.

The -connection:didReceiveResponse: call c:an be received multiple times during a
connection and most often occurs at server redirects. Each time this happens, any
previously received data should be discarded.

Lastly, -connection:didFailWithExrror: will be called if an error occurs during the
connection. You should release the memory related to the connection and notify the
relevant controllers, for instance, by using key/value observation (KVO), notifications, or
callbacks.

This is a typical pattern for using NSURLConnection, and even though it’s more code than
the +dictionaryWithContentsOfURL: one-liner, it’s still a modest amount, and it gives
you a clean encapsulation of the various outcomes of the connection.

Next I'll show you how to deal with the request on the server.

On the Server

When the move is being sent from the device to the server as just illustrated, you’ll want
to update the game in the datastore by appending the move to it. You therefore use the
HTTP PUT method for the request. In the main.py file, a PUT request gets passed to the
put() method:

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green

def put (self):
game = Game.get (self.request.get ('key'))
game.moves.append (self.request.get ('move'))

game.put ()

template _values = {'game': game, 'success': True}

path = os.path.join (os.path.dirname (__file), 'move.plist')
self.response.out.write (template.render (path, template_ values))

In this method, you append the move to the game’s list of moves and return another
property list to the client. This is the list that ends up as an NSDictionary in the response
variable in the previous listing using the
+propertylListFromData:mutabilityOption:format:errorDescription: call.

For the sake of completeness, the move.plist template file on the server looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertylList-1.0.dtd">
<plist version="1.0">
<dict>
<key>key</key>
<string>{{ game.key }}</string>
<key>success</key>
{% if success %}
<true/>
{% else %}
<false/>
{% endif %}
</dict>
</plist>

Note how you come from the native Python success boolean to the property list <true/>
or <false/> version. As per the data/representation separation, the put() method
shouldn’t have to deal with native Cocoa data types, because the next request could
possibly come from a non-Cocoa-aware client. The Cocoa-specific Django templates
deal with the conversion from model to client. In Model/View/Controller lingo, you can
regard the template as a controller.

| have to repeat myself by saying that you shouldn’t just pass a game key to the server
like in the previous examples. It would be way too easy for a hacker to guess other
players’ game keys and add arbitrary moves to them. As a minimum, you should provide
your e-mail address as well and have the server code look up the game on both fields,
assuming it would be quite hard for somebody to guess both the game key and the
player in turn’s e-mail address (except for your opponent, that is). But even better, you
should authenticate the user and communicate via a secure, encrypted connection. I’ll
leave that as an exercise for you, once you have all the other pieces in place.

CHAPTER 2: Chess on the ’Net: Correspondence Gaming with Deep Green

Summary

In this chapter, you took the step from a clean slate to a fully functional client/server
solution ready to being deployed on Google’s industry-leading platform. Admittedly, it’s
a very simplified solution, but it contains the components and design principles you'd
use in a polished App Store application that’s available to millions of iPhone OS users.

What was most surprising to me when I first got the core functionality up and running is
the small amount of code that’s needed to achieve even large and complex tasks. This
is mainly because of the richness of the Python scripting language and the way Google
has embraced it in its App Engine service. Coupled with the solid Cocoa framework, this
chapter dealt with some of the most exciting and powerful technologies available.

It sure is an exciting time to be an iPhone OS user—Ilet alone an iPhone OS developer.

Atomic Bird, LLC
Colorado Springs, CO

Before switching to iPhone development | spent
several years as an independent Mac OS X software developer, which followed
previous experience developing Linux and embedded system software. My Mac
experience goes back to the earliest days of Mac OS X, before Xcode was called
Xcode and before PowerBooks started being made of metal. My experience leads
me to work “close to the metal”, and even though | was writing Objective-C and
using Cocoa on Mac OS X, my applications all ended up being various
background services and utilities. Working on the iPhone I’'ve expanded my
repertoire to cover user interface design as well.

I’'ve mainly worked as an iPhone contractor,
developing applications for clients. The following are currently in the web store
or awaiting approval:

AirMe, a camera app that uploads to numerous photo-sharing
sites.

The iPhone app for MSN’s photoWALL web site.

Mocapay, which takes the place of store gift cards, enabling
users to make purchases with their phone instead of with a
separate card.

pay

S—

On my own I wrote an iPhone app for KRCC, a public radio station in Colorado
Springs, CO. This app plays the station’s audio streams and includes an
auto-updating program schedule, and is the basis for the code I present in
this chapter.

The chapter describes my ultimately successful quest to
write an iPhone app that could play streaming internet audio with a custom user
interface. Along the way I review various approaches to audio playback,
including playing system sounds, using AVAudioPlayer and Audio Queue
Services, Finally I settle on Audio File Stream Services as the best solution.
Sample code is included for each technique. Along the way are diversions into
useful related details like how to download data from a web site.

Core Audio

Audio File Stream Services
Audio Queue Services
NSURLConnection

Chapter

Audio Streaming: An
Exploration into Core
Audio

I’ve been a Mac OS X developer for several years. But I'm always looking for something
new and interesting, so when the iPhone SDK was announced in March 2008, | jumped
at the opportunity.

And so did everyone else, or so it seemed.

| was also on the lookout for a new way of doing business. For the previous five years |
had worked as an independent software developer, writing Mac software that | sold
directly to end users. Back in March 2008 | wasn’t sure how this would play out in the
iPhone world, so when | saw a local company looking for an iPhone contractor, |
contacted them immediately. With the similarities between iPhone and Mac
development, who could be better placed than an experienced Mac developer? Moving
on Internet time, | was on the job within a couple of days.

And that’s when | really started to think that everyone else in the world had also jumped
at the opportunity. To deploy software to an iPhone —even your own—you need to have
a paid-up membership in Apple’s iPhone developer program. Apple appeared to be
overwhelmed with applicants. After a few weeks, my membership had still not come
through, and my client decided there wasn’t much point continuing until we could test
their app on a real phone.

| wanted to continue exploring the platform, though, so | started looking for an
interesting project | could pursue while waiting for Apple’s gears to turn.

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

Hey, | Could Write an App to Play Music

Simultaneously, my music library continued its growth.

I’'m the kind of person whose iTunes library is so big that it requires its own external hard
drive. | rely on sophisticated schemes involving multiple iTunes smart playlists just to get
a reasonable subset of iTunes music onto my iPhone. | use Last.fm, Pandora, and any
other interesting online music site | can find.

I’'m that guy, the one who won prizes several years in a row at Apple’s Worldwide
Developer Conference for recognizing songs played during the “Stump the
Experts” event.

And so it was that my attention turned to a music search web site known as SeeqPod. It
had a search engine that would find playable tracks available on the Internet and play
them in a web browser.

It also had a simple REST-based API that third-party apps could use to make queries
that returned URLs of tracks to play. | had found my project.

Talking to SeegPod from an application would involve sending requests to its server,
parsing the XML response, presenting these results to the user, and playing audio files
found at URLs in the response.

| had covered all that in previous projects —except for the part about actually playing
the audio.

The URLs | would be dealing with mostly pointed to MP3s. Though | had more than my
share of MP3s in my iTunes library and though | can read music, the technical aspects
of audio encoding were mostly a black box to me. I’d have to figure that out to make this
idea work.

MPMoviePlayerController: Hey, This Is Easy! Right?

It seemed that this capability must be included in the extensive APIs that made up the
iPhone SDK. | had heard talk of something called Core Audio, but to my untrained eyes,
it gave the impression of being a dark, complex system, probably overkill for my fairly
simple needs. | just wanted to play audio files; it’s not like | was planning to write the
next GarageBand, so surely there must be a simpler way.

And there is, sort of. Looking through the documentation, | came across the
MPMoviePlayerController class. It’s designed to be a very simple class to play movies at
a given URL. It’s extremely simple to use.

To use MPMoviePlayer controller, all you need to do is give it a URL and tell it to start
playing. It sends out notifications at times while playing, and one,
MPMoviePlayerPlaybackDidFinishNotification, is useful to avoid leaking the
MPMoviePlayerController object. This is almost the entire API, leaving out only minor

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

details such as setting the background color. Listing 3-1 shows a simple example (the
only kind for this class, really).

Listing 3-1. Using MPMoviePlayerController
- (IBAction)playMovie: (id)sender
{

NSURL *movieURL = ..;

// Create the movie player object

MPMoviePlayerController *theMovie = [[MPMoviePlayerController alloc]
initWithContentURL:movieURL];

// Listen for notifications that the player has finished

[[NSNotificationCenter defaultCenter] addObserver:self w
selector:@selector(movieFinished:) w»
name:MPMoviePlayerPlaybackDidFinishNotification w»
object:theMovie];

// Start playing

[theMovie play];

}

- (void)movieFinished: (NSNotification *)note

MPMoviePlayerController *theMovie = [note object];
// Remove self from future notifications
[[NSNotificationCenter defaultCenter] removeObserver:self w
name :MPMoviePlayerPlaybackDidFinishNotification object:theMovie];
// Release the player to avoid leaking memory
[theMovie release];

}

The MPMoviePlayerContoller takes care of putting itself on the screen, downloading the
movie, buffering it as needed, and removing itself from the screen once playback
finishes. If you’ve ever used the iPhone’s YouTube application,
MPMoviePlayerController provides the same user experience when playing a video,
including the playback and volume controls.

Movies generally include sound, so | wondered if it would play a music-only file. And it
does. It plays them in a simple but rather dull full-screen view, as shown in Figure 3-1,
which is not exactly ideal. But it’s so simple to use that it’s tempting to make
compromises with it in order to get off easy with the audio playback.

il Carrier

Figure 3-1. MPMoviePlayerController’s user interface when playing an audio-only file.

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

At this point, | felt like | was on easy street, because | had knocked out the only part of
the app that looked like it might be difficult and the day wasn’t even half over. |
proceeded to implement a basic search Ul and a back end to send search requests and
parse the results. And it was good. For a little while, anyway.

Before long, the app was crashing, badly enough that | needed to force-quit the iPhone
Simulator (because | was still not part of the iPhone developer program). | started my
detective work to find out why. | soon found that certain URLs would reliably crash the
application when MPMoviePlayer attempted to play them. In most cases, I'd expect
programmer error, so | carefully reviewed what | was doing. | found nothing that | could
be sure was wrong. | tried the URLs in Safari and at the command line with curl, but
that seemed OK. In fact, if | downloaded the audio file to my Mac and started
MPMoviePlayerController with a file:// URL, everything seemed fine.

| looked in the phone’s system console to see whether there were any clues. It was
pretty unequivocal:

Apr 11 15:24:21 atomicbird SimpleMediaPlayerAudio[15153]: -[AVController =
failPlayback:reason:notifyClient:]: item with path [omitted] failed to w»

open with err -12784
Apr 11 15:24:21 atomicbird SimpleMediaPlayer[15153]: ERROR!!! Please file a Radar!!!

I’'m always hesitant to blame my app crashes on the underlying frameworks, because
they’re almost always my fault. But if the framework specifically asks me to file a bug
against it, who am | to argue? So, | filed a bug and waited. In the meantime, Apple
apparently found my application behind a file cabinet somewhere and admitted me to
the iPhone developer program.

Several weeks and a couple of iPhone SDK betas later, the bug was reported as fixed. |
rejoiced and went back to my audio experimentation. | soon found that, although
MPMoviePlayer seemed more reliable than in the past, it still exhibited the same
symptoms at times —not always, and not even most of the time, but it still was way too
often for me to keep using it. And besides, | wasn’t thrilled with the Ul.

Finding a Better Approach

Clearly something else was needed. | had initially latched on to
MPMoviePlayerController because it was so easy to use that | hardly needed to think.
Other options existed, and in order to evaluate them | had to clarify my needs:

B | needed a solution that would play audio files as they downloaded. |
didn’t want to make the user sit and wait while | downloaded an entire
MP3 to a file before | started playing it. MPMoviePlayerController
would start playing as soon as it had enough bytes buffered, and |
wouldn’t consider anything with unnecessary extra delays.

B The solution had to handle a variety of audio formats, including those
likely to be found by SeeqPod searches.

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

B [deally it should be easy to use, because that’s how it’s supposed to
be with Cocoa Touch, right? This was more of a goal than a hard
requirement, because | wasn’t sure where the search might lead.

Browsing the documentation, | found several likely candidates.

The System-Sound Way

The first candidate was AudioServicesPlaySystemSound(), which | came across in
Apple’s Audio & Video Coding How-To’s documentation. It said right there that this
function is intended for only sounds of 30 seconds or less, but it gave me the possibly
mistaken impression this was not a hard limit. It's almost as easy to use as
MPMoviePlayerController, as Listing 3-2 shows.

Listing 3-2. Using AudioServicesPlaySystemSound

// Set up a system sound object

NSString *url = .. // URL pointing to an audio file
SystemSoundID mySoundID;
AudioServicesCreateSystemSoundID((CFURLRef)url, 8mySoundID);

// Play the system sound object. This function call will return immediately.
AudioServicesPlayAlertSound(mySoundID);

// Clean up the system sound object (do this later, for example in -dealloc).
AudioServicesDisposeSystemSoundID(mySoundID);

Aside from its simplicity, though, it didn’t serve my needs. It’s certainly simple, but it’s
limited to loading sounds from file URLs, which meant that I’d have to download a full
track before playing it. | also found that it was limited to playing only WAV, AIFF, and
CAF files, and it wouldn’t decode MP3s or other compressed formats. | didn’t bother
finding out whether the 30-second limit was real or just a suggestion, because | was
already looking for an alternative.

AVAudioPlayer: The Not-Available-in-Beta Way

If you’re looking through the iPhone SDK documentation today, the AVAudioPlayer class
looks like a potential candidate for my needs. It drops the 30-second limit of system
sounds, and it’ll play a much wider variety of formats.

| didn’t investigate AVAudioPlayer, though, not because of any technical limitations but
because of a notice you might miss at the top of its class documentation—the part that
says “Available in iPhone OS 2.2 and later.” By this time | was working on a late beta of
iPhone OS 2.0. Developers working on jail-broken phones had access to AVAudioPlayer
and much more from APIs that were present but undocumented and unsupported. | had
ambitions of getting into the App Store eventually, though, and Apple wouldn’t have
been very likely to let me get away with it. Apps have been rejected from the store for
much less.

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

In the interest of completeness, though, Listing 3-3 demonstrates a simple use of
AVAudioPlayer. In this case, there’s a lot more to the API than the listing shows, but the
basics of setting up the player and getting it going are quite similar to previous
examples. If AVAudioPlayer meets your needs, you’ll find it offers a rich API for control
and monitoring of audio playback.

Listing 3-3. Simple AVAudioPlayer Example
- (IBAction)play:(id)sender
{

NSURL *url = .. // Valid file:// URL
NSError *error = nil;
// Create the player and set its delegate to self
audioPlayer = [[AVAudioPlayer alloc] initWithContentsOfURL:url error:8error];
audioPlayer.delegate = self;
// Check that the player was created before playing
if ((audioPlayer == nil) || (error != nil)) {
[audioPlayer release];
} else {
[audioPlayer play];

}

// AVAudioPlayerDelegate method
- (void)audioPlayerDidFinishPlaying: (AVAudioPlayer *)player successfully:(BOOL)flag
{

// Don’t leak memory
[audioPlayer release];

Just to be sure | hadn’t missed an easy fix, | tried using the code from Listing 3-3 with
an HTTP URL. It turns out they’re not kidding about using only file URLs. The
initWithContentsOfURL:error: method returned nil, and the error parameter indicated
initialization had failed with a “file not found” error.

As a result, AVAudioPlayer didn’t meet my needs even if it had been available when |
started work on this project. It gets tantalizingly close, covering the audio formats |
needed and offering detailed control over audio playback. The lack of any way to play
downloaded data before the data was complete makes it unsuitable for my situation.

As an inveterate hacker, | tried to trick AVAudioPlayer into doing what | needed. In
addition to initialization from a URL, AVAudioPlayer can be initialized from an NSData
object. | decided to try the following experiment:

1. Start with a URL pointing to an MP3, and begin downloading it.

2. As bytes arrive, append them to an NSMutableData object (which is a
subclass of NSData and should therefore be acceptable to
AVAudioPlayer).

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

3. When enough bytes have been downloaded, create an AVAudioPlayer
and start it playing. If “enough bytes” means I've buffered enough data,
the player should be able to continue playing bytes that were available
even as | was simultaneously adding new bytes at the end of the
NSMutableData object.

The drawback to this scheme would be that the entire audio file would end up being
stored in memory by the time downloading was complete. But my gut feel was that the
kind of songs | was likely to be playing would not be so large as to make this a problem.
I’d end up having an NSMutableData object containing a few megabytes of data by the
time | was done, but when | was done, I'd just release it and move on.

Listing 3-4 outlines the scheme.
Listing 3-4. Attempting to Fool AVAudioPlayer

// In the class's interface
NSURLConnection *audioConnection;
NSMutableData *audioData;
AVAudioPlayer *audioPlayer;

// In the class's implementation

// See if we can feed NSURLConnection data into an AVAudioPlayer
- (IBAction)playData: (id)sender

{

NSURL *url = .. // an HTTP URL pointing to an MP3
audioData = [[NSMutableData alloc] init];
audioConnection = [[NSURLConnection alloc] =
initWithRequest:[NSURLRequest requestWithURL:url] s
delegate:self];
}

- (void)connection: (NSURLConnection *)connection didReceiveData:(NSData *)data

// Add the new data to the audioData object
[audioData appendData:data];
if (audioPlayer == nil) {
NSError *error = nil;
// Attempt to create the player with the available data
audioPlayer = [[AVAudioPlayer alloc] initWithData:audioData ‘w»
error:8error];
if ((audioPlayer == nil) || (error != nil)) {
NSLog(@"Error creating player: %@", error);
[audioPlayer release];
} else {
[audioPlayer play];

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

It didn’t work out as expected, though. The network connection received 1,440 bytes at
a time, so initially the audio player couldn’t be created because there weren’t enough
bytes in the data object. Buffering wouldn’t make the situation any better though,
because AVAudioPlayer reads audio file length from the audio file header and then
crashes if it can’t read to the end. The end result is that the only buffer that’s big enough
is one that’s at least as big as the file being played, which effectively means that playing
during download is impossible.

DOWNLOADING DATA WITH NSURLCONNECTION

I've written several iPhone applications to date, and every one of them has needed to connect to a web site
at some point, either to upload data or to download data.

There’s more than one way to download data from a URL on the iPhone, but I've found
NSURLConnection to hit the sweet spot between ease of use and power. It offers two basic schemes,
synchronous and asynchronous downloading.

The synchronous approach is easy but, being synchronous, blocks execution until the connection is
finished. That makes it suitable only for use on a background thread, because blocking the main thread
means locking up your user interface. That’s not a good idea even on a fast connection. If the iPhone is in
an area with EDGE coverage, there’s a good chance of the connection taking so long that users will think
the app has crashed.

The asynchronous approach solves this by dealing with the network in the background and notifying you of
progress through delegate methods. In effect, it gives you the advantage of using a background thread but
does so transparently. You start it up and then go about whatever other business needs taking care of, and
it'll call you back when anything interesting happens. Listing 3-5 shows how to begin the process.

Listing 3-5. Starting a Download with NSURLConnection

// In the class interface
NSMutableData *receivedData;
NSURLConnection *myConnection;

// In the class implementation
- (void)startDownload
{
NSURL *url = ...; // Valid URL
NSURLRequest *request = [NSURLRequest requestWithURL:url];
// Create a data object to hold data returned by the connection
receivedData = [[NSMutableData alloc] init];
// Create the connection, which will start loading immediately
myConnection= [[NSURLConnection alloc] =
initWithRequest:request =
delegate:self];

}

Upload data, if any, would be attached to the NSURLRequest object, which is a lot more flexible

than I'm demonstrating here. It has a mutable subclass, aptly named NSMutableURLRequest, which has
methods for setting the HTTP method, request body, and header fields. By using NSMutableURLRequest,
you can extend this sample code to work with a wide variety of web services.

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

The minimal set of delegate methods covers those that receive data from the connection and those that
are called when the connection has finished or failed. Listing 3-6 shows a simple implementation of these
methods. See the NSURLConnection class documentation for information on others.

Listing 3-6. Delegate Methods for NSURLConnection

// NSURLConnection delegate method
- (void)connection:(NSURLConnection *)connection didReceiveData:(NSData *)data

// This method may be called repeatedly
[receivedData appendData:data];

}

// NSURLConnection delegate method
- (void)connectionDidFinishLoading:(NSURLConnection *)connection
{
// This method will be called once, if no errors occurred.
//All data has been received and the connection is closed.
// Call any methods that process the received data (e.g. XML parsing) here.
[receivedData releasel];
receivedData = nil;
[myConnection release];
myConnection = nil;

}

// NSURLConnection delegate method
- (void)connection:(NSURLConnection *)connection
didFailWithError:(NSError *)error
{
// This method is called once, if an error occurred.
// The “error” argument contains information about the error.
[receivedData release];
receivedData = nil;
[myConnection release];
myConnection = nil;

}

In addition, Listing 3-7 shows an additional delegate method that can be used to retrieve the HTTP status
code, if the URL scheme was HTTP. The response argument is declared as an NSURLResponse object, but
if the protocol is HTTP, it will actually be a subclass, NSHTTPURLResponse, which contains the HTTP
status. You might prefer to allocate the NSMutableData object in this method instead of when starting
the connection and do so only if the status code indicates HTTP success (200). An empty NSMutableData
object takes up so little space that it's more a matter of style than anything else.

Listing 3-7. Getting the HTTP Status

// NSURLConnection delegate method
- (void)connection:(NSURLConnection *)connection =
didReceiveResponse:(NSURLResponse *)response
{
[receivedData setLength:0];
// See if it’'s an NSHTTPURLResponse and typecast it if it is.
if ([response isKindOfClass:[NSHTTPURLResponse class]]) {
NSHTTPURLResponse *httpResponse = (NSHTTPURLResponse *)response;

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

NSLog(@"HTTP Status: %d", [httpResponse statusCodel);

}
}

Doing It the Cowhoy Way with Core Audio

Using MPMoviePlayer or one of the other APIs | had tried would have been the easy way.
But as the legendary Ranger Doug would say, “It wouldn’t be the cowboy way.” Clearly,
it was time for Core Audio. All along it had been lurking in the SDK, an API so powerful |
dreaded | might hurt myself trying to use it.

This was going to be a learning experience, and | hoped it wouldn’t be the kind where
you learn not to do something again after inciting a disaster. Not really knowing where to
begin, | opened up Xcode’s documentation viewer and typed Core Audio into the
search field.

The results were kind of overwhelming at first. | tried to start with the simple stuff, but
before | had finished the first page of “Core Audio Overview,” it was already talking
about setting up a Core Audio-based recording studio in a diagram containing about 15
different blocks, none of which | had the first clue about. After spending some time
exploring the documentation, skipping stuff | didn’t understand or that seemed not
relevant to my project, | decided that the most likely option was something called Audio
Queue Services. The documentation for this API described a scheme for playing audio
files via Core Audio, so | started following along, implementing my own code to parallel
the documented scheme.

Getting Halfway There: Audio Queue Services

Reading though the documentation and the sample code, | gradually realized that the
Audio Queue Services approach was designed around reading audio from a file, as with
previous methods I’d tried. | pressed on anyway. The sample code didn’t seem to grab
the entire audio file at once—instead, it used a collection of buffers that would be
successively filled with part of an audio file and then played. By cycling through the
buffers, the entire file would gradually be played. That sounded like a promising
approach, since | expected that once | knew what | was doing, | could modify the code
to take data from the network instead of from a file.

The general approach is a repeating cycle in which you read a chunk of audio data from
a file into a buffer and add it to an audio queue. The audio queue plays the buffer and
then calls a callback function, which repeats the process until no more file data remains.
Figure 3-2 illustrates this cycle.

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

Callback Queued buffers
Buffer »| Buffer Buffer Buffer
Fill audio

buffer from file Add full buffers

~ to queue

Buffer played and returned to callback
Figure 3-2. Audio Queue Services playback cycle

Apple provides a sample application that illustrates this approach, which is called
SpeakHere.

A WORD ON PROGRAMMING LANGUAGES

In the course of discussions with other iPhone developers, I've met a surprising number of people who
don’t simply prefer to stick to Objective-C for iPhone development but who regard pure C APIs with
something approaching fear and dread. If that’s not you, fantastic, but it's an attitude that I've encountered
much more than | would have expected.

For some people, this feeling goes so far that they’d prefer not to do something if using C is the only way.
I’'m not sure what the source of this feeling is, but if you’re going to use Core Audio, you’ll need to
recognize one very important detail: Core Audio is entirely a C-based API. No Objective-C is involved.

Of course, Objective-C is a proper superset of C, so you already know C at least as well as you know
Objective-C. You will, of course, have to use C-style arrays instead of NSArray, and you'll encounter
malloc/free-style memory management. Not to mention potentially using pointers in new and
unfamiliar ways. The callback function shown in Figure 3-2 is a C function that you would implement. But
you can and should use Objective-C for most other aspects of your application, and Core Audio code will
integrate well.

If this sounds dangerous, error prone, or just distasteful, relax. You can do this. There is no monster hiding
under this bed.

BEWARE THE SIMULATOR

If you’ve done any significant amount of iPhone development work, you've probably run across cases
where the iPhone Simulator differs from working on a real iPhone or iPod touch. Often it's something

obvious like the lack of a camera or the fact that the simulator’s Core Location data always shows the
current location to be at Apple’s headquarters.

With Core Audio, it's less obvious but no less important. Developing Core Audio code on the iPhone
Simulator is a recipe for frustration and confusion, because although code often fails to work as expected,
it doesn’t fail in a manner that’s immediately obvious as being a simulator issue. You may find, for
example, that a key Core Audio function call never returns, for no readily apparent reason, and that while

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

it’s busy doing who-knows-what it also draws 90 percent or more of your Mac’s CPU. Application bugs are
often your own fault, so it's natural to try to analyze your code to see where you went wrong.

But then you try the same code on a phone, and it just works.

I've filed bugs with Apple about this, but as of this writing, they’re unresolved in any released version of
the iPhone SDK. With any luck the situation will improve in a future release. Until then, if you choose to
work in the simulator and you find that your Core Audio code is not working quite as expected, try working
on a real device first before spending too much time trying to find the bug.

Listing 3-8 shows a class declaration for a class that uses Audio Queue Services to play
audio files. A number of instance variables are necessary to track audio format and
maintain the audio queue. Property declarations are a matter of style, but some kind of
setter and getter methods will be useful later.

Listing 3-8. Class Declaration for a Class Using Audio Queue Services

@interface SimpleAQPlayViewController : UIViewController {
AudioStreamBasicDescription mDataFormat;

AudioQueueRef mQueue;

AudioQueueBufferRef mBuffers[kNumberBuffers];

AudioFileID mAudioFile;

UInt32 bufferByteSize;

SInt64 mCurrentPacket;

UInt32 mNumPacketsToRead;

AudioStreamPacketDescription *mPacketDescs;

BOOL mIsRunning;
}
@property (readwrite) UInt32 mNumPacketsToRead;
@property (readwrite) AudioFileID mAudioFile;
@property (readwrite) AudioStreamPacketDescription *mPacketDescs;
@property (readwrite) SInt64 mCurrentPacket;
@property (readwrite) AudioQueueRef mQueue;
@property (readwrite) BOOL mIsRunning;

- (IBAction)play:(id)sender;

The play method to start audio playback is designed to be the target of a button or
other user interface item. Listing 3-9 shows its implementation. There are a lot of steps,
but it’s not as complicated as it might look. The following are the key details to be aware
of:

B Core Audio has its own API for opening, reading, and closing files. This
starts with AudioFileOpenURL. The third argument to this call is a hint
about the file type. Usually, AudioFileOpenURL can work out the file
type for itself, so you pass 0 to indicate you’re not giving it any hints. If
the code was intended to use a specific file type, you could pass a
format-specific value here, such as kAudioFileMP3Type or
kAudioFileAIFFType. Other Core Audio file management calls will
appear later.

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

B AudioQueueNewOutput() creates the playback queue. The queue
doesn’t read the file directly. Instead, the second argument,
AQOutputCallback, is the callback function shown in Figure 3-2. It will
read data from the file into buffers and add those buffers to the queue.

B The third argument to AudioQueueNewOutput() is an argument to the
callback function, which can be any data you find useful in that
function. In this case, I’'m passing self so that the callback function
will be able to make Objective-C method calls on my audio playback
class.

B You need to set the buffer size used when reading data from the file.
Choosing a buffer size is a balancing act. Buffers that are too small will
mean the callback function gets more calls, which means more time
spent filling buffers. In an extreme case, the callback could be called
so frequently that audio playback would stutter. At the other extreme,
larger buffers require more memory, and memory is always at a
premium on the iPhone. In this case, | used a utility method,
DeriveBufferSize(), to find the right buffer size for a certain amount
of time, as determined by the audio format. It’s also reasonable to just
use a fixed buffer size, if you expect to deal only with certain
encodings. Deriving sizes on the fly allows more flexibility, but greater
flexibility is not always necessary.

B Audio data needs to be handled slightly differently depending on
whether it is encoded with a constant bit rate (CBR) or a variable bit
rate (VBR). VBR packets may vary in size, so Code Audio uses packet
descriptors to track the size and other information about individual
packets. CBR packets are all the same, so this is not necessary. It’s
important to note that Core Audio will treat compressed formats such
as MP3 as VBR data even if they are encoded at a constant bit rate.
Uncompressed formats like AIFF will be treated as CBR data.

B The play method calls the callback function directly before starting
playback to prime the queue with its initial set of buffers.

B Playback begins with the call to AudioQueueStart(). It continues only
so long as the application’s run loop is executing. If you play audio on
the main thread of an iPhone app, this happens automatically.
Background threads don’t automatically have a run loop, though, so if
you use a background thread, you’d need to create your own run loop
for playback to continue beyond the initial priming of the queue.

Listing 3-9. Starting Audio Playback Using Audio Queue Services
- (IBAction)play:(id)sender

0SStatus result;

// Open the audio file from an existing NSString path
NSURL *sndFileURL = [NSURL fileURLWithPath:path];

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

AudioFileOpenURL((CFURLRef)sndFileURL, kAudioFileReadPermission, 0, 8mAudioFile);

// Get the audio format

UInt32 dataFormatSize = sizeof(mDataFormat);

AudioFileGetProperty(mAudioFile, kAudioFilePropertyDataFormat,
&dataFormatSize, 8mDataFormat);

// Create the playback queue
AudioQueueNewOutput (&mDataFormat, AQOutputCallback, self,
CFRunLoopGetCurrent(), kCFRunLoopCommonModes, 0, &mQueue);

// Get buffer size, number of packets to read

UInt32 maxPacketSize;

UInt32 propertySize = sizeof (maxPacketSize);

// Get the theoretical max packet size without scanning the entire file

AudioFileGetProperty(mAudioFile, kAudioFilePropertyPacketSizeUpperBound,
&propertySize, 8maxPacketSize);

// Get sizes for up to 0.5 seconds of audio

DeriveBufferSize(mDataFormat, maxPacketSize, 0.5, &bufferByteSize,
&mNumPacketsToRead);

// Allocate packet descriptions array
bool isFormatVBR = (mDataFormat.mBytesPerPacket == 0 || w
mDataFormat.mFramesPerPacket == 0);

if (isFormatVBR) {

mPacketDescs = (AudioStreamPacketDescription*) 'w»

malloc (mNumPacketsToRead * sizeof (AudioStreamPacketDescription));

} else {

mPacketDescs = NULL;

// Get magic cookie (for compressed formats like MPEG 4 AAC)
UInt32 cookieSize = sizeof(UInt32);
0SStatuscouldNotGetProperty = AudioFileGetPropertyInfo(mAudioFile,
kAudioFilePropertyMagicCookieData, &cookieSize, NULL);
if ((couldNotGetProperty == noErr)&& cookieSize) {
char* magicCookie = (char *) malloc (cookieSize);
AudioFileGetProperty(mAudioFile, kAudioFilePropertyMagicCookieData,
8cookieSize, magicCookie);
AudioQueueSetProperty(mQueue, kAudioQueueProperty MagicCookie,
magicCookie, cookieSize);
free(magicCookie);

// Allocate and prime audio queue buffers

mCurrentPacket = 0;

for (int i = 0; i < kNumberBuffers; ++i) {
AudioQueueAllocateBuffer(mQueue, bufferByteSize, 8mBuffers[i]);
AQOutputCallback(self, mQueue, mBuffers[i]);

// Start and run queue
mIsRunning = true;

AudioQueueStart(mQueue, NULL);

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

The function in Listing 3-10 is the callback function shown in Figure 3-2 and attached to
the audio queue in Listing 3-9. The purpose of this function is to read data from the
audio file into a buffer and then add it to the audio queue. Or if no more data is available
(as indicated by the value returned by AudioFileReadPackets in its numPackets
argument), arrange to stop playback. Data is read using the second part of Core Audio’s
file API, AudioFileReadPackets().

Listing 3-10. Audio Queue Services Callback Function

void AQOutputCallback(void *userData, AudioQueueRef inAQ, w»
AudioQueueBufferRef inBuffer) {

SimpleAQPlayViewController *self = (SimpleAQPlayViewController *)userData;
UInt32 numBytesReadFromFile;
UInt32 numPackets = self.mNumPacketsToRead;

// Read up to numPackets packets from the file.

AudioFileReadPackets (self.mAudioFile, false, &numBytesReadFromFile, w»
self.mPacketDescs,self.mCurrentPacket, w
&numPackets, inBuffer->mAudioData); w»

if (numPackets > 0) {
// Set the byte count to the number of bytes actually read from the file.
inBuffer->mAudioDataByteSize = numBytesReadFromFile;
// Add the buffer to the audio queue.
AudioQueueEnqueueBuffer(self.mQueue, inBuffer,

(self.mPacketDescs ? numPackets : 0), self.mPacketDescs);

self.mCurrentPacket += numPackets;

} else {
// If no packets were read, stop the queue.
[self stopPlaying];

}

}

The callback function also illustrates a way of bridging the gap back to the audio
playback class. Since you previously called AudioQueueNewOutput with self as the
callback function argument, a reference to the object is passed to the callback as
userData. By typecasting this to a pointer to the audio playback class, it's possible to
make Objective-C method calls to that object from the C callback function. This is why it
was important to have getter and setter methods (even synthesized ones) for some of
the instance variables declared in Listing 3-8. In this callback, you need to be able to
access these variables from outside the scope of the class interface.

Listing 3-11 shows the utility function used to determine buffer size in the play method.
Listing 3-11. Determining an Optimum Buffer Size

void DeriveBufferSize(AudioStreamBasicDescription ASBDesc,
UInt32 maxPacketSize,
Float64 seconds,
UInt32 *outBufferSize,
UInt32 *outNumPacketsToRead) {

// Set limits on buffer size. Max size = 128kBmin size = 16kB
static const int maxBufferSize = 0x20000;
static const int minBufferSize = 0x4000;

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

if (ASBDesc.mFramesPerPacket != 0) {
Float64 numPacketsForTime = ASBDesc.mSampleRate / =
ASBDesc.mFramesPerPacket * seconds;
*outBufferSize = numPacketsForTime * maxPacketSize;
} else {
*outBufferSize = MAX(maxBufferSize, maxPacketSize);

if (*outBufferSize > maxBufferSize 83 *outBufferSize > maxPacketSize)
*outBufferSize = maxBufferSize;
else {
if (*outBufferSize < minBufferSize) {
*outBufferSize = minBufferSize;

*outNumPacketsToRead = *outBufferSize / maxPacketSize;

}

Finally, Listing 3-12 shows the stop function called by the callback function once all
audio data has been read. This method gets called from the callback function as soon
as AudioFileReadPackets indicates that no more audio data is available. When that
happens, there may still be unplayed buffers in the queue, so you don’t want to stop
playback immediately. Fortunately, AudioQueueStop() deals with this—passing false as
the second argument indicates that playback should not stop until all buffers have been
processed.

You do know that you've read all the available audio data, though, so you can call
AudioFileClose(), the last part of Core Audio’s file API, to close the file.

Listing 3-12. Stopping Audio Queue Services Playback
- (void)stopPlaying

AudioQueueStop(self.mQueue, false);
self.mIsRunning = false;

// All data has been read from the file, so close it
AudioFileClose (mAudioFile);

This was great. | now had code that would play any audio file supported by the iPhone
with not a lot of code. It wouldn’t take over the user interface like
MPMoviePlayerController. And it looked like | was on the right track for streaming. True,
| was still tied to reading audio data from files, but | was only doing that as a way to get
audio buffers that | could feed into a queue. If | could arrange to get those buffers from a
network connection, I'd have achieved my goals for the project.

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

Getting the Rest of the Way There: Audio File Stream
Services

Taking raw data from a network connection and getting it into something playable by an
audio queue took me back to the iPhone SDK documentation. However, the
documentation was somewhat opaque, at least to me. I’'m sure it’s great if you know a
thing or two about digital audio encoding, but if you’ve been following along from the
start, you know that | was not such a person. Audio File Stream Services is a Core Audio
API that’s designed for the case where you want to play audio but don’t have the entire
audio file available. I’d need to learn to use it.

| had what looked like a better option than the documentation, though. | attended
WWDC 2007, and | had the session videos. Looking through them, | found that there
had been a session covering exactly this topic—session 404, “Queueing, Streaming,
and Extending Core Audio.” | eagerly watched it and found that the API actually started
to make sense.

Some details were left out, though, with the expectation that attendees would refer to
the session’s sample code to fill in the details. | didn’t have the sample code, and it was
not available on Apple’s web site any more. To overcome this, | started a two-pronged
approach. First, from the session video, | knew which parts of the API | needed to puzzle
out into working code, so | went back to the documentation with renewed focus.

Second, | started a campaign of asking every developer | knew if they had the sample
code and would they please send me a copy if they did. Between e-mail, IRC, Twitter,
and face-to-face discussions, | eventually got my request passed along to a friend of a
friend who had the code. | now had everything | needed to complete the application.

Streaming audio is somewhat more complicated than playing a complete audio file,
because the lack of file data translates into a lack of information about what you’re
trying to play. You can’t create an audio queue until you know the exact audio format,
and you can’t know the audio format until you have enough of the file to read its
properties. But how do you know when that happens? Downloading an arbitrary number
of bytes and hoping for the best is not a good solution.

The solution involves two callback functions instead of the one you saw earlier. One of
them is called the property listener callback, because the audio stream calls it whenever
new property information is available. Properties can include things such as the audio
data format and the packet size, but the most useful one for streaming is the “ready to
produce packets” property, a flag that indicates all metadata has been read and that
audio data is available.

That’s when the second callback—the audio data callback—comes into play. The audio
stream passes audio packets to this callback, which bundles them up into buffers and
adds them to the audio queue.

The AudioFileStreamParseBytes() function is responsible for taking incoming raw data
and making sense of it, calling the two callback functions as necessary. The general flow

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

then is to read data, pass it to the parser, and receive audio data in your callback
functions. The callback functions will almost always be called multiple times as data is
received. Figure 3-3 illustrates how this operates once playback has started.

00110110011011011001

Incoming data
v (e.g. from network)

AudioFileStreamParseBytes()

Audio packet Y

callback Packet
packets
! Pool of available buffers
Add packets
to the current | Buffer < Buffer Buffer
buffer
When buffer is full, add 0

v it to the audio queue

Queued buffers

Post-play callback
returns buffers
to the pool

Buffer Buffer Buffer

Y

Figure 3-3. Playing streaming audio with Audio File Stream Services

Figure 3-3 also shows yet another callback, here called the post-play callback. As with
Audio Queue Services, you’re creating buffers of audio data that you then add to the
audio queue. Once a buffer has been played, though, it can’t be passed back to the
audio data callback, because it’s expecting audio packets from the parser. So, instead,
the audio queue passes the buffer to another callback function so that you can take care
of cleaning it up. You could choose to allocate new buffers on the fly and then release
the memory in this callback. This might tend to use a lot of memory, though, unless you
strictly limited the number of buffers that were permitted to exist at any one time. A
simple way to accomplish this is to preallocate a pool of buffers. The audio data
callback takes an existing buffer from the pool or blocks if none is available. When you
add a buffer to the audio queue, you mark it as being in use, and after it has been
played, you clear the “in-use” setting and return it to the pool.

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

An important consideration with this new callback is that Audio Queue Services will
invoke the callback on a separate thread, which is created to handle the actual
playback. Once playback completes, the post-play callback is called on this same
thread. Any code you include in the callback needs to be aware of the fact that it’s
running on a different thread than the rest of the code. You’ll use an NSCondition object
to synchronize threads and to safely handle the audio buffer pool.

Listing 3-13 shows the interface for a simple audio streaming class. It starts with
declarations for the number and size of buffers. In this case I’'m using fixed values
instead of using the utility function from earlier to try to optimize the sizes. This means
that | don’t know exactly how much playback time will be contained in each buffer, but it
also means that I'll know exactly how much memory I’'m using for buffers. | could just
rely on the DeriveBufferSize() function from earlier imposing its maximum size limits. In
the constrained iPhone environment, | prefer to make the memory requirements as
predictable as possible, and fixed sizes make that possible. If you’d like the same
predictability but aren’t sure what makes for a good size, you might use the
DeriveBufferSizes() during development to get a feel for how big the buffers need to
be and then set your fixed values to something comparable to its results.

The class interface defines a structure called PlayQueueData, which is used by the class
to manage audio buffers. It contains the buffer itself (the AudioQueueBufferRef) as well
as several other associated items that need to go along with it. The NSConditionobject,
for example, is used when marking buffers as in use and to block the code from
enqueueing a new buffer when all existing buffers are in use. Instances of the streaming
class will create an array of PlayQueueData structs.

As the interface suggests, this class is initialized with a URL pointing to an audio source
and will rely on an NSURLConnection to download the data from that source.

Listing 3-13. Audio Streaming Class Interface

// Number of audio queue buffers we allocate
#define kNumAQBufs 3

// Number of packet descriptions in our array
#define kAQMaxPacketDescs 512

// Use a hard-coded buffer size.

#define kAQBufSize 1048576 /* 1 MB, or 2**20 */

// Data structure containing an audio queue buffer as well as its associated data.
typedef struct PlayQueueData {
AudioQueueBufferRef buffer;
NSCondition *queuedCondition;
UInt32 packetCount;
AudioStreamPacketDescription packetDescriptors[kAQMaxPacketDescs];
size_t bytesFilled;
BOOL inUse;
} PlayQueueData_t;

@interface SimpleStreamer : NSObject {
NSURL *url;
NSURLConnection *networkConnection;

AudioFileStreamID myAudioStream;

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

AudioQueueRef playQueue;

BOOL queueStarted;
BOOL queueRunning;

PlayQueueData_t *playQueueDataRecs;
unsigned int currentBufferIndex;

}

@property (readonly) NSURL *url;

@property (readwrite) AudioQueueRef playQueue;

@property (readwrite) BOOL queueRunning;

@property (readwrite) BOOL queueStarted;

@property (readwrite) unsigned int currentBufferIndex;
@property (readwrite) PlayQueueData_t *playQueueDataRecs;

- (id)initWithURL:(NSURL *)url;
- (void)play;
- (void)stop;

@end

BUFFERING ON MOBILE DEVICES

It's important to make sure that you buffer enough audio data to handle changing network conditions.
Because the iPhone is a mobile device, apps need to be designed to handle the possibility that the device
is in motion while the app is running. That might mean unexpected transitions between 3G and EDGE
networks, for example, or just a weak signal and lower data rates at times. This is much more important
on the iPhone than with desktop computers and even laptops, which are merely portable but less likely to
be used in motion.

The iPhone is surprisingly robust in these situations. When the network changes from 3G to EDGE or back,
network connections usually will not drop. Instead, they’ll stall briefly before resuming. In a streaming app,
this means you’ll stop receiving incoming bytes for a while but that your network connection should
eventually pick up and start sending data again. It’s during this stall time that your audio buffers are most
useful. There’s no guarantee of how long the stall will last, but in my testing I've found that small buffers
won't be up to the task. Planning for one to two seconds of downtime is nowhere near sufficient to avoid
audio dropouts. Make the buffers as large as you think you can afford.

A side effect of buffering is that, in the case of a live audio stream, your playback may lag compared to
the original audio. That’s a necessary consequence of planning to keep playback going in changing
network situations.

Listing 3-14 shows the initializer for the streaming class. This is where the array of
PlayQueueData structures is allocated, although the audio buffers they contain are still
NULL at this point. They can’t be allocated until you know something about the audio
format, so you’ll leave that until you have that information.

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

Listing 3-14. Initializing the Audio Streaming Object
- (id)initWithURL:(NSURL *)audioUrl

if (self = [super init]) {
url = [audioUrl retain];
playQueueDataRecs = (PlayQueueData_t *)malloc(sizeof(PlayQueueData_t) *
kNumAQBufs);

return self;

Listing 3-15 shows the starting point for audio playback. This is a very short method,
especially in comparison to the one used earlier in the Audio Queue Services example.
The reason is that with streaming audio you don’t have an audio file at first, so you can’t
start looking at its audio format or other characteristics yet. Instead, you just create the
AudioFileStreamID myAudioStream and then start the network connection. The second
and third arguments to AudioFileStreamOpen() are the property listener and audio data
callback functions, which will be called as soon as the stream has enough data to start
making sense of the incoming data.

The fourth argument to AudioFileStreamOpen() is a hint about the audio format, which
you saw earlier in the Audio Queue Services code. In this case I'm passing 0, which
implies that the stream should attempt to determine the format.

Listing 3-15. Starting the Stream
- (void)play
{

// Create audio stream using callback functions.

// Third argument is an optional hint to file type.

AudioFileStreamOpen(self, propertylListenerCallback, audioDataCallback, o,
&myAudioStream);

// Create the network connection

NSURLRequest *networkRequest = [NSURLRequest requestWithURL:self.url];

networkConnection = [[NSURLConnection alloc] initWithRequest:networkRequest
delegate:self];

Note that I’'ve used the trick of passing self again here, so that the callback functions
will be able to make method calls on the streaming object.

The NSURLConnection created in Listing 3-15 will connect and begin receiving data as
soon as it has been created. Since I've set self as the connection’s delegate, the
connection will supply this data in the connection:didReceiveData: method on the
streaming object. Recall that this method may be called many times, often with as little
as 1KB to 2KB of data. Listing 3-16 shows this method. Whenever this happens, | pass
the data to the parsing function. The first argument, myAudioStream, is the stream object
| created earlier. The parsing function will use this argument to find the callbacks that |
registered for it.

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

Listing 3-16. Receiving Data from the Network and Parsing It

// NSURLConnection delegate method
- (void)connection: (NSURLConnection *)connection didReceiveData:(NSData *)data

// Pass incoming bytes to audio stream parser.
AudioFileStreamParseBytes(myAudioStream, [data length], [data bytes], 0);

When enough data has been received, it will be possible to start determining properties
of the audio. The property callback will be called for each one. The property information
continues to be available after the callback, though, so although the property listener will
be called as soon as the data format is known, it’s still possible to look up this property
on the audio stream later. It’s not necessary to store this information in your own
variables. As a result, the property listener function will do nothing until the stream is
ready to produce audio packets, at which point it can look up all the information you
need. This property indicates that all metadata has been received and that playback can
begin. Listing 3-17 shows the property listener callback.

Listing 3-17. Property Listener Callback for Audio File Stream Services

void propertylListenerCallback (void *inClientData,
AudioFileStreamID inAudioFileStream,
AudioFileStreamPropertyID inPropertyID,

UInt32 *ioFlags)

{

SimpleStreamer *self = (SimpleStreamer *)inClientData;
0SStatus err = nokErr;
UInt32 propertySize;

if (inPropertyID == kAudioFileStreamProperty ReadyToProducePackets) {
// The stream is ready to produce audio packets

// Get the audio format

AudioStreamBasicDescription dataFormat;

propertySize = sizeof(dataFormat);

err = AudioFileStreamGetProperty(inAudioFileStream, w»
kAudioFileStreamProperty DataFormat, &propertySize, 8dataFormat);

// Create the play queue

AudioQueueRef playQueue;

err = AudioQueueNewOutput(&dataFormat, postPlayCallback,
self, NULL, kCFRunLoopCommonModes, 0, &playQueue);

[self setPlayQueue:playQueue];

// Set up audio buffer structures
for (int i=0; i<kNumAQBufs; i++) {
self.playQueueDataRecs[i].queuedCondition = w»
[[NSCondition alloc] init];
err = AudioQueueAllocateBuffer(playQueue,
kAQBufSize, &(self.playQueueDataRecs[i].buffer));

self.currentBufferIndex = 0;
// Lock the initial buffer, which is where we'll start writing data.

NSCondition *queuedCondition = w»
(NSCondition *)self.playQueueDataRecs[0].queuedCondition;

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

[queuedCondition lock];
self.playQueueDataRecs[0].inUse = YES;
[queuedCondition unlock];

// Get the magic cookie (for compressed formats like MPEG 4 AAC)
// from the file stream and set it on the audio queue
err = AudioFileStreamGetPropertyInfo(inAudioFileStream, w»
kAudioFileStreamProperty MagicCookieData, &propertySize, NULL);
void *magicCookie = calloc(1, propertySize);
err = AudioFileStreamGetProperty(inAudioFileStream,
kAudioFileStreamProperty MagicCookieData,
&propertySize,
magicCookie);
if (err == noErr) {
err = AudioQueueSetProperty(playQueue,
kAudioFileStreamProperty MagicCookieData,
magicCookie,
propertySize);

free(magicCookie);
}
}

The property listener callback starts by checking its inPropertyID argument to see what
new property information is available. If it’s not

kAudioFileStreamProperty ReadyToProducePackets, it does nothing. When the stream is
ready to produce packets, it finishes the setup that wasn’t possible earlier when the
stream was created. First it looks up the audio format property and creates the play
queue. This makes use of the self variable both to set the play queue on the streaming
object and to pass self along in AudioQueueNewOutput so that it will be available in the
postPlayCallback() function.

Next the callback creates the audio buffers, since you now have enough information to
do so. You'll create the buffers once and reuse them as many times as needed. It sets
self’s currentBufferIndex to O so that the first buffer in the array will be current and
marks that buffer as being in use.

Now, the playback queue has been created, and you’re ready to start playing audio. As
new data comes in, you’ll continue to pass it to AudioFileStreamParseBytes(). This will
lead to calls to the audio data callback, the aptly named audioDataCallback(). Listing 3-
18 shows this function.

Listing 3-18. Audio Data Callback

void audioDataCallback (void *inClientData,
UInt32 inNumberBytes,
UInt32 inNumberPackets,
const void *inInputData,
AudioStreamPacketDescription *inPacketDescriptions)

SimpleStreamer *self = (SimpleStreamer *)inClientData;
// Run through the incoming packets.

for (int i=0; i<inNumberPackets; i++) {
@synchronized(self) {

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

if (self.queueStarted 83 (!self.queueRunning)) {
// Stop if the queue is not running.
return;

}

// Get size and offset of the current packet's data
SInt64 packetOffset = inPacketDescriptions[i].mStartOffset;
SInt64 packetSize = inPacketDescriptions[i].mDataByteSize;

// See if there's enough byte space left in the current buffer.
size_t bufSpaceRemaining = kAQBufSize - w»
self.playQueueDataRecs[self.currentBufferIndex].bytesFilled;
if (bufSpaceRemaining < packetSize) {
// Not enough space in the current buffer, so enqueue it and
// go to the next buffer.
enqueueCurrentBuffer(self);

// Copy data to the audio queue buffer
AudioQueueBufferRef fillBuf = elf.playQueueDataRecsw
[self.currentBufferIndex].buffer;
memcpy ((char*)fillBuf->mAudioData +
self.playQueueDataRecs[self.currentBufferIndex].bytesFilled, w»
(const char *)inInputData + packetOffset, packetSize);
// Fill out packet description
self.playQueueDataRecs[self.currentBufferIndex].packetDescriptors[self.playQueueDataRecs
[self.currentBufferIndex].packetCount] = inPacketDescriptions[i];

self.playQueueDataRecs[self.currentBufferIndex].packetDescriptors[self.playQueueDataRecs
[self.currentBufferIndex].packetCount].mStartOffset = w
self.playQueueDataRecs[self.currentBufferIndex].bytesFilled;
// Keep track of bytes and packets filled in the current buffer
self.playQueueDataRecs[self.currentBufferIndex].bytesFilled += w»
packetSize;
self.playQueueDataRecs[self.currentBufferIndex].packetCount += 1;

// See if we've run out of packet space
size_t packetDescriptorsRemaining = kAQMaxPacketDescs - w»
self.playQueueDataRecs[self.currentBufferIndex].packetCount;
if (packetDescriptorsRemaining == 0) {
// No more packet descriptors in the current buffer,
// so add it to the queue.
enqueueCurrentBuffer(self);

}
}

The audio data callback’s purpose is to receive parsed audio packets and accumulate
them in the current buffer. When the buffer fills, it adds it to the audio queue via a utility
function called enqueueCurrentBuffer().

Incoming data in this callback can consist of an arbitrary number of audio packets, with
the actual number depending on how much data has been received from the network.
The body of the function loops through the packets one at a time. It starts by checking
to see whether the current buffer has enough space to hold the packet’s data. If not, it

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

calls enqueueCurrentBuffer, which adds the current buffer to the queue and moves on
to the next buffer.

Once that’s done, you know that the current buffer can hold the current packet—
whether or not it’s the same buffer that was current before you checked the remaining
buffer capacity. To copy the audio data into the current buffer, you get a reference to the
AudioQueueBufferRef field of the current PlayQueueData struct. The call to memcpy()
copies bytes from the incoming packet to the buffer. You then add details describing the
current packet and update the current count of packets and bytes in the current buffer.

Finally, there’s a second check on the current buffer—this time to see whether there’s
room for any more packets. As with the previous check, if the current buffer is full, you
drop into enqueueCurrentBuffer to add the buffer to the queue and move on to the
next one.

Adding data to the queue is done in a utility function called from audioDataCallback(),
because you need to call this code in a couple of different places, and it’s long enough
that just duplicating it would be ugly. Listing 3-19 shows the enqueueCurrentBuffer()
function.

Listing 3-19. Enqueueing the Current Buffer

void enqueueCurrentBuffer(SimpleStreamer *self)
0SStatus err = nokrr;

@synchronized(self) {
if ((self.queueStarted == YES) 8 (self.queueRunning == NO)) {
// If the queue has stopped, don't enqueue any more data.
return;
}
}

// Mark the current buffer as "in use".
self.playQueueDataRecs[self.currentBufferIndex].inUse = YES;
// Set the data size of the buffer.
AudioQueueBufferRef fillBuf = w»
self.playQueueDataRecs[self.currentBufferIndex].buffer;
fillBuf->mAudioDataByteSize = w»
self.playQueueDataRecs[self.currentBufferIndex].bytesFilled;
// Add the buffer to the queue
err = AudioQueueEnqueueBuffer([self playQueue],
fillBuf,
self.playQueueDataRecs[self.currentBufferIndex].packetCount,
self.playQueueDataRecs[self.currentBufferIndex].packetDescriptors);
if (err) {
// Could not enqueue buffer
return;

// Start the playback queue, if it's not running.
[self startQueue];

// Go to the next buffer

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

self.currentBufferIndex++;

if (self.currentBufferIndex >= kNumAQBufs) {
self.currentBufferIndex = 0;

}

// If the new current buffer is in use, wait for it to be returned to the pool.
NSCondition *queuedCondition = (NSCondition *)
self.playQueueDataRecs[self.currentBufferIndex].queuedCondition;
[queuedCondition lock];
@synchronized(self) {
if (self.queueStarted & (!self.queueRunning)) {
// Don't wait on the buffer if the queue has stopped.

return;
) }
while (self.playQueueDataRecs[self.currentBufferIndex].inUse) {
[queuedCondition wait];
[queuedCondition unlock];
}

The main purpose of enqueueCurrentBuffer is to take the current buffer and pass it to
AudioQueueEnqueueBuffer() so that it can be played. The rest is housekeeping and
maintenance details that need to be handled to keep the queue running smoothly.

First, you make sure the current buffer is marked as being in use and add the data to the
queue. Immediately after that, you call a method named -startQueue to make sure audio
is actually playing. Up until this point, you’ve been managing data packets and buffers,
but this is where the sound starts coming out of the speakers. Listing 3-20 shows the
startQueue method.

Now that you’ve enqueued the current buffer, it’s time to move on to the next one. You
do this by incrementing currentBufferIndex, taking care not to let it get larger than the
number of existing buffers. If you're less familiar with C, this is one place the difference
can be apparent. If you had been using an NSArray and you went beyond the array
bounds, you’d immediately get a runtime error. C-style arrays follow the C approach of
assuming that you know what you’re doing, so going past the end of an array might go
unnoticed at first. You’d end up accessing whatever data happened to be in memory
just after the array and potentially changing it. This usually leads to a crash, but it’s not
always immediate—it means you have some bogus data, somewhere, that will be a
problem if you try to use it. Avoiding the problem is easy enough, though, so in this case
you just make sure that currentBufferIndex is always less than or equal to kNumAQBufs,
the number of buffers that you created back in -init.

If you have a fast network connection, it’s possible that data is coming over the network
connection faster than you’re playing it. In that case, the buffers start filling up, with
each being added to the queue. Eventually you could reach a state where all existing
buffers are in use. If you moved on to the next one at that point, you’d overwrite some
of the audio that’s already in the queue. The best that can be said about that situation

is that it would sound really bad. This possibility is handled at the end of
enqueueCurrentBuffer(). Each buffer is marked as “in use” when it’s added to

the queue, and this setting is cleared once the buffer has been played. Once the

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

current buffer index has been incremented, enqueueCurrentBuffer() checks to see
whether the next buffer is still in use. If so, it means you need to wait until it has
been played.

This is handled with an NSCondition object, which is part of the PlayQueueData structure
you’ve been using. If you call -wait on this object, execution will block until someone
calls -signal on the same object. That will happen later, in the post-play callback
function. Since enqueueCurrentBuffer() is called from the audio data callback, this also
means that no packets will be added to the buffer until the condition is signaled. If you
worked your way back up the call stack, it turns out that this also means that
AudioFileStreamParseBytes() won’t return until the current buffer has been played. The
entire chain of reading data and getting it played is put on hold until the current buffer
has been played.

The startQueue method serves to call AudioQueueStart if and only if the queue has not
been started yet. It's called from enqueueCurrentBuffer() because you want to start the
queue as soon as you’ve added a buffer to the queue.

Listing 3-20. Starting the Playback Queue

// Start the audio queue, if it's not already playing
- (void)startQueue

if (!queueStarted) {
AudioQueueStart(playQueue, NULL);
@synchronized(self) {
queueStarted = queueRunning = YES;

}
}

Now that you’re getting audio from the network, parsing it, and playing it, the only thing
that remains is to make sure you don’t run out of buffers. This is the job of the post-play
callback, which you registered in propertylListenerCallback() when you created the
audio queue. Listing 3-21 shows this.

Listing 3-21. Post-Play Callback Function

void postPlayCallback (void *agData,
AudioQueueRef inAQ,
AudioQueueBufferRef inBuffer)

SimpleStreamer *self = (SimpleStreamer *)aqData;
PlayQueueData_t *currentBufferData = NULL;

// Find the playQueueDataRecs entry corresponding to inBuffer.
for (int i=0; i<kNumAQBufs; i++) {
if (self.playQueueDataRecs[i].buffer == inBuffer) {
currentBufferData = &(self.playQueueDataRecs[i]);
break;
}
}

if (currentBufferData != NULL) {
// Mark the buffer as being available, so it'll

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

// be available for new audio data.
NSCondition *queuedCondition = w»
(NSCondition *)currentBufferData->queuedCondition;
[queuedCondition lock];
currentBufferData->inUse = NO;
// Reset the packet and byte count on the buffer.
currentBufferData->packetCount = w»
currentBufferData->bytesFilled = 0;
// Signal the condition in case enqueueCurrentBuffer
// is waiting on it.
[queuedCondition signall;
[queuedCondition unlock];

}
}

The first thing you need to do is locate the structure containing the audio buffer. The
inBuffer argument gives you the actual audio buffer, but you need the full
PlayQueueData structure that contains it. It might seem that you could just use the
currentBufferIndex value to look it up, but if you’re still getting audio data over the
network, then it’s almost certainly been incremented by the time this function is called.
So, you use a loop, running through each structure until you find the right one. You have
only three of them, so this will be quick.

Once you’ve found the right structure, you make sure it’s ready for use for new audio
data. You set the “in use” flag to NO and reset the count of packets and bytes to zero.
You don’t need to release any memory here, because the buffers were allocated once
back in propertylListenerCallback() and can be reused until you don’t need them
anymore. Resetting the packet and byte counts gets us back to the beginning of the
buffer, ready to copy new data in.

Finally, you get the NSCondition object and call its -signal method. This will handle the
case described previously where enqueueCurrentBuffer was blocked because of a lack
of available buffers. Calling -signal here will unblock enqueueCurrentBuffer and allow it
to continue.

THE AUDIO SESSION

Besides dealing with the audio stream, it’s important to be aware of the Audio Session API. Audio sessions
are the iPhone’s system for specifying how your application works with regard to the audio hardware and
other audio applications. For example, the Audio Session API allows you to specify whether your
application should continue playing music when the user turns off the iPhone’s screen. It also lets you
control whether your application will interrupt audio being played by the iPod application and lets your app
respond to audio interruptions such as incoming phone calls.

In this example, I'm leaving these details at the system defaults. It’s still necessary to initialize the audio
session though, or the app won’t get access to the audio hardware. You initialize the session only once—
there’s no corresponding deinitialize method—so | decided to do this in the streaming classes’
+initialize method (Listing 3-22). This method will be automatically called by the system as soon as
the class is loaded by the application.

Listing 3-22. Initializing the Audio Session

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

+ (void)initialize

AudioSessionlnitialize(NULL, NULL, NULL, NULL);
}

Passing NULL for all arguments gets access to the audio hardware without specifying any custom
configuration.

Putting It All into an App

Remember Alice? This is a song about Alice.
Arlo Guthrie, “Alice’s Restaurant”

| didn’t finish the SeeqPod application immediately. Soon my membership in the iPhone

developer program came through, and | got busier than | could remember being working
on iPhone contracts. The SeeqPod idea got moved to the back burner. And then, when |
needed the back burner, the idea got put in the fridge to finish later. Time passed, as it is
wont to do.

When | was able to return to the project, | made an awful discovery: SeeqPod had shut
down its audio search system. Its web site was not clear about when or if it might return.

I like learning new stuff and writing interesting new code that stretches my abilities. But
I’m also practical, and | hate doing all that and having no use for the result.

Fortunately, audio streaming code is useful enough that it’s not a solution that has to
look hard for a problem to solve. While chatting in IRC one day, someone mentioned the
idea of writing a custom iPhone app for a radio station. And the light bulb went on again.
I’'ve been a member of KRCC, a local public radio station, for something like 17 years. Its
broadcasts were available online. And | had met Delaney Utterback, the station
manager, and was pretty sure he’d like the idea. | contacted him, he was all for it, so |
went to work applying my streaming code to their broadcasts.

One More Thing

For some reason, it didn’t work. I’d start downloading data and passing it to the parser,
but the parser never indicated that it was ready to produce packets. In fact, it never
even notified me that it had worked out the audio format of the stream.

The reason turned out to be a simple but significant difference between my initial goal
and my current one. SeeqPod had provided URLs to complete audio files. But KRCC’s
broadcast stream—as with most live streams—was a continuous sequence of audio
data. The key difference is that an audio file contains a header segment that includes
information about the audio encoding, while a continuous stream doesn’t have this

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

information. Maybe it was provided once, when the stream started, but it wasn’t
available to me. Figure 3-4 illustrates the difference.

Audio File

Header Audio data Audio data Audio data Audio data annnn

Continuous Audio Stream

annnn Audio data Audio data Audio data Audio data Audio data annnn

Figure 3-4. Audio file layout compared with audio stream data layout

It turns out that this is one of the cases where you need to give audio file stream
services a hint about the file type. KRCC’s stream is basically a never-ending MP3 file,
but without the header information, Core Audio couldn’t figure that out. Previously |
didn’t bother with this, because it wasn’t necessary when dealing with complete files.

To get audio playing, | gave my audio streaming class a new instance variable that could
be used to provide a hint about the audio format. This changed the class interface, as
shown in Listing 3-23.

Listing 3-23. Modified Class Interface with Hinting Property

@interface SimpleStreamer : NSObject {
NSURL *url;
NSURLConnection *networkConnection;

AudioFileStreamID myAudioStream;
AudioQueueRef playQueue;

AudioFileTypelD fileTypeHint;

BOOL queueStarted;
BOOL queueRunning;

PlayQueueData_t *playQueueDataRecs;
unsigned int currentBufferIndex;

}

@property (readonly) NSURL *url;
@property (readwrite) AudioQueueRef playQueue;

@property (readwrite) AudioFileTypelD fileTypeHint;

@property (readwrite) BOOL queueRunning;

@property (readwrite) BOOL queueStarted;

@property (readwrite) unsigned int currentBufferIndex;
@property (readwrite) PlayQueueData_t *playQueueDataRecs;

Instance variables have a default value of 0, so if | didn’t provide a hint, the code would
fall back on the previous behavior of trying to work out the format from the available

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

data. | made one change to the play method to specify the hint when creating the
stream, as shown in Listing 36-24.

Listing 3-24. Modified p1ay Method with Hinting
- (void)play
{

// Create audio stream using callback functions.

// Third argument is an optional hint to file type.
AudioFileStreamOpen(self, propertylListenerCallback,
audioDataCallback,

self.fileTypeHint,
8myAudioStream);

// Create the network connection

NSURLRequest *networkRequest = [NSURLRequest requestWithURL:self.url];

networkConnection = [[NSURLConnection alloc] initWithRequest:networkRequest
delegate:self];

To provide a hint, I'd set the fileTypeHint property after creating the streaming object
but before starting playback, as Listing 3-25 shows.

Listing 3-25. Providing a Hint for Audio Streaming
- (IBAction)play:(id)sender

streamer = [[SimpleStreamer alloc] initWithURL:url];
streamer.fileTypeHint = kAudioFileMP3Type;

[streamer play];
}

That was all it took. With this simple change | was able to play KRCC'’s Internet stream
(and incidentally any stream the iPhone is capable of playing).

In some cases hinting may not be sufficient, though. I've seen some streams where,
despite hinting, audio file stream services misidentified the stream format. Since it was
trying to interpret one format as some other format, it was unable to play the audio.
There are a couple of approaches to this, both of which involve modifying the property
listener function in Listing 3-17.

The first approach would be to specify the format yourself. The code in Listing 3-17
makes use of the hint but works out the details for itself. Although | hint that the stream
is MP3, | let Core Audio work out the sample rate, whether it’s stereo or mono, and so
on. But | don’t have to do that. | could fill in these details myself, by setting up the values
in an AudioStreamBasicDescription on my own instead of by looking them up using the
kAudioFileStreamProperty DataFormat key. If | know what stream I’m working with, |
would presumably know all the necessary encoding details.

But if you’ve been following along, you know that | probably don’t want to do that. I'm
not an expert at audio encoding, and there’s a reasonable chance I'd get something
wrong. In addition, it’s a possibility that the audio stream I’m playing might change at
some point, say to a higher bit rate. If I've specified one rate and the stream changes to
another one, my app will unexpectedly break.

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

An alternative approach, possibly cruder but more reliable in the field, is to look up the
format as you’ve been doing and then compare that with the hint you provided. The
AudioStreamBasicDescription you look up in Listing 3-17 is a C struct, and one of its
fields is called mFormatID. That tells you what format Core Audio thinks the stream is. By
comparing that to your hint, you can work out whether Core Audio has at least found the
correct encoding. If it did, great, and if it didn’t, close the network connection and start
over. Core Audio gets the encoding right most of the time, so although restarting like
this is not elegant, it’s effective.

Launch It!

SeeqgPod had made me somewhat wary, but | was pretty sure KRCC would be around
for a while. It had survived several decades already. So, now | had an app | could
actually launch. And so | did (Figure 3-5). And the people at the radio station loved it. On
the day the app made it into Apple’s store | dropped by the station, and they put me on
the air to talk about it. Cool!

Public Radio
for Southern
Colorado
and Northern
New Mexico
kroe « kecc » kees
Radio Colorado
Caliege

Il KRCC HD1

P KRCC HD2

P KRCC HD3

{ == - 1)

0) T

Listen

Figure 3-5. KRCC application showing available audio streams

iPhone 3.0 and Further Work

| originally did the work I’ve described with various versions of iPhone OS 2.1. Since
then, iPhone OS 3.0 has been released. All of the code I've described works just as well
with 3.0 as with earlier versions. The only difference that may be of interest is the
addition of the AVAudioSession class.

AVAudioSession provides an Objective-C API for dealing with audio sessions. In Listing
3-22 you initialized the audio session for the app but left all session options at their

CHAPTER 3: Audio Streaming: An Exploration into Core Audio

default values. AVAudioSession implicitly initializes the audio session the first time it’s
asked to do anything, so Listing 3-22 could be modified to just ask for the system’s
shared AVAudioSession object, as in Listing 3-26.

Listing 3-26. Initializing the Audio Session via the shared AVAudioSession Object

+ (void)initialize

AudioSessionInitialize(NULL, NULL, NULL, NULL);

Where AVAudioSession may come in handy is if you want to customize the behavior of
the audio session and if you prefer to work in Objective-C rather than C. As | mentioned
previously, the audio session lets you customize how your app’s audio playback
interacts with other apps and with the hardware. AVAudioSession doesn’t add any new
capabilities in this area, but it’ll let you use Objective-C instead of C for these aspects of

your app.

Summary

Audio playback can be easy or hard, depending on your needs. | found that | needed the
hard way, but | figured it out, and | hope this helps you do the same.

In many cases, it’s possible to use one of the easier approaches, and in those cases
there’s not much reason to bother with the Core Audio approach I've described. The
streaming code will work just as well for locally stored files (via file:// URLs) as it does
for remote files. But AVAudioPlayer is an excellent and simpler choice for playing audio
files included in your application. If that’s what you’re doing, then there’s no reason to
complicate matters.

The Core Audio approach is still best if you’re playing music downloaded from the
Internet—whether it’s a live broadcast or an audio file available at a web site. For the live
broadcast it’s the only option, and for the static file this approach makes it possible to
begin playback without waiting while you download the entire file first.

| also talked about the AVAudioSession class in light of the iPhone OS 3.0 release.

Good luck with your audio projects. And don’t be afraid of C!

Streaming Colour Studios

Toronto, Ontario, Canada

Lead User Interface Programmer at Electronic Arts
Canada on five PSP games. Gameplay Programmer at Electronic Arts Canada on
one PSP game. Lead User Interface Programmer at Propaganda Games on one
Xbox 360 and PS3 game. Senior Gameplay Programmer at Propaganda Games
partially on one Xbox 360 and PS3 game.

Creator of Dapple (Games: Puzzle, Family)

Dapple is entirely OpenGL-ES. Dapple is approximately 80% C++ and 20%
Objective C.

Chapter Title: “You Go Squish, Now! Debugging on the
iPhone”

Custom Debugging Macros
Using Crash Logs
Reproducing Rare Crashes
Memory Stomps
malloc_error_break
NSZombieEnabled

Enable Guard Malloc
Watching Variables

Link Map Files

Conclusions

iPhone Crash Logs
XCode Debugger

iPhone Simulator & Device

Chapter

You Go Squish Now!’
Debugging on the iPhone

It all started with an idea. You downloaded the SDK, you taught yourself Objective-C,
you built your app, and now you’ve found a horrible crash. Debugging tricky crashes can
be challenging and can try your patience. However, it can also be a lot of fun when
approached in the right way.

In this chapter, I'll walk you through some advanced debugging concepts and
techniques for the iPhone.

Before coming to the iPhone, | worked for about five years in the console games
industry building PlayStation Portable, Xbox 360, and PlayStation 3 games. While
working in that industry, | spent much of my time as a lead user interface programmer.
User interface programming is an interesting job because it touches almost all aspects
of the game in some way. This meant | got to do a lot of debugging in a lot of different
areas of the game. This proved to be an invaluable skill as | progressed in my career. In
addition to my role as a Ul programmer, | also was a senior game-play programmer
dealing with physics and math systems, as well as low-level optimizations and
debugging on PlayStation 3’s multiprocessor system.

Last year | set out on my own and formed my own company, Streaming Colour Studios.
We released our first game, Dapple, in February 2009 for the iPhone. Dapple is a color-
matching game where players have to mix paint colors to make matches (see Figure 4-
1). It’s a challenging twist on the match-three genre of game.

' “You go squish now!” is a line from The Simpsons episode “Treehouse of Horror V”
directed by Jim Reardon and written by Greg Daniels, Dan McGrath, David Cohen, and
Bob Kushell. Original airdate in North America: October 30, 1994.

101

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

Figure 4-1. Dapple for iPhone and iPod touch

| started working with the iPhone because | saw it as an opportunity to develop the
kinds of games that | wanted to make, with little overhead, and publish them on a
powerful gaming machine. When | started working with the iPhone, | quickly realized that
much of what | had learned about debugging on large console games could be applied
to iPhone development. Nasty crash bugs caused by memory stomps are just as likely
to happen in an iPhone app as in any major console title. In discovering this, the major
challenge was learning how to apply the tricks and techniques | had previously learned
to Xcode and the iPhone hardware.

I’'m pleased to be able to share some of the knowledge | have picked up over the years.
My first tip is perhaps the most important: remember that debugging can be fun! | know,
I must be crazy to say something like that, but it’s true. Entering into debugging with the
right frame of mind can help you find your bugs much more quickly and painlessly.
Instead of looking at debugging as a chore, imagine yourself as a code detective, trying
to get to the bottom of the Mysterious Case of the Random Crash!

Got your pipe and Sherlock Holmes hat on? Good. Let’s dig in!

Assumed Knowledge

Before | go any further, | want to go over some of the things I’'m going to assume you
already understand. These are things I’'m not going to cover in this chapter, but they are
all concepts and tools that you should already be using to debug your apps. If you are
unsure of how to do any of these things, I'll wait right here while you read up on them:

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

B You know how to run your app in the debugger, both in the simulator
and on your iPhone or iPod touch device.

B You understand how to read a call stack and know what it’s telling
you.

B You know how to set a breakpoint on a line of code in Xcode.

B You know how to examine the value in a variable in the debugger.

Though not required for this chapter, two more techniques are extremely helpful to
understand:

B You know where to find the Expressions window and how to use it.

B You know where to find the Memory Browser and how to use it.

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

00060 Expressions
Expression Value Summary
¥ Expressions

{(this)->miGetStomped) 0

¥ *(MemoryBugsViewController*)(0xb4418fb0)
» UlViewController
¥ protected
» mTestCpp

Address:| 0x00524180 01O Bytes: 512 =) Word Size:(1 3] Col (16 %)
Memory ™ Auto Update

0x00524180 00 00 00 00 6£ 47 14 cO 05 00 00 00 £0 54 52 00 . Hr

0x00524190 20 4b 52 00 00 00 00 00 cO 5a 52 00 c0 51 52 00 .

0x00524120 00 00 00 00 60 82 52 00 90 bf 50 00 00 00 00 00

0x005241b0 00 00 00 00 00 30 01 01 54 04 00 00 00 00 00 00

0x005241c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 05 00

0x00524140 eb 06 00 00 26 00 00 00 20 df 33 93 5¢c 31 ec 96

0x005241e0 B0 6e el 96 c0 d8 34 93 Oc 48 ec 96 50 e6 d0 96

0x005241£0 £4 ec 3c 93 £8 47 ec 96 c0 7d el 96 00 66 36 93

0x00524200 a0 8e ec 96 80 88 d9 96 18 £7 36 93 38 4f ef 96

0x00524210 00 80 el 96 5¢c d6 38 93 ec 47 ec 96 10 83 el 96

0x00524220 £8 df 3d 93 10 35 ec 96 60 6c el 96 £0 4d 37 93

0x00524230 10 35 ec 96 40 6e el 96 a4 40 3b 93 10 35 ec 96

0x00524240 £0 bd db 96 d0 73 3e 93 70 30 ec 96 60 b6 ce 96

0x00524250 ~ ec 35 37 93 4c 8e ec 96 20 59 d0 96 30 ed 3c 93 . .

0x00524260 d2 eb ee 96 40 54 d0 96 d4 6d 3e 93 dc eb ee 96

0x00524270 a0 d3 do 96 08 35 38 93 e6 eb ece 96 30 84 cl 96

0x00524280 0c d7 3d 93 Oc 48 ec 96 £0 d0 ce 96 £8 90 3£ 93

0x00524290 Oc 48 ec 96 20 c0 ce 96 40 5e 3a 93 30 34 ec 96

0x005242a0 b0 cd ce 96 64 ae 3b 93 70 30 ec 96 a0 c0 ce 96

0x005242b0 b0 0d 3a 93 70 30 ec 96 60 a3 ce 96 98 c3 38 93

0x005242¢c0 30 34 ec 96 80 e3 ce 96 bc d3 34 93 04 41 ec 96 "

0x00524240 30 ba ce 96 34 c0 3b 93 04 41 ec 96 50 5e d0 96

0x005242e0 a8 9a 3d 93 7c 30 ec 96 50 01 d3 96 64 fe 34 93

0x005242£0 d0 30 ec 96 c0 6d el 96 e0 26 39 93 10 35 ec 96

0x00524300 b0 6d el 96 20 b3 34 93 98 68 ec 96 e¢0 b3 ce 96 v

0x00524310 00 33 35 93 a6 5c ed 96 b0 b6 d5 96 90 ac 3e 93 -
v

0x00524320 10 35 ec 96 dO 6¢c el 96 c8 £4 3a 93 d0 30 ec 96

7

Figure 4-2. An example of the Expressions window and Memory Browser when stopped at a breakpoint

In essence, I’'m assuming that you already know how to track down and fix simple bugs
and that you already understand the basics of the debugger. I’'m assuming that what
you’re looking for now is information on how to track down those really nasty bugs—the
ones that keep you up at night. If you’re clear on all this, then let’s get started!

Objective-C vs. C and C++

iPhone development is very exciting. One of the reasons that | was so excited by my
early forays into iPhone development was the ability to mix Objective-C and C/C++. This
allows you, as a developer, to use whatever language you feel most comfortable with.

For example, my game, Dapple, uses Objective-C for only the most top-level classes
that operate at the view and view controller levels. Everything at a lower level is done in
C++. | chose this approach because | knew C++ much better than Objective-C when |

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

started. It also allowed me to more closely manage my memory usage. However, there
are a few issues to consider when looking at your language choices:

B Objective-C provides a lot of memory protection for you. Built-in
classes such as NSArray and NSMutableArray make sure that you don’t
overrun buffers. However, these classes come at a cost of a slight
increase in memory and potential performance overhead when using
them.

B C++ allows you to manage memory more directly, but it is much easier
to introduce memory bugs with it.

Some of the topics I'll cover in this chapter will apply only to Objective-C code or only to
C/C++ code, because there are certain techniques that work with only one or the other.
However, much of what I'll be discussing applies to either language. | will point out
where something applies to only one language.

While You’re Writing That Code

| first want to cover the tasks that you can do while you’re writing your code. It’s a good
idea to build up a library of debugging code that is at your disposal. You’ll want to do
this early on so that you can use this code throughout development. Doing so will help
you catch bugs sooner and make tracking them down a lot easier.

Custom Asserts

Asserts are checks that you can put in your app that cause the application to halt if it
fails a condition. C++ has a built-in call that you can use, as does Objective-C. For
example, in C++, the following assert checks to see whether the condition is true:

assert(myVariable == someOtherVariable);

If it is true, then everything continues. If it’s false, then the program will halt in the
debugger (usually by forcing a crash).

NOTE: Objective-C provides two assert methods: NSAssert and NSCAssert. NSAssert
should be used only in Objective-C methods, while NSCAssexrt can be used only in C methods.
Both can be removed from code by defining NS_BLOCK_ASSERTIONS as a preprocessor
macro.

The problem with using the built-in C++ assert call is that ideally you want your asserts
to be active only while you’re debugging. You want a way to disable all of your asserts
when you go to ship your app. Asserts are invaluable in helping you track down
variables that are out of bounds and other common problems, but in your shipped
product, they’re just taking up valuable CPU cycles, because your app should be bug-
free by that point. Right?

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

The best way to deal with this is to create custom assert code. In this section, you’ll
create a custom assert macro that can be disabled via a build-time preprocessor define.

First, create a header file that’s going to hold the macros you’re about to write. I’'m going
to call mine MyDebug.h so that | know these are my debugging functions, but you can
call it whatever you’d like. Then you can include this header wherever you need it.

Add the following code to the header file, and then I’ll talk about what it’s doing:

#if defined(APP_STORE_FINAL)

#define MY_ASSERT(STATEMENT) do { (void)sizeof(STATEMENT); } while(0)
#else

#define MY_ASSERT(STATEMENT) do { assert(STATEMENT); } while(0)
#endif

Look at the first line of code:
#if defined(APP_STORE_FINAL)

This line is checking to see whether something called APP_STORE_FINAL is defined. The
reason you don’t see this defined anywhere in the code is that you’ll add this as a
compile-time define, but only to your build that’s ready for distribution or submission to
the App Store. If you don’t already have a build target for distribution/submission, create
that now. Open the build target properties for your distribution build, and find the
Preprocessor Macros Not Used in Precompiled Headers entry. Enter
APP_STORE_FINAL into the field (see Figure 4-3).

Set Output File Subtype to ALL
Short Enumeration Constants
Use Native Precompilation
Use One Byte 'bool’
Use Standard System Header Directory Searching
YGCC 4.0 - Preprocessing
Preprocessor Macros
APP_STORE_FINAL|
Y GCC 4.0 - Warnings
Check Switch Statements
Effective C++ Violations
Four Character Literals
Hidden Local Variables

ROOCOO

00oo

Figure 4-3. Setting APP_STORE_FINAL in the built target settings

The next line of code defines a macro that will be used when APP_STORE_FINAL is
defined. You might be asking, “Hey, why not just define it to be nothing at all?” Good
question! The problem with that approach is that you might have a variable used in your
assert that is used only in the assert. If you’re compiling with Treat Warnings as Errors,
you could get a whole bunch of errors when you turn off your custom asserts. The
following line of code generates a very small amount of assembly while still avoiding
those build warnings:

#define MY_ASSERT(STATEMENT) do { (void)sizeof(STATEMENT); } while(0)

The do..while loop that exists around the macro body is there to avoid nasty scoping
errors that can come up if you were to use your custom assert inside an if statement
without braces, for example.

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

Finally, you can clearly see that when you’re building your debug build, your custom
assert just uses the standard assert function (with the do..while wrapped around it for
safekeeping):

#define MY_ASSERT(STATEMENT) do { assert(STATEMENT); } while(0)

NOTE: This code is based on code from Charles Nicholson’s blog. You can read the full article
(with even more suggestions for custom asserts) at
http://cnicholson.net/2009/02/stupid-c-tricks-adventures-in-assert/.

Fantastic! Now you have a custom assert that can be compiled out in your final build!
Very handy! You can use it like this:

MY_ASSERT(result == true &% "Result returned false, but we need it to be true!");

In this example, if the variable result is ever false, then the assert will fail, and program
execution will halt in the debugger. The text string is just there so that you can
remember why this particular assert is there.

The other advantage of writing your own custom assert code is that you can perform
other actions in debug builds when an assert fires. Do you always want to print out the
values in your game’s state machine prior to an assert firing? You can do that and know
that it will be compiled out before releasing.

Custom Logging

You’re now going to use that handy APP_STORE_FINAL define you have set up to create a
custom logging function that can be compiled out. It’s basically the same as the earlier
custom assert, so I'll just show the code here so you can put it into your debugging
header file:
#if defined(APP_STORE_FINAL)

#define MY_LOG(format, ...)
#else

#define MY_LOG(format, ...) CFShow([NSString stringWithFormat:[NSString \

stringWithUTF8String:format], ## _ VA ARGS_]);
#endif

NOTE The _ VA ARGS__identifier was introduced in the C99 standard. As such, all versions
of Xcode used to build iPhone apps should support it. However, if you're attempting to use this
with much older compilers for other projects, it may fail to compile.

There are a couple of things to note here. First, I’ve chosen to use CFShow instead of
NSLog here because CFShow doesn’t print out a lot of extra date and time information to
the console, allowing for faster output of lots of debug text. You can change it to NSLog if
you prefer to have the date and time print with each message.

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

Second, you can see that I’'m assuming that MY_LOG will be passed a cstring as a
parameter. | chose this because | have a lot of cstrings in my C++ code. You can
replace it with the following code, if you want to always pass it an NSString instead:

#tdefine MY_LOG(format, ...) CFShow([NSString stringWithFormat: format, \
VA ARGS_]);

You’ll notice that MY_LOG compiles to nothing when APP_STORE_FINAL is defined. This is
done because it’s unlikely that you would declare a variable just for the sake of logging,
so the odds of this generating a warning are slim. If it does cause a problem, you can
use a technique similar to the assert macro to fix the errors.

Using #define

The use of #define in this section isn’t code that will go into your debugging header, but
rather it’s something to keep in mind. If you end up writing big blocks of debugging
code (for example, when logging complex data structures to track down a problem),
don’t just delete that code when you’re done! If you need it again in the future, you’ll
regret having deleted it. Instead, try using #define to block it out.

I make extensive use of this in my code for logging complex data structures or debug
rendering. It’s quite handy, especially if you need to turn on debugging code in several
places in your code at once. If you have a class where you have debug code written in
several places, create a #define at the top of your class. Here’s an example:

#define ENABLE_SOME_NAME DEBUG 1
Then, wherever you need to run debug code on your data structure, wrap it with this:

#if (ENABLE_SOME_NAME_DEBUG)
// Do my debug code here
#endif

Now you can turn that debugging code off and on just by changing
ENABLE_DATA_STRUCTURE_DEBUG_LOGS to O or 1, respectively. You can set up multiple
kinds of debugging code and wrap sections with differently named #defines, allowing
you to turn on/off specific debug functionality as you go. For example, in my game
Dapple, | have the following at the top of my game logic class (the one that searches the
board for matches):

#define ENABLE_ALL_FUNCTION_TRACE 0

#define ENABLE_SEARCH_RESULTS_VISUAL_DEBUG 0
#define ENABLE_ENTIRE_SEARCH_PATH_VISUAL_DEBUG 0
#define ENABLE_CELL_POSITION VISUAL_DEBUG 0
#idefine ENABLE_TEST BOARD_STARTUP 0

#define ENABLE_END_GAME_IMMEDIATELY O

#define ENABLE_AI_DECISION_OUTPUT o

Each of those defines allows me to turn on specific debugging code without having to
remember the four places in the code where | need to enable the debugging
functionality. Hooray! For example, turning on ENABLE_CELL_POSITION VISUAL DEBUG
allows me to output the positions of all my sprites every frame for animation debugging.

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

Figure 4-4 shows the output. Note that I’'m using the SC_LOG macro that was mentioned
earlier for the output.

board. mm

Simulator - 2.2.1 | Debug 2
Overview
: L 0
4 » Jboardmm:27:44 : <Noselected symbol> 3
24 | #define ENABLE_ALL_FUNCTION_TRACE @
23 | #define ENABLE_SEARCH_RESULTS_VISUAL_DEBUG ©
% | #define ENABLE_ENTIRE_SEARCH_PATH_VISUAL_DEBUG
27 | #define ENABLE_CELL_POSITION_VISUAL_DEBUG 1
28 | #define ENABLE_TEST_BOARD_STARTUP @
25 | #define ENABLE_END_GAME_IMMEDIATELY @
30 | #define ENABLE_AI_DECISION_OUTPUT ©

[Paint_iPhone -

| Simulator - 2.2.1 | Debug -

|

v r—v——erws vvevrvrwerreveverr
(6, 7) = (273.000000, 234.000000)
(7, 0) = (0.000000, 273.000000)
(7, 1) = (39.000000, 273.000000)
(7, 2) = (78.000000, 273.000000)
(7, 3) = (117.000000, 273.000000)
(7, 4) = (156.000000, 273.000000)
(7, 5) = (195.000000, 273.000000)
(7, 6) = (234.000000, 273.000000)
(7, 7) = (273.000000, 273.000000)

Current Positions

(0, 0) = (0.000000, 0.000000)
(0, 1) = (39.000000, 0.000000)
(0, 2) = (78.000000, 0.000000)
(0, 3) = (117.000000, 0.000000)
(0, 4) = (156.000000, 0.000000)
(0, 5) = (195.000000, 0.000000)
(0, 6) = (234.000000, 0.000000)
(0, 7) = (273.000000, 0.000000)
(1, 0) = (0.000000, 39.000000)
(1, 1) = (39.000000, 39.000000)
(1, 2) = (78.000000, 39.000000)
(1, 3) = (117.000000, 39.000000)
(1, 4) = (156.000000, 39.000000)
(1, 5) = (195.000000, 39.000000)
(1, 6) = (234.000000, 39.000000)
(1, 7) = (273.000000, 39.000000)
(2, 0) = (0.000000, 78.000000)
(2, 1) = (39.000000, 78.000000)
GDB: Running

]

Figure 4-4. Dapple running in the simulator with one of the debug #define values turned on

Crash!

No matter how hard you might try to write bug-free code, sooner or later you’ll run into
problems. Whether you experience a problem while running your app locally or one of
your beta testers has a crash, you need to know how to track it down and fix it.

Getting a Crash Log from Your Testers

Chances are that one of your testers will find a crash you’ve never seen before. After all,
that’s why you have other people testing your app in the first place. The first thing you’ll
want to do is get them to send you a crash log from their device. Ask them to plug their
iPhone or iPod touch into their computer; this will transfer the crash log files to their
computer. Where those files are depends on their operating system (according to the
Apple Developer Connection):

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

B Mac OS X: ~/Library/Logs/CrashReporter/MobileDevice/
<Device_Name>

B Windows XP: C:\Documents and Settings\<Username>\Application
Data\Apple computer\Logs\CrashReporter\<Device Name>

B Windows Vista: C:\Users\<Username>\AppData\Roaming\Apple
computer\Logs\CrashReporter\MobileDevice\<Device Name>

Have them find the crash log for your app (the one that ends in .crash) with a date and
time that closely matches the time of the crash (if they can remember). If they can’t
remember, you can always have them send you all the crash logs with your app’s name.

TIP: When you have a tester send you a crash log, make sure they let you know what build
number they were running. Chances are you have sent out several builds, and not every tester
is going to update to the latest build. Knowing which build crashed can save you a lot of
headache.

You Have Been Saving Your dSYM Files, Right?

When you’re running your app in the debugger, the reason you get nice text names for
the functions in your call stack (instead of hex memory addresses) is that you have
debug symbols included in the app. The iPhone does this in a great way by building
your debug symbols into a file with a .dSYM extension every time you compile. You’ll find
it in the same directory that your .app file was generated when you built.

TIP: Every time you create a build to send to testers, archive the .dSYM file along with
the app!

That tip is so important I’'m going to say it again. Every time you create a build to send to
testers, archive the .dSYM file along with the app!

Why is this so important? It’s important because the dSYM file is what will allow you to
get a readable call stack from a crash log instead of just a bunch of hex memory
addresses. Chances are, when a user gets a crash, the crash log they send you will
contain just the memory addresses of the functions in the call stack. However, if you
have the dSYM file that matches the build they were running, you can “symbolicate” the
crash and get a human-readable call stack out of it!

Symbolicating a Crash Log

Lucky, there exists a script that will help you to symbolicate a crash! It’s called
symbolicatecrash. You can find it here:

/Developer/Platforms/iPhone0S.platform/Developer/Library/Xcode/Plug-ins/ ‘=

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

iPhoneRemoteDevice.xcodeplugin/Contents/Resources/symbolicatecrash

NOTE: In iPhone 0S 3.0, symbolicatecrash has been moved to a new location:
/Developer/Platforms/iPhone0S.platform/Developer/Library/PrivateFramew
orks/DTDeviceKit.framework/Versions/A/Resources/.

However, you might want to copy it into a location that’s part of your path so that you
can just execute it by typing symbolicatecrash into a terminal instead of the whole
path.

CAUTION: There are known bugs in symbolicatecrash for iPhone OS 2.x. Bryan Henry has
posted a fixed version of the script at http://openradar.appspot.com/6438643.

You run symbolicatecrash from the command line. Open a terminal window, and pass it
a crash file as a parameter. If you need to symbolicate it against a specific dSYM file,
you can pass that in as an optional parameter:

> symbolicatecrash MyApp.crash Build1234.dSYM

That should dump out a call stack that’s in a human-readable format, allowing you to
see where your app crashed. It should turn something like this:

Thread 0 Crashed:

0 OpenAlL 0x33abdbb8 0x33aac000 + 72632

1 OpenAl 0x33ab77c8 0x33aac000 + 47048
2 Dapple 0x000046ce 0x1000 + 14030

into something like this:

Thread 0 Crashed:

0 OpenAL 0x33abdbb8 OALSource::Play() + 76

1 OpenAL 0x33ab77c8 alSourcePlay + 224

2 Dapple 0x000046ce 0x1000 + 14030 SoundEngineEffect::Start() line 1047

That top of a call stack is from the nastiest crash | encountered during the development
of Dapple. I'll talk more about this particular crash in the “ Reproducing Rare Crashes”
section.

Using atos

If you’re having problems with symbolicatecrash or if you want to go at it old-school,
you can try your hand with atos. This is the command that symbolicatecrash uses at its
heart. atos lets you find a symbol name for a given memory address.

To use atos, you need to put an app and its corresponding dSYM in the same directory.
You'll want to copy the app and dSYM file that you archived when you sent the build to
your testers into the same directory as your crash log file. Copy just the memory
addresses from the crash log into a new text file, and place that file in the same

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

directory. On a terminal, navigate to the directory where you have everything, and issue
a command like this:

atos -o MyApp.app/MyApp -arch armvé -f stackAddresses.txt

NOTE: You need to run atos on the actual app binary, so you need to pass it the path to the
binary inside the .app file. The .app file is actually a directory (in other words, a bundle) that
contains a bunch of files. The binary is found inside the bundle.

NOTE: The architecture | passed in was armvé. If you’re working with an iPhone 3GS, you
may need to use armv7.

The result should be a dump of all the function calls that happened inside your app.
atos, in this case, won’t pull up the symbols for any of the framework methods that were
called. However, it should give you enough information to move forward.

Reproducing Rare Crashes

What if the crash your testers are reporting is extremely rare and you’ve never seen it
yourself? Fixing a bug can really be done only once you know how the bug happens in
the first place. The first thing you should do is attempt to reproduce the crash.

Sometimes when you get a crash log from a tester, they will have sent you very detailed
reproduction steps to make the crash happen, and therefore you'll be able to reproduce
it easily. However, often you’ll get an email that says, “l was doing something, and it
crashed. | think it was after | hit this button.” Sometimes you might get nothing at all. If
this is the only person who has ever seen the crash and it happened only once, you
might have trouble reproducing (reproing) the bug. If you have a symbolicated crash log,
it’s the only thing you have to go on, so use it.

If you have a crash log from a rarely occurring crash, here are some things you want to
think about while you’re examining the crash log:

B Which thread is crashing
B Which app system the crash occurred in

B Race conditions

Thread

The first thing you want to do is look at which thread is crashing. This will give you
important clues about what might be causing the problem. Is it the main thread that

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

crashed? Is it the audio thread that crashed? Is it one of your other spawned threads
that crashed?

Knowing which thread died is important, not only because you’ll want to be looking at
that thread’s call stack but also because it will give you an idea of what might have gone
wrong.

System

Now that you know which thread crashed, look at the system that the crash occurred in.
Did it die in the rendering system? Audio system? Animation system? Some other
system? This will help you narrow your scope when you’re trying to reproduce the crash.

Race Conditions

Race conditions is almost a dirty word, but it needs to be mentioned. Look at all the
threads that are running, and look at their states. Are two threads in the same system at
the same time? Are two threads both trying to do something that could cause a race
condition? Always be aware of thread interactions if you have an app that’s using
multiple threads of execution.

The Scientific Method of Debugging

You’ve had a chance to examine the crash log, and you’ve thought about things. | like to
use a simplified version of the scientific method to track down these kinds of bugs. Yes,
debugging is just like high-school science class:

1. Form a hypothesis.
2. Create a test for your hypothesis.
3. Prove or disprove your hypothesis.

By following these three steps, your goal is to find a way to increase the probability of
the crash and therefore determine the cause more quickly.

Forming a Hypothesis

The first step is to form a hypothesis based on all the available data. Based on the crash
log information and what your tester has told you, come up with an idea of what might
be going wrong. It should be something specific.

To help illustrate this, I'm going to use an example that occurred late in the development
of Dapple. Just after the alpha phase, | received a crash log from one of my testers. He
said that he was playing the game normally, he scored a big combo, and the game
crashed. He was nice enough to provide me with a crash log. The main thread had
crashed trying to play a sound effect. The top of the call stack looked like this:

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

Exception Type: EXC_BAD_ACCESS (SIGSEGV)
Exception Codes: KERN_INVALID_ADDRESS at 0xc0000003
Crashed Thread: o0

Thread 0 Crashed:

0 OpenAlL 0x33abdbb8 OALSource::Play() + 76

1 OpenAL 0x33ab77c8 alSourcePlay + 224

2 Dapple 0x000046ce 0x1000 + 14030 SoundEngineEffect::Start() line 1047

What was curious to me was that the crash happened inside OpenAL and not inside my
own sound code. Given that this happened after a large combo, my hypothesis was this:
“The crash happened because OpenAL was given too many sound effects to play at
once.”

Creating a Test for Your Hypothesis

Once you have a hypothesis, you need to design a test for it. If you know the repro steps
for the crash, and you can get it to happen, great. However, with rare crashes, only one
person might have seen it happen once. Or perhaps it has happened only a handful of
times. In these cases, | often find it helpful to create specific tests to hammer only the
hypothesis.

Returning to the Dapple example, | had suspected that the crash was being caused by
too many sound effects being played at the same time. | had 20 people testing the
game, and they had been playing it for weeks. The crash had happened twice. | knew
that | wouldn’t be able to rely on being lucky enough to happen to catch it in the
debugger. So, | created some test code. The pseudo-code for the test was this:

Loop 1000 times

{
PlaySound(1)
PlaySound(2)
PlaySound(3)
PlaySound(4)
PlaySound(5)
}

| made sure that the loop was called every single frame of execution. The result would
be 1,000 PlaySound calls being made every frame for each of 5 different sound effects,
totaling 5,000 sound calls per frame.

TIP: This is one of those places where those debug #defines | mentioned earlier come in
handy. In this case, | wrapped the code with an #if (ENABLE_AUDIO_CRASH_TEST) so that |
could enable the test any time | wanted. This also allowed me to disable it for shipping without
losing the test code.

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

Proving or Disproving Your Hypothesis

Once you have written your test code, let it run! If you think the crash is timing or
memory related, you may need to let it run a while. If your test code reproduces the
crash, then great! You now have a way to repro the crash quickly, which also means that
you have a way to test any potential fix you put into your code.

| built my test code and let it run. After two minutes, the program crashed with the same
crash log my tester had sent me! Success! | now had a way to reproduce the bug, and it
seemed to prove my hypothesis. | put some code into place to stop the audio system
from playing the same sound more than once per frame. When | reran the test with the
new fix in place, I let it run for 30 minutes without a crash. | called it fixed.

Increasing the Probability of the Crash

The important lesson here is that, in these rare crash cases, if you can increase the
probability of the bug happening in your test case, you can more quickly determine the
cause and more quickly test a solution.

It is possible that with a rare crash like this you may never feel completely confident that
the bug has been fixed. The best you can do is prove to yourself, if your test case is
sufficiently rigorous, that you have fixed the bug with a high enough probability.

So, You Have a Call Stack

So, you’ve symbolicated the crash file your tester sent you, or you managed to catch the
crash in the debugger. You have a handy call stack that shows you where the app
crashed. Great! You've looked at all the obvious answers, but none of them yields any
results. Now what?

What I’m going to do now is walk you through several techniques for debugging some of
the nastier, more obscure memory bugs you might encounter. These kinds of bugs are
the ones that | find the most challenging, so it’s good to have as many tools as possible
at your disposal for recognizing them and then tracking them down.

To start, you’ll write some basic code that I’ll have you add to as we go. Each time you
add some code, it will cause a very specific kind of bug, and I’ll show you a new
technique for finding the bug.

Starting Code

In Xcode, create a new iPhone view-based project, and call it MemoryBugs. First, add
a new NSObject class, and call it TestClass (have it create the source and header files
for you).

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

TestClass.h

#import <Foundation/Foundation.h>
@interface TestClass : NSObject {
NSString* myString;
@property (nonatomic, retain) NSString* myString;
- (void)doNothing;
@end

TestClass.m

#import "TestClass.h"
@implementation TestClass

@synthesize myString;
- (void)doNothing

// Do nothing

- (void)dealloc

[myString release];
[super dealloc];

@end

The TestClass you just created is just a simple class I’ll use to demonstrate some
memory problems you can run into with an Objective-C class.

Now create a C++ class. The easiest way to do this is add a new file based on NSObject.
When asked for the class name, enter TestCPPClass.mm (note the mm extension) and
have it generate the corresponding header. Replace the entire contents of the generated
files (removing all the Objective-C that Xcode generates automatically for you) with the
following code.

TestCPPClass.h
class TestCPPClass
{
public:
// Constructor
TestCPPClass();

// Destructor
~TestCPPClass();

void DoSomething();

void ForceBufferOverrun();
private:

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

int mSomeNum;

int mOverrunMe[16];

int mIGetStomped;
b

TestCPPClass .mm

#import "TestCPPClass.h"

TestCPPClass: :TestCPPClass()

: mSomeNum(0)
mIGetStomped(0)

mIGetStomped = -1;

s
{
}
TestCPPClass: :~TestCPPClass()
}

void TestCPPClass: :DoSomething()

++mSomeNum;

void TestCPPClass::ForceBufferOverrun()

// Write one too many ints into the array
for (int i = 0; 1 < 17; i++)

mOverrunMe[i] = i;

// The loop above will have written the value "16" into mIGetStomped,
// since it lies directly after the array in memory.
NSLog(@"mIGetStomped = %d", mIGetStomped);

}

This class will be used to demonstrate how to track some bugs you can run into in C++
code.

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

Find your MemoryBugsViewController class, and add a private member variable for the
C++ class you just created in the header.

MemoryBugsViewController.h

@interface MemoryTestViewController : UIViewController {
struct TestCPPClass* mTestCpp;

Note the use of the keyword struct. This is your C++ class. To use it within an
Objective-C class, it needs to be declared with the struct keyword. If you leave the
struct out of the declaration, the compiler will generate an error.

At the top of your MemoryBugsViewController class implementation, include the following
two classes.

MemozxyBugsViewController.mm

#import "MemoryBugsViewController.h"

#import "TestClass.h"
#import "TestCPPClass.h"

Finally, inside your MemoryBugsViewController class implementation, find the
viewDidLoad method, and uncomment it.

MemoxyBugsViewController.mm

// Implement viewDidlLoad to do additional setup after loading the view, typically
// from a nib.
- (void)viewDidlLoad {

[super viewDidLoad];

You will be adding code to viewDidlLoad each time you look at a new kind of bug.

What Is a Memory Stomp?

If you look at the TestCPPClass code, you’ll notice that | mention that one of the values
will get “stomped.” The term memory stomp is used when something changes a value in
memory that it wasn’t supposed to change.

Mem stomps (as I'll refer to them) occur in a lot of different ways, but in my experience
these are the three most common ways you’ll encounter a mem stomp:

B Buffer overruns
m Calling a method on an object that has been deleted

B Returning from a callback into an object that has been deleted

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

Buffer Overruns

This is one of the most common ways to cause a mem stomp in C/C++. However, you'll
recall that at the beginning of the chapter | mentioned that NSArray and NSMutableArray
make this hard to do. This is because once you’ve create an NSArray, you can’t change
the contents, and the NSArray will generate errors if you try to write out of bounds of the
array. This is extremely useful. The NSMutableArray, on the other hand, will grow in a
safe way if you try to write beyond the bounds of the existing array, making things safer
for you (at a potential performance cost).

However, in C/C++, overrunning a buffer is as simple as iterating one too many times in
a loop. For example:

int myInts[8];
for (int i = 0; 1 <= 8; i++)

myInts[i] = i;

If you’re not thinking about what you’re doing, that code might look OK at first glance,
but | just wrote nine values into an array that can hold only eight values. Whatever 4
bytes live in memory right after my array just got the integer value 8 written into them
(see Figure 4-5).

Some

my Ints [8] other int

A
/4 N\

o|1|2|... 7|38

i=0 i=1 i=2 i=7 =8 o
s

Figure 4-5. An example of a buffer overrun
Buffer overruns are tricky because oftentimes there might not be anything allocated right
after the buffer in memory and so it won’t have any noticeable effect. Or you might end

up writing a value into memory that is within an acceptable range for the variable you
just stomped.

I’ll go into more detail on tracking these bugs down later.

Calling a Deleted Method

This kind of mem stomp is less common, but I’ve seen it happen a fair bit. The usual
sequence of events is as follows:

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

1. An object is created.
2. The object is used.

3. The object is deleted.
4

Something that didn’t know the object was deleted calls a method on
that object.

Sometimes your app will crash immediately when this happens. However, sometimes
the object will have been deleted, but the memory on the heap hasn’t been allocated to
something else yet. So, the result is that the variable still points to what looks like an
object in memory, and the function call “works.” In doing so, if that method starts
changing member variables, it can now be changing memory on the heap that it doesn’t
own anymore, resulting in a stomp of other newly allocated objects.

For an example of one of these situations, see Figure 4-6.

Object of

. Type A
a=[Aalloc] '
b =a 1
[a Some Method] '
T T 2T

no retain !
: Z
D .
[A release]
[b Some Method] '
> “?\
$©

Figure 4-6. An example of calling a method on a deleted object

Like | said, this one isn’t as common, but it’s important to be aware that it can happen
so that you at least look for it once you’ve exhausted other options.

Returning to a Deleted Object

This kind of mem stomp is a lot harder to have happen in Objective-C than C/C++
because of the reference counting of pointers that takes place. Using retain and
release means that objects that are still needed don’t get deleted too soon. However,
it’s quite easy to get this to happen in C/C++ when you’re dealing with callbacks and
function pointers, and you can get it to happen in Objective-C if you’re not managing
your memory properly.

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

The most common place I've run into this kind of mem stomp is with animation systems.
The usual sequence of events is something like this:

1. Object A creates an animation instance.

2. Object A sets a callback to itself so that it is notified when the animation
completes.

Object A triggers the animation.

The animation runs.

The animation completes and calls Object A’s callback.

o o » o

Inside the callback, Object A causes an app state change that requires
that the animation gets deleted.

)

The animation object gets deleted.

8. The callback completes and returns into the animation object (which has
now been deleted).

9. The animation object does some cleanup code, which involves
modifying some member variables.

10. What it’s actually doing is changing memory that has been allocated to
something else now.

| have typically run into these kinds of problems when transitioning between front-end
menu screens and in-game state (and vice versa) in games. It’s not uncommon for an
animation to play in response to user input and at the end of the animation trigger a
state change. For a simplified example, see Figure 4-7. Of course, this kind of mem
stomp can occur in other ways, so just be aware

of it.

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

Math Animation Object
Loop System Receiving
' i Callback

animSystem — update()
7

L

callback() R

1 1 7

: : delete
animSystem
: S

Figure 4-7. An example of returning from a callback into a deleted object

Identifying a Mem Stomp

Mem stomp bugs are fairly rare, compared to other kinds of bugs, but they can be the
most difficult to track down and fix. One of the important first steps is learning how to
recognize when something might be a mem stomp. However, it is also important not to
leap to the mem stomp conclusion too soon. Look for the simple explanations first. Then
if you can’t find a simple explanation, start looking at the harder ones.

Here are a few things to look for that might indicate a mem stomp:

B The app suddenly crashes, but the crash happens at a different point
each time you run the app. (This could also indicate a timing/threading
problem or could indicate multiple different crashes.)

B The app behaves in a random, incorrect manner after consistent
events. (For example, your game starts with a random, nonzero score
every time you load into the game from the menus.)

B Unexpected values show up in variables after unrelated events. (For
example, game state data changes after you load an image into
memory.)

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

B You see the following message show up in your console: malloc: ***
error for object 0xXXXXXX: Non-aligned pointer being freed (see
the “Enable Guard Malloc” section for more information).

CAUTION: A memory stomp won’t always cause a crash. Oftentimes it will just cause strange
behavior. If the stomp writes a valid value into some other variable, the program might not
crash; it might just behave erratically.

During the development of Dapple, | ran into a strange problem: upon entering the
game, playing for a short time, and then quitting back to the main menu, sometimes one
of the menu items would show up in white, as shown in Figure 4-8. It turned out to be a
stomp being caused by a callback returning to the animation system after the state
change from in-game to the front end had occurred, after the animation system had
been deleted. The animation system was stomping over an image object in memory.

Figure 4-8. An example from Dapple of the strange behavior that can occur as a result of a memory stomp

Tools to Detect Memory Problems

Now I’ll walk you through several tools at your disposal for tracking down nasty
memory-related bugs.

malloc_error_break

malloc_error break is a symbol that you can, and should, set a breakpoint on. This
handy method will print out warning messages to your console when certain memory

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

“weirdness” occurs. The log message will advise you to set a breakpoint on the function
and rerun the app. | recommend that you always have a breakpoint set on this symbol. It
will help you track down several kinds of memory problems as soon as they occur!

TIP: Always have a breakpoint set on malloc_error_ break to catch certain memory
problems as soon as they occur.

malloc_error break will tell you when a few important things happen:
B You have double-released an Obijective-C object.
B You try to release memory that may have been stomped.

At this point, crack open MemoryBugsViewController.mm, and add the following code to
viewDidLoad:

- (void)viewDidlLoad {
[super viewDidLoad];

// Test case for double release - malloc_error_break
NSDate* date = [NSDate date];

[date release];

[date release];

}

In this example, you can clearly see that date is being released twice (three times if you

count the autorelease that would have happened at the end of the method). However, in
your own, more complicated app, the fact that something is being released twice might
not be so obvious.

Compile and run the code, and you should see that the app actually crashes. However,
there are instances where your app will double-free (that is, attempt to release or free
the same memory twice) and continue merrily on its way, even though you’ve done
something potentially dangerous. If you open the console window (Shift-Command-R by
default in Xcode), you'll see that you should have something like this printed after
running:

MemoryBugs (5745,0xa04cc720) malloc: *** error for object 0x525250: double free
*** set a breakpoint in malloc_error_break to debug

The app is telling you to set a breakpoint in malloc_error_ debug, so do that now. To set
a breakpoint on a symbol for which you don’t have source code, you’ll use the
Breakpoints window. Open the Breakpoints window (Option-Command-B by default).
Scroll to the bottom of the window, and you should see a blue box with the text
“Double-Click for Symbol” next to it, as shown in Figure 4-9.

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

(- YoXo) £ MemoryBugs - Breakpoints =]

Q. String Matching

Groups & Files Location Condition Ignore Count

v »

¥ 1 Breakpoints » @ malloc_error_break ¥ libSystem.8.dylib o
» Project Breakpoints » |u| -viewDidlLoad - Line 37) MemoryBugsViewCon o

» Clobal Breakpoints > |u] -viewDidLoad - Line 58 0 MemoryBugsViewCon NO o

> %} ~viewDidLoad - Line 59 0 MemoryBugsViewCon NO o

> [TestCPPClass: TestCPPClass) - Line 15) TestCPPClass.mm - o

@ [Double-Click for Symbol

Figure 4-9. Adding a symbol breakpoint

Double-click in that box, and you’ll be prompted to enter a symbol name. Enter
malloc_error_break, and press Enter. The Breakpoints window should now show a new
breakpoint set on that function.

Run the app again (via Run » Debug), and this time, you should hit the breakpoint. If you
look at the call stack in the debugger, you should see something like Figure 4-10.

@800 [} Memon, Controller.mm: MemoryBugs - Debugger =)

Thread-1% Variable ' Value Summary

0 malloc_error_break ¥ Arguments
1 szone_error »self 0x523e40
2 szone_free cmd 0x30c6abla
3 _CFRelease ¥ Locals
» obicsuper e
S -[UIViewController view) » date 0x521810 out of scope
6 -l yBug: i hing:| » Clobals
7 -l pe izati JRL-asPanel] » Registers
8 -[UlApplication _runWithURL'] » Vector Registers
9 __NSFireDelayedPerform » x87 Registers

10 CFRunLoopRunSpecific
11 CFRunLoopRuninMode
12 CSEventRunModal

13 GSEventRun

14 -[UlApplication _run]
15 UlApplicationMain

16 main

i = 3 Yeinle

[< @MemonBugsviewControllermm 391§ 1 -viewbidioad 3 <RI By
2| | // Implement vieaDidload to do additional setup after loading the view, typically from a nib. r
33| - (void)viewDidload {
3 [super viewDidLoad]; m
35 !
36 // Test case for double release - malloc_error_break
7 NSDate* date = [NSDate date];
8 [date release]; ~

; “rell i :

“©

PRI — = MRERLC

‘GDB: Stopped at breakpoint 1 (hit count : 1) - ‘malloc_error_break’ .Smeudedé

Figure 4-10. Debugger halting on second release because malloc_error break was triggered

If you click the call stack at [MemoryBugsViewController viewDidLoad], you’ll see that
the breakpoint was hit on the second release of the date object. This tells you exactly
where the problem occurred. Now you can figure out why it was released twice and fix
your bug!

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

NSZombieEnabled

NSZombieEnabled is a fantastic tool for tracking down tricky memory problems with
Objective-C objects.

NOTE: NSZombieEnabled can be used when debugging both in the simulator and on a
device.

NSZombieEnabled is an environment variable that you set up for your app. What it does is
tell the app to never actually release memory when you call release. Instead, objects
that get released have their types changed to _NSZombie. The result is that if something
tries to act on that object after it has been freed, the debugger will break to the line that
caused the error, instead of potentially crashing somewhere completely different.

CAUTION: Never, ever, leave this turned on when you don’t need it. It means that your
memory allocations aren’t freed properly and could result in your app using a significant
amount of memory. | recommend that you set up the argument and leave it disabled, except
when you want to test with it enabled.

First, add the following code to the MemoryBugsViewController class’s viewDidLoad
method, and comment out the test from the previous section:
// Implement viewDidLoad to do additional setup after loading the view, typically
// from a nib.
- (void)viewDidLoad {

[super viewDidLoad];

// Test case for double release - malloc_error break
/*

NSDate* date = [NSDate date];
[date release];
[date release];

*/

/] Test case for NSZombie

TestClass* testinstance = [TestClass alloc];

[testinstance release];

NSLog(@"Test Class's myString = %@", testinstance.myString);

}

The example code is clearly doing something stupid: it’s trying to get the value of a
property for an object that has already been released. If you build and run this code in
the debugger, it should crash. In this case, the call stack should be inside viewDidLoad,
and it’s easy to see why it crashed. However, this kind of bug won’t always crash at the

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

point where the problem occurred. Sometimes it will crash later or in a different area of
code. This can make tracking down the line that caused the problem quite difficult.

However, NSZombieEnabled comes to the rescue! To enable this handy tool, in the
project viewer find your MemoryBugs executable in the Groups & Files pane, and
double-click it to open up the executable info window (see Figure 4-11).

®0o0 [MemoryBugsVingontrollgr.mm - MemoryBugs ()

Groups & Files |I' Executable Name &{Col

v 5 MemoryBugs B ® MemoryBugs
v|_|Classes
\u| MyDebug.h

| MemoryBugsAppDele
w] MemoryBugsAppDeleg
| MemoryBugsViewCon
] MemoryBugsViewCon
] TestClass.h
m] TestClass.m

ﬁ::::gx::::'m [«|» 'Jwg; MemoryBugsViewContr¢ ., "~ C, #, B &
M o R .
» || Other Sources 21 return self; -
» | Resources < 1
» | | Frameworks . ;: /
» || Products 25 (1|
V@ Targers 2| | // Implement loadView to create a view hie
;92""'“:!”’““9‘ 27| | - (void)loadview {
v ./ Executables P!
ol </
> Q Errors and Warnings 30
¥ 4 Find Results 31
» [Bookmarks 32 // Implement viewDidLoad to do additional ¢
» ol sem 33| | - (void)viewDidLoad {
W Project Symbols 34 [super viewDidLoad];
» (i] Implementation Files 35
,ﬁmg Files 36 // Test case for double release - ma‘nc
37 NSDate* date = [NSDate date]; s
Debugging terminated. e QSucceeded

Figure 4-11. Double-click the MemoryBugs executable to bring up the executable info window.

When the executable info window opens, click the Arguments tab at the top of the
screen. The bottom pane of this window should be labeled “Variables to be set in the
environment.” Click the + at the bottom to add a new variable. Name it NSZombieEnabled,
and set its value to YES (see Figure 4-12).

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

—! General Debugging Comments - —

Arguments to be passed on launch:

Argument

BE

Variables to be set in the environment:

Name Value

= NSZombieEnabled YES 1

[+]-] ®

4
Figure 4-12, Setting NSZombieEnabled

Now build and run the app again. You should see the following print out in the console
window:

2009-05-04 10:26:53.905 MemoryBugs[19558:20b] *** -[TestClass myString]: message
sent to deallocated instance 0x536560

and program execution should halt. If you look at the call stack, you’'ll see that it halted
at the line where the program tried to access the released object.

Although this is a very simple example, NSZombieEnabled can help you track down much
more complicated memory violations. It’s a great place to start if you're seeing what you
suspect is a memory stomp.

However, sometimes this won’t turn anything up. Perhaps your bug is being caused by a
C/C++ class instance. If this is the case, then NSZombieEnabled won’t be able to help
you, because it tracks only Objective-C allocations and releases. If the problem has to
do with an object that has been newed/deleted, then you need a different tool.

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

Enable Guard Malloc

Enable Guard Malloc to the rescue! Maybe! Enable Guard Malloc is a similar

tool to NSZombieEnabled, but it tracks problems with new and delete or with malloc and
free. This can be used to track down memory violations in your

C++ classes.

Enable Guard Malloc puts memory guards around memory every time it is allocated or
freed. The net effect of this is that it can detect when something tries to use memory
that has been freed/deleted. This is very useful for tracking down those callback bugs
mentioned earlier.

TIP: Have you ever see the following error message print out in your console: malloc: ***
error for object O0xXXXXXX: Non-aligned pointer being freed? Then you most
likely have a memory stomp. By default, the iPhone allocates new memaory to aligned
boundaries, so if it tries to free memory that’s not aligned, there’s a good chance that a
memory stomp has occurred. If you see that error message, turn on Enable Guard Malloc and
rerun the app in the debugger. It may help you find the problem.

Add the following to your viewDidLoad code, and comment out the last code you added:

// Implement viewDidlLoad to do additional setup after loading the view, typically
// from a nib.
- (void)viewDidLoad {

// Test case for NSZombie
/*

TestClass* testInstance = [TestClass alloc];
[testInstance releasel;s
NSLog(@"Test Class's myString = %@", testInstance.myString);

*/

// Test case for Enable Guard Malloc - delete and use

mTestCpp = new TestCPPClass();

delete mTestCpp;
) mTestCpp->DoSomething();
Again, this is clearly a simple example; an object is being used after it has been deleted.
However, this kind of thing can crop up in code quite easily without it being so obvious.
This can be especially problematic if two threads act on the same object in a non-
thread-safe way. This is also quite easy to do in complex callback mechanisms.

Make sure that NSZombieEnabled is still set to YES, and then build and run the code. Did
you see what happened? Absolutely nothing. The program ran fine. NSZombieEnabled
wasn’t able to catch this because you used new to instantiate your C++ class. Also

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

notice that the program didn’t crash. This is where memory problems can be awful to
track down. Depending on what DoSomething() is actually doing and when it was called
after mTestCpp has been deleted, it could have stomped over memory that had been
allocated to a different object.

First, disable NSZombieEnabled (refer to the previous section to see how to find it) by
deselecting the check box next to it. Now turn Enable Guard Malloc.

NOTE: Unfortunately, Enable Guard Malloc can be used only with the simulator. It cannot be
used to debug on your device.

Make sure you set your target to build for the simulator. Then go to the Run menu and
turn on Enable Guard Malloc, right at the bottom of the menu, as shown in Figure 4-13.

® Xcode File Edit View Project Build [N Design SCM_Window $ Help
W]

Go (Debug) s
Run RR
Debug XRY
Start with Performance Tool >
i Attach to Process »
" & view is looded
] Debugger ORY
n Console ORR
o Clear Console ~X&R
o Show > I‘ﬂ
: Debugger Display >
3 Variables View » s
Deactivate Breakpoints amy
2 Manage Breakpoints >
» x
» boct
"
32| | /77 tmplement viewDidiood to oo edditional § ro= o nis
1 - (vold)viesdidlood {
" [super viewdidtood);
»
» elecse - molll y
w v Stop on Debugger()/DebugStr()
" Enable Guard Malloc u

EE2gssasAL LAY

aTestipp->DoSomething();
"
0

S

Figure 4-13. Activating Enable Guard Malloc for the simulator

TIP: If Enable Guard Malloc is grayed out in the Run menu, it is probably because the build
target is still set to Device instead of Simulator. Make sure the target is set to Simulator, and
try again.

Build and run the app again. This time the app should halt in the debugger. If everything
went according to plan, then the debugger should have halted at this line:

void TestCPPClass: :DoSomething()

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

++mSomeNum; // Debugger should have halted here

}

The debugger is halting here this time because it’s at this point that Enable Guard
Malloc has caught something trying to write to memory that has been freed. In this
function, mSomeNum is a member variable of an object that has been deleted. By trying to
increment it, what’s actually happening is that some 4-byte chunk of memory that no
longer belongs to the mTestCpp object is being incremented.

CAUTION: Running with Enable Guard Malloc turned on will most likely cause any remotely
complex app to run extremely slowly, because it does extra processing for every memory
allocation and free. Turn it on only when you need it to track down a problem.

In this example, because DoSomething() is being called immediately after the object was
deleted, chances are this isn’t going to do anything dangerous. However, if the call to

DoSomething() was made after other memory had been allocated on the heap, this code
might now be incrementing memory that belongs to some other object. Memory stomp!

Luckily, Enable Guard Malloc caught the problem as soon as something tried to access
memory it didn’t own anymore. However, it’s up to you to figure out why this object was
deleted before you thought you were finished with it. The best way | know to do this is to
put a breakpoint in the object’s destructor and watch where it gets hit. From there you
can usually track it back to problem.

CAUTION: Enable Guard Malloc won’t find all of your memory stomps. It will find instances
only where memory that has been marked as freed is changed.

Watching Variables

I’ve covered a few tools that are available to you for tracking down some memory bugs.
However, sometimes a stomp will happen without causing any of the memory violations
that the previous tools will detect. In this case, the bug can be extremely tricky to track
down. The first step in the process is determining which variable (or variables) is being
stomped. That is left as an exercise for you, because that’s just good, old-fashioned
debugging.

If you know that a particular variable is being stomped (or even just changed and you
don’t know why), one of the most useful tools for debugging this is a variable watch.

Xcode allows you to put a watch on any given variable. Setting a watch on a variable
halts execution any time something changes the value stored by the variable.

Watches can be incredibly useful if something unexpected is changing the value of one
of your variables in memory. It can also be useful if something is stomping memory and
you know what memory is being stomped, but you don’t know from where.

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

CAUTION: If the variable that is being changed gets changed multiple times per frame of
execution in a valid way, then setting a watch probably won't tell you much, because execution
will halt so frequently that you can’t tell what’s going on. If this is the case, the first thing to do
is look at the class declaration for clues about what sits next to it in memory. If you're dealing
with a global object, or code memory, the “Map Files” section might help.

Open MemoryBugsViewController.mm, and add some more new code to the viewDidLoad
method (and comment out the old code again):
// Implement viewDidLoad to do additional setup after loading the view, typically

// from a nib.
- (void)viewDidLoad {

// Text case for Enable Guard Malloc - delete and use
/*

mTestCpp = new TestCPPClass();
delete mTestCpp;
mTestCpp->DoSomething();

*/

// Test case for buffer overrun
mTestCpp = new TestCPPClass();
mTestCpp->ForceBufferOverrun();
delete mTestCpp;

}

If you look at the code in ForceBufferOverrun(), you’ll see that the function writes 17
ints into an array that’s only of size 16. This stomps the contents of the member variable
directly after the array in the class. If you look at the class header, you’ll see that
mIGetStomped sits directly after the array in memory, so it’s what gets stomped.

If you build and run this code, you’ll see that everything runs totally fine. Look at the
console output, though, and you should see this:

mIGetStomped = 16

Nowhere in the code do you explicitly set the value of mIGetStomped to 16, but the buffer
overrun does that. If you run this code with NSZombieEnabled turned on or Enable Guard
Malloc turned on, it will still run fine. This is because you’re not trying to access freed
memory. The method stomped only the memory that belongs to the same class, so the
previous tools | covered don’t do anything.

However, all is not lost! This is one of those situations where watching a variable can
pinpoint exactly what’s going on. | will assume that you’ve found out that it’s the
contents of mIGetStomped that are being stomped (which is why you added that handy

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

NSLog into the function—how thoughtful!). To figure out what is doing the stomping, set a
watch on mIGetStomped. To do this, first set a breakpoint in the constructor for
TestCPPClass so that the program will halt execution somewhere before the stomp
happens. Build and run in the debugger.

The app should halt when the TestCPPClass object is instantiated for the first time, in the
constructor, where you put your breakpoint. Open the debugger window (Command-
Shift-Y by default in Xcode), and find the mIGetStomped variable in the Variable pane.
Right-click (or Ctrl-click) mIGetStomped, and select Watch Variable from the menu (see
Figure 4-14).

0 TestCPPClass::TestCPPClass ¥ Arguments.
1 -[MemoryBugsViewController viewDidLoad] ¥ this 0x5223b0
2 -[UviewController view] ¥ private
3 - yBug! DidFinishl y mSomeNum]
4 - pe asPanel] » mOverrunMe 116]
$ -{UlApplcaton_runWihURL]
6 _NSFireDelayedPerform » Globals v Enable Data Formatters
7 CrRunLoopRunSpecific » Registers Show Types
8 CrRunloopRuninMode » Vector Registers Print Dascrintion to Cor
9 GSEventRunModal » xB7 Registers aeghrrrdl
10 GSEventRun Watch Variable
11 -[UtApplication _run] View Value As...
12 UlApplicationMain + Natural
13 inal Hexadecimal
€© — Tar . i | OSType
< » ATestCPPClass.mm:15:1 § [TestCPPClass:TestCPPClass) ¢ . Decimal
. ¥
9| | #import "TestCPPClass.h” g::?ned Decimal
i
11| | TestCPPClass: :Test(PPClass() Binary
12| |+ mSomeNum(@)
11 |, mIGetStomped(®) Edit yalue
| | £ Edit y Format
e | miGetStonped = -1;]
| [} View in Memory Browser
17 View in Window
% Ies:CFPUass: :~TestCPPClass() View in Expressions Window
bl &
2| |}

22| | vold Test(PPClass: :DoSomething()
CD8: Stopped at breakpoint 4 (hit count : 1) ~ ‘TestCPPClass: TestCPPClass) - Line 15° Q@Succeeded

Figure 4-14. Setting a watch on a variable

Once the watch has been set, a small magnifying glass icon will appear next to the
variable in the debugger (see Figure 4-15).

Variable ' Value ' Summary
v Arguments
¥ this 0xb482ffb0
¥ private
mSomeNum 0
» mOverrunMe (16)

4 miGetStomped 0

» Globals

Figure 4-15. The magnifying glass next to mIGetStomped tells you that it's being watched.

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

Now that you have set the watch, continue execution of the program. If you set your first
breakpoint on the line in the constructor where mIGetStomped is assigned the value -1,
then you will see the program halt as soon as mIGetStomped becomes —1. This is
expected, so click OK, and then continue execution of the app.

The program execution should halt a second time with a message that looks like what
you see in Figure 4-16.
00 ™ MemoryBugs - Debugger (o)

| Thread-
0 Tencwctus::l'orcesuﬁei _ Watchpoint 5 Triggered in Thread 1
1 -[MemoryBugsViewContri m
2 -[UiViewController view]
3 -[MemoryBugsAppDelega
4 -[UlApplication performie
S -[UlApplication _runWith|
6 __NSFireDelayedPerform (I’)
7 CFRunLoopRunSpecific |
8 CFRunLoopRuninMode
9 CSEventRunModal
10 GCSEventRun
11 -[UlApplication _run)
12 UlApplicationMain
13 main
C D) Yalnls
| <« » ATestCPPClass.mm:15:1 & [TestCPPClass:TestCPPClass) & = C e 0@
{

Expression: “*(int *) 5383156"
New Value: 16
Old Value: -1

24 ++mSomeNum;
300}

27| | void TestCPPClass::ForceBufferOverrun()

29 // Write one too many ints into the array

L for C(lnt 1 =0, 1 <17; 1+9)

mOverrunMe[i] = 1;

NSLog(&"mIGetStomped = %d", mIGetStomped);

w o ow owow
SR wR
«»il)

S——

38
GDB: Stopped due to watchpoint. @Succeeded

Figure 4-16. The watched variable detecting a bad change in value

Clearly, mIGetStomped should never be assigned the value 16, so this is where the stomp
occurred. Click OK, and look at where the program counter is. It will have halted at the
next instruction after the line that caused the value to change. Look at the value of i in
the debugger, and you’ll see that it’s 16. This means that the previous instruction was
when i was 16 and the program executed:

mOverrunMe[i] = i;

If you look at the declaration of mOverrunMe, you’ll see that it’s declared as an int array of
size 16. This means that only indices of 0-15 are valid, so when i = 16, the program
stomps the next 4 bytes in memory, or mIGetStomped.

Now that you know which line of code caused the stomp, it’s just a matter of fixing the
loop so that it doesn’t overrun the buffer.

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

Again, this is a very simple example, but the method can be applied to find much more
complicated memory stomps.

NOTE: The default behavior, if you put a watch on a pointer, is to just watch the value of the
pointer. That means that the debugger will halt only if the address that the pointer is pointing to
changes. This is often not what you want. You can instead tell the debugger to watch the entire
contents of the object to which the pointer points. To do this, while debugging and at a
breakpoint, find the memory address for the object you want to watch. Open the Expressions
window, and use an expression in this format: *(<class_name>*)(<mem_address>). For
example, enter *(TestCPPClass*)(0xb482ffb0). Then right-click the expression, and choose
Watch Variable. Now when any member of the object changes, the program will halt. Be
careful, though, because this can slow the debugger significantly!

Link Map Files

But, Owen, you say. What if the variable that’s being stomped gets changed all over the
place in a legitimate way? | can’t have the program halt every time something changes
the variable!

To that | say, fine, you’re right. If you’re in this situation, you’re in a tight spot, and
tracking the stomp down is going to be hard work; | won’t lie. One last tool | want to
share with you is the link map file. This can sometimes point you to a problem if you've
exhausted all the earlier techniques and you still don’t know what’s causing the

problem. This is kind of a last-resort tool that | use. It’s rare that | use it, and it’s rare that
it helps. However, it did once help me find a memory stomp | had been tracking for three
days straight, so | won’t discredit it.

A link map file is a file that you can optionally build at link time that dumps out a memory
map of the symbols in your binary. The file contains a list of all the symbols in the binary
along with their memory addresses, showing you how the binary will be arranged in
memory when the executable is loaded.

For the previous example, the stomp happened within the class, so looking at the class
declaration in the header should have given you a good idea of what was causing the
stomp. If you look at the header, you’ll see that the mOverrunMe array sits directly in front
of mIGetStomped, so there was a good chance that a buffer overrun was causing the
stomp. The variable watch confirmed that.

However, there will be some memory stomps that happen because of a global
variable or code. The link map file can give you hints about what might be causing
those problems.

To use a link map file, you first need to set up your build target to create the file. Open
the target for your Debug build of MemoryBugs, and select the Build tab. Type link into

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

the search field, and you will get a reduced listing of build options. There are two that
you should pay attention to (see Figure 4-17).

C : [Active (Debug) 5 @Q-ink
Show: | All Settings .
Setting Value
Display Mangled Names =)
Don't Dead-Strip Inits and Terms. 0

Dynamic Library Install Name
Exported Symbols File
Initialization Routine

Link With Standard Libraries 4
Mach-0 Type Executable
OpenMP Linker Flags -fopenmp

Order File
Other Linker flags

Path to Link Map File

Perform Single-Object Prelink
Prebinding

Prelink libraries

0 00

I}

\

Preserve Private External Symbols :
Runpath Search Paths I
Separately Edit Symbols :
Single-Object Prelink Flags I}
I

\

|

|

)

a

Symbo! Ordering Flags
Unexported Symbols File
Warning Linker Flags

¥ Packaging

Framework Version A |
¥Search Paths

Framework Search Paths

Library Search Paths

@@ Based On: | Nothing 3@ |
Figure 4-17. Settings to pay attention to for building link map files

The first to look at is the Path to Link Map File field. Look at the path where it will place
the link map file, because you will need to find it after you build it. The second is the
check box Write Link Map File, which is probably deselected. Select it now, and close
the target info window.

NOTE: The link map file will be different based on the architecture you’re building for. If you're
tracking the bug on your device, build the link map file for the device. If you’re debugging on
the simulator, build the link map file for the simulator. The text file that is generated will have
the architecture that it was built for in the file name (1386 for Intel Macs, armvé for
iPhone/iPod touch).

Build the app again, and then navigate in the browser to the directory that was specified
in the Path to Link Map File field. Open the text file that was generated, and you’ll see
the map of the binary. It should look something like this (this is a link map file generated
for device, which is why the memory addresses are so low):

#:t.Address Size File Name
0Xx00002000 0x0000004C [1] start
0x0000204C 0x00000020 [1] dyld_stub_binding_helper

0x0000206C 0x00000084 [2] _main

CHAPTER 4: You Go Squish Now! Debugging on the iPhone

0x000020F0 0x00000090 [3] -[MemoryBugsAppDelegate w»
applicationDidFinishLaunching:]

0x00002180 0x0000008C 3] -[MemoryBugsAppDelegate dealloc]
0x0000220C 0x00000028 [3] -[MemoryBugsAppDelegate viewController]
0x00002234 0x00000048 [3] -[MemoryBugsAppDelegate setViewController:]
0x0000227C 0x00000028 [3] -[MemoryBugsAppDelegate window]

0x000022A4 0x00000048 [3] -[MemoryBugsAppDelegate setWindow:]

In the file you can see the layout of all the classes and functions as well as the layout of
any global data that exists.

I'll be honest: it’s not often that | end up digging into a link map file to help fix a bug.
However, there have been times where the link map file provided the only clue as to
what was happening. For the odd time that you need that clue about what lies next to
something else in memory, you’ll be thankful that you know

it’s there.

Summary

Thanks for sticking with me through the chapter. | know that, to many people,
debugging isn’t the most exciting or glamorous topic in the world. However, debugging
is a skill that must be learned, just like any other. It can take years of practice, and even
then you’ll still run into bugs you’ve never seen before. The programmers I’ve worked
with who were the best debuggers are the ones who have done it the most. They’re also
the ones who enjoy it the most. It comes back to what | said at the beginning: if you go
into it with the right frame of mind, it can make things a lot easier on you.

Don’t be frustrated if the concepts I’'ve covered aren’t immediately obvious or if you’re
not quite sure when to use one tool over another. Just try things, and you’ll gradually
learn what the best approach is for a certain kind of problem.

As | wrap things up, | want to offer a couple of final thoughts. Look for patterns. Often a
bug will follow a similar pattern to other bugs you’ve seen before. But be adaptable.
Sometimes a bug will look like nothing you have seen before. Just do your best, take a
deep breath, and dive in.

Good hunting!

Idea Swarm

Minneapolis, MN

IdeaSwarm, Inc. 1 year. Owner

Developer of the WhatNext task management iPhone application
and the AppViz iPhone Sales tracking application for the Mac.

Tech: Objective-c, Core Data, SQLite

Adobe Systems, Computer Scientist (consultant), 1 year, 1
month

Developed task management tools, build tools, and did installer
work for the Adobe Photoshop Lightroom project.

Tech: Java, Ruby on Rails, SQL, InstallShield, Build Forge,
Javascript, HTML/CSS, Perl

Adobe Systems, Whitebox QE (consultant), 4 months
Whitebox QE for the LiveCycle Java platform.

Tech: Java, JBoss, IBM WebSphere, BEA WebLogic, Apache
Web Server, load balancing, JMS,

United Health Group, Developer (consultant), 4 months

Developed the http://www.urnparentsteps.com/ application with
a small team.

Tech: Java, Spring, Hibernate, Javascript, HTML/CSS
Fidelity National Financial, consultant, 10 months

Worked on the Touchpoint Sales and Service application for
banks.

Tech: XML, Java, Javascript, HTML/CSS

Value Vision Media, Java Programmer, 1 year 3 months

Worked on various internal applications including reporting and
shipping tracking applications.

Tech: Java, Swing, Spring, Hibernate, Javascript, HTML/CSS,
Ruby, XML, XSLT

WhatNext — Task and List Manager

This chapter includes a walk through of developing an
Active Record style database wrapper around the SQLite APIs included in the
iPhone SDK. The user should leave with an understanding of SQL handling on
the iPhone and the code necessary to easily incorporate this storage method into
their applications.

SaL
SQlLite

Active Record

Chapter

Stick Around:
Building Data-Driven
Applications with SQLite

Welcome. I'll be your guide on a wondrous journey through the depths of SQLite

support on the iPhone. My intent with this chapter is to demystify the C API and wrap it
in some more lovable Objective-C. | will then show you how to add a deliciously simple
Active Record mapping layer on top to facilitate communication with your object model.

I’m assuming that you have some knowledge of SQL going into this chapter, but you
don’t need anything too advanced and certainly nothing specific to SQLite. But first...

A Short Road Off a High Cliff
(How | Got Here)

| entered the Objective-C ecosphere the same way many new iPhone developers do:
| took a leap of faith.

By early 2008 | had entrenched myself in the Java and sometimes Ruby consulting
communities, doing some interesting work interspersed between standard internal
business projects. A year previously | had been lucky enough to get a contract with
Adobe Systems doing tools work for the Adobe Photoshop Lightroom project in the
Arden Hills, Minnesota, office. | loved it there, but unfortunately my contract was coming
to an end, and | needed to look for something else to keep the spring rain from making
my life very uncomfortable. | was faced with a difficult choice: return to consulting, take
a full-time job offered by a friend of mine working on some exciting new stuff for a large
company, or strike out on my own again as | had longed dreamed of doing. After a long
couple of weeks of oscillating, staring at my bank statements, and counting and
recounting my meager savings, | decided to go my own way. The siren song of
developing on a platform that | loved and building software for myself again lured me

14

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

into a land of ridiculous hours and high potential. Eventually | had decided that the
opportunity of the platform was too great to risk letting it pass me by.

And so, | set off to build my first iPhone application.

Ready! Set! Wait, What? (Why | Decided to Write a
To-Do Application)

The first few weeks found me drifting. | was having trouble deciding on one idea to
pursue. My hard drive is littered with cast-off source—skeletons of ideas that never quite
made it far enough to capture my attention. | was having trouble getting things done
with the call of spring outside. | was having trouble scheduling my work without the
pressure of external deadlines, which | had come to rely on over the years. Consulting
had made me strong in some ways but weak in others, and | was running headlong into
a confrontation with those weaknesses.

When | confront a problem, the first thing that | generally do is take a stab at it myself. |
try to think of a solution without a lot of external help; | think that this allows a bit more
creativity and understanding of the problem space before getting locked into seeing
things through the results and ideas of others. It also lets me exercise my reckless
streak. This wasn’t working so well for me here, so | turned to my second step: research.

| bought a number of popular books on scheduling, time and task management, and
personal motivation. | hopped from system to system, never quite finding one with the
correct balance of time put in to work coming out. | also needed something that worked
on my phone, something that | could carry with me everywhere. WhatNext was born.

My initial design was complex and had pieces from the various systems that | had tried.
After working with it for a while and assessing what | knew some of my potential
competitors were working on, and with the date for the store launch hurtling toward me,
| decided to go simpler. | pared WhatNext down to just my essential needs. It left an
application that is simple to use and does exactly what | need it to do. Figure 5-1 shows
the main view for WhatNext.

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

Get Things
Done

Figure 5-1. WhatNext—a super simple task manager

Data-Driven Applications on the iPhone

WhatNext is a data-driven application. This type of application revolves around
collecting data from various sources and displaying it to the user. The source could be
anything, but some typical sources are the user themselves (think of list applications),
some form of web service (weather stats, RSS feeds, and so on), or a built-in data set of
some kind that you might ship with your application (geological surveys, molecule data,
and so).

One of the first questions that | come to when designing any data-driven application is,
how do | store and retrieve the various bits of data that I'll be accumulating and
displaying? Thankfully, the iPhone SDK has several good ways of storing data. One of
the most versatile and robust ways is to use a SQL database.

You may already be familiar with SQL, as | was, especially if you’ve come from the web
world or a number of other industries where it is the de facto standard for data storage.
It was built from the ground up to handle the specific task of working with data, with the
end result that you can often take whole paragraphs of code and reduce them to a
single statement in SQL. It is also fast, well documented, and dependabile.

The iPhone SDK includes a SQL database called SQLite. It is small, durable, and
extremely fast, and including it is as simple as including the associated library into your
Xcode project.

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

Active Record: A Simple Way of
Accessing Data

One of my early experiments in the iPhone ecosystem involved adapting the SQLite
Books example code from Apple’s site to work with my own data model. The example
uses raw SQL and the SQLite C APIs and was relatively straightforward to adapt, but |
found myself constantly having to drop out of Objective-C and my higher-level domain
model thinking to think about SQL and C. That kind of context switching was costing me
development brain cycles, so | set out to solve the problem.

| ended up creating a higher-level framework that takes care of most of the raw SQL
work by mapping to and from simple objects in my domain model. The framework
makes it easy to create, find, save, and delete these objects while minimizing the
amount of SQL that has to be written and maintained. It is based on the Active Record
design pattern.

In the Active Record pattern, each database table is represented by a class in your
application. The individual instances of this class represent rows in the table. There are
class methods for retrieving instances of these objects, and the instances themselves
contain the methods responsible for deleting, saving, and updating themselves. This
provides a simple and natural API for handling most data access needs and also allows
for dropping down to custom SQL if you need to do something more complex. Here’s
an example of working with an Active Record object:

GroceryItem *bread = [[[GroceryItem alloc] init] autorelease];

bread.name = @"Bread";

bread.number = [NSNumber numberWithInt: 2];
[bread savel;

To find all grocery items, you would use this:
NSArray *items = [GroceryItem findAll];
Deleting, updating, and finding a specific item is just as easy.

In the rest of this chapter, I'll be walking you through implementing an Active Record
framework. However, before you can get to this implementation, you first need to
simplify working with the C APIs. I'll cover that in the next section.

Writing a Database Wrapper Around the C API:
ISDatabase

Writing an Active Record implementation, even a simple one, can be fairly complex. It
isn’t helped by having to drop down to C every time you have to run a SQL statement.
To make things a bit easier, you will first be creating a wrapper around the C APlIs for

SQLite to take care of some common “housekeeping” issues:

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

Managing the opening and closing of the database
connection

Handling transactions (groups of SQL statements that should
be run together and fail together if any single statement fails)

Processing SQL statements and returning wrapped results
Handling parameters

Managing memory

The wrapper will do all of these tasks, allowing you to display a data-driven interface
such as the one shown in Figure 5-2.

R
apples: 5

oranges: 3

bananas: 10

Figure 5-2. Where you’re going

Setting Up the Example Project

First you’ll need a project for the code to live in. Create a new navigation-based
application using File » New Project in Xcode. Name the project GroceryList.

Right-click the target for your application, and choose Get Info. Switch to the General
tab. Click the plus button at the bottom to add a Linked Library, and choose
libsqlite3.dylib. This will link in the SQLite framework. Close the info window, and
drag the 1ibqlite3.0.8.6.dylib entry from the tree view in your main window to the
Frameworks folder. Your project tree should look like the one shown in Figure 5-3.

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

Groups & Files
v % GroceryList
p | Classes
» | | Other Sources
»| | Resources
v | Frameworks
§™ libsglite3.0.8.6.dylib
» §% UIKit.framework
» §= Foundation.framework
v §= CoreGraphics.framework
»] Headers
» | Products
v @ Targets
v o GroceryList
» || Copy Bundle Resources (2)
» || Compile Sources (3)
» [Link Binary With Libraries (4)
b/ Executables
» /® Errors and Warnings
v 4 Find Results
» % Bookmarks
» £ scMm
B Project Symbols
» (] Implementation Files
» (4] NIB Files

Figure 5-3. The GroceryList project

Next open RootViewController.h, and add an NSArray property called results. This
property will contain the list to be displayed in the UITableView that was created by
default by the project template as the main view. RootViewController.h should look like
this:

#import <UIKit/UIKit.h>
@interface RootViewController : UITableViewController {
NSArray *results;

@property (nonatomic, retain) NSArray *results;
@end

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

Make sure to @synthesize this property in the RootViewController.m file and release it in
the dealloc method. Find and replace the implementations of the following functions in
the .mfile as well:

- (void)viewDidLoad

[super viewDidLoad];
self.results = [NSArray arrayWithObjects: @"Apple", @"Banana", nil];

}

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection: _
(NSInteger)section

return [results count];

(UITableviewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath: _
(NSIndexPath *)indexPath

static NSString *Cellldentifier = @"GroceryCell";

UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];

if (cell == nil)

{

#if _ IPHONE_0S VERSION MIN REQUIRED >= 30000

cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
reuseldentifier:CellIldentifier] autorelease];

#else

cell = [[[UITableViewCell alloc] initWithFrame:CGRectZero _
reuseldentifier:CellIldentifier] autorelease];

#endif

}

#if _ IPHONE_OS_VERSION MIN REQUIRED >= 30000
cell.textlLabel.text = [results objectAtIndex:indexPath.row];
#else

cell.text = [results objectAtIndex:indexPath.row];

#endif

return cell;

}

The iPhone version check here lets you use the recommended methods for the iPhone
3.0 SDK while remaining compatible with older versions.

Building and running should show you a simple list of grocery items, as shown in
Figure 5-4.

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

e

Apple

Figure 5-4. A simple grocery list

Creating and Initializing the Database

Next you’ll create the file that contains the code that wraps the database methods.
Create a new NSObject subclass. | used my company name prefix and kept it simple,
naming the class ISDatabase.

The following functions will use three properties that must be declared in the header.
Your header should start out looking like this:

#import <sqlite3.h>

@interface ISDatabase : NSObject {
NSString *pathToDatabase;

BOOL logging;

sqlite3 *database;

@property (nonatomic, retain) NSString *pathToDatabase;
@property (nonatomic) BOOL logging;

- (id) initWithPath: (NSString *) filePath;
- (id) initWithFileName: (NSString *) fileName;
@end

Remember to @synthesize these in the .m file. Next, you’ll create some simple init
functions to aid in creating a database in the resources directories for the application:

- (id) initWithPath: (NSString *) filePath
{

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

if(self = [super init])
self.pathToDatabase = filePath;

[self open];

return self;

}
- (id) initWithFileName: (NSString *) fileName

NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
NSUserDomainMask, YES);
NSString *documentsDirectory = [paths objectAtIndex:0];

return [self initWithPath: [documentsDirectory _
stringByAppendingPathComponent:fileName]];

}

The first init function creates and opens a connection to a database at the given path;
the second is a convenience function that creates or opens a database in the application
documents directory with the given file name.

Opening a Database Connection

All data in a SQLite database is stored in a single cross-platform file on disk. To work
with a SQLite database, you first have to open a connection and specify the database
file. When done working with the database, you should close that connection. You’ll add
two functions to do this:

- (void) close
if(sqlite3_close(database) != SQLITE_OK)
[self raiseSqliteException:@"failed to close database with message '%S'."];

}
- (void) open

//opens database, creating the file if it does not already exist
if(sqlite3_open([self.pathToDatabase UTF8String], &database) != SQLITE_OK)
{

sqlite3 close(database);
[self raiseSqliteException:@"Failed to open database with message '%S'."];

}
}

These are pretty straightforward. open opens the connection and stores the database
handle in the database property. They report errors by calling the raiseSqliteException
function:

- (void) raiseSqliteException: (NSString *) errorMessage

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

[NSException raise:@"ISDatabaseSQLiteException” format:errorMessage, _
sqlite3_errmsgi6(database)];

}

This calls sqlite3_errmsg16, which takes the database handle and returns the error
message in plain English. This is then wrapped in an NSException and raised.

You then clean up the database connection in the dealloc (along with pathToDatabase):
- (void) dealloc

[self close];
[pathToDatabase release];

[super dealloc];

If you compile now, you will see two warnings appear. The first warning is in the init
method, as shown in Figure 5-5.

- {id) initWithPath: (NSString *) filePath
¢ if(self = [super init])
self .pathToDatabase = filePath;
[self open];

.. warning: 'ISDatabase' may not respond to '-open’
{Messages without a matching method signature will be assumed to return 'id’ and accept "..." as arguments.)

b

return self;

b

Figure 5-5. You’ve been warned.

The compiler needs to be informed about methods that are declared later in the class
that are used earlier, such as the open method here. The other warning is similar,
informing you that the compiler cannot find the raiseSqliteException: method. Instead
of rearranging the methods to fit the demands of the machine rather than readability,
add a private category to contain these method declarations. Add the following to the
top of the ISDatabase.m file:

@interface ISDatabase(PrivateMethods)

- (void) open;

- (;oid) raiseSqliteException: (NSString *) errorMessage;

@en

Recompile, and the warnings are no more.

Now that you’ve completed these methods, you can see them in action. Open
GrocerylListAppDelegate.h, and add ISDatabase as a forward class and a property
called database to hold the database instance. GrocerylListAppDelegate.h should look
like this:

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

#import <UIKit/UIKit.h>
@class ISDatabase;

@interface GrocerylListAppDelegate : NSObject <UIApplicationDelegate> {
UIWindow *window;
UINavigationController *navigationController;

ISDatabase *database;

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet UINavigationController *navigationController;
@property (nonatomic, retain) ISDatabase *database;

@end

Import ISDatabase.h in GrocerylListAppDelegate.m, and also add @synthesize database.
Remember to release the database property in the dealloc function as well. Replace the
following method:
- (void)applicationDidFinishLaunching: (UIApplication *)application {
database = [[[ISDatabase alloc] initWithFileName:@"TestDB.sqlite"] autorelease];
NSLog(@"The database opened properly!");

// Configure and show the window
[window addSubview:[navigationController view]];
[window makeKeyAndVisible];

}

Running the project now will display the console output similar to Figure 5-6.

NN

" Grocerylist - Debugger Console o

Simulator - 2.2 | D... ~ & Q“ @ \y) @ 72

Overview Build a}\d Co Tasks Restart Pause Activate Clear Log

[Session started at 2009-06-16 15:32:42 -0500.)
2009-06-16 15:32:43.845 GroceryList[13915:20b] The database opened properly!

GroceryList launched @ Succeeded 4

Figure 5-6. The database is open for business.

If the database file fails to open, it will raise an exception, so reaching the log statement
indicates that everything worked properly.

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

Making Simple Requests

After opening the database, you’ll want to make some requests in SQL. These range
from creating the initial tables to data access operations. This is considerably more
involved and takes up the majority of the lines of code for this class.

The simplest statement has no parameters: Select * from GroceryItem. You can create
a function in ISDatabase.m to handle these statements:

- (NSArray *) executeSql: (NSString *) sql
{

This is the function declaration; it takes a SQL string and returns an NSArray of
NSDictionary objects. Each dictionary object represents one result row. If there are no
results, then an empty array will be returned.

NSMutableDictionary *queryInfo = [NSMutableDictionary dictionary];
[queryInfo setObject:sql forKey:@"sql"];

Store the SQL in a dictionary for use in error reporting.
NSMutableArray *rows = [NSMutableArray array];

Declare the array that will contain the result rows:
if(logging)
{

NSLog(@"SQL: %@ \n", sql);

If the logging parameter is set to YES, log the SQL message here. This can be useful for
tracking down bugs and performance optimization.

sqlite3 stmt *statement = NULL;

if(sqlite3_prepare_v2(database, [sql UTF8String], -1, &statement, NULL) == _
SQLITE_OK)

{

This creates the sqlite3_stmt variable and “prepares” it. The preparation step compiles
the SQL into a bytecode program that SQLite can understand. It initializes the statement
variable with a pointer to the prepared statement that can be used to step through the
results. It returns either SQLITE_OK or an error code. We won’t handle error codes
explicitly here, instead relying on the exception handling to report these errors. There are
certain other cases that you may want to handle; you can find them in the SQLite
documentation at http://www.sqlite.org/c3ref/c_abort.html.

BOOL needsToFetchColumnTypesAndNames = YES;
NSArray *columnTypes = nil;
NSArray *columnNames = nil;

These variables are used to cache the column names and types for the statement. While
processing a result set from the database, each column for each row will need to be
mapped to an Objective-C type for return and stored in an NSDictionary with the
column name as the key. Looking up the column name for the key and the type for
mapping the value can be costly for larger result sets, so you look them up for the first
row and remember them for each subsequent row:

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

while (sqlite3_step(statement) == SQLITE_ROW)
{

You then step through each result using sqlite3_step, which returns SQLITE_ROW if a row
has been returned or SQLITE_DONE if the statement is finished executing:

if(needsToFetchColumnTypesAndNames)

{
columnTypes = [self columnTypesForStatement: statement];
columnNames = [self columnNamesForStatement: statement];
needsToFetchColumnTypesAndNames = NO;

Get the column types and the column names on the first time through this loop:

NSMutableDictionary *row = [[NSMutableDictionary alloc] init];
[self copyValuesFromStatement: statement toRow: row queryInfo: queryInfo _
columnTypes: columnTypes columnNames: columnNames];

Create the row dictionary, and copy the results from the statement into the row:

[rows addObject:row];
[row release];

Add the row to the results, and release the row. This won’t clean up the memory since
the rows still retain a reference to the row dictionary, but it is slightly faster than waiting
for the autorelease pool to iterate over the row objects to release them:
telse{

sqlite3_finalize(statement);

[self raiseSqliteException: [[NSString stringWithFormat:@"failed to execute _
y statement: '%@' with message: ", sql] stringByAppendingString:@"%S"]1];

If there is an error, delete the prepared statement, releasing any associated memory,
and raise an exception:

sqlite3 finalize(statement);
return rows;

This deletes the prepared statement and returns the row results. Make sure to add the
executeSql: method declaration to ISDatabase.h.

To retrieve the column names for the statement, you iterate from 0 to the number of
columns (retrieved using sqlite3_column_count) and call sqlite3_column_name for each
column. You then take the C string returned and wrap it in an NSString.

- (NSArray *) columnNamesForStatement: (sqlite3_stmt *) statement
int columnCount = sqlite3_column_count(statement);

NSMutableArray *columnNames = [NSMutableArray array];
for(int i = 0; i < columnCount; i++)

[columnNames addObject:[NSString _
stringWithUTF8String:sqlite3_column_name(statement, 1)]];

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

return columnNames;

It's important to note that for SELECT statements like SELECT SUM(number) FROM
GroceryItem, the column name will actually be SUM(number). This also picks up on SQL
aliases.

Similarly, you iterate over the columns to get the types:
- (NSArray *) columnTypesForStatement: (sqlite3_stmt *) statement

int columnCount = sqlite3_column_count(statement);

NSMutableArray *columnTypes = [NSMutableArray array];
for(int i = 0; i < columnCount; i++)

[columnTypes addObject:[NSNumber numberWithInt:[self _
typeForStatement:statement column:i]]];

}

return columnTypes;

}
To get the actual type, you use typeForStatement:column:, like so:
- (int) typeForStatement: (sqlite3_stmt *) statement column: (int) column

const char * columnType = sqlite3_column_decltype(statement, column);
if(columnType != NULL)

return [self columnTypeToInt: [[NSString stringWithUTF8String: columnType] _
uppercaseString]];

}

return sqlite3_column_type(statement, column);

typeForStatement:column: returns an integer defining the column type. First it checks
the declared type of the column using sqlite3_column_decltype, which returns the
string associated with the column by the database schema. This is the type you declare
for the column when creating the table. Then this type is converted to a standard type
using columnTypeToInt:. If there is no declared type for the column (this occurs when
using some calculated fields), use the type of the value instead, returned by
sqlite3_column_type.

columnTypeTolnt is a simple mapping, defined like so:
- (int) columnTypeToInt: (NSString *) columnType
{

if([columnType isEqualToString:@"INTEGER"])
{

return SQLITE_INTEGER;
telse if([columnType isEqualToString:@"REAL"])
{

return SQLITE_FLOAT;

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

Yelse if([columnType isEqualToString:@"TEXT"])
{

return SQLITE_ TEXT;
telse if ([columnType isEqualToString:@"BLOB"])

return SQLITE_BLOB;
telse if ([columnType isEqualToString:@"NULL"])

return SQLITE_NULL;

return SQLITE TEXT;
}

You default to text if none of the other types work. SQLite is a bit unique among
databases in that it stores types dynamically; column types do not actually restrict the
type of data stored in a column. This can make mapping from SQLite tables to
Objective-C types difficult; for the purposes of ISDatabase, it is assumed that every
column will be marked with an appropriate type from the previous list. These are added
as part of the SQL CREATE statement for the given table.

executeSql: calls copyValuesFromStatement:toRow:columnTypes:columnNames: to map
the results from the prepared statement to a specific row in the dictionary:

- (void) copyValuesFromStatement: (sqlite3_stmt *) statement toRow: _
(NSMutableDictionary *) row queryInfo: (NSDictionary *) queryInfo columnTypes: _
(NSArray *) columnTypes columnNames: (NSArray *) columnNames

int columnCount = sqlite3_column_count(statement);
for(int i = 0; i < columnCount; i++)

id value = [self valueFromStatement:statement column:i queryInfo: queryInfo_
columnTypes: columnTypes];

if(value != nil)

[row setValue: value forKey: [columnNames objectAtIndex:i]];

}

This function steps through each column in the statement and calls
valueFromStatement:column:queryInfo:columnTypes: for each column. The results are
stored in the row NSMutableDictionary with the column name as the key. Getting and
wrapping the value is a little more complex:

- (id) valueFromStatement: (sqlite3_stmt *) statement column: (int) _
column queryInfo: (NSDictionary *) queryInfo columnTypes: (NSArray *) columnTypes

int columnType = [[columnTypes objectAtIndex:column] intValue];
//force conversion to the declared type using sql conversions; this saves some

//problems with NSNull being assigned to non-object values
if(columnType == SQLITE_INTEGER)
{

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

return [NSNumber numberWithInt:sqlite3_column_int(statement, column)];
telse if(columnType == SQLITE_FLOAT)

return [NSNumber numberWithDouble: sqlite3 column_double(statement, _
column)];
telse if(columnType == SQLITE_TEXT)
{

const char *text = (const char *) sqlite3_column_text(statement, column);
if(text != nil){

return [NSString stringWithUTF8String: text];
telse{

return nil;

}
telse if (columnType == SQLITE_BLOB)

//create an NSData object with the same size as the blob
return [NSData dataWithBytes:sqlite3_column_blob(statement, column) _
length:sqlite3_column_bytes(statement, column)];
telse if (columnType == SQLITE_NULL)

return nil;

NSLog(@"Unrecognized SQL column type: %i for sql: %@", columnType, [queryInfo _
objectForKey:@"sql"]);

return nil;

}

For each type, you use a specific SQLite function to retrieve the value and then convert
that value as necessary before wrapping it in an Objective-C type and returning it. If the
type is not recognized, you log the error and return nil. This skips the column for this
result row.

If you compile now, a bunch of warnings will pop up letting you know that the methods
are out of the order that the compiler expects. Update the PrivateMethod category at the
top of this class to look like the following to get rid of these warnings:

@interface ISDatabase(PrivateMethods)

- (void) open;

- (void) raiseSqliteException: (NSString *) errorMessage;

- (NSArray *) columnNamesForStatement: (sqlite3_stmt *) statement;

- (NSArray *) columnTypesForStatement: (sqlite3_stmt *) statement;

- (int) typeForStatement: (sqlite3_stmt *) statement column: (int) column;

- (int) columnTypeToInt: (NSString *) columnType;

- (void) copyValuesFromStatement: (sqlite3_stmt *) statement toRow:
(NSMutableDictionary *) row queryInfo: (NSDictionary *) queryInfo columnTypes:
(NSArray *) columnTypes columnNames: (NSArray *) columnNames;

- (id) valueFromStatement: (sqlite3_stmt *) statement column: (int) column_
queryInfo: (NSDictionary *) queryInfo columnTypes: (NSArray *) columnTypes;

@end

You are now ready to execute some SQL statements. Replace the
applicationDidFinishLaunching: in GrocerylListAppDelgate.m with the following:

- (void)applicationDidFinishLaunching: (UIApplication *)application
{

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

self.database = [[[ISDatabase alloc] initWithFileName:@"TestDB.sqlite"] _
autorelease];
[database executeSql:@"create table GroceryItem(primaryKey integer primary key _
autoincrement, name text NOT NULL, number integer NOT NULL)"];
[database executeSql:@"insert into GroceryItem (name, number) _
values('apples', 5)"];
[database executeSql:@"insert into GroceryItem (name, number) _
values('oranges', 3)"];

[window addSubview:[navigationController view]];
[window makeKeyAndVisible];

}
This code creates a simple database and populates it with a row.

Next you need to update RootViewController.m to load the list of items from the
database. Add ISDatabase.h to the imports, and replace the following function:

- (void)viewDidLoad {
[super viewDidLoad];
GrocerylListAppDelegate *appDelegate = (GrocerylListAppDelegate *)[[UIApplication _
sharedApplication] delegate];
self.results = [appDelegate.database executeSql:@"SELECT * from GroceryItem"];

This will be returning an array of NSDictionary objects, so you need to update
tableView:cellForRowAtIndexPath: to get the value stored under the name key. Change
the following line:

cell.textLabel.text = [results objectAtIndex:indexPath.row];
to the following:

cell.textLabel.text = [[results objectAtIndex:indexPath.row] objectForKey:
@unameu];

and change this:
cell.text = [results objectAtIndex:indexPath.row];
to the following:
cell.text = [[results objectAtIndex:indexPath.row] objectForKey: @"name"];

Running this code now (but only once; more on this shortly) will produce the view shown
in Figure 5-7.

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

I
apples

oranges

Figure 5-7. A data-backed view

More Advanced SQL

Now that you have basic SQL statements running, you can move on to processing more
complex statements. This section will cover making the code less brittle, handling
parameters, adding some nice convenience methods to make your life easier, and finally
grouping statements into transactions.

Preventing Duplicate Create Statements

Try running the code from the previous section again. You’ll be unpleasantly surprised
by the error message in Figure 5-8.

™ GrocerylList - Debugger Console

X = - ~ =
Simulator - 2.2 | Debug & o & 0y @ 'g

Overview Build and Go Tasks Restart Pause Activate Clear Log

[Session started at 2009-06-18 11:00:32 -0500.]
2009-06-18 11:00:34.146 Groceryuunss 20b] *** Terminating app due to unclugh:
exception ‘ISDat ion’ : ‘failed to execute statement ‘create table
GroceryItem(primaryKey integer prmry key autoincrement, name text NOT NULL, number
integer NOT NULL)® with message: table Groceryltem already exists’
2009-06-18 11:00:34.147 GroceryList[765:20b] Stack: (
2502742187,
2416074299,
2502741643,
2502741706,
10373,
11226, P
8687,
816111642, Y
Debugging terminated. @Succeeded

Figure 5-8. Running again presents this nice exception.

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

You see this exception because the setup code in the previous section is brittle. If you
run it more than once with the same database, it will throw an error on an attempt to re-
create the table GroceryItem, which already exists. The simplest fix is to alter the create
statement to be create table IF NOT EXISTS GroceryItem (primaryKey integer
primary key autoincrement, name text NOT NULL, number INTEGER NOT NULL). This
prevents the table from being re-created and gets rid of the exception, but you’ll still get
duplicate data from the inserts.

A better fix involves checking to see whether the table already exists before running the
schema creation code. Add the following functions to ISDatabase:
- (NSArray *) tables

return [self executeSql:@"select * from sqlite master where type = 'table'"];

- (NSArray *) tableNames

return [[self tables] valueForKey:@"name"];

This queries the sqlite_master table that is automatically created by SQLite and used to
manage the metadata for the database. This uses a neat feature of the NSArray class. If
you call valueForKey: on an NSArray, it will in turn call valueForKey: for each of its
member objects, returning a new NSArray containing the results. In this case, those
results are the names of the tables.

Add tableNames to ISDatabase.h.

Now change applicationDidFinishLaunching: to the following:
- (void)applicationDidFinishLaunching: (UIApplication *)application

self.database = [[[ISDatabase alloc] initWithFileName:@"TestDB.sqlite"] _
autorelease];

if(![[database tableNames] containsObject:@"Groceryltem"])
{

[database executeSql:@"create table GroceryItem(primaryKey integer primary _
key autoincrement, name text NOT NULL, number INTEGER NOT NULL)"];
[database executeSql:@"insert into GroceryItem (name, number) _
values('apples', 5)"];
[database executeSql:@"insert into GroceryItem (name, number) _
values('oranges', 3)"];

[window addSubview:[navigationController view]];
[window makeKeyAndVisible];

The check for the table name inserted around the schema creation code prevents the
tables from being re-created and the rows from being reinserted. Reruns should now
show the same view every time without crashing.

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

Handling Parameters

The next step to SQL dominance is adding the ability to handle parameters. The most
obvious way is to use stringWithFormat: to create a SQL string and insert the
parameters right into the string. Unfortunately, this is brittle and tends to be painful
because you have to guard against and add escapes for a number of custom cases that
may not be immediately obvious. Fortunately, SQLite allows you to “bind” parameters to
a SQL string and takes care of all the necessary checking and escaping for you.

To allow this, you’ll add a function that takes a SQL statement and an array of
parameters. Add the following function before the previous executeSql: function:

- (NSArray *) executeSql: (NSString *) sql withParameters: (NSArray *) parameters _

NSMutableDictionary *queryInfo = [NSMutableDictionary dictionary];
[queryInfo setObject:sql forKey:@"sql"];

if(parameters == nil)

parameters = [NSArray array];

//we now add the parameters to queryInfo
[queryInfo setObject:parameters forKey:@"parameters"];

NSMutableArray *rows = [NSMutableArray array];

if(logging)
{

//log the parameters
NSLog(@"SQL: %@ \n parameters: %@", sql, parameters);

sqlite3_stmt *statement = nil;
if(sqlite3_prepare_v2(database, [sql UTF8String], -1, &statement, NULL) _
== SQLITE_OK)

self bindArguments: parameters toStatement: statement queryInfo:
8 p query _
queryInfo];

BOOL needsToFetchColumnTypesAndNames = YES;
NSArray *columnTypes = nil;
NSArray *columnNames = nil;

while (sqlite3_step(statement) == SQLITE_ROW)
{
if(needsToFetchColumnTypesAndNames)

columnTypes = [self columnTypesForStatement: statement];
columnNames = [self columnNamesForStatement: statement];
needsToFetchColumnTypesAndNames = NO;

}

id row = [[NSMutableDictionary alloc] init];
[self copyValuesFromStatement: statement toRow: row queryInfo: _
queryInfo columnTypes: columnTypes columnNames: columnNames];

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

[rows addObject:row];
[row release];

}
Yelse{

sqlite3_finalize(statement);

[self raiseSqliteException: [[NSString stringWithFormat:@"failed to _
execute statement: '%@', parameters: '%@' with message: ", sql, _
parameters] stringByAppendingString:@"%S"]1];

}

sqlite3_finalize(statement);
return rows;

}
Add this function to ISDatabase.h as well.

Besides a little additional logging, the big difference here is the call to
bindArguments:parameters:toStatement: after sqlite3 prepare v2. As described, this
function takes the array of parameters and binds them to the prepared statement:

- (void) bindArguments: (NSArray *) arguments toStatement: _
(sqlite3_stmt *) statement queryInfo: (NSDictionary *) queryInfo

int expectedArguments = sqlite3_bind _parameter count(statement);

NSAssert2(expectedArguments == [arguments count], @'Number of bound parameters _
does not match for sql: %@ parameters: '%@'",
[queryInfo objectForKey:@"sql"], [queryInfo objectForKey:@"parameters"]);

for(int i = 1; i <= expectedArguments; i++)
{
id argument = [arguments objectAtIndex:i - 1];
if([argument isKindOfClass:[NSString class]])
sqlite3_bind_text(statement, i, [argument UTF8String], -1,
SQLITE_TRANSIENT);
else if([argument isKindOfClass:[NSData class]])
sqlite3_bind_blob(statement, i, [argument bytes], [argument length], _
SQLITE_TRANSIENT);
else if([argument isKindOfClass:[NSDate class]])
sqlite3_bind_double(statement, i, [argument timeIntervalSince1970]);
else if([argument isKindOfClass:[NSNumber class]])
sqlite3_bind_double(statement, i, [argument doubleValue]);
else if([argument isKindOfClass:[NSNull class]])
sqlite3 bind null(statement, i);
else

sqlite3_finalize(statement);

[NSException raise:@"Unrecognized object type" format:@"Active record _
doesn't know how to handle object:'%@' bound to _
sql: %@ position: %i", argument, [queryInfo _
objectForKey:@"sql"], i];

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

You first check to make sure that the number of parameters that the statement expects
matches the number of parameters passed into the method. The assert will raise an
exception if this is not the case.

Next you cycle over the number of expected arguments and bind the parameters one by
one. You determine the class of the argument and execute a specific SQLite function for
each type. If the class of the argument is not one that you support, you release the
statement and raise an exception.

Add the bindArguments:parameters:toStatement method to the PrivateMethods
category.

Refactoring and Cleanup

Now that you have this function, you can do a bit of cleanup.

executeSql: is really a simpler case of executeSql:withParameters:, so let’s change it
to reflect this:

- (NSArray *) executeSql: (NSString *) sql

return [self executeSql: sql withParameters: nil];

Next we’ll add a convenience function to allow parameters to be specified using variable
arguments similar to the NSArray arrayWithObjects: method.

- (NSArray *) executeSqlWithParameters: (NSString *) sql, ...
{

va_list argumentList;

va_start(argumentList, sql);

NSMutableArray *arguments = [NSMutableArray array];
id argument;

while(argument = va_arg(argumentList, id))

[arguments addObject: argument];

va_end(argumentlList);

return [self executeSql:sql withParameters: arguments];

Add this function to ISDatabase.h.

Note that this list should take only object arguments and always be nil terminated, just
like NSArray arrayWithObjects:. You can try this by modifying viewDidLoad in
RootViewController.m. Change the executeSQL line to the following:

self.results = [appDelegate.database executeSqlWithParameters:@"SELECT * from

GroceryItem _
where number < ?", [NSNumber numberWithInt:5], nil];

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

Build and run. Figure 5-9 shows the resulting view.

_

oranges

Figure 5-9. Another riveting data-backed view

Grouping Statements into Transactions

No database implementation is complete without support for transactions. Transactions
allow multiple SQL statements to be grouped so that they can be submitted or reverted
as a group, preventing partial commits and corrupted data structures in the case that a
statement fails. Transaction support is easy in SQLite. Add these three functions to
ISDatabase.m:

- (void) beginTransaction

[self executeSql:@"BEGIN IMMEDIATE TRANSACTION;"];

- (void) commit

[self executeSql:@"COMMIT TRANSACTION;"];

- (void) rollback

[self executeSql:@"ROLLBACK TRANSACTION;"];

Add these three methods to ISDatabase.h.

You use the IMMEDIATE transaction type here. This is generally sufficient for most needs.
There are other transaction types that may be useful in certain situations. These are
summarized in Table 2-1.

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

Table 2-1. SQLite Transaction Types

Transaction Type Description

IMMEDIATE Database locks are acquired when the BEGIN statement is
issued. This prevents other threads or processes from writing
to the database until the transaction is committed or rolled
back.

DEFERRED This is the default transaction type. No locks are acquired
until the database is written to or read from. Reading creates a
shared lock that allows other threads to also read; writing
creates a reserved lock that prevents other threads from
writing to the database until the transaction is committed or
rolled back.

EXCLUSIVE This type of locks prevents other threads or processes from
reading or writing to the database until the transaction is
committed or rolled back.

Now you’ll add transactions to the schema creation code in GrocerylListAppDelegate.m
applicationDidFinishLaunching:

if(![[database tableNames] containsObject:@"GroceryItem"])
{

[database beginTransaction];

[database executeSql:@"create table GroceryItem (primaryKey integer _
primary key autoincrement, name text NOT NULL, number INTEGER NOT NULL)"];
[database executeSql:@"insert into GroceryItem (name, number) _
values('apples', 5)"1;
[database executeSql:@"insert into GroceryItem (name, number) _
values('oranges', 3)"];

[database commit];

Writing a Simple Active Record Layer: ISModel

Easy access to raw SQL result sets is only half the battle; the other half is mapping the
returned results into your object model. In times of yore, developers created manual
mappings between the NSDictionary/HashMap/What-Have-You and each model object.
Every time an object or table changed, the mapping code had to change.

Objective-C’s message-driven nature and key/value coding make this significantly
easier. In this section, I'll walk you through creating a flexible mapping layer that handles
this automatically. This requires extension from a base class; to continue with my
naming convention, | called this class ISModel. The header for ISModel with the
properties starts out looking like this:

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

@class ISDatabase;

@interface ISModel : NSObject {
NSUInteger primaryKey;
BOOL savedInDatabase;

@property (nonatomic) NSUInteger primaryKey;
@property (nonatomic) BOOL savedInDatabase;

@end

primaryKey is the unique ID of the object; savedInDatabase keeps track of whether this
object has already been saved or not. Add ISDatabase.h to the list of imports and the
following synthesize statements in the ISModel.m file:

@synthesize primaryKey;
@synthesize savedInDatabase;

Maintaining the Database Connection

The Active Record design pattern involves using “finder” class methods on the model
classes to retrieve the model objects from the database. To do this, they will need a
reference to the database connection. It has to be either passed in to the method or
stored somewhere that is available to all the model classes that require it. | use a static
variable in the ISModel class to contain this (add this before the @implementation line):

static ISDatabase *database = nil;

Since this connection is global to all ISModel classes in the implementation, you need to
add some class-level setters and getters for this property:

+ (void) setDatabase: (ISDatabase *) newDatabase
[database autorelease];
database = [newDatabase retain];
+ (ISDatabase *) database
return database;
These will need to be called with the database before any of the ISModel SQL methods

are called. Add the declarations to ISModel.h so that you can call them from outside the
class.

The Model Object: Grocery ltem

Next you create a simple subclass of ISModel with two properties:
#import "ISModel.h"

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

@interface GroceryItem : ISModel {
NSString *name;
NSNumber *number;

}

@property (nonatomic, retain) NSString *name;
@property (nonatomic, retain) NSNumber *number;

@end

And do this in the implementation:

@synthesize name, number;
- (void) dealloc

[name release];
[number release];
[super dealloc];

This is all the code you’ll need to create a model that can work with the database.
Everything else is handled by the ISModel superclass.

How Groceries Are Mapped

Before you can get to the various SQL operations for ISModel, you’ll need to add some
basic methods to get the metadata for the class. This will tell you how to map instances
of the class to rows and columns in a database table. Unless otherwise stated, the
following methods should be added to the ISModel.m file. First up is retrieving the name
of the associated table:

+ (NSString *) tableName
{

return NSStringFromClass([self class]);
}

Here you’re relying on the convention that the table name will be the same as the class
name. This method could be altered to allow for other naming conventions such as
custom table prefixes, but you’ll keep it simple here.

To do the mapping, you need a list of column names:
- (NSArray *) columns
if(tableCache == nil)

tableCache = [[NSMutableDictionary dictionary] retain];

NSString *tableName = [[self class] tableName];
NSArray *columns = [tableCache objectForKey:tableName];

if(columns == nil)
{

columns = [database columnsForTableName: tableName];

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

[tableCache setObject: columns forKey: tableName];
}

return columns;

This relies on a static variable you add to the top of ISModel:
static NSMutableDictionary *tableCache = nil;

You cache the column names so that you don’t have to retrieve them from the database
each time you run a SQL statement. Column names are retrieved from ISDatabase using
a new function defined in ISDatabase.m:

- (NSArray *) columnsForTableName: (NSString *) tableName

NSArray *results = [self executeSql: [NSString stringWithFormat:_
@"pragma table info(%@)", tableName]];

return [results valueForKey:@"name"];

This function uses the table info SQLite pragma command to return the list of column
names.

Add columnsForTableName: to ISDatabase.h.

For many methods, SQLite handles the primary key column for you, so it is useful to
have a convenience method to get the list of columns without the key. Add the following
to ISModel.m:

- (NSArray *) columnsWithoutPrimaryKey

NSMutableArray *columns = [NSMutableArray arrayWithArray: [self columns]];
[columns removeObjectAtIndex:0];

return columns;

}

To persist the properties, you need their values in the same order as the columns:
- (NSArray *) propertyValues
{

NSMutableArray *values = [NSMutableArray array];
for (NSString *columnName in [self columnsWithoutPrimaryKey])

id value = [self valueForKey: columnName];
if(value != nil)
[values addObject: value];

telse{
[values addObject:[NSNull null]];
}

return values;

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

Let’s add some code to test that everything is working as expected. Add the following
method:

- (void) testProperties

NSLog(@"column names: %@", [self columns]);

NSLog(@"column names without primary key: %@", [self _
columnsWithoutPrimaryKey]);

NSLog(@"propertyValues: %@", [self propertyValues]);

First you need to tell ISModel which database to use. Import ISModel.h in
GrocerylListAppDelegate.m, and add the following line before the addSubview: call:

[ISModel setDatabase:database];

Then switch to RootViewController.m. Import GroceryItem.h, and add the following

lines to the bottom of viewDidLoad:

GroceryItem *item = [[[GroceryItem alloc] init] autorelease];

item.name = @"Kiwi";

item.number = [NSNumber numberWithInt: 20];

[item testProperties];

Compile and run (ignore the warning about testProperties for now), and you should see
something similar to Figure 5-10.

1 Grocerylist - Debugger Console

y =t = \
Simulator - 2.2 | Debug é\ Q' @ \w =) '!
Overview Bulld and Co Tasks Restart Pause Activate Clear Log
2009-06-18 12:38:15.198 GroceryList[1579:20b) column names: (-
primaryKey,
name,
number

)
2009-06-18 12:38:15.199 GroceryList[1579:20b] column names without primary key: (
name,
number
)
2009-06-18 12:38:15.201 GroceryList[1579:20b] propertyvalues: (
Kiwi,
20

)
$

GroceryList launched @Succeeded -

Figure 5-10. Console output showing the model information

After verifying that this works, delete the testProperties function in ISModel.m and the
test code you just added in RootViewController.m viewDidLoad.

Saving

The first operation you’ll look at is saving an instance of this object to the database.
You’ll start from the save method and work your way through each required piece. This
is in ISModel.m. The following is the code for saving:

- (void) beforeSave

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

- (void) save
[[self class] assertDatabaseExists];
[self beforeSave];
if(!savedInDatabase)

[self insert];
telse{
[self update];

}

Add save to the header. This function first checks to see whether the database exists
using the following:

+ (void) assertDatabaseExists

NSAsserti(database, @"Database not set. Set the database using [ISModel _
setDatabase] before using ActiveRecord.", @"");

}

This raises an exception if the database has not been set before this code is run. Add
this near the top of the file to prevent warnings from being generated every time you call
it.

Next the beforeSave callback is called; this allows subclasses to add custom behavior
for each object when it is saved.

The code then checks to see whether the object has already been saved. If it has not,
insert is called, creating a new row in the database for this object. Otherwise, update is
called, saving the object state to the existing database row. You insert a row by
delegating to ISDatabase:

- (void) insert
NSMutableArray *parameterList = [NSMutableArray array];
NSArray *columnsWithoutPrimaryKey = [self columnsWithoutPrimaryKey];
for(int i = 0; i < [columnsWithoutPrimaryKey count]; i++)

[parameterList addObject: @"?"];

NSString *sql = [NSString stringWithFormat:@"insert into %@ (%@) values(%@)", _
[[self class] tableName], [columnsWithoutPrimaryKey componentsJoinedByString: _
@","],[parameterList componentsJoinedByString:@","]];

[database executeSql: sql withParameters: [self propertyValues]];
savedInDatabase = YES;
primaryKey = [database lastInsertRowId];

}

Create a new PrivateMethods category at the top of the ISModel file similar to what you
did for ISDatabase. Add this method to it.

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

insert gets a list of the columns, excluding the primary key (which is handled
automatically by SQLite), and steps through them, adding a ? placeholder for each. You
then construct the SQL statement using the column names and the placeholders.
executeSql: takes the statement and the list of property values and does the actual
save to the database. The object is then marked as saved, and the primary key is
retrieved and stored in the primaryKey property using a new method that you need to
define in ISDatabase.m and expose in ISDatabase.h:

- (NSUInteger) lastInsertRowId

return (NSUInteger) sqlite3 last insert_rowid(database);

This returns the primary key of the last inserted row.

Updating
If you’ve already saved the object, you need to update the existing row instead of
inserting a new one:
- (void) update
NSString *setValues = [[[self columnsWithoutPrimaryKey] _
componentsJoinedByString:@" = ?, "] stringByAppendingString:@" = ?"];
NSString *sql = [NSString stringWithFormat:@"update %@ set %@ where primaryKey _
= ?", [[self class] tableName], setValues];

NSArray *parameters = [[self propertyValues] arrayByAddingObject: [NSNumber _
numberWithUnsignedInt:primaryKey]];

[database executeSql: sql withParameters: parameters];
savedInDatabase = YES;

This runs a simple SQL update statement. Add this method to the PrivateMethods
category.

Deleting

Deleting an object is equally simple:
- (void) beforeDelete
{

% (void) delete

[[self class] assertDatabaseExists];
if(!savedInDatabase)

{

return;

[self beforeDelete];

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

NSString *sql = [NSString stringWithFormat:_
@"delete from %@ where primaryKey = ?", [[self class] tableName]];
[database executeSqlWithParameters: sql, _
[NSNumber numberWithUnsignedInt:primaryKey], nil];

savedInDatabase = NO;

primaryKey = 0;
}
You mark the object as not saved and clear out the primary key. You also call another
stub callback function, beforeDelete.

Add delete to ISModel.h.

Let’s add some test code to make sure that you can create, update, and delete objects.
Switch to RootViewController.m, and replace viewDidLoad with the following:
- (void)viewDidLoad {

[super viewDidLoad];

GrocerylListAppDelegate *appDelegate = (GrocerylListAppDelegate *)[[UIApplication
sharedApplication] delegate];

NSString *sql = @"SELECT * from Groceryltem";

Groceryltem *kiwi = [[[Groceryltem alloc] init] autorelease];

kiwi.number = [NSNumber numberWithint:5];

kiwi.name = @"Kiwi";

NSLog(@"items before save: %@", [[appDelegate database] executeSql:sql]);
[kiwi save];

NSLog(@"items after save: %@", [[appDelegate database] executeSql:sql]);
kiwi.name = @"Kiwifruit";

[kiwi save];

NSLog(@"items after update: %@", [[appDelegate database] executeSql:sql]);
[kiwi delete];

NSLog(@"items after delete: %@", [[appDelegate database] executeSql:sql]);

self.results = [appDelegate.database executeSqlWithParameters:@"SELECT * _
from GroceryItem where number < ?", [NSNumber numberWithInt:5], nil];

}

Compile and run. You should see a list of items for each change printing out in the
console. The kiwi item is added, updated, and then deleted. Once you’ve run it, undo
these changes.

Finding Grocery Items

You can now create, update, and delete your grocery items, but all of that is pretty
useless if you can’t get them back out of the database. In this section, you’ll add
methods to look up your model objects. In Active Record, these are usually referred to
as finder methods, or just finders.

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

All the finders should be added to the ISModel.m class and its header file. You'll start
with the most specific, on which the others are based:

+ (NSArray *) findWithSql: (NSString *) sql withParameters: (NSArray *) parameters
[self assertDatabaseExists];

NSArray *results = [database executeSql:sql withParameters: parameters
withClassForRow: [self class]];

[results setValue:[NSNumber numberWithBool:YES] forKey:@"savedInDatabase"];

return results;

This takes a simple SQL statement that may contain placeholders and a list of
parameters to bind to the statement and calls a new function in ISDatabase:
executeSql:withParameters:withClassForRow. ISDatabase will return an NSArray of
results that are instances of the provided class. Their properties will be automatically
set.

In ISDatabase, change the executeSql:withParameters: method signature to the
following:

- (NSArray *) executeSql: (NSString *) sql withParameters: (NSArray *) _
parameters withClassForRow: (Class) rowClass

Add this as a new signature to the header, rather than replacing the existing signature.
We'll be adding a new executeSql:withParameters method shortly.

Next find the following line in this method:
id row = [[NSMutableDictionary alloc] init];

Change this to the following:

id row = [[rowClass alloc] init];

Values are now set on instances of the passed-in class rather than always being set on
NSMutableDictionary objects. Setting values into an instance of the model object class
directly using key-value coding saves you a copy step from the dictionary to the final
class. This results in a significant performance boost for larger data sets that justifies the
added complexity.

The copyValuesFromStatement:toRow:queryInfo:columnTypes:columnNames: function
needs its signature changed as well, changing the toRow parameter type from
NSMutableDictionary to id. Remember to update the PrivateMethods category at the
top of the file as well.

- (void) copyValuesFromStatement: (sqlite3_stmt *) statement toRow: _
(id) row querylnfo: (NSDictionary *) querylnfo columnTypes: _
(NSArray *) columnTypes columnNames: (NSArray *) columnNames

Finally, add the following convenience method, replacing the old method with the same
signature:

- (NSArray *) executeSql: (NSString *) sql withParameters: (NSArray *) parameters

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

return [self executeSql:sql withParameters:parameters withClassForRow: _
[NSMutableDictionary class]];

}

Now that you have the base finder method, you can add a few more that make certain
types of lookups easier. Add the following to ISModel.m:

+ (NSArray *) findWithSqlWithParameters: (NSString *) sql, ...
{

va_list argumentlList;
va_start(argumentList, sql);

NSMutableArray *arguments = [NSMutableArray array];
id argument;
while(argument = va_arg(argumentList, id))

[arguments addObject: argument];

va_end(argumentlList);

return [self findWithSql:sql withParameters: arguments];

}
+ (NSArray *) findWithSql: (NSString *) sql

return [self findWithSqlWithParameters:sql, nil];

+ (NSArray *) findByColumn: (NSString *) column value: (id) value
{

return [self findWithSqlWithParameters:[NSString stringWithFormat:@"select *
from %@ where %@ = ?", [self tableName], column], value, nil];

}
+ (NSArray *) findByColumn: (NSString *) column unsignedIntegerValue:_
(NSUInteger) value
return [self findByColumn:column value: [NSNumber numberWithUnsignedInteger:
value]];

}
+ (NSArray *) findByColumn: (NSString *) column integerValue: (NSInteger) value
{

return [self findByColumn:column value: [NSNumber numberWithInteger:value]];
+ (NSArray *) findByColumn: (NSString *) column doubleValue: (double) value
{

return [self findByColumn:column value: [NSNumber numberWithDouble:value]];
+ (id) find: (NSUInteger) primaryKey
{

NSArray *results = [self findByColumn: @"primaryKey" _
unsignedIntegerValue: primaryKey];

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

if([results count] < 1)

{
}

return [results objectAtIndex:0];

return nil;

}
+ (NSArray *) findAll
{

return [self findWithSql: [NSString stringWithFormat:@"select * from %@", _
[self tableName]]];

}

Add all of these to the header file. You now have the methods you need to do any type
of lookup you want, including custom SQL lookups when you need them. | try to put
most SQL statements used with findWithSql: into the subclass as additional finder
methods. This keeps the SQL from leaking out into my controller layer.

Putting It All Together

Now that you have the create, read, update, and delete (CRUD) operations complete,
you are ready to get rid of the raw SQL in the example and start working directly with the
model objects. Add GroceryItem.h to the import statements for
GrocerylListAppDelegate.m. Replace applicationDidFinishLaunching:

(void)applicationDidFinishLaunching: (UIApplication *)application

{
database = [[[ISDatabase alloc] initWithFileName:@"TestDB.sqlite"] autorelease];
if(![[database tableNames] containsObject:@"GroceryItem"])
{

[database beginTransaction];
[database executeSql:@"create table GroceryItem(primaryKey integer primary
key autoincrement, name text NOT NULL, number integer NOT NULL)"];

[database executeSql:@"insert into GroceryItem (name, number)
values('apples', 5)"];

[database executeSql:@"insert into GroceryItem (name, number)
values('oranges', 3)"];

[database commit];

}
[ISModel setDatabase:database];

NSArray *results = [GroceryItem findByColumn:@"name" value:@"Bananas”];
if([results count] < 1)

GroceryItem *bananas = [[[GroceryItem alloc] init] autorelease];
bananas.name = @"Bananas"”;

bananas.number = [NSNumber numberWithInt: 10];

[bananas save];

}

// Configure and show the window
[window addSubview:[navigationController view]];

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

[window makeKeyAndVisible];

}

In RootViewController.m, remove the ISDatabase.h import statement, and change the
viewDidLoad function to the following, which is simpler:

- (void)viewDidlLoad {
[super viewDidLoad];
self.results = [GroceryItem findAll];

}

Add the following line to the top of tableView:cellForRowAtIndexPath:

GroceryItem *result = [results objectAtIndex:indexPath.row];

Further down in the function, change the following:

cell.textLabel.text = [[results objectAtIndex:indexPath.row] objectForKey: @"name"];
to this:

cell.textLabel.text = [NSString stringWithFormat:@"%@: %@", result.name,

result.number];

Also change the following:
cell.text = [[results objectAtIndex:indexPath.row] objectForKey: @"name"];

to this:
cell.text = [NSString stringWithFormat:@"%@: %@", result.name, result.number];

You're now displaying the number of items as well. Running this should produce the
view in Figure 5-11.

|
apples: 5
oranges: 3

bananas: 10

Figure 5-11. A grocery list backed by Active Record. Now with 100 percent more bananas!

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

Simple Migration Handling

| don’t think any persistence implementation is complete without some discussion of
migrating from one version of a database schema to another. | try to keep migrations
simple. | rely on a new table, which | usually call ApplicationProperties, that stores the
current version of the schema and any other properties | want to store for the entire
application. | then check that version number on launch, and if an old version is
detected, | run the necessary SQL to do the migrations. | stay away from using the
actual model classes during the migration, because that can cause compatibility issues
if you ever delete or rename a model class that would prevent the migrations from
running.

First, create a subclass of ISDatabase called ExampleDatabase. This will contain all the
application-specific database handling and migration code.

Add ISModel to the import statements for ExampleDatabase.m, and add the following
init method:

- (id) initWithMigrations
if(self = [super initWithFileName:@"Example.sqlite"])

[self runMigrations];
[ISModel setDatabase:self];

return self;

}
Add this to the header file as well.

This creates a database file in your app’s documents directory with the name
Example.sqlite and sets the ISModel database so that Active Record will work properly.
Next add the method to actually run the migrations:

- (void) runMigrations
[self beginTransaction];
NSArray *tableNames = [self tableNames];
if(![tableNames containsObject: @"ApplicationProperties"])

[self createApplicationPropertiesTable];
[self createGroceryItemTable];
//add any other version 1 schema creation code here

}

[self commit];

}

You wrap the entire migration in a transaction. If any step fails, all the changes are rolled
back. This prevents some steps from failing and later steps from succeeding that would
put the database in an inconsistent state that is very difficult to recover from.

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

The first check is just for the existence of the ApplicationProperties table. Subsequent
migration steps will check the version number to determine whether a migration should
be run. Put all your initial schema creation code in this block.

Individual tables and changes are broken out into their own functions to make it easier
to see the general flow of the migration separate from the sometimes-complex
implementation details. Add the following implementation functions:

- (void) createApplicationPropertiesTable

[self executeSql:@"create table ApplicationProperties (primaryKey integer _
primary key autoincrement, name text, value integer)"];

[self executeSql:@"insert into ApplicationProperties (name, value) _
values('databaseVersion', 1)"];

}

- (void) createGroceryItemTable

[self executeSql:@"create table GroceryItem (primaryKey integer primary key _
autoincrement, name text NOT NULL, number INTEGER NOT NULL)"];
[self executeSql:@"insert into GroceryItem (name, number) values('apples', 5)"];
[self executeSql:@"insert into GroceryItem (name, number) _
values('oranges', 3)"];

}
At the top of the file, add a new PrivateMethods category:

@interface ExampleDatabase(PrivateMethods)
- (void) runMigrations;

- (void) createApplicationPropertiesTable;
- (void) createGroceryItemTable;

@end

Now change the application delegate applicationDidFinishLaunching: to the following:

- (void)applicationDidFinishLaunching: (UIApplication *)application {
self.database = [[[ExampleDatabase alloc] initWithMigrations] autorelease];

NSArray *results = [GroceryItem findByColumn:@"name" value:@"Bananas"];

if([results count] < 1)

{

GroceryItem *bananas = [[[GroceryItem alloc] init] autorelease];
bananas.name = @"Bananas";

bananas.number = [NSNumber numberWithInt: 10];

[bananas save];

[window addSubview:[navigationController view]];
[window makeKeyAndVisible];

}

Remove the ISDatabase and ISModel import statements, and add ExampleDatabase.h.

Compile and run. A new database file will be created and migrated to version 1, creating
the initial tables and populating them. Subsequent runs will see that
ApplicationProperties already exists and skip that migration step.

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

Next you will make a small change to the schema, adding a new column to GroceryItem
called price. Add the following to runMigrations in ExampleDatabase.m, before the
commit:

if([self databaseVersion] < 2)

[self setDatabaseVersion:2];
[self addPriceToGroceryItemTable];

Add the function addPriceToGroceryItemTable:
- (void) addPriceToGroceryItemTable

[self executeSql: @"alter table GroceryItem add price real"];
}

Add the following convenience functions:
- (void) updateApplicationProperty: (NSString *) propertyName value: (id) value

[self executeSqlWithParameters: @"update ApplicationProperties set value = ? _
where name = ?", value, propertyName, nil];

}
- (id) getApplicationProperty: (NSString *) propertyName

NSArray *rows = [self executeSqlWithParameters: @"select value from _
ApplicationProperties where name = ?", propertyName, nil];

if([rows count] == 0)

return nil;

}

id object = [[rows lastObject] objectForKey:@"value"];
if([object isKindOfClass: [NSString class]])
{

object = [NSNumber numberWithInteger:[(NSString *)object integerValue]];

return object;

(void) setDatabaseVersion: (NSUInteger) newVersionNumber
return [self updateApplicationProperty:@"databaseVersion" value:[NSNumber _
numberWithUnsignedInteger: newVersionNumber]];
- (NSUInteger) databaseVersion

return [[self getApplicationProperty:@"databaseVersion"] unsignedIntegerValue];

Add these methods to the PrivateMethods category:

@interface ExampleDatabase(PrivateMethods)
- (void) runMigrations;
- (void) createApplicationPropertiesTable;

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

- (void) createGroceryItemTable;

- (void) addPriceToGroceryItemTable;

- (void) updateApplicationProperty: (NSString *) propertyName value: (id) value;
- (id) getApplicationProperty: (NSString *) propertyName;

- (void) setDatabaseVersion: (NSUInteger) newVersionNumber;

- (NSUInteger) databaseVersion;

@end

These functions allow you to easily set and get any database property with helper
functions for the database version property. Running the code now will migrate the
database to version 2 and throw an error; we forgot to add the price property to the
GroceryItem model class. Add it as an NSNumber property. All columns in the database
must have corresponding properties on the model objects. The inverse is not true; the
model can have “transient” properties that are not stored in the database.

Running the application again will work as expected. That’s it! Adding new migrations is
a simple as adding a little bit of SQL. All previous versions will upgrade seamlessly, and
you are free to migrate data and update other resources inside the migrations

as well.

CAUTION: You should note that although supported by SQLite, access from multiple threads is
not recommended. This Active Record code makes no attempt to handle multiple threads. In
particular, access to the same database handle from multiple threads will result in errors being
thrown. | recommend that you have one thread that handles all your SQL access.

Alternative Implementations

There are several alternatives to this implementation that are worth considering.

For very simple data storage needs, you may be able to get by with serializing your data
to a plist file using the NSCoder APIs. This has the advantage of being as simple as a call
towriteToFile:atomically:. The disadvantage is that the entire data set has to be
loaded into memory each time, and there is no built-in way to search through the
objects and bring back just the necessary set. This isn’t recommended for storing more
than a handful of records.

If your application has higher data demands, there are other higher-end alternatives as
well. It seems like every time | check, there are a few more floating around to handle
this. The two I’'m familiar with are FMDB and Apple’s implementation of an object graph
persistence framework: Core Data.

FMDB is roughly equivalent to the ISDatabase class, with some code to handle more
automatic retries, the option to store prepared statements for a speed boost, and
handling for more SQLite error states. It’s a solid implementation, and you wouldn’t be
remiss in using this as the basis for an Active Record variant of your own.

Core Data is Apple’s persistence framework. It has built-in Xcode support for creating
schemas and migrations visually. It is fast, robust, and available as of iPhone SDK 3.0.

CHAPTER 5: Stick Around: Building Data-Driven Applications with SQLite

Being used to SQL, | find myself more comfortable in that world. If you’re less familiar
with SQL, then this should be the first persistence framework that you try if you are
looking for something to handle the heavy lifting for you. | suggest using the SQLite
persistence store option; it is generally better at handling larger data sets efficiently and
has no real drawbacks.

Summary

In this chapter, you went through building a simple Active Record implementation from
the ground up. You started with the SQLite C APIs and built a wrapper around them to
make data access using SQL less of a chore. From there, you used a simple class as the
basis for saving and retrieving your model objects from the database. Then you took a
quick foray into the world of migrations, making sure that you can build on earlier
versions of your database when moving to the next version of your application. Finally, |
discussed a few alternatives to this implementation.

| hope you now have a good working knowledge of the SQLite APIs available on the
iPhone and a good basis for building a data-driven application. | look forward to hearing
about what you do with it!

Consultant, Ganymede Resources
Sunnyvale, CA

Data Application and Ul development, 15 years in
Apple, 7 in the WebObjects team in Developer Tools. Managed servers when
gopher was still cool. Developed Cocoa applications, Xcode plugins, Server
Admin Ul, deployment tools for web applications. Developer for extensions and

custom web Ul in Firefox, worked at Mozilla after Apple. Studying mathematics
at SJSU.

ClickAccuracy (Developer Utility), Collectionator,
iPhoneSmart Analytics framework/infrastructure, MindOverMatter game suite

7 /K\
-7

Modeling with CoreData

Dealing with Schema Migration

A “Flexible Schema” Object Class
Connecting to Remote Databases

Testing Data iPhone Apps

CoreData

Xcode
MigrationManager
NSKeyValueCoding

Chapter

Core Data and Hard-Core
Design

The iPhone is an amazing device for getting information at a moment’s notice. Whether |
am waiting for a train, waiting in line for coffee, or waiting on hold for someone to pick
up the phone, thoughts come to me, and | may need to answer a question quickly in
order to do something useful with the thought. If | wait until later, when | have more time,
then | have often forgotten the idea or question.

The iPhone has a lot of data applications, suited to whatever particular task you have.
And if you have that niche market idea or that odd situation where people want to
organize information in some particular way, then you can create your own data
application for them. The iPhone has tools that make it surprisingly easy to design
these apps so that you can let users use your interface and reuse their data in
interesting ways.

The key to designing a good data application for the iPhone is simplicity. For most data
people, this cuts across the grain. Every time | create a data application, | want the
application to know everything, do everything, hold the users in its hands, and make
them feel comfortable because absolutely everything is taken care of by the application.
The iPhone interface is constrained, though. You absolutely cannot do everything, no
matter how much you want to do so. You must do just what your users need at that
moment and nothing more.

Making your application responsive and flexible is more important than handling every
situation. So, how can the tools that we have available help us create the right kind of
application? It turns out that if you want to focus on the user experience and not on the
database and if you want to think about the user workflow and not tables and columns
and joins, then Core Data will be your friend.

183

CHAPTER 6: Core Data and Hard-Core Design

Where Did Core Data Come From?

It turns out that Core Data did not just leap, fully grown, out of someone’s head in
Cupertino. Core Data is not even new with Mac OS X 10.4, where it first appeared within
Apple. Core Data has a long interesting history, and, really, you never know when you
will need an extra acronym or two to put on your resume.

Core Data was first added to the iPhone SDK with version 3.0. Core Data appeared in
Mac OS X in Tiger (Mac OS X 10.4), but it actually has a much longer history than that. It
was first developed at NeXT Computer as the DBKit framework in 1992, which then
became the Enterprise Object Framework (EOF) in 1994. EOF was used to develop
flexible applications on NeXT’s operating systems, NeXTStep and OpenStep. You could
build these applications for NeXT systems, Windows NT, or Solaris. Realizing that
objects can be displayed via HTML as easily as via a custom application interface, the
engineers at NeXT added WebObjects as a display layer for EOF.

EOF is an object-relational mapping (ORM) framework. It is well designed, is robust,
encourages Model View Controller (MVC) design patterns, and was the conceptual
forerunner of much later work in the industry. When | was at Apple, | heard that Sun
attempted to purchase EOF and, when it could not, decided to create the JDBC library.
And this may even be true. Additionally, Microsoft has been trying to create tools that
match what is provided in WebObjects and EOF and has hired many of the software
designers who worked at NeXT.

EOF and WebObjects were ported to Java in 1997 so that applications could run on any
platform on which a Java VM was available. This got Apple out of the job of supporting,
for example, an HP/UX version of the framework. It was very successful, it generated
sales of Mac OS X Server machines, and there were active discussion groups among
users of EOF and WebObjects that were more active than with almost any other Apple
technology. Apple has never been comfortable with the enterprise market, though, and
WebObijects has the stigma of being an “enterprise technology.” WebObjects and EOF
entered a long period of...quiet. The online store still used it, so Apple depended on it for
money but was not sure about how to market it to other businesses. Personally, | believe
that Steve Jobs will be comfortable talking about “the enterprise” when Pixar is making
a Star Trek movie and not one day before.

The Client Is King

Core Data is, in a way, the step backward that was needed to make a step forward.
From when | was at Apple, | know the company has always been about making shiny,
pretty applications. It wants the “Wow!” in everything it does. It was never clear how
EOF fit into that. It organizes your data for you? Really? That’s nice. Yawn....

EOF had a history, with the EOF Application of the OpenStep days, as a client-access
technology, so performance had been tuned for that usage. But it was ported to Java
and then was used for very large applications at Apple and in companies such as

Bell South and Deutsche Bank. The Apple Store still uses it, and the iTunes Store is a
WebObjects application modified to push out XML instead of HTML. So, it was also

CHAPTER 6: Core Data and Hard-Core Design

tuned for long-running processes, large data sets, and a long mean time between
failures (MTBF).

Tuning for both quick and agile client access and for long-running server processes is a
contradiction. This contradiction was never been resolved in WebObjects/EOF. With
Core Data, though, Apple ported EOF back to Objective-C. Objective-C is a very flexible
dynamic language and runtime, and this helped bring back the old efficiencies. It was
now clear where the goal of the performance tuning should be. Core Data is only about
the client. Many Mac OS X applications do not track MTBF in their testing, for example,
and it is even less of a concern on the iPhone.

Core Data provides very deep classes for very little effort. You do not need to think
about tables but rather entities, which are just “things.” You do not need to think about
columns or joins but rather attributes and relationships. And these attributes and
relationships are abstractly defined, in much the same way you see attributes defined in
Eiffel. A join between two tables in a database has to follow some rules and be defined
in a certain way, but a relationship in a Core Data entity may merely be a method that
returns a collection of multiple...things. These things can be described in different ways.
Key-Value Coding (KVC) and Key-Value Observing (KVO) are protocols for tracking or
retrieving data from an object. As long as an object responds to the protocols, it can do
almost anything it wants.

A Very First Core Data App

When | first got an iPhone and looked at the database apps, | knew there was work to
do there. Well, at first | could not find any database apps. Then | realized that finding
things in the usual way on the App Store is a joke, so after plowing through a bunch of
stuff, | realized there was still a lot to do. What could | do first? First, | wanted to do my
usual “keep track of everything” application. | have created this application on different
platforms with different languages and tools, and, somehow, it is never finished. Hm.
Perhaps | should try something simpler, with a slightly more manageable scope. A to-do
application? Another one? How about something else?

An application for the iPhone can be finely tuned to some task. It is harder to make an
iPhone app that does something big. What about event planning? Event planners need
to be able to keep track of events they are planning, keep track of what they need to
have for an event, and export this information to something outside the phone. What will
| need to track in order to create successful events? | have absolutely no ideal But, it is
important that | know that | do not know this.

It is easy, sometimes far too easy, to take the fact that | understand software and use
that to convince myself that | understand something else, such as event planning. | can
make an application that is better than just a “take a note” application. How much
better? For $1.99 on the App Store, how much better does it have to be? | will just make
sure that whatever data the user puts in, they can get to it somewhere else. Letting the
user reuse their own data is never, ever a bad thing. | decided to make a simple
application to track events and their locations. But | can create a schema that is flexible
enough to be modified for other uses as well.

CHAPTER 6: Core Data and Hard-Core Design

First, Steal Code (Not Music!)

The first rule of being an effective software developer is that you need to know how to
steal code from people who are smarter than you are. In that spirit, | made my job easier
by starting with a project that Apple has provided in the iPhone SDK. | always look for
tutorials and try them so | can learn by doing and not just reading. You can find the
“Core Data Tutorial for iPhone OS” tutorial in the iPhone Developer Connection at
http://developer.apple.com, which is a very good place to start. | am using the GM
version of the iPhone SDK v 3.0, and this is what | will be referring to when | say “the
iPhone SDK.”

The tutorial that Apple provides steps you through the process of building the Locations
project. This project, as Apple has developed it, programmatically creates objects,
stores the objects in a database, and displays a list of those objects. Apple has written
some very good documentation here, and we should take advantage of that. But you
cannot assume that the documentation is very complete. The path that Apple has laid
out in that project is very clear, but there are several small steps you can take from there
that will lead you into very deep weeds. | will be trying to show you how to get out of
those weeds. | got covered in thorns here, and perhaps you will not need to do the
same. Go to the tutorial and step through the process until you can build and run the
application without crashes. There were a few problems with the tutorial, but they have
been corrected in the GM version of iPhone SDK, so everything in the tutorial works

as advertised.

One of the first things | wanted to do after the Locations project was built was rename
the eventsArray ivar. | ended up not doing this. If you do decide to rename any of the
ivars that you are using for properties, be careful. Make backup copies of your project
before you begin. | experimented with renaming eventsArray with the GM version of the
iPhone SDK, and it worked. However, when | was using one of the beta versions of the
SDK, | managed to crash Xcode as | was doing this. | am not sure whether | forgot
something as | was renaming things in the code or whether there was a bug in Xcode.
Using the @property and @synthesize tokens gives you some autogenerated code. For
example, you will see in Apple’s code that it calls the setEventsArray: method. Thisis a
method created for you because of the @synthesize token in the RootViewController
implementation. This is explained in the “Introduction to the Objective-C 2.0
Programming Language” document provided with the iPhone SDK. These method
names are created so that they follow the rules of the KVC protocol. KVC is powerful,
but KVC problems can be obnoxiously hard to diagnose. KVC lets you define an
interface using strings, and those strings are opaque to the compiler, but the strings
must match up with something at runtime. Errors may appear only at runtime, and the
paths by which they occur can seem...obfuscated. With the power of the abstractions,
you pay a price.

The tutorial application is very simple, and it initializes the database and sets up a lot of
things like magic. In particular, the UINavigationController does a lot for you, and the
tutorial relies quite a bit on the default behavior of this object. As you add to the
application, you will have to go back and understand some of what has been given to

CHAPTER 6: Core Data and Hard-Core Design

you and fill in some details. But you can see, from Figure 6-1, that the tutorial has given
you a start.

Jul 2, 2009 4:34:49 PM o Jul 2, 2009 4:34:49... m

Jul 2, 2009 4:34:48 PM e Jul 2, 2009 4:34:48 PM

Figure 6-1. The Locations project, before customization, with default table view and navigation controller
behaviors

But this does not do very much. You can add a data record and delete records, but you
cannot edit anything. You cannot drill down into any object. But it does store data.
(Yawn....) Let’s go get some coffee, shall we? (Queue intermission music.)

All right, we're back! One obvious way to extend the app is to let the user drill down into
a particular object instance. You could have a new type of view for this, or you could just
use another UITableViewController subclass. Of course, this will need an array, not just
one object. But | am going to treat the object as an array of attributes. | am going to use
KVC to examine the object. This will work with any NSManagedObject subclass and not
just this particular object.

A View to an Object, Any Object

You can make this controller more useful by making it more general. Right now, it is
displaying the event object in a very specific way. You may also notice that the “smarts”
about the way the event is being displayed is in the RootViewController class. However,
turning the numbers and dates in the object into displayable strings is not really a job for
the view. It would be more in keeping with the principles of the MVC design if the Event
class itself knew how to display an event. You can thus simplify the

tableView: (UITableView *)tableView cellForRowAtIndexPath: method by pushing that
logic to the Event class.

Now the RootViewController method will look like this:

CHAPTER 6: Core Data and Hard-Core Design

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath: (NSIndexPath *)indexPath {

static NSString *CellIldentifier = @"Cell";

// Dequeue or create a new cell UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIldentifier];

if (cell == nil) cell = [[[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleSubtitle reuseIdentifier:Cellldentifier] autorelease];

cell.textlLabel.text = [[eventsArray objectAtIndex:indexPath.row] description];
cell.detailTextLabel.text = [[eventsArray objectAtIndex:indexPath.row]
subdescription];

return cell;

The Event class now contains the following:
#import "Event.h"
@implementation Event
@dynamic longitude;
@dynamic latitude;
@dynamic creationDate;
- (NSString *)description {

static NSDateFormatter *dateFormatter = nil;

if (dateFormatter == nil) {

dateFormatter = [[NSDateFormatter alloc] init];

[dateFormatter setTimeStyle:NSDateFormatterMediumStyle];
[dateFormatter setDateStyle:NSDateFormatterMediumStyle];

return [dateFormatter stringFromDate:[self creationDate]];

- (NSString *)subdescription {
static NSNumberFormatter *numberFormatter = nil;

if (numberFormatter == nil) {
numberFormatter = [[NSNumberFormatter alloc] init];
[numberFormatter setNumberStyle:NSNumberFormatterDecimalStyle];
[numberFormatter setMaximumFractionDigits:3];

return [NSString stringWithFormat:@"%@, %@",
numberFormatter stringFromNumber:self.latitude],
numberFormatter stringFromNumber:self.longitude]];

@end

CHAPTER 6: Core Data and Hard-Core Design

The table given in the Locations tutorial does not respond when you click a row, but you
want something to happen. The UINavigationController gives you an easy way to
manage different kinds of views that are related to a hierarchy of objects. It allows you to
maintain a stack of view controllers. When your Ul is constrained, as it is on an iPhone,
you need to make views that are simple, are obvious, and do just what you need them to
do. Since a view can do only so much, you need a lot of views, and it turns out that
managing the views on a stack is amazingly useful. If you respond to a click in a table
row by creating another UIViewController subclass, you can push the new view
controller onto the stack. The UINavigationController will take care of setting up a
“back” button in the navigation bar. When the user clicks this button, the new view
controller will be automatically popped, and you will be back to the top level of your
object tree.

- (void)tableView: (UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath
*)indexPath {
[tableView deselectRowAtIndexPath:indexPath animated:NOJ;

EventViewController * eventController = [[EventViewController alloc] init];

[eventController setEvent:[eventsArray objectAtIndex:indexPath.row]];

[[LocationsAppDelegate delegate].navigationController
pushViewController:eventController animated:YES];

[eventController release];

You can create the EventViewController class now. It needs to be a subclass of
UIViewController. It is useful to test the behavior at this point, before you add anything
to your new class. If you test your application at this point, you will see the list of objects
on the left when you launch (or a similar list), and then you will see the blank view on the
right when you click a row. But you can verify that you can pop into this view and then
hit the Locations button in the navigation bar, and you will pop back to the list of
objects. As you can see in Figure 6-2, you can click any of the rows and come back out
of the view and then click another object and do it again.

CHAPTER 6: Core Data and Hard-Core Design

Jul 2, 2009 5:29:30 PM
Jul 2, 2009 4:45:58 PM

Jul 2, 2009 4:35:58 PM

Figure 6-2. The Locations project with an empty EventViewController

Let’s change the EventViewController so that it is a subclass of the
UITableViewController class and add a few properties. Now the interface file will be
thus:

#import <UIKit/UIKit.h>
@interface EventViewController : UITableViewController {

NSArray * attributeNames;
NSManagedObject * event;
}

@property (nonatomic,retain) NSArray * attributeNames;
@property (nonatomic,retain) NSManagedObject * event;

@end

You may be looking at the earlier declaration for the event and be wondering why you
are using an NSManagedObject here instead of the Event class itself. At first, | did use the
Event class, and then | had to import the header in the implementation files and use the
class tag for it in the interface files, but | realized | was not doing anything with Event
that an NSManagedObject could not do. This makes the EventViewController a very
reusable class. You can use the table view in such a way that it can display any object at
all. I could be talking about an Event object or a Book object or a BottleOfhWhiskey
object. It does not matter. Put them into your array, and this view controller will display
each attribute of the object, each in its own row. OK, this may not seem cool the first
time you are doing this, but the more code you have written, the more you get excited
about truly reusable view controllers.

CHAPTER 6: Core Data and Hard-Core Design

The following are the UITableViewDelegate methods that you need to put in the
EventViewController implementation file. You also need a viewDidLoad method to do
some setup:

- (NSInteger)tableView: (UITableView *)tableView numberOfRowsInSection:(NSInteger)section

return [[[event entity] attributesByName] count];

- (UITableviewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath: (NSIndexPath *)indexPath {

static NSString * Cellldentifier = @"Cell";

// Dequeue or create a new cell
//
UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
if (cell == nil) {
cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleSubtitle
reuseldentifier:Cellldentifier] autorelease];

}

cell.textlabel.text = [[event valueForKey:[self.attributeNames
objectAtIndex:indexPath.row]] description];
cell.detailTextLabel.text = [self.attributeNames objectAtIndex:indexPath.row];

return cell;

}
- (void)viewDidlLoad {
[super viewDidLoad];
self.title = [[event entity] name];
self.attributeNames = [[[event entity] attributesByName] allKeys];

With no more work than this, you can see in Figure 6-3 that you now have a much more
interesting object view.

CHAPTER 6: Core Data and Hard-Core Design

Jul 2, 2009 5:29:30 PM -122.030731
Jul 2, 2009 4:45:58 PM 37.331688

Jul 2, 2009 4:35:58 PM 2009-07-02 16:35:58 -0700

Figure 6-3. Now you see attribute names and values from any NSManagedObject.

You can use the UINavigationController here again and do something elegant. You
created an EventViewController, a subclass of a UITableViewController, and pushed it
in on top of the RootViewController. You can push other kinds of UIViewController
objects onto this stack as well. So, you can create a view and controller that takes an
attribute of an NSManagedObject and allows you to edit it. Most significantly, you can look
at the type of data you have in the attribute and push on a UIViewController subclass
configured to allow you to edit an attribute of that type.

For now, | have done this in the simplest manner possible. | created a
KeyValueViewController class and a KeyValueView class. Make sure you drag both the
header and implementation files for both of these classes from the downloaded code to
your project. | override the layoutSubviews method of the KeyValueView and
programmatically add the Ul elements | need for editing the attributes. | am just
displaying the values as strings by calling the description method on them, and then,
when the value is changed in the text field, | have to use the edited string and create a
new object of the appropriate type for the attribute. Every data type has a string
serialization and some way to get that object from a string serialization, so this should
always be possible.

There are more interesting views for particular data types that you could create. An
obvious one would be a map that you could click to set the latitude and longitude
attributes or a date picker. The point is that you can look at the type of the attribute for
the data in the selected row and, for each type, come up with the appropriate view
controller. Dynamically create that view controller and push it onto the navigation
controller’s stack, and everything works wonderfully.

CHAPTER 6: Core Data and Hard-Core Design

Our Very First Crash, or Perhaps Not!

The NSManagedObject has many tools that come with it that allow you a lot of flexibility.
Most people start out thinking of an entity as a wrapper for a table and attributes as
wrappers for columns. You can stop there and still do powerful applications. But a lot
more is possible. Be careful, though, because there are also some hidden traps. Every
framework has them. You know this. The designers document these things, but are they
proud of them? Do they make the documentation as easy to find or as obvious as they
can? Perhaps not.

Before you do anything else here, you should make a small fix to your application that
will prevent a crash and spare you the confusion it causes. Replace the
persistentStoreCoordinator static method in the LocationsAppDelegate class with this:

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator {
if (persistentStoreCoordinator != nil) { return persistentStoreCoordinator; }

NSURL *storeUrl = [NSURL fileURLWithPath: [[self applicationDocumentsDirectory]
stringByAppendingPathComponent: @"Locations.sqlite"]];

NSError *error;
NSDictionary * options = NSDictionary dictionaryWithObjectsAndKeys:
[NSNumber numberWithBool:YES], NSMigratePersistentStoresAutomaticallyOption,
[NSNumber numberWithBool:YES], NSInferMappingModelAutomaticallyOption,
nill;
persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc]
initWithManagedObjectModel: [self managedObjectModel]];
if (![persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType
configuration:nil
URL:storeUrl
options:options
error:8error]) {
// Handle error

}

return persistentStoreCoordinator;

Then click the xcdatamodel file in your project, and select the Design » Data Model »
Add Model Version menu option. Do not worry, for now, about what it does. It will make
sense soon. The tutorial from Apple had you pass nil for the options: parameter of the
addPersistentStoreWithType:configuration:URL:options:error method and did not
talk about versions of the data model. But now that you have done these two things, you
have gained some breathing space.

When | was working on this, before | knew how to deal with it, making changes to my
schema caused me a major upset. At this point, | wanted to modify the Event entity that
| had created. | added an attribute to my entity, which quickly led to a crash.

It seemed simple enough to do what | wanted. | innocently thought, “Hey, | want to add
this other thing to my Event entity....” Just dive into that shiny, bright graphical editor,

CHAPTER 6: Core Data and Hard-Core Design

and a few clicks later you created the whatever attribute, built the app, ran it, and
... 00ps.

Locations[20398:20b]*** Terminating app due to uncaught exception
"NSInternalInconsistencyException', reason: 'This
NSPersistentStoreCoordinator has no persistent stores. It cannot perform a
save operation.'

Hm. What is “no persistent stores”? But they were there just a minute ago, weren’t they?
This does not seem very persistent. What happened? And what am | now reading at the
end of the tutorial?

NOTE: One important item to remember is that, if you change the schema in your managed
object model, your application typically won’t be able to open files you created with an earlier
version.

CoreData Tutorial for iPhone 0S: Managing Model
Migrations

The problem is that | modified the schema in the project, but the database as it was last
used by my application, and how it appears in the iPhone’s database files, does not
match the new schema. But | cannot save objects into my new schema until | run the
application. But | cannot run the application, because the database as it was last used
by my application does not match the new schema. But | cannot save objects into my
new schema until | run the application. And around and around we go.

The implications of this issue for the applications you ship to your users are profound,
and | think it is worthwhile to understand what you can do about this issue and
understand what it will cost you if you do not plan for it. You may think, right now, that
you can define the schema for your application, and there will be no need to change it in
the future. Not only is that probably not true, but if you do not do the right thing when
there is a schema change, your application will crash. The user will have only one
option. They will have to delete your application, getting rid of all of its data, and
redownload the application again, without the data they had entered. Well, we hope they
will redownload the application again. They may not.

The Easy Migrations Are Easy

Migrating schemas in any database systems is complicated, but automatic migrations
can make it relatively painless.

| actually think it was a bit irresponsible for Apple to not include this option in the code in
its tutorial. That first tutorial leads developers down a set path, a simple path, a clear
path, but it is a path that leads directly to a cliff. The developers will try to change their
schema, and their app will crash. Are the steps to take at this point documented? Yes,

CHAPTER 6: Core Data and Hard-Core Design

but they are not very easy to find, given the severity of the error. The error says “no
persistent stores,” and this does not lead one to immediately look to the “Core Data
Model Versioning and Data Migration Programming Guide,” which Apple has published
to lead you away from the cliff...or to lead you off the rocks at the bottom of the cliff.
Apple engineers have told me that this “automatic” schema migration will handle most
of what users will want to do. | believe them. They are justifiably proud of what it can do.
But | do not know why they then sought to hide this functionality under a basket.

But let’s look at what you have been given. Using this option’s dictionary means that if
the changes you make to your model are relatively simple, then the application’s
PersistentStoreCoordinator instance will be able to figure out what to do. Or not. The
problem here is that Apple knows that, really, migrating databases is incredibly hard. Or
rather, it is one of those problems where handling the first 90 percent is deceptively
easy, handling the next 8 percent gets obnoxious surprisingly quickly, and dealing with
some part of the last 2 percent will take more years than the age of the universe to figure
out. So, Apple has given you a black box. It is probably a very smart black box. After all,
the people who used to make NeXT workstations know how to make black boxes. Let’s
look at your project now. You had an xcdatamodel file, and now it has become an
xcdatamodeld directory, with two xcdatamodel files in it. If you click the disclosure
triangle next to the Locations.xcdatamodeld, you will see that one of the files is “current”
and one is not. You can see that the file that is “current” is marked with a green check
mark (see Figure 6-4).

NN

Locations.xcdatamodel - Locations

Simulator - 3.0 | Debug v~ ¥~ "(\ ;) ‘ o Q- String Matching

Overview Action Build Buildand Go Tasks Info Search
Groupss Fllex """« » [ilocations.xcdatamodel $ [JEvent & z (= lc.ie i @
v ™ Locations 8 Entity || Property | Kind Entity &Ll
b Classes Event creationDate Attribute B —
> gmer Sources latitude Attribute Name: Event
¥ _|Resources i
¥ |7 Locations.xcdatamodt e Attribute Classt] Event
[8 Locations.xcdatam Parent: | No Parent Entity
N /] Locations 2.xcdata [Abstract
|+ MainWindow.xib -
4 Locations-Info.plist
» || Frameworks
» | Products
» @ Targets
» 4 Executables Wl selv[C— y< >
» (B Errors and Warnings
¥ ' Find Results
» Y Bookmarks
»iisCM
) Project Symbols ¥ Auributes
» (@] Implementation Files creationDate
» (& NI8 Files fam.'m‘
¥ Relationships
a
v
[x]/[alol C D) b4 el 0% o
Debugging terminated. Q@Succeeded

Figure 6-4. Now you have two xcdatamodel files, one current and one not so current.

CHAPTER 6: Core Data and Hard-Core Design

The first thing | always do when Xcode creates files with names like this is give the files
better names. | renamed the Locations.xcdatamodel file to Locations01.xcdatamodel
and renamed Locations 2.xcdatamodel to Locations02.xcdatamodel. You know, over
the years, if you count up all the bugs in Xcode that were triggered by a space in a path
or a resource name, there are just too many to count. Really, life is too short to take risks
like that.

After you rename these files, take a moment to build and run the application. It should
run without an error. But remember, you still have not made any changes to the schema.
Before you do make any changes, select the Locations02.xcdatamodel file in Xcode,
and select Design » Data Model » Set Current Version. The green check mark moves
to the second file, and now you can make changes to this second file. For example, you
can add a whatever attribute of type String, and then you would see the whatever
attribute in the application and could even assign a value to it.

Well, I'm sure glad that’s over! Actually, let’s not get too excited. Make sure you do not
run your application yet, because you are not finished making changes. You might want
to take this opportunity to see what kinds of changes you can make to your schema and
what kinds of things will cause problems. While you are developing your application and
running it to debug something and then making changes and running it again, there are
definitely ways to cause yourself a problem.

If you experiment with this now, you will probably be able to avoid more problems later.
For example, if you create a second schema, set that schema to current, make changes
to the second schema and run, you are good. If you switch the “current” marker back to
the first schema, delete the second schema file, and build and run, you will crash. Why?
The reason this crashes is that it could migrate your schema back from the second
version to the first, but you deleted the second version. So, no migration is possible.
Stop and think about this to make sure it makes sense to you. You need to get rid of the
second schema version, but do not delete it until you set the “current” marker back to
the first version and run the app. After you run the app successfully, then you can delete
the second version of the schema. For the automatic migration to work, both the “from”
and the “to” models have to exist in the project. And if you have run with the second
version of the schema, do not just make other changes to it. Otherwise, you will back in
the same place | was with my first change.

If you are iteratively making changes to the second version of the schema, you need to
do things in a particular order. You can create your second version, make a change, and
build and run the application. If you want to make another change to your second
version, you need to switch back to the first version, build and run the application again,
and only then you will be able to switch the “current” marker back to the second version
and make any other change to that second version without causing a crash.

CHAPTER 6: Core Data and Hard-Core Design

Adding a New Entity

Adding an entity is one of the changes that the system can handle for you, so let’s at
least do this much.

Select the latest (and presumably current) version of your data model, and add another
entity to the data model. It is a PartyFavor entity, and | want to create attributes in it for
a name (a String), a quantity (an Integer 16), and a price (a Decimal). Now | want to
create my relationships. To make this clearer, do these steps in this order:

1. Click the Event entity and create a partyFavors relationship. Do not
worry about making any changes to it.

2. Click the PartyFavor entity, and create an event relationship.

3. Click the partyFavors relationship in the Event entity. Select the To
Many Relationship check box.

4. Set the Destination Entity drop-down menu to PartyFavor.
5. Then set the Inverse Relationship drop-down menu to event.

This last step actually finishes the job for you. It is very useful to use this “inverse
relationship” feature in Core Data. In EOF, relationships had only an implicit inverse
relationship. Developers usually had an inverse relationship for any relationship, but the
two relationships were separate, and historically there were many problems when
people created a relationship and an inverse that was misconfigured in some way. It is
much harder to make this mistake in Core Data.

You can now create the new sources for the PartyFavor class and create new sources
for the Event class. There is an odd thing that Xcode does here that you will see in a
moment. When you select the File » New File menu item, Xcode does not always allow
you to pick the Managed Object Class template to create the file. One of the ways to
make sure Xcode does allow you to pick that template is to click the xcdatamodel file.
So, click the current xcdatamodel file. Then select the File » New File menu item, and
the multipane wizard launches. In the first pane, you are asked to select the target, but
there is only one target in this project. In the second pane of the wizard, select both the
Event and PartyFavor entities. Then it will create the source files for you. Oddly, Xcode
will then put the sources in the Resources group of your project. Actually, they are inside
the xcdatamodeld directory. But if you think about it, you will realize that you had the
xcdatamodel file selected. So, Xcode only followed your suggestion, right? Of course, if
you had not selected the xcdatamodel file, then Xcode (currently) would not offer you the
use of the Managed Object Class template. It’s strange looking, but in this case, what
Xcode is doing is OK. Remember that, a while back, you added two methods to the
Event class. You want to move the description and subdescription methods that you
added to Event to the new Event sources, the one inside the xcdatamodeld. Remember
to copy over the method declarations in the interface file as well. Now, your project
should look like Figure 6-5.

CHAPTER 6: Core Data and Hard-Core Design

®006 m Event.m - Locations =
 Simulator - 3.0 | Debug S '\ ‘& ® O (Q suing Matching)
Overview Action Build BulldandGo Tasks Info
Groups & Files U] < ~ BEventmd9 3 [@mplementation Event §
v 1 Locations 8 Sinport "Event.h”
v (| Classes
[w] LocationsAppDelegatd Simport “PortyFavor.h”
g L Qinp tion Event
| RootViewController.h
) RootViewController.m Adynamic longitude; @
|u] EventViewController.h adynomic latitude;

Adynamic creotionDate;

wi EventViewController.n
v ! A agynonic partyFavors;

w] KeyValueControlier.n

w] KeyValueController.m - (usstring *)description {
] KeyValueView.h :
&) KeyValueView.m // A date forsatter for the time stosp
= "
] Eventh stotic NSDateFormatter *dateFormotter = nil;
|u] Event.m s
» | Other Sources if (dateFormatter we nil) {
| | Resources dateFormatter = [[NSDoteFormotter alloc) init];
v | Locations.xcdatamods [dateFormatter setTimeSty le];
B tvench [doteFormatter le];
W eventm
(u] PartyFavor.h return [dateFormatter stringFromDote:(seif creationDate]];
lw] PantyFavor.m \J I} \J
11| Locations01.xcdats |
o - -
@ Locations02 xcdati Qisering *bdeicription;
] MainWindow.xid // A nunber formatter for the latituds ond longitude
| Locations-Info.plist /"
» || Frameworks static NSNusberFormotter *nusberformatter = nil; ‘...
Prod: ‘\.,
>l ol 4 1f (nusberformatter == nil) {
» @ Targets 3 e y L PET
Debugging terminated. QSucceeded -

Figure 6-5. You have added the new sources. It looks strange, but Xcode in the beta versions of the iPhone SDK
did something worse, so really, it is not so bad.

After editing the new copy of Event.h and Event.m, be sure to delete the old copies and
move the files up to the Classes group in your project, as shown in Figure 6-6.

0006 m Event.m - Locations (=]
smuator-30l0ebus -/ 8- N D O O Q- String Matching)
Overview Action Build Buildand Go Tasks Info Search
Groups & Files I Sevemm2a 5 @ -description C.=lc. . @@
v % Locations 8 I 4 e - =
'L.JE'-“SH ~ | #import tyFavor. =
#] Locati | aimpl ation Event
m] LocationsAppDelegatg
| RootViewController.h | @dynamic longitude;
;J " " @dynanic latitude; -
B o | @dynamic creationDate;
" | @dynamic partyFavors;
]
u| KeyValueController.h - (NSString *)description {
_g] KeyValueController.m "
ul KeyValueView.h //.: A date formotter for the time stamp
] KeyValueView.m il static NSDateFormatter *dateFormatter = nil;
C] Eventh
\w] Event.m it (dateFormatter == nil) {
;J PartyFavor.h dateformatter -Jm&:ﬁarm&er olloc] intt); ;
K [datef g or te];
.l Fatyfaworm \) [datefe Le:NSDateFor: le); \J
» || Other Sources }
¥|_|Resources
¥ |7 Locations.xcdatamod return [datef stringf [self creationDate]];
7 Locations01,xcdati ¥
| Locations02.xcdat; - (NSString *)subdescription
[4] MainWindow.xib ¢ ™ BEI ¥y
L} Locations-Info.plist // A rumber formatter for the latitude and longitude 3
» (| Frameworks vl ’(y P
Debugging terminated. @Succeeded

Figure 6-6. The project is looking quite a bit less strange now.

CHAPTER 6: Core Data and Hard-Core Design

Using Key-Value Coding to Create a Reusable Object

Instead of going into more detail about what you can do to be sure that you can always
migrate an object, and there would be a lot of detail, let’s ask whether there is a way you
can avoid having to change a schema. Surely not! You can write your application now
and try to imagine everything you need to keep track of, but once people start using it,
they are going to have suggestions. One of the downsides of putting an application out
into the world is that you then have to deal with users, and users have suggestions and
report bugs and behave in other inconvenient ways. You have to deal with users who
have entered data into your application and who do not want you to upgrade your app in
such a way that their data gets deleted.

When | was working on EOF and WebObjects for Apple, | created a class that uses KVC
in an unusual way. | am going to use this trick again to make it so that the Event entity
will not have to be changed, even when you want to see new attributes in the Ul. To do
this, add another entity to your schema. It will be helpful to create a third version of your
schema at this point and add the entity in that version. Call the new entity EventExtra.
Add an attribute called name and an attribute called value. These are both of type String.
After you are done, your new Locations03.xcdatamodel file should look like Figure 6-7.

(EventExtra]
¥ Attributes
(Event 1 name
¥ Attributes value
creationDate ¥ Relationships
latitude >3 event
longitude
¥ Relationships
extras PartyFavor
partyFavors ¥ Attributes
name
price
quantity
¥ Relationships
>>event

Figure 6-7. You're going to use the EventExtra entily in an unusual manner.

You are going to rely on something that the NSManagedObject gives you that most people
do not take full advantage of. It is the fact that the KVC protocol has two methods for
recovering from the use of nonexistent keys when reading from or writing to an object.
Most developers do not override these methods, and the default behavior of these
methods is to throw an exception. But these methods can be overridden, and they can
be used to dynamically modify the attributes of an entity.

First, save your schema, and verify that your application works as it did before. You will
see that the object has the same attributes. Adding a new relationship did not change
that. Here is what you need to add to your Event.nm file:

CHAPTER 6: Core Data and Hard-Core Design

- (id)valueForUndefinedKey: (NSString *)name {

NSArray * extra = [[self extras] allObjects];
for (int idx = 0; idx < [extra count]; idx++) {
if ([name isEqualToString:[[extra objectAtIndex:idx] valueForKey:@"name"]]) {
return [[extra objectAtIndex:idx] valueForKey:@"value"];

return nil;

- (void)setValue:(id)value forUndefinedKey:(NSString *)name {

// Look for existing object for this name. If one exists, replace its value.
NSArray * extra = [[self extras] allObjects];
for (int idx = 0; idx < [extra count]; idx++) {
if ([name isEqualToString:[[extra objectAtIndex:idx] valueForKey:@"name"]]) {
[[extra objectAtIndex:idx] setValue:value forKey:@"value"];

return;

}

// If an object for this name does not exist, create one.
NSManagedObject * eventExtra =
[NSEntityDescription insertNewObjectForEntityForName:@"EventExtra"
inManagedObjectContext:[self managedObjectContext]];
[eventExtra setValue:name forKey:@"name"];
[eventExtra setValue:value forKey:@"value"];
[self addExtrasObject:eventExtra];

Think for a moment about what you can do with the Event entity now. Right now, its
attributes are creationDate, latitude, and longitude. But suppose that one event is a
child’s birthday party and another is for Oktoberfest. In the first case, you can use code
like this:

[kidsEvent setObject:@"Bruno" forKey:@"clownName"];
For the second case, you can use code like this:

[oktoberEvent setObject:[NSNumber numberWithInt:2]
forKey:@"dancingBearsCount"];

So, in the first case, the entity seems to have the attributes creationDate, latitude,
longitude, and clownName, and, in the second case, the entity seems to have the
attributes creationDate, latitude, longitude, and dancingBearsCount. Does this seem a
little silly? Of course! But the point is that you can dynamically choose some new
attribute for your Event entity and just stick the data in there, and it will work.

You do, though, have a detail to consider. You have to override the method that you use
to get your list of available attributes for an entity. You can start with the list of attributes
for your entity that is supplied to you by Core Data, but that no longer gives you the
entire story. Now you have to look at the contents of the EventExtra entity. You have to
return the distinct list of attributes that exist, so you have to get all the name entries from

CHAPTER 6: Core Data and Hard-Core Design

all of those objects, create a nonduplicative list of names from this, and add that to what
you have gotten from Core Data. You can add this method to your Event.m:

NSArray *)attributeNames {

NSEntityDescription * extraskEntity = [[[[self entity] managedObjectModel]
entitiesByName] objectForKey:@"EventExtras"];

NSFetchRequest * request = [[NSFetchRequest alloc] init];
[request setEntity:extrasEntity];

NSArray * fetchResults = [[self managedObjectContext] executeFetchRequest:request
error:nil];

NSMutableSet * extraAttributes =
[[NSMutableSet alloc] initWithSet:[NSSet setWithArray:[[[self entity] attributesByName]
allkeys]11;

NSArray * foundNames = [fetchResults valueForKey:@"name"];
for (int idx = 0; idx < [foundNames count]; idx++) {
if ([foundNames objectAtIndex:idx] != [NSNull null])
[extraAttributes addObject:[foundNames objectAtIndex:idx]];

return [extraAttributes allObjects];
}

Now, you need to change the methods in EventViewController.m that use the list of
attributes:

- (NSInteger)tableView: (UITableView *)tableView numberOfRowsInSection:(NSInteger)section

return [[event attributeNames] count];

- (UITableviewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath: (NSIndexPath *)indexPath {
static NSString * Cellldentifier = @"Cell";

// Dequeue or create a new cell
UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIldentifier];
if (cell == nil) {
cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleSubtitle
reuseIdentifier:CellIdentifier] autorelease];

cell.textlLabel.text = [[event valueForKey:[[event attributeNames]
objectAtIndex:indexPath.row]] description];
cell.detailTextLabel.text = [[event attributeNames] objectAtIndex:indexPath.row];

return cell;

CHAPTER 6: Core Data and Hard-Core Design

Now you have an object into which you can create new attribute values, but you have no
Ul to do this in your application. It is easy enough, though, to add this. When you are
looking at a single object and seeing the list of its attributes and values, you want a way
to add an attribute. If you look back at RootViewController.m, you will see how this can
be done. You can add a + button, something the UINavigationController makes it easy
to do. Add this code to the viewDidLoad method of the EventViewController.m:

addButton = [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemAdd target:self
action:@selector(addAttribute)];

addButton.enabled = YES;

self.navigationItem.rightBarButtonItem = addButton;

That code is calling the addAttribute method, and you still need to add that to
EventViewController.m as well.

- (void)addAttribute {
KeyValueController * eventController = [[KeyValueController alloc] init];

[eventController setAttributeName:@"extra"];
[eventController setEvent:self.event];

[[LocationsAppDelegate delegate].navigationController
pushViewController:eventController animated:YES];
[eventController release];

Since the KeyValueView uses a UITextField for the attribute’s name as well as the
attribute’s value, this is all you need to do to get a working application. Now you may
never change the Event entity again. If you have code in your interface that creates data
for a new key and that calls the object with a new key to retrieve the data, the Event
object will automatically appear to have an attribute of that name. In Figure 6-8, | have
added an extraName attribute with the value extraValue.

-122.030731

extraValue

37.2

2009-07-19 20:00:29 -0700

Figure 6-8. Event with the dynamically created, potentially more interesting, attribute and value.

CHAPTER 6: Core Data and Hard-Core Design

It may seem that you are assuming here that anything that you are going to add to your
Event entity is of type String. This does not turn out to be true. Remember that you can
override the default setters in your NSManagedObject subclass. So, although it is true that
the “database” view of the newly added attribute is that it is a String, you can write
methods for getting and setting a value of whatever type you want. There are, if
anything, too many things you can do with just a name of an attribute. Since you do not
want to change the Event entity, you cannot add the attributes to the diagram that the
xcdatamodel gives you, but almost everything else will work. Want to use NSBindings,
recently brought to the iPhone with OS 3.0, on a Ul element? The keys for the bindings
are just strings, and they go through the same key/value interfaces that you have
implemented on your event. To make all the bindings work, you may have to implement
code for a relatively new addition to Core Data, that being KVO. But even without that,
you will be surprised by how many things will just work.

Remote Databases: It’s All Net!

One way to give yourself some flexibility while adding power to your application is to not
just store your users’ data on the iPhone but store it on the Internet as well. Given the
pervasive connectivity of the iPhone, it is also easy to do.

You can set up connections to remote databases in a few ways. In the first application |
had published on the App Store, it would upload only very small sets of numbers. |
packaged these into URLs and opened a connection to a web application that | had
running. The web application would peel off the GET parameters of the URL and store
them in a MySQL database. The web application was a trivial Perl CGl, and there was
not much to it.

Later | used the NSMutableURLRequest class so that data could be sent up as a POST.
This enables the transfer of more data. For example, since | use WebObjects
applications on the server side, | use the NSPropertylListSerialization class on an
iPhone to serialize an arbitrarily complex dictionary or array. | can pass the resulting
plist up as a POST request, and the WebObjects app can read the plist directly. One
could just as easily serialize the data on the iPhone as XML and parse the XML on
the server.

This code will take a dictionary, which can include arrays, other dictionaries, and other
objects and generate a plist for it, which can be sent to a remote machine.

- (void)exportData:(id)sender {

NSData * plistData = [NSPropertylListSerialization
dataFromPropertyList: (id)[NSDictionary dictionaryWithObject:YourDictionaryHere
forKey:@"parameters"] format:NSPropertylListXMLFormat vi_0 errorDescription:nil];

NSMutableURLRequest * request = [[NSMutableURLRequest alloc] init];
[request setURL:[NSURL URLWithString:@”YourURLHere”]];

[request setHTTPMethod:@"POST"];

[request setHTTPBody:plistData];

CHAPTER 6: Core Data and Hard-Core Design

NSURLConnection * theConnection = [[NSURLConnection alloc]
initWithRequest:request delegate:self];

[theConnection releasel];

}
}

// We need to implement these two methods in this class if we want to be notified of the
success or failure of the NSURLConnection above

/7

- (void)connection: (NSURLConnection *)connection didReceiveResponse:(NSURLResponse
*)response { }

- (void)connection: (NSURLConnection *)connection didFailWithError:(NSError *)error { }

You may believe that a plist (or property list) is an Apple-only technology, but there is a
CPAN module, Mac::PropertyList::SAX, that gives you exactly what you need:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/Propertylist-1.0.dtd">
<plist version="1.0">
<dict>
<key>parameters</key>
<array>
<dict>
<key>X</key>
<real>127.17512512207031</real>
<key>Y</key>
<real>394.22320556640625</real>
</dict>
<dict>
<key>X</key>
<real>161.1126708984375¢</real>
<key>Y</key>
<real>193.724853515625</real>
</dict>
<dict>
<key>X</key>
<real>57.804325103759766</real>
<key>Y</key>
<real>371.4683837890625</real>
</dict>
</array>
</dict>
</plist>

This structure can be read with a Perl CGI. The script has some funkiness
from metacharacters in the plist, and when | wrote this script, | used the
-best-possible-way=false flag:

CHAPTER 6: Core Data and Hard-Core Design

% cat test.cgi
#!/usr/bin/perl

use Mac::Propertylist::SAX qw(parse plist);
use CGI;

my $q = CGI->new;

print $q->header();
print $q->start_html('Your Title Here');

$r = $g->Dump;

$r =~ s/\</</g;

$r =~ s/\8gt;/>/g;

$r =~ s/\"/\'/g;

$r =~ s/<br \/>//g;

~ /<\IDOCTYPE plist PUBLIC/) {
&.$";

if ($1 =~ /<\/plist>/) { $r = §°.$&; }

my $data = parse plist($r);

$vals = $$data{'parameters'};
for ($idx = 0; $idx < scalar(@$vals);$idx++) {
print "coord[".$idx."] = (".$$vals[$idx]{ targetX'}.",
".$$vals[$idx]{ targetY'}.")".$q->br;
}

When you send this plist in a POST to this script, the resulting page will be as follows:

coord[0] = (127.17512512207031, 394.22320556640625)
coord[1] = (161.1126708984375, 193.724853515625)
coord[2] = (57.804325103759766, 371.4683837890625)
0K

There is something to think about when you are transmitting data across the network.
You must be careful about whether the Ul of the app reflects the network connectivity.
If the app transmits data, you may want to not have side-effects of the transmission,
such as progress bars, in the Ul of your application. The Human Interface Guidelines
from Apple say that if connectivity is apparent in your application, then you must alert
the user when the network is not available.

Apple’s interpretation of this can seem odd. If you have a game and you load high
scores onto a server, think about what will happen if the network is not available. If you
are showing the user something from the online system when they get a high score, for
example, then you may have a problem. Every time your application is being used and
the network is or becomes unavailable, Apple is going to say that you need to notify the
user. They may hit high scores only once a month, and they may end up getting this
notification every time they drive under a bridge, but that does not matter. Or, you could
not have anything from the Internet visible to the users when they hit a high score, and
then you will not need to worry about it.

CHAPTER 6: Core Data and Hard-Core Design

Or you might be transmitting analytics, information about how often your app is being
used or how it is being used. If you have something in your Ul that tells the user about
this or shows them when transmissions are occurring, you could have trouble. Apple has
asked that an alert pop up, letting users know that the data will be transmitted, giving
them a way to opt out, and letting them know what happens when the network is down.
Or you can have analytics data come from your app to the network, say absolutely
nothing to the user about it, as a legion of applications on the App Store do, and you
have no problem at all.

It may be smartest to assume that, if the network is down, you should be able to wait
an arbitrarily long time before you are able to transmit, and it may be best to not involve
the user in the decision about when to transmit. It is easiest to get through the

App Store check if you design your application so that a lack of connectivity has no
visible effect.

Also, | wish that we could stop there and just ignore the fact that using encryption on an
iPhone can be a problem. Unfortunately, if you want to use a 128-bit HTTPS connection
in your application and you want to sell or provide it for free outside the United States,
Apple wants you to have a license to export it. You may be able to transmit data in the
clear or with nonrestricted encryption technologies. All | can say is that | am fairly
bureaucracy-phobic, but it is not as hard to deal with the U.S. Commerce Department
as you think it might be. You can even get an account on an online system for
requesting licenses. | wish we did not have to deal with this, but Apple has set up the
rules for the App Store the way it wants. Right now, it behooves us to play the game
their way. At some point, we may become more interested in other technologies or find
other ways to distribute applications. Until then, here we are.

Summary

Core Data makes it possible to use the database on the iPhone to store information
without resorting to SQL. It can be easy to work with if you avoid falling into a few traps.
Migrating data schemas leads to some complications, and | have demonstrated two
different ways of dealing with the issues. You can use the automatic schema migration,
as is provided by Xcode, and you can create a generic object that will allow you to hold
many different kinds of objects in one type of data object.

The KVC protocol is simple, but it is a powerful tool for abstracting and separating
concerns in an application. Data schemas should be kept as simple as possible. Users
have complex needs, but smart designs can let the user interfaces change while the
model objects remain unchanged. Different kinds of views can be presented, but the
information coming back from them can be kept simple. Different applications can be
served by one database schema. As users’ needs evolve and applications become more
complex, that simplicity will make progress easier.

And we have information, of course, that we want to share. The “mostly connected”
nature of the iPhone makes it possible to share data across the network at any time, but
applications have to be agile to deal with the real world, where people move around
faster than software can figure out how to switch their networks, where sun spots cause

CHAPTER 6: Core Data and Hard-Core Design

outages, and where people cannot really ever be “always connected.” Smart designs
can make our applications agile enough to cope with interruptions without making the
user wait, watching a spinning ball.

Designing data applications will never be easy, but with all the kinds of games, puzzles,
tools, “find it” apps, and “track it” apps that the world seems to want, the iPhone does
make it fun.

Lime Medical LLC
New York, New York

I’m language and platform agnostic and embrace
any technology that is best fit for the job at hand. One day | might be fiddling
with with automation on my FreeBSD/Linux servers using Perl — other days I’ll be
configuring Cisco Catalyst switches. Some of my specialties include backend
server programming (C, Objective-C, PHP, Perl, SQL), Web Services (SOAP,
REST), client-side programming (Cocoa, Cocoa-Touch, JavaScript, CSS, HTML).
I’m mostly concentrating on iPhone and Web development at the time of this
writing, but I also have vast experience in working for media companies such as
About.com (part of The New York Times Company) and Community Connect Inc.

My first application is not available at the time of
this writing. It will be a medical charge capture application and released late
summer.

This chapter focuses on strategies for taking an
application that’s dependent on network connectivity, and having it function
while it is offline. We’ll be building a sample e-mail client that has one task in
mind, drafting and sending messages. We will show how to work with the System
Configuration Framework and Apple’s Reachability class in order to detect when
we’re offline. We’ll also use some fantastic open source libraries such as
Three20, FMDB and SKPSMTP in order to achieve our goals. Our Offline Mailer
will continue to function independently of network status.

System Configuration Framework
Three20

FMDB

SMTP

Chapter

Smart In-Application
E-mail with Core Data
and Three20

The first time | purchased a cell phone, it resembled something Zach Morris would wield
in an episode of Saved By the Bell. (In the event the name Zach Morris does not spark
some neurons, think of a device that’s discernibly colossal in size.) Those days, mobile
devices were in a primitive state. Extremely fundamental usage was all that was
incorporated into the hardware. You needed to be able to make and receive a phone
call, and as long as you were capable of doing that, you were thrilled!

It has been a long time since the advent of the “Zach Morris phone.” The transformation
has been nothing short of brilliant. Our phones are mini-computers that we use not only
to communicate but as a tool to keep our life organized while we're on the go. | cannot
even begin to fathom how my everyday life would continue to exist without the iPhone.
The iPhone isn’t just a tool that facilitates phone calls to your mother who complains
that you never reach out to her. It’'s a behemoth of a platform that’s capable of gaming,
keeping up with social media, following the news, managing your diabetes, sending and
receiving e-mail, and much more.

| personally am a zealot when it comes to the likes of applications such as Facebook,
Instapaper, Things, NYTimes, Twitterrific, Mail, and Wikipanion. Just a side note, | love
Tweetie and Twitterrific so much that | typically flip a coin on a daily basis when deciding
what Twitter client to use. The one prudent point | want to make here, though, is the
following: all of these applications have one thing in common. Can you think of what the
common functionality is? It might not be apparent at first as you think, “What does a
news app have in common with Facebook?” The answer is straightforward, though—
these apps continue to work when you’re in an area without Edge, 3G, or WiFi coverage.

I, for one, took it for granted that every single time | would go through the Lincoln Tunnel
or ride the subway in New York City that | could continue reading the news on the

211

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

NYTimes App. And | took it for granted that | could write an important e-mail for work
and have it delivered to a remote SMTP server once my connectivity had resumed. | also
adore the capability that | have to flag articles from folks | follow on Twitter and save
them to Instapaper. Then, once I’'m airborne to a foreign destination, I'm reading
everything while in airplane mode. Although the aforementioned applications are nice to
have, what do we do when a mission-critical application is not capable of functioning
because a physician practices in an outpatient facility that lacks any network
connectivity? The physician might want to take notes or look up allergies that a
particular medication might give to the patient they’re visiting. | can personally vouch for
this particular use case—some demographics are substantially more forgiving than
others. Depending on who you’re building applications for, not having the capability to
continue operating an application might mean the difference between retaining a paying
customer and having them go to your competitor.

Planning a Simple Offline SMTP Client

In this chapter, I'm going to take you—a resilient iPhone programmer—on a journey to
better your application with ideas on how to take it offline. Since we iPhone developers
never give up on a problem no matter how egregious it might appear on the surface,
you’re going to delve into a sample application | had some fun building. The example
that | have built is called OfflineMailer. This OfflineMailer implements the very basics of
an SMTP client. It meets the following criteria:

B Capable of sending an e-mail to multiple recipients in your Address
Book.

B Capable of taking your messages and storing them in persistent
storage for later viewing.

B Capable of determining the availability of an Edge, 3G, or WiFi
network.

B Capable of taking any draft messages written in offline mode and
keeping them around until you have network connectivity available
again. Once network connectivity is available, you will send the
messages.

B Simple viewing of messages in an offline queue and of sent messages.

Given the stringent criteria | have to meet working on medical applications, | would have
loved to have a chapter such as this available for my own personal reading when | first
started mobile programming. Although it appears complicated on the surface, you'll
quickly see how trivial it really is to build this type of application. The best part of it all is
that I’m going to provide a brief introduction to one of my favorite open source iPhone
projects—Three20 by the venerable Joe Hewitt (http://github.com/joehewitt/
three20/tree/master). In addition to Three20, I'll cover the other open source projects
I’ve incorporated into the demo application.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

Three20 is an Objective-C library that has very well-written classes that include the likes
of a photo viewer and an HTTP disk cache in addition to the capability to style labels
and UIViews. Joe Hewitt is one of the original authors of Firefox, is the creator of
Firebug, and is the engineer of the Facebook iPhone App. Simply put, the guy is brilliant,
and in the years I've been developing, his work has affected me directly.

| originally began writing this project by using a notoriously powerful open source project
known as FMDB. FMDB, written by Gus Mueller, is a bunch of well-written Objective-C
classes around SQLite. With the iPhone 3.0 SDK now available and not covered by the
NDA, I’'ve rewritten the chapter to incorporate Core Data. For those of us who must still
support 2.x devices, | will provide the original code that | used with FMDB to you. The
fundamentals for the two approaches remain closely knit in theory. If you’re building an
application for 3.0, | highly encourage the route of Core Data for reasons that I'll talk
about in this chapter.

Finally, one of the most critical components of the project in this chapter is an open
source package named SKPSMTP, released by developer lan Baird. SKPSMTP allows
for sending SMTP e-mails from within your iPhone application.

If you’ve noticed a common trend, I’m a huge advocate of open source, and | embrace it
in my work whenever | can. Open source has been a prominent player in helping me
learn how experts write professional software. As long as you follow projects that are
credible, open source can change your outlook on how you write software in addition to
helping you improve the software you’re already working on.

Creating the User Interface

I’'m going to take for granted that you already know how to create basic user interfaces
for your iPhone. If you need some help with building user interfaces, either
programmatically or with Interface Builder, | highly recommend picking up a copy of
Beginning iPhone Development: Exploring the iPhone SDK (Apress, 2008) by Dave Mark
and Jeff LaMarche. Dave and Jeff are pioneers in the software vertical and make
learning how to program on the iPhone really fun. They’re also my inspiration and the
reason I’ve had the opportunity to write this chapter.

Diving into Xcode

Let’s kick things off with Xcode. Xcode is the lovable IDE that you’re going to build the
sample application in. I've avoided building any of the user interface elements in
Interface Builder to make this chapter slightly easier to follow. This does not by any
means imply that | do not support Interface Builder. Quite the contrary, | use it
extensively whenever | can. With that said, | do prefer building my views with code
whenever the interfaces are trivial.

In Xcode, create a new project, and choose the Navigation-Based Application template,
as shown in Figure 7-1. | named my application OfflineMailer, so | suggest you do so
also in order to make identifying symbols from the text easier.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

NOTE: If you do not have MacFUSE and its associated developer tools installed, you will not
see the respective templates available in your Xcode build. Do not worry—that is not a
requirement for this demonstration.

OUOUO, New Project

Choose a template for your new project:

' iPhone OS ﬁ @

. Cocoa Application
' User Templates Nawgaﬂ-m-gg— OpenGL ES Tab Bar
Application Application Application
MacFUSE
“, Mac OS X
- - 2, ;i
Application .
Audio Units Utility Application View-Based Window-Based 3
Automator Acﬁoﬂ Annlirarian Annlirarian
Bundle

Description This template provides a starting point for an

Command Line Utility application that uses a navigation controller. It provides

Dynamic Library a user interface configured with a navigation controlier
Framework to display a list of items.
Java

Kernel Extension
Standard Apple Plug-ins
Static Library
Other

(" Cancel) (Choose...)

Figure 7-1. Choosing the Navigation-Based Application for the sample application

Next, you need to add a few packages to your application including both FMDB
(downloadable from http://code.google.com/p/flycode/source/checkout) and Apple’s
Reachability set of classes. Reachability is a set of classes that Apple provides as a
sample to determine the network state of an iPhone or iPod touch device. | use this set
of classes exclusively in my projects, because they’re well written and plug in to any
existing project with ease. If you have an iPhone developer account, the sample code is
available at http://developer.apple.com/iphone/library/samplecode/Reachability/
index.html. Otherwise, feel free to grab it from the source code that goes with this
chapter.

In your Groups & Files pane, add a new group underneath the Classes folder. Let’s
call it Network. In Network, you need to add two files from Apple’s sample code—
Reachability.h and Reachability.m. Let’s move forward to some code now, shall we?

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

Setting Up Instance Variables in
OfflineMailerAppDelegate.h

In 0fflineMailerAppDelegate.h, you have some instance variables, properties, and
instance methods to add. Make sure your code looks like Figure 7-2.

9 #import QIKit/UIKit.h>
10| | #import "Reachability.h'|

12 @interface Off lineMailerAppDelegate : NSObject <JIApplicationDelegate> {

14 // Core Data Additions

15 NSManagedObjectModel *managedObjectModel ;

16 NSManagedObjectContext *managedObjectContext;

17 NSPersistentStoreCoordinator *persistentStoreCoordinator;
18

19 UIWindow *window;

20 UINavigationControl ler *navigationController;

21

22 /7 Network status

23 NetworkStatus remoteHostStatus; // server status.

24 NetworkStatus internetConnectionStatus; // carrier data network.
25 NetworkStatus localWiFiConnectionStatus; // wifi network.
26 BOOL hasNetworkConnection;

27 }

28

29 @property (nonatomic, retain) IBOutlet UIWindow *window;
30 @property (nonatomic, retain) UINavigationController *navigationController;

32 @property NetworkStatus remoteHostStatus;

33 @property NetworkStatus internetConnectionStatus;
34 @property NetworkStatus localWiFiConnectionStatus;
35 @property (assign) BOOL hasNetworkConnections

37 @property (nonatomic, retain, readonly) NSManagedObjectModel *managedObjectModel;
38 @property (nonutomlc, retain, readonly) NSManagedObjectContext *managedObjectContext;
39 @property (nonatomic, retain, readonly) NSPersistentStoreCoordinator *persistentStoreCoordinator;

41 @property (nonatomic, readonly) NSString *applicationDocumentsDirectory;

42

43 | - (IBAction)saveAction:sender;

44

45| | #pragna mark -

46 | = (void)reachabilityChanged:(NSNotification *)notification;
47| | = (void)updateNetworkStatus;

48

49 @end

Figure 7-2. This is what Of f1ineMailerAppDelegate’s header file looks like when it's completed.

Here are some critical components to the architecture. You’ve added three instance
variables to track the network state of your application. NetworkStatus is an enum
defined by the Reachability set of classes. The enum provides you with an elegant
interface that returns values for the different network states your device may be in. An
iPod touch will never be able to speak through a carrier data network interface, but it will
be capable of obtaining a WiFi connection. You also set a Boolean here that simply
holds the state of the network. I'll get to what exactly managedObjectModel,
managedObjectContext, and persistentStoreCoordinator are soon.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

Finally, you set two instance methods:

(void)reachabilityChanged: (NSNotification *)notification;
(void)updateNetworkStatus;

The reachabilityChanged: message gets invoked whenever the status of your network
changes. This method is responsible for dispatching a message to updateNetworkStatus
so that it may update your ivar (instance variables) states accordingly. Figure 7-3 shows
what both of those methods look like in OfflineMailerAppDelegate.m.

236 #pragma mark -
237 #pragma mark Network Connectivity
238 - (void)reachabilityChanged: (NSNotification *)notification

240 [self updateNetworkStatus);
}

243 z {void)updateNetworkStatus

245 // Query the System Cun iguration framework for the state of the device's network connections.
46 5 at = [[Reachabi 1 ty sharedkcachabxluy] remoteHostStatus];
7 = [[Reachability sharedReachability] internetConnectionStatus);

= ((ﬁ-:q.—_rub;ut,‘ sharedReachability] localWiFiConnectionStatus);

250 if (self.remoteHostStatus == NotReachable || self,internetConnectionStatus == NotReachable) {
251 // we aren't reachable.
rkConne o

orkConnection = YES;

Figure 7-3. The reachabilityChanged: and updateNetworkStatus methods

NSNotification is one of my favorite classes that is available in the Foundation
framework. Notification programming is a very powerful tool to use in iPhone and Mac
development. If you’ve ever heard of the Observer pattern, then you’re already ahead of
the game in understanding what behavior this family of classes has. In the application
delegate, you registered with the NSNotificationCenter, a singleton object that exists
throughout the entire application, to invoke the selector reachabilityChanged: whenever
the kNetworkReachabilityChangedNotification is triggered. That notification name is
defined in Reachability.m.

Ultimately what happens is that every time the network state changes, you invoke
updateNetworkStatus. This method will set the network state accordingly. Later
whenever you want to know whether you have access to the network, you simply query
the application delegate with the following code:
if (appDelegate.hasNetworkConnection) {

// We have network connectivity!

} else {
// We lack network connectivity!
}

Simple, huh? | told you this would be easier than you originally thought it would be.
Later, you’ll also see how | include a visual representation of a light bulb that imitates the
current state of the network. The light bulb will glow a vibrant yellow when you have
access. It will dim whenever the network state changes on the fly. I’ll show you how that
is done later as well.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

When the application finishes launching, you do a few other things in
applicationDidFinishLaunching: to set up your app. Let’s take a look at what the code
in applicationDidFinishLaunching: looks like; see Figure 7-4.

42 - (void)applicationDidFinishLaunching: (UIApplication *)application {

43

44 // register for offline/online notifications.

45 [[NSNotificationCenter defaultCenter]

46 addObserver:self

47 selector:@selector(reachabilityChanged:)

48 name:@"kNetworkReachabilityChangedNotification"

49 object:nil];

50

51 AccountViewController #rootViewController =

52 [[{AccountViewController alloc] init] autoreleasel;

53 [rootViewController setManagedObjectContext:[self managedObjectContext]];
54

55 [[DataManager sharedDataManager) setManagedObjectContext:[self managedObjectContext]];
$6

57 // SMTP might not require authentication, so we only check if there

58 // is a remote hostname available.

59 NSString =remoteServer = [[DataManager sharedDataManager]) hostName];

60

61 // Here we ensure we have the settings we need to proceed.

62 éf (remoteServer == nil)

63

64 SettingsViewController ssettingsController = [[[SettingsViewController alloc) init] autorelease);
65 navigationController =

66 [[UINavigationController alloc)

67 initWithRootViewController:settingsController];

68 navigationController.navigationBarHidden = YES;

69 } else {

70 navigationController =

71 [[UINavigationController alloc]

7 initWithRootViewController:rootViewController];

73

74 [[Reachability sharedReachability] setHostName:remoteServer];

75 [self updateNetworkStatus);

7% }

78 //BO0L success = [self initDatabase];

79

80 // Note, we might not want to throw an exception if the database isn't

81 // reachable in a production application. We could instead let the application
82 // continue to launch as expected. However, when offline, we need to take heed
8 // and let our users know.

84 if (!success) {

85 NSAssert(®, @'Failed to initialize database.");

86

87

88 [window addSubview:navigationController.view);

89 ; [window makeKeyAndVisible];

Figure 7-4. Off1ineMailerAppDelegate.m’s applicationDidFinishLaunching: method

Initializing the UlApplication Delegate

OfflineMailerAppDelegate conforms to the UIApplicationDelegate protocol. As such, it
receives the applicationDidFinishLaunching: notification once an application has
launched and initializes. Delegates implement this method to typically set up the window
and its respective subviews. In addition to that, you write some code of your own, as
described next.

First, you check whether the user who’s using your application has gone into the
Settings application to set up their mail server settings. Here the user is expected to
know the hostname of their SMTP server. SMTP is the acronym for Simple Mail Transfer
Protocol, the protocol used to relay e-mail. The user needs to put in their username and
password, where applicable. If the user doesn’t put in their SMTP server, you prompt
them with a warning on the screen.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

To avoid being used as a spam relay, most SMTP servers will enforce user
authentication. Also, here you set up a default SMTP port. However, not every SMTP
server listens in on 25. For instance, my ISP blocks all outbound port 25 connections
that use the TCP protocol. TCP/25 is the standard protocol/port that’s defined in RFC
821 (http://www.fags.org/rfcs/rfc821.html) for SMTP. For me to write and test this
application, | had to open my SMTP server to listen on TCP port 2500. How to do that
is unfortunately beyond the scope of this chapter. There are plenty of informative web
sites and books that detail how to do this in the server of your choice, my preference
being Postfix.

One other note I’d like to add here is that the iPhone developer community has gone
through extensive back and forth threads on whether settings should be included
directly inside your application or in the Settings application. | advocate putting Settings
that are rarely changed into the Settings app. Ones that get frequently changed such as
turning volume in your app on or off should go directly in the app itself. Craig
Hockenberry of Twitterrific fame has put up a great blog post that you can read more
about at http://furbo.org/2009/

04/30/matt-gallagher-deserves-a-medal/. | love this blog post because Craig links to
two of my other heroes, Loren Brichter of Tweetie fame and the venerable Matt
Gallagher of http://www.cocoawithlove.com fame. | highly recommend you check out
all three of these programmers —they’re super smart and inspire me every time | write
any code.

Working with Core Data

Let’s now jump into some of the cool parts of this project. In this section, you’ll jump in
and get your feet wet with Core Data. You initially should have created your application
with the “Use Core Data for storage” option, as depicted in Figure 7-5.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

UL New Project.

Choose a template for your new project:

. iPhone OS -
Ubrary Navigation-based OpenCL ES Tab 8ar

pplication Application Application
' User Templates
MacFUSE
“,_v Mac 0S X a . &

-

Application Utility Application View-based Window-based
Audio Units Annliratinn Annliratinn
Automator Action @ f
Bundle Options Use Core Data for storage

Command Line Utility Description This template provides a starting point for a Core Data-

Dynamic Library based application that uses a navigation controller. It
Framework provides a user interface configured with a navigati
controller to display a list of items managed by a fetched

Java results controller.

Kernel Extension

Standard Apple Plug-ins

Static Library
Other

(" Cancel) (Choose...)

Figure 7-5. New project template with “Use Core Data for storage” option

What this does is create several utility methods in your AppDelegate. The code for the
methods looks something like this:

/%%

applicationWillTerminate: saves changes in the application's managed object context
before the application terminates.
*/
- (void)applicationWillTerminate: (UIApplication *)application {
NSError *error;
if (managedObjectContext != nil) {
if ([managedObjectContexthasChanges] && ![managedObjectContextsave:&error]) {
// Handle error.
NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
exit(-1); // Fail

}
Vioia

Returns the managed object context for the application.

If the context doesn't already exist, it is created and bound to the persistent store
coordinator for the application.

*/

- (NSManagedObjectContext *)managedObjectContext {

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

if (managedObjectContext != nil) {
returnmanagedObjectContext;

NSPersistentStoreCoordinator *coordinator = [selfpersistentStoreCoordinator];

if (coordinator != nil) {

managedObjectContext = [[NSManagedObjectContextalloc] init];
[managedObjectContextsetPersistentStoreCoordinator: coordinator];

returnmanagedObjectContext;

/**

Returns the managed object model for the application.

If the model doesn't already exist, it is created by merging all of the models found in
the application bundle.

*/
- (NSManagedObjectModel *)managedObjectModel {

if (managedObjectModel != nil) {
returnmanagedObjectModel;

managedObjectModel = [[NSManagedObjectModelmergedModelFromBundles:nil] retain];
returnmanagedObjectModel;

}

Vioia

Returns the persistent store coordinator for the application.

If the coordinator doesn't already exist, it is created and the application's store
added to it.

*/

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator {

if (persistentStoreCoordinator != nil) {
returnpersistentStoreCoordinator;

NSURL *storeUrl = [NSURLfileURLWithPath: [[selfapplicationDocumentsDirectory]
stringByAppendingPathComponent: @"offlinemailer.sqlite"]];

NSError *error;
persistentStoreCoordinator = [[NSPersistentStoreCoordinatoralloc]
initWithManagedObjectModel: [selfmanagedObjectModel]];
if
(![persistentStoreCoordinatoraddPersistentStoreWithType:NSSQLiteStoreTypeconfiguration:n
ilURL:storeUrl options:nilerror:&error]) {
// Handle error

returnpersistentStoreCoordinator;

You might be thinking there is a great deal of new stuff here. And you’re right—if you’ve

never built a Mac application with the Core Data stack before, there is quite a bit of new

API code being thrown at you here. Although the complexity of what Core Data achieves
underneath the hood is massive, understanding the APl isn’t all that tedious.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

Understanding the Core Data Stack

Let’s chat a few about the relevant Core Data stack objects here including the managed
object model (MOM), managed object context (MOC), and the persistent store
coordinator. Although one chapter, let alone a few paragraphs, cannot explore all of
Core Data, | plan on taking you on a quick tour of the technology to help you understand
what exactly Core Data is and how you can use it. There’s an abundance of information
on the Internet, including the ADC, which covers Core Data in detail. If you’re interested
in learning more about the topic after you’ve read this chapter, | highly recommend
searching for Bill Dudney’s and Marcus Zarra’s work on Core Data. Both of these
developers are highly regarded in the Mac and iPhone communities. I've had the
pleasure of learning how to write my first iPhone application sitting in Bill Dudney’s class
over at Pragmatic Studios.

Ultimately these objects work in a hierarchy that is responsible for retrieving data from
persistent storage, modifying the data, ensuring integrity, and finally presenting it to the
application in a requested context. Core Data also gives the fascinating capability of
working very aggressively to cache objects whenever it can. This works really well
when you’re working with a large data set. Regarding the persistent storage, Core Data
is capable of using a SQLite back end, memory, or binary. For our purposes, we’ll

use a SQLite back end, which is evident in the persistentStorageCoordinator
accessor method.

The persistentStorageCoordinator speaks to a persistent object store underneath the
hood. Don’t worry about the persistent object store, though, because you won’t be
accessing it directly here. The persistent storage coordinator will take care of that for
you. All you have to know is that the persistent storage coordinator communicates with
the managed object model to help you understand what the data looks like that it is
asked to delegate to the persistent object store (POS).

The MOM contains information to your model classes, which I'll cover shortly. The
object you will interact with mostly is the MOC. You ask the MOC to grab your model
objects for you. You manipulate your objects through it including insertions and
deletions. You also eventually ask the managed object context to save your data. Once
that happens, the managed object context shoots all the information it needs to down
the stack that composes Core Data. Reference the previous code to see how that stack
is built and communicates with each other.

| can’t express how condensed the overview of Core Data is here. It doesn’t do this
framework justice. There are books written on the topic alone, so make sure you do your
Googling if you want to learn more.

Adding Three20

While I’'m here, you should also go ahead and get your project set up with the Three20
library in addition to the SystemConfiguration framework. Joe Hewitt has posted
awesome instructions on how to add Three20 to a project. You will need to have Git
available (downloadable from http://code.google.com/p/

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

git-osx-installer/) if you want to clone the Three20 repo. You’re also more than
welcome to just follow along in the code I've already provided. Here’s what you need to
do in order to install it in your own projects:

1. Clone the three20 Git repository: git clone
git://github.com/joehewitt/three20.git. Make sure you store the
repository in a permanent place because Xcode will need to reference
the files every time you compile your project.

2. Locate the Three20.xcodeproj file under three20/sxc. Drag
Three20.xcodeproj, and drop it onto the root of your Xcode project’s
Groups & Files pane. A dialog box will appear. Make sure “Copy items”
is deselected and that Reference Type is set to Relative to Project. Then
click Add.

3. Link the Three20 static library to your project. Click the
Three20.xcodeproj item that has just been added to the sidebar. In the
details pane, you will see a single item: 1ibThree20.a. Select the check
box on the far right of that item (Figure 7-6).

ann ‘m TTTableViewCell.m - OfflineMailer (=)
| Simulator - 3.0 | Debug | [%““ - :j: u f_ﬂ ,.._‘ @ q String Matching =
Croups & Files. m— *—m";‘r p— e—— S -~ Cod’t o A ®

¥ I OfflineMaiter 8 & lbTheezoa v

¥ I Three20.xcodepro) .
&= lbThree20.a H
* "2 Three20.bundle

* (L deioro)
» [l enloro)
» (i images

Figure 7-6. 1ibThree20.a is added as a target to your application. Take note of the check box that’s enabled
underneath the target symbol in the top right.

4, Add Three20 as a dependency of your project, so Xcode compiles it
whenever you compile your project. Expand the Targets section of the
sidebar, and double-click your application’s target. On the General tab,
you will see a Direct Dependencies section. Click the + button, select
Three20, and click Add Target (see Figure 7-7).

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

BN0 Target “OfflineMailer” Info.

{ General Build Rules Properties Comments '

Name: OfflineMailer
Type: Application

Direct Dependencies
Sgi Three20 (from Three20.xcodeproj)

o+ |-

Linked Libraries Type

K= Foundation.framework Required |
= UIKit framework Required +
¥= CoreGraphics.framework Required +
ﬁ SystemConfiguration.framework Required &
N= AddressBook.framework Required 3
N= CFNetwork.framework Required +
#= libsglite3.dylib Required &
ﬁ CoreData.framework Required &
#= QuantzCore.framework Required +
= libThree20.a Required +

Figure 7-7. Three20 is a direct dependency to the application.

5. Add the bundle of images and strings to your app. Locate
Three20.bundle under three20/src, and drag and drop it into your
project. A dialog box will appear. Make sure Create Folder References is
selected, “Copy items” is deselected, and Reference Type is set to
Relative to Project. Then click Add.

6. Add the CoreAnimation framework to your project. Right-click the
Frameworks group in your project (or equivalent), and select Add »
Existing Frameworks. Then locate QuartzCore.framework, and add it to
the project.

7. Finally, tell your project where to find the Three20 headers. Open your
project settings, and go to the Build tab. Look for Header Search Paths,
and double-click it. Add the relative path from your project’s directory to
the three20/src directory.

8. While you are in Project Settings, go to Other Linker Flags under the
Linker section, and add -0bjC and -all_load to the list of flags.

9. You're ready to go. Just #import "Three20/Three20.h" anywhere you
want to use Three20 classes in your project.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

I have made the most current source of Three20 available with the sample code
provided for this chapter. However, by the time you read this chapter, it’s possible that
new features and bug fixes have been submitted. | highly encourage you to visit the
site’s home page on GitHub and check it out.

Journeying Through the User Interface

Enough with installing libraries. Let’s get back into code! If you recall in my musings
before, once settings are properly added to the Settings of the application, you will bring
up the initial screen of your application. AccountViewController.h and
AccountViewController.m are responsible for this, as shown in Figure 7-8.

i Carrler = 9:41 PM

Offline Queue * Offline Queue

‘. Sent Mail ‘. Sent Mail

Figure 7-8. The target device has at least Figure 7-9. The application does not have network
one form of network connectivity. connectivity and is thus considered offline.

The light bulb is glowing yellow because this screenshot was taken while my simulator
had access to the Internet. Should you shut off the Internet while the app is running, it
would look like Figure 7-9.

The code for making that happen is trivial. Since you want to update the user interface
for the UIViewController whenever the network status is changed, you create a
superclass called 0OfflineViewController. The source for OfflineViewController is
available in its respective classes, OfflineViewController.h and

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

0fflineViewController.m. The most important methods to take heed of are the
following:

// Implement viewDidLoad to do additional setup after loading the view.
- (void)viewDidlLoad {
[super viewDidLoad];

[[NSNotificationCenter defaultCenter]
addObserver:self
selector:@selector(reachabilityChanged:)
name:@"kNetworkReachabilityChangedNotification"
object:nil];

[[Reachability sharedReachability] setHostName:[[DataManager sharedManager]
hostName];
[self updateNetworkStatus];

// for subclasses to implement
- (void)reachabilityChanged: (NSNotification *)note
{}

// for subclasses to implement
- (void)updateNetworkStatus
{}

Every UIViewController that subclasses OfflineViewController should implement
these methods. They will be invoked every time the network status changes. The
respective code in the AccountViewController class is implemented like the following:

- (void)updateNetworkStatus
{

NSLog(@"Network Status Has Been Changed");
currentNetworkStatus = [[Reachability sharedReachability] remoteHostStatus];
[1ightBulbView setImage:[self lightBulb]];

if (currentNetworkStatus == ReachableViaWiFiNetwork || currentNetworkStatus ==
ReachableViaCarrierDataNetwork) {
// Check the offline queue since we're on the network.
NSInteger queueCount = [[DataManager sharedDataManager]
numberOfMessagesInQueue];
if (queueCount) {
[[DataManager sharedDataManager] flushQueue];

}
- (UIImage *)lightBulb
{

return (currentNetworkStatus == NotReachable)
? [UIImage imageNamed:@"light bulb_off.png"]
: [UIImage imageNamed:@"light bulb on.png"];

There is a reference to a class in the previous code that | have not yet discussed by the
name of DataManager. For now, all you need to know is that DataManager is the class
that’s responsible for proxying all the communication to the database and network.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

Whenever the network state changes, NSNotificationCenter fires off a message to
everyone observing the kNetworkReachabilityChangedNotification notification.
Remember that both the application delegate and any class that subclasses
O0fflineViewController will be an observer. Here all you do is simply swap images when
the network’s state changes. | set up an ivar with a coinciding property named
lightBulbView. lightBulbView is an instance of UIImageView that you can access
anywhere throughout the instance of AccountViewController. When the network state
changes, you invoke the following:

[1ightBulbView setImage:[self lightBulb]];

Again, it’s far from rocket science. And the purpose of this chapter is not to teach Ul
design. In fact, I’'ve intentionally left the Ul here as cookie-cutter as possible so that you
can concentrate on code. That, and the real secret is | make a better ballerina than a
designer. | have no business touching software such as Photoshop or lllustrator;
however, there are plenty of hungry graphic designers out there if you’re in a similar
position. | also use sites such as http://www.istockphoto.com and
http://www.smashingmagazine.com extensively in order to pick up visually stimulating
icons and graphics.

Just to quickly go over what’s happening on the screen here, you have a few key
elements. On the UIToolbar on the bottom left, you have a compose message button in
addition to the aforementioned network connectivity light bulb icon. The UITableView
consists of two key players: Offline Queue and Sent Mail. These entities will also display
a visual indicator for the number of items available in either the offline cache or the
number of messages sent over the network. Since you haven’t written the first message
yet, you do not display a count. You will find this very similar to Apple’s Mail.app
behavior. Finally, the title simply consists of the username | use for my SMTP server
followed by the SMTP server’s hostname.

Managing Top-Level Data with DataManager

When building this demo, | needed a convenient class that would handle the
management of delivering messages. The class would also contain utility methods that
would assist view controllers in knowing how many messages are in the offline queue
and how many have been sent over the wire.

Before diving into the DataManager class, | should make it a point that some folks are
strongly opinionated about solving the common problem of putting top-level data into a
singleton the way I’'m doing so here. The pros and cons for doing so are outside the
context of this chapter. For this chapter’s purposes, however, this suits the architecture
well. | will leave you with another great article by Matt Gallagher that further explores this
topic: http://cocoawithlove.com/2008/11/singletons-appdelegates-and-top-
level.html. Now, let’s dip into both DataManager.h and DataManager.m.

The first requirement of the DataManager class was that it should be instantiated only
once. That’'s where the singleton design pattern comes in and saves the day. (See the
Cocoa Fundamentals Guide at http://developer.apple.com for more information about

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

singletons.) Finally, the class could also be accessed by multiple threads, so you need
to make sure you set up locks where applicable. Let’s get to some code to see the nitty-
gritty details of how the DataManager class is created:

static DataManager *dataMgr = nil;

First you declare a static instance of the DataManager class named dataMgr. If you recall
your basic C programming, you declare this static variable so that the dataMgr variable is
not available to other source files. It is locally scoped to the DataManager class.

// Initialize the singleton instance if needed and return
+(DataManager *)sharedDataManager

@synchronized(self) { // thread safe init
if (dataMgr == nil) {
[[self alloc] init];

return dataMgr;

}
+ (id)allocWithZone:(NSZone *)zone
{

@synchronized(self) {
if (dataMgr == nil) {
dataMgr = [super allocWithZone:zone];
return dataMgr; // assignment and return on first allocation

}

return nil; //on subsequent allocation attempts return nil

The sharedDataManager method is how you access the singleton object. Any class that
wants an instance of DataManager will simply call [DataManager sharedDataManager].
They will not need to worry about multiple copies or data corruption when accessing the
DataManager from multiple threads. The @synchronized() directive sets a lock on a
section of code so that a single thread can execute the rest of the instructions in the
block without worrying about other threads accessing the data. Any secondary threads
trying to access the method will be blocked until the thread accessing the block of code
exits the last statement in the @synchronized() block. The self argument passed to the
@synchronized() directive is the actual mutex that the lock is set on. If you’re familiar
with POSIX threads, better known as pthreads, you should be familiar with mutexes. You
will find the rest of the auxiliary code for a singleton class available in the source code.

- (void)loadDefaultSettings
{
NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];

self.hostName = [defaults objectForKey:@"hostName"];
self.smtpPort = [defaults objectForKey:@"smtpPort"];
self.smtpPassword = [defaults objectForKey:@"smtpPassword"];
self.smtpUserName = [defaults objectForKey:@"smtpUserName"];

if (self.smtpPort == nil) {
self.smtpPort = [NSNumber numberWithInt:DEFAULT SMTP_PORT];

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

}
}

The DataManager is also responsible for loading the default settings from
NSUserDefaults. This is only ever a read-only operation for our purposes. If you pay
close attention, you might notice something similar between the NSUserDefaults class
and the DataManager. That’s right, the NSUserDefaults class is also a singleton class.
Notice the choice of selector name for accessing an instance of the class?

Now that you have established the bare bones of the DataManager, let’s take a subtle
fork in the road before digging into the meat of the class. For the rest of the code to
make sense, you need to take a look at Three20 classes that communicate with the
DataManager.

Diving into Three20 and TTMessageController

Let’s get back to the AccountViewController.m file. This is the initial screen where user
interaction happens. When building this demo, | wanted to ensure the experience for
you would be smooth and simple. That’s something that even the most advanced power
users can appreciate. In doing so, | needed a clean interface that would allow me to
compose my e-mail messages. | knew that at the time of this writing, the SDK did not
allow me to access the Mail application without also leaving my application. This is when
I ran into Joe Hewitt’s exemplary open source library named Three20.

Three20 is a set of Objective-C classes that you can reuse in your applications to either
enhance its Ul, add a photo picker that looks like Apple’s, style your labels like you
would with CSS, and do many other outstanding things. It’s simply brilliant how trivial it
was for me to build a compose e-mail view with the powerful functionality | required for
this demo, including the capability to add multiple recipients, search my Address Book,
add a subject, and be able to write text that | can easily scroll through. To do that, you’ll
use the Three20 class TTMessageController. Here is how you instantiate it when the
composeMessage: selector is invoked:

- (void)composeMessage: (id)sender

id recipient = [[[TTTableField alloc] initWithText:nil url:TT_NULL_URL]
autorelease];
TTMessageController* controller = [[TTMessageController alloc]
initWithRecipients:[NSArray arrayWithObject:recipient]];
self.messageController = controller;
messageController.delegate = self;
messageController.dataSource = dataSource;

[controller release];

[self presentModalViewController:messageController animated:YES];

}

Initially, you do not want any recipients to populate your recipient row. So, you use an
instance of TTTableField as a “dummy” placeholder. The TTMessageController needs to
be initialized with the initWithRecipients: methods, and here is where you provide the

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

recipient object. You assign the instance of AccountViewController as a delegate, and
you assign a dataSource of TTAddressBookDataSource. TTAddressBookDataSource is not
part of the Three20 library. It is a class I've put together so that you can take advantage
of pulling contacts from your Address Book. That adds a more realistic touch to the
application. TTAddressBookDataSource resides in Classes » Data Management »
TTAddressBookDataSource.h/TTAddressBookDataSource.m. One of my other favorite tricks
is to use Cmd+D. There you can type in any file or symbol name you’re searching for.

The most interesting method in TTAddressBookDataSource looks like the following:
+ (TTAddressBookDataSource *)abDataSourceForSearch: (BOOL)forSearch
{

ABAddressBookRef addressBook = ABAddressBookCreate();
NSArray *peopleArray = (NSArray *)ABAddressBookCopyArrayOfAllPeople(addressBook);
NSMutableArray *allContacts = [NSMutableArray array];

for (id person in peopleArray) {

if ([(NSString *)ABRecordCopyValue(person, kABPersonOrganizationProperty)
autorelease]) continue;

NSMutableString *firstName = [(NSString *)ABRecordCopyValue(person,
kABPersonFirstNameProperty) autorelease];

NSMutableString *1lastName = [(NSString *)ABRecordCopyValue(person,
kABPersonLastNameProperty) autorelease];

ABMutableMultiValueRef multiValueEmail = ABRecordCopyValue(person,
kABPersonEmailProperty);

NSString *email = nil;
if (ABMultiValueGetCount(multiValueEmail) > 0) {
email = [(NSString *)ABMultiValueCopyValueAtIndex(multiValueEmail, 0)
autorelease];
} else {
continue;

Contact *aContact = [[[Contact alloc] initWithFirstName:firstName
lastName:lastName email:email] autorelease];
[allContacts addObject:aContact];

TTAddressBookDataSource *dataSource = [[[TTAddressBookDataSource alloc]
initWithNames:allContacts] autorelease];
if (!forSearch) {
[dataSource rebuildItems];
CFRelease(addressBook);
return dataSource;
What this code does is creates a reference to the Address Book and its respective

database. You then return an array of all the people in your Address Book using the
following code:

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

NSArray *peopleArray = (NSArray*)ABAddressBookCopyArrayOfAllPeople(addressBook);

NOTE: Organizations you add to your Address Book will not be returned by this invocation!
That might be clear by the verbose name of the function; however, it was something that had
me stumped when | first started writing code with the AddressBook framework. The rest of the
code should be rather self-explanatory. There is excellent documentation on programming with
the AddressBook framework in the ADC. Feel free to use this as a reference in order to
incorporate the AddressBook framework in your application.

Composing and Sending Messages

So up to this point, you have seen the building blocks to put this application together.
However, | haven’t just yet touched the novel parts of dealing with offline operations.
This is where we start chewing bubble gum and taking names.

When you’re composing your message, you'll notice that the controller has a built-in
search that’s very similar to Apple’s. You get that great-looking dim overlay on top of
your Address Book that sits between the keyboard and the search bar, as shown in
Figure 7-10.

(A[]o]Flo]H <[]
® E0o000D =

AT
2123 space Done

Figure 7-10. A rudimentary search user interface that resembles the search used by Apple in the Contacts
application

You'll also see an attractive user interface when you enter a contact name in the To field
that has a match in the Address Book, as Figure 7-11 reflects.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

LllzIx]c]v]s]nimi)

7123 space Next

Figure 7-11. The result of all of the contacts that contain the substring “s”as it is entered into the search field
above

Let’s give this a spin. Assuming you have a properly configured SMTP server set up and
input into Settings, go ahead and add some dummy contacts into your simulator’s
Contacts if you’re running in a simulator environment. If you’re on your actual device,
you should be all set there. After composing a message, your screen should look like
Figure 7-12.

Offline Queue
"+ Sent Mail

Figure 7-12. The user interface after one message has been successfully sent over the network

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

Neat, huh? There’s the visual indicator, showing a very Apple Mail-esque blue-pill tablet
with the amount of messages sent. Here’s what gets fired off after you hit Send:

- (void)composeController: (TTMessageController*)controller
didSendFields: (NSArray*)fields

NSMutableArray *contacts = [[NSMutableArray alloc] initWithCapacity:0];
TTMessageRecipientField *toField = [fields objectAtIndex:0];

for (id recipient in toField.recipients) {
Contact *aContact = [dataSource contactWithName:recipient];
[contacts addObject:aContact];

[[DataManager sharedDataManager] sendEmailWithFields:fields forContacts:contacts];

[contacts release];

}

Here you use Three20’s class TTMessageRecipientField in order to establish the list of
destination users you’ll be messaging. You then go through each individual recipient and
instantiate a Contact object.

NOTE: The Contact class is a trivial resource that | wrote as a wrapper of key/value pairs.
The source code is available in Classes/Model/Contact.h/m. On the other hand, the
Message class is a special class in that it is coupled with Core Data. I'll discuss that shortly.

When you’re ready, you use DataManager as a pass-through proxy to figure out what to
do with the message:

- (void)sendEmailWithFields: (NSArray *)fields forContacts:(NSArray *)contacts

// message subject
TTMessageSubjectField *subjField = [fields objectAtIndex:1];

// email body
TTMessageTextField *bodyField = [fields objectAtIndex:2];

// recipients
NSMutableString *recipients = [[NSMutableString alloc] init];
NSInteger cnt = [contacts count];
for (int i=0; i < cnt; ++i) {
NSString *anEmail = nil;
if (i == cnt - 1)
anEmail = [NSString stringWithFormat:@"%@", (Contact *)[[contacts
objectAtIndex:i] email]];
else
anEmail = [NSString stringWithFormat:@"%@,", (Contact *)[[contacts
objectAtIndex:i] email]];

[recipients appendString:anEmail];

NSDictionary *data = [NSDictionary dictionaryWithObjectsAndKeys:recipients,
@"recipients”, subjField.text, @"subject", bodyField.text, @"body", nil];

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

if (self.appDelegate.hasNetworkConnection) {
NSInvocationOperation *onlineEmailOperation = [[NSInvocationOperation alloc]
initWithTarget:self selector:@selector(emailInvocationOperation:) object:data];
[networkOperationQueue addOperation:onlineEmailOperation];
[onlineEmailOperation release];
} else {

//

// get the next id for messageid, its unique identifier.
//

NSString *newld = [selfgetNewMessageID];

//

// Create a new Message object and add it to the Managed Object Context.

//

Message *message = (Message
*)[NSEntityDescriptioninsertNewObjectForEntityForName:@"Message" inManagedObjectContext:m
anagedObjectContext];

// configure the message object using KVC, a common pattern

// when using Core Data.

[message setValue:recipients forKey:@"to"];

[message setValue:bodyField.text forKey:@"body"];

[message setValue:subjField.text forKey:@"subject"];

[message setValue:newId forKey:@"messageID"];

[message setValue:[NSNumbernumberWithInt:0] forKey:@"dateSent"];
[message setValue:[NSNumbernumberWithBool:NO] forKey:@"status"];

NSLog(@"newId in queue: %@", newlId);

NSError *error = nil;
if (![managedObjectContextsave:&error]) {
// handle the error
} else {
[[NSNotificationCenterdefaultCenter]
postNotificationName:kMessageQueuedSuccessfullyobject:nil];

}
}
}
The interesting code here is where you refer to your application delegate (appDelegate)
and ask it what state of your network is in:
If (self.appDelegate.hasNetworkConnection) {
// do network stuff.

} else {
// cache stuff.
}

Look familiar? That’s because it is. And again, it's not rocket science—it’s trivial at best.
The idea here is to demonstrate how some of the most advanced applications use
simple implementation interfaces such as this to operate.

Now in this particular example you were online, so what you do here is instantiate an
NSInvocationOperation object with the following:

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

NSInvocationOperation *onlineEmailOperation = [[NSInvocationOperation alloc]
initWithTarget:self selector:@selector(emailInvocationOperation:) object:data];

We then add it to our networkOperationQueue:

[networkOperationQueue addOperation:onlineEmailOperation];

NSInvocationOperation is one of my favorite classes that is available in the Foundation
framework. It simply takes one of the selectors and encapsulates the instructions within
to run in a threaded environment. And although it’s not a true concurrent operation, you
have the full benefit of freeing your GUI thread from getting locked because of the work
that’s going on in the invocation. This gives the user greater feedback in the application
and allows them to either continue writing more messages or view their queue.

Our emailInvocationOperation: method looks like the following:

- (void)emaillInvocationOperation:(id)data

NSAutoreleasePool *aPool = [[NSAutoreleasePool alloc] init];
NSString *body = [data objectForKey:@"body"];

NSString *recipients = [data objectForKey:@"recipients"];
NSString *subject = [data objectForKey:@"subject"];

NSString *messageID = [data objectForKey:@"messageID"];

if (!messageID) {
// No message created yet? Let's create it.
NSNumber *currentTime = [self currentTimeStamp];
messageID = [self getNewMessageID];

Message *message = (Message *)[NSEntityDescription
insertNewObjectForEntityForName:@"Message" inManagedObjectContext:managedObjectContext];

[message setValue:recipients forKey:@"to"];
[message setValue:body forKey:@"body"];

[message setValue:subject forKey:@"subject"];
[message setValue:messageID forKey:@"messageID"];
[message setValue:currentTime forKey:@"dateSent"];

NSLog(@"messageID in emailInvocationOperation: %@", messageID);

NSError *error = nil;

if (![managedObjectContext save:&error]) {
// handle the error

}

}
SKPSMTPMessage *smtpMsg = [[SKPSMTPMessage alloc] init];

smtpMsg.fromEmail = @"you@example.com ";
smtpMsg.toEmail = recipients;
smtpMsg.relayHost = self.hostName;
smtpMsg.requiresAuth = YES;
smtpMsg.login = @"self.login ";
smtpMsg.pass = @"self.password";
smtpMsg.subject = subject;
smtpMsg.wantsSecure = YES;

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

//

//Upon a successful callback of messageSent:

// we want to update this particular row from the database.
//

smtpMsg.messagelD = messagelD;

smtpMsg.delegate = self;
NSDictionary *plainText =
[NSDictionary
dictionaryWithObjectsAndKeys:@"text/plain",kSKPSMTPPartContentTypeKey,

body, kSKPSMTPPartMessageKey,@"8bit" ,kSKPSMTPPartContentTransferEncodingKey,nil];

smtpMsg.parts = [NSArray arrayWithObjects:plainText,nil];
[smtpMsg send];

[smtpMsg release];
[aPool drain];

}

What’s happening here is the emailInvocationOperation: selector is being invoked on a
secondary thread. As such, | like to create an additional instance of NSAutoreleasePool
since I'll be allocating some objects in this thread and I'd like the autorelease pool to get
drained when execution finishes here.

When you invoked emailInvocationOperation, you passed along a dictionary of data
about the message.

This metadata gives you the opportunity to do your record keeping to know what
message you’re currently dealing with. Speaking of the Message class, you’re probably
asking yourself where this class came from and why | haven’t spoken about it yet. If
you’re asking that, you’re asking the right questions. Let’s jump into your first glance at
an implementation of NSManagedObject.

Creating the Core Data Model

When you created the project as a Core Data—enabled project, Xcode’s template magic
should have created a file called 0fflineMailer.xcdatamodel. Double-click it, and you
should get something that looks like Figure 7-13.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

8eno || OfflineMailer.xcdatamodel =
Simulator - 3.0 | Del >
I z L »
Cwerse " -
o wowi Abs Class proceny &1 Kind Tyoe or Destination Ertity 2310 QRN
[T body Auribute String :
dareSern Astribute 032 s | Retiensee
messageid Attridute Strag it [iamage
status Astribute Bool :
ubject Attribute Strng % Parent: | Mo Parent Eatity #)
© Astribute Strng : Sy
o
cew anle 2
m
f
[+ anributes
body
dateSent
Imessageio
vatus
subject
lto
1+ Reutionshios
v
Isirao 1008

Figure 7-13. The simple Core Data model

If there were a few more entities (entities in Core Data are better known as models), |
would have something that resembles an ERD diagram. In this figure, | have created a
Message entity by clicking the + button in the upper-left corner of Figure 7-13. The
Message entity has several attributes (better known as properties). Basically, try to think
of entities as eventually being turned into tables in a SQLite implementation with
attributes acting as columns.

As depicted in Figure 7-13, you can see | added several attributes to the Message entity.
These properties include a body, dateSent, messagelD, status, subject, and a “to” field.

Note that each one has a correlated type. Also, notice | disabled the Optional field in all
of the attributes, as depicted in Figure 7-14.

Attribute (EIE SENIFe)
Name: body

7 Optional [Transient ! Indexed
Type: [String ﬂ

Min Length: Max Length:

Reg, Ex:
Default Value:

Figure 7-14. The Attribute pane of the Core Data model indicating that the attribute “body” is not optional.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

There’s a great deal of information | can get into about what’s going on here, but you
must remain focused on the task at hand. | haven’t even scratched the surface of Core
Data by not mentioning relationships and their relevance between entities. It makes me
want to jump into another several chapters dedicated to Core Data, but that’s a luxury |
cannot afford.

What’s most important is for me to show you how to create your Model class after
creating this entity. What you should do next is click the Message entity, then press
Cmd+N, and select Managed Object Class from the menu, as depicted in Figure 7-15.

QOO New File

Choose a template for your new file:

l iPhone OS - - -

.m m
Code Signing Managed Object Objective-C class Objective-C test
Resource Class case class
User Interface
“: Mac 05 X -
AppleScript 'n1 .
.
Cang Ct+ UlViewController =
Carbon cuhelace
Cocoa
Interface Builder SDK Description Generate Managed Object classes for entities
Pure Java
Pure Python
Ruby
Sync Services
Other
o Carcater) P
Cancel Previcus Next

Figure 7-15. Selecting Managed Object Class as an available template

You’ll notice a new Message class has been created for you. All this work has been done
with very little effort. There shouldn’t be anything new to you in the generated class
except for Message’s base class (NSManagedObject) and perhaps the @dynamic directive.
All the @dynamic directive does is promise the compiler (or Core Data in this case) that
you’ll supply the implementation for the properties at compile time. NSManagedObject is
simply a generic class that Core Data molds as a model for you.

Now you’ll dive back into emailInvocationOperation:. You’re about to inhale the fresh
aura that Core Data emits. In the next several lines, you’re going to avoid the hassle of
going back and forth between objects and SQL. That is a process that can grow tedious
and error-prone. This is handled much more elegantly with the advent of Core Data.

First, you’re checking to see whether you have a messageID. The messageID helps you
identify a unique message in a pool of messages. If you have experience with
databases, this is a fairly similar approach to using an autoincrement field. The code for
getNewMessageID looks like the following:

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

- (NSString *)getNewMessageID
NSString *newId = @"1";

NSEntityDescription *entity =
[NSEntityDescription entityForName:@"Message"

inManagedObjectContext:managedObjectContext];

NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];

[fetchRequest setEntity:entity];

NSString *predicateString = @"messageID = max(messageID)";

NSPredicate *predicate = [NSPredicate predicateWithFormat:predicateString];

[fetchRequest setPredicate:predicate];

NSError *error = nil;
NSArray *allMessages = [managedObjectContext executeFetchRequest:fetchRequest
error:8error];
if ([allMessages count] > 0) {
Message *message = [allMessages objectAtIndex:0];
NSString *messageID = [message valueForKey:@"messageID"];
NSNumberFormatter *numberFormatter =
[[[NSNumberFormatter alloc] init] autorelease];
NSNumber *num = [numberFormatter numberFromString:messageID];
newId = [NSString stringWithFormat:@"%d", [num intValue] +1];

}

[fetchRequest release];

return newld;

This method contains some new classes, so let’s go over them briefly. First you use
NSEntityDescription to describe what objects you’re particularly interested in working
with. In this case, it’s the only Core Data class you have, so you set the entity name
Message. The NSFetchRequest is where you retrieve our data from storage. It’s also where
you can set a predicate using NSPredicate.

If you’re a database person, it might help you to think of the NSPredicate class as a
wrapper around the SQL keyword WHERE. It is used to look for a specific domain of
objects that are available from a much larger pool of objects. | highly recommend
looking up the documentation for this class and getting better acquainted with it.

It’s fairly simple to use; as you can see in the predicateString variable, you set a format
of messageID = max(messageID). What this does is retrieve one instance of message (if
you have one) with the highest messageID value. You simply take that value, increment it
by one, and return it. This will give the caller the capability to set the value for the next
Message object.

After you fetch the new ID, you useNSEntityDescription to inject a new Message object
into your managed object context. The entity you’re creating is named in
insertNewObjectForEntityForName:. You then use a common pattern of Key Value
Coding (KVC) to properly initialize your message object. Finally, you save the state of the
context. Note that I’m not doing any real error handling here besides leaving a template
for where you would normally do it. If this were a production application, you most
certainly would want to fill in this code here in the event of an error.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

Hacking SKPSMTPMessage to Support Threaded
Message Sending

You've gotten this far, but you have yet to see the workhorse of what'’s responsible for
handling the gamut of paramount details behind the scenes. The SKPSMTPMessage is an
open source library that is a simple but well-working wrapper that sends messages via
SMTP on the iPhone and Mac.

CAUTION: Applications that tend to replicate Apple’s functionality such as Mail.app stand
the risk of being rejected from the App Store. We use this simply as a demo for the book.

The instantiation of the SKPSMTPMessage class is straightforward. You should be able to
understand its usage by reading the source in DataManager.m. | made some minor
modifications to SKPSMTPMessage in order to make it work with this app. First, | do the
following:

smtpMsg.messageID = messagelD;
| added the following instance variable to SKPSMTPMessage. h:
NSString *messagelD;

The reason for this is simple—after the message delegate receives a messageSent: or
messageFailed: callback that is defined in the SKPSMTPMessageDelegate, | need to know
which message it is. You could have an infinite amount of messages queued (although
your ISP might end up knocking on your door if you should ever try to reach this
egregious quantity...), and whenever one fails or succeeds, you need to update your
database.

Setting Up the NSRunLoop on SKPSMTPMessage

There’s one more change you have to make to SKPSMTPMessage that isn’t as
straightforward to understand without a brief explanation, so I'll talk about that here. The
SKPSMTPMessage class includes a multitude of sources such as NSOutputStreanm,
NSInputStream, and NSTimer that work just fine in a main thread but require slightly more
configuration in a secondary thread. The reason for that is most of the time there is an
object that works behind the scenes that manages these input sources for you without
you even knowing. It all happens automagically if you create your application with one of
Xcode’s sample templates and an instance of UIApplication is created for you. That
magic object is known as NSRunLoop.

When you manage secondary threads with input sources and instances of NSTimer, you
need to create your own NSRunLoop, and you need to run it periodically to check for
events. NSTimers that get fired off without a properly configured NSRunLoop will never
work. So, in order to make this work, | simply created an NSRunLoop that runs in a loop
and processes the input sources until the thread exits:

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

while (self.runningloop) {
[r]l runUntilDate:[NSDate dateWithTimeIntervalSinceNow:1]];

That should satisfy SKPSMTPMessage in a secondary thread. Let’s do something slightly
more interesting now. Let’s fire up the application, let’s turn off the WiFi/Internet, and
let’s send a message with no connectivity. In fact, write two or three messages and see
what happens. Your screen should look something like Figure 7-16.

' Offline Queue
“« Sent Mail

Figure 7-16. An offline state of the application, with new messages incrementing the Offline Queue count

NOTE: The blue-like pill is a nifty user interface element you see available in many
applications such as Apple’s Mail.app and many third-party apps in the App Store. To see
how it’s built, take a look at Classes/View/Elements/

BlueBadge.h/m. The source is freely available by developer Leon Ho on
http://github.com/leonho/iphone-1ibs/tree/master.

Don’t you just love it when you’re interacting with an application that doesn’t crash or
give you an obtrusive UIAlertView complaining that there isn’t any Internet available?
It's a beautiful and simple concept. Let’s see what’s going on to make this happen:

if (self.appDelegate.hasNetworkConnection) {
NSInvocationOperation *onlineEmailOperation = [[NSInvocationOperation alloc]
initWithTarget:self selector:@selector(emailInvocationOperation:) object:data];
[networkOperationQueue addOperation:onlineEmailOperation];
[onlineEmailOperation release];
} else {

1/

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

// get the next id for messageid, its unique identifier.
1/
NSString *newId = [self getNewMessageID];

//

// Create a new Message object and add it to the Managed Object Context.

//

Message *message = (Message *)[NSEntityDescription
insertNewObjectForEntityForName:@"Message" inManagedObjectContext:managedObjectContext];

// configure the message object using KVC, a common pattern

// when using Core Data.

[message setValue:recipients forKey:@"to"];

[message setValue:bodyField.text forKey:@"body"];

[message setValue:subjField.text forKey:@"subject"];

[message setValue:newId forKey:@"messageID"];

[message setValue:[NSNumber numberWithInt:0] forKey:@"dateSent"];
[message setValue:[NSNumber numberWithBool:NO] forKey:@"status"];

NSLog(@"newId in queue: %@", newlId);

NSError *error = nil;
if (![managedObjectContext save:&error]) {
// handle the error
} else {
[[NSNotificationCenter defaultCenter]
postNotificationName:kMessageQueuedSuccessfully object:nil];

}

Some of this code should look familiar. That’s because it is—I already went over it. The
only difference here is you’ve failed a network connection check for which the
SystemConfiguration framework has so kindly been programmed to report.

The most important thing to note here is to set the status of [NSNumber
numberWithBool:NO] in the Message object. If you recall, status is the attribute you set as
a BOOL in the entity. This status will help you determine whether a message has already
been sent to its recipients. With a BOOL of NO, the message is still in the queue.

Switching the Bits Back to Online Mode

So, you have a bunch of messages queued now. That'’s fine and dandy, but it does you
no use unless your recipients ultimately receive the message you’ve crafted to them
during your flight to the sunny beaches of Antigua where you’re going to build your
ultimate iPhone app from a beach-based villa, right? OK, OK, we can dream.

So, let’s get back into reality here and reenable the Internet connection, or whatever
means you're using to connect. After reconnecting, you should see something like
Figure 7-17.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

Offline Queue
‘. Sent Mail

Figure 7-17. Returning online after spending some time in an offline state

You guessed it—you have a notification that is listening and waiting for a change in the
network state. Upon reconnecting, you see whether there are any messages in the
offline queue and take the appropriate action:

- (void)updateNetworkStatus

currentNetworkStatus = [[Reachability sharedReachability] remoteHostStatus];
[lightBulbView setImage:[self lightBulb]];

if (currentNetworkStatus == ReachableViaWiFiNetwork || currentNetworkStatus ==
ReachableViaCarrierDataNetwork) {
// Check the offline queue since we're on the network.
NSInteger queueCount = [[DataManager sharedDataManager]
numberOfMessagesInQueue];
if (queueCount) {
[[DataManager sharedDataManager] flushQueue];

}
and finally flushQueue:

- (void)flushQueue
NSLog(@"Flushing queue");

if (self.appDelegate.hasNetworkConnection) {
NSArray *messages = [self getResultSetFromQueue];
for (Message *message in messages) {
NSMutableDictionary *data = [NSMutableDictionary new];
[data setValue:[message valueForKey:@"body"] forKey:@"body"];
[data setValue:[message valueForKey:@"to"] forKey:@"recipients"];

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

[data setValue:[message valueForKey:@"messageID"] forKey:@"messageID"];
[data setValue:[message valueForKey:@"subject"] forKey:@"subject"];

NSInvocationOperation *onlineEmailOperation = [[NSInvocationOperation alloc]
initWithTarget:self selector:@selector(emailInvocationOperation:) object:data];
[networkOperationQueue addOperation:onlineEmailOperation];

[onlineEmailOperation release];
[data release];

}
}

Here you query for all the objects that have not yet been sent (remember the status
attribute | spoke about earlier?) using the -getResultSetFromQueue method:

- (NSArray *)getResultSetFromQueue

NSFetchRequest *request = [[NSFetchRequest alloc] init];

NSEntityDescription *entity = [NSEntityDescription entityForName:@"Message"
inManagedObjectContext:managedObjectContext];

[request setEntity:entity];

NSPredicate *pred = [NSPredicate predicateWithFormat:@"status == NO"];
[request setPredicate:pred];

NSError *error = nil;
NSArray *fetchResults = [managedObjectContext executeFetchRequest:request
error:8error];
if (fetchResults == nil) {
// handle error here.
}

[request release];

return fetchResults;

}

-getResultSetFromQueue should start looking awfully familiar to you if it hasn’t already.
What you’re doing in here is very similar to what you saw before in the getNewMessageID
method. This time, you’re simply setting the predicate to look like the following:

NSPredicate *pred = [NSPredicate predicateWithFormat:@"status == NO"];

For each individual message, you wrap the data into an NSInvocationOperation selector
and add it to the networkOperationQueue.

NOTE: Some MTAs might raise a suspicious flag if you queue a high number of messages and
send them all simultaneously without any throttling. I've left a comment here where you could
set a throttle in order to avoid hearing from the BOFH that’s administrating the recipient’s or
sender’s mail server.

Finally, once a message is sent, the messageSent: delegate is invoked on the main
thread:

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

- (void)messageSent: (SKPSMTPMessage *)smtpMessage
NSLog(@"delegate - message sent for message id: %@", [smtpMessage messagelD]);
NSString *messageID = [smtpMessage messagelD];

// retrieve Message based on ID
Message *message = [self getMessageWithID:messageID];

// Update status to sent and current timestamp.
NSNumber *currentTime = [self currentTimeStamp];

[message setValue:currentTime forKey:@"dateSent"];
[message setValue:[NSNumber numberWithBool:YES] forKey:@"status"];

NSError *error = nil;

if (![managedObjectContext save:&error]) {
// handle error;
}

// post a notification to alert the client that the message has been sent.
[[NSNotificationCenter defaultCenter] postNotificationName:kMessageSentSuccessfully
object:nil];

Here you simply update the timestamp of the message you’re sending once it has been
successfully sent. You also make sure to set the status to a Boolean YES so you do not
resend it in the future. After that is done, you remember to save the
managedObjectContext. Finally, you post a notification so that the
AccountViewController can invoke reloadData on its tableView and your badges can
redraw themselves with the correct counts.

You also now have the capability of persisting messages queued and sent whenever
your application is shut down. At your convenience, you can log back in and reread
what you've already sent and what you have in the queue (if you’re offline).

Summary

You worked with several fascinating technologies in this chapter, most of them open
source with very relaxed licenses. | was able to build this demo without having to write
too much of my own code. I’m a huge advocate of not reinventing what smarter people
have already done better than | could. In this chapter, you worked with Three20,
SKPSMTP, and various Cocoa Touch technologies.

You had the opportunity to work with Core Data and understand the basic objects that
are used frequently with the entire Core Data stack. You also took a look at how you can
leverage Core Data in order to make your application usable even when you’re entirely
dependent on Internet connectivity to do anything useful. Adding even subtle offline
caching can dramatically increase the sales of your next iPhone app, and your users will
appreciate it.

CHAPTER 7: Smart In-Application E-mail with Core Data and Three20

| hope this introduction to persisting data using Core Data and working with offline
applications has inspired you to build the next killer application that | can use while I'm
riding on the train, flying on a plane, or commuting home on the bus through the Lincoln
tunnel. To keep up with my updates, you may follow me on Twitter via @stevefink or
subscribe to my blog where I'll be holding tech-related musings (it’s currently under
construction at the time of this writing) via http://www.stevefink.net.

Florian is working self-employed as a software developer.
Peter is co-owner of “Honeder Lacher Wallner Softwareentwicklung OEG”,
a software development company.

Vienna, Austria

Florian:
C and C++ programming, mostly on Unix-based systems.

Network programming, using C, C++ or one of various scripting
languages like e.g. Ruby.

Database Design and Development, mostly using PostgreSQL
(www.postgresql.org)

GUI programming using the Qt toolkit (www.qtsoftware.com)
Peter:

Multi-platform software development (mostly Windows, Mac,
Linux)

Network Programming
GUI programming with Qt
Developing Plug-ins for Adobe InDesign

Our Applications:
iTap

iTap Volume

And introduction to iTap and the main challenges we faced

A discussion of WiFi networking on the iPhone, focused on the
requirements of iTap and similar applications

Auto-discovery of other WiFi devices. We look at both Bonjour
and the proprietary solution of iTap.

A few programming tricks, most notably using notifications to
achieve better modularization

BSD networking API
Core Foundation networking API
Multicasting

Notifications

Chapter

How iTap Tackles the
Challenges of Networking

Both of us have always been intrigued by developing applications for mobile devices. In
the past, we looked at all kinds of mobile devices, but they either lacked major hardware
or software features or did not provide convenient means of selling the application. All
the rumors regarding Apple months before actually presenting the App Store and the
new iPhone 3G to the public made us curious.

Our first step into iPhone development was to apply for the iPhone development
program on Apple’s web site. Although our initial steps were taken at the end of May
2008, our application was not accepted until the second week of August. The ability to
test programs live on our first iPhone increased our motivation to start development.

iTap was born around the end of August 2008 when the first initial prototype was
finished and showed a lot of potential. What brought us to develop iTap was a simple
requirement of our own: the ability to control our computer while using it to watch
movies on a beamer without getting up from the couch.

Completely separately, we thought about developing such an application every time we
watched movies with our girlfriends or other friends. Without some kind of wireless
keyboard and mouse, having to get up each time you want to turn the volume up or
down gets annoying over time. Being software developers, instead of simply buying
such devices, we asked ourselves, “Couldn’t we somehow use the iPhone for that?”
Equipped with an advanced touchscreen, WiFi networking, and a rich API, the iPhone
turned out to be the optimal device for this endeavor.

As you can see in Figure 8-1, the main GUI of iTap is very simple. After loading, it shows
instructions for the available gestures that fade out after some seconds to clean the
screen. The image on the right is a bit more complicated; it shows the iPhone keyboard
and some extra buttons such as cursor keys, the ESC key, and multimedia controls.

249

CHAPTER 8: How iTap Tackles the Challenges of Networking

g 353 1 =

“J esc 1t l«‘ MM

§

g (\ \ 7“ \ P e—
-3 - — o

1| & &d <«)

ajwlefrft]v]ufi]o]r]
nEDOOONEn
» 300000

return

Figure 8-1. iTap’s main GUI

Meet iTap and iTap Receiver

You can very likely already imagine how iTap works, but in Figure 8-2 we will provide an
overview of each of the components involved.

N\ ann [Tag recenar
Curreatly paired with: LU EEN Compatible
Devicey currently ranni ing & compatible application: Apps
(Wi with selected device | | Remove paiing |
O ot P addronans JE0IE4LNL 4L DR DL AT IR ITATRD, SN
\) i 23 s i kit el
iPhone running iTap

Mac or Windows PC
Figure 8-2. Overview of the connection between iTap and the iTap receiver

CHAPTER 8: How iTap Tackles the Challenges of Networking

iTap

Effectively, iTap turns any iPhone or iPod touch into a wireless keyboard and touchpad.
The iTap iPhone application translates the user’s intended pointer movements or
keypresses into network packets sent over the WiFi to a computer.

Since neither Mac OS X nor Windows support WiFi-based input devices, the iTap
receiver application needs to run on the computer to be controlled. The receiver

receives the network packets sent by iTap and synthesizes appropriate mouse
movement or keypress events.

This way, users can remote control any application on their computers, most notably
media players of all sorts and presentations in Keynote or PowerPoint.

Our iTap receiver is a multiplatform application that runs on Mac OS X as well as
Windows.

iTap Receiver

The iTap receiver provides very few interactive features. It mainly allows you to see a
running iTap on an iPhone or iPod touch within a list of visible devices. Using the Pair
button, you grant a device permission to control the computer (see Figures 8-3 and 8-4.)
80 Tap receiver

Currently paired with: dr. phone Compatible
Devices currently running a compatible application:

« iTap receiver x|
Apps .

Currently paired with: myPhony
pr— Devices curently rurning 8 compatile acplabon:

iTap i

WIFi touchpad

f ap\
Wl

WiFi volume control

(" Pair with selected device) { Remove pairing |

ol

Your 1P addressesi 192.168.13.128
Version: 2.2 © 2008, Honeder Lacher Walner Softwansentwickbng OEG

Your

169.264.193.243, 10.211.5.2. 10.37.129.2, 10.200.4 43

Version 2.2 © 2008, Mgoager Laches Wakings 3 16

Figure 8-3. Receiver main screen with one device Figure 8-4. Windows version of the iTap receiver
paired (Mac)

Later we added other features to the receiver. Most notably, we display the IP addresses

of the host where the receiver runs and provide better methods for synthesizing keys on
Mac OS 10.4, Mac 10.5, and Windows.

Communication between the iTap receiver and iTap on the device is done through UDP
packets. Many problems and difficulties that severely impact the complexity of support
issues arise because of different and unpredictable network configurations.

You can see that this discussion of features and usability requirements leads to
problems especially in the area of networking. We will discuss our solutions to these
problems in the later parts of this chapter in more detail.

CHAPTER 8: How iTap Tackles the Challenges of Networking

How the Idea for iTap Emerged and Evolved

Our first iTap prototype showed potential but had many drawbacks. Most notable were
the lack of keyboard controls and a network implementation that simply used
broadcasts to send all the data. We concentrated on networking and usability for the
first version, and thus we added keyboard controls with the first update in the App Store
some weeks after the initial release.

Many discussions regarding which features to include in the first version spread out
during a break from our day jobs on holiday on a Spanish island during September. A
temperature of nearly constant 23 degrees Celsius (73 Fahrenheit) and the possibility of
going to the beach any time combined with working on the terrace created many new
ideas and sped up the development of iTap drastically. We can only recommend
creating first versions of iPhone projects during a holiday without business distractions.

One of the most important things we focused on was usability. It is a key to success for
nearly all iPhone applications. Looking back to the beginning of our development clearly
shows that much of the positive feedback from our users came from the fact that we
concentrated on usability.

The Main Challenges

Compared to other projects we did in our pasts of long-time software development, iTap
was a small-scale project. We’ll summarize the main challenges because, even for a
small project like iTap, it is never wise to underestimate the quality requirements that are
necessary to be successful.

No Physical Buttons on the iPhone

iPhones have really small screens. Even for applications like iTap, the screen is not very
large if stuffed with all kinds of controls for settings, mouse buttons, special functions
like scrolling, and so on. The solution was simply to make use of as many gestures as
possible to provide the user with a good set of features while having the screen as
empty as possible.

It may not sound obvious, but an empty screen is exactly what we tried to achieve with
iTap. Only a completely empty screen would provide the user with the possibility of
moving the mouse cursor while looking at his TV screen (and not at his iPhone) and not
accidentally hitting buttons at the same time. We designed iTap to be as easy to use as
possible in the dark and without looking at it.

Not only did this decision influence how the GUI was presented to the user, but we even
restricted the application to not automatically rotate its GUI when the iPhone is rotated.
It was quite logical to us that without looking at your device you would not want it to
rotate automatically.

Our feature set for the mouse controls always included at least left button and right
button presses as well as moving the mouse and two-finger scrolling. Right button clicks

CHAPTER 8: How iTap Tackles the Challenges of Networking

are triggered using a two-finger touch. We quickly developed a small state machine for
the first version that included all of these features, but thorough testing on all platforms
showed that tuning thresholds for the different inputs was difficult but necessary to
provide good user experience.

To facilitate multitouch gestures, we created a user interface that showed a mock-up of
an actual notebook touchpad. In addition to left/right button clicks and two-finger
scrolling gestures, we implemented a three-finger downward swipe gesture to activate
the virtual keyboard.

To provide users with the choice of how to create mouse events, we allow iTap to
display a single button or two buttons (left and right). This is not our default configuration
for iTap, but Windows users especially sometimes prefer seeing buttons instead of
working only with gestures.

Third-Party Applications Cannot Use USB or Bluetooth

Both USB and Bluetooth are interfaces largely inaccessible from third-party
applications. Especially for communicating with other computers in a network, the only
option is WiFi.

Although iPhone OS 3.0 supports peer-to-peer networking via Bluetooth, this support is
mostly limited to networking between iPhones (and iPod touches). The only exception is
the tethering option in iPhone OS 3.0, which establishes a network connection between
the iPhone and a computer to allow the computer to share the iPhone’s Internet
connection. Since this network connection is very similar to a WiFi connection from an
application’s point of view, iTap is able to use it to communicate with the computer.

iPhone applications, however, cannot exercise any control over this connection, and
hence the burden of setting it is solely on the user. Given these constraints, WiFi
remains the most important means of communication between the iPhone and a
computer.

Getting iTap to work on any WiFi network that users may have at home or at work
quickly emerged as our main concern. Our first prototypes simply sent all data using
broadcasts, which is an easy way to do prototyping. UDP broadcasts provided a way to
test all the usability features of iTap without spending a single hour on configuration or
complicated autodiscovery.

Broadcasts on the other side quickly emerged to be a big problem for practical use on
wireless networks. One of the main reasons is that access points can and will delay
sending broadcasts because they try to send them blocked and with less priority. This
results in strange behavior when sending mouse movement events; specifically, they
start to lag, and this delay makes such an application nearly unusable.

An interesting observation was that controlling a computer connected by a cable to the
access point where the iPhone was connected through WiFi resulted in very low network
delays even when sending everything as broadcasts. But controlling, for example, a

CHAPTER 8: How iTap Tackles the Challenges of Networking

notebook computer connected to the same WiFi network instead of by cable
immediately had severe latency problems in the order of 20ms to 100ms delays.

The solution to this problem was simple; just perform autodiscovery using broadcasts or
multicasts and then communicate directly between iTap and its receiver application.
Directly in this context means sending data directly to the other peer’s IP address.

Supporting Both Mac and PC

iTap needs the iTap receiver to handle data sent from the device through the network
and to synthesize input. The nature of supporting more than one platform creates a
whole new set of challenges that can be tracked down differently.

One approach is of course to develop two separate applications and to optimize the
visual appearance and installation process of each application for the respective
platform. This essentially doubles the effort required to develop and maintain the
application compared to supporting only a single platform.

Because we have developed many multiplatform applications in the past, it was no
question that we were going to use all the tools, libraries, and possibilities available to
create applications looking, installing, and behaving like native ones but also share as
many lines of code as possible between the different platforms.

The following were the requirements of the iTap receiver with respect to multiplatform
development:

B Easy to install
B Simple to use (and no alien platform look and feel)
B Multiplatform (at least Mac OS X and Windows)

These requirements set strict limitations on which technologies to use and how to
implement a version to be released. Simplicity during the install process already limits
how it will be distributed through our web site and how it appears to the user. The Mac
OS X version comes as a DMG image where you can simply install the iTap receiver by
dragging it to your Applications folder. To enhance user convenience, the Applications
folder is already prelinked to the default view of the DMG file.

The Windows version is deployed with an installer where we used the Windows Installer
XML (WIX) toolkit (http://wix.sourceforge.net/) originally developed by Microsoft to
create a proper Windows Installer .msi file. The WIX toolkit additionally provides features
to add firewall exceptions to the Windows integrated firewall, which proved to be a very
important feature to reduce the number and complexity of support requests.

Qt was our choice for the GUI development. It provides all the features required for well-
designed applications that are simple to roll out. We also both already had experience
developing applications based on Qt from past business software projects that came

in handy.

CHAPTER 8: How iTap Tackles the Challenges of Networking

Multiplatform requirements also set limits on how to develop the networking protocol to
run on OS X, Windows, and the iPhone itself and on how to implement all kinds of GUIs
for OS X and Windows. Implementing all networking code in C++ classes using BSD
sockets, which are available on all three platforms, solved many of our problems.

User-Friendliness Demands Autodiscovery of Computers
and Devices

The usability of both iTap and the iTap receiver is very important. In the optimal case,
they simply find each other; you pair your device with the receiver and are immediately
able to control your computer.

iTap is supposed to work out of the box, without any hassles involved in network
configuration and especially without entering any kind of IP address. Because we cannot
predict which kind of router or access point a user connects to, you can imagine that
there were many problems to solve. Not only do home networks provide enough
difficulties for proper network communication, there are also university campus
networks and company networks with severe restrictions that are even more difficult to
solve. You can read our solutions to many of these problems in the following sections of
this chapter.

WiFi Networking on the iPhone from a
Programmer’s Perspective

Before we cover the details of the different networking APIs on iPhone OS, we'll first
give you the big picture (see Figure 8-5).

CoreFoundation Objective-C
Higher-Level APIs Higher-Level APIs
CFSocket DNS-SD NSSocketPort
UNIX Sockets

Figure 8-5. Relationship of the different networking APIs on iPhone 0S

With iPhone OS having inherited its networking stack from BSD Unix (as did Mac OS X),
it comes as no surprise that the principal networking API of iPhone OS is just the same
socket-based API initially invented for Unix.

Since Unix predates the widespread adoption of graphical user interfaces and therefore
event-driven programming, BSD sockets don’t integrate well with such applications.
iPhone OS therefore offers two flavors of wrappers around raw BSD sockets. The first,
CFSocket, is part of the C-based Core Foundation framework. The second is its

CHAPTER 8: How iTap Tackles the Challenges of Networking

Objective-C counterpart called NSSocketPort, which is part of the Objective-C-based
Foundation framework.

On top of these, both the Core Foundation framework and the Foundation framework
offer additional support for network programming. For example, both frameworks make
it quite easy both to browse services offered via Bonjour and to publish your own
services.

About the Sample Code

Most of the code presented throughout this chapter is in the form of small utility
functions. All these functions are assumed to be part of the class NetworkDiscovery, a
complete implementation of which is included in the sample code posted on this book’s
home page. Figures 8-6 and 8-7 show the sample application in action, first detecting
an instance of the iPhone Simulator on the same network and then running without WiFi
connectivity.

iOrangeA = 13:32 .iOrangeA © 14:02 =

iPhone Simulator No WiFi available

myPhony
Figure 8-6. The sample application detecting itself Figure 8-7. The sample application warning about
and an iPhone Simulator on the network WiFi unavailability

Over the course of the next two sections, we’ll show how to gradually develop this class
until it has the ability to send and receive datagrams via a WiFi network, to enumerate
the available network interfaces, and to send multicast datagrams to all other devices on
the network. To keep the printed code samples concise, we’ve stripped them of all error
handling and all comments. Where possible, each piece of sample code resembles
exactly one of the functions provided by this class, though some longer functions are
discussed in more easily digestible pieces.

Listing 8-1 shows the declaration for this class. We’ve chosen to reproduce the full
declaration here, even though the purpose of the individual instance variables will

CHAPTER 8: How iTap Tackles the Challenges of Networking

become clear only over the course of the next sections. This avoids having to update the
declaration with each bit of sample code separately.

Listing 8-1. The Declaration of NetworkDiscovery Without Its Member and Class Functions

@interface NetworkDiscovery : NSObject {
NSMutableDictionary* peers;

int socket bsd;
CFSocketRef socket cf;
CFRunLoopSourceRef socket_runloopsource;

NSTimer* timer;
BOOL previousHelloResult;
}

While compiling the sample code for this chapter, we had to balance our urge to include
as much of iTap’s networking code with the need to keep the code as concise and easy
to understand as possible. The biggest deviation between the actual code found in iTap
and the sample code presented here is in the choice of language. The networking
subsystem of iTap is mostly written in C++ since that allowed us to share more code
between iTap and the receiver application. The sample code, on the other hand, uses
Objective-C exclusively to reach an audience as broad as possible.

Introducing Sockets

Let’s now take a closer look at the socket-based networking APl iPhone OS inherited
from Unix. Following the gist of Unix, this APl models a network connection as a file-like
entity that can be read from and written to just like any regular file. A file handle referring
to a network connection instead of an on-disk file is called a socket. Sockets come in
different flavors, depending on their underlying network protocol. The flavor is
determined at creation time by the socket’s address family, socket type, and protocol.

Address Family

The address family distinguishes between protocols with different address formats. We’ll
always be using AF_INET, which selects the Internet Protocol (IP) with the usual 32-bit IP
addresses. To use IPv6, you’d use AF_INET6 instead.

Socket Type

The socket type selects the kind of network connection represented by the socket.
SOCK_STREAM requests a connection resembling a stream of single bytes, received in the
same order they are sent. SOCK_DGRAM, on the other hand, requests a datagram-oriented
connection that transmits datagrams as a whole, guaranteeing neither that they will be
received at all nor in which order. For sockets using the Internet address family
(AF_INET), SOCK_STREAM will trigger the use of TCP for the connection, while SOCK_DGRAM
sockets will use UDP.

CHAPTER 8: How iTap Tackles the Challenges of Networking

Protocol

In theory, this parameter allows you to choose the precise protocol used to transfer the
data over the network. However, for AF_INET-type sockets, your only choice is between
TCP and UDP, which is already determined by the socket type. You should therefore
just use zero to let iPhone OS select the appropriate protocol.

Creating a Socket

Sockets are created with the function socket () taking the address family, the socket
type, and the specific protocol as parameters. Here is how you’d create a datagram
socket using the Internet Protocol address family:

socket_bsd = socket(AF_INET, SOCK DGRAM, 0);

Local and Remote Addresses

Resembling a network connection, a socket usually has two associated addresses. The
local address is the address sent data originates from, while the remote address is the
address to which it is sent. Conversely, a socket receives only that data sent from the
remote address to its local address. Each address family has an associated datatype
used to represent addresses of this family. For IP addresses, that datatype is struct
sockaddr_in. If you were using IPv6, the correct datatype would be struct
sockaddr_in6. A generic socket address structure, called struct sockaddr, is used in
declarations of functions meant to be used with different address families. When calling
such functions, you nevertheless have to pass a pointer to a specific kind of socket
address structure. In our case, that will be struct sockaddr_in. To help such functions
find the actual kind of socket address passed, all of the socket address structures store
their length in the first field and their address family in the second (called sin_len and
sin_family for struct sockaddr_in). As the names imply, the former contains the size of
the structure (sizeof(struct sockaddr in) in our case), while the latter contains the
address family the address belongs to (AF_INET in our case).

Since sockets represent single network connections, not whole devices, the IP address
alone is only one part of a socket’s address. The other, the port, ranges from 1 to 65535.

Although an IP socket address structure contains a field sin_addr, for historic reasons
this field does not directly contain the IP address. Instead, it contains a structure called
in_addr with a single field called s_addr that contains the actual address as a 32-bit
integer value.

To access the port, you don’t have to jump through such hoops. The field sin_port
directly contains the port as a 16-bit short integer value. Listing 8-2 contains the
implementation of a helper function that fills out a struct sockaddr_in.

CHAPTER 8: How iTap Tackles the Challenges of Networking

CAUTION: Both sin_addr and sin_port always store their values in network byte order
independent from the byte ordering used otherwise. To convert between this and the iPhone’s
native byte ordering, use one of these four functions: hton1(), host-to-network for 32-bit
integers; ntoh1(), network-to-host for 32-bit integer; htons (), host-to-network for 16-bit
short integer; or ntohs (), network-to-host for 16-bit short integers.

Listing 8-2. Filling Out a struct sockaddr_in

+ (void)sockaddr_in:(struct sockaddr_in*)sa_in setAddress:(in_addr_t)addr =
port:(in_port_t)port {
sa_in-»sin_len = sizeof(struct sockaddr_ in);

sa_in->sin_family = AF_INET;

sa_in-»sin_addr.s_addr = htonl(addr);

sa_in->sin_port = htons(port);

}

BYTE ORDERING

On most CPUs on the market today, memory is addressed in quantities of bytes; each position in memory
contains exactly one byte of data. For data types needing more than one byte of memory, like port
numbers (which range from 1 to 65535 and hence need two bytes of storage) or IP addresses (which need
four bytes), different storage layouts of the individual bytes are possible. The bytes constituting an integer
are commonly sorted by powers of two corresponding to the bits they contain.

Ordering the bytes by ascending powers of two is called litle endian for “little end first.” 0OXABCD would be
stored as 0xCD followed by OxAB, for example, since the byte 0xCD represents the powers 2° to 27, while
0xAB represents the powers 28to 216

Ordering the bytes by descending powers of two is called big endian for “big end first.” 0xABCD would
now be stored as 0xAB followed by 0xCD. Since this byte ordering is often used when transferring data
over a network, it is also commonly referred to as network byte ordering.

Note that these ordering issues also apply to IP addresses since they can be interpreted as integers. To get
the integer representation of an IP address, simply write the individual octets out in binary (or hexadecimal)
and join them together to obtain one large number. For example, the address 1.2.3.255 corresponds to the
integer 0x010203FF. This address would therefore be stored as 0xFF 0x03 0x02 0x01 on little endian
systems and as 0x01 0x02 0x03 OxFF on big endian ones.

CHAPTER 8: How iTap Tackles the Challenges of Networking

Setting a Socket’s Local and Remote Address

The BSD networking API offers two functions to set a socket’s local and remote
address:

B bind() sets the local address. To receive data directed to any one of
the active network interfaces, use the special value INADDR_ANY instead
of an actual IP address. If your application does not require a specific
port, you may put zero in the field sin_port. iPhone OS will assign a
random port to your application in this case. Listing 8-3 gives a
practical example.

B connect() sets the remote address. In the case of a stream-oriented
socket, a connection will immediately be opened, and the returned
value will indicate whether establishing that connection was
successful. For datagram-oriented sockets, calling this function will
not trigger any network traffic. The returned value indicates only
whether the address was valid. For datagram-oriented sockets,
connect() is probably useful if you use the sockets to communicate

with only a single peer.
Listing 8-3. Setting Up a Socket to Receive Datagrams Sent to Port 1234 on an Arbitrary Interface

struct sockaddr_in addr;
[NetworkDiscovery sockaddr_in:8addr setAddress:INADDR_ANY port:1234];
bind(socket_bsd, (const struct sockaddr*)&addr, sizeof(addr));

Sending and Receiving Data

With a socket being just a special kind of file handle, you can use the usual read() and
write() system calls to send and receive data. For datagram-oriented connections, you
might want to use sendto() and recvfrom() instead. sendto() allows you to specify a
different remote address for each datagram you send, while a plain write() will always
use the address set by connect(). recvfrom() serves a similar purpose, returning the
source address of a datagram alongside its content. Figure 8-8 shows the two most
common uses of the API for datagram-oriented sockets. We use sendto() in Listing 8-4
to implement sendData:toAddress:port:, which sends an NSData instance over the
network.

NOTE: You can still use sendto() and recvfrom() even if you set a remote address using
connect(). The use of recvfrom() is limited in this case, however, since such a datagram
socket will drop all datagrams arriving from sources other than its remote address.

CHAPTER 8: How iTap Tackles the Challenges of Networking

Multiple Peers Single Peer

sendto()/
recvfrom()

close()

Figure 8-8. Communication with multiple peers vs. communications with a single peer

Listing 8-4. Using sendto to Transmit the Contents of an NSData Instance

- (BOOL)sendData: (NSData*)data toAddress:(in_addr t)a port:(in_port t)p{
struct sockaddr_in addr;
[NetworkDiscovery sockaddr_in:8addr setAddress:a port:p];

return (sendto(socket bsd, data.bytes, data.length, 0, =
(const struct sockaddr*)8addr, sizeof(addr)) == data.length);

Raw BSD Sockets vs. User Experience

Achieving the best possible user experience is an important factor in the success of an
iPhone application. One key factor of good user experience is to never take the control
out of the user’s hands, which turns out to be hard to achieve using raw BSD sockets
alone. Let’s look into the problem before we turn to the next section for a solution.

Studying the read() and write() system calls in more detail quickly brings up the
question of how these system calls react if the desired requests cannot be carried out
immediately. For example, consider what happens if your application calls read() (or
recvfrom(), for that matter) but no datagram is currently available to be delivered to
your application.

By default, read() will wait for data to arrive before returning to your application. During
this waiting period, your application will not be reacting to any user input; after all, from
its point of view, it’s still executing the read() system call and has never returned to the
run loop.

Alternatively, you can set the 0_NONBLOCK flag of the socket via the F_SETFL command of
the fcntl() system call. This will cause system calls to return the error EAGAIN instead of
waiting. However, you will still get no indication of when the next piece of data will arrive
(in case of a read) or when the network will be ready to send more data (in case of a
write). Your only option is to repeatedly retry the operation until you either give up or it
eventually succeeds.

CHAPTER 8: How iTap Tackles the Challenges of Networking

Neither option fits the event-driven programming model of iPhone applications very well.
For sending datagrams, however, using sendto() (or write()) is an acceptable choice as
long as the rate of datagrams is low enough for the network interface to keep up.

Using CFSocket to React to Networking Events

As you saw earlier, raw BSD sockets do not fit very well into the event-driven world of
iPhone programming. Luckily, Core Foundation provides a bridge between these worlds
in the form of CFSocket.

A CFSocket object exposes its underlying BSD socket via the function
CFSocketGetNative()and can even be created from a raw BSD socket with
CFSocketCreateWithNative(). This gives you the option to either use CFSocket as a mere
adapter to integrate a raw BSD socket into your application’s run loop or instead use the
Core Foundation wrapper functions extensively and revert to the BSD API only when
absolutely necessary.

We’ve taken the first approach throughout this chapter since we will require some
functionality that is not accessible from higher layers. For your own projects, we advise
you to stick with whatever makes your code more consistent.

Reacting to Incoming Datagrams

When you create a CFSocket, you need to provide a callback function to be called
whenever this occurs:

B The new data arrives and is ready to be read (kCFSocketReadCallBack).
The callback has to read the data itself, and the necessary call to
read() is guaranteed not to block your application.

B The new data arrived and was read (kCFSocketDataCallBack). The data
is passed to the callback as a CFDataRef.

B The socket is ready to queue more data for transmission
(kCFSocketWriteCallBack). The next write() is guaranteed not to
block your application.

B A new peer establishes a connection (kCFSocketAcceptCallBack). The
socket representing the newly established connection is passed to the
callback as a pointer to a CFSocketNativeHandle. You can use
CFSocketCreateWithNative to create a CFSocket from that. This event
occurs only on stream-oriented sockets.

B Trying to establish a connection to a peer (kCFSocketConnectCallBack)
ends. This event occurs as a result of trying to establish a connection
in the background using CFSocketConnectToAddress(). If an error
occurs, a pointer to an SInt32 containing the error code is passed to
the callback. This event occurs only on stream-oriented sockets.

CHAPTER 8: How iTap Tackles the Challenges of Networking

To aid you with accessing per-socket data structures inside your callback function,
CFSocket provides a way to pass an arbitrary pointer to your callback. You specify this
pointer via the info member of the CFSocketContext structure passed to CFSocketCreate
or CFSocketCreateWithNative. To have CFSocket track how many references it holds to
the entity pointed to by info, you need to provide pointers to a retain function and a
release function in the respective fields of CFSocketContext. For example, if info
pointed to a Core Foundation object, you might set the retain field to point to CFRetain()
and the release field to CFRelease().

In the example in Listing 8-5, we use the info field to store a reference to the Objective-
C object owning the socket. Since the socket is deleted during deallocation of the
object, we do not require Core Foundation to track its references to it and hence just set
the retain and release members to NULL.

Inside the callback shown in Listing 8-6 (which must be a plain C function), we convert
info back to an Objective-C reference and send it the message
onDatagram: fromAddress:port:.

NOTE: A lot of basic Core Foundation data types are bridged toll-free to their Objective-C
counterparts, meaning you can simply treat the Core Foundation reference as an Objective-C
object reference. We use this in the code samples to convert between CFDataRef and its
Objective-C counterpart NSData.

Listing 8-5. Creating a CFSocket from a Raw BSD Socket to Handle Incoming Datagrams

CFSocketContext ctx;
ctx.version = 0;
ctx.info = self;
ctx.retain = NULL;
ctx.release = NULL;
ctx.copyDescription = NULL;
socket_cf = CFSocketCreateWithNative(
kCFAllocatorDefault,
socket_bsd,
kCFSocketDataCallBack,
NetworkDiscovery CFSocketCallBack,
&ctx

)5
Listing 8-6. The Callback Function

static void NetworkDiscovery CFSocketCallBack(
CFSocketRef,
CFSocketCallBackType callbackType,
CFDataRef addr,
const void *data,
void *info
) {
const struct sockaddr_in* src=(const struct sockaddr in*)CFDataGetBytePtr(addr);
if (callbackType == kCFSocketDataCallBack)
[(NetworkDiscovery*)info onDatagram:(NSData*)data
fromAddress:ntohl(src->sin_addr.s_addr)

CHAPTER 8: How iTap Tackles the Challenges of Networking

port:ntohs(src->sin_port)];

Querying the Network Configuration

Being able to just send and transmit data over the network might not be sufficient for
your application, and it certainly isn’t for iTap, as you will see when we go into the
details of autodiscovery. We’'ll therefore look into how to use the BSD networking API to
query the network configuration. For the sake of brevity, we’ll concentrate on two
specific tasks: getting the names of all the available network interfaces and querying
their flags.

Introducing 10 Controls

At first glance, functions to query or modify the network configuration seem to be
suspiciously absent from the BSD networking API. They all deal with either setting up or
shutting down sockets (like socket(), bind(), close(), ...) or data transmission (like
read(), write(), sendto(), ...).

However, once again, the key is to take the Unix inheritance of this API into account. On
Unix, a file handle is not only something you can read from and write to but also
something you can send certain requests to. These requests are called /O controls and
are invoked with the function ioct1(). And they turn out to be the key to getting at the
iPhone’s network configuration.

As you can see in Listing 8-7, the 10 control mechanism is designed to be quite generic
because the number and types of a request’s parameters depend on the request in
question. We will now look into how to call a specific request: the one that lists all
available network interfaces.

Listing 8-7. The ioct1 () Function

int ioctl(int socket_bsd, unsigned long request, ...);

Querying the Names of the Available Interfaces Using the
SIOCGIFCONF 10 Control

SIOCGIFCONF requires a single parameter that must be a pointer to a structure fittingly
called ifconf. Take a look at Listing 8-8 to see how this structure is defined in the
header net/if.h.

Listing 8-8. The Definition of struct ifconf

struct ifconf {
int ifc_len; /* size of associated buffer */
union {
caddr_t ifcu_buf;
struct ifreq *ifcu_req;
} ifc_ifcu;

)

CHAPTER 8: How iTap Tackles the Challenges of Networking

#define ifc_buf ifc_ifcu.ifcu_buf /* buffer address */
#define ifc_req ifc_ifcu.ifcu_req /* array of structures returned */

As arule, 10 controls do not allocate memory, not even to store the results they return.
Similarly, they do not take ownership of pointers you pass to them. This is the reason for
the rather strange definition of struct ifconf. When making the SIOCGIFCONF request,
you need to provide the 10 control with a memory area to store its results in. To set that
buffer, you use the union member ifc_ifu.ifcu_buf or its abbreviation ifc_buf. After
the 10 control returns, this buffer will contain one struct ifreq struct after the other,
one for each network interface on the device. You can access the first of these
structures with ifc_ifcu.ifcu_req or its abbreviation ifc_regq.

Unfortunately, accessing the subsequent structure is a bit more involved. Let’s first
show you part of the definition of struct ifreq, reproduced in Listing 8-9.

Listing 8-9. The Definition of struct ifreq

struct ifreq {
char ifr_name[IFNAMSIZ]; /* if name, e.g. "en0" */
union {
struct sockaddr ifru_addr;
/* Other union members not relevant for SIOCGIFCONF */
} ifr ifru;
#define ifr_addr ifr_ifru.ifru_addr /* address */
/* Other abbreviations for union members not relevant for SIOCGIFCONF */

If our earlier discussion of address families and their associated socket address
structure is still fresh on your mind, you will find this ifru_addr member highly
suspicious. After all, struct sockaddr itself isn’t capable of holding any socket’s
address; it’'s merely used as a placeholder for one of the actual address structures like
struct sockaddr_in.

Consequently, none of the structures returned by SIOCGIFCONF actually contains a struct
sockaddr. Instead, each structure contains a socket address structure matching the
address family of the interface described by this structure. Since the length of these
socket address structures differs, so does the length of the ifreq structures containing
them. To be able to scan the ifreq structures placed into the buffer we provided, we’ll
need to find a way to compute their lengths, preferably without hard-coding knowledge
about each and every socket address structure into our application.

Luckily, looking back at the discussion of address families not only uncovers the
problem but also provides a solution. Remember that every address structure, no matter
what address family it belongs to, stores its own length in its first field. Even the
placeholder struct sockaddr declares that field, naming it sa_len.

You can therefore use this field to move from one structure in the buffer to the next; you
simply need to move the pointer by IFNAMSIZ bytes plus whatever the sa_len field says
is the size of the address structure. Using the second field common to every address
structure, the address family, you can skip interfaces that do not have an Internet
address assigned.

To actually invoke the STOCGIFCONF 10O control, you have to make two additional
decisions. Since you’ll need to provide a buffer to the 10 control to store the result in,

CHAPTER 8: How iTap Tackles the Challenges of Networking

you’ll have to decide how much memory to allocate. Unfortunately, you cannot query
the size required to store the information for all available interface. You therefore need to
call the 10 control repeatedly with increasing buffer sizes until the empty space left at
the end of the buffer is larger than any additional struct ifreq might be. Only then can
you be sure not to miss an interface because of a too small buffer.

You'll also need a socket to perform the IO control on. In our sample code, we simply
create a dummy datagram socket without any addresses assigned, but you could also
reuse an existing datagram socket.

The sample code for this chapter found on the home page contains the function
interfaceNamesAddresses, which returns an NSArray of NSDictionarys each containing
the name and address of one network interface.

Querying an Interface’s Flags Using the SIOCGIFFLAGS 10 Control

Just having a name and an associated address is not all there is to an interface.
Networking interfaces might have additional capabilities and be in different states (for
example, active or inactive). These properties are represented by the interface flags
listed in Table 7-1, queried with the help of SIOCGIFFLAGS, as shown in Listing 8-10.

Table 7-1. Interface Flags

Name Description
IFF_UP The interface is active.
IFF_LOOPBACK The interface does not represent a real network. Usually this

has the address 127.0.0.1.

IFF_POINTOPOINT The interface represents a remote connection to a single peer.
Such interfaces are used to connect to the Internet via the
carrier and for VPN connections.

IFF_MULTICAST The interface allows sending datagrams to groups of hosts.

Listing 8-10. Using the SIOCGIFFLAGS to Query an Interface’s Flags

+ (short) interfaceFlags:(NSString*)interface {
int sock = socket(AF_INET, SOCK_DGRAM, 0);

struct ifreq req;

[interface getCString:req.ifr_name
maxLength:IFNAMSIZ
encoding:NSASCIIStringEncoding];

ioctl(sock, SIOCGIFFLAGS, &req);
return req.ifr_flags;

CHAPTER 8: How iTap Tackles the Challenges of Networking

Other Interesting 10 Controls

Table 7-2 lists other 10 controls concerned with retrieving the configuration details of a
specific interface.

Table 7-2. Network-Related 10 Controls

Name Description

SIOCGIFCONF Gets the list of available interfaces

SIOCGIFFLAGS Gets the flags of a specific interface

SIOCGIFADDR Gets the address of a specific interface
SIOCGIFNETMASK Gets the netmask of a specific interface
SIOCGIFBRDADDR Gets the broadcast address of a specific interface

Contacting All Devices on the Network

Usually, sockets model network connections between exactly two peers. But to discover
possible peers, you need a way to contact all devices at once, without knowing their IP
addresses in advance.

Multicasts provide a way to do just that. Additionally, to the unique IP address assigned
to every device, a device on a network may join one or more so-called multicast groups.
These groups correspond to special IP addresses in the range 224.0.0.0 to
239.255.255.255. Once joined, the device receives not only those datagrams targeted at
its own IP address but also those targeted at the group’s multicast address.

A special multicast address, 224.0.0.1 (INADDR_ALLHOSTS_GROUP), corresponds to the all-
hosts multicast group. This group includes all devices on a network segment without
requiring the device to explicitly join.

Multicasts are sent by simply passing a multicast address as the destination address to
sendto(). Without further specification, however, the iPhone will only send the multicast
datagram out on the default network interface, not on all available ones! In our
experience, this causes the multicast to not get sent to the WiFi network under some
circumstances, even though the iPhone shows the WiFi connection to be active.

To work around this, you need to manually override the network interface used for
multicasts. This can be done on a per-socket basis by modifying the IP_MULTICAST IF
option of the socket using the setsockopt() function provided by BSD networking API,
as shown in Listing 8-11.

CHAPTER 8: How iTap Tackles the Challenges of Networking

Listing 8-11. Using IP_MULTICAST_IF to Override the Outgoing Network Interface Before Sending a Multicast

- (BOOL)multicastData:(NSData*)data toGroup:(in_addr t)mcGroup =
port:(in_port t)dstPort onInterfaceWithAddress:(in_addr_t)ifaceAddr {
struct in_addr sin_addr;
sin_addr.s_addr = htonl(ifaceAddr);
setsockopt(socket _bsd, IPPROTO_IP, IP_MULTICAST IF, &sin_addr, sizeof(sin_addr));

return [self sendData:data toAddress:mcGroup port:dstPort];

Refer to the sample code for this chapter on the book’s home page for the function
multicastData:toGroup:port: that sends the multicast out on all available networking
interfaces by combining multicastData:toGroup:port:onInterfaceWithAddress: with
interfaceNamesAddresses.

Detecting WiFi Availability

The iPhone SDK contains the SCNetworkReachability framework to help you determine
whether a certain peer is reachable or not given the current network configuration. By
being integrated with the application’s run loop, SCNetworkReachability not only
supports one-time queries of a certain peer’s state but also lets you register a callback
function to be called whenever that state changes.

However, as powerful a tool SCNetworkReachability is for monitoring a single peer, it is
not as well suited for monitoring the general availability of a WiFi network. Essentially,
SCNetworkReachability answers questions like “Will datagrams originating from a
certain /ocal address be able to reach a certain remote address?” Even though these can
be extended to “Will datagrams originating from any local address be able to reach a
certain remote address?” and “Is a certain local address assigned to this device at all?”
by leaving one of the addresses blank, these questions still focus on the reachability of
individual addresses.

NOTE: The reachability status is never probed for by actually sending out packets. It instead
represents a theoretical result based on the device’s routing tables and VPN configuration.
Therefore, although a negative reachability result does guarantee that datagram transmission
will fail, a positive one does not guarantee they will succeed.

We’ll therefore turn to the BSD networking API for a different approach to detecting WiFi
availability. We’ve already established how to enumerate all available network interfaces
and their assigned addresses, implemented in the function interfaceNamesAddresses.
Furthermore, we’ve shown how to query an interface’s flags by using the STOCGIFFLAGS
10 control. The following facts allow us to judge WiFi availability by scanning for an
active, non-point-to-point network interface that supports multicasting and isn’t a
loopback interface:

B The network connection to the carrier (via GRPS, EDGE, or UMTS) is
established via PPP and hence has the flag IFF_POINTOPOINT set.

CHAPTER 8: How iTap Tackles the Challenges of Networking

B The WiFi interface always supports multicasting and hence has the
flag IFF_MULTICAST set.

B The loopback interface with the address 127.0.0.1 has the flag
IFF_LOOPBACK set.

B The flag IFF_UP shows whether an interface is activated or
deactivated.

Since the interfaces fulfilling these criteria are exactly the ones we’d want to send out
multicast datagrams on, we can conveniently integrate both functionalities into one
function multicastData:toGroup:port:, shown in Listing 8-12. The function returns YES if
it managed to multicast the datagram on at least one suitable interface, which is exactly
the indicator for WiFi availability we need.

Listing 8-12. Multicasting on All Suitable Interfaces and Detecting WiFi Availability
- (BOOL)multicastData: (NSData*)data toGroup:(in_addr_t)mcGroup =

port:(in_port_t)dstPort {
BOOL result = NO;

short flags on = IFF_MULTICAST | IFF_UP;
short flags off = IFF_POINTOPOINT | IFF_LOOPBACK

for(NSDictionary* ifc in [NetworkDiscovery interfaceNamesAddresses]) {
NSString* ifc_name = [iface objectForKey:@"name"];
short ifc_flags = [NetworkDiscovery interfaceFlags:ifc_name];
if (((ifc_flags & f_on) == flags on) 8&& !(ifc_flags & f_off)) {
NSNumber* ifc_addr = (NSNumber*)[ifc objectForKey:@"address"];
BOOL ifc_result = [self multicastData:data
toGroup:mcGroup
port:dstPort
onInterfaceWithAddress:iface_addr.unsignedIntValue];
result = result || iface result;

return result;

Playing by the Power Management Rules

On a portable device like the iPhone, sophisticated power management throughout the
whole operating system is an important part of the overall user experience. Since the
WiFi radio is amongst the biggest consumers of power, applications using the WiFi
extensively need to respect a few power management rules to provide the best user
experience possible.

Informing iPhone 0S About Your Application’s Networking
Requirements

By default, iPhone OS won’t assume that your application depends on the availability of
a WiFi network. This has multiple consequences:

CHAPTER 8: How iTap Tackles the Challenges of Networking

m [f the iPhone is not already connected to a WiFi network at the time
your application is launched, iPhone OS will not make any effort to
establish such a connection while your application is running. This is
true even if your application tries to connect to peers that are
unreachable without an active WiFi connection.

m If your application runs for longer than about 30 minutes, iPhone OS
might shut down the WiFi radio. Open connections to peers and even
active transmissions do not stop it from doing so.

If your application is of limited or no use without an active WiFi connection, you will need
to convince iPhone OS to make a bigger effort to provide one. You do that by adding
the key UIRequiresPersistentWiFi with the boolean value true to the Info.plist file of
your application.

Doing so has two effects:

B If no WiFi connection exists at the time your application is launched,
iPhone OS will either connect to an available WiFi network
automatically or ask the user to choose from the list of available
networks. The user does have the ability to cancel this selection
process, though, in which case no WiFi will be available to your
application.

B The WiFi radio will not be shut down while your application is running.
It will, however, be put into a power-saving mode if you cease sending
and receiving data.

However, setting this key has the potential of substantially increasing the power
consumption of the iPhone while your application is running. To alleviate this effect, it is
important to cease sending and receiving data whenever possible.

Minimizing Power Consumption While the iPhone Is Locked

Without special consideration, the currently active application will keep running while the
iPhone is locked. However, since your application is neither visible nor operable while
the device is locked, continuing to use the WiFi network during that time will drain the
battery without any benefits for the user.

If locking is imminent, UIApplication will send the message
applicationWillResignActive to its delegate. This method should do its best to prevent
any part of the application from using the WiFi network unless there is a clear advantage
of doing so even while locked.

Upon unlocking, UIApplication sends applicationDidBecomeActive to its delegate. This
is the place to reallow transmission and reception of packets.

Implementing your network protocol as a singleton class (a class with only one instance,
like for example UIApplication) makes it easy to do that. For example, the
NetworkDiscovery class discussed throughout this chapter provides two class-level

CHAPTER 8: How iTap Tackles the Challenges of Networking

functions called setup and shutdown, which we use in Listing 8-13 to create and destroy
the one instance of this class.

Listing 8-13. Ceasing to Transmit and Receive Datagrams While the Device Is Locked

- (void)applicationWillResignActive: (UIApplication *)application {
[NetworkDiscovery shutdown];
}

- (void)applicationDidBecomeActive: (UIApplication *)application {
[NetworkDiscovery setup];

The Networking Subsystem of iTap

We will now give you a tour through the code of one of iTap’s core components: the
networking subsystem. After reading the previous sections, you are well adept at the
inner workings of the iPhone networking APIs. Having discussed most of the core
networking-related function of iTap, we will now focus on the bigger picture. We’ll
explain some of the design decisions we faced while implementing iTap and show you
how we integrated the networking component into the rest of the application. Our code
samples will again closely follow the downloadable version of the sample code.

To use Bonjour or Not to Use Bonjour

One of the first decisions we faced while designing the networking subsystem of iTap
was whether to use Bonjour for autodiscovery or to implement our own protocol for that.
Here is what Bonjour has to offer to the programmer:

B The ability to publish services —identified by a type and a name—on
connected networks

B The ability to browse for services published by others
B Notifications if new services are added or removed by others
B The same APIs work on both Mac OS X and iPhone OS

This functionality is available via both an Objective-C API consisting of the classes
NSNetService and NSNetServiceBrowser and a C-based API called CFNetService, which
is part of Core Foundation. The service browsing and publishing parts of Bonjour are
based on an extension of the DNS protocol used to translate names to IP addresses on
the Internet called DNS-SD. A third API, also available on both iPhone OS and Mac OS
X, provides raw access to DNS-SD.

NOTE: Since Apple provides extensive documentation and sample code covering both APIs, we
will not provide additional code samples here.

CHAPTER 8: How iTap Tackles the Challenges of Networking

Since supporting both Mac OS X and Windows was one of the goals of iTap right from
the start, let’s take a look at the state of Bonjour on Windows:

B Although Bonjour is an integral part of Mac OS X and iPhone OS, it
isn’t on Windows. To use Bonjour in a Windows application, you either
need to require your users to download and install Bonjour for
Windows themselves or include that step in the installation process of
your application. This would preclude any “download-and-run” version
of the iTap receiver for Windows.

B Both higher-level APIs to Bonjour are too deeply tied to other core
frameworks on Mac OS X and iPhone OS to be usable on Windows.
The only API remaining is the raw DNS-SD one. This is what the iTap
receiver would need to use if iTap were based on Bonjour.

In the end, we thought that although Bonjour might have some technical merits, from a
user’s point of view rolling our own solution was clearly beneficial. Forcing our Windows
users to install a whole new system component just to use our receiver application just
didn’t seem right. Besides, each additional component used is an additional component
to support. Since we anticipated that supporting iTap in all kinds of different networking
environment would not be an easy task, we were reluctant to add yet another possible
source of problems.

Using Notifications to Communicate Between Components

To keep the code of a larger application as easy to understand and extend as possible,
you will usually strive to separate the application into separate components. Ideally,
these components are largely self-contained and able to perform their task with as little
knowledge about other parts of the application as possible. Trying to adhere to this ideal
proves to be difficult in practice, though. For example, take a look at our little sample
application called Discover.

This application contains two components: the NetworkDiscovery class introduced
earlier and a UITableView plus its view controller NetworkDiscoveryPeerTable. It’s the
responsibility of NetworkDiscovery to monitor WiFi availability and to detect other
instances of Discover running on the same network. The table view and its associated
view controller are responsible for visualizing this information.

Given this separation of responsibilities, you need a way for the NetworkDiscovery class
to inform NetworkDiscoveryPeerTable about changes to the list of peers or to WiFi
availability.

You could of course let NetworkDiscovery store a reference to the instance of
NetworkDiscoveryPeerTable somewhere and simply send that instance some message
to signal an event. But doing so would mean abandoning the modularity of the
application that you seek to achieve. For example, imagine the application contained
some button that you wanted to be visible only if at least one other device is detected.
Since that button would presumably not be managed by our table view controller, you'd

CHAPTER 8: How iTap Tackles the Challenges of Networking

need to extend NetworkDiscovery to store a reference to a second object too and to
signal events to both of them.

Fortunately, the iPhone SDK provides a much better solution for propagating such
events between different components, called notifications.

Notifications are arbitrary strings that are posted to some notification center. Other
components may indicate their interest in certain notifications by registering as an
observer, specifying an object instance and an Objective-C message selector. The
notification center will then send the specified message to the specified object instance
if the observed notification is posted.

Although it is possible to create an arbitrary number of notification centers, it is usually
sufficient to just use the application’s default notification center returned by
[NSNotificationCenter defaultCenter].

Listing 8-14 shows how to register as an observer, requesting the function
onPeersChanged: to be called should the notification PeersChanged be posted by any
other component. By specifying something other than nil for the parameter object:,
you could restrict your observation to notification posted by a specific sender.

Listing 8-14. Registering as an Observer

[[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(onPeersChanged:)
name:@"PeersChanged"
object:nil];
NetworkDiscovery would then need to post said notification to signal a change to the list
of peers to only every other component in the application. Listing 8-15 shows an
example of how to post such a notification.

Listing 8-15. Posting a Notification

[[NSNotificationCenter defaultCenter] postNotificationName:@"PeersChanged"
object:self];

NOTE: Notifications are delivered immediately upon being posted. The
postNotificationName:object: functions returns only after delivering the notification to
all registered observers.

Our Custom Autodiscovery Solution

Having decided to roll our own autodiscovery solution, the next step was to design one.
To reduce the amount of possible problems with strange network configurations and
strict firewall policies, we’ve tried to keep our protocol as simple as possible.

Each device uses multicasting to send its name out periodically on all available network
interfaces to the all-hosts multicast group. The previously introduced function
multicastData:toGroup:port: handles that job nicely. The system header netinet/in.h

CHAPTER 8: How iTap Tackles the Challenges of Networking

even defines the constant INADDR_ALLHOSTS_GROUP containing the multicast address of
the all-hosts group in a form suitable for our function. Should
multicastData:toGroup:port: be unable to find any suitable network interface to send
the datagram on, we alert the user that no WiFi network connection is currently
available. The sample code developed so far allows for a quite concise implementation
of this algorithm, as you can see in Listing 8-16.

Listing 8-16. Sending the Device Name Out on All Network Interfaces and Triggering a Notification Should That
Fail

BOOL result = [self multicastData:[[[UIDevice currentDevice] name]
dataUsingEncoding:NSUTF8StringEncoding]
toGroup: INADDR_ALLHOSTS_GROUP
port:DISCOVERY PORT];

if (result &3 !previousHelloResult)
[[NSNotificationCenter defaultCenter] postNotificationName:@"WiFiAvailable"
object:self];
else if (!result && previousHelloResult)
[[NSNotificationCenter defaultCenter] postNotificationName:@"WiFiNotAvailable"
object:self];

previousHelloResult = result;

Upon receiving a datagram, we extract the device name and store it together with the
time of reception. If the device name is already known, we overwrite the previously
stored timestamp. NSMutableDictionary turns out to be the most convenient way of
storing these names and their associated times. Listing 8-17 shows the corresponding
source code.

Listing 8-17. Reception of a Datagram

NSString* peer = [[[NSString alloc] initWithData:data
encoding:NSUTF8StringEncoding]
autorelease];
NSNumber* time = [NSNumber numberWithDouble:CFAbsoluteTimeGetCurrent()];

BOOL peer_added = ([peers objectForKey:peer] == nil);
[peers setObject:time forKey:peer];

if (peer_added)
[[NSNotificationCenter defaultCenter] postNotificationName:@"PeersChanged”
object:self];

Finally, we check periodically to see whether any device’s timestamp is older than some
multiple of the sending interval. Should this be the case, we assume the device has
vanished and remove it from the list. Since NSMutableDictionary instances must not be
modified while they are traversed, the code in Listing 8-18 builds a new
NSMutableDictionary and swaps it with the original one at the end.

Listing 8-18. Purging of Vanished Devices from the Peers List

CFAbsoluteTime now = CFAbsoluteTimeGetCurrent();
NSMutableDictionary* peers new = [[NSMutableDictionary alloc] init];
for(NSString* peer in peers) {
CFAbsoluteTime time = [((NSNumber*)[peers objectForKey:peer]) doubleValue];
if (time > now - 3.0*DISCOVERY INTERVAL)

CHAPTER 8: How iTap Tackles the Challenges of Networking

[peers_new setObject:[peers objectForKey:peer]
forKey:peer];

BOOL peer removed = (peers.count != peers new.count);
[peers release];
peers = peers_new;

if (peer_removed)
[[NSNotificationCenter defaultCenter] postNotificationName:@"PeersChanged"
object:self];

Summary

Implementing a WiFi touchpad application like iTap poses unique challenges, both from
a technical as well as from a user interface point of view.

From a user interface perspective, the most challenging aspects of the iPhone platform
are probably the lack of physical buttons and the limited screen real estate compared to
a full-blown computer. Power consumption was also a big concern of ours, since users
do not react too well to battery-draining applications.

From a technical perspective, we had to deal with subtle differences between the vast
number of WiFi networks out there, while still autodetecting available devices and
computers in nearly all cases and staying compatible with both Mac OS X and Windows.

To conserve screen real estate and to allow our users to use the iTap touchpad blindly,
we’ve adhered to a reductionist user interface philosophy, relying heavily on gestures
instead of on-screen buttons.

On the technical side, we bypassed most of the higher-level layers of the iPhone
networking stack including Bonjour and got our hands dirty with raw POSIX UDP
sockets and multicasting. This allowed us to engineer a network protocol for iTap that
both supports autodetection and works with Windows as well as Mac OS X. To get
multicasting to work reliably, we had to turn to the introspection capabilities of the
POSIX API to enumerate the available network interfaces and query their states. This
work also allowed us to build a WiFi detection algorithm more tailored to iTap’s needs
than the SCNetworkReachability framework is.

Although not strictly dealing with iPhone development per se, the Qt toolkit
(www.gtsoftware.com) proved to be the perfect toolkit to implement our receiver
application with. Although we still had to write a fair amount of platform-specific code to
support the iTap receiver on both Mac OS X and Windows, using the Qt GUI toolkit
saved us from having to code two completely separate applications for these two
platforms.

Last but not least, we’ve found NSNotification and friends to be an invaluable tool in
the struggle to keep our code clean and modular.

We hope that we’ve managed to pass some of the knowledge we gained while
developing iTap on to you, and we hope to see a great number of new and exciting
iPhone applications soon!

Sounds Broken inc
New York, NY

I started writing code in BASIC on the TANDY
1000HX my parents bought when | was young. Throughout High School in lowa, |
was keenly interested in both computers and music, programming video games
for the TI-82 and writing a checkbook balancer in Pascal. Throughout my
undergraduate and graduate studies in music composition, | used Mathematica
and Python to generate musical possibilities, eventually developing a psycho-
acoustical model as a means to model my orchestrations of acoustic music and
to generate electronic sound as well as an automated musical pattern
recognition engine. After graduate school, | became interested in Cocoa
programming through PyObjc and started taking classes at the Big Nerd Ranch
in Atlanta. Since then, | have been freelancing as a Cocoa and iPhone developer
and loving every minute of it.

I’m a subcontractor on several projects through
my own company and, more often, through a private development firm. My
company’s first solo application, gogoDocs, should be on the app store very
soon. It is an online and offline reader for the popular Google docs service.
Come visit us at gogodocs.com for updated information.

==

N‘l

|
\

Perceived speed and interface responsiveness on the

iPhone, especially when dealing with data stored on the Internet or when dealing
with large data sets can present serious challenges. In this chapter, you’ll step
through the development of two applications, one that deals with downloading

and displaying stock price information stored remotely on yahoo.com and
another that implements a large image viewer in a scroll view.

Optimization techniques
Concurrency

UlScrollView

NSOperation / NSOperationQueue

Open source technologies: Plausible Blocks and Core-Plot

Chapter

Fake It °Til You Make It:
Tips and Tricks for
Improving Interface
Responsiveness

Why do some native applications seem so fast while others do not? There is an old
adage in auto racing. “Speed is money. How much do you want to spend?” It doesn’t
take long for iPhone programmers to rub up against a similar problem, one perhaps
expressed as, “Speed is time. How much do you have left to spend before release?”
Given the limitations of processor power, RAM, and network bandwidth, not to mention
battery drain, writing iPhone applications that display lots of data is hard. Clever
caching, prefetching of data, and optimized drawing are the keys to removing the
variable response times that make an app that’s consuming nonlocal or large amounts
of data seem slow to the user.

How can you avoid a “death by 1,000 paper cuts” user experience when you have a lot
of data to display? Most of the applications that Apple ships on the iPhone access
network services, and many of them deal with large data sets. Mail pulls and caches
potentially large amounts of data from your mail server, the Maps application loads tiles
from Google Maps, and the Weather application requests the latest weather on demand;
even the Calendar and Contacts applications can sync with data stored on servers
hosted by Microsoft, Google, Yahoo, and Apple. Many well-reviewed third-party
applications also pull large quantities of data from the cloud in one way or another.
Facebook, Pandora, AIM, Yahoo Instant Messenger, and many others have developed
offerings that are robust and responsive. Writing an application for the iPhone that
displays large amounts of potentially nonlocal data is not easy. You’ve probably
experienced an application that seems to start and stop working depending on your
network connection or how much information you’ve loaded. Users of native iPhone

279

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

applications have different expectations with regard to interface responsiveness than
they do when browsing the Web. It’s difficult to satisfy a user who tolerates multiple
page loads while using a browser but who may not tolerate a slow-scrolling table view
or a view that takes a few seconds to download data and render in a native application.

I am keenly interested in iPhone application responsiveness. As a freelance iPhone
developer primarily writing various applications that connect to database or HTTP
servers, | have had a lot of opportunity to watch my first stabs at cloud-based
applications seem abysmally slow to respond to user input because the app is busy
downloading or parsing data. Since a lot of my time is spent talking to servers, | have
amassed a fair number of tricks to make applications seem faster than they really are,
from prefetching data to caching to drawing to off-screen contexts in separate threads. |
am excited to share some of those tricks with you.

In this chapter, I'll show how to improve the responsiveness of two projects. The first
project starts out as an app that displays historical AAPL stock information from
Yahoo.com and graphs closing prices over time similar to Apple’s own Stocks
application. As you add functionality, I'll discuss some strategies as well as some of the
trade-offs involved with various methods of caching information from remote data
sources. By the time you’re done, the application will cache and update the stock prices
of several stocks while remaining usable and responsive to the user. The second project
deals with displaying large amounts of information in a scroll view that is generated and
drawn programmatically. In that project, I'll show how to solve some common
performance and user experience problems related to drawing large amounts of data.

Plotting of Historical Stock Prices with AAPLot

In this section, you’ll start with a simple application that charts the last few months of
Apple stock prices. You can find the code in 01AAPLPlotFirstPlot in the book’s
download.

AAPLot uses a simple web service from Yahoo.com to download historical stock data in
comma-separated format. Type the following URL into a web browser
http://ichart.yahoo.com/table.csv?s=AAPL&a=3&b=19&c=20098d=6&e=128f=20094g=d&ig
nore=.csv. You should see text that looks something like this:

Date,Open,High, Low,Close,Volume,Adj Close

2009-06-18,136.11,138.00,135.59,135.88,15237600,135.88
2009-06-17,136.67,137.45,134.53,135.58,20377100,135.58
2009-06-16,136.66,138.47,136.10,136.35,18255100,136.35
2009-06-15,136.01,136.93,134.89,136.09,19276800,136.09
2009-06-12,138.81,139.10,136.04,136.97,20098500,136.97
2009-06-11,139.55,141.56,138.55,139.95,18719300,139.95
2009-06-10,142.28,142.35,138.30,140.25,24593700,140.25
2009-06-09,143.81,144.56,140.55,142.72,24152500,142.72
2009-06-08,143.82,144.23,139.43,143.85,33255400,143.85

Most of the work for AAPLot is concentrated in two objects: APYahooDataPuller, which
downloads, parses, and stores the data from Yahoo.com, and AAPLotViewController,

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

which displays the data in a plot. Listing 9-1 shows the method from APYahooDataPuller
that constructs a URL with a target start date and an end date.

Listing 9-1. Constructing a URL String to Retrieve Stock Data from Yahoo.com
-(NSString *)URL;
{

unsigned int unitFlags = NSMonthCalendarUnit | NSDayCalendarUnit |
NSYearCalendarUnit;

NSCalendar *gregorian = [[NSCalendar alloc] \
initWithCalendarIdentifier:NSGregorianCalendar];

NSDateComponents *compsStart = [gregorian components:unitFlags
fromDate:targetStartDate];

NSDateComponents *compskEnd = [gregorian components:unitFlags
fromDate:targetEndDate];

[gregorian release];

NSString *url = [NSString
stringWithFormat:@"http://ichart.yahoo.com/table.csv?s=%@&", \

[self

targetSymbol]];

url = [url stringByAppendingFormat:@"a=%d&", [compsStart month]-1];

url = [url stringByAppendingFormat:@"b=%d&", [compsStart day]];

url = [url stringByAppendingFormat:@"c=%d&", [compsStart year]];

url = [url stringByAppendingFormat:@"d=%d&", [compsEnd month]-1];

url = [url stringByAppendingFormat:@"e=%d&", [compsEnd day]];

url = [url stringByAppendingFormat:@"f=%d&", [compsEnd year]];

url = [url stringByAppendingString:@"g=d&"];

url = [url stringByAppendingString:@"ignore=.csv"];

url = [url stringByAddingPercentEscapesUsingEncoding:NSUTF8StringEncoding];
return url;

}

On application launch, the AAPLotViewController creates an APYahooDataPuller
instance. It downloads and parses the CSV data and then calls the
APYahooDataPullerDelegate method dataPullerDidFinishFetch: of the
AAPLotViewController. The view controller then draws a plot into a layer of its view.

NOTE: I'll be using quite a lot of free and open source code in the examples for this chapter, all
of which have licenses that allow for redistribution and commercial use. The plotting library
used in AAPLot is from Core Plot, which is an impressive new project by a group of developers
interested in graphing, charting, and plotting for the iPhone and the Mac. During WWDC 2009,
Apple sponsored a code-a-thon to jump-start its development. One of its stated goals is to
maintain a tight integration with Apple’s core technologies like Core Animation, Core Data, and
Cocoa Bindings. You can read more and download the latest code at
http://code.google.com/p/core-plot/.

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

Build and run the AAPLot example. Depending on whether you have an Internet
connection, you should see something that looks like one of the two images shown in
Figure 9-1.

Figure 9-1. AAPLot with and without an Internet connection

It's already a modestly useful application. You might want to add some text to warn the
user if there was a problem while trying to retrieve the graph from the Internet. You
could also remove the empty graph from the Ul when there isn’t a connection, call it a
day, and release. You certainly wouldn’t be the first to be tempted to do that. Even
Apple’s Stocks application is not usable without an Internet connection, as shown in
Figure 9-2.

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

iw 1m 3m@ 1y 2y

Error Retrieving Chart

Figure 9-2. Apple’s Stocks application as it appears without an Internet connection

Storing Data Between Runs

My company’s soon-to-be-released application, gogoDocs, is an online and offline
reader for documents stored on the popular Google Docs service. When you start the
application, it reads a list of the user’s documents from a plist stored on disk the last
time it ran and displays the information in a table view before attempting to fetch an
updated feed. In earlier development versions, we didn’t show the cached list on launch
unless the user was offline, thinking that the user would rather see the new data that
was soon to be downloaded. This proved to be a mistake. Beta testers were much
happier with the application when we loaded the cached feed on launch, allowing the
user to interact with the application while any new information downloads in the
background. This taught us that stale information is often better than no information. A
simple, and often big, usability win is to cache any downloaded information to disk and
present that data to the user as a placeholder before attempting to download any new
data. This will make the application appear to load faster because the user will not have
to wait for new data to download before interaction with your app; they can view and
possibly interact with the data that your application downloaded last time it was run.
With data that can get stale fairly quickly, like stock prices, it is still better to show the
user something rather than nothing, while perhaps signaling in an unobtrusive way that
the data is a little stale.

To add caching logic to the AAPLot application, you will add a mechanism to save to
and load from disk a given set of financial data. On launch, you’ll show the cached data
and then attempt to download new data. If you are able to get new data, you’ll compare
it to your old data, and you’ll overwrite the old data and update the Ul only if it’s stale.

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

WRITING TO THE IPHONE’S NAND FLASH MEMORY

With the iPhone’s NAND flash memory, writing is expensive both in terms of speed and in terms of
hardware lifetime. It will eventually wear out with use. Apple recommends that you write to disk only when
necessary. Since our application checks to see whether the data is stale, it is unlikely to download stock
data more than once or twice per day, so you can reasonably store it to disk when it arrives. If your data
were more often malleable, you might consider storing it only when the application closes or if you ran out
of memory. In gogoDocs, we only download and write the updated feed if its last changed date is later than
that of our cached information. This keeps the application from making unnecessary writes to the flash
memory. Apple supplies a convenience method in your application’s delegate where you can save data
before the app closes:

-applicationWillTerminate:

Using Plists to Persist Data

Dumping NSDictionary objects to plists has proven to be a simple way of persisting
small amounts data that | use often. It’s especially useful when you have control over the
server because you can have the server send you a plist that you can persist more or
less directly. In an open source library called TouchEngine for communicating with
Google App Engine that I'm working on with Noah Gift, a great Python programmer, we
chose to use plists as our communication medium, and we automatically cache any plist
that we get on the iPhone from the Google servers. We are automatically loading the
cached data from the plists before we fetch new data. TouchEngine is available from
Google Code at http://code.google.com/p/touchengine/.

In AAPLot, you are already using an array of NSDictionary objects to store your data
within the APYahooDataPuller, so it is trivial to persist them because an NSDictionary or
an NSArray can be written to disk as a property list as long as it contains only property
list objects (instances of NSData, NSDate, NSNumber, NSString, NSArray, or NSDictionary).
The NSDecimalNumbers are subclasses of NSNumber, so you can store those with one
caveat: they’re going to get converted to floating point first, which will reduce their
precision. For demonstration purposes, I'll just round them when reading them back in.
The precision you lose might cause a graph line to move by a pixel, which isn’t a big
deal for this application. Let’'s add some caching methods to APYahooDataPuller.

First you’ll add a method called plistRep that returns a dictionary representation of the
APYahooDataPuller’s data. Then you’ll add a method that writes that dictionary to a file,
calling the built-in NSDictionary writeToFile:atomically: method. You should also take
this opportunity to further modify APYahooDataPuller to better model your new strategy.
Since you are caching the startDate and endDate values to disk and will need them for
comparison later, you will want to add a few instance variables to track the dates you
want from the server and also the symbol you’re looking for, which may be different from
those you’re loading from the cache, and you’ll also want to change the designated
initializer accordingly. You should change the behavior with respect to notifying the
delegate. Since you are caching financial data, it’s possible that the target startDate,
endDate, and symbol will match that which is already cached. If that is the case, you

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

won’t need to reload the graph, and you should probably not even notify your delegate.
You’ll change the interface with the delegate so that you notify only when the financial
data changes as a result of a fetch.

Listing 9-2 shows the code for inserting the instance variables of the APYahooDataPuller
object into a dictionary and then writing that dictionary to a plist on disk, which you can
load the next time the user runs the application.

Listing 9-2. Inserting Instance Variable Values into an NSDictionary Object and Writing It to a Plist on Disk

- (NSDictionary *)plistRep

NSMutableDictionary *rep = [NSMutableDictionary dictionaryWithCapacity:7];
[rep setObject:[self symbol] forKey:@"symbol"];

[rep setObject:[self startDate] forKey:@"startDate"];

[rep setObject:[self endDate] forKey:@"endDate"];

[rep setObject:[self overallHigh] forKey:@"overallHigh"];

[rep setObject:[self overalllLow] forKey:@"overalllLow"];

[rep setObject:[self financialData] forKey:@"financalData"];

return [NSDictionary dictionaryWithDictionary:rep];

}
- (BOOL)writeToFile: (NSString *)path atomically:(BOOL)flag;

NSLog(@"writeToFile:%@", path);
BOOL success = [[self plistRep] writeToFile:path atomically:flag];
return success;

}

Saving Data to the iPhone Application Sandbox

When your application is installed on the iPhone or the iPhone Simulator, its sandbox
includes several directories. Take a look at Figure 9-3. The Library directory includes a
Preferences directory where preferences are stored as plist files. The Caches directory
stores cached data between runs but is not backed up when iTunes connects to the
phone. The tmp directory holds temporary files while the application is running and is
cleared between runs. The Documents directory contains user data. It is backed up by
iTunes during a sync and restored during a restore from backup. | tend to use the
Documents directory for cached data that isn’t too big, like plist files, as well as data the
user generates because | prefer the user to be able to use my and my clients’
applications directly after a restore from backup. The iTunes sync time for your
application will increase the more information you store in the Documents directory, so
try to avoid caching really large files there if you can help it.

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

.| Library
.| preferences
L] Caches
] tmp
.| Documents
A SomeApplication.app

Figure 9-3. iPhone application directory structure

You can get the path to the Documents directory using this code snippet:

NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
NSUserDomainMask, YES);
NSString *documentsDirectory = [paths objectAtIndex:0];

For AAPLot, you append AAPL.plist to the path stored in the documentsDirectory
variable when you store the plist data file.

Build and run the application while connected to the Internet. It should look about the
same as before. Now disable your Internet connection and run the application again.
The graph should render just as it did before using the data that was cached to disk on
the first run. If the graph does not draw when you run the application without an Internet
connection, you’re likely reinstalling the application and overwriting the Documents
folder with an empty one each time you install it. Instead of running the app using
Xcode’s build and run, try running the application by touching or clicking it on the phone
or in the simulator without reinstalling. If your application stores more critical data,
perhaps business documents, your users will appreciate having their content available
to them at any time, regardless of their Internet connection status.

Shipping AAPLot with Placeholder Data

You never get a second chance to make a first impression. If a user downloads your
application on the App Store and then finds himself without an Internet connection the
first time he uses it, having nothing to look at can be disappointing. That user may never
run your application again. Many applications would benefit from having some kind of
default local data, even if it is just something to show the user what it will look like when
they are able to get fresh data. One fantastic application that | use often, FileMagnet
from Magnetism Studios (http://www.magnetismstudios.com/FileMagnet), is a file
viewer that makes it simple to synchronize files from your computer to your iPhone for
viewing. They ship the application and each update with a document outlining what’s
new in the application. This allows a new user to experience the application in action
before importing any documents while at the same time allows the veteran user see
what new features are available. It’s a very nice touch.

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

To ship a default version of the AAPL.plist with your application, you will first need to
retrieve one from the simulator. The iPhone Simulator loads its library of applications
and data from your home directory in ~/Library/Application Support/iPhone
Simulator/User/Applications/. Each application is housed in a directory named with a
UUID. The easiest way to find your AAPL.plist is to empty this directory, build and run
your application, and then retrieve it from the newly created directory. The iPhone
Simulator will empty the directory for you. Open the iPhone Simulator, and then select
Reset Content and Settings from the iPhone Simulator menu.

Make sure your Internet connection is live, and build and run the application in the
simulator. You’ll find AAPL.plist in the ~/Library/Application\ Support/iPhone\
Simulator/User/Applications/SOMELONGUUID/Documents/ directory. Copy it into the
AAPLot code directory. Now add it as a resource in Xcode. You can set Reference Type
to Default. Make sure that Add To Target is also selected so Xcode knows to copy it
during the build. See Figure 9-4.

| » BN Sre——) 3 A 10w
o Ao Ao Tt

A it

Figure 9-4. Adding AAPL.plist to AAPLot in Xcode

Now you need to write a method that checks to see whether AAPL.plist is in the
Documents directory, and if it is not, you should instead load the plot from the
application’s resources folder.

- (NSString *)faultTolerantPathForSymbol: (NSString *)aSymbol
{

NSString *docPath = [self pathForSymbol:aSymbol];
if (![[NSFileManager defaultManager] fileExistsAtPath:docPath]) {
//if there isn't one in the user's documents directory, see if we ship with this
data
docPath = [[[NSBundle mainBundle] resourcePath] \

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

stringByAppendingPathComponent: [NSString
stringWithFormat:@"%@.plist", aSymbol]];

return docPath;

-(NSDictionary *)dictionaryForSymbol:(NSString *)aSymbol

NSString *path = [self faultTolerantPathForSymbol:aSymbol];

NSMutableDictionary *localPlistDict = [NSMutableDictionary
dictionaryWithContentsOfFile:path];

return localPlistDict;

Remove all applications as before from the simulator so you can see how the application
behaves when it is used for the first time. Now disable your Internet connection again.
Build and run. The default AAPL.plist should load even though the application is freshly
installed with no previously fetched data. You can find the version of AAPLot that
includes all of these caching changes in Examples/03AAPLPlotDefaultData of the book’s
download.

In a shipping application, indicating to the user that the data they’re seeing is stale and
warning them that the application would really benefit from an Internet connection is a
good idea. See Apple’s Reachability sample code at
http://developer.apple.com/iphone/library/samplecode/Reachability/index.html for
information on how to test for the availability of a server on the Internet. See also the

Human Interface Guidelines for the iPhone available at
http://developer.apple.com/iphone/library/documentation/userexperience/conceptu
al/mobilehig/Introduction/Introduction.html.

Extending the App for Multiple Stock Graphs:
StockPlot

Now I’ll show how to reuse some of the objects from the AAPLot application in an app
called StockPlot that loads a whole bunch of stocks into a table that the user can select
to push a graph onto the screen. Things get rather more complicated when there is a lot
of data to download and store. The gogoDocs application | mentioned before
downloads and caches a list of preferred documents each time the user is connected
to the Internet to make sure important documents are always available offline. When

we decided to add this multiple document download feature to the application, which
was previously downloading one document at a time on demand, the Ul would grind

to a halt.

The earlier strategy of download, then parse, then cache, and then display from the
AAPLot application might not hold up when you try it with a lot of stocks at the same
time. Let’s also see what happens when you try to load graphs in response to user
input. You can find StockPlot in Examples/04StockPlotConcurrentDownloads.

StockPlot will ship with Yahoo, Microsoft, Google, and Apple stock data and will attempt
to download more than a dozen other technology companies’ prices on launch. The

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

RootViewController of the project handles table view loading and
APYahooDataPullerDelegate duties. It loads a summary of whatever data it can find in its
array of APYahooDataPuller objects, which it creates at launch. Each APYahooDataPuller
object in the array will continue to act just like it did in AAPLot by loading from disk,
downloading, and notifying of changed data; you’ll just have a large number of them.
The RootViewController object also has a small amount of code to limit the number of
concurrent downloads to three connections at a time. Build and run it on the simulator. It
should look like Figure 9-5. If you’re online (and you don’t blink), you will see the little
exclamation point cautionary icons that you’re using to indicate stale data in the table
cells replaced by progress indicators while the corresponding APYahooDataPuller object
downloads; then they disappear once fully loaded. If you click a table cell, the now-
familiar graph is rendered and animated onto the screen through the canonical
UINavigationController view controller—pushing methods.

Stocks

Figure 9-5. StockPlot loading data from Yahoo.com

Now install and run it on your device. It seems like it’s pretty slow to download, huh? It’'s
nothing like the simulator experience. The user interface even freezes in fits and starts
while the data comes in; you can’t even scroll the table view most of the time. Once
everything is downloaded, the interface is really responsive. You could choose to
download only the data you need for the table view on launch, but that would only push
the lack of responsiveness somewhere else, which would bring you dangerously close
to death by 1,000 paper cuts. It would probably take quite a while to load the data for a
given graph on demand. You should also try to build and run a release configuration to
see whether perhaps the sluggish Ul has anything to do with a certain lack of compiler
optimizations. Nope. Let’s run StockPlot in the Shark profiler to see whether we can find
out what'’s slowing things down.

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

During the development of gogoDocs, we had a similar problem. On the device, the Ul
would freeze periodically. After running the application through Shark, we saw that the
parsing of access control (document sharing and outside access) XML data from Google
was freezing the Ul intermittently because that was all running on the main thread and
getting in the way of Ul drawing. There is hothing more disheartening than watching your
previously responsive app suddenly start to stutter while scrolling through a table view.
We ended up moving the ACL downloading and parsing into a background thread. Now
the Ul is very smooth.

Shark is Apple’s profiler. Attach it to a running process, and it takes a snapshot of what
portion of your binary is running at regular intervals. Shark shows you a sort of weighted
statistical table of how many times through a given method or line of code it counted.
The more times it sampled your code in a given area, the more time your code spends in
that area. You should always run Shark on a release build of your application because
you will want to profile the compiler-optimized code with which your application will
ship. There is one problem. The default settings for release also strip debugging
symbols from your binary, which makes Shark look more like a hexadecimal puzzle
game for those who can solve Rubik’s Cube, of which | am certainly not one. Now copy
the release build configuration into one called Profiler by opening the Project menu in
Xcode and clicking Edit Project Settings; then select the Configurations tab and
duplicate the Release configuration.

Then in the Build tab, deselect the boxes for stripping debug symbols, as shown in
Figure 9-6.

Project "StockPlot" Info

! General Build Configurations Comments |

Edit configuration list:

Debug
Release
Profiler

Project "StockPlot” Info

| General Build Configurations Comments '

Configuration: | Profiler %) Q- symbols
Show: | Settings Defined at Thi. . & |

Setting Value
¥ Deployment
Strip Debug Symbols During Copy (]
Strip Linked Product 0

Figure 9-6. Removing symbol stripping from the StockPlot build settings

You have one thing left to do before you can test the downloading problem. Once your
application is running, it takes a little while to attach the profiler. To test the
problematical code, you need a way of attaching Shark at the very start of the
application run. Although it might seem easy to drop a breakpoint in gdb in your main()

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

function, | have had some trouble getting Shark to connect while gdb is also attached.
Instead, you’ll drop a ten-second sleep() call in applicationDidFinishLaunching. That
should give you enough time to attach Shark.

You can usually find Shark.app in /Developer/Applications/Performance Tools/. Runit,
and select Network/iPhone Profiling from the Sampling menu. Delete the copy of
StockPlot with cached data from your phone by using the Xcode organizer or directly on
the iPhone. Connect your iPhone to your computer, and build and run the application.
Once it’s running (and sleeping), you can select the check mark in the menu next to the
name of your iPhone, select TimeProfile (WTF) from the Config drop-down, and select
StockPlot from the Target drop-down. As soon as you see log messages indicating
download activity, hit the Start button; once the messages stop, hit the Stop button. If
you are a coffee drinker, now is a good time to go make a cup. This part takes a little
time because a lot of the processing that Shark needs in order to figure out what
happened during the profiling run is actually performed on the device itself.

After you finish your coffee and once Shark and your iPhone are finished, you might see
a window with all kinds of hexadecimal jibberish that | promised wouldn’t happen. If so,
you will need to symbolicate the time profile by telling Shark where the symbol-rich
binary is located on your filesystem. Select File » Symbolicate, and then navigate to the
build directory corresponding to your Profiler build settings, as shown in Figure 9-7.
Make sure you see “type: ARM” on the window when you select it. Now Shark should
have familiar method names. Poking around in the trace, you can see that most of the
work is being done in parsing the comma-separated strings and writing the plists to
disk. That makes sense. You’re using an asynchronous download, so that shouldn’t
freeze your Ul, but the string parsing and caching to disk blocks the main thread. See
Figure 9-8.

Select symbol rich version of “StockPlot”...

[« »] (88 m' | [Profiler-iphoneos) @search

& Freakinl... StockPlot.app.dSYM Today, 1:12 AY
2} Macosx + StockPlot.app Today, 1:12 AY
_3 Docs

=\ Leopard

=2 Mac 05 ...
) Snowkitty
Sl

=
¥ DEVICES ﬂ Name Date Modified
5

Original: StockPlot

Type: ARM

Modified: Monday, July 13, 2009 01:12:20 AM
Selected: StockPlot.app

Type: ARM

Modified: Monday, July 13, 2009 01:12:17 AM
Version: (1.0)

Size: 283.8 KB

Cancel) { Open)

Figure 9-7. Pointing Shark to a symbolicated binary

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

Session 2 - Time Profile (WTF) of StockPlot [Jonathan-Saggaus-iPhone-3G]

[“profile Chart |
Tree (Top-Down) Data Mining Active
] Seit Total Library Symbol
1.5%| 99.6% StockPlot ¥ main
0.2% 83.0% StockPlot ¥ -[APYahooDataPulle jonDidFinishLoading:]
2.9% 43.2% StockPlot | wv-aP opulat ing:] -
23.2% 23.4% StockPlot ¥+ icti YAPF y CSVLine:]
0.3% 0.3% StockPlot | +INSDa SV yahooCSVDatef ter)
1.6% 16.8% StockPlot I uller setFi :
0.0% 0.0% StockPlot | -[APYahooDataPuller setOveraliLow:]
0.0% 0.0% StockPiot [(AP ull Date:]
28.7% 28.8% StockPlot I uller writeToF

Figure 9-8. Shark profile showing the data parsing and plist writing bottlenecks

Even if you ship with 20 plists (which | probably would for this application), they’ll almost
definitely be stale once the application gets into users’ hands. You don’t want your
application to be this unresponsive the first time it is run. What can you do about this?
You have several options. At the moment, you’re downloading and parsing all three
months worth of data from Yahoo, because that’s the easiest thing to do. You could
figure out how much data you already have on disk and download only the missing data.
You are also spending a fair amount of time converting NSNumbers to the
NSDecimalNumbers you need for Core Plot. You could change Core Plot to accept
NSNumbers, or you could change your storage to CoreData, which retrieves
NSDecimalNumbers without conversion. The problem with these optimizations, some of
which you may choose to do before shipping, is that they will all incur unpredictable
amounts of overhead on the main thread. Thus, you would have to test a lot of use
cases. It may also prove difficult to predict just how much data you’ll need. If your user
uses your application often enough to pull down small chunks (in this case, fewer days)
of data, which is not guaranteed, you might do well to avoid downloading duplicate
data. You might also want to allow the user to add stocks to plot, which would definitely
require a lot of parsing the first time the stock data is downloaded; it also adds yet
another stock to the queue on application launch. Perhaps you would do well to try to
pull the processing off of the main thread so you can unblock the user interface once
and for all, thus freeing yourself from all of these problems at once.

Concurrency

“Cause it’'s gonna be the future soon. And | won't always be this way.
When the things that make me weak and strange get engineered away.”

—Lyrics for The Future Soon by Jonathan Coulton

Wait a tick. Did | just suggest multithreading?

OK, threading is hard, but the engineers at Apple and elsewhere keep making it easier
for us. We have all of these cores on our desktops because the hardware engineers
keep slicing silicon, so concurrency keeps getting more and more important. Who

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

knows? Perhaps one day we’ll all be walking around with multicore processors in our
phones. If so, you'll be ready to write software for them.

NSOperation, NSOperationQueue, and Blocks

NSOperationQueue and NSOperation remove much of the pain of multithreading.
NSOperationQueue is a sort of thread pool that maintains an array of pending
NSOperation objects that it schedules to run in a background thread based on a number
of factors from system hardware to system state to the relative priority of a given
NSOperation. You can even declare one NSOperation dependent on the completion of
another. You normally subclass NSOperation to override one method, main, which is
where you put the work you want on a background thread. It’s called when the
operation is run. The only things we as programmers have to be wary of in this situation
are the usual data access caveats. Try not to mutate data at the same time you’re
reading it. There are tools for this, too. We can use the various permutations of
performSelectorOnMainThread:, and @synchronized() directives are useful, too. Before

you dig in, I highly recommend reading Apple’s concurrency document at
http://developer.apple.com/Cocoa/managingconcurrency.html.

There is a helpful tool in other languages for this kind of problem called blocks. Blocks
are another name for closures, with which you may have familiarity with from using
Ruby, LISP, Python, Smalltalk, and others. They’re like function pointers that take a
(usually const) snapshot of their local stack variables so you can run them later with the
information you shove in them now. They’re little portable units of computation that
carry their state around and are extraordinarily useful with concurrent operations.
Because they have a snapshot of their state, they’re easier to deal with in a concurrent
environment. Useful though they may be, they don’t officially exist yet. They’re being
added to Objective-C by the folks who are bringing us the open source Clang and LLVM
projects. (See http://lists.cs.uiuc.edu/pipermail/cfe-dev/2008-August/002670.html
and http://www.macresearch.org/cocoa-scientists-part-xxvii-getting-closure-
objective-c.) There is no guarantee, though it seems likely, that Apple will bring them to
the iPhone.

These additions to the Objective-C language and runtime are free and open source, and
they’ve been implemented in GCC 4.2, so it is actually quite possible to backport them
to the iPhone, so of course they have been. Plausible Blocks from Plausible Labs is
available at http://code.google.com/p/plblocks/ and is, as of this writing, shipping its
second beta of a gingerly patched version of the standard, stable GCC 4.2 compiler that
ships with the OS X Leopard (10.5) and iPhone software development kits. | have found
it to be very stable, and it works with both iPhone OS 3.0 and 2.2.1 targets. There is
some example code for their use on the primary author’s GitHub repository available at
http://github.com/landonf/block_samples/tree/master. Next you’ll install the
Plausible Blocks compiler and add its static framework to your project so you can easily
place your downloading, parsing, and saving code in a block to be executed by an
NSOperation to be scheduled by an NSOperationQueue (in the house that Jack built). If or
when Apple does add blocks support to the iPhone, switching from Plausible Blocks will
be simple. You'll revert to Apple’s compiler and remove the Plausible blocks framework

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

from your project. All of the things that make your application weak and strange are
being gradually engineered away, and you’re even using future technology!

Installing the Plausible Blocks Compiler and Adding It to
the Project

First, download the latest disk image of the Plausible Blocks compiler and frameworks
from http://code.google.com/p/plblocks/downloads/1ist. Mount the disk image, and
run the included package. This installs the patched compiler as an Xcode plug-in.

Now copy the iPhone Runtime folder, which includes the static framework you’ll need to
link against, into the StockPlot project. Double-click the StockPlot target, select the
General tab, and click the plus (+) button in the lower-left corner of the window to add a
new linked library. Click Add Other in the resulting sheet, and navigate to and select the
framework for addition, as shown in Figure 9-9.

Now you need to tell Xcode to use the special compiler. Double-click the StockPlot
target to open the Build Settings window. Select the Build tab. Select All Configurations
from the upper-left drop-down. Now select the GCC 4.2 (Plausible Blocks) compiler, as
shown in Figure 9-10. You now have blocks support.

~

Target "StockPlot" Info

4 »!l328 = m! '(]iPhone Runtime %) (Qsearch
— Name Date Modified vi
Name: 'Stoc D:“FC[S » (I PLBlocks.framework Today, 2:48 AM
&/ Freakinl...
Type: App'! 2 Macosx
Direct Depen = pocg
"% CorePl i3 Leopard
24 Macos ...
) SnowKitty
aw
_ plbl... &
¥ SHARED
=i j's Mac ...
i Jonathan...
&, Michele ...
215 = | == minibox v
Linked Librar { New Folder) (Cancel) ([Add) Ype
§% Found: ~equired +
#%= UIKit.framework Required +
Q&Core(‘.raphi(s.framework Required +
#® QuartzCore.framework Required &
&= libCorePlot-CocoaTouch.a Required o
e ®

Figure 9-9. Adding the PLBlocks. framework to the StockPlot project

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

.00 Target "StockPlot” Info

| General = Build Rules Properties Comments '

Configuration: AN Conﬁgurations

4 (Q~ Search in Build Settings
Ta
v

Show: [All Settings j

Setting Value
Code Signing Resource Rules Path
Other Code Signing Flags

¥ Compiler Version GCC4.0
v GCC a2 2]
¥ Deployment
Additional Strip Flags GCC System Version (4.2)

Alternate Install Group
Alternate Install Owner Other....
Alternate Install Permissions Tu+w,go-w,a+rX

Figure 9-10. Switching to the Plausible Blocks patched version of GCC

You’ll use some convenience categories and objects from the Plausible Blocks sample
code mentioned earlier. They’re included with the sample code in
Examples/05StockPlotParallelDownloads in files called NSThread+PLBlocks.h/m and
NSOperationQueue+PLBlocks.h/m. Add them to the StockPlot project.

Using Blocks, NSOperation, and NSOperationQueue in
StockPlot

To get asynchronous downloading, parsing, and saving, the first thing you need to do is
make something synchronous. Go figure. The downloading code is using
NSURLConnection to download the data asynchronously from Yahoo. NSURLConnection
doesn’t like to be launched asynchronously from any thread other than the main thread
because that would be silly. This isn’t a big deal, because you’re going to place all
downloading, parsing, and saving in a background thread using the
NSOperation/NSOperationQueue objects. This has the added benefit of making the
downloading code simpler. Instead of asynchronously adding data to an NSMutableData
object and defining a bunch of NSURLConnectionDelegate methods, you need only call
the NSURLConnection sendSynchronousRequest:returningResponse:error: method. It
blocks execution while downloading and can be run from a nonmain thread, which is
exactly what you want. Every time you call a delegate method from the background
thread, you make sure that the delegate gets called on the main thread. Usually, you
would use the performSelectorOnMainThread: ... family of calls, but it’s easier to wrap
them in a block and have the new category on NSThread execute the block on the main
thread. Listing 9-3 shows the new “blockified” fetchIfNeeded method.

Listing 9-3. APYahooDataPuller.m
- (void)fetchIfNeeded
if (self.loadingData) return;

//Check to see if cached data is stale
if ([self staleData])

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

self.loadingData = YES;

NSString *urlString = [self URL];

NSLog(@"Fetching URL %@", urlString);

NSURL *url = [NSURL URLWithString:urlString];
NSURLRequest *theRequest=[NSURLRequest requestWithURL:url

cachePolicy:NSURLRequestUseProtocolCachePolicy
timeoutInterval:60.0];
// create the connection with the request
// and start loading the data
NSURLResponse *theResponse;
NSError *theError;
[self downloadWillStart];
self.receivedData = [NSURLConnection sendSynchronousRequest:theRequest
returningResponse:&theResponse
error:&theError];
if(theError)

self.loadingData = NO;

self.receivedData = nil;

NSLog(@"err = %@", [theError localizedDescription]);

[[NSThread mainThread] pl_performBlock: ~{

if(delegate &3 [delegate
respondsToSelector:@selector(dataPuller:downloadDidFailWithError:)])

[delegate performSelector:\
@selector(dataPuller:downloadDidFailWithError:)
withObject:self
withObject:theError];

[sélf connectionEnded];
else

self.loadingData = NO;

NSString *csv = [[NSString alloc] initWithData:self.receivedData
encoding:NSUTF8StringEncoding];

[self populateWithString:csv];

[csv release];

self.receivedData = nil;

[self writeToFile:[self pathForSymbol:self.symbol] atomically:NO];

[self connectionEnded];

}
}
}

This method is called from the RootViewController’s updateDownloadStatus method
from within a p1_addOperationWithBlock method that has been added to
NSOperationQueue. This method adds a PLBlockOperation to the queue and schedules it
for execution. The NSOperation object subclass PLBlockOperation that gets instantiated
here copies the block you pass it into an ivar and simply executes it in its main method.
(Blocks are also Objective-C objects, but they must be copied rather than retained.)
Since all the stack variables are copied into the block, you don’t need to worry if they
change or go out of scope before the block is called.

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

- (void)updateDownloadStatus
while ([stocksToDownload count])

[stocksToDownload objectAtIndex:0];

APYahooDataPuller *dp =
= [(StockPlotAppDelegate *) [[UIApplication

NSOperationQueue *q
sharedApplication] delegate]
globalQ];

[q pl_addOperationWithBlock: ~{

[dp fetchIfNeeded];

F
NSGInteger idx = [stocks indexOfObject:dp];

NSUInteger section = 0;
NSIndexPath *path = [NSIndexPath indexPathForRow:idx inSection:section];
UITableViewCell *cell = [self.tableView cellForRowAtIndexPath:path];
if(nil != cell)

[self setupCell:cell forStockAtIndex:idx];
[stocksToDownload removeObject:dp];

}

Uninstall, build, and run on the device. NSOperationQueue tends to be conservative on
the iPhone, so you’ll probably see stock information downloaded one symbol at a time;
the application will remain responsive throughout.

Just for fun, let’s reinstall and run it through Shark again. If you’ve deleted it, add that
temporary call to sleep() as well.

You can see in Figure 9-11 that the application didn’t really run any faster; you’ve just
parallelized it. Multithreading isn’t so painful after all. Welcome to

the future.
® 06 Session 3 - Time Profile (WTF) of StockPlot {Jonathan-Saggaus-iPhone-3G]
[Pprofile Chart |
Tree (Top-Down)
! Self Total v Library Symbol
| 0.0% 63.5% libSystem.B.dylib | ¥ _pthread_body ’
0.0% 63.3% Foundation | ¥ __NSThread__main__
0.0% 63.1% Foundation | ¥ -[NSThread main]
0.0% | 59.5% Foundation | ¥ -[NSOperation start]
0.0% 55.4% StockPlot | ¥ -(PLBlockOperation main] - o
0.0% 55.4% StockPlot ¥ __-[RootViewController updateDownlo: |_block_invoke 1
- _ 0.0% 55.4% StockPlot _ ¥-lAPvanc aPuller fetchifNeeded] -
_ 00%| 29.2%|StockPlot | b -[APYahooDataPuller populateWithsString:]
0.0% 24.2% StockPlot | » -[APYahooDataPuller writeToFile:atomically:]
0.0% 0.7% Foundation | » +[NSURLC: d

Figure 9-11. This Shark profile shows StockPlot running the PLBlockOperation in the background.

NOTE: Apple has not officially announced any intention to bring blocks to the iPhone, though
it’s a fair bet that Apple will do so once blocks are added to the desktop runtime and compiler
collection. You should very thoroughly test any application using a nonstandard compiler and
be prepared for things to break in spectacular and unexpected ways. That said, Plausible
Blocks appears well on its way to release-level stability.

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

Displaying Large Amounts of Data Efficiently

How easily the iPhone Ul can be brought to its knees by performing something as
seemingly simple as downloading, processing, and caching data to disk! Now you’re
going to really make it hurt by throwing it an application that has to work very hard to
draw anything at all. One of my clients has an application that pulls potentially dozens of
high-resolution images from a database server into an image-browsing view not unlike
that of Apple’s Photos application. To load something into the image viewer quickly, we
prefetch a set of low-resolution thumbnail images from the database and scale them to
fit the screen. As the user thumbs through the images, the application downloads the
current high-resolution image and those to the left and right thereof. As each large
image arrives, the application replaces the low-resolution image on screen with the high-
resolution image. For the application to remain responsive, image decoding and drawing
are handled in a background thread by pushing the images to off-screen CGContextRefs.
To solve a similar problem in this section, you’ll examine a project for drawing a vertical
succession of very large images into a zoomable scroll view. So that you might
encounter some of the difficulties inherent in dealing with large amounts of data, you’ll
add an admittedly somewhat contrived requirement: the images cannot be presliced,
thumbnailed, or otherwise massaged outside of the device. All drawing code must use
the original very large PNG images shown in Figure 9-12 bundled with the application. If
you can make this example perform reasonably well, you’ll have a reusable framework
for drawing any processor-intensive tiled scroll view while maintaining Ul
responsiveness.

Figure 9-12. Images for BigViewThing.app © NASA

You'll begin with a modified version of Apple’s ScrollViewSuite sample code available at
http://developer.apple.com/iphone/library/samplecode/ScrollViewSuite/index.html
called BigViewThing. The original Apple sample is designed to draw view tiles that are
chunks of a larger image; it shows how to reuse view objects in two dimensions similar
to the way the UITableView dequeues and enqueues rows in one dimension. In the case
of Apple’s sample, the smaller image chunks are meant to ship with the application.

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

BigViewThing is already partially implemented as a result of being derived from this
sample code. It handles double-tap to zoom, suspends tile redraws when the user is
interacting with the view, and draws only on-screen tiles. It’s in the
Examples/06BigViewThingOriginal directory of the sample code. Build it and run. There
are quite a number of large images in it, so it will take a while to copy over to the device.

Once you have it running on your phone, you’ll notice a few issues. Whenever a new tile
comes on the screen, it takes a while to render. The image doesn’t redraw at higher
resolution when you zoom. It remains grainy. Let’s profile it in Shark to see what is
happening. There is no need to add a sleep() to this application because the
performance problems appear throughout rather than just on startup. Start the
application, and attach Shark. Remember, the longer you sample, the longer you will
wait for results, so scroll around enough to get it to draw just a couple of images.

As you can see in Figure 9-13, almost all the application’s execution time is being used
in decompressing and drawing the PNG images. Our goal with this demonstration
application is to simulate what happens when drawing very heavy, data-intensive views.
You never know when a user is going to try to load a giant document or image into your
application. Some developers, myself included, have run into this problem using Apple’s
UIWebView. It was designed to render small e-mail attachments in various formats in the
Mail application and to render web content. Several document reader applications fail
when the user tries to load a large document because they are trying to leverage
UIWebView to draw heavy content. It clearly isn’t designed for such content. We ended
up writing our own memory- and CPU-optimized document view for some common files
in gogoDocs because the UIWebView could not handle drawing some of the larger ones.

®e00 Session 1 - Time Profile of BigViewThing Uonathan-Saggaus-iPhone-3Gj}
{ Profle Chart |
Tree (Top-Down) Callstack of Heaviest Path

1 Seit Toual v Livrary Symool = Total Symbol
0.0% BB.5% BigViewThing v main ~ 0 25.9% inflate_fast
0.0% B88.5% UIKit ¥ UlApplicationMain 1 32.1% inflate
oo% B8.5% UIKit ¥ -[UlApplication _run] 2 32.2% png_read_2stream
0.0% B8.5% CraphicsServices ¥ GSEventRunModal 3 453% _cg_png_read_row
0.0% 88.5% Corefoundation ¥ CFRunLoopRuninMode B 45.3% gerBandProcPNG
0.0% 88.5% Corefoundation ¥ CFRunLoopRunSpecific 5 45.3% CGimagePusCreatelmage
0.0% 86.1% CorcFoundation ¥ _CFRunLoopDoObservers b 45.3% CCimageSourceCreateimage.
o.o% B5.8% QuartzCore ¥ CA Transaction :observer_callback{_CFRunLooy 7 45.4% _UlimageRefAtPath
0.0% B5.8% QuartzCore ¥ CA Transaction commit() 8 45.5% _UlimageAtPath
0.0% 85.7% QuartzCore ¥ CAContext .commit_transaction(CA: Transa 9 45.5% +{Ulimage imageNamed:]
0.0% 84.0% QuartzCore ¥ CALayerDisplayifNeeded 10 83.5% -[BigViewPageView drawRect:|
0.0% 84.0% QuartzCore ¥ -[CALayer display] 11 8§3.9% -[UIView(CALayerDelegate)
0.0% B4.0% QuartzCore ¥ ~[CALayer _display] 12 83.9% -[CALayer drawinContext:]
0.0% B3.9% QuartzCore ¥ CABackingStoreUpdate 13 83.9% _ZLl6backing_callbackPoC...
0.0% 83.9% QuartzCore ¥ _ZL16backing_callbackP9CCContexs 14 83.9% CABackingStoreUpdate
0.0% 83.9% QuartzCore ¥ -{CALayer drawinContext:] 15 84.0% -[CALayer display]
0.0% 83.9% UIKit ¥ -{UIView(CALayerDelegate) drav 16 84.0% -[CAlayer display]
0.0% 83.8% BigViewThing ¥ -[BigViewPageView drawRect. 17 84.0% CAlayerDisplaylifNeeded
0.0% 45.5% UIKit ¥ +[{Ulimage imageNamed:] , 18 85.7% CA:Context:commit_transa
0.0% 45.5% UIKit ¥ _UlimageAtPath 19 85.8% CA:Transaction::commit)
0.0% 45.4% UIKit ¥ _UlimageRefAtPath 20 85.8% CA:Transaction.:observer ¢
0.0% 45.3% Imagelo ¥ CGimageSourceCreate: 21 86.1% __CFRunLoopDoObservers
0.0% 45.3% Imagel0 ¥ CCimagePlusCreatel 22 88.5% CFRunLoopRunSpecific
0.0% 45.3% Imagelo ¥ getBandProcPNG 23 88.5% CFfRunLoopRuninMode
0.4% 45.3% Imagel0 ¥ _cg_png_read_rc 24 88.5% GSEventRunModal
0.1% 32.2% Imagel0 ¥ png_read_zstr(25 88.5% -[UlApplication _run]
2.1% 32.1% libz.1.0ylid v inflate 26 885% UlApplicationMain
25.9% 25.9% libz.1.dylib inflate_fast 27 88.5% main

Figure 9-13. This Shark profile shows -[BigViewPageView drawrect:] taking up most of the execution time.

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

Zooming a UlScrollView

One thing that UIWebView performs very well is its sharp redrawing of zoomed content
after a zoom is finished. In BigViewThing, you’re currently allowing the scroll view to
zoom for you and leaving the content alone when zooming is finished. This default
behavior results in an unpleasant grainy appearance because the UIScrollView that you
use to host the content simply applies a scaling affine transform to the content view. It's
also expanding or contracting its own content size relative to the new drawn size of the
overall view. UIScrollView does this for performance reasons. If it takes three seconds
(and it does take that long right now in our application) to draw a view into a given
square of pixels, imagine what it might look like to animate resizing by redrawing. One-
third of a frame per second is subpar to say the least.

Search the Internet for UlScrollView zooming reset resolution, and you’ll find a lot of
developers pulling their hair out trying to get this to look right. A little caveman NSLog
experimentation to figure out what the UIScrollView is really doing can reveal what’s
happening under the covers when you, say, pinch to zoom or directly set the zoomScale
property of a UIScrollView.

UlIScrollView Zooming Under the Covers

When the user attempts a zoom, UIScrollView first checks to see whether
minimumZoomScale and maximumZoomScale are not equal to one another. It also checks the
current zoomScale to see whether it can zoom. If parameters allow for zooming,
UIScrollView then asks the UIScrollViewDelegate for a view to scale during the zoom
with the viewForZoomingInScrollView: method call. You return the content view in the
BigViewThing project. As the zoom scale changes, the UIScrollView does two things:

B [t sets an affine transform on the view it is zooming to scale it up or
down without redrawing. It’s a “square” transform that maintains
aspect ratio, so there is no distortion.

B [t resets its own contentSize, contentOffset, and zoomScale so as to
hold the content in place relative to the point about which it is zooming
(in the case of pinching, that point was halfway between your fingers
when you put them down). See Figure 9-14.

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

Images are siresched

ContientView

UiScrolView

Figure 9-14. The UIScrollView default zoom simply stretches the ContentView, leaving pixelated images.

If the zoom was performed with a pinch gesture or through the setZoomScale:animated:
methods, it calls scrollViewDidEndZooming:withView:atScale: on its delegate when the
zooming ends. However, it does not call this delegate method if the animated: argument
was NO because the zoom is set instantly when you call the method. The UIScrollView
assumes that you know that it finishes zooming right away in that case. After zooming,
the UIScrollView leaves the affine transform on the view, and it leaves the stretched
contentSize, contentOffset, and zoomScale in place, which is why the view seems
grainy. It’s still being stretched when you zoom.

Resetting Resolution in a UlScrollView after a Zoom
Operation

Armed with knowledge of some of the internal workings of UIScrollView, you can now
reset the drawing after a zoom by implementing and calling an updateResolution
method when zoom finishes. Updating resolution on the content of a UIScrollView after
zoom can be tricky because the state of the UIScrollView is a little awkward and
counterintuitive at that point. There is an affine transform scaling the content. The
zoomscale, contentSize, view frame, and contentOffset are all set such that they take
into account the zoom scale and the transformation on the view. Because the view is
being resized by a transform, its frame wasn’t changed during zooming. We’ll reset the
resolution of the zoomed view by removing the stretching affine transform and resizing

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

its fame so that the number of pixels that it occupies is equal to the number of pixels
that are being drawn. You’ll need to take care to reset the underlying parameters of the
scroll view so as to reposition the view that now has a larger frame so that it appears to
simply sharpen in place. The following is a step-by-step algorithm for resetting
resolution after a zoom:

1. Take a snapshot of the current (scaled) contentSize and contentOffset.

2. Take a snapshot of the current (unscaled) content view’s frame size; it’s
being scaled by an affine transform, so its actual frame size is the same
as it was before zooming.

3. Take a snapshot of the current minimum and maximum zoom scales.

4. |If your scroll view is its own delegate as it is in BigViewThing, call super
to set the minimum and maximum zoom scales both to 1.0 because
setting zoom on self will eventually call updateResolution again; infinite
recursion is so last year.

5. Set the current zoom scale to 1.0, which will rescale the content size
internally back to the size of the content view, and reset the affine
transform on the content view to unity.

6. Calculate new content offset by scaling the stretched/zoomed offset
you took a snapshot of in step 1. You want the new content to appear in
the same place in the scroll view:

7. newContentOffset.x *= (oldContentSize.width / contentViewSize.width);

8. newContentOffset.y *= (oldContentSize.height /
contentViewSize.height);

9. Divide the old minimum and maximum zoomScale by the new zoom
scale. This scales the original minimum and maximum zooms relative to
the new content size. If minimum zoom were 1.0 and maximum zoom
were 2.0, when the user zooms to 2.0 and | reset, my new minimum
zoom would be .5, and my new maximum zoom would be 1.0.

10. Set the content view’s frame.size to the contentSize you took a
snapshot of in step 1. This is a little counterintuitive. The numeric values
of the new content size are being reset to the same values as those the
scroll view calculated for the transformed zoomed view but are now
reinterpreted in a new overall scroll view frame. Essentially, Apple
already did the math for you, so you’re reusing its values in a new
context.

11. Set the scroll view’s contentSize to the scaled contentSize you took a
snapshot of in step 1. This stretches the overall size of the view to
match the new zoom level (but without any affine transform applied).

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

12. Call the setNeedsLayout method on the scroll view. This will cause
layoutSubviews to be called where you can reset the content view’s
internal subview geometry.

The following is an implementation of the previous steps that you’ll add to the
BigViewScrollView. You'll call it whenever zooming finishes.

- (void)updateResolution {
//LogMethod();
isdblTapZooming
float zoomScale

NO;
[self zoomScale];

CGSize oldContentViewSize = [contentView frame].size;
//zooming properly resets contentsize as it happens.
(GSize newContentSize = [self contentSize];

CGPoint newContentOffset = [self contentOffset];
float xMult = newContentSize.width / oldContentViewSize.width;
float yMult = newContentSize.height / oldContentViewSize.height;

newContentOffset.x *= xMult;
newContentOffset.y *= yMult;

float currentMinZoom = [self minimumZoomScale];
float currentMaxZoom = [self maximumZoomScale];

float newMinZoom
float newMaxZoom

currentMinZoom / zoomScale;
currentMaxZoom / zoomScale;

//don't call our own set..zoomScale, cause they eventually call this method.
//Infinite recursion is uncool.

[super setMinimumZoomScale:1.0];

[super setMaximumZoomScale:1.0];

[super setZoomScale:1.0 animated:NO];

[contentView setFrame:CGRectMake(0, 0, newContentSize.width,
newContentSize.height)];

[self setContentSize:newContentSize];

[self setContentOffset:newContentOffset animated:NOJ;

[super setMinimumZoomScale:newMinZoom];
[super setMaximumZoomScale:newMaxZoom];

// throw out all tiles so they'll reload at the new resolution
[self reloadData]; //calls setNeedsLayout, among other things for
housekeeping

Build and run Examples/07BigViewThingZoomAddition in the simulator. The images
should clear up after a zoom. Speaking of the simulator, this demo application takes a
very long time to install on the device because it’s copying all the images over USB each
time. Since you are about to spend some time focusing on a single performance
bottleneck in the code, image drawing, you can simulate this slowness in the simulator
with a call to sleep(). Avoiding the copy of those PNG files will make debugging go a
little faster while simulating the problem reasonably well. Also, | tend to forget to remove

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

these sleep() calls when compiling for the iPhone and wonder why everything slows
down when | move back to the device, so let’s #define this one to only compile into the
simulator target. Add the following to drawRect in BigPageView.m:

if(!drawingSuspended)
{

CGContextSetFillColorWithColor(context, [[UIColor whiteColor]
colorhWithAlphaComponent:0.5].CGColor);

CGImageRef tempImage = [UIImage imageNamed:self.imageName].CGImage;
#if TARGET_IPHONE_SIMULATOR

sleep(2.5);
#endif

CGContextDrawImage(context, tempbounds, tempImage);

drawnPageOnce = YES;

Build and run in the simulator. You should see similar sluggishness compared to running
on the phone. Let’s tackle that problem now.

Drawing into an Off-Screen Context

Given our self-imposed limitations, we can’t make the drawing much faster without
digging into OpenGL. Even then, you’ll have to decode the images and throw them up
into texture memory no matter what you do, so the drawing itself would be fast, but you
know from the Shark profile that the decoding is what takes a long time. It’s time to take
the NSOperationQueue and blocks magic to the next level and parallelize the drawing
work by putting it into a background thread.

NOTE: Danger, Will Robinson! UIKit is not thread-safe. Try to draw to screen from another
thread, and bad things might happen. Ugly things are almost guaranteed to happen. You can,
however, draw your images into off-screen buffers (actually, cgContexts) and then grab the
pixels that you need to throw on the screen once the buffer is filled with data. There is nothing
stopping you from filling that data asynchronously and reading it from the main thread in order
to draw it, as shown in Figure 9-15.

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

\
BigViewPageView \
\‘ CGContextDrawlmage()

\ (Background Thread)

-
-
-
-]

CGContexCreatelmage(offscreenContext) -
CGContexDrawimage()
(Main Thread)|

CGContextRef offscreenContext
(Resizes with BIGVIewPageView)

Figure 9-15. BigViewPageView draws into an off-screen CGContextRef in the background.

Here is the step-by-step exercise:

a. The first time one of the BigViewPageView objects is asked to
draw, it will create a cgContext type instance variable into which
it will quickly draw the half opaque white background that you
are currently drawing as a placeholder when the
BigViewPageView is inactive, like so:

-(void)initOffscreenContext // do this on the MAIN thread
{

(GSize layerSize = [self bounds].size;
layerSize.height = floorf(layerSize.height);
layerSize.width = floorf(layerSize.width);

CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();

CGContextRef ctx = (CGContextRef) [(id) CGBitmapContextCreate(NULL, layerSize.width,
layerSize.height, \

8, layerSize.width*4, colorSpace,

kCGImageAlphaPremultipliedlLast) autorelease];

CGColorSpaceRelease(colorSpace);

CGContextTranslateCTM(ctx, 0, layerSize.height);

CGContextScaleCTM(ctx, 1.0, -1.0);

//scale is #defined to .94 elsewhere. It causes the images to draw with a little empty
space in between each one.

CGFloat tx = layerSize.width * (1.0 - scale) * 0.5;

CGFloat ty = layerSize.height * (1.0 - scale) * 0.5;

CGRect tempbounds = CGRectZero;

tempbounds.size = layerSize;

tempbounds = CGRectIntegral(CGRectInset(tempbounds, tx, ty));

CGContextSetShadow(ctx, CGSizeMake(5,5), 5);

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

CGContextSetFillColorWithColor(ctx, [[UIColor whiteColor]
colorWithAlphaComponent:0.5].CGColor);

CGContextFillRect(ctx, tempbounds);

self.offscreenContext = (id) ctx;

}

2. It will draw whatever is in the off-screen context to the screen in
drawRect:

- (void)drawRect: (CGRect)rect
{

//NSLog(@"drawRect");

CGContextRef context = UIGraphicsGetCurrentContext();
CGContextRef osc = (CGContextRef) self.offscreenContext;
UIGraphicsPushContext(osc);

CGImageRef tempImage = CGBitmapContextCreateImage (osc);
UIGraphicsPopContext();

if(tempImage)

CGContextDrawImage(context, self.bounds, tempImage);
CGImageRelease(tempImage);
drawnPageOnce = YES;

3. It will generate an NSOperation (that calls a block, naturally) that will fill
a new cgContext with the image data you will need:

- (void)createOffscreenCtx

NSOperationQueue *q = [(BigViewThingAppDelegate *) [[UIApplication
sharedApplication] delegate]
globalQ];
PLBlockOperation *op = [PLBlockOperation blockOperationWithBlock:"{
//imgRef = [[UIImage imageNamed:imageName] CGImage];
NSString* bundlePath = [[NSBundle mainBundle] bundlePath];
UIImage *img = [UIImage imageWithContentsOfFile:[NSString
stringWithFormat:@"%@/%@", bundlePath,

imageName]];
CGImageRef imgRef = [img CGImage];

(GSize layerSize = [self bounds].size;

layerSize.height = floorf(layerSize.height);

layerSize.width = floorf(layerSize.width);

CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();

CGContextRef ctx = (CGContextRef) [(id) CGBitmapContextCreate(NULL,
layerSize.width,

layerSize.height, 8,
layerSize.width*4, colorSpace,
kCGImageAlphaPremultipliedlLast) autorelease];
CGColorSpaceRelease(colorSpace);
CGContextTranslateCTM(ctx, 0, layerSize.height);
CGContextScaleCTM(ctx, 1.0, -1.0);

CGFloat tx
CGFloat ty

layerSize.width * (1.0 - scale) * 0.5;
layerSize.height * (1.0 - scale) * 0.5;

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

CGRect tempbounds = CGRectZero;
tempbounds.size = layerSize;
tempbounds = CGRectIntegral(CCGRectInset(tempbounds, tx, ty));
CGContextSetShadow(ctx, CGSizeMake(5,5), 5);
#if TARGET_IPHONE_SIMULATOR
sleep(2.5); //fake slow drawing on the simulator
#endif
CGContextDrawImage(ctx, tempbounds, imgRef);
self.offscreenContext = [[(id) ctx retain] autoreleasel];
NSLog(@"Image loaded for %d", pageToDraw);
//when we’re done filling, we need to redisplay content
[self performSelectorOnMainThread:@selector(setNeedsDisplay) withObject:nil
waitUntilDone:NO];

15
[q addOperation:op];

4. When the NSOperation finishes, it will call setNeedsDisplay on the view
in the main thread so the view knows to draw the image data to
screen. You can do this in real time. Drawing from a buffer is fast.

5. Any time the BigViewPageView is asked to drawRect, it pulls the image
data from the current cgContext for drawing; it’s also filling new
cgContexts in the background if you change the expected drawing size
of the image through some bizarre action like zooming. Before the new
buffer is ready, your image will stretch to fill and probably pixelate for a
moment while the NSOperation is preparing new data.

The sample code in Examples/08BigViewThingOperationQueueRegular has all the
additional code. It also prints the contents of the NSOperationQueue on a timer to show
you what is in there. Build and run in the simulator. The application should remain
responsive.

Or is it? Every time | zoom in or zoom out on an image, the view pushes another
NSOperation onto the queue. If you watch the log messages printing the contents of the
NSOperationQueue, you will see that there are an ever-growing number of operations for
each view getting pushed when there is a lot of zooming going on. This makes the app
seem like it’s updating less and less often. The queue eventually clears but not after
drawing a given image several times, usually at zoom levels not currently needed for
drawing.

Wouldn’t it be nice to be able to cancel only certain pending operations on the
NSOperationQueue? You can. You just call the cancel method on your NSOperation
object; the queue will eventually (but not immediately) remove it, but it will never actually
run it. You can add a weak reference to the NSOperation subclass to point back to the
BigViewPageView object that placed it on the queue and then ask each NSOperation that
belongs to you to cancel before you add another operation to the queue. This way, you
can be sure that there is little wasted CPU time.

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

NOTE: In this implementation, an operation in progress cannot be canceled, so it’s still
possible that the queue will have to run two operations for a given view in fairly rapid
succession.

Once you have that weak reference, it’s easy to create a category on NSOperationQueue
to cancel all pending NSOperations in the queue filtered by an NSPredicate.

- (void)cancelOperationsFilteredByPredicate: (NSPredicate *)predicate;

NSArray *ops = [[self operations] filteredArrayUsingPredicate:predicate];
for (NSOperation *op in ops)

if(![op isExecuting] &3 ![op isFinished] &3 ![op isCancelled])
{
[op cancel];

}
}

If you notice that the NSOperation objects stay in the queue for a while, that is OK. When
NSOperationQueue decides that it is time to run a given operation, it will call start on the
NSOperation and wait for that operation to finish executing. If isCancelled returns YES,
the NSOperation will tell the NSOperationQueue that it is finished right away without ever
calling the main method. Add the operation cancellation code into your
BigViewPageView:

-(void)createOffscreenCtx

NSOperationQueue *q = [(BigViewThingAppDelegate *) [[UIApplication
sharedApplication] delegate]

globalQ];

NSPredicate *filter = [NSPredicate predicateWithFormat:@"SELF.interestedObject ==
%", self];

,[q cancelOperationsFilteredByPredicate:filter];

PLBlockOperation *op = [PLBlockOperation blockOperationWithBlock:"{
//BUNCH of drawing code here
H;
’ [op setInterestedObject:self];

[q addOperation:op];

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

NOTE: NSpredicate is an extraordinarily useful class that uses key-value coding to perform
queries on objects. | tend to think of them as structured queries for Cocoa objects, often used
to filter arrays based on some parameter or parameters of the objects it contains. Cocoa
programmers have enjoyed NSPredicate’s power for some time, but it has only recently
come to the iPhone in the 3.0 SDK. It’s also an important part of the magic of Core Data. You
can find more information on NSPredicate in Apple’s Predicate Programming Guide available
athttp://developer.apple.com/mac/library/documentation/Cocoa/
Conceptual/Predicates/Articles/pUsing.html.

BigViewThing is not finished yet. You’ve just implemented something similar in behavior
to CATiledLayer. Perhaps CATiledlLayer would be even more performant than the
NSOperationQueue code your using now. NSOperation can have an attached priority.
Perhaps you could place a series of low-priority operations on the drawing queue to fill
the cgContext buffers with a low-resolution version of each image so that the user’s off-
screen tiles will get drawn in the background using idle CPU cycles, thus removing the
gray placeholders. When you zoom back and forth between different levels, you might
not really need to rerender each time. Perhaps the default scaling transform from a big
zoomed-in image to a small zoomed-out image looks OK to you without a redraw. Buffer
size issues aside, perhaps you could allow a delay in redrawing the tiles at a smaller size
when the user zooms out by lowering the priority of that operation. That way, operations
that dramatically change the user experience will run first.

Observations, Tips, and Tricks

iPhone programming is embedded systems programming. Although you can expect
Cocoa Touch devices to become faster and faster over time, programming for the
iPhone is closer to that of a Nintendo DS or a LART box than a desktop computer. Our
examples will seem slow before you optimize on the new, faster iPhone 3GS, just less
so than on the original device. It’s always helpful to learn some embedded system
programmers’ tricks by programming for even more limited devices like LARTs or SBCs.
You can often sort of “fake it 'til you make it” when it comes to code that requires a lot
of system resources. Ul response variability is particularly annoying; users don’t know
why your app is slow on the Edge network. “Sometimes it’s slow; sometimes it’s not. |
dunno why.” is a phrase to which I'm becoming perhaps too accustomed, but | strive
never to hear it. Clever caching of data while remaining responsive to the user’s input
through concurrent programming can make an application shine, even when it isn’t
really doing anything more than what it did before.

iPhone devices are severely memory constrained, disk read/write speed constrained,
and bandwidth constrained when compared to their bigger iron cousins. Remember that
Ul and data share RAM, so you might get memory warnings at seemingly strange times.
You'll notice some CPU and memory monitoring code in some of the example code.

CHAPTER 9: Fake It °Til You Make It: Tips and Tricks for Improving Interface Responsiveness

You can use it in your application to anticipate memory resource shortages and modify
your application’s behavior. Once you do get a memory warning, you receive a short
warning, and then the system Kills your app without prejudice or allowing you to save
precious user data, so be prepared to strip down your views and your data at a
moment’s notice. There is rudimentary handling of that in the BigViewThing example.
Look at the method called memoryWentBoom.

Summary

In this chapter, you learned how to make asynchronous or data-intensive applications
seem more responsive to the user. With the AAPLot and StockPlot applications, you
learned how to persist data between runs and for offline use, and you learned to ship
your application with some placeholder information so users can get an idea of how
your application will act when adding their own stuff. You also learned how to use
NSOperationQueue as a means to put processing of downloaded data into the
background, and you got a look at the Core Plot library to plot data. With BigViewThing,
you learned the ins and outs of zooming in a UIScrollView and a method to sharpen
your drawing when the user zooms in. You also peered into the future with the Plausible
Blocks library, and you learned how to make an application that deals with massive
images as responsive as possible by dropping operations into a background thread
using blocks.

Dealing with large amounts of data on a limited device like the iPhone presents a
challenge. It’s a challenge for which we happily carry plenty of tools to solve but for
which there is rarely a simple, singular answer. | hope this chapter has added a wrench
or two to that toolbox.

Push IO LLC

Boulder, Colorado

Joe has been programming Cocoa/Obj-C on Mac OS
X since 2001, and was a lead researcher at the Apple Electronic Media Lab for
the three years of its existence in the mid-90s. After that, Joe started one of the
earliest and most popular Internet Radio companies in 1996 and still does an
occasional volunteer afternoon music DJ shift on KGNU, the AM/FM community
radio station in Boulder/Denver. Joe has been exploring computers since he was
9 years old, sneaking into the campus computer lab to play games on the
terminals, and his first home computer was an Apple]J[+.

Joe is the co-founder of Push.lO, a startup building
"smart infrastructure for smart phone developers." For the last year he's been
doing enterprise iPhone development, building native iPhone applications for a
Fortune 100 financial services company.

U
—

Push.l0

This chapter walks the user through the implementation
of Apple’s Push Notification Service for their iPhone applications. We look at the
client methods, the certificate and provisioning process, and finally the server
component required to make it all work, wrapping it all up into a sample project
that includes both client and server code.

Apple Push Notification Service (APNS)
CocoaTouch/Objective-C methods for implementing APNS

The iPhone Developer Program Portal process for creating Push
certificates

The PHP Server Code needed to send notifications

Chapter

Demystifying Apple’s
Push Notification Service

Like so many things, my involvement with this technology all goes back to a quote
frequently attributed to Mark Twain: “When everyone is looking for gold, it’s a good time
to be in the pick and shovel business.”

| first heard this expression while | was working for Apple in the mid-90s. The Web 1.0
gold rush was on, and the R&D group | was part of was one of the few groups in the
company doing anything Internet related at the time.

We were lucky to be under the direction of a senior R&D executive, who in his first
meeting with our group laid out Mark Twain’s wisdom perfectly: “We will make picks
and shovels.”

The lightbulb went on.

One could certainly argue that not only has Apple since gone on to make picks and
shovels (how many web sites are developed on Macs?), it has also struck gold more
than once, too. In fact, it has struck so much gold, it’s practically a bank!

That easy yet insightful advice has stuck with me ever since, and when it became
obvious that the iPhone had become its own gold rush, | couldn’t help but wonder,
“What is the picks and shovels play?”

At the first Satellite iPhoneDevCamp Colorado in 2008, | met Dan Burcaw, and we
discovered we were both asking this question and went around for a couple months
with ideas.

Finally, Dan was in the room in Cupertino when Apple announced iPhone OS 3.0, and
we realized that the new features Apple was providing were going to need people who
could provide the back-end server support—the picks and shovels, if you will. Dan’s
background in servers (he cofounded the company that created the Yellow Dog Linux
distribution) and mine in Internet broadcast (see U.S. patent 6434621), combined with
both our prior experiences working at Apple, made us think this could be the perfect
entry point.

313

CHAPTER 10: Demystiying Apple’s Push Notification Service

By the time you’ve finished this chapter, you’ll have a working implementation of a
simple Apple Push Notification Service client on your iPhone that talks to a remote
server and allows you to send notifications to all users of this particular app.

What Is the Apple Push Notification Service?

Simply, the Apple Push Notification Service (APNS) is a way to send text alerts, custom
sounds, and badge counts to your application on users’ devices encouraging them to
use your app, even if your app isn’t running at the moment.

APNS has a number of advantages:

B Free—no SMS charges, free to use, free to develop
Can invoke your app

Can make your app play a sound or show a badge
Doesn’t require background processing

Easy to add to your app

What You’ll Need

You'll need to be a full member of the Apple Developer Program, with the ability to
generate certificates (in other words, a Team Agent). You’ll also need an iPhone or iPod
touch capable of receiving notifications. I’ll also presume you have a remote server
where you will run the back end for this application.

Although this chapter will walk you through the entire process from end to end, I'd still
say that it’s basically mandatory that you read Apple’s Remote Notification
Programming Guide. 1t is the official documentation, after all.

Also, access to the forums will be invaluable as you implement this. Not only are there
dozens of source code samples for a variety of languages, you’ll also see what issues
other developers are encountering and how they resolve them.

I’'m also going to presume that you've already developed at least one iPhone
application, even if it’s just a “Hello World” app, so that you know how to use Xcode,
create a project, deploy your app to your device, and have some familiarity with the
iPhone Developer Program Portal.

Step 1: Create the Client

Open Xcode, and make a new project using the View-based Application template; let’s
call it Push2. | wanted the final product on the phone to be called 2Push2, so | went to
the Target Build properties of my new project and changed the Product Name field to
2Push2 for all configurations. There are two primary parts of this app: the part that
interacts with APNS and the part that interacts with the user. The meat of push
notifications is going to take place in the application delegate. For the user interface, I'll
also show how to make a view controller that allows you to see and send messages.

CHAPTER 10: Demystiying Apple’s Push Notification Service

The Application Delegate

In the Push2AppDelegate.m file, you’ll add what are basically the three required methods.
I’ll get to the actual code in the next section, but to give you an idea of how little work
you have to do to add APNS to your application, these are the only three methods you
have to add to your existing code to get started:

- (BOOL)application: (UIApplication *)application
didFinishLaunchingWithOptions: (NSDictionary *)launchOptions

- (void)application: (UIApplication *)application
didRegisterForRemoteNotificationsWithDeviceToken: (NSData *)deviceToken

- (void)application: (UIApplication *)application
didFailToRegisterForRemoteNotificationsWithError: (NSExror *)error

Part of the appeal of push notifications is that they can help bring users back into your
application even if it is not running, but if you want to also be able to handle notifications
while your app is open, then you’ll want to add this fourth method:

- (void)application: (UIApplication *)application
didReceiveRemoteNotification: (NSDictionary *)userInfo

Registration

The first step in the process is to tell the iPhone OS what kinds of notifications you want
to receive, which can be any combination of badges, sounds, and alerts. So, the first of
the three methods you need to tackle are these:

(BOOL)application: (UIApplication *)application
didFinishLaunchingWithOptions: (NSDictionary *)launchOptions

Open the Push2AppDelegate.m file, and add the code for this new method:

- (BOOL)application: (UIApplication *)application
didFinishLaunchingWithOptions: (NSDictionary *)launchOptions

// other setup tasks here....
[[UIApplication sharedApplication]
registerForRemoteNotificationTypes: (UIRemoteNotificationTypeAlert |
UIRemoteNotificationTypeSound)];

// [self updateWithRemoteData]; // freshen your app!

// RESET THE BADGE COUNT
application.applicationIconBadgeNumber = 0;

/...

// call the original applicationDidFinishLaunching method to handle the basic view
setup tasks

[self applicationDidFinishLaunching:application];

return YES;

CHAPTER 10: Demystiying Apple’s Push Notification Service

didFinishLaunchingWithOptions is a new method in iPhone OS 3.0, intended to replace
applicationDidFinishLaunching and recommended by Apple as a replacement for that
old method since it handles both the delivery of the push notification payload to your
application and the case that your application is opened by a custom URL protocol
handler. It’s important to note that when you use this new method, your old
applicationDidFinishLaunching will not get called. Since the Xcode template already
includes a placeholder applicationDidFinishLaunching that handles presenting the
view, you’ll note that you still call that as the last step in this new method.

It’s in this method that you call UIApplication’s registerForRemoteNotificationTypes
to set up the types of notifications you’re interested in receiving.

This registers the application with the system to get notifications. Call the
registerForRemoteNotificationTypes method with the set of options you want to
support—alerts (text dialogs), sounds, and badges. Use the “or” command (the pipe) to
combine these values:

UIRemoteNotificationTypeBadge,

UIRemoteNotificationTypeSound,
UIRemoteNotificationTypeAlert,

NOTE: You can see that in this example I’'m registering to receive alert and sound notifications.

You’ll also notice that you might start loading the freshest data from your remote server
here, and you’re updating the badge count to 0, removing any badge from the
application’s icon on the home screen.

When registerForRemoteNotificationTypes returns successfully, the app will now be
able to receive notifications even when it’s not running! You should make sure that you
call this method every time your application launches because there is a chance that the
device token will change, for example, if the user has restored their device from a
backup. This also means that if the user has restored from a backup, they must run your
application to start receiving notifications again. There’s no harm in calling this method
every time, since if the device token hasn’t changed, the OS knows and will simply
return you to the still-current device token.

Device Token Acquisition

Once the system has successfully registered your app, you will get called back
(asynchronously) and given a token specific to both this application and this device in
the second method you have to implement:

- (void)application: (UIApplication *)app
didRegisterForRemoteNotificationsWithDeviceToken: (NSData *)devToken {

) [self sendDeviceTokenToRemote:devToken]; // send the token to your server

From here, you need to pass this token to your server. I'll show an example of how to do
this in the demo application using its simple server script, but for now, make a note that

CHAPTER 10: Demystiying Apple’s Push Notification Service

you’ll need to implement your own version of the hypothetical
sendDeviceTokenToRemote: method that’s shown here.

Check for Errors

There’s also an error callback method you should choose to implement to handle the
case when you do not get a token, which is especially useful during debugging:
- (void)application: (UIApplication *)app
didFailToRegisterForRemoteNotificationsWithError: (NSExror *)err {

NSLog(@"Failed to register, error: %@", err);

So, after implementing these three methods, you’re now set up to handle the case that
your application is called as the result of the user selecting the View button in a text alert
or unlocking their phone immediately after receiving a text alert.

But what about when your application receives a notification while it is already running?

To handle this case, you also need to implement the following method in the
AppDelegate:

- (void)application: (UIApplication *)application
didReceiveRemoteNotification: (NSDictionary *)userInfo

You’ll use this to update the user interface if a new notification comes in while the app is
running.

Handling Incoming Notifications

When the payload finally arrives in your application ready for use, it comes in the form of
a dictionary. It’s so easy! When either one of the following two methods gets called,
you’ve got a notification. Either the following gets called as a result of launching the app
after a notification comes in, and then the launchOptions
UIApplicationLaunchOptionsRemoteNotificationKey will have the notification value in
the aps key:

- (BOOL)application: (UIApplication *)application

didFinishLaunchingWithOptions: (NSDictionary *)launchOptions

or the following gets called as a result of a notification arriving while the app is running,
in which case the userInfo NSDictionary object will have the notification value in the aps
key:

- (void)application: (UIApplication *)application
didReceiveRemoteNotification:(NSDictionary *)userInfo

The notification is itself a dictionary with the included components, so the following
gives you the text of the notification alert in the alert variable:

NSDictionary *aps = [userInfo valueForKey:@"aps"];
NSString *alert = [aps valueForKey:@"alert"];

CHAPTER 10: Demystiying Apple’s Push Notification Service

You can also send your own custom data in the notification, as I’ll demonstrate later in
the chapter.

Sounds

As you’ve already seen, one of the notification types you can make use of is a custom
sound, and even better, it’s very easy to implement!

Since it’s the system that plays these sounds, they have to be in one of the standard
system sound formats (linear PCM, pyLaw/aLaw, or MA4) and file types (.aiff, .wav,
.caf).

The Apple Push Notification Programming Guide also shows how to use the afconvert
command-line tool to prepare standard system sounds for use, too. For example, here’s
how they show converting the system sound Submarine for use:

afconvert /System/Library/Sounds/Submarine.aiff ~/Desktop/sub.caf -d imag -f
caff -v

Once your audio is prepared, simply add it to the Xcode Resources group, and it will be
built into your application bundle and be available to APNS.

Then, with the sound file in your app’s bundle, you simply reference that sound file in the
JSON payload you send from your server to APNS, which I'll cover in the “Step 3: Set
Up the Server” section of this chapter.

Note that if the user has their phone muted, then it will vibrate in lieu of playing the
sound.

Although sounds can be an incredibly useful way to notify your users, do consider the
experience your users might have if either your application is causing sounds to play
constantly or your application is just one of many that are causing sounds to play.
Remember that the user can turn off notifications in the system Settings application, and
you can pretty much presume they will if they become too annoying.

Build and Go! Er, Not So Fast...

Now, with all of this done (and | haven’t even gotten to the interface yet), you might be
tempted to build and run the application, which is a fine thing to do, except you’ll
probably encounter one of the first requirements. You must be able to deploy to a
device, because APNS does not work on the simulator:

2009-07-26 19:45:38.880 2Push2[12444:20b]

didFailToRegisterForRemoteNotificationsWithError:Error Domain=NSCocoaErrorDomain
Code=3010 UserInfo=0xd2a170 "remote notifications are not supported in the simulator"

Switching over to the device trying to build will then lead you to one of two errors. In
Xcode while building, you’ll get this error:

Code Sign error: a valid provisioning profile matching the application's Identifier
"com.yourcompany.2push2' could not be found

CHAPTER 10: Demystiying Apple’s Push Notification Service

Or in the console when running, you’ll get this error:

2009-07-26 19:52:55.415 2Push2[3046:207]
didFailToRegisterForRemoteNotificationsWithError:Error Domain=NSCocoaErrorDomain
Code=3000 UserInfo=0x12faa0 "no valid 'aps-environment' entitlement string found for
application”

Both of which will be addressed by creating the certificate in the next section.

Step 2: Create the Certificate

In this section, I’ll walk through all the steps necessary to generate the required server-
side development SSL certificate and mobile provisioning files for use with your push
notification application.

If you have already made distribution certificates for yourself for ad hoc or App Store
distribution, this will build on your experience. If you haven’t already made certificates
for yourself, although this isn’t particularly difficult, it’s a lengthy, involved process, so |
recommend starting with just an ad hoc certificate before leaping right in to APNS.

There are a couple of key things to keep in mind about the setup. First, there’s a secret
certificate file that lives on your server that talks to Apple’s APNS. This certificate
identifies you and your application so that Apple can both trust you as the originator of
the notification and know that the device has asked to receive the notification.

Second, there’s also going to be a custom mobileprovision file that identifies your
application to the system to receive its notifications.

In addition, you will need to use a custom, unique application ID in the program portal.
You cannot use a wildcard application ID for this, because each application needs to be
addressed individually.

Once you have created this certificate, it will be used to authenticate and encrypt your
connection to Apple’s push notification servers using SSL.

Because the topic is encryption, which is a genuinely tough subject and because there
are so many steps (that can go wrong), creating certificates is one of the most dreaded
tasks in iPhone development. If you're new to this, follow along the first time through,
which will demystify the process along the way, and just get it done.

A Walk-Through of the Program Portal Process
In your web browser, go to this location:
http://developer.apple.com/iphone/

Log in using your Team Agent account.

From here, on the right side near the top, you’ll see the iPhone Developer Program
Portal link.

CHAPTER 10: Demystiying Apple’s Push Notification Service

NOTE: If you don’t see the program portal option, then it’s possible that either you are not
signed in as the Team Agent or you are not yet fully enrolled in the program. You'll need to be
enrolled and signed in as Team Agent to complete this section of the process.

Click the link to go to the program portal.

The program portal is where you manage all your certificate-related details, from devices
to app IDs to provisioning profiles. I'll presume you already have your basic
development certificate set up and that you’ve previously deployed code to the device
at a minimum and ideally for distribution.

The first step here is to create an app ID (Figure 10-1).
& Developer Connection DevCenters & ADCon Tores Suppon (@
iPhone Developer Program Welcame,Jou Puzrile | U8t Mol | g eut

Program Portal: Push 10 LLC a2 Program Fortal

ome
Team Manage
Cortificates
New App ID
10 —_—
s £ Acp 105
| agp 00 Aop 15 are an integral part of the iPhone Development and Provisioning Process that allows an ADplCaON 10 COMMUNICAE with the
Appie Push service and/or an external hardware accessory. In addition, an App ID can also be used to share keychain
Lo data (such as passwords) between a suite of applications.
Distmbution

A Agp D 15 the combination of & unigue ten character string called the “Bundle Seed [0° and a traditional CF Bundle 1D (or Bundle
Identitier). The Bundie Seed 1D portion of your ADp 10 can be utilized to share keychain access between multiple applications you
Bulld with a single Aag 1D. In addition, 1t can De Incorporated inta any external hardware accessories you wish to paif your Phone
05 apolication with. Registration of your Ap 10 I3 required to utifize the Apple Push Notification service (APNS) and to register an
application to incorporate In App Purchases

The Bundie iientifier portion of an Agp 1D can be substituted with 2 wild-card character (asterisk **) 5o that a single Aop 1D may be
used to bulld and install multiole apolications. If the wild-card character is not used, the Bundle identifier portion of your Aag 10
must be input as your CF Bundle (D in Xcode 1o aliow the application to install on your device. The Bundle Seed ID pertion of your
Ap 1D does not need 10 be input Into Xcode, Wiki-card Ap 1Ds cannat be used with the Agple Push Notification service of for In
ADp Purchase

Figure 10-1. The program portal screen for creating a new app ID
I’m going to use com.pushio.2push2 for my app ID.

Enter the information required, enter a brief description, let it generate a new bundle
seed ID, and enter the reverse-domain notation app bundle ID (that’s the
com. pushio.2push2 string for me), as shown in Figure 10-2.

CHAPTER 10: Demystiying Apple’s Push Notification Service

iPhone Developer Pro Weicoms. Joe Perzito
Program Portal: Push 10 LLC Lot Program Fortal
Hame
Team Manage How To
Certificates
Create App ID
Devices
[k pescription
Provisioning
Enter 3 common name Of description of your Aop [0 using alphanumenc characters. The Gescription you specify will be used
Distnbution

throughout the Program Portal to identify this Apg 10.

Zowahd You cannet e special characten 24 .4 *.* i your 8

Bundle Seed 1D (App ID Prefix)

Generate & few of Select an existing Bundle Seed 10D for yo

D ~ appieation's App Oa

Bundle identifier (App 1D Suffix)

Enter & umque identifier for your App (D, The recommended practice is [0 use & reverse-domain name styfe sing for the Bundle
Identifier portion of the Aop ID.

[com pushia 20ush2 | taamese com.aomamname sopname

Figure 10-2. Entering a description and the bundle identifier

Then, you’ll see your new app ID in the list on the main manage App IDs page, as shown
in Figure 10-3.

Description ~ Apple Push Notification service In App Purchase Action
4668AHSCTX.com.pushio.appid © Configurable for Development P . 21
New App 1D @ Configurable for Production Coifigurable Rnure

Figure 10-3. Your new app ID in the list on the main manage app IDs page

Choose Configure, and then enable your app for APNS. Select the check box next to
"Enable for Apple Push Notification service,” as shown in Figure 10-4. Then click the
Configure button.

CHAPTER 10: Demystiying Apple’s Push Notification Service

[Developer Connection Dev Centers =) ADC on iTunes Support /G, &
hone Developer Prog Welcome. Jou Peszills
Program Portal: Push 10 LLC T Program Pere
Hame
Team Manage How T

Cenificates

Configure App ID

Devices

|| In order 1o set up your App LD for the Apple Push Notification service you will need to create lnd lmwl the I'ollowww two tems.
[roc more information on utilizing the Apple Push Notification service, view the Ao\ %
Provisianing W To as well as the Apple M r ’

Distribution L An Aop ID-specitic Clent SSLCertificate - For each Aop 1D you wish to enable push notifications for, you need 10 create a Ciient SSL
Certiticate that aliows your RCUMCATEn Server 10 CONNEC 10 the Agsie Push Notification sesvice. Each apolication you wish 19 sent
NOLHICAtons to will requise 3 separate Cluent SSL Cervticate.
2 An Asple Push Notificatian tervice compatible provisianing profile: After vou have generated your Client SSL certificate. create a new
rovisioning profile containing the Ap 10 you wish 10 use for notfications.

Once the steps above have been completed, you should bulld your application using this new provisioning profile.

New App ID
4658ANSCTX com. pushio appid

¥ Enable for Apple Push Notification service

Push SSL Cervificate Status Cxpiration Date Action
. Development Push SSL Certificate 9 Contiguradie Contigure
5 Production Push SSL Certificate @ Configuradle | Contigure |

Figure 10-4. Select the “Enable for Apple Push Notification service” check box.

For this app, click the Configure button for the Development Push SSL Certificate
option. You’re now prompted to launch the Keychain Access application and generate a
certificate signing request (CSR), as shown in Figure 10-5, so let’s do that!

Apple Push Notification service SSL Certificate Assistant

Generate a Certificate Signing Request

To request an iPhone Development Certificate, you first need to generate a Certificate
Signing Request (CSR) utilizing the Keychain Access application in Mac OS X Leopard.

>y ‘ Launch Keychain Access
A In the Applications folder on your Mac, open the Utilities folcer and launch Keychain

() Access.
® Within the Keychain Access drop down menu, select Keychain Access > Certificate
Assistant > Request a Certificate from a Certificate Authority
o Inthe Certificate Information window, enter the following information:

© Inthe User Email Address field, enter your email adcress
® Inthe Common Name field, create a name for your private key
(eg. John Doe Dev Key)
* Inthe Request is group, select the “Saved to disk” option
e Click Continue within Keychain Access to complete the CSR generating process

Figure 10-5. The APNS SSL Certificate Assistant walks you through the required steps.

CHAPTER 10: Demystiying Apple’s Push Notification Service

As the assistant tells you, once in Keychain Access, select Keychain Access »
Certificate Assistant » Request a Certificate from a Certificate Authority, as shown in

Figure 10-6.
- File Edit View Window Help
About Keychain Access Keychain Access
Preferences... ®, & 3
Keychain First Aid LRA ST i
Open...

Kerberos Ticket Viewer X Q#K Create a Certificate...,
3 Create a Certificate Authority...
Services > Create a Certificate For Someone Else as a Certificate Authority...

Hide Keychain Access ®H Request a Certificate From a Certificate Authority...

Hide Others ®H Set the default Certificate Authority... fate
Show All Evaluate “Thawte Freemail Member”... ihare password
| T O Network Password
Quit Keychain Access #Q Q Network Password
— o AppleShare password
=] ceruficate
= ceruficate
o Internet password
“ cervficate
Eatagory | % public key
i All ltems ¢ private key
» L. Passwords 2 cerdficate
. Certificates A AirPort network passw
£ ™y Certificates certticate

Internet password
Internet password

¥ Keys

Cariirs Marace

Figure 10-6. Choosing the Request a Certificate from a Certificate Authority menu in Keychain Access

ot

Enter a valid e-mail address, a memorable name for this development certificate (so you
can easily identify the key pair), leave the CA Email Address field blank, and choose to
save it to disk, as shown in Figure 10-7. Click Continue, and it will prompt you for where
to save the file. For this exercise, save it to your desktop as 2Push2-Development-
APNS.certSigningRequest.

son Certificate Assistant

Certificate Information

Enter information for the certificate you are requesting.
Click Continue to request a certificate from the CA.

User Email Ad : deveer com E]

Common Name: 2Push2 Development Certificate

CA Email Address:

Request is:) Emailed to the CA
@) Saved to disk

71 Let me specify key pair information

Continue

Figure 10-7. Creating the CSR for the development push SSL certificate

CHAPTER 10: Demystiying Apple’s Push Notification Service

When done, it will tell you that your certificate request has been created on disk. Now
switch back to the program portal.

Here, the assistant is waiting to choose the CSR file you just created. Select Choose
File, and find the new CSR file you saved on the desktop, as shown in Figure 10-8.

Apple Push Notification service SSL Certificate Assistant

Submit Certificate Signing Request

The creation of a CSR will prompt Keychain Access to simultaneously generate a public and
private key pair. Your private key is stored on your Mac in the login Keychain by default and
can be viewed in the Keychain Access application under the "Keys® category. Your iPhone
Development Certificate will be the public half of your key pair.

Select the Certificate Signing request (CSR) file that you saved to your disk.

Choose File) no file selectec

Figure 10-8. Attach the CSR you just created with the Choose File button.

When that is done, it will present you with a new certificate file to download, as shown in
Figure 10-9.

CHAPTER 10: Demystiying Apple’s Push Notification Service

Apple Push Notlfication service SSL Certificate Assistant

Download & Install Your Apple Push Notification service SSL
Certificate

Step 1: Download o
Joe Pezzillo's Cert...

Download your APNs SSL Certificate to your
Notification Server. Your private key should also Download Now (¥
be installed on this server.

Cancel

Figure 10-9. Download the new certificate file, and rename it to something more memorable.
Download this file, which will be saved as aps_developer_identity.cer.

Immediately rename it to something that will help you identify the file later, such as
2push2-aps_developer identity.cer. Double-click this file, which will then open in
Keychain Access.

Add it to the login keychain as prompted, as shown in Figure 10-10.

e e

“mper- | Do you want to add the certificate(s) from the file
o~ “2push2-aps_developer_identity.cer” to a keychain?

g

Keychain: [login ‘-3*]

(" View Certificates) (Cancel) (OK)

Figure 10-10. Add the certificate you just downloaded to the login keychain.

CHAPTER 10: Demystiying Apple’s Push Notification Service

One of the key reasons to name that certificate you just created with a memorable
common name is because it will be showing up in the keychain access list along with
other such certificates, and you need to be able to tell them apart easily, as shown in

Figure 10-11.
v [Apple Development Push Services: X 5: P certificate Oct 24,2009 1... login
.‘ Apress Apush Dev Certificate private key -- login
v . Apple Development Push Services: X S:B FNTA certificate Oct 19, 2009 1... login
@ Push private key -- login
w " Apple Development Push Services: D& I AMsETTELd certificate Dec 5, 2009 12... login
7 2Push2 Dev Cert private key -- login

Figure 10-11. The certificate with the renamed private key is easier to find in Keychain Access.

Now, here’s the tricky part that’s most likely needed by your server, such as in this case
where you’ll use a remotely hosted PHP script to do the back-end processing.

Select the certificate, and choose Export. It will prompt you for a name and location to
save the file. Once again, put it on the desktop for now, with a name you’ll recognize
later, such as 2Push2-Dev-Cert.p12. Save it in the .p12 format. When prompted for a
password for the certificate, as shown in Figure 10-12, do not enter one (more on this
later). Click OK.

Enter the password for exporting:

Password: ?

Verify:

\]
Password Strength: Weak

» Details

? (Cancel) (OK)

‘

Figure 10-12. For now, do not enter a password on this screen; just click OK.

Next, you are the prompted for your login password to authorize the export. Enter the
password you use to log in to your machine here (you do use a password to log in to
your machine, yes?), as shown in Figure 10-13.

CHAPTER 10: Demystiying Apple’s Push Notification Service

Keychain Access wants to export key “2Push2
“ = Dev Cert” from your keychain.

V{é& To allow this, enter the “login” keychain password.

Password: |

Details

b
) (Always Allow) / Deny) (Allow)

S

Figure 10-13. Your login password gets entered here, just to authorize the export.

Your password is not being added to the certificate; it is only being used to authorize the
export of the APNS certificate, which is sensitive data and should be protected from
disclosure. Click Allow to authorize this for this one time only.

You should now have this sensitive file on your desktop. It is sensitive because it
contains the private key that you created earlier that uniquely identifies you to Apple to
authorize notifications.

You now need to take one more step on this file to get it ready for use on the server, and
that’s to convert it from the .p12 format to the .pem format. (PEM stands for Privacy
Enhanced Mode.)

This is not hard but does require you to make a trip into the Terminal.app file.

From the Terminal prompt, you’ll need to navigate to where the .p12 file lives. You last
left it on the desktop, so enter cd ~/Desktop to navigate to your desktop.

Then, enter the following command, as shown in Figure 10-14:

openssl pkcs12 -in 2Push2-Dev-Cert.p12 -out 2push2-dev-cert.pem \
-nodes -clcerts

When it asks you to enter the import password, enter nothing. Instead, simply hit Return.

(L XeNS) Terminal — bash — 113x7

n ttyseo3

-in 2Push2-Dev-Cert.pl12 -out 2push2-dev-cert.pem -nodes -clcerts

Figure 10-14. Convert the . p12 file to a . pem file for the server using openss1 on the command line

| named the output file 2push2-dev-cert.pem to help keep track of what it is. You may
want to shorten the name.

CHAPTER 10: Demystiying Apple’s Push Notification Service

Note that the resulting file is extremely sensitive and should be protected from
disclosure.

Keep the .pem file handy, because you’ll use it again during step 3.

Back to the Portal

OK, you’re not quite done yet; you need to go back to the Apple program portal and
create one more file.

Click the Provisioning link in the left column, which will take you to your Development
Provisioning Profiles list, as shown in Figure 10-15.

@ Developer Connection Dty Comers @ ADCwhTTones: Sepoort: (G
iPhone Developer Program Weicome.Joa Pezzile | [t Pufle | Lo out

Program Portal: Push 10 LLC 2 Pogram Portat

Home

Team Development
Cartificates ald 2 .
¢ Development Provisioning Profiles luahienfrofile.|
Devices
App 103 . Provisioning Profile ~ AppiD Status Actions
rovhiloning # 2Push2 Development Profile BR7RSGAIE4.com pushio.2push2 Active until
e i— -
05 Dec
Distribution 2009

Figure 10-15. The Development Provisioning Profiles list in the program portal
Click New Profile.

Enter a useful profile name, choose your development certificate, select the app ID you
created earlier, and select the devices on which you want to be able to do development
of this application, as shown in Figure 10-16.

CHAPTER 10: Demystiying Apple’s Push Notification Service

& Developer Connection Oer Conuirs D) ADC 50 Tunes: - Sungort | (&

iPhone Developer Program Wekcame, e Peczio | (1 Protie | Log ot

Program Portal: Push 10 LLC

Team Development

Create iPhone Development Provisioning Profile

Profile Name 2pvih2 Development Profie
Distribution
Certificates W joe Pezz
App 10 [2push2 #)
Devices
o o

Figure 10-16. Set up the certificate, app ID, and devices for the development provisioning profile.

NOTE: Once you use a device for APNS development, it is “locked” into push development
mode. Switching back to Distribution (that is, ad hoc) mode may require a restore of the device.
If you search Apple’s iPhone Developer Forums about this topic, you'll find plenty of discussion.
Some have reported that you can simply run an app that you got from the App Store that is in
distribution mode to switch your device. Your mileage may vary.

Submit the new provisioning profile setup, and wait for a moment while it’s generated;
then download your new mobileprovision file. In this case, it’s called
2Push2DevAPNS .mobileprovision.

Add the Mobile Provisioning File for Code Signing

Double-click that file. Xcode will open, and the file will appear in the mobileprovision
files list. You may want to quit and restart Xcode immediately after this step, just to
make sure that it “takes” the file and recognizes it before the next step.

Next, go back to your iPhone client application, 2push2.xcodeproj, and open the target
settings (click the target in the left list, and then click the big blue “i” button at the top of
the screen).

In the inspector window that opens, choose the Build tab at the top. Select your
mobileprovisioning file that you just created, as shown in Figure 10-17.

CHAPTER 10: Demystiying Apple’s Push Notification Service

m Push2ViewController.m - Push2

A, Push2 :/ Debug ioa- NSRS 0 G- Siring Vaiching
Active Target Active Build Configuration Action Build Buldand Go Tases Infa Esitor Search
Groups & Files File Name + Role A Code °
v ™ push2 B @ et saies b - ISy
v Casses w800 Jarget “Push2’ Info
u| Push2AppDelegate h 3 : — I) 1
General Build Rules Properties Comments '
| Push2AppDelegate.m "_,;1] Lo e A Tropome Commnt |
] Push2ViewControtier. .. - x
s Configuration. | Det ®) Q- <
< Push2ViewControlier. g]} ' o & ®
» 1 Other Sources s Show. | All Settings)
¥ Resources = Setting Value |
\| Push2viewController, e
4} MainWincow.xib = Additional SOKs r —
Push2-info.plist 1 Aschitectures Stancard (armve)
» | Frameworks Base SOK iPhore Device 3.0
¥ Products Build Active Architecture Only Q
4 2Push2.2p0 Valig Architectures. armvé armv?
v @ Targets ¥ Ruild Locations
» Ay Push2 Build Products Path build
» o/ Executables Intermediate Build Files Path build
» I3 Errors and Wamings . Per-configuration Build 'roduu:u r";;n' — Buid/Debug-iphoneos
¥ 4 Find Results Pes iles Pat ¥ g~ phon
& iiootmvh Precompiled Meaders Cache Path [varifolders AW/ AWRICPINGEeR 1yk-QCIcU+ +
»Edsem ¥ Build Options
Build Vanants normal
,e Fraject Jymuicls " Debug Information Farmat OWARF with dSYM File #f ezzagetent
- e Erable OpenM? Support R G
» (S VB Files, Generate Probling Code
Precompiles Meader Uses Files From Bulid DI L
Scan All Source Fies for Inciades iPhone Developer !
¥Code Sanion iPhone Distribution
Code Signing Entitlements.
¥ Code Signing Igentity 2 1
iPhone 05 Device v iPhone Developer: Joe Pezzillo (7TDIQNUES?Q)
Code Signing Resource Rules Path
Other Coce Signing Flags
Compiler Version

Figure 10-17. Selecting the new code-signing identity in Xcode in the Targets » Info » Build pane.

If it’s there but not selectable, double-check to make sure that the app ID matches your
bundle ID under the Properties pane of the same Target Info inspector window.

Build and run your app, and you should see two juicy bits. The first is that the device
token is now appearing in your console log output:

2009-07-26 22:56:57.840 2Push2[3272:207]

didRegisterForRemoteNotificationsWithDeviceToken:<7c8f50b4 51ef62el 6c068b42 b3425e47
839be4cb 5aeacicd dboedeof 85467304>

The second is that your application should have prompted the user to allow push
notifications, as shown in Figure 10-18.

CHAPTER 10: Demystiying Apple’s Push Notification Service

“2Push2” Would Like to Send
You Push Notifications

Notifications may include alerts,
sounds and icon badges. These can
be configured in Settings.

Don't Allow oK

Figure 10-18. The iPhone 0S prompt to confirm the user wants push notifications from your application.

Now, you have everything you need to set up the server.

Step 3: Set Up the Server

This, along with the user interface to it, is actually where you’re going to have some fun
with this application.

This is really the ultimate magic of push notifications. It’s not the technology itself; it’s
what developers do with it. Sure, getting your AIM messages and tweets is actually
already really great, and there will be so much more that people create.

I’'m going to show how to do this in PHP mostly because it’s accessible to a wide range
of programmers even in other languages, but there are lots and lots of options on the
forums for all your favorite languages.

NOTE: This PHP example code by Jerome Poichet (http://frencaze.com) is available on
the Apple Developer Forums, used with permission. See
https://devforums.apple.com/message/50461.

There are two places where you must make changes to this script,
ENTER_DEVICE TOKEN HERE and CERTIFICATE_FILENAME:

<?php

$pass = ''; // Passphrase for the private key (.pem file)

$token64 = 'ENTER_DEVICE_TOKEN HERE'; // base64 encoded device token

// The actual notification payload

CHAPTER 10: Demystiying Apple’s Push Notification Service

$body = array();
$body['aps'] = array('alert' => 'Greetings from Joe!', 'sound' =>
'sound.aif', 'badge' => 1);

/* End of Configurable Items */

$ctx = stream_context_create();

stream _context_set option($ctx, 'ssl', 'local cert', 'CERTIFICATE_FILENAME.pem');
stream_context_set_option($ctx, 'ssl', 'passphrase’, $pass);

$fp = stream_socket_client('ssl://gateway.sandbox.push.apple.com:2195"', $err, $errstr,
60, STREAM_CLIENT CONNECT, $ctx);

if (1$fp) {
print "Failed to connect $err $errstr\n”;
return;

}

$payload = json_encode($body);

// Thank you to the Perl example - MODIFIED

$msg = chr(0) . chr(o) . chr(32) . pack('H*', $token64) . chr(0) . chr(strlen($payload))
. $payload;

furite($fp, $msg);
fclose($fp);

You’re doing something really simple here, and that is sending a text alert notification to
a single device that is hand-coded into the script.

There are a few key things to note in this script:

B There’s an SSL connection made to the sandbox server,
gateway.sandbox.push.apple.com on port 2195, using the SSL server
certificate created in the previous section.

B The $body['aps'] associative array has the values for the three
different types of notifications that can be sent. Specifically, alert is
the text for what should appear on the screen in the alert dialog box,
sound is the name of the sound file you want played, and badge is an
integer for the count to be displayed as a badge on your application’s
icon.

B This script is using the json_encode function to convert a PHP array
into a JSON encoding.

B The $msg variable serializes the data being sent to the APNS servers in
the required format: two null (zero) bytes, an ASCII space, the token
“packed” into hexadecimal, another null byte, the payload length, and
finally, the JSON payload itself.

The iPhone OS generates the device token and provides it to the application in the
didRegisterForRemoteNotificationsWithDeviceToken method you saw earlier. Our
example app shows it on-screen and prints it to the console. You’ll want to copy and
paste it either from the iPhone application to an e-mail or from the console directly. If

CHAPTER 10: Demystiying Apple’s Push Notification Service

you copy it from the console, remember to remove the brackets (< >) and spaces so you
have one long 64-character string that you paste into the PHP script.

Yes, this way of approaching things is a bit ugly, but otherwise the chapter would have
been about web services and not APNS!

NOTE: For more information about web services on the iPhone, refer to Joachim Bondo’s
chapter.

A Walk-Through of What This Script Does

First, the script offers an option for a password, but you’re leaving it blank (as you have
throughout the process). If you want to add a password to your certificate, then you
would also need to supply that password here, which if you hard-code it may create an
additional security issue.

Next, it sets up the value of the device token, which you copied and pasted in from the
console output or e-mail.

Then it sets up the payload for the notification. Here, you’re sending only a text alert.

Once the variables are set up, the script opens an SSL socket connection to the Apple
sandbox server on the appropriate port, encodes the token and message, writes it
through the socket, and then closes the connection.

To try this, save this script on your server as apns_test.php, copy the .pem certificate file
you created earlier into a directory outside your web-accessible directory, and adjust the
path to the CERTIFICATE_FILENAME and path appropriately. For example, | might put it in
my home directory, and then the path might be something like this:

/home/joe/2push2_dev_cert.pem

NOTE: Do not store the . penm file in a web-readable directory!

Now, run the PHP script, and if everything goes according to plan, it should look
likeFigure 10-19.

CHAPTER 10: Demystiying Apple’s Push Notification Service

No Service =

10:15

Monday, September 7

2Push2

Greetings from Joe!

Figure 10-19. Your first push notification! (suitable for framing)

Congratulations, you’re pushing!

Download Server File

Now, | could spend the rest of the book writing about how to build a server for this, but
I’'m already running long, so I’'m providing sample code you can use to host the server
side of this application.

You can most likely test this PHP script on your own laptop, but you’ll want to make
sure it’s on a host that’s accessible from the Internet if you want multiple users of your
app to be able to have access.

Download the server script for your own use here:
http://2push2.us/apress/server/

Using this script will require some basic knowledge of PHP hosting and MySQL to get
the script uploaded, running, and connected to a database. The SQL command to
create the single needed devices table is included in the script.

Install this script (apress.php) and the appropriate development certificate file by
uploading them to your host.

There are a few things you’ll need to change in the script:

The Server address
The certificate file path
Your MySOL host, username and password

If you call this script without any arguments, it will return usage information:

CHAPTER 10: Demystiying Apple’s Push Notification Service

Apress.php

Sample server program for use with Apress Push Notification Chapter
Usage:
?token=DEVICE_TOKEN&cmd=(reg|msg)&(name|msg)=(USERNAME OR MESSAGE)

e.g.

Register a token:
?token=1d19fc527407d39bcd1d69deff7a3e7abe569d7a8c7b0c69b0b3d30269c0b8d18cmd=reglname=tes
t

Send a message:
?token=1d19fc527407d39bcd1d69deff7a3e7abe569d7a8c7b0c69bob3d30269c0ob8d18cmd=msg8msg=Hell
0,%20World!

Test it using the included sample arguments to make sure it’s installed and working.

If registration is working, the script should return the following:

Write token to registrations
success registering

Sending is harder to test from the web page without a valid device token. It will be easier
to test once you set up the client application, so let’s get to that next.

If you try it, you should see “Send message” followed by at least one device token and
then a “success” message. If you don’t get success, you're likely to see something like
this:

Warning: stream_socket_client() [function.stream-socket-client]: unable to connect to

ssl://gateway.sandbox.push.apple.com:2195 (Connection timed out) in

/home/content/html/apress/apress.php on line 209
Failed to connect 110 Connection timed out

which basically means that your server couldn’t connect to the Apple server, and that’s
possible for one of a couple primary reasons:

B Your host doesn’t support connections over port 2195.

B Your certificate is set up wrong. (Do you have the wrong file name in
variable? Is it in a directory that the script can read? Is it the correct
certificate for app, such as the correct app ID/bundle name,
development vs. production certificate?)

NOTE: It is not good practice to leave the security certificate in the same directory as the
script, such as in a web-accessible location.

CHAPTER 10: Demystiying Apple’s Push Notification Service

The Home Stretch

With the new server script and the certificate file up on the host, you’re ready to finish
the application and start pushing something interesting!

You'll recall the app specification—an iPhone application that distributes push
notifications from any user to all users of the app.

So, now that you’ve sent a notification through the system, you can add the finishing
touches to your app.

The server API for this test is a simple GET call where you set the msg parameter to the
message you want to send (it has to be URL encoded, and the server will truncate it
after 140 characters).

There are two other parameters. One is the device token of the sending device so that
you can authenticate that the message came from a registered user of the app, and the
other is a command argument so you can tell the difference between the process of
registration and sending a message.

That is, if you send this:
http://SERVER/DIRECTORY/apress.php?token=DEVICE_TOKEN&cmd=msg&msg=Hello%20World!
then in your application’s console output, you should see this:

2009-08-07 00:22:40.624 2Push2[1142:207] didReceiveRemoteNotification:{

aps = {
alert = "test says: Hello, World!";
b

custom = test;

And here, you also see what it looks like when you attach your own custom values to the
APNS payload, in this case the username string in the “custom” field.

NOTE: I'm going to make a bunch of changes in the Cocoa code for the iPhone application.
You can save yourself from typing this all in by downloading the project and code files at
http://2push2.us/apress/client.

Wiring Up the Client

You want to be able to send to the Ul elements on-screen and know when the button
has been pressed.

First, create the outlets and actions that you’re going to connect to in
Push2ViewController.h.

In particular, add IBOutlets for a UITextView and UILabel and an IBAction for a button:

CHAPTER 10: Demystiying Apple’s Push Notification Service

IBOutlet UITextView *messageTextView;
IBOutlet UILabel*deviceTokenField;
IBOutlet UITextField *usernameField;

- (IBAction)handleSendButton: (id)sender;

Next, switch to Interface builder and add the UITextView, a UILabel, a UITextField (for
the username), and a UIButton.

Then wire these all up in Interface Builder, as shown in Figure 10-20.

@00 - Push2ViewControllerxib § View a
Name Type =23
@ Fie's Owner Push2ViewController
@ fiest Responcer UtResponder Message Text:
v View UiView
Labet (Message Text) UiLabel
Rounded Rect Button (Send) Ulbutton Tap hereto edit message text.
Labe! (Vour Token (truncat. . UiLadel |
Label (Yeur Name) UlLadel
Label (51e162¢166066042... UlLadel
Text View UlTextview | P— ¥ Aalarentiog Oyl
Round Sty'e Text Fieid UlTextrield Your Name: Send New Baberering Cratet o
Your Token (truncated in the middle):

Figure 10-20. The objects, layout, and connections in Interface Builder for our sample application

Then in the code, you have a few details for talking back and forth between the push
notification methods and the user interface, as well as the remote server.

Here’s what that looks like in the ViewController code:
- (IBAction)handleSendButton: (id)sender

NSLog(@"handleSendButton");

// make a get request to our script with the msg parameter set
// msg=URLENCODEDSTRING;

CFStringRef outString = CFURLCreateStringByAddingPercentEscapes(kCFAllocatorDefault,
(CFStringRef)messageTextView.text, NULL, NULL, kCFStringEncodingUTF8);

NSString *urlFormatString =
@"http://2push2.us/apress/apress.php?token=%@8cmd=msgdmsg=%@" ;

NSURL *composedURL = [NSURL URLWithString:[NSString
stringWithFormat:urlFormatString,deviceTokenField.text, (NSString *)outString]];

NSLog(@"composedURL:%@", composedURL);

NSString *result = [NSString stringWithContentsOfURL:composedURL];

CHAPTER 10: Demystiying Apple’s Push Notification Service

NSLog(@"result:%@", result);
CFRelease(outString);
}

- (void)handleSetDeviceTokenField: (NSString *)inDeviceToken
NSLog(@"handleSetDeviceTokenField:%@", inDeviceToken);

deviceTokenField.text = inDeviceToken;
- (void)handleDidReceiveRemoteNotification: (NSDictionary *)userInfo

NSDictionary *aps = [userInfo valueForKey:@"aps"];
NSString *alert = [aps valueForKey:@"alert"];

messageTextView.text = alert;

And in the App Delegate where we interact with the notifications, here are the three key
methods:

- (BOOL)application: (UIApplication *)application

didFinishLaunchingWithOptions: (NSDictionary *)launchOptions

{

// register for remote notifications

UIRemoteNotificationType types = UIRemoteNotificationTypeBadge |
UIRemoteNotificationTypeSound | UIRemoteNotificationTypeAlert;

[application registerForRemoteNotificationTypes:types];

// because we implement didFinishLaunchingWithOptions, the "old" entry method
doesn't get called
[self applicationDidFinishLaunching:application];

return YES;

}

- (void)application: (UIApplication *)application
didRegisterForRemoteNotificationsWithDeviceToken: (NSData *)deviceToken

{
NSLog(@"didRegisterForRemoteNotificationsWithDeviceToken:%@", deviceToken);

NSString *inDeviceTokenStr = [deviceToken description];

NSString *tokenString = [inDeviceTokenStr
stringByTrimmingCharactersInSet:[NSCharacterSet characterSetWithCharactersInString:@"<
>"115
tokenString = [tokenString stringByReplacingOccurrencesOfString:@" "
withString:@""];

CHAPTER 10: Demystiying Apple’s Push Notification Service

// send it to the remote server
// we don’t have the username yet
NSString *hostString = @"http://2push2.us/apress/apress.php";
NSString *nameString = @"2Push2User";
NSString *argsString = @"%@?token=%@&cmd=reg8name=7%@" ;
NSString *getURLString = [NSString
stringhithFormat:argsString,hostString,tokenString,nameString];
NSString *registerResult = [NSString stringWithContentsOfURL:[NSURL
URLWithString:getURLString]];

NSLog(@'"registerResult:%@", registerResult);

// display it in the field on the view controller
[self.viewController handleSetDeviceTokenField:tokenString];

}

- (void)application: (UIApplication *)application
didReceiveRemoteNotification: (NSDictionary *)userInfo

NSLog(@"didReceiveRemoteNotification:%@", userInfo);
[self.viewController handleDidReceiveRemoteNotification:userInfo];

NOTE: As you switch between development and ad hoc distribution versions of your
application, be sure to clean out (or change) your device tokens table, because you can't use
development device tokens on the production service!

Now, you’re ready to resume your development and test where you left off in the server
section earlier.

CHAPTER 10: Demystiying Apple’s Push Notification Service

‘No Service = 9:15 PM 2

Message Text:
Tap here to edit message text.

f—

Your Name: Send

Your Token (truncated in the middle):
510/620166068b42834be.. 5054b342614785467104

Figure 10-21. The 2Push2 client application user interface
Let’s take a look at it in action.

Presuming you’ve handled the certificates, built the app, uploaded the server script, and
done all the preliminary testing as suggested, you should finally be up and running,
ready to test the app.

First, load the server script to your remote server and, while you’re at it, the certificate
(.pem) file. The server script is how the app will register its device token to receive
notifications, so the server-side has to be in place before the client-side app is run.

Second, run the iPhone application. Optionally, install this on several devices right now
to increase the fun!

Third, send notifications!

For convenience sake, when you now load the server script without any arguments, it
will present you with the first device_token in the database instead of a placeholder, and
thus you can copy and paste the “Send Message” example arguments and send a
message right from your browser.

From here, there’s plenty more you can do to build out this application or anything else
you want to do with the Apple Push Notification Server.

| truly can’t wait to see what you come up with!

CHAPTER 10: Demystiying Apple’s Push Notification Service

Additional Considerations/Advanced Topics

Now that you have the basics handled, let’s make sure to also touch on a couple more
important points about using APNS.

Feedback Server

Even with everything that’s already in place, there’s still one last step to finish to be able
to say that everything is complete.

The feedback server is an Apple-provided facility for determining whether there are any
devices that have dropped from your service, usually because of uninstalling your app.

Apple requests that you periodically check the feedback server, get the device tokens of
these dropped users that it provides you, and then discontinue sending to those tokens.

Jake Olefsky (http://www.toodledo.com) has posted a prototype feedback server script
in PHP and with his permission I’m including it here. You can find the original at
https://devforums.apple.com/message/92559#92559.

Here’s how you do it:
<?php

function iPhoneGetUninstalledTokens() {
global $certPassphrase;

$ctx = stream_context _create();

stream_context_set_option($ctx, 'ssl', 'local cert', '/path/to/production.pem');

stream_context_set_option($ctx, 'ssl', 'passphrase', $certPassphrase);

$fp = stream_socket_client('ssl://feedback.push.apple.com:2196", $err, $errstr, 60,
STREAM_CLIENT_CONNECT, $ctx); //for sandbox: feedback.sandbox.push.apple.com:2196

if(1$fp) {
echo "Failed to connect $err $errstr\n”;
} else {
$contents = stream_get contents($fp);
if($contents){
echo "Feedback Received";
Yelse{
echo "Failed to receive Feedback";

}
fclose($fp);

return $contents;

}
$data = iPhoneGetUninstalledTokens();

$tuples = strlen($data)/38;

CHAPTER 10: Demystiying Apple’s Push Notification Service

for($i=0;%$i<$tuples;$i++) {
$offset = $i*38;

$time = substr($data,$offset,4);
$time = hexdec(bin2hex($time)); //unix timestamp
$len = substr($data,$offset+4,2);

$len _ hexdec(bin2hex($len)); //always 32

$token
$token

substr($data,$offset+6,32);
bin2hex($token); //hex token

echo $time." ".$len." ".$token;

//put your removal code here
//%q = "DELETE FROM apresschapter.apressdevices WHERE device_token = '$token'";
// Execute MySOL Query and test result

}

>

It’s important to check the Feedback service regularly to update your database of invalid
device tokens.

SSL Server Connections

Try to leave your connections open! Don’t be opening/closing your socket to Apple
frequently. You want to send as many notifications through on each connection as you
can. If you get disconnected, simply reconnect and keep sending. Do not open a new
connection for each notification, since the connection setup is a comparatively
expensive operation and Apple may interpret your repeated connections as a type of
denial-of-service attack.

Moving from Development Sandbox to Production

When you’re ready to switch from development to distribution (either for ad hoc testing
or for final App Store deployment), you’ll repeat the same process of creating the
certificate as you did in “Step 2: Create the Certificate” of this chapter, only this time,
you’ll create a distribution version of the SSL certificate instead of a development
version.

After generating the Production Push certificate and provisioning file, the other key
change you need to make is to switch from using the sandbox server to the production
server at gateway.push.apple.com on the same port (2195). You'll need to keep track of
your development and production certificates to make sure you're using the right
version for deployment. You also need to make sure that you're not mixing device
tokens from development with those for production. You'll use the production service for
both Ad Hoc and App Store (or Enterprise) deployments.

CHAPTER 10: Demystiying Apple’s Push Notification Service

Development vs. Ad Hoc

If you make the switch from development to distribution (ad hoc), and then your app
immediately crashes when you launch it, you may need to restore your phone from
scratch so that it can get into distribution mode. The “easiest” solution for this problem
is to have multiple devices and keep them separated by mode (development or
distribution); your second device can be an iPod Touch or a WiFi-only previous-
generation phone that you kept after an upgrade. See the note in the “Back to the
Portal” section earlier in this chapter for more information on this issue.

Mobile Provisioning Files

If you don’t get notifications, try deleting your app, deleting the mobileprovision file
from the device, and then reinstalling from Xcode. To delete your mobileprovision file,
go to the Settings.app and then General » Profiles.

If you get the following error:

2009-07-27 00:25:34.089 2Push2[98:207]
didFailToRegisterForRemoteNotificationsWithError:Error Domain=NSCocoaErrorDomain
Code=3000 UserInfo=0x12e3f0 "no valid 'aps-environment' entitlement string found for
application”

it probably means you don’t have the correct mobileprovision file selected for
development. Instead of one for an existing device, you should be using the new one
created with the APNS app ID.

It's likely you’ll switch between development and distribution modes during your
development phase, and this can be tricky. Remember to make sure that the version of
the iPhone application you are using (development or distribution) matches your remote
SSL certificate and your tokens.

The best resource for learning more about debugging APNS is session 120 from WWDC
2009, which you can get on ADC on iTunes. It’s also the only way to get the inside story
on the #squawk hashtag.

User Experience

This is a development chapter focused on implementing code, but do consider the user
experience of push notifications. The user can easily turn off all notifications for your
application in the Settings application, so be careful not to give them a reason to do so!
Badges are the least intrusive option you can use; they’re a simple visual indication that
there is something new. Sounds can be a fantastic feedback mechanism for your users
but can be easily overdone. Text alerts are possibly the most intrusive given that they
need to be acted upon (dismissed or accepted) but can also convey the most targeted

CHAPTER 10: Demystiying Apple’s Push Notification Service

information in a glance. Remember, too, that your application will be sharing your user’s
device with other applications that will be sending notifications.

Open Source Code

You'll find lots of open source code that you can use as the basis for your own server-
side implementation; one of the best examples is PHP APNS available on Google Code:

http://code.google.com/p/php-apns/

This is a great example of a message queue-based daemon written in PHP using
memcacheq and available under the LGPL license and including fully public domain code.

Hosted Solutions

You'll find quite a bit of information on the forums about hosting your own servers or
using a third-party service.

If you have an enterprise-class APNS (or other server-related) project you need handled,
| of course encourage you to call on Push I0. Drop me a line at joe@push.io.

Summary

I’ve covered a lot of material in this chapter, starting with the new methods in iPhone OS
3.0 that support push notifications, then the process of creating a server certificate to
communicate with Apple’s servers, server-side code in PHP for capturing device tokens
and sending notifications, and, of course, a working client-side implementation on the
iPhone.

Push notifications are one of the most exciting new features in iPhone OS 3.0 because
they have the unique ability to keep your users informed about information they care
about and encourage them to engage with your application, even while your app is not
running.

Already a variety of innovative and practical services are being built around the Apple
Push Notification Service, from letting you know what your friends are doing
(Foursquare) to getting the latest real-time discussions (via Twitter clients) to reminding
you of important events (Powerybase’s NotifyMe application) to keeping you up-to-date
on your favorite sports (as in the 91st PGA application).

| hope this chapter has given you everything you need to begin implementing push
notifications in your own applications and that you’ll send me examples of the cool
things you do with this new capability.

Snappy Touch
San Diego, CA

Cut my teeth many years ago on Z80 assembly and
having to save programs on cassette tapes. Developed games professionally in
just about every platform out there in the last ten years: Windows, PSX, Xbox,
PS2, Xbox 360, and PS3. My main areas of expertise are game engines, computer
graphics, and asset pipelines. Past games include:

The Bourne Conspiracy (Xbox360, PS3) (2008)
Darkwatch (PS2, Xbox) (2005)

MechAssault 2 (Xbox) (2004)

MechAssault (Xbox) (2002)

Battleship: Surface Thunder (PC) (2000)
Missile Command (PC, PSX) (1999)

Flower Garden. Games. Uses a mix of OpenGL and UIKit.

Tea Time. Utilities. Part of my one-day-app-experiment.

OpenGL specular lighting
Introduction to environment mapping
Spherical environment mapping
Normal environment mapping

Environment map plus reflection mask to control reflection per
pixel

OpenGL
Texture combiners

Multi-pass rendering

Chapter

Shine On: Environment
Mapping and Reflections
with OpenGL ES

The moment | first got my hands on an 8-bit computer, it was instant attraction on both
sides, and it quickly blossomed into a love affair with game development that continues
to this day. Since then, I’'ve always kept up with the latest hardware at the forefront of
games technology, pushing each new platform to its limits to get the most amazing
graphics yet.

So, it was quite a change when | went from working on game console graphics to doing
iPhone development full-time. It felt like | was trading a Formula 1 car for a scooter. The
scooter was much slower than the car, but it was nimble, light, and maneuverabile. It
was a lot more fun to drive!

The Beginnings

Coming from the traditional AAA game console world of big-budget titles and loud
explosions, | wanted to create a new experience on the iPhone. | wanted something that
was creative and could be shared with friends, and | wanted something that fit the usage
patterns of a mobile device and took full advantage of the device (touch input,
accelerometer, Internet connection, and so on). That’s how Flower Garden for the
iPhone got started (see Figure 11-1).

347

CHAPTER 11: Shine On: Environment Mapping and Reflections with OpenGL ES

Figure 11-1. The final look of the flowers in Flower Garden

The basic concept behind Flower Garden came together pretty quickly: the user could
plant different types of seeds and water and care for them over time, and the seeds
would grow into full plants and blossom. Then, the flowers could be cut, arranged into
bouquets, and sent to anyone through e-mail and Facebook.

To get started, | learned all | could about flower morphology, created a PC prototype of
the flower-growing technology, and ported everything to the iPhone. That whole process
took about a month and a half. The rest was a matter of fleshing out the application:
creating different seed types, coming up with an intuitive interface, cutting flowers and
sending bouquets, and adding the plant-caring element.

At that point, the rendering of the flowers was very simple. | had decided not to go for a
realistic look because the techniques | would need to apply just weren’t possible on an
iPhone without pixel shaders and powerful graphics hardware. So, instead | went for a
fairly plain, almost illustrated look to the flowers using OpenGL ES 1.1, which is available
in all models of the iPhone and iPod touch. The animation of the flowers swaying in the
wind and reacting to the touch was very effective and really made those simple
renderings come alive.

It was all coming along great, but something started bothering me: as | worked with the
graphic designer on the look of the garden and the landscape in the background, the
flowers started looking out of place. It’s not that the flowers had gotten worse; they were
still the simple, cartoony flowers they were at the beginning. But they were now
surrounded by an almost photorealistic environment. It was like putting Mickey Mouse in
a film noir picture, and the contrast was jarring. They just didn’t belong there.

CHAPTER 11: Environment Mapping and Reflections with OpenGL ES

First Steps: OpenGL Lighting

This was an iPhone game, not a big console title, so | couldn’t afford to waste

a single day of development on something that wasn’t going to have a big impact in the
final program. Even worse, | didn’t want to spend time on something that | wasn’t sure
was possible or something that wasn’t going to look good in the end.

Even so, | knew that if | made those flowers look more realistic, they would not only fit
much better in their surroundings but would make Flower Garden a much more
graphically interesting application. It was worth a shot.

So, why did the flowers look so plain, and what could | do about it? At this point, the
petals and leaves had no shading at all, just a texture used to blend between two
different colors. The stem and the head of the flower, because they’re more rounded
and solid, were rendered with standard diffuse and ambient reflection.

Both ambient and diffuse reflection are standard lighting models in OpenGL ES 1.1. With
ambient reflection, a surface is uniformly shaded depending on the light color and
intensity. Diffuse reflection, on the other hand, changes the shading on the surface
depending on the angle between the light direction and the surface normal. The
following equation describes the color of a surface with diffuse reflection:

Cq=max(0, L - N) = C,

C, is the color of the diffuse reflection, L is the vector from the surface to the light, N is
the surface normal, and G, is the color of the light. Notice that the color specifically
depends on the dot product between L and N, which means it’s directly related to the
cosine of the angle between those two vectors. When the dot product is negative (L and
N are pointing away from each other), there is no diffuse reflection.

The following code creates an OpenGL light with diffuse properties and a global ambient
light:
glEnable(GL_LIGHTO);

float diffuseColor[] = { 0.8f, 0.8f, 0.7f, 1.0f };
gllightfv(GL_LICHTO, GL_DIFFUSE, diffuseColor);

float ambientColor[] = { 0.6f, 0.6f, 0.6f, 1.0f };
glLightModelfv(GL_LIGHT MODEL_AMBIENT, ambientColor);

The sample program included with this chapter renders a 3D model of a car under
different light conditions. You can build it, run it, and spin the object around to
appreciate how the shading changes with the angle between the surface and the light.
You can also toggle the different lighting approaches described in this chapter by
pressing the top arrows. Figure 11-2 shows the program displaying a model lit with
ambient and diffuse reflections.

CHAPTER 11: Shine On: Environment Mapping and Reflections with OpenGL ES

< Diffuse light and texture >

Figure 11-2. Model lit with standard, OpenGL ambient and diffuse reflection lighting

Looking at real plants and flowers, it’s very obvious that there’s a lot more to lighting
than what | was doing. Plants are shinier, and petals are somewhat translucent, almost
ethereal sometimes. Leaves almost sparkle, especially when they’re wet, and they
change as they move in the wind or you look at them from different angles. What |
needed was some sort of specular highlights on the leaves that would really make them
come alive.

Specular highlights are the bright spots that appear on shiny or wet surfaces when
affected by a strong light. Look at the rippling surface of the water on a sunny day, and
you’ll see plenty of specular highlights.

With diffuse reflections, the shading on an object is completely determined by the
cosine of the angle between the surface normal and the light. Specular lighting depends
on the viewer position and adds an exponential drop-off factor, so the object is much
brighter when the surface reflects the light straight into the viewer, and it drops off very
quickly after that. That behavior is described in the following equation:

CS = max(O’ S - N)Shininess " Cs

Here, C, is the specular color contribution, N is the surface normal, and C; is the color of
the specular light source. What’s new here is s, which is an average of the vector from
the surface to the viewer position and the vector from the surface to the light.

Fortunately, OpenGL ES 1.1 also includes a specular lighting model. The theory was that
| should be able to turn that on and get all the sparkles | wanted. Before, when the
petals were completely unlit, the vertices didn’t need to contain a normal as part of their
structure. Now, as you can see in the specular reflection equation, | needed that normal
to compute the highlights, so | had to extend the vertex format to include them as well.

CHAPTER 11: Environment Mapping and Reflections with OpenGL ES

Finally, all | had left to do was to tweak the lighting parameters (primarily the shininess
exponential factor) until | got the desired results.

The following code adds a specular color to an OpenGL light:

float specularColor[] = { 0.9f, 0.9f, 1.0f, 1.0f };
glLightfv(GL_LIGHTO, GL_SPECULAR, specularColor);

The material also needs to have the specular parameters turned on, and the shininess is
controlled from there:

float specularMatColor[] = { 1.0f, 1.0f, 1.0f, 1.0f };

glMaterialfv(GL_FRONT, GL_SPECULAR, specularMatColor);

float shininess[] = { 50.0f };
glMaterialfv(GL_FRONT, GL_SHININESS, shininess);

Unfortunately, the standard specular lighting didn’t end up looking as dazzling as | was
hoping. | could even say it made things much worse. Figure 11-3 shows the sample
program with specular lighting turned on.

< Diffuse, specular light and texture >

Figure 11-3. Model with per-vertex specular highlights. Not pretty!

The biggest problem with specular lighting on the iPhone is that it’'s computed at a
vertex level. So, the highlight is calculated at each vertex and is then interpolated along
the pixels between vertices. This means that if you try to make the highlight bright and
sharp, you’re going to end up with something that looks like smeared chalk across your
mesh—that is, unless you have a mesh so dense that there’s almost a vertex at each
pixel, but that would be too much for the iPhone graphics hardware to handle, and
performance would suffer.

Another problem is that doing the specular lighting calculation at each vertex isn’t
cheap. That’s not a big deal because the frame rate was affected only a bit, but the

CHAPTER 11: Shine On: Environment Mapping and Reflections with OpenGL ES

problem is that you get only one specular highlight per light source. Look at a shiny
object again, and chances are you’ll see multiple highlights for different light sources in
the room you’re in. If | wanted to add more highlights, | would need to add more lights to
the scene, and that would again become prohibitively expensive.

This was clearly a dead end of a solution. | had to look for a different approach.

Turning to Environment Mapping

What | was trying to accomplish with specular lighting was to give the object some shiny
spots where the light from the scene reflected off the surface. Environment mapping is a
computer graphics technique | used in some of my past games to get similar shiny
effects, so maybe | could use it here as well to good effect.

An environment map is a texture that contains information about the scene surrounding an
object. This texture is then applied to a mesh in such a way as if it is reflecting the scene
around it. You don’t want to make the object a perfect mirror, but you can encode the
bright spots from the lights around us in the environment map and then combine them
somehow on the object to give the impression of shiny spots.

Environment mapping is a great technique that creates visually interesting scenes with
very little overhead or extra work on the developer’s part. One of the main drawbacks of
environment mapping is that they capture the surrounding scene from a single location,
so moving objects would have incorrect reflections, or the environment map itself would
have to be recomputed in real time, which can be quite expensive. Fortunately, in the
case of Flower Garden, the pot with flowers is at a fixed location. The camera can
change positions, and the flowers can move in the wind, but they aren’t changing
positions enough to be a problem, so environment mapping seems like a perfect
solution.

In many kinds of graphics hardware, this can be a really easy solution. All you have to do
is provide an environment map, turn on the environment-mapping mode, and off you go.
Unfortunately, there was a snag in my plan: the iPhone hardware doesn’t support
environment mapping.

All is not lost, though. The hardware might not do it automatically for you, but that
doesn’t mean you can’t roll up your sleeves and, with some extra work, do it yourself.
To accomplish that, you need to take a close look at the math behind environment
mapping.

Capturing the scene around you on a single, flat texture is a challenging task. It’s very
similar to the problem of trying to create an accurate projection of the surface of the
globe of the earth onto a piece of paper (except that in this case you see the scene from
inside the sphere, not from the outside). No matter what approach you take, the scene is
going to have some amount of distortion. That might be a problem if you’re trying to
render a smoothly, reflecting mirror ball, but all | was going to use it for was to add some
shiny spots on the leaves, so accuracy was not a goal.

CHAPTER 11: Environment Mapping and Reflections with OpenGL ES

In computer graphics, there are two common techniques for mapping a scene onto a
texture: spherical environment mapping and cube environment mapping. In this case,
you’ll map the scene surrounding you as mapped on a sphere centered at your location.
In the other case, the scene will be mapped into each of the six sides of a cube centered
at your location. For this implementation, | went with spherical mapping because it is a
bit faster to compute, and the resulting quality is plenty for these needs.

Spherical Environment Mapping Implementation

Assume that the lights around your scene are not changing, so you can create a
spherical environment map offline and use it every frame during your rendering. Figure
11-4 shows an example of a spherical environment map. Notice that the object itself is
usually not part of the environment map, just the objects and lights surrounding it.

Figure 11-4. Sample spherical environment map

Ultimately, what you want is to generate a second set of texture coordinates that
indexes into the right place in the environment map based on the eye position and on
the surface normal. If the surface were a perfect mirror, what would you see? To find
out, you could cast a ray from the eye to the surface and then bounce it off the

surface taking the normal into account. This new vector is called a reflection vector (see
Figure 11-5).

CHAPTER 11: Shine On: Environment Mapping and Reflections with OpenGL ES

Figure 11-5. Reflection vector

Mathematically, a reflection vector is computed with the following formula:
R=E-2EN)N

E is the unit eye vector, and N is the unit normal vector. The incident vector is the vector
from the eye position to the point on the surface of the model. Because the incident
vector changes for each point on the mesh, it needs to be recomputed for each vertex.
Also, since the reflection vector depends on the eye position, it will change as the
camera moves around the object (or the object changes position relative to the camera),
so you need to recompute it every frame.

Once you have this reflection vector, you can apply a formula to index into your
environment map. This is the standard formula for spherical environment mapping:

m:Z-\/rx2 + ry2 + (rx+1)?
1
W=m*2
v, 1
=mt2

That’s quite a bit of work to do for each vertex, especially with those square roots on the
iPhone CPU. Fortunately, you can make some approximations again that will let you
speed things up significantly.

The key observation is that you could “fake” the reflection vector by simply using the
normal vector at each vertex. The reflection wouldn’t be physically accurate, but it would
reflect something, which is good enough. That by itself isn’t enough, though: if you use
only the normal vector, the reflection wouldn’t change as the camera moves around the
object or the object changes position. To fix that, you need to rotate the vertex normal
by the camera transform. Finally, you discard the z component of the normal and scale
and bias the x and y components so they are between 0 and 1. The results are the
texture coordinates corresponding to the environment mapping as seen from the correct
viewpoint. This technique is sometimes referred to as normal environment mapping,
because it uses the normals of the model instead of the true reflection vectors.

CHAPTER 11: Environment Mapping and Reflections with OpenGL ES

The normal environment mapping equation is shown here. F is the world to view the
“forward” vector, and U is the world to view the “up” vector.

05«Fx -05+=Ux 0 O
05«Fy -05=Uy 0 0O
05xFz -05+x*Uz 0 O

0.5 0.5 00

That still seems like quite a bit of work. Why go to all that trouble instead of using the
reflection vector? Well, now you can perform that computation on the GPU, which is
much better suited than the CPU for that type of work. To accomplish that, you need to
change your vertex format to include all three parameters for the normal vector, load the
OpenGL texture transform with the camera transform, and apply it to the second set of
texture coordinates.

[rstq] =

The new vertex format becomes as follows:

struct NewVertex

float x, y, z;
float nx, ny, nz;
float uo, vo;
float u1, vi, ti;

};
The following code sets up the texture transform:

glMatrixMode(GL_TEXTURE);
float mat[] = {

0.5f % worldToView[0].x, -0.5f % worldToView[1].x, O, O,
0.5f % worldToView[0].y, -0.5f % worldToView[1].y, O, O,

0.5f % worldToView[0].z, -0.5f s worldToView[1].z, 0, O,

0.5f, 0.5f, 0, 1};
glloadMatrixf(mat);

Figure 11-6 shows the results of applying spherical environment mapping to the model.
The results are even good enough to make it into an almost perfect mirror.

CHAPTER 11: Shine On: Environment Mapping and Reflections with OpenGL ES

< Environment map >

Figure 11-6. Model with fully reflective, spherical environment mapping

Combining Environment Mapping and Diffuse
Textures

When | started out, my goal was not to make mirror-like objects but to add shiny,
reflective areas to petals and leaves. To do that, you need to combine

the diffuse texture with the environment mapping you computed in the

previous section.

Up until now, it’s possible that you just used one texture unit on the iPhone.

But to add environment mapping to an object, you’re going to have to load

both texture units available on the iPhone and create the final result by using texture
combiners.

Like most things with OpenGL, the current texture unit is determined by a state. By
default that unit is set to the first one, so all texture operations apply to that unit. The
following code loads up two textures, one in each texture unit:
glActiveTexture(GL_TEXTUREO);

glEnable(GL_TEXTURE_2D);

glBindTexture(GL_TEXTURE_2D, diffuseTexture);

glActiveTexture(GL_TEXTURE1);

glEnable(GL_TEXTURE 2D);
glBindTexture(GL_TEXTURE_2D, environmentMap);

This vertex type has now two sets of texture coordinates, one for each texture. That
way, you can index them independently of each other.

CHAPTER 11: Environment Mapping and Reflections with OpenGL ES

Finally, now that you have both textures loaded, you can decide which part of each
texture to display for each vertex. But what should the final result look like? How should
those textures be combined to create the final color? The answer lies in the texture
combiners.

A texture combiner allows you to combine the parameters that contribute to the color of
each pixel. The iPhone has two texture combiners, and each combiner can operate on
at most three inputs. Those inputs can be the color read from a texture, a constant color
you set yourself, or the results from a previous combiner. The actual operations they can
perform are restricted to simple combinations of additions and multiplications. They’re
listed in Table 11-1.

Table 11-1. Texture Combiner Operations

GL_COMBINE Function

GL_REPLACE Argo

GL_MODULATE Argo s Argl

GL_ADD Argo + Argi

GL_ADD_SIGNED Argo + Argl - 0.5

GL_INTERPOLATE Argo % (Arg2) + Argl #% (1-Arg2)

GL_SUBTRACT Argo - Argl

GL_DOT3_RGB 4 % ((Argo_r - 0.5) % (Argl_r - 0.5) + (Argo_g - 0.5)

% (Argl g - 0.5) + (Argo b - 0.5) % (Argi b - 0.5))

When working with texture combiners, | find it easier to visualize them instead of
thinking of them in terms of mathematical operations. For example, Figure 11-7 shows
the setup to display an object with a diffuse texture and some amount of reflection
added on top.

CHAPTER 11: Shine On: Environment Mapping and Reflections with OpenGL ES

Diffuse Texture stage #1
texture OpenGL
lighting
Env Texture stage #2
map
\ 4 /

(Diffuse * Lighting) + Env map
Figure 11-7. Texture combiners set up to add an environment map on top of a diffuse texture

The following is the code to set up OpenGL in that state:
glActiveTexture(GL_TEXTUREO);

glTexEnvi(GL_TEXTURE_ENV,
glTexEnvi(GL_TEXTURE_ENV,
glTexEnvi(GL_TEXTURE_ENV,
glTexEnvi(GL_TEXTURE_ENV,
ngexEnv1(GL_TEXTURE_ENV
glTexEnvi(GL_TEXTURE_ENV,

GL_TEXTURE_ENV_MODE, GL_COMBINE);
GL_COMBINE_RGB; GL_MODULATE);
GL_SRCO_RGB, GL_TEXTURE);
GLTSRC1_RGB, GL_PRIMARY COLOR);
GL_OPERANDO_RGB, GL_SRC_COLOR);
GL_OPERAND1 RGB, GL_SRC_COLOR);

glActiveTexture(GL_TEXTURE1);

glTexEnvi(GL_TEXTURE_ENV,
glTexEnvi(GL_TEXTURE_ENV,
glTexEnvi(GL_TEXTURE_ENV,
glTexEnvi(GL_TEXTURE_ENV,
glTexEnvi(GL_TEXTURE_ENV,
glTexEnvi(GL_TEXTURE_ENV,

Which one do you find easier to understand, the diagram or the OpenGL code? |

thought so.

Figure 11-8 shows the results of adding the environment map on top of the diffuse

texture.

GL_TEXTURE_ENV_MODE, GL_COMBINE);
GL_COMBINE_RGB, GL ADD),
GL_SRCO_RGB, GL _TEXTURE);
GL_SRC1 RGB, GL_PREVIOUS);
GL_OPERANDO_RGB, GL_SRC_COLOR);
GL_OPERAND1_RGB, GL_SRC_COLOR);

CHAPTER 11: Environment Mapping and Reflections with OpenGL ES

< Environment map. diffuse light, and texture >

Figure 11-8. Model rendered with an environment map added to the diffuse texture

Per-Pixel Reflections

At this point, you have objects with a diffuse texture and an environment map applied on
top of it. This is already a huge improvement over objects without environment maps at
all. However, when | implemented this technique with the plants, the leaves were not
shiny enough. They were a bit reflective, but they didn’t have shiny spots that stood out,
which is the effect | originally set out

to find.

The reason for this is that the environment map is applied uniformly to the whole object.
Some places in the environment map will be brighter than others, but the surface of the
object is equally reflective everywhere. Look at the objects around you, especially if
there are any wet ones, and you’ll quickly see that some parts are more reflective than
others. For example, dry spots are not very reflective, and the fleshy parts of a leaf are
much more reflective than the stem.

Before we go any further, let’s look at the equation that determines how you’re rendering
each pixel of a model with the environment map technique so far:

C=L*T+E

Here, C is the final pixel color, L is all the incident light colors, T is the value of the
texture at that point, and E is the color contribution from the environment map reflected
at that point.

You can implement different amounts of reflection with a specular mask: a grayscale
texture that is white where the object is fully reflective and is black where it doesn’t
reflect at all. Intermediate gray values indicate how shiny it is at each spot. All you have

CHAPTER 11: Shine On: Environment Mapping and Reflections with OpenGL ES

to do is multiply this specular mask with the environment map, and you’ll get variable
amounts of reflection or shininess.

The new rendering equation looks like this:
C=L*T+ExM

M is the specular mask. Simple enough? Unfortunately, there’s a wrinkle in our plans.
You have three textures: T, E, and M. But the iPhone 3G has only two texture units!

One common solution is to combine the specular mask into the alpha channel of the
diffuse texture. That will keep the number of textures down to two so you can fit
everything in a single pass. However, sometimes the alpha channel will already be in
used to indicate transparency. It is also possible that a texture combiner is already in
use if you’re doing something more than a plain diffuse texture. In the case of Flower
Garden, petals were rendered by interpolating two colors based on another texture,
so a full texture combiner was used up, and | couldn’t fit that plus the masked
environment map.

When that happens, the solution is to break up the rendering into two passes. The first
pass draws the model with the original, diffuse texture, and the second pass draws the
same polygons again but adds the environment map multiplied by the specular texture.
This makes the rendering significantly more expensive, but the final effect is well worth
it. Also, this frees one texture unit during the first pass, so you can use it as a detail map,
light map, or any other technique that requires an extra texture.

The new rendering equation is the following (each pass is in parentheses):
C=(L*T)+(E=M)

Figure 11-9 shows the new texture combiner setup.

CHAPTER 11: Environment Mapping and Reflections with OpenGL ES

First pass Second pass
Diffuse Env Texture stage #1
texture OpenGL mask Glossiness
lighting factor

N/ N/

OpenGL Env
lighting

Diffuse * Light (Env mask * glossiness) * Env map

Figure 11-9. Texture combiner setup for a two-pass rendering. The first pass has lighting plus a diffuse texture,
and the second pass adds an environment map modulated by a mask.

When you do any kind of two-pass rendering, you have to be careful how you draw the
triangles to avoid any kind of z-fighting (rendering artifacts caused by rendering two
polygons on top of each other). You should always render the same geometry in both
passes, and the second pass should use the depth-test function GL_EQUAL to render only
those pixels that match the depth currently on-screen.

glDepthFunc(GL_EQUAL);

Figure 11-10 shows the model rendered with this technique. Notice how some parts are
more reflective than others.

CHAPTER 11: Shine On: Environment Mapping and Reflections with OpenGL ES

< Masked env map. diffuse light, and texture >

Figure 11-10. Model rendered in two passes, with lighting plus a diffuse texture in the first and an environment
map with a mask on the second

iPhone 3GS

Per-pixel environment mapping is still a valid technique on the iPhone 3GS. Everything
I’ve covered will run on the 3GS and will run faster because of its more powerful
graphics hardware. But you can go beyond this and implement it in a simpler and even
faster way to take full advantage of the new hardware.

To start with, the iPhone 3GS supports OpenGL ES 2.0, which means you have a fully
programmable shader pipeline. That means you don’t have to deal with texture
combiners anymore, and you can write your pixel-rendering equation directly on a
fragment shader.

It also means you can perform true spherical environment mapping, computing the
correct reflection vector at each vertex (or pixel).

Finally, you can take advantage of the fact that the 3GS has eight texture units and do
the whole rendering in a single pass. Because of this, per-pixel reflections on the 3GS
will run much faster than on the original 3G. The following is the vertex and shader code
for a per-pixel environment map implemented with OpenGL ES 2.0:

// Vertex shader

uniform mat4 u_mvpMatrix;

uniform mat3 u_cameraTransform;

uniform vec4 u_ambientlLightColor;

uniform vec4 u_directionallightColor;

uniform vec3 u_directionallightDir;

attribute vec4 a position;

CHAPTER 11: Environment Mapping and Reflections with OpenGL ES

attribute vec3 a_normal;
attribute vec2 a_texCoord;

varying vec2 v_texCoordo;
varying vec2 v_texCoordi;
varying vec4 v_lighting;
void main()

gl_Position = u_mvpMatrix # a_position;
v_texCoordo = a_texCoord;

vec3 transNormal = u_cameraTransform % a_normal;

v_texCoordl = vec2(transNormal);

float ndotl = max(0.0, dot(a_normal, u_directionallightDir));
v_lighting = u_ambientLightColor + u_directionalLightColorsndotl;

// Fragment shader

precision mediump float;
uniform sampler2D u_diffuseMap;
uniform sampler2D u_envMap;
uniform sampler2D u_envMask;
uniform float u_shininess;

varying vec2 v_texCoordo;
varying vec2 v_texCoordi;
varying vec4 v_lighting;
void main()

vec4 diffuseColor = texture2D(u_diffuseMap, v_texCoordo);

vec4 envMapColor = texture2D(u_envMap, v_texCoordi);

vec4 envMaskColor = texture2D(u_envMask, v_texCoord1l);

gl FragColor = diffuseColor:v_lighting + (envMapColor #* envMaskColor) 3
u_shininess;

}

Summary

It was a long road all the way from having the initial vision of how | wanted the flowers to
look until it was implemented and running at a good frame rate. The results show the
effort | put into it are definitely worth it, and the shiny look of the flowers was definitely
one of the reasons people liked Flower Garden.

Environment mapping is a very flexible technique that produces impressive results with
very little extra effort. The whole scene around an object is captured in a single
environment map and applied to the object depending on the viewer’s position. The use
of normal environment mapping uses the normal at the surface instead of the reflection
vector, allowing you to move expensive computations from the CPU to the graphics

CHAPTER 11: Shine On: Environment Mapping and Reflections with OpenGL ES

hardware, making it even faster. Finally, applying a reflection mask to the environment
map creates much more realistic images by specifying the amount of reflection in
different areas.

Applying environment mapping transforms any scene and makes it stand out. It’s
definitely a tool that graphics programmers should have in their toolboxes.

Index

A

AAPLot, 280-292
caching logic, 283
data persistence, 284-285
extending, 288—-292
placeholder data for, 286-288
plotting historical stock prices with, 280-282
storing data between runs, 283
AAPLotViewController class, 280-281
AccountViewController class, 225, 229, 244
AccountViewController.h file, 224
AccountViewController.m file, 224, 228
Active Record, 144
finder methods, 171-174
mapping layer, writing, 164—175
addAttribute method, 202
address family, 257
AddressBook framework, 230
addVertex method, 33
Adobe Photoshop Lightroom project, 141
AF_INET, 257
AF_INET6, 257
afconvert command-line tool, 318
ambient reflection, 349
animate:or flag, 31
.app file, 112
app ID, 321
App IDs page, 321
APP_STORE_FINAL, 106—107
app.yaml, 48-49
Apple Developer Program, 314
Apple Push Notification Server (APNS), 43, 313-344
advanced topics, 341-344
advantages of, 314
application delegate, 315-317
building and deploying, 318
certificate creation, 319-331
client application, 336-340
client creation, 314-319
debugging, 343

defined, 314
enabling application for, 321
feedback server, 341-342
handling incoming notifications, 317
hosted solutions, 344
mobile provisioning files, 343
moving from development to distribution, 342—
343
open source code, 344
setting up server, 331-335
sounds, 318
SSL server connections and, 342
user experience and, 343
application delegate (appDelegate), 233
application object, 52
applicationDidFinishLaunching method, 177, 217,
316
applicationWillResignActive method, 270
aps_developer_identity.cer file, 325
APYahooDataPuller, 280-285, 289
APYahooDataPullerDelegate, 281
AQOutputCallback, 77
asserts
built-in, 105
custom, 105-107
asynchronous calls, 57, 58
asynchronous data downloading, 72
atos command, 111-112
audio buffer pool, 83
audio buffers, 83
audio data callback, 81, 87-88
audio files, 93
Audio File Stream Services, 81-92
audio format property, 87
audio playback/streaming, 65-97
app for, 93-96
audio format and, 94-95
AudioServicesPlaySystemSound(), 69
AVAudioPlayer class, 69-72
determining buffer size, 79-80
iPhone 0S 3.0 and, 96
MPMoviePlayerController class, 66—68

365

stopping, 80
with Core Audio, 74-93
Audio File Stream Services, 81-92
Audio Queue Services, 74-80

Audio Queue Services, 74-80

callback function, 79

class declaration using, 76

playback cycle, 75

starting audio playback, 77-79

stopping playback, 80
Audio Session API, 92-93
audio streaming. See audio playback/streaming
audio streams, 95
audioDataCallback() method, 87-89
AudioFileClose() method, 80
AudioFileOpenURL() method, 76
AudioFileReadPackets(), 79-80
AudioFileStreamOpen() method, 85
AudioFileStreamParseBytes() method, 81, 87, 91
AudioQueueBufferRef class, 83
AudioQueueEnqueueBuffer() method, 90
AudioQueueNewOutput() method, 77, 79, 87
AudioQueueStart() method, 77
AudioQueueStop() method, 80
AudioServicesPlaySystemSound() method, 69
AudioStreamBasicDescription, 95
Aurora Feint, 7
autodiscovery

Bonjour for, 271-272

custom solution for, in iTap, 273-275
automatic migrations, 194
AVAudioPlayer class, 69-72
AVAudioSession class, 96

beforeDelete function, 171
beforeSave callback, 169
big endian, 259
bind() function, 260
bindArguments:parameters:toStatement: method,
161-162
blocks, 293-297
Bluetooth
support for, 253
third-party applications and, 253-254
$body['aps'] associative array, 332
Bonjour, 271-272
breakpoints, on malloc_error_break, 123-125
BSD networking API, 264—269
BSD sockets, 255, 261-263
buffer overruns, 119

buffer sizes, 77, 79-80, 83
buffering, on mobile devices, 84
buffers
audio, 83, 83-92
preallocating, 82
build target, 106
byte ordering, 259

H

C API, creating wrapper around, 144—157
C language, 75, 104
C++
asserts in, 105
vs. Objective-C, 104
C++ class, creating, 116-118
Caches directory, 285
call stacks, 115
callbacks, 58
C-based Core Foundation framework, 255
CBR (constant bit rate), 77
certificate signing request (CSR), 322-324
CERTIFICATE_FILENAME, 331-333
CFBundleURLName string, 54
CFShow, 107
CFSocket, 255, 262-263
CFSocketConnectToAddress() function, 262
CFSocketContext, 263
CFSocketCreateWithNative() function, 262
CFSocketGetNative() function, 262
cgContext, 305-309
CGContextRefs, 298
closures, 293
Cocoa, 41
Cocoa data types, 60
code
#define, 108—109
custom asserts, 105-107
custom logging, 107-108
debugging, 105-109, 115-116
separating data representation and, 56, 57
color-changing particles, 28—-35
column names, 166—167
column types, 154-155
columnTypeTolnt:, 154
components, communication between using
notifications, 272-273
concurrency, 292—-297
connect() function, 260
connection:didFailWithError: method, 58-59
connection:didReceiveData: method, 58-59, 85
connection:didReceiveResponse: method, 58-59

connectionDidFinishLoading: method, 58-59
connectivity issues, 212
constant bit rate (CBR), 77
Contact class, 232
copyValuesFromStatement:toRow:queryinfo:columnTy
pes:columnNames: function, 172
Core Animation, 3
Core Audio, 66, 74-93
Audio File Stream Services, 81-92
Audio Queue Services, 74-80
on iPhone Simulator, 75
Core Data, 179, 183-207, 213
application development, 185-194
classes, 185
creating reusable objects, 199-203
history of, 184—185
model migrations, 194—198
model, creating, 235— 238
remote databases and, 203-206
stack objects, 221
tutorial, 186, 189, 193-198
working with, 218-224
Core Foundation data types, 263
Core Plot, 281, 292
correspondence chess, 39-61
accepting invitations, 43, 54-57
coding, 47-60
Google App Engine and, 44-47
inviting friend to game, 42-43, 50-53
making moves, 43, 57-60
notifications, 43
tasks, 42—-44
crash logs
from rarely occurring crashes, 112
from testers, 109-110
symbolicating, 110-111
crashes, 109-115
hypothesis about, 113-115
increasing probability of, 115
reproducing, 112-113
sudden, 122
testing, 114-115
CREATE statements, 155, 158—159
create, read, update, and delete (CRUD) operations,
174
CSR (certificate signing request), 322—-324
cstrings, 108
currentBufferindex, 90-92
custom asserts, 105-107
custom logging, 107-108
custom URL scheme, in Deep Green, 43

Dapple, 101, 104, 123
data
displaying large amounts of, 298—299
downloading, with NSURLConnection, 72-73
managing, with DataManager, 226-228
placeholder, 286—-288
saving, to iPhone application sandbox, 285-286
sending and receiving, 260
separating code and, 56-57
data access, with Active Record, 144
data applications, 183. See also Core Data
data migrations, 194-198
data model, adding new entity to, 197
data persistence, with plists, 284—285
data sources, 143
data storage, 143
database connections
maintaining, 165
opening, 149-151
databases
creation and initialization, 148-149
deleting objects, 170-171
lookups, 171-174
making simple requests, 152—157
migration handling, 176-179
preventing duplicate create statements, 158—159
remote, 203—206
saving objects, 168—170
updating objects, 170
data-driven applications, 141-180
Active Record layer, writing, 164—175
alternative implementations, 179
database creation and initialization, 148—-149
migration handling, 176-179
opening database connection, 149-151
setting up, 145-147
datagram-oriented connections, 260
datagrams, 256
DataManager class, 225-228, 232
dataPullerDidFinishFetch() method, 281
datastores, replicating, 45
date conversion, 57
db module, 52
dealloc function, 147, 150—-151
debug symbols, 110
debugging, 101-137
APNS, 343
atos commmand and, 111-112
background knowledge for, 102—104
code, 115-116
crashes, 109-113

custom asserts, 105-107
custom logging, 107-108
.dSYM files and, 110
with link map files, 135-137
memory stomps, 118-137
scientific method of, 113-115
symbolicatecrash script for, 110-111
techniques for, 115-137
tools, 123-131
turning on/off, 108
using #define, 108-109, 114
using variable watch, 131-135
while writing code, 105-109
Deep Green
correspondence chess, 39-61
accepting invitations, 43, 54-57
coding, 47-60
Google App Engine and, 44—47
inviting friend to game, 42—-43, 50-53
making moves, 43, 57-60
notifications, 43
tasks, 42-44
development of, 41
home page, 41
on Newton platform, 41
user interface, 40-42
DEFERRED transaction type, 164
#define, 108-109, 114
degenerate triangles, 15-16
delete statement, 170
deleted methods, calling, 119-120
deleted objects
calling method on, 120
returning, 120-122
DeriveBufferSize() function, 77, 83
Development Provisioning Profiles list, 328
Development Push SSL Certificate option, 322
device token acquisition, 316
devices, contacting all, on network, 267-268
+dictionaryWithContentsOfURL:, 55-57
didFinishLaunchingWithOptions method, 316
didRegisterForRemoteNotificationsWithDeviceToken
method, 332
diffuse reflection, 349-350
diffuse textures, environment mapping and, 356-363
Discover application, 272
Django templates, 60
DMG file, 254
DNS-SD protocol, 271
Documents directory, 285
documentsDirectory variable, 286
drawing, into off-screen context, 304-309
.dSYM files, 110
@dynamic directive, 237

EAGAIN error, 261
EAGLView, 8
e-mail, in-application, 211-245
composing and sending messages, 230-235
Core Data for, 218-221, 235-238
DataManager, 226-228-230
switching to online mode, 241-44
threaded messages, 239
Three20 and, 221-224, 228
user interface, 211-218, 224-226
e-mail messages
composing and sending, offline, 230-235
threaded, sending, 239
emaillnvocationOperation: selector, 235, 237
embedded systems programming, 309
emissionRange, 20
emit button, 23
emitCounter, 20
emitter, 11
adding force, 25— 27
building, 13-14
explosion, 21— 23
particle emitting, 20-21
update loop for, 17
Enable Guard Malloc, 129-131
ENABLE_DATA_STRUCTURE_DEBUG_LOGS, 108
encryption, 206, 319
enqueueCurrentBuffer() function, 88—-91
ENTER_DEVICE_TOKEN_HERE, 331
Enterprise Object Framework (EOF), 184
entities, 197, 236
EntryForm class, 52
EntryForm object, 52
environment mapping, 352-364
diffuse textures and, 356—-363
normal, 354
per-pixel, 359-363
spherical, 353-356, 362
error codes, 150152
errors
See also debugging
scoping, 106
Event class, 187-190, 197
EventExtra entity, 199-200
eventsArray ivar, 186
EventViewController class, 189-191
EventViewController.m file, 202
EXCLUSIVE transaction type, 164
executeSql: method, 153, 155, 162, 170
executeSql:withParameters: method, 162, 172
explosion particle emitter, 21-23

Expressions window, 103-104

F

F_SETFL command, 261

fentl() system call, 261

feedback server, 341-342

fetchlfNeeded method, 295

FileMagnet, 286

fileTypeHint property, 95

finder class methods, 165

finder methods, 171-174

Flower Garden
development of, 347—- 349
environment mapping, 353-363
lighting, 349-352

FMDB, 179, 213-214

ForceBufferOverrun() method, 132

Foundation framework, 234

G

game keys, 60

Game model class, 52

game.plist template file, 56

GameController class, 50, 53

GameTypes, 8

gaming, correspondence, 39-61
accepting invitations, 43, 54-57
coding, 47-60
Google App Engine and, 44-47

inviting friend to game, 42-43, 50-53

making moves, 43, 57— 60
notifications, 43
tasks, 42—-44
GET requests, 50
get() method, 50, 53, 56
getNewMessagelD, 237

-getResultSetFromQueue method, 243

GL_COLOR_ARRAY, 28
GL_TRIANGLE_STRIP method, 15
GL_TRIANGLES method, 15
gogoDacs application, 283-284, 288
Google App Engine (GAE), 44-47
webapp module, 56
Google Docs service, 283
GoogleAppEngineLauncher, 48—-49

handleOpenURL: method, 55-56
handlers, 50

Hewitt, Joe, 213

htonl() function, 259

htons() function, 259

HTTPS connections, 206
hypothesis, about crash, 113-115

ifreq structures, 265
IMMEDIATE transaction type, 163
INADDR_ANY, 260
index.yaml, 48
Info.plist file, 54
init functions, 148-150
initWithRecipients: method, 228
InputViewController, 8
insert, 169-170
instance variables, 215-217
Instapaper, 212
interface flags, 266
interface responsiveness
AAPLot, 280-292
concurrency and, 292-297
displaying large amounts of data, 298299
drawing into off-screen context, 304—-309
expectations of, 280
interfaceNamesAddresses, 268
interpolation, 28—-30
10 controls, 264—267
network-related, 267
SIOCGIFCONF, 264—266
SIOCGIFFLAGS, 266
ioctl() function, 264
IP addresses
byte ordering, 259
multicasts and, 267
IP socket address structure, 258
IP_MULTICAST_IF option, 267
iPhone
application sandbox, saving data to, 285-286
challenges in developing for, 252—255
development for, 104
screen size, 252
iPhone 3GS
environment mapping and, 362
Open GL ES 2.0 and, 362
iPhone development program, 249

iPhone 0S
audio playback in, 96
networking APIs, 255-256
networking requirements and, 269-270
registering URL scheme support with, 54

iPhone 0S 3.0, 96

iPhone Simulator, 75, 256, 287

iPhone version check, 147

ISDatabase class, 144-157

ISModel class, 164—-175

iTap
autodiscovery solution in, 255, 273-275
connection between iTap receiver and, 250
development of, 249, 252-255
GUI, 250-252
multiplatform support, 254-255
networking subsystem of, 271-275
overview, 251
power management and, 269-270
querying network configuration, 264-267
WiFi networking and, 253, 255-271

iTap receiver, 251, 254

J

Java SDK, 45
json_encode function, 332

K

Keychain Access application, 322, 325-326

Key-Value Coding (KVC), 185, 199-203

Key-Value Observing (KVO), 185

KeyValueView class, 192

KeyValueViewController, 192

kNetworkReachabilityChangedNotification notification,
226

KPSMTP, 213

KRCC application, 96

KVC protocol, 186, 199

L

lerping, 28-30
Library directory, 285
lighting
OpenGL, 349-352
specular, 350-352
linear interpolation, 28-30

link map files, 135-137

little endian, 259

load balancing, 45

local address, 258—-260
Locations project, 186, 189
LocationsAppDelegate class, 193
logging, custom, 107-108

login keychain, 325

lookups, 171-174

.m file, 148
MacFUSE, 214
mail module, 52
Mail.app behavior, 226
main.py file, 48
malloc_error_break, 123125
malloc: *** error for object 0xXXXXXX: Non-aligned
pointer being freed, 123, 129
managed object context (MOC), 221
managed object model (MOM), 221
managedObjectContext, 244
mapping. See environment mapping
mapping layer, writing, 164—168
material controller, 16
MaterialController, 8
memory constraints, 309
Memory Browser, 103—104
memory bugs, 105
memory protection, in Objective-C, 105
memory stomps, 119-123
buffer overruns, 119
calling a deleted method, 119-120
debugging, 131-137
defined, 118-121
identifying, 122—-123
link map files and, 135-137
returning a deleted object, 120-122
tools to detect, 123-131
variables and, 131-135
MemoryBugsViewController class, 118
memoryWentBoom method, 310
mesh, 16
Message class, 232, 235-237
messagelD, 237
messageSent: delegate, 243
miGetStomped, 132-134
migration handling, 176-179
migrations, managing model, 194-198
mobile devices, buffering on, 84
mobile provisioning files, 319, 329, 331, 343

Model class, 237
model classes, database connection references, 165
model migrations, 194—198
model objects, 165166

deleting, 170-171

looking up, 171-174

mapping, 166—168

retrieving, 165

saving, 168-170

updating, 170

working directly with, 174-175
move.plist template file, 60
MPMoviePlayerController class, 66—68
$msg variable, 332
.msi file, 254
multicast datagrams, 256
multicasts/multicasting, 267-269, 273
multiplatform applications, 254
multiple documents, downloading, 288
multiple threads, 179
multithreading, 292—-297
mutexes, 227

naming conventions, 166
NAND flash memory, 284
navigation-based application, 145
network byte order, 259
network changes, 84
network configuration, querying, 264—267
network connections, 253
network connectivity, 212
network interfaces

flags, 266

querying names of available, 264—266
network protocols, 258
network state, changes in, 216, 224-226
NetworkDiscovery class, 256-257, 272-273
NetworkDiscoveryPeerTable, 272
networking, 249-275

CFSocket and, 262-263

contacting all devices on network, 267—268

iTap subsystem, 271-275

multicasts, 267-269

socket-based, 257-263

WiFi, 255-271

detecting availability, 268—269
power management and, 269-270

networking APIs, 255-256
networkOperationQueue, 243
NetworkStatus, 215

Newton platform, 41

NeXTStep, 184

normal environment mapping, 354
notifications, 44, 272-273
NS_BLOCK_ASSERTIONS, 105

NSArray arrayWithObjects: method, 162
NSArray class, 105, 119, 152, 159

NSArray property, 146

NSAssert method, 105

NSAutoreleasePool, 235

NSBindings class, 203

NSCAssert method, 105

NSCoder APIs, 179

NSCondition object, 83, 92

NSDate object, 57

NSDecimalNumbers, 284, 292

NSDictionary objects, 56, 59-60, 152, 157, 284-285
NSEntityDescription class, 238

NSException class, 150

NSFetchRequest class, 238
NSHTTPURLResponse, 73
NSInvocationOperation class, 233

NSLog class, 107

NSManagedObject class, 190-193, 203, 235-237
NSMutableArray class, 105, 119
NSMutableData instance variable, 58
NSMutableData object, 70, 73
NSMutableDictionary object, 155, 172, 274
NSMutableURLRequest class, 72, 203
NSNetService class, 271
NSNetServiceBrowser class, 271
NSNotification class, 216
NSNotificationCenter, 216, 226

NSNumbers class, 292

NSObject class, 115, 148

NSOperation objects, 57, 293—-297, 308-309
NSOperationQueue class, 293-297, 307-308
NSPredicate class, 238, 309
NSPropertyListSerialization class, 59, 203
NSRunLoop object, 239-241

NSSocketPort class, 256

NSString class, 108, 153

NSURLConnection class, 59, 72—73, 83, 85, 295
NSURLRequest object, 72

NSURLResponse object, 73

NSUserDefaults class, 228
NSZombieEnabled class, 126128

ntohl() function, 259

ntohs() function, 259

NYTimes App, 212

0

0_NONBLOCK flag, 261
Objective-C, 75, 164, 185
asserts in, 105
vs. Cand C++, 104
types, 155-156
Objective-C class, creating, 115-116
Objective-C-based Foundation framework, 256
object-relational mapping (ORM) framework, 184
objects. See also specific types
deleting, 170-171
reusable, creating, 199-203
saving, 168-170
updating, 170
viewing, 187-192
Observer pattern, 216
observers, 273
offline applications (OfflineMailer)
SMTP client
composing and sending messages, 230-235
Core Data, 218224, 235-238
DataManager class, 226—228
planning, 212-213
setting up instance variables, 215-217
SKPSMTPMessage class, 239-241
switching to online mode, 241-244
TTMessageController class, 228—-229
user interface, 213-218, 224-226
OfflineMailer.xcdatamodel, 235
OfflineMailerAppDelegate.h file, 215-217
OfflineViewController class, 224-226
open source, 213
open source code, 213, 244
open() function, 149
OpenGL, 347-364
environment mapping with, 347-364
lighting, 349-352
particle systems and, 8-9
OpenGL ES 1.1, 348-349
OpenGL ES 2.0, iPhone 3GS and, 362
OpenStep, 184
openURL: method, 54-55
0s module, 56

P

parameter values, 172

parameters, handling, in SQL, 160-162
particle emitter. See emitter

particle life cycle, 11-12

particle systems, 3-36
assigning textures, 16
basics of, 10-12
building, 12-19
code, 12-19, 21-24
color-changing particles, 28—-35
emitting particles, 20-21
explosion emitter, 21-23
implementation, 14
initial conditions, 19
introduction to, 5-7
OpenGL and, 8-9
Particles (example)
basic game flow, 9-10
code, 12-19
code overview, 8-9
random numbers and, 19
update loops, 17
variations, 23-27
particle textures, 10
particles, 10
building, 12
color-changing, 28—-35
emitting, 20-21
uniqueness of, 19
peer-to-peer networking, 253
.pem format, 327-328
per-pixel environment mapping, 362—-363
per-pixel reflections, 359
persistence framework, 180
persistent object store (POS), 221
persistent storage, Core Data and, 221
persistent store coordinator, 221
persistentStorageCoordinator, 221
PersistentStoreCoordinator instance, 195
persistentStoreCoordinator method, 221
pl_addOperationWithBlock method, 296
placeholder data, 286—288
Plausible Blocks compiler, 293—295
play method, 77, 95
playback queue, starting, 91
PlayQueueData, 83
PlayQueueData structure, 83—-84, 89, 91-92
PLBlockOperation, 296—297
plist file, 56, 179
plistRep method, 284
plists, 284-285
port numbers, 259
POSIX threads (pthreads), 227
POST requests, 53, 203
post() method, 53
post-play callback function, 82, 87, 91-92
power management, 269-270
predicateString variable, 238

Preferences directory, 285
primary key column, 167, 170
primaryKey property, 170
PrivateMethod category, 156
PrivateMethods category, 172
program portal, 320

@property declarations, 31
property listener callback, 81, 86-87
@property token, 186

property values, 167
propertyListenerCallback(), 91-92

push notifications. See also Apple Push Notification

Service
custom sounds for, 318
handling incoming, 317
propmting user to allow, 330
received, while application is running, 317
registration of, 315-316
script for, 331-335

push notification service. See Apple Push Notification

Service
Push2AppDelegate.m file, 315
PUT requests, 58-59
put() method, 58-60
Python scripting language, 44-45

Q

Qt, 254
Qt toolkit, 275
queues, request, 57

race conditions, 113
raiseSqliteException: method, 149-150
random numbers, 19

Reachability classes, 214-215
reachabilityChanged: method, 216
read() function, 260-261

receivedData instance variable, 59
rectangular emission volumes, 27
recvfrom() function, 260

refactoring, 162163

reflection vector, 353-354
registerForRemoteNotificationTypes method, 316
remote address, 258-260

remote databases, 203-206
RenderController, 8

request handlers/handling, 50, 57
requests

making, of SQLite database, 152-157
queues, 57
on the server, 59-60

response variable, 59-60

RESTful approach, 50

reusable objects, creating, 199-203
RFC 821, 218

RootViewController class, 187—188, 289
RootViewController.h file, 146
RootViewController.m file, 157

S

save method, 168-170
SceneController class, 8

SceneObject class, 8
SCNetworkReachability framework, 268
scoping errors, 106

SeeqPod, 66, 93

SELECT statements, 152—154

self variable, 87

semitransparent particles, 10
sendDeviceTokenToRemote: method, 317
sendto() function, 260, 267

server

dealing with requests on, 59-60

separating code and data representation on, 56—
57

setting up, for APNS application, 331-335

setEventsArray: method, 186
setNeedsLayout method, 303
setsockopt() function, 267

Settings application, 218
sharedDataManager method, 227
Shark, 290-292, 297-299

Simple Mail Transfer Proto: (SMTP), 217
sin_addr, 259

sin_port, 259

singleton design pattern, 226
SIOCGIFADDR 10 control, 267
SIOCGIFBRDADDR 10 control, 267
SIOCGIFCONF 10 control, 264—267
SIOCGIFFLAGS 10 control, 266—268
SIOCGIFNETMASK 10 control, 267
SkateDude, 4

SKPSMTPMessage class, 239-241
sleep() method, 303

SMTP client, offline

composing and sending, 230-235
Core Data, 218-224, 235-238
DataManager class, 226—228
planning, 212213

SKPSMTPMessage class, 239-241 SQLITE_ROW, 153

switching to online mode, 241-244 sqlite3_column_decltype, 154
TTMessageController class, 228—-229 sqlite3_errmsg16, 150
user authentication with, 218 sqlite3_step, 153
user interface, 213-218, 224-226 sqlite3_stmt variable, 152
SMutableDictionary, 274 SSL certificates, creating for APNS application, 319—
SnowDude, 3 331
SnowFerno, 3, 5 SSL server certificates, 332
SOCK_DGRAM sockets, 257 SSL server connections, 342
SOCK_STREAM sockets, 257 startQueue method, 91
socket() function, 258 StockPlot, 288-297
sockets Stocks application, 283
address family, 257 storage layouts, for bytes, 259
BSD, 261 streaming audio, 81-95
CFSocket, 262—-263 Streaming colour Studios, 101
creating, 258-262 stringWithFormat: method, 160
introduction to, 257-258 struct ifconf, 264-265
10 controls and, 266 struct ifreq, 265266
local and remote addresses, 258-260 struct keyword, 118
protocol, 258 struct sockaddr, 258
sending and receiving data, 260 struct sockaddr_in datatype, 258, 265
types, 257 struct sockaddr_in6 datatype, 258
specular lighting, 350—-352 symbolicatecrash script, 110-111
specular mask, 359 symlinks command, 46
spherical emission volumes, 27 @synchronized() method, 227
spherical environment mapping, 353-356, 362 synchronous calls, 57
SQL synchronous data downloading, 72
advanced, 158-164 @synthesize declarations, 31, 147-148, 186
cleanup, 162-163 system crashes, 113
CREATE statements, 155, 159-159 SystemConfiguration framework, 241

executing statements, 156-157

grouping statements into transactions, 163164

handling parameters, 160-162 T
logging messages, 152

refactoring, 162—163

SELECT statements, 152—154 tTagFl)e natmesl, rze}geving, 166
SQL database, 143 . i?rft) 0c0Ej o
SQLite databases, 143 emplate module,

template_values dictionary, 56
template.render() call, 56
templates, 56, 60

column types, 155

creating and initializing, 148-149
deleting objects, 170-171 .)
error codes, 152 Terminal.app file, 327

: . TestCPPClass, 133
:L%T((ﬂ:)nsg ? ';1qa_n11$t4ers, 160-162 testers, crash logs from, 109-110
making simple requests, 152-157 tes?ng, ctrlashes,11714—1 15
opening database connection, 149-151 texture a as;:_s, 356-361
preventing duplicate create statements, 158—159 tﬁx urde gom Iner, _d 939
refactoring and cleanup, 162-163 readed message sending,

: ; threads, crashing, 112
saving objects, 168—-170 ! ’
transaction support in, 163-164 Three20, 212, 221-224, 228-229, 232

. ; tmp directory, 285
SQLI#E{ESQSE?%?SY 170 top-level data, managing with DataManager, 226—

. 228
sqlite_master table, 159
S%LIT_ILOK, 152 toRow parameter, 172

TouchEngine, 284

transactions, grouping SQL statements into, 163—-164
TTAddressBookDataSource class, 229
TTMessageController class, 228—229
TTMessageRecipientField class, 232
typeForStatement:column: method, 154

UDP packets, 251

UlApplication, 270

UlApplicationDelegate proto:, 217-218

UllmageView, 226

UIKit, 304

UINavigationController class, 186, 189, 192, 289

UIRequiresPersistentWiFi, 270

UlScrollView, 300-304

UlTableView, 226, 272

UlTableViewController class, 190

UlTableViewDelegate methods, 191

UlViewController class, 189, 192, 225

UlWebView, 299-300

Unix, 255, 264

update statement, 169-170

updateDownloadStatus method, 296

updateNetworkStatus method, 216

updateResolution method, 301-304

URL requests, handling, 54-55

URL scheme, registering support with iPhone 0S, 54

usability, 252

USB, third-party applications and, 253-254

useNSEntityDescription class, 238

user authentication, with SMTP servers, 218

user experience, 261-262

user interface, for offline SMTP client, 213-218, 224—
226

vV

valueForKey: method, 159

__VA_ARGS__ identifier, 107

variable bit rate (VBR), 77

variable watch, 131-135

variables, memory stomps and, 131-135
vertex data arrays, 16

vertexCount variable, 18

vertexindex variable, 17, 33

view controllers, 187-192

ViewController class, 117

viewDidLoad method, 118, 126, 132, 175

W

web application, creating new, 47-50
web services, 333. See also Deep Green
webapp module, 56
WebObjects, 184
WhatNext application, 142—-143
WiFi, 253-254
WiFi networking, 255-271
CFSocket and, 262—-263
detecting availability, 268—269
power management and, 269-270
Windows Installer XML (WIX) toolkit, 254
write() function, 260-261

X,Y

xcdatamodel files, 193, 195-197
Xcode, 213-214

/4

z-fighting, 361

zoom operation, resetting resolution after, 301-304

You Need the Companion eBook

Your purchase of this book entitles you to buy the

companion PDF-version eBook for only $10. Take the
weightless companion with you anywhere.

e believe this Apress title will prove so indispensable that you'll want to carry it
vaith you everywhere, which is why we are offering the companion eBook (in
PDF format) for $10 to customers who purchase this book now. Convenient and fully
searchable, the PDF version of any content-rich, page-heavy Apress book makes a
valuable addition to your programming library. You can easily find and copy code—or
perform examples by quickly toggling between instructions and the application. Even
simultaneously tackling a donut, diet soda, and complex code becomes simplified
with hands-free eBooks!

Once you purchase your book, getting the $10 companion eBook is simple:

© Visit www.apress.com/promo/tendollars/.

® Complete a basic registration form to receive a randomly
generated question about this title.

© Answer the question correctly in 60 seconds, and you will
receive a promotional code to redeem for the $10.00 eBook.

APIess

HE EXPERT’S VOICE™

233 Spring Street, New York, NY 10013

All Apress eBooks subject to copyright protection. No part may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher. The purchaser may print the
work in full or in part for their own noncommercial use. The purchaser may place the eBook title on any of their
personal computers for their own personal reading and reference.

Offer valid through 4/10.

	MarkFM_Final.pdf
	Mark001A.pdf
	Mark001B.pdf
	Mark002A.pdf
	Mark002B.pdf
	Mark003A.pdf
	Mark003B.pdf
	Mark004A.pdf
	Mark004B.pdf
	Mark005A.pdf
	Mark005B.pdf
	Mark006A.pdf
	Mark006B.pdf
	Mark007A.pdf
	Mark007B.pdf
	Mark008A.pdf
	Mark008B.pdf
	Mark009A.pdf
	Mark009B.pdf
	Mark010A.pdf
	Mark010B.pdf
	Mark011A.pdf
	Mark011B.pdf
	Mark_Index.pdf

