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On making mistakes

“The higher up you go, the more mistakes you are allowed. Right at the
top, if you make enough of them, it’s considered to be your style.”

Fred Astaire

“A person who never made a mistake never tried anything new.”

Albert Einstein

“Mistakes are the portals of discovery.”

James Joyce

“Testing can show the presence of errors, but not their absence.”

Edsger Dijkstra

“Makin’ mistakes ain’t a crime, you know. What’s the use of having a
reputation if you can’t ruin it every now and then?”



Simone Elkeles

“If you are afraid to take a chance, take one anyway. What you don’t do
can create the same regrets as the mistakes you make.”

Iyanla Vanzant

And to finish the list, the following is just great:

“We made too many wrong mistakes.”

Yogi Berra

Preface

This is an introductory course on loss data analysis. By that we
mean the determination of the density of the probability of
cumulative losses. Even though the main motivations come from
applications to the insurance, banking and financial industries,
the mathematical problem that we shall deal with appears in
many application in engineering and natural sciences, where the
appropriate name would be accumulated damage data analysis
or systems reliability data analysis. Our presentation will be
carried out as if the focus of our attention is operational risk
analysis in the banking industry.

Introductory does not mean simple: because the nature of the
problems to be treated is complicated, some sophisticated tools
may be required to deal with it.

Even though the main interest, which explains the title of the
book, is to develop a methodology to determine probability
densities of loss distributions, the final numerical problem
consists of the determination of the probability density of a



positive random variable. As such, the problem appears in a
large variety of fields.

For example, for the risk management of a financial institution,
the nature of the problem is complicated because of the very
large variety of risks present. This makes it hard to properly
quantify the risks as well as to establish the cause-effect
relationships that may allow preventive control of the risk or the
damage the risk events may cause. For risk analysts, the
complication comes from the fact that the precise attribution of
losses to risk events is complicated, due to the variety and
nature of the risk events.

Historically speaking, in the engineering sciences there has been
a large effort directed to developing methods that can identify
and manage risks and quantify the damage in risk events. In
parallel, in the insurance business, a similar effort has led to a
collection of techniques developed to quantify damages (or
losses) for the purpose of the determination of risk premia.

In the banking and financial industries, during the last few
decades, there has been a collective effort to develop a precise
conceptual framework in which to characterize and quantify risk,
and in particular, operational risk, which basically describes
losses due to the way in which business is carried out. This was
done so that banks would put money aside to cover possible
operational risk losses. This has resulted in a typification of risks
according to a list of business types. Such typification has
resulted in systematic procedures to aggregate losses in order
to compute their distribution.

Similar mathematical problems also appear in systems reliability
and operations research in the insurance industries; in the
problem of finding the distribution of a positive random variable



describing some threshold in structural engineering; and in
describing the statistics of the escape time from some domain
when modeling reaction rates in physical chemistry.

In all of these problems, one eventually ends up with the need to
determine a probability density from the knowledge of its
Laplace transform, which may be known either analytically, as
the solution of some (partial) differential equation, or
numerically, as the result of some simulation process or
calculated from empirical data.

The problem of inverting the Laplace transform can be
transformed into a fractional moments problem on the unit
interval, and we shall see that the method of maximum entropy
provides an efficient and robust technique to deal with these
problems. This is what this book is really about.

This volume is written with several possible classes of readers in
mind. First and foremost, it is written for applied mathematicians
that need to address the problem of inverting the Laplace
transform of probability density (or of a positive function). The
methodology that we present is rather effective. Additionally,
with the banking and insurance industries in mind, risk
managers should be aware of the potential and effectiveness of
this methodology for the determination of risk capital and the
computation of premia.

To conclude, we mention that all numerical examples were
produced using R.

The authors wish to thank the copy-editor and the typesetters
for their professional and careful handling of the manuscript.

Madrid



Erika Gomes-Gonçalves, Silvia Mayoral
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Henryk Gzyl



(1.1)

1  Introduction

In this short chapter we shall do two things. First, we briefly
describe the generic problem that eventually leads to the same
typical numerical Laplace inversion problem, and second, we
give a summary of the contents of this book.

1.1  The basic loss aggregation problem

Consider the following compound random variable:

in which N is an integer valued random variable and the Xn  are
supposed to be positive random variables, independent
identically distributed and independent of N, all of which are
defined on a common probability space (Ω,F , P). The product

space structure from the underlying probability space comes to
mind as the obvious choice. That is, we may consider 

Ω = N × [0, ∞)N , with typical sample point 

ω = (n, x1, x2, … ) and coordinate maps N : Ω → N defined

by N(ω) = n, and Xn(ω) = xn . All questions that we can ask
about this model are contained in the σ-algebra F  generated by
N and the Xn .

Here, we suppose that the distributions pn = P(N = n), 

n = 0, 1, …  and F(x) = P(Xn ≤ x), x ∈ (0, ∞) are

supposed to be known, and the problem that we are interested
in solving is to determine P(S ≤ x), x ∈ (0, ∞). Since in many

of the applications of interest to us the Xn  have a density, the

S =
N

∑
n=1

Xn,



problem we want to solve is to find the probability density of S
from the information available about N and the Xn , or as may
be the case in many applications, from the empirical knowledge
of S.

In the list below we mention a few concrete examples. These will
be further explained and amplified in Chapter →4.

In the insurance industry: N is the total number of claims
in a given time period, and Xn  is the amount claimed by
the n-th claimant.
In the banking industry: N stands for the number of risk
events of a certain type, say credit card frauds or typing
mistakes authorizing a money transfer at certain branch of
the bank. In this case Xn  may stand for the loss in each
theft or the cost of each typing mistake. In this case, S will
stand for the total loss due to each risk type.
Again, in the banking industry, consider the following
simplified model of credit risk. At the beginning of the
year, the bank concedes a certain number of loans, some
of which are not paid by the end of the year. Now, N stands
for the total number of customers that do not return a
loan at the end of the year. In this case N is a random
number between 0 and the total number of loans that the
bank has given, which are due within the period. This time 
Xn  is the amount not returned by the n-th borrower. If all
borrowers are supposed to be statistically equivalent, we
are within the framework of our basic model.
In operations research: Let N be the number of customers
taken care of at a certain business unit, and Xn  the total
money that each of them spends, or the time that it takes
to serve each of them. Then, S will denote either the total
receipt for the period or the total service time, and the



management might be interested in its probability
distribution.

Some of these problems lead to subproblems that are
interesting in themselves, and important to solve as part of the
general problem at hand. Consider for example the following
situation. Suppose that we record global losses that result from
the aggregation of some other, more basic losses. Furthermore,
suppose that the number of possible risk sources is also known.
A question of interest is the following: Can anything be said
about the individual loss frequencies and the individual
severities at lower levels of aggregation? We mention two
specific examples. An insurance company suspects that the
frequency of claims and cost of the claims incurred by male or
female claimants are different, and wants to know by how much.
Or consider typing errors at a bank, which when made by male
or female clerks may cause different losses. These examples
pose the problem of determining what kind of individual
information can be extracted from the aggregate data.

It is one of the purposes of this book to propose a
methodology to solve the various problems that appear when
trying to determine the probability distribution of S from the
distribution of N and that of the Xn , and then to determine the
probability distribution resulting from aggregating such
collective risks. This is an old problem, which has been
addressed in many references. The other aim is to examine
some related questions, like how the methodology that we
propose depend on the available data, or why it works at all.

1.2  Description of the contents

The initial chapters follow a more or less traditional approach,
except for the fact that we do not review the very basic notions



of probability, calculus and analysis. We start the book by
devoting Chapter →2 to describing some of the integer valued
random variables that are used to model the frequency of
events. As we shall be considering events that take place during
a fixed interval of time (think of a year, to be specific), we will not
be considering integer valued random processes, just plain
integer valued random variables.

In Chapter →3 we consider a variety of the standard
examples to describe individual severities. The reason for
considering this in two blocks was mentioned previously. We
want to obtain the statistical properties of the compound
variable S from the properties of its building blocks. Before
reviewing some of the traditional ways of doing that in Chapter
→5, we devote Chapter →4 to looking in more detail at the
examples mentioned after (→1.1), that is, we will describe
several possible problems leading to the need to determine the
statistical nature of a compound random variable.

This is a good point to say that readers familiar with the
contents of Chapters →2, →3, and →5 (take a glimpse at the
table of contents), can skip the first five chapters and proceed
directly to Chapter →6. These chapters are meant to fill in some
basic vocabulary in probability theory for professionals from
other disciplines, so the material is included for completeness
sake.

Chapter →6 is devoted to the Laplace inversion problem,
because many traditional approaches rely on it. From the
knowledge of a model for the frequency of events N and a model
for the individual loss distribution losses X, the Laplace
transform on the aggregate loss can be simply computed if the
independence assumption is brought in. Then the problem of
determining the density of the aggregate loss becomes a
problem of inverting a Laplace transform. That is why we review



many of the traditional methods for inverting Laplace
transforms.

The methodology that we shall develop to invert Laplace
transforms to the density of S relies on the connection between
the problem of inverting the Laplace transform of a positive
random variable and the fractional moment problem. As we shall
see, the applicability of the methodology that we propose goes
beyond that of finding the density of compound random
variables. We shall describe that connection in Section →6.4.

In Chapters →7 and →8 we consider the basic aspects of
mathematical techniques for solving the fractional moment
problem, namely the standard method of maximum entropy.
This method is useful for several reasons. First, it does not
depend on the knowledge of underlying models and therefore it
is nonparametric. Second, it requires little data. In fact, eight
fractional moments (or the values of the Laplace transform at
eight points) lead to quite good reconstructions of the density.
We explain why that might be so in Chapter →9. Last but not
least, the method allows for extensions to cases in which the
data is known to fall in ranges instead of being point data, or
extensions to incorporate error measurements in the available
data.

Since the reconstructions fit the data rather well, that is the
Laplace transform of the maxentropic density coincides with the
given values of the Laplace transform regardless of how the
transform was calculated, we can easily study how the transform
depends on the available data. We examine this issue both
theoretically and by means of simulations in Chapter →10.

In Chapter →11 we address a natural converse problem: If
we are given aggregate data, besides being able to determine
the probability density of the aggregate distribution, we shall
see that to some extent, we can determine the underlying
statistical nature of the frequency of events and that of the



individual losses. In Chapter →12 we consider some standard
applications, one of the more important being the computation
of some risk measures, like value at risk (VaR) and tail value at
risk (TVaR).

Chapter →13 is devoted to an application of the method of
maximum entropy in the mean to a related risk management
problem. After an enterprise has determined the risks in each
line of activity, it has to decide how much rik capital to allocate to
cover each possible risk when the total risk capital is
preassigned.

To finish, in Chapter 14 we review some of the statistical
procedures used throughout the book. In particular, we
emphasize the statistical procedures used to check the quality of
the maxentropically reconstructed density functions, and review
the notion of copula, which is used to produce joint distributions
from individual distributions.



2  Frequency models

One of the two building blocks that make up the simplest model of aggregate
severity is the frequency of events during the modeling period. We shall examine
here some of the most common examples of (positive) integer valued random
variables and some of their properties. An integer valued random variable is
characterized by its probability distribution P(N = k) = pk ; k = 0, 1, … .

Whether we consider bounded or unbounded random variables depends on the
application at hand: If we consider the random number N of defaults among a
‘small’ number M of borrowers, it is reasonable to say that 0 ≤ N ≤ M . But if M
is a large number, it may be convenient to suppose that N can be modeled by an
unbounded random variable.

To synthesize properties of the collection {pk, k ≥ 0} and to study statistical

properties of collections of random variables, it is convenient to make use of the
concept of the generating function. It is defined by:

Definition 2.1.

Consider an integer valued random variable, and let z be a real or complex
number with |z| < 1. The series

is called the generating function of the sequence {pk, k ≥ 0}.

In many of the models used to describe the frequency of events, there exists a
relationship among every pk  that makes it possible to compute explicitly the
generating function G(z). Clearly, the series defining G(z) converges and 

(1/k!)dkG/dzk(0) = pk . One of the main applications of the concept comes

through the following simple lemma:

Lemma 2.1.

Suppose that N1, … ,NK  are independent integer valued random variables. With

the notation just introduced, if N = N1 + N2 + ⋯ + NK , then

GN(z) = ∑
k≥0

pkz
k = E[zN]



(2.1)

The proof is simple: Just note that 

GN(z) = E[zN ] = ∏j E[zNj ] = ∏jGNj
(z). We leave it for the reader to verify

that:

Lemma 2.2.

With the notations introduced above, the moments of N are

2.1  A short list of examples

We shall briefly describe some common examples. We will make use of them later
on.

2.1.1  The Poisson distribution

This is one of the most common models. It has interesting aggregation
properties. We say that N is a Poisson random variable with parameter λ if

It takes an easy computation to verify that

is actually defined for all values of z. From this it is simple to verify that

That is, estimating the mean of a Poisson random variable amounts to estimating
its variance.

Suppose that we are interested in the frequency of events in a business line at
a bank. Suppose as well that the different risk types have frequencies of Poisson
type. Then the collective or aggregate risk in that business line is Poisson.
Formally,

GN(z) =
K

∏
j=1

GNj
(z).

E[N k] = (z
d

dz
)

k

GN(z)
z=1

.∣P(N = k) = pk =
λe−λ

k!
; k ≥ 0.

GN(z) = E[zN] = eλ(z−1)

E[N ] = λ; Var(N) = λ.



Theorem 2.1.
If N1,N2, … ,NK  are Poisson with parameters λ1,λ2, … ,λK , then 

N = N1 + N2 + ⋯ + NK  is Poisson with parameter λ = ∑K
i=1 λi .

Proof.

According to Lemma →2.1,

As the generating function determines the distribution, the conclusion emerges.
 □

What about the opposite situation? That is, suppose that you have recorded the
annual frequency of a certain type of event resulting from the aggregation of
independent events, each of which occurs with known probability. For example,
car crashes are the result of aggregating collisions caused by either male or
female drivers, each proportional to their frequency in the population; or credit
card fraud according to some idiosyncratic characteristic. What can be said about
the frequency within each group from the global observed frequency? A possible
way to answer this question is contained in the following result.
Theorem 2.2.
Suppose that N is Poisson with parameter λ. Suppose that each event can occur as one

of K possible types that occur independently of each other with probabilities 
p1, … . , pK . The number Nj  of events of type j = 1, … ,K  can be described by a

Poisson frequency of parameter λj = pjλ and N = ∑K
j=1 Nj .

Proof.

Given that the event {N = n} occurs, the individual underlying events occur

according to a possibility like {N1 = n1, … ,NK = nK}. As the individual

events in the curly brackets are independent with probabilities p1, … , pK , the
joint probability of that event is

Therefore, since ∑nk = n and P(N = n) = e−λλn/n!,

G(z)= E[zN] = E[z∑Ni] = E[∏ zNi] = ∏E[zNi]

= ∏ eλi(z−1) = e∑λi(z−1) = eλ(z−1).

P(N1 = n1, … ,NK = nK ∣ N = n) = ( n

n1, … ,nk

)pn1

1 … pnK

K
.



Therefore, since ∑nk = n and ∑ pk = 1, we have λn = ∏j λ
nj  and 

e−λ = ∏j e
−pjλ . In other words, we can rewrite the last identity as

which is equivalent to saying that we can regard N as a sum of independent
Poisson random variables with parameters λj = pjλ.  □

2.1.2  Poisson mixtures

Consider the following interesting situation. Suppose that it is reasonable to
model the frequency of some event by means of a Poisson distribution, but that
regretfully its frequency is unknown, and it may itself be considered to be a
random variable. The risk event is observed, but its source (which determines its
frequency) is inaccessible to observation. To model this situation we proceed as
follows:

We suppose that the values of the parameter determining the frequency are
modeled by a random variable Λ, and that when the event takes place {Λ = λ},

the probability law of N is known to be P(N = k ∣ λ). That is, to be really proper

we should write P(N = k ∣ Λ = λ), which we furthermore suppose to be given

by (→2.1). For the model to be complete, we should provide the distribution
function P(Λ ≤ λ) = FΛ(λ) of the underlying variable. Once this is specified, we

can obtain the unconditional probability distribution of N by

Consider the following examples.

Example 1.

Suppose that Λ is distributed according to a Γ(r,β) law. That is, Λ has a

probability density given by fΛ(λ) = λr−1e−λ/β

βrΓ(r)  where, as usual, Γ(r) denotes the

Euler gamma function. Then,

P(N1 = n1, … ,NK = nK)= P(N1 = n1, … ,NK = nK ∣ N = n)P(N = n)

= ( n

n1, … ,nk

)pn1
1 … pnK

K

λn

n!
e−λ.

P(N1 = n1, … ,NK = nK) =
K

∏
j=1

(pjλ)nje−pjλ

nj!
,

P(N = k) = ∫ P(N = k ∣ λ)dFΛ(λ).



(2.2)

Example 2.

Let us suppose that Λ is a binary random variable. Suppose that there are two
types of drivers, of ‘aggressive’ and ‘defensive’ types. The insurance company
only knows the statistical frequency with which they exist in the population of
drivers. Or think perhaps about property damage, which may be ‘intentional’ or
‘unintentional’. Let us model this by saying that P(Λ = λ1) = p and 

P(Λ = λ0) = 1 − p describes the probability distribution of Λ. Therefore, in a

self explanatory notation

or equivalently

Of course, the remaining problem is to determine p, λ0  and λ1  from the data.

2.1.3  The negative binomial distribution

A few lines above we explained how the following distribution appears as a
mixture of Poisson random variables when the intensity is distributed according
to a gamma law. An integer valued random variable is said to have a negative
binomial distribution with parameters r > 0 and β > 0 whenever

It is not difficult to verify that the generating function of this probability law is

P(N = k)=

∞

∫
0

P(N = k ∣ λ)fΛ(λ)dλ =

∞

∫
0

λke−λ

k!

λr−1e−λ/β

βrΓ(r)
dλ

=
1

k!

1

βrΓ(r)

∞

∫
0

e−λ(1+β−1)λk+r−1dλ =
Γ(k + r)βk

k!Γ(r)(1 + β)(k+a)

= (k + r − 1

k
)( β

1 + β
)

k

( 1

1 + β
)

r

.

P(N = k) = P(N = k ∣ λ0)P(Λ = λ0) + P(N = k ∣ λ1)P(Λ = λ1),

P(N = k) = (1 − p)
λk

0

k!
e−λ0 + p

λk
1

k!
e−λ1 .

P(N = k) = pk = (
k + r − 1

k
)(

1

1 + β
)

r

(
β

1 + β
)

k

.



(2.3)

(2.4)

which converges for |z| < 1. Using this result, one can verify that

which relates the parameter r and β to standard statistical moments.

Note that the geometrical distribution is a particular case of the negative binomial
corresponding to setting r = 1. In this case we obtain

where at the last step we set p = 1/(1 + β) and q = 1 − p. If we think of N as

describing the number of independent trials (at something) before the first
success, clearly N will have such a law. Note as well that

It is also interesting to note that when r is a positive integer and pk  is given by
(→2.2), then N can be interpreted as the r-th event occurring for the first time at 
k + r attempts.

2.1.4  Binomial models

This is the simplest model to invoke when one knows that a maximum number n
of independent events can occur within the period, all with the same probability of
occurrence. In this case probability of occurrence of k events is clearly given by

The generating function of this law is given by G(z) = [1 − p(z − 1)]n , from

which it can easily be obtained that

Now, there is only one parameter to be estimated, and it is related to the mean.

2.2  Unified version

G(z) = ∑
n≥0

pnz
n = [1 − β(z − 1)]−r

,

E[N ] = rβ; Var(N) = rβ(1 + β),

P(N = k) = pk =
1

1 + β
( β

1 + β
)

k

= pqk,

P(N ≥ k) = qk, and P(N ≥ m + k ∣ N ≥ k) = qm = P(N ≥ m).

P(N = k) = (n
k
)pk(1 − p)n−k.

E[N ] = pn; Var(N) = np(1 − p).



(2.5)

There is an interesting way of describing the four families of variables that we
have discussed above. The reason is more than theoretical, because the
characterization provides an inference procedure complementary to those
described above, in which we related the moments of the variables to the
parameters of their distributions.

Definition 2.2.

Denote by pk  the probability P(N = k). We shall say that it belongs to the Panjer

(a, b, 0) class if there exist constants a, b such that

Note that the value of p0  has to be adjusted in such a way that ∑n≥0 pn = 1.

The relationship between a, b and the standard parameters is described in
→Table 2.1.

Table 2.1 The Panjer (a, b, 0) class.

Distribution a b p0

Poisson 0 λ e−λ

Binomial − p

1−p
(n + 1) p

1−p
(1 − p)n

Neg. Binomial β

1+β
(r − 1) β

1+β
(1 + β)−r

Geometric β

1+β
0 (1 + β)−r

The interesting feature of the characterization mentioned above is the following:
Suppose that we have a ‘reasonable amount’ N of observations so that we can

estimate p̂k = nk

n
, where nk  is the number of time periods in which exactly k risk

events occurred; then (→2.5) can be rewritten as

The beauty about this is that it can be reinterpreted as linear regression data,
from which the parameter a, b can be estimated and the standard parameters of
the distribution can be obtained as indicated in →Table 2.1.

2.3  Examples

pk/pk−1 = a + b/k, for k = 1, 2, 3, … .

kp̂k/p̂k−1 = ka + b; k = 1, 2, … .



In this section we examine in more detail the process of fitting a model to
empirical data about the frequency of events of some (risk) type. The usual first
choices that come to mind are the binomial, negative-binomial and Poisson
models. We mention at this point that we shall make extensive use of this class in
Chapter →12 when studying the disentangling problem. For the time being we
shall illustrate the most direct applications of this class.

2.3.1  Determining the parameter of a Poisson distribution

Suppose we have data about daily system failures at a given bank, and that we
have organized the data as shown in →Table 2.2.

Table 2.2 Daily system failures of some bank.

Number of events (k) Frequency ( nk ) Relative frequency ( pk )

0 11 0.011

1 50 0.050

2 112 0.112

3 169 0.169

4 190 0.190

5 171 0.171

6 128 0.128

7 82 0.082

8 46 0.046

9 23 0.023

10 10 0.010

11 5 0.005

12 2 0.002

13 1 0.001

14 0 0.000

Total 1000 1

In the left column of →Table 2.2 we list the possible number of failures and in
the second column we list the number of days in which that number of failures
occurred. Clearly, during the data gathering period, more than 14 failures were
never observed during one day. The histogram corresponding to that data is
displayed in →Figure 2.1.



Figure 2.1  Failures versus time.

The first step in the risk modeling process is to determine a model for the
frequency of losses. So, let us suppose that the frequency model belongs to the 
(a, b, 0) family. Thus, we shall consider the characterization

k
p̂k

p̂k−1

= ak + b,



where, to be explicit, p̂k = nk

∑k nk
, and nk  is the frequency with which k losses are

observed.
Let us now consider →Table 2.3, a variant of the first table in which the last

column is replaced by a column displaying k
p̂k

p̂k−1
= k

nk

nk−1
.

Table 2.3 Daily system failures in some bank.

Number of events (k) Frequency ( nk ) k nk

nk−1

0 11 –

1 50 4.545

2 112 4.480

3 169 4.527

4 190 4.497

5 171 4.500

6 128 4.491

7 82 4.484

8 46 4.488

9 23 4.500

10 10 4.348

11 5 5.500

12 2 4.800

13 1 6.500

14 0 0.000

Total 1000 –

Next, we plot k nk

nk−1
 versus k to obtain →Figure 2.2. Clearly the values appear

to be constant about 4.5 except for the three last values. This would suggest that
we are in the presence of a Poisson distribution, because a appears to be 0 and b
(which for the Poisson coincides with λ) seems to be about 4.5.

One easy test of the ‘Poissonness’ of the distribution is the comparison of the
mean and the variance of the data. Both the mean and the variance of the data in
→Table 2.2 equal 4.5. This reinforces the possibility of its being a Poisson
distribution. To be really sure, we would need to apply tests like the chi-square ( 

χ2 ), maximum likelihood or Kolmogorov–Smirnov tests, in case we were dealing
with continuous data.

χ2 goodness of fit test



(1)
(2)

Figure 2.2  Plot of k versus k nk

nk−1
.

This is a standard hypothesis test. Here we shall apply it to the data in →Table 2.2
to decide whether the data comes from a Poisson of parameter λ = 4.5. The first
step consists of establishing the null and alternative hypotheses:

H0 : the random variable is distributed according to a Poisson law
H1 : the random variable is not distributed according to a Poisson
law.



In →Figure 2.1 we display the frequency histogram of the daily data. The number
of categories (bins) is k = 14 and the total number of data points is n = 1000
(roughly 40 months of data) and there is only one parameter (λ) to be estimated.
We already did that, but we can also obtain it from the estimated sample mean.
The observed frequency Oi  in each of the bins {0,1,…,14} is shown in →Table 2.2.
The expected frequency Ei  for each of the k categories can be estimated by 

Ei = nP(X = i) = n(e−λλi/i!), with λ = 4.5. In →Table 2.4 we gather all the

steps necessary to compute the value of χ2
o . As a practical rule, it is advised that

the theoretical expected frequency in each category is not less than 5. In case it is
to be applied, one may combine successive intervals until the minimal frequency
is achieved.

Table 2.4 Absolute and relative frequencies in each category.

Number of events (k) Absolute frequency ( Ok ) Relative frequency ( Ek )

0 11 11.1089965

1 50 49.9904844

2 112 112.4785899

3 169 168.7178849

4 190 189.8076205

5 171 170.8268585

6 128 128.1201439

7 82 82.3629496

8 46 46.3291592

9 23 23.1645796

10 10 10.4240608

11 5 4.2643885

12 2 1.5991457

13 or more 1 0.8051379

Total 1000 1000

In →Table 2.4 we see that the practical rule suggests that we should combine
intervals to form a new category. In our case, this will correspond to 11 or more
events. In →Table 2.5 we see the resulting new dataset, in which the number of

categories is 12. Therefore the new degree of freedom for the χ2  test is
12−1−1=10. If we set the level of significance to α = 0.05, the critical value of 

χ(0.05, 10) can be obtained from the tables of the χ2  distribution or using your

favorite software.



Table 2.5 Absolute and expected frequencies.

Number of events (k) Absolute frequency ( Ok ) Expected frequency ( Ek )

0 11 11.1089965

1 50 49.9904844

2 112 112.4785899

3 169 168.7178849

4 190 189.8076205

5 171 170.8268585

6 128 128.1201439

7 82 82.3629496

8 46 46.3291592

9 23 23.1645796

10 10 10.4240608

11 or more 8 6.6686721

Total 1000 1000

Therefore, χ2
o = ∑k

i=1
(Oi−Ei)

2

Ei
= 0.2922061. The value of 

χ2
0.05,10 = 18.307045 using the R command qchisq(1 − 0.05, 10). Since

0.2922061<18.30704 we do not reject the null hypothesis and we conclude that the
data is distributed according to a Poisson(4.5) law.

The procedure just described can be carried out in R using the command
goodfit available in the vcd library. This command allows us to verify whether a
dataset does or does not fit some of the discrete distributions (binomial, negative

binomial or Poisson) via a χ2  or a maximum likelihood procedure.
Organizing the data in a matrix x, the code for the R procedure for the

goodness of fit test is displayed in →Table 2.6



Table 2.6 R code for the goodness of fit test.

The results of applying the code in →Table 2.6 are displayed in →Table 2.7. As
we mentioned above, the dataset in →Table 2.2 fits a Poisson quite well.

Table 2.7 Results of applying the goodness of fit test.

Comment. Note that the number of degrees of freedom in →Table 2.7 is
different from its true value because the procedure ‘does not know’ that we are
estimating a parameter. We mention as well that in R there exists another
command that produces similar results, namely the command chisq.test.

A simpler but not so rigorous numerical procedure consists of plotting the
probability distribution that is supposed to describe the data along with a
histogram of the data, and comparing the result visually. For the dataset in
→Table 2.5, such a procedure yields →Figure 2.3. The display suggests that the
proposed distribution seems to be the right one.



Figure 2.3  Frequency data and theoretical distribution.

Computation of the P-value

The P-value is usually used in hypothesis testing. It is defined as the smallest
significance level that can be chosen to possibly reject the null hypothesis about a
given dataset. Any significance level smaller than the P-value implies not rejecting
the null hypothesis.

In the present case it can be defined by:



The null hypothesis is rejected when:

Thus, in our example it happens that

Observe that the results using R, displayed in →Table 2.7, show that the Pvalue  is
approximately 1, which coincides with the previously obtained result. The Pvalue

can be computed using R by 1 − pchisq(0.29, 10).

Comment. This test is independent of the sample size, so it is always possible
to reject a null hypothesis with a large enough sample, even though the true
difference is very small. This situation can be avoided by complementing the
analysis with the calculation of the power of the test and the optimal sample
space, as suggested, for example, in [→2].

Determination of the parameter by maximum likelihood

The basic philosophy of the maximum likelihood estimation procedure is the
following: We suppose that the distribution belongs to some parametric
distribution family, and then we determine the parameter that makes the dataset
most probable. Then, the goodness of fit test may be applied to complement the
analysis.

So, consider the data in →Table 2.2 once more. We begin by supposing that the

distribution underlying the data is Poisson P(X = k) = e−θθk

k! , and the likelihood

function is defined by

In our example n = 1000. The log-likelihood function is defined by

Pvalue≈ P(χ2
α,k−p−1 > χ2

0)

0≤ Pvalue ≤ 1.

α > Pvalue.

Pvalue ≈ P(χ2
0.5,10 > 0.2922061) = 0.9999995.

L(θ; k1, k2, … , kn)=
n

∏
i=1

f(ki ∣ θ) =
n

∏
i=1

e−θθki

ki!

=
e−nθθ∑

n
i=1 ki

∏n
i=1 ki!

.



where the term log (∏n
i=1 xi!) can be ignored because the likelihood function is

maximized with respect to θ. To find the value of θ that maximizes the likelihood,
we differentiate the log-likelihood function with respect to θ and equate the result
to zero, obtaining

Therefore,

which happens to be the sample mean of the data, with a value of 4.505. To verify

that 
ˆ
θ really minimizes the likelihood function, we compute its second derivative

and substitute in the value of 
ˆ
θ, obtaining

If you are a fan of statistical software, the procedure just described can be carried
out using R as described in →Table 2.8. The user information about this, or any
other command, may be obtained by invoking the “help”(command).

log L(θ;x1,x2, … ,xn) = −nθ+ log θ
n

∑
i=1

xi− log (
n

∏
i=1

xi!),

∂ log L(θ;x1,x2, … ,xn)

∂θ
= −n +

∑n
i=1 xi

θ
= 0.

ˆ
θ =

∑n
i=1 xi

n
,

∂ 2 log L(θ;x1,x2, … ,xn)

∂ 2θ
= −

∑n
i=1 xi

θ2
= −

n2

∑n
i=1 xi

< 0.



Table 2.8 R code for the method of maximum likelihood.

Application of the method of moments

The method of moments is a useful technique on two counts. First, some
probability distributions are determined by the collection of their (integer)
moments, and second, for many parametric distributions the parameters are
related to the moments in a simple way.

From the analytic point of view there is a simple relationship between the
moments and the generating function of the probability distribution. Let us work
out some details in the context of a simple example.



Suppose that we wanted to determine the parameter λ of a Poisson distribution
and we know the generating function (or the moment generating function), that
is, we know

Taking derivatives at α = 0 we obtain

This identity asserts that in order to determine the parameter of the distribution
from the sample data, all we need is to estimate the first moment (the expected
value) of the random variable, that is

We are happy because the same result is obtained as when applying the
maximum likelihood method.

2.3.2  Binomial distribution

Suppose that we have data describing the number of daily failures at some power
generating plant. The data listed in →Table 2.9 was simulated from a binomial 
B(0.2, 60). The power generation failures may be the of cause of failures in a

network of banks, or the failure of some other process depending on the
availability of electrical power.

GX(α) = E[e−αX] = e−λ(1−exp(−α)).

μ1 = E[X] = −
dGX

dα α=0

= λ.∣ˆ
λ =

1

n

n

∑
k=1

xk.



Table 2.9 Number of failures at a power plant.

Number of events (failures) k Frequencies ( nk ) Relative frequencies ( pk )

6 8 0.08

7 19 0.19

8 36 0.036

9 60 0.060

10 86 0.087

11 110 0.111

12 125 0.126

13 128 0.129

14 118 0.119

15 99 0.100

16 76 0.077

17 53 0.053

18 35 0.053

19 21 0.021

20 11 0.011

Total 985 –

In →Figure 2.4 we see the bar diagram corresponding to the data in →Table
2.9.



Figure 2.4  Bar graph of the daily failures at a power plant.



Table 2.10 Number of failures at a power plant.

Number (k) of events Frequency ( nk ) k nk

nk−1

6 8 –

7 19 16.62

8 36 15.15

9 60 15

10 86 14.33

11 110 14.06

12 125 13.63

13 128 13.31

14 118 12.90

15 99 12.58

16 76 12.28

17 53 11.85

18 35 11.88

19 21 11.40

20 11 10.47

Total 985 –



Figure 2.5  Plot of k versus k nk

nk−1
.

To apply the Panjer procedure we created →Table 2.10 with a new column

corresponding to the values of k
p̂k

p̂k−1
= k nk

nk−1
.

In →Figure 2.5 we display the plot of k versus the values of k p̂k

p̂k−1
, or,

equivalently, k nk

nk−1
. Clearly, the points follow a straight line with negative slope,

which suggests that the data comes from a binomial distribution and we only
need to determine its parameters.



We fit the data to the line k pk
pk−1

= k nk

nk−1
= ka + b and obtain a = −0.3937

and b = 18.5668, with the resulting line plotted in →Figure 2.6.

Figure 2.6  Linear regression.

We already saw that the relationship between the parameters a, b and the
parameters p, m is given by



Solving this simple system, we obtain the following parameter values: 

p = 0.282248855, n = 46.15977 and p0 = 2.214 × 10−7 . We can supplement
this analysis by invoking the method of maximum likelihood to provide another

determination of the parameters, and by invoking the χ2 -test to complete the
analysis.

The likelihood function of a dataset following the binomial distribution 

P(X = x) = (m
x
)pxqm−x  is

We dropped the term not containing p and wrote (≃) to represent that. The log-
likelihood is

Differentiating with respect to p and equating to 0 we obtain

or,

Therefore, p̂ = 0.2, which coincides with the values determined previously. We

leave the application of the χ2 -test as homework for the reader.

a = −
p

1 − p
, b = (m + 1)( p

1 − p
), and p0 = (1 − p)m.

L(θ;x) =
n

∏
i=1

(m

xi

)pxiqm−xi ≃
n

∏
i=1

pxiqm−xi = p∑
n
i=1 xi(1 − p)∑

n
i=1(m−xi).

log L(θ;x) =
n

∑
i=1

xi log (p) +
n

∑
i=1

(m − xi) log (1 − p).

∑n
i=1 xi

p
−

∑n
i=1(m − xi)

1 − p
= 0,

p =
∑n

i=1 xi

nm
=

X̄

m
.



3  Individual severity models

In this chapter we shall examine a few of the large variety of possible
continuous, positive random variables that are used to model individual loss
severities. Besides the obvious listing of their densities and statistical
properties, of potential interest for us is the fact that the Laplace transform of
the probability density (in short, the Laplace transform of the random variable)
can be explicitly computed. Let us begin with the basic definition.

Definition 3.1.

Let X be a positive random variable with density fX(x). Its Laplace transform 

ψ(α) is defined for any α > 0 by

A widely used and related concept is the moment generating function, given by
M(t) = ϕ(−t). Those who get annoyed by the minus sign when computing

derivatives prefer this notation.

Even though sometimes the range of the definition can be extended to a
larger subset of the real line, we shall not bother about this too much. Further
properties of the Laplace transform will be explored in Chapter →6. The
definition given is all we need for the time being. In all cases we will make
explicit the relationship between the moments of the variable and the
parameters of the distribution.

3.1  A short catalog of distributions

The densities considered below are characterized by parameters that are easily
related to moments of the variables, making the problem of their estimation
easy. The reader is supposed to finish the incomplete computations.

3.1.1  Exponential distribution

ϕ(α) = E[e−αX] =

∞

∫
0

e−αxfX(x)dx.



(3.1)

(3.2)

The exponential distribution is characterized by a single parameter λ. The
density is given by

The reader should verify that for any pair of positive numbers t, s the following
holds: P(X > t + s ∣ X > t) = P(X > s). This property actually

characterizes the exponential density.

3.1.2  The simple Pareto distribution

This density is characterized by two positive parameters λ and θ (which is
usually supposed to be known because it denotes a cutoff point),

This is one of the simplest examples in which the Laplace cannot be given by a
close analytic expression. The series expansion (in α) of the incomplete gamma
functions is nevertheless convergent. This makes the need for the approach
that we favor apparent, as the computations to obtain aggregate losses
involving individual severities of the Pareto type have to be carried out
numerically. Note as well that when θ is known, λ can be obtained by
estimating the mean.

3.1.3  Gamma distribution

The density of such variables is characterized by λ > 0 and β > 0, and its
simple properties are:

f(x)= λe−λx, M(t)= λ(λ − t)−1,

F(x)= 1 − e−λx, ϕ(α)=
λ

λ + α
.

E[Xk]=
k!

λk
; k ∈ N,

f(x)= λθλx−(λ+1); x > θ,

F(x)= 1 − (θ/x)λ,

E[Xk]=
λθk

(λ − k)
; k ∈ N, k < λ,

ϕ(α)= λ(θα)λΓ(−λ,α).



(3.3)

3.1.4  The lognormal distribution

This is a very widely used model. It is also interesting for us since its Laplace
transform has to be dealt with numerically. When X is lognormal, the ln (X) is

distributed according to a normal distribution, hence its name. The basic
properties of the variable are:

The Laplace transform of this density is a complicated affair. Try summing the
series expansion of

where the moments are given a few lines above. Again, it may be easier to
proceed numerically: Simulate a long sequence of values of X and compute the
integral by invoking the law of large numbers.

3.1.5  The beta distribution

f(x)=
(xβ)λe−xβ

xΓ(λ)
,

E[Xk]=
β−kΓ(λ + k)

Γ(λ)
; k > −λ,

E[Xk]= β−k
k

∏
j=1

(λ + k − 1); when k ∈ N,

ϕ(α)= ( β

β + α
)

λ

; α > 0.

f(x)=
1

xσ√2π
exp (−

1

2
(

ln x − μ

σ
)

2

) =
ϕ( lnx−μ

σ
)

xσ
,

F(x)= Φ( ln −μ

σ
),

E[Xk]=exp [kμ +
1

2
k2σ2].

E[e−αX] =
∞

∑
k=0

(−α)k

k!
E[Xk],



(3.4)

This is a standard example of a continuous distribution on a bounded interval.
It is described by two shape parameters a, b, and a parameter L that specifies
its range, which we chose to preserve as generic, for when it is unknown it can
be randomized. Otherwise, it can be scaled to L = 1. The properties of the
beta density are:

Simple as this density may appear, observe that its Laplace transform is a
again given by a power series.

3.1.6  A mixture of distributions

We can think about mixtures as we think of the conditional expectations of a
random variable given some other variables. This certainly is an extension of
the notion of Poisson mixture considered in Chapter →2. A motivation for this
topic comes from the fact that in many instances, when observing losses, we
may not distinguish the source or the cause of the loss. For example, when
totaling collision damage payments, an insurance company has the record of
all claims paid, but not necessarily discriminated by gender or age group.

Here we shall consider only the case of discrete mixtures. To establish the
necessary notation, consider a discrete random variable Y taking values 
{y1, … , yk} with probabilities P(Y = yi) = wi . Consider as well random

variables X, X1 , Xk  such that

With all these notations, we define the finite mixture as follows:

f(x)=
Γ(a + b)

Γ(a)Γ(b)

xa−1(L − x)b−1

La+b−1
; 0 < x < L,

E[Xk]= Lk
k

∏
j=1

(a + k − j)

(a + b + k − j)
; k ∈ N,

E[Xk]=
LkΓ(a + b)Γ(a + k)

Γ(a)Γ(a + b + k)
; k > −a,

ϕ(α)=
∞

∑
k=1

(
k−1

∏
j=0

a + j

a + b + j
)

(−αL)k

k!
.

P(X ≤ x ∣ Y = yi) = FXi
(x); i = 1, … , k.



(3.5)

Definition 3.2.

We say that the random variable X is a finite mixture of the random variables 
X1, … ,Xk  with weights wi  whenever

An application

A simple but interesting application of this concept to the analysis of loss
distributions goes as follows. The losses in some line of business occur in two
separate categories, or two event types: low severity or of high severity. When
the severity is low, the mean loss is small, and when the severity is high, the
mean is ‘very’ large. Suppose for example that the severity distribution in both
cases is given by a gamma type density, and that the frequencies of occurrence
of each type of event are 99 % and 1 % respectively. We can then write

where we supposed that the mean in the high severity case is 500 times the
mean of the low severity case, and that the shape parameter b is the same.

3.2  Numerical examples

In this section we consider two simple numerical examples, representative of
the type of analysis carried our in order to determine the distribution of
individual losses to establish a model of aggregate losses.

3.2.1  Data from a density

Consider the data gathered in →Table 3.1, in which we list the events and the
loss occurring in each event. We want to determine the statistical distribution
of such losses.

FX(x) = P(X ≤ x) =
K

∑
i=1

wiFXi
(x).

FX(x) = 0.99Γ(a, b)(x) + 0.01Γ(500a, b)(x),



Table 3.1 Observed severities.

Event (k) Loss Event (k) Loss Event (k) Loss

1 1 516 028.32 26 453 455.18 51 221 558.05

2 1 498 141.46 27 449 911.93 52 203 935.81

3 1 436 992.93 28 446 218.58 53 191 718.66

4 1 411 135.84 29 399 945.39 54 185 600.43

5 1 402 875.75 30 396 987.916 55 152 676.24

6 1 382 964.54 31 390 013.44 56 147 058.98

7 1 243 413.57 32 389 501.23 57 145 930.81

8 1 170 903.11 33 378 440.99 58 143 431.94

9 976 245.85 34 369 399.32 59 134 381.89

10 969 018.21 35 364 209.60 60 125 367.85

11 871 878.61 36 361 308.27 61 118 109.20

12 755 416.05 37 337 976.11 62 115 076.13

13 730 944.58 38 327 905.81 63 112 081.67

14 669 860.28 39 323 704.58 64 93 575.70

15 668 858.27 40 319 140.11 65 92 119.22

16 641 890.75 41 316 762.41 66 86 061.66

17 621 547.09 42 304 855.13 67 83 937.03

18 599 481.55 43 296 318.58 68 55 383.49

19 582 070.72 44 272 157.26 69 49 195.29

20 547 046.03 45 270 419.08 70 48 974.33

21 524 929.89 46 251 966.24 71 42 990.75

22 494 375.38 47 244 035.60 72 25 507.72

23 482 097.24 48 232 145.86 73 11 115.65

24 458 880.05 49 223 349.34 74 455.52

25 456 639.17 50 222 457.75

An exploratory analysis of the data is the first step in determining the
frequency distribution behind the data. The standard procedure consists of
computing the simple statistics and analyzing the visual displays of the data to
get an idea of the type of density. This visual display also suggests possible
densities to compare against the data. After that, a goodness of fit technique,
like the Kolmogorov–Smirnov test, can be applied to measure the quality of the
fit.

In →Figure 3.1 we show the histogram of the data in →Table 3.1. The
obvious step is to compare it with the plot of a few densities that usually
appear in similar situations. Since the histogram suggests decreasing



frequency as severity increases, we consider distributions like the exponential
or the gamma to begin with.

Figure 3.1  Severity histogram.

In →Figure 3.2 we compare the distribution of the data to the exponential

density of parameter λ = 1
X̄

 and to the gamma distribution of parameters 

α = X̄ 2

S 2  and β = X̄
S 2 , where X̄  and S 2  are, respectively, the sample mean

and the sample variance of the data. Recall that the relationship between the

parameters and the statistics for these distributions is given by E[X] = 1
λ

 for



the exponential density, whereas E[X] = α
β

 and Var[X] = α
β2  for the

gamma density.

Figure 3.2  Comparison with theoretical densities.

We can also compare the cumulative distribution functions to the
cumulative empirical distribution. This is presented in →Figure 3.3, again for
the same two sets of parameters mentioned above.



Figure 3.3  Comparison of cumulative distribution functions.

Another way of comparing data against theoretical distributions is by
means of a quantile plot (Q-Q plot), which is a graphical procedure to diagnose
differences between a probability distribution of a sample and a possible
distribution that the sample may come from. If the sample comes from the trial
theoretical distribution, the plot should be ‘almost’ linear.



Figure 3.4  Q-Q plots.

In →Figure 3.4 we display the (Q-Q) plot of the data and the gamma and
exponential densities. A line at 45° was drawn to facilitate the comparison.
Certainly, to suppose that the data comes from an exponential distribution
makes more sense than to suppose that it comes from a gamma distribution.
To estimate the parameter by means of the maximum likelihood procedure, we
form the likelihood function

corresponding to an exponential density f(x) = λe−λx . Therefore, the log-

likelihood is given by

Equating the derivative with respect to λ to 0, we obtain

L(θ;x) =
n

∏
i=1

λe−λxi = λne−λ∑n
i=1 xi

log L(θ;x) = n log (λ) − λ

n

∑
i=1

xi.

λ =
n

∑n
i=1 xi

.



After having estimated the parameter, we have to make sure that the data is
really a sample from that distribution. For that, the standard procedure

consists of using goodness of fit tests, like the χ2  or the Kolmogorov–Smirnov
tests. Once more, we direct the reader to Chapter 14 for a more detailed
description of the statistical procedures that we use.

When the data {x1, … ,xn} is supposed to come from an exponentially

distributed random variable, we perform the following hypothesis test: We
compare the null hypothesis H0 : X ∼ Exp(λ) against the alternative 

H1 : X  does not follow a Exp(λ).

To apply the test, we carry out the steps described in →Table 3.2. That is,
we place the data in increasing order and compute the empirical distribution ( 
Fn ) at consecutive points, as well as the theoretical distribution F0 , and then
the differences indicated in the first row of the table. We then apply the
Kolmogorov–Smirnov test as described in Chapter 14. The value of the test
statistic is D = 0.080342, which is to be compared to the critical value 
d0.05,75 = 0.15. Since D < d0.05,75  we do not reject the null hypothesis, that is

we stick to the exponential distribution as suggested by the (Q-Q) plot.

Table 3.2 Data for the Kolmogorov–Smirnov test.

i xi Fn(xi) Fn(xi−1) Fo(xi) |Fn(xi) − Fo(xi)| |Fo(xi) − Fn(xi−1)|

1 455.52 0.01351351 0.00000000 0.001019638 0.0124938758 0.0010196377

2 11 
115.65

0.02702703 0.01351351 0.024586672 0.0024403552 0.0110731583

3 25 
507.72

0.04054054 0.02702703 0.055524583 0.0149840426 0.0284975561

4 42 
990.75

0.05405405 0.04054054 0.091789960 0.0377359056 0.0512494191

5 48 
974.33

0.06756757 0.06756757 0.103879227 0.0363116590 0.0498251726

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

70 1 402 
875.75

0.94594595 0.93243243 0.956795027 0.0108490807 0.0243625943

71 1 411 
135.84

0.95945946 0.94594595 0.957586920 0.0018725390 0.0116409745

72 1 436 
992.93

0.97297297 0.95945946 0.959973219 0.0129997538 0.0005137597

73 1 498 
141.46

0.98648649 0.97297297 0.965095910 0.0213905767 0.0078770632

74 1 516 
028.32

1.00000000 0.98648649 0.966466477 0.0335335235 0.0200200100



4  Some detailed examples

The contents of this chapter are a commented expansion of the
list of examples mentioned right after (→1.1) in Chapter →1. Even
though the statements are variations on a common theme, it is
nevertheless nice to see how seemingly different questions lead
to similar mathematical problems.

4.1  Claim distribution and operational risk
losses

Even though the Basel II requirements for the calculation of
regulatory capital were an important motivation for the
calculation of the distribution of operational risk losses, the
change in the new (as of 2016, see [→71]) requirements has
changed the motivation but not the need to tackle the problem.
This is first because the problem is interesting in itself; second
because it is also an important problem in the insurance industry;
and third because the same problems appears when studying
credit losses. The calculation of the density of the distribution of
claims is the first step in the computation of risk premia, and the
calculation of the distribution of credit losses is the first step in the
computation of regulatory capitals and the determination of
lending rates.

The nice thing about the Basel II requirements for the
calculation of regulatory capital for operational risk is that the
Basel Committee provided banks with a categorization of risk as a
detailed list of risk types per business line. Not only that, each risk
type and business line had a fine structure in which many of the
risk events to measure (and pay attention to) were specified. This



made life easier for both the risk manager at the bank and the
regulator.

For the risk analyst life was ‘simpler’ too, because they had a
clear order for risk aggregation and model building: for as long a
length of time as possible, observe the events in each category;
record the corresponding loss; aggregate first by business line,
and then by risk type; and then aggregate once more to obtain
the total loss. After this, the job becomes to determine the
distribution of the aggregate losses, and from that, compute the
risk capital.

Even though regulatory capital may now be calculated
according to a different methodology, the categorization provided
by the Basel Committee may be useful for risk management, for it
tells the risk manager where and what to look at, for risk
prevention purposes.

To come back to (→1.1), let N1, … , NH  be the integer valued
random variables describing the different possible types of risk
events during the observation period. For example, if we take the
number of fraudulent events with credit cards at ATM machines in
a given town, then h labels the ATM machines. Or 
{Nh, h = 1, … , H} may be the number of claim reports due to

car crashes classified by age group or by gender, or the number of
bad checks paid at a certain branch of a bank.

Certainly, the total number of events during the period is 

N = ∑H
h= Nh . The issue that the analyst has to attend to here is

how to model dependence among the different Nh . In many
situations independence is the natural assumption, but that is not
so in all situations.

Next comes the choice of the model for the individual losses. As
we said, for many applications it is convenient to use continuous
valued random variables. So, let {Xh,k ∣ h = 1, … , H; k ≥ 1}
be a collection of random variables modeling the k-th loss



(4.1)

(amount of claim) of the h-th type. It is also reasonable to suppose
that the number of losses of each type is unbounded. Of course,
anybody can see that the number of car collisions cannot be
larger than some function of the number of inhabitants of a
country, or that the number of credit card frauds cannot be larger
than some multiple of the number of card holders, each of which
is large but finite. But for modeling purposes it is easier to regard
these as unbounded. With all this, the total loss is modeled by

We added round brackets to (→4.1) just to emphasize the two
levels of aggregation implied within, which introduces the
problem of dependency among levels. Again, the losses within
each type are usually modeled by independent, identically
distributed random variables, and independent of the number of
events, such independence may or may not be assumed when
aggregating different risk types, or when aggregating severities
across business lines. A similar comment applies in the insurance
industry. For example, when aggregating damage caused by
natural disasters, it is clear that there must be some sort of
regional aggregation, even if losses by similar events in
geographically separated areas may most of the time be regarded
as independent.

Of course, it is clear that if we do not separate among the
different risk types, and have one single random variable N to
count all risk events during the time period, and just a standard
family {Xk : k ≥ 1} of individual severities, then the compound

loss in (→4.1) looks like (→1.1), that is,

S =
H

∑
h=1

(
Nh

∑
k=1

Xh,k).



In Chapter →1 we also commented on a converse problem, and
now we have introduced notation to make the comment explicit. It
may be important and interesting that given N = ∑h Nh , and

with S given by (→4.1), to be able to say as much as possible about
the Nh  and the Xh,n  themselves. This theme will be taken up

again in Chapter →12.

4.2  Simple model of credit risk

We begin by clarifying the meaning of the title. Credit risk models
any kind of risk occurring when one of the parties to any contract
defaults on their (contractual) obligations, causing some sort of
monetary loss to the other. The simplest example of this situation
occurs when of one or more of the borrowers at a bank do not
return back the amount of money agreed upon in the contract.

The simplest situation is the following. Suppose that a given
bank grants at the beginning of the year a number of identical
loans to n creditors, each of which has to return the amount 
(1 + rl)L by the end of the year. We denote by rl  the rate at

which the bank is allowed to lend money, and by rb  the rate at
which the central bank borrows money (at the so called risk free
rate). Suppose, furthermore, that all customers have the same
probability p > 0 of not returning the money. If a customer does
not pay their loan, then the bank looses the amount lent (plus the
interest rate) that it was going to collect. To examine the
alternatives to lending money at risk, we note that instead of
granting individual loans the bank could have lent the money to
the central bank, receiving n(1 + rb)L with certainty. Hence the

name risk free rate for rb .

S =∑
k≥1

Xk.



We will denote by Di , i = 1, … , n a binary random variable
such that Di = 1 means the i-th customer defaults, and Di = 0
means the customer pays their debt. The loss to the bank (given
that) the i-th customer defaults is (1 + rl)L, which written as a

random variable is (1 + rl)DiL. This means the total (random)

loss (or money not collected at the end of the year) is given by 
∑i Di(1 + rl)L, and the distribution of this variable is easy to

obtain because it is essentially distributed according to a binomial
law.

At this point we come across a couple of interesting issues in risk
management. First: Is there a fair way to choose rl? One possible
interesting way to answer the question is that the bank chooses rl

in such a way that the money it expects to receive in each of the
two possible investment alternatives is the same. As in this simple
model E[∑i Di] = np, we have

That is, the bank adjusts the lending rate to a level at which the
expected amount to be received from lending at risk to individual
borrowers equals the amount received by lending at zero risk (at
the rate rb ). A simple calculation shows that the spread (the
difference in rates) is

But this is not a good managerial decision, because the number of
defaults may fluctuate about its mean (np) in a way that makes

large losses highly probable. A criterion for designing a better way
to determine the lending rate rl  goes as follows: Fix a large
fraction 0 < f < 1 of sure earnings and a large probability 

E[
n

∑
i=1

(1 − Di)(1 + rl)L] = n(1 − p)(1 + rl)L = n(1 + rb)L.

rl − rb =
p

1 − p
(1 + rb)



(4.2)

0 < α < 1 with which you want your earnings to overtake 
fn(1 + rb)L and choose rl  such that this is true. That is, choose 

rl  so that

As ∑n
i=1(1 − Di) is a binomial distribution with parameters n, 

(1 − p), it is easy to see that such an rl  can be found. Even

though the example is too simple, we already see that the need to
compute the distribution of losses (or defaults) is an important
part of the analysis.

To make the model a bit more realistic, suppose that the bank
has several categories of creditors, for example large
corporations, middle size corporations, small businesses and
individual borrowers. Suppose as well that the creditors within
each category have the same probability of default. It is
reasonable to suppose that the number of large corporations and
middle size corporations is not very large, and it is also reasonable
to suppose that the random number among them that default
may be described by a binomial model. For small businesses and
individual borrowers, if the individual probabilities of default are
small, it may make sense to model the number of defaults by
variables of the Poisson type.

The total loss to a bank caused by defaulting creditors may be
described by

where Nk  is the random number of defaults of the creditors in
the k-th category, and Xk,n  is the loss to the bank produced by

P(
n

∑
i=1

(1 − Di)(1 + rl)L > fn(1 + rb)L) ≥ α.

S =
M

∑
k=1

Nk

∑
n=1

Xk,n,



the n-th borrower in the k-th category. As mentioned, each of the
M summands has some internal structure and the necessary
modeling involves quite a bit of analysis. For example, if we
consider large corporations, there is information about their
credit ratings from which an individual probability of default may
be extracted. As the corporations function in a common economic
environment, the probabilities of default may not be independent.
Other sources of credit losses to aggregate may come from loans
to small corporations or small businesses, the residential
mortgage loans, the standard consumer loans via credit card, and
so on. Clearly each group has internal similarities and possible
dependencies.

Besides that, the notion of the occurrence of default depends
on the type of borrower. To model the default by a corporation, or
by a collection of them in a credit portfolio, a variety of ways have
been proposed to model the occurrence of default, and then to
model the probability of default of a collection of corporations.
Such details have to be taken into account when trying to
determine the distribution of credit losses affecting a bank. For
details about such modeling process, the reader may consult
chapters 8 and 10 in [→69].

We mention as well that the model in (→4.2) is the starting
point for a methodology (called Credit Risk+, CR+) proposed by the
Credit Suisse Bank, which extends the simple model presented at
the beginning of this section into a slightly more elaborate model,
and still leads to an analytic computation of the Laplace transform
of the total loss.

The extension involves several changes. Instead of allowing all
obligors to have (or to cause) independent and identically
distributed (IID) individual losses, it maintains a given fixed
number of obligors, which may have independent but non
identically distributed losses. The variation on the theme
described above proposes a random number of defaults, which



are grouped into classes such that the individual losses within
each class are IID. To continue with the CR+ model proposal we
write

where Dn  is the default indicator introduced above and 
En = LGDn × EADn  is the loss caused by the n-th obligor,
where LGDn  stands for ‘loss given default’ and EADn  stands
for ‘exposure at default’. It is decomposed into two factors: an
exposure at default, which quantifies the maximum loss, and the
loss given default, which is sometimes written as 1 − fn , where fn

stands for the fraction recovered after the default of the n-th
obligor. But let us stick to the simpler notation and let En  denote
the random variable modeling the loss caused by the default of
the n-th obligor. Usually a base unit E of loss is introduced and we
set νn = En/E  for the number of units of loss caused by the n-th

obligor. Denoting S/E  by S once more we have

where λn  denotes the loss (in units of E) produced by the n-th
obligor. The second part of the CR+ proposal consists of
supposing that the default frequencies are Poisson instead of
Bernoulli. That is justified by the proponents of the model as
follows: If P(Dn = 1) = pn  is very small, then

S =
N

∑
n=1

DnEn,

S =
N

∑
n=1

Dnνn =
N

∑
n=1

λn,

ψλn
(α)= E[e−αλn] = (1 − pn + pnE[e−ανn])

eln(1−pn+pnE[e−ανn ])≈ e−pn(1−E[exp(−ανn)]).



That is, the default indicators now are now supposed to be integer
valued random variables distributed according to a Poisson(pn).

Since in a real economy, the defaults may in some way be affected
by a common factor, in order to introduce dependence and still
keep a simple analytical model the last extension to the simple
model consists of replacing pn  by the following simple possible
mixture model:

where the random factors Xk ∼ Γ(ξk, 1/ξk), and X0 = 1. This

means the random factor is positive and has a mean equal to 1.
But, to add to the unpalatable nature of the model, as it admits
possible multiple defaults by the same obligor, there is also the
possibility of the default probability to being larger than 1. To
finish, let us introduce the notation 

Pk(α) = ∑N
n=1 pnwnkE[e−ανn ]. With this, the Laplace transform

of the total loss can be easily seen to be given by

Again, the problem is now to invert this Laplace transform.

4.3  Shock and damage models

These are restricted versions of a model that is inherently
dynamical. The accumulation of damage produced by shocks is a
stochastic process, which at any given time is described by a
compound random variable like those described above.
Considering only the accumulated damage in a given fixed period

pn(
K

∑
k=0

wnkXk,) with wnk ≥ 0, and
K

∑
k=1

wnk = 1,

E[e−αS] =
K

∏
k=1

( 1

1 + ξkPk(α)
)

ξk

.



of time is a very small aspect of the problem. The literature on this
type of problems is large. As an introduction to the field, consider
[→75].

Consider N to be the number of events, or shocks, that affect a
structure during a fixed period of time. At the time that the n-th
shock occurs an amount of wear (or damage) Wn  is accumulated.
It is natural to suppose that the Wn  are independent and
identically distributed. Actually, and like in the case of credit risk,
there is some internal structure to Wn . The resulting damage
occurs when the intensity of the shock is larger than some
threshold, and we may think of Wn  as the response of the system
to the intensity of the shock. Anyway, the ‘severity’ of the
accumulated damage is again given by a compound variable

Even though the question is more natural in a dynamical setup,
the reason that the distribution of S is relevant is because as soon
as the accumulated damage becomes larger than some critical
value K, the effect of the damage entails serious losses of some
kind, and this involves the computation of the distribution of
accumulated damage.

4.4  Barrier crossing times

Let us examine a few dynamical versions of the problems
described above. Let us denote by N(t) an integer valued

process, usually supposed to have independent, identically
distributed increments, and let {Xn ∣ n ≥ 1} be a collection of

independent identically distributed positive random variables.
Consider either of the following processes:

S =
N

∑
n=0

Wn.



or

When r = 0, the first example can be used to describe
accumulated damage in time. When r > 0, we can think of S(t)
as the savings in an account, or the water level in a dam, in which
there is an ‘input’ of money or rain at random times described by 
N(t), and r quantifies the spending or release rates. The constant

(or perhaps random) term s0  models the initial amount of
whatever it is that S(t) denotes. The second example is used in

the insurance industry to denote the capital of the insurance
company. Naturally, s0  is the initial capital, r the rate at which
premia are collected and the compound variable is the amount
paid in claims.

Apart from the simplifications present in each of the models, for
us the interest is in a question that appears in all of them: When is
the first time some critical barrier is reached? This is defined by

or perhaps

for some level K related to the nature of the problem. The problem
of interest in many applications is to determine the distribution
(usually a probability density) of T. The relationship of this

S(t) = s0 +
N(t)

∑
n=1

Xn − rt

S(t) = s0 + rt −
N(t)

∑
n=1

Xn.

T =inf {t ≥ 0 ∣ S(t) ≥ K}

T =inf {t ≥ 0 ∣ S(t) ≤ K}



problem with the problems described in the three sections above
is that the methodology to solve it is similar to the methodology of
determining the density of the compound variables. In many
cases, the nature of the inputs in the problem is such that a
differential or integral equation to compute

can be established and solved.
An important class of such problems appears when dealing

with the distribution of defaults of corporations to compute credit
losses. A class of models, called structural models, proposes that
defaults occur when the value of a corporation falls below a
certain threshold related to the liabilities of the corporation. When
dealing with a portfolio of corporations we have a many-
dimensional barrier crossing problem.

4.5  Applications in reliability theory

Another branch of applied mathematics in which the problem of
determining the distribution of a positive random variable crops
up in a natural way is reliability theory. The failure rate of a
complex system is a function of the failure rates of its
components. The components are chained in groups of series
and/or parallel blocks, which may or may not fail independently.

If a module consists of K-blocks placed in series, and their
times to failure are random variables Ti  (not necessarily
identically distributed), the time to failure of the block is given by 
min {Ti : i = 1, … , K}. Similarly, if a component is made up of

k-blocks connected in parallel, and their times to failure are
denoted by Ti , and if the system does not fail until all
subcomponents have stopped working, then the time to failure of
the component is given by max {Ti : i = 1, … , k}.

ϕ(α) = E[e−αT ]



It is then clear that if T c
1 , … , T c

M  are the failure times of the

subcomponents of a system, the failure time of the system is
some more or less complicated function H(T c

1 , … , T c
M

) of the

failure times of the components. Note that even when we know
the distributions of the blocks, and are lucky enough that the
distribution of failure time of the subsystems can be computed,
our luck does not usually extend to the computation of the
distribution of the failure time of the system. For that we can now
resort to the Monte Carlo simulation of a large sample of 
H(T c

1 , … , T c
M) and try to obtain the distribution that fits the

resulting histogram, or to use the Laplace transform based
techniques that we propose in this volume. Of course, we may
have empirical data and we may start from that, without having to
resort to simulations.



5  Some traditional approaches to the aggregation
problem

5.1  General remarks

In Chapters →2 and →3 we considered some standard models for the two basic building blocks
for modeling the compound random variables used to model risk. First, we considered several
instances of integer valued random variables used to model the frequency of events, then some
of the positive continuous random variables used to model individual losses or damage each time
a risk event occurs.

From these we obtain the first level of risk aggregation, which consists of defining the
compound random variables that model loss. Higher levels of loss aggregation are then obtained
by summing the simple compound losses.

As we mentioned in the previous chapter, the first stage of aggregation has been the subject
of attention in many areas of activity. In this chapter we shall review some of the techniques that
have been used to solve the problem of determining the distribution of losses at the first level of
aggregation. This is an essential step prior to the calculation of risk capital, risk premia, or
breakdown thresholds of any type.

The techniques used to solve the problem of determining the loss distribution can be grouped
into three main categories, which we now briefly summarize and develop further below.

Analytical techniques: There are a few instances in which explicit expressions for the
frequency of losses and for the probability density of individual losses are known. When this
happens, there are various possible ways to obtain the distribution of the compound losses.
In some cases this is by direct computation of the probability distribution, in other cases by
judicious use of integral (mostly Laplace) transforms. Even in these cases, in which the
Laplace transform of the aggregate loss can be obtained in close form from that of the
frequency of events and that of the individual severities, the final stage (namely the
inversion of the transform) may have to be completed numerically.
Approximate calculations: There are several alternatives that have been used. When the
models of the blocks of the compound severities are known, approximate calculations
consisting of numerical convolution and series summation can be tried. Sometimes some
basic statistics, like the mean, variance, skewness, kurtosis or tail behavior or so are known,
in this case these parameters are used as starting points for numerical approximations to
the aggregate density.
Numerical techniques: When we only have numerical data, or perhaps simulated data,
obtained from a reliable model, we can only resort to numerical procedures.

5.1.1  General issues

As we proceed, we shall see how the three ways to look at the problem overlap each other. Under
the independence assumptions made about the blocks of the model of total severity given by the

compound variable S = ∑N
n=1 Xn , it is clear that



(5.1)

(5.2)

(5.3)

We halt here and note that if P(N = 0) = p0 > 0, or to put it in words, if during the year there is

a positive probability that no risk events occur, or there is a positive probability of experiencing no
losses during the year, in order to determine the density of total loss we shall have to condition
out the no-loss event, and we eventually concentrate on

To avoid trivial situations, we shall also suppose that P(Xn > 0) = 1. This detail will be of

importance when we set out to compute the Laplace transform of the density of losses.

From (→5.1) we can see the nature of the challenge: First, we must find the distribution of losses
for each n, that is given that n risk events took place, and then we must sum the resulting series.
In principle, the first step is ‘standard procedure’ under the IID hypothesis placed upon the Xn . If
we denote by FX(x) the common distribution function of the Xn , then for any k > 1 and any 

x ≥ 0 we have

where F ∗k
X (x) denotes the convolution of FX(x) with itself k times. This generic result will be

used only in the discretized versions of the Xn , which are necessary for numerical computations.
For example, if the individual losses were modeled as integer multiples of a given amount δ, and
for uniformity of notation we put P(X1 = nδ) = fX(n), in this case (→5.2) becomes

Thus, the first step in the computation of the aggregate loss distribution (→5.1), consists of
computing these sums. If we suppose that FX(x) has a density fX(x), then differentiating

(→5.2) we obtain the following recursive relationship between densities for different numbers of
risk events:

P(S ≤ x)=
∞
∑
k=0

P(S ≤ x ∣ N = k) P(N = k)

=
∞
∑
k=0

P(
k

∑
n=1

Xn ≤ x ∣ N = k)P(N = k)

=
∞
∑
k=0

P(
k

∑
n=1

Xn ≤ x)P(N = k)

= P(N = 0) +
∞
∑
k=1

P(
k

∑
n=1

Xn ≤ x)P(N = k).

P(S ≤ x;N > 0) =
∞

∑
k=1

P(
k

∑
n=1

Xn ≤ x)P(N = k).

F ∗k
X (x) = P(

k

∑
n=1

Xn ≤ x) =

x

∫
0

F
∗(k−1)
X (x − y)dFX(y),

P(Sk = n) = f ∗k
X (n) =

n

∑
m=1

f
∗(k−1)
X

(n − m)fX(m).



(5.4)

where f ∗k
X (x) is the density of F ∗k

X (x), or the convolution of fX(x) with itself k times. This is the

case with which we shall be concerned from Chapter →6 on.

Notice now that if we set p0
k ≡ pk/P(N > 0), then

We can now gather the previous comments as Lemma →5.1.

Lemma 5.1.

Under the standard assumptions of the model, suppose furthermore that the Xk  are continuous with

common density fX(x), then, given that losses occur, S has a density fS(x) given by

This means, for example, that the density obtained from empirical data should be thought of
as a density conditioned on the occurrence of losses. The lemma will play a role below when we
relate the computation of the Laplace of the loss distribution to the empirical losses. This also
shows that in order to compute the density fS  from the building blocks, a lot of work is involved,
unless the model is coincidentally simple.

5.2  Analytical techniques: The moment generating function

These techniques have been developed because of their usefulness in many branches of applied
mathematics. To begin with, is it usually impossible, except in very simple cases, to use (→5.2) or
(→5.4) to explicitly compute the necessary convolutions to obtain the distribution or the density of
the total loss S.

The simplest example that comes to mind is the case in which the individual losses follow a
Bernoulli distribution with Xn = 1 (or any number D) with probability P(Xn = 1) = q or 

Xn = 0 with P(Xn = 0) = 1 − q. In this case ∑k
n=1 Xk  has binomial distribution B(k, q) and

the series (→5.2) can be summed explicitly for many frequency distributions.

A technique that is extensively used for analytic computations is that of the Laplace transform. It
exploits the compound nature of the random variables quite nicely. It takes a simple computation
to verify that

For the simple example just mentioned, E[e−αX1 ] = 1 − q + qe−α  and therefore 

E[e−αSk ] = (1 − q + qe−α)k  from which the distribution of Sn  can be readily obtained. To

continue, the Laplace transform of the total severity is given by:

f ∗k
X (x) =

x

∫
0

f
∗(k−1)
X (x − y)fX(y)dy,

P(S ≤ x ∣ N > 0) =
∞

∑
k=1

P(
k

∑
n=1

Xn ≤ x)p0
k.

fS(x) =
d

dx
P(S ≤ x ∣ N > 0) =

∞

∑
k=1

fSk
(x)p0

k =
∞

∑
k=1

f
(k)
X

(x)p0
k.

ϕSk
(α) = E[e−αSk] = (E[e−αX1])

k
.
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Lemma 5.2.

With the notations introduced above we have

where

We shall come back to this theme in Chapter →6. For the time being, note that for z = e−α

with α > 0, GN(e−α) = ψN(α) is the Laplace transform of the a discrete distribution.

5.2.1  Simple examples

Let us consider some very simple examples in which the Laplace transform of the compound loss
can be computed and its inverse can be identified. These simple examples complement the
results from Chapters →2 and →3.

The frequency N has geometric distribution

In this case pk = P(N = k) = p(1 − p)k  for k ≥ 0. Therefore

For the Bernoulli individual losses,

The frequency N is binomial B(M,p)

The frequency N is Poisson (λ)

Since we shall be using this model for the frequency of events, we shall explore this example in
some detail.

Now pk = λkeλ/k!, and the sums mentioned above can be computed in closed form, yielding

ψS(α) = E[e−αS] =
∞

∑
k=0

E[e−αSk]pk =
∞

∑
k=1

(E[e−αX1])
k
pk = GN(E[e−αX1])

GN(z) :=
∞

∑
n=0

znP(N = n), for |z| < 1.

ψS(α) = E[e−αS] = p[1 +
1

1 − pE[e−αX1 ]
].

ψS(α) = p[1 +
1

1 − p(1 − q + qe−α)]
].

ψS(α) = E[e−αS] =
M

∑
k=0

(M

k
)(E[e−αX1])

k
= [1 + pE[e−αX1]]

M
.

ψS(α) = E[e−αS] =
∞

∑
k=0

λne−λ

k!
(E[e−αX1])

k
= eλ(E[e−αX1 ]−1).



Some computations with this example are straightforward. For example

Therefore, if we put μ = E[X],

In particular, from (→5.9)

we obtain that

Thus, the coefficient of asymmetry of the accumulated loss is given by

Note that this quantity is always positive ( X1  is a positive random variable) regardless of the sign
of the asymmetry of X1 .

N is Poisson with a random parameter

Let us build upon the previous model and suppose now that the parameter of the frequency is
random, but that the frequency still is Poisson, conditional on the value of the parameter. We shall
see how this allows us to modify the skewness in the total losses.

Suppose that the intensity parameter λ is given by the realization of a positive random variable Λ
with distribution H(dλ) such that

In this case the results obtained above can be written as

and, in particular

Now, integrating with respect to H(dλ) we obtain

and furthermore,

E[N ] = V (N) = E[(N − E[N ])3] = λ.

E[S] = λμ, σ2
S = λμ2 + λσ2

X = λE[X 2].

E[(S − E[S])3] = λE[X1]3 + 3λμσ2
X1

+ λE[(X1 − E[X1])3]

E[(S − E[S])3] = λE[X 3
1].

E[(S − E[S])3]

σ3
S

=
E[X 3

1 ]

√λE[X 2
1 ]3

.

P(N = k ∣ Λ = λ) =
λk

k!
e−λ.

E[S ∣ Λ = λ] = λμ, V (S ∣ Λ = λ) = λμ2 + λσ2
X = λE[X 2]

E[(S − E[S])3
Λ = λ] = λE[X 3].∣E[S] = E[Λ]μσ2

S = V (Λ)μ2 + E[Λ]σ2
X



Clearly, if the asymmetry in the distribution of Λ is large and negative, then S can be skewed to the
left.

It is also easy to verify that

We leave it up to the reader to verify that the moments of S are obtained by differentiating with
respect to α at α = 0.

Gamma type individual losses

To complete this short list of simple examples, we suppose that Xn ∼ Γ(a, b), that is, 

fX1(x) = bax(a−1)e−bx/Γ(a). Observe that, in the particular case when a = 1, the gamma

distribution becomes the exponential distribution. In the generic gamma case,

Or to put it in words, the sum of k random variables distributed as Γ(a, b) is distributed according

to a Γ(ka, b) law.

For any frequency distribution we have

which can be explicitly summed for the examples that we considered above. But more important
than that, according to Lemma →5.1,

This sum does not seem to easy to evaluate in closed form except in very special cases, but it is
easy to deal with it numerically. Notice now that if, for example, N is geometrical with distribution 

pk = p(1 − p)k , and a = 1 (that is the individual losses are exponentially distributed) then the

former sum becomes

That is, the accumulated losses are again exponential with a smaller intensity (a larger mean
equal to 1/bp).

5.3  Approximate methods

E[(S − E[S])3] = E[(Λ − E[Λ])3]μ3 + 3σ2
ΛμE[X 2] + E[Λ]E[X 3].

ψS(α) = E[E[e−αS Λ]] = E[eΛ(ϕX(α)−1)] = GΛ(ϕX(α) − 1).∣E[e−αX1] = ( b

b + α
)

a

⇒ E[e−αSk] = E[e−αX1]
k

= ( b

b + α
)

ak

.

ψS(α) =
∞

∑
k=0

pk(
b

b + α
)

ak

,

fS(x) =
d

dx
P(S ≤ x ∣ N > 0) = ∑

k≥1

p0
k(

bkx(ak−1)

Γ(ak)
)e−bx.

fS(x) = ∑
k≥1

p0
k(

bkx(k−1)

(k − 1)!
)e−bx = pbe−pbx.
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(5.7)

(5.8)

Many different possible methods exist under this header. Let us explore a few.

5.3.1  The case of computable convolutions

In some instances it may be natural or plain easier to use (→5.4) or (→5.3) in order to calculate
the distribution of aggregate losses. This happens when the density of a finite number of losses
can be explicitly calculated or at least reasonably well approximated.

This possibility is important because, even when the density of any finite number of losses can
be calculated exactly, the resulting series cannot be explicitly summed. In this case one must
determine how many terms of the series to choose to determine the losses in some range to a
good approximation, and then deal numerically with the resulting approximate sum.

Simple example

A few lines above we considered a simple example of this situation. Suppose that the frequency of
losses N is Poisson with parameter (λ) and that the joint distribution of the Xk  is Γ(a, b). We

have already mentioned that the X1 + X2 + ⋯ + Xk  is distributed according to a Γ(ka, b),

and in Lemma →5.1 we saw that the density fS(x) of accumulated losses is given by

As mentioned at the outset, the pending issue is now how to chose the range within which we
want to obtain a good approximation to that sum. The answer depends on what we want to do.
For example, we may just want to plot the values of the function up to a certain range, or we may
want to compute some expected values, or we may want to compute some quantiles at the tail of
the distribution.

5.3.2  Simple approximations to the total loss distribution

Something that uses simple calculations involving the mean, variance, skewness and kurtosis of
the frequency of events and of the individual losses and the independence assumptions of the
basic model, is to compute the mean, variance and kurtosis of the total severity and use them to
approximate the density of aggregate losses. It is simple to verify that

When k = 1

where E[X] denotes the expected value of a random variable X whose distribution coincides with

that of the Xk . When k = 2 we have

in which we use V (Y ) to denote the variance of a random variable Y. Another identity that we use

below is that for k = 3

fS(x) =
1

1 − e−λ

∞

∑
n=1

e−λ λ
n

n!
xna−1bna

Γ(na)
e−bx.

(−1)kdk

dαk
ln ψS(α)α=0 = E[(S − E[S])k], for k = 2, 3.

−d

dα
ln ψS(α)α=0 = E[N ]E[X],

V (S) = V [N ]E[X]2 + E[N ]V (X),
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(5.10)

And to finish this preamble, for k = 4 it happens that

We shall now see how moments up to order three of N and X can be used to obtain
approximations to the accumulated losses using some simple approximate procedures.

Gaussian approximation

The underlying intuition behind this approximation is that when the expected number of events is
large, one can invoke the central limit theorem to obtain an approximation to the density of S. The
starting point is the identity

From the computations mentioned above, we know that

We can thus prove that when N is large, the former identity can be rewritten (and it is here that
the CLT (central limit theorem) comes in) as

Here we use the usual Φ(x) to denote the cumulative distribution of the N(0, 1) random

variable.

The translated gamma approximation

The Gaussian approximation is simple and based on basic ideas, but it has two handicaps. First, it
assigns positive probability to negative losses, and second, it is symmetric. An alternative based
on the generic shape of the gamma density consists of supposing the distribution of losses is a
translated gamma, and to identify its parameters by a moment matching procedure. That is, we
have to determine the parameters (a, b) of a Γ(a, b) distributed random variable Y, and a

positive number k such that the three first moments of the random variable k + Y  coincide with
those of the random variable S.

If we denote by γ the coefficient of asymmetry of S, the identities that determine the parameters
of k + Y  are

E[(S − E[S])3] = E[(N − E[N ])3]E[X]3 + 3V (N)E[X]V (X) + E[N ]E[(X − E[X])3].

d4

dα4
ln ψS(α)α=0 = E[(S − E[S])4] − 3V (S).

P(S ≤ x) = P(
S − E[S]

σS

≤
x − E[S]

σS

).

E[S] = E[N ]E[X]; and that V (S) = σ2
S = σ2

N(E[X])2
+ σ2

XE[N ].

P(S ≤ x) = Φ(
x − E[S]

σS

).



It is important to keep in mind that this computation makes sense only when β > 0. Once k, a
and b are determined, one can use the translated gamma k + Y  to carry out all sorts of
computations. A complementary approximation occurs when 2a is an integer, because in this

case 2aY ∼ χ2
2a .

5.3.3  Edgeworth approximation

Let us now consider the standardized version of the aggregate loss S, that is, consider

The Taylor expansion of ln ϕZ(t) begins as follows:

where ak = (−1)kdk ln ϕZ(α)/dαk|α=0 . As the variable Z is standardized, clearly

and the fourth moment is

Let us now note that if we truncate the series at the fourth term, we obtain

If we now expand the second exponential and retain the terms up to the sixth order in α,

If we replace α by −α we obtain the usual moment generating function

We know that

E(k + Y )= k +
a

b
= E[S]

V (k + Y )=
a

b2
= σS

E[(k + Y − E(k + Y ))3]

[V (k + Y )]3/2
=

2

√a
= γ.

Z =
S − E[S]

σS

.

ln ϕZ(α) = a0 − a1α + a2
α2

2
− a3

α3

6
+ a4

α4

24
… ,

a0 = 0, a1 = E[Z] = 0, a2 = σ2
Z = 1, a3 = E[Z 3],

a4 = E[Z 4] − 3 =
E[(S − E[S])4]

σ4
S

− 3.

ϕZ(α) ≈ eα
2/2e−a3α

3/6+a4α
4/24.

ϕZ(α) ≈ eα
2/2(1 − a3

α3

6
+ a4

α4

24
+ a2

3
α6

72
).

MZ(α) ≈ eα
2/2(1 − a3

α3

6
+ a4

α4

24
+ a2

3
α6

72
).
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where Φ(x) is cumulative distribution function of an N(0, 1) random variable, therefore

where the last step follows from an integration by parts. That is,

As both sides of the equation are Laplace transforms, it follows that

Now, undoing the standardization Z → (S − μS)/σS , we obtain

A very common situation in practice consists of the case in which S is a compound variable, with
frequency N being Poisson(λ). In this case, it is simple to compute the coefficients ak . It takes a

simple computation to verify that

where we have put μX(k) = E[Xk]. In this case, (→5.11) becomes

5.4  Numerical techniques

In this section we review some direct numerical techniques for computing the distribution of
losses when models for the frequency of losses and for the individual losses are at our disposal, or
if not, when empirical data about each block is available. We shall examine how to use that

eα
2/2 = ∫

R

e−xα e
−x2/2

√2π
dx = ∫

R

e−αx dΦ(x)
dx

dx,

(−α)neα
2/2 = ∫

R

dne−αx

dxn

e−x2/2

√2π
dx = (−1)n ∫

R

e−αx
dn+1Φ(x)

dxn+1
dx,

ϕZ(α) ≈ ∫
R

e−αx(dΦ(x) −
a3

6
dΦ(3)(x) +

a4

24
dΦ(4)(x) +

a2
3

72
dΦ(6)(x)).

P(Z ≤ x) ≈ Φ(x) −
a3

6
Φ(3)(x) +

a4

24
Φ(4)(x) +

a2
3

72
Φ(6)(x).

P(S ≤ x)= P( S − μS

σS

≤
x − μS

σS

)

≈ Φ(
x − μS

σS

) −
a3

6
Φ(3)(

x − μS

σS

) +
a4

24
Φ(4)(

x − μS

σS

) +
a2

3

72
Φ(6)(

x − μS

σS

)

μS = λμX, σS = √λμX(2), and in general ak =
λμX(k)

(λμX(2))k/2
,

P(S ≤ x)≈ Φ( x − μS

√λμX(2)
) −

μX(3)

6√λμX(2)3
Φ(3)( x − μS

√λμX(2)
)

+
μX(4)

24λμX(2)2
Φ(4)( x − μS

√λμX(2)
) +

μX(3)2

72μX(2)2
Φ(6)( x − μS

√λμX(2)
).
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information to compute the distribution of S using (→5.4) or from (→5.3) plus a direct numerical
procedure.

5.4.1  Calculations starting from empirical or simulated data

The procedure described in (→5.3) to compute the distribution of losses when the blocks are
discrete can be used to deal with empirical or simulated data, for in this case the convolutions
have to be carried out numerically.

In both cases we shall suppose that the postanalysis data is of the following two types. First,

the relative frequency of events is presented as a distribution with empirical frequencies p̂n
describing the probability that n events occurred during a certain number of years. We
furthermore suppose that the number of events is finite, 0 ≤ n ≤ M  where M is the maximum
number of observed events.

Second, we shall suppose that the frequency of individual losses has been organized in cells,

chosen as multiples of a monetary unit δ and we interpret the histogram P(X = kδ) = ˆ
fX(k) as

the probability of having observed a loss of size kδ.

Observe that if losses occur, then it is necessary that X > 0. We must therefore keep in mind that
if the empirical (or simulated range of X) is δ, 2δ, … ,Nδ, then the range of the aggregate sum 
Sn = X1 + ⋯ + Xn  is nδ ≤ Sn ≤ nNδ. This detail has to be kept in mind when computing
the distribution of Sn , that is, when carrying out the computation of

Once we have computed the 
ˆ
f ∗n
X , we can compute their cumulative distribution as follows:

and after that we can estimate the total distribution of losses by

Comment. When the losses are modeled by a discrete random variable, and no analytical
procedure can be implemented, we have to resort to something like what we described before. If
the individual losses are modeled by an unbounded random variable, then there will be no upper
limit to the partial sums and the numerical issues must include an analysis of the choice of a
truncation point.

5.4.2  Recurrence relations

An important technique, less demanding computationally and very much used in the insurance
business, is based on the following recurrence methodology.

Suppose that the frequency of events is of the (a, b, 0) class. Recall that this means that for n ≥ 1
the recurrence relation pn = (a + b/n)pn−1  holds, where pn  is the probability of observing n

ˆ
f ∗n
X (k) =

k

∑
j=1

ˆ
f

∗(n−1)
X

(k − j)ˆfX(j); n ≤ k ≤ nN .

ˆ
F ∗n
X (x) = ∑

kδ≤x

ˆ
f ∗n
X (k),

ˆ
FS(x) = p̂0 +

M

∑
n=1

p̂n
ˆ
F ∗n
X (x).
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events. Suppose furthermore that the individual losses occur in multiples of δ, then the aggregate
losses take values that are multiples of δ and the probabilities pS(n) = P(S = nδ) satisfy the

following recurrence relation:

That is, starting from some given P(S = 0) = P(N = 0) and having computed pX(n) for 

n ≥ 0, by iterating the recurrence (→5.13) we can find the loss distribution. For more about this,
see [→78] and [→100].

5.4.3  Further numerical issues

We have already mentioned several times that most of the time we may have to resort to
numerical procedures to calculate sums like (→5.3) and (→5.4), that is to evaluate series like

There are two complementary issues here. First, there is the choice of the number of terms of the
series to be summed, and second the range [0,L] in which we want FS(x) to be determined. To

answer the first question is easy due to the uniform boundedness of the F ∗n
X

(x). To state it

formally, consider:

Lemma 5.3.

For every ϵ > 0 there exists an integer K > 0 such that

uniformly in x ∈ [0, ∞).

The proof is simple. Since ∑n≥0 pn = 1, there is an M such that ∑n≥M+1 pn < ϵ, from

which the conclusion emerges. It is implicit in the proof that the F ∗n
X  are known.

When we are forced to compute the F ∗n
X

, what to do depends on the starting point. If we

have a reliable model for FX(x), then we can compute the iterated integrals either using integral

transforms, or numerically using some discretization procedure. If all we have is empirical data,
and cannot reduce to the previous case by fitting a distribution to the data, then we have to
proceed numerically.

We shall consider all these alternatives below, but for the time being, let us begin by recalling
some direct approximations that have been used in actual practice.

5.5  Numerical examples

In this section we present a collection of detailed examples. It is a vital section for students that
must come up with this material through worked examples. The examples covered are part of the
daily life of a risk analyst confronted with small sized empirical data.

pS(n) =
n

∑
k=1

(a +
bk

n
)
pX(k)pS(n − k)

1 − apX(0)
; n ≥ 1.

FS(x) = p0 +
∞

∑
n=1

pnF
∗n
X (x).

FS(x) −
∞

∑
n=0

pnF
∗n
X (x) < ϵ



Example 1.

Consider to begin with the following simple example. Let us suppose that the average monthly
frequency of events of a certain type is eight events per month and that its standard deviation is
of three events per month. Suppose as well that the average loss per event is 150 000, with a
standard deviation of 30 000 in some monetary units. If we apply (→5.6) we obtain that

Let us suppose furthermore that the distribution that better fits this data is the lognormal with
parameters (μ,σ), and we want to determine its parameters from the data. We know that

With the numbers given above, we have to solve

Solving for (μ,σ) we know that the aggregate loss is given by S =exp (μ + σZ) with 

Z ∼ N(0, 1). Once we have reached this point, we can answer questions like: What is the

probability that the losses exceed the mean by a certain number of standard deviations? That is,
we want to compute P(S > μS + aσS), or perhaps quantities like E[S ∣ S > v] where v is some

large quantile. We leave it as an exercise for the reader to answer a few such questions.

Example 2.

In the next example we illustrate several aspects of the routine that should be carried out in a real
situation. We want to illustrate how equation (→5.1) is used as a technique of loss aggregation.
Suppose that the individual losses in a small business, in thousands of some monetary unit, are
given in →Table 5.1. Suppose as well that the frequency of the losses is as in →Table 5.2 and the
recorded frequencies are listed in →Table 5.2.

Table 5.1 Loss distribution.

x pX(x) FX(x)

1 0.01024 0.01024

2 0.07680 0.08704

3 0.23040 0.31744

4 0.34560 0.66304

5 0.25920 0.92224

6 0.07776 1.00000

E[S]= μS = 8 × 150 000 $ = 12 × 105,

V (S)= 9 × (15 × 105)
2

+ 8 × (3 × 104)
2

≈ (3 × 15)2 × 1010 ⇒ σS = 45 × 105.

E[S] = eμ+σ2/2 and that E[S 2] = e2μ+2σ2
.

all of which yields μ = 5.51, σ = 1.07.

μ + σ2/2= 5+ log10 (12)

μ + σ2= 5+ log10 (54)



Table 5.2 Frequency distribution.

k 0 1 2 3 4

pk 0.05 0.10 0.20 0.25 0.4 1

In →Figure 5.1 we display the values of pX(x) according to →Table 5.1 and the histogram of the

frequency of events shown in →Table 5.2.

Figure 5.1  Histograms of data in Tables →5.1 (left panel) and →5.2 (right panel).

From the data in Tables →5.1 and →5.2 we want to know the probability that the aggregate loss is
larger or smaller than 10 (in units of 1000) as well as the expected aggregate loss E[S] and its

variance V [S].
Since S = X1 + X2 + ⋯ + XN  (recall that S = 0 whenever N = 0), the probability 
P(S ≤ 10) is computed like

with x = 10 (corresponding to 10 000) and pk = P(N = k) being given in →Table 5.2.

When k = 0, the value of F ∗0
X (x) is obtained as follows:

For k = 1 we have F ∗1
X (x) = FX(x). In →Table 5.3 we show the values of F ∗0(x) and F ∗1(x).

Nothing new so far.

P(S ≤ x) = FS(x) =
∞

∑
k=0

pkF
∗k
X (x),

F ∗0
X (x) = {

0, if x < 0
1, if x ≥ 0.



Table 5.3  F ∗0
X

(x) and F ∗1
X

(x).

x 0 1 2 3 4 5

F ∗0
X

(x) 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

F ∗1
X (x) 0 0.01024 0.08704 0.31744 0.66304 0.92224

x 6 7 8 9 10 11

F ∗0
X

(x) 1.00000 1.00000 1.0000 1.00000 1.00000 1.0000

F ∗1
X (x) 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

Since X is discrete and its values are consecutive integers, from the knowledge of pX(x) for 

x = {0, 1, 2, … , 10}, we can obtain the value F ∗k
X (x) for k = {2, 3, 4} by simple iteration, that

is

The cumulative distribution function F ∗k
X (x) for losses up to $ 11.000 are collected in →Table 5.4,

along with the values of FS(x).

Table 5.4  F ∗k(x) and FS(x).

x F ∗0
X

(x) F ∗1
X

(x) F ∗2
X

(x) F ∗3
X

(x) F ∗4
X

(x) FS(x)

0 1 0.00000 0.00000 0.00000 0.00000 0.05000

1 1 0.01024 0.00000 0.00000 0.00000 0.05102

2 1 0.08704 0.00010 0.00000 0.00000 0.05872

3 1 0.31744 0.00168 0.00000 0.00000 0.08208

4 1 0.66304 0.01229 0.00003 0.00000 0.11877

5 1 0.92224 0.05476 0.00028 0.00000 0.15325

6 1 1.00000 0.16624 0.00193 0.00001 0.18373

7 1 1.00000 0.36690 0.00935 0.00005 0.22574

8 1 1.00000 0.61772 0.03383 0.00032 0.28213

9 1 1.00000 0.83271 0.09505 0.00161 0.34095

10 1 1.00000 0.95364 0.21310 0.00647 0.39659

11 1 1.00000 0.99395 0.39019 0.02103 0.45475

pn 0.05 0.10 0.20 0.25 0.40 –

That is, the value of P(S ≤ 10) = FS(10) = ∑4
k=0 pkF

∗k
X (10) happens to be 0.39659, as can be

seen from →Table 5.4.
Another possible way to compute P(S ≤ 10) is to directly compute the probability function 

P(S = k) of S, and then simply use it to calculate whatever we need. In this case (→5.1) has to be

modified a bit. To unify notations we shall write P(X = x) as fX(x), P(Sk = x) = f ∗k
X

(x).

Then clearly

F ∗k
X (x) =

x

∑
y=0

F
∗(k−1)
X (x − y)pX(y).

fS(x) =
∞

∑
k=0

pkf
∗k
X (x),



where now

For k = 1 clearly

where in our numerical example M = 6. And for k > 1, since the range of Sk  is [k, kM],

The results of the computations are displayed in →Table 5.5. In the rightmost column we display
the values of P(S = x) ≡ fS(x) for x = 0, … 10 instead of the values of the cumulative

distribution.

Table 5.5 Values of f ∗k(x) and fS(x).

x f ∗0
X

(x) f ∗1
X (x) f ∗2

X (x) f ∗3
X

(x) f ∗4
X

(x) fS(x)

0 1 0.00000 0.00000 0.00000 0.00000 0.05000

1 0 0.01024 0.00000 0.00000 0.00000 0.00102

2 0 0.07680 0.00010 0.00000 0.00000 0.00770

3 0 0.23040 0.00157 0.00000 0.00000 0.02335

4 0 0.34560 0.01062 0.00002 0.00000 0.03669

5 0 0.25920 0.04247 0.00025 0.00000 0.03448

6 0 0.07776 0.11148 0.00165 0.00000 0.03049

7 0 0.00000 0.20066 0.00742 0.00004 0.04200

8 0 0.00000 0.25082 0.02449 0.00027 0.05639

9 0 0.00000 0.21499 0.06121 0.00129 0.05882

10 0 0.00000 0.12093 0.11806 0.00485 0.05564

11 0 0.00000 0.04031 0.17708 0.01456 0.05816

pn 0.05 0.10 0.20 0.25 0.40 –

From the results in the last column we see that P(S ≤ 10) = ∑10
s=0 fS(s) is 0.39659, which

coincides with the result determined above. The first two moments of S are easy to estimate as
well. Note that E[N ] = 2.85, σ(N) = 1.1945, E[X] = 3.9972, and σ(X) = 1.142926.

Therefore,

f ∗0
X (x) = {

1, whenever x = 0
0, for x ≠ 0.

f ∗1
X (x) = {

fX(x), when 1 ≤ x ≤ M

0, otherwise,

f ∗k
X (x)= {

f ∗k
X (x)=

x

∑
y=0

f
∗(k−1)
X (x − y)fX(y); k = 2, 3, 4 …

∑x
y=1 f

∗k
X (x − y)f ∗1

X (y), for k ≤ x ≤ kM

0, otherwise

E(S)= E(N)E(X) = 11.3972

V (S)= E(N)V (X) + (E(X))2
V (N) = 22.8082 ⇒ σ(S) = 4.7770.



These will be used as inputs in the following example, in which we compare the exact calculation
carried out above with the procedures examined in the first example.

Example 3.

Consider a small financial institution that has some data, but not in very large quantities, so that
its technicians cannot infer individual loss and frequency distributions with high confidence.
In this case, the analyst, before attempting computations like those in the previous example, can
try using approximate methods to extract interesting information for the risk managers.
One possibility may consist of using simple analytical approximation techniques to estimate the
probability that losses are smaller than some threshold, say 10, in some appropriate units.
Suppose that from the data the technician can confidently infer a few moments of N and X from
data and since she is not carrying out the convolutions, she computes a few moments instead to
answer questions that interests risk management. For example, what is P(S < 10) if we regard

1000 as the unit of measurement? She will answer it using the normal, gamma, and lognormal
approximations. We shall suppose that the only data available is that reported at the end of the
previous example. With that we compute the first two moments to obtain

Clearly, in this case, the Gaussian approximation underestimates the probability of loss.
Supposedly the Gaussian approximation is to be trusted when E[N ] is large, and perhaps this is

the cause of the poor approximation in our example.
The risk manager may mistrust the previous approximation and decides to examine a lognormal
and a translated gamma for the sake of comparison. To determine the parameters of the
lognormal we must solve for (μ,σ) in

The solution of this system of equation is simple and it yields: μ = 2.3115 and σ = 0.2442:

which overestimates the probability. Perhaps exponentiating a normal makes the tail too heavy.
However, for this approximation one only needs the mean and the variance of the total loss,
quantities which are easily obtainable from he empirical data. The other approximate method,
described in Section →5.3.2, is the translated gamma approximation. Recall that this consists of
replacing S with k + Y , where Y ∼ Γ(a, b), and the coefficients k, a, b have to be determined to

match the mean, variance and the asymmetry coefficients of S. We explained there how to
compute these from the data about the frequency of events N and the individual losses X. From
the information provided in Example →2 we can easily do that. Explicitly,

P(S ≤ 10) ≈ P(
S − E(S)

√Var(S)
≤

10 − 11.3972
4.7758

) = P(Z ≤ −0.2925) = 0.3850.

E(S) =exp (μ +
1
2
σ2) and E(S 2) = V (S) + E[X]2 =exp (2μ + 2σ2).

P(S ≤ 10) = Φ[
ln (10) − 2.3115

0.2442
] ≈ 0.4854,



Recall as well that in terms of the block data,

To determine the coefficients we have to solve the system

Carrying out the computations we obtain γ = 1.0178, and we have already seen that 
E[S] = 11.4 and V (S) = 35.953. From this we obtain the coefficients of the gamma as 

α = 3.861 and β = 0.4145 and for the translation coefficient we get k = 2.008.
Now to use this to estimate P(S ≤ 10) we proceed as follows:

For the last step use your favorite spreadsheet. Here the overestimation is clear.

Example 4.

Consider the following slightly more elaborate version of Example →2. Suppose that the
frequency of losses is Poisson with λ = 0.8, and that individual losses take only three values as
indicated in →Table 5.6. We want to estimate the probability of not losing more than 8000 in some
monetary unit, or that the losses do no exceed 8 in thousands of that unit.

Table 5.6 Individual losses (in thousands).

x pX(x) FX(x)

1 0.250 0.250

2 0.375 0.625

3 0.375 1

We know that P(N = k) = λke−λ

k! , for k = {0, 1, … }. In →Table 5.7 we list the probabilities for

various values of N. We see from this that considering time lapses in which more than six events
occur is not necessary.

E(S)= E(N)E(X) = μ = 11.3972

V (S)= E(N)V (X) + V (N)(E(X))2
= σ2 = 28.8081

E[(S − E(S))3]

[V (S)]3/2
= γ = 1.0178.

E[(S − E(S))3] = E(N)E[(X − E[X])3] + 3V (N)E(X)V (X) + E[(N − E[N ])3](E(X))

μ= k +
α

β

σ2=
α

β2

γ=
2

√α
.

P(S ≤ 10) = P(k + Y ≤ 10) = P(Y ≤ 7.9992) ≈ 1.



Table 5.7 Distribution of frequencies.

k 0 1 2 3 4 5 6

p(k) 0.4493 0.3595 0.1438 0.0383 0.0077 0.0012 0.0002 ∑6
k=1 pk = 1

With the data on these two tables we can perform computations similar to those performed in
Example →2 and we arrive at →Table 5.8. There we list the values of the cumulative loss
distribution function. From that it is clear that the probability that we are after is 99.3 %.

Table 5.8 Values of F ∗k(x) and FS(x).

x F ∗0
X

(x) F ∗1
X (x) F ∗2

X (x) F ∗3
X

(x) F ∗4
X (x) F ∗5

X
(x) F ∗6

X
(x) FS(x)

0 1 0.000 0.000000 0.0000000 0.00000000 0.0000000000 0.0000000000 0.4493000

1 1 0.250 0.000000 0.0000000 0.00000000 0.0000000000 0.0000000000 0.5391750

2 1 0.625 0.062500 0.0000000 0.00000000 0.0000000000 0.0000000000 0.6829750

3 1 1.000 0.250000 0.0156250 0.00000000 0.0000000000 0.0000000000 0.8453484

4 1 1.000 0.578125 0.0859375 0.00390625 0.0000000000 0.0000000000 0.8952559

5 1 1.000 0.859375 0.2617188 0.02734375 0.0009765625 0.0000000000 0.9426137

6 1 1.000 1.000000 0.5253906 0.10351562 0.0083007812 0.0002441406 0.9735295

7 1 1.000 1.000000 0.7890625 0.26171875 0.0375976562 0.0024414062 0.9848819

8 1 1.000 1.000000 0.9472656 0.49243164 0.1145019531 0.0128784180 0.9928120

pn 0.4493 0.3595 0.1438 0.0383 0.0077 0.0012 0.0002 –

Example 5.

This time we examine the use of the recurrence relations instead of carrying out the convolutions.
The underlying model is that considered in the previous example, namely, the individual losses
are given in →Table 5.6, and the frequency of losses are modeled by a Poisson of intensity 
λ = 0.8. Again we want to estimate the probability of losing no more than 8 (in thousands) of the
chosen monetary unit.

Since pX(0) = 0, clearly P(S = 0) = P(N = 0) = e−0.8 = 0.4493 is the probability of no

losses taking place. As the frequencies are modeled by a Poisson law, according to the results in
Section →5.1.1 we have a = 0, b = λ = 0.8. For n > 0, the recurrence relation is

Therefore,

In →Table 5.9 we show the result of carrying out this process a few more times.

pS(n) =
n

∑
k=1

(a +
bk

n
)
pX(k)pS(n − k)

1 − apX(0)
.

pS(1)= λpX(1)pS(0) = 0.8 × 0.250 × 0.4493 = 0.089866

pS(2)=
λ

2
pX(1)pS(1) + λpX(2)pS(0)

= (0.8) × (0.25) × (0.0898) + (0.8) × (0.375) × (0.4493) = 0.1437

⋮



Table 5.9 Loss distribution.

S 0 1 2 3 4 5 6 7 8 ∑8
n=1 pS(n)

pS 0.4493 0.0898 0.1437 0.1623 0.0499 0.0473 0.0309 0.0011 0.0079 0.9928

As indicated P(S ≤ 8) = ∑8
s=0 pS(s) = 0.9928 as observed in the previous example. The

difference between the two cases consists of the number of computations to be performed. The
recurrence methodology is quite efficient in this regard.

Example 6.

In →Table 5.10 we show the individual loss data of a large company (in millions of some monetary
unit). Suppose that the losses are arbitrary, but the data is collected in ‘bins’. In the table we show
the collection bins and their middle points, which play the role of discrete values of the variable.
This data will be refined below, when we prepare it for the convolution procedure. The data is
plotted in the histogram in →Figure 5.2 in which it is apparent that the distribution is bimodal.
This can occur for example if there were two sources of risk and the data comes in aggregated
across sources.

Table 5.10 Distribution of losses in millions in some monetary unit.

X (in mills.) M.P pX(x) F(x)

(4,6] 5 0.04802111 0.04802111

(6,8] 7 0.09498681 0.14300792

(8,10] 9 0.13403694 0.27704485

(10,12] 11 0.11029024 0.38733509

(12,14] 13 0.07176781 0.45910290

(14,16] 15 0.04010554 0.49920844

(16,18] 17 0.02638522 0.52559367

(18,20] 19 0.02849604 0.55408971

(20,22] 21 0.04010554 0.59419525

(22,24] 23 0.05593668 0.65013193

(24,26] 25 0.07387863 0.72401055

(26,28] 27 0.07968338 0.80369393

(28,30] 29 0.06965699 0.87335092

(30,32] 31 0.06385224 0.93720317

(32,34] 33 0.04538259 0.98258575

(34,36] 35 0.01741425 1



Figure 5.2  Histogram of values in →Table 5.10.

Suppose furthermore that the frequency of losses during the time lapse of interest is rather
simple as specified in →Table 5.11. The risk manager needs to estimate the probability that the
losses are larger than 50 million.

Table 5.11 Frequency distribution.

k 0 1 2 3 4

pk 0.05 0.10 0.20 0.25 0.40 1

The data collection procedure allows us to apply the techniques employed in the examples
described above. In principle, we need to compute



where

where again we use fX(x) instead of P(X = x).

To perform the convolutions, we think of the middle points of the bins in →Table 5.10 as the
observed losses. Their probabilities obtained from that table are listed below in →Table 5.12.

Table 5.12 Discretized individual probability loss distribution (in millions).

x 0 1 2 3 4 5 6 7 8 9 10 11

px 0 0 0 0 0 0.048 0 0.095 0 0.1341 0 0.1103

x 12 13 14 15 16 17 18 19 20 21 22 23

px 0 0.072 0 0.040 0 0.026 0 0.028 0 0.04 0 0.056

x 24 25 26 27 28 29 30 31 32 33 34 35

px 0 0.074 0 0.079 0 0.07 0 0.064 0 0.045 0 0.017

We chose the maximum number of losses to be rather small so that performing the convolutions
as in Example →1 is easy. Doing that produces →Table 5.13 shown below, in which we compute 
P(S = x) ≡ fS(x) from x = 0 up to x = 50.

Table 5.13 Distribution of S.

x fS(x) x fS(x) x fS(x) x fS(x)

0 0.0500000000 18 0.0091612125 30 0.0090830433 42 0.0155757319

5 0.0048021110 19 0.0034063732 31 0.0116687812 43 0.0107128249

7 0.0094986810 20 0.0094105720 32 0.0120890097 44 0.0136841256

9 0.0134036940 21 0.0053326462 33 0.0097607880 45 0.0120876057

10 0.0004612054 22 0.0083253624 34 0.0150529158 46 0.0126616145

11 0.0110290240 23 0.0080263849 35 0.0071159614 47 0.0127897115

12 0.0018245488 24 0.0069377001 36 0.0171836458 48 0.013019472

13 0.0071717678 25 0.0110389771 37 0.0060405021 49 0.0127169534

14 0.0043791399 26 0.0062920016 38 0.017954198 50 0.0144556153

15 0.0040382385 27 0.0126125059 39 0.0073014853

16 0.0072112004 28 0.0069800025 40 0.0173115923

17 0.0028028036 29 0.0121461642 41 0.0089810793

Summing up the entries along the even columns of →Table 5.13 we obtain 

FS(50) = ∑50
s=0 fS(s) = 0.473539. Therefore, P(S > 50) = 1 − FS(50) = 0.526461, that is

the probability that losses exceed 50 million is about 53 %.

5.6  Concluding remarks

P(S ≥ x) = 1 − FS(x) = 1 −
x

∑
s=0

fS(s),

fS(x) =
∞

∑
k=0

pkf
∗k
X (x),



There are two main conclusions to be obtained from these examples. First, performing the
computations according to basic theory may be lengthy and time consuming, but in some cases is
the only thing that we can do. Therefore, there is real need for methods of approximation. It is
also clear from the examples that the obvious and simple methods of approximation may yield
the wrong estimate of the relevant probabilities. Additionally, these methods need some further
theoretical support to determine when and when not to apply them.

In the references at the end of the book other methods are considered along with applications
to problems in loss data analysis and operational risk. Also, the examples presented in this section
all have their reason of being, and are intended as an appetizer for the methods presented from
Chapter →7 on.



(6.1)

6  Laplace transforms and fractional moment
problems

This chapter is a detour from the track we were on, but as it is an essential part of the
methodology that we are to use to deal with the problem of loss data analysis, we
decided to gather the material under one heading. Since the Laplace transform
technique is rather important we shall try to weave a line between generality and the
particular applications that we have in mind. To make it generic, let us denote by X a
positive random variable, and throughout this chapter we suppose that it is continuous
and has a density fX(x), with respect to the usual Lebesgue measure on [0, ∞)
unless otherwise specified. Its Laplace transform is defined by

The representation of the Laplace transform of fX  as an expected value is useful
because in many cases there is information about X that allows us to compute its
Laplace transform ϕ(α), but not its probability density fX(x) directly. We have already

mentioned the fact that ϕ(α) may solve some equation, or that X is a compound

random variable and we may know the Laplace transform of its building blocks, or that
we may have a sample of values of X from which to compute E[exp (−αX)]. Our goal

is thus to use the knowledge of ϕ(α) given by (→6.1) to obtain the density fX .

6.1  Mathematical properties of the Laplace transform
and its inverse

The ubiquitousness and importance of the Laplace transform has motivated much
research about the properties of the mapping f(x) → ϕ(α) and, especially, the

inverse mapping. As a matter of fact, below we shall verify that f(x) → ϕ(α) is

continuous and injective, but that its inverse is not continuous. This fact is related to
many numerical instability issues. From the mathematical point of view, the 
fX(x)dx = dFX(x) appearing in (→6.1) might be a very general distribution. As we

are concerned with probability densities on [0, ∞), our aims are much more modest,

nevertheless for the statements of some general properties of the Laplace transform
throughout much of this section we shall not care too much whether f ≥ 0 and
whether it integrates to 1. By Lp  we shall denote the class of Borel measurable

functions on [0, ∞) such that ∫ |f(x)|pdx < ∞.

The first thing to note is that for f ∈ L1 , the transform can actually be extended to
the right half complex plane {z = α + iβ ∣ α > 0,β ∈ R}. Not only that, but an easy

ϕ(α) = E[e−αX] =

∞

∫
0

e−αxfX(x)dx.



application of Morera’s theorem shows that ϕ(z) is analytic there and the standard

Laplace inversion technique can be invoked to invert it and obtain f(x). The analyticity

property will be related below to the determinacy of the fractional moment problem.
This is because analytic functions can be recovered from their values at a sequence of
points with an accumulation point. The fact that the standard inversion formula
consists of a contour integration of an analytic function in the right half complex plane
has given rise to a lot of interesting mathematics related to the complex interpolation
problem. See for example [→53] or [→7].

All the comments made above are important to us on several accounts. First, ϕ(α)
can only be determined numerically at a few, positive, values of α. Second, this usually
means that ϕ(α) is known up to some error, and as mentioned, the inverse Laplace

transformation is not continuous, so our methods will need to be robust. And third,
even if we knew ϕ(α) exactly at few points and we wanted to use classical inversion

formulae, we would still need to extend it to the right half complex plane as an analytic
function, which is a major problem in itself. Thus, in order to avoid the complex
interpolation problem, we shall propose inversion methods that make use of the data
directly.

Let us now examine the issue of continuity of the direct and inverse Laplace
transforms. Let f1(x), f2(x) both satisfy |fi(x)| ≤ Meax  for some M, a > 0, or let

both be in L1([0, ∞)) ∩ L2([0, ∞)). Then for Rz > a

Thus if supx>0 |f1(x) − f2(x)|e−ax ≤ ε, the difference in Laplace transforms

stays small in Rz − a > σ for every σ > 0.
A similar computation shows that when ∥f1 − f2∥p < ε then 

|ϕ1(z) − ϕ2(z)| < Mε uniformly in compact regions of the right half complex plane.

That is, the Laplace transform is continuous in many setups.
Consider now the two following examples. First fω(t) = A sin (ωt). Its Laplace

transform is ϕω(z) = ωA
z2+ω2  for Rz > 0.

ϕ1(z) − ϕ2(z) =

∞

∫
0

(f1(x) − f2(x))e−zxdx

≤

∞

∫
0

f1(x) − f2(x) eaxe−(z−a)xdx

≤sup
x>0

f1(x) − f2(x) eax
∞

∫
0

e−(Rz−a)xdx

<
ε

Rz − a
.∣ ∣ ∣ ∣∣ ∣∣ ∣



(6.2)

(6.3)

Even though fω(x) has constant amplitude A, which can be small or large, its

oscillations get higher and higher as ω increases, but |ϕω(z)| ≤ A
ω  (for Rz > 0). Thus

small changes in ϕω(z) can produce wildly different reconstructions.

Consider now fa(x) = A ax−3/2

2√π
e−a2/4x  together with ϕa(α) = Ae−a√α  with 

α > 0. Notice that for small a, ϕa(α) stays bounded by A but fa(x) has a maximum at

x = a2/6, of size cA/a2 , with c > 0. Thus even if A were a small number, the hump in

fa(x) can be large if a is small.

Therefore, even though the direct Laplace transform is continuous, its inverse is
not, and this is the reason why inverting Laplace transforms is a terribly complicated
problem from the numerical point of view. There exists a large body of literature
proposing different techniques devised to deal with the problem of inverting Laplace
transforms. In the references at the end of the book we mention only a small sample of
the large literature on this subject.

6.2  Inversion of the Laplace transform

To better appreciate the methodology that we propose below, let us examine some
classical results. The first one is from [→23], but consider as well [→99] or [→30].
Theorem 6.1.

Let ϕ̃(z) be an analytic function in the strip α < R(z) < β of the complex plane. Suppose

furthermore that in the narrower strip α + δ < R(z) < β − δ, for some appropriate δ,

we have ϕ̃(z) ≤ k(|z|), for some k ∈ L1(0, ∞). Then for any x ∈ R and fixed y,

is well defined, and furthermore, in the strip α < R(z) < β, the following identity holds:

The case that is of interest to us corresponds to:

Corollary 6.1.

If in the statement of the theorem, β = ∞, and ϕ̃(z) is analytic on the right half complex

plane R(z) > 0, then

ϕ(x) =
1

2πi

y+i∞

∫
y−i∞

ϕ̃(s)exsds

ϕ̃(x) =
1

2πi

+i∞

∫
−i∞

ϕ(x)e−xzdx.



(6.4)

(6.5)

and

for y such that all possible poles of ϕ̃ have real parts less that y.

Observe that if we wanted to use the inversion formula provided in these

statements, and the only information available to us consisted of the value of ϕ̃ at a
finite number of points on the real axis, first we would have to extend it to an analytic
function on vertical strip or to the right of a vertical line in the complex plane, such that
all of its poles lie to the left of that line. As previously mentioned, this has given rise a
lot of mathematics on the complex interpolation problem, some of which is mentioned
in the references.

When studying the Laplace transform of measures on [0, ∞) there exist alternative

inversion procedures. Let us begin with:

Definition 6.1.

A function ϕ(λ) defined on (0, ∞) is completely monotone if it possesses derivatives

of all orders and

An interesting result is contained in:

Lemma 6.1.

If ϕ is completely monotone, and if ψ is positive with completely monotone first derivative,

then ϕ(ψ) is completely monotone. In particular, e−ψ  is completely monotone.

The following results taken from [→34] provide a characterization of Laplace
transform of measures as well as an inversion procedure.
Theorem 6.2.
A function ϕ(λ), defined on (0, ∞) is completely monotone if and only if it is of the form

ϕ̃(z) =

i∞

∫
0

ϕ̃(s)exsds, for R(z) > 0,

ϕ(x) =
1

2πi

y+i∞

∫
y−i∞

ϕ̃(s)exsds,

(−1)n
dϕ

dλ
(λ); λ > 0.



(6.6)

where F(x) is the cumulative mass function of a (possibly σ-finite) measure on [0, ∞).

Furthermore, F(x) can be obtained from ϕ(λ) as

To close, a potentially useful result is contained in:

Corollary 6.2.

For ϕ(λ) to be of the form

it is necessary and sufficient that

for some positive constant C.

Note that when F(x) is the cumulative distribution of a random variable X, having

finite moments E[Xn] = μn  for all n ≥ 0, and the domain of analyticity of ϕ(λ)
includes the point λ = 0, then (−1)nϕ(n)(0) = μn , and the theorem asserts that the

Laplace transform and the integer moments determine each other. The extension of
this result to fractional moments is the content of Section →6.4 below.

But this is not always the case as the following famous example shows. Let X = eZ

with Z ∼ N(0, 1), and let consider the two densities

Here m is an integer and |a| < 1. It only takes a change of variables to verify that

ϕ(λ) =

∞

∫
0

e−xλdF(x),

F(x) = lim
λ→∞

∑
n≤λx

(−λ)n

n!
ϕ(n)(λ).

ϕ(λ) =

∞

∫
0

e−λxf(x)dx

0 ≤
(−a)nϕ(n)(a)

n!
≤

C

a
for all a > 0

f(x) = e−x2/2/(x√2π) along with g(x) = f(x)(1 + a sin (2mπ(ln (x))).

∞

∫
0

xnf(x)dx = en
2/2 =

∞

∫
0

xng(x)dx.
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That is, the lognormal density is not determined by its moments. See [→65] for more
on this issue. Actually, the issue lies with the analyticity of the Laplace transform of the
lognormal at λ = 0, apart from the fact that it is quite hard to compute. Consider
[→62] or [→8].

6.3  Laplace transform and fractional moments

Recall that problem (→6.1) consists of finding a density fX(x) of [0, ∞) such that

The idea of regarding the values of the Laplace transform of X as fractional moments of

Y = e−X  is not new. See for example the lecture notes in [→6]. Notice that the change
of variable y = e−x  maps [0, ∞) bijectively onto (0,1]. The Jacobian 1/y of the

transformation will be made part of the new density as fY (y) = fX(− ln y)/y, and

(→6.1) becomes a fractional moment problem consisting of:

Once such fY  is determined, the desired density is fX(x) = e−xfY (e−x).

In Chapter →4 we listed some typical problems in which the unifying theme was
that ϕ(α) could be calculated indirectly, be it analytically, or numerically by solving

some equation or by simulation. Except in the case in which ϕ(α) can be determined

as a function of α > 0, in all other cases that we deal with, it will be known only at a
finite collection αi , i = 1, … ,K  of values of the transform parameter. That is, we
only have at hand a few values of the transform (or a few fractional moments), and to
make the problem close to real applications, the values may be known up to a range or
have error built into them.

The method that we propose to deal with (→6.7) has the flexibility of dealing with
the two issues just mentioned. The possibility of using the method of maximum
entropy in this framework was explored in [→91].

6.4  Unique determination of a density from its fractional
moments

Since an analytic function defined in a domain of the complex plane is determined by
its values on a sequence of points having an accumulation point in the domain, it is
natural to ask whether there is a connection between this fact and the Laplace

ϕ(α) = E[e−αX] =

∞

∫
0

eαxfX(x)dx.

Find a density fY (y) on [0, 1] such that ϕ(αi) =

1

∫
0

yαifY (y)dy; i = 1, … ,K.



inversion problem. The answer is yes, and it comes via the connection between the
Laplace inversion problem and the fractional moment problem.

Before getting into that, let us recall the statement of the determinateness of the
fractional moment problems in [→64]:
Theorem 6.3.
Let FY  be the distribution of a positive random variable Y. Let αn  be a sequence of positive

and distinct numbers in (0,A) for some A, satisfying limn→∞ αn = α0 < A. If 

E[Y A] < ∞, the sequence of moments E[Y αn ] characterizes FY .

Theorem 6.4.
Let FY  be the distribution of a random variable Y taking values in [0,1]. Let αn  be a

sequence of positive and distinct numbers satisfying limn→∞ αn = 0 and 
∑n≥1 αn = ∞. Then the sequence of moments E[Y αn ] characterizes FY .

So, the issue of whether values of the Laplace transform along the real axis only
suffice to uniquely determine a probability density is settled. The question is now how
to go about determining the density.

6.5  The Laplace transform of compound random
variables

Since we are going to be using Laplace transform to determine loss distributions, it will
be convenient to gather in one place some basic results and examples about the first
step in the process, namely that of the computation of the Laplace transform of a
compound random variable. We shall also complete here some pending computations
mentioned in Section →5.3. For the sake of ease of presentation, we shall repeat some
of the material introduced in Chapters →3 and →4.

6.5.1  The use of generating functions and Laplace transforms

Let us begin with the following definition:

Definition 6.2.

When N is a random variable that assumes only positive integer values, with
probabilities pk = P(N = k), its generating function and Laplace transform were

defined by

and for z = e−α  with α > 0, the Laplace transform of N is defined by

GN(z) = E[zN] =
∞

∑
n=0

znpn, with z ∈ C, |z| < 1,

ϕN(α) = GN(e−α) =
∞

∑
n=0

e−nαpn.



(1)

(2)

(1)

(2)

We also mentioned that the functions GN(z) and/or ϕN(α) have the following

interesting properties:

Lemma 6.2.

If we know GN(z) or ϕ(α), the pn  are obtained from

If N1,N2, …  is a finite or infinite collection of independent random

variables such that ∑kNk  is well defined, then

Definition 6.3.

If X is a positive random variable with cumulative distribution function 
FX(x) = P(X ≤ x), its Laplace transform is defined by

and when X has a density fX  the former becomes

Clearly when the values of X are integers, we reobtain the previous definition. The
properties of ϕX(α) are similar to those of the generating function. Consider the

following statement to record this fact:

Lemma 6.3.

With the notations introduced above

ϕX(α) determines FX(x).

The function ϕX(α) is continuously differentiable on (0, ∞) and

pn =
1

n!

dn

dzn
GN(z)

z=0
.∣G∑kNk

(Z)= ∏
k≥1

GNk
(z),

ϕ∑kNk
(α)= ∏

k≥1

ϕNk
(α).

ϕX(α) = E[e−αX] =

∞

∫
0

e−αxdFX(x), with α > 0,

ϕX(α) = E[e−αX] =

∞

∫
0

e−αxfX(x)dx.



(3)

(6.8)

If X1,X2, …  is a finite or infinite collection of positive random variables,

such that ∑kXk  is well defined,

To complete the preamble we recall the following result:

Lemma 6.4.

Let N be a positive integer valued random variable and {Xk : k ≥ 1} a collection of

positive, IID random variables, independent of N, and let S = ∑N
k=1 Xk . Then

The proof is simple and uses the independence properties and the tower property of
conditional expectations:

To obtain the results necessary for the gamma approximation, note that after taking
natural logarithms in the previous identity, the successive derivatives up to order 3 of
the left-hand side yield the centered moments of S. To compute the derivative of the
logarithm of the right-hand side, just apply the chain rule and keep in mind that 

GN(ϕ(α)) = E[ϕ(α)N ].

In order to prove the following identities, we need some work to justify that
differentiation can be exchanged with integration at all stages. That is systematic but
somewhat tedious and we shall skip it. It takes a computation to verify that

This identity computed at α = 0 yields E[S] = E[N ]E[X]. To compute

note that

E[Xn] = (−1)n
dn

dαn
ϕX(α)

α=0
.∣ϕ∑kXk

(α) = ∏
k≥1

ϕXk
(α).

ψS(α) = E[e−αS] =
∞

∑
k=0

E[e−αSk]pk =
∞

∑
k=1

(E[e−αX1])
k
pk = GN(E[e−αX1]).

E[e−αS] = E[E[e−αS ∣ N]] =
∞

∑
k=1

E[e−αSk]P(N = k).

−
dϕS(α)

dα
=

E[NϕX(α)N ]

ϕS(α)
(−

ϕ′
X(α)

ϕX(α)
).

(−1)2 d
2ϕS(α)

dα2
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which, multiplied by −ϕ′
X(α)/ϕX(α) and evaluated as α = 0, yields V (N)E[X 2].

The derivative of the remaining term is

where we already know that at α = 0 it equals the variance V (X). This, when

multiplied by E[NϕX(α)N ]/ϕS(α) evaluated at α = 0, yields E[N ]V (X). Putting all

of this together we obtain

We leave the verification of the case of the third derivative for the reader. Just
differentiate all terms of the second derivative, use the chain rule and evaluate at 
α = 0.

6.5.2  Examples

Using the examples considered in Chapters →2 and →3, we can compute the Laplace
transform of some compound random variables. We already know that the Laplace
transform of a compound variable is the composition of the moment generating
function of the frequency variable with the Laplace transform of the individual losses.
The result of that composition provides the input for the maxentropic methodology to
compute the cumulative distribution function FS  or the probability density fS  of the
compound losses.

Preliminary remark

At this point we mention again our aim is determine the probability density of
aggregate losses given that loss occurs. According to Lemma →5.1, in the examples to
obtain the Laplace transform of that conditioned random variable we should consider

That is why in the examples presented below we consider 
P(N = k)/(1 − P(N = 0)).

Example: Poisson frequency and gamma individual losses

−
d

dα

E[Nϕ(α)N ]

ϕS(α)
=

E[N 2ϕX(α)]

ϕS(α)ϕX(α)
(−

ϕ′
X(α)

ϕX(α)
)−

E[Nϕ(α)N ]

ϕS(α)
(−

ϕ′
X(α)

ϕX(α)
),

−
d

dα

ϕ′
X(α)

ϕX(α)
,

E[(S − E[S])2] = V (N)E[X 2] + E[N ]V (X).

ϕS(α) =
ψS(α) − P(N = 0)

1 − P(N = 0)
.
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Suppose that the frequency is modeled by a Poisson(λ) and the individual loses are

modeled by a Γ(a, b). In this case the Laplace transform of the compound random

variable is

As we mentioned, this is an example that is easy to study, because the convolution of a
gamma density with itself is again a gamma density. This example was already
mentioned in Section →5.3.1. There we pointed out that the probability density,
conditioned on the occurrence of losses, is given by

and we saw there that the Laplace transform of this density is given by

This is a series representation of the density of aggregate loses, which can be used to
compare with the result of the maxentropic procedure.

Example: Poisson frequency and binary individual loses

This is a very simple example that illustrates the use of the composition law of
generating functions. Suppose that the number of losses during a time period is
random, with a Poisson(λ) frequency, and when a loss event occurs, either we lose 0

with probability p or we lose 1 with probability 1 − p. Now GN(z) =exp (−λ(1 − z))
and ϕX(α) = p + (1 − p)e−α . In this case it is easy to see that

which is the Laplace transform of an integer valued random variable of Poisson type
with frequency (1 − p)λ.

Example: binomial frequency and gamma individual losses

Suppose this time that there is a finite number of losses, occurring according to a 
B(n, p) distribution and that individual losses are as above. This time the Laplace

transform of the compound variable looks like

ψS(α) = e−(1−( b
b+α

)
a
).

fS(x) = ∑
k≥1

p0
k(

bkx(ak−1)

Γ(ak)
)e−bx

ψ(α) − e−λ

1 − e−λ
.

ψS(α) =exp (−(1 − p)λ(1 − e−α)),

ψS(α) = (p(
b

b + α
)

a

+ (1 − p))
n

.
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Now the series expansion of the compound density has a finite number of terms, and
the analysis and comparisons with the output of the maxentropic procedure are even
easier to carry out. It is not hard to see that

Example: binomial frequency and uniform losses

In the simple model of credit risk, in which there are n independent borrowers, each
having a probability p of defaulting, in which case the bank will sustain a loss uniformly
distributed on [0,1], the Laplace transform of the loss sustained by the bank is given by

Here we made use of the fact that the Laplace transform of a U [0, 1] random variable

is ϕX(α) = (1 − e−α)/α. Again, there is not much numerical nor practical difficulty

here. To invert this Laplace transform note that

and note as well that

where we use the notation (a)+  to denote the positive part of the real number a.

Putting these two remarks together, it follows that the sum of k independent random
variables uniformly distributed on [0,1] has a density (on [0, k]) given by

for 0 < x < k and it equals 0 otherwise. A finite weighted sum of such polynomials
presents no difficulty and can be used for comparison purposes. As there is a
probability (1 − p)n  of no default occurring, the conditional density of losses, given

that losses occur, according to Lemma →5.1 is given by

fS(x) =
n

∑
1

pk(1 − p)(n−k)

1 − (1 − p)n
(
n

k
)(

bkx(ak−1)

Γ(ak)
)e−bx.

ψS(α) = (p(
1 − e−α

α
)+ (1 − p))

n

=
n

∑
k=0

pk(1 − p)(n−k)(
1 − e−α

α
)

k

.

( 1 − e−α

α
)

k

=
1

αk

k

∑
j=0

(−1)j(k

j
)e−jα

1

αk
e−jα =

∞

∫
0

(x − j)k−1
+

(k − 1)!
e−xαdx,

fk(x) =
1

(k − 1)!
∑

0≤j≤x

(−1)j(
k

j
)(x − j)(k−1)
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where the fk(x) are given a few lines above.

6.6  Numerical determination of the Laplace transform

To repeat ourselves once more, the motivation for this section is the fact that we may
not be able to compute a Laplace transform, even if we happen to know the
distribution function of a random variable, like in the case of the lognormal density, or
we may only know a differential equation satisfied by the density, or by the Laplace
transform itself, or as in the case to be considered, we may just have a sample of the
random variable itself. The sample may come from actual measurements or be the
result of a simulation process.

Let us now examine how to determine the value of the Laplace transform of a positive
random variable from real or simulated data. So, let us suppose that S is a positive
random variable. Suppose that we have a sample {s1, … . , sM} of size M of S, which

is the result of M independent observations of S. The estimated Laplace transform is
defined by

There is nothing special about this definition. It just relies on the law of large numbers
for its verification, and on the central limit theorem for a measure of the quality of the
approximation, or of the error in the approximation, if you prefer.

With a eye on what comes below, that is the determination of the probability density of
the losses, notice that if S models losses in a given time period, and if there might
periods in which no losses occur, we have to weed out this part of the above
computation. For that, let M0  be the number of sample points at which sj = 0, and let

M+  be the number of nonzero sample points. Certainly, M = M0 + M+ . Notice now
that

which can be rewritten as follows:

fS(x) =
n

∑
k=1

pk(1 − p)(n−k)

1 − (1 − p)n
(
n

k
)fk(x),

ˆ
ψ(α) =

1

M

M

∑
j=1

e−αsj .

ˆ
ψ(α) =

1

M

M

∑
j=1

e−αsj =
M0

M
+

M+

M

1

M+
∑
sj>0

e−αsj ,

ˆ
ϕ(α) =

ˆ
ψ(α) − ˆ

P(N = 0)

1 − P̂(N = 0)
=

1

M+
∑
sj>0

e−αsj .



Here we have set P̂(N = 0) = M0/M . This is the empirical analogue of Lemma

→5.1, and this will be the input for the fractional moment problem in the numerical
procedures to determine the density of losses from actual data. In Chapter →11 we
shall take up the problem of the influence of the sample dependence on the
reconstructed density.

6.6.1  Recovering a density on [0,1] from its integer moments

We have already mentioned that a Laplace inversion problem can be mapped onto a
fractional moment problem for a density on [0,1]. This will be useful when we only
know the Laplace transform at a few, nonintegral values of the variable.

We have also related the problem of the inversion of the Laplace transform when
the values of the moments E[Xn] are available to us. Here we describe a technique

based on the knowledge of the Laplace transform at integral values of the parameter,
which can be invoked to invert it. It also relies on the mapping of the Laplace transform

X at α = n to the moment of order n of Y = e−X .

Let us consider a continuous probability density g(y) on [0,1]. Notice that it can be

uniformly approximated by a step function

The method we examine consists of relating the values of gN(i) to the integral

moments of Y, and it is made explicit below. But first, let us introduce some notations.
Write

for the integer moments of Y, then the result that we want is contained in:
Theorem 6.5.
Let g be a continuous density on [0,1] with moments μn , for n ≥ 1. Then for 0 < δ < 1,

and, given N we set

and the function gN  is defined as above, then

gN(y) =
N

∑
i=1

gN(i)I((i−1)/N ,i/N ](y).

μn =

1

∫
0

yng(y)dy

gN(i) = (N + 1)(N

i
)

N−i

∑
k=0

(N − i

k
)(−1)kμk−i

∥g − gN∥ ≤ Δ(g, δ) +
2∥g∥

δ(M + 2)
,
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where Δ(g, δ) :=sup {|g(y) − g(y′)| ∣ |y − y′| < δ}.

Comment. We use ∥h∥ for the uniform or L∞  norm of h. This result is proved in

[→72]. See as well [→73] for the case in which the change of variables 
f(x) = e−xg(e−x) is undone as part of the process on inversion.

6.6.2  Computation of (→6.5) by Fourier summation

Here we present an approximate method for evaluating (→6.5). This is useful when the
Laplace transform of a density is known to be, or can be extended to, an analytic
function on the right half complex plane, and all of its singularities are poles on the left
half complex plane.

Note that a simple change of sign in the integration variable allows us to write

Therefore, the classical inversion formula becomes

This is the starting point for Crump’s approximation of the contour integral by a
Fourier series; see [→25]. An application of the trapezoidal rule, with steps of size π/T
transforms the previous integral into

Concluding Remark.

The methods described in the last two sections, useful as they are, depend on the
knowledge of μ(n) (or ψ(α)) at quite a large number of points. In the next chapter, we

shall compare the reconstructions based on the these two methods with the
reconstructions obtained using the maxentropic technique, which makes use of a very
small number of data points.

+∞

∫
−∞

ex(α+is)μ(α + is)ds=

0

∫
−∞

ex(α+is)μ(α + is)ds +

+∞

∫
0

ex(α+is)μ(α + is)ds

= 2exα
+∞

∫
0

R(eixsμ(α + is))ds.

f(x) =
1

π
exα

+∞

∫
0

R(eixsμ(α + is))ds.

f(x) =
exα

T
(
μ(α)

2
+

∞

∑
k=1

R{μ(α + i
kπ

T
exp (i

kπ

T
))}).



7  The standard maximum entropy method

We begin this chapter with some historical remarks about the concept of entropy of a probability
distribution. We decided to do this because now and then a reviewer of a paper, or a colleague
who vaguely remembers his high school chemistry classes, has asked us what the problems
addressed here have to do with problems in physical chemistry. The answer is nothing of course,
even though the origin of the name comes from the natural sciences. We find these comments
pertinent and we hope that they are welcome by colleagues in the banking and the insurance
industries.

The concept, or should we better say, the name ‘entropy’ has been used (and misused) in
many different contexts: in art, economics, politics, besides being an important concept in
information theory (the transmission of information), statistics and in natural sciences. And there
is even an open access journal, Entropy, devoted to all sort of applications of the concept and of
the method of maximum entropy. We mention two interesting expository books, [→15] and [→9],
in which the concept of entropy plays a central role.

From the historical point of view, the concept of entropy originates in physical chemistry, and the
notion of entropy as a function of some probability distribution comes from Boltzmann around
1875. He was studying the dynamics of the approach to equilibrium of a gas. There he proposed
understanding the macroscopic behavior of a system with a very large number of particles
through the study of a density f(t, x, v), which describes the number of particles in a volume 

dxdv ∈ V × R
3  of the ‘configuration space’ (position and velocities of the system). We denote

by V the volume that the particles occupy. Boltzmann proposed a ‘dynamics’ for f(t, x, v), that is

an equation that explains how it changes due to the action of internal and external forces on the
particles and due to the collisions of the particles among themselves. To understand the approach
to equilibrium, Boltzmann noticed that the function

behaved as a Lyapunov function. That is, he noticed that under the proposed dynamics, S(ft)
increased to the static (equilibrium) solution of the equation.

Later on, at the turn of the 20th century, came the work by Gibbs on the foundation of
statistical mechanics. He used the same functional form, but he considered the probability

densities to be defined in ‘phase space’, which is V N × R
3N . Again, the state of equilibrium of

the system corresponds to the density that maximizes the entropy function.
The same concept appeared in the late 1940s in the work of Shannon [→87], who was

designing efficient ways to deal with the noise in the transmission of messages. During the late
1950s the same concept appeared in the field of statistics; see [→61]. But it seems that an
implementation of Gibbs’ ideas by Jaynes [→57] led to the variational method in the way that it is
used nowadays. It is a procedure to solve the generalized moment problem, which consists of
determining a probability distribution or a probability density from the knowledge of the expected
values of a few random variables. The volumes [→24] and [→58] collect much of the work done on
applications of the concept of entropy in information theory, statistics, and physics.

Besides that, the concept of entropy appears in a curious and perhaps unexpected way in
large deviations theory; see [→33].

S(ft) = − ∫
V×R3

f(t, x, v) ln f(t, x, v)dxdv



(7.1)
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(1)

(2)

7.1  The generalized moment problem

Let us state the problem that we want to solve in its simplest and direct form. In probabilistic
modeling one starts with a collection of observed quantities Xi : i = 1, … ,M  that assume
values in subsets Ii ⊂ R, i = 1, … ,M . Usually, such subsets are (bounded or unbounded)

intervals, and with them we form the sample space Ω = ∏M
i=1 Ii , along with a σ-algebra F  of

subsets of Ω. The questions that one asks about experiments involving the random quantities are
of the following type: What is the fraction of observations in which {Xi ∈ Ji}, where Ji ∈ F ? To

answer these questions, one needs to have a probability on (Ω,F), and it is at this point where

the maximum entropy methodology comes in.

The way this goes is as follows. Instead of measuring P(Xi ∈ Ji) for all possible Ji  we set up a

reduced problem to solve, but which provides us with a good answer. We are thus led to a
problem that can be stated as: Determine a probability P on a measure space (Ω,F), from the

knowledge of the expected values of a few random variables, that is from

where the functions hi : Ω → R; i = 1, … ,K  are chosen by the modeler to be as informative
about X as possible. This problem is called the generalized moment problem, and it is in solving
that problem that the method of maximum entropy comes in.

In order to make our life simpler, and to not start in a vacuum, we suppose that the
probability P is absolutely continuous with respect to a measure m defined on (Ω,F), which we

call the reference measure. That is, we constrain our quest to densities f such that dP = fdm. In

many problems, when Ω is an open or closed subset of Rd , m is chosen to be the Lebesgue
measure, (the usual dx), or when Ω is a countable set, it is just the counting measure. Sometimes
we may find it convenient to let m be a probability on (Ω,F) in which some prior information

about the law P is incorporated.

When we limit our search to probabilities having a density f with respect to m, the statement of
the problem becomes: Find a density f such that

It is rather simple to verify the following lemma:

Lemma 7.1.

With the notations introduced above we have:

The set of probabilities satisfying (→7.1) is convex in the class of probabilities that are

absolutely continuous with respect to the measure m.

The set of densities satisfying (→7.2) are convex sets in the class of all L1(m)
integrable functions.

Here we use the usual notation L1(m) to refer to the class of all F  measurable functions h

on Ω such that ∫Ω |h|dm < ∞. But we mention at this point that the class of densities (or the

class of nonnegative integrable functions for that matter) is not an open set in the topology

EP [hi(X)] = μi, for i = 1, … ,K,

EP [hi(X)] = ∫
Ω

hi(X(ω))f(ω)m(dω) = μi, for i = 1, … ,K.
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defined by the L1(m) norm. To see this, just add a small (in norm) nonpositive perturbation to a

positive function. The perturbed function stays inside any small ball in L1(m), but it is not

positive. This is an important technical detail overlooked in many applications of the method.
The basic intuition behind the method of maximum entropy is that in order to determine a

density satisfying (→7.2), it suffices to define a concave function of the class of all densities and
prove that it achieves a maximum in the class satisfying (→7.2). Certainly there are many possible
functions to propose, and it so happens that the entropy function has proven to be a good choice.
In order to solve the generalized moment problem, we need to properly define the entropy
functions and examine their properties, and then use them to solve the problem.

7.2  The entropy function

We shall suppose that all measures and probabilities that we talk about are defined on a
measurable space (Ω,F). We begin with a general definition and then consider variations on the

theme.

Definition 7.1.

The entropy of a probability P relative to a measure m is defined by

The standing convention here is that 0ln0=0. Also, if m is a counting measure concentrated on a
set {ω1,ω2, … }, and if P(ωi) ≠ 0, then the definition becomes

But, as we are going to be dealing with problem (→7.2), we shall be more concerned with the
following version of (→7.3). Let dP = fdm. The entropy of the density f is defined as follows:

We call it the entropy of f without further reference to m when it stays fixed. For some applications
it is convenient to consider m as a probability measure; let us denote it by Q and say that its choice
is up to the modeler. In this case (→7.3) is replaced by

In this case one usually writes S(P ,Q) and calls it the entropy of P with respect to Q. As last

variation on the theme, consider the case in which P ≪ Q and both P and Q have densities with
respect to a reference measure m, that is, dP/dm = f  and dQ/dm = g. In this case S(P ,Q)
becomes

Sm(P) = {−EP [ln ( dP
dm )] = − ∫ dP

dm ln ( dP
dm )dm, if P ≪ m, and the integral is finite

−∞, otherwise.

Sm(P) = −∑
i≥1

P(ωi) ln P(ωi).

Sm(f) = {− ∫ f ln (f)dm, if the integral is finite

−∞, otherwise.

SQ(P) = {
−EP [ln ( dP

dQ )] = − ∫ dP
dQ ln ( dP

dQ )dQ, if P ≪ Q, and the integral is finite

−∞, otherwise.
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(2)

(3)

(7.7)

(7.8)

(7.9)

(7.10)

(1)

(2)

Now we call Sm(f, g) the entropy of f with respect to g. At this point we mention that beginning

with the work of Kullback, in statistics and information theory it is customary to work with 
K(f, g) = −Sm(f, g), which then is convex in f.

Theorem 7.1.
With the notations introduced above, we have:

The function f → Sm(f, g) is strictly concave.

Sm(f, g) ≤ 0, and Sm(f, g) = 0 if and only if f = g almost everywhere with

respect to m.

When Sm(f, g) is finite, we have (Kullback’s inequality)

This result is proved in several places, for example in [→61], [→13] or [→24]. A sketch of the
proof goes as follows: First note that the function t → −t ln t is strictly concave. This property is
preserved when t is replaced by a function and integrated. The second property is an easy
consequence of Jensen’s inequality. The third assertion is a guided exercise in Chapter III of
[→61].

Let us now introduce some more notation. With the notations introduced for (→7.1) or (→7.2),

Consider now the following exponential family of densities (called the Hellinger arc of X):

The normalization factor is defined on

The first important property of Z(λ) is contained in:

Proposition 7.1.

With the notations just introduced we have:

The set D(m) is convex and the function λ →ln Z(λ) is convex on D(m).

For f ∈ P and λ ∈ D(m),

Sm(P ,Q) = {−EP [ln ( dP
dQ )] = − ∫ f

g ln ( f
g )gdm, if the integral is finite

−∞, otherwise.

1

4
∥f − g∥2 ≤ −Sm(f, g) = K(f, g).

P = {P ≪ m ∣ (7.1) or (7.2) holds}.

ρλ=
e−⟨λ,h(X)⟩

Z(λ)

Z(λ)= ∫
Ω

e−⟨λ,h(X)⟩dm.

D(m) = {λ ∈ R
K ∣ Z(λ) < ∞}.

Sm(f) ≤ Σ(λ, μ) ≡ln Z(λ) + ⟨λ, μ⟩.
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The proof of the first assertion emerges from Hölder’s inequality, and the proof of the second
consists of an invocation of Theorem →7.1 applied to f and g replaced by ρλ , and the fact that f
satisfies (→7.2). Note that if ρλ ∈ P, then Σ(λ, μ) = Sm(ρλ).

7.3  The maximum entropy method

We have already mentioned the intrinsic difficulty in doing calculus on the space of densities, in
particular if we tried to find the maximum of a convex function defined on a convex subset of the
class of densities. The difficulty lies in the fact that an arbitrarily small (in the L1(m)-norm)

variation f → f + δf  takes the function out of the class of densities. This makes the application
of the concepts of calculus hard to apply in this infinite dimensional setup.

But there is a way out of this difficulty. Notice that the inequality in Proposition →7.1 asserts
that the entropy Sm(f) of any density f satisfying the constraints is bounded above by the

entropy Sm(ρλ). The problem is that we do not know whether ρλ  satisfies (→7.2). If we were

able to prove that for some λ∗ , the density ρλ  satisfies (→7.2) or is in P, then we will be done.
Then the natural thing to do is to minimize Σ(λ, μ) and verify that for the λ∗  at which the

minimum is reached, the density ρλ∗ ∈ P. So, let us study some of its properties. We begin with
the following assumption:

Assumption A.

Suppose that the convex set D(m) has a nonempty interior in RK .

Thus it is clear that

is continuously differentiable in D(m) as many times as we need, but all that we need for the

applications that come below is:

Proposition 7.2.

As function of (λ, μ), the function Σ(λ, μ) has two continuous derivatives in D(m), and

The dependence of Σ(λ, μ) on μ will come into focus below, when we study problems with data

in intervals. The result that we need for the time being is the following:
Theorem 7.2.

∫
Ω

e−⟨λ,h(X)⟩dm

−
∂

∂λi
ln Z(λ)= ∫

Ω

hi(X)
e−⟨λ,h(X)⟩

Z(λ)
dm

∂ 2

∂λi∂λj

ln Z(λ)= ∫
Ω

hi(X)hj(X)
e−⟨λ,h(X)⟩

Z(λ)
dm

− ∫
Ω

hi(X)
e−⟨λ,h(X)⟩

Z(λ)
dm ∫

Ω

hj(X)
e−⟨λ,h(X)⟩

Z(λ)
dm.
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With the notations introduced above and under Assumption →A, suppose that the minimum of 
Σ(λ, μ) as function of λ is achieved at λ∗  in the interior of D(m), then

Then the density

solves the entropy maximization problem, and furthermore

Proof.

Notice that if λ∗  is the minimizer of Σ(λ, μ) for fixed μ, then, invoking the first identity in

(→7.12), we have

In particular, this asserts that ρ∗
λ  is a density that solves (→7.2). The third assertion is obtained by

a simple computation. Not only that, according to the comment right after the proof of
Proposition →7.1, we conclude that at ρ∗

λ  the entropy attains its maximum possible value.  □

Comment. In the statement of the theorem we considered the nicest possible case. We can be
a bit more general and suppose that the optimal λ∗  is achieved at the relative interior of D(m),

and still obtain the same result. But it may happen that for fixed μ, the function λ → Σ(λ, μ) is

not bounded below. In this case, which may occur when there is inconsistency of the data, the
maximum entropy method breaks down. Rigorous proofs of all these assertions appear in [→13].
As to the use of duality to obtain the result as we did, it seems that it was in [→70]that a
connection to duality theory was first mentioned.

7.4  Two concrete models

To close, we shall make explicit the choice of (Ω,F) for two possible cases. Let us begin by the

simplest case.

7.4.1  Case 1: The fractional moment problem

This example is a particular case of the example just described. Here we shall consider M = 1
and Ω = [0, 1] with the σ-algebra F = B([0, 1]) and the reference measure dm(y) = dy, the

standard Lebesgue measure on the interval. To vary the notation a bit, now (→7.2) becomes: Find
a density f(y) on [0,1] such that

−∇λ ln Z(λ∗) = μ.

ρλ∗ =
e−⟨λ∗,h(X)⟩

Z(λ∗)

S(ρλ∗) = Σ(λ∗, μ) =ln Z(λ∗) + ⟨λ∗, μ⟩.

∇λΣ(λ∗, μ) = 0 ⇔ −∇λ ln Z(λ∗) = μ.

1

∫
0

yαif(y)dy = μi; i = 1, …K.
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That is, in this case hi(y) = yαi . We already saw that the solution of the associated maximum

entropy problem is explicitly given by

where λ∗  is obtained as described, and the particular aspect of Z(λ) is now

7.4.2  Case 2: Generic case

In this case, the random vector X can be regarded as a vector variable taking values in RK , and

we can think of (Ω,F) as (RK,B(RK)). This time we suppose that the information available to

the modeler is about the expected values of the Xi , i = 1, … ,K  themselves, that is 
hi(X) = Xi . We are not placing any restrictions on the range of the Xi , besides the knowledge

of their mean values. Furthermore, we suppose that the modeler knows that the unknown

probability distribution has an unknown density ρ(x) with respect to a probability dQ(x) on RK .

From the maximum entropy procedure, we know that the unknown density is of the form

and, for λ ∈ D(Q), the normalization factor is given by

Notice that it is the choice of the reference probability dQ(x) that makes the problem nontrivial.

Actually, the solution to be obtained may depend strongly on the choice of the dQ(x), and a

theory of best choice of such reference measure is, as far as we know, an unstudied problem.
Again, the notations and the procedure to determine the λ∗  is as described in the previous
section.

7.5  Numerical examples

In this section we shall consider several types of examples. First, we shall consider the problem of
reconstructing a density from simulated data from a known distribution. Next we shall determine
a distribution of losses with several levels of aggregation, and to finish we shall compare the
output of the maxentropic procedure versus two other reconstruction methods.

In the first case, after explaining how the data is generated, we display the maxentropic
reconstructions obtained by an application of the standard maximum entropy (SME) procedure
described above, and compare the result obtained with the true distribution by means of several
measures of discrepancy.

For the case in which the data is obtained as a result of several levels of aggregation, we shall
compare with the empirical distribution for a case in which the amount of data is moderately

f ∗(y) =
e− ∑K

i=1 λ
∗
i y

αi

Z(λ∗)
,

Z(λ) =

1

∫
0

e− ∑K
i=1 λiyαidy.

ρλ∗(x) =
e−⟨λ∗,x⟩

Z(λ∗)

Z(λ) = ∫ e−⟨λ,x⟩dQ(x).
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large. And to finish, to compare with two nonmaxentropic procedures, we shall consider an
example discussed in Chapter →5.

7.5.1  Density reconstruction from empirical data

We shall consider next a quite simple case, consisting of reconstructing the density of a positive
random variable when we have a sample from its distribution. But more importantly, to illustrate
the power of the method, we shall only use eight values of its Laplace transform determined from
the data. The sample that we shall consider comes from a lognormal density. This example is
chosen because neither its Laplace transform nor its characteristic function can be determined
analytically, and we have to rely on numerical estimation. Moreover, and this is the beauty of the
example, the reconstructed density function can be compared to the true one after the
maxentropic procedure is carried out.

The data generation process

In order to test the robustness of the maxentropic procedure, we shall consider two samples 
{s1, … , sN}, one of size N = 200 and the other of size N = 1000, from a lognormal density

with parameters μ = 1 and σ = 0.1. The fractional moments (or the Laplace transform) at 
αi = 1.5/i for i = 1, … , 8, is computed according to

The empirical moments obtained are listed in →Table 7.1.

Table 7.1 Moments of S for different sample sizes.

Size Moments of S

μ1 μ2 μ3 μ4 μ5 μ6 μ7 μ8

200 0.0176 0.1304 0.2562 0.3596 0.4409 0.5051 0.5568 0.5990

1000 0.0181 0.1319 0.2579 0.3612 0.4424 0.5066 0.5581 0.6002

In the next chapter we shall list the confidence intervals for these moments. They will play a
role in the reconstruction procedure carried out there when the data is specified to be in an
interval.

The maxentropic density

In →Figure 7.1 we present the histograms of the two sets of data points. In the left panel we
present the histogram of the sample of size N = 200 and to its right that of the sample of size 
N = 1000.

μ̄i =
1

N

N

∑
k=1

e−sjαi , αi = 1.5/i; i = 1, … , 8.



Figure 7.1  Histograms of the two samples.

In the two panels of →Figure 7.2 we display the maxentropic densities, and then in the two
panels of →Figure 7.3 the cumulative distribution functions for the two sample sizes.



Figure 7.2  Density distributions for different sample sizes.

In both figures the left-hand panel corresponds to the reconstruction obtained from 
N = 200 data points and the right-hand panel to the corresponding reconstruction obtained
from N = 1000 data points.

In the plots of the cumulative distribution functions, the jagged line corresponds to the
cumulative distribution of the empirical density of the data. This shows the amount of discrepancy
between the data and the reconstructed density better than the visual comparison between the
density and the histogram, which is bin dependent.



Figure 7.3  Cumulative distribution functions for different sample sizes.

In Tables →7.2 and →7.3 shown below, we present some numerical measures of quality of
reconstruction. In →Table 7.2 we present the comparison of the L1  and L2  norms between the
true density and the histogram to stress the fact that this measure of discrepancy between the
reconstructed density and the empirical density is bin dependent. Note that the L1  and L2

distances between the true and the empirical density as well as the L1  and L2  distances between
the maxentropic and the empirical densities are quite similar. Also note that the L1  and L2

distances between the true and the maxentropic densities are considerably smaller. Of course,
this type of comparison is not possible in ‘real life’ situations because we do not have the true
density to begin with.

As an alternative to the L1  and L2  distances between densities, in →Table 7.3 we present the
mean absolute error (MAE) and root mean square error (RMSE) as an alternative measure of
error. These two discrepancy measures are not bin dependent, and capture the closeness
between the cumulative densities displayed in Figures →7.2 and →7.3.

Table 7.2 Quality of reconstruction using L1  and L2  distances.

Size Hist. vs. true density Hist. vs. maxent. True density vs. maxent.

L1-norm L2-norm L1-norm L2-norm L1-norm L2-norm

200 0.1599 0.1855 0.1449 0.1727 0.0668 0.0761

1000 0.1042 0.1077 0.0973 0.1044 0.0307 0.0289
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Table 7.3 Quality of reconstruction according to MAE and RMSE.

Size Hist. vs. true density Hist. vs. maxent. True density vs. maxent.

MAE RMSE MAE RMSE MAE RMSE

200 0.0158 0.0199 0.0089 0.0103 0.0105 0.0115

1000 0.0064 0.0076 0.0043 0.0056 0.0053 0.0060

Clearly, the results seem to be pretty good using either measure. For L1  and L2  norms, the
reconstruction is close to the true density. This result seems to be better because we are directly
comparing two densities instead of the histogram. For the MAE and RMSE measures the
reconstruction is closer to the simulated data. It is important to clarify that for this calculations we
obtain the cumulative distribution for each available data point, not just the centers of the bins as
in the case of L1  and L2  norms (see →Figure 7.3).

To finish, we mention a complementary result. The minimization of the dual entropy Σ(λ, μ)
is carried out with a step reducing Newton gradient method available in the R library under the
name B&B-package. The norm of the gradient of the dual entropy, which measures the degree

with which the maxentropic density reproduces the data, was of the order of 10−7  for the sample

of size N = 200 and 10−8  for the sample of size N = 1000.

7.5.2  Reconstruction of densities at several levels of data aggregation

In this section we address the problem of numerically determining the density of a positive
random variable, which results from an underlying multistage aggregation process. Think of a
bank that during a given period of time is aggregating losses of risks of different types into risk in
a line of business, and then aggregating the risk of the different business lines into one total loss
for the time period. Or think of an insurance company that aggregates liability payments
produced by different types of claims during a given period. In these cases, depending on how it
was collected, the empirical data may or may not come with the dependencies among the
different losses built in.

From the point of view of evaluating the capabilities of the method of maximum entropy, the
comments in the previous paragraph have to be taken into account to be sure that the right input
is fed into the maxentropic reconstruction procedure.

The aggregation process that we consider has three levels. We might think of the total loss as
aggregations of losses in several business lines, each of which is the result of aggregating losses
of different type in each of them, and finally (or to begin with), the losses of each type result from
aggregating individual severities according to the number of times that they occur during some
preassigned lapse of time. In the context of claims to be paid by an insurance company, the total
amount paid is the sum of claims paid by accidents, which may be of different types. The
numerical example that comes was developed in [→46].

To put it in symbols, for each b = 1, 2 … ,B consider h = 1, 2, … ,Hb  and put

where, for each pair (b,h),

S =
B

∑
b=1

Sb, with Sb =
Hb

∑
h=1

Sb,h,
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describes the loss at the first level of aggregation. Here we suppose that all the individual losses
are independent among themselves and of the numbers of losses in each time period, and those
of the same (b,h, k) type are identically distributed.

Next we describe how the data is generated. Once the data for S is available we proceed as in
the previous section, that is, we compute numerically the Laplace transform at eight values of the
parameter and then compute maxentropic density from the associated moments.

The data generation process

We shall consider B = 3 and Hb = 7 for all b. We shall consider several possible frequency
models for the Nb,h  and, to create a first level of dependency, we shall couple them by means of

Gaussian copulas with different values of the correlation coefficient. Below we describe the
coupling procedure in more detail.

Table 7.4 Inputs for the simulation of S1 .

Sbh Nbh Xbh

S11 : POISSON ( λ = 20) CHAMPERNOWNE ( α = 25, M = 85, c = 15)

S12 : POISSON ( λ = 40) PARETO ( shape = 10, scale = 85)

S13 : BINOMIAL ( n = 70, p = 0.5) PARETO ( shape = 10, scale = 85)

S14 : BINOMIAL ( n = 62, p = 0.5) CHAMPERNOWNE ( α = 10, M = 100, c = 45)

S15 : BINOMIAL ( n = 50, p = 0.5) GAMMA ( shape = 1500, rate = 15)

S16 : BINOMIAL ( n = 56, p = 0.5) GAMMA ( shape = 4000, rate = 35)

S17 : NEGATIVE BINOMIAL ( r = 60, p = 0.3) WEIBULL ( shape = 100, scale = 15)

Table 7.5 Additional inputs for the simulation of S2 .

Nbh Xbh

TAIL: NEGATIVE BINOMIAL ( r = 90, p = 0.8) PARETO ( shape = 5.5, scale = 2100)

In →Table 7.4, we list all the frequency models considered. To generate S1  and S2  we use
almost the same inputs. S2  consists of two pieces. One is a sample with the same distributions as,
but independent of, S1 , and the other is an additional compound variable generated as explained
in →Table 7.5. The frequency was modeled by a negative binomial and the individual losses were
chosen to be Pareto. This is done to add kurtosis to a sample like S1 . Not only that, we generated
a very large amount of data, but in order to have relatively large numbers, we filtered out the
losses smaller than 11 000 and retained over 9000 of those points. To fatten the tail behavior of 
S2 , from the Pareto data we filtered out values smaller than 32 000 and again kept the same total
number of points as for S1  and S2 .

Let us now explain how we added dependency among the S1,h . We supposed that there was

some sort of dependence among the frequencies. This amounts to supposing that whatever it is
that causes the dependence affects only the frequency at which events occur but not the
individual severities. The frequencies shown in →Table 7.4 proceed as follows: We use a copula
with correlation ρ = 0.8 to couple N1,1 , N1,2  and N1,3 , a copula of ρ = 0.5 to couple N1,4 , N1,5

Sb,h =

Nb,h

∑
k=1

Xb,h,k



and a copula of ρ = 0.3 for N1,6 , N1,7 . And of course, a similar procedure applies to the part of 

S2  generated similarly to S1 .
For S3 , we use the distributions described in →Table 7.6, here we considered the compound

variables S3,h  for h = 1, … , 7 as independent among themselves, and, as usual, the N3,h  as

independent of the individual losses X3,h,k  with k ≥ 1 independent and identically distributed.

The size of the samples in each case are of 9000 data points.

Table 7.6 Inputs for the simulation of S3 .

Sbh Nbh Xbh

S31 : POISSON ( λ = 80) CHAMPERNOWNE ( α = 20,M = 85, c = 15)

S32 : POISSON ( λ = 60) LogNormal ( μ = −0.01, σ = 2)

S33 : BINOMIAL( n = 70, p = 0.5) PARETO ( shape = 10, scale = 85)

S34 : BINOMIAL ( n = 62, p = 0.5) CHAMPERNOWNE ( α = 10, M = 125, c = 45)

S35 : BINOMIAL ( n = 50, p = 0.5) GAMMA ( shape = 4500, rate = 15)

S36 : BINOMIAL ( n = 76, p = 0.5) GAMMA ( shape = 9000, rate = 35)

S37 : NEGATIVE BINOMIAL ( r = 80, p = 0.3) WEIBULL ( shape = 200, scale = 50)

Tail: NEGATIVE BINOMIAL ( r = 90, p = 0.8) PARETO ( shape = 5.5, scale = 5550)

Once S1 , S2 , S3  are obtained, we apply the maximum entropy technique as explained above
to obtain their densities f ∗

1 (s), f ∗
2 (s), f ∗

3 (s). These are plotted in →Figure 7.4. The scale in the

abscissa axis in all three plots is 105 .

Figure 7.4  Losses for each line of activity reconstructions reconstructed by SME.

The scale in each case is in thousands. This time we measure the quality of the reconstruction
using the MAE and RSME distances between the reconstructed densities fSi

 and the histogram.

We show the results in →Table 7.7. The agreement is quite good.
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Table 7.7 MAE and RMSE distances between the histogram and the Si .

S Error

MAE RMSE

S1 0.0054 0.0072

S2 0.0241 0.0282

S3 0.0061 0.0071

Once we have the f ∗
i (s) and the data, there are a variety of things that we can do to compute the

distribution of the sum S = S1 + S2 + S3 .

First, we can suppose that the Si  are independent, and use the data to generate a
sample of S = S1 + S2 + S3  to determine the distribution of total losses using
SME.
Use a sequential coupling combined with convolution to determine a density of
total losses.
There are several possible copulas that we can invoke to produce a joint
distribution. Then we can sample from that distribution to generate joint samples 
(s1, s2, s3) from which we can produce s = s1 + s2 + s3  and then use SME to

determine the density of total losses.

As the notion of copula is essential for what follows, we say a few words about the subject here
and direct the interested reader to Chapter 14 for some more about the subject. A copula is the
joint distribution function of n ≥ 1 random variables Y1, … ,Yn  that take values in [0,1]. We
shall denote it by the customary C(u1, … ,un) : [0, 1]n → [0, 1], and suppose that it is

continuously differentiable in all variables. Given a copula (there is a large catalog of them), if one
knows the cumulative distribution functions Fi(xi) of the random variables X1, … ,Xn , then a

candidate for joint distribution for (X1, … ,Xn) is given by

If, furthermore, we suppose that the given variables are continuous with densities fi(xi) with

respect to the Lebesgue measure, from our assumption on C it follows that the joint density of 
(X1, … ,Xn) is given by

Now we come back to our problem. For us, n = 3 and the fi(xi) are the maxentropic densities of

the Si  that we determined above. Once we settle on a copula, we generate a sample (s1, s2, s3)
from the joint distribution given by (→7.22), and for each sample point we form s = s1 + s2 + s3

, which will be the inputs for the determination of the maxentropic density of the total aggregate
loss, then carry on the standard business, that is, we implement the maxentropic procedure and
perform a few comparisons.

To take care of the first issue in the itemized list a few lines above we consider the independent
copula C(u1,u2,u3) = u1u2u3 , which amounts to saying that we consider the (s1, s2, s3) as

independent and just generate s = s1 + s2 + s3  from the data that we already have. In this case,

FXx,…,Xn
(x1, … ,xn) = C(F1(x1), … ,Fn(xn)).

fX1,…Xn
(x1, …xn) =

∂n

∂u1, … , ∂un
C(u1, …un)

ui=Fi(xi)

n

∏
i=1

fi(xi).∣
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since there are only three densities, the computations to determine the joint density by
convolution are not that heavy, namely

For the second item, we shall suppose that there is dependence between S1  and S2  modeled by
a copula c(u1,u2) and then suppose that L1,2 = S1 + S2  is independent of S3 . To obtain the

total loss in two steps, we first obtain fS1,S2  according to (→7.23), and then generate a sample for 

L1,2  with density

This sequential procedure seems to have been first introduced by Alexander in [→5]. With this and
the sample for S3  we generate a sample for s = ℓ + s3 , which is then used as input for the
maximum entropy procedure. Note that also in this case the density of the total loss can be
obtained by convolution of fL1,2  and f3 , namely

This and the three term convolution will be used below to compare the output of the maxentropic
procedure when the data is generated according to the assumed densities.

Finally, for the third item in the list we consider a pair of copulas from the catalog and
generate the necessary data from the resulting joint density. Let us now describe the numerical
results and some comparisons among them.

Independent copula versus partial coupling

Let us first compare the results provided by the maxentropic techniques when the partial losses
are either independent or only the first two of them are dependent but independent of the third.
The copulas that were used to construct a joint density of (S1,S2) were the following (see

→Figure 7.5). To generate the data for panel (a) we supposed that S1 , S2  and S3  were
independent. For the data for (b)–(c) we used Gaussian copulas with ρ = 0.5 and ρ = 0.8,
whereas to generate the data in panel (d) we used a Student copula with parameters ρi = 0.7, 
ν = 10. This one is usually used to generate long tailed data.

The results are plotted in →Figure 7.5 along with the results of calculating the densities by
direct convolution.

fS(s) =

s

∫
0

f1(s − s1)(
s1

∫
0

f2(s1 − s2)f3(s2)ds2)ds1.

fL1,2(ℓ) =

ℓ

∫
0

fS1,S2(s, ℓ − s)ds.

fS(s) =

s

∫
0

fL1,2
(s − ℓ)f3(ℓ)dℓ.



Figure 7.5  Density of the sum obtained by convolution and SME approaches for different types of
copulas and correlations.

The contents of the four panels in →Figure 7.5 are as follows: In panel (a) we show the result
of applying the maxentropic procedure to the empirical data obtained by simply summing the
samples of each of the losses as well as the result of obtaining the density numerically by
convolution according to (→7.24). In panels (b)–(d) we show the maxentropic density obtained
when the input data was s = ℓ1,2 + s3  where ℓ1,2  was sampled from the joint FS1,S2  couple by

the copula indicated, and regarding S3  independent of that partial total loss. There we also show
the density of total loss computed as indicated in (→7.26).

To compare the maxentropic density to the true density we measured the discrepancy
between them using the MAE and the RSME. The results are displayed in →Table 7.8. These results
confirm the visual results apparent in →Figure 7.5.
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Table 7.8 MAE and RMSE distances between SME and the convolution approaches.

Copula Error

MAE RMSE

Independent 0.027 0.039

Gaussian, ρ = 0.5 0.004 0.005

Gaussian, ρ = 0.8 0.004 0.005

t-Student, ρ = 0.7, ν = 10 0.004 0.005

Fully dependent risks

The numerical experiments in this section go as follows. We shall consider a few copulas that will
provide us with a joint density for (S1,S2,S3). Recall that above we mentioned that since the

maximum entropy method provides us with reliable partial loss distributions, we can use them to
determine a joint distributions or joint density as in (→7.22) and (→7.23). So, the problem of
determining a density of the total loss will be solved, because from that one can compute the
distribution of S1 + S2 + S3 . The actual computation goes as follows. From the joint density 
fS1,S2,S3  one can compute the probability (cumulative distribution function) by

which after the change of variables s1 + s2 + s3 = s, s2 + s3 = u, s3 = v, differentiation with
respect to x and renaming variables, becomes

This is the ‘exact’ density against which we shall compare the output of the maxentropic
procedure. Of course, for the comparison to be fair, the input data has to be well collected, that is,
we suppose that s = s1 + s2 + s3  is obtained from a well collected sample, that is a sample
generated from the true distribution FS1,S2,S3  obtained by coupling according to (→7.22).

For the numerical examples we considered a several copulas. For the first example we
considered a Gumbel and a Clayton copula, with parameters 3 and 2 respectively. We carried out
the maxentropic approach with the data provided by the Gumbel copula, and computed the
‘exact’ densities according to (→7.27) for the densities obtained from the Gumbel and Clayton
copulas. The result obtained is plotted in →Figure 7.6. In the plot we also show the histogram of
the data.

P(S1 + S2 + S3 ≤ x) = ∫
{s1+s2+s3≤x}

fS1,S2,S3(s1, s2, s3)ds1ds2ds3,

fS(s) =

s

∫
0

(
u

∫
0

fS1,S2,S3(s − u,u − v, v)dv)du.



Figure 7.6  Densities for the Gumbel and Clayton copulas.

The plot may be read as follows. First, to exemplify the fact that when the data is well collected
(that is, the different random variables are collected jointly, or in such a way that the
dependencies are preserved), the maximum entropy method provides a reliable reconstruction of
the true density. Second, we exemplify the effect of the choice of the wrong copula to determine
the density of the total loss, and finally, the effect of the numerical convolution procedure, which
may be the cause of the wiggle in the curves obtained as in (→7.27).

As a measure of the quality of the reconstruction in →Table 7.9, we consider the MAE and
RMSE between the histogram and the three other curves. In this experiment, the maxentropic
reconstruction has the smallest error. In [→46]we present further examples of a similar analysis
carried out with Gaussian copulas with positive and negative correlation and one obtained with t-
Student based copula. Also, in Chapter →12, where we carry out computations made with the
maxentropic densities, we present the bearing of the copula choice on the computation of
quantiles and tail conditional expectations, that is, the influence of the choice of the copula on the
computation of regulatory capital.



Table 7.9 Errors of SME versus convolution approaches.

Error SME Convolution (Gumbel) Convolution (Clayton)

MAE 0.005107 0.005453 0.02512

RMSE 0.006291 0.007283 0.03088

7.5.3  A comparison of methods

This section is devoted to a comparison of the four different methods in a case in which an
analytic solution to the problem is at hand. The model we shall consider for the compound losses
is the following: The frequency is to be modeled by a Poisson distributed random variable and the
individual losses are supposed to be distributed according to a gamma density. In this case, we
saw in Chapter →5 that the exact densities for any number of losses are again gamma
distributions and that the problem boils down to a summation of an infinite series of gamma
densities.

Not only that, but the Laplace transform of the density of the compound variable can be
explicitly computed, and different methods of inverting it can be compared. We consider the
maxentropic method, which depends on a small number of data points versus an integer moment
based method and a Fourier inversion method, which in this case is easy to implement because
the Laplace transform is simple to extend to the right half complex plane.

If the intensity parameter of the Poisson is denoted by ℓ and the individual losses have densities 
Γ(a, b), we saw that the density of the total loss (given that losses occur) is given by

To chose a truncation point for the sum, we determine an nℓ  such that

for ϵ = 10−5 . For the numerical example developed in [→50], from which we took →Figure 7.7,
the parameters chosen were ℓ = 1, a = 2 and b = 1 and two ways of assigning the eight Laplace
transform parameters α were considered.

fS(x) =
e−ℓe−bx

1 − e−ℓ

∞

∑
n=1

ℓnxna−1bna

n!Γ(na)
.

e−ℓ

1 − e−ℓ

∞

∑
n=1

ℓn

n!
≥ 1 − ϵ



Figure 7.7  A comparison of density reconstruction methods.

Note that the maxentropic method and the Fourier inversion method give quite good
approximations to the (approximate) true density obtained by summing nℓ = 500 terms. The
difference being of course that to implement the Fourier summation we need to have an analytic
expression for the Laplace transform. Similarly, for the integer based method we need a large
number of integer moments whereas for the maxentropic method we need only eight fractional
moments. Again, consider Chapter →9 for an explanation of this phenomenon.

To conclude we should mention an important numerical issue that comes up when minimizing
the dual entropy function to determine the Lagrange multipliers. The function Σλ is in most
cases quite flat near the minimum. Thus to find the minimum when using gradient type methods
it is convenient to couple such methods with a step reducing procedure. Such a method exists,
and it is called the Barzilai and Borwein algorithm (BB-method), which is a nonmonotone gradient
method. This is a low-cost computational method, easy to implement and very effective for large-
scale problems [→83].
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8  Extensions of the method of maximum entropy

We begin this chapter by explaining the method of maximum entropy in the mean through
its application to solve a linear ill-posed inverse problem with box constraints. The same
framework will be implicit in the extensions of the method that we consider afterward.

The statement of the problem that we consider in the first section goes as follows:

Here C = ∏n
i=1[Li,Ui] with −∞ < Ui < Li < +∞ for i = 1, … ,n, and d < n. The

procedure developed in this section will be used to deal with the capital allocation problem.

The two extensions of the maximum entropy method are designed to cover two somewhat
related cases:

There may be errors in the data. This means that the moments μi  that
appear in the right-hand side of (→7.1)–(→7.2) are exactly known, but up to
errors in the measurement.
The moments μi  are not known. What is known is an interval, say [ai, bi], in
which the moment μi  falls.
There is error in the measurement, and the data is specified to lie in an
interval.

Let us state the three possible generalized moment problems. The first one consists of
finding the probability density f of an unknown probability P with respect to a reference
measure m on a sample space (Ω,F) and on estimating a K-vector η such that

Observe that in this problem the error ηi  is known to be there but is an unknown quantity
that has to be estimated as well. At this point, some modeling is necessary to further specify
the problem. This will be done below. We will maintain a general notation for a while but
eventually replace Ω by [0, ∞), P by FX , etc., when we come down to our specific

application.

The second problem can be stated as consisting of finding a density f such that

where the ai, bi , i = 1, … ,K , are to be provided by the modeler. Here we suppose that
the left-hand side can be computed exactly, but its value is specified or known to lie in a
given interval. This way of looking at the problem is natural in some cases in which a bid-ask

Determine x ∈ C such that Ax = y for y ∈ R
d.

∫
Ω

hi(X(ω))f(ω)dm(ω) + ηi = μi, i = 1, … ,K.

∫
Ω

hi(X(ω))f(ω)dm(ω) ∈ [ai, bi], i = 1, … ,K,
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range for the price of a risk or an asset is known, and we are interested in determining the
probability distribution implied in that price. The case in which the expected values of the Xi

are estimated by ‘‘experts’’ to lie in ranges is also typical.

To finish, we also have the problem in which not only there is a possible measurement error
in the evaluation or determination of the left-hand side of (→7.2), but also the data are
specified up to a range. That is, we want to find a density f and a vector η such that

The work in this chapter is based on [→47], although there are proposals different from
ours to infer probabilities from data in ranges, like that of [→1].

8.1  Generalized moment problem with errors in the data

Let us consider (→8.2). If we are to think of the μi  as expected values of hi(X), that is, as

possible average values over some sample values, then it is consistent to think of the error in
the specification of μi  as the average of the errors incurred in the observations of the Xi

themselves or perhaps errors in the numerical estimation of the expected values. That is, we
may suppose that

where the model for the sample space (Ωn,Fn) has to be specified as well as that of the

measure dν . There are two extreme cases to consider for the range of the random variables 
Yi  modeling the measurement error. Either they have a finite range, that is, Yi ∈ [−δi, δi],
where the δi  are to be provided by the modeler, or they have an infinite range, that is, 
Yi ∈ R. Let us consider simple versions of both cases separately.

8.1.1  The bounded error case

Notice now that as any number in [−δi, δi] can be written as a convex combination of the

two end points, it suffices to consider measures that are absolutely continuous with respect
to

where ϵa(dy) denotes the unit point mass concentrated at the point a, also called the Dirac

measure concentrated at a. Observe that any probability Pn  on Ωn = ∏K
i=1[−δi, δi]

absolutely continuous with respect to dν(y) has the form

∫
Ω

hi(X(ω))f(ω)dm(ω) + ηi ∈ [ai, bi], i = 1, … ,K.

ηi = ∫
Ωn

yjfn(y)dν(y),

dν(y) =
K

∏
i=1

(ϵ−δi(dyi) + ϵδi(dyi)),
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and the expected value of any Yi  is given by

Having said this, our problem consists of finding a product probability dP(x)dPn(y) on 

Ω × Ωn  such that

As it is easy to see that the entropy of a product measure is the sum of the entropies of the
factor measures, our problem now is finding a density f(x) and numbers 0 < pi < 1 such

that

achieves its maximum values over the class satisfying (→8.5). The procedure for this case is
the same as above, except that now the function Z(λ) has more structure built into it. This

time,

and the dual entropy function remains the same, that is,

except that Z(λ) is given by the expression displayed two lines above, and we now use 

ZX = ∫ e−⟨λ,h(X)⟩dm. The result that we need looks similar to Theorem →7.2, and we state

it next.
Theorem 8.1.
With the notations introduced above, under Assumption →A, suppose that the minimum of 
Σ(λ, μ) as function of λ is achieved at λ∗  in the interior of D(m). Then

the density

dPn(y) =
K

∏
i=1

(piϵ−δi(dyi) + (1 − pi)ϵδi(dyi)),

EPn
[Yi] = −piδi + (1 − pi)δi.

EP×Pn
[hi(X) + Yi] = ∫ hi(X)dP + ∫ YidPn = μi.

Sm(f, p) = Sm(f) −
K

∑
i=1

(pi ln pi − (1 − pi) ln (1 − pi))

Z(λ) = ∫ e−⟨λ,h(X)⟩dm ×∏
i=1

(eλiδi + e−λiδi),

Σ(λ, μ) =ln Z(λ) + ⟨λ, μ⟩ =ln ZX(λ) +
K

∑
i=1

ln (eλiδi + e−λiδi) + ⟨λ, μ⟩,

−∇λ ln Z(λ∗) = μ,

ρλ∗ =
e−⟨λ∗,h(X)⟩

Z(λ∗)
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and the probability

solve the entropy maximization problem, and furthermore

Comment. The proof proceeds like that of Theorem →7.2. We only add that the estimate of
the observational error in this model is given by

8.1.2  The unbounded error case

The underlying logic in this case is the same as in the previous case, except that now we
suppose that as a reference measure on the error sample space we consider a Gaussian
measure, that is,

A probability absolutely continuous with respect to this reference measure has a density 
fn(y), which will be required to satisfy (→8.5) with dPn(y) = fn(y)dν(y). The entropy

function of the product density f(ω)fn(y) is

Again, instead of maximizing the entropy, we minimize the dual entropy, and for that, the
first step is to compute the normalization factor Z(λ). A simple calculation shows that

Therefore the dual entropy is given by

There is a slight change in notation in the statement of the main result for this case.
Theorem 8.2.
With the notations introduced above, under Assumption →A, suppose that the minimum of 
Σ(λ, μ) as function of λ is achieved at λ∗  in the interior of D(m). Then

p∗
i =

eδiλ
∗
i

eδiλ
∗
i + e−δiλ∗

i

S(ρλ∗) = Σ(λ∗, μ) =ln Z(λ∗) + ⟨λ∗,μ⟩.

ϵ∗
i = −δi

eδiλ
∗
i

eδiλ
∗
i + e−δiλ∗

i

+ δi
e−δiλ

∗
i

eδiλ
∗
i + e−δiλ∗

i

.

dν(y) =
K

∏
i=1

e−y2/2 dy

(2π)K/2
.

Sm×ν(f, fn) = Sm(f) + Sν(fn).

Z(λ) = ∫ e−⟨λ,h(X)⟩dm ×
K

∏
i=1

e∥λ∥2/2.

Σ(λ, μ) =ln Z(λ) + ⟨λ, μ⟩ =ln ZX(λ) +
1

2

K

∑
i=1

λ2
i + ⟨λ, μ⟩.
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the densities

and

solve the entropy maximization problem, and furthermore

8.1.3  The fractional moment problem with bounded measurement error

As an application of the first case, we consider the fractional moment problem considered in
Section →7.4.1 when a measurement error is to be taken into account. We already explained
that to do that, we have to modify the notations appropriately. We pointed out that in this
case, Ω = [0, 1] and F = B([0, 1]), that is, dm = dy. Instead of X, we have Y (y) = y
and hi(y) = yαi . According to (→8.1), the maxentropic density is given by

where Z(λ) is detailed in Section →7.4.1, and the errors are to be estimated as

Also, (→8.10) holds, that is,

where now Z(λ) is given by

Note that the normalization factor is finite for all λ ∈ R
K .

8.2  Generalized moment problem with data in ranges

−∇λ ln Z(λ∗) = μ,

ρλ∗ =
e−⟨λ∗,h(X)⟩

Z(λ∗)

fn(y)∗
K

∏
i=1

1

√2π
e−∥y∥2/2 =

K

∏
i=1

1

√2π
e−∥y+λ∗∥2

Sm×ν(ρλ∗f ∗
n) = Σ(λ∗, μ) =ln ZX(λ∗) +

1

2
∥λ∗∥2 + ⟨λ∗,μ⟩.

ρλ∗ =
e−⟨λ∗,h(y)⟩

Z(λ∗)
,

ϵ∗
i = −δi

eδiλ
∗
i

eδiλ
∗
i + e−δiλ∗

i

+ δi
e−δiλ

∗
i

eδiλ
∗
i + e−δiλ∗

i

.

S(ρλ∗f ∗
n) = Σ(λ∗, μ) =ln Z(λ∗) + ⟨λ∗,μ⟩,

Z(λ) =

1

∫
0

e− ∑K
i=1 λiy

αi

dy
K

∏
i=1

(eλ1δi + e−λ1δi).



This section is devoted to the solution of problem (→8.3), namely finding a density (with
respect to dm) such that

where the ai, bi , i = 1, … ,K , must be specified as part of the statement of the problem.
The intuition behind the method that we propose next goes as follows. For each μi ∈ [ai, bi]
, we solve the maximum entropy problem. The entropy of the resulting density depends on 
μ; denote it by Sm(μ). Then we determine the μ that maximizes the set 

{Sm(μ) ∣ μ ∈ ∏K
i=1[ai, bi]}.

Let us put

and

Then we clearly have

Now recall from (→8.10) in Theorem →7.2 that at the density at which 
sup {Sm(f) ∣ f ∈ P(μ)} is reached, we have

which we substitute in the previous identity to obtain

Recall that under Assumption →A, we have the following:

Lemma 8.1.

The function Σ(λ, μ) : D(m) × R
K → R given by

is convex in λ and concave in μ, and in the interior of D(m) × R
K , we have

∫
Ω

hi(X(ω))f(ω)dm(ω) ∈ [ai, bi], i = 1, … ,K,

P(μ) = {Densities f such that (7.2) holds for μ ∈
K

∏
i=1

[ai, bi]}

P = {Densities f such that (8.3) holds} = ⋃
μ∈∏K

i=1[ai,bi]

P(μ).

sup {Sm(f) ∣ f ∈ P} =sup {sup {Sm(f) ∣ f ∈ P(μ)} μ ∈
K

∏
i=1

[ai, bi]}.∣Sm(μ) =inf {ln Z(λ) + ⟨λ, μ⟩ ∣ λ ∈ D(m)},

sup {Sm(f) ∣ f ∈ P} =sup {inf {ln Z(λ) + ⟨λ, μ⟩ ∣ λ ∈ D(m)} μ ∈
K

∏
i=1

[ai, bi]}.∣(λ, μ) →ln Z(λ) + ⟨λ, μ⟩
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Here I is the K × K  identity matrix, which is clearly a positive definite matrix. The proof of
this fact is trivial. A consequence of the lemma is that the maximum and minimum in the last
identity of the chain can be exchanged, and we have

which can be restated as

To compute the inner maximum, we begin with the following:

Lemma 8.2.

For λ ∈ R
K , we have

To complete the maximization, we map [−1, 1]K  homotetically onto ∏K
i=1[ai, bi] by means

of ξ → μ = κ + T(ξ), where κi = (ai + bi)/2, and T is diagonal with entries 

Tii = (bi − ai)/2. Therefore

and it follows from Lemma →8.2 that

Therefore the chain of identities becomes

Due to the presence of the absolute values in (→8.17), to state an analogue of Theorem
→7.2, we have to recall the extension of the notion of derivatives. As motivation, note that
the slope of the standard absolute value function |x| at 0 is any number in [−1,1], which are

the possible slopes of the tangent lines to the function |x| at 0. The generic definition goes

as follows (see [→12]).

Definition 8.1.

∇μ∇λΣ(λ, μ) = I.

sup {Sm(f) ∣ f ∈ P} =inf {sup {ln Z(λ) + ⟨λ, μ⟩ μ ∈
K

∏
i=1

[ai, bi]} λ ∈ D(m)},∣ ∣sup {Sm(f) ∣ f ∈ P} =inf {ln Z(λ)+ sup {⟨λ, μ⟩ μ ∈
K

∏
i=1

[ai, bi]} λ ∈ D(m)}.∣ ∣sup {⟨λ, μ⟩ ∣ μ ∈ [−1, 1]K} = ∥λ∥1 =
K

∑
i=1

|λi|.

⟨λ, μ⟩ = ⟨λ, κ⟩ + ⟨Tλ, ξ⟩,

sup {⟨λ, μ⟩ μ ∈
K

∏
i=1

[ai, bi]} = ⟨λ, κ⟩ + ∥Tλ∥ =
K

∑
i=1

(λi

(ai + bi)

2
+ |λi|

(bi − ai)

2
).∣sup {Sm(f) ∣ f ∈ P} =inf {ln Z(λ) + ⟨λ, κ⟩ + ∥Tλ∥ ∣ λ ∈ D(m)}.
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Let f : D → (0, ∞] be a convex function defined on a convex domain in RK . The

subgradient ∂f(x0) is the set of all vectors ξ ∈ R
K  such that

If x0 ∉ D , then we set ∂f(x0) = ∅.

The subgradient is a closed convex set. The important result that we need is the
following:

Proposition 8.1.

Suppose that the domain D  has a nonempty interior. Then x0 ∈ D  is a global minimizer of the

convex function f : D → (0, ∞] if and only if the extended first-order condition

holds.

We can now state the analogue of Theorem →7.2.
Theorem 8.3.
Suppose that the function ln Z(λ) + ⟨λ, κ⟩ + ∥Tλ∥ achieves its minimum at λ∗ . At this

minimum, we have

In this case the maxentropic density has the usual representation

which solves the entropy maximization problem, and furthermore

8.2.1  Fractional moment problem with data in ranges

This time, we consider another variation on the fractional moment problem addressed in
Section →7.4.1, except that now we suppose that the data is known up to a range. We will
particularize for this situation the results just obtained. Now, as in Section →8.1.3, we have
only one random variable that takes values in [0,1] and K functions hi(y) = yαi  for 

⟨ξ, x − x0⟩ ≤ f(x) − f(x0).

0 ∈ ∂f(x0)

−
∂ ln Z(λ∗)

∂λi

= bi if λ∗
i > 0,

−
∂ ln Z(λ∗)

∂λi

∈ [ai, bi] if λ∗
i = 0,

−
∂ ln Z(λ∗)

∂λi

= ai if λ∗
i < 0.

ρλ∗ =
e−⟨λ∗,X⟩

Z(λ∗)
,

S(ρλ∗) =ln Z(λ∗) + ⟨λ∗, κ⟩ + ∥Tλ∗∥.
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i = 1, … ,K . Therefore the setup will be as in that section. The problem that we consider
now consists of finding a density f(y) on [0,1] such that

We saw that the solution to this problem can be represented by

where the vector λ∗  is obtained by minimizing the dual entropy

with

The normalization factor is again finite for λ ∈ R
K , and the minimizer differs from that of

the previous example because the dual entropy is different.

8.3  Generalized moment problem with errors in the data and
data in ranges

This section is devoted to problem (→8.4), that is, to determining a density f such that

In this problem, the data ranges [ai, bi] and the nature of the measurement error are

provided by the model builder. Its should be clear that to solve this problem by means of the
method of maximum entropy, we just have to put together the two techniques developed in
Sections →8.1 and →8.2.

To take care of the measurement error, we had to augment the sample space and
extend the entropy to the class of densities on the extended space, and the rest of the
procedure is as described in Chapter →7.

To take care of the data in ranges, we proceeded through a nested double maximization
process, which eventually resulted in the minimization of a more elaborate dual entropy
function.

1

∫
0

yαif(y)dy ∈ [a1, bi], i = 1, … ,K.

f ∗(y) =
e−⟨λ∗,h(y)⟩

Z(λ)
,

Σ(λ) =ln Z(λ) +
K

∑
i=1

(λi

(ai + bi)

2
+ |λi|

(bi − ai)

2
)

Z(λ) =

1

∫
0

e−⟨λ∗,h(y)⟩dy.

∫
Ω

hi(X(ω))f(ω)dm(ω) + ηi ∈ [ai, bi], i = 1, … ,K.
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The notations and the assumptions made above will stay in force now. We will consider only
the case in which the measurement error is bounded. Let us first recall the normalization
factor given by (→8.6)

This normalization factor is to be incorporated into the dual entropy function given by
(→8.20) to obtain

The formal result can be stated as follows.
Theorem 8.4.
Suppose that the dual entropy has a minimizer λ∗  lying in the interior of its domain. Then, the

maximum entropy density f ∗  and weights p∗
i  that solve (→8.21) are given by

and

8.4  Numerical examples

Here we consider two variants of the example considered in Section →7.5, namely the
problem of reconstructing a density from its Laplace transform regarded as a fractional
moment problem, except that now we suppose that the data are only given in an interval or
they are noisy data. We generate the data as in Section →7.5.

Recall that we considered two samples from a lognormal density with parameters μ = 1
and σ = 0.1 of sizes N = 200 and N = 1000. The moments of these samples are given in
→Table 8.1. The corresponding confidence intervals are listed in →Table 8.2.

Table 8.1 Moments of S for different sample sizes.

Size Moments of S

μ1 μ2 μ3 μ4 μ5 μ6 μ7 μ8

200 0.0176 0.1304 0.2562 0.3596 0.4409 0.5051 0.5568 0.5990

1000 0.0181 0.1319 0.2579 0.3612 0.4424 0.5066 0.5581 0.6002

Z(λ) = ∫ e−⟨λ,h(X)⟩dm ×
K

∏
i=1

(eλiδi + e−λiδi).

Σ(λ) = ∫ e−⟨λ,h(X)⟩dm ×
K

∏
i=1

(eλiδi + e−λiδi) +
K

∑
i=1

(λi

(ai + bi)

2
+ |λi|

(bi − ai)

2
).

f ∗ =
e−⟨λ∗,h(X)⟩

Z(λ∗)

p∗
i =

eδiλ
∗
i

eδiλ
∗
i + e−δiλ

∗
i

.
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Table 8.2 Confidence intervals of μ̄ for different sample sizes.

μi Sample size 200 Sample size 1000

μ1 [0.0175, 0.0177] [0.0181, 0.0182]

μ2 [0.1302, 0.1307] [0.1318, 0.1321]

μ3 [0.2559, 0.2565] [0.2578, 0.2581]

μ4 [0.3592, 0.3599] [0.3611, 0.3614]

μ5 [0.4405, 0.4412] [0.4423, 0.4426]

μ6 [0.5048, 0.5054] [0.5065, 0.5068]

μ7 [0.5565, 0.5570] [0.5580, 0.5583]

μ8 [0.5987, 0.5992] [0.6001, 0.6004]

These will be the input for the first of the maxentropic reconstruction that we will carry out
below and were computed in the standard way, that is, using the confidence interval

with upper (1 − C)/2 critical value and lower 1 − (1 − C)/2 critical value at confidence

level C. For our example, we considered a confidence level of C = 10 %. In this case the

confidence interval is (μ̄i − z0.55sdi/√n, μ̄i + z0.45sdi/√n), where sdi  is the sample

standard deviation, and μ̄i  is the sample mean of Y αi  of the simulated samples. Using

tables of the normal distribution, we obtain |z0.45| = |z0.55| = 0.1256. Using the statistical

tool R, this involves invoking the commands abs(qnorm(0.45)) or abs(qnorm(0.55)).

8.4.1  Reconstruction from data in intervals

Here we apply the result described in Section →8.2, namely the reconstruction from data in
ranges. The results are displayed in →Figure 8.1. In the left panel, we present the density
from the data of the sample of size N = 200 and in the right panel, that of the data of size 
N = 1000. For comparison purposes, in both cases, we plot the lognormal density from
which the data was sampled and the histograms of the sample for comparison.

Along with the curves, we plotted the histogram of the data to emphasize that the
difference between the reconstructed densities and the histogram is not due to bad quality
of the reconstruction. This assertion is borne by the discrepancy measures that we present
below.

Again, to better visualize the reconstructions against the data, in →Figure 8.2, we display
the plots of the cumulative distribution function of the empirical data, the true distribution
function, and the maxentropic reconstruction. In the left panel, we show the case of 
N = 200 and in the right panel that of N = 1000 data points.

(μ̄i − z∗ sdi

√n
, μ̄i + z∗ sdi

√n
)



Figure 8.1  Density distributions for different sample sizes.

Figure 8.2  Cumulative distribution functions for different sample sizes.



Below we examine the discrepancies quantitatively. Let us also mention that once the
maxentropic density is obtained, we can compute what the “true” (or implied) moments
must be. These are listed in →Table 8.3.

Table 8.3 Moments of the maxentropic densities.

Size Moments of S

μ1 μ2 μ3 μ4 μ5 μ6 μ7 μ8

200 0.0176 0.1302 0.2559 0.3592 0.4405 0.5048 0.5565 0.5987

1000 0.0181 0.1319 0.2579 0.3612 0.4424 0.5066 0.5581 0.6002

Let us repeat the results of the discrepancy analysis similar to that performed in Section
→7.5. We consider again three quality reconstruction tests with two kinds of discrepancy
measures and perform three pairwise comparisons shown in Tables →8.4 and →8.5. It is
clear that the L1  and L2  discrepancies between the histogram and the true density are
quite similar to those for the histogram relative to the maxentropic densities. Also, the norm
distances between the true density and the maxentropic densities are smaller than those
between the histogram and density.

Table 8.4  L1  and L2  distances between densities and histograms.

Approach Hist. vs. true density Hist. vs. maxent. True density vs. maxent.

L1-norm L2-norm L1-norm L2-norm L1-norm L2-norm

200 0.1599 0.1855 0.1504 0.1753 0.0527 0.0583

1000 0.1042 0.1077 0.1052 0.1158 0.0619 0.0577

The results in →Table 8.5 confirm the visual analysis of →Figure 8.2. This time, as the
computations do not depend on the bin size, but rather on the data, the agreement of the
pairwise comparisons is much better.

Table 8.5 Discrepancy tests according MAE and RMSE.

Approach Hist. vs. true density Hist. vs. maxent. True density vs. maxent.

MAE RMSE MAE RMSE MAE RMSE

200 0.0158 0.0199 0.0104 0.0149 0.0106 0.0115

1000 0.0064 0.0076 0.0072 0.0090 0.0104 0.0119

Notice as well that, as intuitively expected and as confirmed by the results displayed in
Tables →8.4 and →8.5, the larger the size of the sample, the better the estimation results for
both methods.

To conclude, we add that the size of the gradient of the dual entropy, which measures

the quality of the reconstructions, was of the order 1 × 10−4  for both sample sizes. This
value can be made much smaller by increasing the number of iterations.
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8.4.2  Reconstruction with errors in the data

In this section, we consider the moments generated by the two samples as we did in Section
→7.5, but we now assume that the difference between them and the true moments is due to
a measurement error and solve the problem posed in (→8.2). That is, instead of considering
the data as given up to an interval, we search for the distribution that estimates true
moments and a distribution in an auxiliary error range that provides us with an estimate of
the error measurement. We will apply the results obtained in Section →8.2 without further
ado. Let us recall the moments generated by the two samples considered in Section →7.5,
which are listed in →Table 8.6 for ease of access. Let us also mention that the intervals
chosen for the error ranges were obtained by centering the confidence intervals obtained in
(→8.26),

Table 8.6 Moments of S for different sample sizes.

Size Moments of S

μ1 μ2 μ3 μ4 μ5 μ6 μ7 μ8

200 0.0176 0.1304 0.2562 0.3596 0.4409 0.5051 0.5568 0.5990

1000 0.0181 0.1319 0.2579 0.3612 0.4424 0.5066 0.5581 0.6002

As already said, the application of the maxentropic procedure produces “true” moments,
which we collect in →Table 8.7.

Table 8.7 “True” moments provided by the maxentropic procedure.

Size Moments of S

μ1 μ2 μ3 μ4 μ5 μ6 μ7 μ8

200 0.2409 0.4577 0.5820 0.6607 0.7146 0.7538 0.7835 0.8069

1000 0.2516 0.4640 0.5858 0.6631 0.7163 0.7550 0.7844 0.8076

The procedure provides us with an estimate of the measurement errors for each
moment. These are listed in →Table 8.8 for the two samples.

(−δi, δi) = (−z∗ sdi

√n
, z∗ sdi

√n
).



Table 8.8 Weights and estimated errors.

k 1 2 3 4

N = 200 pk 0.5184 0.4587 0.5066 0.5185

N = 200 ϵk −5.11 × 10−5 1.30 × 10−4 −1.91 × 10−5 −4.82 × 10−5

N = 1000 pk 0.5081 0.4793 0.5084 0.5088

N = 1000 ϵk −1.13 × 10−5 3.13 × 10−6 −1.16 × 10−5 −1.089 × 10−5

k 5 6 7 8

N = 200 pk 0.5148 0.5055 0.4946 0.4837

N = 200 ϵk −3.44 × 10−5 −1.14 × 10−5 1.03 × 10−5 2.83 × 10−5

N = 1000 pk 0.5039 0.4996 0.4969 0.4955

N = 1000 ϵk −4.30 × 10−6 4.05 × 10−7 2.84 × 10−6 3.75 × 10−6

Recall that the estimated error plus the reconstructed moment should add up to the
observed moment. In our case the estimated errors turn out to be rather small, and both the
reconstructed moments and the measured moments coincide.

Next, we display the true and the maxentropic densities along with the histogram in
→Figure 8.3.

Figure 8.3  Cumulative distribution functions for different sample sizes.



Figure 8.4  Cumulative distribution functions for different sample sizes.

Again, the same comments that we made before apply, that is, the visual discrepancy
between the densities and histogram is an artifact of the histogram generation process. This
will be borne out by the numerical estimation of the distance between the densities as
compared with the discrepancies between the cumulative distributions.

In →Figure 8.4, we display the cumulative distributions. The statements made above are
certainly borne out by looking at the plots.

The numerical measures of the discrepancies for both cases yield results similar to those
of the previous cases. A measure of discrepancy between the densities among themselves
and between the densities and histogram are presented in Tables →8.9 and →8.10,
respectively.

Table 8.9  L1  and L2  distances.

Approach Hist. vs. true density Hist. vs. maxent. True density vs. maxent.

L1-norm L2-norm L1-norm L2-norm L1-norm L2-norm

200 0.1939 0.0005 0.1919 0.0005 0.1289 0.0003

1000 0.1703 0.0005 0.1663 0.0005 0.0803 0.0002



Table 8.10 Discrepancies among cumulative distributions according to MAE and RMSE.

Approach Hist. vs. true density Hist. vs. maxent. True density vs. maxent.

MAE RMSE MAE RMSE MAE RMSE

200 0.0158 0.0199 0.0151 0.0195 0.0211 0.0278

1000 0.0065 0.0077 0.0101 0.0119 0.0065 0.0075
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9  Superresolution in maxentropic Laplace
transform inversion

9.1  Introductory remarks

We have proposed the method of maximum entropy to determine a probability
density of a positive random variable from the knowledge of its Laplace transform.
In Chapter →4 we provided several examples of situations in which the problem
appears, and in Chapters →7 and →8 we presented a collection of numerical
examples in which we applied the method. The problem was stated as

In Chapter →6 we mentioned that this problem can be solved by transforming it
into a fractional moment problem on [0,1], which can then be solved applying the
maximum entropy technique. In the examples considered in Chapters →7 and →8,
we saw that a small number of moments (eight to be precise) suffices to
determine fS  with high accuracy. This fact was observed in [→50] in the context of
a comparison between maximum entropy based methods and other techniques
for density reconstruction.

In our numerical work we have observed that in some situations the entropy of
the reconstructed density with four moments does not change (actually does not
decrease) very much when we considered eight moments. This happens to be
relevant because the convergence in entropy and the convergence in the L1  norm
are related. The fact that the entropy stabilizes rapidly as the number of fractional
moments increases may be responsible for the high accuracy in the
reconstructions.

To make these statements more precise, let us denote by fK  the density
reconstructed by means of the maxentropic procedure, determined by a collection
of K moments. Below we shall see that as the number of moments increases, the
difference in entropies between successive density reconstructions fK  becomes
smaller and the fK  converge in L1  to a limit density f∞ , which in our case it will
be proven to coincide with the true density fS . This argument was used in [→37],
in which the authors noted that successive integer moments lead to densities
having entropies that decreased and became quite close. What we shall do below
is make this argument precise.

Find fS(s) such that E[e−Sαi] =

∞

∫
0

e−sαifS(s)ds = μi; i = 1, … ,K.
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This is rather curious and important. Observe that when using the maximum
entropy method to invert Laplace transform we do not have to use complex
interpolation to extend the data to an analytic function in the right half complex
plane, but we only need to know the value of the transform at a small number of
points to invert it. The fact that very few fractional moments provide a very good
approximation to the true density is called superresolution.

The superresolution phenomenon has been noted in several applications of
the maximum entropy method. To mention just a few references devoted to this
matter using a related maxentropic procedure – the method of maximum entropy
in the mean – consider for example [→39], [→63] and more recently [→27]. The
name superresolution is also used to describe the situation in which fine detail in a
signal is obtained from a response in which much less detail is available. As
examples of works along this line, consider [→31], [→17] and [→16].

9.2  Properties of the maxentropic solution

So you do not have to flip pages back and forth, let us recall some properties of the
solution to (→9.1). Recall that after a change of variable y = e−s  problem (→9.1)
becomes

and once the fY (y) is obtained, fS(s) = e−sfY (e−s) provides us with the

desired fS . We also explained in Chapter →6 under what conditions fractional
moments determined a solution to (→9.2), and in Chapter →7 what the standard
form of the solution to such a problem looks like. We saw that the maxentropic
solution is given by

As we are going to be working with different versions of fY , corresponding to
different numbers of assigned moments, we drop the subscript Y and add the
subscript K to emphasize that fK  solves (→9.2) and satisfies the constraint given
by the K moments. Here we denote by yα  the K-vector with components 
yαi : i = 1, … ,K , and by ⟨a, b⟩ the standard Euclidean product of the two

vectors. We also explained that λ∗  is to be obtained by minimizing the (strictly)
convex function

Find fY (y) such that E[Y αi] =

1

∫
0

yαifY (y)dy = μi; i = 1, … ,K,

fK(y) =
e−⟨λ∗,yα⟩

Z(λ∗)
.

Σ(λ, μ) =ln Z(λ) + ⟨λ, μ⟩,
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(1)

(2)

overall λ ∈ R
K . Not only that, if the minimum of Σ(λ, μ) is reached at λ∗ , we

then have

In Chapter →7 we introduced the notion of the relative entropy of a density f with
respect to a density g, defined in the class of densities on [0,1] by

From Chapter →7 we recall that the two S(f, g) relevant for what comes below

are contained in:

Lemma 9.1.

The relative entropy satisfies

S(f, g) ≤ 0 and S(f, g) = 0 ⇔ f = g a. e.

(1/2)∥f − g∥2 ≤ −S(f, g).

We mentioned there that first emerges from Jensen’s inequality and the
second is an exercise in [→61].

9.3  The superresolution phenomenon

Let us begin by rephrasing the previous lemma as follows:

Lemma 9.2.

Let M > K  and let fM  and fK  be the maxentropic solution of the truncated moment

problems (→9.2), with M and K moments, respectively. Then

The second assertion is part of Lemma →9.1, and the first identity in the first
assertion follows from (→9.5). The inequality is backed by Lemma →9.1, but more

S(fK) = −

1

∫
0

fK(y) ln fK(y)dy = Σ(λ∗,μ) =ln Z(λ∗) + ⟨λ∗, μ⟩.

For densities f and g ∈ L1([0, 1]) set S(f, g) = −

1

∫
0

f(y) ln (f(y)/g(y))dy.

S(fM , fK)= S(fM) − S(fK) ≤ 0.

∥fM − fK∥2≤ −2S(fM , fK).



importantly, it follows from the fact that both fK  and fM  share the first K
moments and S(fK) has the largest entropy among such densities.

Let the fractional moments {μ(αi) ∣ i ≥ 1} be determined by a sequence 

{αi ∣ i ≥ 1} satisfying the conditions of Lin’s Theorem (Chapter →6). We now

state a key assumption for the rest of the section:

Assumption A.

The density f with moments μ(αi) has finite entropy S(f).

This assumption is similar to the finiteness assumption in corollary 3.2 to
theorem 3.1 in [→12]. Before stating the result that we are after, let us comment
on the intuition behind it and the practical application of the result. If the entropies
on the truncated moment problems decrease to the entropy of the true density,
we start with a problem with a few moments, say four, then find the maxentropic
density and compute its entropy. Next, we increase the number of moments, one
at a time say, and repeat the process. When the entropies of the successive
densities change very little (one has to decide what that means), we stop and say
that we got a satisfactory approximation at the density.

Of course, a strict mathematical minded critic may say that the decreasing
sequence of entropies as the number of moments increases may have local
clusters of very similar values, and then start to decrease again before the last
cluster at the limit. Particularly if we are talking about small numbers (say eight
moments) that criticism is true, but in the examples that we considered, eight
moments provide quite a good approximation to the empirical density obtained
from a very large number of data points.

The result that describes the superresolution property is contained in the
following theorem:
Theorem 9.1.
Suppose that Assumption →A holds true. Then, with the notations introduced above we

have:

Proof.

Using an argument similar to the one used to prove Lemma →9.2, and from
Assumption →A, the following argument is clear. Since S(fK) ≥ S(f), then the

decreasing sequence S(fK) converges. Therefore, from the second assertion in

(→9.2) and the completeness of L1 , it follows that there is a function f∞  such that
∥fK − f∞∥ → 0. That f∞  integrates to 1 is clear, and by taking limits along a

1. S(fK) decreases to S(f) as K → ∞.

2. ∥fK − f∥ → 0 as K → ∞.



subsequence if need be, we conclude that f∞ ≥ 0, and therefore that f∞  is a
density.
Observe now that for any fixed K and the corresponding αi, 1 ≤ i ≤ K , we have

That is, the moments of f∞  coincide with those of f, and according to Lin’s
Theorem in Chapter →6, we obtain that f∞ = f , thus concluding the proof.  □

Comment. That this result is similar to Theorem 3.1 in [→12], and Assumption
→A is what allows us to make sure that the sequence of decreasing entropies 
S(fK) is actually a Cauchy sequence. This detail closes the gap in the argument in

[→37], and provides another approach to the problem considered in [→63].
As far as the application of Theorem →9.1 to our numerical experiments goes,

what we observed is that in going from four to eight decreasing fractional
moments, the entropy of the reconstructed densities changed very little.
Particularly if all we have to begin with is a histogram (of a dataset), and the fit of
the maxentropic density to the histogram was quite good with four moments, and
when you consider for eight moments the improvement is not that large, you may
wonder whether there is something missing. The theorem says that no, there is
nothing missing. This makes the application of the maxentropic procedure to the
problem of reconstructing densities from Laplace transforms (converted into
fractional moment problems) quite a convenient procedure compared to other
numerical inversion techniques.

9.4  Numerical example

As a numerical example we consider a density reconstruction problem from
numerical data. As with some of the previous examples, we consider a compound
random variable S = ∑∞

k=1 Xk , where N is a Poisson random variable of

parameter ℓ = 1, and the Xk  are independent identically distributed random
variables, all distributed according to a lognormal of parameters m = 0, σ = 0.25
. Again, the lognormal model for the individual losses, or individual accumulated
damages, was chosen because the Laplace transform of its density cannot be
computed in closed form and one is forced to proceed numerically.

We considered a sample of size M = 8000 in order to compare the resulting
density to the empirical density, and so that the numerical computation of the
Laplace transform proceeds according to

μ(αi) −

1

∫
0

yαif∞(y)dy =

1

∫
0

yαi(fM(y) − f∞(y))dy ≤ ∥fM − f∞∥ → 0.∣ ∣ ∣ ∣
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That this approximates E[exp (−αS)] well is a consequence of the law of large

numbers. Keep in mind that for each random value n of N, describing the number
of losses during the time lapse, we have to aggregate a sample of n lognormals
and sum them to obtain the corresponding total loss/damage. These total
loss/damage measurements are the inputs for the computation of the Laplace
transform.

There are a certain number of samples (time lapses) in which no shocks occur. This
is taken into account by the fact that P(N = 0) =exp (−ℓ > 0). This means that

the distribution of total losses has a nonzero probability of being zero. To account
for that before computing the density of the accumulated damage, from the
Laplace transform we note that

As fractional moments, or values of the transformed variable, we consider 
αi = 1.5/i for i = 1, … 8 when reconstructing from eight values of the Laplace

transform. For the reconstruction from four values of α we considered every
second one of these values, or the four even labeled ones if you prefer.

Once the μi ≡ μ(αi) have been determined, we apply the maxentropic

procedure to determine the density of the aggregate damage distribution. The
results are presented in →Figure 9.1, in which the densities obtained from four and
eight moments are plotted along with the histogram.

ψ(αi) =
1

n

M

∑
k=1

e−αiSk ; i = 1, … ,M.

μ(α) = E[eαS ∣ N > 0] =
ψ(α) − e−ℓ

1 − e−ℓ
=

∞

∫
0

e−αxfS(x)dx.



Figure 9.1  Density reconstructions and histogram.

In →Table 9.1 we present the estimated reconstruction differences between
the two reconstructions and the histogram. The L1  and L2  errors are computed in
the obvious way, by discretizing the integral in such a way as to coincide with the
bins of the histogram. The MAE (mean absolute error) and RMSE (root mean
square error) are two common discrepancy measures between data and
observations. The results suggest that the maximum entropy method applied to
the empirically computed Laplace transform of the aggregate damage severity
yields a rather good result with eight points, in case one feels that reconstructing
from four data points may not be that good.



Table 9.1 Errors and entropies for four and eight moments.

Error Eight moments Four moments

L1 -norm 0.2649 0.2653

L2 -norm 0.2099 0.2091

MAE 0.0216 0.02244

RMSE 0.0257 0.02671

Entropy −0.567984 −0.565490
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10  Sample data dependence

10.1  Preliminaries

In practice, the situation is closer to the examples considered in the previous
chapters. That is, the situation in which all we know about the losses observed is
that they can be modeled by compound random variables of the type 

S = ∑N
n=1 Xn , but where we do not necessarily have an explicit mathematical

model for the frequency of losses N nor for the individual losses Xn . All that we
have is empirical data about the total loss S during each observation period.

To be specific, the data that we have at the end of each observation period
consists of a collection {n;x1, … ,xn}, where n is the number of risk events and

each xk  denotes the loss occurring at the k-th risk event. The aggregate loss for
that observation period is s = ∑n

k=0 xk . When n = 0 there were no losses, the

sum is empty and s = 0. When we need to specify the year j we shall write ( 

nj,x1, … ,xnj
) and sj = ∑nj

k=0 xk . Suppose that the record consists of M years

of data, therefore an observed sample (of losses) will be an (M) vector 
ω = (s1, … , sM), in which each sj  is as just described.

We saw that the first thing to do to estimate the probability density of the losses is
to compute the empirical Laplace transform by

Later on we shall consider the moments corresponding to K values of the
parameter α. Since the distribution function of S has a probability 
P(N = 0) = P(S = 0) > 0 at S = 0, to determine the probability density of

the losses we have to condition out this event and replace ψ(α) by

where P(N = 0) is estimated as the fraction of the number of years of

observation in which there were no losses. Recall that to transform the Laplace
inversion problem into a fractional moment problem we use the change of
variables y = e−s , after which we can rewrite (→10.1) as

ψ(α) =
1

M

M

∑
j=1

e−αsj .

μ(α) =
ψ(α) − P(N = 0)

1 − P(N = 0)
,
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which is the empirical version of

With this notation, we know that our problems consists of finding a density fY (y)
on [0,1] such that

in which the relationship between the ψ(α) and the μ(α) is as detailed a few lines

above. Once fY (y) has been obtained, we know that the change of variables 

fS(x) = e−xfY (ex) provides us with the desired density.

As we have to emphasize the dependence of fY  on the size M of the sample,
we shall drop the Y and simply write f for it, and we shall use the notation 
fM(ω,x) to denote the maxentropic density reconstructed from the collection of

K moments given in (→10.2).
We already saw that fM  can be obtained with the maxentropic method. What

is interesting for us is that the maxentropic representation of the density obtained
from the Laplace transform data can be used to study the sample dependence.
The sample dependence is expected to be larger when the size of the sample is
smaller. This is clear from (→10.1). The convergence of the empirical Laplace
transform to the true Laplace transform for each value of the parameter α is
guaranteed by the law of large numbers, and the fluctuations of the empirical
Laplace transform about its true value are described by the central limit theorem.
Therefore, the reconstructed density fM  has to reflect the variability of the input
somehow. The maxentropic representation of the solution will help us to
understand how.

10.1.1  The maximum entropy inversion technique

Here we shall recall some results from Chapter →7 and Chapter →8, so that you,
dear reader, do not have to flip pages back and forth. There we saw that the
standard method of maximum entropy (SME) and the method of standard entropy

ψ(α) =
1

M

M

∑
j=1

yα,

ψ(α) =

1

∫
0

yαdFY (y) =

∞

∫
0

e−αxdFS(x).

1

∫
0

yαfY (y)dy = μ(α)
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(10.5)

(10.6)

(10.7)

(10.8)

with errors in the data (SMEE), provided us with a way to solve the following
fractional moment problem:

We set α0 = 0 and μ0 = 1 to take care of the natural normalization requirement
on f(y). We know that the solution to problem (→10.4) provided by the SME

method is given by

which depends on the αs (or the μ(α)s) through the λs. It is customary to write 

e−λ∗
0 = Z(λ∗)−1

, where λ = (λ∗
1, … ,λ∗

K) is a K-dimensional vector.

The generic form of the normalization factor is given by

With this notation the generic form of the solution looks like

To finish, it remains to recall how the vector λ∗  is to be determined. For that, one
has to minimize the dual entropy

with respect to λ for each fixed μ. There ⟨a, b⟩ denotes the standard Euclidean

scalar product and μ is the K-vector with components μk , and obviously, the
dependence on α is through μY .

We mention that when the solution of this dual problem exists; then we have

1

∫
0

yαkf(y)dy = μ(αk) for k = 0, 1, … ,K.

f ∗(y) =exp (−
K

∑
k=0

λ∗
ky

αk),

Z(λ) =

1

∫
0

e− ∑K
k=1 λky

αk
dy.

f ∗(y) =
1

Z(λ∗)
e− ∑K

k=1 λ
∗
ky

αk = e− ∑K
k=0 λ

∗
ky

αk .

Σ(λ, μ) =ln Z(λ) + ⟨λ, μY ⟩
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There is an extended version of (→10.4) that goes as follows. Determine fY  and a
K-vector η representing possible measurement errors by solving the following
system:

To simplify, we may suppose that measurement errors lie in a bounded interval 
ηk ∈ [−c, c], which we take to be symmetric about 0. All these suppositions can

be relaxed considerably at the expense of complicating the notation.

Under this assumption and consistent with the rest of the problem, we write 
ηk = −pkc + (1 − pk)c, that is as an expected value with respect to a measure

that puts mass (1 − pk) at −c and mass pk  at c. Now our problem consists of

determining a density fY  on [0,1] and parameters 0 < pk < 1 such that

We already know from Chapter →8 that the maxentropic (SMEE) solution to this
problem is given by

Here, the normalization factor Z(λ) is as above. This time the vector λ∗  of

Lagrange multipliers is to be found by minimizing the dual entropy

H(f ∗) := −

1

∫
0

f ∗(y) ln f ∗(y)dy = Σ(λ∗, μ) =ln Z(λ∗) + ⟨λ∗, μY ⟩.

1

∫
0

yαkf(y)dy + ηk = μ(αk) for k = 0, 1, … ,K.

1

∫
0

yαkf(y)dy − pkc + (1 − pk)c = μ(αk) for k = 1, … ,K.

f ∗(y)=
e− ∑K

k=1 λ
∗
ky

αk

Z(λ∗)

pk=
ecλ

∗
k

ecλ
∗
k + e−cλ∗

k

.

Σ(λ, μ) =ln Z(λ) +
K

∑
k=1

ln (ecλk + e−cλk) + ⟨λ, μ⟩.
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As a side remark, notice that once λ∗  is found, the estimator of the measurement
error is, as is implicit in (→10.11), given by

Notice that, although the formal expression for f ∗(y) is the same as that for the

first method, the result is different because the λ∗  is found by minimizing a
different function.

10.1.2  The dependence of λ on μ

Since we are keeping α1, … ,αK  fixed, and the variability of the μ(αk) will come

from the variability of the sample used to estimate it, we are going to write μk  for 
μ(αk) from now on.

As the dependence of the reconstructed density on the sample μ comes in
through λ, in order to study the sample variability we must begin establishing the
dependence of λ on μ. To do that, we examine some properties of Σ(λ, μ)
related to the minimization process. First, observe that in our setup, Σ(λ, μ) is a

strictly convex and twice continuously differentiable function, defined on all RK . If
we introduce

then the first order condition for λ∗  to be a minimizer is that Ψ(λ∗) = μ.

Notice that Ψ(λ) is differentiable and its Jacobian (the negative of the Hessian

matrix of ln Z(λ)) is the negative of the covariance matrix of the fractional

powers yαi , that is of the positive definite matrix with components 
μ(αi + αj) − μ(αi)μ(αj) with respect to the maximum entropy density.

Observe as well that μ has all of its components bounded by 1, thus the image

of [0,1] by Ψ−1 , which is continuous due to the continuity and boundedness of the
Hessian matrix, is compact. Thus the following assumption, which plays a role in
the analysis carried out in the next section, is natural:

Assumption A.

Suppose that there is a ball B(0,R) in RK  such that all solutions to Ψ(λ∗) = μ lie

there for every μ ∈ [0, 1]K . Suppose as well that the Hessian matrix

ηk =
−cecλ

∗
k + ce−cλ∗

k

ecλ
∗
k + e−cλ∗

k

.

Ψ(λ) = {
−∇λ ln Z(λ)

−∇λ(ln Z(λ) + ∑K
k=1 ln (ecλk + e−cλk)),



(1)
(2)
(3)

has its upper eigenvalue uniformly bounded above and its minimum eigenvalues

uniformly bounded away from 0 in B(0,R).

The next result could have been stated in several places, but is related to the
notation just introduced.

Lemma 10.1.

Let f(y) be the density given by (→10.7) (or (→10.12)). Let Z(λ) be as above, then the

Hessian matrix of ln (Z) satisfies

where Cf  is the covariance matrix of yα  with respect to f, i. e.,

where f(y)dy = e−xf(x)dx for the change of variables y = e−x .

The proof is just a simple computation and it is left for the reader.

10.2  Variability of the reconstructions

The questions that we are interested in answering are:

What is the limit of the fM  as M → ∞?
What is the mean of fM ?
How does fM  fluctuate around its mean?

To establish the first result, denote by μM(α) the vector of moments computed

for a sample of size M, as in (→10.2), and by μe(α) the exact moments. Denote as

well by λ∗
M  and λ∗

e  the corresponding minimizers of (→10.8). Denote as well by 

fM(x) and fe(x) the corresponding maxentropic densities.

∂ 2Σ(λ∗, μ)

∂λi∂λj

= −
∂Ψi

∂λj

(λ∗)

∇λ∇λ ln (Z(λ)) = Cf ,

Cf(i, j)=

1

∫
0

yαi+αjf(y)dy −

1

∫
0

yαjf(y)dy

1

∫
0

yαif(y)dy

=

∞

∫
0

e−(αi+αj)sf(x)dx −

∞

∫
0

e−αjsf(x)dx

∞

∫
0

e−αisf(x)dx,
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Lemma 10.2.

With the notations just introduced, suppose that the risks observed during M

consecutive years are independent of each other.

Then μM(α) → μe(α) and λ∗
M → λ∗

e , and therefore fM(x) → fe(x) when 

M → ∞.

Proof.

The first assertion emerges from an application of the law of large numbers to
(→10.1) and (→10.2). Actually, the convergence is almost everywhere. The second

assertion emerges from the continuity of Ψ−1 , which is a consequence of
Assumption →A. For the third assertion we invoke representations (→10.7) and
(→10.12) as well as the first two assertions.  □

To relate the sample variability of fM  to the sample variability of the μ(α),

starting from λ∗
M = Ψ−1(μ), and applying the chain rule, it follows that up to

terms of o(δμ),

where D is the inverse matrix of the Jacobian of Ψ evaluated at λ∗
M . Actually, since

the Jacobian of Ψ is the Hessian matrix appearing in the statement of Assumption

→A, then the Jacobian D of Ψ−1  is the inverse of the Hessian. Recall that the
maxentropic solution to the inverse problem is

in which a reference to the sample size M is made explicit. It is in the statement of
the following results where the independence of the parameter c from the sample
enters. Had we considered the intervals [−c, c] to be sample dependent, the

function Ψ defined in (→10.15) would be sample dependent and the arguments
that follow would not be true. With these notations another application of the
chain rule leads to the proof of the following lemma:

Lemma 10.3.

With the notations introduced above, up to terms that are o(δμ), using the

computation in (→10.16),

δλ∗
M = Dδμ,

fM(y) =
1

Z(λ∗
M

)
e− ∑K

k=1 λ
∗
ky

αk = e− ∑M
k=0 λ

∗
ky

αk ,
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Here K is the number of moments used to determine the density and 
δμj = μM(αj) − μe(αj).

Let us carry out the necessary computations to verify the claim. To shorten the
notation let us write yα  for the K-vector with components yαi , i = 1, … ,K , and 
δλ = λM − λe . Let us begin by rewriting (→10.7) as

Notice that the first factor in the last term on the right-hand side is the
maxentropic solution fe(x) to the problem with exact moments μe . To continue,

expand the numerator in the second factor up to the first order (or neglecting
terms of second order) in δλ as

To take care of the denominator, note that up to first order in δλ we have

Therefore, up to terms of first order in δλ we have

We know that for the exact density we have ∇λ ln Z(λ∗) = −μ(α). Using this

fact and invoking (→10.16) we obtain the desired result.
The result in this lemma makes explicit the deviation of fM  from its exact

value fe  up to first order in the δμ. Notice that δμ is where all the randomness in
the right-hand side lies, thus the result not only explains (or confirms) where the
randomness comes from, but also quantifies it.

Observe that if we integrate both sides of (→10.17) with respect to x we get 0
on both sides. Also, if we multiply both sides both e−xαk  integrate to δμk . This is

due to the fact that D = −Cf ∗  according to Lemma →10.1.

If we think of the fM  as random realizations of a density, they happen to be
vectors in a convex set in L1(dx). The values fM(x) at each point can be thought

as the components of those vectors, and results of the type of the central limit
theorem for such values bear out in the simulations that we carried out.

fM(x) − fe(x) =
K

∑
i,j=1

(μ(αi) − e−xαi)fe(x)Di,jδμj.

fM(x) =
e−⟨λM ,yα⟩

Z(λM)
=

e−⟨λe+δλ,yα⟩

Z(λe + δλ)
=

e−⟨λe,y
α⟩

Z(λe)

e−⟨δλ,yα⟩

Z(λe + δλ)/Z(λe)
.

e−⟨δλ,yα⟩ = 1 − ⟨δλ, yα⟩.

Z(λ∗
eδλ)

Z(λe)
= 1 + ⟨∇λ ln Z(λ∗), δλ⟩.

fM(x) = fe(x)((1 + ⟨∇λ ln Z(λ∗), δλ⟩)(1 − ⟨δλ, yα⟩)).
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However, these results are of not much use for direct applications because the
exact moments μe(α) are unknown, nor is the maxentropic density fe  that they

determine. But, a result that is potentially useful for the banking industry, goes
along the following lines. Suppose that a bank has a relatively large number of
branches, call it NA , and that each of them has been collecting data for the last M
years. If all the losses recoded by these agencies could be considered identically
distributed, the computations in Lemma →10.2 lead to an interesting
consequence. To establish it, we need to introduce extra labeling. Denote by 
μM,m(αi) the i-th moment computed from the M-year data at branch 

m = 1, … ,NA  of the bank. Denote as well by fM,m(x) the density

reconstructed from the dataset at the branch m of the bank using a sample of size
M. We then have:

Lemma 10.4.

Set

Then, up to terms of o(δμ), we have 
ˆ
fM = fe(x).

Proof.

Let us rewrite (→10.17) in the proposed notation:

Summing over m we obtain

up to terms of order o(δλ), which concludes the proof of this intuitive result.  □

To measure of the variability we shall estimate the L1  difference between the
approximate reconstruction fM  for each sample and the true fe  density. For that
we need the bound on the norm of the L1  difference between densities by their

ˆ
fM =

1

NA

NA

∑
m=1

fM,m(x).

fM,m(x) − fe(x) =
K

∑
i,j=1

(μe(αi) − e−xαi)fe(x)Di,j(μM,m(αj) − μe(αj)).

ˆ
fM(x) − fe(x) =

K

∑
i,j=1

(μe(αi) − e−xαi)fe(x)Di,j(μe(αj) − μe(αj)) = 0
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(1)

(2)

(10.20)

(10.21)
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relative entropy. Recall from Chapter →7 that the relative entropy of a density f
with respect to a density g is defined by

In Chapter →7 we mentioned that some interesting properties of S(f, g) relevant

for what comes below are contained in the following result:

Lemma 10.5.

The relative entropy satisfies

S(f, g) ≤ 0 and S(f, g) = 0 ⇔ f = g almost everywhere.

(1/2)∥f − g∥2 ≤ S(f, g).

To estimate the relative entropy in terms of the entropies of the density we make
use of (→10.9) and Definition →10.19 to obtain

Combining this with Lemma →10.2, we can easily verify the proof of the
following assertion:

Proposition 10.1.

With the notations introduced above we have

Observe that a similar result would have been obtained had we considered 
S(fM , fe). Of interest to us is that (→10.21) allows us to estimate the sample size

variability of the reconstruction for a given sample.
Actually, we can combine Lemma →10.2, equation (→10.20) and Lemma →10.1

to further relate the deviations ∥fM − fe∥1  to the deviations of μM  from μe .

Proposition 10.2.

With the notations introduced above we have

f, g ∈ L1([0, 1]) set S(f, g) = −

1

∫
0

f(y) ln (f(y)/g(y))dy.

S(fe, fM) =ln Z(λ
∗
e)− ln Z(λ

∗
M) + ⟨λ

∗
e, μe⟩ − ⟨λ

∗
M , μe⟩. ⟨λ

∗
e, μe⟩.

∥fM − fe∥1 ≤ (−4S(fe, fM))1/2
→ 0 as M → ∞.

∥fM − fe∥1 ≤ (2⟨δμ, Dδμ⟩)1/2
→ 0 as M → ∞.



Here δμ and D are as above.

The proof is simple, and emerges from the fact that up to terms of order 

o((δμ)2), −S(fe, fM) = ⟨δμ, Dδμ⟩.

10.2.1  Variability of expected values

Let us examine a few results that will be of use in Chapter →12 when we consider
the application of the maxentropic densities to the computation of risk premiums.
As expected values are to be computed using densities obtained from data
samples, it is of interest to examine how sample variability is transferred from the
sample to the expected values.

Let us begin with a simple consequence of Proposition →10.1 or Proposition
→10.2.

Lemma 10.6.

Let H be a bounded, measurable function. Then, with the notations introduced above,

The proof is easy. If K denotes any number such that H(x) ≤ K , then

Now, invoke Proposition →10.1 or Proposition →10.2 to obtain the desired
conclusion. For the next result we need the notation and conclusion in Lemma
→10.3.

Lemma 10.7.

Let H be a bounded, measurable function. With the notations used in Lemma →10.3 we

have

The proof consists of substituting the claim in Lemma →10.3 in EfM [H(S)].
We shall examine the empirical behavior of EfM [H(S)] in Chapter →12.

10.3  Numerical examples

EfM[H(S)] → Efe[H(S)] as M → ∞.

EfM[H(S)] − Efe[H(S)] ≤

∞

∫
0

H(x) fM(x) − fe(x) dx ≤ K∥fM − fe∥1.∣ ∣ ∣ ∣ ∣ ∣EfM[H(S)] − Efe[H(S)] = ∑
i,j

Efe[H(S)(μ(αi) − e−αiS)]Di,jδμj.



(1)
(2)

(3)

(4)

The numerical example presented below is organized as follows:

We describe how the sample is generated.
We use the standard method of maximum entropy to determine a
true density, which is to serve as reference for the sample
variability analysis.
Then we analyze numerically the sample variability with
subsamples of the original sample.
To conclude we analyze the effect of the sample variability on two
possible ways to compute regulatory capital: value at risk (VaR)
and tail value at risk (TVaR).

10.3.1  The sample generation process

To provide a touch of reality to the data, we consider a random variable resulting
from summing eight compound variables, that is, the result of a double
aggregation level. As models for the frequency of events we chose two Poisson
random variables with parameters ℓ1 = 80 and ℓ2 = 60, four binomial
frequencies of parameters ( n3 = 70, p3 = 0.5), ( n4 = 62, p4 = 0.5), ( n5 = 50,
p5 = 0.5) and ( n6 = 76, p6 = 0.5). We considered as well two negative binomial
frequencies with parameters ( n7 = 80, p7 = 0.3) and ( n8 = 90, p8 = 0.8).

To describe the individual risks, we denote by Xk  the type of the individual
loss compounded according to the k-th frequency in the previous list. The list goes
as follows: X1  and X4  are chosen to be Champernowne densities with
parameters ( α1 = 20, M1 = 85, c1 = 15) and ( α4 = 10, M4 = 125, c4 = 45). 
X2  was chosen as a lognormal of parameters (−0.01,2). The variables X3  and X8

were chosen to have fat tails and to follow a Pareto distribution with (shape, scale)
parameters given by (10,85) and (5.5,5550) respectively. Next in the list are X5  and
X6 , which were chosen to be gamma distributions with (shape, scale) parameters
given respectively by (4500,15) and (900,35). Finally, X7  was chosen to be a
Weibull of type (200,50).

A moderately sized sample of M = 5000 was chosen. This is to insure a large
enough sample to obtain a ‘true’ density to serve as the basis for comparison. To
study the sample variability we chose different subsamples of sizes 10, 20, 50, 100,
500, 1000, and to numerically compute the Laplace transform we considered 
K = 8 moments determined by αk = 1.5/k, k = 1, … , 8.

As before, since the size of the resulting aggregate losses has order of

magnitude 104 , and since the maxentropic methods use the Laplace transforms of
the aggregate loss as starting point, to avoid numerical over(under)-flow, we scale
the data prior to the application of the procedure, and reverse the scaling to plot
the resulting densities. The simplest scaling consists of dividing the empirical

losses by 104  as we did. Another possibility could be to introduce a scaled variable



defined by (s− min (s))/(max (s)− min (s)), where of course, max (s) and 

min (s) stand for the maximum and minimum values realized in the sample.

Anyway, with all of this we are ready for the next stage.

10.3.2  The ‘true’ maxentropic density

Let us recall that by ‘true’ density we shall mean the density obtained from the
large sample, which will be used for comparison. To obtain such density we apply
the two maxentropic procedures mentioned above. We included the SMEE in the
analysis to examine the possible effect of the numerical approximations involved
in the computation of the fractional moments.

In →Figure 10.1 we plot the maxentropic densities obtained applying the SME
and the SMEE procedures to the full dataset. The histogram of dataset is plotted
along for the sake of comparison. We have already mentioned that, since the
dataset is very large, the maxentropic reconstructions will agree quite well with
the empirical data.



Figure 10.1  Histogram of the (scaled) total losses and maxentropic density.

Clearly the continuous densities are close enough to the histogram, and are closer
to themselves. As the input data for both maxentropic techniques is the same, this
means that the potential effect of the ‘measurement’ error is small. To quantify
how close the curves are to the histogram, it is easier to use discrepancy measures
like the mean absolute error (MAE) and the square root mean error (RMSE). Recall

that these are computed as follows: If 
ˆ
Fs  denotes the empirical distribution

function and Fe  denotes the ‘exact’ (reconstructed) distribution function, the
measures of reconstruction error is to be estimated by



where N is generic and stands for the size of the sample and the 
{xn : n = 1, … ,N} are the sample points. We do not compare the histogram to

the continuous densities using standard L1  and L2 , because the integration
process will be bin dependent, resulting in a poorer estimate of the error.

In →Table 10.1 we show the results of the computation of MAE and RSME to
the full dataset and how the well the maxentropic densities fit the empirical data.
Clearly, both maxentropic procedures yield quite good reconstructions.

Table 10.1 MAE and RMSE for a sample size of 5000.

Approach MAE RMSE

SMEE 0.005928 0.006836

SME 0.006395 0.009399

We also mention that the reconstruction error in the maxentropic procedure,

that is the norm of the gradient of the dual entropy (8), was less than 10−6  in all
reconstructions. This value is used as a criterion for stopping the iterations in the
process of minimization of the dual entropy.

10.3.3  The sample dependence of the maxentropic densities

In this section we do several things. First, we examine the variability of the
maxentropic density due to the variability of the sample. As we said above, the
maxentropic techniques provide us with a density that has the given fractional
moments. Thus, if the moments are not the true moments (as is the case with
moments estimated from a small sample) the density may be quite different from
the true density.

We begin by displaying the variability of the density reconstructed using the
SME method.

The results displayed in the panels of →Figure 10.2 should be understood as
follows. To produce each panel of the figure, we applied the maxentropic
procedures to 200 samples of the indicated sizes. For example, in the first panel
the gray shadow consists of the plot of the 200 densities produced as outputs of

MAE=
1

N

N

∑
n=1

ˆ
F(xn) − Fe(xn)

RMSE=
1

N

N

∑
n=1

(F̂(xn) − Fe(xn))
2
,∣ ∣⎷



the maxentropic procedure estimated from the moments produced by 200

samples of size M = 10. In each panel we also plot the average density 
ˆ
fM  as

well as the true density. Also, for each panel we average the moments and use
them as input for the maximum entropy method, and we display the density
obtained from such average moments along with the density obtained from the
exact moments. That the last two coincide is no surprise according to the results in
the previous section.

An important procedural matter is worth noting. Let us denote each of the 200

fractional moments of a sample of size M by μk
M

(αi), where i = 1, … , 8 and 

k = 1, … , 200, and let us denote by f k
M

(x) the corresponding maxentropic

density satisfying

Note that from the linearity of that identity it follows that 1
200 ∑ f k

M
(x) is a

density having moments 1
200 ∑μk

M(αi). But, even though the average density

has the average moment (which may coincide with the true moment), it may not
be the maxentropic density having that moment as a constraint, for the simple
reason it may not maximize the entropy for that constraint. This is why we solve
the maxentropic density for the average moment.

∞

∫
0

e−αisf k
M(x)dx = μk

M(αi).



Figure 10.2  SME reconstructions with different sample sizes.

This side remark has importance in the case where we collect data from
different but equivalent sources. Say different but equivalent branches of a bank
have collected data independently for a short number of years. According to the
results of the plots, if we estimate the same moments in each case and apply the
maxentropic procedure to the average moments, we will obtain something quite
close to the true density. This is in line with Lemma →10.2, for it means that we
have a sample of a larger size to apply the maxentropic procedure (of size 
200 × M ) in our example.

As we move from panel to panel, the amount of data used to compute the
moments increases and they become closer to their true values. This is the law of
large numbers in action. Therefore, the spread in the indeterminacy of the true
density decreases, as is apparent from the shrinking size of the gray shadow.

As a quantitative measure of the variability of the reconstructions, consider
→Table 10.2, the entries of which are to be understood as follows. The first two
columns describe the size of the sample and the error measure being listed. To
obtain the numbers listed in the next three columns, we listed the MAE and RSME



errors computed as described in the previous section for the 200 samples of each
size, and the percentiles mentioned were computed. In column number six we list
the area of the gray shadow, computed in the obvious way. That is, for a fine
enough partition of the horizontal (abscissa) axis find the maximum and minimum
of the densities at the midpoint of the axis, and carry on from there. To obtain the
last column, we averaged the moments over the 200 samples, obtained the
corresponding maxentropic density, and computed the average discrepancies
between that density and the densities in the sample.

Table 10.2 MAE and RMSE of SME for different sample sizes.

Size (M) Error Meas. 1st Qu. Mean 3rd Qu. Area Average

10 MAE 0.0500 0.0880 0.1150 2.625 0.0092

RMSE 0.0590 0.1010 0.1310 0.0120

20 MAE 0.0359 0.0619 0.0811 1.523 0.0089

RMSE 0.0400 0.0702 0.0915 0.0116

50 MAE 0.0203 0.0377 0.0510 0.9545 0.0082

RMSE 0.0237 0.0429 0.0575 0.0106

100 MAE 0.0144 0.0266 0.0343 0.696 0.0053

RMSE 0.0169 0.0304 0.0393 0.0066

200 MAE 0.0126 0.0194 0.0247 0.5375 0.0053

RMSE 0.0148 0.0225 0.0285 0.0067

500 MAE 0.0081 0.0128 0.0163 0.3258 0.0055

RMSE 0.0101 0.0153 0.0194 0.0076

1000 MAE 0.0067 0.0093 0.0108 0.2033 0.0054

RMSE 0.0087 0.0115 0.0132 0.0078

To obtain the next figure, we repeat the same procedure as before, except that
this time the densities were obtained using the SMEE method. This is to test
whether specifying a measurement error improves the reconstructions. In the six
panels of →Figure 10.3 we did as described above.

Similar to the previous case, as we increased the amount of data the
reconstructions improved, but as shown in →Table 10.3 the improvement (relative
to the results obtained using SME) as the sample size increase is small. The entries
in →Table 10.3 were produced and have the same meaning as those in →Table
10.2.



Figure 10.3  SMEE reconstructions with different sample sizes.

Table 10.3 MAE and RMSE of SMEE results for different sample sizes.

Size (M) Error Meas. 1st Qu. Mean 3rd Qu. Area Average

10 MAE 0.0419 0.0690 0.0898 2.619 0.0069

RMSE 0.0514 0.0784 0.1030 0.0110

20 MAE 0.0360 0.0620 0.0820 1.759 0.0066

RMSE 0.0420 0.0705 0.0918 0.0109

50 MAE 0.0198 0.0378 0.0500 1.044 0.0065

RMSE 0.0240 0.0430 0.0582 0.0102

100 MAE 0.0142 0.0267 0.0353 0.690 0.0060

RMSE 0.0168 0.0306 0.0398 0.0082

200 MAE 0.0125 0.0196 0.0247 0.552 0.0063

RMSE 0.0147 0.0229 0.0270 0.0072

500 MAE 0.0083 0.0131 0.0165 0.294 0.0058

RMSE 0.0101 0.0156 0.0199 0.0083

1000 MAE 0.0068 0.0093 0.0109 0.200 0.0057

RMSE 0.0082 0.0114 0.0133 0.0082



In →Table 10.4 we summarize the variability of the reconstructions depending
on the size of the sample in a slightly different way. There we show how the mean
MAE and the area of the gray shadow vary with the sample size. The improvement
of the reconstructions as the sample size increases is apparent.

Table 10.4 Summary of results.

10 100 1000

Mean (MAE) Area Mean (MAE) Area Mean (MAE) Area

SME 0.0880 2.625 0.0266 0.696 0.0092 0.2033

SMEE 0.0690 2.619 0.0267 0.690 0.0093 0.2000

10.3.4  Computation of the regulatory capital

This section is devoted to the computation of the two most used risk measures,
namely the VaR and the TVaR, which are used to determine the regulatory capital.
We explained how to compute these risk measures as in [→45]. The idea is that
this analysis should provide us with insight into the possible variability of
quantities essential in risk measurement.

In →Table 10.5 we present a comparison of the values of the VaR and the TVaR
computed from an empirical sample of size 5000, and the VaR and the TVaR
computed using the SME and SMEE densities at the 95 % and the 99 % confidence
levels. In the table, γ stands for the confidence level.

Table 10.5 Comparison of VaR and TVaR at 95% and 99% for a unique sample of
size 5000.

γ Empirical SME SMEE

VaR 0.950 5.05 4.935 5.004

0.990 5.72 5.755 5.772

TVaR 0.950 5.45 5.443 5.461

0.990 6.05 6.0207 6.014

The sample used to build →Table 10.5 might be considered large for
operational risk purposes, and datasets corresponding to large disasters may
comprise even smaller datasets. Therefore, computations like those leading to this
table will have to take into account sample variability.



Table 10.6 Mean and standard deviation of the VaR and TVaR for 200 samples of
different sizes.

Size (M) VaR ( 95 %) TVaR ( 95 %) VaR ( 99 %) TVaR ( 99 %)

SME SMEE SME SMEE SME SMEE SME SMEE

10 4.96 4.87 5.30 5.156 4.331 5.283 4.328 5.634

(0.4530) (0.6740) (0.5678) (0.7984) (1.083) (0.8597) (0.995) (1.3138)

20 4.96 4.91 5.30 5.282 4.518 5.502 4.633 5.818

(0.4536) (0.5200) (0.5678) (0.6515) (1.004) (0.7537) (1.004) (0.8053)

50 4.97 4.925 5.39 5.386 5.003 5.688 5.162 6.058

(0.2902) (0.3254) (0.382) (0.4286) (0.988) (0.5463) (1.069) (0.5617)

100 4.96 4.931 5.44 5.43 5.457 5.779 5.694 6.016

(0.1994) (0.2258) (0.251) (0.2794) (0.705) (0.3626) (0.768) (0.3476)

200 4.97 5.013 5.45 5.46 5.624 5.766 5.871 6.016

(0.1537) (0.1828) (0.1902) (0.1995) (0.395) (0.2343) (0.417) (0.2498)

500 4.95 4.93 5.45 5.45 5.708 5.822 5.972 6.017

(0.08963) (0.1038) (0.1136) (0.1249) (0.153) (0.1539) (0.159) (0.1385)

1000 4.95 4.95 5.45 5.45 5.729 5.828 5.977 6.064

(0.05815) (0.07033) (0.07088) (0.07765) (0.109) (0.1065) (0.107) (0.09838)

In →Table 10.6 we consider two measures of variability of the VaR and the
TVaR computed from the maxentropic densities obtained for 200 samples of the
indicated sizes. In each cell we present the mean and the variance (within
parentheses) of each risk measure, for each sample size. We do this at the 95 %
and the 99 % confidence levels.

To finish, consider →Table 10.7, in which we compute the ‘true’ VaR and the
‘true’ TVaR of small samples. Recall that the ‘true’ density of a small sample of size
M was obtained by averaging the densities of the 200 samples of size M, and was
shown to become closer to the true density of the total loss as M increased. We
see that the same happens to the VaR and the TVaR, as described in →Table 10.7.
Besides the relevance of the table for possible applications, we note that as the
sample gets larger, the VaR and the TVaR become closer to their true values.



Table 10.7 VaR and TVaR for the average of the maxentropic densities for different
sample sizes.

Size (M) VaR ( 95 %) TVaR ( 95 %) VaR ( 99 %) TVaR ( 99 %)

SME SMEE SME SMEE SME SMEE SME SMEE

10 4.81 4.82 5.32 5.35 4.54 5.64 5.97 5.97

100 4.95 4.92 5.42 5.38 5.67 5.72 5.99 6.05

500 4.95 4.95 5.49 5.45 5.78 5.79 6.09 6.09

1000 5.01 4.95 5.50 5.45 5.78 5.79 6.05 6.05
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11  Disentangling frequencies and
decompounding losses

Even though today’s data collection tools may allow for a high level of discrimination, it
is still plausible that in many fields loss data comes in aggregate form.

For example, when recording losses due to mistyped transaction orders, the
information about the person typing the order or the nature of the transmission error is
not recorded. Or consider for example the losses due to fraud, where the total fraud
events at some location or fraud events of some type are known, but they may have
different causes. Or an insurance company may record all claims due to collisions but
only keep the data about the car owner and not about the person(s) causing the
accident.

It may be important for the purpose of risk management, risk control or risk
mitigation, to be able to determine from the total risk recorded the sources of the risk
events and the individual losses at each event.

To state the problem to solve more precisely, we are presented with a total loss severity
S, and we know it may be the result of an aggregation like

where M is the (unknown) number of risk types. For each possible risk type, Nh  is the
(unknown) risk frequency, and Xh,n  denotes the (unknown) individual losses when the

risk event of type h occurs.
In order to disaggregate the total loss we have to perform two tasks. The first

consists of determining the number M of risk types and their statistical nature and then
to determine their statistical nature. The second task is to determine the statistical
nature of the individual losses.

We shall see that under certain circumstances these tasks can be satisfactorily
solved. In particular, in the simple cases in which the number of risk types is low and the
frequencies belong to the Panjer (a, b, 0) class, quite a bit can be said. The problem of

determining the nature of the individual losses is a bit more complicated, but
something can be said as well.

This chapter is split into two sections, in each of which we shall address one of the
two issues mentioned above.

11.1  Disentangling the frequencies

Certainly, if we are given the total number of risk events (or of any number of events)
that took place during some time, even if we knew the sum of the numbers of events of

S =
M

∑
h=1

Nh

∑
n=1

Xh,n,
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different nature that occurred during that time, to determine how many events of each
type took place seems a hopeless task. But it so happens that if the events can be
modeled distributions of the Panjer (a, b, 0) class, a reasonable answer can be

obtained, especially when we know the number of different types that are being
aggregated.

For ease of access, we shall review here some material about the (a, b, 0) Panjer

class first introduced in Chapter →2. This is a very interesting class of models,
comprising four of the standard parametric distributions: Poisson, binomial, negative
binomial and geometric. The formal definition goes as follows:

Definition 11.1.

Let N be a random variable taking positive integer values, and write pk = P(N = k)
for k ∈ N. We shall say that N is in the class (a, b, 0) if there exist constants a, b such

that

Comment. The 0 in the definition of the class refers to the fact that the recurrence
relation requires p(0) to be specified so that ∑n≥0 pn = 1. We have already

mentioned that this class plays an important role in the modeling process, since they
are a key part of a recursive method for the computation of the full probability
distribution of the compound random variable. The reader should consult [→78] to
learn all about these matters.

In →Table 11.1 we display the relationship between the parameters a and b along
with the parameters of the four families of probability distributions mentioned above.

Table 11.1 Relation between parameters (a, b) and the discrete family distributions.

Distribution a b p0

Poisson 0 λ e−λ

Binomial − p

1−p
(n + 1) p

1−p
(1 − p)n

Neg. binomial β

1+β
(r − 1) β

1+β
(1 + β)−r

Geometric β

1+β
0 (1 + β)−r

The key observation for the disentangling process is that the recurrence relation
(→11.2) can be rewritten as

Observe now that the ratio defined by r(k) = p(k)/p(k − 1) satisfies kr(k) = ka + b.

Therefore, if the parameters a and b are known, the plot of kr(k) versus k is a straight

pk/pk−1 = a + b/k, for k = 1, 2, 3, … .

p(k)/p(k − 1) = a + b/k.



line, or to phrase it differently, that knowing the parameters and p(0) we can use the

recurrence to determine p(k) for all ≥1.

That is that nice, but just as nice is the fact that this may be turned around. That is,
we may combine the (k, kr(k)) plot with a linear regression procedure to infer the

coefficients a and b, from which the probabilities pk  may be obtained.
But even nicer, this plot may suggest whether there is more than one regression

present. Thus, with the problem of disentangling a frequency model, if we have any
means of determining these regressions present in the collective plot we might be able
to determine the mixture.

It is also clear from (→11.1) that, except in the last case, if the values of a, b are
known, the value p0  is completely determined. For example, if the plot consists of a line
with negative slope a, this suggests that the underlying probability distribution is
binomial. From a we determine the probability p of success, and then use b to
determine n.

In Chapter 14 we devote several sections to the various statistical techniques that
can be used either to determine the straight lines in a mixture or the number of clusters
in a population. The last may be used to determine the possible number of lines, and
the former to determine the equations of the lines. Below we shall present only a few
simple cases of the methodology, thus complementing the examples developed in
Chapter →2.

11.1.1  Example: Mixtures of Poisson distributions

Let us now consider the following dataset corresponding to the (daily) frequency of
errors by an unknown number of typists transcribing data. The details are shown in
→Table 11.2. The meaning of the columns is the following: In the first column we show
the number of errors occurring and, in the second, the frequency of that event. In the
third column we show the relative frequency (the empirical estimate of p(k)), and in the

last column we show the result of computing k nk

nk−1
. The data was obtained by

simulating two Poisson distributions of parameters five and 16 respectively.



Table 11.2 Number of errors made by two typists.

# of events (typos) Frequency Relative frequency ( pk ) k nk

nk−1

0 4 0.003481288 –

1 20 0.017406440 5.00

2 51 0.044386423 5.10

3 84 0.073107050 4.94

4 105 0.091383812 5.00

5 105 0.091383812 5.00

6 88 0.076588338 5.02

7 63 0.054830287 5.01

8 39 0.033942559 4.95

9 22 0.019147084 5.07

10 11 0.009573542 5.00

11 30 0.026109661 30.00

12 40 0.034812881 16.00

13 49 0.042645779 15.92

14 56 0.048738033 16.00

15 60 0.052219321 16.07

16 60 0.052219321 16.00

17 56 0.048738033 15.86

18 50 0.043516101 16.07

19 42 0.036553525 15.96

20 34 0.029590949 16.19

21 26 0.022628372 16.05

22 19 0.016536118 16.07

23 13 0.011314186 15.73

24 9 0.007832898 16.61

25 6 0.005221932 16.66

26 3 0.002610966 13.00

27 2 0.001740644 18.00

28 1 0.000870322 14.00

29 1 0.000870322 29.00

30 0 0.000000000 –

Total 1149 1

The routine carried out to produce →Table 11.2 will be carried out in all examples
treated below, except that we shall not display the tables anymore. This routine was
used in the simple examples treated in Chapter →5, but it is here that the usefulness of
modeling with the class (a, b, 0) is essential. In →Figure 11.1 we display the histogram

(bar diagram) determined by that data as well as the Panjer plot for the data in →Table
11.2.



Figure 11.1  Histogram and Panjer plot for data in →Table 11.2.

Clearly, the underlying data is separated into two populations. It appears that there
are two typists, one making errors with a Poisson intensity of five and the other with a
Poisson intensity of 16.

In →Figure 11.2 we can see how the EM algorithm separates the two groups of data
points contained in the sample described in →Table 11.2. To each of these groups we
apply a goodness of fit test to verify whether they do belong to a Poisson distribution of
parameters λ1 = 5 and λ2 = 16, which furthermore coincide with the sample mean of
each group obtained by means of the maximum likelihood technique.



Figure 11.2  Result of applying the EM algorithm.

As a perhaps more realistic example, consider the case treated in [→43]. The aim of
the example is to show the work involved in determining both the number of groups in
the mixture and their statistical nature.

For this case we suppose that the aggregate risk has two sources, the frequencies of
each of them being a Poisson distribution with parameters ℓ1 = 2, ℓ2 = 8, and that the
individual severities X1 , X2  follow a common lognormal distributions, 
X ∼ LogNormal(−1, 0.25). All the variables are supposed independent. Besides this,

we consider a sample of size 500 to compute S = S1 + S2 , and all that we record, or
consider as given data, is the total number of risk events and the total loss in each
sample.



This is the first step in our methodology and we shall describe it in much detail. In
the left panel of →Figure 11.3 we show a histogram of the frequency of losses. It is
clearly suggestive of the existence of more that one subpopulation. In order to
determine it, we plot the Panjer lines in the right-hand panel of →Figure 11.3.

There we observe a group of values around the value two, and another group of
points that is more dispersed. Also, towards the right end of the abscissa axis we
observe some larger values. Additionally, the groups observed in →Figure 11.3b show
little slope, and the only significant increase in the values occurs at the end. This seems
to indicate that the underlying distribution could be a mixture of Poisson distributions.
By rescaling the vertical axis of →Figure 11.3b, the slope of the points would look
steeper, and a univariate negative binomial distribution can also be a possible
candidate. But this possibility is not borne out by the shape of the histogram of →Figure
11.3a.

Figure 11.3  Histogram and Panjer plot example 2.



Table 11.3 AIC, AIC3, BIC, ICL-BIC & negentropy values (Case 1).

No. of components AIC AIC3 BIC ICL-BIC Negentropy

1 255.2 259.2 259.0 259.0 1

2 253.6 260.6 260.2 266.1 0.7763

3 231.5 241.5* 240.9* 244.9 0.9043

4 229.4 242.4 241.7 243.7* 0.9616*

5 228.4* 244.4 243.5 247.8 0.9292

6 229.8 248.8 247.7 251.4 0.9458

* Value of g given by criterion

AIC = −2 loglik + 2H , AIC 3 = −2 loglik + 3H

BIC = −2 loglik + H log (n), ICL = BIC + 2 ∗ ENT

Negentropy = 1 −
∑n

i=1 ∑
H
l=1 −pil⋅ln(pil)

n⋅ln(H)

pil  is the posterior probability of the element i being in group l

H: number of groups, n: number of elements in the data

To get a better idea of the number of groups that are present in the data sample, it
is customary to utilize a variety of information criteria measures like the AIC, AIC3, BIC
and ICL-BIC values (further detail about this is provided in Chapter 14, and a short
explanation at the bottom of →Table 11.3). These measures address the goodness of fit
of the clustering method (in our case, the EM method), and they are defined so that
bigger is better. Additionally, we estimate the negentropy measure, which indicates
how well discriminated or separated the classes seem to be, based on posterior
probabilities (as before the higher the measure, the better). The results of these
estimations are listed in →Table 11.3, where we consider a number of subpopulations
between one and six. This range was selected according to the result obtained with the
sum of squared errors (SSE) for a broad number of clusters. This methodology is known
in the clustering literature as the Elbow method (see Chapter 14), which consists of
calculating the sum of the squared distance between each member of a cluster to its
cluster centroid. This methodology also provides a possible number of clusters.

→Table 11.3 shows that the information criterion is not very conclusive; these values
indicate that the number of groups is between three and five. On the basis of the
negentropy measure one may suppose that there are four subpopulations present.

Additionally, more advanced methodologies may be brought into the analysis. For
example, the projection pursuit method of Peña and Prieto [→80], [→81] gives us a
possible clustering without the need to introduce in advance the number of groups.
This algorithm detects four groups in our data, two of them being clusters and the
other two being isolated points or outliers (the largest values). This result is equivalent
to the one obtained with the EM algorithm when the input is the discrete data and the
number of groups is H = 4. The results are displayed in →Figure 11.4a.



Figure 11.4  Disentangled lines and detailed mixture.

There we see that the two largest clusters have almost zero slope, which indicates
that the two groups follow a Poisson distribution. Combining the results with the k-
mean, the Poisson parameters are the centers with values of 2.08 and 7.64 for each
group. Rounding these values, the density obtained is shown in →Figure 11.4b as a
mixture of Poisson distributions in which the weights of the mixture are the proportions
of points in each group provided by the disentangling procedure.

Looking at →Figure 11.4b we conclude that this density mixture provides a

satisfactory fit to the data. Considering the χ2  goodness of fit test statistic we find a

satisfactory fit ( χ2
o = 9.512, ρ = 0.5747, 11 degrees of freedom). Additionally, when

comparing this result with a simple Poisson and a simple negative binomial model, the
mixture model always gives superior fit.

11.1.2  A mixture of negative binomials

The negative binomial, which after the Poisson distribution is probably the most
popular in operational risk, and perhaps the frequency models that use the negative
binomial to model risk events in operational risk, will fit the available data better than
the Poisson. This is due to the fact that it has two parameters, which provides more
flexibility in shape; see for example [→26], [→74] or [→35], where it has been used to
explain the frequency of fraud. In particular, in this case it is also conceivable that
different perpetrators take part in the process, which might show up in the presence of
several modes in the frequency histogram.

Suppose for example that yearly fraud data frequency yields a histogram like that in
→Figure 11.5a, where one group has parameters p1 = 0.5 and r1 = 10, and the other
one p2 = 0.4 and r2 = 20 (here p = β/(β + 1)).



Figure 11.5  Disentangled lines and detailed mixture.

When the (k, kr(k)) plot is produced, we obtain a histogram like that in →Figure

11.5b. The usefulness of the plot is again clear. It certainly suggests the presence of two
different straight lines. The EM procedure tells them apart for us, yielding the plot in
→Figure 11.5b. The resulting parameters are b1 = 4.54(0.057519), 

a1 = 0.49(0.00486) and b2 = 13.10(0.94896), a2 = 0.54679(0.03203). Then, using

the identities in →Table 11.1, we obtain β1 = 0.9739, r1 = 10.21639, p1 = 0.506 and 
β2 = 1.2064, r2 = 24.96817, p2 = 0.453.

11.1.3  A more elaborate case

Let us now consider a case studied in [→43], in which there are more sources of risk
involved. The data we present below comes from a sample generated from the
following four binomial distributions: N1 ∼ binomial(15, 0.50), 

N2 ∼ binomial(30, 0.65), N3 ∼ binomial(30, 0.90) and N4 ∼ binomial(40, 0.8).

Somewhat more detailed information about the four frequencies is specified in →Table
11.4.

Table 11.4 Binomial parameters of each group (original values).

– μ σ2 p n

Group1 7.5 3.75 0.5 15

Group2 19.5 6.825 0.65 30

Group3 27 2.7 0.90 30

Group4 32 6.4 0.8 40



These are listed for comparison with the results of the disentangling process. The
histogram of the data and the plot of the Panjer relation appears in Figures →11.6a and
→11.6b.

Figure 11.6  Histogram and plot of kr(k) versus k.

To determine the number of subpopulations we applied the criteria summarized in
→Table 11.5. We settled for five groups according to the result suggested by the
negentropy measure, as the other four criteria do not seem to be consistent. In the left
panel of →Figure 11.7a we observe the five groups obtained by the EM procedure. The
first set of points is excluded and for the calculations the other four sets of data are
used.



Table 11.5 AIC, AIC3, BIC, ICL-BIC and negentropy values (Case 5).

No. of components AIC AIC3 BIC ICL-BIC negentropy

1 573.8 577.8 580.4 580.4 1

2 564.2 572.2* 577.5* 586.0* 0.8330

3 561.1 573.1 581.1 593.6 0.8457

4 560.5 576.5 587.1 597.2 0.9011

5 557.8* 577.8 591.1 597.8 0.9434*

6 558.7 582.7 598.7 608.0 0.9291

* Value of g given by criterion

AIC = −2 loglik + 2H , AIC 3 = −2 loglik + 3H

BIC = −2 loglik + H log (n), ICL = BIC + 2 ∗ ENT

Negentropy = 1 −
∑n

i=1 ∑
H
l=1 −pil⋅ln(pil)

n⋅ln(H)

pil  is the posterior probability that the element i being in group l

H: number of groups, n: number of elements in the data

Figure 11.7  Disentangled lines and distribution.

The parameters obtained by an application of the EM method are listed in →Table
11.6 and should be compared with the original parameters listed in →Table 11.4. The
curve shown in →Figure 11.7b is that of the mixed density, that is 

P(N = k) = ∑4
j=1 P(Nj = k)fj , where fj  is the proportion of data points assigned

to the j-th group by the disentangling procedure. We can say that the agreement is
quite reasonable.
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Table 11.6 Disentangled parameters for each group.

– μ σ2 p n

Group1 7.67 4.94 0.36 22

Group2 19.2 7.68 0.60 32

Group3 27.3 2.457 0.91 30

Group4 32.37 5.50 0.83 39

To sum up, results presented in these examples show that when we can model the
frequency of losses by distributions in the Panjer (a, b, 0) class, and when the number

of risk sources is small, we can make use of various statistical techniques to determine
the properties of the underlying distributions.

11.2  Decompounding the losses

In this section we address the remainder of the disaggregation problem, namely to
determine the individual losses of each type. As that certainly turns out to be too much
to ask for, we shall first examine some aspects of the problem and then present some
examples.

Recall that what we are observing is samples from the distribution of

Keeping in mind some of the examples presented in the previous section, clearly, unless
the Xh,n  with the same value of h are identically distributed, that is, unless within each

type of risk the individual losses have the same distribution, there is not much hope to
solve the problem.

Let us begin by examining the problem in the simplest possible case, in which there are
two types of risk with frequencies N1  and N2  and let us suppose that there is
independence among all the random variables involved. In this case, the Laplace
transform of the aggregate loss is related to the Laplace transforms of each partial loss
as follows:

Here we set ϕh(α) = E[e−αXh ] where Xh  is a generic variable distributed like the 

Xh,n . From this it is clear that if the Xh  have the same distribution, then the ϕh(α)
coincide and we may regard (→11.4) as an equation in ϕ(α). Once we solve that

equation and we have determined ϕ(α), then we can invert the Laplace transform (at

least numerically as shown in Chapter →7), and thus determine fX(s). This idea can

S =
M

∑
h=1

Nh

∑
n=1

Xh,n.

ψS(α) = ψS1(α)ψS2(α) ⇔ GN1(ϕ1)(α)GN2(ϕ2)(α).
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readily be extended to the case in which there are more risk types as long as all the 
ϕh(α) coincide.

But this is certainly too much to hope for. The question is: What is the next best that
we can do? An interesting possibility presents itself when all the risk event frequencies
are of the Poisson type.

To be specific, suppose that Ni ∼ Poisson(λi), for i = 1, … ,H , and that the

individual severities are distributed according to fXi
. In this case, it is clear that (→11.4)

becomes

where we put λ = ∑H
h=1 λh  and manipulate the exponent as follows:

Thus, in (→11.5) X̂  is a random variable whose density is the mixture 

f
X̂

= ∑H
h=1

λh

λ
fXh

. In other words, the aggregated risk is the result of compounding

a risk produced with a Poisson intensity equal to the sum of the individual intensities
and individual loss whose probability density equals that of a weighted average of the
individual densities, where weights are given by the proportion of the individual
frequency relative to the total frequency.

That idea was eventually extended by Wang in [→96] into a result that we now state
and prove.

Proposition 11.1.

Suppose that the H compound risks to be aggregated have Poisson frequencies Ni  with a

common mixing distributions F(θ) such that, given θ, the conditional distributions of the

frequencies are given by N|θ ∼ P(θλi), and we suppose them to be independent. Let 

S = ∑H
h=1 Si  be as above.

Then S ∼ ∑N
n=1 X̂n  with N|θ ∼ P(θλ), where λ = ∑H

h=1 λi , and as above, the X̂n

have common density ∑H
h=1

λh

λ
fXh

.

Proof.

The proof is computational, and hinges on the fact that 
λi

λ = θλi

θλ  is independent of the

mixing parameter θ. A simple computation like in (→11.6) would take us from (→11.5)
to

ψ(α) = e−∑H
h=1 λi(E[e−αXh ]−1) = e−λ(E[e−αX̂]−1),

H

∑
h=1

λhE[e−αXh] = λ(
H

∑
h=1

E[e−αXh]
λh

λ
).
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as claimed.  □

Notice that for the proposed mixing we have λi/∑j λj = E[Ni]/∑j E[Nj]. The

class of frequencies for which this is valid includes the Poisson and negative binomial
random variables. The result contained in the proposition suggests what the best one
can do regarding the decompounding problem is. That is, consider the total risk to be
the compounding of individual risks that are distributed according to an equivalent
individual loss defined as follows:

Definition 11.2.

Let fXh
 denote the common probability density of the individual losses for the

compound losses of the h-th type, h = 1, … ,H , and let Nh  denote the respective loss
frequency. The aggregated individual loss has a density given by

which we shall refer to as the ‘equivalent mixture’. Here we set 

E[Nagg] = ∑H
h=1 E[Nj] to be the mean of the aggregate loss frequency. That is, by X̂

we denote the individual loss, which, compounded according to Nagg , yields the total

aggregate risk S.

Our goal is now more realistic and our original problem becomes first to determine
the distributions of the Ni , and using that, to determine the distribution of the
equivalent mixture of densities, from the knowledge of the aggregate risk data.

In the general case we are within the scope of the identifiability problem considered
for example in chapter 3 of [→95]. The importance of that work for us being that unless
we know that the individual losses in the risk sources are identically distributed, from
the aggregate loss we shall not be able to obtain the individual losses of the different
risk types. At most, we shall be able to obtain the equivalent mixture of densities given
(→11.7). At this point it is interesting to note that the equivalent mixture coincides
reasonably well with the distribution obtained by the decompounding procedure in the
numerical experiments that we carried out.

We shall next examine a couple of examples considered in [→44]. In each of these,
part of the work consists of disentangling the frequencies. We shall now concentrate on
the decompounding aspect of the problem.

11.2.1  Simple case: A mixture of two populations

ψ(α) = ∫ e−θλ(E[e−αX̂]−1)dF(θ) = E[e−α∑N
n=1 X̂n]

f
X̂

=
H

∑
h=1

E[Nh]

E[Nagg]
fXh

,



We shall consider first the case of total losses produced by two sources. We shall
suppose that the frequencies of each of them are a Poisson distribution with
parameters ℓ1 = 2, ℓ2 = 8. We already saw above how to go about disentangling the
two underlying frequencies.

Again, just to emphasize the power of the maxentropic procedure, we suppose that
the individual severities X1 , X2  follow a common lognormal distribution, 
X ∼ LogNormal(−1, 0.25), which amounts to saying that their Laplace transforms

can only be estimated numerically. All the variables are supposed independent. We
consider a relatively small sample of size 500 to compute S = S1 + S2 , and we only
record the total number of risk events and the total loss in each sample.

Observe as well that since we are supposing that the individual losses in both cases are
identically distributed, the equivalent mixture coincides with the individual loss density,

To solve for the Laplace transform of the individual density when the frequency model
is Poisson is easy now. We list in Tables →11.7–→11.8 below the values of ψS(α) and

those of ϕX(α), obtained numerically as in Chapter →7 and using (→11.4). Since we

will apply both maxentropic methods, that is SME and SMEE, we also compute the
confidence interval for the data about ϕX(α).

Table 11.7 Laplace transform of the aggregate losses and individual losses (Case 1).

k 1 2 3 4 5 6 7 8

ψ(αk) 0.0064 0.0515 0.1229 0.1978 0.2671 0.3284 0.3818 0.4283

ϕ(αk) 0.4959 0.7034 0.7903 0.8380 0.8680 0.8886 0.9037 0.9152

The confidence interval for ϕX(α) is determined by a bootstrapping procedure at

the 5 % confidence level.
Once we have reached this point, we apply the techniques proposed in Chapters →7

and →8 to obtain the maxentropic densities. The result obtained is plotted in →Figure
11.8.

f
X̂

=
E(N1)

E(N1) + E(N2)
× fX1

+
E(N1)

E(N1) + E(N2)
× fX2

∼ LogNormal(−1, 0.25).



Table 11.8 Intervals for the Laplace of the simulated individual losses (Case 1).

ϕ(αk) Confidence Interval

ϕ(α1) [0.4948, 0.4966]

ϕ(α2) [0.7032, 0.7039]

ϕ(α3) [0.7903, 0.7907]

ϕ(α4) [0.8380, 0.8383]

ϕ(α5) [0.8680, 0.8682]

ϕ(α6) [0.8886, 0.8888]

ϕ(α7) [0.9037, 0.9038]

ϕ(α8) [0.9151, 0.9153]

Figure 11.8  Maxentropic individual densities.

Even though the description of the panels in →Figure 11.8 is clear, let us emphasize
that in the left panel we plot both the histogram of a sample of the true population as
well as the reconstructed density. To measure the quality of the approximation we
compute the MAE and RMSE between the density and the empirical cumulative density.
The results are listed in →Table 11.9 displayed below.



Table 11.9 MAE and RMSE distances between reconstructed densities, original
histogram and true densities.

Approach Hist. vs. true density Hist. vs. maxent. True density vs. maxent.

MAE RMSE MAE RMSE MAE RMSE

SME 0.0024 0.0029 0.0129 0.0143 0.0129 0.0143

SMEE 0.0024 0.0029 0.0143 0.0162 0.0142 0.0159

11.2.2  Case 2: Several loss frequencies with different individual loss
distributions

Let us now consider a more elaborate example. The loss frequencies are those
described and disentangled in the last example of the previous section. As individual
loss densities generate the data, we consider the following four densities: 
X1 ∼ beta(1, 25), X2 ∼ Weibull(1, 0.1), X3 ∼ Frechet(0.01, 2) and 

X4 ∼ gamma(0.1, 3). They are associated in the same order with the binomials listed

above in last example of the previous section.
This time we considered a sample of size 1000 and we recorded the total number of

events and the total loss in each cycle of the simulation. In →Table 11.10 we list the
numerical values of the Laplace transform of the total loss ψS(α) and that of the

Laplace transform of the equivalent mixture computed as suggested in Proposition
→11.1, which is to be the Laplace transform of the equivalent mixture (→11.7). For the
purpose of implementing the SMEE detailed in Chapter →8, using a bootstrapping
procedure we compute the confidence intervals for ϕ

X̂
(α). The results are listed in

→Table 11.11.

Table 11.10 Laplace transform of the aggregate losses and individual losses (Case 2).

m 1 2 3 4 5 6 7 8

ψ(αk) 0.0062 0.0688 0.1624 0.2524 0.3302 0.3957 0.4506 0.4971

ϕ(αk) 0.9425 0.9694 0.9791 0.9841 0.9872 0.9893 0.9908 0.9919



Table 11.11 Confidence intervals for the Laplace of the simulated individual losses (Case
2).

ϕ(αk) Confid. interval

ϕ(α1) [0.9425, 0.9426]

ϕ(α2) [0.9694, 0.9695]

ϕ(α3) [0.9791, 0.9792]

ϕ(α4) [0.9841, 0.9842]

ϕ(α5) [0.9871, 0.9872]

ϕ(α6) [0.9892, 0.9893]

ϕ(α7) [0.9908, 0.9909]

ϕ(α8) [0.9919, 0.9920]

With this we are all set to apply the procedures presented in Chapters →7 and →8
once more. The result is plotted in the two panels of →Figure 11.9; the left panel
corresponding to the reconstruction using SME as in Chapter →7 and the right panel
using SMEE as proposed in Chapter →8.

Figure 11.9  Maxentropic individual densities (Case 2).

We only add that the histogram of the equivalent mixture is not available in a real
situation. It is available for us to construct from the simulated data, and we compute it
according to (→11.7) for comparison purposes.

To asses the quality of the reconstructions, in →Table 11.12 we show the MAE and
RMSE distances between the reconstructed densities, original histogram of the mixture
and densities computed from the input data.



Table 11.12 MAE and RMSE distances between reconstructed densities, original
histogram and densities.

Approach Hist. vs. equiv. mix Hist. vs. maxent. Equiv. mix vs. maxent.

MAE RMSE MAE RMSE MAE RMSE

SME 0.2120 0.2474 0.1270 0.1355 0.1052 0.1285

SMEE 0.2120 0.2474 0.1772 0.1854 0.0894 0.1009

Clearly, at least when the suspected number of risk types is small, the combination
of the disentangling technique plus the maxentropic procedure yields an efficient
approach to determining the frequencies of the risk events as well as that of an
equivalent mixture of densities that plays the role of individual risk density for the
aggregated loss.



(12.1)

(12.2)

12  Computations using the maxentropic density

In the previous chapters we devoted much effort to solving the problem of determining
probability density from a few values of its Laplace transform, and to testing the quality of these
reconstructions. In particular, we supposed that the unknown density is that of a positive
compound random variable used to model losses. In this chapter we carry out some numerical
computations with the maxentropic densities obtained in the previous chapters to answer some
typical questions.

As one of the important applications of the methodology is to describe operational risk losses
in a bank, or accumulated claims in an insurance company, the important applications to be
considered include the VaR (value at risk) and the TVaR (tail value at risk), which are two of the
standard measures required by a regulator to determine the capital to be set apart to cover
potential losses. After that we shall consider some of the standard computations needed to
compute the risk premium, that is, we shall compute the expected values of typical random
variables.

But we shall once more begin with a theme treated in Chapter →5, related to the fact that in
most loss models there is a positive probability that there are no losses.

12.1  Preliminary computations

Recall from Chapter →5 that in Lemma →5.1 we established that the density of losses was
obtained by conditioning on the occurrence of losses according to

When we want to compute expected values of quantities related to the total loss, we need to take
that detail into account.

Let us begin with a generic result. The following is essentially a corollary of Lemma →5.1, but
of more applicability:

Proposition 12.1.

Let H : (0, ∞) → R be a bounded or positive measurable function. Then

Proof.

Since {N = 0} = {S = 0}, we have

To conclude the proof, invoke (→12.1).  □

fS(x) =
d

dx
P(S ≤ x ∣ N > 0).

E[H(S)] = H(0)P(N = 0) + (1 − P(N = 0))

∞

∫
0

H(s)fS(s)ds.

E[H(S)]= E[H(S) ∣ S = 0]P(S = 0) + E[H(S) ∣ S > 0](1 − P(S = 0))

= H(0)P(N = 0) + (1 − P(N = 0))E[H(S) ∣ S > 0].



This means that computations made with the maxentropic densities have to be scaled when
one wants to obtain unconditional expected values of quantities of interest.

In the remaining sections of the chapter we shall see how these remarks influence the
computation of the quantiles of S from the knowledge of fS .

12.1.1  Calculating quantiles of compound variables

Recall that if S denotes a continuous positive random variable, with density fS , its q-quantile Vq  is

obtained by solving the equations

where, of course, 0 < q < 1.
But when we deal with random variables like the compound variable S that describes total

loss, we have to be a bit more careful. Let us now establish the relationship between the quantiles
of S and the quantiles of S|{S>0} , that is, the quantiles of the random variable with density fS .

Note that from (→12.1) or Proposition →12.1 it follows that the Vq  quantile of S can be related to

the Vq∗ -quantile of fS  as follows. Note that if Vq  is defined by P(S ≤ Vq) = q, from Proposition

→12.1 we know that

Or, if we define

and the Vq∗ -quantile of fS  as the number such that

we can state:

Proposition 12.2.

Let q > P(N = 0), then the q-quantile Vq  of S (or of P(S ≤ x)) is the same as the q∗ -quantile Vq∗

of fS , where q∗ = (q − P(N = 0))/(1 − P(N = 0)) < q.

Once more, the condition q > P(N = 0) reflects the fact that for compound random

variables describing accumulated loss or damage, the distribution function P(S ≤ s) has a jump

of size P(N = 0) at 0. Notice that even though q∗ < q, this does not imply any relationship

between Vq  and Vq∗  because they are quantiles of different (although related) distributions.

∞

∫
Vq

fS(x)dx = 1 − q ⇔

Vq

∫
0

fS(x)dx = q

P(S ≤ Vq) = P(S = 0) + (1 − P(S = 0))

Vq

∫
0

fS(s)ds = q ⇔

Vq

∫
0

fS(s)ds =
q − P(S =

1 − P(S =

q∗ =
q − P(N = 0)

1 − P(N = 0)

∞

∫
Vq∗

fS(s)ds =
q − P(N = 0)

1 − P(N = 0)
= 1 − q∗,
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Notice as well that since the maxentropic densities fS  are positive, we do not bother about right
or left quantiles.

The result in the lemma has to be taken into account when using empirical data to determine
the quantiles of S and the threshold probability, say q = 0.999, and when the probability of no

loss is small, say P(S = 0) = 10−4 , then q∗ = 0.9989. In the numerical examples below we

shall compute the quantile of fS  from the data and from its maxentropic representation.

12.1.2  Calculating expected losses given that they are large

The object of this example is to point out how to use the loss density to compute the expected
loss beyond a given threshold, that is, we want to compute E[S ∣ S > V ] for some V > 0 using

the density fS . We shall verify that actually the natural calculations can be carried out. Observe
that

According to the comments in the previous section, when we use (→12.3) we have to be careful
when identifying V with a quantile. It is either the q-quantile of S (if P(S > Vq) = 1 − q) or the 

q∗ -quantile of S|{S>0} , with q and q∗  related as above.

12.1.3  Computing the quantiles and tail expectations

Lets us now present a result taken from [→84], which allows us to compute the quantile and the
tail expected value in one single computation:

Proposition 12.3.

Let fS(s) be a strictly positive and continuous density on [0, ∞), and consider for any 0 < γ < 1 the

function U defined on (0, ∞) by

Then, U(t) is convex, twice continuously differentiable, achieves its minimum at the γ quantile Vγ  of 

fS  and its minimum equals E[S ∣ S > Vγ].

The proof is simple and it involves taking two derivatives.
The quantity E[S ∣ S > V ] is called the tail expected value of S. If the α-quantile Vα  of fS  is

called the VaR (value at risk) at (confidence) level α, then E[S ∣ S > Vα] is called the TVaR (tail

value at risk) of fS .
Comment. For the computations described below, the upper limit of the integral was set

equal to 10 max (S), that is, ten times the maximum value in the sample obtained for S. (That is,

the possible range of t was chosen as (0, 10 max (S)).)

Besides this analytical procedure, we can use the standard method to determine VaR and TVaR
from the empirical data. In order to compute the empirical VaR we consider the values of S > 0

ordered in increasing size ( s1 ≤ s2 ≤ sn ), and then we estimate it as V̂aRγ(S) ≈ x([N(γ)]),

E[S ∣ S > V ] =
E[SI(V ,∞)(V )]

P(S > V )
=

E[SI(V ,∞)(V ) ∣ S > 0]P(S > 0)

P(S > V ∣ S > 0)P(S > 0)
=

∫ ∞
V
sfS(s)ds

∫ ∞
V
fS(s)ds

.

U(t) = t +
1

1 − γ

∞

∫
t

(s − t)fS(s)ds.



where [a] denotes the integer part of the real number a. The estimation of the TVaR is obtained

from the same ordered list of values as

The confidence intervals for the VaR and TVaR were calculated by resampling without replacement
with random subsamples between 50 % and 90 % of the total data size.

12.2  Computation of the VaR and TVaR risk measures

12.2.1  Simple case: A comparison test

In this section we shall compute the VaR and the TVaR of a known density (in our case a lognormal
density of parameters (1,0.1)) computed in three different ways: First from a sample of the
distribution; second, using the true density and the procedure described in Proposition →12.3;
and third, using the maxentropic density calculated using the procedures described in Chapters
→7 and →8, using the empirical data as the input. Again, and to emphasize once more, remember
that there is no analytical expression for the Laplace transform of the lognormal density but its
exact density is known, so here we shall actually test the power of the maxentropic approach as
well.

The details of this example were described in Chapters →7 and →8 in the context of the
determination of the density. Recall that we considered two samples, one of size 200 and one of
size 1000, and we carried out the reconstruction and a study of its quality supposing that the data
was exact, or when it was given up to a range or that it was collected with measurement errors.
Here we shall just determine the VaR and TVaR as mentioned above.

Exact data

This corresponds to the first numerical example treated in Chapter →7. Below we present four
tables, one for each risk measure and each sample size, in which VaR and TVaR are computed as
specified above.

In the left column of Tables →12.1 and →12.2 we display the confidence levels at which VaR
and TVaR were computed. In the next three columns we list, respectively, the empirical quantity as
well as its confidence interval at the 95 % confidence. In the last two columns we list, respectively,
the VaR and the TVaR computed with the true density and with the maxentropic density.

Table 12.1 VaR: Sample size 200.

γ Empirical VaRinf VaRsup True density SME

0.950 3.1884282 3.1473332 3.2437457 3.1986397 3.1926385

0.960 3.2437457 3.1857360 3.3136158 3.2346469 3.2286457

0.970 3.3136158 3.2162549 3.3491837 3.2766553 3.2706541

0.975 3.3451934 3.2437457 3.3779235 3.3006601 3.2946589

0.990 3.3892554 3.3491837 3.4239602 3.4266853 3.4146829

0.995 3.4561725 3.3892554 3.4561725 3.5107021 3.4926985

0.999 3.4561725 3.4239602 3.4561725 3.6967393 3.6607321

ˆTVaRγ =
1

N − [Nγ] + 1

N

∑
j=[N(γ)]

sj.



Table 12.2 TVaR: Sample size 200.

γ Empirical TVaRinf TVaRsup True density SME

0.950 3.3268312 3.2425054 3.3891441 3.3379850 3.3277078

0.960 3.3571341 3.2627653 3.4073819 3.3684512 3.3572957

0.970 3.3840441 3.2905055 3.4257257 3.4066716 3.3941155

0.975 3.3941053 3.3084260 3.4352135 3.4303371 3.4167206

0.990 3.4342822 3.3653890 3.4561725 3.5437877 3.5230580

0.995 3.4481195 3.3835894 3.4561725 3.6246062 3.5965116

0.999 3.4561725 3.3892554 3.4561725 3.8002637 3.7488995

We add that in the two tables mentioned above and in the next tables, the empirical
confidence intervals are determined by resampling from the datasets, with samples of size up to 
90 % of the original sample size.

Next we present Tables →12.3 and →12.4, in which everything is as above, except that the
sample size used is 1000.

Table 12.3 VaR: Sample size 1000.

γ Empirical VaRinf VaRsup True density SME

0.950 3.2360580 3.1938743 3.2458468 3.2006401 3.2086417

0.960 3.2473619 3.2283227 3.2856532 3.2326465 3.2486497

0.970 3.3106142 3.2473619 3.3283750 3.2726545 3.2886577

0.975 3.3220161 3.2770023 3.3754777 3.3046609 3.3206641

0.990 3.4239602 3.3837184 3.4385691 3.4246849 3.4406881

0.995 3.4717304 3.4239602 3.5427976 3.5127025 3.5367073

0.999 3.6898073 3.4717304 3.6898073 3.6967393 3.7287457

Table 12.4 TVaR: Sample size 1000.

γ Empirical TVaRinf TVaRsup True density SME

0.950 3.3547538 3.2968652 3.4185504 3.3379840 3.3553835

0.960 3.3821343 3.3181586 3.4559391 3.3684504 3.3868917

0.970 3.4191905 3.3443793 3.4966896 3.4067017 3.4265035

0.975 3.4394590 3.3600881 3.5232593 3.4303656 3.4510622

0.990 3.5373198 3.4138775 3.6834803 3.5437671 3.5689433

0.995 3.6208459 3.4291698 3.8357996 3.6246247 3.6531619

0.999 3.8343980 3.4471884 3.9789886 3.8002637 3.8370929

Risk measures when the data is given up to a range

Let us now present the tables containing the results of the computation of the VaR and the TVaR
when the data is given in ranges. Numerical examples of density reconstruction in this case were
given in Section →8.4.1. The results presented in Tables →12.5 and →12.6 fare or a sample size of
200.



Table 12.5 VaR: Sample size 200.

γ Empirical VaRinf VaRsup True density SME

0.950 3.1884282 3.1884282 3.2162549 3.1986397 3.1986397

0.960 3.2437457 3.2437457 3.2770023 3.2346469 3.2346469

0.970 3.3136158 3.3136158 3.3451934 3.2766553 3.2826565

0.975 3.3451934 3.3451934 3.3491837 3.3006601 3.3126625

0.990 3.3892554 3.3892554 3.4239602 3.4266853 3.4446889

0.995 3.4239602 3.4239602 3.4561725 3.5107021 3.5407081

0.999 3.4561725 3.4561725 3.4561725 3.6967393 3.7567514

Table 12.6 TVaR: Sample size 200.

γ Empirical TVaRinf TVaRsup True density SME

0.950 3.3386299 3.3121873 3.3574699 3.3379850 3.3515103

0.960 3.3659274 3.3412500 3.3817269 3.3684512 3.3846741

0.970 3.3897737 3.3725905 3.4010767 3.4066716 3.4266536

0.975 3.3988697 3.3846290 3.4118711 3.4303371 3.4529036

0.990 3.4390701 3.4211680 3.4473142 3.5437877 3.5810123

0.995 3.4549336 3.4400664 3.4561725 3.6246062 3.6749027

0.999 3.4561725 3.4561725 3.4561725 3.8002637 3.8869329

The description of the entries of these two tables is as for the previous examples. To examine
the effect of the sample size in the determination of the risk measures, we repeated the
computation for a sample size of 1000. That there is an improvement is clear from the entries of
Tables →12.7 and →12.8.

Table 12.7 VaR: Sample size 1000.

γ Empirical VaRinf VaRsup True density SME

0.950 3.2360580 3.1938743 3.2458468 3.2006401 3.2486497

0.960 3.2473619 3.2283227 3.2856532 3.2326465 3.2886577

0.970 3.3106142 3.2473619 3.3283750 3.2726545 3.3366673

0.975 3.3220161 3.2770023 3.3754777 3.3046609 3.3686737

0.990 3.4239602 3.3837184 3.4385691 3.4246849 3.5287057

0.995 3.4717304 3.4239602 3.5427976 3.5127025 3.6407281

0.999 3.6898073 3.4717304 3.6898073 3.6967393 3.8887778

Table 12.8 TVaR: Sample size 1000.

γ Empirical TVaRinf TVaRsup True density SME

0.950 3.3547538 3.2968652 3.4185504 3.3379840 3.4191404

0.960 3.3821343 3.3181586 3.4559391 3.3684504 3.4572513

0.970 3.4191905 3.3443793 3.4966896 3.4067017 3.5056193

0.975 3.4394590 3.3600881 3.5232593 3.4303656 3.5358641

0.990 3.5373198 3.4138775 3.6834803 3.5437671 3.6842614

0.995 3.6208459 3.4291698 3.8357996 3.6246247 3.7935868

0.999 3.8343980 3.4471884 3.9789886 3.8002637 4.0422850



We only add that similar tables corresponding to the examples in Section →8.4.2, in which the
data was contaminated with a small measurement error, yield very similar results, which we
refrain from presenting to the reader.

12.2.2  VAR and TVaR of aggregate losses

In this section we show the results of the computation of the VaR and TVaR of the densities of
losses that comprise several levels of aggregation.

Independent and partially coupled risks

The numerical example of density determination for this case was treated in Section →7.5.2. Let
us begin with the first case depicted in Figure →7.5. To have a few numbers as references for
comparisons, we first compute the empirical VaR and TVaR for each case using a large sample of
size 9000 at confidence levels equal to 95 % and 99 %. The result is presented in →Table 12.9.

Table 12.9 VaR, TVaR and confidence intervals for the simulated S of size 9000.

S VaR TVaR

0.95 0.99 0.95 0.99

Emp. Conf. int. Emp. Conf. int. Emp. Conf. int. Emp. Conf. int.

7.877 7.849–7.910 8.601 8.560–8.652 8.301 8.239–8.363 8.888 8.799–8.979

Besides each empirical value, in →Table 12.9 we show as well the confidence intervals
obtained by resampling (or bootstrapping) with a large subsample.

For the comparison to be fair, in this case we computed the integral (→12.3) using as the
upper limit of integration the maximum value of the sample. Since the maximum entropy method
provides us with an analytic expression for the density, we can use a much larger interval to
obtain a better estimate of the VaR and the TVaR.

In →Table 12.10 we show the result of computing the VaR and the TVaR for the densities
corresponding to Figure →7.5. If need be, the reader should go back to Chapter →7 to review how
the different densities plotted in that figure were obtained.

Table 12.10 Comparison of VaR and TVaR for the SME, and convolution approaches for several
cases.

Copula VaR TVaR

0.95 0.99 0.95 0.99

SME Conv. SME Conv. SME Conv. SME Conv.

Independent 7.793 7.828 8.698 8.603 8.527 8.332 9.190 8.922

Gaussian, ρ = 0.5 7.560 7.672 8.045 7.983 7.868 7.850 8.272 8.292

Gaussian, ρ = 0.8 7.682 7.672 8.136 8.138 7.9568 7.978 8.379 8.435

t-Student, ρ = 0.7, ν = 10 7.672 7.707 8.138 7.983 7.936 7.914 8.348 8.317

Fully coupled risks



(12.4)

This case corresponds to the second example treated in Section →7.5.2. The densities obtained in
this case are plotted in Figure →7.6. In →Table 12.11 we present the VaR at various confidence
levels (indicated in the first column), obtained from the maxentropic densities as with the
densities obtained by the copula based convolution approach. In the last two columns of →Table
12.11 we list the endpoints of the confidence interval for the different values of γ, computed at the
95 % confidence level by bootstrapping from the empirical data.

Table 12.11 Comparison of VaR for the SME, and convolution approaches.

γ Approaches Errors Confidence interval 95 %

SME Conv. Empirical SME err. Conv. err. VaRinf VaRsup

0.900 7.431 7.569 7.491 0.060 0.078 7.442 7.522

0.950 7.707 7.707 7.704 0.003 0.003 7.641 7.757

0.990 8.259 8.259 8.231 0.028 0.028 8.102 8.603

0.995 8.397 8.397 8.672 0.275 0.275 8.231 8.804

0.999 8.810 8.672 8.999 0.189 0.327 8.689 9.065

The description of →Table 12.12 is similar to that of →Table 12.11, so there is no need to add
much to this. We end this section by mentioning the results of computing the VaR and the TVAR at
various levels of confidence using (→12.3) with 10 max (S) as indicated there.

Table 12.12 Comparison of TVaR for the SME, and convolution approaches.

γ Approaches Errors Confidence interval 95 %

SME Conv. Empirical SME err. Conv. err. TVaRinf TVaRsup

0.900 7.817 7.834 7.836 0.019 0.002 7.718 7.963

0.950 8.032 8.030 8.091 0.059 0.061 7.922 8.262

0.990 8.498 8.408 8.769 0.271 0.361 8.344 8.974

0.995 8.687 8.499 8.875 0.188 0.371 8.473 9.147

0.999 9.092 8.896 9.160 0.068 0.264 8.650 9.254

12.3  Computation of risk premia

Actually, the thrust of this section is not the computation of the risk premia, but to examine the
dependence of the risk premia on the sample size. In our case this is easy because the
maxentropic procedure produces a density, which is consistent with the data even when the data
is scarce. This problem was analyzed in the previous section. Here we just examine the influence
of the variability of the reconstructed density on the expected values calculated using those
densities.

The few definitions that we consider were taken from [→59]. We direct the reader to chapter 5
in that volume in which premium principles are explained. In what follows, S will denote the total
severity that the insurance company has to cover.

Consider to begin with the mean value principle: Let U(s) be a concave function defined on 

(0, ∞) and define

π(S) = U −1(E[U(S)]).



(12.5)

Here U −1  stands for the compositional inverse of U. In utility theory, that quantity can be thought
of as the certain equivalent of the risk S. Note that according to the material in Section →12.1,

When U(0) = 0 and only when P(S = 0) can be neglected relative to 1, we obtain

As we want to illustrate the variability of the π(S) due to the variability of the fS , let us use two of

the examples contained in the list (→12.5) and suppose that our utility function is either of the two
following cases:

Then, according to (→12.5) the risk premia in each case are, respectively, given by

Besides that we may also consider the stop loss with a cap given by

Now we use the densities plotted in Figure →10.2, in which the samples sizes were 

M = 10, 20, 50, 100, 500, 1000, to compute πM(S) = EfM [max (K, (S − d)+)] for each fM ,

and then we plot the results in a bar diagram.
In →Figure 12.1 we present the results computing the risk premiums as the certain equivalent

of the two possible utility functions mentioned above, as well as that premium with stop loss and
cap.

Figure 12.1  Premium variability for different utilities.

E[U(S)] = U(0)P(S = 0) + (1 − P(S = 0))∫ fS(s)U(s)ds.

π(S) = U −1(∫ fS(s)U(s)ds).

U(x) = 1 − e−as or U(x)√x.

π(S) = −
1

a
ln (∫ fS(s)e−asds) or π(S) = (

∞

∫
0

√(s)fS(x))2dx.

π(S) = E[max (K, (S − d)+)] =

K+d

∫
d

(s − d)fS(s)ds + K

∞

∫
K+d

fS(s)ds.



As indicated in the figure, the left panel describes the variability of the premium for the
exponential utility function, the center panel that of the square root function, and the right panel
the stop loss premium. As expected, the boxes shrink when the sample size increases. The data
used for the figures is as follows: For the exponential utility function we used a = 1. We
considered d = E[S] + σS , and we set K = VaR95(S). In each case, that is for every sample

size, we use the corresponding density fM  to compute these values.



13  A solution to the capital allocation problem

13.1  Introduction and preliminaries

In the previous chapters, we saw how to extract information from loss data in the form of loss
densities. The losses may be thought about in several possible ways. They may be operational risk
losses due to different risk factors at a financial institution, or losses due to different types of
coverage sold by an insurance or reinsurance company, or losses prone to happen in the activities
of some enterprize.

The corporation may use the loss aggregation methodology to determine a risk capital to
cover the potential loss in each line of work and for the aggregate risk. Then the problem that
comes up is as follows: How much risk capital to allocate to each line of activity when the total
money for hedging the aggregate risk is fixed?

The capital allocation problem is stated as follows: Consider a collection of risks 
{Xi, i = 1, … ,N} modeled by continuous positive random variables and adding up to a total

risk ∑Xi . Given a total risk capital K, we want to determine the capitals {Ki, i = 1, … ,N} to

hedge each risk in such a way that ∑Ki = K .

Throughout we assume once again that X is a [0, ∞)N -valued random variable with some

underlying distribution density FX(x). The joint density will play no role in the numerical

approach that we develop to solve the allocation problem. We do not make use of these
(generally) unknown distributions because the maxentropic method relies either on expert
opinion or on bounds for the standalone risks determined as explained in the previous chapters.

There exists a theoretical proposal to characterize a capital allocation procedure that goes as
follows. First, choose a risk measure ρ defined on the class of risks under consideration. A capital
allocation rule subordinated to the risk measure ρ is specified as follows. Let {Xi, i = 1, … ,N}
be the individual risks, and let X = ∑N

i=1 Xi  be the aggregate risk. An allocation rule assigning

capital Λ(Xi,X) to risk Xi  has to satisfy ∑N
i=1 Λ(Xi,X) = K  (the total available capital), and

for any possible risk Y, it allocates its standalone price of risk, that is, Λ(Y ,Y ) = ρ(Y ).

Which risk measure and which capital allocation rule to apply is usually left up to the risk
manager. The answer depends on the business sector in which the risk allocation process arises.
For example, the banking sector uses VaR or TVaR as required by regulatory agencies. A
manufacturing corporation might use them to estimate costs or losses. But there is neither a
priori way to contrast different risk measure choices nor the result of capital allocation rules. This
adds value to the numerical procedure that we present below, which does not make use either of
a risk measure or of a capital allocation rule.

Problem 1: How to assign risk capital within specified bounds?

Suppose that the risk management department has no preferred risk measure and asked several
experts to provide lower and upper bounds for the capital to be assigned to each risk. The experts
come up with a range [Li,Ui] within for the capital Ki  to be assigned to the ith risk.

Experts may suggest to use Ui = VaR0.99(Xi) or perhaps Ui = TVaR0.975(Xi) as an

upper bound, and for the lower bound, they may suggest using the actuarial risk price E[Xi] of

each risk.



(13.1)

(13.2)

Thus, at this stage, all that the risk analyst knows or is provided with is a range [Li,Ui] in which

the risk capital Ki  is to be allocated. Since Ui − Li  can be interpreted as the unexpected loss
incurred by the ith risk, and the risk manager being optimistic, she assigns K < ∑Ui  to cover all

the potential losses. With this, the risk capital allocation problem to be solved can be stated as
follows:

This is an ill-posed linear algebraic problem consisting of one equation with many unknowns
with a convex (box) constraint upon the solutions. In Chapter →8, we showed how to solve this
problem using the method of maximum entropy in the mean. We will see how to adapt it in the
numerical example below.

Problem 2: Determination of the risk measure from the market prices of risk

Since the upper bounds {Ui, i = 1, … ,K} for the individual risks can be taken to be the

standalone risks prices for the risks, we are led to another interesting problem. If we suppose that
the risk measure that yields the Ui  as risk prices is a spectral risk measure, then we can apply a
maximum entropy procedure to determine it. The potential use of this possibility is that the risk
measure so obtained can be used to value further risks. We settle on the spectral risk measures,
first, because they are coherent, and second, because they lead to a tractable numerical problem.
We briefly sketch the basics about spectral risk measures in the Appendix to this chapter. The
inverse problem may be stated as

To lead to a coherent risk measures, the function ϕ has to be positive, increasing, and subject to

the integral constraint ∫ 1
0 ϕ(u)du = 1. Clearly, (→13.2) is an ill-posed linear problem subject to

convex constraints. After discretization, this infinite-dimensional problems becomes finite-
dimensional, but it is still ill-posed.

The maxentropic methodology that we use to solve this second problem was originally used
by Gzyl and Mayoral [→48]. For us, the interest lies in the intertwining of the two problems. Once
Problem 2 is solved for a class of risks, the ρ so determined can be used to determine the range
for the capital allocation of any other collection of risks, and the procedure developed to solve
Problem 1 can be brought in to determine the capital allocation problem for the new collection of
risks.

13.2  Numerical results

The numerical examples considered below were treated by Gzyl and Mayoral [→49].
First, we work out an example of a constrained capital allocation problem. After that, we

consider three examples of determination of a distortion function from risk prices. Along the way,
we examine how the two procedures tie up.

The examples are chosen to appear realistic, and they do not correspond to any real bank or
corporation or anything. The parameters were chosen arbitrarily. The bounds on the risks reflect a
possible choice by a risk manager. The different cases considered in the second (sub)section are

Solve
N

∑
i=1

Ki = K subject to Li < Ki < Ui for i = 1, … ,N .

Determine ϕ(u) such that

1

∫
0

ϕ(u)VaRu(Xi)du = Ui, i = 1, … ,N .



chosen to illustrate the potential of the maximum entropy in the mean to reproduce prices of
statistically diverse risks by means of one single distorted risk measure and its possible use for
risk pricing for capital allocation.

13.2.1  The capital allocation

To obtain upper and lower bounds for the capital allocation problem, suppose the standalone
risks are known to be log-normal random variables with parameters (μ,σ), that is, 

X =exp (μ + σζ) with ζ ∼ N(0, 1). We suppose that the risk manager considers L = E[X] as

a lower bound for all risks but has several possible choices for the upper bound: 
U = VaR0.95(X), U = VaR0.99(X), U = TVaR0.95 , or U = TVaR0,975 .

For log-normal random variables, the values of U are obtained from their analytical expressions,
namely

Here zα  denotes the 100α-quantile of the N(0, 1) random variable, and Φ denotes its

cumulative distribution function.

The input information for the numerical work is summarized in →Table 13.1. There we display the
parameters of the distribution plus the lower and upper bounds of the different risks. To study the
effect of the coefficient of variation (CV), we organize the data as follows. In panel A, we fixed 
σ = 0.1 (which in this case means fixing the coefficient of variation) and let μ vary as indicated,
and in panel B, we fixed μ, and let σ (or CV) vary. This describes what affects the bounds of the
risks.

Table 13.1 Input data for the capital allocation problem.

PANEL A PANEL B

X1 X2 X3 X4 ∑ X1 X2 X3 X4 ∑

σ 0.10 0.10 0.10 0.10 0.30 0.50 0.70 1.00

μ 1.00 1.50 2.00 2.50 1.00 1.00 1.00 1.00

L 2.73 4.50 7.43 12.24 26.91 2.84 3.08 3.47 4.48 11.03

VaR0.95 3.20 5.28 8.71 14.36 31.56 4.45 6.17 8.86 14.08 33.32

VaR0.99 3.43 5.66 9.32 15.37 33.78 5.46 8.70 13.85 27.84 55.85

TVaR0.95 3.50 5.77 9.51 15.57 34.44 5.64 8.81 13.30 23.26 51.01

TVaR0.975 3.59 5.93 9.77 16.11 35.40 6.12 10.07 16.02 30.21 62.43

CV 0.10 0.10 0.10 0.10 0.31 0.53 0.80 1.31

In both panels the columns labeled by ∑ contain the sum of the lower or upper bounds of the risk
capitals. Even though the computations were carried out at high precision, we only report figures
with two decimal places for the table to fit on the page. The row labeled L contains the mean of
each risk, and the rows labeled VaR and TVaR list two possible upper bounds for each risk at
the specified confidence levels. The knowledge of the sum of the lower or upper bounds allows
management to choose the total capital to be allocated as a value between these values. To solve
numerically the capital allocation problem, for each risk level, we considered two possible values

either U = VaRα(X) = eμ+zασ or TVaRα(X) = [
Φ(σ − zα)

1 − α
]eμ+σ2/2.



of the total capital to be allocated, ranging between the sums of the lower and upper bounds. The
results obtained are shown in →Table 13.2.

Table 13.2 Allocated risk capitals.

PANEL A PANEL B

K K1 K2 K3 K4 K K1 K2 K3 K4

VaR0.95 29.50 2.98 4.92 8.13 13.47 31.00 3.88 5.43 7.90 13.79

VaR0.95 31.00 3.05 5.11 8.55 14.29 32.00 3.98 5.70 8.30 14.03

VaR0.99 29.50 3.05 5.00 8.17 13.27 31.00 4.11 5.71 8.05 13.12

VaR0.99 31.00 3.10 5.14 8.53 14.23 32.00 4.12 5.76 8.21 13.91

TVaR0.95 32.00 3.16 5.26 8.79 14.79 49.00 4.84 8.03 12.91 23.22

TVaR0.95 34.00 3.32 5.61 9.42 15.66 50.00 4.07 8.46 13.21 23.26

TVaR0.975 32.00 3.32 5.29 8.80 14.72 49.00 4.63 7.25 11.86 25.26

TVaR0.975 34.00 3.28 5.53 9.36 15.83 50.00 4.65 7.33 12.09 25.93

The results in →Table 13.2 are organized as follows: In each panel, in each case the lower bound
for each risk is the value of L listed in →Table 13.1. The first four rows of →Table 13.2 correspond
to a total risk capital larger than L but smaller than U obtained by summing the individual values
of the VaR, and the last four rows correspond to the total risk larger than L but smaller than the
sum of the individual values of TVaR. The two panels display the effect of a constant coefficient of
variation or a variable coefficient of variation. They also show the effect of varying total risk
capital, listed in the column labeled K in each panel of →Table 13.2.

When the allocated capital lies exactly at the midpoint between the minimum and maximum,
the resulting allocation is also at the midpoint between Li  and Ui  as must be clear after a glance
at (→10.5). Also, the method becomes unstable when the total capital to be allocated is chosen to
coincide with any of its extreme values. When the constraint is at the boundary of the allowed
values, the minimization of (→13.3) becomes numerically unstable.

13.2.2  Problem 2: Determining the distortion function from given risk prices

Recall that the purpose of this section is to guess how a corporation may use the market prices of
risk to determine a risk measure to price its risks according to the market.

We suppose that assets are distributed according to either a Lognormal, a Gamma or a Pareto
density. The first two are quite common in the insurance industry, but nevertheless, consider
Kiche et al. [→60]. Consider for example the recent work by Park and Kim [→79], Jakata and
Chikobvu [→56], in which the Pareto (standard or generalized), is used in risk management and in
applications of Extreme Value Theory for estimating large losses and tail risk. To finish, consider
an application of distorted risk measures to systemic risk developed in Dhaene et al. [→28].

As mentioned at the beginning of Section →x, the upper bound of the range for the capital
allocation problem may be considered to be its standalone risk price. All that the analyst knows is
the statistical distribution of the different risks and that (as the risk manager assumes) the expert
uses some distortion function to price the risks, and the problem is to determine that distortion
function. There are two important reasons behind this essential assumption. On the theoretical
side, distorted risk measures are a large and flexible class of coherent measures, and from the
practical side, they lead to a problem that can be solved by the MEM methodology.

Once the distortion function is obtained, we can use it to price other risks. Not only that, we
can use this risk price to determine ranges for the capital to be assigned to a new collection of



(a)

(b)

(c)

risks using the methodologies proposed in Section →13.3 and the previous example.

For the computations that we describe below, we consider the risks distributed according to:

generalized Pareto with density f(x; kσ, θ) = 1
σ (1 + k

(x−θ)
σ )

−(1+1/k)
,

gamma with density f(x; a, b) = 1
baΓ(a) x

a−1e−x/b , and

log-normal with density f(x;μ,σ) = 1
xσ√2π

e−(lnx−μ)
2
/2σ2

.

Before describing the numerical examples, we mention at this point that to assess the effect of
the size of the domain, in all the numerical experiments, we used partitions of [0,1] of sizes 
n = 20, 50, 100, 200. All solutions look alike, and we report the cases n = 50 and n = 100 only.
Recall that for this, we apply MEM to solve two ill-posed problems consisting of solving a set of 4
or 6 equations to determine 50 or 100 unknowns. In all the plots displayed below, the dashed
curve is that of the true distortion function, and the boxes lie on the reconstructed (estimated)
distortion function. Of course, in actual practice the original function is not known. This is done
here to illustrate the performance of MEM.

Different risk distributions

In the first example, we consider six risks characterized by the distributions specified in →Table
13.3. As already said, the analyst wants to determine the distortion function used by the expert to
value the risks. The relationship between the distortion functions used as inputs for MEM was
explained in Section →13.3.3 of Appendix, and a few remarks about distortion functions are
presented in Section →13.3.2 of Appendix. We suppose the expert used a proportional hazard

distortion function g(u) = u1/γ  with γ = 1.5 to compute the risk prices listed in the first row of

→Table 13.4. In the second row, we list the prices computed with the distortion function obtained
by applying MEM. As seen in →Table 13.4, the agreement between the input data and predicted
prices is good up to the third decimal place. In →Figure 13.1, we display the original (dashed line)
and the numerically reconstructed distortion function (dotted line) for two different mesh sizes.

Table 13.3 Risk densities and their parameters.

Distribution k σ θ CV

Pareto 1 0.25 1.00 1.00 1.52

Pareto 2 0.25 2.00 20 3.04

– a b CV

Gamma 1 1.50 2.50 0.82

Gamma 2 1.00 2.00 1.00

μ σ CV

LogNormal 1 0.50 0.40 0.42

LogNormal 2 1.00 0.70 0.80

Table 13.4 Given and determined prices.

True Price 2.5953 5.2107 4.765 2.4171 2.0309 4.0483

Estimated Price 2.5929 5.2114 4.7647 2.4181 2.0314 4.0483



Figure 13.1  True and estimated distortion functions.

As mentioned above, the distortion function just computed can be used to compare the risk
prices of a new set of risks, or perhaps to compare them with the risk prices that the hired expert
provides us. The sanding assumption is that she/he always uses the same method to compute
risk prices. So, let us consider the risks described in →Table 13.5.

Given this data, we compute the risk prices using the exact (original) distortion function (that
is, the one that the expert would have used) and the distortion function determined numerically
using the previous data set. In the first row of →Table 13.6, we list the prices that the expert would
provide us, and in the second, we list the prices computed with the maxentropic distortion
function computed previously. We emphasize that this is an indirect performance test since we
know the true prices because we know the distortion function that the expert uses.

Table 13.5 Risk densities and their parameters.

Distribution k σ θ CV

Pareto 1 0.30 1.30 2.60 1.93

Pareto 2 0.30 2.50 5.00 3.70

– a b CV

Gamma 1 1.25 2.25 0.89

Gamma 2 1.750 2.75 0.76

μ σ CV

LogNormal 1 0.70 0.60 0.66

LogNormal 2 1.00 0.70 1.12

Keeping in mind that we are using 6 values of an integral to reconstruct at least 50 points of a
density, the agreement is quite good.



Table 13.6 A robustness test: Given and determined prices.

X1 X2 X3 X4 X5 X6 ∑

True Price 5.2027 9.2242 3.5862 5.6455 2.8779 5.7918 32.3283

Estimated Price 5.2234 9.2281 3.5667 5.6383 2.8749 5.7981 32.3295

To close the circle, we apply the technique proposed in the first example to solve the capital
allocation problem for the new collection of risks. That is, as lower bounds for the capital
allocation, we take their means, and as upper bounds, their risk prices (from →Table 13.6) thought
of as standalone risk prices. For values of the total risk capital between the sums of the lower and
upper bounds, we compute the allocated capitals per risk. The results are displayed in →Table
13.7

Table 13.7 Given and determined prices.

X1 X2 X3 X4 X5 X6 ∑

Lower bound 4.4571 8.5714 2.8125 4.8125 2.4109 4.5042 27.5686

Upper bound 5.2234 9.2281 3.5667 5.6383 2.8749 5.7981 32.3295

Alloc. Cap. 4.9939 9.0144 3.3388 5.4023 2.7014 5.5493 31

Alloc. Cap. 5.0763 9.0798 3.4193 5.4936 2.738 5.6931 31.5

Alloc. Cap. 5.1674 9.1613 3.5096 5.5881 2.793 5.7806 32

All risks from the same family of distributions

To better examine the role of the statistical nature of the risks and that of the distortion function,
we consider three sets of risks, with Pareto, gamma, and lognormal densities, and suppose that
two experts price using two distortion functions, a proportional hazard and the Wang distortion
function. The proportional hazard distortion function is as above, and the Wang distortion is 

g(u) = Φ(Φ−1(u) + λ) with λ = 0.05; see Wang [→97] for more detail on this class of

distortion functions. We will use these as data to determine the distortions and examine how they
price the related risks.

To examine the effect of the statistical nature of the risks, we will suppose that all risks in the
data set have the same coefficient of variation but that the new risks to price have all different
coefficients of variation. In all cases, we use a partition of size n = 100 to discretize [0,1], and we
will split the example into three cases according to the nature of the risk.

For typographical reasons, we organize the description in two cases. First, we consider the
Pareto case in detail, and then we consider the gamma and the lognormal cases. The description
of the tables and plots is the same as above, and the descriptions are shorter.

Case 1: Pareto risks

The Pareto risks have the heaviest tails. The first data set is described in →Table 13.8.



Table 13.8 Risk densities and their parameters.

Distribution k σ θ CV

Pareto 1 0.25 0.3 0.30 0.46

Pareto 2 0.25 0.5 2.50 0.76

Pareto 3 0.50 0.75 0.75 0.87

Pareto 4 0.20 21.00 1.00 1.16

In the first and third rows of →Table 13.9, we list the prices of the risks used as inputs for the
application of MEM to determine the distortion functions. The distortion functions are shown in
→Figure 13.2.

Table 13.9 A consistency test: original versus reconstructed prices.

True Price (Pareto) (PH) 0.791 1.4789 2.1313 2.6408

Estimated Price (Pareto) (PH) 0.7916 1.7496 2.13 2.6413

True Price (Pareto) (Wang) 1.2555 2.0055 2.8704 3.7334

Estimated Price (Pareto) (Wang) 1.2551 2.0066 2.8684 3.7345

Figure 13.2  True and estimated distortion functions.

This time the reconstructed distortion functions (shown by dotted lines) seem to cling better
to the “true” distortion (shown by a dashed line). This may, perhaps, be due to the fact that the
distributions of all the risks belong to the same family. The test of consistency this time yields the
results displayed in →Table 13.9.

In the even rows of →Table 13.9, we list the prices determined using the reconstructed
distortion function. The first consistency test passed reasonably well. To carry out the second, we
again used the original distortion function to compute the “true” prices and then the



reconstructed function to compute the “predicted” prices. In →Table 13.10 we display the data
about the new risks to be priced, and in the last table, we display two sets of prices.

Table 13.10 Risk densities and parameters of test case.

Distribution k σ θ CV

Pareto 1 0.15 1.00 1.00 0.91

Pareto 2 0.40 0.50 0.50 2.60

Pareto 3 0.20 2.00 1.50 1.16

Pareto 4 0.30 1.75 1.50 4.46

To finish the list of tables for this case, in →Table 13.11 we display the predicted price of a new
collection of risks along with the prices of the same risks calculated using the original (true)
distortion function.

Table 13.11 A robustness test: original versus predicted prices.

True Price (Pareto) (PH) 2.4837 1.5951 2.7469 4.5039

Estimated Price (Pareto) (PH) 2.4908 1.5977 2.7547 4.4930

Estimated Price (Pareto) (Wang) 3.6440 2.6218 3.2840 6.7449

Estimated Price (Pareto) (Wang) 3.6410 2.6070 3.2922 6.7125

Cases 2 and 3: Gamma and lognormal risks

The data for these examples are presented in →Table 13.12.

Table 13.12 Risk densities and their parameters.

Distribution σ θ CV

Gamma 1 1.25 1.50 0.46

Gamma 2 1.50 1.75 0.76

Gamma 3 2.75 2.00 0.87

Gamma 4 2.25 2.50 1.16

μ σ CV

Lognormal 1 0.50 0.44 0.467

Lognormal 2 1.00 0.68 0.76

Lognormal 3 1.25 0.75 0.87

Lognormal 4 1.50 0.92 1.16

This yields the reconstructed distortion functions displayed in →Figure 13.3. The dashed line
corresponds to the original distortion, and the dotted line to the reconstructed one.



Figure 13.3  True and estimated distortion functions.

The first consistency test yields →Table 13.13. Again, odd rows show the prices used as data,
and the even rows show the “predicted” prices, and again, this measures the quality of the
reconstruction.



Table 13.13 A consistency test: original versus reconstructed prices.

True Price (Gamma) (PH) 10.9353 4.4893 4.4139 3.0414

Estimated Price (Gamma) (PH) 10.9364 4.4881 4.4123 3.0430

True Price (Gamma) (Wang) 12.3043 6.8233 6.1334 4.5165

Estimated Price (Gamma) (Wang) 12.3043 6.8233 6.1334 4.5165

True Price (Lognormal) (PH) 2.0670 3.9276 5.1457 10.3495

Estimated Price (Lognormal) (PH) 2.0689 3.9271 5.1453 10.3496

True Price (Lognormal) (Wang) 2.4675 6.1616 7.9963 14.9900

Estimated Price (Lognormal) (Wang) 2.4662 6.1619 7.9968 14.9898

To double check on the applicability of the reconstructed distortion function, we consider the
data with variable coefficient of variation given in →Table 13.10.

Table 13.14 Risk densities and parameters of test case.

Distribution σ θ CV

Gamma 1 1.10 1.75 1.0

Gamma 2 1.20 2.00 0.92

Gamma 3 1.50 2.25 0.82

Gamma 4 2.00 2.50 0.71

μ σ CV

Lognormal 1 0.70 0.30 0.31

Lognormal 2 1.20 0.70 0.80

Lognormal 3 1.40 0.90 1.12

Lognormal 4 1.60 1.10 1.53

The second consistency test applied to this new data set yields →Table 13.15. The description
of the entries is as above, the odd rows contain the original data, and the even rows contain the
predicted data.

Table 13.15 A robustness test: original versus predicted prices.

True Price (Gamma) (PH) 2.3637 2.9110 4.0784 5.901

Estimated Price (Gamma) (PH) 2.3505 2.9138 4.0853 5.8917

True Price (Gamma) (Wang) 3.1863 4.8174 6.2996 8.6080

Estimated Price (Gamma) (Wang) 3.1835 4.8043 6.2970 8.6115

True Price (Lognormal) (PH) 2.260 5.3935 7.5330 11.4069

Estimated Price (Lognormal) (PH) 2.2670 5.3595 7.4887 11.3954

True Price (Lognormal) (Wang) 2.4307 7.5638 14.1933 23.2203

Estimated Price (Lognormal) (Wang) 2.4298 7.5450 14.1145 22.9311

Before closing this section, we mention again that the test of the robustness of the
reconstructed distortion function, in which the prices of new risks are computed with the
reconstructed density, cannot be performed in real life because the true prices are actually
unknown.
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13.3  Appendices

13.3.1  Application of MEM to determine the capital allocation

Problem (→13.1), consists of determining numbers Ki  such that

Comparing with the notations of Section →13.2, we see that here n = N  and d = 1. In this case, 

A = ut  is an N-dimensional row vector with all components equal to 1, and to finish, the right-
hand side of (→8.1) becomes just a real number y = K . The constraint set for this situation is 

C = ∏N
i=1[Li,Ui]. As a measure Q on C  such that the convex hull of its support is C , we

consider

where ϵa(dξ) denotes the measure that puts a unit mass at point a. The intuition behind the

choice is that any point with an interval [L,U ] is a convex combination of its end points.

With that choice of Q, the computation is simple:

To complete the procedure, we must minimize the dual entropy, which in this case is

Once the minimizer λ∗  is determined, an application of (→10.5) to compute of the solution to
(→13.1) yields

Observe that:

The weights in the convex combination depend only on the available information.
When all risks fall into the same range, say [L,U ], then all allocated capitals are

the same and equal to K/N , because λ∗  is determined so that this constraint is

satisfied.
If the business units have very small unexpected risks, that is, if Li ≈ Ui , then the
allocated capitals are K ∗

i ≈ Li .

Observe also that (→13.4) allows the analysis of the sample dependence of the
solution on the estimate of the lower and upper limits on the range of the capital.

N

∑
i=1

Ki = K under the constraint Li ≤ Ki ≤ Ui for i = 1, … ,N .

dQ(ξ) =
N

∏
i=1

(ϵLi
(dξi) + ϵUi

(dξi)),

Z(λ) = ∫
C

e−λ⟨u,ξ⟩dQ(ξ) =
N

∏
i=1

(e−λLi + e−λUi).

Σ(λ,K) =
N

∑
i=1

ln (e−λLi + e−λUi) + λK.

K ∗
i = Li

e−λ∗Li

e−λ∗Li + e−λ∗Ui
+ Ui

e−λ∗Ui

e−λ∗Li + e−λ∗Ui
.
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(13.5)

(13.6)

To analyze the relationship between λ and the total capital K to be allocated, notice that the first-
order condition determining λ∗  is

If we now differentiate the last identity with respect to K and isolate dλ∗/dK , then we obtain

where C(λ∗) > 0 is given by

This happens to be a variance, and therefore it is positive. To conclude, we have the following:

Proposition 13.1.

With the notations introduced above, a glance at (→13.4) shows that:

As λ∗ → −∞, K ∗
i → Ui , and therefore K → ∑N

i=1 Ui .

As λ∗ → ∞ K ∗
i → Li , and therefore K → ∑N

i=1 Li .

13.3.2  Distorted risk measure

A distortion function is defined as a positive increasing differentiable function ϕ : [0, 1] → [0, ∞)
such that ∫ 1

0 ϕ(u)du = 1. Define its associated (distorted) risk measure by

where qX(u) is the quantile function of X. Since we suppose that our risks are modeled by

continuous random variables with strictly positive density, we may also write qX(u) = F −1
X (u).

With the function ϕ(u), we can associate a distortion function g : [0, 1] → [0, 1] by means of 

ϕ(u) = g′(1 − u) plus the conditions g(0) = 0 and g(1) = 1. In terms of g the risk price given

by (→13.5) can be now written in any of the two equivalent ways:

To use a more financially suggestive notation, we will write either (→13.5) or (→13.6) as

dΣ(λ,K)

dλ
= 0 = −

N

∑
i=1

Li

e−λ∗Li

e−λ∗Li + e−λ∗Ui
+ Ui

e−λ∗Ui

e−λ∗Li + e−λ∗Ui
+ K.

dλ∗

dK
= −

1

C(λ∗)
,

C(λ∗) =
N

∑
i=1

(L2
i

e−λ∗Li

e−λ∗Li + e−λ∗Ui

+ U 2
i

e−λ∗Ui

e−λ∗Li

) − (
N

∑
i=1

Li

e−λ∗Li

e−λ∗Li + e−λ∗Ui

+ Ui

e−λ∗Ui

e−λ∗Li

)
2

.

ρ(X) =

1

∫
0

ϕ(u)qX(u)du,

ρ(X) =

∞

∫
0

xdg(F(x)) =

1

∫
0

ϕ(u)qX(u)du.



(13.7)

(13.8)

(13.9)

where VaRu(X) = qX(u). Starting from TVaRu(X) = E[X ∣ X > Varu(X)] and integrating

by parts, we obtain

For a deeper analysis of these quantities as risk measures, the reader may consider Fölmer and
Schied [→38].

13.3.3  Application of MEM to determine the distortion measure

Here we explain how to use the results in Section →8.1 to solve Problem (→13.2), to determine
distortion function from a collection of risk prices. The distortion function thus obtained can then
be used to set an upper bound on risk prices for future capital allocation problems.

To proceed, the first step consists of discretizing the problem. For this we will closely follow Gzyl
and Mayoral [→48]. To simplify notations in (→13.2), we use qi(u) = VaRXi

(u) and write it as

where to accommodate the condition ∫ 1
0 ϕ(u)du = 1, we add XN+1  such that qN+1(u) = 1 and 

UN+1 = 1. Thus in this case, we will consider d = N + 1 and yt = (U1, … ,UN , 1). Also, we

have a methodological constraint imposed upon ϕ.

To proceed to the discretization stage, we consider the partition of [0,1] at points uj = j/n. The

choice of n depends on the known variability of the qi(u) in [0,1]. Let us define the (N + 1) × n
matrix B by setting Bi,j = qi(uj)/n for i = 1, … ,N + 1 and j = 1, … ,n. Set ϕ(aj) = ϕj ,

where aj = 1
2 (uj + uj−1) and u0 = 0. With all this, the discretized version of problem (→13.2)

can be restated as follows: Solve

where the constraint set K ⊂ Rn  is a convex set defined in this case as

To simplify the description of the constraints, we set ϕ1 = x1 , ϕ2 = x1 + x2, … , and 
ϕn = xn + ⋯ + x1 , or ϕ = Tx, where T is the obvious lower diagonal matrix describing the
change of coordinates. Setting A = BT, we can restate our discretized problem as

ρ(X) =

∞

∫
0

xdg(F(x)) =

1

∫
0

ϕ(u)VaRu(X)du,

TVaRu(X) =
1

1 − u

1

∫
u

VaRs(X)ds.

ρϕ(Xi) =

1

∫
0

qi(u)ϕ(u)du = Ui, i = 1, … ,N + 1,

Bϕ = y, ϕ ∈ K ,

K = {(ϕ1, … ,ϕn) ∣ 0 ≤ ϕ1 < ⋯ < ϕj < ϕj+1 < ⋯ < ϕn}.

Ax = y, x ∈ C,



(13.10)

(13.11)

where now the convex constraint set is C = [0, ∞)n , that is, the positive orthant in Rn . Clearly,

once the vector x is at hand, ϕ is easily recovered. To apply the maximum entropy procedure, we
begin by specifying a reference measure Q on C . In the notation of Section →13.2, we choose

that is, of unnormalized Poisson measures of parameter 1 on C . This choice makes the
computation of Z(λ) very simple. Clearly, the convex hull of Q is C . Note that in this case, for 

λ ∈ R
d , the function Z(λ) is given as

This time, we need to minimize

with respect to λ ∈ R
n . Once the vector λ∗  is at hand, we have

from which we can obtain ϕ(j) as indicated above. To close, we mention that to avoid overflow or

underflow when dealing with exponentials, it is convenient to replace the problem Ax = y by

the problem ( 1
K

A)x = 1
K

y with some appropriate scaling factor K.

13.3.4  A numerical instability issue

To understand why the data cannot be near the boundary of the constraint region, we consider a
simple problem of minimizing the one-dimensional version of Σ(λ) of Section →13.3.

Theorem 13.1.
Consider the strictly convex function

If y ∉ [U ,L], then Σ(λ) → −∞ as λ → ±∞, that is, Σ(λ) is unbounded below and cannot be

minimized.

The proof follows from the following remarks.

Lemma 13.1.

Consider the function x(λ) defined on R as

Then x(λ) is decreasing, and

dQ(ξ) =
n

∏
j=1

(
∞

∑
n=1

1

n!
ϵn(dξj)),

Z(λ) = ∫
C

e−⟨Atλ,z⟩dQ(z) =
n

∏
j=1

(exp (1 − e−(Atλ)j)).

Σ(λ, y) =
n

∑
j=1

ln (exp (e−(1−Atλ)j)) + ⟨λ, y⟩

x∗
j = e−(Atλ∗)j for j = 1, … ,n,

Σ(λ) =ln (e−λL + e−λU) + λy.

x(λ) = L
e−λU

e−λL + e−λU
+ U

e−λU

e−λL + e−λU
.
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From this we clearly have the following:

Corollary 13.1.

Consider, for y ∈ R, the equation (in λ)

Then for y ∈ (L,U), there is a unique λ∗  such that x(λ∗) = y. If either y = L or y = U , then 

x(λ) → L (or x(λ) → U ) as λ → ∞ (respectively, λ → −∞).

To finish:

Proof of Theorem →13.1.

To verify the claim, note that, for example,

as λ → ∞ and y < L. The other case is similar.  □

Comment. Note that when y ∈ (U ,L), (→13.12) is the first-order condition for λ∗  to be a

minimizer of Σ(λ).

x(λ) → {
U as λ → −∞,

L as λ → +∞.

x(λ) = L
e−λL

e−λL + e−λU
+ U

e−λU

e−λL + e−λU
= y.

Σ(λ) = λ(y − L)+ ln (1 + e−λ(U−L)) → −∞



14  Review of statistical procedures

Even though we assumed at the outset that the readers of this book are familiar with
basic probability theory, we do not assume that they are necessarily familiar with most
statistical techniques and concepts that are necessary for the examples analyzed in this
volume.

Even though statistical estimation and hypothesis testing are tools that most applied
mathematicians are familiar with, we review that material anyway. There are several
sections devoted to cluster analysis and the EM method. These are important for the
disentangling problems discussed in Chapter →11. There are various sections devoted to
different methods to quantify the quality of the maxentropic reconstructions and the
different goodness of fit methods and the error measurement. Also, there is a lengthy
section devoted to copulas in which a collection of examples is examined.

14.1  Parameter estimation techniques

Here we rapidly review two standard techniques: the maximum likelihood method and
the method of moments. This last method is related to the Laplace transform
methodology that we proposed for dealing with densities of positive random variables.

14.1.1  Maximum likelihood estimation

Maximum likelihood estimation, also known by its acronym MLE, is used in statistics
when we suspect that a given dataset follows some parametric distribution, or that the
data is sampled from such a distribution. Is this case only the parameters characterizing
the distribution need to be determined. The choice of the family of distributions is in
most cases determined by a comparison between the theoretical and the empirical
distributions, and/or from some previous knowledge about the underlying process that
generated the data.

Suppose we have a sample X = {x1,x2, … ,xn} of n independent observations

from f(x ∣ θ), x ∈ X , with θ being an unknown vector of parameters. We must estimate

a 
ˆ
θ, which is as close as possible to the true value θ, using the sample {x1,x2, … ,xn}.

The maximum likelihood estimation method begins with the definition of a mathematical
expression known as the likelihood function, which depends on the data and the
unknown parameters. The parameter values that maximize the likelihood function are
known as maximum likelihood estimators. The likelihood function is defined as

L(θ;x1,x2, … ,xn) = f(x1 ∣ θ) ⋅ f(x2 ∣ θ) ⋅ ⋯ ⋅ f(xn ∣ θ) =
n

∏
i=1

f(xi ∣ θ).



(1)

(2)

In practice, the logarithm of this function is used to facilitate calculations. Thus, the

maximum likelihood estimator 
ˆ
θ is the one that maximizes the likelihood function, i. e.,

where Θ stands for the range of the parameters.
To find the extremal points, analytical methods are usually used when the likelihood

function is simple, that is, the partial derivatives ( ∂L(θ,x)
∂θ ) are equated to 0 and the

resulting system of equations is solved. But we may have to resort to numerical
optimization methods. It may also happen that the maximum is not unique.

In R we can use the maximum likelihood method using any of these two commands:

mle() is included in the library stats4 and it requires as one of its
parameters the negative likelihood function.
fitdistr() is included in the library or package MASS.

14.1.2  Method of moments

The simplest version of this method is based on the relationship that may exist between
the parameters of a distribution and its moments. It also depends on the possibility of
estimating the moments accurately (invoking the law of large numbers). To put it simply,
the idea goes as follows: Once the relation between moments and parameters has been
established, estimate the sample moments from a large sample X of size n. In this way
the parameters of interest may be obtained solving a nonlinear system of equations.

In order to understand the method, suppose that we want to estimate the parameters p
and m of a binomial distribution using the method of moments. The relation between
the first two moments and the parameters is given by

Now each of the theoretical moments is equated to its corresponding sampling
moments, obtaining a system of two equations with two unknowns:

Finally,

ˆ
θ =argmax

θ∈Θ
L(θ;x1,x2, … ,xn),

μ1 = E[X] = mp and μ2 = E[X 2] = m2p2 + mpq.

mp=
1

n

n

∑
i=1

xi = X

m2p2 + mpq=
1

n

n

∑
i−1

x2
i = X 2.

¯

¯



Comment. We close this section by mentioning once again that one of the most
widely used applications of the maximum entropy method is to solve this type of
moment problem.

14.2  Clustering methods

Consider a situation in which we cannot distinguish between two or more
subpopulations of risk sources. It is then necessary to separate those subpopulations in
order to calculate the underlying distributions as well as the different measures of risk.
That can be done using clustering methods, for example K-means, which group
observations in such a way that the data within any two groups are similar while data
across groups are different. Those similarities and differences can be characterized
mathematically in terms of distance metrics, which provides different segmentation
solutions.

There are many statistical methods in the literature that are used to separate groups
of observations. In practice, one may use various approaches and then select the most
robust solution. Here, we discuss two widely used methods named K-means and EM
algorithms. Later, we present another advanced methodology called projection pursuit,
which is an alternative method to take in account. Other methods that we do not discuss
here, but that may be of interest for the reader, are K-medians, hierarchical clustering,
and T-SNE.

Before proceeding with the separation of the data in clusters, a few steps are
required. It is necessary to decide which variables to use, then decide whether to scale or
standardize the data and later perform an initial analysis of the data in order to check for
any inconsistencies. This procedure may vary depending on the particular application
and its success in similar situations.

14.2.1  K-means

K-means is a well-known partitioning method, and the most popular clustering algorithm
used in scientific and business applications. The method was proposed in [→51] and
improved in [→52]. It consists of partitioning the observations of a dataset X into K
groups, such that the sum of squares of the observations assigned to the same cluster
center is minimal. This means that each observation is assigned to the cluster with the
smallest within-group sum of squared errors (SSE):

m=
X

2

X
2

+ X − X 2

p=
X

2
+ X − X 2

X
=

X

m
.

¯

¯̄̄

¯̄̄

¯

¯
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where k is the label or identification of the cluster, p is the number of variables used, 

xij  is the value of the j-th variable for the i-th observation, and  is the mean of the j-

th variable for the k-th cluster.
Briefly, the algorithm starts after choosing a number k ≤ K  of initial centroids (the

mean of a group of points), where K is specified by the user. Then, each point is assigned
to the closest centroid, and each collection of points assigned to a centroid is a cluster.
The centroid of each cluster is then updated based on the points assigned to the cluster.
We repeat the procedure and update the steps until no point changes clusters, or until
the centroids remain the same.

14.2.2  EM algorithm

The EM algorithm is a technique widely used to deal with incomplete or missing data.
Briefly, this method consists of finding the maximum likelihood estimates of the
parameters of a distribution from a given incomplete dataset and it requires two steps:
the computation of the expectation (the E-step) and the maximization (M-step) of the
likelihood.

The EM algorithm is useful when data values are missing due to limitations in the
observation process or due to the nature of the data. Here, we may assume that there is
an unobserved variable that indicates the group to which a given datum belongs. At the
end of each iteration cycle of the EM method we end up with a probability vector that
indicates the likelihood that a data point belongs to a given group. In this way, the point
ends up being assigned to the group of higher probability of belonging.

To better describe the algorithm, consider X as the observed data generated by a
mixture of H distributions, each having a probability πh  with density function fh  and
parameter(s) θh  such that

where Θ = {(πh, θh) : h = 1, … ,H} is used to denote the unknown parameters, with

0 ≤ πh ≤ 1 and ∑H
h=1 πh  for any number H of groups. The log-likelihood of (→14.1)

can be written as

f(x; Θ) =
H

∑
h=1

πhfh(x; θh),

ln L(Θ) =
n

∑
i=1

log (
H

∑
h=1

πhfh(xi; θh))



(14.3)

(14.4)

(14.5)

for any given data vector X = {xi : i = 1, … ,n}. Introducing the variable Z, which

represents the unobserved data, the log-likelihood of the augmented or completed data 
{X,Z} is

The E-step consists of the computation of the expected value of the log-likelihood with
respect to the distribution of the unobserved variable. The result is denoted by Q:

where Θ(m)  represents the parameters to be estimated at the m-th iteration. In the M-
step the estimated parameters that maximize Q are updated. Both steps are repeated
until convergence is clear. Note that the relationship between z and τ is contained in

At the end of the process the parameters {ˆθ1, … , ˆθH ; π̂1, … π̂H} are obtained. These

are the maximizers of the expected log-likelihood of a mixture of distributions of H
components (see [→68]):

A handicap of the EM and K-means algorithms is that the number of groups must be
specified in advance. There are some criteria that can be used to overcome this
limitation, as for example those denoted by their acronyms AIC, AIC3, BIC and ICL-BIC,
and thoroughly described in Section →14.3 of this chapter. These metrics are computed
for different values of the number of groups H, and the number yielding the lowest value
of the metric is chosen as the number of clusters.

14.2.3  EM algorithm for linear and nonlinear patterns

Let us consider a few concrete applications of the EM method to disentangle linear and
nonlinear regressions. In Chapter →11 we used this methodology to separate linear

regressions of the type ŷ = ˆ
βo + ∑i

ˆ
βix, which means μ̂ = E(ŷ) = ˆ

βo + ∑i
ˆ
βix,

parametrized by 
ˆ
θh = {

ˆ
βoh,

ˆ
β1h … ,

ˆ
βmh, σ̂2

h}. In that case the set of parameters to

estimate are {ˆ
βoh, ˆβ1h … , ˆβmh, σ̂2

h
; π̂h} for h = 1, … ,H  with H the number of

groups. To determine the exact positioning of the lines, it is easy modify the EM
algorithm to differentiate between linear and nonlinear regressions.

ln Lc =ln L(Θ) =
n

∑
i=1

H

∑
h=1

zih log (πhfh(xi; θh)).

Q(Θ; Θ(m)) = EΘ(m)(ln Lc ∣ X) =
n

∑
i=1

H

∑
h=1

τ
(m)
ih

log (πhfh(xi; θh)),

τih = E[zhi ∣ xj,
ˆ
θ1, … , ˆθH ; π̂1, … π̂H].

Θ̂ =argmax
Θ

log L(Θ).



In the examples described below, we compare the modified EM algorithm with the
algorithm Mclust from the library mclust of R, in order to see the differences between the
original method and the modified EM method for the cases of linear and nonlinear
patterns.

Example 1.

In this example we consider a case in which there five groups that appear to follow linear
patterns. Looking at →Figure 14.1 is it not clear at first sight what the number of groups
is or which points correspond to a particular cluster.

Figure 14.1  Linear patterns.



In →Figure 14.2 we can see the differences between the results produced by the Mclust
algorithm of R (left panel) and the modified algorithm (right panel). Here, it is clear that
the modified algorithm performs better at finding linear patterns as was expected.
Clearly, this methodology has a certain error, but in general works well.

Figure 14.2  Result of applying the EM algorithm.

Example 2.

Now, consider a nonlinear case as in →Figure 14.3.



Figure 14.3  Nonlinear patterns.



Figure 14.4  Result of applying the EM algorithm.

In →Figure 14.4 we can see the differences between the output of the Mclust algorithm
of R and that of the modified algorithm for this example; again the modified EM
algorithm performs better.

14.2.4  Exploratory projection pursuit techniques

Imagine you have a cloud of points that you know belong to two or more distributions
with unknown mean and variance as can be seen in the left panel of →Figure 14.5. One
way to find such distributions is to project the data onto one of the coordinate axes,
rotating the data points α degrees, so that the data is grouped into two or more
distributions with the greatest possible distance between them, as is shown in the right
panel of →Figure 14.5. Then, the search for the α direction that produces the maximum
gap or separation between the projected data is what it is known as ‘projection pursuit’.



Figure 14.5  Projection pursuit.

The projection pursuit technique is very useful to complement exploratory analysis,
since it aims to reveal visually hidden structures, such as outliers in high or low
dimensional data, and helps to assess the number of clusters, if any (see [→18]).
Basically, this method seeks projection directions (or weight vectors) by optimizing a
function called the projection index I(⋅), which serves to capture nonlinear structures in

a big volume of data. Principal component analysis (PCA) is a technique of this kind
where the index I(⋅) represents the variance of the projected data [→89].

Peña and Prieto [→80], [→81] use this technique and look for projection directions
that minimize or maximize a kurtosis index. Viewing the data along those univariate
projections it is possible to detect outliers or find groups of clusters. This is because the
kurtosis coefficient is inversely related to bimodality. The presence of outliers would thus
cause heavy tails and a large kurtosis coefficient, while clusters or larger number of
outliers may introduce multimodality and the kurtosis would decrease (see [→98]). Thus,
the detection of clusters is achieved by minimizing this function while maximizing outlier
detection. Additionally, the presence of significant groups or clusters is controlled
through the spacing of the projected points and a readjustment procedure, based on the
Mahalanobis distance to verify the quality of the resulting groups.

The advantage of this method is that no preliminary knowledge of the number of
groups is required. However, this method should be used with caution, since it tends to
produce a relatively large number of false positives in some cases. Alternative methods
of clustering methods may then be used to complement and verify the results. Consult
with [→80], [→81] or [→98].



14.3  Approaches to select the number of clusters

Let us now address one of the most controversial issues in clustering and describe some
statistical criteria that can help in this task. Several approaches have been proposed to
determine the correct number of clusters H, a value that it is necessary for the
implementation of algorithms like K-means and EM. Determining the true number of
clusters or groups present in a dataset is often difficult, and there is no one true method
that works best in all possible cases. In the end, it is always necessary to use the best
judgment of the analyst. Among the methods we consider the following approaches: (1)
elbow method, (2) information criterion approach, (3) negentropy, and (4) projection
pursuit, which we already described in the previous section.

14.3.1  Elbow method

This is a visual method; specifically the method consists of calculating the within-group
sum of squares of errors (WSSE) for each group or partition given after applying the K-
means, EM or any other procedure and looking for an elbow (value where WSSE drops
dramatically) in the resulting curve. This method can be ambiguous, because is not
always clear what the best answer is.

14.3.2  Information criteria approach

It is customary to utilize a multiplicity of information criteria like the information criterion
(AIC) of [→3], modified AIC criterion (AIC3) of [→14], Bayesian information criterion (BIC)
of [→86] and the integrated classification likelihood BIC-type approximation (ICL-BIC) of
[→11] to select the best model. In order to determine the number of groups present in
the mixture, the clustering procedure must be executed for several values of classes or
groups. These measures employ the log-likelihood at convergence of a specific
clustering method for each number of classes or groups (H), sample size (n) and number
of parameters. These measures address goodness of fit of a specific method, where the
lowest value is best. Each of these measures penalizes models with more parameters,
promoting parsimony; conversely, the BIC (Bayesian information criterion) penalizes
increases in the sample size.

In summary, this methodology yields a table that contains the metrics mentioned before
for each possible value. The criteria to select the number of clusters will be that with the
lowest value in the majority of the criteria. The Akaike information criterion [→4] takes
the form

Many authors observed that AIC tends to overestimate the correct number of
components. Thus, in order to correct that limitation, this criteria leads to the modified
AIC criterion or AIC3:

AIC = −2 loglik + 2H.

AIC 3 = −2 loglik + 3H.



The Bayesian information criterion (BIC) penalizes complex models more heavily than
AIC, whose penalty term H does not depend on the sample size. The BIC is given by

where loglik is the likelihood of the mixture model.

Finally, the integrated classification likelihood criterion (ICL-BIC) includes an entropy
measure to improve its ability to estimate the correct number of components:

where ENT is the entropy measure, calculated as −∑n
i=1 ∑

H
l=1 pil⋅ ln (pil) ≥ 0, where

the classification matrix pil  gives the posterior probabilities that each data point belongs
to a specific group; this may be obtained by Bayes’ theorem.

14.3.3  Negentropy

Another measure of interest is negentropy or negative entropy, which is a measure
varying from 0 to 1, and indicates how well discriminated or separated the classes seem
to be, based on the posterior probabilities. If the model’s assignment mechanism is
indistinguishable from random assignment, the negentropy will therefore zero; on the
contrary if the classes are well distinguished, the negentropy will be nearer to one ([→82]
and [→90]). The negentropy is expressed as

where H is the number of groups, n is the number of elements in the data and pil  is the
posterior probability that the element i is in group l; this can be obtained by Bayes’
theorem.

14.4  Validation methods for density estimations

Once a density function has been obtained, it is necessary to test whether it is consistent
with the data. The evaluation process is inherently a statistical problem, which involves
exploring, describing, and making inferences about datasets containing observed and
estimated values. Exploratory tests to asses the quality of a reconstruction include visual
comparisons, through the use of graphical tools like reliability and calibration plots,
which measures the agreement between the estimation and the observed data,
statistical tests and error measurement.

In this section we describe several of the tests that have been proposed to assess the
quality of a probability distributions estimated from available data. We applied them to
evaluating the quality of the output of the procedures in the numerical examples that we
considered in the previous chapters.

BIC = −2 loglik + H log (n),

ICL = BIC + 2 ∗ ENT,

Negentropy = 1 −
∑n

i=1 ∑
H
l=1 −pil⋅ ln (pil)

n⋅ ln (H)
,



14.4.1  Goodness of fit test for discrete variables

Chi-squared test

This is a simple test that is used to verify whether a given discrete distribution fits the
data appropriately or not. Here, the test statistic is calculated as

where k is the number of categories, discrete values or partitions, the value Ej = np̂j  is

the expected number of observations for a specific discrete value or category (assuming
that the hypothesized model is true) and Oj = npnj  is the observed number of values in

a given partition or category.
The critical value for this test comes from the chi-square distribution with degrees of

freedom equal to the number of terms is the sum k minus the number of estimated
parameters p minus 1. The null hypothesis Ho  of no difference between the data
population and the stated model has to be rejected at the chosen significance level α of

0.1, 0.05 or 0.01, whenever χ2
o > χ2

α,k−1−p  or if pvalue < α. More detailed information

may be seen in [→78].

14.4.2  Goodness of fit test for continuous variables

Probability integral transform (PIT) based analysis

This methodology relies on the fact that FS(S) is uniformly distributed in [0,1]. Thus, if

the sj  are the sample points examining the collections F ∗
S (sj), for uniformity, or

deviation thereof, we decide whether reconstruction may have failed to capture some
aspect of the underlying data generation process.

To test for uniformity and independence using the PIT test, a visual inspection of a
PIT histogram and autocorrelation plots are used along with additional tests like the KS-
test, the Anderson–Darling test, and the Cramér–von Mises test, [→92]. Additionally, we
may also consider the Berkowitz back test approach, which consists of taking the inverse
normal transformation of the PIT and then applying a joint test for normality and
independence, which is sometimes combined with the normality test of Jarque–Bera. Let
us briefly describe some of these tests now.

Kolmogorov–Smirnov test

The Kolmogorov–Smirnov test is a test of uniformity based on the differences of fit
between the empirical distribution function (EDF) and the estimated (reconstructed)
distribution function. The quality of fit is measured by calculating the largest absolute
observed distance between them, as

χ2
o =

k

∑
j=1

(Ej − Oj)
2

Ej

,



where n is the number of data points, {sj ∣ j = 1, … ,n} are the sample data points of

the total losses S, Fn(⋅) is the (cumulative) empirical distribution function, and F ∗
S (⋅) is

the maxentropic (cumulative) distribution function. The statistic to be used to perform

the test is √nDn . A problem with this test is that the KS statistic depends on the
maximum difference without considering the whole estimated distribution. This is
important when the differences between distributions are suspected to occur only at the
upper or lower end of their range. This may be particularly problematic in small samples.
Besides, little is known about the impact of the departures from independence on Dn .
That is, if we are not sure about the independence of the sample, we would not be sure
of the meaning of the results of the test. There exist other EDF tests, which in most
situations are more effective than the simple Kolmogorov–Smirnov test. Further details
about the K-S test can be seen in [→88] or in [→85].

Anderson–Darling test

This is a more sophisticated version of the KS approach, which emphasizes more the tails
of the distribution than the KS test, and is based on the quadratic difference between 
Fn(s) and F ∗

S
(s). Here the Anderson–Darling (AD) statistic is computed as follows:

where Ψ(s) = 1
F ∗
S (s)(1−F ∗

S (s))  is a weight function, n is the number of data points, 

{sj ∣ j = 1, … ,n} is the observed (simulated in our case) total loss S sample, Fn(⋅) is

the empirical (cumulative) distribution function and F ∗
S (⋅) is the (cumulative)

maxentropic distribution function.
When Ψ(s) = 1 the AD statistic reduces to the statistic that is today known as the

Cramér–von Mises statistic. The AD statistic behaves similarly to the Cramér–von Mises
statistic, but is more powerful for testing whether F ∗

S (s) departs from the true

distribution in the tails, especially when there appear to be many outlying values. For

goodness of fit testing, departure in the tails is often important to detect, and A2
n  is the

recommended statistic. For this, see [→67] and [→94].

Berkowitz back test

Berkowitz [→10] proposed the transformation zn = Φ−1(∫ sn
−∞ f ∗

S(s)ds) = Φ−1(F(sn))
, to make the data IID standard normal under the null hypothesis. This allows one to
make use of a powerful battery of available normality tests, instead of relying on
uniformity tests. Besides that, the Berkowitz back test provides a joint test of normality
and independence. See [→19] for more details.

Dn =sup
s

Fn(sj) − F ∗
S (sj) ,∣ ∣A2

n = n

∞

∫
−∞

Fn(s) − F ∗
S (s)

2
Ψ(s)f ∗(s)ds,∣ ∣



It is usually convenient to supplement the Berkowitz test with at least one additional
test for normality, for example the Jarque–Bera test. This extra test ensures that we test
for the predicted normal distribution and not just for the predicted values of the
parameters ρ, μ and σ.

Jarque–Bera test

The standard Jarque–Bera (JB) test is a test of normality. This test uses the empirical
skewness coefficient and the empirical kurtosis in a statistic to test deviations from the
normal distribution.

Unfortunately, the standard JB statistic is very sensitive to extreme observations, due
to the fact that the empirical moments are known to be very sensitive to outliers, and
that the sample variance is more affected by outliers than the mean, disturbing the
estimations of the sample skewness and kurtosis. To solve the problem a robust
modification of the Jarque–Bera test was proposed in [→40], which utilizes the robust
standard deviation (namely the average absolute deviation from the median (MAAD)) to
estimate a more robust kurtosis and skewness from the sample. For this, see [→40] and
consider [→85].

Correlograms

Tests like KS and AD do not prove independence, so to asses whether the probability
integral transformation (PIT) of the data is IID, we use a graphical tool, the correlogram,
which helps in the detection of particular dependence patterns and can provide
information about the deficiencies of the density reconstructions [→29].

14.4.3  A note about goodness of fit tests

To close this section, let us note that the KS, AD, and the Cramér–von Mises tests are the
most used goodness of fit tests in the context of operational risk. These tests are more
powerful than the chi-squared test, in the sense that they are less likely to reject a null
hypothesis when the null hypothesis is true. However, these tests are dependent on the
sample size, so it is always possible to reject a null hypothesis with a large enough
sample, even if the true difference is trivially small. The solution here is estimate the
effect size (magnitude of the differences) that we want to test and calculate a measure of
its precision (confidence intervals and power) to guarantee that there is a real difference
between the distributions that we are comparing [→2].

14.4.4  Visual comparisons

Let us now examine some ‘visual comparison’ tests. That is, let us go a bit beyond the ‘it
looks nice’ approach.

Reliability diagram or PP-plots



This plot serves to determine the quality of a fit by the proximity of the fitted curve to the
diagonal. The closer to the diagonal the better the approximation; deviations from the
diagonal give the conditional bias. Additionally, this plot could indicate the existence of
problems like overfitting when the fitted curve lies below the diagonal line, and
underfitting when the fitted curve lies above the line (see [→55]).

Marginal calibration plot

The calibration plot is based in the idea that a system is marginally calibrated when its
estimations and observations have the same (or nearly the same) marginal distribution.
Then, a graphical device consists of making a plot of F ∗

S (sj) − Fn(sj) versus sj . Under

the hypothesis of marginal calibration, we expect minor fluctuations about zero. The
same information may be visualized in terms of the quantiles 
Q(F ∗

S
(⋅), q) − Q(Fn(⋅), q), q ∈ (0, 1) of the functions F ∗

S
(⋅) and Fn(⋅); see [→42].

14.4.5  Error measurement

In order to analyze the quality of the numerical results, we might use measures of error,
such as L1, L2, MAE and RMSE distances. The first two measure the distance between the
fitted density and the histogram of the data sample. The second two consider the
cumulative distribution function (CDF) to calculate the difference between the fitted CDF
and the sample CDF.

Distances in L1 and L2 norms

This assessment error is based on the evaluation of the distances between the histogram
and the fitted density by means of

where bk  and bk+1  are the boundary points of the bins of the histogram, G is the
number of bins, f ∗

S  is the reconstructed density and fn  is the empirical density obtained

from the data (i. e., frequency in the bin k/size of the dataset). This measure has the
disadvantage of depending on the location and the number of bins of the histogram.

MAE and RMSE

L1=
G−1

∑
k=0

bk+1

∫
bk

f ∗
S(s) − fn(s) ds +

∞

∫
bG

f ∗
S(s) ds

L2=
G−1

∑
k=0

bk+1

∫
bk

(f ∗
S

(s) − fn(s))2
ds +

∞

∫
bG

(f ∗
S

(s))2
ds,∣ ∣ ∣ ∣⎷



To overcome the bin dependency we can compute the mean absolute error (MAE) and
the root mean squared error (RMSE), which measures the distance between the
cumulative distribution functions of the empirical and the CDF of the reconstructed
densities. These measures are computed as follows:

Note that the computations do not depend on the choice of bins to create the histogram,
but only on the sample data; see [→54].

The measure RMSE is more sensitive to outliers because it gives a relatively high
weight to large errors. So, the greater the difference between MAE and RMSE, the
greater the variance of the individual errors in the sample.

14.5  Beware of overfitting

One important question when we are in the process of modeling is: Which is the best
criteria to use when we have to select a model among a set of competing models? A
short answer is that a model should be selected based on its generalizability, by which
we mean the model’s ability to fit current data and also perform well on new data. This is
important in order to avoid the problem of overfitting, which occurs when the model
gives better results for the set than for other datasets that come from the same
population.

A good fit is a necessary, but not a sufficient condition to ensure that an
approximation correctly captures the underlying distribution. This is because a model
can achieve a superior fit than its competitors for reasons that may have nothing to do
with the model’s faithfulness to the underlying data. So, using a set of values that come
from the same underlying population, but that was not used in the modeling process, is
a good additional element to test the quality of the results.

14.6  Copulas

A copula is a tool used to create statistical dependence among a collection of random
variables whose individual distribution functions are known. Its main purpose is to
describe a possible interrelationship between several random variables. The idea of a
function that characterizes the dependence structure between different random
variables goes back the work of Hoeffding in the mid 1940s, although it was Sklar in 1959
who defined and established the name of copula ([→76] and [→32]). Copulas are a very
useful not only for modeling, but also for the estimation or simulation of random
variables. As we have made extensive use of this technique when working out the

MAE=
1

n

n

∑
j=1

F ∗
S (sj) − Fn(sj)

RMSE=
1

n

n

∑
j=1

(F ∗
S

(sj) − Fn(sj))
2
.∣ ∣⎷



(14.6)
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1.

2.

3.

4.

problem of aggregating risk with several levels of aggregation, we shall devote the rest
of this chapter to the underlying examples.

Definition

A copula is a joint distribution function of a collection {U1,U2, … ,Un} of random

variables taking values in [0,1] having uniform one dimensional marginals. Formally, it
can be expressed as:

Properties

Since a copula is a d-dimensional distribution function, it satisfies the following:

C : [0, 1]d → [0, 1].
For any uj ∈ [0, 1] on j ∈ {1, … , d}, it holds that 

C(0, 0, … ,uj, … , 0) = 0.

For any uj ∈ [0, 1] on j ∈ {1, … , d}, it holds that 

C(1, 1, … ,uj, … , 1) = uj .

C is d-ascending, i. e., for all (u1, … ,un), (v1, … , vn) ∈ [0, 1]d  with 

uj ≤ vj  we have

where gj1 = uj  and gj2 = vj  for all j ∈ {1, … , d}.

Conversely, a function that satisfies these properties is a copula. Clearly, it is natural to

think that each distribution function in (R)d  determines a copula. Reciprocally, if we

start from a copula along with some marginal distributions and combine them
appropriately we will obtain a multivariate distribution function. This is the content of the
following result.

Sklar’s theorem

Let F be a joint distribution function with marginal F1, … ,Fd . Then there is a copula C
such that for all x1, … ,xd ∈ R

If the Fi  are continuous, then C is unique. Conversely, if F1, … ,Fd  are distribution
functions, then the function defined by F(x1, … ,xd) = C(F1(x1), … ,Fd(xd)) is a

joint distribution function with marginals F1, … ,Fd .

C(u1,u2, … ,un) = P [U1 ≤ u1,U2 ≤ u2, … ,Un ≤ un].

2

∑
i1=1

…
2

∑
id=1

(−1)i1+⋯+idC(g1i1 , … , gdid) ≥ 0,

F(x1, … ,xd) = C(F1(x1), … ,Fd(xd)).
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This is an important theorem that states that any multivariate distribution admits a
representation through a copula function. In addition, if the marginal distributions are
continuous, the copula function is unique. Reciprocally, it asserts that given any copula
function and a collection of marginal distributions, we obtain a multivariate distribution.
This fact is what has made the use of copulas an important tool to generate dependence
among random variables with given marginals.

14.6.1  Examples of copulas

Let us examine a few examples. Many of them were used in the previous chapters to
generate dependence among the variables describing partial risks. We direct the reader
to [→32], [→76] and to the scattered references for more on the properties of these
copulas and further examples.

Maximum copula

This is named this way because it corresponds to the case where the negative maximum
dependence occurs. This copula has the following form:

Minimum copula

This is the case where the positive maximum dependence occurs. This copula has the
following form:

Equations (→14.8) and (→14.9) are part of the well-known Fréchet inequality for copulas,
which states that:

Independent copula

This clearly describes the case in which there is no dependence between variables:

Let us now consider some elliptical copulas, so named because they are derived from
elliptical distributions. The advantage of these copulas is that you can specify different
levels of correlation between the marginal distributions. The disadvantages are that the
elliptic copulas have complicated expressions and are restricted to a radial symmetry
[→66]. The two most important copulas in this family are the normal copula (or

W(u1,u2, … ,un) =max (u1 + u2 + ⋯ + un − n + 1, 0).

M(u1,u2, … ,un) =min (u1,u2, … ,un).

W(u1,u2, … ,un) ≤ C(u1,u2, … ,un) ≤ M(u1,u2, … ,un).

C(u1,u2, … ,un) =
n

∏
i=1

ui.
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Gaussian) and t-Student copula (or simply t-copula), which are derived from the
multivariate distribution functions that have these same names.

Gaussian copula

The copula corresponding to the normal distribution, n-dimensional with linear
correlation matrix Σ, is:

where Φn
Σ  denotes the joint distribution function of the standard normal distribution n-

dimensional, with linear correlation matrix Σ and Φ−1  the inverse distribution function of
the univariate normal distribution [→66]. For example, for the bivariate case, equation
(→14.12) is rewritten as:

In →Figure 14.6 we show the dependency structure imposed by the Gaussian copula
on two simulated normal marginal distributions, each of which has a total of 2000 data
points. These two random variables are named X1  and X2 . Each panel in the figure
represents the copula for different values of correlation between the marginal ones.
These correlations are −0.8, 0.0, 0.5 and 0.8 respectively.

It is clear in →Figure 14.6 that most of the observations are concentrated at the
center of the distribution. The figure shows the clear elliptical symmetry of the Gaussian
copula.

CGa
Σ (u) = Φn

Σ(Φ−1(u1), … , Φ−1(un)),

CGa
Σ (u1,u2) =

Φ−1(u1)

∫
−∞

Φ−1(u2)

∫
−∞

1

(2π(1 − Σ2))1/2
⋅
s2 − 2Σst + t2

2(1 − Σ2)
dsdt.
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Figure 14.6  Gaussian copulas, bivariate case.

t-Student copula

This copula is related to the n-dimensional t-Student distribution, with ν degrees of
freedom and linear correlation matrix Σ:

C t
ν,Σ(u) = Φn

ν,Σ(t
−1
ν (u1), … , t−1

ν (un)),



(14.15)

where Φn
ν,Σ  denotes the joint distribution of an n-dimensional t-Student distribution,

with linear correlation matrix Σ, ν degrees of freedom and t−1
ν  the univariate, inverse t-

Student distribution, [→66]. In the bivariate case we have:

In Figures →14.7 and →14.8 we show the results of applying a t-copula to two
random variables of 2000 points each, with different correlation coefficients, where it is
clear that the dependence relation is stronger at the extremes.

C t
ν,Σ(u1,u2) =

t−1
ν (u1)

∫
−∞

t−1
ν (u2)

∫
−∞

1

(2π(1 − Σ2))1/2
⋅ (1 +

s2 − 2Σst + t2

ν(1 − Σ2)
)

−(ν+2)/2

dsdt.



Figure 14.7  t-copula, bivariate case with three degrees of freedom.

In →Figure 14.7 we show a t-copula or copula t-Student with fixed degrees of
freedom ν and different correlation values, whereas in →Figure 14.8 the correlation value
is fixed and the number of degrees of freedom (ν) are different.

→Figure 14.7 shows how the observations are concentrated at the center of the
distribution, which seems to be more dispersed for correlation values lower than 0.5
(and values greater than −0.5) and less dispersed for values closer to 1 (or −1), without
losing the radial symmetry that characterizes this type of distributions.



In →Figure 14.8 it is observed that larger values of ν (for example ν = 1000) make
the copula approximate the Gaussian distribution. In contrast, small values of ν (for
example ν = 1 and ν = 2) increase the dependence at the ends of the distribution.
Note that in the case when ν = 1, we observe a wing effect in the distribution, an effect
that may not be desired in the case of a simulation. This effect can be observed more
clearly in →Figure 14.9.

Figure 14.8  t-copula, bivariate case with different degrees of freedom.



The relation of dependence on the extremes exists and tends to zero as the degrees
of freedom tend to infinity. This means that as degrees of freedom increase, the t-copula
approaches a Gaussian copula.

Despite their complicated expressions elliptic copulas are easy to implement, but
they do have some limitations such as that their dependence structure is symmetric.
Depending on the application and the data with which you want to work, this feature
may not be convenient. However, another advantage of the Gaussian and Student t-
copulas with respect to the distribution functions from which they originate is that from
these copulas it is possible to use random variables that follow marginal distributions
and are not Gaussian or t-Student (see [→66]).



Figure 14.9  Undesired effect for the t-copula function.

Let us now direct our attention to Archimedean copulas. There are situations in
which it is necessary to capture dependence between random variables with some form
of asymmetry. For these cases it is convenient to use these copulas. They comprise a
large family of functions. The majority of the copulas that belong to this family are
functions with one or two parameters. This fact allows us to represent different types of
dependence easily, but it also imposes limitations, since it is complicated to describe
complex dependency relations with a reduced number of parameters, especially in high
dimensions [→93]. Unlike the elliptical copulas, the Archimedean copulas are not
obtained directly from multivariate distributions and the Sklar theorem. Because of this,
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much attention is needed on how copulas of this kind can be built. For this consider
[→93] for example. Next we consider three of the most relevant Archimedean copulas,
namely the Gumbel, Clayton, and Frank copulas.

These copulas have the form:

where Φ is a decreasing function that maps [0,1] and [0, ∞) [→66].

Gumbel copula

It is an asymmetric copula that presents dependence only at the upper or lower tail of
the distribution. This copula is given by the following expression:

where ΦGu(u) = (− ln u)θ  with u = {u1,u2, … ,un} (see equation (→14.16) with 

θ ∈ [1, ∞). Notice that:

For θ = 1 we obtain the independent copula.
For θ⟶ +∞ the expression is reduced to 
M(u1,u2, … ,un) =min (u1,u2, … ,un).

Gumbel’s copula is an example of an asymmetric copula that has great dependence on
the upper end, as can be seen in →Figure 14.10, considering different values for the
association parameter.

C(u1,u2, … ,un) = Φ−1(Φ(u1) + Φ(u2) + ⋯ + Φ(un)),

CGu
θ (u1,u2, … ,un) =exp (−(− ln u1)θ + (− ln u2)θ + ⋯ + (− ln un)θ)

1/θ
,
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Figure 14.10  Gumbel copula, bivariate case.

Clayton copula

This is also known as the Cook–Johnson copula. It was initially proposed in [→20] and
studied later in [→77] and [→21], [→22].

The Clayton copula is given by:

CCl
θ (u1,u2, … ,un) = (max (uθ

1 + ⋯ + uθ
n − 1), 0)

1/θ
,



with ΦCl(u) = 1
θ

(u−θ − 1) (see equation (→14.16)) where u = {u1,u2, … ,un}, is

the interval θ ∈ [−1, ∞) ∖ {0}. Notice as well that:

For θ → 0 the expression is reduced to the independence copula, 
C(u1, … ,un) = ∏n

i=1 ui .

For θ = −1 the expression is reduced to 
W(u1,u2, … ,un) =max (u1 + u2 + ⋯ + un − 1, 0), which was indicated

before as the maximum negative dependence.
For θ → +∞ the expression is reduced to 
M(u1,u2, … ,un) =min (u1,u2, … ,un), corresponding to the maximum

positive dependence.

Clayton’s copula is an asymmetrical Archimedean copula that exhibits a large
dependence at the lower tail [→66], as is clear from →Figure 14.11. As the association
parameter increases this dependence becomes larger.



Figure 14.11  Clayton copula, bivariate case.

Frank copula
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Figure 14.12  Frank copula, bivariate case.

This copula does not present dependence at the extremes as in the Gumbel and Clayton
copulas. It was first proposed in [→36] and later studied in [→41] and [→93], see
→Figure 14.12 for some examples. This copula is symmetrical and it is specified by:

where ΦFr(u) = − ln e−θu−1
e−θ−1

 with θ ∈ R ∖ {0} (equation (→14.16)). In addition:

CFr
θ (u1,u2, … ,un) = −

1

θ
ln (1 +

(e−θu1 − 1)(e−θu2 − 1) … (e−θun − 1)

e−θ − 1
),



(1)
(2)
(3)
(4)

(5)

θ → 0 the expression becomes C(u1, … ,un) = ∏n
i=1 ui .

For θ → +∞ the expression is reduced to 
M(u1,u2, … ,un) =min (u1,u2, … ,un) (maximum positive association).

For θ → −∞ the expression is reduced to 
W(u1,u2, … ,un) =max (u1 + u2 + ⋯ + un − 1, 0) (maximum negative

association).

14.6.2  Simulation with copulas

In many instances, from the available data we are able to infer only the marginal
distributions of a collection of random variables. In this case, in order to simulate the
joint distribution of the variables, the possibility of using copulas comes in handy. The
use of copulas allows us to try different dependence structures, e. g., [→66]. In general
the steps for the simulation process are:

Estimate marginal distributions F1, … ,Fn .
Estimate a pairwise correlation matrix.
Choose a n-copula C.
Simulate random vectors (U1, … ,Un) from a distribution C.

Apply the transformation ui → F −1
i (Ui), i = 1, … ,n.

To finish, we emphasize that we actually carried out all of these steps in the numerical
examples developed to aggregate losses with some form of dependence built in. After
simulating the loss data with the dependence built in, we computed the Laplace
transform of the aggregated loss, from which we obtained its density, and then carried
out the computations like those exemplified in Chapter →12.
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