Mastering
Salesforce

DevOps

A Practical Guide to Building Trust While
Delivering Innovation

Andrew Davis
Foreword by Wade Wegner

ApPress

Mastering Salesforce
DevOps

A Practical Guide to Building Trust
While Delivering Innovation

Andrew Davis
Foreword by Wade Wegner

Apress’

Mastering Salesforce DevOps: A Practical Guide to Building Trust While Delivering
Innovation

Andrew Davis
San Diego, CA, USA

ISBN-13 (pbk): 978-1-4842-5472-1 ISBN-13 (electronic): 978-1-4842-5473-8
https://doi.org/10.1007/978-1-4842-5473-8

Copyright © 2019 by Andrew Davis

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott

Development Editor: Laura Berendson

Coordinating Editor: Rita Fernando

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484254721. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5473-8

Advance Praise for Mastering
Salesforce DevOps

“DevOps is the next frontier in managing Salesforce orgs for both developers and
admins. This book has both the scope and depth to help any organization adapt modern
software engineering and management methodologies to Salesforce. Or put another
way—if you're a Salesforce developer or admin, you need to read this book now.”

—Dan Appleman, Salesforce MVP; author of Advanced Apex
Programming in Salesforce

“I'was amazed at the completeness of this book. The depth and breadth presented here
is not available in any single resource that I know of, not even Trailhead. It is not just the
Salesforce specific portions either. The DevOps chapters provide a jumpstart for anyone
who wants to understand what DevOps is and why it is critically important in today’s

world”
—David Brooks, VP Products, Copado Solutions; original product owner of
AppExchange; one of the three founding PMs of the Force.com Platform

“Andrew Davis has written the essential reference for the next 5-10 years of Salesforce
evolution. Salesforce has become a true cloud development platform, but its ecosystem
of enterprise-class tools and techniques is just starting to catch up. All prospective and
existing Salesforce developers should read this book if they aspire to be not just coders,
but professional software engineers.”

—Glenn Weinstein, Co-founder of Appirio

“This book really gets to the heart of how to properly equip a team with the tools and
process to go faster with the Salesforce platform.”

—Sanjay Gidwani, SVP, Copado

iii

ADVANCE PRAISE FOR MASTERING SALESFORCE DEVOPS

“In the last few years it’s become clear that for companies to innovate and succeed, IT
must have speed and agility like never before. Within Appirio it was Andrew who really
caught the wind of the DevOps movement and pushed the entire company in that
direction. The power of a performance-oriented culture is that the best ideas can come
from anywhere in the company, and it was exciting to watch that unfold as we moved

to promote DevOps. I'm delighted that Andrew’s insights and passion for this topic are
now being shared with the broader world. Those seeking to deliver maximum value from
their teams and from Salesforce would be wise to read this book carefully.”

—Chris Barbin, Venture Partner, GGV Capital;
Former CEO and Co-founder, Appirio

“Andrew gained experience deploying and developing Saa$S applications for enterprise
customers while navigating the new world of DevOps in the cloud, and put that into
words that can reach readers at any technical level. This book truly delivers a thorough
and practical guide to establishing DevOps for those rooted in the Salesforce platform. If
you've been hesitant about implementing DevOps, or if you have tried and failed, this is
the book for you.”

—Katie M. Brown, Director, Methodology at Okta,
Delivery Excellence in the Cloud

“If you are using Salesforce and want to maximize your efficiency to make life easier for
your teams, Andrew Davis’ Mastering Salesforce DevOps: A Practical Guide to Building
Trust While Delivering Innovation provides a thorough approach for doing that using
Salesforce DevOps. In addition to providing a multitude of technical details, Andrew
smartly starts with why—why use Salesforce and why use DevOps specifically for
Salesforce—and honestly addresses issues people have had with Salesforce before diving
into all the details to help you succeed. Andrew is the acknowledged expert on DevOps
for Salesforce and shares his insights and secrets in this book to make your life as a
developer, administrator, or user better.”

—Dean Hering, Adjunct Associate Professor, Master of Engineering
Management Program, Duke University

iv

ADVANCE PRAISE FOR MASTERING SALESFORCE DEVOPS

“With the rapid pace of development in technology, organizations need to find

ways to deliver solutions more efficiently, while retaining high quality. DevOps is an
approach to software delivery that ensures both speed and quality, which is important
as organizations deploy increasingly complex Salesforce.com solutions. Andrew has
dedicated over a half a decade to bring structure and rigor to DevOps on this platform.

'"

This is a must-read for anyone working in the software industry

—Matt Henwood, Executive Vice President, Service Delivery, 7Summits

“There’s never been a more important and exciting time to talk about Salesforce DevOps
than right now. Expectations of getting value from an increasingly complex (and
saturated) array of Salesforce clouds are high, competition is fierce, talent is scarce, and
teams need to modernize to stay relevant. You want the best engine under the hood to
make change happen. If you don’t, you're doing it wrong. Anyone who deploys anything
to production (which is everyone!) needs to read this book.”

—Andres Gluecksmann, Vice President, Enable Services,
Traction on Demand

“DevOps is becoming a must-have skillset for every developer in today’s world. And it is
especially crucial with the rapid pace of innovation on the Salesforce Platform. I think
this book will become a go-to reference for Salesforce DevOps specialists seeking to
leverage all the capabilities of Salesforce DX. Although this book is designed to teach
how you can accelerate your Salesforce development lifecycle using CI/CD, even if you
are new to Salesforce, the initial chapters will help you to understand the basics of this
platform. I had the opportunity to work with Andrew for a couple of years. The best thing
about working with him is how many new things you can learn from him, easily and

in a very short amount of time. He’s been involved with Salesforce DX since it was first
announced and this book gives us access to all his learnings and research.”

—Durgesh Dhoot, Platform Specialist, Salesforce

To Ashley

“May I always be a manifestation of others’ good fortune”

Table of Contents

About the AULNOFcceiiiiieemniiiisnnrrnsess s nn s e ann s e e s snnnnnensnnns Xix
About the Technical REVIEWETccurussseenmrsssssnnsmsssssnnsessssssssssssssnsssssssssssssssssnnsssssnnns XXi
FOrEWOKcoreiissemnnmssssnnnnmsssssnnnessssnnnnessssnnnssssssnsnsessssnnnsessssnnnssssssnnnssssssnnnesssnnnnsssss Xxiii
Acknowledgments........ccccuuiissnnmsmnnmmmmmssssssssssnnnnmmesssssssssssnnnssessssssssnnnnnnnsesssssssnnnnnns XXV
Chapter 1: Introduction........cccuviiinnssssmssnmmmmmmsssssssss s ———————— 1
WRY SAIESTOICE? ...veereruerrererereresessere s e st s e sessessese s e saesaesa s e s sae s s e e s e saesa e e e e saesae e s e naesaesannsnaesaens 1
What IS SAIESTOrCE DX?.......ccciircrire it e s e e e 3
WRAL IS DEVOPS? ... ettt s s e e s b e b e e e R b e e e nne s 5
The ReSearch 0N DEVOPSccceviiirirerenis st se s s p e st s p e 8
ADOUL THIS BOOKeveceerieeeceriree s s s e e s se s sse s se s s e s sae s s s e s saesasesnesaesaesasesnesaennsensesaesnnnnes 9
L2 T (0011 o OSSOSO 11
Part I: Foundationsccccccininmnmnnsssemmmmmmmmnnmnmmsssssssssssssssssnnsnnnns s 13
Chapter 2: SAleSTOrCecccuusemmrrssssnnnsrssssnnnsessssnsnsessssnnssessssnnnsessssnnnsessssnnnsssssnnnnsssss 15
“SaleSTOrCE” VS. SAIBSTOITE ..uevvererererrereesereressssessessesaessssessessessssessessessesessessesasssssessessesssssnsesaens 15
How Is Salesforce DIifferent?cceoeecrvrrere vt re s e sn e s s 16
DevOps in the Salesforce WOorld..........cocrnininnisssnes s s 18
What IS SAIESTOIrCE DX?......eeereeieererirreesrese s ssee s seseesse s ssessessesaessesaesaesaesssesesaessesssessesaensnnns 19
What Are the Elements 0f SaleSTOrce DX?.......ccvvvvrverirnirseenerersessee e sesses e ssesesssessesnesnes 20

B (=0T 5 21
BT 21 (10 0SSR 21
Second-Generation PAaCKagingcvoveeversereresmrrsserensesssssssssssesessessssssssssssssssssssssssssssssssssssnns 21
Metadata APl vs. SFDX SOUICE FOrMALSccvcevreererierierseeseressesseessesessesssessessessssssssessesses 23
Salesforce Command-Line Interface (CLI).........ccvveerrrererresmrenesnsesesenesesesessesessssessssesessesenns 25
BT 111 1T o SRS STR SR 25

TABLE OF CONTENTS

Chapter 3: DEVOPScuureerrrmsssnnnmesssssnsssssssnnssessssnnsssssssnssssssssnssesssssnnnsssssnnnnsssssnnnnsssss 27
What’s Driving the Need for DEVOPS?ccvrevrerirescrsrerise e se e se s sss e sessesessssesenaes 29
WRAL IS DEVOPS? ... ettt r e s e e e d s e s b e s b e e e e nne s 29

DBV VS, DPS..uiiiicriiiisiri et R e AR E e s 30
The Real Meaning of AQIle.........cccviininininrsr e 32
The Three Ways 0f DEVODRScccvereinirere s et se s s st se s s st s s s s s e nnas 33
Lean Management..........co s e e e e 35
GENEIALIVE CUIUIE.......eeeeeeecee e e 37
Blameless POSIMOIEMS..........ccco i 38
THE RESEAICH ... s e p e e e e e re e 39
Business Impact of Adopting DEVOPS ... s e 40
HOW DEVOPS HEIPS ..ottt it st st s b s s et 42
Better Value, Faster, Safer, HAPPIer.......cccvevirverrenirerres e sesses e ssesesssessessesssssssssessensens 42
Measuring PErfOrMANCEcccccervrerrnisrsenessse s se s s s ss e s s e ssssssssssssssssessssesenns 43
ENhancing PErfOrManCe........coouvvvrierenirsireresie s s ses e s e sse s e s sas e s e ssesaessssessessesaesessennesaes 47
Optimizing the Value STream ... s s sessessesnens 48
Theory 0f CONSTIFAINTSccccviirirere e s nnes 50
oy F= o] 1T 0 o 53
LT 1oL 00 o RS 57
StEP 1: Create UrgENCYccvverererirrereriestssessesessesessese s saese s e s s s s s s e saesaese s e ssesnssnsssnesaesaes 57
Step 2: Form a Powerful Coalitioncovvvverierernsnsene s ses e s ssssessessesnes 58
Step 3: Create a Vision for CRANGEcovvervrierernrensere v sessere s s s s sresesesaesaes 59
Step 4: Communicate the ViSION........ccevevrvrierenn s ses e s s ssssessessesaes 60
Step 5: RemOVE ODSTACIES......ccvvverririere et r e e nen 61
Step 6: Create Short-TErM WINScccceevririere s sse s s snes 62
Step 7: Build 0n the ChANQEccvvceviererie e se e s se s s s sre e s e saesnes 63
Step 8: Anchor the Changes in Corporate CURUIEc.ccovvrvrierevnsnsene e sessessenees 63
11114 7R 63

TABLE OF CONTENTS

Part 11: Salesforce DeVcuvreeeeesssssssmesssssssssssnssssnssssssssnssnsnnsssssssssnnnnnnsssnnnes OD

Chapter 4: Developing on SaleSforce........ccovummmmmmmmssnnnmmssssnnsssssssnnsssssssnssssssssnnnssss 67
The Salesforce DX DeV LIfECYCIE.......cuuvrirrnierre ettt seas 67
DevelopmMeENt TOOIS ... e e 71

The SAIESTOICE CLL.......ccoeeeeeceereeree e nnnee s 4l
What'’s an Integrated Development Environment (IDE)?........cccorvrincninnnnsnncsesessenennns 71
The Developer CONSOIE.........uciiereirire e e e s s s b e e nas 72
L0 (0T 1 T PP 72
The Forthcoming Web IDE ... s e 72
ViSUI STUTIO COUE........cveeeeeeecererreeerese e se s se e se s e 73
Other SAIESTOrCE IDES.........cccoverereneereseresseese s se s s ses s ssesesessssssnns 75
Metadata (Config and COUE)........ceueeerrrerereerierererese s 77
What IS Metadata?...........cccoeerrcrrererecrrese e 77
Metadata API File Format and package.Xml ... 77
Converting Between Salesforce DX and Metadata APl Source Formats..........cccecvvevveercrenne. 79
What Metadata Should YOu NOt TraCK?.........cceeeereecrerenerene s ese e sesesesnenens 79
Retrieving ChANQES ... s 81
MaKing ChanGES........ccucererririnniiire s s s s s e s p e e e 82
ManUal ChANGES........ccucereririnririre s e e p e e e 83
Click-Based Development on SAlESOrCEccuvvierieriininnen s 84
Development—No-Code, Low-Code, and Pro-Codecccceerverreererververseesersersesseeseesenens 84
Declarative Development TOOIS ..o s 85
Data Management ..o e e s 89
The SecuUrity MOUEL.........ccoeiirrrr e e 99
Code-Based Development on SaleSfOrCe........ccvvriininininn e snes 103
Server-Side Programming........c.cocoeeernsesesesesssesssesessssessssessssesssssessssesssssssssssessesssssssenns 104
Client-Side Programmingccccoeerrrenerenesnsesesesesesesessesessssessssesessssessssessssessssssssssessenes 106
B30T 111 7 o SRS 108

xi

TABLE OF CONTENTS

Chapter 5: Application Architectureccccrnssemmrrnsssnsnmsssssnnmnsssssnsesssssssesssssnnns 109
The Importance of Modular ArchiteCture ... 110
Understanding DEPENdENCIESc.ccoeviriniriinnnine s ss s s st snens 111
SaleSTOrCe DX PrOJECES.ccoeeeereerieeserese s 113

How Salesforce DX Projects Enable Modular Architecture.........cccocvvvvnennsnsniennsenseniennns 113
Creating a Salesforce DX PrOjJECL.......c.cuccorerernsmresesere s s s snanes 115
Modular Development TEChNIQUESccvveririiririre s 116
Naming CONVENTIONS........ccccvverrriieresernse s nre e 117
Object-Oriented Programming..........ccoueeeeeenrnsesessesssesesssesssssessssessssssssssssssssessssssssssssseses 117
Dependency INJECLIONccovceerererenerr e e nr s 118
Event-Driven ArChiteCIUNE ..o s 122
Enterprise Design PAtternscccccvecrniennesinsse e ss s s 124
Separation 0f CONCEINScccveverirririere s s s s s r e b e s ae s 125
SEIVICE LAY ...cviueeerreerreesessessssesesrs s s e se e sa s e s s e s s e s e s sn s e s e ne s e nnn e nsanis 126
UNIE OF WOTK ...t e 127
DOMAIN LAYEKcvveeirreerree s ss s sas e se s s sr s e s sas s nss s s nsnsis 128
B3 T=] T (o] g I T OSSPSR 129
Factory Method Pattern...........cooeceeenscnnesrese s 130
Trigger Man@gemeNt..........cccvuerrnenmnese s srsre s re e sr e e nrnne e 131
The ONe TrHQGEr RUIE ..ot 131
The Trigger Handler Pattern..........cccoveerisennesncsess s s sessesssnenens 131
The DOMaiN Pattern.........cccuecereierniesrnesersse s se s sr e s sesssssssenens 132
Modular Triggers with Dependency INJECTIONc.cccvvverreneresnnsesrre s 132
PACKAGING COUE ...ccuerveerererrerieserse st sse e ss s e s saesas e s ssesaese s e s ae s s e e s saesaese s e saesaesae e naenanes 133
£ 11134 7R 137

Part lll: Innovation Delivery........cccuemmmmmmmmsssennnmmsssssssssnmsssssssssssssssssssssnnensss 139

Chapter 6: Environment Management.........cccunmemmmenmmmmmmmsssssssssssssssssssssssssssssnns 141
AN Org IS NOt @ SEIVETcctireerreesiresire e s r e sr s pa e nr s 141
Different TYPES OF OrQS...cvvreriierierire s s s se e s s ae e s saesae e e e s nne e 142

xii

TABLE OF CONTENTS

Which Org Should YOu DEVEIOP IN?cecereieiiriereresssseressessesessessessessssessessesssssssessessesssssssessees 146
Why Not Develop in ProdUCTION?cccvvcerieriereninsereressesessesessessssessessessesssssssessesssssssessesnes 146
Developing iN SANADOXESccvceverererrerererersere e ssesse e s e sse s s s e ssesaessesessesaesassassessesas 148
The Disadvantages of Developing in SANADOXESccccvererrerrereresrersereressssessesessesessessesees 149
The Benefits of Developing in SCratch Orgsccccvvvevererrersenesessessesesesessessesessssessessesees 150
Meeting in the Middle—A Sandbox Cloning WOrkflow...........ccueevrevnrenserersesensesseresessessenses 152

0rg ACCESS ANA SECUIILY .evevverersererrererserersessssessersessessssersessesssssssessessessssessessessesensessessssssessensen 153
THE DBV HUD ...ttt 154
API-Based AUtheNtiCatioN...........ccoveierererce e 155
Salesforce DX Org AUthOrZationS.......c..cvveerveriernvenseriere e se s saessssessessens 158

ENVironment SErategycccvrevrerrccc ettt 161
Environment Strategy GUIAEIINEScccvvevererrirrnr s 161
Multiple Production Orgsccurerrinrnieninesins s s se s s ssssessssesessssessnaes 162
Identifying and Mapping EXiSting Orgs........cccuvvrmennnnninnnns s sesesessssessnnes 167
Identifying Requirements for Testing, Fixes, Training, and Others..........ccoevevvvrerrevesserseraens 169

Creating and Using SCratCh Orgscccuciirinnnninisnsnese s s s s ssssessessesnas 175
GENEral WOIKFIOWceeecireere e 175
Creating SCratCh Orgs ... e s 177
Initializing SCratCh Orgs........cciinnniisr s 182
Developing 0n SCratCh Orgscccciirrieririerire st sae e see s 189
Scratch 0rgs AS REVIEW APPS......ccccruererirrerineneseseressesessesessssessssessssesessssessssesssssssssesssssssssnns 191

Cloning and Refreshing SandDOXESccoeerrecrrerrercrrcre e 191
Creating, Cloning, or Refreshing SandboXes..........ccvvrvrnninninnnsnsne e 192
Planning Org REfreShES ... 193
Planning and Communicating Changes to Org Structureccccocvvvnvrinnsnsnsenesessenennn, 194
Working with Lightning Dev Pro SandboXes..........ccccurninnnnnnnnsnsessesessssessesessssessesseses 195

The Salesforce Upgrade CYCIEcoverrreererererecrsesese e sese e sse e sessesesssnens 195
Getting Early ACCESS 10 @ REIRASEccerveererererese e 196
Deploying Between Environments That Are on Different Releasesc.cccuveevrvenerennerennes 197

A Behind-the-Scenes LOOK at OrgS......ccoucererernnenesenmsssessssesessesessssesessessssssessssssssssssssssssssssssnnes 198

SUMIMAIY.. .. ettt e g s e s e e e s e e R e e A e e e Re e e R e e e e e e Re e R e e n e r e 201

xiii

TABLE OF CONTENTS

Chapter 7: The Delivery Pipeline.......ccccuuseemrrssssssnnmsssssnnsssssssssssssssssnsssssssssssssssnnnnss 203
Why You Need Version Control on SAIESTOICEccvvevrererererinienereses s sese s sessesessenens 204
VErSioN CONTIOL.........ccoeeeeeeeec s r e e s e nne e 205

T2 72T [206
1 0] 3 209
Naming CONVENTIONS.........covciiiierierirsire s s e e e 212
Preserving Git History When Converting to Salesforce DXccccoovcnvninnnnnnnccnnsenscnennn, 216
Branching Strategyccoeerrrerrereresc s e 217
Trunk, Branches, ANt FOTKScvirirrrrereriersesssesersessesssessesesssssssssessessssssessesssssssssessessesnes 217
Well-Known Branching Strategies.........ccvvrrnrerrrenerenerssesessesess s sesesesssse s sessesessenens 220
The Research on Branching STrategiesc.ccccvrerrerrrscrnncsere s 221
Freedom, Control, and ESE...........ccecvverreereercerienreerereresseesesesseessessessesseessessesssssssssesaessenns 222
Branching for Package PublisShing..........cccovvnnnincninccn s 226
Guidelines if You Choose 10 Use Feature BranChes...........c.ccoveererencrenncnennenesesesessesesseneseenes 228
Branching for Org-Level Configuration...........cccccvinninininnnnnn s 230
Deploying Individual FEATUIESccccviriiriinire e sss s snes 237
Forking Workflow for Large Programs............ccccuivnnnnenisnsensesesssessesessssssessesssssssessesses 240
CI/CD and AULOMALIONccoveerereerenesesese s e se s se s e ses e nns 241
Automating the DeliVEry PrOCESSccccoerererrrserereseseseressesessese s sessesessssessssesessessssenens 243
Cl Servers and INFraStrUuCUNEcccoveierercrrerr e 245
L0 T 10T o R T 253
Example CI/CD Configuration...........ccoeeecrrnermreneresesessesesese s sesese s ses e sessesesssesenses 256
£ 1117 S 267

Chapter 8: Quality and Testing.........ccccussemmmmssssnsnmmsssssnsnmsssssssssssssssssssssssssssssssnsnees 209

Understanding Code QUAlILY........c.cccrirrnienneninnrn e s 269
Functional, Structural, and Process QUality.........ccourrrerrernrersersersessssensesessesessessessesessessesses 270
Understanding Structural QUAlILYccocvevrninnenns s 271
Understanding Process QUALILYcocucereriierniennesnse s ses e ssenes 275

Testing t0 ENSUIe QUANILYccueeeerereniincseserinin s se s 275
L T 275
L L U (O L] TP 278

Xiv

TABLE OF CONTENTS

Testing TerMINOIOQY.......cccevvriinie e s s e e a e e 278
L =40 TS 282
TeSt ENVIFONMENTS ... s s s 282
Test Data Management...........coco i 282
Fast TEStS fOr DEVEIOPEIS......cccercerierreercrerree s st see e s e see e s e e s e s s s e e saesae s e e e e saesnenanans 283
Static ANalySiS—LiNtiNgcccvererrrirre s e ae 284
Static Analysis—QUAlILY GALES........cccurrvierrierirr e 287
LT 3 T S 291
CoMPreNENSIVE TESTScicciiciccirsire e s nnan 297
Automated Functional TESHINGccccrevvinirini s 298
NONfUNCLIONAI TESTINGcivereirire e 312
Manual QA and Acceptance TESHINGcccvverrirrini s 330
SUMIMANY ..t e b e e e e b e b e e e e AR e e e e e Re e Re R e e e e e Re R e e e e nRenns 335
Chapter 9: Deployingccccurisummnmsssssnnnmsssssnnnmsssssnnnssssssnnnssssssnnnsssssnnnnsssssnnnsssssnnnnnss 337
Deployment TECHNOIOGIESccoveerrrererinerinesese e sr s se s 338
The Underlying OPlioNScccvicevnennesesese s se s srs s e s ssanens 339
Deploying USiNg @n IDE...........ccovinmrinmnnesrsessssse s sssseses s s ssssessssssnsssssssssesssssssssssessnses 345
CommAaNd-LiNg SCHPLS.....ccvvriririrririe s e s s e e s 346
Commercial SAleSTOrCe TOOISccoueevrvererriserrnsesese s nre s 360

Lo T 162 T T ST SST 373
Resolving DeplOYMENT EFTOIS......ccvieveviriereresissessessessesessessessesessessessessssessessesssssssessessesssssssesaens 380
General Approach to Debugging Deployment EITOrSccccvvrvevnnensenienesessessesessssessessens 380

LCTe 11410 I 5 (=] OSSOSO S 382
General Tips for Reducing Deployment ErTOrS........ccouveevnsesnesesssesssesssesessssesessessssssessnns 382
CONTINUOUS DEIIVEIY ...veereerierteserierestesessese s sasses e s sae e s e ssessesss s ssesaesasssssessesnessssessesaesassssnensesses 382
Why CONtiNUOUS DEIIVEIY?.....eveercereresiesersere e ses e se s sseses e s ssesss e s e ssesaesssessesaessessssesaesnes 383
Automating DEPIOYMENTSccvveririererirsirre e s sae e s aese e enen 384
Deploying Configuration Data...........ccccveerierrinienennsrsere s s sa e enes 385
Continuous DeliVery RItUAIS..........cocvvvierevenrersere s s s e s e s ssessssessesne s 386

TABLE OF CONTENTS

Deploying Across Multiple Production OFgSccverererserseressssessersesssssssessessessssessessesssssssessens 387
Managing Org DIffErENCEScuveririrernierire s e 388
Dependency and RiSK ANAIYSIS ..o s s sss e s ssessssessesnens 392
£ 7 o S 392
Chapter 10: Releasing to USersc.coummmmmmsmsmsmsmssssssssssssssssssssssssssssssssssssssasasasasas 395
Releasing by Deploying........coucuerrisernsesssesesese s ssssessssesesssse s sssss s s sssssssssssssssssssssessnns 396
Separating Deployments from REIEASES........cucvverrerrrirrnieneriesersese e ses s s s e s e ssessesessessesnes 398
LT 1T 0] 398

I 101013 SO 399
Dynamic Lightning PAges.........cccevrrmnnmnninisssse s s sessssssssssesens 400
FRAUIE FIAQS......cue ittt ne e 400
Branching by ADSIIaCtioNccovrimmnnn e 403

£ 1§14 7R 406
Part IV: Salesforce Ops (Administration)..........ccccnssemmnsssnnnmmsssnnmnsssssnnsssnnns 409
Chapter 11: Keeping the Lights Oncccccimmnmmmmmmmmssssnmmmsssssmsssssssssssssssssssssssnns 411
Salesforce Does the Hard WOrk for YOU.........cccoeecerenerencrnscnerese e 41
What Does Dev and Ops Cooperation Mean?...........cccccvvrvinnnnnnniesnsinsese s ssssessessesessessessenes 412
Salesforce Admin ACHIVILIES.ccueererernsesrrese s 416
USEr ManagemeNtccovoeremreresersene e sse s s s s s s e s sresse e s s nnens 416

B3 T= LT] OSSPSR 417
Managing SCheduled JODS ... s se e seass 418
Monitoring and ObSErvability..........cccccvierinninin s ———— 420
Other DUties AS ASSIGNEUccceeerrererneserese e s nra s 425
11T 111 1T o OSSOSO 425

TABLE OF CONTENTS

Chapter 12: Making It Betlercccirnnnmmmmmnnssnnnmmmssssnmmsssssnmnssssssmssssssessssnnns 427
An Admin’s Guide 10 DOING DEVOPS......ccecerrererrierirenire s e e s s sss e st ssesessssessnnes 428
Locking EVErybody QUL ... e 431
What’s Safe to Change Directly in Production?...........ccovoreernsnnisseresessesese s 435
Tracking Issues and Feature REQUESTSc.cuceverrerrnsesnnesmssse s e ss s e sessessssenens 436
L1134 RS 437

Chapter 13: CONCIUSION.....ciccurmssanmssssnssssanssssanssssanssssansssssnsesssnnssssnnssssnnssssnnssssanssssns 439

Bibliography ..cccccceeriisssennmmmssssnnmmsssssssnmssssnsnssssssssnsesssssnnsessssnnnsnssssnnnsssssnnnnsssssnnnnssss 443

INA@X..ceiiiisnnnnnsssnnnnnssssnnnsnssssnnnnsssssnnnnsssssnnnssssssnnnsssssnnnnsnsssnnnnsssssnnnnsssssnnnnsssssnnnnnnss 445

Xvii

About the Author

Andrew Davis is a Salesforce DevOps specialist who's
passionate about helping teams deliver innovation, build
trust, and improve their performance. He is a senior product
manager for Copado, a leading DevOps platform for
Salesforce. Before joining Copado, he worked as a developer
and architect at Appirio, where he learned the joys and
sorrows of release management and led the creation of
Appirio DX, a set of tools to enable Salesforce CI/CD.

At different times, he led Appirio’s technical governance,
DevOps, and certification programs and gained 16 Salesforce
certifications. An experienced teacher and public speaker, he is a regular speaker at
Salesforce conferences. He lives in San Diego with his amazing wife and very cuddly dog.
Follow him at https://AndrewDavis.io or on Twitter at AndrewDavis_io.

https://AndrewDavis.io

About the Technical Reviewer

John M. Daniel has been working in the technology sector
for over 20 years. During that time, he has worked in a
variety of technologies and project roles. Currently, he
serves as the Director of Platform Architecture at Rootstock
Cloud ERP, a leading cloud-based ERP solution that is native
to the Salesforce Platform. He is a Salesforce MVP and

holds multiple Salesforce certifications, including Platform

Developer I and II and most of the Technical Architect
Designer certifications. He is currently working toward
becoming a Certified Technical Architect. He loves to spend time with his family, swim
and ride his Jeep at the beach, and work on open source projects such as Force-DI,
AT4DX, and the DomainBuilder Framework. He co-leads his local Salesforce Developers
User Group and can be found on Twitter at @ImJohnMDaniel.

Foreword

I've spent my entire career immersed in the world of software development. From early
on, I fell in love with the power and the freedom that comes from being able to create
magic with code. I've seen the birth of the Internet and have had the opportunity to
share this passion for development with thousands of people around the world. But it
didn’t take long for me to realize that while writing code can be fun, it’s not always the
most productive way to get the job done. In fact, I've never felt more convinced about the
importance of a low-code platform to enable people from every walk of life to experience
that same joy and productivity I felt early in my career, creating apps using clicks and,
sometimes, code. This is one of the most important things to remember about low-code:
a unique and powerful low-code platform like the Lightning Platform lets you combine
the power of both clicks and code to do more than you could do with either one alone.

In 2016, I left Microsoft when I was invited to reimagine the developer experience
for Salesforce. I realized that this was a unique opportunity to share my love of low-code
with the Salesforce community and to accelerate the pace of innovation on Salesforce by
giving developers an entirely new way to build together and deliver continuously.

The DevOps movement has developed throughout our industry over the last 10 years
into a rallying point for some of the most revolutionary ideas in business and technology.
DevOps has a dual meaning, in that it includes a huge range of technological tools and
techniques but also speaks to the importance of bringing disparate groups together.
Salesforce was founded on the concept of Ohana, or community. Just like Salesforce has
grown into one of the most passionate and collaborative communities on the planet, the
DevOps movement has also inspired passion and a vision for how working together is
integral to helping companies perform at levels never previously imagined.

At Dreamforce 2016, I had the privilege to go on stage to introduce Salesforce DX to
the world and to share a vision that unites DevOps with the Lightning Platform for the
first time. Shortly after that keynote, an earnest and persistent man started following me
around the conference. As I walked to make it to a session, he introduced himself and
explained that he’d been working on a similar initiative for his company, had anticipated
this announcement, and implored me to let him join the pilot. Recognizing his sincerity,

xxiii

FOREWORD

and that he might not leave me alone unless I relented, I invited Andrew Davis and his
company, Appirio, to be the first consulting company to join the pilot for Salesforce DX.

I'm so glad I did because the rest is, as they say, history.

This book reflects the dedication and passion that Andrew brings to this topic. And
it gathers in one volume all of the core ideas and values that all of us who worked on
Salesforce DX have wanted to share but not had the time to write down. In this book
you'll see what brought me to Salesforce back in 2016: the power of DevOps and the
world’s most powerful low-code platform united together. This union is expressed
clearly and eloquently in this book.

We're still at the beginning of this journey, both of Salesforce DX and, in a broader
sense, of this magical new world that unites the human mind with technology in ways
that are both exciting and awesome. DevOps is about working together—about human
beings collaborating, working toward a common vision, and using technology to be
efficient even at complex activities like building software. As we take these first steps into
a new world where the only certainty is change, and where technology increasingly has
the ability to determine our future, it is more important than ever that we work together.

This is a technical book. But it’s also a human book. It’s a book about how to get
things done more easily, so we have more time to do what humans do best: to solve
problems creatively. It's an honor to introduce this book because I know what'’s between
the covers is the very best of what technology today has to offer: a practical guide to
building together on a platform that invites unlimited creativity.

Wade Wegner, SVP Product Management, Salesforce
Redmond, Washington
August 2019

XXiv

Acknowledgments

It's been a great delight to get to know both the Salesforce community as well as the
DevOps community over the last few years. As a lifelong technologist, I've always delighted
in the endless puzzle-solving opportunities it presents. But I've been a human even longer
than I've been a technologist, and both the Salesforce and DevOps communities are
distinctively human communities. The degree of openness, collaboration, compassion,
and enthusiasm in these communities is inspiring. And when an entire group is inspired,
you find what Emile Durkheim called collective effervescence, a sense of joy accompanied
by a softening of the boundaries between ourselves and others.

That we can be united in a common activity is one of the deepest miracles of being
alive. That’s also one of the special joys of being part of an organization: that it provides
an opportunity for individuals to unite in a shared endeavor. As Peter Drucker said,

“The purpose of an organization is to enable ordinary human beings to do extraordinary
things.” The cloud has enabled larger communities to collaborate in larger endeavors.
And DevOps is enabling better coordination and communication in that process. It’s no
wonder that the Salesforce and DevOps communities are incubating visions for a better
world that go far beyond technological improvement.

This book largely captures what I know about this important topic. By sharing my
knowledge, I'm also sharing my ignorance, and I welcome any feedback and corrections
you have to offer. Every piece of knowledge in this book has come directly or indirectly
from others, principally my colleagues at Appirio. I couldn’t have hoped for a better
place to learn this discipline, and the people who've contributed to my education are too
numerous to list.

There are no words to express my gratitude to my wife, Ashley, who has been
endlessly patient and supportive throughout this learning process. My Sangha jewel,
coach, and best friend, she’s endured my endless ramblings on this topic and knows far
more about both Salesforce and DevOps than she ever wanted to. My parents and step-
parents lovingly built the foundations for me to be healthy and free and supported me
unfailingly even when my decisions led me far away from them physically and culturally.
And the Kadampa community provided the ultimate opportunity to learn humility,
peace, and the joy of living a meaningful life.

ACKNOWLEDGMENTS

From Appirio I want to thank the Appirio DX team: Saurabh Deep, Abhishek
Saxena, Ashna Malhotra, Bryan Leboff, Rahul Agrawal, Katie Brown, Kapil Nainani,
Sahil Batra, and Durgesh Dhoot. You all believed in this vision and did the real work
to make the project a reality. To Yoni Barkan, Roarke Lynch, Rebecca Bradley, Halie
Vining, Craige Ruffin, Erik Golden, and Katie Boehner—you all are the real deal; I'm
sorry we weren't able to work together longer. I'm grateful to my other mentors and
teachers at Appirio, especially to Geoff Escandon who brought the State of DevOps
Report to my attention and challenged the early work I was doing saying “I don’t know
what this is, but it’s definitely not DevOps.” I hope I'm getting closer.

It was Glenn Weinstein, Chris Barbin, and Erik Duffield at Appirio who
championed this project at the highest levels and who fostered a performance-oriented
culture in the company from the beginning. My coworkers at Oath also deserve special
recognition for introducing me to continuous delivery. In particular, Matt Hauer
dissuaded me from leading the team into branching hell and never let me ignore a
broken build. David Meyer first challenged me to deliver “CI for the masses,” a project
I'm still working on. Matt Henwood challenged me to “let my creative juices flow” and
ran interference for me as this project got off the ground. Bob Larson asked for some
short-term assistance to set up CI/CD for a big customer; two years and thousands of
deployments worth of short-term assistance gave me the confidence to write this book.
I'm particularly grateful to my partners in that endeavor, Alex Spears (who endured the
misery of being mentored by me), Sreenath Gopal, and Raji Matthew. Special mention
is also due to Lex Williams, Randy Wandell, Joe Castro, Andres Gluecksmann,

Chris Bruzzi, Michael Press, Svatka Simpson, Neale Wooten, Jitendra Kothari,
Prakash Gyamlani, Tommy Noe, Tommy Muse, James Wasilewski, Norman Krishna,
Josh Davis, and everyone else who supported our DevOps initiatives in a hundred ways.

It’s a unique honor to work with John M. Daniel as the technical reviewer for this
book. To have this work reviewed by a mind as sharp and experienced as his gives me
far greater confidence that I'm not making this stuff up. And I'm grateful for the team
at Apress, especially Susan McDermott, Rita Fernando, and Laura Berendson for
affording this opportunity and for doing the hard work of bringing a book like this into
existence.

Finally, to my new colleagues at Copado, especially David Brooks, Andrew Leigh,
Ted Elliott, and Federico Larsen, the fun’s just getting started. I look forward to working
with you to help thousands of organizations master Salesforce DevOps.

XxVi

CHAPTER 1

Introduction

This book provides a practical guide to bringing DevOps principles to Salesforce
development. For those whose careers are rooted in the Salesforce world, this guide

will help you adopt practices that have been proven to make life easier and teams more
effective. For those who specialize in DevOps or other technologies and are tasked with
adopting or supporting a Salesforce implementation, this book will allow you to translate
familiar concepts into the unique language and practices of Salesforce. And for those
who are already under way with optimizing your Salesforce development process, I hope
that this book provides inspiration to go further, think deeper, and continue to embody
excellent practices on an exceptional platform.

Why Salesforce?

Over the past 20 years, Salesforce has become the fastest growing enterprise software
platform and a market leader in Sales, Service, Marketing, Integration, and custom
application development among other areas.' Although there are many reasons why a
company might adopt or consider using Salesforce, the overriding value proposition is
that Salesforce provides tons of capabilities out of the box, releases new capabilities at an
ambitious pace, and allows for virtually endless customization and innovation. Unlike
with traditional platforms, there’s no need to manage infrastructure for computing, data,
network, or security and no need to invest in generic system administration that adds
no value for the organization. Add to this the accessible and supportive community and
learning culture based around Salesforce’s Trailhead, which enables rapid onboarding
and skill development, and it’s easy to see the attraction of this platform.

'https://s1.q4cdn.com/454432842/files/doc_financials/2018/Salesforce-FY18-Annual-
Report.pdf

© Andrew Davis 2019
A. Davis, Mastering Salesforce DevOps, https://doi.org/10.1007/978-1-4842-5473-8_1

https://s1.q4cdn.com/454432842/files/doc_financials/2018/Salesforce-FY18-Annual-Report.pdf
https://s1.q4cdn.com/454432842/files/doc_financials/2018/Salesforce-FY18-Annual-Report.pdf

CHAPTER 1 INTRODUCTION

Companies who adopt Salesforce do so because they don’t want to manage servers,
networking infrastructure, security, and the countless other aspects of application
development that don’t directly bring business value. When an enterprise company
takes an interest in automating a new part of their workflow or storing data, they have
no interest in provisioning servers or containers, let alone implementing ongoing
monitoring, data backup, failover redundancy, and so forth. What they’re interested
in is business value. And what Salesforce delivers is the opportunity to create and
deploy business value with the minimum necessary overhead. In exchange for a
relatively modest subscription price, Salesforce takes care of almost every aspect of the
infrastructure needed to run an application. At the same time, they have continued to
expand and innovate to make the process of developing functionality easier across a
broadening range of applications.

Salesforce began in 1998 with the aspirational goal to create a SaaS customer
relationship management (CRM) system that was “as simple as Amazon.”* Since then,
they've become the fastest growing enterprise software company ever to reach $10
billion. And they lead the market for CRM, service automation, marketing automation,
and integration. They've been recognized year after year by Forbes as the world’s most
innovative company and won their Innovator of the Decade award. Fortune magazine
also ranked them the #1 best place to work.?

Salesforce’s mantra throughout the 2000s was “Clicks not Code,” and their logo was
the “No Software” image which became embodied as SaaSy, Salesforce’s first mascot.
You could be a “declarative” developer using “clicks” alone and build a data model,
business process automation, and user interface using drag-and-drop interfaces. This
opened the door to an entire new job specialization—Salesforce Admins and “App
Builders,” citizen developers who were empowered to directly customize the platform to
meet their company’s needs.

As Salesforce grew, they recognized the need to enable custom coding on their
platform and launched Apex triggers, followed by Apex classes, and Visualforce in 2008.
Admins continued to configure rich business capabilities, while low-code developers
and professional developers were empowered to create customizations beyond the
scope of what could be built declaratively. Initially, the code developed on Salesforce
was rudimentary: a few hundred lines here and there to accommodate unusual

*Marc Benioff, Behind the Cloud (Wiley-Blackwell, 2009).

*https://s1.q4cdn.com/454432842/files/doc_financials/2018/Salesforce-FY18-
Annual-Report.pdf

2

https://s1.q4cdn.com/454432842/files/doc_financials/2018/Salesforce-FY18-Annual-Report.pdf
https://s1.q4cdn.com/454432842/files/doc_financials/2018/Salesforce-FY18-Annual-Report.pdf

CHAPTER 1 INTRODUCTION

calculations and data processing. But gradually, companies began to accumulate tens of
thousands of lines of custom code, especially as legacy applications were migrated from
other systems. Needless to say, the “No Software” motto no longer strictly applies.

In the decade since the launch of Apex, 150,000 companies have adopted Salesforce
and moved a staggering number of legacy systems onto Salesforce. Salesforce now
processes billions of transactions per day. Many of these transactions are part of the
core CRM and customer service applications, but a huge number relate to custom
applications, making Salesforce one of the largest Platform as a Service (PaaS) providers.

What Is Salesforce DX?

Salesforce’s ease of customization has led to an unusual challenge. Whereas developers
in most languages have been employing methods such as continuous delivery for a
decade or two, most Salesforce customers have been slow to adopt such methods. There
are two reasons for this: the Salesforce platform itself and the developers managing it.

First of all, the Salesforce platform behaves very differently from a standard server
or custom application. You can’t build a local instance of Salesforce on a developer’s
laptop, for example. Instead, Salesforce runs centrally “in the cloud,” and you deploy
functionality by updating a specific Salesforce instance. There are limits to what types
of changes can be deployed, and tracking changes has been challenging, meaning that
developers often needed to log in to a target org and make customizations manually to
complete a deployment.

The other reason the Salesforce world has been slow to adopt practices such as
continuous delivery is that Salesforce development is a specialized skill requiring
declarative/admin skills, with programmatic/coding skills being a nice-to-have addition
in many cases. Because most Salesforce developers don’t do custom development on
other platforms, this led to a lack of cross-pollination between ideas that were common
in the Java, JavaScript, .NET, and Ruby worlds. Even when traditional developers were
transplanted into a Salesforce project and reskilled to work on Apex or Lightning, they
found that their customary build, test, and deploy tools were largely useless in the new
Salesforce world. Instead they were provided with “change sets,” an Ant Migration Tool,
and very few examples of how one might build a comprehensive CI/CD pipeline for this
platform. The brave few ventured into configuring complex Ant “targets” using XML and
triggering them using Jenkins. But by and large, teams cobbled together a mix of manual

CHAPTER 1 INTRODUCTION

steps and light automation, tackling deployments one at a time, and as infrequently as
they could get away with.

The challenge of managing Salesforce deployments was one factor that led Salesforce
to earn a very dubious accolade. In the 2017 Stack Overflow international developer
survey, Salesforce tied with SharePoint as the “most dreaded platform to develop on.”*
Ouch. Needless to say, that is not one of the accomplishments Salesforce is most proud of.

When companies were using Salesforce solely for sales force automation, it could be
a “shadow IT” product managed by the Sales Operations teams. But as its capabilities
and adoption expanded beyond CRM, Salesforce has moved to being a core part of
companies’ IT infrastructure. An increasing number of CIOs and IT Directors recognized
the centrality of Salesforce to their businesses and the growing complexity of their
Salesforce implementations. Salesforce was increasingly fielding challenging questions
in terms of how companies could adopt DevOps best practices, such as maintaining and
deploying all configuration from source control.

These demands eventually led Salesforce to establish an internal tiger team known
as “Salesforce DX,” dedicated to improving the Salesforce Developer eXperience. The
team was assembled in 2016, with several seasoned groups working in parallel on
improving different aspects of the developer experience. At Dreamforce 2017, Salesforce
DX went live.’

Prior to Salesforce DX, the only way to develop on Salesforce was org-based
development, where a Salesforce org itself is the source of truth. Even if teams managed
to use version control and automated deployments to update their testing and
production orgs, version control necessarily lagged behind the development org. This
meant that changes to the development org were often never tracked in version control,
and that it was entirely possible to make changes in the development org that were
difficult or impossible to track and deploy systematically. Since the org was the source of
truth, anyone wanting to see the latest, integrated version of a component had to check
the org, since version control could always be lagging behind.

Org-based development meant that even the most sophisticated development
teams were trapped in a conundrum: they could provide each developer with their own
separate org, or they could have all developers work in a single org. Separate orgs meant

12017 Stack Overflow Developer Survey, https://insights.stackoverflow.com/survey/
2017#technology-most-loved-dreaded-and-wanted-platforms

Swww.salesforce.com/video/317311/

4

https://insights.stackoverflow.com/survey/2017#technology-most-loved-dreaded-and-wanted-platforms
https://insights.stackoverflow.com/survey/2017#technology-most-loved-dreaded-and-wanted-platforms
http://www.salesforce.com/video/317311/

CHAPTER 1 INTRODUCTION

it was easy for developers to isolate their changes from the work of others, but orgs
quickly got out of sync. Sharing a single org provides continuous integration (developers’
work is always integrated in a single org), but it is extremely challenging to track and
deploy one’s own changes in isolation from the rest of the team. Vendors such as Flosum
and AutoRABIT offer sophisticated synchronization tools, but the whole system is
fundamentally flawed.

The most notable innovation to launch with Salesforce DX is a new type of Salesforce
org called a scratch org. For the first time, scratch orgs allow a Salesforce environment
to be created entirely from version control. This means that for the first time, version
control can be the source of truth, rather than always lagging behind the state of
development orgs. Developers can create private development environments at will, and
those environments can be quickly updated from version control as other members of
the team integrate their own changes.

Salesforce DX thus finally allows for source-driven development. Source-driven
development in turn opens the door to adopting most of the other technological and
cultural processes known broadly as DevOps. And DevOps has been shown to be a

massive contributor to innovation, effectiveness, and corporate success.

What Is DevOps?

This book represents a convergence of two major movements within the IT world: the
movement to Software/Platform as a Service (SaaS/PaaS) and the DevOps movement.
The goal of SaaS and PaaS is to provide a scalable, global, high-performing foundation
for companies to invest in their core competencies rather than having to maintain
their own infrastructure. In addition, centralized Saa$ applications provide powerful
capabilities without introducing software upgrades, version incompatibilities, and the
other headaches associated with maintaining your own software.

Salesforce provides SaaS solutions for customer relationship management (CRM),
sales force automation (SFA), customer service, and more, while also offering a PaaS
platform for deploying custom code (Heroku and the Lightning Platform). Salesforce
DX now provides the raw capabilities to enable a DevOps workflow on Salesforce. The
goal of this book is to explain how you can build a powerful and comprehensive DevOps
workflow for Salesforce. The power of this can’t be overstated: you can finally deploy
the world’s most innovative platform using the world’s most effective and efficient
techniques.

CHAPTER 1 INTRODUCTION

Within the literature and tooling providers for DevOps, there is a tremendous focus
on enabling Infrastructure as a Service (IaaS) as an evolution away from managing your
own servers. “DevOps solution providers” include a massive array of TaaS providers
(such as AWS, Google Cloud, and Azure), as well as tools for managing software
packages, database configurations, application monitoring, and so on. Almost every
“DevOps tool” provider is addressing a need in the IaaS space so that organizations with
legacy applications and infrastructure can begin to manage those in an efficient and
orderly way.

It’s interesting to note that almost all of these “DevOps tools” are helping to solve
problems that simply do not exist for Salesforce users. Simply moving to Salesforce
solves most every problem with infrastructure, security, monitoring, databases,
performance, Ul, and more. One reason Salesforce users have been so slow to adopt
DevOps practices is that most of them are simply not needed. Sort of.

The reality is that functionality developed on Salesforce simply exists at a higher
level: application configuration instead of infrastructure provisioning. You basically
never have to worry about Oracle database patches or that Salesforce will lose your
data; but that doesn’t solve the problem of how to ensure that your database fields are
consistent across all of your Salesforce instances. The exact same principles championed
across the DevOps community are entirely applicable in the Salesforce world, they
simply need to be adjusted to the particulars of the Salesforce platform.

DevOps can be understood as bringing together the practices of continuous delivery
(and all that entails, such as version control) with principles of lean software engineering
and an inclusive focus spanning from development to operations. DevOps builds on
principles that have evolved over decades in manufacturing and software engineering
and brings them together under a surprisingly catchy moniker.

Version control, continuous integration, continuous delivery, DevOps—what’s
that all mean? Version control is a mechanism to track and merge changes smoothly.
Continuous integration means that teams should develop their work on a common
master branch, minimize branching, and run automated tests after every change to the
master branch. Continuous delivery means that all the configuration needed to recreate
your application is stored and deployed from version control in an automated way. And
DevOps means that both developers (who create new functionality) and operators/
admins (who maintain production systems) should work together to optimize the flow
of valuable work to end users, build software with monitoring in mind, and use the same
mechanisms (such as version control) to both maintain and improve applications.

CHAPTER 1 INTRODUCTION

DevOps has been summarized by Jonathan Smart as “Better value, faster, safer,
happier” “Better” implies continuous improvement, always striving to improve
the quality of not only our work but also our processes. “Value” means using agile
development and design thinking to address and adapt to the needs of end users.
“Faster” means using techniques such as continuous delivery to release more
quickly. “Safer” means integrating automated quality and security scanning into the
development workflow. And “happier” refers to continuously improving both the
development experience and the customer experience of users.

It's worth noting that the “DX” in Salesforce DX stands for “Developer Experience.”
The implication is that Salesforce is investing in providing a better experience for
those developing on its platform, not just for its end users. Although the Admin/App
Builder experience for Salesforce has always been very good, professional developers
have historically been an afterthought. As a developer who moved onto the Salesforce
platform, I found it confusing and frustrating that version control was not a common
practice, and that Salesforce lacked sophisticated tools such as autoformatting and
ESLint that make it easier to write good code in JavaScript.

In The Phoenix Project® and The DevOps Handbook,” Gene Kim popularized the
idea that there are “three ways of work” or three movements that summarize DevOps.
They are continuous delivery, the “left-to-right” movement of features and fixes from
development into production; continuous feedback, the “right-to-left” movement of
feedback from testers and production to developers; and continuous improvement, the
ambition to always improve the “system of work” that is used to deliver the work itself.

Traditionally, software development was depicted as a linear process similar to an
assembly line. But the DevOps community often uses variations on a circle or infinity
loop as shown in Figure 1-1 to indicate that software development must be iterative
and ongoing. Each stage in the development lifecycle flows into the next in an ongoing
pattern. By spanning the entire lifecycle from planning and development to operation in
production, DevOps promotes collaboration across teams to maximize the entire value
chain or flow of valuable work to end users.

5Gene Kim, Kevin Behr, and George Spafford, The Phoenix Project (IT Revolution Press, 2013).

"Gene Kim, Patrick Debois, John Willis, and Jez Humble, The DevOps Handbook (IT Revolution
Press, 2016).

CHAPTER 1 INTRODUCTION

TEST MONITOR
N~
(&)
% &
U, 2
/4/(/ Q@ (@]
fa) o))
= (/@ m
A
2 ¢) >
@ < =
\)GJ (/b m
<L %
= -
é\\
oo
PLAN RELEASE

Figure 1-1. A DevOps infinity loop

The Research on DevOps

Since 2012, Puppet Labs has produced an annual survey and report entitled the “State of
DevOps Report.” That report has become increasingly methodical and influential, especially
as Puppet Labs was joined by DevOps Research and Assessment (DORA) group. In 2018,
the cumulative research from this report was published as the book Accelerate by Nicole
Forsgren, Gene Kim, and Jez Humble (co-leaders of DORA).® In that book (as well as in
the annual “State of DevOps” Reports), they provide scientific verification of long-held
convictions that adopting DevOps practices predicts software delivery performance, positive
organizational culture, and organizational performance (both financial and nonfinancial).
Accelerate lays out the research that use of continuous delivery (version control,
CI/CD, etc.) leads to increased software delivery performance, which in turn improves
corporate performance. High-performing teams are able to spend 66% more of
their time doing new (constructive) work and 38% less time on issue resolution and
unplanned work compared to low-performing teams. In addition, teams with high
Software Development Performance (SDP) exceeded those with low SDP with

e 46 times more frequent code deployments
e 2,555 times shorter lead time from commit to deploy
o 7times lower change failure rate (1/7 as likely for a change to fail)

e 2,604 times faster mean time to recover from downtime

8IT Revolution Press, 2018.
8

CHAPTER 1 INTRODUCTION

Software Delivery Performance also predicts corporate performance. High software
delivery performers are twice as likely to exceed their commercial goals (profitability,
market share, and productivity) and their noncommercial goals (quantity of goods and
services, operating efficiency, customer satisfaction, quality of products or services, and
achieving organization or mission goals).

Another long-standing belief in the DevOps community is that positive
organizational culture leads to great results for the company. Salesforce themself
has emphasized such a positive organizational culture from its outset, and many
organizations in the Salesforce ecosystem such as Appirio also embody principles such
as openness and philanthropy. The State of DevOps Report confirms the importance
of culture for organizational performance. That same survey confirms that the use of
continuous delivery itself predicts a positive organizational culture, high job satisfaction,
high delivery performance, and employee engagement. The use of continuous delivery
(version control, CI/CD, etc.) also leads to less rework, less deployment pain, and thus
less burnout.

About This Book

This book is divided into four parts. Part 1: Foundations, provides an introduction

to Salesforce and to DevOps concepts. Those new to Salesforce will find Chapter 2:
Salesforce to be a helpful overview of the Salesforce platform, including core concepts
and challenges that might not be obvious at first.

Those who are new to DevOps will find Chapter 3: DevOps to be a concise summary
of the latest best practices and research on this topic. There is nothing in that Chapter that
will be new or groundbreaking for those who are very familiar with DevOps, although it
may provide a helpful recap and summary. The reason for providing a comprehensive
overview of DevOps is to provide a single reference for people in the Salesforce world who
may be unfamiliar with these practices. Books such as Continuous Delivery by Jez Humble
and David Farley® will allow readers to go much deeper into these concepts.

The last three parts of the book cover the Salesforce development lifecycle, all
summarized into three stages: development, delivery, and operations. These three stages

are common to all software development, and are in fact common to manufacturing

9Jez Humble and David Farley, Continuous Delivery: Reliable Software Releases Through Build,
Test, and Deployment Automation (Addison-Wesley Professional, 2011).

CHAPTER 1 INTRODUCTION

and product development in general. Things are made, then they’re shipped, and finally
they're used. Along the way, they're generally bought as well, which implies that what is
being created has value.

The only reason things are made is in the hope that they will bring greater benefit
than they cost to make or buy. The difference between the benefit something brings and
the cost of making it is known as value added. Lean software development, and lean
practices in general, talk extensively about value creation, value streams, and value-
added steps, in contrast to what is known as waste. The goal of DevOps is to reduce
waste, and to enable teams to deliver value as effectively as possible.

Thus when we talk about development, delivery, and operations, we are
primarily talking about the stages in which value is created (in the form of new
software functionality), delivered (including testing and deployment), and realized or
experienced by end users. Part 2: Salesforce Dev provides a concise overview of how to
maximize the ease of developing on Salesforce and the quality of the work. Of particular
interest is how to develop so that the subsequent testing, deployments, and operations
can be as successful as possible. The very definition of DevOps implies that developers
keep operation in mind. That means that things are developed so they can be delivered
as quickly as possible and operated successfully, and that defects can be discovered and
features improved in the most efficient way.

Part 3: Innovation Delivery covers the stages in which Salesforce DX really shines.
Software deployments in general are painful; and Salesforce deployments have been
notoriously painful. The pain of deployments drives people to do them as infrequently as
possible. This means that in addition to being delayed to once a week or once a month
(or less), deployments are done in large batches. A fundamental concept in lean software
development is to develop and deploy in small batches. This enables the highest value
features or fixes to be deployed as soon as possible, reduces the risk and impact of each
deployment, and opens the door to fast feedback.

Deployments aren’t just about moving functionality into production; moving
functionality into testing environments also requires deployments. So delays in deployment
imply delays in testing. Delaying the start of testing doesn’t always mean that go-live can
be delayed, so the QA and testing process in Salesforce projects is often squeezed. The
high pressure to test quickly to avoid further delays in feature delivery has meant that the
entire testing ecosystem in Salesforce is generally underdeveloped, with an overemphasis
on repetitive manual testing. Part 3: Innovation Delivery provides an overview of how to
deploy, test, and release Salesforce features, including both older technologies and the
newer capabilities such as unlocked packages that Salesforce DX provides.

10

CHAPTER 1 INTRODUCTION

Part 4: Salesforce Ops (Administration) is on operations, or how Salesforce
capabilities are used in production. As many people have commented, software
spends most of its life in production, so it makes sense to consider that phase carefully,
including how to measure and detect issues as quickly as possible. On many platforms,
operations is equivalent to administration. But in the Salesforce world, the term “Admin”
is overloaded to mean both “keeping the lights on” and building new capabilities
declaratively. Salesforce’s “Awesome Admins” are thus responsible for the majority of
development on the platform, in the form of adding objects and fields to the database,
modifying business logic declaratively, and changing the UI through layouts. The tension
between developers and operations in Salesforce is ironically the opposite of how it is
on most platforms. On most platforms, it is the admins who are screaming to keep the
system stable and running, while developers are clamoring to release new capabilities.
In Salesforce, however, it is admins who are more likely to make changes directly in
production at the behest of users and to be reluctant to follow the disciplined deployment
processes that developers are forced to adhere to. Locking admins out of production (at
least in the sense of preventing them from changing the database, business logic, or UI)
is actually a requirement for realizing the goals of DevOps. But for this to be palatable,
there has to be a smooth and admin-friendly process in place whereby small declarative
changes can easily be made, committed, and deployed to production. Thus the final
section speaks to how admins can participate in the DevOps process.

For some companies who have adopted continuous delivery for Salesforce, the first
skill new Salesforce admins are taught is how to use Git, so that they can make their
changes in a development environment, but track and deploy them by themselves. And
for those who are skeptical whether their admins will ever adopt Git, we'll discuss the
variety of options available to help Admins keep their orgs stable while still churning out
business value at the speed of clicks.

Background

This book arose out of a 4-year focus on the Salesforce development lifecycle, especially
Salesforce DX, while working at Appirio. Appirio is a consulting company focused
exclusively on cloud technologies, primarily Salesforce. From the beginning, the
company has emphasized effective development processes and worked hard to bring
customers the most value in the shortest amount of time. I joined Appirio in 2014 as a
technical consultant and very soon began evangelizing the use of version control and

11

CHAPTER 1 INTRODUCTION

continuous integration for Salesforce. At the time those practices were quite rare on
Salesforce projects. But my colleagues and mentors at Appirio regularly encouraged me
that this was indeed a critical need across most projects. My focus became how to adapt
these practices to the peculiarities of Salesforce and to help others do the same.

In 2017, after 2 years of working on side projects related to code quality and
development automation, Appirio agreed to establish an internal team known as Appirio
DX to focus on tooling, training, and evangelism to bring DevOps principles to all of our
projects. In 2018 we released Appirio DX as a commercial tool that could be used by
anyone to help ease the Salesforce development process. In 2019 I joined Copado, one of
the leading DevOps tool providers for Salesforce, to work on the next generation of their
platform.

I've been inspired by Appirio and Copado’s commitment to empowering developers
and admins, and am grateful for their providing an environment in which I could learn
so much and be free to chase the wild but important idea that DevOps is critical to
delivering innovation while building and maintaining trust.

12

PART |

Foundations

Before getting into the details of how to implement DevOps on the Salesforce platform,
it’s important to establish some foundations. What is Salesforce, and how is it different
from other kinds of application or platform? And what do we mean when we talk about

DevOps?

CHAPTER 2

Salesforce

It’s important to clarify what we mean by “Salesforce” in this book, since the company
has grown by acquisition, and the techniques shared in this book do not apply to all of
the products that now fall under the Salesforce brand.

What makes Salesforce different? How is DevOps done in the Salesforce world? What
is Salesforce DX? And how does it facilitate DevOps on Salesforce?

“Salesforce” vs. Salesforce

Salesforce is a vast and growing company with a vast and growing suite of products.
It’s a challenge even to keep up with the names of the various products that Salesforce
releases or attains through acquisition.

The focus of this book is on what’s known internally at Salesforce as “Salesforce
Core.” Salesforce Core consists of Sales Cloud (the core CRM application), as well as
Service Cloud (for customer support), Community Cloud (to create customer-facing
web applications), and the Lightning Platform (previously known as Force.com). The
first three of these constitute the SaaS part of Salesforce, while the Lightning Platform
constitutes the PaaS component. All of these components of Salesforce Core work
together seamlessly.

In the architecture of Salesforce, “Salesforce Core” is a massive, multi-gigabyte JAR
file that is deployed across data centers and “Pods” around the world to allow secure
multitenant access to customers via the Internet.

15
© Andrew Davis 2019

A. Davis, Mastering Salesforce DevOps, https://doi.org/10.1007/978-1-4842-5473-8_2

CHAPTER 2 SALESFORCE

The “markitecture” of Salesforce (how Salesforce is presented externally by their
marketing department) depicts a vast and cohesive range of other products such
as Tableau, Heroku, Marketing Cloud, and Commerce Cloud, but these are all truly
separate products, generally the result of acquisitions. Sharing data or functionality
between these products and Salesforce Core requires some type of integration.

Although Salesforce is working hard to integrate these products in a way that
is transparent to customers, these other products are developed and deployed in
fundamentally different ways. For example, the methods of developing and deploying
customizations to Marketing Cloud or Commerce Cloud are entirely different from the
way customizations are developed and deployed to Salesforce Core.

Therefore, throughout this book, whenever we refer to “Salesforce,” we are referring
either to the company itself or to this Core platform, and not to any of these other

products.

How Is Salesforce Different?

As mentioned earlier, Salesforce provides both Saa$S (Software as a Service) and a PaaS
(Platform as a Service). By contrast, much of the focus elsewhere in the DevOps world
is in moving from on-premise infrastructure to using IaaS (Infrastructure as a Service).
Figure 2-1 shows an illustration of the differences between these four modes and how
they represent progressive simplifications of what companies themselves have to

manage.

16

CHAPTER 2 SALESFORCE

i On-Premise (0 Ingast(ucture asa) /Platform asa Sewic;\ [Sthware asa Service\
ervice (l1aaS) (Paas) (SaaS)

Data Data Data Data
Configuration Configuration Configuration Configuration
Applications Applications Applications Applications

Database Database Database Database
Runtime Runtime Runtime Runtime
Middleware Middleware Middleware Middleware
o/s o/s O/s OIS
Virtualization Virtualization Virtualization Virtualization
Servers Servers Servers Servers
Storage Storage Storage Storage
\ Networking / \ Networking / Networking Networking
\J AN /)
You Manage Others Manage

Figure 2-1. On-premise systems require you to manage all of the resources
yourself. IaaS, PaaS, and Saas$ delegate progressively

Managing the Salesforce development lifecycle requires a unique skillset and

approach compared to most other platforms. You can say that the DevOps movement

was jointly realized by both developers (working in traditional languages such as Java)

and system admins or operators (working on traditional infrastructure such as servers

and databases). There are thus a vast range of well-established tools and techniques in

the DevOps world for developing and deploying code and for managing and updating

infrastructure. Unfortunately, almost none of them can directly be used for Salesforce.

To illustrate this, let’s look at how teams would manage infrastructure using AWS

or deploy an application onto Heroku (a PaaS product also owned by Salesforce). Every

aspect of AWS infrastructure can be represented using JSON configuration. JSON can

be used to define which AWS services are used, which data centers they are running in,

17

CHAPTER 2 SALESFORCE

and how they’re configured. The AWS CLI (command-line interface) can be used in a
continuous integration tool such as GitLab CI to automatically deploy updates to AWS
infrastructure every time the JSON configuration changes.

Similarly, Heroku provides a platform to deploy custom application code (in Java,
PHP, Ruby, etc.) and to specify which services (such as Postgres databases) are needed
to support that application. The Heroku CLI can be used to automatically update
the application whenever the codebase changes. Heroku also provides a tool called
Pipelines that allows you to visualize and manage the entire development lifecycle
without requiring a third-party CI tool.

AWS’s “infrastructure as code” approach is a delight for sysadmins, since it allows
them to track changes and automate updates. Similarly, Heroku removes the vast
majority of the setup and dependencies that developers would need to deploy their
applications. Heroku provides a true Platform as a Service that is ready to receive
custom-coded applications built in a traditional way: from the ground up.

Although we can say that Salesforce’s Lightning Platform is a PaasS, it actually works
extremely different from true PaaS systems such as Heroku. The Lightning Platform
allows you to write custom server-side or client-side code, but that code can only run
on Salesforce. Although Salesforce allows you to define custom database tables and
fields, that schema cannot be loaded into any database other than Salesforce’s. These
customizations are effectively just changes to the configuration of one Salesforce
instance. It's therefore more accurate to say that every customization you can make to
Salesforce is basically a Salesforce configuration change.

Salesforce is actually just a big application that happens to allow for infinite
customization. But this means that the tools used for managing other IaaS and Paa$
products cannot be used to customize Salesforce. Fortunately, however, the release of
Salesforce DX means that the techniques and principles used with other technologies can
now be ported over to Salesforce. That is the focus of this book.

DevOps in the Salesforce World

Moving from on-premise CRM software to Salesforce removes the need for servers and
manual software upgrades. Consolidating customer support and online community
management onto the CRM platform removes the need to integrate sales, support, and
community applications. Migrating legacy applications onto the Salesforce platform
allows those applications to share data and processes with the rest of the business.

18

CHAPTER 2 SALESFORCE

Because moving to the cloud dramatically simplifies many of the challenges in
delivering IT functionality, many Salesforce customers have been able to innovate
quickly without having DevOps practices in place. But even without the hassle
of managing servers and building software from scratch, the inevitable growth of
complexity eventually causes companies to struggle with issues like orgs getting out of
sync and delays in deploying functionality.

Salesforce solves so many IT headaches, it’s almost easy to overlook the fact that it’s
created some new ones.

Salesforce has unleashed the ability for companies to focus on their core competencies,
instead of struggling to provide basic IT services. Salesforce admins and developers
are empowered to spend their time directly creating business value. But with multiple
Salesforce admins and developers working at companies year after year, more and more
Salesforce customers are finding themselves drowning in all of that “business value.’

If you have tens of thousands of components, each providing business value, but no
systematic way of tracking, managing, or deploying them, you now have a new form of
business pain and chaos. Far too much of a good thing.

What Is Salesforce DX?

Salesforce DX is an initiative begun by Salesforce in 2016 and that launched publicly at
Dreamforce 2017. “DX” here stands for Developer eXperience. The goal of the initiative
is to reenvision the developer experience on Salesforce with a focus on how to empower
the Salesforce development community with the tools and processes needed to develop
safely and effectively.

Salesforce DX is a very broad initiative, including several teams at Salesforce focused
on environment management, custom coding, developer tooling, APIs, and more.
Although the Salesforce DX teams tackle very diverse needs, their main focus (at least
initially) is to improve the developer tooling and development lifecycle.

The tools and capabilities included in Salesforce DX are made available for free to
all Salesforce customers. In that sense, Salesforce DX is an important complement to
Trailhead, Salesforce’s free, self-paced, gamified, interactive learning platform. Trailhead
is also a major investment for the corporation. Together these are intended to support
the growth of skilled Salesforce professionals and to make it easier for those workers to
build and innovate on the platform. These multiyear strategic initiatives help ensure that
talent shortages and worker inefficiency will not be the limiting factor on the company’s
aggressive 30% annual growth.

19

CHAPTER 2 SALESFORCE

What Are the Elements of Salesforce DX?

Salesforce DX is a new way of developing and collaborating on Salesforce. At its heart are
two main concepts:

e Version control is the source of truth for each project. Development
is done principally in scratch orgs (temporary Salesforce
environments created from version control) as opposed to
Developer sandboxes. Scratch orgs are discussed more in Chapter 6:
Environment Management.

o Code and metadata should be subdivided into packages representing
discrete functionality. This reduces complexity and allows packages
to be developed and deployed independently of one another.
unlocked packages are discussed more in Chapter 9: Deploying.

In addition, Salesforce DX includes new developer tools: the Salesforce
CLI and a set of extensions for the Visual Studio Code IDE. The
Salesforce CLI replaces an earlier set of Ant-based tools called the

Ant Migration Tool, while the VS Code extensions replace the original
Force.com IDE built on Eclipse. Salesforce’s choice to build on Visual
Studio Code was prescient, since that free tool has come to dominate
the code editor marketplace.

All of these capabilities and tools are built on top of Salesforce’s existing APIs
such as the Metadata API, and so continuing to improve those APIs has also been the
responsibility of the DX team. A persistent challenge for teams hoping to automate their
development lifecycle has been that some configuration settings can’t be deployed
automatically. Meanwhile, the platform continues to expand its capabilities. Many
Einstein and Community capabilities were not initially supported by the APIs. A major
victory for the DX team was enforcing automated processes behind the scenes to ensure
that all new features on the platform are API accessible when they are released.

In addition, the DX teams have done a significant amount of developer outreach and
evangelism to help customers understand how to take advantage of these capabilities.
It's my hope that this book can also be of benefit in this effort.

20

CHAPTER 2 SALESFORCE

The Dev Hub

Some aspects of Salesforce DX are installed on a developer’s local machine or CI runner,
while other aspects are capabilities built on top of Salesforce itself. The capabilities built
into Salesforce include the ability to create new, ephemeral Salesforce orgs called scratch
orgs and also to create and publish versions of unlocked packages. To make use of these,
a development team needs to designate a production Salesforce org to be a Dev Hub and
enable the “Dev Hub” setting in that org.

Enabling Dev Hub has no risk or side effects to the org. And since scratch orgs
created from that org carry no data or metadata, giving developers access to a Dev
Hub does not constitute a security risk. There is even a free license type called “Free
Limited Access License” that can be enabled in a production org to allow developers or
consultants to use a Dev Hub even if they wouldn’t otherwise have a user license in that
org. This license type does not expose any data or metadata in the production org; it just
gives access to use the Dev Hub functionality.

Each developer also needs appropriate permissions on that Dev Hub (see
“Permissions Needed to Use the Dev Hub” in Chapter 6: Environment Management).
For training purposes, Developer Edition orgs, including those created in Trailhead,
can be used as Dev Hubs, although their limits are too restrictive for production use.

Scratch Orgs

As mentioned, scratch orgs are temporary, disposable environments similar to virtual
machines. They are populated with code and metadata stored in version control and can
be used to support development, testing, and continuous integration. These orgs live for
only 7 days by default, although they can be configured to live up to 30 days. Scratch orgs
are used for source-driven development, while sandboxes remain useful as long-running
test environments. Packages and metadata are developed in scratch orgs and can be
deployed to sandboxes and production using CI/CD.

Second-Generation Packaging

One of the most important characteristics of our bodies is the existence of many internal
organs that each perform specialized functions while also working together as a whole.
Well-organized software follows a similar pattern, known as modular architecture.
The division of software into independent modules is a long-standing best practice that
makes software easier to understand, maintain, and update.

21

CHAPTER 2 SALESFORCE

Modular architecture in software exists at many levels, such as methods, classes,
files, and packages. Each of these represents a layer of abstraction that brings similar
benefits. The general idea is that the details of what is inside the module should not
concern other parts of the system outside the module. What is of concern is the inferface
between that module and the rest of the system, for example, the input parameters and
return values for a method. This allows each module a degree of independence, to be
internally changed and refactored, as long as they don’t change their interface with the
rest of the system. Similarly, when viewed from outside the module, all that matters
is its interface. By hiding the underlying details, the whole system becomes easier to
understand and work with.

Modules that comprise collections of many files that all perform related functions
are called packages. Most if not all high-level software languages support different types
of packages such as JavaScript modules, Ruby Gems, or .NET NuGet packages. This type
of packaging is enormously helpful for developers since it allows them to build on pre-
packaged solutions such as any of the 800,000 JavaScript modules on NPM' rather than
attempting to recreate such solutions themselves.

Salesforce has long supported the creation and installation of managed and
unmanaged packages on its platform. Managed packages are typically used by ISVs
to create commercial applications, since they hide their internal IP and prevent most
functionality from being modified. Unmanaged packages are often used as a mechanism
to share or install groups of related functionality. The AppExchange has been a market-
leading business “app store” since its inception,? and most of the “apps” available there
are in fact managed or unmanaged packages that can be installed in a Salesforce org.

The challenge is that although unmanaged packages can be used to install related
functionality, the metadata within that package does not remain part of that package.
The package exists like a cardboard shipping container that does not perform any useful
function once it has been delivered and unpacked.

The challenge with managed packages is that the method for creating and updating
them is very challenging, involving the use of a separate Developer Edition org,
packaging orgs, namespaces, and so on. For these reasons, few enterprises build or use
managed packages to migrate functionality between their environments.

The consequence is that although most Salesforce orgs make use of commercial
managed packages to extend their org’s functionality, homegrown customizations to

'www .modulecounts.com/
2www . salesforce.com/company/news-press/press-releases/2018/12/181206-s/

22

http://www.modulecounts.com/
http://www.salesforce.com/company/news-press/press-releases/2018/12/181206-s/

CHAPTER 2 SALESFORCE

orgs are almost never organized into packages. It's common for large enterprises to have
tens of thousands of unpackaged pieces of metadata (classes, objects, fields, Flows, etc.)
that exist together as an undifferentiated collection.

Some organizations have disciplined themselves to use pseudo-namespace prefixes
to distinguish related pieces of functionality, but for the most part it is not easy to see
which pieces of metadata are closely related to one another without taking time to
inspect their contents.

To address these problems, Salesforce DX introduces two types of second-generation
packages: unlocked packages and second-generation managed packages. The former
is mostly for use by enterprises, since it does not hide its contents or prevent them from
being modified after they've been installed. The latter is a more flexible successor to
managed packages, designed for ISVs to be able to deploy and update functionality while
still retaining control over most of the contents of those packages.

This book is mostly oriented toward helping enterprises to manage their
customizations, and so we discuss unlocked packages at great length. Fortunately,
the methods for creating and deploying unlocked packages and second-generation
managed packages are almost identical so most of the content in this book is relevant to
second-generation managed packages as well.

Metadata API vs. SFDX Source Formats

Another important innovation in Salesforce DX was recognizing that the file format
made available by the Metadata API was not conducive to team development in version
control. It's common for standard Salesforce objects like the Account object to be used
by many applications and extensively customized. Those objects are represented by the
Metadata API as XML files that can grow to tens or hundreds of thousands of lines long.
Naturally, developers working collaboratively on these objects frequently encounter
merge conflicts, issues with sorting tags, and invalid XML.

Salesforce DX brought a new project structure and source file format. Salesforce
DX source format uses different file extensions and folder structure compared to the
Metadata API format that Salesforce developers are accustomed to. Salesforce DX
also provides a new source shape that breaks down large files to make them easier to
manage with a version control system. Listing 2-1 shows the traditional Metadata API file
structure, while Listing 2-2 shows the equivalent files converted into the “source” format.
Note that -meta.xml is used as the file suffix for XML files, and the complex .object files
have been decomposed into their subcomponents.

23

CHAPTER 2 SALESFORCE
Listing 2-1. The traditional “Metadata API” structure of Salesforce files

SIC

|— applications
| b DreamHouse.app

— layouts

| |— Broker_c-Broker Layout.layout

| b Property c-Property Layout.layout
— objects

| |— Bot_Command_c.object

| — Broker c.object

| |— Property_ Favorite c.object

| L— Property c.object

L— package.xml

Listing 2-2. The new “Source” structure of Salesforce files

force-org
L— main

L— default

— applications
| L— DreamHouse.app-meta.xml

— layouts
| |— Broker_ c-Broker Layout.layout-meta.xml
| L— Property c-Property Layout.layout-meta.xml
L— objects
L— Broker c
— Broker_c.object-meta.xml

|— compactlLayouts
| L— Broker_Compact.compactLayout-meta.xml

— fields
| |— Email_ c.field-meta.xml
| — Mobile_Phone_ c.field-meta.xml
| L— Title c.field-meta.xml
L— listviews
L— All.listView-meta.xml

24

CHAPTER 2 SALESFORCE

You can read in detail about this format in the Salesforce DX Developer’s Guide.?

Salesforce Command-Line Interface (CLI)

The Salesforce CLI is a powerful command-line interface that simplifies development
and build automation when working with your Salesforce org. Based on the Heroku CLI,
the Salesforce team built a flexible, open source CLI engine called OCLIF, the Open CLI
Framework. The Salesforce CLI was the first tool built on OCLIE although other tools
have followed.

The Salesforce CLI allows common Salesforce API commands to be called from the
command line and also encapsulates complex processes like synchronizing source with
a scratch org in concise commands. Importantly it also allows the output from those
commands to be exported in JSON format so that it can easily be parsed and possibly
passed as input to other commands.

The Salesforce CLI can be used directly on the command line, included in scripts
such as CI jobs, and is also the underlying engine powering the Visual Studio Code

extensions.

Summary

Salesforce is an extremely powerful and versatile platform. But it’s unique in many ways
and it hasn’t been easy for professional developers to adapt their tools and techniques to
working on this platform.

Salesforce DX is a major strategic initiative from Salesforce to ensure that industry
best practices such as DevOps and modular architecture are possible on the platform.
Salesforce DX includes many components such as scratch orgs, unlocked packages, and
the Salesforce CLI. It also encompasses many teams such as the Apex and API teams
working behind the scenes to empower these capabilities.

The significance of this shift to DevOps is explained in detail in the next chapter.

Shttps://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_
source_file format.htm

25

https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_source_file_format.htm
https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_source_file_format.htm

CHAPTER 3

DevOps

DevOps has become a trending topic in the tech industry over the last decade, gaining
the attention of both developers and the C-suite. Despite some legitimate debate over
what it does and does not entail, this interest in DevOps has elevated the discussion
around software development practices and the impact they can have on how businesses
rise and fall. Figure 3-1 gives one indication of the acceleration of interest in the topic of
DevOps over time.

Interest over time 3 O <L
Mar 2014
Devops
Continuous Integration 11
automated testing
l- " A AP T _‘-:';‘w.—- Note

Figure 3-1. Google Trends ranking showing the acceleration of interest in DevOps
compared to related terms

The practice of DevOps is to regard IT processes as central to a business’s ability to
deliver value to its customers and to continually improve the process of delivering new
functionality while ensuring quality and stability. DevOps is a portmanteau of the terms
“Dev” (Development) and “Ops” (Operations). The term implies collaboration between
these teams, where they're motivated by the shared goal to enhance both innovation

27
© Andrew Davis 2019

A. Davis, Mastering Salesforce DevOps, https://doi.org/10.1007/978-1-4842-5473-8_3

CHAPTER 3 DEVOPS

and stability. Achieving this goal involves integrating long-standing development
practices—such as continuous integration, continuous delivery, automated testing, and
infrastructure as code. As such, it’s become a catch-all term for development process
improvements both new and old.

In practice, DevOps is not something you're ever “done with.” In that sense it’s
like “collaboration” or “efficiency”—a principle to adopt and a goal to always improve
upon. One core metric used to determine successful implementation of DevOps is
called “lead time”—how long does it take your organization to deploy a single line of
code to production? It is important that any changes delivered to production be well
tested and made in a controlled way. But increased delays in delivering features to
production mean greater delays in getting feedback. Delayed feedback means that
improvements and bug fixes are delayed, causing inefficient context switching as
developers repeatedly revisit work that they may not have touched for days, weeks, or
even months.

There are many examples of companies like Amazon, Google, and Etsy who
continuously deliver innovation as a result of automating and optimizing their
development processes. For companies like these, their development processes are
central to their businesses. And their CEOs and other leaders recognize IT process
improvement as being every bit as critical as reducing their overhead and building
market share. There are also many companies in industries like communication,
manufacturing, and banking (Capital One is a notable example), who have shifted to
viewing themselves as technology companies, with technological innovation as a core
competency.’

This chapter provides a brief overview of DevOps, especially for the benefit of
Salesforce practitioners who are new to these concepts. There are many excellent
books that delve deeply into this topic—among others, Accelerate by Nicole Forsgren,
The DevOps Handbook by Gene Kim, and Continuous Delivery by Jez Humble and
David Farley.

'https://hbr.org/2016/04/you-dont-have-to-be-a-software-company-to-think-like-one

28

https://hbr.org/2016/04/you-dont-have-to-be-a-software-company-to-think-like-one

CHAPTER 3 DEVOPS

What'’s Driving the Need for DevOps?

Some companies have been automating and optimizing their code development
processes for decades, while others have only recently begun to consider this. Probably
the best industry-wide survey of DevOps maturity is the State of DevOps Report* by
Puppet Labs and DORA (DevOps Research and Assessment, now part of Google Cloud).
The State of DevOps Report shows striking differences between DevOps “haves” and
“have-nots.” High-performing DevOps teams deploy far more frequently and have vastly
shorter cycle times (lead time for changes), fewer failures, and quicker recovery from
failures compared to low-performing teams.

At the heart of DevOps is the process of continuous improvement, inspired by the
Japanese process of kaizen. The implication is that you should get started now, while
adopting a discipline of continuous improvement, coupled with the playfulness and
flexibility to innovate and experiment. The first and most important step is to capture the
state of all of your systems in version control and to perform all your deployments using
continuous delivery to ensure that changes are always tracked. These practices set the
foundation for increasingly refined automation.

What Is DevOps?

DevOps is a term for a group of concepts that, while not all new, have catalyzed into a
movement and are rapidly spreading throughout the technical community. Like any
new and popular term, people have somewhat confused and sometimes contradictory
impressions of what it is. While a lot of discussions about DevOps focus on the specific
tooling or technical implementations, the core meaning relates to the people that
develop and maintain technical systems and the culture that surrounds this process.

An infinity loop, as shown in Figure 3-2, is often used to illustrate the ongoing rhythm of
activities that make up the DevOps process.

*https://puppet.com/resources/whitepaper/state-of-devops-report

29

https://puppet.com/resources/whitepaper/state-of-devops-report

CHAPTER 3 DEVOPS

TEST MONITOR
\l._
C‘O QY‘O
Q
b, 2
%, & o
a (o) i)
=] ({S‘ m
= o
5 bo) >
@ < =]
SN X m
& %
Q (=
{-’1\\
OO
PLAN RELEASE

Figure 3-2. A DevOps infinity loop

Dev vs. Ops

Working with cloud applications like Salesforce greatly simplifies the requirements for
delivering capabilities. In a sense, Salesforce itself takes the place of the “Operations”
team that keeps the production system running. Salesforce Admins largely work as
declarative developers, building new capabilities rather than just keeping the lights on
and keeping performance tuned. But to understand the DevOps challenge, we can think
about development and operations needs in a traditional enterprise.

A critical need for businesses is the ability to innovate and develop new functionality
for their customers and employees. This is the role of the Development team.

Another critical need is for existing systems to be stable, reliable, and secure. This
is the role of the Operations team, which typically consists of system admins, database
admins, web site admins, and so on. Their main job is to make sure servers are up and
running, SLAs are being met, the application is performing as expected, and so on.

There’s a natural tension between the need for innovation (change) and the need for
stability. Developers want and need to keep changing the system, while the Operations
team wants and needs the system to remain as static as possible so that they can
optimize performance and reduce the risk that change brings.

In large organizations, these teams had historically worked in silos which isolated
the Development teams from QA and Ops. QA and Ops typically deal with huge numbers
of applications and features, sometimes with little understanding of the business
purpose and value of the software they were enabling.

30

CHAPTER 3 DEVOPS

The end goal for all of these teams is customer satisfaction, but specific goals for
“Devs” include fixing bugs fast and creating new features, whereas for their “Ops”
counterparts, the goals might be to maintain 99.99% server uptimes. These goals can
often be in conflict with one another, leading to inefficiency and finger-pointing when
things go wrong.

Chronic conflict between the Dev and IT operations teams is a recipe for failure for
the IT teams as well as the organization they serve.

The concept of DevOps is founded on building a culture of collaboration,
communication, and automation between teams that may have historically functioned
in silos. The goal is for both Developers and Operations to share responsibility for
facilitating innovation while still ensuring stability.

The generative culture promoted in the DevOps community emphasizes
values such as ownership and accountability. Developers and operations teams
collaborate closely, share many responsibilities, and combine their workflows. This
reduces inefficiencies and saves time (e.g., writing code that takes into account the
environment in which it is run). Figure 3-3 depicts DevOps as uniting the focus and
activities of these previously disparate teams.

Technology Operations

Figure 3-3. DevOps brings together activities that were traditionally done by
independent development, QA, and IT operations teams

31

CHAPTER 3 DEVOPS

The Real Meaning of Agile

In the book Accelerate,® the authors make the point that

at the time the Agile Manifesto was published in 2001, Extreme Programming
(XP) was one of the most popular Agile frameworks. In contrast to Scrum, XP
prescribes a number of technical practices such as test-driven development
and continuous integration ... Many Agile adoptions have treated technical
practices as secondary compared to the management and team practices
that some Agile frameworks emphasize. Our research shows that technical
practices play a vital role in achieving these outcomes.

The Agile Manifesto itself promotes 12 principles,* the first of which is that “Our
highest priority is to satisfy the customer through early and continuous delivery of
valuable software.” And the ninth of which states “Continuous attention to technical
excellence and good design enhances agility.”

To the extent that most development teams organize their work into sprints, and
craft their requirements in the form of user stories, “Agile” has become the dominant
practice for delivering software. But if deployments require hours or days of preparation,
environments are inconsistent, and development teams are working on differing
versions of the codebase, then actual agility necessarily suffers.

Real agility depends on being nimble with changing customer requirements and
on promoting and deferring to the evolving understanding of the team. But the systems
the team uses to do their work and the underlying architecture of the products they’re
building are also critically important to achieving real agility.

What better measures of agility could there be than how often the team is able to
deploy, how quickly, how often those deployments fail, and how quickly the team can
recover?

3Nicole Forsgren, Jez Humble, and Gene Kim, Accelerate: The Science of Lean Software and
Devops Building and Scaling High Performing Technology Organizations (IT Revolution
Press, 2018): p. 41.

*https://agilemanifesto.org/principles.html

32

https://agilemanifesto.org/principles.html

CHAPTER 3 DEVOPS

The Three Ways of DevOps

In his books The Phoenix Project and The DevOps Handbook, Gene Kim popularized
the concept of the Three Ways of DevOps. You can find excellent explanations in those
books or in blog posts such as this one.® The basic idea is depicted in Figure 3-4. I like
to summarize these Three Ways as continuous delivery, continuous feedback, and

continuous improvement.

The 3 Ways of | 1. Continuous Delivery
DevOps

Individual
—»| Development
/ Environment

Linting and |'f
Formatting | ™ |
Automated Manual QA
_ Version | | Quality .| and Code Automated »| End Users
- Control Analysis, Unit Review Deployments
Plugins |- Tests, etc. J yi

A\) L
\ _ - / NElrflcahons
\ M——
\ Feedback to Project

— Developer Tracking

Tool

< 2. Continuous Feedback |

‘ 3. Continuous Improvement

Figure 3-4. DevOps can be characterized by “Three Ways” of working, illustrated
in this diagram

Continuous Delivery

The First Way is the left-to-right flow of work from Development to QA to IT Operations
to Customer. To understand the process of continuous delivery, it helps to understand
some basic concepts involved in this process.

*https://itrevolution.com/the-three-ways-principles-underpinning-devops/

33

https://itrevolution.com/the-three-ways-principles-underpinning-devops/

CHAPTER 3 DEVOPS

The foundation for continuous delivery (and thus for implementing DevOps) is
the use of version control. Version control is a mechanism to track and merge changes
smoothly. There are many types of version control, but the most common type used
by developers today is Git. The use of version control provides many benefits, but it
also opens the door to all of the practices mentioned later. The reason for this is that
code stored in version control can be accessed by automated scripts, with each commit
tracked in version control reflecting an iterative improvement that is a candidate for
testing and deploying.

Continuous integration means that teams work on a common trunk in the codebase
and run automated tests with every commit to that trunk. “CI” is often used to refer to tools
such as Jenkins that perform automated actions on a schedule or based on code changes.
But the underlying meaning of Cl is that no two developers are ever working on a codebase
that diverges significantly from one another. CI has been a proven software development
practice for decades, in contrast to an approach where teams develop in isolation for weeks,
months, or years before eventually entering into a long and painful integration phase.

When using CI, it is typical that all code produced by development teams merges
into a central repository, where an automated build validates it. This practice helps
development teams detect, identify, and fix problems and bugs before releasing changes
to customers. This “CI system” alerts the team to build or test failures, with checks being
rerun for even the smallest change, to ensure your system continues to work flawlessly.
Early detection and fixes are key to ensuring quality at the earliest possible stage.
Developers should focus on setting up a simple continuous integration process as early
as possible in the development lifecycle.

Continuous delivery means that all the configuration needed to recreate your
application is stored in and deployed from version control in an automated way. It's based
on the preceding two practices and is the main technical capability at the heart of DevOps.

As mentioned earlier, DevOps is based on the practice of continuous delivery.
DevOps brings together continuous delivery with lean management to maximize the
throughput of valuable software and the stability of systems at the same time. That is,
“move fast and don’t break things!”

Continuous Feedback

The Second Way is the feedback cycle going from right to left; the constant flow of
feedback at all stages of the value stream to ensure we can prevent problems from
happening again or enable faster detection and recovery. The necessary processes

34

CHAPTER 3 DEVOPS

include the creation of fast automated test suites, monitoring the security, quality, and
reliability of the work being passed through the pipelines and failing the pipeline as soon
as a test fails, ensuring the code is always in a deployable state.

Continuous Improvement

The continuous delivery and feedback systems described earlier are called the “system
of work” —the mechanism that enables valuable work to flow to production. With any
changing system, entropy causes things to break down over time, there is no remaining
the same. Only by applying effort to continuously improve the “system of work” can it
continue to support and empower the whole organization. DevOps demands continual
experimentation to improve the “system of work’; and to prioritize this system above

the work itself. Maturing the DevOps pipeline involves taking risks and learning from
success and failure. The necessary practices include creating a culture of innovation, risk
taking, and high trust.

Lean Management

DevOps basically combines two movements: the technical practices of continuous
delivery and the practice of Lean management and Lean product development that
originated with Toyota. The Toyota Production System set the world standard for how
to mass produce a top-quality product. And their product development processes

set the world standard for how to quickly innovate to satisfy customers’ diverse
needs. Lean Software Development was born from the realization that applying the
same practices to software development increased quality and thereby company
performance.

There are two pillars of the Lean approach (whether manufacturing or software):
just-in-time and stop-the-line. Just-in-time is focused on speed, throughput, and
efficiency. With software, the idea is to minimize the time required to deliver a
requested feature through steps like automating deployments and identifying other
bottlenecks in the process that don’t add value. One key to fast delivery is to break
work into small batches. As each small batch is completed, it can be released, which is
why the frequency of releases is an excellent indicator of whether teams are following
this approach.

35

CHAPTER 3 DEVOPS

Stop-the-line means that as soon as any defect or abnormality is found, the
production line (or deployment pipeline) stops and the top priority becomes identifying
and uprooting the source of the problem to ensure it doesn’t happen again. The focus
here is on stability and quality. With software, this is accomplished through building in
checkpoints such as automated testing and validations, and rerunning those every time
the codebase changes. The idea is to make the system autonomic, like your autonomic
nervous system, where your reflexes recoil from fire without your having to consciously
think about it. Having a culture of blameless postmortems is a clear foundation for this
kind of approach.

The amount of time a customer spends waiting for a feature to be delivered is called
Lead Time. What'’s happening while the customer waits? Three things:

e Valuable work is being done.

e Workis being done that (in retrospect) doesn’t add value

(and sometimes isn’t even necessary).
o The feature is waiting on someone else to build/review/test/deploy it.

It's sometimes hard to tell which actions add value and which actions don’t. But it’s
always the case that time spent waiting doesn’t add any value. The fastest sustainable
speed at which all of the valuable work could be done is called the Process Time. The
difference between the Lead Time and the Process Time is one of the main types of waste.

If you think of the lifecycle of groceries, they're first grown or manufactured, then
they're stored or shipped, then eventually they’re bought and used. The more time
elapses between being grown and being used, the more likely they are to go bad.
Software also ages quickly. More importantly, the longer the lead time, the longer it
takes to get feedback from actual users. Building software is extremely complex, and
the only reliable way to ensure things are built well is to get feedback quickly and
repeatedly.

The essence of DevOps (and Lean software development) is to eliminate waste,
especially time spent waiting. Reducing lead times allows for fast feedback, fast feedback
allows for innovation, and innovation enables success.

One of the easiest ways to eliminate wasted time is to automate your deployments
using continuous delivery. Implementing continuous delivery on Salesforce is one of the
main focuses of this book.

36

CHAPTER 3 DEVOPS

Generative Culture

In his study of safety cultures, sociologist Ron Westrum famously categorized
organizational cultures into pathological, bureaucratic, or generative.® Pathological
cultures are oriented around gaining and maintaining power. To maintain power, groups
and individuals in pathological organizations tend to limit knowledge sharing and retain
tight control over their areas of responsibility.

Bureaucratic cultures are rule oriented, with a focus on applying rules consistently
across the organization. Bureaucratic cultures have an emphasis on fairness and on
following processes.

Generative cultures, by contrast, are performance oriented. The focus in generative
cultures is on getting the job done, rather than emphasizing control or process. Control is
still important in generative cultures, as are rules and processes; but they are important
only in serving the larger mission of organizational effectiveness.

The term DevOps itself indicates collaboration between Dev and Ops. By
extension, DevOps involves collaboration with the QA teams, security teams, as
well as business owners and subject-matter experts. The origins of DevOps in lean
manufacturing imply looking at the entire software delivery chain strategically, to
gradually improve the flow of work. The adoption of new development tools and best
practices is done as a means to improve the entire system and thus requires the team
to work together for the benefit of all.

For these reasons, Westrum'’s generative culture model is an excellent description
of a culture conducive to DevOps. DevOps requires collaboration between different
teams as well as learning and experimentation to optimize software delivery. For
many companies, the biggest challenge to adopting DevOps is establishing an open,
performance-oriented culture that allows for such continuous improvement.

The 2018 State of DevOps survey asked respondents about their team’s culture and
their organization’s culture. The survey analysis concluded that a generative culture
is indeed indicative of better company performance. Importantly, it also found that
adopting DevOps practices such as continuous delivery actually drives further cultural
improvements by reducing the barriers to innovation and collaboration.

®Ron Westrum, “A typology of Organisational Cultures,” Quality and Safety in Health Care 13,
no. suppl 2 (2004): ii22-ii27.

37

CHAPTER 3 DEVOPS

Blameless Postmortems

One manifestation of such a generative culture is an absence of finger-pointing.
Development of a strong “safety culture” is recognized as important across many
industries, notably healthcare, manufacturing, and transportation. In the aftermath

of any incident (whether a train crash or an outage in an IT system), blameless
postmortems should be conducted to determine how such incidents can be averted in
future. Rather than ever settling on “human error” as a root cause, emphasis should be
placed on the circumstances that allowed that error to occur. Human error itself has root
causes, and a rich safety culture builds in protections that allow imperfect humans to
nevertheless avoid such risks and dangers.

A powerful example of a blameless postmortem followed a headline-generating
outage for Amazon Web Services. AWS has become the computing infrastructure for
an enormous number of companies. On February 28, 2017, the S3 storage service in
AWS’s main region went offline for 4 hours. This took a large number of major Internet
companies like Quora and Trello offline during that time, since S3 is used to host web
site files among many other things. AWS soon released a postmortem of that event,” in
which they identified that a typo from one of their admins triggered a chain of other
problems.

Although human error was involved, nowhere in their analysis did they cite
“human error” as a factor, let alone a root cause. Rather they dug deeper to ask what
other circumstances allowed this mistake to unfold. They implemented several new
protections and safety checks as a result. Despite the PR problems caused by this
incident, there was no implication that the admin responsible was fired or disciplined.
Rather energy was invested in further improving AWS to eliminate the risk of this kind of
incident happening again in future.

A dramatic example of the long-term impact of improving safety culture can be
found by looking at automobile fatalities in the United States over time. Figure 3-5
shows the dramatic increase in the number of miles driven per year, juxtaposed with
the progressive reduction in risk of fatalities from automobile travel, along with a
few practices that helped bring about these improvements. Blameless postmortems
provide the opportunity for IT teams to make similar progress to build systems that are
increasingly resilient, even as the velocity of innovation continues to increase.

"https://aws.amazon.com/message/41926/

38

https://aws.amazon.com/message/41926/

300

250

200

150

100

50

CHAPTER 3 DEVOPS

US vehicle miles traveled and propotionate fatality rate

Vehicle miles (tens of billions) B

Annual deaths per billion miles
1968 - First federal
safety standards for cars

1950 - Seatbelts
introduced

1984
New York is first to
require seatbelt use

1999
Airbags become mandatory

2017
estimated

'

1925 1935 1945 1955 1965 1975 1985 1995 2005 2015

Figure 3-5. Progress on automobile safety in the United States over time®

The IT industry still has much to learn from the systematic improvements in quality

and worker safety that have been implemented through such long-standing safety

cultures.

The Research

The use of DevOps (continuous delivery and lean software development) has been

shown to improve Software Delivery Performance (how fast you can release functionality

in a stable way). According to the 2018 State of DevOps Report

8National Highway Traffic Safety Administration.

39

CHAPTER 3 DEVOPS

[Software Delivery and Operational] Performance ... enables organizations
to leverage software to deliver improved outcomes. These outcomes
are measured by many factors, including productivity, profitability, and
market share as well as non-commercial measures such as effectiveness,
efficiency, and customer satisfaction. Our analysis shows that elite
performers are 1.53 times more likely to meet or exceed their goals for
organizational performance.

The 2018 State of DevOps Report also shows that teams with high Software Delivery
Performance (SDP) exceeded those with low SDP with

e 46 times more frequent code deployments

e 2,555 times faster lead time from commit to deploy

o 7times lower change failure rate (V5 as likely for a change to fail)
e 2,604 times faster mean time to recover from downtime

The use of continuous delivery (version control, CI/CD, etc.) leads to increased
software delivery performance, 38% less rework and unplanned work, and 66% more
new (constructive) work. High-performing DevOps teams also have higher employee
NPS than low-performing teams.

Business Impact of Adopting DevOps

The State of DevOps Report affirms the positive impact that adopting DevOps has on
businesses. These studies validate that organizations with high-performing DevOps
processes outperform their peers financially by enabling faster time to market for
features and increased customer satisfaction, market share, employee productivity and
happiness thus allowing them to win in an increasingly competitive economy.

As shown in Table 3-1, organizations like Amazon, Google, Twitter, Facebook, and
Etsy embody DevOps processes and routinely deploy hundreds or even thousands of
production changes per day while still preserving world-class “reliability, stability, and
security.” These organizations are more agile, and the time required to go from code
committed to successfully running in production is an average of 8,000 times faster.

In contrast, organizations that require weeks or months to deploy software are at a
significant disadvantage.

40

CHAPTER 3 DEVOPS

Table 3-1. Software Delivery Performance metrics from some
industry-leading software companies’®

Company Deployment Deployment Reliability Customer
Frequency Lead Time Responsiveness

Amazon 23,000/day Minutes High High

Google 5,500/day Minutes High High

Netflix 500/day Minutes High High

Facebook 1/day Hours High High

Twitter 3/week Hours High High

Typical Once every 9 Months or Low/medium Low/medium

Enterprise months quarters

Not only do these organizations do more work, they also have far better outcomes.
When they deploy code, it is twice as likely to run successfully (i.e., without causing a
production outage or service impairment), and when a change fails and results in an
incident, the time required to resolve the incident is far faster.

With DevOps in place, instead of deployments being performed only at nights or on
weekends, full of stress and chaos, these organizations are deploying code throughout
the business day without most people even noticing.

Developers get feedback on their work constantly: linting tools, automated unit,
acceptance, integration tests, and other build validations run continually in production-
like environments. This gives continuous assurance that the code and environments will
work as designed and that code is always in a deployable state.

9Gene Kim, Kevin Behr, and George Spafford, The Phoenix Project: A Novel about It, Devops, and
Helping Your Business Win (IT Revolution Press, 2013), 380.

41

CHAPTER 3 DEVOPS

How DevOps Helps

The State of DevOps Report confirms the importance of technical practices such as
continuous delivery in improving software delivery performance and thus company
performance. But that same survey also speaks to the benefits that come directly to
teams adopting these practices. The use of continuous delivery itself drives a positive
organizational culture, high job satisfaction, and higher employee engagement.

In addition, the use of continuous delivery (version control, CI/CD, etc.) leads to less
rework, less deployment pain, and thus less burnout. This is a virtuous cycle. Practices
that benefit the development team also benefit the customer; and happier customers in
turn make the development team more engaged.

Better Value, Faster, Safer, Happier

Jonathan Smart, who led Barclays Bank on a journey of enterprise-wide DevOps
transformation, summarized DevOps as “Better value, faster, safer, happier.”*

Better means always striving to improve the quality of our work and our products.
This implies continuous improvement.

Value means using agile development and design thinking to address and adapt to
the needs of end users. The focus here is on delivering the desired results to end users
and improving their experience. Software is not “done” until it’s in the hands of users, the
ones who actually experience value from it.

Faster means using techniques such as continuous delivery to release more quickly.
Speed matters; life is short. The more time elapses between requesting something
and getting it, the less time that solution will remain valuable. The more time between
creating something and getting feedback on it, the more time is wasted in waiting and
inevitably forgetting how to improve it.

Coupling increasingly frequent releases with increasingly automated testing allows
you to innovate for customers faster, adapt to changing markets better, and improve your
product faster. The quicker you can release new features and fix bugs, the faster you can
respond to your customers’ needs and build competitive advantage.

"Yhttps://medium.com/@jonathansmarti/want-to-do-an-agile-transformation-dont-focus-
on-flow-quality-happiness-safety-and-value-11e01ee8f8f3

42

https://medium.com/@jonathansmart1/want-to-do-an-agile-transformation-dont-focus-on-flow-quality-happiness-safety-and-value-11e01ee8f8f3
https://medium.com/@jonathansmart1/want-to-do-an-agile-transformation-dont-focus-on-flow-quality-happiness-safety-and-value-11e01ee8f8f3

CHAPTER 3 DEVOPS

Safer means focusing on stability and integrating automated quality and security
scanning into the development workflow. Just as when driving in a car, speed only
matters if you can arrive safely. Safety means that the solutions we deliver will work
and that they won'’t break other things. Safety implies testing, or quality assurance.
Testing means testing that the software does what it’s supposed to do, is resilient against
changing conditions, and doesn’t introduce regression failures (break things that used to
work). Safer also implies security, which is an aspect of structural quality.

Automated testing gives confidence that each change is functional and safe.
Monitoring and logging practices help teams stay informed of performance or issues in
real time.

And happier refers to continuously improving the development experience and the
customer experience of users. We're humans developing for humans. The experience
should be increasingly positive for the developers creating functionality and increasingly
positive for the end users consuming it.

Note that all of these terms are relative and subjective. This implies an ongoing
process, where value is flowing from developers to end users (from creators to
consumers), and the whole process is improving on an ongoing basis. We all want better
and better experiences. Wisdom dictates that if we focus on improving our actions, our
experiences will naturally improve. And so wisely, we strive to improve ourselves and
our teams, so that together we can do a better and better job.

The team with the fastest feedback loop is the team that thrives. Full transparency
and seamless communication enable DevOps teams to minimize downtime and resolve
issues faster than ever before.

Measuring Performance

One of the main contributions of the State of DevOps Report has been to focus
consistently on the same key metrics year after year. Although the questions in their
survey have evolved and new conclusions have emerged over time, the four key metrics
used as benchmarks have remained in place:

1. Lead time (from code committed to code deployed)

2. Deployment frequency (to production)

i

Change Fail Percentage (for production deployments)

4. Mean Time to Restore (from a production failure)

43

CHAPTER 3 DEVOPS

The book Accelerate provides a detailed explanation of each of these metrics and why
they were chosen; those points are summarized here.

The first two of these metrics pertain to innovation and the fast release of new
capabilities. The third and fourth metrics pertain to stability and the reduction of defects
and downtime. As such, these metrics align with the dual goals of DevOps, to “move fast,
and not break things.”

These also align with the two core principles of Lean management, derived from
the Toyota Production System: “just-in-time” and “stop-the-line.” As mentioned earlier,
just-in-time is the principle that maximum efficiency comes from reducing waste in
the system of work and that the way to reduce waste is to optimize the system to handle
smaller and smaller batches and to deliver them with increasing speed. “Stop-the-
line” means that the system of work is tuned not just to expedite delivery but also to
immediately identify defects to prevent them from being released, thus increasing the
quality of the product and reducing the likelihood of production failures.

Lead Time is important because the shorter the lead time, the more quickly
feedback can be received on the software, and thus the faster innovation and
improvements can be released. Accelerate shares that one challenge in measuring
Lead Time is that it consists of two parts: time to develop a feature and time to deliver
it. The time to develop a feature begins from the moment a feature is requested, but
there are some legitimate reasons why a feature might be deprioritized and remain
in a product’s backlog for months or years. There is a high inherent variability in the
amount of time it takes to go from “feature requested” to “feature developed.” Thus
Lead Time in the State of DevOps Report focuses on measuring only the time to deliver
a feature once it has been developed. The software delivery part of the lifecycle is an
important part of the total lead time and is also much more consistent. By measuring
the Lead Time from code committed to code deployed, you can begin to experiment
with process improvements that will reduce waiting and inefficiency and thus enable
faster feedback.

Deployment frequency is the frequency of how often code or configuration changes
are deployed to production. Deployment frequency is important since it is inversely
related to batch size. Teams that deploy to production once per month necessarily
deploy a larger batch of changes in each deployment than teams who deploy once
per week. All changes are not created equal. Within any batch of changes, there will
be some which are extremely valuable, and others that are almost insignificant. Large
batch sizes imply that valuable features are waiting in line with all the other changes,

44

CHAPTER 3 DEVOPS

thus delaying the delivery of value and benefit. Large batches also increase the risk of
deployment failures and make it much harder to diagnose which of the many changes
was responsible if a failure occurs. Teams naturally tend to batch changes together when
deployments are painful and tedious. By measuring deployment frequency, you can
track your team’s progress as you work on making deployments less painful and enabling
smaller batch sizes.

Change Fail Percentage measures how frequently a deployment to production fails.
Failure here means that a deployment causes a system outage or degradation or requires
a subsequent hotfix or rollback. Modern software systems are complex, fast-changing
systems, so some amount of failure is inevitable. Traditionally it’s been felt that there’s a
tradeoff between frequency of changes and stability of systems, but the highly effective
teams identified in the State of DevOps Report are characterized by both a high rate of
innovation and a low rate of failures. Measuring failure rate allows the team to track and
tune their processes to ensure that their testing processes weed out most failures before
they occur.

Mean Time to Restore (MTTR) is closely related to the Lead Time to release
features. In effect, teams that can quickly release features can also quickly release
patches. Time to Restore indicates the amount of time that a production system
remains down, in a degraded state, or with nonworking functionality. Such incidents
are typically stressful situations and often have financial implications. Resolving such
incidents quickly is a key priority for operations teams. Measuring this metric allows
your team to set a baseline on time to recover and to work to resolve incidents with
increasing speed.

The 2018 State of DevOps Report added a fifth metric, System Uptime, which
is inversely related to how much time teams spend recovering from failures. The
System Uptime metric is an important addition for several reasons. First of all, it
aligns with the traditional priorities and key performance indicators of sysadmins
(the operations team). The number one goal of sysadmins is Keeping the Lights On
or ensuring that systems remain available. The reason for this is simple: the business
depends on these systems, and when the systems go down, the business goes down.
Outages are expensive.

Tracking System Uptime is also central to the discipline of Site Reliability
Engineering (SRE). SRE is the evolution of the traditional sysadmin role, expanded
to encompass “web-scale” or “cloud-scale” systems where one engineer might be
responsible for managing 10,000 servers. SRE emerged from Google, who shared their

45

CHAPTER 3 DEVOPS

practices in the influential book Site Reliability Engineering.'' One innovation shared
in that book is the concept of an “error budget,”** which is the recognition that there
is a tradeoff between reliability and innovation and that there are acceptable levels of
downtime.

Put simply, a user on a 99% reliable smartphone cannot tell the difference
between 99.99% and 99.999% service reliability! With this in mind, rather
than simply maximizing uptime, Site Reliability Engineering seeks to
balance the risk of unavailability with the goals of rapid innovation and
efficient service operations, so that users’ overall happiness—uwith features,
service, and performance—is optimized."

The State of DevOps Report shows how these five metrics are interrelated, illustrated
in Figure 3-6. The timer starts on Lead Time the moment a developer finishes and
commits a feature to version control. How quickly that feature is released depends on the
team’s deployment frequency. While frequent deployments are key to fast innovation,
they also increase the risk of failures in production. Change Fail Percentage measures
this risk, although frequent small deployments tend to reduce the risk of any given
change. If a change fails, the key issue is then the Mean Time to Restore service. The final
metric on availability captures the net stability of the production system.

Software Development Software Deployment Service Operation

Change Fail Availability

| Deployment Frequency |

Figure 3-6. How the five key software delivery and operations performance
metrics tie together

"Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy, Site Reliability Engineering:
How Google Runs Production Systems (O’Reilly Media, 2016).

https://landing.google.com/sre/sre-book/chapters/embracing-risk/
3Site Reliability Engineering, Chapter 3.

46

https://landing.google.com/sre/sre-book/chapters/embracing-risk/

CHAPTER 3 DEVOPS

Together, these metrics constitute a team’s Software Delivery Performance. The
goal of any DevOps initiative should be to improve Software Delivery Performance by
strategically developing specific capabilities such as continuous delivery and the use of
automated testing.

How your team measures these capabilities is another challenge. But Accelerate
makes a compelling argument for the validity of surveys. Automated metrics can be
implemented over time, although the mechanism to do this will depend on how you
do your deployments. Salesforce production orgs track past deployments, but it’s not
currently possible to query those deployments, and so you would need to measure
deployment frequency (for example) using the tools you use to perform the deployments.
Salesforce publishes their own service uptime on https://trust.salesforce.com, but
that gives no indication of whether critical custom services that your team has built are in
a working state or not.

Surveys provide a reasonable proxy for these metrics, especially if responses are
given by members of the team in different roles. Guidelines for administering such
surveys are beyond the scope of this book, but your teams’ honest responses are the
most critical factor. Avoid any policies that could incent the team to exaggerate their
answers up or down. Never use these surveys to reward or punish; they should be used
simply to inform. Allow teams to track their own progress and to challenge themselves
to improve for their own benefit and for the benefit of the organization. As it says in the
Agile Manifesto, “At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly.”

Enhancing Performance

High software delivery performance is associated with objective improvements
in corporate performance (both commercial and noncommercial) and subjective
improvements to deployment pain, burnout, and employee satisfaction. It’s therefore
in the best interest of everyone in an organization to strive to improve their software
delivery performance by monitoring the metrics mentioned earlier.

What methods are available to improve software delivery performance? The research
from the State of DevOps Report has identified 32 factors that drive this performance.
The book Accelerate categorizes those factors into five groups:

1. Continuous delivery
2. Architecture

47

https://trust.salesforce.com

CHAPTER 3 DEVOPS

3. Product and process
4. Lean management and monitoring
5. Cultural

In this book, we’ll focus almost entirely on how to implement technical
practices related to architecture and continuous delivery, with some references
to monitoring as well. As such, our goal here is not to provide a comprehensive
prescription for all the cultural, management, and process improvements that
might be needed, but to at least provide more guidance and definition on how
a high-functioning Salesforce implementation would be architected, deployed,
monitored, and maintained.

This chapter provides a brief summary of the cultural and lean management
practices necessary for success, but for further guidance the reader is encouraged to look
at the many excellent books, articles, and talks that are available on these topics.

Optimizing the Value Stream

A fundamental concept in Lean software management is to understand the software
development and delivery process in terms of how each aspect of the process
contributes (or does not contribute) to value for the end user. As mentioned earlier, value
reflects the benefit that the end user receives and would be willing to pay for. As software
moves through the development and delivery process, different individuals and teams
add value through their contributions. Their ongoing contributions to the process are
described as flowing into a “value stream” that delivers ongoing value to end users.
Value Stream Mapping is a key tool in lean management. This involves mapping
each stage of the development and delivery process and then gathering three metrics
from each stage: lead time, process time, and percent complete and accurate. Lead time
is the total amount of time that it takes from a work item entering that stage until it leaves
that stage. Process time is the amount of time that would be required for that activity if
it could be performed without interruption. And percent complete and accurate is the
percentage of the output from that stage that can be used, as is, without requiring rework
or clarification. The goal of this mapping is to identify slowdowns where work items
spend time waiting or could be completed more efficiently, as well as stages that suffer
from quality issues. It’s also possible that this process uncovers steps that don’t add

48

CHAPTER 3 DEVOPS

much value and can be eliminated or simplified. The core concept of lean management
is to assess this process and identify how to eliminate waste from this system, to
maximize the flow of value.

The potential technical improvements that can be made to a software product or to
the way of working on that software product are limitless. This book alone introduces a
huge range of possible improvements to the way code is written or developed, the way
it’s tested, packaged, deployed, and monitored. But it is unwise to assume that adopting
DevOps means that we should simultaneously take on all of these improvements or
make improvements arbitrarily. Instead, the goal should be to identify the bottlenecks in
the system that limit the overall flow of value and to optimize the system around those
bottlenecks.

Begin by identifying the current state value map, and then craft a future state value
map that aims to increase the percent complete and accurate of the final product or
reduce the amount of waste (lead time where no process is being performed). For more
guidance, see the book Lean Enterprise: How High Performance Organizations Innovate
at Scale'* or Value Stream Mapping: How to Visualize Work and Align Leadership for
Organizational Transformation.'®

It can be very challenging to discern where to begin such a process. One
complementary approach known as the theory of constraints can provide a practical
simplification to help target priority areas for improvement.

Jez Humble, Joanne Molesky, and Barry O'Reilly, Lean Enterprise: How High Performance
Organizations Innovate at Scale (O'Reilly Media, 2015).

Karen Martin and Mike Osterling, Value Stream Mapping: How to Visualize Work and Align
Leadership for Organizational Transformation (McGraw-Hill, 2013).

49

CHAPTER 3 DEVOPS

(1 I .
‘ﬁ'au«/ ‘\mm'rxo«
‘ Supplier / 2 I f t ﬂ T Ccustomer :
nrormation TiOwWs
—7 —

_ Lead time ladder

Figure 3-7. A sample value stream map

Theory of Constraints

The concept known as the theory of constraints was introduced and popularized by
Eliyahu M. Goldratt in his book The Goal.'* That book is cited extensively in DevOps
literature and emphasizes a fourfold approach to optimizing the flow of value through
a system:

1. Identify the constraint
2. Exploit the constraint
3. Subordinate and synchronize to the constraint

4. Elevate the performance of the constraint

18Eliyahu M Goldratt and Jeff Cox, The goal: a process of ongoing improvement (North River
Press, 2004).

50

PEm e Em o mm e oEer Em e Em o=

CHAPTER 3 DEVOPS

In layman’s terms, the idea is that the overall performance of any system at any given
time will always be limited by a single constraint. In a software development process,
the constraint might be that there are not enough developers, or that the testing process
takes too long, or that the deployment process can only be done at certain times, or that
there is not any additional demand from customers, and so on. The most important
point to note is that improvements to any part of the system other than this constraint
will not yield any significant benefit. For this reason, the most critical step to making
overall improvements is to first identify the constraint.

Identifying the constraint on a system can be a challenging process, combining
measurement, intuition, and experimentation. One approach to identifying the
constraint is to look for a buildup of “inventory” in a system, since this tends to
indicate a point where the process slows down. The concept of inventory is borrowed
from manufacturing, but can be extended to the software development process and
relabeled as “work in progress” Where does work in progress (WIP) accumulate in your
development process? You can ask your team questions like how large is the backlog
for developers? How many pieces of work are waiting for review by a tech lead? How
much work is waiting to be tested? How many items are waiting to be deployed? Asking
questions like this and observing trends over time can help you home in on the main
constraint in your process.

Once the constraint has been identified, the biggest improvement that can be
made is to exploit that constraint—to make sure that it is fully utilized. At the time that
Goldratt wrote The Goal, it was common in manufacturing to focus on getting maximum
utilization from every single system involved in a manufacturing process. The equivalent
in a software team is ensuring that everyone is busy all the time. But in practice this local
optimization of each part of the system does not optimize the performance of the overall
system, because overall performance is always defined by a single constraint. It is that
constraint that needs to be optimized, getting the maximum sustainable productivity out
of that constraint.

The third stage is to subordinate and synchronize to the constraint. This means
that every other part of the system should be seen as a means to enable and support the
constraint. The priority for other systems should be to ensure that the constraint is never
waiting on “raw materials” (such as specifications for work) and that the work produced
by the constraint is quickly whisked away to the next phase of the process.

51

CHAPTER 3 DEVOPS

For example, if you determine that the capacity of the development team is the
limiting factor on your ability to deliver value, then the other individuals or processes
that contribute to the value stream—business analysis, architecture, testing, and
deployment—should ensure that the developers can be made as effective as possible.
That means ensuring that they have a backlog of work and clear architectural guidance,
and that once their work is complete, it can be tested and deployed as quickly as
possible. Importantly, releasing quickly also allows bugs to be identified quickly so that
developers can address those while the relevant code is still fresh in their minds.

Having identified the constraint, the second and third stages of optimization
function to maximize the throughput of the constraint (first by using it fully and then
by organizing everything else around it). It is entirely possible that through making
these optimizations, the original constraint ceases to be the constraint. By definition,
the constraints on a system are subject to moving and changing as conditions evolve.
This is why it’s important to begin by mapping the entire value stream and continuing
to monitor each component of it to gain insight into your overall flow. If you find that
the constraint has changed, then you have just achieved the first level of optimization
for that new constraint: identifying it. Your task then becomes how to exploit the new
constraint, and so forth.

If a constraint persists despite your maximizing its throughput, you have only
one remaining option: to elevate the performance of that constraint. When your
constraint is one or more individuals, elevating the performance of that constraint
might take the form of giving them better tools, training or coaching them, hiring
additional team members, or even replacing them and moving them to a different
role if necessary.

This fourfold process is a continual dance. There is never a time when there is
not some constraint on a system. Even when the market itself is your constraint,
your practice is the same: to exploit that market, subordinate your other activities
to feeding market demand, and finally work to elevate demand through marketing
and publicity.

Even the optimization process itself is subject to unseen constraints. It takes time,
effort, and situational awareness to understand how your value stream is performing;
and it can take time, effort, and money to make the changes necessary to improve that
performance.

From the point of view of the theory of constraints, this continual dance is the
essence of effective management.

52

CHAPTER 3 DEVOPS

Enabling Change

Suffice it to say, implementing or improving any of these capabilities is a change
management process that relies on human communication, learning, and
experimentation.

Industry surveys conducted by McKinsey'” indicate that only 25% of transformation
initiatives have been very or completely successful; however, organizations that
take multiple parallel actions to improve and especially those which emphasize
communication have a 79% success rate. In any case, the DevOps journey is not one
that is ever “done.” The point is to provide a clear vision for your team about areas for
possible improvement; to provide training, examples, and encouragement to help them
understand how to proceed; and to proceed systematically and incrementally with a
process of continuous improvement.

It’s helpful to consider the law of diffusion of innovation, first introduced by Everett
Rogers in 1962' and concisely summarized in this diagram. According to this widely
cited model, individuals adopt a new process (such as DevOps or Salesforce DX in
this case) at different rates. A small few individuals fall into the Innovators category.
They are the ones who initially experiment with a technology and lay the early
foundations for others to follow. They are followed by early adopters, who tend to copy
more than innovate, but who are nevertheless bold and enthusiastic about taking on
this new process. Innovators and early adopters may only account for 16% of a total
population. But they are truly trailblazers and open the door for subsequent adoption.
At these early stages, it may seem that adoption levels are very low, which can be
disheartening for those trying to champion change. But these initial stages of adoption
are the foundation that eventually leads to a tipping point as the early majority and
late majority begin to follow suit. The “S” shaped curve in this diagram shows total
adoption and depicts how the slow early phases give way to a period of fast diffusion as
the majority gets on board.

"www.mckinsey.com/business-functions/organization/our-insights/how-to-beat-the-
transformation-odds

8Everett Rogers, Diffusion of Innovations, 5th Edition (Simon and Schuster, 2003).

53

http://www.mckinsey.com/business-functions/organization/our-insights/how-to-beat-the-transformation-odds
http://www.mckinsey.com/business-functions/organization/our-insights/how-to-beat-the-transformation-odds

CHAPTER 3 DEVOPS

100
75
=
ol
~
@
50 wn
=0
jal}
®
2
25
| 0
Innovators Early Early Late Laggards
25 % Adopters Majority Majority 16 %
135% 34 % 34 %

Figure 3-8. An illustration of the law of diffusion of innovation. Eagerness to
adopt a new technology or practice typically follows a bell curve distribution across
a population. The cumulative increase in adoption follows an S curve (the integral

of the bell curve)"

This law of diffusion of innovation has been the basis for many other analyses. Two
relevant observations that are frequently made are that there is a tipping point in this
system at which adoption becomes self-sustaining, but also that there is a chasm that
needs to be crossed when you transition to majority adoption.

First, the good news. Once you have gained adoption from the innovators and the
early adopters (the initial 16% of your target population), you have reached a tipping
point where adoption can become self-sustaining, as shown in Figure 3-9. As the early
and late majority begin to adopt these processes, the momentum of word-of-mouth
marketing and other network effects begins to take hold. People begin to follow this
process because it starts to become standard practice. Their friends are doing it; other
teams are doing it; the team they used to be on did it, and so on. Malcolm Gladwell’s
bestselling book The Tipping Point*® was based partly on these same ideas.

“Image source: https://commons.wikimedia.org/wiki/File:Diffusion_of_ideas.svg
2Malcolm Gladwell, The Tipping Point: How Little Things Can Make a Big Difference (Back Bay
Books, 2002).

54

https://commons.wikimedia.org/wiki/File:Diffusion_of_ideas.svg

CHAPTER 3 DEVOPS

Innovation Diffusion Curve
100

75

Market Share %

25 Tipping Point .

(4] —
Innovators Early Early Late Laggards
2.5% Adopters Majority Majority 16%
13.5% 34% 34%

Figure 3-9. As the early majority begins to embrace an innovation, adoption
reaches a tipping point where further adoption tends to become self-sustaining?

Now for the bad news. While there will always be people who explore and
experiment with new approaches, Geoffrey Moore pointed out in Crossing the Chasm?*
that for new and disruptive technologies, there is a chasm that exists between the
early adopters and majority adoption, illustrated in Figure 3-10. Many very promising
technologies have achieved adoption from a small corps of aficionados, but never
managed to get wide market adoption. Moore explains that this is because there is a
markedly different psychodynamic between innovators and the bulk of the population.
To cross this chasm, Moore argues, you must reconsider your target market for each
stage and tailor your marketing message and medium differently when appealing to
the majority.

2ISource: (CC) Gavin Llewellyn, www. flickr.com/photos/gavinjllewellyn/6353463087

2Geoffrey A. Moore, Crossing the Chasm: Marketing and Selling Technology Products to
Mainstream Customers. (HarperBusiness, 1991).

55

http://www.flickr.com/photos/gavinjllewellyn/6353463087

CHAPTER 3 DEVOPS

Early Early

|

|

| Late
Adopters | Majority

|

|

|

Innovators Majority

Laggards

Area under the curve
represents
number of customers

"The Chasm" |

Technology Adoption Lifecycle

Figure 3-10. Early adoption of an innovation is driven by different motivators
than later adoption. This leads to a “chasm” that often prevents adoption by the
majority. The messaging and enablers for an innovation need to change if it is to
appeal to the majority*

These ideas are equally applicable for the commercial adoption of a technology or
for internal change enablement with one important difference. Inside an organization
there is always the possibility of making a change mandatory, tracking and rewarding
based on adoption metrics, and so on. As much as they might wish for it, such options
are not available to those marketing commercial products!

Nevertheless, effective change inside an organization is most powerful and
sustainable when it’s driven by intrinsic motivators—when people feel that the new
process truly benefits them and their team. To take this organic approach, at the
beginning, you should seek to attract and appeal to potential DevOps innovators within
your company, working to enable them. As you get adoption from this initial group,
you can gradually shift your focus to gaining broader adoption by considering different
strategies as you begin to roll out change across more and more teams.

DevOps in general and Salesforce DX in particular represent a paradigm shift for
Salesforce developers. There are significant changes to behavior that are required
for teams to shift from making and deploying changes in an ad hoc or manual way
to tracking and automating this process. Those charged with leading change in their
organization should take heart and emphasize getting buy-in from innovators and early
adopters while encouraging them to share their experience with others around them.
They then become the basis on which you can begin to work toward majority adoption,

BFigure source: https://upload.wikimedia.org/wikipedia/commons/d/d3/Technology-
Adoption-Lifecycle.png

56

https://upload.wikimedia.org/wikipedia/commons/d/d3/Technology-Adoption-Lifecycle.png
https://upload.wikimedia.org/wikipedia/commons/d/d3/Technology-Adoption-Lifecycle.png

CHAPTER 3 DEVOPS

amplifying those early success stories and building a network of support that can help
these changes take hold in the rest of your company.

Leading Change

If you are in charge of a small team of Salesforce developers, you may be able to lead
adoption of Salesforce DX in a simple and organic way just by piloting its usage and
demonstrating some of its benefits. But if change needs to happen across a large and
distributed organization, you have entered into the realm of organizational change
management. If you have access to experts in organizational change, you should lean on
them for advice on succeeding at this process.

A leading voice in organizational change management is John Kotter, whose book
Leading Change** has been an important and influential guide for many organizational
initiatives. Kotter defines an eight-stage process by which effective change takes place.
The eight-stage process for leading effective change® is shared here, together with some
notes on the relevance to improving DevOps processes.

Step 1: Create Urgency

None of us act unless there’s a need to. Especially when it comes to changing habitual
behaviors and learning new practices, the motivation for change must be strong to
overcome our inertia. The same holds true for organizations. Organizational change
derives from a sense of urgency, and the first step in effecting broad change is to
stimulate this sense of urgency in your leadership team.

Kotter suggests that for change to be successful, 75% of a company’s management
needs to “buy into” the change. When it comes to DevOps, this mostly pertains to the
managers responsible for overseeing development teams. But changes in process can
sometimes involve temporary slowdowns as a team learns new practices.?® There needs
to be a commitment from anyone who is a stakeholder in the development process,
including project managers, internal customers, and even external customers if you are a
consulting company doing development at their behest.

#John P Kotter, Leading Change (Harvard Business Review Press, 2012).
»See www.mindtools.com/pages/article/newPPM_82.htm for another explanation of this process.

%This is sometimes called a “J curve” or the valley of despair. Things get a bit worse before they
can get much better.

57

www.mindtools.com/pages/article/newPPM_82.htm

CHAPTER 3 DEVOPS

Urgency is built from understanding the problems implicit in the current approach
and the benefits of adopting a new approach. The State of DevOps Report provides
compelling statistics on the impact of adopting DevOps practices, and I've touted those
statistics hundreds of times to thousands of listeners to help gain buy-in and motivation.

It’s important for you to also identify risks and opportunities that are specific
to your company. In Chapter 12: Making It Better, I share Lex Williams’ story of
Salesforce’s own DevOps adoption. Their technical team had been arguing for years
that production changes should only be made through a continuous delivery system.
But it was only once they started documenting the financial cost of outages arising from
ad hoc production changes that they managed to get executive approval to adopt that
kind of governance.

Begin to track metrics on how long it takes your teams to deploy to production,
merge codebases, perform regression tests, and so on. Take note of how often one team
is prevented from deploying critical changes because they have to wait on other teams to
complete their work. Gather statistics and explanations to support your vague sense that
processes could be more efficient or effective than they currently are. These arguments
form the basis for convincing other stakeholders of the need for change.

At the same time, these analyses need to be honest, and you need to listen to
counterpoints and have dialog around the need for change as well as possible risks.
There are indeed risks associated with change. But by discussing costs and benefits
clearly and honestly, you can help yourself and others discern when the risks of not
making these improvements outweigh the risks of making them.

Step 2: Form a Powerful Coalition

The first step is the most important, and you should spend time to make sure you
have won organizational support before proceeding. But buy-in from management
is only the beginning. You now need to gather others who can act as change agents
within the company.

Change takes leadership. But leadership happens in many ways, at many levels. You
need to find influential people across your organization who are similarly committed to
seeing these changes take root. These people may or may not hold traditional leadership
roles. Their influence may instead derive from their length of time at the company, their
technical expertise, their passion, or their social connections.

58

CHAPTER 3 DEVOPS

Connect with these people to form a coalition. Ask them to commit to helping
bring about this change, and work on building trust and collaboration within this initial
group. It is helpful to ensure that you have a broad mix of people from different roles and
different groups within your organization. For example, at Appirio, we began our DX
initiative with a survey of all our technical consultants in which we asked them “which
Appirian has helped you the most to improve your coding skills.” This survey helped us
to identify influencers across different levels and geographic regions. We brought these
people together as evangelists, giving them early access to training and demos as we
began to promote Salesforce DX.

Step 3: Create a Vision for Change

Humans are remarkably good at telling and remembering stories. And the most
effective communicators rely on stories to convey the essence of complex messages in
memorable and impactful ways. Salesforce has poured a phenomenal amount of money
into their sales and marketing efforts; and marketing is fundamentally about storytelling.
The tagline for Salesforce DX is “Build together and deliver continuously with a
modern Salesforce developer experience.”?” That succinct statement creates a vision,
which itself inspires change. “Build together” speaks to collaboration and promises
easy collaborative development even across large and distributed teams. “Deliver
continuously” speaks to easing deployments and helping end users get ongoing value
from development. “A modern developer experience” speaks to the promise of replacing
tedious manual processes with powerful and automated tools.
What is the vision for modernizing your own Salesforce development experience?
Think about the values that are most important for this initiative. Are you most
concerned about speed? Security? Reliability? Ease of debugging?
Based on these values, write out a one- or two-sentence summary of what the
future looks like once these changes are in place. This becomes the vision statement
for your change.

*"https://developer.salesforce.com/platform/dx

59

https://developer.salesforce.com/platform/dx

CHAPTER 3 DEVOPS

Next craft a strategy to achieve that vision. The strategy adds detail that you'll need
as you begin to roll out changes. But the first step in your strategy is to regularly reinforce
the vision and ensure that everyone in your change coalition is able to articulate this
vision and some key aspects of the strategy. This is the message that you need to build
and amplify. It needs to be clear, simple, and compelling so that the story can be told,
remembered, and retold again and again throughout the organization.

Step 4: Communicate the Vision

Having gathered support from management, built a coalition of change agents, and
established a clear and compelling vision for change, you now need to communicate
that vision repeatedly across many channels.

People are subjected to many messages and stories every day. In a busy company,
even attendance at ongoing training or all-hands meetings may be limited. So for a
message to gain traction, it needs to be heard repeatedly, across different mediums,
over a prolonged period. At one point in the Appirio DX initiative, I recognized that
many people in our organization lacked grounding in some basic DevOps concepts. So I
initiated a “DevOps December” campaign to reinforce some basic DevOps ideas across
many channels.

We began the campaign somewhat quietly with posts on our internal Chatter group.
But my manager encouraged me that we should reiterate these messages across different
channels. “I want people to have DevOps coming out of their ears. I want them to hear
about this so much that I start getting complaints!” he said. I happily obliged and sent
out daily “byte-sized” updates by both email and Chatter, along with an appearance on
a company all-hands call, several open webinars, and a dozen small group meetings.
Eventually, he did receive complaints, so we limited the volume and distribution a bit.
But we were both delighted with the impact and the reach. No one at the company
escaped that December without learning a bit about DevOps.

This formal messaging is not the only way to reinforce the vision. Your actions
speak louder than words. So embed these concepts into how you work. Call out teams
who are adopting parts of these practices and highlight the benefit they’re receiving.
Invite people from those teams to talk about their process. Look for examples in other
technologies and share those to bring inspiration.

Tie everything back to the vision. And look for opportunities to incent people to
move toward this goal, rewarding them when they do.

60

CHAPTER 3 DEVOPS

Step 5: Remove Obstacles

Repeated communication represents the “happy path” of sharing the vision for change.
But it’s entirely natural for you to encounter obstacles as you move toward this goal.
Those obstacles may be in the form of skeptics or naysayers who emphasize the
shortcomings with the new process or downplay the need for change. There may also be
processes or structures in place that get in the way of change.

I've encountered senior technical architects who have said that it will never be
possible for us to get all of our teams using version control, or that Salesforce DX is
not mature enough or a high enough priority for most teams to adopt. Such voices
can represent healthy skepticism, but in many cases they are simply based on these
individuals’ own inertia or lack of experience with this new way of working.

Listen to skeptics, and make sure you're understanding the doubts and risks being
expressed. But be on the lookout for voices and processes that are actively standing in
the way of change and figure out how to overcome these. Help educate these skeptics
if their concerns are not valid. Or help them understand how the benefits of change
outweigh the disadvantages. There is a learning curve to adopting version control. But
every developer I've talked to who has worked extensively with version control and
continuous delivery would never go back to their old way of working and would want
these systems in place on any project they were on in future.

If the obstacles relate to time challenges, the need for training, gaps in tooling, and
so on then address those obstacles appropriately.

Kotter’s eight steps to effective change were originally based on his analysis of how
change efforts failed in organizations. Having studied dozens of transformation efforts
across 15 years, he wrote an article called “Leading Change: Why Transformation Efforts
Fail” in which he identified that change efforts fail for one of eight reasons, which are
the converse of these eight steps for effective change. Your role in leading change is
to identify any obstacles to transformation and uproot them rather than letting them
undermine the success of your effort.

61

CHAPTER 3 DEVOPS

Step 6: Create Short-Term Wins

Success begets success.

One important conclusion from the law of diffusion of innovation is that Salesforce’s
Trailhead motto is not strictly true. We're not all trailblazers, at least not in every aspect
of our lives. Most people, most of the time, are trail followers. And there’s nothing wrong
with that.

When it comes to implementing Salesforce DX or other DevOps initiatives,
you can expect at most 2.5% of the population to be true trailblazers. To extend the
analogy, these are the innovators who tromp through the wilderness and blaze (mark)
trees to show others where to go. They're followed by the equally intrepid 13.5% of
early adopters who by analogy are perhaps clearing the trail and ensuring that it’s
increasingly easy to follow.

What these trailblazers offer are examples of successes, small and large. And itis
these successes that you need to amplify, advertise, and celebrate. Keep track of these
successes and share them.

My brother is an extremely seasoned mountaineer, who has traversed almost every
terrain you can imagine. But for myself and the majority of the population, the best we’ll
do is hiking well-marked trails, while staying in range of cellphone towers that allow us
to double-check Google Maps. It’s the same with most of the development teams at our
organization. Their adoption will come when they see clear examples of other teams that
have succeeded.

You can strategically choose small early wins to build everyone’s confidence in this
process. Nowhere is this more important than with refactoring your codebase to make
use of Salesforce DX unlocked packages. Many people have tried and failed to convert
their entire org into a single massive package. But the most effective approach is to first
build a single relatively simple package and ensure you can deploy it across all of your
orgs. Unlocked packages make it easy to add unpackaged metadata into a package, so
once teams have established initial success with that process, they can build on that
strength as their packages grow and multiply.

Create short-term targets, especially quick wins that you can confidently achieve.
This gives everyone on the team increased confidence and helps pacify critics and those
who might oppose your efforts.

62

CHAPTER 3 DEVOPS

Step 7: Build on the Change

Kotter argues that many change projects fail because victory is declared too early. Quick
wins are only the beginning of what needs to be done to achieve long-term change, and
your goal here is to effect a deep and lasting change in approach.

On the basis of your initial successes, keep building. Continue to set targets
for training and adoption. And importantly, encourage teams to track their own
development and delivery metrics and practice continuous improvement.

Consider establishing a center of excellence around DevOps or Salesforce DX
practices. This provides the opportunity for disparate teams to share their challenges
and successes. This kind of ongoing knowledge transfer is important.

Step 8: Anchor the Changes in Gorporate Culture

The final stage is to ensure that these practices become embedded in corporate culture,
so that they can become self-sustaining and are simply the way the company operates.

When I joined Appirio, the organization had an extremely well-established
performance-oriented culture. From day one the executive team championed open
communication, transparency, collaboration, and efficiency. In addition, the agile
practices of working in sprints, using user stories, and so forth are second nature. There
is still work to do to embed DevOps practices into the culture and to ensure they are as
natural to the organization in the future as sprints and user stories are today.

It’s important to see the broader context in which these practices exist, so that even
sales and business people recognize that a reason our organizations can be so effective is
that we empower our developers and continuously optimize and automate our software
delivery processes. It is only when such practices become part of your corporate DNA
that you can have confidence that this change effort will outlive any of the original
instigators, and be passed from generation to generation of the organization, despite the
constant churn and turnover many IT organizations face.

Summary

DevOps is a rich and growing area in the IT world. The foundations of DevOps have their
roots in early automation that developers enacted to facilitate their own workflow. But
the practices continue to mature, become clarified, and grow in adoption.

63

CHAPTER 3 DEVOPS

DevOps combines the management and cultural practices of lean software
development with the many technical practices that enable continuous delivery. Its
business impacts have been analyzed extensively through the State of DevOps Reports
and other studies, which conclude that these practices bring benefits that reach far
beyond the development team.

Because software development and delivery is increasingly central to achieving
organizational missions, the significance of DevOps is growing as well. Organizations
that implement the various capabilities that lead to high software delivery performance
are twice as likely to meet or exceed their commercial and noncommercial goals.

The business benefits of using SaaS systems like Salesforce are very well established.
But DevOps practices are not yet common in the Salesforce world. There is an enormous
amount that Salesforce practitioners can learn from the experience and successes
achieved elsewhere in the DevOps world. Salesforce DX unlocks the door to combining
the benefits of SaaS with the benefits of DevOps and allowing our development teams to
be as effective as possible.

64

PART Il

Salesforce Dev

To illustrate the DevOps lifecycle, this part of the book summarizes how to build
applications on the Salesforce platform, while Part 4: Salesforce Ops (Administration)
summarizes administering Salesforce in production. Building things right and running
them wisely are the two most important aspects of the development lifecycle, but in this
book we touch on them only briefly. The vast majority of the book, Part 3: Innovation
Delivery, covers the stages of deployment and testing that unite development and
operations. Less has been written about that critical topic, but there are enormous
efficiencies to be gained from doing it right.

Developing on the Salesforce platform is generally fun and straightforward, and
there is an amazing array of learning resources available to help. Salesforce’s developer
documentation is excellent, as are Trailhead and the thousands of presentations given
at Salesforce conferences and events every year. In addition, there is a wealth of books,
blogs, tweets, and StackExchange posts you can find to educate you or help you untangle
complex problems.

Although this section is brief, we introduce key concepts in development and

architecture along with recommendations for where you can learn more.

CHAPTER 4

Developing on Salesforce

Developing on Salesforce means configuring the platform to meet the needs of your
organization. It can take the form of clicks or code, but is frequently a combination of the
two. The scope can range from tiny changes to sophisticated applications.

Here, we'll briefly introduce the Salesforce DX development lifecycle. We'll then look
at development tools, click-based development, and code-based development. In the
next chapter, we'll look at application architecture to introduce important principles to
help you structure your development in a flexible and scalable way.

The Salesforce DX Dev Lifecycle

The basic elements of the Salesforce DX development lifecycle are a Salesforce
development org, an IDE or code editor, version control, and a CI tool to perform
automated tasks like deployments. Version control and CI tools are discussed at length
in Chapter 7: The Delivery Pipeline, and the types and purposes of different Salesforce
orgs are discussed in Chapter 6: Environment Management.

Salesforce has enabled sandbox development environments for many years. With
DX, there are now two additional ways to create development environments: scratch
orgs and cloned sandboxes. Scratch orgs are a flagship feature of Salesforce DX. They
are short-lived orgs you create “from scratch” based on code and configuration stored in
version control. Cloned sandboxes can allow developers to clone an integration sandbox
that has work still under development, instead of only being able to clone the production
org. The Salesforce CLI now makes it possible to clone a sandbox and automatically log
in from the command line.

Changes made in that development environment need to be synced to version
control so that automated processes can test and deploy those changes. One of the
most helpful features of scratch orgs is the ability to perform a simple source:push and
source:pull command to synchronize metadata between version control and your org.

67
© Andrew Davis 2019

A. Davis, Mastering Salesforce DevOps, https://doi.org/10.1007/978-1-4842-5473-8_4

CHAPTER 4 DEVELOPING ON SALESFORCE

That capability will soon also be available when developing on sandboxes. Changes can
also be retrieved from sandboxes using either source:retrieve or mdapi:retrieve,
depending on whether you are storing metadata in the “Source” format or the original
“Metadata API” format mentioned in Chapter 2: Salesforce.

Salesforce developers typically have to modify multiple aspects of Salesforce to
create a solution. For example, a typical feature might involve changes to a Lightning
Web Component, an Apex class, a custom object, a Lightning record page, and a
permission set. To deploy that feature to another environment, it’s necessary to isolate
all of the related metadata changes. But it’s entirely possible to make changes in the
Salesforce Setup UI without being sure what type(s) of metadata you're modifying.

If you're the lone developer in an org, working on a single feature, it’s relatively easy
to distinguish the metadata for that feature, especially if you're using version control. Just
retrieve all the metadata and check for changes in that org since you began developing;
whatever has changed must pertain to that feature. When dealing with small volumes
of changes, small teams, and a moderate pace of innovation, it’s not hard to manage
Salesforce changes and deploy them across environments. But as teams begin to scale
up, the pre-DX workflow begins to suffer from many limitations.

As soon as you put multiple developers in a single development org, it becomes
much harder to isolate and deploy their changes independently. But when developers
are working on separate orgs, integration is delayed and it becomes much harder for
them to build on the work of others. Scratch orgs address this need by making it trivial to
create a fresh new Salesforce environment that is up to speed with the metadata stored
in version control. As you update your code repository, you can push those changes
to your org, and as you make changes in the org, you can pull them down into version
control without having to enumerate each type of metadata. Thus, if possible, you should
develop in scratch orgs.

Unfortunately, it’s still not practical for every team to use scratch orgs, and so you
may find you need to keep using sandboxes for development. One very promising
workflow is to automate the cloning of developer sandboxes from a single integration
sandbox and then deploy changes as they’re ready from those developer sandboxes into
that integration org using a CI process. Recent updates to the Salesforce CLI make it
possible to automate sandbox cloning and login.

One way or another, your job as a developer is to make changes in your development
org, to commit them correctly to version control, and then to monitor automated tests
and deployments to ensure your feature can be deployed without error. Setting up such

68

CHAPTER 4 DEVELOPING ON SALESFORCE

automation is the topic of later chapters, but once it’s set up, developers can adopt this
rhythm: build, commit, monitor.

Since version control is critical to this process, before beginning development, you
must establish a code repository for your team. If a project has already been created,
you’ll need to clone that project to your local machine before proceeding.

There are two Salesforce DX development models: the org development model and
the package development model. The org development model is the default approach,
but the two are complementary. Your team may gradually migrate most of your metadata
into packages, but there will always remain the need to manage some org-level metadata
through the org development model. You can find a nice introduction to these different
models on Trailhead at https://trailhead.salesforce.com/content/learn/modules/
application-lifecycle-and-development-models.

The options available for developing on Salesforce are in flux, and most Salesforce
developers are still getting up to speed on foundational concepts such as version control.
This means that there’s more variety in the development workflow than there was just a
few years ago, and the optimal workflow of the future is not yet clear. This book attempts
to present a comprehensive picture of the options, but expect things to evolve over the
coming years.

If you are using the org development model, you will probably have a single
repository representing all aspects of the org’s metadata that are managed by the
development team. Chapter 7: The Delivery Pipeline provides recommendations on an
appropriate branching structure for this model.

If you are using the package development model, you will probably have one
repository for org-level metadata and one or more repositories for managing package
metadata. Dividing your code across multiple repositories makes it easier to set up
automation for each repository, but can easily get confusing as to which repository
contains which metadata.

The package development workflow lends itself to a simpler Git branching structure
than the org development workflow. Until you develop tooling that can dynamically
determine which packages have changed and should have new versions published,
separate packages should be developed in separate code repositories.

The package development model implies that you are using scratch orgs. If you are
using scratch orgs, you will need to periodically recreate these scratch orgs to ensure
that they are clean and reflect the latest version of the codebase. If you are working
with a complex set of metadata and package dependencies, you may find the scratch

69

https://trailhead.salesforce.com/content/learn/modules/application-lifecycle-and-development-models
https://trailhead.salesforce.com/content/learn/modules/application-lifecycle-and-development-models

CHAPTER 4 DEVELOPING ON SALESFORCE

org creation process takes a long time (up to an hour or more), so you may want to
periodically precreate scratch orgs for upcoming work. The forthcoming Scratch Org
Snapshots capability allows you to perform scratch org creation in advance and take a
Snapshot of that org. The Snapshot can then be used to quickly create new orgs that are
fully provisioned.

For those accustomed to working in long-lived sandboxes, it can feel frustrating
to have to periodically recreate an entire development org. The purpose of recreating
scratch orgs is to ensure that the entire application is fully represented in version control.
This allows others on the team to create identical environments, and knowing all your
dependencies limits the chances of confusion about why your applications don’t work
properly in testing and production environments.

Subtle variations between the orgs used for development and testing are a massive
source of risk, confusion, and inefficiency. This is a hidden challenge that often goes
unnoticed, and the time spent debugging these variations between orgs is generally not
accounted for. But every moment spent debugging out-of-sync orgs is waste. Though it
may seem like a radical solution, the regular destruction and recreation of scratch orgs is
key to ensuring an efficient overall workflow.

You should commit changes to the code repository after each significant change.

If you are making changes on a feature branch in Git, all of those changes will be
associated with the name of that branch, and so your branch naming strategy can be a
way of linking a work ticket number to a group of many changes.

When your development is complete and you're ready for review, you will merge it
into your shared master branch (or create a merge request if your team requires that).
Developing in scratch orgs unlocks the possibility of creating “Review Apps” so that
other members of the team can review the developer’s work in a live scratch org.

Review Apps are environments created dynamically from version control that
provide an isolated environment to review features that may still be under development.
The concept was popularized by Heroku. Review Apps should be used for most QA and
testing activities, but they only contain the test data that you deploy and are generally
not connected to external systems, so some testing might need to be done in an SIT org
instead.

Many of the topics presented in this brief overview are covered in more detail in later
chapters.

70

CHAPTER 4 DEVELOPING ON SALESFORCE

Development Tools

Some aspects of Salesforce development are done directly inside the Salesforce Setup
UI, while other aspects are best handled with developer-specific tools. The critical step
of externalizing changes in Salesforce to a version control system is always done outside
of Salesforce. This section gives a brief introduction to key Salesforce development tools
and how they are used.

The Salesforce GCLI

The Salesforce CLI can be downloaded from https://developer.salesforce.com/
tools/sfdxcli. This command-line interface is an essential part of your DX toolkit.
Many Salesforce CLI commands will only run inside a Salesforce DX project. A Salesforce
DX project is one which contains a file called sfdx-project.json. That file is used to
store information about the folders and packages in your project.

You can quickly scaffold a new project by using the sfdx project:create
command, or you can clone one of the sample repositories from the Salesforce DX
Developer Guide to be able to use a CI system like CircleCI. All of these project templates
contain sfdx-project.json along with other helpful files.

You can get help for any CLI command by adding the -h or --help parameter.
You can also find detailed help in the Salesforce CLI Command Reference. The CLI
commands also allow you to export their results in JSON format by adding the --json
parameter. This capability unlocks the possibility of automating complex processes
by extracting the results from one command and passing them as parameters to other
commands. See the section on “Command-Line Scripts” in Chapter 9: Deploying for
advice.

What’s an Integrated Development Environment (IDE)?

An IDE is a code editor which brings together all the tools that developers need to

write, track, debug, test, and deploy code. Some IDEs are built for a particular language
(e.g., PyCharm is specific to Python), whereas others (like Eclipse and IntelliJ) support
multiple languages. An IDE provides a code editor, but also offers things like syntax
highlighting, code completion, debugging, and more. Most IDEs are extensible, allowing
you to install plugins which add new functionality.

71

https://developer.salesforce.com/tools/sfdxcli
https://developer.salesforce.com/tools/sfdxcli

CHAPTER 4 DEVELOPING ON SALESFORCE

The Developer Console

The Dev Console is a web-based IDE that is built into Salesforce. It’s accessible from the
gear icon in the upper right of each Salesforce org. It provides a convenient way to edit
Apex, Visualforce, or Lightning Components. It also allows you to review debug logs, set
checkpoints, and run anonymous Apex or SOQL queries among other capabilities.

It does not provide you a way to track metadata in version control, do deployments,
or work with Lightning Web Components, and it’s no longer under active development.
For certain tasks, like using logs to analyze performance, optimizing queries using the
query plan, or checking Visualforce ViewState, the Developer Console is still my go-to
tool, so it’s worth becoming familiar with its capabilities, although it will become less

relevant over time.

Workbench

Workbench is an unofficial Salesforce tool hosted at https://workbench.
developerforce.com. It provides a user interface for numerous developer-focused tools.
In particular, it provides a simple way to navigate Salesforce’s various APIs and to test
out API commands. Workbench exposes the Metadata API’s ability to deploy or retrieve
metadata and to describe metadata such as custom objects. It exposes the bulk API’s
ability to retrieve or modify data. And it allows you to execute SOQL or SOSL queries and
anonymous Apex.

Workbench may never become part of your daily workflow, but it’s important to
know it exists, as it’s the right tool for a wide variety of jobs.

The Forthcoming Web IDE

If this were a Salesforce conference, I would insert a forward-looking statement slide at
this point. The Salesforce DX team is working on a web-based IDE that will encapsulate
the capabilities of the Developer Console and Workbench (and thus allow those tools
to be retired). At the same time, the Web IDE will allow teams to store complete sets of
project files, run Salesforce CLI and Git commands, and interact with both Salesforce
orgs and code repositories.

The initial goal is to get feature parity with the Developer Console and Workbench.
Eventually this will provide a convenient IDE for teams who aren’t able or don’t wish to
use desktop development tools.

72

https://workbench.developerforce.com
https://workbench.developerforce.com

CHAPTER 4 DEVELOPING ON SALESFORCE

Visual Studio Code

Salesforce built the original Force.com IDE on Eclipse, an open source IDE popular
among Java developers. In 2018, Salesforce retired that IDE and began building a set of
extensions on top of Visual Studio Code.

Visual Studio Code (VS Code) is a rare success story among developer tools. It’s an
open source code editor that first appeared in 2015. Within 3 short years, it became the
world’s most popular development environment.!

VS Code is the product of Microsoft, a company whose success and wealth have been
built around proprietary commercial tools. Microsoft has not historically been well loved
by the open source community, but VS Code is one of many such contributions? made
under Satya Nadella’s guidance. VS Code may even be reducing the number of people
willing to pay for Microsoft’s commercial code editors.

Whatever the history, Microsoft has built an editor that has won the hearts
and minds of millions of developers. And by making the tool open source, they are
benefitting from an amazing stream of innovation from hundreds of citizen developers
who have contributed features and bug fixes. Not to mention the thousands of
companies like Salesforce who have built extensions for VS Code.

So, what is VS Code? Why has it become so popular? And why, in particular, is it the
new chosen platform for Salesforce to build their IDE on?

Visual Studio Code is a free, open source, cross-platform, multilingual IDE. VS Code
has the speed and simplicity of Sublime Text, with the power and tool set of Eclipse or
paid IDEs like Intelli]. It’s fast, simple, and clean; there’s a fast-growing set of extensions
for it; and it’s adding new features every month.

Because it’s popular, it’s attracting innovation. In its short lifetime, VS Code has
become the world’s most popular IDE, with more than 50% of developers worldwide
adopting it. Salesforce has deprecated the Force.com IDE and is solely focused on
building tools for VS Code.

e Visual Studio Code is fast and can be installed on Windows, Mac, or
Linux machines.

o Ithas support/extensions for 72+ programming languages out of the
box.

'https://insights.stackoverflow.com/survey/2018/#development-environments-and-tools
2www . zdnet.com/article/microsoft-open-sources-its-entire-patent-portfolio/

73

https://insights.stackoverflow.com/survey/2018/#development-environments-and-tools
http://www.zdnet.com/article/microsoft-open-sources-its-entire-patent-portfolio/

CHAPTER 4 DEVELOPING ON SALESFORCE

o Itgives built-in syntax highlighting and bracket matching in your
code, as well as easy code navigation.

o It has a built-in terminal and a stepwise debugger that supports
many languages, including the new Apex Debugger and Apex Replay
Debugger.

o It supports Git natively so you can view diffs, commit, sync, and
perform all the essential source control commands without leaving
the editor.

o Ithas awise set of defaults but is extensively configurable.

There are many blogs that have done “bake offs” or detailed feature comparisons
between other popular editors (like Vim, Eclipse, Sublime Text, Atom, and TextMate).
We won't repeat all of the details here, but instead just summarize some of the main
comparisons as follows:

e It's more user-friendly than old-school editors like Vim, Emacs, Nano,
Pico, and so on (anyone remember Edlin?).

o It’s faster and more flexible than Eclipse.

e It has more robust built-in developer tools (like version control and
debugging) compared to Sublime or Atom.

o It's also faster and handles large files better than Atom.

e Ithas far richer capabilities (like syntax highlighting and
autoformatting) compared to TextMate, BBedit, or Notepad.

e It’s free-er than IntelliJ or (the original, commercial) Visual Studio!

While Salesforce itself lives “in the cloud,” professional developers tend to write code
for Salesforce using desktop tools. For a long time, the Force.com IDE based on Eclipse
was the standard Salesforce development environment. With the preview release of
Salesforce DX in 2016, Salesforce launched a Force.com IDE 2.0, also based on Eclipse.
But before long, they changed course, deprecated the Force.com IDE and are now
exclusively promoting VS Code as their official editor.

One reason for the change of heart is the architecture that VS Code is built on.

VS Code is built using Electron, a framework that allows you to build Windows, Mac,
and Linux desktop applications using HTML, CSS, and JavaScript. This means that

74

CHAPTER 4 DEVELOPING ON SALESFORCE

to improve the user interface or add automation to VS Code, you can use the same
technologies used to build web sites—the most common IT skillset in the world.? VS
Code also uses the innovative concept of Language Servers—which allowed Salesforce
to build a generic language server for Apex and Lightning* that can in theory be ported to
Atom, Eclipse, or any other IDE that supports Language Server Protocol (LSP).

In the meantime, Salesforce was aware that MavensMate (especially in conjunction
with Sublime Text) had become the open source editor of choice for many Salesforce
developers who preferred its speed and simplicity to the older, rigid structure enforced
by Eclipse. Sublime Text’s simplicity was a key inspiration for VS Code’s clean UI.

So by Dreamforce 2017, Salesforce had officially retired the Force.com IDE
(including the newer IDE 2.0), in favor of VS Code.

In the meantime, Salesforce has continued to roll out innovation on top of VS code,
and the VS Code team themselves have been releasing new features at a phenomenal
pace.

VS Code should be your default choice for a Salesforce IDE. You can use it on your
existing Salesforce orgs using the new metadata deploy and retrieve commands. This
gives you a chance to get used to tools like the Apex Replay Debugger (a superior way to
handle debug logs), test management tool, and more.

Despite these developments, VS Code still has frustrating gaps, especially for those
developing on sandboxes. As of this writing, it does not provide any warning if you are
pushing updates to a sandbox that will overwrite others’ work. Those limitations will
eventually go away, but you should also seriously consider one of the IDEs mentioned

below in the meantime.

Other Salesforce IDEs

There are currently two commercial IDEs for Salesforce that provide extremely robust
capabilities: The Welkin Suite and Illuminated Cloud. The Welkin Suite is based on
Microsoft’s Visual Studio (the commercial one, not VS Code) but is downloaded as a
standalone application. Illuminated Cloud is a plugin for the Intelli] and WebStorm IDEs
by JetBrains.

Shttps://insights.stackoverflow.com/
survey/2018/#technology-programming-scripting-and-markup-languages

*https://youtu.be/eBOVoYOb2V8?t=861

75

https://insights.stackoverflow.com/survey/2018/#technology-programming-scripting-and-markup-languages
https://insights.stackoverflow.com/survey/2018/#technology-programming-scripting-and-markup-languages
https://youtu.be/eB0VoYOb2V8?t=861

CHAPTER 4 DEVELOPING ON SALESFORCE

Both Visual Studio and Intelli] are exceptional development environments and are
loved by millions of developers. They both now offer free tiers, but their popularity has
been eclipsed as VS Code’s has exploded.

Mluminated Cloud and The Welkin Suite fill major gaps in the Salesforce extensions
for VS Code. They both charge an annual fee, but will quickly pay for themselves in
terms of time and agony saved for each developer. The Welkin Suite is somewhat more
expensive, but is supported by a larger team of developers. Illuminated Cloud is the
work of Scott Wells, who has supported it tirelessly and has an amazing knowledge of the
platform and the challenges faced by developers.

Both of these tools innovate extensively and continue to have promising futures,
even as Salesforce evolves their free alternative. The Welkin Suite created a replay
debugger several years before this was available in VS Code. And Illuminated Cloud
combines Intelli]’s excellent features such as code completion and task management
integration with support for all Salesforce languages, metadata types, and development
models.

In addition to these, it's worth mentioning three other tools. ForceCode® was one
of the earliest VS Code extensions for Salesforce. It was created by John Nelson while
working for CodeScience. The project had been deprecated after Salesforce released
their extensions for VS Code, but I learned recently that it has come back to life. Among
other good qualities, it helps compare your local copy of code with the latest version in
your Salesforce org and includes tools to manage the process of building complex single-
page apps using JavaScript frameworks and deploying them to the Salesforce platform.

MavensMate is now retired but was largely responsible for convincing the Salesforce
developer ecosystem that there were faster and simpler alternatives to the Force.com
IDE. Joe Ferraro labored for years to provide MavensMate, doing an enormous service to
the Salesforce developer community.

Aside.io is a web-based IDE that was also very popular with my colleagues. It has the
benefit of not requiring any local software installation. But as a result, it does not provide
a method to interface with version control. Aside.io may be discontinued soon, but its
founder has committed to open sourcing the project if possible.

*https://marketplace.visualstudio.com/items?itemName=JohnAaronNelson

76

https://marketplace.visualstudio.com/items?itemName=JohnAaronNelson

CHAPTER 4 DEVELOPING ON SALESFORCE

Metadata (Config and Code)

For those new to Salesforce development, it’s useful to reiterate that Salesforce does
not allow for local development because changes are necessarily compiled and run on
a Salesforce instance and cannot be run locally. Lightning Web Components are some
exception to that, and LWC local development capability is now available. The JavaScript
used in static resources is also available for local development, but these are typically
only small parts of a Salesforce application.

What is possible, however, is to download your Salesforce configuration as metadata
that can be stored, tracked, updated, and deployed back to a Salesforce instance.

What Is Metadata?

Most Salesforce customizations are represented as metadata components. These
metadata components are files that can be retrieved from the server (Salesforce
instance) and modified locally, then saved back to the server or deployed to another
environment. A detailed list of available metadata items can be found in the Metadata
API documentation.®

These metadata files are largely stored as XML, although some are code, and some
new types are JSON. It’s this metadata representation that can be stored in version
control and is the basis for automated processes such as static analysis and automated
deployments.

Metadata API File Format and package.xml

As explained in Chapter 9: Deploying, the key technology that enables retrieving and
deploying metadata from a Salesforce org is the Metadata API. The Metadata API uses a
file called package.xml to enumerate the metadata that should be deployed or retrieved.
Some developer tools like MavensMate rely on this file as a representation of the
metadata in your org.

The use of package.xml can lead to confusing results if there’s a mismatch between
its contents and the metadata files you're working with. So an increasing number of tools
are doing away with this file and instead automatically generating it as needed.

https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/
meta types list.htm

77

https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/meta_types_list.htm
https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/meta_types_list.htm

CHAPTER 4 DEVELOPING ON SALESFORCE

For example, the Salesforce DX source format does not include this file at all.
Nevertheless, it’s dynamically generated behind the scenes when communicating with
the Metadata API.

The Metadata API explicitly deals with files using an src/ directory that contains
the package.xml file itself as well as the individual metadata for the project. These files
are organized into folders based on the type of metadata as shown in Listing 4-1. Each
metadata item is its own file within that folder.

Listing 4-1. The native Metadata API file and folder structure

SIC

— applications
| L— DreamHouse.app

F— layouts
| — Broker__c-Broker Layout.layout
| L— Property_ c-Property Layout.layout

F— classes
| — ClassA.cls

| |— ClassA.cls-meta.xml

| |— ClassA Test.cls

| L ClassA Test.cls-meta.xml
F— pages

| |— PageA.page

| L— PageA.page-meta.xml

L— package.xml

Note that some metadata types like applications and layouts have a single
metadata file to represent a single item, while other types like classes and pages use
two or more files. Files like ClassA. cls contain the actual metadata body (in this case
an Apex class), while files like ClassA.cls-meta.xml are called “sidecar files” and store
some accompanying metadata. Sidecar files are typically very small XML files.

One of the innovations of the Salesforce DX source format is the ability to group
related metadata into subfolders that can eventually be published as packages. That
is not possible in the native Metadata API format and is a key benefit of moving to
Salesforce DX.

78

CHAPTER 4 DEVELOPING ON SALESFORCE

Converting Between Salesforce DX and Metadata API
Source Formats

There are special commands to convert between the Salesforce DX metadata format
and the Metadata API format. The Salesforce DX Developer Guide and some Trailhead
modules” and video tutorials® describe this process in more detail. Here we provide just a
brief overview.

sfdx force:project:create allows you to create a new set of project files in the
Salesforce DX format. But it’s often the case that you want to convert an existing set of
metadata files into Salesforce DX “source format.”

stfdx force:mdapi:convert operates on projects stored in the native Metadata
API format and converts them to the “source format.” All files in the src directory are
converted into files in the default folder specified in sfdx-project.json (typically
force-app/main/default/). Large .object files are decomposed into smaller
components, zipped static resources are decompressed, and so forth. Initially these
files are not grouped into subdirectories, but after being converted, you can create
subdirectories to group metadata into packages.

sfdx force:source:convert performs the opposite conversion, taking metadata
files in the SFDX source format and converting them into the native Metadata API
format. Even if you have grouped your source format metadata into many subfolders,
once converted into the Metadata API format, they will all be in a single src/ folder.
This process will autogenerate the package.xml file mentioned earlier. Note that this is a
“lossy” conversion; if you convert these files back to the DX source format, you will lose
the folder structure.

What Metadata Should You Not Track?

The main goal of this book is to provide advice on building a CI/CD pipeline for
Salesforce. That pipeline becomes a delivery vehicle for metadata to allow it to be built in
a development environment, promoted for testing, and finally delivered to production.

"https://trailhead.salesforce.com/en/modules/sfdx_app_dev/units/sfdx_app_dev_deploy

Swww . youtube.com/watch?v=61ING61FVCGQg&81list=PLp30cEU4IpnBX2yZWIw7jjMXvsFI1tM57&in
dex=2

79

https://trailhead.salesforce.com/en/modules/sfdx_app_dev/units/sfdx_app_dev_deploy
http://www.youtube.com/watch?v=6lNG6iFVGQg&list=PLp30cEU4IpnBX2yZWJw7jjMXvsFIltM57&index=2
http://www.youtube.com/watch?v=6lNG6iFVGQg&list=PLp30cEU4IpnBX2yZWJw7jjMXvsFIltM57&index=2

CHAPTER 4 DEVELOPING ON SALESFORCE

There are however types of metadata such as those shown in Table 4-1 that generally
should not be included in the code repository and CI/CD process. There can be
temporary and long-term exceptions to this rule depending on the needs of the project
team. Think of the things that you include in the CI/CD process as being “controlled by
developers and admins,” as opposed to being “controlled by end users.” The essence
of continuous delivery is being able to reliably recreate development, testing, and
production environments and code. And for this reason all core functionality (custom
objects and fields, business logic, even page layouts) should be controlled by this
development process. But functionality like reports and dashboards are a great example
of metadata that can safely be controlled by business users, since they may need to
change frequently and with rare exceptions changing them will not cause side effects
elsewhere in the system.

If you exclude these items from your code repository, you should also add them to
your . forceignore file to prevent them from sneaking back in.

Table 4-1. Types of metadata that might be excluded from CI/CD

Metadata Type Reason to Exclude from CI/CD

Certificate Certificates are generally environment-specific and should be kept
secure.

ConnectedApp Connected Apps are generally environment-specific. If you automate their

deployment, you will need to dynamically replace some parameters.

Dashboard These are often changed frequently by users in production and should not
go through the development lifecycle unless they are a dependency for
your code or metadata.

Document These are often changed frequently by users in production and should not
go through the development lifecycle unless they are a dependency for
your code or metadata.

EmailTemplate These are often changed frequently by users in production and should
not go through the development lifecycle unless they are a dependency
for your code or metadata. An exception is VisualForce email templates
or other templates that use embedded code and may require a careful
development process.

(continued)

80

CHAPTER 4 DEVELOPING ON SALESFORCE

Table 4-1. (continued)

Metadata Type Reason to Exclude from CI/CD

InstalledPackage You can’t control the installation order. Use sfdx package commands to
install packages instead.

Layout When following the package development model, page layouts can be
problematic. They should be managed at the org level for any objects that
straddle multiple packages.

NamedCredential Named Credentials are generally environment-specific. If you automate
their deployment, you will need to dynamically replace some parameters.

PlatformCachePartition ~ These are typically environment-specific.

Profile Profiles are the fussiest of all metadata types, as explained below. Without
special automation, you will find it easier to manage these manually.

Report These are often changed frequently by users in production and should not
go through the development lifecycle unless they are a dependency for
your code or metadata.

SamlSsoConfig SAML SSO Configuration is usually environment-specific. If you automate
their deployment, you will need to dynamically replace some parameters.

Site The Site metadata type represents Communities, but is stored as a binary
file and can change unpredictably, making it a poor candidate for CI/CD.

Retrieving Changes

After modifying items in a development org, you need to retrieve those changes and
merge them into your local working directory so that you can track changes and deploy
them using CI/CD.

The Salesforce CLI and the different IDEs mentioned earlier all provide mechanisms
to retrieve metadata. The commercial Salesforce release management tools introduced
in Chapter 9: Deploying also provide mechanisms for doing this.

The way the Metadata API behaves can make retrieving metadata very awkward
without the help of a specialized tool. This is especially true when working in the native
Metadata API format. A single .object file can contain hundreds of child metadata
items. If you request to retrieve one of those child items, such as a field, your request will
overwrite the entire .object file with just the metadata for that one item.

81

CHAPTER 4 DEVELOPING ON SALESFORCE

Profiles are famously awkward to deal with. A profile can contain thousands of
permission details such as field-level security. But when you issue a simple retrieve
command for a profile, it will retrieve only the small subset called “user permissions.” To
retrieve the field-level security part of a profile, you have to retrieve both the profile and
the appropriate field. As mentioned earlier, this will overwrite the local metadata file for
the object and will also overwrite any other permissions in the profile file. Even more
confusingly, to retrieve the page layout assignment for a particular record type, you have
to retrieve the profile, the page layout, and the particular record type. I could go on.

Why such bizarre and unfortunate behavior? It’s because the Metadata API was
not originally designed to create a single representation of the org that was suitable to
be stored in version control. This is one of the key reasons why it’s important to use
tools that are specialized for Salesforce development, and one of the key reasons why
naively attempting to build a Salesforce CI/CD process without specialized tools will
end in tears.

Adopting a specialized Salesforce IDE or release management tool will pay for itself
very quickly (especially if you use the free ones!). These tools have solved these problems
and allow you to follow a rational workflow for retrieving, tracking, and deploying
metadata.

The Salesforce DX source synchronization process for scratch orgs also addresses
these challenges. The SFDX source format is designed to store metadata for use in
version control and automated deployments. And the source synchronization capability
of scratch orgs handles complex retrieves and merges automagically.

Making Changes

Changes to a Salesforce org can be made either using the Salesforce UI or by modifying
the metadata in your local IDE and compiling it to the Salesforce org.

Most configuration changes should be made with the UI to ensure that the metadata
remains coherent, while most code changes are made from the IDE. The Salesforce-specific
IDEs perform a two-step process when saving. They first save your file locally and then
attempt to deploy them to your development org. If the deployment is unsuccessful, you
will receive an error that prompts you to fix your change. In the case of code files, deploying
your metadata files will also compile your code and show you any compile-time errors.
If the deployment is successful, your update will be saved to the org.

82

CHAPTER 4 DEVELOPING ON SALESFORCE

Note that you have to remain attentive to any errors returned by your IDE. It's
entirely possible to commit local metadata files to version control in an invalid format,
which will cause downstream failures if you attempt to deploy them. It’s the developer’s
responsibility to ensure that they can make a successful round-trip from their local
metadata file to the Salesforce org and back.

Salesforce DX scratch orgs and source synchronization address these challenges.
Scratch orgs are generally designed for a single user or for limited collaboration between
one dev, one admin, and maybe people testing or demoing new features. This bypasses
the challenge of possibly overwriting others’ work in a shared sandbox.

The source synchronization process also makes deployments to scratch orgs very fast
and simple. Local metadata is first analyzed to see if it has changed (using a timestamp
and a hash), and only metadata that has been changed is pushed, which makes the
deployments much faster. There’s no need to specify which specific files should be
pushed to the scratch org; every changed file will be pushed using a single command.

Manual Changes

Almost all of the steps required for a deployment can be automated using metadata and
the Salesforce CLI, although it takes time to get familiar with the way that UI changes
are represented in metadata. There are however some changes that cannot be tracked
or deployed in this way. When manual configuration is needed for functionality to work,
developers or admins should track and document the required steps in whatever project
tracking tool is being used. The instructions should be as detailed as necessary for
whoever will eventually perform those manual steps.

It’s at this point that the dreams of fully automated deployments bump up against
a more manual reality. As mentioned in Chapter 9: Deploying, many of the things that
people think are manual steps can in fact be automated. And the Salesforce Metadata
API teams keep working on addressing gaps in the metadata.

Traditionally, when developing on sandboxes, developers need to have extensive
knowledge of many different metadata types and do research to determine if and how
that metadata can be downloaded. The source synchronization process available in
scratch orgs and soon also in sandboxes addresses this problem by automatically
identifying what was changed through the Setup UI and downloading the appropriate
metadata. The productivity gains from this cannot be overstated.

83

CHAPTER 4 DEVELOPING ON SALESFORCE

Click-Based Development on Salesforce

There are roughly 250 different types of Salesforce metadata that are configured
declaratively, using “clicks not code,” on the Salesforce platform. This configuration
can be as simple as toggling settings and as complex as using sophisticated “Builders”
to create complex Uls, data models, and business logic. The App Builder, Schema
Builder, Flow Builder, Process Builder, and Community Builder provide drag-and-drop
components for these purposes, each with their own configurable settings.

The degree to which Salesforce can be configured in this way is a defining
characteristic of the platform. It means that even code-based Salesforce developers need
to be familiar with at least the basic declarative configuration tools. It also means that
one can spend their entire career building and customizing Salesforce and never leave
the Salesforce UL

Development—No-Code, Low-Code, and Pro-Code

Salesforce sometimes distinguishes three types of developers—no-code, low-code,
or pro-code—based on their skills and preferred tools. The term “developer” implies
someone who creates something systematically and by phases. This is certainly true
of those who code, since the process involves extensive testing and iteration. But it’s
equally true of those who use graphical tools. The initial iteration of a Flow might be
quite simple. It then needs to be tested, edge cases need to be identified, logic can be
added, and so forth.

It's worth remembering that code itself is a user interface—it’s just a text-based
Ul rather than a graphical one. The history of computer science is largely the history
of building increasingly high-level abstractions to make logic more clear for humans.
Assembly language was created to free people from having to write numeric instructions
in machine code. Higher-level languages like C freed people from having to deal with
esoteric assembly language. Languages like JavaScript layer on further abstractions and
simplifications, eliminate the process of compiling code, and give access to hundreds of
thousands of prebuilt modules that encapsulate solutions to common problems.

Each transition to a higher level has made the language more accessible, at the cost
of some performance. Those who are familiar with working at lower levels of abstraction
can boast of building more optimized solutions. But a performance cost is often a very
worthwhile sacrifice for a solution that is easier to understand and maintain over time.

84

CHAPTER 4 DEVELOPING ON SALESFORCE

And so in Salesforce, “pro-code” developers are those who are comfortable or prefer
working directly with Apex, Visualforce, Lightning, or Salesforce APIs. “Low-code”
developers are those who are more comfortable working with declarative tools, but who
are nevertheless comfortable creating or maintaining small and strategic bits of code.
And “no-code” developers are those who build and maintain customizations entirely
using declarative tools.

“No-code” developers are extremely common in the Salesforce world. But the
idea of developing without code is still a nascent movement in the IT world. Graphical
abstractions for Ul and data models are extremely common, for example, with tools
that allow you to build web pages without dipping into HTML or build relational
databases visually. Graphical abstractions of logic are less common; but even the most
sophisticated programmers often crave and create visual representations of complex
code like UML diagrams. In this respect, the future is already here on the Salesforce
platform.

Salesforce Flows actually use Visualforce or Lightning to generate pages. In that
sense, Flows are truly higher-order abstractions built over top Salesforce coding
technology. As with other abstractions, Flows and Processes do not perform as well as
pure Apex or Lightning solutions, and their metadata format is arcane. But they allow
business processes to be visualized and edited by a far larger group of users, which is a
massive boon for maintainability. They are one of many examples where Salesforce is
democratizing development. While pure coders may be dismissive of solutions that trade
efficiency for simplicity, history shows that this can be a massive strategic advantage.

But don’t expect code to go away anytime soon. Salesforce themselves had to retreat
from their original “clicks not code” motto. And “pro-code” development options like
Web Components, Git, and CI/CD are becoming increasingly easy and popular on
Salesforce. Just as I would have been hard-pressed to write this book using graphical
tools, there’s often no substitute for the freedom and flexibility of text-based code to
express complex scenarios.

Declarative Development Tools

Entire books have been written about Salesforce declarative tools like Community
Builder, so I'm making no attempt to cover that topic exhaustively here.

What matters for our purposes is that any declarative changes that are made in
Salesforce need to be converted into a textual form if they are to be tracked in version

85

CHAPTER 4 DEVELOPING ON SALESFORCE

control and migrated to other environments using the tools described in Chapter 9:
Deploying. This is the job of the Metadata API, described in detail in that chapter. The
Metadata API provides a text-based representation of declarative configuration, mostly
in XML, that can be inspected, tracked, and deployed to other environments.

In most cases, the purpose of capturing declarative configuration as text is simply to
retrieve it from one Salesforce environment and deploy it to another environment. Along
the way, there certainly is manual or automated processing that can be done on that
metadata, some of which is described later in this book. But just as the declarative tools
themselves range from simple to complex, so too does this metadata representation. I
feel extremely comfortable viewing and updating the XML that describes custom objects,
fields, and validation rules. But I don’t know anyone who regularly edits the metadata
representations of Flows and Processes.

There are countless tips and tricks that could be shared about working with
declarative metadata; some of these I know, many of them I don’t. So I'll constrain this
discussion to a few points about a few of the most complex declarative Builders.

Lightning App Builder

The Lightning App Builder is a way to create Uls by assembling Lightning Components.
From a metadata point of view, the final result of using the App Builder is a metadata
item of type Flexipage. This is an XML representation of the page that includes the page
layout, the components on the page, component properties, and some other metadata
such as platform actions available for that page. This metadata is stored in a single file
and is easy to version and deploy.

Community Builder

Community Builder is similar to Lightning App Builder in that it is used to create
and configure user interfaces with drag-and-drop elements. But it adds considerable
sophistication in that it can be used to create entire Communities—multipage web
sites—and to define the overarching structure of the site as well as individual pages.
Community Builder is a massive area of growth and focus for Salesforce, and they're
working on a unified “Experience” model that can also encompass the web site builders
associated with Marketing Cloud and Commerce Cloud.

One massive disadvantage of Community pages is that until recently they didn’t
have human-readable metadata contents. That’s changing with the release of the

86

CHAPTER 4 DEVELOPING ON SALESFORCE

ExperienceBundle metadata type, although that’s still in Developer Preview as of this
writing. In marked contrast to most Salesforce metadata, ExperienceBundles are stored
as JSON files. Salesforce began in 1998 and is mostly written in Java, the most promising
programming language from that time. Salesforce also relies heavily on the data storage
and exchange formats which were popular at that time, XML and SOAP, which are

very well supported by Java. JSON is a newer and simpler standard that has grown in
popularity alongside JavaScript, since it allows for smaller and more readable files, which
can be parsed natively by JavaScript.

Although it’s currently possible to deploy entire communities using the Site,
Network, and SiteDotCom metadata types, the Site is stored as a binary file which
changes each time it’s retrieved, and so isn’t suitable for version control or continuous
delivery. As ExperienceBundles become widely adopted, it should become possible
to selectively deploy aspects of a Community without redeploying the entire thing.
Until then, teams must either deploy the entire Site or manually migrate Community
configuration from one Salesforce org to another.

Process and Flow Builders

Process Builder is used to create business logic that is triggered by an event such as a
record update. Processes are necessarily linear sequences of steps that are performed
one after another, although there are an increasing number of available options.

Flow Builder is used to create more complex logic and can also be used to create
user interfaces and to define data flow across screens. Processes are built on the same
underlying technology as Flows, and they are both retrieved using the metadata type
Flow.

For many releases, managing Flow metadata also required managing metadata for
FlowDefinition. Each Flow or Process version was stored as a separate Flow file, and a
corresponding FlowDefinition file specified which version of the flow was active. Since
Winter '19, only the active Flow version is retrieved, FlowDefinitions are not needed,
and Flows can be deployed as active under certain circumstances. Since Flow versions
update the same filename, you can keep a clear history of changes in version control.

Flows and Processes are one of a small number of metadata types where Salesforce
manages version numbers internally and allows versions to be updated or rolled back
from the Setup UL

This is a very powerful capability for many reasons. First, Flows are asynchronous
and may be waiting for user input for many minutes. Flows store the user’s state in a

87

CHAPTER 4 DEVELOPING ON SALESFORCE

FlowInterview object, along with which version of the Flow is being used. Even if a
different version is activated while a user is still progressing through that Flow, they will
be able to complete the process using the same Flow version they started with.

Second, this allows for versions of a Flow to be deployed without being immediately
released. As explained in Chapter 10: Releasing to Users, the ability to deploy without
releasing is a key capability that enables continuous delivery. While Flow versions do not
allow you to release to only a subset of users, they certainly enable you to roll out or roll
back a flow version on your own schedule, regardless of when they were deployed to
an org.

Finally, Flow versions provide a form of declarative version control. The use of
traditional version control is still far from ubiquitous on Salesforce. Declarative developers
building Processes and Flows are grappling with complex logic and Uls that might take
days or weeks to build. As with code-based development, it’s invaluable to be able to
take a snapshot of your work and begin experimenting with a new approach, confident
that you can always roll back to a previous version. By dispensing with FlowDefinition
metadata, Salesforce is making it easier to manage Flows using traditional version control
like Git while still preserving the declarative versioning of Flows.

There’s one final sense in which Flows and Processes are unique among declarative
metadata. Salesforce has begun to enforce code coverage requirements on these, just
as they do with Apex code. As we'll discuss in Chapter 8: Quality and Testing, Apex tests
are not limited to only validating Apex code. They can validate any form of backend
business logic in Salesforce, including validation and workflow rules, Processes, and
autolaunched Flows (those which don’t require a UI).

The only case when code coverage is required for Processes and Flows is when they
are deployed as Active. By default, they are deployed in a Draft status and have to be
manually activated. You can enable the ability to deploy these as active from Setup >
Process Automation Settings » Deploy processes and flows as active. If you choose
this option, then you must ensure that you have Apex tests that exercise these flows. For
example, if a Process is triggered any time you create or update an Opportunity with a
particular record type, you must have an Apex test that performs such an action.

This is a fairly soft requirement, in that not every logical execution scenario has to
be tested. So it doesn’t require tests that are as detailed as those which test Apex classes
or triggers, where 75% of all the lines have to be covered. But you have to at least touch
those Flows and Processes.

88

CHAPTER 4 DEVELOPING ON SALESFORCE

Data Management

The very core of Salesforce is a relational database that can be easily managed using
clicks not code. This is the earliest configurable part of the platform and is still the most
heavily used. Admins can use graphical tools to define objects and fields, connect them
to other database objects, place them on page layouts, and define who can see them.

A complete explanation of this topic is far outside the scope of this book, but it’s
worth mentioning a few points that have an impact on the overall flow of changes from
development to production.

Managing the Schema

“Schema” is a fancy name for the data structures in a relational database. In the simplest
terms, it defines what data you want to store and how that data is related to other data. In
a traditional database, you define spreadsheet-like tables to hold each category of data,
in which each “row” is a record, each “column” is a field, and some special columns can
be “lookup relationships” to rows in other tables. In Salesforce, tables are referred to as
“Objects” (like the Account Object) because the definition of that object includes far
more than just the data structure.

Creating a new schema object or field is typically done using multistep wizards, and
this is often the first configuration activity that Salesforce admins and devs will learn. For
the impatient, Salesforce provides a Schema Builder that allows you to create objects and
fields quickly while bypassing nonessential steps in the wizard.

Although this process is relatively quick and easy, it can have big impacts on the rest
of the org. U], reporting, and business logic are built around displaying, analyzing, and
manipulating data, and so the schema is fundamental to most other customizations.

When people first begin to set up version control and continuous delivery for
Salesforce, it’'s tempting to only track code. Code is certainly the most important
candidate for version control, but code in Salesforce is largely built for retrieving and
manipulating database objects, and so without tracking the schema you don’t have a
complete picture stored in version control. If you attempt to automatically deploy code
to later environments, your deployments will fail unless the necessary objects and fields
are already in place.

For these reasons, you should manage the schema in your testing and production
environments using version control and a continuous delivery process. You should not
allow any manual changes to the schema in those environments, unless you have a

89

CHAPTER 4 DEVELOPING ON SALESFORCE

high tolerance for confusion and inefficiency. You can and should modify objects and
fields in a development environment and deploy from there along with the rest of your
configuration.

As mentioned, there’s a lot more to Salesforce objects than just a data table. This
is reflected in the object metadata format, which includes fields, validation rules,
compact layouts, and record types among other components. It’s for this reason that
critical objects in your data model like Accounts can easily have an object metadata file
that grows to tens or hundreds of thousands of lines. Version control tools like Git excel
at managing and merging line-by-line changes to code files. But the default diff tool
included with Git gets extremely confused when comparing repetitive blocks of XML
metadata, making such large files very hard for teams to manage and collaborate on.

The Salesforce DX source format “decomposes” each object file into a folder, with
files for each child component organized into subfolders by metadata type. Breaking
large XML metadata into many files makes it straightforward for teams to manage and
deploy the schema collaboratively.

Changing the Schema

Most schema changes lend themselves well to being propagated from dev to test to
production. There is, however, one caveat and two big exceptions. The caveat is that
some seemingly innocent schema changes can cause data loss or other problems. The
two exceptions where schema changes can’t (or shouldn’t) be propagated automatically
are when changing the object/field names and when changing field types.

It is important to emphasize to your developers and admins that their changes can
and will have an impact on production data and users, and that it is their responsibility
to envision not only the end state that they want to build but also the impact of any
changes to existing functionality. It’s important to facilitate the free flow of innovation,
but here are just a few examples where schema changes require a skeptical eye:

o Increasing the length of a field is usually safe, but decreasing its
length can truncate data and cause data loss.

o Increasing the length of a field can cause problems if you're
integrating with external systems and those systems truncate or
refuse to accept longer data values.

e Adding validation rules is part of business logic and must be tested
carefully since it can cause Apex tests and integrations to break.

90

CHAPTER 4 DEVELOPING ON SALESFORCE

o Disabling field or object history tracking will delete that historical
data unless you're using Salesforce Shield.

e Making a field required can also break Apex tests and integrations
and is not a deployable change unless that field is populated for every
record in the target org.

Don’t Change DeveloperNames

The two types of schema change that are truly problematic in a continuous delivery
process are changing object/field names and changing field types. Every type of
Salesforce metadata, including objects and fields, has a DeveloperName (aka API
name) that uniquely identifies it. That name is usually created dynamically when you
specify the label or display name for the metadata. For example, if I create a field labeled
“Implementation Manager,” the New Custom Field Wizard will suggest the field name
Implementation Manager c. When you retrieve the metadata for that new field, the
field name appears as the <fullName> property in the XML and the name of the field file
if you're using the Salesforce DX source format.

Let’s say you decide to change the label for that field to “Success Manager.” It’s
tempting to also want to change the field name to Success_Manager _c. If you've already
deployed this field to other environments, DON’T CHANGE ITS NAME. Take a cue from
Salesforce, who regularly rebrands their features, but doesn’t change their names on the
backend. Einstein Analytics is still known as Wave in the metadata. Communities and
Sites were rebranded a decade ago, but are still referenced as Picasso in some parts of
the metadata. The list goes on and on.

The problem with changing developer names is that when you deploy the new name,
it's created as an entirely new field, object, and so on. It’s treated as something new and
unknown; none of the data is carried over from the old object. Not only that, but you'll
have to update any code, formulas, or external integrations that relied on it. DON’T DO
IT, change the field label to update the UI, but leave the underlying field name the way it
is. You can add an explanatory note in the field description if you think that will help.

Changing Field Types

What about changing field types? A groan is arising from the depths of my heart when
I think about this activity; it’s generally a big pain to propagate these changes. Here are
some recommendations about addressing this.

91

CHAPTER 4 DEVELOPING ON SALESFORCE

First, the basics: every field in a Salesforce object has a field type. There are
currently 23 possible field types including text, picklist, number, lookup relationship,
and formula. Field types determine the storage size for fields and provide built-in data
validation: you can’t put text in a number field, lookup relationship fields have to point
to another record, and so on. Twenty-three types of fields means there are theoretically
23 % 22 = 506 permutations of field type changes. But there are limitations on this, so,
for example, it’s not possible to change a field from a formula into any other type or
from any other type into a formula. Salesforce provides a help article outlining those
restrictions and the cases in which data loss can occur, such as changing from a text field
to a number field.’ That article is an important reference when considering a field type
change.

Why would you ever need or want to change the type of a field? There’s always
uncertainty in the development process. One common example is changing from a text
field (which allows any value) to a picklist field (where only certain values are valid) or
vice versa. The team may create a text field to store a particular value, but later realize
that it’s important to standardize the options to improve data quality and generate better
reports.

The book Refactoring Databases' arose from the recognition that data models need
to evolve over time and introduced the concept of “evolutionary database development”
to address this challenging process. They provide numerous recommendations, not all of
which are relevant for Salesforce, but some of which can be summarized here.

1. Delay creating (or at least deploying) objects and fields until
you are actually ready to use them. It’s very easy to modify your
schema in your development org, but can be challenging to
propagate changes, especially if you're already storing data.

2. Thinklong and hard about whether you actually need to change
the type of a field. I've facilitated field type changes for developers,
only to facilitate changing them back, and then changing them
once again. Such indecision can strain your friendships.

*https://help.salesforce.com/articleView?id=notes_on_changing custom field types.
htm

19Scott W. Ambler and Pramodkumar J. Sadalage, Refactoring Databases: Evolutionary Database
Design (Addison-Wesley Professional, 2006).

92

https://help.salesforce.com/articleView?id=notes_on_changing_custom_field_types.htm
https://help.salesforce.com/articleView?id=notes_on_changing_custom_field_types.htm

CHAPTER 4 DEVELOPING ON SALESFORCE

Experiment with the field type change in your development
environment to see if it’s even possible. Create a new field of the
original type, and then change that field to see if it’s permitted and
what warnings are displayed. Delete that field when you're done.

Assess the risk of data loss from any field change, and get sign-off
from the appropriate business stakeholders on the change.

Assess whether any external integrations connect to this field, to
ensure they won't break or introduce bad data.

If you decide to proceed, you can change the field type in your
development environment and attempt to deploy it. Some field
type changes can be successfully propagated using the Metadata
APL. If your deployment succeeds, you're lucky.

If your deployment does not succeed, you have two options:
manually change the field type or create a new field and migrate
data.

You can manually change the field type in all other environments
as a way of propagating this change. This is tedious once you
become accustomed to continuous delivery, but may be your
simplest option. The problem with this is if you have a long lead
time to get changes into production, since it may require careful
choreography to facilitate a large release and also to make manual
changes such as field type changes, especially if those changes are
required for work done weeks or months in the past. This is one of
many arguments for doing small and frequent releases.

You can also create a new field of the new type and then migrate
or synchronize data from the old field. This is necessary for certain
field type changes, especially if the field is heavily referenced by
code or other configuration. Migrating data from the old field

to the new field can be done using a data management tool or

by using batch or anonymous Apex, depending on how much

data you need to move. Batch Apex can be used to iterate across
thousands or millions of records. You query records which have
the old field populated and the new field empty, and you copy

93

CHAPTER 4 DEVELOPING ON SALESFORCE

values from the old field to the new field, transforming them along
the way. The Metadata API allows you to mark the old field as
deprecated if you want and eventually to delete it.

10. In circumstances where you need to change a heavily used field
in a production environment without incurring downtime, you
can actually create a data synchronization between the old and
new fields. This is the most elegant solution and could involve
Apex, Processes, or Workflow rules to update the new field with
the old value and the old field with the new value whenever they
change. While complicated, this allows for true refactoring and
enables you to deploy a complete process from development to
production without requiring any manual steps. Needless to say,
you should test the heck out of this process before deploying it.
Once it’s in place and your refactoring is complete, you can delete
the old field.

Bulk Database Operations

In addition to field type changes, there may be other bulk database operations you

need to perform. Many of my colleagues at Appirio specialized in transforming and
migrating data from legacy systems into Salesforce, and for this there are specialized
tools and skills you might need. The Salesforce data management applications Odaseva
and OwnBackup both provide a wealth of tools that you might use to perform large-
scale data operations. The free Salesforce Data Loader and MuleSoft’s dataloader.io are
excellent no-frills options to help with this process, especially in combination with clever
use of spreadsheets for data transformations.

As mentioned earlier, the use of anonymous Apex and batch Apex are both excellent
methods to perform bulk database operations, although you should approach this with
due caution. Anonymous Apex allows you to build an Apex script so you can query,
transform, and create/update/delete data as needed. Such scripts should generally
be stored in version control (so you don’t forget what you did), but are generally run
through the developer console or the Salesforce CLI. Test such scripts very carefully.
Anonymous Apex allows you to transform up to 10,000 records at a time (the DML limit).
Combined with a query that is smart enough to know which records have not been
processed, you can script or manually trigger iterations of this code until the job is done.

94

CHAPTER 4 DEVELOPING ON SALESFORCE

Batch Apex handles the iterations for you and is designed to process large volumes of
data over time. Batch Apex is an Apex class that uses the Database.Batchable interface
to define start, execute, and finish methods that iterate across your database 200
records at a time. This can be used either for one-time or ongoing processing as needed.

Data Backup

Unless you're unusually paranoid, you don’t need to back up your data out of fear that
Salesforce will lose it. They have excellent redundant backup systems that distribute
the backup across multiple data centers. What you need to worry about is the actions of
your users and yourself. Remember those bulk database operations I just mentioned?
Remember how I said you should test them extremely well? I think you're getting the
picture.

While unlikely, you could be subject to malicious users or hackers who intentionally
delete data. More likely, unwitting users or admins might make sweeping changes that
cause data loss or corruption. And it’s also possible for developers to introduce batch
Apex, processes, triggers, workflows, or integrations that cause sweeping and undesired
changes.

For all of these reasons, data backup is important. Your free option is the monthly
export service accessible in Setup » Data » Data Export. That will generate a one-time
or scheduled downloadable backup. You should practice and ensure you have the skills
on hand to restore some or all of that data in an emergency. Your concierge options are
data management services such as AutoRABIT Vault, OwnBackup, or Odaseva who can
provide data backup and recovery tools and services.

Configuration Data Management

One of the weakest links in the continuous delivery systems I have built and seen for
Salesforce is the management of configuration data. Salesforce release managers and
release management tools generally specialize in migrating configuration metadata.
The Salesforce Metadata API provides a mechanism for retrieving and deploying this
metadata. While there are some complexities in this process, Salesforce actually takes
care of most of the complexity for you. When you do a deployment, Salesforce checks the
validity of your code and configuration, ensures referential integrity and idempotency,
assesses differences, sequences the metadata loads, and more. There’s an enormous
amount of intelligence being leveraged behind the scenes.

95

CHAPTER 4 DEVELOPING ON SALESFORCE

If you need to migrate complex configuration data, you will need to address those
problems of data sequencing and referential integrity on your own. The tools and
techniques for this are unfamiliar to most Salesforce release managers and so have been
an afterthought for many teams.

Unfortunately, large managed packages such as Rootstock ERP, nCino, Vlocity,
FinancialForce, and Salesforce CPQ require extremely complex configuration data to
operate. If you use any of these packages, it's important for your team to establish tools
and expertise to facilitate migrating this data, so that you can use your sandboxes to
develop this configuration as well. The reason to manage configuration data in your
release management process is twofold: first, that configuration data can determine
logical pathways that actually affect the behavior of your applications, and second it
allows you to develop and test changes to this data before migrating it to production.

To my knowledge, among the packages listed earlier, only Vlocity has built its own
configuration data migration tool, Vlocity Build." Prodly Moover has carved out a niche
for itself as a tool that specializes in migrating such complex data. Some of the Salesforce
release management tools like AutoRABIT, Gearset, and Copado have also begun
to develop excellent tools to help in this process. Where these release management
tools have an advantage over Prodly is that they can choreograph this data load along
with releases. I haven’t personally been involved with creating a highly automated
configuration data release process from scratch, although it’s certainly possible to do so.
If you opt to code such a process yourself rather than relying on a commercial tool, here
are some suggested steps you'll need to undertake to complete that script:

1. Recognize that data migrations require you to address all the steps
mentioned earlier that the Metadata API does for you.

2. Recognize that the skills and experience for doing this will lie with
data migration specialists and that there will need to be some
logic built into the process as well.

3. Salesforce record IDs and Auto-number fields can vary from
org to org, so you can'’t rely upon those to represent the lookup
relationships between objects when you migrate data to other
orgs. Therefore, there must be external IDs on all of the objects in
the configuration data model so that you can establish uniqueness

"https://github.com/vlocityinc/vlocity build
96

https://github.com/vlocityinc/vlocity_build

CHAPTER 4 DEVELOPING ON SALESFORCE

and define relationships between records in a way that’s org
independent. Configuration objects in managed packages should
have external IDs in place already, but if you've built your own
configuration objects, there needs to be at least one required,
unique, external ID field on each of them.

Assuming the exported configuration data spans multiple objects,
the result will be multiple data tables that express their record
identity and relationships through external IDs. Those files then
need to be loaded in sequence into the target orgs, with parent
records being loaded before child records. The Bulk API provides
intelligent ways to organize the loading of parent records and
child records. But dealing with the Bulk API will require you to do
some coding and build some familiarity with its capabilities. The
Salesforce CLI introduces the possibility of data:tree:export and
data:tree:import to store and transfer structured data, especially
configuration and sample data, using the REST API's Composite
resource endpoint. Unfortunately, those commands are limited to
200 records across all trees in one call. This means that to manage
large and complex data structures across multiple orgs with
minimal overhead, you will need to stitch together many such
calls to represent one or more complex data trees. Prepare to do
some coding, or retreat to one of the commercial tools mentioned
earlier.

Retrieving and loading these complex trees from one org to
another is clearly a challenge in its own right. If you make careful
use of external IDs, marking them required and unique, then
you can ensure idempotency any time you load this data in.
Idempotency means that if you perform the same actions many
times, you will always get the same results. In data migration, this
is the same as doing an upsert, matching on external IDs, so that
you will create any records that need to be created, but you will
never create duplicate records, no matter how many times the
dataload is run.

97

CHAPTER 4 DEVELOPING ON SALESFORCE

6. The only remaining improvement is a performance improvement,
so you'll need to assess whether this improvement is even
beneficial enough to perform. If you're truly managing large,
complex data, it can take a long time to extract, transform, and
load that data between orgs. You can make a performance
improvement by only retrieving and loading data that has
changed since you last checked it. One trick for doing this is to
use the REST APTI’s “Get Updated” calls to see if any configuration
has been updated since you last checked. This requires tracking
and recalling the last time you ran the retrieval or deployment
and then generating a coherent set of record updates based on
the results from your query. For example, you can run a “Get
Updated” call to check each configuration object for record
updates since you last ran the command. You can then update the
Git repository or database where you're storing this data to track
the changes or proceed immediately to deploying those changes.
When deploying the changes, you need to query your target org
to see if configuration changes have been made in that org. You'll
need to have logic to decide whether to preserve the configuration
in the target org or in the source org, but if you're driving your
configuration through your delivery pipeline, you’ll always favor
the source org. Based on knowing what changed in the target org,
you can know what data to reset to the desired values. Based on
knowing what changed in the source org, you'll know what data
you need to migrate from source to target. The result of combining
these data sets is the data set you need to migrate, which may be
significantly smaller than your configuration data set.

This whole process is clearly complicated, which is why I believe this is still a
nascent idea among most Salesforce development teams. But the same factors that
have driven teams to seek a deployment workflow for metadata will increasingly apply
to data in complex orgs. Configuration data changes can be too risky to make directly
in production orgs, so they should first be done in development orgs. Those changes
sometimes need to be complex, spanning multiple objects, which leads to the need to
manage and migrate complex data. This is tedious and error prone for an individual to

98

CHAPTER 4 DEVELOPING ON SALESFORCE

migrate; therefore an automated process is important. Therefore building this capability
is important to enable our teams to not just configure but to configure safely and
efficiently using a migration process to separate development from deployment.

The Security Model

The Salesforce security model is another complex topic to which I'll just offer a brief
introduction and some tips to help smooth the development workflow. To make things
simple, we can divide this into four topics: infrastructure security, login and identity,

admin access, and user access.

Infrastructure Security

Infrastructure security refers to securing the underlying servers, networks, and data
stores for an organization. This is a massive area of concern for most IT teams, a massive
area of risk and liability for most companies, and one of the important areas that
Salesforce handles for you. http://trust.salesforce.com can provide you plenty of
information on Salesforce’s infrastructure security protocols, certifications, and track
record, but needless to say, they do an excellent job of handling this for you.

Login and Identity

Login and identity is handled by Salesforce through a variety of mechanisms. Salesforce
provides a wide range of Identity and Access Management (IAM) options such as single
sign-on (SSO), various types of OAuth, API access, multifactor authentication (MFA),
and so on. Whereas infrastructure security is opaque to Salesforce customers, IAM is
highly configurable on Salesforce, and customers take joint responsibility to ensure that
this is handled correctly. Salesforce does allow you to track and deploy certain aspects of
your IAM configuration between environments, and it can be helpful to manage this in
your code repository along with other types of org metadata.

Metadata that defines login and identity is shown in Table 4-2. Notice that there’s
some overlap with the list of metadata in Table 4-1 that you might not want to deploy
using CI/CD. The reason for this is that this metadata will need to have some variable
substitution done if you want to deploy it automatically, and that might not be possible
in your first iteration of CI/CD.

99

http://trust.salesforce.com

CHAPTER 4 DEVELOPING ON SALESFORCE

Table 4-2. Types of metadata used to manage login and identity

Metadata Type What It Controls and How to Manage It

SecuritySettings Includes organization-wide security settings such as trusted IP ranges as
well as login session settings such as how soon users are logged out after
becoming inactive.

ConnectedApp Defines your OAuth Connected Apps including their callback URLs and
consumer keys. The consumer secret is an important part of this definition,
but is not stored in metadata for security reasons.

AuthProvider Defines social sign-on providers like OpenldConnect and Facebook that can
be used to authenticate users. Social sign-on is typically used to authenticate
Community users, as opposed to regular Salesforce users, although
OpenldConnect is becoming increasingly common in the enterprise. For
example, Microsoft Azure Active Directory is a cloud-based identity provider
which uses OpenldConnect for SSO.

SamlISsoConfig Defines your SAML SSO configuration, including the login URLs and validation
certificate. SAML 2.0 has traditionally been the enterprise standard for SSO,
but OpenldConnect is increasingly common for enterprise use.

Some aspects of login and identity security are also handled by Profiles, and Login
Flows can also affect this. Profiles can be used to specify login IP ranges and times on
a per-user basis. Login Flows provide sophisticated authentication options such as
calling out to third-party authentication services and assigning temporary session-based
permissions.

For teams that are just getting started tracking their Salesforce code and
configuration in version control, it may seem like overkill to track this kind of metadata
in the repository. In fact in some cases, this metadata needs to vary slightly for different
environments. For example, Connected Apps in sandboxes might have different
endpoints that point to sandbox versions of other systems. But it is precisely because
this configuration is so important that it makes sense to track and deploy it from version
control. Many changes to login and identity should be tested in a sandbox first, and in
any case, it’s extremely helpful to see a history of changes. An errant admin could readily
break integrations, but having version control provides you the ability to roll back and
monitor changes. Automating the deployment of some of these metadata types requires

100

CHAPTER 4 DEVELOPING ON SALESFORCE

that you have the ability to dynamically substitute values as part of your deployment
process. This is a native capability of tools like Copado, but we provide an overview of
how you can build this yourself in “Managing Org Differences” in Chapter 9: Deploying.

Admin Access

Admin access refers to ensuring that only the appropriate people have permission to
make certain changes in your org. Remember that everything in Salesforce is defined by
configuration and that even custom code on Salesforce is a form of configuration. You
can think of admin access as configuration security, or “what you can/can’t do in the
Salesforce Setup UI”

Salesforce provides a built-in System Administrator profile which possesses “God
Mode” privileges in your org. Needless to say, you should be very selective in who is
given this profile. Most users would be assigned the out-of-the-box “Standard User”
profile, which typically provides the ability to use Salesforce and see data, but not to
change configuration.

Admin access and user access are the two areas where admins have the most ability
to tune Salesforce to meet their organizational needs. Most organizations will eventually
find the need to make a copy of the System Administrator profile and the Standard User
profile and begin to customize these according to the needs of their organization.

The traditional method of providing access to control configuration has been
through the use of Profiles. But as mentioned earlier, Profiles are a nightmare to manage
in version control and typically don’t provide the right level of granularity that teams
need. Permission Sets should be your preferred method to manage permissions. You
should keep profile permissions extremely thin and instead use permission sets to
determine both “admin”- and “user”-level access. If possible, limit your use of profiles
to defining things like login IP ranges which can’t be defined in Permission Sets. More
details on this are provided in Chapter 11: Keeping the Lights On.

User Access

Whereas admin access determines who can do what in the Salesforce Setup UI, user
access refers to what end users can access or modify inside the Salesforce application
itself. Data security defines which users have create, read, update, or delete (CRUD)
permissions on Salesforce data objects. User access also defines who can use particular
Apex classes, applications, Visualforce pages, and standard Salesforce applications like

101

CHAPTER 4 DEVELOPING ON SALESFORCE

Service Cloud and Knowledge. Permissions in Salesforce are always additive, meaning
that the default is for users to have no permissions, but they gain permissions as a result
of their profile, user settings, permission sets, and permission set licenses.

As mentioned, all of the admin and user access privileges are defined using profiles
or (preferably) permission sets. Permission sets can and should be tracked in version
control and deployed as part of your release management process. This provides history
tracking on changes to these and ensures that permissions can be tested thoroughly
before being deployed to production.

One of the most common failure modes for custom Salesforce applications is
for developers to not deploy appropriate permissions along with other metadata.
Developers can and should have System Administrator privileges in their own
development environment. Such unobstructed access allows them to build capabilities
without restriction. But it also makes it easy for developers to forget that end users will
need explicit permissions to use what the developer has built.

Developers and testers should use the “Login As” capability to log in to their
development and testing environments as one of the target users to ensure those users
will have access. If a developer creates a custom application, a new object, with new
fields, a tab for that object, a Visualforce page, and an Apex controller for that page, users
will need permissions for each of those components. Thus as the complexity of an org
increases, so too does the complexity of user permissions.

If you use profiles to manage permissions and you want to give all profiles access to
this custom application, then you will need to assign those permissions to every profile.
Permission sets thus help you follow the DRY maxim, “don’t repeat yourself” You can
define permissions for this new custom application in a single permission set and then
assign that permission set to all users in the org.

Profiles and Permission Sets are both metadata and can be deployed between
environments. But which users are assigned those profiles and permission sets cannot
be deployed in the same way. This means that when deploying a new permission set to
production, you will either need to manually assign this to all users or preferably write
a bit of anonymous Apex to query all User IDs and create PermissionSetAssignment
records for each user to assign the new permission set to them.

Salesforce is working on the concept of “Permission Set Groups,” which is currently
in Pilot. This provides a much more elegant alternative. You attach multiple permission
sets to a permission set group and then assign a large group of users to that single
Permission Set Group. Permission set groups provide a simple way to bulk assign

102

CHAPTER 4 DEVELOPING ON SALESFORCE

permissions consistently to a group of users. They can be updated by adding or removing
permission sets to a group, and those permission sets can be used across multiple
permission set groups.

Permission Set Groups are not accessible via the Metadata API in the pilot, and so
you would still need to add any new permission sets to the group manually. If this is
eventually made accessible through the Metadata API, then developers will have the
ability to create new permission sets in a development environment, add them to the
appropriate permission set group, and deploy those permissions all the way to users in
production.

A new type of Permission Set called a “Muting Permission Set” is also in pilot.
Muting Permission Sets can be added to a Permission Set Group and provide the
ability to “Mute” permissions. To my knowledge, this is the first example of Salesforce
enabling a negative permission on the platform. The explicit purpose of this is to inhibit
permissions that would otherwise be given to members of the group by other Permission
Sets in that same group. It might be possible to use this for security purposes to ensure
that members of the group are never given powerful admin privileges such as “Modify
All Data,” but this use case is not mentioned in the documentation.

Code-Based Development on Salesforce

Salesforce allows for both server-side programming and client-side programming on
Salesforce. Apex triggers, Apex classes, and Visualforce are all server-side programming
options. Although Visualforce pages include dynamic JavaScript, they are compiled
and sent from the server like PHP. Client-side programming includes Lightning Web
Components and Lightning Aura Components, but might also include the use of
complex JavaScript inside of Visualforce.

This section is very brief, since there are so many other references on how to write
high-quality code for Salesforce. You should also refer to the discussions about static
analysis and unit testing in Chapter 8: Quality and Testing and to the discussion of
“Monitoring and Observability” in Chapter 11: Keeping the Lights On.

103

CHAPTER 4 DEVELOPING ON SALESFORCE

Server-Side Programming

Server-side programming in Salesforce allows direct access to the underlying Salesforce
data model, and a large part of its purpose is to allow for queries, processing, and
transformation on this data that cannot be done through clicks alone. Visualforce
provides the ability to build custom user interfaces, although Lightning Web
Components are now the preferred method to do this.

Apex

Apex is a strongly typed language, similar to Java, that provides native access to some
underlying Salesforce capabilities. The most obvious native capability in Apex is the
ability to work with Salesforce data as first-class Objects. So, for example, you can
perform a query on Accounts and then perform actions on that data without having to
explicitly define an “Account” object. Although Apex compiles down to Java behind the
scenes, its most notable limitation is that you can’t use third-party Java libraries or some
advanced features of that language.

Salesforce runs Apex on the core platform, and Apex can’t be compiled or run
outside of a Salesforce org. The limitations on the language are largely to ensure that it
can run safely in a multitenant environment without causing excess load or accessing
things that would compromise the security of the platform.

There are actually two kinds of Apex metadata: triggers and classes. Triggers are a
concept borrowed from other relational databases and allow custom code to be run as
part of a database transaction (insert, update, delete, or undelete). Apex classes are more
flexible than triggers, since they allow the use of methods, interfaces, global variables,
and so on. Triggers were the first form of custom code allowed on the platform and
have a very strictly defined format that does not allow the use of methods or some other
capabilities of Apex classes.

Salesforce executes Apex in the context of a transaction. To ensure that no single
transaction goes out of control and soaks up excessive system resources, Salesforce strictly
enforces governor limits on heap size, CPU time, number of SOQL and DML statements,
and so on. These governor limits are uncomfortable for developers accustomed to
running code on their own servers, but are a design constraint that encourages code to be
performant and balances freedom with the needs of other users on the platform.

Each Apex class or trigger runs using a specified version of the Salesforce API. This
wise design decision allows Salesforce to make breaking changes in a new version of

104

CHAPTER 4 DEVELOPING ON SALESFORCE

Apex without impacting code that was written previously. When downloaded, this API
version is shown in a “sidecar file” that has the same name as the class or trigger with an
added -meta.xml suffix. As a best practice, classes and triggers should periodically be
reviewed and upgraded to the latest API version to ensure optimal runtime performance.
In most cases, updating the API version is a trivial change, but it’s possible to face
compilation errors, and this is a good reason to write good quality Apex unit tests to
ensure behavior remains unchanged even if you update the API version.

It is essential to avoid hardcoding IDs in Apex code or anywhere else. Record IDs
are typically different in each environment. Instead, ensure your logic can dynamically
identify the proper data to operate against and not fail.

Visualforce

Visualforce allows you to create completely custom user interfaces, using an HTML-like
syntax to display information and invite user input and actions. Visualforce also excels in
giving access to Salesforce’s internal data model through the use of Standard Controllers
or Controller Extensions. A Visualforce page that uses a Standard Controller for Account
allows you to create, access, and update Accounts without any other backend code.
This page can override the standard record detail or record edit page in Salesforce, thus
providing an alternative user interface for working with any Salesforce object.

There are many other capabilities of Visualforce, but it’s fallen out of favor since
it's relatively slow compared to Lightning-based pages. Visualforce pages have to be
rendered on Salesforce, and their state is transferred back and forth from the browser
each time you perform an action or move to a new page. There are also strict limitations
to the size of this Viewstate that make them unsuitable for editing large amounts of data.

Scripting and Anonymous Apex

There are other ways to execute Apex such as creating custom REST and SOAP services.
But one form of Apex worth mentioning here is “anonymous Apex,” which is not stored
on the server but can nevertheless be run on demand.

Among the many uses of anonymous Apex is the ability to automate predeployment
and postdeployment steps in the process of building and delivering an application.
Anonymous Apex has the ability to query, transform, and update data, and this includes
system-level data such as permission set assignments.

105

CHAPTER 4 DEVELOPING ON SALESFORCE

As mentioned earlier, governor limits make anonymous Apex unsuitable to perform
massive or long-running data transformations such as migrating data between fields on
more than 10,000 records at a time. For this purpose, you can use batch Apex. But there
are many practical one-time activities that you can perform using anonymous Apex,
such as creating or removing scheduled jobs, triggering batch Apex to run, modifying
User Role assignments, and so forth.

Although anonymous Apex is not persisted inside of Salesforce, you can and should
save such scripts in your code repositories. This allows for reuse and also provides a clear
audit trail should you or someone else need to review the changes that were made.

Client-Side Programming

Client-side programming involves systems where the bulk of processing and state
management happens inside the user’s client, either a web browser or the Salesforce
mobile app. Lightning Web Components are now the recommended way of creating
custom user interfaces, and they provide many benefits over Visualforce. Salesforce’s
original Lightning Component technology was based on an open source framework
known as Aura. Although it’s a bit confusing and frustrating for developers to have to
learn new technologies, it’s par for the course, and there are good reasons why Lightning
Web Components have come into being. There are also a variety of other ways to
connect to Salesforce from a web client, such as JavaScript Remoting.

Lightning Web Components

Most people who were using the Internet in the late 1990s and early 2000s were aware
of the “Browser Wars,” when Internet Explorer competed with Firefox and eventually
Chrome for market dominance. But only web developers are familiar with the
“Framework Wars” that pitted Angular against React and a hundred other frameworks to
provide a more robust way to build applications on the Web.

Web Components are a standards-based alternative to custom JavaScript
frameworks that are natively supported by modern web browsers. Unlike custom
frameworks like Angular and React, Web Components provide native execution that
allows them to run quickly and a consistent syntax that allows developers to reuse their
skills more easily. Salesforce was a participant in developing the open standard for Web
Components, and Lightning Web Components are an implementation of the standard
that is optimized for working with Salesforce.

106

CHAPTER 4 DEVELOPING ON SALESFORCE

Lightning Web Components were announced in late 2018, but Salesforce had
been quietly rewriting their entire Lightning user interface in LWC for a year or more.
This enabled much faster performance and gave Salesforce the confidence that it was
possible for customers to mix Lightning Components and Lightning Web Components
together on the same page. Salesforce themselves had been refactoring the application
in that way for over a year!

Lightning Aura Components

The original Lightning Component framework was based on an open source project
called Aura, inspired by Angular]S. Like other code built on custom frameworks,
Lightning Aura Components require the browser to do more work, since they have to be
compiled into native JavaScript, adding significant amounts of execution overhead.

The vision for Lightning Aura Components is powerful and inspiring, since it allows
organizations to build custom Ul components using the same technology used to
create Salesforce’s own UI. Salesforce Classic is a fundamentally different technology
than Visualforce. And Visualforce pages actually run in a separate domain to ensure
transaction security and prevent custom Visualforce code from scraping data that it
should not have access to.

By creating Lightning Aura Components, Salesforce opened the door to a long-term
vision in which developers could seamlessly mix custom components with built-in
components, even down to overriding a single field. That vision has not yet been fully
realized, and Salesforce is still making incremental improvements to balance flexibility
with security. But the Salesforce Ul is far more responsive and performant today than
before Lightning was rolled out.

JavaScript Remoting, S-Controls, and APl Access

There are other client-side coding options on Salesforce that predate Lightning
Components. Three official options are JavaScript Remoting, Visualforce Remote
Objects, and S-controls. JavaScript Remoting is a technique that allows Visualforce pages
to host complex JavaScript applications that can store state on the client side while still
sending and receiving data from Salesforce using an Apex controller. Visualforce Remote
Objects allow you to create a JavaScript representation of Salesforce objects so you can
create, retrieve, and update Salesforce data using client-side JavaScript. S-controls were
deprecated many years ago, but were Salesforce’s first foray into allowing custom coding.

107

CHAPTER 4 DEVELOPING ON SALESFORCE

They allow you to create custom HTML and JavaScript in an iFrame, which can access
Salesforce data using the standard Salesforce API.

Salesforce’s API is also what enables a variety of other third-party custom code
solutions such as Restforce for Ruby and Simple Salesforce for Python. These prebuilt
libraries provide convenient wrappers around the REST API that allow teams familiar
with those languages to work with Salesforce data and trigger Salesforce operations. The
most significant such library is JSForce for JavaScript. JSForce is now the engine used by
the Salesforce CLI to communicate with Salesforce and is also at the heart of many other
JavaScript, TypeScript, and Node.js libraries for Salesforce.

Summary

This has been a brief introduction to the process of developing on Salesforce. The
Salesforce DX team is responsible for a huge portion of the Salesforce platform,
including developer tooling. This developer tooling has been evolving rapidly since the
introduction of Salesforce DX, although there are still some key improvements needed.
While most Salesforce developers focus on the actual technologies used to build on the
platform with clicks and code, we introduced key concepts about the Metadata API that
are important for facilitating the entire DevOps process.

We gave a brief summary of the click-based and code-based options for building on
the platform, but we intentionally focused on those aspects most relevant to automating
deployments to other orgs.

Much has been written about developing on Salesforce, but far less has been said
about how to make the release management process easier. Perhaps that’s because the
people with the knowledge and skill to manage that process are too busy doing releases
to take the time to share that knowledge. Or perhaps they’re so burned out by following
manual processes that they don’t want to think or talk about the subject any more. I've
somehow been fortunate enough to gain release management experience and live to tell
about it, especially about how the process can be made easier.

Hidden in between the topics of building and releasing is the topic of architecture.
It’s fair to say that you must control your architecture, or it will control you. Salesforce
makes it easy to build, which implies that it also makes it easy to build badly. If you're
just beginning down the path of configuring Salesforce, now is the time to study carefully
the techniques in the next chapter so you can build your org in a scalable and modular
way. If that time has long since passed, then hopefully the techniques in the next chapter
can provide you ideas on how to dig yourself out of technical debt.

108

CHAPTER 5

Application Architecture

In the business world, it's common to distinguish between strategy and tactics, two terms
borrowed from the military. Strategy refers to high-level decisions that fundamentally
determine the landscape in which you operate. In military planning, strategy dictates
where to move armies, how to attract and train armies, what kinds of weapons to invest
in, and so on. In business planning, strategy dictates what markets to pursue, whether

to invest in onshore talent or outsource, what new products to develop, and so on. By
contrast, tactics dictate how to succeed on a small scale. In the military, tactics refers to
the skills and tools needed for an individual to survive and win in activities such as hand-
to-hand combat. In the business world, tactics address topics such as how to organize
teams, motivate employees, communicate to customers, and so on.

This distinction extends to the world of Salesforce DevOps. Part 1 of this book speaks
to the overall strategy you can apply to drive innovation and continuous improvement
for your organization using Salesforce. Parts 3 and 4 of this book speak to the tactics
of setting up a delivery pipeline as the mechanism to deliver innovation safely and get
feedback from production.

Although Part 2 of the book (you are here }) covers developing on Salesforce,

I've said very little about how to actually develop on Salesforce. How to develop on
Salesforce is a tactical discussion. It's a complex topic, but one that is very well covered
in Salesforce’s documentation and endless other books, blogs, and talks. What is not as
commonly understood is how to architect Salesforce applications in such a way that they
allow for continual innovation and lend themselves to being packaged and deployed
independently. On the level of coding, this is a strategic topic.

Martin Fowler described architecture as “those aspects of a system that are difficult
to change.” There’s not a clear-cut distinction between a developer and an architect, but
the expectation is that an architect has sufficient experience and understanding to make
decisions at the outset of a project that the team will not come to regret. Just as the role of
a military general is to get armies to the correct battlefield so they don’t waste their effort
and skill fighting the wrong battles, the role of a Salesforce architect is to be a strategist

109
© Andrew Davis 2019

A. Davis, Mastering Salesforce DevOps, https://doi.org/10.1007/978-1-4842-5473-8_5

CHAPTER 5 APPLICATION ARCHITECTURE

and hold a wise vision of the system being designed so that development teams can
build and deploy their applications in a scalable way.

The State of DevOps Reports identify application architecture (especially loosely
coupled architecture) as one of the key enablers of continuous delivery and thus one of
the key drivers for delivering value to the organization.

We'll begin by looking at modular architecture and how dependencies arise and then
look at various techniques for modularizing your code.

The Importance of Modular Architecture

The architecture of your software and the services it depends on can be a
significant barrier to increasing both the tempo and stability of the release
process and the systems delivered. ... We found that high performance is
possible with all kinds of systems, provided that systems - and the teams
that build and maintain them - are loosely coupled. ... The biggest con-
tributor to continuous delivery in the 2017 [State of DevOps] analysis -
larger even than test and deployment automation - is whether ... the
architecture of the system is designed to enable teams to test, deploy, and
change their systems without dependencies on other teams. In other words,
architecture and teams are loosely coupled.’

— Accelerate: Building and Scaling High Performing Technology Organizations

A vivid indication of the impact of modular architecture on team performance can
be inferred from Figure 5-1. This graph, taken from the 2015 State of DevOps Report,
shows a very surprising effect. In general, as the size of a development team increases,
the traditional expectation is that the number of deploys per day would decrease
due to the increasing complexity of the application. That trend is seen in the “Low
Performers” trend line, which shows deployments per developer decreasing as the team
size approaches 100 people. What is surprising is that “High Performers” (the high-
performing software organizations mentioned previously) actually record a dramatic
increase in the number of deployments per day per developer as the team size increases.
Such performance increases are only possible with a loosely coupled architecture, one
that is free from complex interdependencies between teams and packages.

'Nicole Forsgren, Jez Humble, and Gene Kim, Accelerate: The Science of Lean Software and Devops
Building and Scaling High Performing Technology Organizations (IT Revolution Press, 2018), 76.

110

CHAPTER 5 APPLICATION ARCHITECTURE

Figure 5-1 doesn’t depict data for low-performing teams with more than 100 people,
and it doesn’t depict data for medium-performing teams of 1,000 people. This is
presumably just a gap in their sample data, but if you extrapolate those curves, it hints
at a possible conclusion: it may be impossible to scale your team beyond a certain size
unless you have enabled that team to deliver software effectively. DevOps is sometimes
felt to be easier to do at smaller scales. It’s certainly easier to implement new processes
while you're small. But this graph may be indicating that it’s only through implementing
DevOps principles that you'll be able to scale your business without sinking into
crippling inefficiencies.

Deploys/Day/Dev

== |ow Performers == Med Performers High Performers

2.5

=daily

0.5 \

Deployment Frequency (log10(freqg): 1

Number of Developers

Figure 5-1. Number of deployments per day per developer. 2015 State of DevOps
Report

Understanding Dependencies

Salesforce metadata, like any system, is interconnected with other components.

Each time a piece of metadata references another piece of metadata, it establishes a
dependency on that component. The net result of this is a tangled web of dependencies
like that shown in Figure 5-6. Such a dependency network is known as “tight coupling,”
where different parts of the system have definite dependencies on other parts of the
system. The opposite of this is “loose coupling” in which multiple systems can interact

with one another but don’t depend on one another.
111

CHAPTER 5 APPLICATION ARCHITECTURE

Tightly coupled architecture is a characteristic of many systems, not only Salesforce,
that have evolved over time without taking care to avoid this risk. One famous
example and counterexample was given by Steve Yegge? and widely shared by Jez
Humble and others in the DevOps community. Yegge’s “Platform Rant” contrasted
Google’s architecture with that of Amazon, both his former employers. While clearly
complimentary to Google, Steve Yegge pointed out that Amazon did an extraordinary job
of enforcing strict separation between their systems with communication only through
published APIs. By contrast, Google maintains a single code repository containing
2 billion lines of code and 86 TB of data,® within which there is little or no isolation
between sections of code.

Google has made this work through an extraordinary team of engineers and
highly customized version control and developer tooling systems. But deploying and
testing such complex interdependency is a fundamentally hard problem to solve.
Amazon’s architecture, with each team enforcing segregation from all other teams and
communicating only through APIs, has presumably made it much easier for each of
their teams to evolve their systems independently of one another, but it’s also led to an
extremely important byproduct: AWS.

Amazon Web Services is the leading cloud infrastructure provider by a large margin.
They support the computing infrastructure for more than a million businesses* and
control one third of the cloud infrastructure market.> Their customers include Salesforce
and the US Federal Government. AWS is built on the same loosely coupled architecture
that was built to support their eCommerce business. Because each AWS service is
independent, they each have published APIs, can be billed and provisioned separately,
and interconnected to each other or to external services with almost equal ease.

Google and Amazon are dramatic (and dramatically different) examples. There are
benefits and tradeoffs to both a tightly coupled and a loosely coupled approach. But it is
important to recognize that although superficially it may look like Google has a tightly
coupled architecture, they do not. Their underlying tooling allows their 25,000 active
developers to collaborate on a common trunk, but commits can be automatically rolled
back, dependencies can be automatically analyzed, regression testing is performed

*https://gist.github.com/chitchcock/1281611
*https://cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-1ines-
of-code-in-a-single-repository/fulltext
*https://expandedramblings.com/index.php/amazon-web-services-statistics-facts/
www . canalys.com/newsroom/cloud-market-share-q4-2018-and-full-year-2018

112

https://gist.github.com/chitchcock/1281611
https://cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-in-a-single-repository/fulltext
https://cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-in-a-single-repository/fulltext
https://expandedramblings.com/index.php/amazon-web-services-statistics-facts/
http://www.canalys.com/newsroom/cloud-market-share-q4-2018-and-full-year-2018

CHAPTER 5 APPLICATION ARCHITECTURE

automatically, and so forth. So in effect, Google achieves loose coupling on the fly
through the miraculous use of tooling automation.

Barring some miraculous, not-yet-invented tooling, your fastest path to
delivering innovation quickly and safely to your users will be to try to constrain the
interdependencies in your system so that portions of the codebase maintained by
different teams are not tightly dependent on one another. This is the meaning of building
a modular, loosely coupled architecture.

Many of the following techniques are focused on Apex classes and triggers, since
these are the most complex type of metadata and the ones which provide the most
creative options for loose coupling. Where possible, I've offered suggestions for other
metadata types as well.

Salesforce DX Projects

A discussion of Salesforce application architecture begins with a look at Salesforce
DX projects, since it’s these projects that open the door to building with a modular
architecture.

How Salesforce DX Projects Enable Modular Architecture

The Salesforce DX project structure was introduced earlier, but there are a few aspects of
this project structure that are worth looking at in more detail, since they enable special
capabilities.

Salesforce faced a major challenge when envisioning Salesforce DX as a new way
of building and managing applications. On one hand, they needed to ensure backward
compatibility with teams using legacy tools. They also needed to accommodate
customers whose development teams used a mix of old and new tools. They were also
aware of the cost and complexity of building and testing entirely new APIs for managing
application metadata.

One of the first big challenges was how to enable teams to store metadata in folders.
Folders are not exactly a novel concept in computer operating systems, but the concept
was never built into the Metadata AP], since it was not built to handle source-driven
development. What the Salesforce DX team came up with was a compromise that

113

CHAPTER 5 APPLICATION ARCHITECTURE

continues to use the Metadata API to communicate with Salesforce, but allows teams
to divide metadata into folders on their local development environment and route
metadata changes back and forth between those local folders and their development org.

Those folders allow teams to begin to group related metadata together. This provides
information on which metadata components are more closely related, but can also be
used to segregate areas of responsibility between different teams. More importantly,
those folders form the basis for being able to build multiple packages in a single code
repository.

Scientists hypothesize that the earliest single-celled organisms began as organic
molecules isolated inside a sphere of phospholipids that separated their contents from
the water surrounding it. Gradually this lipid sphere became the plasma membrane that
surrounds complex cells capable of reproduction. Salesforce DX folders are like this lipid
sphere that provides a gentle division between certain groups of metadata. Packages are
the full evolution of this division that allow groups of metadata to become autonomous
units that can be deployed and upgraded on their own.

The key file that defines a Salesforce DX project is the sfdx-project.json file
contained in the project root. When an SFDX project is first created, this file specifies a
single default package folder called force-app/ and creates metadata in force-app/main/
default. Importantly, you can immediately begin segregating metadata into different
subfolders inside of force-app/ even without changing the sfdx-project.json file.

The sfdx-project.json file becomes more important when you begin to define
actual second-generation packages inside your code repository. In this case, each
package must be associated with a specific folder, and there should be no overlap
between these package folders. For example, you might define a package called main that
is associated with the folder force-app/main/default and a second folder called sales
associated with the folder force-app/sales. One package must remain the “default”
package, since any newly created metadata will be downloaded and stored in this default
package until it's moved elsewhere.

The Package Directories section in sfdx-project.json allows you to specify
dependencies, either on other packages in the same project or on packages defined
elsewhere. They can also specify environment requirements by linking to a scratch org
definition file.

Scratch org definition files are another important feature of the Salesforce DX project
format. They specify the characteristics of a scratch org and are used in the package
publishing process to explicitly state the edition, features, and settings that must be in
place for the package to work.

114

CHAPTER 5 APPLICATION ARCHITECTURE

To evolve your Salesforce org configuration from an unstructured collection of
metadata (the “happy soup”) to a well-ordered set of interdependent packages is one of
the biggest architectural challenges on Salesforce today. We can perhaps take inspiration
from the evolution of life on earth, where it took 750 million years for single-celled
organisms to evolve from a primordial soup. With packaging we do have the benefit of
intelligent design, including the techniques shared in the remainder of this chapter. Even
if it takes your team a few years to accomplish, you will be well ahead of Mother Nature.

Creating a Salesforce DX Project

If you're starting a new project, you can start using Salesforce DX from the very
beginning. Developing using scratch orgs allows you to develop in your own private
environment while easily integrating changes from the rest of the team. Dividing
your codebase into unlocked packages allows separate teams to develop and release
independently, with confidence that every aspect of the application is included.

For teams moving an existing org over to Salesforce DX, there are two main
challenges to be overcome. First of all, it’s difficult to untangle all of an org’s metadata
into logical packages. Second, complex orgs defy attempts to recreate all the underlying
dependencies in scratch orgs. Much of the rest of the chapter talks about techniques
that can help you to decouple dependencies to allow you to build discrete packages. But
this undertaking requires time and care, so what you'll find here are suggestions and
guidelines rather than simple solutions.

You'll first want to decide on which Dev Hub to use, and enable access for all
collaborators. See “The Dev Hub” in Chapter 6: Environment Management. In general,
it’s important for the whole team to use the same Dev Hub so that they can all access
and update the packages created during the development process, as well as capabilities
such as org shapes, namespaces, and scratch org snapshots, all of which are stored on
the Dev Hub.

The Salesforce CLI provides a command sfdx force:project:create that creates or
“scaffolds” the basic files needed to use Salesforce DX. You can use that folder structure
as a starting-off point. If you have been tracking existing metadata using version control,
you may want to see the section “Preserving Git History When Converting to Salesforce
DX” in Chapter 7: The Delivery Pipeline for tips on converting without losing history.

As discussed in Chapter 7: The Delivery Pipeline, there are different branching
strategies and different CI/CD jobs for managing org-level metadata compared to

115

CHAPTER 5 APPLICATION ARCHITECTURE

managing Salesforce DX package metadata. For this reason, your life will be far simpler
if you have at least two separate code repositories: one for org-level metadata and one
for packaged metadata. You can then have separate code repositories for each package,
which may simplify the package publishing process. With a bit of automation, you

can also combine multiple packages into a single repository as described in the same
chapter.

I recommend you create a single parent folder to hold these multiple repositories
on your local machine and a team/group/project in your version control system to give
everyone on the development team access to all these repositories. It can be tempting
to want to strictly segregate the codebase between different teams, but this generally
just causes confusion and inefficiency. Salesforce metadata can interact in complex
ways. It’s important for anyone on any of your teams to be able to see what code and
configuration has been defined, so they can reuse that, interface with it successfully,
and hopefully help with refactoring across package boundaries as your team'’s needs
evolve. If you don'’t trust someone enough to give them access to your organization’s
codebase, you probably shouldn’t have hired them. If you want your team to be efficient
and collaborative, you'll need to promote trust as an internal core value. Version control
enables tracking who made which changes and rolling back mistaken changes.

Part 3: Innovation Delivery details how to create a continuous integration system
that will be used by your entire team for testing and deployments. When you set up
your local development environment, you'll connect to the Dev Hub and development
environments using your personal credentials. When setting up the CI systems, you
should use the credentials for an integration user. Providing your personal credentials
to set up a CI system may constitute a security risk in some cases or cause a service
interruption if your personal user account is deactivated. Using an Integration user to
run automated jobs on each Salesforce org in your delivery pipeline avoids these issues.

Modular Development Techniques

So what are some of the modular development techniques that can be employed on the
Salesforce platform? We first look at some oldies but goodies, before moving to some of
the newer and more powerful techniques.

116

CHAPTER 5 APPLICATION ARCHITECTURE

Naming Conventions

Naming conventions are a “poor man’s packaging.” Nevertheless, they have been one

of the few available methods to segment metadata in Salesforce and thus deserve
recognition. Martin Fowler famously remarked that “Any fool can write code thata
computer can understand. Good programmers write code that humans can understand.”
Naming things is a big part of that, and naming Classes and other metadata begins to
bring sense and structure to an otherwise chaotic system.

Naming conventions in Salesforce generally take the form of prefixes and suffixes.
Prefixes include the use of “fake namespaces” that often represent a department or
group of capabilities. Salesforce packages can take advantage of real namespaces like
SBQQ _that are separated from the metadata name by two underscores. But any team
can create fake namespaces like HR _ separated from the metadata name by a single
underscore. As you begin to move your organization’s metadata into Salesforce DX
package folders, you may be able to use such fake namespaces as clues left by previous
developers about which metadata belongs together.

The use of suffixes in metadata names is typically to indicate the specific function of
a Class rather than which application it belongs to. By convention Apex tests should have
the same name as the classes they test, but with the suffix Test. Visualforce controllers
will ideally have the suffix Controller; Schedulable Apex will ideally have a suffix
Schedule; and so forth.

None of these prefix or suffix conventions are enforced, but it is a good convention
for your team to adopt and adhere to wherever possible.

Object-Oriented Programming

Object-oriented programming is in fact an example of modular design. Fortunately, this
capability is baked into Apex and is already in widespread use, but it’s worth recalling
its benefits. The purpose of object-oriented design is to centralize data and capabilities
inside objects, to promote interaction between objects as opposed to disconnected
variables and functions, and to allow for sophisticated techniques such as inheritance.
Apex classes are just that—they are object-oriented classes that are usually
instantiated into objects. Their functions are actually methods attached to the class, the
variables defined in those classes are local variables by default, and so on. Teams who

117

CHAPTER 5 APPLICATION ARCHITECTURE

are already making wise use of Apex’s object-oriented architecture will find it easier to
adopt some of the techniques described later, such as dependency injection, packaging,
and separation of concerns.

An important aspect of object-oriented programming that’s not commonly used by
most Salesforce programmers is the use of inheritance and interfaces to create classes
that share common characteristics. Inheritance is a requirement for using Dependency
Injection, since it allows you to write code based on the generic behavior of classes, even
if you don’t know which specific class will be used when your code is run.

Dependency Injection

Dependency Injection (DI) is a sophisticated programming technique that began to gain
significant attention when Salesforce DX introduced unlocked packages. DI truly allows
for modular architecture by allowing you to define dependencies at runtime, as opposed
to when the code is compiled.

The example used here is borrowed from Philippe Ozil’s excellent blog post
“Breaking Runtime Dependencies with Dependency Injection,”® and I refer you to that
post for a more clear and detailed explanation. Other seminal contributions on this topic
come from Andrew Fawcett,” Douglas Ayers,® and Jesse Altman,® as well as from John
Daniel, the technical reviewer for this book.

Normally, when you make a reference from an Apex class called MyClass to another
class, you do so by specifying the other class’ name and the method you want to access
such as OtherClass.doSomething (). When you save your class, the Apex compiler
checks to ensure that there is in fact a class called OtherClass that contains a method
called doSomething. This establishes a hard dependency from MyClass to OtherClass.

Normally this is not a problem, but it leads to several limitations. First, there is no
flexibility built into that approach: MyClass simply depends on OtherClass to execute
some processes. This means that the behavior cannot vary per environment, be
configured at runtime, behave differently as part of an Apex test, and so on. Second, it

https://developer.salesforce.com/blogs/2019/07/breaking-runtime-dependencies-with-
dependency-injection.html

"https://andyinthecloud.com/2018/07/15/managing-dependency-injection-within-salesforce/
8https://douglascayers.com/2018/08/29/adopting-dependency-injection/
*http://jessealtman.com/2014/03/dependency-injection-in-apex/

118

https://developer.salesforce.com/blogs/2019/07/breaking-runtime-dependencies-with-dependency-injection.html
https://developer.salesforce.com/blogs/2019/07/breaking-runtime-dependencies-with-dependency-injection.html
https://andyinthecloud.com/2018/07/15/managing-dependency-injection-within-salesforce/
https://douglascayers.com/2018/08/29/adopting-dependency-injection/
http://jessealtman.com/2014/03/dependency-injection-in-apex/

CHAPTER 5 APPLICATION ARCHITECTURE

means that OtherClass must be present in the environment when MyClass is saved. This
can prevent the two classes from being separated into different packages that can be
deployed independently.

Ozil’s article shows how to use the concept of Inversion of Control to access other
classes indirectly instead of hardcoding references directly. Listing 5-1 shows a code
snippet in which OrderingService directly depends on FedExService. Inversion of
Control adds a layer of abstraction to return the ShippingService indirectly as shown in
Listing 5-2. This gives additional flexibility at the expense of some added complexity.

Ozil then shows how this code can be refactored further so that the dependencies
can be determined at runtime. Dependency injection uses the Apex Type class to
dynamically create an instance of the appropriate ShippingService as shown in
Listing 5-3. That example shows how a ShippingService class can be specified at runtime
using Custom Metadata.

Using Custom Metadata to specify dependencies dynamically is a very robust solution
and one that is used by the Force-DI package'® cocreated by Andrew Fawcett, Douglas
Ayers, and John Daniel. Custom Metadata can be created and deployed from a development
environment to production, but can also be overridden in a particular environment if
appropriate. Custom Metadata records can also be distributed across multiple packages as
long as the Custom Metadata type is defined in a common package dependency.

The Force-DI package supports dependency injection in Apex, Visualforce,
Lightning, and Flows, and can be used as a foundation for your own code. The package
defines a Custom Metadata type to store references to the metadata you want to call
at runtime. Where you want to use dependency injection, you pass an instance of the
di_Injector class as a parameter and use that to access the metadata that has been
configured for that org.

One of the most broadly applicable use cases for this is when creating Triggers that
rely on code from multiple unlocked packages. This use case is discussed in the section
“Modular Triggers with Dependency Injection’”.

"Yhttps://github.com/afawcett/force-di

119

https://github.com/afawcett/force-di

CHAPTER 5 APPLICATION ARCHITECTURE

Listing 5-1. OrderingService has an explicit dependency on FedExService (from
Philippe Ozil’s blog post)

public class OrderingService {
private FedExService shippingService = new FedExService();

public void ship(Order order) {
// Do something...

// Use the shipping service to generate a tracking number
String trackingNumber = shippingService.generateTrackingNumber();

// Do some other things...

}
}

Listing 5-2. OrderingService refactored to use inversion of control to determine
the ShippingService indirectly (from Philippe Ozil’s blog post)

public class DHLImpl implements ShippingService {
public String generateTrackingNumber() {
return 'DHL-XXXX';

}
}

public class FedExImpl implements ShippingService {
public String generateTrackingNumber() {
return 'FEX-XXXX';

}
}

public class ShippingStrategy {
public static ShippingService getShippingService(Order order) {
// Use FedEx in the US or DHL otherwise
if (order.ShippingCountry == 'United States') {
return new FedExImpl();

}

120

CHAPTER 5 APPLICATION ARCHITECTURE

else {
return new DHLImpl();
}
}
}

public class OrderingService {
public void ship(Order order) {
// Do something...

// Get the appropriate shipping service

// We only see the interface here, not the implementation class
ShippingService shipping = ShippingStrategy.
getShippingService(order);

// Use the shipping service to generate a tracking number
String trackingNumber = shipping.generateTrackingNumber();

// Do some other things...

}
}

Listing 5-3. OrderingService refactored to use dependency injection to
determine the behavior at runtime (from Philippe Ozil’s blog post)

public class Injector {
public static Object instantiate(String className) {
// Load the Type corresponding to the class name
Type t = Type.forName(className);
// Create a new instance of the class
// and return it as an Object
return t.newInstance();
}
}

// Get the service implementation from a custom metadata type

// ServiceImplementation.load() runs a SOQL query to retrieve the
metadata

Service_Implementation_ mdt services = ServiceImplementation.load();

121

CHAPTER 5 APPLICATION ARCHITECTURE

// Inject the shipping service implementation

// (services.shipping is either FedExImpl, DHLImpl or any other
implementation)

ShippingService shipping = (ShippingService)Injector.
instantiate(services.shipping);

// Use the shipping service to generate a tracking number
String trackingNumber = shipping.generateTrackingNumber();

Event-Driven Architecture

Event-driven architecture is an ultimate example of loosely coupled architecture. In
this model, components communicate by passing events as opposed to being directly
connected to one another. One system will publish an event, and other systems

can subscribe to categories of events that they’re interested in. For this reason, it’s
sometimes also called a “pub-sub architecture.” Typically, there’s also a common event
bus where those events are stored for a period of time. The event bus provides a shared
platform for event publishers and subscribers and can provide capabilities like unique
message IDs, sequencing, and event playback.

As an analogy, I can subscribe to an email list to receive information about webinars
I might be interested to attend. My relationship with those webinars is “loosely coupled”:
if I don’t attend, the webinar will still go on; and if they don’t have the webinar, my life
will still go on. I can subscribe or unsubscribe based on my interests and take action as
appropriate.

The first event-driven architecture to become popular in Salesforce was Lightning
Events, introduced in 2015, which provide a way to pass messages between Lightning
Components in the same browser window. This architecture means that you can have
one Lightning Component that responds immediately to events emitted from another
Lightning Component, but neither of them will break if the other is not present. This
architecture is extremely flexible and powerful, since you could potentially have a large
number of publishers and subscribers, all interacting with one another, but without
tightly coupled relationships.

Just 2 years later, in 2017, a second event-driven architecture, platform events,
was introduced to Salesforce developers. Whereas Lightning Events exist only in a
user’s browser, platform events are exchanged on the Salesforce platform itself and
provide a way to exchange messages between standard Salesforce components,

122

CHAPTER 5 APPLICATION ARCHITECTURE

custom components, and external systems. This is broadly referred to as the Salesforce
Enterprise Messaging Platform (EMP), which hosts a common message bus on the
Salesforce platform that systems can use to exchange messages.

Enterprise Service Buses (ESBs) have been popular for many years as an integration
strategy between external systems. ESBs provide the same benefits described earlier by
enabling external systems to have a loosely coupled relationship. The need for ESBs was
driven by the rapid increase in complexity that comes from trying to integrate multiple
systems that might each have different data formats. As shown in Figure 5-2, if you
have to create direct integrations between n systems, you will have to create n * (n — 1)
direct integrations. If you have access to two-way “Point-to-point connectors” (such as
a Salesforce to SAP connector), you will need 7 * (n — 1)/2 of these connectors. But if
you use an ESB, you simply need n ESB connectors for each of n systems. The reduction
in complexity is dramatic when you're connecting more than three systems. The same
simplification holds true for the Enterprise Messaging Platform.

Direct Integrations vs. ESB Integrations

== Direct Integrations == Point to Point Connectors ESB Integrations
400
300
200
100
0
5 10 15 20
Number of systems

Figure 5-2. Using an Enterprise Messaging Bus (ESB) requires far fewer
integrations as system complexity increases

Salesforce is increasingly emphasizing the use of the enterprise messaging platform,
in part to address the need for data integration within its own sprawling portfolio of
applications. Commerce Cloud, Marketing Cloud, and Salesforce’s core platform have no
native integration. Salesforce is beginning to use this event-driven architecture to ensure
that these systems can keep their data in sync. A simple event like a user changing their

123

CHAPTER 5 APPLICATION ARCHITECTURE

email address should ideally propagate across all of these systems. This is one reason
why Salesforce is rolling out Change Data Capture capabilities to autogenerate events
when important data is changed.

Using an event-driven architecture is a way to enable components in one package
to communicate with components in another package. But dependency injection
has benefits that make it more suitable in some circumstances. One of the benefits of
Salesforce is that it performs business logic in transactions, so that if there’s a problem,
the entire transaction can be rolled back. Dependency injection allows you to take
advantage of this so that components from across multiple packages can combine
in a single transaction. It’s now possible to delay sending platform events until after
a transaction completes successfully, which prevents firing events prematurely for
activities that might end up getting rolled back. But the publisher of an event and the
subscriber to an event would still use two different transactions, thus making them
perhaps too loosely coupled for some scenarios.

Enterprise Design Patterns

At Dreamforce 2012, Andrew Fawcett introduced the concept of Apex Enterprise Design
Patterns, based on Martin Fowler’s Patterns of Enterprise Application Architecture.
That talk and his subsequent blog posts matured into the book Force.com Enterprise
Architecture, soon to be in its third edition. The concepts introduced in that book have
now been spread widely through a series of Trailhead modules that introduce Salesforce
developers to the concept of Separation of Concerns and the Service,’* Domain, and
Selector layers.'? You should get familiar with those Trailhead modules, and Force.com
Enterprise Architecture is a very detailed and practical guide to implementing them.
Another of Andrew Fawcett’s contributions is the FFLib Apex Commons®? library
on GitHub, which is designed to make these patterns easier to implement. This section
contains just a brief summary of this topic as encouragement to consider using these
patterns if you are dealing with a complex and growing codebase.

https://trailhead.salesforce.com/content/learn/modules/apex_patterns sl
Zhttps://trailhead.salesforce.com/content/learn/modules/apex patterns dsl
Bhttps://github.com/financialforcedev/ff1lib-apex-common

124

https://trailhead.salesforce.com/content/learn/modules/apex_patterns_sl
https://trailhead.salesforce.com/content/learn/modules/apex_patterns_dsl
https://github.com/financialforcedev/fflib-apex-common

CHAPTER 5 APPLICATION ARCHITECTURE

Separation of Concerns

The fundamental concept behind these enterprise design patterns is that you should
have a clear separation of concerns when you write code. In general, there are four layers
for you to consider:

o Presentation Layer—Provides the user interface

o Business Logic Layer—Services that manage calculations and other
business logic

o Database Layer—Mechanisms to store data, the data model, and the
stored data itself

o Data Access Layer—Selectors that allow you to retrieve from a
database

This separation of concerns can be understood by considering different kinds of
Salesforce metadata. Components like Page Layouts and the Lightning App Builder
form part of the presentation layer, but don’t allow you to customize business logic.
Components like Validation Rules, Processes, and Workflow Rules allow business logic
to be customized. The Salesforce object model itself, along with standard record edit
pages, is part of the database layer. And Reports and Dashboards are part of the data
access layer.

A common counterexample that does not employ separation of concerns is writing
an Apex controller for Lightning or Visualforce that mixes together tools to manage the
UI, handle calculations, update data, and access data. The reason this is an anti-pattern
is that it hides business logic inside what seems to just be a controller for the user
interface and prevents that logic from being reused if people access the data through a
different channel such as the API. It also means that data access and updates are defined
only in this one controller, even though other code in your org may require similar
methods.

Separation of concerns allows for a clear logical distinction between parts of your
system that handle these different jobs. Importantly, it also makes it easier to separate
parts of your code across multiple packages, as described in the following sections.

125

CHAPTER 5 APPLICATION ARCHITECTURE

Service Layer

The Service layer helps you form a clear and strict encapsulation of code
implementing business tasks, calculations and processes. It's important to
ensure that the Service layer is ready for use in different contexts, such as
mobile applications, UI forms, rich web Uls, and numerous APIs. It must
remain pure and abstract to endure the changing times and demands
ahead of it.**

—Trailhead module “Learn Service Layer Principles”

As shown in Figure 5-3, the service layer centralizes business logic in a single place
that can be accessed by many other types of component. Your business logic is one
of the most critical customizations you can make on Salesforce. Calculations, logical
conditions, and relationships between data can be business critical and sensitive to
small mistakes. If that logic is distributed across many parts of your codebase, it makes it
hard to understand and even harder to maintain. Where logic is defined using code, each
group of logic should be held in a single service class.

Invocable I “bc'”’,‘c‘
Method Email
Handler

Apex REST
S Batch Apex
Apex Web Scheduled
Service Apex

Apex Ul Apex
Controllers > Service < Queuable

Figure 5-3. The service layer provides services for many types of component

For example, maybe you dynamically generate a commission on Opportunities that
come from a channel partner. You should create a PartnerCommissionService that

Y“https://trailhead.salesforce.com/en/content/learn/modules/apex_patterns sl/
apex_patterns_sl learn sl principles

126

https://trailhead.salesforce.com/en/content/learn/modules/apex_patterns_sl/apex_patterns_sl_learn_sl_principles
https://trailhead.salesforce.com/en/content/learn/modules/apex_patterns_sl/apex_patterns_sl_learn_sl_principles

CHAPTER 5 APPLICATION ARCHITECTURE

centralizes the logic for that calculation. This service can then be used by Visualforce
controllers, Lightning controllers, the API, Visual Flows, and so on. If you update the
calculations, you only have to update that in a single place.

Implementing a service layer is generally simply a matter of copying code into a
central place and updating references to point to that service class for their calculations.
It's the first place for you to start if you want to implement these enterprise patterns, and
it generally does not require much refactoring.

Unit of Work

The Unit of Work concept is a way to help manage database transactions and
bulkification when implementing a service layer. As it says in the Trailhead module, “it’s
not a requirement for implementing a service layer, but it can help.”

Whereas implementing service classes is generally quite simple, implementing the Unit
of Work pattern, Domain Layer, and Selector Layer generally requires some specialized code
to help them to work. This is where the FFLib Apex Commons package becomes particularly
valuable, since it predefines interfaces and classes that can be used to implement this.

The basic idea of a unit of work is to allow a group of records to be passed from one
class to another, being modified and updated as needed, before finally being committed
to the database in a single transaction. The FFLib module enables you to manage parent-
child relationships, bulkifies database operations, wraps multiple database updates in a
single transaction to enable rollbacks, and more.

The reason this becomes relevant when building a modular architecture is that the
Unit of Work object also provides a common data type for passing records between
classes from multiple packages. The same is true with the following Domain and Selector
layers: they provide an abstraction on top of DML and SOQL that allows multiple
packages to collaborate on database transactions and queries.

These techniques add some overhead and complexity to your codebase, but reduce
overhead and complexity as your project scales up. It’s therefore important to become
familiar with implementing these patterns so that you can make a more accurate cost-
benefit assessment for each project. The Trailhead module on Separation of Concerns
provides a chart’ to help discern whether your project’s scale justifies this approach.

“https://trailhead.salesforce.com/en/content/learn/modules/apex_patterns sl/
apex_patterns sl soc

127

https://trailhead.salesforce.com/en/content/learn/modules/apex_patterns_sl/apex_patterns_sl_soc
https://trailhead.salesforce.com/en/content/learn/modules/apex_patterns_sl/apex_patterns_sl_soc

CHAPTER 5 APPLICATION ARCHITECTURE

Domain Layer

As mentioned, the Domain Layer is an abstraction on top of DML that allows you to
manage validation, defaulting, and trigger handling logic in a single place that can be
used by any class involved in updating data. The FFLib module provides interfaces and
helpers for implementing a domain layer.

The basic idea is that there are some scenarios in which you need to apply a
complex process consistently in both Triggers and in other DML updates. The domain
layer provides this ability, as well as an object-oriented wrapper for dealing with native
Salesforce objects. The FFLib naming convention is to name the Domain objects
similarly to the native objects they represent. For example, you could use a Domain
object called Opportunities that is a wrapper around the native Salesforce Opportunity
object. This wrapper gives you access to additional methods and properties and allows
you to attach logic (such as the .applyDiscount method shown in Figure 5-4) to the
object when that’s appropriate.

It's easy to misunderstand the Domain Layer as just another variation on trigger
handlers. But it’s actually much more than this. It provides a place to centralize
business logic that is specific to a particular object, rather than allowing that logic to be
distributed in ways that are difficult to understand or maintain.

Apex Apefx
Trigger Service

Apex Domain

triggerHandler
.onBeforeUpdate
.onBeforelnsert

Trigger Handler
.onAfterUpdate

.onAfterinsert

~ Method Call

.applyDiscount

Figure 5-4. The Domain Layer provides a wrapper around DML for both triggers
and services

128

CHAPTER 5 APPLICATION ARCHITECTURE

Selector Layer

The Selector Layer is part of the data access layer used to retrieve data from a database.
In Apex this means it’s a wrapper around SOQL. Importantly, the Selector Layer provides
an object-oriented wrapper around queries that allows for many helpful capabilities.
When query definitions are distributed across many different classes, it becomes
challenging to maintain them if fields change or new fields or filters become required.

A Selector class addresses that by allowing you to specify the base query in a single
place. It also allows queries to be passed between classes so that they can be modified

if, for example, a class requires an additional field to be queried. Figure 5-5 shows how
multiple classes can make use of a single Selector class.

Selectors allow you to use a “fluent syntax” in which multiple methods can be
chained together to modify the query as shown in Listing 5-4. This becomes particularly
powerful when passing Selectors across classes from different packages. Classes using
the Selector can have confidence that all of the required fields have been selected and
that appropriate row-level security has been enforced, and they can add requests for
additional fields they may need to the same query before it is executed.

Listing 5-4. An example of Selector syntax showing multiple methods chained
together (from Trailhead)

public List<OpportunityInfo> selectOpportunityInfo(Set<Id> idSet) {
List<OpportunityInfo> opportunityInfos = new List<OpportunityInfo>();
for(Opportunity opportunity : Database.query(
newQueryFactory(false).
selectField(Opportunity.Id).
selectField(Opportunity.Amount).
selectField(Opportunity.StageName).
selectField('Account.Name').
selectField('Account.AccountNumber').
selectField('Account.Owner.Name").
setCondition('id in :idSet').
toS00L()))
opportunityInfos.add(new OpportunityInfo(opportunity));
return opportunityInfos;

}

129

CHAPTER 5 APPLICATION ARCHITECTURE

Service Boundary

‘ Domain Class Service Class |
‘new Domain Class(...) applyDiscounty...) |
query query

\d v Controller Class
Selector Class P query loadXXX(..)
selectByld
selectByXXX
queryLocatorByld - ey Batch Class
start(...)

SOQL

Figure 5-5. The Selector Layer provides a common way to perform queries

Factory Method Pattern

Implicit in the preceding patterns is the use of the Factory Method or “Application
Factory” pattern. This is another example of Inversion of Control. The general idea is
that instead of directly instantiating objects using, for example, new Opportunity(), you
create methods that will return the object(s) you need. Listing 5-2 uses that approach
when returning ShippingService. Adding this kind of indirection allows you to create
mock interfaces for unit testing, polymorphic methods that determine their behavior
at runtime, and allow you to gather repetitive boilerplate code in a single underlying
method. The details of this are described briefly in a 2015 presentation by Andrew
Fawcett.'

This is only a brief introduction to these topics. It is included here because of how
helpful these patterns can be for dividing code across multiple packages. You should
refer to Trailhead and Force.com Enterprise Architecture for a comprehensive guide.

"www.slideshare.net/andyinthecloud/building-strong-foundations-apex-enterprise-
patterns/12

130

http://www.slideshare.net/andyinthecloud/building-strong-foundations-apex-enterprise-patterns/12
http://www.slideshare.net/andyinthecloud/building-strong-foundations-apex-enterprise-patterns/12

CHAPTER 5 APPLICATION ARCHITECTURE

Trigger Management

Apex triggers allow for complex logic to be executed every time a database record
is modified. As such, they’re an extremely important part of the platform and are in
widespread use across the Salesforce world. There are two main challenges related
to Apex triggers, one old and one new. The old challenge has been a concern since I
first encountered the language: how should you structure your triggers to make them
maintainable and flexible? The general answer to that is to have one trigger per object
and to delegate all the trigger logic to one or more trigger handlers. That advice worked
well enough until we encountered the new challenge: if there should only be one trigger
per object, how can we manage triggers if we need logic to be loosely coupled and
distributed across multiple packages?

We'll first look at the classic “One Trigger Rule” before looking at strategies for
handling triggers in a modular way.

The One Trigger Rule

Salesforce does not provide a way to determine the order in which triggers will execute.
If you have more than one trigger on a single object, you can’t predetermine the order
in which those triggers will fire. When designing trigger logic, it’s easy to encounter
situations where you assume that processes happen in a particular order. But this can
lead to very confusing scenarios in which a trigger seems to behave correctly sometimes
but not other times.

It’s also common to need to reference other data in your trigger using queries, and
to iterate through records in a trigger, processing them one by one. Having more than
one trigger can lead to redundant queries and redundant loops. All of these issues are
addressed by having a single trigger for each object. Note that managed packages may
supply their own triggers, but this isn’t normally a concern.

The Trigger Handler Pattern

Triggers suffer from other limitations, such as the inability to define methods in them or
to use most object-oriented design patterns. As a result, it’s generally recommended to
have little or no logic inside the trigger itself, but instead to create a trigger handler class
that can hold all of this logic.

131

CHAPTER 5 APPLICATION ARCHITECTURE

There are a number of common needs for triggers that are also well served by using
a trigger handler. One common need is the ability to quickly disable triggers for certain
users or at certain times. Trigger execution will slow data writes, so they’re usually
undesirable when loading large volumes of data. It's sometimes also not desirable to
execute triggers when data is written as part of an integration.

Common trigger handler patterns, such as the “Comprehensive Trigger Template”
by Mike Leach,'” provide the ability to easily disable triggers for a period of time or for
a particular user. Using Hierarchical Custom Settings for this purpose is useful since
it allows you to determine the behavior for the entire organization or override that
by profile or by user. This template also allows you to specify some processing to be
delegated to @Future methods so they can be performed asynchronously and not count
against governor limits.

The use of trigger handler patterns is probably the earliest widespread use of
software design patterns in the Salesforce community.

The Domain Pattern

The use of the Domain pattern described earlier provides an alternative to using trigger
handlers. The Domain pattern provides an object-oriented way to ensure that logic that
should be associated with an object is always associated with that object, whether it’s
accessed through a trigger or through a service class.

Modular Triggers with Dependency Injection

The concept of Dependency Injection introduced earlier becomes particularly important
as a way to manage trigger behavior where the logic is distributed across multiple Apex
classes.

Avery effective pattern is to use Custom Metadata records to track the names
of classes that should be executed in a trigger context and the order in which they
should execute. Multiple packages can contribute Custom Metadata records to register
themselves to execute when a particular trigger runs. An admin on that org can modify
the order of execution if desired.

"https://gist.github.com/abd3/a4a8a6b4476440adctdea290de47948d

132

https://gist.github.com/abd3/a4a8a6b4476440adcfdea290de47948d

CHAPTER 5 APPLICATION ARCHITECTURE

When a trigger runs, it first queries the Custom Metadata records (which is fast
and “free” since they’re stored in the platform cache), retrieves the list and order of the
handler classes, and then executes them in order.

This provides loose coupling between the trigger and the handler classes, but still
allows all of the execution to happen in a single transaction and to succeed or fail as a
unit. John Daniel, the technical reviewer for this book, did much of the groundbreaking
work to show how to modularize your codebase into packages. He created a sample
project illustrating the techniques used in this process at https://github.com/
ImJohnMDaniel/at4dx.

Packaging Code

The previous discussions about developing a modular, loosely coupled architecture all
culminate in the topic of packaging. With the arrival of Salesforce DX, it’s finally possible
for enterprise developers to build packages (principally unlocked packages) on Salesforce.

Packages perform many functions and are one of the recurring themes throughout
this book. Principally, they define a clear organizational unit for the codebase that makes
the code easier to understand. They help ensure that your codebase is loosely coupled
and thus easier to test and easier to deploy. They also help to ensure the integrity
of groups of metadata, thus allowing them to be deployed consistently across orgs,
including to more than one production org.

Building Salesforce packages requires that the metadata going into those packages
can be decoupled from all other metadata except for that which is included in the
package dependencies. This is a challenging problem, and is the reason that migration
to packaging has been slow. It’s also the reason I've taken the time to summarize some of
the most promising techniques to achieve a modular architecture.

Building your metadata into packages doesn’t perfectly guarantee that your code
is loosely coupled, and you can encounter unexpected behavior if the versions of your
packages are out of sync between different orgs. Nevertheless, keeping track of package
version numbers is infinitely easier than keeping track of subtle variations between
unpackaged metadata spread across many orgs.

Salesforce DX allows you to specify package dependencies in the sfdx-project.
json file as shown in Listing 5-5. Note there are two valid syntaxes. The first uses an alias
like industry@0.1.0.12546 to point to an ID; this syntax is used when the package is not
included in the same project folder. The second syntax is to specify both the package and
a versionNumber; this syntax is only valid for packages that exist on the same Dev Hub.

133

https://github.com/ImJohnMDaniel/at4dx
https://github.com/ImJohnMDaniel/at4dx

CHAPTER 5 APPLICATION ARCHITECTURE
Listing 5-5. An sfdx-project.json file showing package dependencies

"packageDirectories": [

{
"path": "force-app/healthcase"”,
"package": "healthcare",
"versionName": "ver 0.1",
"versionNumber": "0.1.0.NEXT",
"dependencies": [
{
"package": "industry@0.1.0.12546"
}J
{
"package": "schema",
"versionNumber": "0.1.0.LATEST"
}
]
b
{
"path": "force-app/schema",
"package": "schema",
"versionName": "ver 0.1",
"versionNumber": "0.1.0.NEXT",
"default": true
}

1,

"packageAliases": {
"industry@0.1.0.12546": "04t1T000000703YQAQ",
"schema": "OHo6FO00000XZIpSAQ"

}

Specifying package dependencies is one of the most important aspects of packaging.
Figure 5-6 shows the actual metadata dependencies in one Salesforce org I worked
on (this org was large, but by no means the most complex I've seen). Each node in the
graph represents a piece of metadata such as a class or field, and each edge in the
graph represents a dependency (small arrows show the direction of the dependency).

134

CHAPTER 5 APPLICATION ARCHITECTURE

This level of complexity is impossible for humans to reason about, which means that it’s
difficult or impossible to understand the implications of changing a piece of metadata.
When making changes is risky, innovation is stifled and teams delay activities like
refactoring or reorganizing the code.

Figure 5-6. Actual metadata dependencies in a large Salesforce org

Contrast this with Figure 5-7, which shows the same org’s metadata after refactoring
itinto packages and the interrelationships between packages. Each of these packages
may contain their own complexity, but that complexity is hidden from view and
somewhat irrelevant to other packages. This means that the implications of making a
change to one of the packages are much clearer.

Since in Figure 5-7 the “base-metadata” package is depended on (directly or indirectly)
by all of the other packages, changes to it should be made with care. But since no other
packages depend on the “Account Planning” or “Customer Community” packages, the
teams responsible for those packages don’t need to worry about causing side effects
in other packages. There is still complexity in this diagram, but it’s trivial compared to

135

CHAPTER 5 APPLICATION ARCHITECTURE

the metadata dependencies in unpackaged metadata shown in Figure 5-6. Simplifying
dependencies in this way makes it much easier to understand the risks associated with
changing packages.

Customer
Community

Account

Account .
Hierarchy

Planning

Forecasting

Opportunity
Management

Management

Metadata

Figure 5-7. A depiction of package dependencies

136

CHAPTER 5 APPLICATION ARCHITECTURE

Summary

Refactoring metadata so that it can be built into unlocked packages is the single most
challenging aspect of adopting Salesforce DX. But it is also the most beneficial.

To some degree, the refactoring process can be undertaken gradually. If you are
beginning work on a new application with limited dependencies on other metadata,
that might provide an opportunity to begin working with unlocked packages. There is
some tooling required to make this process easier, much of which is described in later
chapters. There are many human factors involved in such an effort as well.

If your team works on a relatively independent part of the Salesforce codebase, it
may be possible to get started independently. But in most cases, you'll soon find that
you need to store and modify some common metadata like Account fields that are also
shared with other teams. Therefore, typically the entire development organization first
needs to move together onto a common delivery pipeline to deploy metadata at the org
level.

The process of setting up a delivery pipeline, working with version control, setting up
CI/CD, automated testing, deployments, and releases is the topic of Part 3: Innovation
Delivery. Even once your entire org is refactored into packages, you'll still need to
manage some metadata at the org level; therefore, it’s beneficial to set up an org-level CI/
CD pipeline from the very beginning. Ideally you should set this up using the Salesforce
DX file format so you can benefit from easier merges, better filenames, and the ability to
create folders for metadata.

You can then set up one or more delivery pipelines for packages and begin the
process of migrating metadata out of your org-level repository and into your package
repository(s). Keep returning to and experimenting with the architectural techniques
introduced in this chapter as you go through that process. It is not easy to refactor a
codebase in this way, and so it’s also important that you keep clear goals for the process
for both the development and business teams.

Your long-term goal in this process is to continually increase your team’s ability to
develop and release functionality for the business quickly, safely, and sustainably. Keep
metrics on your starting-off point, and periodically check in on whether your refactoring
efforts are enabling you to deploy more quickly and reduce the incidence of failures.
DevOps is a process of continual improvement. Your architecture is a key factor in
enabling or inhibiting your team’s ability to continually improve.

137

PART Il

Innovation Delivery

Software delivery is the phase of the software development lifecycle in between
development and operation. It’s the phase in between something being created and
that thing being used. In this book, I refer to this phase as “Innovation Delivery” to
emphasize that much of what we’re delivering in Salesforce are non-code changes. To
use the analogy of groceries, things are first grown or manufactured, then they're picked,
shipped, and stored, and finally they are purchased and consumed. Software delivery is
analogous to the picking, shipping, and storing phase.

This analogy is important in illustrating that this middle phase doesn’t add much
value, and in fact it often adds risk and waste. The longer things are held in storage,
and the longer it takes to ship them, the shorter their eventual useful life and the
more chance that they’ll go bad or get out of date. Whereas manufacturing adds value
(transforms raw materials into a valuable finished product), shipping rarely adds much
value. It simply makes that valuable thing available for use.

The essence of Lean management is to identify and eliminate waste from the system.
To eliminate waste, you first need to understand the system as a value chain, a series of
interconnected steps, each of which contributes value to the finished product. Within a
value chain, there are typically steps that do not add any value. Those steps are deemed
“waste.” Since DevOps incorporates Lean management, we can say that the goal of
DevOps is also to eliminate waste in a system. And much of this waste can be found
in the Innovation Delivery phase, which is why DevOps puts such strong emphasis on
understanding and improving this phase.

PART Il INNOVATION DELIVERY

Innovation delivery consists of environment management, creating a delivery
pipeline, testing, deploying, and releasing. Although we’ve spent considerable time in
this book explaining development techniques that enable DevOps, we’ve done so largely
in the spirit of enabling success in this delivery phase. It is in this phase that DevOps
techniques such as continuous delivery really shine, and it’s this phase that is the heart of
this book and the phase where the innovations of Salesforce DX have the biggest impact.

140

CHAPTER 6

Environment Management

Careful application development demands different environments to play different roles
such as development, testing, training, and production. The software delivery lifecycle
is largely a process of promoting changes through these environments, and thus it’s
important to begin with an overview of the different types of Salesforce environments
and how to manage them.

An Org Is Not a Server

Although this is obvious to Salesforce veterans, it’s an important clarification to make
for anyone new to the platform. A Salesforce org is not a server. It’s also not something
that you can ever run on your local machine or on your corporate network. It’s also not
something that you can provision for yourself on a cloud infrastructure provider such as
Google Cloud or AWS.

All Salesforce development, testing, and use take place in a Salesforce org, and
Salesforce orgs can only ever be provisioned by Salesforce, in one of their own data
centers, accessible only via the public Internet. Got it?

We'll discuss more of the underlying architecture in “A Behind-the-scenes Look
at Salesforce Orgs.” The way that orgs exist was a strategic decision by Salesforce that
ensures that they can control the infrastructure, the upgrade process, and access to
the underlying intellectual property. There are never outdated versions of Salesforce
running behind a corporate firewall. Throughout most of the year, there is only one
version of Salesforce running in the world. During the Seasonal Upgrade Period

141
© Andrew Davis 2019

A. Davis, Mastering Salesforce DevOps, https://doi.org/10.1007/978-1-4842-5473-8_6

CHAPTER6 ENVIRONMENT MANAGEMENT

(described later in the section on “The Salesforce Upgrade Cycle”) and during times
when patch releases are being rolled out, there are two versions of Salesforce running, as
orgs are upgraded in batches.

Another reason why orgs exist in this way is that there are no orgs. Sound like a
Buddhist paradox? What I mean by this is that not only is an org not a server; it’s not
avirtual machine; it’s not a cluster; and it’s not a container. It’s actually just a unique
ID that allows Salesforce to isolate the data and metadata that belong to one customer
from the data and metadata of all other customers. In general, Salesforce can be seen as
a single massive application, running on a single massive database, with all customers’
data in that same database, segregated by a single Org ID such as 00DB00000001Tax.

Many layers of carefully crafted security, application, and database optimization are
then used to generate a unique experience in each Salesforce org, so that it appears to
function as a completely independent instance. Even Salesforce support have no access
to data within a customer’s org unless they are explicitly granted access on behalf of a
specific user for a period of time.

Thus, when we talk about environment management, the process is somewhat
different from the process on other platforms. It’s nevertheless still important to
distinguish different types of org and to provision different orgs for different purposes.

Different Types of Orgs

For practical purposes, there are only three types of Salesforce orgs that most people
need to know about: production orgs, sandboxes, and scratch orgs. These different types
of orgs behave in almost identical ways, but have different limits (such as the amount of
data and records they can hold) and may have different features enabled.

Salesforce production orgs are the ones you pay for. They come with different
features depending on which edition and licenses you buy. The first distinction is
between the different editions of Salesforce such as Essentials, Professional, Enterprise,
and Unlimited. Each edition is progressively more expensive but offers increasing
capabilities and higher limits on data storage, number of sandboxes, and so on.

142

CHAPTER6 ENVIRONMENT MANAGEMENT

There are also free editions used for training and demonstration purposes such as
Developer Edition and Partner Edition. A single org is always of a particular edition.
Since Essentials and Professional editions do not support custom code or API access,
they are rarely used by large organizations. Enterprise edition is the most common.

Orgs are priced on a per-user basis, and there are also different user license types
available, the most common being Sales Cloud User, Service Cloud User, and Platform
User licenses. Each user has exactly one user license. Whereas the edition unlocks certain
capabilities (such as API access) across the entire org, user licenses allow different
users to access different types of data and capabilities. A common scenario would be
for a company to have an Enterprise Edition org in which the salespeople are assigned
Sales Cloud licenses, and the customer support representatives and their managers are
assigned Service Cloud licenses. In addition, there may be employees who are assigned
only Platform licenses so they can make use of certain custom Salesforce applications.
Meanwhile all employees of the company might have access to Chatter Free licenses so
that they could at least collaborate using Chatter, and customers of the company may
have licenses to use a self-service community created from that Salesforce org.

Figure 6-1 shows the 2019 pricing for Sales Cloud user licenses.

143

CHAPTER 6

Sales Cloud

WATCH DEMO

Overview
Features

Related Products
Pricing

By Role

Customer Stories

ENVIRONMENT MANAGEMENT

Sales Cloud Pricing

Sell faster and smarter with any of our fully customizable CRM

editions.

Salesforce
Essentials

Out-of-the-box
CRM

$25

USDfuser/month”
{billed annually)

Lightning Lightning Lightning

Professional Enterprise Unlimited
Complete CRM Deeply Unlimited CRM
for any size customizable power and
team sales CRM for support

S75

USD/user/month®

your business

$150

USD/user/menth®

$300

USD/user/maonth®

Resources (billed annually) (billed annuaily) (billed annually)
FAQ TRY FOR FREE TRY FOR FREE TRY FOR FREE TRY FOR FREE
QUESTIONS?

1-800-667-6389

CONTACT US

*« EXPAND ALL . ALL FEATURES 0 SOME FEATURES NOT INCLUDED 5 ADDITIONAL COST

Salesforce Lightning Lightning Lightning

o O e Essentials | Professional Enterprise | Unlimited
$25 | $75 | $150|

UsD/user/montt| USD/user/montt USD/user/montt

e E;?ear.nd manage leads o o ® ®
Lead Management [[]] []
Lead Assignment and Routing L] L] L] L]
Rules-based lead scoring]] ®
Al-Powered Lead Scoring 5 5
Duplicate Blocking [[] L] L]
Web-to-Lead Capture [[]] []

Figure 6-1. The Sales Cloud user pricing page

144

CHAPTER6 ENVIRONMENT MANAGEMENT

Developer Edition orgs are a special type of production org that are free and
intended for use by developers. You can sign up for a Developer Edition org at https://
developer.salesforce.com/signup. Developer Edition orgs have access to almost every
capability that is available on Salesforce, making them ideal places for developers and
admins to learn and experiment. Available features include Sales Cloud, Service Cloud,
and Community Cloud as well as add-ons such as Work.com, Identity, Knowledge, Data.
com, and Live Agent that would normally be paid add-ons to a Salesforce org. Developer
Edition orgs have strict limits on the amount of data stored, API requests, and active
users, so they can’t be used for any significant business activity. Developer Edition orgs
are updated on the same schedule as Salesforce production orgs. Salesforce partners can
also get access to Partner Edition orgs, which are identical to Developer Edition orgs but
with higher limits.

The second main type of Salesforce orgs are sandboxes. Sandboxes are long-lived
development, testing, or training environments that are associated with a particular
production org. Until recently, sandboxes were necessarily created as clones of the
production org (having the same metadata and configuration as the production org). It
is now also possible to clone one sandbox from another, which opens up entirely new
workflows (see the section “Cloning and Refreshing Sandboxes”).

Sandboxes also come in different sizes, each with varying levels of data storage:
Developer, Developer Pro, Partial Copy, and Full Copy. The most inexpensive type of
sandbox is a Developer sandbox (not to be confused with Developer Edition orgs, which
are actually production orgs). Developer sandboxes cloned from the production org have
the exact same metadata as the production org but do not contain any data from that
org. Developer sandboxes that are cloned from other Developer sandboxes do contain
a copy of the data from the source org, which allows an organization to establish certain
orgs as templates from which other orgs can be cloned.

Developer Pro sandboxes have slightly higher data storage limits. Partial Copy
sandboxes have substantially higher data storage limits than Developer sandboxes
and also can receive a partial subset of production data copied into them when they
are refreshed from production. Full Copy sandboxes allow the entire database from a
production org to be replicated and are typically used as staging orgs where functionality
can be tested against real data conditions prior to being deployed to production.
Different editions of Salesforce come with different numbers and types of sandboxes,
but customers can pay to get more. For example, Unlimited Edition includes one free full
sandbox, for other editions it’s a paid add-on.

145

https://developer.salesforce.com/signup
https://developer.salesforce.com/signup

CHAPTER6 ENVIRONMENT MANAGEMENT

The final type of org is also the newest type: scratch orgs. Scratch orgs are a key part
of the Salesforce DX workflow. Scratch orgs are similar to sandboxes, since they are
necessarily created from and associated with a production org. A production org that has
been enabled to create scratch orgs is called a Dev Hub and is discussed more in the next
section. Like sandboxes, scratch orgs are used for development, testing, training, or demos
but, unlike sandboxes, scratch orgs contain no data or metadata from the production org
and are short-lived orgs that are deleted after a period of time (7 days by default).

Scratch orgs also possess two important characteristics that make them ideal for a
DevOps workflow: their characteristics (Edition, Features, Settings, Name) can be defined
in a configuration file, and their metadata can be easily synced with version control. Even
their short lifespans should be viewed as a feature, not a limitation: this design constraint
forces teams to not rely on an org being their source of truth, but instead to capture
all relevant configuration in version control. We'll discuss scratch orgs in more detail
later in this chapter, but it’s important to note that they do not replace sandboxes but
rather complement them. There are disadvantages to using sandboxes as development
environments, but they are still useful as long-lived testing and training environments.

Salesforce recently announced a new type of sandbox, Lightning Developer Pro
sandboxes. These have identical characteristics to Dev Pro sandboxes, but can be created
and destroyed using AP commands, similar to scratch orgs. Unlike scratch orgs, these
orgs begin as a clone of an existing org (generally your production org), which means
they have all of the features, settings, managed packages, and metadata of their source
org. Thus they don’t require teams to refactor their orgs into packages, but nevertheless
provide a short-lived development environment that can be used to make and test
incremental changes.

Which Org Should You Develop In?

Given these different types of orgs, how and where should you develop new
functionality?

Why Not Develop in Production?

Small organizations, organizations that are new to Salesforce, and those with loose
governance and less restrictive security requirements might be doing development work
directly in production. Most types of Salesforce “development” don’t involve code, and

146

CHAPTER6 ENVIRONMENT MANAGEMENT

changes such as adding a new field to an object are almost always safe. Even code-based
development in Salesforce is not as risky as directly changing code on, say, a production
web server. For example, in most cases a coding error in one Apex class will only impact
a limited part of your org, whereas in a traditional application, a coding error could
cause the entire app or site to fail.

It’s partly for this reason that most organizations persist in doing some
“development” directly in production. However, there are always dangers to doing this.

It’s entirely possible to cook your meals and eat them right out of the pot, standing
in the kitchen; it’s efficient and minimizes the time you spend washing dishes. Most
of the time though, people opt to move from the kitchen to the dining table to enjoy
what’s been prepared, even if they live alone. The more important the situation and the
more people are involved, the more important it is to segregate these activities. Even the
cleanest kitchens get messy quickly. Thus in most restaurants, chefs prepare food in the
kitchen, waiters deliver it to the table, and patrons enjoy it without ever seeing where it
was made.

Just as you can eat straight out of the pot, you can develop directly in production.
But development environments are no more clean than kitchens, developer changes
are no more safe than working with knives or fire, and an org that changes or breaks
unpredictably is no more pleasant for your users than the noise and bustle of a short-
order grill.

Just as a well-run restaurant develops a smooth flow of sending orders to the kitchen
and food to the table, it’s important to optimize the process of building in a development
environment and deploying to production.

What are the dangers of developing directly in production?

1. Making changes without testing can lead to application failures,
data loss, or corruption.

2. The risk of making changes inhibits innovations that might bring
benefit but which require iteration and testing.

3. Changes are hard to track. Most metadata shows who last
modified it and when, but does not show what changed or the
history of changes. Salesforce provides a setup audit trail, but it
does not show much detail.

4. Untracked changes are hard to reverse. It’s difficult or impossible
to reverse changes when you don’t have their history.

147

CHAPTER6 ENVIRONMENT MANAGEMENT

5. Changes in production are not propagated to other testing or
development orgs unless those orgs are refreshed, which wipes
out any changes in them.

6. This practice may violate compliance laws such as SOX, HIPAA,
or PCI-DSS. Instead, changes should be made in a development
environment, tracked in version control, and deployed to
production using a CI/CD system.

Developing in Sandboxes

As mentioned in Chapter 2: Salesforce, prior to the arrival of Salesforce DX, the normal
workflow for Salesforce was for a team to do all of their development in one or more
Developer sandbox and then to migrate those changes to the testing and production
org(s). As of this writing, that is still the most common workflow for teams, since for
complex orgs the migration to Salesforce DX usually requires some care and time.

When developing using sandboxes, the team creates one or more Developer or
Developer Pro sandboxes, each of which contains an exact copy of production metadata.
Teams then make their code or config changes in that org and use some mechanism to
capture those changes and deploy them to testing, training, and production orgs.

Salesforce’s Development Lifecycle Guide (now deprecated) recommended creating
one Developer sandbox for each developer, and some guides still recommend this. The
benefit of having one Developer sandbox per developer is that the sandbox contains
only the changes made by that developer. It therefore gives the developer total control
over that org and makes it relatively easy to identify all of the metadata touched during
development, so that metadata can be moved to other orgs.

There are, however, major disadvantages to every developer having their own
sandbox. Synchronizing changes between orgs requires deployments, and performing
multidirectional deployments between many developer orgs requires substantial time,
repetitive manual changes, and deployment error resolution and brings ample risk of
overwrites. This generally prevents continuous integration, since it effectively isolates each
developer in orgs that invariably become more different from one another over time.

By contrast, forcing developers to develop in a single, shared Developer sandbox
ensures that each developer’s work is continuously being integrated with the work of
every other developer. Unfortunately, it also makes it difficult to isolate which changes
belong to which feature, and so difficult to deploy features independently.

148

CHAPTER6 ENVIRONMENT MANAGEMENT

Developing in sandboxes is Org-based development, wherein a Salesforce org itself
is the source of truth. If all development is done in a single, shared Developer sandbox,
that org becomes the unquestionable source for the latest state of the config and code.
If developers make conflicting changes, those conflicts are generally recognized and
resolved very quickly. This also brings a risk of having your work overwritten, which
gives plenty of incentive to start using version control!

Integrating conflicting changes requires developers to pause and communicate to
resolve the conflict. When developers communicate and resolve conflicts on a daily
basis, during the actual development process, each developer can more easily remember
and articulate the reasons why their changes are important and so can more easily
find a resolution. Developing in independent sandboxes over weeks or months causes
potential conflicts to accumulate, while developers gradually forget the detailed reasons
behind each change. This makes integration painful and far more risky. It also makes it
very difficult for anyone to make small iterative changes to improve the entire codebase
(refactoring), since old versions of the code will creep back in during integration.

Isolating teams into separate sandboxes brings the same risks as isolating individual
developers in their own sandboxes. Parallel work streams, such as simultaneous Sales
Cloud and Service Cloud implementations, will face the same problems if they delay
integrating their codebases. It's tempting to have teams develop in parallel so they avoid
the risk of conflicting changes. But delaying conflict resolution until close to go-live is a
far riskier strategy.

Developing in a shared developer sandbox thus ensures a type of continuous
integration, a recognized best practice in software development. There are nevertheless
major disadvantages to developing in sandboxes compared to using scratch orgs for this
purpose.

The Disadvantages of Developing in Sandboxes

The purpose of developing is to deliver innovations that benefit production users.
The purpose of using a separate development environment is to innovate safely. Safe
innovation also requires that each change be tracked so that it can always be rolled back.
And in general, small, frequent innovations are safer to deploy and easier to debug.
Developing in this way implies the use of version control and continuous delivery.

It is possible to use version control and continuous delivery when doing
sandbox-based development, by capturing changes from the development
environments in version control and then using continuous delivery to update testing

149

CHAPTER6 ENVIRONMENT MANAGEMENT

and production orgs. But in this scenario, version control necessarily lags behind the
development org, so development sandboxes are the actual source of truth.

Sandboxes are basically immortal. Unless you refresh or delete them, they will
remain for as long as your production org remains. They always start as a replica of their
source org (usually production), and they continue to accumulate changes until they
are refreshed or deleted. But because the sandbox itself holds the latest features under
development, refreshing the org means losing any changes that you have not already
saved or deployed. Development has to stop (or move to a new sandbox), and you
have to be able to copy or restore all of the work that was under development. Unless
teams are particularly disciplined about refreshing developer sandboxes, the simplest,
safest option chosen by most teams is to never refresh the development org. But with
every passing day, the Developer sandbox becomes further and further out of sync with
production.

Development is a messy process. Just as a craftsman’s wood shop accumulates
sawdust and scraps, development environments accumulate cruft—duplicate fields,
half-finished customizations that were eventually abandoned, and so on. Large
organizations have enormous amounts of customizations and complex architectures.
Long-lived Developer sandboxes contain all that complexity, plus the accretion of
months or years of half-baked or unneeded changes.

Even if a team is using version control to deploy changes to their test and production
orgs, many changes in the development org may never be tracked in version control.
There are also some changes that can be made in an org that may be critical for
functionality but that can’t be tracked in version control. This can lead to difficult to
debug problems when you finally attempt to deploy a feature or application that has
been under development for a long time.

The Benefits of Developing in Scratch Orgs

Scratch orgs offer enormous benefits for team development. But the team needs to
understand these benefits and the implied changes to their workflow if they are to
become comfortable developing in scratch orgs.

For those familiar with developing in long-lived sandboxes, developing in a scratch
org, which expires after several days, is disconcerting. Developing in such an ephemeral
environment is truly a paradigm shift, but you should understand this as a feature, not
a bug. The short lifespan of a scratch org is a design constraint that forces developers to

150

CHAPTER6 ENVIRONMENT MANAGEMENT

not rely on the org, but instead to persist their work in version control. There is no better
motivator for developers to use version control than the threat that their development
environment will soon disappear.

Scratch orgs can be configured to persist for up to 30 days, but as a rule teams should
strive to create automated setup processes that make creating new orgs a fast and trivial
process.

Unlike sandboxes, scratch orgs do not inherit any data, metadata, features, or
preferences from the Dev Hub that creates them. As explained later in this chapter,
Salesforce is planning to release capabilities for creating scratch orgs from Snapshots
and creating scratch orgs from an Org Shape, but in general scratch orgs are created
entirely from configuration stored in version control. That means there’s no ambiguity
about what features, settings, packages, or metadata are required to create an application
in a scratch org. Because everything is recorded in version control, customizations can
be easily recreated in another scratch org or deployed to other orgs as metadata or as
packaged applications.

Scratch orgs also support “source synchronization,” which means you can just run
sfdx force:source:pull and sfdx force:source:push to synchronize metadata
between version control and your org. With org-based development, developers use
metadata retrieve commands to “pull” metadata from these orgs and metadata deploy
commands to “push” metadata to these orgs. But deploying your team’s changes into
a private Developer sandbox requires struggling through deployment errors and risks
overwriting your own customizations. And picking your own changes out of the fast-
changing ocean of unpackaged metadata in a shared Developer sandbox requires deep
expertise in the different types of Salesforce metadata.

Source synchronization means that you do not need to be an expert in Salesforce
metadata. Open a scratch org, make changes, pull down the source for those changes,
review it to remove any cruft or unneeded changes, commit it, and then merge your
work with the team’s code repository. Every developer can have a private development
environment, can track their changes with confidence, and easily share customizations
with the rest of the team.

Since the entire team is generally pushing and pulling source many times a day,
deployment errors and conflicts are spotted very quickly. Without this workflow, it
can take days or weeks before deployment errors reveal to teams that their commits to
version control contained missing or invalid metadata.

151

CHAPTER6 ENVIRONMENT MANAGEMENT

Scratch orgs complement sandboxes but do not replace them. Because
sandboxes are production-like environments, they remain useful as long-running
test environments. Sandboxes for integration testing can be configured with stable
integrations to external systems. Sandboxes for testing production hotfixes can be
refreshed as frequently as needed. Sandboxes for training can be recreated with real
production data in a Partial Copy sandbox. And Full Copy sandboxes can be used as
staging environments to ensure that customizations are performant and able to handle
the diversity of production data.

As of this writing, scratch org snapshots are not yet available. This means that it can
be challenging or impossible to quickly provision scratch orgs for teams building on top
of large managed packages, extensive and fast-changing configuration data, or settings
that are not supported in scratch orgs. My view and hope is that this is a transitional
time and that developing in scratch orgs will gradually become viable for even the most
complex orgs.

Meeting in the Middle—A Sandbox Cloning Workflow

Scratch orgs are built “from the ground up,” beginning with an empty org. Scratch orgs
give you complete confidence that you know what’s in your org, why it’s there, and
that you can recreate it whenever necessary. But organizations may struggle to build
packages and record all the org preferences from their existing orgs. And complex orgs
can require more than an hour to install the necessary packages, additional time to
deploy metadata, and significant data loads to establish meaningful sample data.
Sandboxes are established “from the top down,” in that they're always cloned from
an existing org, complete with preferences, packages, and metadata. That means teams
can immediately get started using them for development, testing, or training.
Salesforce DX is a growing technology, and the Salesforce DX team is working to
enable a wider array of options to enable efficient workflows for development and release.
Enabling scratch org snapshots allows teams to build a template org from the ground up
and then create working orgs from that template very quickly. Similarly, enabling fast
sandbox cloning, source synchronization in sandboxes, and automated authentication
means that sandboxes can also begin to be part of an efficient and automated workflow.
For teams working on complex orgs, a sandbox cloning workflow can provide a
mechanism for each developer to have their own environment that can be regularly
integrated with changes from the rest of the team.

152

CHAPTER6 ENVIRONMENT MANAGEMENT

The key to this is to establish an integration sandbox that receives deployments from
all of the developers and to regularly recreate development environments by cloning this
integration sandbox. The cloning and authentication of this integration environment
can be automated using the Salesforce CLI as explained in “Postcreation Sandbox
Login” Changes that developers make in their individual sandboxes should be tracked in
version control and deployed to the integration environment on an ongoing basis. Teams
can use trunk-based development to ensure that their changes are expedited to the
integration org, or feature branches to ensure that everyone’s changes can be validated
and reviewed. But the key to efficiency with this workflow is to regularly recreate those
developer sandboxes to ensure they stay up to date and don’t accumulate cruft.

Org Access and Security

Salesforce Orgs are accessible (and secured) in many ways. The most common methods
of access are through the login user interface (https://login.salesforce.com, or
https://test.salesforce.comfor sandboxes and scratch orgs) and via APIs. Whether
users log in interactively or via the API, access is always associated with a particular
username and limited by that user’s permissions. Usernames must be unique across
all Salesforce orgs and are in the form of email addresses, although they do not need
to correlate with actual email addresses. Users can be created and deactivated, but
can never be deleted. Whenever a sandbox is created or refreshed, user accounts are
created in that sandbox for every user that exists in the source org from which it was
created. Sandbox usernames are autogenerated by appending the sandbox name to the
source username. For example, if a user’s production username was userl@production.
org, when a sandbox called UAT is created from that production org, it will contain a
user account with username userl@production.org.UAT. User’s email addresses are
automatically modified to prevent sandboxes from accidentally emailing users (and
possibly confusing users). Email sending is also disabled by default in sandboxes.
Sandbox user accounts have the same profile, licenses, permission sets, and
password as the user account in the source org. This means that if a user knows
the name of a sandbox, they can log in to that sandbox by going to https://test.
salesforce.com, appending the sandbox name to their production username, and
using their production password. Users who log in using SSO may not even know their
production passwords, however, and SSO has to be set up separately for each sandbox.
The correlation between sandbox user accounts and production user accounts provides

153

https://login.salesforce.com
https://test.salesforce.com
https://test.salesforce.com
https://test.salesforce.com

CHAPTER6 ENVIRONMENT MANAGEMENT

a convenient way for admins to direct users to log in to a sandbox for testing or training
if needed. Because a user’s permissions are also copied from the source org, even on full
copy sandboxes the user will not be able to access data that they were not allowed access
to in production. But it is important to understand this behavior, and data security in full
and partial copy sandboxes should be considered alongside data security in production
orgs.

Scratch orgs behave in a very different way. Scratch orgs are not created from
a production org or sandbox. Because they contain no metadata or data from a
long-lived org, their security is not as big a concern. The user who creates a scratch
org automatically gets sysadmin access in that org, which allows them to use that
environment for development without any restrictions. A typical first step after creating
a scratch org is to populate that scratch org with metadata and test data stored in version
control. But access to view and edit that metadata and test data is controlled by the
version control system itself; Salesforce doesn’t create any additional restrictions.

Just as scratch orgs don’t contain any metadata or data from a source org, they
also don’t contain any user accounts aside from a single sysadmin user. It’s possible
however to use Salesforce CLI commands to create user accounts in a scratch org so that
applications can be reviewed and tested from the point of view of users with different
permissions.

The Dev Hub

Salesforce DX capabilities such as creating scratch orgs and publishing versions of
Unlocked or Managed packages depend on a Dev Hub. A Dev Hub is a Salesforce
production org that has special capabilities enabled. All paid Salesforce orgs and free
Developer Edition Orgs can function as Dev Hubs. For training purposes, you can

use your own Developer Edition org, but this allows only a small number of scratch

orgs and packages. For business work, you should designate a production org that the
development team has access to and enable Dev Hub on that org. For example, Appirio’s
internal development teams use Appirio’s production org as their Dev Hub, but for
customer projects we used the customer’s production org as the Dev Hub. Developers
should never be given access to edit metadata in production orgs (see “Locking
Everybody Out” in Chapter 12: Making It Better), but there is no security risk with giving
them permission to use the production org as a Dev Hub.

154

CHAPTER6 ENVIRONMENT MANAGEMENT

Permissions Needed to Use the Dev Hub

To use an org as a Dev Hub, that capability first needs to be enabled by going to Setup
UI » Dev Hub. For a user to make use of the Dev Hub, they then need several specific
permissions. Administrators have these permissions automatically, but you shouldn’t
give your developers Admin rights in production. Add the necessary permissions

to a permission set or profile, following the steps in the Salesforce DX Setup Guide.
Permissions include

o Create and delete scratch orgs
o Create and update second-generation packages

When a package version is created, it is in the “beta” status and cannot be installed in
a production org. To enable users to mark a package version as “Released” so that it can
be installed in a production org, you need to enable the system permission Promote a
package version to released.

What if developers don’t have access to the production orgs? In these cases,
Salesforce support can enable “Free Limited Access Licenses” in that production org.
These secure licenses allow access to the Dev Hub, but do not allow any other data,
login, or API access. Developers can be safely assigned this type of user license, even
when they have no other access.

API-Based Authentication

While most user interactions with Salesforce involve users logging in manually and then
viewing and editing the org interactively, automated processes are usually based on API
access. Salesforce provides a very rich set of REST and SOAP-based APIs to access data
and metadata and to trigger operations. Their robust API has allowed for the creation
of a vast number of integrations from other enterprise software providers, as well as
from tools specific to Salesforce. Since the technical processes in DevOps focus largely
on automation, you'll be directly or indirectly exploiting these APIs as you refine your
development workflow.

The most common API workflow involves using the REST API based on OAuth 2.0
authentication. The OAuth 2.0 flow for authenticating against Salesforce can be briefly
summarized as follows:

155

CHAPTER 6

156

1.

ENVIRONMENT MANAGEMENT

Prompted by user actions, a local tool or third-party service
requests access to Salesforce on the user’s behalf.

The user is redirected to Salesforce and logs in.

Salesforce then presents an authorization screen similar to
Figure 6-2 asking whether the third-party tool should be allowed
access to Salesforce on the user’s behalf. This screen specifies
which permissions (“grants”) are being requested on behalf of the
user. Some apps require limited permissions such as “Access your
basic information” (e.g., name, username, email), whereas others
may request more permissions. Apply appropriate care when
authorizing an app—you may be giving it permission to access all
of your data and manage Salesforce on your behalf.

If you allow access, Salesforce will then send the third-party
application an Access Token on your behalf. That access token
is used to read data and perform actions on Salesforce on your
behalf, subject to the limits of whatever permissions you gave in
the authorization page.

Importantly, if you approve the permission “Perform requests on
your behalf at any time,” the application will be given a Refresh
Token that allows it to reconnect to Salesforce at any future

time. The Refresh Token is used to request a fresh Access Token
whenever an Access Token has expired.

CHAPTER6 ENVIRONMENT MANAGEMENT

salesforce

Allow Access?

Global Connected App is asking to:

» Access your basic information
+ Provide access to your data via the Web
= Access and manage your data

» Perform requests on your behalf at any time

Do you want to allow access for

. ? (Not you?)

3 “

To revoke access at any time, go to your personal settings.

Figure 6-2. An OAuth authorization prompt requesting full access to your account

At any point, you can view the applications that were authorized using your
credentials by visiting Settings » My Personal Information» Connections.To see
the OAuth connections for all users across the org, admins can go to Setup UI » Apps >
Connected Apps » Connected Apps OAuth Usage.

OAuth 2.0 authentication is considered more secure than username/password
authentication, because the permissions for an OAuth Connected App can be tuned
carefully, monitored, and revoked if needed. Sharing your Salesforce username and
password with a third-party app is fundamentally less secure, so when given the chance
you should give strong preference to tools that use OAuth.

For long-running integrations between Salesforce and another system, you should
always create and use an integration user and perform the authentications as the
integration user. Using an integration user ensures that the connection is not disabled
as a result of the user who initially set up the integration leaving the organization. It also
enables multiple users to monitor the activity of the integration user account.

157

CHAPTER6 ENVIRONMENT MANAGEMENT

Salesforce DX Org Authorizations

In the context of Salesforce DX, API authentication is generally handled using the
Salesforce CLI. Using the Salesforce CLI, you can authenticate to an org, and save your
org connection with a friendly alias such as “UAT” You can then perform commands
using those aliases such as sfdx force:org:open -u UAT.

The Salesforce CLI provides developers with many different ways of authorizing
Salesforce orgs. Some of these methods are more appropriate for manual use by
developers, whereas others are designed to allow CI systems to autonomously perform
actions on Salesforce orgs.

The main auth commands the Salesforce CLI provides are as follows.

force:auth:web:login

This is the typical method for authorizing orgs when working with Salesforce CLI
commands locally. It opens a browser tab to allow you to input your credentials to
authorize the org. This type of login is generally never used directly in automated
processes such as continuous delivery. But by first authorizing an org locally, you can
then access an Auth URL for that org that can be used in automated processes.

force:auth:sfdxurl:store

The simplest way to enable API access to Salesforce as part of an automated workflow
is to take advantage of a special string called an Auth URL that the Salesforce CLI
generates.

This one URL contains all the information necessary to access an org on a user’s
behalf, including the endpoint URL, OAuth Client ID, and refresh token.

Auth URLs have the format: force://clientId:clientSecret:refreshToken@
instanceUrl

To get the Auth URL for an org, follow these steps:

1. Authorize the org whose Auth URL you need using sfdx
force:auth:web:login -a OrgAlias. By default, this command
opens https://login.salesforce.com. If your org uses a custom
domain or you need to authorize a sandbox, specify the -1
parameter with the custom domain.

158

https://login.salesforce.com

CHAPTER6 ENVIRONMENT MANAGEMENT

$ sfdx force:auth:web:login -a OrgAlias -r https://test.
salesforce.com

$ sfdx force:auth:web:login -a OrgAlias -r https://myDomain.

my.salesforce.com

Log in with your credentials and authorize the Global Connected
App.

Once you've successfully authorized the org, close that browser
tab and run sfdx force:org:display -u <OrgAlias> --verbose
command (substituting the appropriate OrgAlias) as shown in
Figure 6-3.

This will display the Auth URL for the org.

Your CI system will have some mechanism for storing secrets. You
can then add that Auth URL as a secret variable in your CI system
to connect to that org. It is extremely important to secure this Auth
URL, and any other access credentials, as you would a password.
CI systems should all provide a mechanism for storing secrets.
These should never be hardcoded or included in the repository.

In a CI job, you will first need to write that secret variable to a
temporary file, then read it into the Salesforce CLI from that file

using the command:
sfdx force:auth:sfdxurl:store -f -s -a MyDefaultOrg

Finish by including a command to delete that temporary file.

In your CI job, you can then perform commands such as sfdx
force:apex:test:run to, for example, run Apex tests in the
default org that you authorized.

159

CHAPTER6 ENVIRONMENT MANAGEMENT

$ sfdx force:org:display -u Devhub --verbose
sfdx-cli: update available from 6.12.0 to 6.13.0-3bc8bd73d8
Using resolved username from alias Devhub

=== 0Org Description

KEY VALUE

Access Token @0D7Fo8

YENawvX8Z8nxuSAoIKéjusD2_

Alias Devhub

Client Id SalesforceDevelopmentExperience

Connected Status Connected

1d eeD7Feer

Instance Url https://fighter-enterprise-678@.my.salesforce.com

Sfdx Auth Url force://SalesforceDevelopmentExperience:1384510088588713504:5A

Figure 6-3. Getting an Auth URL for use in automated processes

auth:jwt:grant

This method is recommended by Salesforce in the Salesforce DX Developer Guide and in
the Trailhead module entitled “Continuous Integration Using Salesforce DX.” It is also a
method useful for authorizing orgs to be used in CI context. The benefits of this method
compared to the “Auth URL” approach are that

o Credentials are stored in three pieces (key, clientID, and user) instead
of a single token, which some might argue is more secure.

e A custom Connected App is created for each org, and special security
restrictions can be applied to that Connected App.

The disadvantages of this method are that
e Setup is more complex and time-consuming.

e The username can easily be spoofed by supplying the username of
any user who is assigned to that Connected App.

This method should be used for orgs where security is of particular concern. To use this
method, follow the instructions in the Salesforce DX Developer Guide.! We recommend
that you assign only a single integration user to the custom Connected App to avoid the risk
of user spoofing. Separate Connected Apps can be created for each integration.

'https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_
auth_jwt_flow.htm

160

https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_jwt_flow.htm
https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_jwt_flow.htm

CHAPTER6 ENVIRONMENT MANAGEMENT

Postcreation Sandbox Login

Salesforce recently introduced a new form of authentication related to sandbox cloning
or refreshes. The Salesforce CLI allows you to request a new sandbox to be created,
cloned, or refreshed. Sandboxes are always associated with a particular production
org, which is typically also the org used as a Dev Hub for Salesforce DX scratch orgs
and packages. You can initiate a sandbox clone (from production or another sandbox)
using sfdx force:org:clone. You can then track the progress of that clone using stdx
force:org:status. Once the sandbox is ready, Salesforce automatically authenticates
you to that org. The actual authentication is performed using an OAuth connection from
the production org to the sandbox, but the tokens are passed securely to the user who
requested the sandbox to be created, allowing them to immediately log in or perform
actions on that sandbox.

Environment Strategy

What Salesforce orgs and sandboxes do you need to put in place to support your
development, testing, and training activities?

Environment Strategy Guidelines

An effective delivery pipeline lets innovation flow from development to production. The
foundation for that is a sensible environment strategy. Having multiple environments

is critical for allowing development and testing to happen in an orderly way. But every
extra environment increases the complexity of your delivery process, which can cause
confusion, extra work, and delays. Therefore the basic guideline is to use the minimum
number of orgs possible and keep the connections as simple as possible. Resist the need
to add more orgs for as long as possible.

This rule does not apply to scratch orgs. Since they are temporary environments
created from version control, they don’t add any complexity to the development
process. But the rule does apply to code repositories and long-running branches in those
repositories. Every code repository and long-running branch increases complexity in
the development workflow and increases the overhead required to keep things in sync.
Your life will be simpler and happier if you can have one code repository, one main
branch, and a small number of long-lived sandboxes. Branching strategy is thus related

161

CHAPTER6 ENVIRONMENT MANAGEMENT

to environment strategy, and the two need to harmonize (see Chapter 7: The Delivery
Pipeline for more on branching strategy).

Multiple Production Orgs

For every production org, there needs to be an environment strategy to manage the
development, testing, and training process. If you have multiple production orgs that
share common functionality, there needs to be a coordinated process for delivering that
shared functionality to all the orgs. Managing multiple production orgs greatly increases
the complexity of the overall environment strategy.

There are generally three reasons why an organization would have multiple
production orgs:

1. This was a deliberate architectural decision.

2. One company using Salesforce acquired or merged with another
company using Salesforce.

3. Different business units bought Salesforce at different times
without an overarching strategy.

Multiple Production Orgs As an Intentional Architecture

Why is having multiple production orgs sometimes the best architecture? Sharing a
production org allows teams to share data and to share common business processes.
If multiple business units do not need shared data and have entirely different business
processes from one another, then it can make sense for them to have multiple
production orgs. A clear example is when a holding company owns multiple different
businesses (say, a book publisher and a software company) that do not interact and
don’t share common processes. It is almost inevitable though that a time will come
when the executive leadership of the parent company might want real-time reporting
from across both business units. It’s also quite likely that management might want to
consolidate some departments across both groups such that there later develops a need
for consolidated processes between them.

It is extremely important to make the appropriate decision up front about how many
production orgs to have. Greg Cook provides important guidance for the org architecture
decision process in the Salesforce Developer Blog “Enterprise Architecture: Single-org

162

versus Multi-org Strategy.”? I strongly suggest you study that article when making this

CHAPTER 6

ENVIRONMENT MANAGEMENT

decision, since it’s extremely difficult to change later. He references this 2 x 2 matrix from

the book Enterprise Architecture as Strategy® shown in Figure 6-4.

Four operating models

Business Process Integration

Center for Information Systems Research (CISR) m: mﬁﬁgﬁ :Eg:mwr o

High

Low

Coordination

= Unique business units with a need
to know each other's transactions

= Examples: Commonwealth Eanl
of Australia, Metlife, Astna

= Key IT capability: accesstochared
data, through standard technology
interfaces

Diversification

= Independent business units with
different customers and expertise

Life, ING
u Key IT capability: provide economies

ofecale withoutlimiting independence

= Examples: Johnson & Johnzon, Pacific

Unification

Single business with global process
standards and global data access
Examples: Southwsest Airlines, Dow
Chemical, UPS Package [#
Key IT capability: enter
reinforcing standard processs
providing global data access

Replication

Independent but similar business
units sharing best practice

Examples: IMarriott, 7-Eleven lapan,
ING DIRECT

Key IT capability: jprovide standard
infrastructure and application

o ponents for global efficiencies

Low

High

Business Process Standardization

®2009 MIT Sloan CISR - Ross

i Business £

, J.Ross, P

Figure 6-4. The balance between business process integration and
standardization should determine the org strategy. (Reproduced with permission
from MIT Sloan CISR)

In this diagram, high “Business Process Integration” implies the need to share

common data, while high “Business Process Standardization” implies the need to

share common processes by sharing Salesforce metadata. Since that blog post was first

published, Salesforce has added new mechanisms for aggregating and analyzing data

*https://developer.salesforce.com/blogs/developer-relations/2014/10/enterprise-
architecture-multi-org-strategy.html

SEnterprise Architecture as Strategy: Creating a Foundation for Business Execution by Jeanne
W. Ross, Peter Weill, and David Robertson, Harvard Business School Press, 2006.

163

https://developer.salesforce.com/blogs/developer-relations/2014/10/enterprise-architecture-multi-org-strategy.html
https://developer.salesforce.com/blogs/developer-relations/2014/10/enterprise-architecture-multi-org-strategy.html
http://www.amazon.com/gp/product/1591398398/sr=8-1/qid=1149822286/ref=sr_1_1/102-8810724-3746548?_encoding=UTF8
http://www.amazon.com/gp/product/1591398398/sr=8-1/qid=1149822286/ref=sr_1_1/102-8810724-3746548?_encoding=UTF8

CHAPTER6 ENVIRONMENT MANAGEMENT

across orgs (Einstein Analytics), new mechanisms for sharing data (Salesforce Connect),
and new mechanisms for sharing metadata (unlocked packages), which can make it
much easier to manage multiple production orgs.

If independent business units continue to remain independent, with no need for
shared data or processes, then they can continue to manage their environments and
release strategy separately. The teams responsible for maintaining and developing
their Salesforce infrastructure can and should share ideas and best practices with one
another by establishing a global Center of Excellence, but there’s otherwise no need for
coordination.

If over time it becomes apparent that there’s a need for shared data or functionality,
there are several options. In the most extreme case, you can pursue an org merge (see as
follows).

If the need is only for shared data reporting to be available for leadership review, you
can use Salesforce’s Einstein Analytics or a third-party data analytics tool to aggregate
and analyze data from across multiple systems. If the need is for certain data to be
available in real time to users of either Salesforce org, then you can build a custom
integration between the Salesforce orgs. The easiest option for doing this is to use
Salesforce Connect, which uses OData to allow Salesforce to read/write/report on live
data in an external system. To share live data between orgs, you can use the Cross-Org
Adapter for Salesforce Connect.

Multiple Production Orgs As a Result of Mergers or Acquisitions

It's not uncommon for one company which has one or more Salesforce orgs to acquire
or merge with another company which has one or more Salesforce orgs. Integrating
IT systems is a massive part of M&A, and integrating or merging Salesforce orgs is no
exception. See the following for more.

Multiple Production Orgs As a Result of Department-Level
Purchases

It's not uncommon, especially in large, dispersed organizations, for different
departments to have purchased and to maintain separate Salesforce orgs to support
their independent needs. Although Salesforce increasingly markets itself as a way to
integrate all of your enterprise data, its origin is as a CRM and sales force automation
tool. Different sales organizations across the company might maintain a “shadow

164

CHAPTER6 ENVIRONMENT MANAGEMENT

IT” infrastructure inside their business unit as an alternative to coordinating through
corporate IT. Corporate IT may be seen as overly restrictive, requiring too long an
approval process, or not having the budget or enthusiasm for taking on new projects. It’s
also not unheard of for Salesforce Account Executives to conspire in this approach to
help them get their foot in the door with a particular customer and to gradually build a
presence in an organization.

Whatever the reason, it’s important to bring these initiatives out of the shadows and
to establish a global Salesforce Center of Excellence to decide on the best path forward.
It’s in the best interest of all teams to coordinate their activities and to decide on the
most efficient global architecture. Such discussions might conclude that it’s beneficial
for different divisions to maintain separate Salesforce orgs; the point is that this should
be an intentional decision.

Merging Production Orgs

God help you if you ever need to merge production orgs. You're looking at a long,
complex process that will require careful architecture and careful work. You should plan
to commit significant time and resources or seek out a qualified consulting partner to
help you with the process. Salesforce provides many mechanisms such as record types to
segregate data and business processes, but you will need to design all of this carefully to
meet the needs of the different business units.

My colleagues at Appirio have been involved in many org merges, including one
multiyear org merge that resulted from a corporate merger. Shortly after the project
completed, they were reengaged for a complex org split after those organizations
decided to separate again!

Splitting Production Orgs

Splitting orgs is simpler than merging orgs, but is still a process that should be
considered carefully (Figure 6-5). Salesforce support may be able to authorize a behind-
the-scenes clone of a production org, for example, using what’s known as a DOT
(“Default Organization Template”). There are also third-party products, such as Sesame
Software’s Relational Junction, that can help with this process.

165

CHAPTER6 ENVIRONMENT MANAGEMENT

www.salesforce.com says

Are you really,
really,
really,
really,
really, k
really,
really,
really,
REALLY sure you want to do this?

Figure 6-5. My suggested confirmation prompt before splitting orgs

The main point is that once an org is split, the two environments will naturally
diverge from one another over time. Reversing the operation would require an org
merge.

An org split requires that the metadata, data, and any integrations be migrated. Users
will generally be using one org or the other, so their accounts should be deactivated
on the org they are not using. If users need to access and use both orgs, this is one of
many signs that you may not actually want to do an org split. Instead you can consider
segregating different processes using record types or some other mechanism.

Coordinating Multiple Production Orgs

As mentioned earlier, there are new mechanisms available to coordinate data that’s spread
across multiple orgs and to harmonize processes that are shared across multiple orgs.
Data reporting and analytics needs can be addressed by numerous business intelligence
tools. Salesforce offers their proprietary Einstein Analytics tool for this purpose. This
offers native integration with Salesforce, although it is limited to pulling fresh data once
per hour. Salesforce has rich REST and SOAP APIs, which allow for efficient retrieval of
recently modified data by specifying “If-Modified-Since” headers in the API calls. This has
made it easy for most enterprise data analytics tools to build Salesforce connectors.
Salesforce Connect, and in particular the Cross-Org Adapter for Salesforce Connect,
provides a mechanism to make data from one Salesforce org accessible inside another
org. That data can be used in lookups, automation, Apex code, reports, and so on.
The data can be read, searched, and modified. Reporting can be slow, and there
are numerous limitations on that integration, but it’'s a much more powerful type of
integration than earlier options such as Salesforce to Salesforce.

166

CHAPTER6 ENVIRONMENT MANAGEMENT

Finally, if a company has multiple production orgs (separated perhaps by geography)
but wants common customizations across orgs, that’s an ideal use case for unlocked
packages. Unlocked packages are discussed in detail in Chapter 9: Deploying, but they
allow a team to build a package of code and customization and then to syndicate it to
multiple orgs. They are useful even when moving customizations to a single testing and
production environment. They are infinitely more useful if you must maintain multiple
production orgs. As mentioned earlier, even if orgs start with the same configuration,
“configuration drift” is inevitable unless org updates are managed strictly through a
continuous delivery process. When that customization is bundled into packages, it
further reduces configuration drift, since a single package version is guaranteed to be
consistent across all orgs.

Using second-generation managed packages is another option that is now far more
accessible to enterprise developers. The original managed package process required
the use of Developer orgs, Packaging Orgs, and various forms of sorcery generally only
used by ISVs building for the AppExchange. Second-generation managed packages are
built and function much the same as unlocked packages, although it’s very important to
understand their differences.

Managed packages prevent users from modifying metadata in the receiving org
and obscure the contents of metadata such as Apex classes. To allow end users some
degree of configurability, managed package components such as page layouts are not
upgradeable. This makes managed packages less desirable in enterprises that want
central control over all orgs, but more useful where an enterprise wants to provide
common functionality but allow independent teams some ability to customize. In most
cases, however, enterprises should be locking everybody out of the production orgs (see
Chapter 12: Making It Better), so deploying unlocked packages (and updating them as
needed) should provide sufficient protection against configuration drift.

Identifying and Mapping Existing Orgs

The environment strategy is the foundation for the release management process. If a
team is experiencing problems with release management, there are often also problems
with the environments. And environments that are outdated or out of sync are always a
potential source of confusion and problems. If you happen to join an existing project and
are charged with mapping and rationalizing existing environments, you can follow these
tips to determine the existing structure before proceeding to make changes.

167

CHAPTER6 ENVIRONMENT MANAGEMENT

The focus here is on identifying all of the active development, testing, training,
and production environments. To the degree that you find unused orgs or excessive
complexity, your goal will be to simplify the environment layout by deleting those orgs
(after triple-checking that they are in fact entirely unused).

The best way to determine whether an org is actually in use is by logging into that
org and going to Setup » Identity » Login History to see whether anyone (other than
you) has logged into the org. This screen provides a definitive list of every authentication
against the org, including API-based read or write access. If no one has logged into the
org for a long time, that indicates it’s not in use by users or integrations and so is almost
certainly a candidate for deletion.

By all means, ask the team if they have any existing documentation on the orgs in
use. But as with everything in software development, reality trumps documentation. For
each production org, you can visit the “Environments” section in the Setup Ul to see a
list of all sandboxes associated with that org. For each sandbox, you will see the name of
the sandbox, the sandbox type, the last refreshed date, and a link that allows you to log in
to that org.

If in any supporting documentation, you see indications that the team is using
Developer Edition orgs, or some other type of org other than sandboxes or scratch
orgs, you should view those with suspicion. Developer Edition orgs are a key part of the
original managed package workflow, but otherwise should not be used as part of an
enterprise development workflow. Enterprise admins have no centralized control over
such environments, and they may constitute a security concern.

If the team is using a third-party release management tool like Gearset or Copado,
check those systems to see what orgs are currently authorized and how they are
connected to enable metadata deployments.

If the team is using change sets for their deployments, the deployment pathways
are defined under “Setup » Environments » Deploy » Deployment Settings.” Each
production org and their related sandboxes can be connected to each other to allow
incoming change sets, outgoing change sets, or neither. To see all of the relationships,
you have to log in to each org. The number of possible combinations increases
geometrically based on the number of orgs. The lack of a single overview of relationships
between orgs is one of many reasons why change sets don’t lend themselves to fast-
paced, large-scale development. In practice it’s not necessary to map or control all of
these relationships, just the ones leading into production. As you move to scratch orgs,
you will probably also be able to delete many existing sandboxes.

168

CHAPTER6 ENVIRONMENT MANAGEMENT

If your team is using an IDE or desktop scripts to manage deployments, there’s no
easy way to determine all of the pathways that code and configuration may be flowing in
your orgs. Establishing a clear CI/CD process will remedy that.

The purpose of building a list of active orgs and their connections is to begin to
gain control over what, for many organizations, is an unruly development process. By
reducing the total number of orgs that you're managing, you also greatly simplify the
process of ensuring those orgs remain up to date.

Identifying Requirements for Testing, Fixes, Training,
and Others

Creating a clean and rational org structure begins with determining the requirements
you’ll need to serve. At a minimum, you will need scratch orgs for development, one
sandbox for testing integrated changes, and your production org. There are many
legitimate reasons to add more environments than that, but every additional org adds
complexity and requires some time to keep in sync. The benefit of adding additional orgs
must be balanced against the cost of maintaining them.

The reasons for needing additional environments can be divided into these
categories:

1. Developing new functionality

2. Testing functionality under development

3. Testing large volumes of data for integrations and data migrations
4. Training users

5. Resolving bugs/issues

Environment Requirements for Development

For the reasons mentioned earlier, developing new functionality should ideally be done
using scratch orgs instead of sandboxes.

Despite the benefits of scratch orgs, teams who are managing massive amounts of
customizations may not be able to migrate to scratch orgs in the near term. Make a plan
to help your teams transition to using scratch orgs, but you may need to maintain one or
more developer sandboxes during that transition.

169

CHAPTER6 ENVIRONMENT MANAGEMENT

Scratch orgs can also be used when developing custom integrations with external
systems. Because scratch orgs are short-lived, their connections to external systems may
have to be recreated every time a scratch org expires. It might be tempting to develop
integrations such as custom Apex REST services in a sandbox that is integrated with
an external test environment. Instead, practice “design by contract” by writing Apex
Mocks in a scratch org to simulate requests and responses from that external system.
This allows for test-driven development of those REST services and ensures robust test
coverage. Then use a CI/CD process to migrate the service to an integrated sandbox for
integration testing.

Environment Requirements for Testing

Testing functionality under development is itself a vast topic. Different types of testing
bring different demands for test environments. This is explained in more detail in the
“Test Environments” section in Chapter 8: Quality and Testing. The general strategy to
support these demands is to “shift left” as much as possible and to try to batch multiple
different demands into a small number of environments. “Shifting left” is a general
DevOps strategy, illustrated in Figure 6-6. Visualize your development environments
arranged from left to right, with the developer workstation on the far left, followed by
scratch orgs, then a CI/CD server, testing sandboxes, and finally production on the far
right. If a test is currently being performed in a testing sandbox, shifting that test to
the left, so that it is done in a scratch org, allows the test to be performed earlier in the
development process. This greatly reduces the time required to identify and resolve

issues.

170

Attention to

CHAPTER6 ENVIRONMENT MANAGEMENT

==
=
©
&
Shift Left Model Traditional
Quality Model
Specification Design Code Test Release Monitor &

Analyze

Figure 6-6. “Shifting left” reduces overall costs by performing testing earlier in the
development lifecycle

Testing can be divided into static analysis, code reviews, unit testing, automated and

manual acceptance testing, integration testing, and performance testing. Details about
the environments needed for these tests are shared in Chapter 8: Quality and Testing, but

these can
1.

2.

be summarized as follows:
Static analysis and code reviews don’t require a Salesforce org.

Apex unit tests and Lightning Component tests should be run
both in development orgs and in other testing orgs.

Unit tests for JavaScript in static resources may be executable in

the CI server.

Automated acceptance tests can be run in scratch orgs, but
generally should be run in fully integrated orgs with full sample
data.

Manual acceptance tests by the internal QA team should be run
in scratch orgs; UAT should be performed in fully integrated orgs
with full sample data.

Performance tests should be performed in a partial or full sandbox
but require prior authorization from Salesforce.

171

CHAPTER6 ENVIRONMENT MANAGEMENT

Environment Requirements for Testing Integrations and Data
Migrations

Salesforce integrations are ongoing connections allowing Salesforce to share data or
functionality with some external system. Data migrations are one-time movements
of data into or out of Salesforce. Salesforce’s integration documentation explains that
integrations might be performed at one of four layers, depicted in Figure 6-7.*

Most integrations are done at the “logic” layer, where an external system is required
to get complete functionality. In this case, data is transferred between systems using
APIs as part of a business process. For example, an order might be created in Salesforce
and then a corresponding order created in a CPQ or ERP system. That system then sends
data such as the price, order number, or order status back to Salesforce.

It’s also possible to do integrations at the data layer (e.g., using External Objects), at
the Ul layer (e.g., using Canvas), or at the Security layer (e.g., SAML SSO).5

s h ()
App App
Jml <‘ Security integration > ':. ml
/- N

I X
. ' < Ul integration >

-
A N
. <‘ Logic integration '> .
)
)

)
i Data integration
)

{)’ 1 ’)

Figure 6-7. Integration can be performed at different levels

Can you ever use a production version of that external system for testing? If
Salesforce is only reading data from that system, and there is zero possibility that the
external system will be written to, and if there are no concerns about any data in the
external system being exposed to someone who shouldn’t have access, then it might be

*https://developer.salesforce.com/page/Integration

*https://developer.salesforce.com/blogs/developer-relations/2015/06/integrating-
force-com.html

172

https://developer.salesforce.com/page/Integration
https://developer.salesforce.com/blogs/developer-relations/2015/06/integrating-force-com.html
https://developer.salesforce.com/blogs/developer-relations/2015/06/integrating-force-com.html

CHAPTER6 ENVIRONMENT MANAGEMENT

acceptable to test the integration against a production system. But that’s rarely the case
unless you're integrating with a public read-only service such as Google Maps or the US
Postal Service’s address validation service. In all other cases, these integrations require a
test instance of the external system.

Not all platforms are as generous as Salesforce in providing sandbox or test
environments. This means that the availability of test instances of external systems might
be a limiting factor in what Salesforce environments you can support. If you're building
a two-way integration with a product that has only three instances—development, test,
and production—then you can only have three Salesforce environments integrated with
this system. If you want the development instance to be available to your developers,
then you have only one nonproduction instance left to use. You'll have to choose
whether to make that available to your UAT testing environment, to your training
environment, or to some other environment.

Environments where there are multiple external systems integrating will generally
benefit from having a middleware tool in place. In those instances also, there should be
development, testing, and production instances of the middleware, each connecting the
appropriate environments.

For any kind of large-scale data import into Salesforce, you will almost certainly need
a separate partial or full sandbox to test in. Scratch orgs and Developer sandboxes have
extremely limited data volumes (200 MB). Developer Pro sandboxes allow 1 GB, Partial
Copy sandboxes allow 5 GB, and full sandboxes give the same storage amount as the
production org. Most Salesforce records require 2 kB of storage space, which means that
a Partial Copy sandbox can store 2.5 million records. If your data migration is larger than
that, you'll need a Full Copy sandbox, which might require that your organization buy an
additional one.

Like software development, data migration is an iterative process that will likely
require multiple attempts. Your data team will need the freedom to delete and reimport
data multiple times before they have satisfactorily resolved all issues with character
encoding (hint: use UTF-8), field length, relationships, picklist values, and so on. Do
everyone a favor and put them in their own environment.

For small-scale testing of integrations or small migrations of new data, you might be
able to safely reuse your UAT sandbox for this purpose. That allows the UAT environment
to be fully integrated, available for end user testing, and also available for the integration
team to validate their work. But this approach requires care, and you should make a clear
segregation between the records that the integration team is touching and the records
being used by your UAT testers.

173

CHAPTER6 ENVIRONMENT MANAGEMENT

Environment Requirements for Training

To support employee onboarding or when training your employees in new processes, it’s
customary to provide a dedicated training environment. In some cases, this can be the
same as the UAT testing environment. If you can clearly demarcate training data from
business data, you might also be able to do training in production. Even when you're
rolling out new functionality, in some cases you can use feature flags (see Chapter 10:
Releasing to Users) to deploy that functionality to production. Record types can be used
to enable distinct layouts or business logic, and so users can be trained on forthcoming
features by providing them training data that uses a new record type that exhibits
different behavior. When you're ready to roll out the new processes on all data, just
change the record types of your existing data.

If none of these scenarios are suitable, you may need a dedicated environment for
training. You should include this training environment in your delivery pipeline so that
its metadata is automatically updated at the same time as your other environments. This
reduces the burden involved in maintaining a separate environment.

Environment Requirements for Resolving Bugs/Issues

Most bugs discovered in production are minor enough that they can be logged and fixed
by the development team as part of their normal release process. However issues that
cause downtime or data corruption require immediate fixes.

Your goal should be to handle even critical production hotfixes through your normal
delivery pipeline without creating a separate process for this. The speed with which
the development team can restore production systems and the speed with which new
updates can be deployed are two of the five key metrics for measuring your software
delivery performance (see Chapter 3: DevOps).

The practice of continuous delivery means that the master branch of your repository
is always able to be released to production. If you've achieved this, then your normal,
linear delivery pipeline will also be the conduit through which emergency bug fixes can
be deployed. Developers will always be working on half-baked functionality, but that
functionality should be hidden behind Feature Flags such that it can be safely deployed
without releasing.

If your release process is not yet at this point, it may be tempting to bypass your CI/
CD pipeline entirely in an emergency. This is inevitably a bad idea, since it means that
you are making changes in a panicked state of mind without tracking those changes

174

CHAPTER6 ENVIRONMENT MANAGEMENT

in version control. There are many horror stories of teams making problems worse by
implementing hasty and untracked changes.

Some of the most difficult-to-debug production issues involve data issues. Since full
sandboxes can only be refreshed every 30 days, it’s not always easy to debug these issues
outside of production. But accessing debug logs requires “View All Data” permission,
which is not something that developers should have in production. To address this, you
can consider having a separate hotfix environment.

Teams doing periodic major releases often maintain a partial sandbox as a separate
hotfix environment. Immediately after the production deployment, they refresh
this sandbox to ensure its metadata and at least a subset of its data are in sync with
production. This environment can be connected to your CI/CD system so that changes
made to a particular branch (e.g., “hotfix”) will be deployed to this environment. If there
is a problem, you can create a hotfix branch off of the master/production branch and
push urgent changes to this environment for testing. If the fix is successful, it can then
be put into the delivery pipeline so that all environments (including production) get
updated.

Creating and Using Scratch Orgs

The short-lived nature of scratch orgs makes them an ideal environment for
development, demos, and most types of testing. How do you create and use scratch orgs
for these purposes?

General Workflow

The main body of your Salesforce metadata should ideally be built in scratch orgs,
published as unlocked packages, and installed and kept up to date in testing and
production environments. Metadata that cannot or should not live inside a package
should be managed at the orglevel.

Salesforce DX introduces the concept of unlocked packages. Unlocked packages
allow related functionality to be compiled and deployed together as a single unit.
Packages are versioned, and the Setup Ul shows what metadata is in a particular
package, in which version of the package it was added (or deprecated), and which
package each piece of metadata belongs to. Importantly, packages also allow for
metadata deletions to be safely propagated from development to production.

175

CHAPTER6 ENVIRONMENT MANAGEMENT

Thus unlocked packages are generally the best method of moving features from
development to sandboxes and production orgs.

Some types of metadata, like org Settings and Profiles, apply to an entire org and
not to any one package. They therefore need to be managed using the metadata deploy
and retrieve commands. The main reason certain types of metadata cannot be included
in packages is that it could lead to situations where multiple packages have conflicting
configuration, with no way to discern which should take precedence.

Packages cannot include Setting metadata. But you can specify the Settings that
are required in the target org by specifying a definitionFile for that package. The
definitionFile is a scratch org definition file that specifies features and settings that
should be present in an org. This file is used in the background during the package
version creation process. It also allows you to explicitly state the environment
dependencies for every package rather than just implicitly depending on certain features
or settings. This explicit definition makes it very clear how orgs must be configured
before receiving this package.

Grouping metadata into folders allows you to logically organize your metadata,
which is a capability that was sorely lacking before DX. Depending on the needs of your
project, you can store multiple packages in one repository, although in most cases it will
be easier to automate your workflow if each package is in its own repository. The source
“synchronization” capability of scratch orgs means that developers can easily sync
changes from the org’s Setup UI to their local machines without having to be experts in
deciphering the different types of metadata. Once downloaded, that metadata can be
viewed, edited, and tracked in version control in the developer’s IDE.

Tracking changes using version control allows developers to easily merge their work
with others on their team, so that scratch orgs can be independent of one another but
also easily synchronized with recent changes from others.

Building packages ensures that metadata is guaranteed to be identical across orgs,
and means that deployment errors can be resolved during the package publishing
process as opposed to recurring every time the same metadata is deployed to different
environments.

Managing org-level metadata (along with which version of different packages is
installed) in a central org-level repository allows central control and visibility of org-
level configuration and differences. Org configuration can be identical across orgs where
appropriate, and can also vary if needed.

176

CHAPTER6 ENVIRONMENT MANAGEMENT

Creating Scratch Orgs

Scratch orgs are created by sending an org creation request to a Dev Hub. The creation
request must reference a scratch org definition file, which determines the initial
characteristics of the org. Creation requests are typically made using the Salesforce CLI,
although Salesforce’s VS Code extension and an increasing number of third-party tools
provide wrappers around that process.

Since the purpose of scratch orgs is to build new functionality destined for a
production org, you need to use the scratch org definition file (such as shown in
Listing 6-1) to match the characteristics of the target org. Applications always depend
on certain underlying functionality in their Salesforce org; the scratch org definition
file makes those dependencies explicit. Those developing managed packages will likely
need to test using multiple scratch org definition files to simulate a variety of different
installation orgs. Those developing for a particular business may only need a single
scratch org definition file, although if that business has multiple production orgs, or is
experimenting with enabling certain features, they too may need multiple scratch org
definition files. Don’t worry, they’re short and easy to create.

Listing 6-1. Sample scratch org definition file

{

"orgName": "Acme",

"edition": "Enterprise",
"features": ["Communities", "ServiceCloud", "Chatbot"],
"settings": {

"orgPreferenceSettings": {
"networksEnabled": true,
"s1DesktopEnabled": true,
"s1EncryptedStoragePref2": false

})

"omniChannelSettings": {
"enableOmniChannel”: true

b

177

CHAPTER6 ENVIRONMENT MANAGEMENT

"caseSettings": {
"systemUserEmail": "support@acme.com"

There are a number of optional configurations in a scratch org definition file, such
as the orgName. But the most important configurations to understand are edition,
features, and settings. There are also two other significant configuration options that
as of Spring 2019 are still in pilot: sourceOrg and snapshot.

The edition option corresponds to the Salesforce edition, explained earlier in the
section “Different Types of Orgs,” and simply allows the user to select “Developer,”
“Enterprise,” “Group,” or “Professional.” Unlimited edition orgs are just Enterprise
edition orgs with higher limits. Match the edition to your target org. For example,
Developer edition orgs have many features enabled that would otherwise only be
available as paid add-ons. If you build a feature based on Work.com capabilities in a
Developer Edition org, don’t expect that to work in an Enterprise org that does not have
Work.com installed.

The features option generally corresponds to paid features that are not available
in every org, whereas the settings option corresponds to org configuration that is
available for free, but may need to be enabled in an org. For example, the SaleshWave
feature can’t just be turned on in any Salesforce org ... that’s a paid capability that would
normally require your organization to have purchased Einstein Analytics. Fortunately for
developers, you can create a scratch org that has Sales Wave enabled, so you can build
apps on top of those capabilities. As an aside, there is often a disconnect between the
backend/developer names for things in Salesforce and their current marketing names.
Sales Wave is now called “Einstein Analytics for Sales Cloud Einstein,” but the older
name SalesWave remains on the backend to ensure that developer-built integrations
don’t break.

The settings configuration allows you to specify any setting that is available in the
Metadata API (see https://developer.salesforce.com/docs/atlas.en-us.api meta.
meta/api_meta/meta_settings.htm). These are configuration options that can be
specified through the setup UI.

When you are initially migrating from org-based development to source-based
development, expect to spend some time adjusting the features and settings in your
scratch org definition file until you can get your metadata deploying successfully to your

178

https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/meta_settings.htm
https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/meta_settings.htm

CHAPTER6 ENVIRONMENT MANAGEMENT

new scratch org. For example, I spent several hours trying to diagnose why I was getting
Variable does not exist: Suffix errors when trying to push metadata to a scratch
org. Eventually, I found that there is a nameSettings metadata item that allowed me to
specify enableNameSuffix.

Although this kind of debugging can be tedious, for those familiar with Salesforce
release management, this will feel familiar. Identifying missing dependencies or
differences in org configuration is one of the most common challenges in Salesforce
release management. The massive change that Salesforce DX brings, however, is that
instead of having to repeatedly diagnose and resolve obscure deployment errors every
time you move metadata to a new org, those errors can be resolved up front while
defining your scratch org configuration and getting your packages to publish. Once
those dependencies are made explicit, it is straightforward to confirm that the necessary
features and settings are in place before attempting to install a package.

The sourceOrg and snapshot configuration options relate to two features that are
still in Pilot as of this writing: Org Shape and Scratch Org Snapshots. Although there is
an enormous amount of configuration that can be defined through features and settings,
there are some kinds of configuration like org-wide email addresses that have lingered
for many years without an easy way to automate their setup. Gaps in the Metadata API
mean that in some cases a scratch org can’t be completely defined from source and that
manual steps are required to complete setup.

Salesforce has responded to that gap in several ways. First, they’ve now put in place
an automated process to ensure that any new features are fully covered by the Metadata
API. The Metadata Coverage Report (https://developer.salesforce.com/docs/
metadata-coverage/) is dynamically generated from that automated process. Second,
they continue to work with the engineering teams responsible for different parts of
the platform to help them ensure that their configuration can be controlled using the
Metadata API. Finally, to bypass those gaps, Org Shape and Scratch Org Snapshots allow
scratch orgs to be created based on templates, instead of being based on an Edition.

Org Shape and Scratch Org Snapshots

Certain features of a production org are not yet available in scratch org definition files.
Similarly, for some production orgs, Salesforce may have approved increased limits
(number of custom objects, lines of Apex code, etc.) compared to what is standard for

a particular edition. And there are also many settings that can’t be represented in the
Metadata API and thus are not supported in scratch org definition files. Thus it may not

179

https://developer.salesforce.com/docs/metadata-coverage/
https://developer.salesforce.com/docs/metadata-coverage/

CHAPTER6 ENVIRONMENT MANAGEMENT

be possible to replicate some characteristics of production orgs using just scratch org
definition files.

Org Shape creates a template based on a particular production org that can be used
to create a scratch org. The org shape mimics the features, limits, and settings of your
production org without the extraneous data and metadata. This means that org shape
does not contain data or metadata, but is otherwise identical to the characteristics of
a production org. This allows scratch orgs to be created with features or settings that
cannot be represented in scratch org definition files. When creating a scratch org based
on org shape, a reference to the shape ID is used in place of specifying an edition in the
scratch org definition file. Note that org shape is not automatically updated when the
production org’s settings are updated; you'll need to recreate the shape.

By contrast, Scratch Org Snapshots create templates based on the configuration of
a particular scratch org. You first create a scratch org, then manually adjust its settings,
then capture a snapshot which you can then use to create other scratch orgs. Just like
with org shape, when creating a scratch org based on a snapshot, a reference to the
snapshot is used in place of specifying an edition in the scratch org definition file.

Scratch org snapshots work similar to org shape, with some very nice additional
characteristics. First of all, you can create a scratch org based on org shape and then
capture a snapshot of that! This allows you to begin by capturing the characteristics
of your production (target) org and then modify those as needed and use that as the
foundation for your development and testing environments. Further, you can also install
managed packages and other metadata in the scratch org, add data for testing and
configuration, and capture a snapshot that includes all of that customization.

The installation of dependent packages is one of the most time-consuming aspects
of scratch org initialization. Large managed packages such as Vlocity can take up to 30
minutes to install, making scratch org setup time-consuming and burdensome. The
forthcoming Scratch Org Snapshots feature will help address this issue. A scratch org
can be created and configured, and have managed packages and other metadata loaded
into it. You can then take a snapshot of that org and use that snapshot as the template
for creating new scratch orgs. Scratch orgs created in this fashion have the managed
packages in place, thus greatly speeding the setup process.

Table 6-1 summarizes which aspects of an org are (and are not) carried over to
different representations of an org.

180

ENVIRONMENT MANAGEMENT

CHAPTER 6

Vs elep |in4
Vs / E]Ep [ellied
/ /S / / elepelsiy
Vs / Va , sobeyoed pabeuepy
|dV Elepelajy
/S / / Ve , ay uijou sbuimas
|dV Elepelajy
/ /S / /S v / 8y} g pauoddns sbumes
[elHed / / / / / sapluano0 ywil 610
/ / / / Va Vs $a.njea
/ /S / / / Vs uonip3
sofeyord
/ / 10J SISB(Q 8] 8q ue)
sfliQ yojelos
/ / Ve 10J SISB(Q 8] 8q ue)
3|14 uopuyaqg adeys joysdeug Adog xoqpues Adon xogpues Adony
610 yoajeios 610 yoaje1os 610 yoajeios Jadojanaq eled xoqpues [in4 10adsy 61Q

paipndod a.1v 810 ayj fo sjoadsp yorym sauIULIdIIP PAIVAILI S1 S0 UD MOE] *[-9 QD

181

CHAPTER6 ENVIRONMENT MANAGEMENT

Although org shape and snapshots are extremely useful, they are not a substitute
for capturing and deploying configuration from version control. To the degree possible,
the settings and packages in a snapshot should be specified in your configuration files,
and you should automate the build process for your snapshot. Thus you can use the
snapshot to speed up scratch org creation while still having confidence that you know
the characteristics of that snapshot and how they evolve over time.

Using either org shape or snapshots makes the underlying configuration opaque,
in that you are not explicitly stating the features and settings that a package requires.
But when defining packages and orgs based on these templates, you can also explicitly
specify features and settings that you require. This allows you to use the org template
to address gaps in the Metadata API while still being as explicit as possible about the
required org configuration. Tracking every aspect of org configuration in version control
provides traceability and makes it easy to move those packages to other orgs in the future.

Scratch org snapshots are extremely powerful. But you should be careful about what
you include and do not include in the snapshot itself. Your snapshot should contain
only the underlying dependencies that your project is building upon, not any of the
metadata that your team may need to update. For example, they can and should contain
third-party managed packages and metadata that is common to other teams and not
under active development. The idea is to include all the foundations for your team’s own
customizations, but not to include the actual metadata for your project. Instead, push
that metadata from version control to the scratch org you create from the snapshot. That
ensures that if you need to delete or modify any of that metadata, your version control
system remains the source of truth.

Initializing Scratch Orgs

When a scratch org is first created, it has an edition, features, settings, and one
dynamically created admin user. To proceed with developing on scratch orgs, there are
several other steps that are required. In most cases, those setup steps are

1. Install dependent packages

2. Push metadata

3. Create additional user accounts
4. Load sample or testing data

5. Run additional setup scripts

182

CHAPTER6 ENVIRONMENT MANAGEMENT

Install Dependent Packages

Whereas the scratch org definition file defines the scratch org’s characteristics,
Salesforce DX projects also contain an sfdx-project. json file that defines your package
configuration. Listing 6-2 shows an example of this file. Salesforce DX project metadata
is grouped into folders called “packages” based on the expectation that this metadata
will be built into individual packages, versioned and installed in target orgs.

The most common initial step for initializing a scratch org is to install other package
dependencies. You may be making use of functionality tied to the Marketing Cloud
Connector, in which case you'll need to install the latest version of that managed
package. The sfdx-project.json file allows each package to define other packages on
which they depend. These package dependencies are specified using an alias, with the
alias defined in one place in the file. For external package dependencies, you specify the
alias using the ID of a particular package version. If one package in your project depends
on other packages in the same project, those dependencies should also be specified, but
in this case they can reference the package by name and specify a versionNumber for that

package.

Listing 6-2. Sample sfdx-project.json configuration file

{

"namespace": "",

"sfdcLoginUrl": "https://login.salesforce.com",

"sourceApiVersion": "43.0",

"packageDirectories": [

{

"path": "util",
"default": true,
"package": "Expense Manager - Util",
"versionName": "Spring '18",
"versionDescription”: "Welcome to Spring 2018 Release of Expense
Manager Util Package",
"versionNumber": "4.7.0.NEXT",
"definitionFile": "config/scratch-org-def.json"

b

183

CHAPTER6 ENVIRONMENT MANAGEMENT

"path": "exp-core",
"default": false,
"package": "Expense Manager",
"versionName": "v 3.2",
"versionDescription": "Spring 2018 Release",
"versionNumber": "3.2.0.NEXT",
"definitionFile": "config/scratch-org-def.json",
"dependencies": [
{
"package": "Expense Manager - Util",
"versionNumber": "4.7.0.LATEST"
})
{

"package" : "External Apex Library - 1.0.0.4"

1,

"packageAliases": {
"Expense Manager - Util": "OHoB00000004CFpKAM",
"External Apex Library - 1.0.0.4": "04tBOO0O0000IB1EIAW",
"Expense Manager": "OHoB0O0000004CFuKAM"}

Although this is a highly requested feature, as of this writing, Salesforce does not
automatically install dependent packages for you as part of scratch org setup. You can
write scripts to automate the scratch org setup process or use third-party tools such as
Appirio DX, the Texei plugin,® or the Rootstock dependency utility’ to manage this.

As mentioned previously, to speed the scratch org creation process, you can use a
scratch org snapshot that has these managed packages already installed.

Shttps://github.com/texei/texei-sfdx-plugin
“www.npmjs.com/package/rstk-sfdx-package-utils

184

https://github.com/texei/texei-sfdx-plugin
www.npmjs.com/package/rstk-sfdx-package-utils

CHAPTER6 ENVIRONMENT MANAGEMENT

Push Metadata

After installing packages, your typical next step will be to push the metadata for your
packages to the scratch org. Your local metadata typically depends on other packages,
whereas user permissions and data depend on your metadata; thus the order of these
stages is important.

The Salesforce DX command for pushing your source metadata to a scratch org is
sfdx force:source:push. The command allows you to specify which scratch org you
want to push to, but does not allow you to limit the metadata that you are pushing.

Pushing metadata and installing dependent packages both take time. If you're
dealing with a small org, the process may only take a few minutes. But as your org’s
complexity grows, the initial setup time for a scratch org will grow as well. If you find
that your scratch org creation is taking more than 10 minutes, you might consider
mechanisms to initialize your scratch org with only the subset of functionality relevant to
your current work. The larger your team and more complex your org, the more likely you
are to need a selective process for initializing these orgs.

The simplest method for narrowing the scope of metadata in a scratch org is to
divide your codebase into several repositories. If you have two relatively independent
teams developing functionality for your org (e.g., sales cloud vs. service cloud), you
might have three code repositories, one for each team, and one for shared functionality.
The repository governing shared functionality can be built as a package that is then
installed as an external dependency for the two team-specific repositories. Each team
repository otherwise stands alone, allowing the creation of a scratch org with just the
functionality needed for that team. Even when code is divided into multiple repositories,
you can easily work across multiple folders by adding them to a single workspace in your
IDE. Visual Studio Code and most other IDEs allow multiproject workspaces, although
not all extensions fully support this.

It’s worth noting that if you want to limit the metadata that is pushed to a scratch org
or ignore non-metadata files present in the same folders, you can use a . forceignore
file like that shown in Listing 6-3. The . forceignore file has a syntax similar to the
.gitignore file used with Git. Metadata files or folders listed in a . forceignore file will
not be pushed or pulled from that scratch org.

185

CHAPTER6 ENVIRONMENT MANAGEMENT

Listing 6-3. Sample . forceignore file

Specify a relative path to a directory from the project root
helloWorld/main/default/classes

Specify a wildcard directory - any directory named "classes" is
excluded
classes

Specify file extensions
.cls
.pdf

Specify a specific file
helloWorld/main/default/HelloWorld.cls

Create Additional User Accounts

Pushing metadata to the scratch org establishes the basic capabilities of that org. But
Salesforce’s flexible permission system means that different users can have substantially
different views and access, even in the same org. Proper testing requires that you
impersonate the user permissions of the users you are developing for, and to do this you
may want to create additional user accounts in your scratch org.

The Salesforce CLI provides the sfdx force:user:create command for creating
users. When running this command, you can add a --setalias parameter to create a
short name that can be used to refer to that user in subsequent commands.

Similar to the previously mentioned SFDX configuration files, Salesforce also makes
available a user definition file such as the one shown in Listing 6-4 that can be used
to create users that fit standard personas. You specify this using a --definitionfile

parameter.

Listing 6-4. Sample user definition file

{

"Username": "tester1@sfdx.org",
"LastName": "Hobbs",

"Email": "testeri@sfdx.org",
"Alias": "tester1",
"TimeZoneSidKey": "America/Denver",

186

CHAPTER6 ENVIRONMENT MANAGEMENT

"LocaleSidKey": "en_US",
"EmailEncodingKey": "UTF-8",
"LanguagelocaleKey": "en US",
"profileName": "Standard Platform User",
"permsets": ["Dreamhouse", "Cloudhouse"],
"generatePassword": true

}

You will typically want to omit the “Username” property and allow Salesforce to
autogenerate this, since it needs to be unique across all Salesforce orgs. The other
properties in this file, especially the profileName and permsets, allow you to specify
the permissions assigned to this user, thus defining their level of access and how the org
behaves for them.

As you develop features in service of your users, spend time refining these user
definition files, and make them available to your developers and testers so that they can
easily view the org from the point of view of these sample users.

Load Sample or Testing Data

One major difference between scratch orgs and sandboxes is that scratch orgs contain
no metadata or data from a production org. Scratch org definition files have a property
hasSampleData that can be used to populate the scratch org with data similar to that in
developer edition orgs. But you will want to curate appropriate sets of sample data for
your organization.

The Salesforce CLI provides several data-related commands for exporting and
importing modest amounts of data for development and testing.

sfdx force:data:tree commands should be your first approach. These commands
handle the challenge of creating related records in a single step, without the need to
explicitly specify external IDs. If you wanted to manually load some related Accounts,
Contacts, and Cases, you would first need to create the Accounts, get their IDs, and then
create the Contacts, specifying their Account IDs, and then create the Cases, specifying
their Contact IDs. sfdx force:data:tree allows you to export and import a JSON file
that expresses hierarchical data without using IDs. The data tree API processes these files
and handles the process for you.

To use this command, generate appropriate testing data in an org, and then run the
sfdx force:data:tree:export command, specifying a SOQL query to export the data.
By using subqueries like sfdx force:data:tree:export -p -q "SELECT Id, Name,

187

CHAPTER6 ENVIRONMENT MANAGEMENT

(SELECT Id, LastName, FirstName FROM Contacts) FROM Account",you can export
data, including multiple levels of relationships. The result of this query is one JSON file
for each object and another JSON file to specify the relationship between each object.
Although IDs are specified in the query, they are ignored when creating this data tree so
that the records can be inserted into any org.

Once you've exported that data, you can then import it using the sfdx
force:data:tree:import command, which takes the generated files as input and inserts
corresponding records, establishing relationships between them.

As your org evolves, plan to manage this sample data alongside the code, regularly
updating it to capture the diversity of objects and data you are working with. This will
never substitute for testing in a staging sandbox against a full volume of production-like
data, but it allows you to provide realistic data to your developers and testers and to add
special cases as they are discovered.

The sfdx force:data:tree commands are extremely convenient but are limited to
importing 200 records at a time. If you need to import larger volumes of data, you can
use commands such as sfdx force:data:bulk which is a complete wrapper around the
Bulk API. The Bulk API is the mechanism used for importing or exporting large volumes
of data (thousands or millions of records).

The Salesforce CLI provides an additional set of commands sfdx
force:data:record for modifying individual records. If appropriate, those can be added
to setup scripts to fine-tune data as needed.

One important use of data loading is to populate configuration data that is not stored
in custom metadata. See “Configuration Data Management” in Chapter 4: Developing
on Salesforce.

Run Additional Setup Scripts

Even all of the preceding steps are sometimes not sufficient to complete the org setup
process. As the icing on the cake, you can run additional scripts to complete the setup.
The most common kinds of scripts are anonymous Apex and Selenium UI automation
scripts.

Anonymous Apex are blocks of Apex code that are executed in an org but not stored
in that org. They can be run from the developer console, but can also be run using
the Salesforce CLI's sfdx force:apex:execute command. Any kind of setup scripts
should be stored in your code repository along with your code. You can then use that
command by specifying the Apex code file and the user to execute as. Anonymous Apex

188

CHAPTER6 ENVIRONMENT MANAGEMENT

is particularly useful if you want to query a group of records and do some simple batch
processing on them.

Selenium is the most common type of Ul automation, although there are other types
such as Tosca and Provar. Selenium is most commonly used for Ul testing, but can also
be used to script activities that can only be done through the UI. Org shape and scratch
org snapshots may be able to address limitations in the scratch org setup process by
capturing settings that are not supported by the Metadata API and allowing you to create
scratch orgs based on manually configured orgs. But until those are generally available,
you can use Selenium automation for this purpose.

Selenium scripts use the web browser to simulate user actions such as logging
into an org, navigating to a particular page, and changing a setting. They require care
to craft in such a way that they continue to work even as Salesforce rolls out updates.

Ul automation is notoriously brittle, so you will do well to get help from someone who

is experienced with building resilient Selenium scripts for Salesforce testing. As with
anonymous Apex, these scripts should be stored in your code repository to ensure they
are versioned and can be updated along with your source code and configuration as your

org evolves.

Developing on Scratch Orgs

Scratch orgs provide two main characteristics that make them ideal for development.
First, because they can be created entirely from configuration stored in version control,
they behave and can be recreated in a predictable way. In other words, they are always
in a “kmown” state, unlike long-lived sandboxes which might be modified by other
users in ways that have unpredictable impact. Second, they allow for simple “source
synchronization” that can synchronize the org configuration with your local file system
(and thus with version control) in a single step. Source synchronization allows the state
of the application to evolve in a controlled way that is tracked in version control.

For developers who are accustomed to working in long-lived developer sandboxes,
this means that their development workflow has at least one additional step: they
need to periodically recreate a development scratch org. Whether developers create
development scratch orgs many times per day, once per week, or once per month (the
maximum lifespan of a scratch org) depends on several factors, outlined here.

First, do you need different types of scratch orgs to work on different applications?
If your org is complex enough to require different setup paths for different applications,

189

CHAPTER6 ENVIRONMENT MANAGEMENT

then developers may need to create multiple scratch orgs to work on those different
applications. They may find themselves recreating these orgs as they move between
different work items.

Second, how long does your scratch org take to create, and have you completely
automated the setup? Until capabilities such as scratch org snapshots are generally
available, teams may find that it takes tens of minutes or up to an hour or more for
automated package installations to complete. If on top of that there are manual
configuration steps that have to be performed, this will add to the setup time and make
recreating orgs regularly an inefficient process. This challenge should push teams to look
at additional automation such as Selenium UI automation, but may also decrease the
frequency that orgs are created.

Finally, if developers are using a feature branch workflow, where features are
developed in separate version control branches which each require review and approval,
this leads to the need to create multiple independent scratch orgs, one per branch, to
ensure that each feature branch is truly distinct from each other. For teams that are
just getting started with using version control, and need to ensure rigorous testing and
approval of each feature in isolation, a feature branch workflow can be helpful. However
itis not as efficient as trunk-based development (continuous integration) and tends to
limit refactoring and collaboration and lead to increased merge conflicts.

Once the developer creates the scratch org, they can then make code changes on
their local machine and run an sfdx force:source:push to push them to the scratch
org. As they make changes in the org itself, they can run sfdx force:source:pull to
pull those configuration changes into their local codebase. Salesforce’s extensions for VS
Code recently introduced a compile on save functionality that will automatically push
local source to the scratch org when files are updated. This is particularly helpful when
pulling or merging changes from shared version control, since this triggers a push when
the local source is updated. A variation on this is the capability included in Appirio DX
which watches the scratch org for changes and periodically runs synchronization.

Scratch orgs are generally intended to be worked on by one developer at a time. But
there are some cases where collaborating in a scratch org can be useful. If the click-based
developers on your team don’t have an easy way to create scratch orgs and capture
changes in version control, they may need to partner with code-based developers who
can provision such an environment for them and capture their changes in version
control. This can be a good way to force collaboration within the team and for these two
developers to work together using their complementary skillset.

190

CHAPTER6 ENVIRONMENT MANAGEMENT

Development in a scratch org is otherwise identical to development in any other
Salesforce environment. Other sections of this book such as Part 2: Salesforce Dev provide
an overview of how to approach development with the whole dev lifecycle in mind.

Scratch Orgs As Review Apps

In addition to their use as development environments, scratch orgs are well suited to be
used as review apps. Review apps are environments created dynamically from version
control that provide an isolated environment to review features that may still be under
development. The concept was popularized by Heroku.

A review app is simply a scratch org that is created for testing or evaluation purposes
and is not intended for development. As such, they are perfect for performing quality
analysis, functional review, or demos.

An important characteristic of a review app is that they should be self-service.

A tester, reviewer, or person giving a demo should be able to create a review app for
themselves with minimal difficulty and without relying on developers for assistance.

If you are not using a commercial tool, you can build such a capability using a manual
job in your CI system that runs the same setup script that your developers use to create
their development environment. After initializing the org, generate a one-click login
URL by running sfdx force:org:open --urlonly.Reviewers can execute that CIjob to
initialize an org, which they can open directly using that login URL.

Cloning and Refreshing Sandbhoxes

For most of Salesforce’s history, there has been only one path for creating or “refreshing”
a development or testing environment: creating a sandbox that is a copy of the
production environment. This greatly limited the possible ways that sandboxes could be
managed.

Fortunately, with the arrival of Salesforce DX, there are now a diversity of org
creation and refresh options. For example, it’s recently become possible to clone one
sandbox from another, and Lightning Dev Pro sandboxes will make it possible to create
and destroy sandboxes dynamically as needed. Having discussed scratch orgs, we can
now look at the options for sandboxes and how they can be used beneficially.

191

CHAPTER6 ENVIRONMENT MANAGEMENT

Sandboxes are managed from the Sandboxes section in the Setup Ul in your
production org. That screen shows a list of your existing sandboxes, along with options
to create, clone, refresh, and delete sandboxes.

Creating, Cloning, or Refreshing Sandbhoxes

In essence, creating, cloning, and refreshing sandboxes all do the same thing. All of these
actions replace the sandbox with a new copy based on a source org. If a new sandbox is
being created from production, this is called “creating a sandbox.” If a new sandbox is
being created from another sandbox, this is called “cloning a sandbox.” And if an existing
sandbox is being refreshed, either from production or from another sandbox, this is
called “refreshing the sandbox.”

Refreshing a sandbox is equivalent to destroying that sandbox and recreating it. The
only thing that is preserved during a sandbox refresh is the name of that sandbox and its
type (Developer, etc.).

In all of these cases, the features, limits, settings, and metadata of the source org are
recreated in the target org. To what extent data is also copied depends on the situation.

Cloning or refreshing a sandbox from another sandbox requires that both sandboxes
be of the same type, and a complete copy of the source sandbox’s data is made into the
target sandbox. If you are creating or refreshing a sandbox from production, data may or
may not be copied, depending on the type of your target sandbox.

Full copy sandboxes receive a complete copy of the production org’s data. Creating,
cloning, or refreshing full copy sandboxes can take a very long time (a day or two) if the
source org contains large volumes of data. Salesforce also limits these updates so that the
org can only be refreshed once every 29 days.

Partial copy sandboxes created from production receive a subset of production data,
based on a filter called a sandbox template. The sandbox template is used to determine
which objects’ data will be copied and how many records. This allows for a faster
creation and refresh process, and partial copy sandboxes can be refreshed as often as
once every 5 days.

Developer and Developer Pro sandboxes created from production do not receive
any data. Their creation is generally quite fast, and they can be refreshed as often as
once per day.

Because the sandbox refresh process is a destructive process, Salesforce requires that
newly refreshed orgs be activated. In reality, the newly refreshed org is a different org

192

CHAPTER6 ENVIRONMENT MANAGEMENT

than the sandbox being refreshed. Activating simply deletes the existing sandbox and
redirects the sandbox name to the newly created org. Activation thus gives the ability for
teams to continue working in an existing sandbox until the refreshed version is available,
so that they can save their work and then resume working in the newly activated org
immediately.

Salesforce provides the ability to perform setup actions by triggering the execution
of an Apex class after a sandbox is created or refreshed. This setup script can perform a
variety of actions. Common scenarios include deleting or obfuscating sensitive data in
the org, creating or updating users, and so on.

There are a number of AppExchange products such as Odaseva and OwnBackup that
provide helpful capabilities such as copying or sanitizing large volumes of data when
creating testing environments.

Planning Org Refreshes

Understanding the org refresh process enables you to make an appropriate plan to
support your development and testing needs.

The function of org refreshes is to bring metadata and data into sync between
environments. Historically, org refreshes have been one of the main ways that teams
have attempted to create consistent metadata between orgs. But configuration
drift (metadata differences) between orgs is a symptom of lacking governance and
continuous delivery. So you should use the mechanisms described in this book to ensure
metadata stays in sync and rely on sandbox refreshes mostly for syncing data.

Making small, frequent deployments reduces the risk of any single deployment
into production. Building your metadata into unlocked packages reduces differences
between orgs and simplifies the deployment process. Locking everybody out from
changing metadata in sandboxes and production ensures that orgs behave consistently
and that changes are tracked. These are the mechanisms you should rely on to ensure
that metadata is consistent. Note that these methods lead to changes being propagated
from development through testing to production. The old pattern of refreshing sandbox
metadata from production implies a lack of control over the deployment process, with
changes in production being back-propagated to development and testing environments
instead of the other way around.

193

CHAPTER6 ENVIRONMENT MANAGEMENT

But org refreshes still provide a clear and simple way to update testing environments
with production-like data. Your final UAT or staging environment should closely
resemble your production environment. One reason for this is to ensure that
functionality is performant in the face of large data volumes. Many Salesforce solutions
have been sent back to developers after testing in a full sandbox showed unacceptably
poor performance. Another reason is to capture the full diversity of data, especially
data used for configuration. Complex CPQ applications can behave entirely differently
depending on how they’re configured. Subject matter experts need to be able to validate
that your solutions function properly with the data they’ll have in production.

If your org relies heavily on data for configuration, and you don’t have some other
mechanism to synchronize that configuration data, plan on refreshing your full and
partial sandboxes relatively frequently. But bear in mind that if these orgs are kept in
sync with external systems, you may have to update your org to point to those external
systems after refreshing, and you may also need to resynchronize data with those
systems or update records’ external IDs to match the external systems. Challenges like
this can make org refreshes onerous. Continuously seek methods to automate the post-
refresh process, and balance the benefits of freshly synchronized data with the cost of
performing refreshes.

Planning and Communicating Changes to Org Structure

Having determined your environment strategy, how you will use scratch orgs and how
you will maintain and refresh your sandboxes, you need to ensure that anyone who
works on those environments is aware of changes that might impact them.

You should establish a clear communication channel with all of the people impacted
by changes to particular orgs. In large enterprises, you might identify subsets of
stakeholders who work on particular environments. Establishing a shared calendar and
repeatedly directing people’s attention to it can help build awareness about scheduled
changes.

Because refreshes and other org changes can interfere with people’s work or even
cause them to lose work, you should approach such changes carefully, emphasizing
clear and regular communication in advance.

If you are unsure who is using a particular org and are planning to delete or refresh it,
you can identify active users by using the Login History page in the Setup UI.

194

CHAPTER6 ENVIRONMENT MANAGEMENT

Working with Lightning Dev Pro Sandbhoxes

Salesforce has recently announced a new type of sandbox called Lightning Dev Pro
sandboxes (LDPS). These have the same characteristics as normal Dev Pro sandboxes

(1 GB of storage) but are designed to be created and destroyed using Salesforce CLI or
API commandes, just like scratch orgs. The enterprises that would benefit most from
scratch orgs have also had the most difficulty in adopting them because of the challenges
of untangling metadata dependencies into coherent packages. Thus most organizations
remain focused on building with sandboxes.

Lightning Dev Pro sandboxes enable developers to create a pristine sandbox on
demand using the CLI, modify it as needed, and capture their changes for deployment to
target orgs. Soon it will also be possible to perform source synchronization for these orgs
to make it simple to pull and push changes from these orgs. LDPS address the need for
individual developers to have their own development environments that are up to date.
The ease of creating and destroying these also helps ensure that developers can regularly
restart their work in a clean environment that does not contain any “cruft” left over from
previous development.

The Salesforce Upgrade Cycle

Salesforce performs a major version update three times a year. Their biggest update

in any given year is their Winter release, which happens in the Autumn, but is named
after the upcoming year (e.g., Winter '20 was released in the fall of 2019). This release

is timed to coincide with Salesforce’s mega-conference Dreamforce, the largest tech
conference in the world, and many features are kept secret until they are revealed during
Dreamforce keynote speeches, amid much fanfare.

Early in the new year, the Spring release is launched, followed by the Summer release
sometime around June. In between these major version updates, minor patches are
released to address bugs, performance, and stability issues. The schedule varies each
year, but is posted in advance at https://trust.salesforce.com.

Each major release is accompanied by a new major version number in the API (e.g.,
Winter '20 is API v47.0, and Spring 20 is API v48.0). The API versions apply to REST and
SOAP APIs, Apex classes, and documentation, among other things. Versioning their
APIs allows Salesforce to change functionality between API versions while not breaking
existing integrations and customizations.

195

https://trust.salesforce.com

CHAPTER6 ENVIRONMENT MANAGEMENT

These major releases are generally seamless and accompanied by a short 5-minute
release outage. Most Salesforce users simply awaken to a new logo in the upper left of
their org and notice few other changes aside from some new features.

Salesforce emphasizes that trust is their primary corporate value, and they go to
great lengths to ensure that these major releases are indeed seamless and do not cause
disruption for their customers. One aspect of their preparation for releases is an early
access program in which the upcoming version of Salesforce is made available in some
environments a month or so before it is released in production.

Getting Early Access to a Release

Prior to each seasonal release, Salesforce offers two methods for customers and partners
to get early access to the upcoming release: prereleases and previews. Four to six weeks
before a release, Salesforce makes it possible to sign up for prerelease Developer Edition
orgs. These orgs provide the earliest access to upcoming functionality, although if issues
are discovered, it’s possible that features introduced in a prerelease will not be included
in the eventual release; it’s during this prerelease time that Salesforce runs their “Apex
Hammer” regression tests to ensure they didn’t break customers’ functionality. Then,
typically 2-3 weeks later, Salesforce opens up a sandbox preview window during which
it's possible to create sandboxes and scratch orgs that use the impending version.
Salesforce hosts webinars and publishes an updated blog post prior to each release
which explains the details of the preview window for that release.

To get access to prerelease functionality, you can sign up to get a prerelease
developer edition org by going to www.salesforce.com/form/signup/prerelease-
spring19/ (changing the URL to match the next impending version). That sign-up form
is only available for a few weeks prior to each release, so you have to pounce if you want
to get one. The good news is that prerelease org remains available to you just like an
ordinary developer edition org, but is always upgraded to the next Salesforce edition
before regular developer edition orgs are (I still use a prerelease org created years ago as
my main org for learning and experimentation).

Preview sandbox instances require some understanding and planning from
Salesforce admins, so you should ensure you are clear on the process. If you are
managing your company’s sandboxes, I strongly encourage you to read and understand
the article called “Salesforce Sandbox Preview Instructions [for the ... Release]” to

196

http://www.salesforce.com/form/signup/prerelease-spring19/
http://www.salesforce.com/form/signup/prerelease-spring19/

CHAPTER6 ENVIRONMENT MANAGEMENT

understand the process fully.? In brief, every sandbox is on either a preview instance of
Salesforce or a nonpreview instance. The instance number of your sandbox determines
whether it’s a preview or nonpreview instance (e.g., CS21 is a preview instance, whereas
CS22 is a nonpreview instance). Preview instances get updated about a month before the
nonpreview instances.

As explained in the article mentioned earlier, the date on which you refresh your
sandbox determines whether the sandbox is on a preview instance or a nonpreview
instance, so the preview window will impact your sandbox refresh plans.

It's now possible to define whether scratch orgs created during the preview window are
on the preview release or the previous release. By default, scratch orgs are created using
the same release as the Dev Hub from which they’re created. You can add the property

», «

“release”: “Preview” to your scratch org definition file if you want the scratch org to be on
the preview release, or “release”: “Previous” if your Dev Hub has already been upgraded,
but you want to create a scratch org that’s on the previous release. These distinctions are
only temporary; once the preview window closes, all orgs are upgraded to the latest release.

As mentioned, one thing that Salesforce does behind the scenes during this prerelease
window is to run what'’s known as the Apex Hammer. Apex Hammer is a comprehensive
execution of all Apex unit tests across all customer instances to ensure that they behave
the same in the new version as they did in the previous version. One reason Salesforce
implemented the requirement for customer Apex code to have 75% test coverage was to
allow Salesforce themselves to perform regression testing on this code before seasonal
releases. If Salesforce detects an inconsistency between your unit tests’ output when run
on different versions, that triggers an investigation and remediation. Again, this happens
behind the scenes, but is a way of ensuring the reliability of the platform.

Deploying Between Environments That Are on Different
Releases

Preview instances are very useful for getting early access to Salesforce capabilities and
also to ensure that your customizations continue to work. You should take the preview
window as an opportunity to revisit some or all of your custom functionality to ensure
that it is still behaving as expected.

The latest version of this article is always listed at www.salesforce.com/blog/category/
seasonal-release.html

197

http://www.salesforce.com/blog/category/seasonal-release.html
http://www.salesforce.com/blog/category/seasonal-release.html

CHAPTER6 ENVIRONMENT MANAGEMENT

One challenge when working during the preview window is that it’s possible to
experience deployment errors if you attempt to deploy functionality from a preview
instance (which may have new types of metadata) to a nonpreview instance. The
Metadata API is versioned, so you can continue to retrieve metadata using the earlier
API version number, even if you're now on the new version. However, sometimes new
metadata changes can sneak in.

The most common issue I've seen is with new UserPermissions appearing in profiles.
When you download a profile from a prerelease or preview instance, it may contain
UserPermissions that don’t exist in the current version. These will cause errors when
deployed to an older version and so have to be manually removed from the profile for
the deployment to succeed. As discussed in the section “Managing Org Differences” in
Chapter 9: Deploying, it can be very helpful to have an automated method to strip out
problematic tags arising from different org versions.

Sometimes a release will bring major changes to the metadata format. For example,
during the transition between v37.0 and v38.0, the field type for all picklists was renamed
valueSet, and the structure for managing picklists was changed in record types. Changes
like this can require changes across the whole codebase to match the new format.

Prior to Salesforce DX, projects generally stored the API version for their metadata
in the src/package.xml file for their project. That provided an explicit statement
of the Metadata API version used for that metadata. Although projects can still
specify a sourceApiVersion parameter for the project in their sfdx-project.json
files, the default behavior is to determine the API version dynamically. It remains
to be seen whether the Salesforce CLI handles this smoothly across every release,
but it’s at least now possible to quickly convert the entire codebase. Simply do an
sfdx force:source:push of metadata in an older format, and then do an sfdx
force:source:pull from a scratch org that’s on a newer version of Salesforce, and you
can expect to see the metadata format updated.

A Behind-the-Scenes Look at Orgs

One of the benefits of using Salesforce is that you don’t have to know anything about its
architecture; all you need to know is that it works and is sufficiently fast. But sometimes
it can be helpful to have a bit of insight into the underlying architecture. In addition

to impressing your coworkers, you can gain practical insights into topics like security,
backups, and large data management.

198

CHAPTER6 ENVIRONMENT MANAGEMENT

I'm not an expert on this, and some of this architecture may be subject to change.
Salesforce employs fleets of Site Reliability Engineers, sysadmins, database admins,
and so on who help make all of this magic happen. They also share some of their
insights and challenges publicly in Dreamforce sessions and on blogs like https://
engineering.salesforce.com/. Solook to those original sources for more information
if you're curious. As mentioned in Chapter 2: Salesforce, the architecture described here
applies only to Salesforce’s core products like Sales Cloud and the Lightning Platform.
The architecture for products like Heroku, Commerce Cloud, and MuleSoft will be
substantially or completely different. As the product grows, there are an increasing
number of additional aspects to this architecture, such as the Enterprise Messaging
Platform (EMP) that are not explained here.

To make Salesforce core available, the company maintains nine of their own
data centers, but also uses AWS to host their instances in some regions.® Salesforce
announced a plan last year to partner with Google to use Google Cloud infrastructure to
support Salesforce’s international expansion.'?

Within these data centers, Salesforce maintains over 100 “Pods” or instances known
by names like NA42 and AP28. Each of these pods represents a self-contained set of
resources to service a group of customers. Salesforce is a multitenant system which
means that all customers use the same underlying database and application servers,
but that data is segregated based on an Org ID to prevent the data or metadata for one
customer from being accessible to or affecting that of another customer. This kind of
multitenancy is at the heart of the cloud; from one point of view, “the cloud” is just
mainframes with user partitioning.

Each of these Pods has a backup instance that can be used as a failover in the event
that the main instance goes offline. There is even cross-data center data replication
in the event that an entire data center goes offline.!! Within each Pod there is a cluster
of application servers and a cluster of database servers. When you first log in to
Salesforce at https://login.salesforce.com, your request is routed to one of many
authentication servers. Salesforce validates your credentials and then based on your
username routes you to the appropriate Pod.

https://help.salesforce.com/articleView?id=000257307&language=en_US&type=1
Yhttps://cloud.google.com/salesforce/
"https://help.salesforce.com/articleView?id=000231130&type=1

199

https://engineering.salesforce.com/
https://engineering.salesforce.com/
https://login.salesforce.com
https://help.salesforce.com/articleView?id=000257307&language=en_US&type=1
https://cloud.google.com/salesforce/
https://help.salesforce.com/articleView?id=000231130&type=1

CHAPTER6 ENVIRONMENT MANAGEMENT

Your interactions with a Salesforce instance are interactions with the application
servers. These application servers provide standard functionality like record detail pages,
as well as API access and any custom functionality such as custom apps, Lightning,
Apex, or Visualforce pages you've created. To serve your data, these application servers
reach out to the database servers to get access to the data for your org.

Importantly, all of your org’s metadata including custom code is also stored in the
database, in tables for standard and custom metadata. When you upload Apex code, that
code is actually stored in the database to be executed as needed. Salesforce compiles
page requests on demand, using the standard and custom metadata such as page layout
definitions to structure the way that data is displayed in the output. There’s a remarkable
amount of custom processing that happens with each request to Salesforce, but they
have managed to keep page load time relatively fast. This flexible structure is what allows
admins to modify metadata and users to modify data simultaneously across thousands
of orgs without impacting other tenants on the system.

The Salesforce database uses a generic structure to store all of the various custom
fields and custom objects you create. They maintain one database table with records
for standard objects. But any custom fields or custom objects you create are actually
stored in a separate table. Records from all customers and all objects are stored together
in those tables. One field is a globally unique ID (GUID) for that record, one field
indicates the Org ID (the customer), and another field indicates which object the record
is for (a lookup to the metadata table mentioned earlier). There are standard fields for
CreatedBy, CreatedDate, SystemModStamp, LastModifiedBy, and LastModifiedDate,
and the remaining fields hold the data for all the fields in that record. One reason why
there are strict limits on how many custom fields you can have on an object in Salesforce
is that Salesforce has a finite number of fields in the underlying database table.

Each custom field you create consumes one of the available fields in that table, until
eventually there are none left.

There are historical reasons for this structure: originally Salesforce didn’t allow
custom fields or objects, and so when those were added, they needed a new table to
live in. Undoubtedly, there are good reasons why Salesforce has chosen to retain that
structure. Presumably, this allows them to optimize the database performance for
standard (known) objects while allowing for the table containing custom fields to favor
flexibility over performance.

The net result of this is that Salesforce performs a number of table joins when
querying data in your org. This leads to some of the behavior around query performance
and opens the door for Salesforce to offer optimizations like skinny tables—a dedicated

200

CHAPTER6 ENVIRONMENT MANAGEMENT

table that speeds queries on very large data volumes by prejoining standard and custom
fields. Salesforce maintains additional indexes for querying and searching this data.

The canonical description of this architecture can be found in this article by Steve
Bobrowski, which is kept up to date over time: https://developer.salesforce.com/
page/Multi Tenant Architecture.

Summary

It's important to understand the difference between Salesforce orgs and conventional
servers, as well as the different types of Salesforce org. We've looked at how to secure
and access orgs, as well as how to determine which environments are needed for your
project.

Scratch orgs can be created “from scratch,” but sandboxes are always cloned from an
existing org. Sandbox cloning has become more versatile, allowing for new development
patterns, and scratch org shape and snapshots promise to ease the scratch org creation
process as well.

One key benefit of using Salesforce is that orgs are upgraded for you automatically,
but it’s important for teams to be aware of the timing of these upgrades and the impact
on the development process.

Having understood Salesforce environments, the next chapter deals with the linear
progression of changes through development, testing, and production: the delivery
pipeline.

201

https://developer.salesforce.com/page/Multi_Tenant_Architecture
https://developer.salesforce.com/page/Multi_Tenant_Architecture

CHAPTER 7

The Delivery Pipeline

The delivery pipeline, or deployment pipeline, refers to the sequence of automated
processes that manage the build, test, and release process for your project. The term was
popularized by the book Continuous Delivery, which says:

A deployment pipeline is, in essence, an automated implementation of your
application’s build, deploy, test, and release process. ... Every change that is
made to an application’s configuration, source code, environment, or data,
triggers the creation of a new instance of the pipeline. ... The aim of the
deployment pipeline is threefold. First, it makes every part of the process
of building, deploying, testing, and releasing software visible to everybody
involved, aiding collaboration. Second, it improves feedback so that
problems are identified, and so resolved, as early in the process as possible.
Finally, it enables teams to deploy and release any version of their software
to any environment at will through a fully automated process.’

The function of the delivery pipeline is to facilitate the movement of features and
fixes from development environments, through a testing process, and to end users. Thus
the delivery pipeline connects the different types of Salesforce environments and is the
path through which innovation flows.

Salesforce development projects always have a development lifecycle, but they
do not necessarily go through a delivery pipeline. A delivery pipeline depends first of
all on the presence of version control. On the foundation of version control, you must
then have automated testing (to identify flaws and prevent them from being deployed)
and automated deployments (to move functionality in a reliable and traceable way).
This chapter discusses the basic foundations of version control and CI automation
that pertain to any technology, while the later chapters in this section go into detail on
testing, deployments, and releases on Salesforce.

Jez Humble and David Farley, Continuous Delivery (Pearson Education, 2011), 55.

203
© Andrew Davis 2019

A. Davis, Mastering Salesforce DevOps, https://doi.org/10.1007/978-1-4842-5473-8_7

CHAPTER 7 THE DELIVERY PIPELINE

Why You Need Version Control on Salesforce

At 6:45 pm PDT on Friday, May 16, 2019, Salesforce operations deployed a database
script that impacted every org that had ever had Pardot installed.? This script
inadvertently gave Modify All Data permissions to all users in those orgs, enabling every
Salesforce user to access (and potentially modify) any data in that org. Such a change
constitutes a security breach, and so out of an abundance of caution, Salesforce moved
to lock users out of the affected orgs. But Salesforce didn’t have an easy mechanism to
prevent access to only specific orgs, so they took the “nuclear option” of disabling access
to every org that shared a “Pod” (such as NA42) with an affected org. That left 60% of

US Salesforce orgs inaccessible. Not only could these orgs not be accessed directly, but
integrations that rely on them (including customer-facing web sites) were unable to
contact Salesforce.

After 15 hours of downtime, access to these orgs was finally reenabled. But on the
orgs which were directly impacted (those with Pardot installed), all non-admin users
had their permissions entirely removed. Only admins were given access, along with
instructions to restore the missing permissions.* Those instructions advised admins to
restore permissions from a recently refreshed sandbox, or to restore them manually if
they had no sandbox. But deploying profile permissions is notoriously challenging and
without care and precision can easily lead to overwriting other metadata.

Salesforce is a remarkably stable and reliable system. But some of the admins
affected by this outage will have struggled for days or weeks to restore their users’ access.
While no Salesforce user could have prevented the outage, the struggle to recover is
entirely preventable.

My colleagues at Appirio manage the release process for a large medical device
company. They had used version control and continuous delivery for the project from
the very beginning, and their work formed an early foundation for Appirio DX. When
access to their org was reestablished, they immediately began redeploying correct
permissions to all their orgs. Even in the “fog of war,” they were able to assess and repair
the permission changes in just over 2 hours. Had they known exactly which permissions
had been removed, they could have fixed things far more quickly. None of this would
have been possible without a robust delivery pipeline being in place.

*https://status.salesforce.com/incidents/3815

Shttps://success.salesforce.com/issues view?id=a1p3A000001SHD1QAO&title=s
ome-user-profiles-and-permission-sets-were-modified-by-salesforce

204

https://status.salesforce.com/incidents/3815
https://success.salesforce.com/issues_view?id=a1p3A000001SHDlQAO&title=some-user-profiles-and-permission-sets-were-modified-by-salesforce
https://success.salesforce.com/issues_view?id=a1p3A000001SHDlQAO&title=some-user-profiles-and-permission-sets-were-modified-by-salesforce

CHAPTER 7 THE DELIVERY PIPELINE

Version control provides an extremely reliable backup for such metadata. And having
areliable delivery pipeline that you can use to restore configuration will protect you from
extreme situations like this, as well as from a myriad of smaller problems.

Most of the problems that version control averts are not worthy of news headlines.
But there is simply no substitute for having visibility into the history of changes on an
org. And in large and small ways, that knowledge enables you to restore, diagnose, and
experiment with complete confidence.

Version Gontrol

Version control refers to a system for keeping track of different versions of a file and in its
modern usage generally refers to software used to track versions of text files like source
code. The most basic step that you and your teams can use to reduce risk while coding is
to use version control on every single project without exception. Using version control is
like keeping your money in the bank as opposed to under your bed. Banks protect your
money, track all the inflows and outflows, and make it available anywhere to you and to
those you authorize through ATMs and wire transfers. Similarly, version control means
you never have an excuse for losing code, and all changes are tracked. That code is also
accessible to you from any computer, and you can share it with those you authorize.

There are many types of version control technology, but in this text we’ll be
discussing Git almost exclusively. There are two reasons for this. First, I'm personally
more familiar with Git than with any other type of version control. Second, Git has
become overwhelmingly the most popular type of version control today.

It’s important to note that Salesforce DX itself works entirely independently of the
version control tool you choose to use. Many teams are successfully automating their
Salesforce development lifecycle using TFS, Perforce, SVN, and other technologies. Most
of the version control concepts shared here remain relevant regardless of the technology
that you choose to use.

Git has its detractors and its disadvantages; it’s more complicated to use than some
competing tools. But it’s undisputedly the dominant version control tool in the market,
according to numerous developer surveys.* The Google Trends graph shown in Figure 7-1
shows that interest in Subversion (SVN) surpassed interest in Concurrent Version System
(CVS) in 2005, while interest in Git surpassed SVN in 2011 and has continued to climb.

*https://rhodecode.com/insights/version-control-systems-2016

205

https://rhodecode.com/insights/version-control-systems-2016

CHAPTER 7 THE DELIVERY PIPELINE

GoogleTrends Compare

® Version control @ Concurrent Versio... * Apache Subversion & Git

Worldwide + 2004 - present ¥ All categories v Web Search +

o

A

Interest over time

|4m

I P

Figure 7-1. Interest in version control in general, and CVS, SVN, and Git in
particular, as measured by Google Trends in early 2019

Git Basics

If you're not already familiar with Git, there are an amazing number of learning
resources available to help you get started. In addition to endless articles, you can
find interactive tutorials, videos, learning games, and live instructors. Even Salesforce
Trailhead has a module on Git and GitHub.

Git itself is free and open source. It is an open technology that is interchangeable
across all the different Git providers. People inevitably get confused, however, between
Git and GitHub. GitHub is a commercial platform for hosting Git repositories that has
become enormously popular over recent years. It faces competition from companies like
Bitbucket and GitLab that also offer Git hosting. All these companies provide a secure,
shared platform for teams to collaborate on Git repositories. They may offer a free
tier, but they are commercial enterprises that charge for at least some of their hosting
services.

Since Git is an open standard, it has also become possible for other version control
systems and providers to provide Git-compatibility modes. For example, both Perforce
and Microsoft Team Foundation Server (TFS) have their own proprietary version control
technologies. But you can enable Git-compatibility mode on those code repositories

206

CHAPTER 7 THE DELIVERY PIPELINE

to allow developers to use TFES or Perforce as version control hosts while using Git
commands and Git GUIs on their local machines.

Git is a distributed version control system, which means that every collaborator
“clones” their own local copy of the code repository. Technically, every cloned instance
of Git is identical to every other instance, and every cloned instance can directly share
updates with any other copy of the repo. In practice, however, most teams establish a
single central code repository (often hosted on GitHub or another Git hosting provider)
and use that as the definitive copy of the repository. This creates a clear and simple
client-server relationship between each developer’s local repository and the central
repository. This makes Git behave more like traditional version control systems like
CVS and SVN, with the added benefit that you can easily work offline, since you have a
complete copy of the repository on your own machine.

Having a shared, central repository is also the foundation for having a single, shared
delivery pipeline. Although all of the automation done in a CI/CD system could also be
done on a developer’s local laptop, consolidating these processes on a shared service
provides visibility and traceability, which are critical to reducing confusion about the
state of your environments and builds.

If you haven'’t gone through a Git tutorial yet, here are the absolute minimum bits of
knowledge you need to get started:

e Onceyou have cloned your project using git clone <repository>,
you can create branches following the branching strategy of your
project:

$ git checkout -b <branch name>

e Once you have created a new branch, you are free to start making
changes. To see the changes you have made, run

$ git status

e Before you can commit the changes, you need to move them to a
staging area. To stage the files you want to commit, run

$ git add <file_name>

207

CHAPTER 7 THE DELIVERY PIPELINE

To commit the staged changes, run

$ git commit -m <commit message>

Finally, to push the changes to the remote repository, run
$ git push

If you want to retrieve the latest changes present in the remote
repository, run

$ git pull

This will merge the remote changes into your local copy. When you
pull, your repository should have no uncommitted changes.

If you and someone else made changes to the same lines in the same
file, you'll get a merge conflict that you'll need to resolve manually.
VS Code and other Git GUIs offer built-in support for merge conflict
resolution, which can make it easier to understand and resolve the
conflict.

Figure 7-2 summarizes these commands. If you understand this diagram, you have

enough knowledge to get started with Git. But going through a thorough tutorial is well

worth the time.

208

CHAPTER 7 THE DELIVERY PIPELINE

Local Remote
/Working (Slaging\/ Local Remote
Directory /) \\ Area /}'\ Repo /i' Repo

Git Add
—/
Git Commit

l/ Git Push >
1

Git Pull |

< Git Checkout
< Git Merge

Figure 7-2. Summary of the basic actions in Git

Git Tools

There are many different ways of working with Git. The most common are summarized

here for your convenience.

The classic way of using Git is to download the tool and run it from the command
line as shown earlier. All of the other tools mentioned here actually use the Git
command-line interface behind the scenes to work their magic. It’s important to have a
general understanding of how Git works on the command line, and even GUI users may
find they need to perform commands on the command line occasionally.

Most Git tutorials explain using the command line. It’s important to know how to
run Git commands in that way, but I personally find it easier to use a graphical interface
such as VS Code or SourceTree (www. sourcetreeapp.com/) for most daily operations.
You can perform most Git commands using any of these tools, and you can mix and
match these tools. For example, you could clone a repository using the command line,
view the history of changes to that repository using SourceTree, make new commits
using VS Code, and create a merge request using GitLab. All of these tools use the same
underlying mechanism, so they stay in sync with one another naturally. I recommend
that you get familiar with all of these tools because they excel at different tasks.

209

https://www.sourcetreeapp.com/

CHAPTER 7 THE DELIVERY PIPELINE

Git Settings

Git is a sophisticated tool, but the overwhelming majority of use cases are handled by a
very small number of commands and settings. Earlier, I explained the basic commands.
There are just a few settings you should be aware of. There are four common settings
that almost every Git tool will walk you through setting initially: user.name, user.email,
core.autocrlf, and core.safecrlf. These settings can differ per repository, but are
typically just set once globally. The format for setting these is

git config --global user.name "Your Name"

The CRLF settings are in place to handle line ending differences between Windows
and Mac/Unix systems. Auto CRLF will convert your line endings automatically, while
Safe CRLF ensures that Git doesn’t make any line ending changes that it can’t reverse.
The standard recommended settings for Mac/Unix are

git config --global core.autocrlf "input"
git config --global core.safecrlf "true"

And for Windows are

git config --global core.autocrlf "true"
git config --global core.safecrlf "warn"

When Salesforce teams are first migrating to version control, it’s not uncommon to
encounter line ending errors, especially with static resources which are uploaded from
a user’s local machine. There’s a well-known utility called dos2unix® that you can use
to batch convert the line endings in your project files. This is usually a one-time action
when you first add files to the repository. After that Git takes care of the line ending
conversions.

There is one Git setting that I've found tremendously helpful in dealing with the large
XML files in Salesforce projects. Changing your Diff algorithm to “patience” ensures that
Git takes extra care in comparing old and new versions of a file. XML contains lots of
repetitive blocks, so this setting makes the actual changes more clear.

git config --global diff.algorithm "patience”

*http://dos2unix.sourceforge.net/

210

http://dos2unix.sourceforge.net/

CHAPTER 7 THE DELIVERY PIPELINE

Git GUIs

Git GUTISs like SourceTree, Tower, GitKraken, or GitHub Desktop excel at showing you a
visual overview of the entire repository. You can quickly review changes across commits
and branches and see changes to many files at one time. Release Managers and Tech
Leads might find these tools particularly helpful since they need to review changes
across many developers.

SourceTree is a free desktop application built by Atlassian that provides a UI for
managing a local Git repository. It facilitates all of the Git features such as branching,
committing, and merging. SourceTree makes it easy for new users to get started with
Git, and it provides experienced Git users with a powerful way to manage even the most
complex Git repositories.

Even if you're a command-line Ninja who was using computers before GUIs even
existed, I'd strongly recommend you get familiar with one of these graphical tools.
Especially if you're developing on a shared sandbox, you'll have to sort through metadata
changes distributed across tens or hundreds of files, and you may need line-level
precision when choosing what to commit and what to omit. Scratch org development
makes the process far simpler, but graphical tools allow you to review changes and
history with a speed and precision that are hard to match on the command line.

Git Embedded in the IDE

IDE plugins, such as VS Code’s native Git support, excel at allowing you to make changes
to files and then commit them quickly as you're working.

VS Code has built-in support for version control, which makes it an easy way to
integrate the use of Git or other version control technologies into the development
process. VS Code features a simple “sync” feature that pulls from the remote repo,
merges, and then pushes your changes in just one click. It also has a great editor for
resolving merge conflicts.

Git on the Command Line

Some people prefer to use Git on the command line, and it can be useful for everyone if
you need to run less common Git commands. But be careful! Make sure you know what
you're doing before just running a Git command that you found on the Internet. Some
commands can have undesired consequences.

211

CHAPTER 7 THE DELIVERY PIPELINE

Git Host Web Interface

Working on the repo through the web browser interface of a Git host like GitLab can be
useful for making quick changes, creating pull/merge requests (which are not a native
Git capability), reviewing and commenting on other’s code, or monitoring the progress
of continuous integration jobs triggered from that Git host.

Git hosts provide a Ul to navigate the Git repository as well as additional features
such as merge requests for approving and merging changes. These hosts typically have
many features to enrich collaboration, such as being able to add comments and have
discussion around particular lines of code or merge requests.

The web interface can be a convenient way to solicit contributions from less
technical members of the team. You can invite help from colleagues just by giving them
access to GitHub, Bitbucket, or GitLab, without them having to download or learn Git.
On the Appirio DX project, we passed documentation updates to an editor who used the
web interface for her review.

Naming Conventions

The purpose of using a version control system is to make collaboration, experimentation,
and debugging easier by providing a clear history of changes. Since this is a form
of communication (across the team and across time), it’s important that this
communication be clear and done in a consistent way.

Every commit requires a commit message. Ideally, every commit represents a
single, meaningful change to fix a bug or add a feature and is accompanied by a clear
explanation of the change. In practice, unless a team is very disciplined about this, most
commit histories are littered with unhelpful messages. I'm personally guilty of a lot of
hasty messages like “fix the build.” Similarly, a single commit might contain multiple
unrelated changes, or conversely, related changes may be spread across multiple
commits. While it’s not always necessary for a commit history to be clean and clear, there
are several approaches to commit messages and branch names that can help add value.

Commit Messages

Assuming that you're working in a team which is tracking their work in a ticketing
system, each commit message should make specific reference to the ticket number that
the commit is relevant to. This helps you track code changes back to the requirement

212

CHAPTER 7 THE DELIVERY PIPELINE

(user story, issue, or task) that prompted the change. This “requirements traceability”
can also be important for complying with legal regulations. The ticketing system
generally indicates who created a particular feature request and who approved it, while
tying a commit message to the ticket indicates when that change was implemented in
the codebase.

$ git commit -m "S-12345 I-67890 Added region to Account trigger"

If you are building CI automation around your commit messages (such as updating
the external ticketing system based on a job status), be aware that commit messages can
be truncated in the CI system. For this reason, it is helpful if the ticket number is placed
at the beginning of the commit message. Any story/issue/task numbers used toward
the end of a long commit message may be truncated and so not be available to the
automation.

As various Git hosts have evolved their feature offerings and competed with each
other, many of them have built integrated ticketing systems such as GitLab issues or
GitHub issues. Similarly, Bitbucket provides native integration with Jira and Trello, also
Atlassian products. These integrations allow for deeper integration between the ticketing
systems and Git commits. For example, Atlassian allows you to view all related Bitbucket
commits directly inside Jira. GitHub and GitLab allow you to close issues on their boards
by referencing issues in commit messages such as “.. fixes #113.

Feature Branch Naming

If you're using feature branches, the name of your feature branch is included by default
in the commit message when you merge the branch into the master branch. This means
that the names of your feature branches impact the commit history and can be used to
make the history more meaningful.

Git GUIs such as SourceTree will recognize slashes in feature branch names and
show them as a tree. Thus you can give your feature branch a detailed name that is
prefixed with feature/ to have all similarly named branches grouped together. To make
it clear to everyone on the team what this branch pertains to, it’s a good practice to
include the ID of the work it relates to and a brief description. Teams with large numbers
of developers each working on individual branches may find it helpful to include the
name of the developer in the branch like feature/sdeep-S-523567-Oppty-mgmt.

213

CHAPTER 7 THE DELIVERY PIPELINE

e Usingthe / in feature/ allows those branches to be grouped in
SourceTree like a “folder”

o Ifyour team has large numbers of branches assigned to individual
developers, including your name (e.g., sdeep) causes your branches
to be sorted together and makes it easier for you and your colleagues
to identify your work in progress.

o Including the work ID (e.g., S-523566) will uniquely identify that
work and allow you to automatically reference commits in that
branch from your ticketing system.

o Including a description (e.g., Oppty-mgmt) helps humans (like you)
identify what that work is about.

Some commercial tools like Appirio DX facilitate quickly adhering to such naming
conventions.

Techniques such as Git Flow make use of a variety of branch types, which benefit
from following a consistent naming convention such as hotfix/, release/, and so on. As
discussed in the following, this is generally a less efficient workflow than trunk-based
development.

Squash Commits

Another useful capability if you're developing in feature branches is the ability to squash
commits. Squashing commits means to combine the changes from multiple commits
into a single commit. This allows developers to make numerous small commits as they
iterate through code changes while still creating a public history of commits that is
succinct and meaningful. GitHub and GitLab both allow you to merge a branch into a
single “squashed” commit, with a more meaningful message.

Semantic Release and Conventional Commits

There are several initiatives to enforce and make use of more rigorous commit message
conventions. Probably the best known approach is called “Semantic Release,” which uses
a commit syntax called “Conventional Commits.” There are tools such as Commitizen
that can help you to enforce these conventions.

214

CHAPTER 7 THE DELIVERY PIPELINE

In Conventional Commits,® every commit message begins with a keyword indicating
what type of change this is. The main keywords are fix indicating an issue fix, feat
indicating a feature, or BREAKING CHANGE indicating a change that is not backward
compatible. Several other keywords are widely accepted such as chore, docs, style,
refactor, and test.

Following the type keyword, you can add an optional scope, indicating which part
of the system you're modifying. The type and scope are followed by a colon and then the
description of the change, so that the commit message would read like these examples:

feat(lang): added Polish language

docs: correkt speling of CHANGELOG

BREAKING CHANGE:extendskey in config file is now used for extending other
config files

Semantic Release builds on this convention to enforce the semantic versioning
standard. Semantic versioning (semver) is the convention where version numbers
are expressed as major.minor.patch numbers (e.g., 2.1.15). According to the semver
proposal, if you are releasing a fix, you should increment the patch version number;
if you are releasing a new feature, you should increment the minor version number;
and you should only increment the major version number if you are implementing a
breaking change. So, for example, Gulp 4.0.0 is not backward compatible with Gulp 3.9.1,
but Gulp 3.9.1 is backward compatible all the way back to Gulp 3.0.0.

Semantic Release aims to enforce this numbering convention by updating version
numbers solely based on commit messages. Semantic Release provides plugins that
work with different technologies and version control hosts to enable version numbers to
be incremented automatically based on commit messages.

To help your team enforce these naming conventions, tools like Commitizen provide
interactive prompts as shown in Figure 7-3 which allow you to specify the type of change
from a dropdown list before prompting you for the scope, a description, and whether the
commit referenced any issues in the ticketing system.

Swww . conventionalcommits.org/en/v1.0.0-beta.2/

215

http://www.conventionalcommits.org/en/v1.0.0-beta.2/

CHAPTER 7 THE DELIVERY PIPELINE

PROBLEMS TERMINAL 2: git s 4+ M O A~ X%
- ~/c/a/appiriodx-desktop-app> git cz master+
cz-cli@3.0.5, cz-conventional-changelog@2.1.@

Line 1 will be cropped at 180 characters. All other lines will be wrapped after 100

characters.

? Select the type of change that you're committing:

feat: A new feature
2T A bug fix
docs: Documentation only changes
style: Changes that do not affect the meaning of the code (white-space, format

ting, missing semi-colons, etc)
refactor: A code change that neither fixes a bug nor adds a feature
perf: A code change that improves performance

Figure 7-3. Commitizen provides a series of prompts to help you write consistent
commit messages

Preserving Git History When Converting to Salesforce DX

When you begin working in Salesforce DX, you will convert your project files from
the Metadata API format into the Salesforce DX format. If you have an existing code
repository and want to keep your Git history, you can follow this process.

The metadata conversion process copies your metadata into a folder such as
force-app/main/default. Some types of metadata such as custom objects are then
“decomposed” into smaller files.

To retain a history of these files in version control, you should delete your original
src/ files at the same time that you commit the new Salesforce DX files. In most cases,
Git will recognize this (deletion of an old file and creation of a corresponding file) as a
rename operation and your history will be preserved.

Stage these “rename” changes before making any other changes to the metadata. In
some cases, Git will not correctly identify the origin and destination files. In those cases,
you can stage and commit “renamed” files in smaller batches. For example, you can
stage only the deletion of src/classes/ and the creation of force-app/main/default/
classes/ and commit them together as a single commit. You can then proceed with
committing other metadata types, one batch at a time.

Note that you cannot preserve history on the “decomposed” metadata. Classes and
workflow rules are simply moved to a different folder or renamed slightly. But Object
files are broken into many smaller files. The complete object file will appear as deleted in
version control, and many smaller files will appear in its place. Nevertheless, even after
they’re deleted, you can go back to the earlier history for those files should the need arise.

216

CHAPTER 7 THE DELIVERY PIPELINE

After you commit these changes, you will almost certainly want to divide the source code
into subdirectories or multiple repositories to enable modular/package-based development.
Git recognizes file movements as a rename operation, but relies on the file contents to be
relatively unchanged. So if you are simply moving metadata files into a separate folder, you
should first save and commit any changes to those files and then move the files into the
other folder and commit that change before proceeding with further changes.

If you decide you need to split your codebase into a separate repository, I
recommend cloning or forking the existing repository rather than just creating a new
repository. This will preserve the history of the files in both repositories. Clone the
“parent” repository to create a “child” repository. Then delete from the parent repository
any metadata files that should now belong only in the child repository. Finally remove
from the child repository any metadata that belongs only in the parent. Commit those
changes and you will have divided your codebase while still retaining the history.

Branching Strategy

One beautiful capability of version control systems is that they allow for the creation of
branches or alternative versions of the codebase. These branches allow individuals and
teams to share a common history, track changes in isolation from one another, and in
most cases eventually merge those changes back together. Branches can be useful for
experimentation, when one member of the team doesn’t want their unproven changes
to impact others on the team. And they can be useful for protecting one’s codebase from
the potential impact of other teams’ changes.

Your branching strategy determines to what degree multiple variations of your code
can diverge. Since version control drives automation such as CI/CD processes, branches
can be used to drive variations in the automated processes that are run.

The use of version control is not controversial among professional programmers. The

appropriate way to use (or not use) branches, however, is an almost religious debate.

Trunk, Branches, and Forks

Most code repositories have one main branch, which we can call the trunk. In Git, this is
usually called master as shown in Figure 7-4. Other branches may branch off from this
trunk, but they'll typically need to be merged back in eventually. This trunk is sometimes
also referred to as the mainline.

217

CHAPTER 7 THE DELIVERY PIPELINE

In Git, even the trunk is just another branch. But in this context, we’ll use branches
to refer to versions of the code that separate off from trunk. In Git, a branch functions like
a complete copy of the codebase, but one that can evolve separately from the trunk and
from other branches. A short-lived branch is one that lasts for less than a day.
A long-running branch is one that lasts for more than a day. Because Git is a distributed
version control system, every time someone edits code on their local copy of master, they
are effectively working in a branch. However, as soon as they push their changes to the
shared repository, it is merged into master, so (assuming that they push daily) they are
effectively developing on the trunk. Only when a branch is given a name does it become
formally separate from the trunk.

[2N [sfdx-dreamhouse (Git)
® © @ &) D Is 3 ® B & @
Commit Pull Push Fetch Branch Merge 1 View Remote Show in Finder Terminal Settings
D WORKSPACE All Branchos % ShowRemote Branches & Date Order : Jump to: o
Graph Description Commit Author Date
File status V¥ ongInpEgE-DEa Update DreamHouse app-metaxmi alsaBar Dave Carroll <gje... Mar 5, 2008, 115,
History TJ L origin/nick/use-org-leatuwre Update DreamHouse.app-met... f00b488 Dave Carroll <djc... Mar 5, 2018, 1:5...
Search (...'__‘ Merge pull request #168 from wpeter-sfdc/tabs-fix cfcOdfc Dave Carroll <djc... Mar §, 2018, 1:5...
2 update app-meta to use tabs instead of tab for api 42 3ee3B4B Wesle ter <w... Mar 5, 2018, 1:3..
[erancues pamaen o yEme
4 Update sfdx-project.json 280e551 Nick Chen <nche.. Mar 1, 2018, 3:0...
© master)
b Update sfdx-project.json 903030k Nick Chen <nche.. Mar1, 2018, 3:0...
pkg2-beta B+
3 Update sfdx-project json 14b26a6 Nick Chen <nche.. Mar 1, 2018, 3:0...
@ acs y Update project-scratch-def.json 4aaBbaa Nick Chen <nche.. Mar 1, 2018, 3:0..
4 Update enterprise-scratch-def json celbdde Nick Chen <nche.. Mar1, 2018, 3:0..
&5 REMOTES
b Update sfdx-project.json 7a0225e Dave Carroll <djc... Mar 1, 2018, 2:5...
* origin L o x X
4 Update sfdx-project.json daB5424 Dave Carroll <djc... Mar 1, 2018, 2:5..
STASHES Sortedbypath~ % v Q Searc %
w [config config/enterprise-scratch-del.json L
[& susmobuLEs
enterprise-scratch-det.json Hunk 1 : Lines 1-12 Reverse hunk
E&. SUSTREES project-scratch-det json {
- “orghame”: "Your Cospany”,
v [force-app “orghame”: "subl",
. X “edition”: “Enterprise”,
'.a.:b fixes for second generation packaging “orgPreferences™: {
A “enabled": [

"51DesktopEnabled”

“S1DesktepEnanled”, "ChatterEnabled”
Commit: e39fabedcc7ad7I0b1064ce3an 1

Parents: 0317dbi554 "alsahlcn": |
Author: Kevin <kcripps@ salesforce.con “Chat terEnablad”
Date: October 16, 2017 at 4:01:37 Ph]

Labels: pkg2-beta }

Figure 7-4. Branching in the Dreamhouse app

218

CHAPTER 7 THE DELIVERY PIPELINE

A Fork is a complete copy of a code repository that maintains a connection to the
original repository. Whereas a branch begins as a copy of the trunk (or of another
branch) but still lives in the same repository, a forked copy of a repository begins
as a copy of an entire repository. This new repository is independent of the original
repository and can evolve separately from it. But because they share a common history,
changes from the forked repository can be merged back into the original repository
or vice versa. In essence, a forked repository is like a super-branch: a branch of all the
branches.

There are two reasons for forking repositories. One reason is when a team wants to
take independent responsibility for their copy of a project. They might want to evolve it
in a different direction (like the Jenkins CI server was forked from the original Hudson
project), or they might want to use the project internally and customize it to their needs.
The other reason for forking a repository is to securely allow for contributions to a
project from unknown or untrusted contributors.

For example, Salesforce published their Dreamhouse repository on GitHub. They
can allow their own developers direct editing rights on that project. But if a non-
Salesforce employee such as myself wanted to contribute a change, they should not
automatically trust that change. By forking the project into my own account as shown
in Figure 7-5, T have full permission to edit this new copy. I can make changes and
contribute a pull request back to the original project even though I have no permissions
on the original repository. The team that owns that repository can then review the
changes and accept or reject them.

219

CHAPTER 7 THE DELIVERY PIPELINE

¥ abd3 | sfdx-dreamhouse-1
forked from forcedotcom/sfdx-dreamhouse

Code Pull requests 0

Pulse

Contributers
Traffic

Commits

Code frequency
Dependency graph
Alerts

Network

Forks

Projects 0

Owniers

abd3

forcedotcom

joacamilcarosf

stevenisakson
jagrelot
TheleonKing

nitinsavanur09

Nagsp19

Sreakalyani
beingofhabits

Wiki

|y Insights

@ Unwatch

Settings

-

1 * Star 0 ¥Fork 208

7

[

[‘T

Keyhoard shortcuts available [

Figure 7-5. A forked copy of Salesforce’s Dreamhouse repository

Well-Known Branching Strategies

There are many Git branching strategies that have been proposed and used. Table 7-1

lists the best-known strategies, along with my subjective view on them.

220

CHAPTER 7 THE DELIVERY PIPELINE

Table 7-1. Brief summary of the best-known Git branching strategies

Branching Strategy My View

Centralized Workflow/ Simplest to understand, similar to SVN, a good place to start, the
Trunk-based Development” most efficient and proven workflow.

GitHub Flow?® Uses feature branches and then merges them into trunk. This allows
for systematic code reviews and is well suited to open source
development with unknown contributors.

Feature Branch Workflow® Very similar to GitHub Flow, but includes rebasing commits
onto master.

GitLab Flow' Useful for versioned software. Generally more complex than needed.

Gitflow Sophisticated and popular, but tends to leave branches unmerged for
too long, making it the antithesis of continuous integration.

Forking Workflow'? Useful when contributing to open source projects or highly complex,
multi-repo programs. This compounds the risks of long-lived
branches.

The Research on Branching Strategies

In the early days of enterprise software development, it was common for teams to work in
isolation from one another for months or years at a time and then to have an integration
phase involving weeks or months of risky and tedious merges of the codebase. The Extreme
Programming™ movement in the late 1990s popularized the practice of continuous
integration, also known as trunk-based development,'* in which teams performed the
integration on an ongoing basis and worked together on a common mainline.

“www.atlassian.com/git/tutorials/comparing-workflows#centralized-workflow
®https://guides.github.com/introduction/flow/
*www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://docs.gitlab.com/ee/workflow/gitlab_flow.html
"waw.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
“www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow

5Kent Beck and Cynthia Andres. 2004. Extreme Programming Explained: Embrace Change (2nd
Edition). Addison-Wesley Professional.

“https://trunkbaseddevelopment.com/
221

http://www.atlassian.com/git/tutorials/comparing-workflows#centralized-workflow
https://guides.github.com/introduction/flow/
http://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://docs.gitlab.com/ee/workflow/gitlab_flow.html
http://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
http://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow
https://trunkbaseddevelopment.com/

CHAPTER 7 THE DELIVERY PIPELINE

The debate about whether to use feature branches or to develop together on
master has been a long-running debate. Over several years, the DevOps Research
and Assessment team analyzed the impact of branching strategy on a team’s software
delivery performance. The 2017 State of DevOps Report shows their conclusions:

While our experience shows that developers in high-performing teams work
in small batches and develop off of trunk or master, rather than long-lived
feature branches, many practitioners in the industry routinely work in
branches or forks. [Our study] results confirmed that the following develop-
ment practices contribute to higher software delivery performance:

e Merging code into trunk on a daily basis.
e Having branches or forks with very short lifetimes (less than a day).
e Having fewer than three active branches.

We also found that teams without code lock periods had higher software
delivery performance. (The ability to work without code lock periods is
supported by the practices described above.)

Additional analysis also showed:

e High performers have the shortest integration times and branch
lifetimes, with branch life and integration typically lasting hours.

e Low performers have the longest integration times and branch
lifetimes, with branch life and integration typically lasting days.

o These differences are statistically significant.

There’s clear guidance to offer from these findings: Teams should avoid
keeping branches alive more than a day. If it’s taking you more than a day
to merge and integrate branches, that’s a warning sign, and you should
take a look at your practices and your architecture.'®

Freedom, Control, and Ease

To understand why trunk-based development yields such benefits, and to understand
what branching structure is most appropriate for your team, it’s helpful to think about
freedom, control, and ease.

152017 State of DevOps Report https://puppet.com/resources/
whitepaper/2017-state-of-devops-report

222

https://puppet.com/resources/whitepaper/2017-state-of-devops-report
https://puppet.com/resources/whitepaper/2017-state-of-devops-report

CHAPTER 7 THE DELIVERY PIPELINE

In general, there is a tension between freedom and control—the more control, the
less freedom; the more freedom, the less control. In an effort to overcome common
problems in application development, it is typical for teams to oscillate between
freedom and control as they define their processes. Where developers encounter too
many obstacles deploying hotfixes to solve production problems, the team may give the
freedom for certain changes to be expedited to production. Where individuals are seen
to be making changes that break core functionality in production, additional controls
may be put in place to prevent any changes directly in production.

What aspects of your version control system are conducive to freedom? Which are
conducive to control? How should you best balance your options?

The fundamental idea of continuous delivery is that if you hope to have any
control at all over your application and configuration, you need to be using version
control, locking everybody out from changing metadata manually, and instead using
an automated process for deploying those changes. That control comes at the expense
of individuals being able to make ad hoc changes in any environment. But this level of
control is a basic foundation that you should never compromise. Without version control
and deployment automation, you will never have any real degree of control over your
environments.

Once you control your Salesforce environments using version control and CI/CD,
they function as a control panel for your development and release process. The guiding
principle here is that you tune the freedom and control in your version control and
CI system to determine the balance of freedom and control in your applications and
environments.

What are the aspects of version control and CI that you can tune?

Your file and folder structure determines the content and structure of your
application. If you divide your applications across multiple repositories, each of those
repositories can control separate parts of the system. But forked copies of a repository and
long-running branches within a repository allow for multiple alternative versions of that
application. The major risk that branches and forked repositories present is that if they’'re
all destined to control a single application, you will eventually have to merge them.

Merging can be risky. The more time elapses between a branch being created and
merged, the more people forget the reasons why certain changes were made. And the
more changes that are made on that branch, the greater the risk that the merge will cause
conflicts or errors. These two factors, forgetfulness and the size of merges, are what make
continuous integration (trunk-based development) a superior strategy in most cases.

223

CHAPTER 7 THE DELIVERY PIPELINE

The KISS principle applies (keep it simple and straightforward). Your files and
folders should represent the structure of your application. Your commits represent
changes to that application over time. CI jobs are used to manage stages of automation
done on any given commit. That’s three degrees of freedom already.

The advent of SaaS and auto-update technologies increasingly allow teams to only
support one latest version of an application. If you have to support multiple versions
of an application (imagine the patches to various versions of the Windows operating
system), you will need to use multiple branches or repositories. But for modern
applications like VS Code or the Salesforce CLI, for example, “only the latest version is
supported.” That’s an enormous simplification and one that we should strive for with our
own applications. One reason why Salesforce is able to innovate so quickly is that there
are no “old versions” of Salesforce that their teams have to support.

Adding additional branches adds another degree of freedom ... that you will
eventually have to bring back under control. Better to do it straightaway, by not allowing
the branch to last for more than a few hours. Adding additional forked repos adds yet
another degree of freedom. Although I know teams that have taken this approach, and
it is one that Atlassian’s Salesforce development team used to recommend, in my view
this can create an enormous amount of overhead and bring limited benefit. Forking
repositories should generally only be used to allow untrusted developers to propose
contributions to open source projects.

Merge requests (aka pull requests) are a way of adding control to a system by providing
a formal approval process for branches being merged. Again, this is extremely useful for
open source projects, but be very careful about adding merge requests as a requirement
for your internal developers to submit a change to master. In practice, most tech leads do
not review those changes carefully, so approving merge requests just delays the merging
of feature branches and adds bureaucracy. Developers (and everyone else) definitely
need feedback on their work, but real-time peer programming or informal code reviews
generally yield higher performance without increasing the number of bugs in the system.

In addition to considering the balance between freedom and control, it’s also
important to improve the ease with which your team can deliver changes. The ease of
managing your application’s lifecycle depends on several factors:

1. Automating builds and deployments of all configuration eases the
release process.

2. Automating tests eases the release process tremendously, in
helping to identify bugs before they hit production.

224

CHAPTER 7 THE DELIVERY PIPELINE

3. And finally, tuning your approach to branching can help to

ease the development process by not allowing any unnecessary
variations to exist and addressing conflicts as they arise as

opposed to allowing them to accumulate on long-running

branches or forks.

Figure 7-6 summarizes the concepts in version control. Each aspect of this system
represents a “freedom” or variation that can exist. Each aspect also provides an
opportunity for control. You should tune your use of version control to maximize the
ease of delivering changes while providing the appropriate balance of freedom and
control. While branches and forks offer freedom to innovate without sacrificing control
over the trunk, they bring significant inefficiency. Wherever possible, promote trunk-

based development.

Code Repositories
The container for branches and commits

What they Control:
- Security and Access
- Integrations and Automation
Commits
What they Control:
- Changes to files and
folders over time I
r

Files & Folders

The content that is tracked
What they Control:

- Content and Structure of the Application
- Scripts and CIVCD Automation

- Test and Configuration Data

Branches
What they Control:
- Alternate versions of the code

v13.16

Tags
Markers on a Commit n
What they Control: | ~
- Used as references -
- Can be used to tigger Cl jobs @ ==27

Cl Jobs

What they Control:
- Stages of Processing a Change

-

=, Linit Test
Execution

Qe n +———"

Merge Requests

What they Control:
- Allow formal code reviews
- Allow contributions from untrusted sources

Figure 7-6. An illustration of core version control concepts

Forked Repositories

Retain a connection to their source

What they Control:

- Can pull from source repo

- Can contribute merge requests to source

AN

225

CHAPTER 7 THE DELIVERY PIPELINE

Branching for Package Publishing

Publishing Salesforce unlocked packages lends itself well to a simple branching strategy.
Whereas for org-based development (see later), there are legitimate reasons why you
may need to use long-running branches to manage differences across orgs, that’s not
necessary for managing packages.

Although unlocked packages and managed packages allow for a branch parameter to
be specified, you'll need to take special care if you want to use that. If you are a managed
package developer and need to support old versions of your package or different editions
of Salesforce, there may be a need for a more complex process. But for enterprises
developing unlocked packages, you should generally just use a single branch for your
package’s metadata, and allow its versions to reflect the linear history of improvements
to the package.

In that sense, package versions correspond to the commits on the main trunk of your
codebase or maybe to the subset of tagged commits. A simple, linear commit history
corresponding to a simple, linear progression of package versions makes everything easy
to understand.

The branch flag can be useful if you want to experiment on a separate branch
in version control and actually publish package versions that won’t accidentally be
deployed to your main orgs. The branch parameter must be specified on the command
line when publishing or installing a package version, and using this parameter doesn’t
require any changes to your underlying configuration files.

Salesforce DX allows you to develop multiple packages in one code repository by
dividing them into subfolders. Your folder structure is thus the degree of freedom that
allows you to represent multiple packages’ metadata. While possible, this means that the
security and build processes for that repository will apply equally to all packages unless
you have built some sort of additional tooling. It is generally simpler to divide packages
into multiple code repositories. That gives you the freedom to have different security and
automation for the different packages; although you’ll then need to manage their build
processes separately and risk those processes getting out of sync.

Using one main trunk branch, you can still use feature branches and formal code
reviews if you deem it necessary.

226

CHAPTER 7 THE DELIVERY PIPELINE

Trunk-based development
2 developers pulling and pushing from master " O O /"O_"\
= \

o w\/’ o o
Feature Branch development featureladavis-S-123456-Lead-Scoring
2 developers with short-lived branches P -

/N
master _—
@ @ @
feature/sdeep-S-523566-Oppty-mgmt
Feature Branch development
With both long-lived and short-lived branches
A e e e e N
— e e PSS S S SSSEN

Figure 7-7. Trunk-based development vs. feature branching

As you can see in Figure 7-7, trunk-based development in Git is equivalent to
using short-lived feature branches, with the difference that those “branches” are just
developers’ local copies of the master branch, so you can’t run separate CI processes on
those branches, although developers can run automated processes locally. You can also
use Git hooks like pre-commit or post-commit hooks to enforce that certain processes
are run with each local commit.

You can gradually implement tooling to support a refined CI/CD workflow around
this branching structure. Common processes that you may want to run include

1. Static code analysis
2. Unit test execution

3. Manual jobs to allow the creation of review apps on a particular
commit

4. Package publishing

5. Package installation in a target environment

227

CHAPTER 7 THE DELIVERY PIPELINE

The evolution of your tooling to support package publishing might look like this:

1. All packages in the repository are published whenever a commit is
made to the master branch (generate a unique version number for
packages by appending the CI job number as the build number).

2. To improve on this, only publish new package versions if the
underlying metadata has changed.

3. To publish less frequently, you can have publishing be triggered
only when a tag is added to the Git repo.

4. A sophisticated technique is to use semantic release to auto-
increment version numbers and publish (or not) based on commit
messages. This allows commit message syntax like “fix: handle
null value exception” to auto-increment and publish a new patch
version for the package. My colleague Bryan Leboff has published
a Salesforce DX semantic-release plugin'® to help with that.

Guidelines if You Choose to Use Feature Branches

There are several reasons why you might choose to use a feature branch workflow:

1. Itallowsyou to use merge/pull requests to perform formal code
reviews. Without the mechanism of merge requests, it is difficult
to ensure that changes are reviewed and approved systematically.

2. Ttallows special CI jobs to be performed only on work in progress
before it’s merged into the master branch. Code in feature
branches can be scanned for quality issues and validated to
ensure it will deploy successfully before it’s ever merged into the
master branch.

3. Itallows for in-progress features to be reviewed using review apps.

%https://github.com/leboff/semantic-release-sftdx
228

https://github.com/leboff/semantic-release-sfdx

CHAPTER 7 THE DELIVERY PIPELINE

Although feature branches can be useful for these reasons, it is important to avoid
long-running feature branches. Continuous integration is a well-established principle
of software engineering which demands that code from different developers be merged
frequently (at least daily if not within a few hours) so that conflicts can be detected and
resolved quickly.

If you use feature branches, it is helpful to enable teams to create review apps based
on a particular branch. This allows the branch to be previewed in a live environment for
demo, review, or QA purposes. Reviewers can then give feedback before merging that
code into the master branch. Changes related to one story are isolated from changes
to any other work in progress, and the QA team can begin testing without waiting for a
deployment to a QA sandbox.

If you use feature branches, it’s helpful to delete them after they’ve been merged.
This only deletes their name, not the history of changes. This reduces clutter, allowing
only active branches to be listed in your Git tools.

See also the earlier guidelines on “Feature Branch Naming.”

Before merging your work into the master branch, you should merge the master
branch into your feature branch as shown in Figure 7-8. That forces each developer (who
knows their code changes best) to resolve conflicts with the master branch (if any) rather
than requiring the reviewer of any merge request to make judgments about how merge
conflicts should be handled. When you're developing on the trunk, you have to pull and
merge the latest remote version into your local repository before pushing your updates.
Merging master into your feature branch is exactly the same concept.

Merge the Trunk into your Branch feature/adavis-S-123456-Lead-Scoring
before attempting to merge your branch into the trunk T . O /"'O"\
_—) \
master \\\ .

master being merged into the branch

Figure 7-8. Merging the master branch into a feature branch

229

CHAPTER 7 THE DELIVERY PIPELINE

Branching for Org-Level Configuration

Just as it’s important to use an automated process to track and build your packages, it’s
critical to also track and deploy your org-level configuration from version control. Prior
to the development of Salesforce DX, managing configuration at the org level was the
only way to implement continuous delivery for Salesforce. Therefore even for teams who
are not yet ready to move to scratch orgs and unlocked packages, establishing a proper
org-level delivery pipeline is extremely helpful.

Managing org-level configuration requires a different approach from package
development. Orgs should generally contain identical metadata, but there are three
important exceptions:

1. Some configuration (such as integration endpoints) needs to vary
between the orgs.

2. Orgs are populated with metadata at different stages of
development.

3. Some metadata in each org (such as most reports) does not need
to be tracked.

How can you establish an automated process to keep orgs identical yet different?!

One effective approach is to have one folder to store the metadata that is common
to all orgs and separate folders for each target org that can store metadata that is unique
to that org. Deployments are made to each org by combining the common metadata
with the metadata unique to that org. This requires some scripting to accomplish. Your
desired end state is for most of your metadata to be contained in packages and for all
orgs to be as similar as possible, so you should strictly limit the types of metadata that
you put in the org-specific folders. NamedCredentials, RemoteSiteSettings, and org-
specific Custom Metadata are great candidates to be put in those org-specific folders.

Secret values such as OAuth credentials should not be stored in the repository at all,
but instead managed directly in the org or stored as environment variables in your CI
system and injected into the metadata dynamically just prior to deployment.

Folders work well to handle common metadata and org-specific differences. But
they are not a good solution for moving metadata through the stages of the development
lifecycle. Because branches can be merged into one another, branches are the ideal
solution for tracking metadata that should be sent to the testing environment now, but
will soon be ready to move to the staging and then production environments. As shown

230

CHAPTER 7 THE DELIVERY PIPELINE

in Figure 7-9, you can use a testing branch to deploy metadata to the testing org; when
you're ready, merge the testing branch into the staging branch and have that trigger a
deployment to the staging org. Finally, do the same to production.

As a convention, you should use the master branch to refer to the metadata in
production. The reason for this is that master is the default branch in your repository
(the one you never delete); and while you may eventually delete or refresh sandboxes,
you will never delete your production org.

From master, you can create branches that correspond to different sandboxes. You
only need branches for sandboxes that are used to test features under development.
Typically, organizations will have one, two, or three environments that are used to test
features that have been released from development but still need to be verified. You only
need sufficient branches to manage those variations.

Therefore not every sandbox should have its own branch. You can use a single
branch to manage the configuration for multiple sandboxes, as long as you're happy to
update those environments at the same time. For example, you can have an automated
process that updates your training sandbox from the same branch used to update your
staging sandbox. Whenever you deploy updates to the staging org, you can deploy
updates to the training sandbox in parallel.

Although it’s now possible to clone sandboxes, the default approach is to create
and refresh sandboxes from the production org. When you create or refresh an org, this
destroys any customizations made in that org. To reflect that, you can simply delete the
corresponding branch. If the updated org has been cloned from production, you can
then recreate the corresponding branch from master, since the sandbox is now in an
identical state to master.

Bear in mind that the more branches you have, the more chance there is for those
branches to get out of sync. Therefore, try to reduce the number of branches if at all
possible. One small but important simplification can be made to the branch used to
manage your final testing environment. The last environment used for testing should be
your most production-like environment. Sometimes this is a full sandbox; sometimes
it’s called “stage” or “staging” to indicate that it’s for configuration that is preparing to
be sent to production. To say with confidence that you have tested your configuration
before sending it to production, you can use the exact same branch (master) to deploy
to this staging environment and to production. But whereas every commit made to
this master branch will be deployed to this staging environment, you can use tags on
this branch to selectively trigger deployments to production. These tags also provide

231

CHAPTER 7 THE DELIVERY PIPELINE

a quick reference to your production deployments. Using the same branch to manage
both staging and production gives you ample confidence that you have tested your
production changes in another environment. To be extra safe, you can use these tags to
create a job in your CI system that you must trigger manually to actually perform the
production deployment.

Finally, there are certain types of metadata that do not need to be tracked in version
control. These are metadata like reports that you want to give your users freedom
to create and edit directly in production. See “What’s Safe to Change Directly in
Production” in Chapter 12: Making It Better for a discussion of the types of metadata that
do not need to be tracked.

An lllustration of This Branching Strategy

The branching strategy just described is one we have been using at Appirio since long
before Salesforce DX appeared. This is not the only possible approach, but is one that is
simple to implement with minimal automation. See Figure 7-9.

Legacy Salesforce repo

Tag:v1.0.1 Tag:v1.0.2
Master . =]
(Deploys
to UAT)

adavis-S-523566-Oppty_mgmit

rhopkins-S-432667-Acct_mgmt

Figure 7-9. Branching for org-level metadata

We've found this approach generally works well and provides a balance between
simplicity and power. To allow for formal code reviews and branch-level automation,
many of our projects use feature branches while reducing complexity by limiting the
number and lifespan of those branches.

The master branch is used to deploy code to the UAT org, and we use tags to deploy
selected commits on the master branch to production. Every commit to the master
branch triggers a deployment to UAT followed by a validation against the production
environment. Additionally, if the commit to UAT contains a tag with a format like v1.0.3,
this unlocks a manual option to deploy to production. In this way, we ensure that the
232

CHAPTER 7 THE DELIVERY PIPELINE

UAT and production environments contain the exact same codebase, and we never have
to struggle with keeping those in sync.

Whenever a sprint starts, the Tech Lead or Release Manager should create an SIT
(system integration testing) branch from the latest commit on master. When developers
start their work on a story or issue, they create a feature branch from the latest commit
to SIT. Once they commit their changes to their feature branch, a validation against the
SIT environment is triggered. The developer can then go to the CI system to view the job
status. If the validation job is successful, they then merge any recent changes to the SIT
branch into their feature branch and create a merge request from their feature branch
into the SIT branch. A dev lead can then view that merge request, see the code changes
in the merge request, and approve or reject the merge request. If the merge request is
accepted, the changes will be deployed to SIT and validated against UAT.

At the end of each sprint, the Tech Lead or Release Manager merges the SIT branch
into master and deletes the SIT branch to allow this cycle to start again. Deleting and
recreating this branch is very important since it reduces complexity in the repository. If
you don'’t do this, branches will become increasingly hard to synchronize over time.

To sum up the process:

1. A developer makes a feature branch from SIT. As they work, they
make commits to that feature branch. When they are ready to
submit their work for review, they merge any recent changes from
SIT into their feature branch and then push those changes to the
repository.

2. The push to the feature branch triggers a validation against the
actual SIT org.

3. [Ifthe validation to SIT is successful, they then make a merge
request from the feature branch to the SIT branch. If there was
a problem with the validation, the developer fixes that error and
then pushes their changes again.

4. The merge request is reviewed by the tech lead and/or dev lead.
They can see the lines edited/added on the merge request itself.

5. When the tech lead or dev lead approves the merge request, that
code is merged into the SIT branch. That triggers a deployment of
code to the SIT environment and validates it against UAT.

233

CHAPTER 7 THE DELIVERY PIPELINE

6. When a sprint ends, the SIT branch is merged into master and
deleted.

7. A merge commit to the master branch triggers a pipeline which
a. Deploys code to UAT
b. Validates code against production

c. Deploys the code to production if a tag with a particular format (e.g.,
“v1.0.3”) is present

Branching Strategy with an Example

This example walks through the stages of this process:

1. Themaster branch of your project contains the codebase of the
UAT environment. Let’s say the two latest commits are as shown in
Figure 7-10.

Master
(Deploys
to UAT)

Figure 7-10. Initial commits on the master branch

2. To start any new development, you'll make a feature branch from
the latest commit on the master or SIT branch. (In this case, we
are starting with just a master branch). Let’s spin up a feature
branch as shown in Figure 7-11. Feature branches are nothing
but branches which contain the prefix “feature” before the actual
branch name. You'll name the branches as follows:

feature/[yourBranchName]

Tag:v1.0.1
Master ..
(Deploys
to UAT)

davis-S-523566-Oppty_mgmt

Figure 7-11. Create feature branch from master

234

CHAPTER 7 THE DELIVERY PIPELINE

Each commit you make to your feature branch validates the
codebase changes against the SIT environment and displays any
errors in the job status page in the CI system. You can access that
by going to your CI tool’s pipeline view. You'll see something like
Figure 7-12 if the job passes.

Job

[| #951 ¥ master o #356 & 01:38

deploy validate_against_production =

79f1f54d by @

Figure 7-12. CI job status

4,

Moving on, let’s say you're done making all the changes to your
feature branches and your pipelines have succeeded. You're now
ready to move your changes to the SIT environment.

The Dev Lead or Tech Lead should have merged the SIT branch
into master and deleted it at the end of the previous sprint. They
then create it again for the current sprint (this discipline helps
ensure that the repo stays simple).

To simulate this process, create a branch called SIT from master
as shown in Figure 7-13. Any commit to this branch will deploy
the code straight to SIT.

Tag:v1.0.1
Master > .
(Deploys.
to UAT) SIT

Figure 7-13. Create an SIT branch from master

7.

Before merging your feature branch into SIT or any other branch
itis important to first pull and merge the changes from the target
branch into yours, fix any conflicts, and then push the combined
changes. This ensures that each developer takes responsibility for
bringing in the latest version of the shared code and ensures their
changes are compatible with that.

about 17 hours ago

235

CHAPTER 7 THE DELIVERY PIPELINE

8. Now, go ahead and merge SIT into your feature branch, resolve
conflicts (if any), and make a merge request from your feature
branch into SIT.

9. Gointo your Git host’s GUI to review that merge request. You can
then approve the merge request to complete the merge into SIT as
shown in Figure 7-14.

Tag:v1.0.1

Master
(Deploys
to UAT)

davis-5-523566-Oppty_mg

Figure 7-14. Merging a feature branch into SIT

10. Let’s assume a sprint is over and you want to move changes to
UAT. Make a merge request from the SIT branch to the master
branch and approve it. This will deploy the code to UAT and
validate it against production.

11. Create a tag on your commit to master called vx.x.x (where each
x is a number between 0 and 9) as shown in Figure 7-15. This will
initiate a manual deployment to production.

Tag:v1.0.1 Tag:v1.0.2
Master =]
(Deploys
to UAT)

adavis-5-523566-Oppty_mgmt

rhopkins-5-432667-Acct_mgmt

Figure 7-15. The final branching structure for org-level metadata

236

CHAPTER 7 THE DELIVERY PIPELINE

Deploying Individual Features

In pre-Salesforce DX CI processes, it was often difficult to elegantly move discrete changes
from one environment to another. The org-level workflow just described (one of the only
branching strategies that worked well) is focused on merging the entire content of test
environment branches into the branch for the next stage of deployment. This works well
as long as you're happy to move all of the changes from one environment to the next.

But inevitably some features are more important than others and need to be expedited
before all features in that batch can be tested. It's unsafe to move large batches of untested
changes into the next environment, just to expedite one of them. This is the fundamental
problem with large batch sizes that lean software development strives to avoid.

The best solution to allow features to be deployed independently is to adopt unlocked
packages. This allows package development teams to publish and install updates
independently and thus allows certain features to be deployed more quickly than others.

Some commercial tools like Copado include powerful, automated branch
management that allows feature-level deployment across any environment. If you're
handling branching manually, there are two alternative approaches to managing the
codebase at a feature level: cherry picking and feature branching. These approaches
have been used by many teams prior to the availability of unlocked packages.

Either approach may occasionally be useful to expedite certain features, but their
disadvantages should also be understood.

Granular Feature Management Using Cherry Picking

One method to manage features independently is by making extensive use of cherry
picking. Cherry picking is a native Git capability that allows you to apply a commit

from one branch onto another branch without merging the entire branch. Deploying
individual features by cherry picking will require significant discipline on the part of the
development team. The basic concept is this:

1. Every commit should be explicitly tied to one work item, and the
ticket number for that work item should be listed in the commit
message.

2. Those commits can be made on a branch that is autodeployed to
your first test environment.

237

CHAPTER 7 THE DELIVERY PIPELINE

3. When you're ready to deploy a feature to the next environment,
you cherry pick the related commit(s) into the branch
corresponding to the next environment.

4. Since commits depend on their predecessors, you should
cherry pick commits in the order they were originally made and
periodically merge the full branches to ensure that orgs remain
consistent.

Challenges with this approach:

o Since this leads to environments being different, you are not actually
testing an integrated production configuration before deploying it.

o It’s easy to forget to cherry pick some commits. For this reason, you
should still merge the full org branches as often as possible.

e Since commits are not really independent, features may not work
properly if they are missing dependencies from other commits.

o This approach makes it easy for work to remain in progress for too
long. This is a major warning sign in lean software development.

To enable certain features to be expedited to an environment, this approach can
be used occasionally. But the risks in this approach make it inferior to building and
deploying packages as a long-term strategy.

Granular Feature Management Using Branches

Another approach that can be used to manage features independently is to use feature
branches to deliver features to each testing environment and to production. This is
similar to the feature branch workflow described earlier, except that feature branches are
merged not just into the first testing environment but also retained and used to merge
into all subsequent testing environments and then into production. Although, in general,
you will minimize the risk of merge conflicts if you first merge your destination branch
into your source branch, if you follow this approach, it is important that you do not
merge the destination branch into the feature branch.

Unlike cherry picking, merging branches brings the entire history of that branch’s
parents. Imagine, for example, that others on your team have merged five features
into the SIT branch and that you have just completed work on a new feature branch.

238

CHAPTER 7 THE DELIVERY PIPELINE

As shown in Figure 7-16, if you merge the SIT branch into your feature branch prior to
merging your feature branch into SIT, the other five features will then be included in
your feature branch. If you later merge this feature into another testing org, you will be
deploying both your own feature and those five other features.

master

Y

includes features 1-4

\\/‘ SIT

if you've

feature 1
merged,
feature 2 you'll bring
20 all other
feature 3 features
O : ith
shouldyou with you
feature 4 merge? . B
your feature i '

This commit includes the
entire history from SIT

Figure 7-16. Delivering feature-level granularity requires careful branch
management

Challenges with this approach:

« Since you can’t safely merge your target branch into your feature
branch, if you combine this approach with using merge requests for
approval, this puts the burden of resolving merge conflicts onto the
person approving the merge requests.

e Thisleads to alarge number of long-running feature branches, which
greatly increases the number of variations of your code. This tends
to make every merge into a minor research project, as you assess
whether that branch’s code is up to date.

o [Itis harder for teams to understand and reason about the changes
that will happen when branches are merged compared to cherry
picking. Cherry picking moves just the changes in that commit.
Branch merging brings all preceding changes.

239

CHAPTER 7 THE DELIVERY PIPELINE

e Such complicated merging can lead to subtle problems. If the person
doing a merge chooses to ignore or remove some files from a merge,
those files may automatically be excluded from future merges as
well. This is due to the way Git calculates merges and can lead to very
difficult-to-debug problems.

As mentioned previously, some commercial tools such as Copado can automate this
entire process for you. If you're doing this manually, this approach may occasionally be
useful for a very urgent feature (such as a hotfix deployment) but should be used very
sparingly.

Forking Workflow for Large Programs

Trying to manage massive amounts of metadata changes at an org level can lead teams
to adopt complex Git acrobatics. One of the most complex workflows is to use multiple
forked repositories to manage the metadata for different teams. As mentioned earlier,
forking a repository retains a connection to its source. This allows the team to perform
merges between repositories. I've seen this pattern used when large numbers of teams
each had their own sets of development and testing sandboxes, which were eventually
merged into a shared staging environment and eventually into a single production
environment. One repository was used to manage the staging and production
environments, and separate repositories were used for each team’s collection of
sandboxes.

This approach allows different repositories to have different security restrictions
(you can provide limited access to the repository governing staging and production) and
allows each team to have a relatively simpler repository just to manage changes relevant
to their team. For a time, this workflow was recommended by Atlassian in a site they had
created to provide guidance on the Salesforce development workflow. The cynic in me
wondered if their intention was to sell more code repositories although, in their defense,
Atlassian Bitbucket does not charge per repository. This site has subsequently been
taken down, but a number of Salesforce teams I'm aware of adopted this approach.

The inevitable consequence of this is that each repository drifts further and further
apart. Be prepared to have multiple people working full time to handle upstream and
downstream merges.

240

CHAPTER 7 THE DELIVERY PIPELINE

CI/CD and Automation

As mentioned earlier, continuous integration (CI) means that teams work on a common
trunk in the codebase and run automation such as builds and tests with every commit to
that trunk.

“CI” is often used to refer to tools such as Jenkins that perform automated actions
on a schedule or based on code changes. In reality, tools like Jenkins are just tools for
running and reporting on automated processes, and their use may be utterly unrelated
to CI. These tools can be used to trigger any kind of job, either on a schedule, by a
code commit, by an API call, or by some other mechanism. In spite of this, these tools
themselves are frequently referred to as “continuous integration tools,” and the jobs they
run as “continuous integration jobs.” The name has stuck and for our purposes is not
inaccurate.

The reason for this word association, however, reveals an interesting history. In a
situation where disparate teams work on different parts of the codebase and integrate
near the end of a project, it is reasonable that the integration phase include extensive
manual testing. The extreme programming movement promoted the practice of
continuous integration as a more efficient alternative. Instead of having an extensive
and error-prone integration phase, teams benefit from being able to integrate in small
pieces on an ongoing basis. Conflicts are quicker and easier to resolve, overall code
architecture can be more coherent, and teams can immediately benefit from each
other’s contributions.

But integrating code continuously in this way opens the door for regression failures
to happen at any time. Any aspect of the system could potentially be broken at any time,
and repeated manual regression testing is impractical. Continuous integration thus
drives the need for automated testing. And for compiled languages, automated testing
requires automated builds to be performed first.

Build automation is not a new concept, but in the early days, this was typically done
on a schedule, such as a “nightly build.” But a nightly build and test execution could
mean a 23-hour delay in noticing that a developer’s change had broken a test. To get that
feedback as quickly as possible, teams moved to building and testing “continuously,”’
every time the code changes. “Continuous integration” tools to automate these builds
and tests thus became an essential component of the development workflow.

Once an automated system is in place for building and testing code, it’s a small step
to add deployments to that automated process. Thus the practice of continuous delivery
grew naturally out of continuous integration.

241

CHAPTER 7 THE DELIVERY PIPELINE

To actually benefit from this automated test execution, you have to pay attention
to the results. Simply putting in place automated builds and testing does not imply
that the team is benefitting from this. For this reason, it’s critical that teams develop
the discipline of paying attention to the build status and fix failing CI jobs immediately
as the top priority. A failing CI job, or “broken build,” implies that changes have been
made that cause builds, tests, or deployments to fail. Human short-term memory is
notoriously unreliable, and so with each passing hour the team will find it harder to
remember exactly what changes may have caused the failure. Of course version control
gives a history that can be used to resolve these problems after the fact, but once a single
error arises, all subsequent contributions will also fail. Thus a broken build is a blocking
problem for the entire team. Practicing CI/CD implies not only that the team is merging
their code continuously but also that they are ensuring the code can be built, tested, and
deployed successfully at all times.

It’s very common for people to believe they are practicing continuous integration
just because their team has set up a CI server like Jenkins. Jez Humble is known for
challenging this belief by asking three simple questions'”:

1. Does your entire team merge their work into a common trunk at
least daily?

2. Does every change to that codebase trigger a comprehensive set of
tests to run?

3. Ifthe build breaks, is it always fixed in less than 10 minutes?

If you cannot answer yes to those three questions, you are not actually practicing
continuous integration.

Early detection and fixes are key to ensuring quality at the earliest possible stage.
Developers should focus on setting up a simple CI/CD process as early as possible in the
development lifecycle. Continuous delivery is the main technical capability at the heart
of DevOps.

https://continuousdelivery.com/foundations/continuous-integration/

242

https://continuousdelivery.com/foundations/continuous-integration/

CHAPTER 7 THE DELIVERY PIPELINE

Automating the Delivery Process

Using version control reduces much of the risk and tedium associated with the
development process. But it is only when version control is tied to a CI system that its
power to automate the delivery process is really unlocked. What are the elements in
creating this automation?

Cl Basics

Continuous integration is a process built around version control that allows code to be
built, tested, and deployed every time it changes. To make this possible, everyone on

the development team needs to be using the same version control system, and you need
a CI tool that’s configured appropriately for your project. A CI tool has three parts: the
actual CI engine that orchestrates all the automated jobs, configuration that defines the
specific jobs to run, and one or more runners that execute those jobs.

The role of the CI engine is to allow teams to create projects, give individuals access
to those projects, define and configure one or more automated jobs for that project,
trigger those jobs, and then monitor the jobs’ status. The CI engine is generally the tool
that you log into to see the configuration of a CI job or to check the status of that job.

CI job configuration determines what code is used as the basis for the job (e.g., which
repository and which branch in that repository), when a job is triggered, what processes
are run as part of that job, and what kinds of notification, reports, or artifacts are created
as aresult. Multiple jobs are often grouped into pipelines, in which the pipeline itself is
triggered by some event, and it in turn triggers each job in the appropriate order.

Clrunners are where the action happens. A CI runner is an isolated environment in
which the CI job runs. The runner might simply be a dedicated folder on the main CI server,
it might be a separate server or virtual machine, or it might be a container such as a Docker
container. CI runners are typically separated from the main CI engine for three reasons:

1. Runners can be scaled out “horizontally,” with one CI engine
controlling scores of runners. Even if CI jobs are long running and

resource intensive, they will never slow down the CI engine.

2. Runners can have entirely different hardware, OS, and software.
iOS or Mac OS software builds usually have to be run on Mac
hardware. For example, while most of the CI runners used at
Appirio host Docker containers, we have some that run in Mac
VMs, on Mac hardware.

243

CHAPTER 7 THE DELIVERY PIPELINE

3. Clrunners provide security isolation, so that one team cannot
view content on other runners or hack their way into the main CI
engine.

In addition to creating logs, artifacts, deployments, notifications, and any other
results, running any CI job always returns a pass/fail status. If jobs are arranged in a
pipeline, subsequent jobs will not run if the preceding jobs have failed. This allows
teams to, for example, not deploy code if the unit tests did not pass.

Pipeline Configurations

Most CI systems allow jobs to be organized into pipelines which define sequences

of jobs. A pipeline is a group of jobs that get executed in stages or batches. All of the

jobs in a particular stage are executed in parallel (if there are enough concurrent CI
runners), and if they all succeed, the pipeline moves on to the next stage. If one of

the jobs fails, the next stage is not executed (unless you've stated that job can “allow
failure”). Pipeline configuration thus allows jobs to be organized in series, in parallel, or
in some combination of the two. Specifying stages allows us to create flexible, multistage
pipelines.

As mentioned earlier, you can specify under what circumstances you want particular
pipelines to run. For example, you might want certain tests to run only when a commit is
made to the master branch, and you might want commits to different branches to deploy
to different environments. Making a commit on a particular branch can thus trigger a
pipeline appropriate to that branch, which in turn triggers different jobs in a particular
sequence.

CI pipelines are thus the mechanism used to manage a continuous delivery pipeline.
Each commit triggers a pipeline, which triggers jobs for builds, tests, and deployments.

A pipeline is typically triggered when a commit is made to the repo, but can also be
triggered manually, based on tags, based on a schedule, or using the CI engine’s AP], if it
has one.

Multiproject Pipelines

A multiproject pipeline is a more sophisticated version of a pipeline, in which one
pipeline may trigger other pipelines on other projects to run. This can be useful in many
cases; one example is triggering the rebuild of one project whenever its dependencies are
rebuilt. The dependency itself would trigger the parent project to be rebuilt in that case.

244

CHAPTER 7 THE DELIVERY PIPELINE

GoCD is an open source CI tool that was custom-built by ThoughtWorks, largely to
handle the challenge of multiproject pipelines, since not all CI tools have this capability.
GoCD itself is built using a multiproject pipeline (in GoCD!) that requires several hours
to build and test numerous subprojects before compiling the final tool.

Seeing Cl Results in Merge Requests

Merge requests (aka Pull Requests) are requests to pull and merge one branch into
another. They create a formal opportunity to review code changes, and can also be used
to review CI job results. For example, the CI process can perform automated validations
on a feature branch; then a merge request can be created for validated feature branches
to allow someone else to review and approve that branch before merging it into the
master branch. Version control tools like GitHub, GitLab, and Bitbucket Pipelines can all
show CI job status alongside the list of code changes in merge requests.

Environments and Deployments

Some CI systems use the concept of “Environments” to represent systems such as
Salesforce Orgs that are affected by particular CI jobs. Where available, it’s helpful to use
these, since it gives a way to cross-reference which CI jobs (such as deployments) have
run against particular environments.

ClI Servers and Infrastructure

What are the different kinds of CI systems, and how should you choose between them?

Generic Cl Systems vs. Salesforce-Specific Cl Systems

Because of the historic challenges involved in managing the Salesforce development
lifecycle, numerous Salesforce-specific release management tools such as Copado have
been created. Increasingly, these tools are supporting and promoting the concepts of
version control and continuous integration. These tools are dealt with in more detail in
the section on “Commercial Salesforce Tools” in Chapter 9: Deploying.

In most languages and for most applications, the tools used to manage the
development lifecycle are generic tools such as Jenkins. Jenkins can be used to automate
the development lifecycle for any application in any language. When we refer to a “CI
Server,” we're generally referring to these generic tools, although the concepts usually
translate to Salesforce-specific tools as well.

245

CHAPTER 7 THE DELIVERY PIPELINE

Although Salesforce-specific tools natively support Salesforce deployment and
testing, they are often not as flexible as the generic tools. Using Salesforce-specific tools
frees your team from the complex challenge of having to build and manage their own
scripts, at the cost of some control and visibility over the complete process, as well as
quite a few dollars.

The movement to Salesforce DX increasingly allows generic CI tools to support every
aspect of the Salesforce development lifecycle. If your team has the ability to write or
gather their own deployment scripts, they can create their own comprehensive process.
You can also find some well-developed open source tools like CumulusCI to help.

Although generic CI tools are a viable option, as the person who oversaw the
engineering team who built Appirio DX over the course of 2 years; I promise you that
there are some unusual challenges involved in building Salesforce release tooling. Unless
you have truly unique needs and a skilled developer tooling team, the total cost of buying
a prebuilt solution will generally be far lower than the cost of building everything yourself.

Choosing a Cl Server

As mentioned before, a CI tool has three parts: the actual CI engine that orchestrates all
the automated jobs, configuration that defines the specific jobs to run, and one or more
runners that execute those jobs.

Different CI tools handle those three parts differently, but this structure is more or
less universal, and CI tools are more or less interchangeable. Most CI tools can handle
most CI jobs and scenarios, so you can choose the CI tool that is most effective for your
team. Both the State of DevOps Report'® and the book Accelerate' present research on
the importance of teams having autonomy to choose their own tools. Enforcing a single
corporate standard for version control and CI can help ensure a company maintains
expertise in those tools and can reduce overhead such as server or subscription costs.
But it’s important for teams to be able to deviate and implement their own tools if the
benefits they bring outweigh the long-term costs of maintaining them.

Requiring all teams across a company to use a common CI server commonly leads
to a bottleneck where the IT infrastructure team needs to be involved in every change

8https://devops-research.com/assets/state-of-devops-2017.pdf

YNicole Forsgren, Jez Humble, and Gene Kim. 2018. Accelerate: The Science of Lean Software and
Devops Building and Scaling High Performing Technology Organizations (1st ed.). IT Revolution
Press.

246

https://devops-research.com/assets/state-of-devops-2017.pdf

CHAPTER 7 THE DELIVERY PIPELINE

to the CI server configuration. That limits the adoption of CI tools and a team’s ability to
experiment.

Some CI tools have an architecture that allows for teams to have full autonomy even
if there is only a single instance of the CI tool. When selecting a CI tool, look for one that
has these three characteristics:

1. The team has autonomy to control access to CI configuration such
as job status and logs.

2. You can store CI job configuration as a code file inside your
codebase itself.

3. You canrun each CI job in an environment that the team controls,
typically a Docker container.

It should be clear why the team needs the freedom to access their own job status
and logs: DevOps implies that it’s the team’s responsibility to monitor the status of their
own jobs and to use logs to debug failing jobs. As John Vincent famously said, “DevOps
means giving a sxxt about your job enough to not pass the buck.”*

The benefits of storing CI configuration as code are discussed in the next section; but
why is it so beneficial to use Docker containers to run CI jobs?

Why Use Docker Containers to Execute Cl Jobs?

One capability that enables a flexible CI system is the ability for teams to control the
environment used to run the CI jobs. CI jobs are simply processes that execute and
report back a pass/fail result. To run, these processes need an execution environment
that has all of the necessary software installed. In the early days of CI systems, that meant
configuring a server and manually installing software in it. As teams’ needs evolved, a
server admin installed or upgraded supporting tools as needed. Jenkins popularized a
plugin model that allowed teams to install common build tools like Ant and Maven from
a plugin library. Jenkins still has the richest collection of CI plugins available. But plugins
have to be installed and configured in the Jenkins instance itself. In large organizations,
the project team may not have permission to install plugins themselves and may have to
submit a ticket to IT and go through an approval process.

Phttp://blog.lusis.org/blog/2013/06/04/devops-the-title-match/
247

http://blog.lusis.org/blog/2013/06/04/devops-the-title-match/

CHAPTER 7 THE DELIVERY PIPELINE

Recent CI systems have taken the extremely flexible approach of allowing CI
pipelines and jobs to be run in Docker containers. Docker is a tool that enables the fast
creation of lightweight execution environments (“containers”) from images that are
defined using simple configuration files (“Dockerfiles”). Dockerfiles always define a
Docker image as a starting point. This allows a team to define a custom image that is
based on an existing Docker image, removing the need to rediscover all of the software
dependencies they might need. Docker images can be stored in a custom Docker
repository, but an enormous number of predefined images are available on https://
hub.docker.com. Most of these also link to the Dockerfile used to create them, making it
trivial to recreate these images if you want complete control over how they are defined.

For example, the sample Dockerfile shown in Listing 7-1 is based on the official
Docker image for Node.js version 8. On that basis, we use the Node package manager
called Yarn to install Salesforce DX and then set a few environment variables. This
Dockerfile is then built into a Docker image, which can be used to reproduce any
number of execution environments, each of which has Salesforce DX installed and ready
to execute.

Listing 7-1. myCompany/salesforceDXimage—a sample Dockerfile for
Salesforce DX

FROM node:8

#Installing Salesforce DX CLI
RUN yarn global add sfdx-cli
RUN sfdx --version

#SFDX environment

ENV SFDX_AUTOUPDATE DISABLE true

ENV SFDX USE_GENERIC UNIX KEYCHAIN true
ENV SFDX_DOMAIN RETRY 300

Docker images are almost always based on a Linux variation like Ubuntu. Windows
images have recently become supported by Docker, but the OS version in the image must
match the OS version of the host. This means that you can now create a Docker image
that runs Windows Server 2016, but it can only run on a Windows Server 2016 host. Mac
images are not currently supported.

The ability to run CI jobs in Docker containers is extraordinarily powerful. It means
that there is no need to load the CI server up with endless manually installed pieces of

248

https://hub.docker.com
https://hub.docker.com

CHAPTER 7 THE DELIVERY PIPELINE

software or plugins. A CI configuration file can simply specify the name of the Docker
image that it wants as its execution environment and what commands it wants to execute
in that environment. When the job runs, the CI runner spins up a Docker container
exclusively for that job, executes those commands, reports a pass/fail value, and then
destroys that Docker container.

Any piece of software that you want can be available in that Docker container, and
importantly you are guaranteed that the server environment is identical and clean
every time the job runs. With Docker containers, there is zero possibility that one job
might create a side effect that would change the behavior of subsequent jobs. Such side
effects are extremely hard to debug, making Docker containers a simple and low-stress
execution environment.

CI systems like Bitbucket Pipelines, GitLab CI, and CircleCI do an excellent job of
caching Docker images. This means that although the first time a Docker image is used
to run a CI job it might take a minute to download, subsequent containers can be created
in (milli)seconds. Container creation is so fast that the uninitiated would never dream
that each CI job begins with the creation of a unique new computing environment!

The (slightly contrived) GitLab CI configuration file in Listing 7-2 shows the power
and simplicity of using Docker images. At the start of the file, we specify that the Docker
image called salesforceDXimage (defined in Listing 7-1) should be used as the default
image for running each CI job. Two pipeline stages are defined, each of which has one
job. The first job, create_test_org, uses the default image and executes Salesforce DX
commands to create a new scratch org and push source to it. The second job shows how
you can override the default Docker image for a specific job. In this case, we run a Ruby
script in a container based on the official Ruby image.

Thus this one CI configuration file allows us to make use of two entirely different
execution environments. The salesforceDXimage defined in Listing 7-1 does not have
ruby installed, and the ruby image does not have Salesforce DX or Node.js installed.

The environments are entirely independent, yet we can make use of both and define the
sequence and conditions under which they’ll be used. If the first job in this pipeline fails,
the entire pipeline fails and run_tests will not execute.

249

CHAPTER 7 THE DELIVERY PIPELINE

Listing 7-2. Sample .gitlab-ci.yml file for running tests
image: 'myCompany/salesforceDXimage:latest'

stages:
- build
- test

create_test_org:
stage: build
script:
- sfdx force:org:create -a testOrg --setdefaultusername --wait 10
- sfdx force:source:push
only:
- master

run_tests:
stage: test
image: ruby:latest
script:
- ruby -I test test/path/to/the_test.rb
only:
- master

Defining servers using Docker images has become the default approach for new IT
projects and is the most flexible approach you can take for defining your CI processes as
well. If you're using a generic CI tool, choose one that allows you to define and run jobs
in Docker images.

Although Appirio DX is a commercial tool, it provides a Docker image appirio/dx
that contains the Salesforce CLI and many other helpful tools. You can freely use or build
off of that image as a starting point for your CI process.

Example: Using GitLab

At Appirio, we chose to use GitLab because of their fast pace of innovation and because a
feature-rich CI system is built into the tool. Other version control platforms increasingly
bundle CI tools, and CI tools increasingly support the capabilities mentioned earlier.

250

CHAPTER 7 THE DELIVERY PIPELINE

GitLab is available as a SaaS hosted service on https://gitlab.comor as a self-
hosted service. Both the SaaS$ and self-hosted instances have free tiers, as well as paid
tiers such as Bronze, Silver, and Gold.

GitLab itself is a version control tool. GitLab CI is the engine that orchestrates all
the automation, and it’s tightly integrated with the rest of GitLab. The configuration for
GitLab Cl is all contained in a simple text file called .gitlab-ci.yml thatlives alongside
your project’s code in the repository; it’s simple enough to be easy to read, but powerful
enough to describe almost any CI/CD configuration. To set up CI for your project, you
don’t need to log in and configure anything; just drop a .gitlab-ci.yml file into your
project repo and the whole CI system comes to life!

The GitLab runner typically hosts Docker containers—super lightweight Linux shells
that allow us to run almost any kind of software and code that we want. You can create
runners that do not host Docker containers as well. Most runners can be shared across
many projects, but you may sometimes need to create special GitLab CI runners for
specialized applications like building OS X apps or other Docker images.

Because GitLab CI integrates with GitLab, everyone who makes changes to
the code repository is implicitly using GitLab CI. For example, just by creating and
pushing a feature branch, a developer triggers the execution of any CI jobs that run on
feature branches. Using CI is thus very easy, you just use version control and you're
automatically using CI!

User Permission Levels for Cl Systems

User permission levels for CI systems are directly or indirectly related to the security
of the underlying code repository. This relationship is natural because if you have
permission to make a commit on the repository, then in effect you have permission to
trigger any jobs based on that repository. Some CI systems such as CircleCI base their
access permissions on the permission that users have on the underlying repository.
Delegating access control and privileges to GitHub, for example, ensures that the
CircleCI security model is simple but robust. Other CI systems such as Jenkins have
access controls that are not directly related to the access controls on the repository.

Git itself does not handle access control. Instead, security is enforced by the Git host.
And hosts such as GitLab, GitHub, and Bitbucket provide numerous layers of security
over the repository itself.

251

https://gitlab.com

CHAPTER 7 THE DELIVERY PIPELINE

The most basic level of access is simply whether a user can access the repository
in any form. Additional layers of security exist to determine whether users can clone
repositories, create branches, make commits on particular branches, and so on. On top
of that, the CI system has a security model to determine which users can trigger jobs, see
job logs, and see secret variables.

Most CI systems provide different security levels you can assign to users. For
example, in GitLab, “developer” access is appropriate for most users since it allows them
to use GitLab CI, but not to see or change secret values such as credentials.

To enable CI/CD, it’s necessary to store credentials for the systems you connect
to such as your Salesforce instances. Because your CI system has access to these
credentials, it is important to secure the CI system just as you would secure access to
the connected systems themselves. Only authorized users should have access to the
repository, and you should monitor or periodically audit the list of who has access.

From a practical point of view, it’s important to allow developers the ability to make
commits on branches that trigger CI jobs. It’s also important that they be able to see job
logs so they can debug failures. But it’s good practice to limit the visibility of the secret
variables to just a few members of the team. This restriction does not interfere with the
work or effectiveness of the team, but provides a layer of protection for these important
credentials.

Creating Integration Users for Deployments

An entire team makes use of a single set of CI jobs, and to ensure consistent behavior,
a single set of environment credentials are generally stored in the CI project and used
by everyone. For example, if a team configures a job to automatically deploy metadata
to a Salesforce org, which user’s credentials are used for that deployment? It’s often
the case that a senior member of the team will configure the CI system and be tempted
to use their own credentials for the deployment. That can lead to jobs failing if that
person’s user account is ever deactivated (think of the rate at which tech workers switch
companies!). This can also leave that user’s Salesforce credentials vulnerable or allow
jobs to impersonate that user.

CI jobs that connect to other systems are integrations. As with any integration,
you should consider the security of that integration. It’s appropriate to create or use
an integration user account for Salesforce deployments and tests and to use those
credentials in your CI system. Until recently, deployments required “Modify All
Data” privileges, but the new “Modify Metadata through Metadata API Functions”

252

CHAPTER 7 THE DELIVERY PIPELINE

permission provides a more secure alternative. Create a permission set that includes the
permissions required to deploy metadata and configuration data to your orgs, and assign
that permission set to an integration user. Then use those credentials in your CI process
as opposed to the credentials for a specific individual.

Configuring CI/CD

As described earlier, every CI tool has their own way of configuring jobs. Nevertheless,
there are certain common features to all CI systems. The main unit of CI configuration
is a job. Each job has a name and then defines the source code used for that job, what
triggers the job, what actions (“build steps”) the job should take, as well as prebuild and
postbuild actions and notifications. In other words, “what code are you working on?’)
“what action should be performed?’, “when?’; and “who/what should we notify?”.

Groups of multiple jobs that have a single trigger but execute in a particular
sequence are called a pipeline. Jobs may also be grouped into “projects” or some other
kind of grouping for purposes of enabling or disabling access.

Some CI systems require you to log in to that system to configure jobs, but there are
many reasons why it’s helpful to use a CI system that allows you to store configuration as
code.

Why Store Cl Configuration As Code?

Storing CI job configuration as a configuration file inside the codebase is an example
of “configuration as code.” This ensures that any changes to this configuration are
versioned and tracked and gives the team who controls the code the power to control
their own CI processes without having to go through another group. Travis CI was the
first CI tool to popularize this approach, but this approach is now used or supported by
most CI tools. Each CI tool varies in the syntax used in this configuration file, but the
files are generally short, easy to understand, and written in a human-readable markup
language such as YAML or TOML.

Storing configuration in this way makes the configuration visible to everyone on the
team, allows you to monitor changes to the configuration, and easily replicates it to other
projects. It’s even possible to autogenerate CI configuration files as part of project setup.

253

CHAPTER 7 THE DELIVERY PIPELINE

Storing Secrets and Using Environment Variables in Cl Jobs

Environment variables are strings that are stored in memory and used to dynamically
configure running applications. The most famous environment variable is PATH. If you
type echo $PATH in Mac/Linux or echo %PATH% in Windows, you will see a list of all the
paths that your system will check to find executables when you run a command from the
command line.

Continuous integration processes are driven from source code stored in version
control. But there are some things like passwords and tokens that should never be
stored in version control. Environment variables are a perfect way to securely provide
a continuous integration engine access to such “secret” configuration. This is also a
recommended best practice for 12-factor apps (https://12factor.net/config).

There can be many types of configuration needed for a CI process to run. In general
configuration for a CI process is best to be stored in the CI configuration file itself. But
there are two main cases for using environment variables to store configuration:

1. Storing secrets like usernames, passwords, and tokens

2. Storing flags that you want to be able to change without changing
the underlying config files, such as flags that enable/disable
deployments

Environment Variables in the Cl System

Most CI systems allow you to set environment variables in their configuration files or as
secret variables injected on the fly. These variables are available in the job environment
when it executes and can be referenced by all executed commands and scripts.
Variables stored in configuration files should only be used to store nonsensitive project
configuration.

Credentials and other secrets that are stored in the CI system’s secret store are
securely passed to the CI runner and made available as environment variables during
a pipeline run. These values are not visible as plain text, and most CI systems will
autodetect the presence of these secret values and obscure them if they appear in logs.
This type of security is not impervious to being exposed, but nevertheless represents
an important precaution. This is the recommended method for storing things like
passwords, SSH keys, and credentials.

254

https://12factor.net/config

CHAPTER 7 THE DELIVERY PIPELINE

While you can set custom variables for use by your applications, CI systems typically
include numerous built-in environment variables that you can also make use of. These
Cl variables provide information such as the commit message or ID, the URL of the CI
system, the name of the branch, and so on. These CI-supplied variables supply useful
information to allow you to write scripts that are more dynamic and context-aware.

Project-Specific Variables on Your Local System

If you need to store project-specific secrets as environment variables, you can put
them in a local configuration file that is not checked into version control. Prior to the
Salesforce CLI, it was common to store credentials for Salesforce orgs in a build.
properties file that could be used by the Ant Migration Tool. The Salesforce CLI now
has its own credential store for Salesforce orgs, but your project automation may still
need to store some secret variables.

One common convention is to create a file called .env in the root of your project that
contains any key=value pairs that you want to set. Node.js has a dotenv module that
can be used to load these values, and tools such as Appirio DX provide out-of-the-box
support for .env files. To load variables from this file manually on Mac or Unix systems,
you can run the command source .env in a script.

Group-Level Configuration

Many CI systems allow you to organize multiple projects into groups and to specify
configuration at the group level in addition to the project level. Specifying group-level
configuration is important for two reasons. First it allows you to specify configuration
that can be reused across many projects. If the configuration needs to change, it can

be updated in one place to avoid the risk of individual projects getting out of sync. The
other benefit of group-level configuration is to protect secrets that should not be visible
to members of individual project teams. You might store the credentials for a production
salesforce org at the group level and allow projects to make use of those credentials. But
for users who don’t have permissions at the group level, the credentials are not visible,
providing a layer of added security.

255

CHAPTER 7 THE DELIVERY PIPELINE

Example CI/CD Configuration

Now that you're familiar with the concepts, let’s review the automated jobs that you
might configure as part of your Salesforce CI/CD workflow.

Cl Jobs for Package Publishing

The core component of a Salesforce DX CI/CD workflow is package publishing. The
“Branching for Package Publishing” section describes how a simple trunk-based strategy
is sufficient for package publishing. Although feature branches can be used, they’re not
essential, and your initial CI configuration does not need to handle them.

Assuming your trunk branch is called master, your delivery pipeline will be triggered
on every commit to master. First you can perform automated code checks such as static
code analysis, then you can trigger unit test execution, then you can publish a new
version of the package, and finally you can install it in a testing environment.

Continuous Delivery*' suggests beginning by creating a “walking skeleton” that
includes CI jobs for every step you intend to create, even if you've not yet determined the
implementation details. In this case, define a CI pipeline (using whatever configuration
your CI tool requires), specify that it should be triggered on master, and specify four

” «u ” «

jobs: “static code analysis,” “unit testing,

” «

package publishing,” “package installation.”
The initial scripts for each of those jobs can be simple echo Hello World statements.

If you're working with this CI tool for the first time, just getting this walking skeleton
working may take you a few hours or more. Most CI tools have helpful tutorials to get you
started.

Setting up a walking skeleton in this way is a type of agile development; within a
short time, you have established a working CI process. You can now begin to refine the
details and continue to refine and improve the process over the life of your project.

Salesforce DX jobs need to authorize with a Dev Hub and also with any target orgs.
See the section on “Salesforce DX Org Authorizations” in Chapter 6: Environment
Management for an explanation on how to use an Auth URL or a JWT token for org
authorization. You will store these special strings as secrets in your CI system and use
these secret environment variables to authorize the orgs before performing Salesforce
DX commands.

#Jez Humble and David Farley. 2010. Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation (1st ed.). Addison-Wesley Professional.

256

CHAPTER 7 THE DELIVERY PIPELINE

The most important job to define is the package publishing job, the heart of the
workflow. Packages must first be created and their ID specified as an alias in the sfdx-
project.json file. Then versions of that package can be published as the metadata
evolves. See the Salesforce DX Developer Guide for detailed steps, but essentially you
will be executing the command sfdx force:package:version:create --wait 10.This
will create a new version of the default package defined in sfdx-project.json. If you
are storing multiple packages in one repository, you will need to use the - -package flag
to publish versions of any nondefault package(s). The purpose of the --wait command
is to force the package creation CI job to not terminate immediately but instead to wait
for up to 10 minutes for this job to complete (you can adjust the duration as needed).
Package version creation can be time-consuming, especially if you have specified
managed package dependencies.

Each newly published package version has an ID. This ID begins with 04t and is also
known as a “subscriber package ID” because it can be used to install that package in
another (“subscribing”) org. When building this type of automation, it is best to request
the output in JSON format by appending --json to the Salesforce DX commands. JSON
can be read natively in most coding languages, especially JavaScript. You can also use the
command-line tool jg** to allow for simple JSON parsing and reformatting. jq is one of
several tools that I ensure are present in Docker images intended for use with Salesforce
DX. See “Other Scripting Techniques” in Chapter 9: Deploying.

After extracting the subscriber package ID(s) from the results of the package version
creation, you'll need a way to pass the ID(s) to the next job. Each job in a CI system
is independent, and if you use Docker containers for your CI jobs, they each run in
entirely different execution environments. CI tools provide mechanisms, however, for
transferring information and files from one job to the next. In GitLab CI, for example, to
retain files between jobs, you define “artifacts” containing particular files and folders. I
will typically write any JSON outputs I need for other jobs into a file and include that in
an artifact, along with the project’s . sfdx folder.

The next job to configure is the “package installation” job. In this job you will unpack
the subscriber package ID from the previous job and install the package you just created
in a target org. This allows others on your team to review and test your updated package

Zhttps://stedolan.github.io/jq/

257

https://stedolan.github.io/jq/

CHAPTER 7 THE DELIVERY PIPELINE

in a live environment. First, use the auth:sfdxurl:store or auth: jwt:grant command
to authorize the target org based on the Auth URL or JWT token you stored as a CI secret.
You will then run a command like sfdx force:package:install --package 04t...
--targetusername yourAlias --wait 10.The package ID is the subscriber package ID,
the targetusername is the alias of the target org, and the wait parameter performs the
same function as earlier.

Once those two jobs are in place, you have accomplished the deployment
components of your CI system. Now you can define the first two test-related CI jobs
based on the tools you're using for testing. You may wonder why I'm suggesting this
order of defining the jobs, since it’s not the linear order in which they’ll eventually run.
The purpose in doing this is to establish a functioning, end-to-end deployment process
as early as possible, even if it’s not perfect. DevOps implies a process of continuous
improvement. But you can’t improve your delivery pipeline if you don’t actually have a
delivery pipeline. The philosophy here is the classic approach to refactoring®: “make it
work; make it right; make it fast” Package publishing and installation make this work.
Static analysis and testing help make it right. There will certainly be opportunities to
make this process faster once it’s created, by being more selective about which tests run,
and when packages are published and installed.

Running a static code analysis job depends on your having a static code analysis tool.
Chapter 8: Quality and Testing explains the various options for static code analysis. Static
analysis is most effective when presented as real-time feedback for developers in the
form of “linting” in their IDE. But having a central static analysis job is useful to enforce
team standards and to track metrics in a shared tool. Static analysis runs directly on your
codebase. Most static analysis tools run locally, which in the case of a CI job means that
the code is scanned within the CI job’s execution environment. If you are running PMD,
then there is no communication with an external static analysis server. You can export
reports as downloadable artifacts in your CI system or (better yet) create a mechanism
to upload and analyze the results in a central location. Other tools such as SonarQube
communicate with a static analysis server to get the rule definitions, then run the scans
locally, and report their results back to the static analysis server. This is a common
architecture for static analysis tools that scales well even for hundreds of scans being run
in parallel. When communicating with a static analysis server, you will need a token of
some sort for authentication. You'll store this along with the other CI secrets.

Bhttp://wiki.c2.com/?MakeItWorkMakeItRightMakeItFast

258

http://wiki.c2.com/?MakeItWorkMakeItRightMakeItFast

CHAPTER 7 THE DELIVERY PIPELINE

Running unit tests is somewhat trickier, since this requires a Salesforce instance
for those tests to run. Ideally developers should run tests on their development scratch
org and ensure they pass before pushing changes for publication by the CI system. You
can enforce the process of developers executing tests by adding that as a post-commit
or pre-push hook in their local Git configuration. But synchronizing Git hooks across
developers requires a tool like Husky,?* and it’s useful to have a mechanism to enforce
test execution centrally.

Running unit tests requires a Salesforce environment that you can push your latest
code to and run tests on. As mentioned earlier, it’s important to establish a script that
can be used to provision developer environments, review apps, and testing orgs. To
create a test environment, simply run this script to create a new scratch org, install
packages, and push source as you would when setting up a development environment.
Then run your Apex tests (or an Apex Test Suite with a chosen subset of them) and pass
or fail the job based on the test results. Typically, if a test fails, the command will return
a nonzero status code, which Unix systems use to report failure. You can also set a test
coverage threshold, report the test output in JSON, and then parse the coverage results to
determine whether to pass or fail.

Once this entire system is set up and you have a working test and deployment
pipeline, you've established the basic foundation for delivery automation. There are
of course improvements you can make to make the process more effective or more
efficient. If your scratch org creation process is time-consuming, you can consider
whether you need to create a new testing scratch org each time. If not, you can store the
org’s access credentials as an artifact and access it repeatedly between jobs. To do this,
simply persist the user level ~/.sfdx folder as an artifact between jobs, and add logic
to recreate the environment automatically if the scratch org has expired and can’t be
opened.

Perhaps you can add Ul testing in the scratch org after Apex tests have run; or
perhaps you want to run security scans or custom checks, for example, to ensure that
custom fields all have descriptions in your XML metadata.

Do you need to publish every package every time? Perhaps you can dynamically
determine which packages have changed and need updating by doing a Git diff between
publish jobs. You can also use a tool like semantic release or monitor for changes to version
numbers in the sfdx-project. json file to not publish new versions on every commit.

2https://github.com/typicode/husky

259

https://github.com/typicode/husky

CHAPTER 7 THE DELIVERY PIPELINE

Do you want to enable automated or manual installation of this updated
package in other environments? If so, you can enhance the package installation step
or install into other environments as needed. A great tool to help with package
installations is the Rootstock DX plugin rstk-sfdx-package-utils available on NPM.?
stdx rstk:package:dependencies:install checks your target org to see which
package versions have already been installed and then installs any package versions
that may be missing based on the list of package dependencies in sfdx-project.json.

To what degree you improve this workflow will depend on your team’s priorities. The
overarching goal of this process is to enable your team to be more effective by publishing
small updates more frequently and reducing the frequency, severity, and duration of
production failures. Use those goals to guide your priorities as you evolve this workflow.

CI/CD is what makes version control come to life and become a truly indispensable
part of your workflow.

Cl Jobs for Org-Level Management

Just as the package publishing workflow is based on the branching strategy for packages
and brings it to life, so the CI process for org-level metadata management builds on the
“branching for org-level configuration” described earlier and brings it to life.

As discussed in that section, the goal here is to provide centralized visibility and
control over all orgs, allowing for both temporary and long-term differences between
the orgs. Orgs have temporary differences due to features and fixes being gradually
promoted and tested. Orgs have long-term differences related to integration endpoints,
org-wide email addresses, and other org-specific configuration. While the goal of version
control is to gain visibility into these similarities and differences, the goal of Cl is to
enforce control over the orgs.

As mentioned before, your goal should be to move the vast majority of your metadata
into packages and use org-level management strictly for org-level configuration. As such,
the static analysis and unit testing jobs have less importance in the org-level workflow,
although it can be beneficial to add suites of integration tests that can be run on orgs to
test the interplay between multiple packages.

As before, begin by creating a walking skeleton of the CI process that you want to
enforce. This time, because you'll probably need to use multiple long-running branches

Zwww . npmjs . com/package/rstk-sfdx-package-utils

260

http://www.npmjs.com/package/rstk-sfdx-package-utils

CHAPTER 7 THE DELIVERY PIPELINE

to manage configuration for your sandboxes, you'll be establishing multiple pipelines,
each triggered by deployments to a particular branch.

Let’s assume that you are managing SIT, Staging, and Production environments,
and you are following the branching pattern described previously. You'll use the master
branch to deploy to the staging environment, Git tags on the master branch to trigger
the deployments to production, and a branch called SIT to manage the metadata in that
environment. If you're using GitLab CI, a walking skeleton might look like the one in
Listing 7-3.

Listing 7-3. Sample .gitlab-ci.yml file for managing org-level metadata publishing
image: myCompany/salesforceDXimage:latest

stages:
- deploy

deploy to SIT:
stage: deploy
script:
- echo Hello World
only:
- /"SIT/

deploy to_staging:
stage: deploy
script:
- echo Hello World
only:
- master

deploy to_production:

stage: deploy
script:

- echo Hello World
only:

- tags

- /™v[0-9.]+$/
when: manual

261

CHAPTER 7 THE DELIVERY PIPELINE

Because we are managing multiple branches, there are multiple CI pipelines defined
even when there’s only one job in each pipeline. It is the only property that establishes
these three jobs as distinct pipelines. We are indicating that this job will only be triggered
when changes are made to a particular branch or tag. In GitLab, pipeline jobs are
calculated dynamically based on trigger conditions like only, except, and when. We can
add additional jobs to a pipeline by using the same trigger conditions on multiple jobs.

Begin by defining the specific scripts to run to deploy updates to the SIT
environment. Once you determine the appropriate pattern for that deployment, you can
replicate it in the job configuration for the other environments.

The basic pattern for each org is to install any package updates, build and deploy the
metadata specific to that org, build and deploy configuration data specific to that org,
and then execute automated acceptance tests. While there are multiple ways to divide
jobs, you might group the middle two (closely related) processes and have jobs called
update_packages, update_configuration, and acceptance tests.

Managing the installed package versions at the org level provides central visibility on
the differences between orgs. But since package installation can also be done using the
delivery pipeline for packages, we can begin by defining the update_configuration job.

The section on “Managing Org Differences” in Chapter 9: Deploying provides more
details on a folder structure for tracking metadata differences between each org. But
in short, it’s helpful to separate the metadata that is common to all orgs from metadata
that is unique to particular orgs. When you perform deployments, that metadata will
need to be combined in a temporary folder from which you create a single deployment.
This takes advantage of Salesforce’s transaction processing which allows the entire
deployment to be rolled back if any part of the metadata fails to deploy.

Configuration data can be combined in a similar way, giving precedence to org-
specific configurations over the default configurations. That configuration data can
then be loaded in the target org using the data loading methods provided by the
Salesforce CLI.

With these processes, there’s obviously room for optimization once they’re
established. As described earlier, I've typically used Git tags to mark a successful
deployment and Git diffs to determine what metadata or data has changed since the last
deployment. This information allows us to fill a temporary deployment folder with only
the metadata and data that needs to be updated, making for a faster deployment and
update.

262

CHAPTER 7 THE DELIVERY PIPELINE

The acceptance testing process is similar to the unit testing process described
earlier, with several differences. First, there is no need to create a testing environment,
since these tests will run on sandboxes and production. Second, these acceptance tests
should be more comprehensive and wide ranging than the unit tests. While there is no
need to repeat the unit tests, these acceptance tests should exercise key user workflows,
especially critical business process calculations, to ensure that there are no regression
failures.

An acceptance test is not different in nature from a unit test, it simply involves tests
across multiple parts of the system and may be longer running as well. See the section on
“Automated Functional Testing” in Chapter 8: Quality and Testing.

When defining the scripts to manage package installation at the org level, you'll
approach this in three phases. In your first iteration, simply (re)install all the packages
for the org each time the job runs. That gives you a way to push out package upgrades
from your CI system, but is clearly inefficient unless you have a tiny org. In your second
iteration, determine currently installed packages and update only the ones which differ
from your configuration. This creates a highly efficient package upgrade process. Finally,
build a mechanism to connect the repositories that manage your package publishing
with the repository for org-level metadata, such that publishing a new package version
triggers a package upgrade process in your org-level repository. That kind of multiproject
pipeline allows each repository to be simple and effective while still orchestrating a
larger process.

Salesforce DX does not contain explicit guidelines for managing packages at the org
level. But the sfdx-project.json gives a format for listing package dependencies that
can be extended for use in managing org-level package “dependencies.” The folders
used to hold org-specific metadata can be listed as “packages” in sfdx-project. json.
The package versions to be installed in that org (both external managed packages and
unlocked packages from your own team) can be listed as “dependencies” of that package.
Any automated methods to install dependent packages in a scratch org can then be
extended to manage package installation/update in a sandbox or production org.

Determining the package versions currently installed in an org is an important way
to avoid spending time with redundant installations of packages that are already up
to date. Salesforce provides the command sfdx force:package:installed:1list -u
yourOrgAlias as a way to query those packages. By using the - - json flag, you can export
an easy-to-parse list of those packages which you can then compare with the package

263

CHAPTER 7 THE DELIVERY PIPELINE

versions held in version control. Again, the Rootstock package installer® can be used to
automate this entire process.

Once you establish a reliable method to install packages at the org level, you should
remove the capability to install packages from the package publishing workflow. This
prevents the risk of the two CI pipelines installing different versions of the packages.

Instead, you should establish a mechanism for package pipelines to generate
commits or merge requests onto the org-level pipeline. When a new package version
is published, it can push a change to the org-level repository to share the new package
version or ID. The most effective mechanism to do this will depend on your CI system
and your team’s chosen workflow. GitLab has a robust API that can be used to make
updates to files and generate commits, branches, and merge requests. If your CI system
does not offer such an API, you can trigger a CI job that queries the Dev Hub for the latest
versions of particular packages and then writes the latest version back to the repository.
Note that CI jobs don’t normally write to their own repository so you may need to add a
token for your repository as a secret variable and use that to perform a push from the CI
job back to the repository.

Any detailed scripts you create should be stored as files in your repository, outside of
the CI configuration file, allowing the CI configuration to remain concise and readable.
Nevertheless, if you find you're accumulating repetitive blocks of YAML, you can use
anchors to indicate blocks of YAML that should be repeated in the configuration.
Anchors are a standard part of YAML syntax, but you should confirm whether your CI
system supports them.

Instead of a block like the one shown in Listing 7-4, you can use anchors to avoid
repetition as shown in Listing 7-5. While the difference here is small, anchors can be a
helpful way of keeping your configuration readable as it grows.

Listing 7-4. Sample .gitlab-ci.yml YAML file with repetitive blocks
image: myCompany/salesforceDXimage:latest

stages:
- install
- deploy
- test

*www . npmjs . com/package/rstk-sfdx-package-utils

264

http://www.npmjs.com/package/rstk-sfdx-package-utils

CHAPTER 7

update_packages in SIT:
stage: install
script:
- ./scripts/getInstalledPackages.sh $TARGET_ORG
- ./scripts/updatePackages.sh $TARGET_ORG
variables:
- TARGET_ORG: SIT
only:
- /7SIT/

update packages in staging:
stage: install
script:
- ./scripts/getInstalledPackages.sh $TARGET_ORG
- ./scripts/updatePackages.sh $TARGET ORG
variables:
- TARGET ORG: staging
only:
- master

update_packages in_production:
stage: install
script:
- ./scripts/getInstalledPackages.sh $TARGET_ORG
- ./scripts/updatePackages.sh $TARGET_ORG
variables:
- TARGET ORG: production
only:
- tags
- /™v[0-9.]+$/
when: manual

THE DELIVERY PIPELINE

265

CHAPTER 7 THE DELIVERY PIPELINE
Listing 7-5. Sample .gitlab-ci.yml file using YAML anchors
image: myCompany/salesforceDXimage:latest

stages:
- install
- deploy
- Test

.fake job:
<<: xx8update packagesxx
stage: install
script:
- ./scripts/getInstalledPackages.sh $TARGET_ORG
- ./scripts/updatePackages.sh $TARGET_ORG

update_packages in SIT:
<<: *xxxupdate_packagesxx
variables:
- TARGET_ORG: SIT
only:
- /"SIT/

update packages in staging:
<<: xxxupdate_packagesxx
variables:
- TARGET_ORG: staging
only:
- master

update_packages _in_production:

<<: skxxupdate_packagesxx
variables:

- TARGET ORG: production
only:

- tags

- /™v[0-9.]+$/
when: manual

266

CHAPTER 7 THE DELIVERY PIPELINE

Summary

The delivery pipeline is the mechanism to deliver features and fixes safely and quickly
from development to production. The foundation for this is version control, and your
version control branching strategy is used to balance the needs for freedom, control, and
ease in your deployments. CI automation tools are driven from version control, and are
the engine that enables deployments, tests, and any metadata transformations that may
be needed.

In the next chapter, we'll look in detail at testing, the aspect of the delivery pipeline
that fulfills the need for safety and reliability.

267

CHAPTER 8

Quality and Testing

Quality refers to the degree to which software does what it’s supposed to do, and is built
in a way that is structurally sound. Testing refers to checking and giving feedback on
software quality. Testing can assess functional quality: does it do what it’s supposed to
do and not do things it shouldn’t? Testing can also assess structural quality: is it reliable,
secure, maintainable, performant, and appropriately sized?

Some amount of everyone’s work and customizations will be thrown away or never
used. If your work is lucky enough to be used in production, it will always be tested.
Your work will either be tested intentionally prior to release, or it will be tested implicitly
when it’s used or updated. When end users intentionally review and give feedback
on functionality that is pending release, this is called “user acceptance testing.” But
sometimes unsuspecting end users are exposed to functionality that has not been tested
by any other means. In that case, the “testing” is inadvertent, uses real business data,
and can lead to confusion, problems, and ill-will.

The purpose of this chapter is to explain key concepts of Salesforce software quality,
share the many available testing mechanisms, and encourage practices that increase the
reliability of your production systems. Although I frequently reference “code” quality,
Salesforce customizations involve an interplay of code and non-code configuration.

In this chapter, the term “code” is mostly used as concise shorthand for any Salesforce
customization.

Understanding Code Quality

Quality is subjective, but needs to be considered from the perspective of both end users
and the technical team that creates and maintains the entire system. End users are
concerned mostly with whether code functions as it should, whereas it is the role of the
technical team to ensure that the code is maintainable, secure, performant, testable, and

269
© Andrew Davis 2019

A. Davis, Mastering Salesforce DevOps, https://doi.org/10.1007/978-1-4842-5473-8_8

CHAPTER 8 QUALITY AND TESTING

so on. Although end users aren’t concerned with the underlying implementation, flaws
in the code that lead to slow performance, data loss, and exploits can quickly become
massive issues that capture the attention of the business, customers, and even the media.

Quality code can be seen as code that meets the current and potential needs of the
customer. This is by definition a very challenging problem. Quality is not something you
can perfect; but it’s often something you can improve.

Functional, Structural, and Process Quality

As shown in Figure 8-1, software quality can be divided into functional quality, structural
(or nonfunctional) quality, and process quality.

Functional quality refers to whether the software functions as it should and meets
the stated needs of the customer. In agile terms, code that fulfills the purpose of the story
and meets the acceptance criteria can be said to have functional quality. One of the
benefits of iterative development is that the sooner you can put working software in front
of end users, the sooner you can validate that it meets their actual needs. If end users are
not satisfied, further development cycles can focus on increasing the functional quality
in their eyes.

Structural quality, also known as nonfunctional quality, deals with the quality
of the underlying implementation. Well-crafted software will function reliably, day in
and day out, even as other aspects of the system evolve. The evolution of any IT system
is inevitable—it is a living thing—and so the maintainability of code is also crucially
important. It should be possible to make small changes to the system in a small amount
of time, without undue effort spent deciphering the meaning of poorly named, poorly
commented, rambling “spaghetti code.” And as the user base continues to grow,
functionality continues to expand, and data accumulates, the application should
perform consistently at scale. Software is designed with certain users and use cases
in mind. But how will it behave when unintended users do things to the system that
were never considered in its design? The IT world exists under the shadow of countless
threats. Any system exposed to the Internet will immediately be exposed to thousands
of automated attacks from bots built to identify and exploit common vulnerabilities. The
security of your application is thus a critical hidden factor that must be considered.

In all of this, the size of your code, both its scope and the LOC (lines of code) count,
has a great impact. For example, a design that served the application well when it was just
beginning may be entirely unsuitable once the application has grown to enterprise levels.

270

CHAPTER 8 QUALITY AND TESTING

Process quality refers to the quality of the development process: whether it supports
the development of quality software in an efficient and reliable way. Much of the rest
of this book focuses on process quality, such as the use of version control, continuous
integration, and automated testing. Process quality also includes the process of gathering
and tracking requirements and coordinating the work of the development team.

Software Quality

Functional Quality

Does it do what it supposed to do?

Reliability
Does it break easily?

Security
Vulnerable to exploits?

Performance
Speed, Memory, Efficiency, etc

Maintainability
Is it easy to understand and build on?

Size
An indicator of work done and complexity

Figure 8-1. Code quality has many hidden levels

Understanding Structural Quality

It is important for development teams to understand structural quality in more detail,
so they can understand how to improve and ensure it. Different sources use different
terms to describe the aspects of software quality, but the following divisions cover most
concerns.’

'https://en.wikipedia.org/wiki/Software_quality

271

https://en.wikipedia.org/wiki/Software_quality

CHAPTER 8 QUALITY AND TESTING

Reliability

Reliability refers to the ability of your code to perform consistently, every time it’s
executed, in spite of variations in inputs, changes to other systems, and ongoing updates
to functionality. A reliable system “just works”: no 500 errors, unhandled exceptions,
and the like. This implies that the system has been tested with inputs including edge
cases such as null or missing values, values approaching and exceeding size limits, and
so on. Reliability implies that your design is not brittle and dependent on underlying
data and systems that might change due to factors outside your control. If a key piece of
configuration data is suddenly absent, your application should generate a meaningful
error on the backend and fail gracefully for users.

Many DevOps practices such as “chaos engineering” are focused on building reliable
distributed systems at scale. Reliability at scale implies that systems should continue to
function even if individual nodes periodically go offline.

One key to ensuring reliable code is to practice test-driven development (TDD) or its
offshoots such as behavior-driven development (BDD). Underpinning each acceptance
criteria for your application with an automated test that ensures this functionality
allows you to run regression tests after every significant change to your application.

This provides quick visibility into any failures that might compromise functionality.
Writing a rich set of automated tests depends on your code being testable. To be testable,
code needs to be modular. And testing code that depends on external systems requires
there to be a layer of abstraction so that a “test double” can be used instead of actually
contacting the external system. In this way, the process of writing tests creates a natural
pressure toward good coding practices.

Maintainability

The people who maintain software are rarely the ones who originally wrote it. If a
developer revisits code they wrote 6 months ago, it might look as unfamiliar as code
written by another person. Maintainability means that software is written in such a
way that the purpose of each method is easy to understand and that small changes can
be made easily without huge effort and without fear of breaking the application. Clear
naming of variables, classes, and methods is critical. If it takes you 5 minutes to figure
out what a small method does, take 1 minute to give it a more helpful name that clearly
describes its purpose. As Figure 8-2 indicates, naming things is hard. Invest time in
choosing self-explanatory names.

272

CHAPTER 8 QUALITY AND TESTING

Programmers' Hardest Tasks

Designing a solution
2.0%

Writing tests

2.0%

Opinion being overruled
B 3.0%
“~._Working with someone else's code
8.0%

Dealing with other people
B.0%

Naming Things

49%

Estimating time to complete tasks
10.0%

Explaining what | do (or don't do)
16.0%

Figure 8-2. Naming things is hard®

Another important aspect of maintainability is reducing the “cognitive complexity”
of the code by reducing the number of if statements, loops, and other logic in a single
block of code. This is also known as “cyclomatic complexity”: the number of different
logical paths a section of code could follow.

Reducing the sizes of classes and methods is a key way to ensure maintainability.
The “single responsibility principle” states that every piece of code should have just one
purpose. A method that does two things should be divided into two methods with very
clear names. Adding abstraction in this way makes code quick and easy to understand,
without requiring maintainers to spend hours deciphering complex logic.

Code comments are very important to explain complex pieces of logic and to
otherwise clarify the code. But wherever possible use simple logic, clear names, and
short methods instead of writing comments. A standard to strive for is “self-documenting
code,” where the names are so clearly chosen, and methods are so brief and well
structured that even a nonprogrammer could understand its purpose just by reading it.

“www. itworld.com/article/2833265/don-t-go-into-programming-if-you-don-t-have-a-
good-thesaurus.html

273

http://www.itworld.com/article/2833265/don-t-go-into-programming-if-you-don-t-have-a-good-thesaurus.html
http://www.itworld.com/article/2833265/don-t-go-into-programming-if-you-don-t-have-a-good-thesaurus.html

CHAPTER 8 QUALITY AND TESTING

There are many other design principles that contribute to maintainable code. Larger
codebases require enterprise design patterns to ensuring maintainability. The book
Clean Code by “Uncle” Bob Martin?® is a classic recommended for all programmers.

Performance

Performance implies that your code will function at an acceptable level even as the
number of users, parallel processes, and data increase. Performance testing in a
“production-like” environment is a key stage of software development. And capacity
planning—anticipating both best case and worst case rates of growth—is important to
ensure you don’t encounter a scaling crisis a year or two into production.

Salesforce takes care of the performance and scalability challenges of the underlying
platform. But the performance of your customizations is the responsibility of your own
team.

Security

Security vulnerabilities are arguably the scariest flaws in software. Nevertheless, security
analysis and remediation are among the most neglected aspects of quality analysis.
Developers may be oblivious to security threats or simply hopeful that they’re not an
issue. Security analysis can also be a specialized skill, neglected during developers’
basic training. For these reasons, having automated tools that can identify security
vulnerabilities and recommend resolutions is key. This is especially important for any
system that faces the public Internet or carries sensitive information such as financial
data. Web administrators can assure you that the Internet is a hostile place, with new
servers receiving automated scans and attacks within minutes of going online.

Size

Size is a consideration in structural quality simply because the larger the application
becomes (both in terms of code and functionality), the more challenging the preceding
issues become. As the size of an application increases, its attack surface increases,
meaning that there are more possible vulnerabilities. The principle of security asymmetry
says that it’s always harder to defend than to attack, since an attacker only needs to find
one way in, whereas the defender needs to defend all possible points of entry.

SRobert C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship (Prentice Hall, 2008).

274

CHAPTER 8 QUALITY AND TESTING

Understanding Process Quality

Whereas functional and structural quality relate to what is being built, process quality
refers to how you are building.

There are two main aspects of process quality: does your process lend itself to
creating a quality product and is the process itself safe, sustainable, efficient, and so on?
The main focus of this book is to suggest technical processes that lead to higher-
quality work as well as a more sustainable and efficient process, so the entire book can
be seen as falling into this topic. A comprehensive discussion of process quality would
also touch on many business and human aspects and is beyond the scope of this book.

Testing to Ensure Quality

Many factors ensure quality. As the saying goes, “quality is everyone’s responsibility.”
It’s also said that quality is far too important to be left to the QA team. Developer
training and skill is of course important, as is a manual testing process. But between
development and manual testing are automated systems that can be put in place to
provide fast feedback to developers, early warning of issues, and reduced burden on
manual testers.

Many aspects of this book deal with development process improvements such as
the use of version control, continuous integration, and modular architecture. But what
processes and systems can be put in place to help enforce and ensure quality in the
development process?

Why Test?

The purpose of testing is to protect current and future users from unreliable systems. Another
way of expressing this is that testing helps build quality into the work you're delivering.

As shared in Chapter 3: DevOps, there are five metrics you can use as key
performance indicators (KPIs) of your software delivery process. While the first two
deal with speed, the latter three deal with system reliability: deployment failure rate,
mean time to recover, and uptime. Historically, most teams assumed there is a tradeoff
between speed and reliability, or between innovation and retaining users’ trust. But the
State of DevOps Reports validate that high-performing DevOps teams excel in both speed
and reliability.

275

CHAPTER 8 QUALITY AND TESTING

The only way to deliver innovation to production more quickly without sacrificing
reliability is to build quality into your delivery process. W. Edwards Deming, widely
credited with transforming industry in Japan and later the United States, offered a
14-point synopsis of how businesses can improve their operations.

Cease dependence on inspection to achieve quality. Eliminate the need for
inspection on a mass basis by building quality into the product in the first
place.*

—Point 3 of Deming’s 14 points

Deming’s work is credited with instigating the Total Quality Management movement
in business. The basic idea is simple: as shown in Figure 8-3, the earlier issues are
caught, the less expensive they are to resolve. Finding bugs through manual QA is time-
consuming and expensive compared to using automated methods. But that cost is far
less than the cost of end users finding and reporting these bugs in a system they assumed

was reliable.

A
$1000+ !

(@]

-] r_

oM $100

©

X
L=

o

ot 10

aa)' $

o

Q

$1
Specification Design Code Test Release

Time When Bug is Found

Figure 8-3. The cost of fixing bugs increases the later in the process they are found

‘Deming, W E. Out of the Crisis. Cambridge, Mass: Massachusetts Institute of Technology, Center
for Advanced Engineering Study, 1986. Print.

276

CHAPTER 8 QUALITY AND TESTING

This also gives rise to the exhortation to “shift left.” As shown in Figure 8-4, this
means to put increasing emphasis into ensuring that the original design, architecture,
and coding are of high quality, rather than attempting to catch most bugs in a manual
testing phase. Manual QA will never be 100% reliable. In addition to the high costs
of manual testing, if nothing is done to address the quality of the inputs (the original
development), quality issues will continue to slip through no matter how much you
adjust your manual testing methods. Deming often used the “Red Bead Experiment”® to
provide a visual demonstration of this concept. If an incoming collection of white beads
is contaminated by some amount of red beads, those red beads will continue to pollute
downstream processes despite the best efforts of workers and management. The only
way to ensure that the final product is reliable is to ensure that the inputs are reliable,
which points to the importance of giving developers fast, high-quality feedback.

Quality

Traditional
Quality Model

Shift Left Model

Attention to

Specification Design Code Test Release Maonitor &
Analyze

Figure 8-4. “Shifting left” reduces overall costs by addressing quality issues earlier
in the development lifecycle

www . youtube.com/watch?v=geiC4UgpDyw
277

www.youtube.com/watch?v=geiC4UgpDyw

CHAPTER 8 QUALITY AND TESTING

What to Test?

In general, you need to test the business-critical customizations you make on the
Salesforce platform. With extremely rare exceptions, you don’t need to test Salesforce
itself; and you don’t need to test trivial customizations like page layouts. But you can and
should test any places you use complex logic (including complex validation rules and
workflow rules) to ensure that your own logic is correct. And you should have automated
regression tests in place to ensure that critical business functionality remains correct,
especially around the systems that help your company to make money.

If your employee idea board goes down for 8 hours, it may be an annoyance to
employees, but it’s not likely to cost your company any money. If your sales people are
unable to work for 8 hours, or your eCommerce site goes offline for that period, you will
have sacrificed a portion of your annual sales. In short, not every system has equal value
to the company, and thus not every test has equal protective value.

You should prioritize tests according to the production value of the system under test.

Testing Terminology

Different sources use different names to describe different kinds of tests. And just as
with “different kinds of mammal” and “different kinds of emotion,” the distinctions are
not always clear. Tests can be distinguished based on whether they test the behavior of
the system or its characteristics (functional or nonfunctional tests), how they interact
with the system (code tests, API tests, or Ul tests), what level of the system they test

(unit, component, or integration tests), how they are performed (manual, automated, or
continuous), and when they should be run (commit stage tests or acceptance tests). This
section briefly introduces those distinctions in hopes of demystifying them.

Don’t waste time feeling bad if you're confused about testing terminology. The
software testing community has created an amazing variety of terms to describe types
of tests. Perhaps this is because they have been forced to do so much tedious, manual
testing that their creativity needed to find an outlet. I'd be complicit in this linguistic
crime if I shared them all, but I refer you to www.softwaretestinghelp.comif you want
to satisfy your curiosity about how monkey testing differs from gorilla testing.®

Swww . softwaretestinghelp.com/types-of-software-testing/

278

http://www.softwaretestinghelp.com
www.softwaretestinghelp.com/types-of-software-testing/

CHAPTER 8 QUALITY AND TESTING

Functional and Nonfunctional Tests

There are different ways to look at a system: what it does, and what it’s made of.
Functional tests judge what something does. For example, if a bit of logic is supposed
to apply price discounts for customers with an annual contract value above 1 million
dollars, you can write functional tests to ensure that logic is correct. Nonfunctional
tests look at other aspects of the system, like how long it takes to run, whether it suffers
from security or coding style flaws, and so on. This is discussed in detail in the section
“Functional, Structural, and Process Quality.”

Code, API, and Ul Tests

The only built-in testing tool that Salesforce provides is the ability to run tests written in
Apex. For this reason, when people refer to “Salesforce testing,” they are often referring
to tests written in Apex that test the behavior of other Apex classes or triggers. It’s helpful
to take a broader view of this though and distinguish that there are three ways that a test
might be run: via code, via an API, or via UI tests.

Code-based tests include Apex tests as well as JavaScript tests of Lightning
Components and the JavaScript used in VisualForce. API-based tests are those that use
Salesforce’s APIs to test behavior. API tests become quite important when exercising
integrations with other systems. MuleSoft’s MUnit capabilities” are integration tests that
can be used to validate behavior using an API. There’s a gray area between code and API
in cases where tests are written in languages such as Ruby or Python to test the behavior
of Salesforce, since those tests generally use the Salesforce API to test.

Ul tests are what you do when you log in to Salesforce to observe and check its
behavior. Manual QA and UAT are almost always done in this way. UI testing can also be
done in an automated way, using tools such as Selenium, Puppeteer, Provar, or Tosca.

Unit, Component, and Integration Tests

It's very common to use a threefold distinction between unit, component, and
integration tests. Unit tests are those that exercise only one unit of code, such as a single
method. Component tests are those that exercise multiple units of code or configuration,
such as a test on a Trigger that also executes Trigger handler classes, or other business
logic. Integration tests are those that exercise an entire integrated system, cutting across

“www.mulesoft.com/platform/munit-integration-testing

279

www.mulesoft.com/platform/munit-integration-testing

CHAPTER 8 QUALITY AND TESTING

multiple Salesforce components or maybe even across other systems. Apex can be used
to write unit tests or component tests that also test workflow rules, processes, and flows.
But it can’t make HTTP callouts and has CPU, memory, and execution time limits that
limit your ability to write true integration tests in Apex.

This threefold distinction is also the most common source of terminology confusion.
“Integration test” can be used to mean different things. Salesforce developers often refer
to any Apex-based test as a “unit test” even if it cuts across many components. I use the
term “unit test” exclusively for code-based tests, but I've (unfortunately) heard people
refer to narrowly scoped manual tests as unit tests. Google did a nice job of cutting
through such confusion by dividing tests simply into small, medium, and large.?

Manual, Automated, and Continuous Testing

Central to the points made in this book is this threefold distinction in terms of how tests
are performed. Manual tests are those where humans perform actions and check the
output. Manual testing is the default behavior for traditional quality testers, for user
acceptance tests, and even for programmers and tech leads wishing to validate a system.
I've heard it said that you can’t automate something that you can’t do manually, so
manual testing may also be a precursor to other kinds of automated testing.

The benefit of manual testing is that much of it can be done by relatively low-skilled
workers, it doesn’t require any specialized tools, and it doesn’t require much planning
or architectural consideration. The challenges with manual testing are that it’s relatively
slow (minutes or hours instead of seconds), it’s error-prone, it’s tedious (if you have to
perform regression tests repeatedly), it requires people to be available (which may cause
delays), and it’s expensive (even offshore resources get paid more than computers). The
challenges with manual testing should drive you to reduce reliance on it and to upskill
your manual testers to help write automated tests.

Automated tests are those that can be done by computers. The benefits of automated
tests are in speed, reliability, and cost. Those benefits change the economics of testing
and open the door to performing automated tests far more frequently and across a
diversity of platforms. Platforms like SauceLabs and BrowserStack revolutionized web
testing by allowing companies to test their web sites or applications across a myriad of
devices and browsers in parallel, uncovering issues in minutes that might otherwise
have taken weeks to discover.

%https://testing.googleblog.com/2010/12/test-sizes.html
280

https://testing.googleblog.com/2010/12/test-sizes.html

CHAPTER 8 QUALITY AND TESTING

Continuous testing refers to running automated tests every time code is changed
on a particular branch in version control. Continuous testing is in fact an aspect of
continuous integration/delivery, since it provides a way to ensure the reliability of
a system that is undergoing rapid change. Not all automated testing tools support
continuous testing. For example, Tricentis Tosca provides a nice set of tools to build Ul
tests for Salesforce. But it can only run on Windows-based systems, and so it can be a
struggle to use it for initiating automated tests from a Linux-based CI system.

Commit-Stage Tests and Acceptance Tests

Finally, tests can also be distinguished in terms of the point in the development lifecycle
when they are run. This distinction is made in the Continuous Delivery book and is
relevant when planning your approach to testing.

The basic idea is that some tests should run every time you make a commit in version
control (continuous testing), but that it's important that those tests can complete in 5
minutes or less. The reason is that unless developers get fast feedback from those tests, they
are likely to ignore them. It also makes it harder to recognize if a test failure is associated with
a particular change if several hours have elapsed since the change was made.

In addition to this fast-running subset of tests, you need a robust and comprehensive
set of tests that can be run before code is finally released. Acceptance tests refer to the
broader set of tests designed to ensure that your work meets requirements before it’s
released. These tests are generally functional tests that ensure your code functions properly.
They're often accompanied by different nonfunctional tests that also help ensure quality.

Thus commit-stage tests represent a small and fast-running subset of acceptance
tests. Commit-stage tests rarely include Ul tests, since those tend to take longer to run.
In the Apex world, it’s beneficial to create one or more test suites that contain certain
critical test classes you want your developers to run regularly. The point of these
commit-stage tests is to provide an early warning to developers if they break something
and to provide it immediately to minimize time spent diagnosing the cause.

The remainder of this chapter is divided into two sections: “Fast Tests for
Developers” and “Comprehensive Tests.” “Fast tests” is the simplest term I could think
of to describe commit-stage testing, and hopefully the meaning is unambiguous.
“Comprehensive tests” is the simplest term I could think of to describe acceptance tests,
which will accumulate over time to represent the widest range of test cases, with much
less regard for how long they take to run.

Yes, I just added two new names to the overflowing lexicon of testing.

281

CHAPTER 8 QUALITY AND TESTING

Test Engines

The different types of test discussed later require different “test engines.” For Apex
tests, the Apex test runner is a native capability of Salesforce. For manual tests, the “test
engine” is the person performing that test. For other types of test, you'll typically need a
tool to help with this process.

In each of the following test types, you'll find discussion about which tools can help
support that process. Some tools like JMeter are specific to one type of testing, in this
case performance testing. Other tools, like static analysis tools, can help across different
stages of the test lifecycle.

Test Environments

Different types of testing bring different demands for test environments. The general
strategy to support these demands is to “shift left” as much as possible and to try to
batch multiple different demands into a small number of environments as illustrated
in Figure 8-4. Details about the environments needed for the various types of tests are
shared along with the description of those tests later.

As described in the following, some kinds of testing require long-lived, fully integrated
sandboxes, whereas other types can be performed in scratch orgs or disposable developer
sandboxes. Long-lived sandboxes that need to be integrated with external systems and
require manual setup are probably best to be created manually from the Environments »
Sandboxes screen in your production org. If you find yourself regularly needing to refresh
them, however, you may consider investing in automating their creation.

Short-lived testing environments should be created and destroyed automatically
as part of your CI process, using the Salesforce CLI and the same set of scripts you use
to provision developer environments. The Salesforce CLI now also allows you to create
and log in to sandboxes, so this process can be used to automate the refresh of testing
sandboxes.

Test Data Management

The vast majority of test types require data. “Given certain input data, do we receive

the correct outputs?” Some types of test require minimal data, others require massive
amounts of data. Managing test data is an integral part of your test setup. Details on
providing appropriate data are integrated with the following descriptions of each test type.

282

CHAPTER 8 QUALITY AND TESTING

Fast Tests for Developers

This section and the following “Comprehensive Tests” section constitute a twofold
division of all the different types of tests. Fast tests refer to tests that should be run before
and/or after every commit. The formal name for this is commit-stage testing, which
consists of code analysis and unit tests.

Coding is hard. Managing a team of distributed programmers, enforcing style
guidelines, and performing code reviews are even harder. Fortunately, there are
automated tools that can help enforce and remind developers of standards and best
practices for each language.

Code quality analysis is an automated system for providing code feedback and a
helpful mechanism to improve code quality. It’s like spelling and grammar check for
your code. Code quality maintenance and improvement requires attention and focus
throughout a project’s lifecycle. Issues with code quality, such as poorly designed or poorly
documented code, will accumulate easily if left unchecked. These issues are known as
technical debt, and if left to grow, they make software maintenance increasingly difficult,
time-consuming, and risky. In the same way that one might deal with financial debt, the
key to mitigating technical debt is to acknowledge and address quality risks or concerns as
early as possible in the development process—not to let them accumulate.

Throughout the remainder of the chapter, we introduce several types of test and how
you can run them. In each case, we address the following questions:

e What is this test? Why do you need it?

e When are these tests triggered?

¢ What environment(s) does the test run in?

e What data do you need to run this test?

o How do you create these tests?

e What else should you consider regarding these tests?
e What happens with the results of these tests?

Hopefully this will provide a consistent guide as you gradually layer in different types
of testing.

283

CHAPTER 8 QUALITY AND TESTING

Static Analysis—Linting

Static analysis is an automated analysis of the source code to identify possible structural
faults in performance, style, or security. A simple example is measuring the length of
each class or method and marking long classes or methods as possible maintainability
problems. The benefit of static analysis is that it can be run quickly and inexpensively, as
often as needed, and so can provide feedback faster than any other type of test.

Static analysis can be performed as one stage in a CI process, but is most effective
when it’s done in real time in the developer’s code editor. This kind of immediate
feedback is called linting and is similar to spell checking or grammar checking. This
provides real-time feedback on code right inside the code editor ... there’s no better
method to ensure developers see and act on feedback.

Linting is a great example of shifting left, since it's done during the coding process
itself as opposed to waiting for the CI/CD server. Whereas unit tests are used to confirm
the specific behavior of your code, static analysis checks to ensure that it complies with
general rules such as “methods should not have too many parameters.”

How to Run Linting

By definition, linting runs in the developer’s code editor in real time. Linting is language-
specific. For JavaScript there are many linting tools available, but ESLint has come to be
the dominant choice. ESLint provides general feedback on JavaScript style. It offers a set
of recommended rules, but can also be configured to enable or disable additional rules.’
Additional ESLint rules have been written for both (Aura) Lightning Components'® and
Lightning Web Components,'' making ESLint the clear choice for JavaScript linting in
Salesforce.

I am aware of two linting solutions for Apex code: ApexPMD and SonarLint. PMD
is the most popular static analysis tool for Apex (partly because it’s free). Chuck Jonas
wrote a well-maintained PMD extension for VS Code.!? PMD is also integrated into the
commercial IDEs, Illuminated Cloud and The Welkin Suite.

https://eslint.org/docs/rules/
"https://github.com/forcedotcom/eslint-plugin-aura
"https://github.com/salesforce/eslint-plugin-lwc
2https://marketplace.visualstudio.com/items?itemName=chuckjonas.apex-pmd

284

https://eslint.org/docs/rules/
https://github.com/forcedotcom/eslint-plugin-aura
https://github.com/salesforce/eslint-plugin-lwc
https://marketplace.visualstudio.com/items?itemName=chuckjonas.apex-pmd

CHAPTER 8 QUALITY AND TESTING

SonarLint is the linting component of SonarQube, a very popular static analysis
tool. SonarLint can be run “online” or “offline.” When run “offline” it just uses a
standard set of built-in rules. When run “online” it actually connects to a SonarQube
instance to download a customized ruleset for your company or project and so
ensures that the linting engine runs the same rules as the static analysis you run on
the entire codebase. The largest set of static analysis rules for Apex can be found in
CodeScan, a variant of SonarQube focused just on Salesforce.!* SonarQube Enterprise
Edition now also supports static analysis rules for Apex and is working to make them
increasingly robust.

When Does Linting Run?

As described, linting runs continually in the IDE as the developer works, similar to spell
checkers or grammar checkers (Figure 8-5). Linters typically deal with just one code file
at a time (see Figures 8-6 and 8-7), although most linting tools also allow developers to
run those rules systematically across their local codebase.

Or you're finishing you're next article.

wur

Figure 8-5. Grammar checking using Grammarly

13 ({ target, org } = y.argv);

14 org.deploy = org.depl.i any

15 if (orgltarget]) { [= :] :
16 const targetDeployB‘ missing semicolon.eslint(semi)
17 _.assign(org.deploy Quick Fix... Peek Problem

18 delete org[target].deploy

19 _.assign(org, orgltarget]);

Figure 8-6. Instant feedback on JavaScript from ESLint

Bww.codescan.io/

285

www.codescan.io/

CHAPTER 8 QUALITY AND TESTING

public void Bad Coding(){
Hethod names shou‘l.d not contain mdersoores

2
3
4 Hethod name should not start with capital letters
5

Figure 8-7. Instant feedback on Apex from ApexPMD

Where Does Linting Run?

Linting is performed in the IDE, directly on the codebase, and so does not require a
Salesforce environment.

Data Needed for Linting

Linting analyzes the code itself and does not require any test data.

Linting Rules

Linting applies generic rules to the codebase, as opposed to testing for specific business
scenarios or use cases. Therefore, unlike unit tests, which are generally unique to each
Salesforce org, linting rules are not usually customized.

ESLint has an excellent reputation for ease of writing custom rules. So it’s certainly
possible for you to write ESLint rules for your team, although with the same effort you
could benefit all Salesforce teams by contributing those rules to the open source ESLint
projects.

PMD has a reputation for being harder to write rules for. Fortunately, there is a
graphical rule designer for PMD" that makes it much easier to design rules. The designer
parses the code and then allows you to write rule specifications in XPath or Java.

Some of the languages that SonarQube supports have open source rule definitions
that you could contribute to, but both SonarApex and CodeScan use proprietary rules
and so are not easy to augment with your own custom rules.

Again, while it’s possible to write custom rules, it’s rare that you would need or want
to do that. What’s more common is simply to define a specific subset of rules that you
want to run for your projects. All of these linting tools provide mechanisms to do this.

“https://github.com/pmd/pmd-designer

286

https://github.com/pmd/pmd-designer

CHAPTER 8 QUALITY AND TESTING

Considerations for Linting

Linting provides extremely fast, helpful feedback to address common malpractices in
coding. The spread of ESLint, for example, has had a very beneficial impact for JavaScript
developers. Don’t expect linting to catch every issue, but it can hopefully help provide
guidelines for both new and experienced developers. Just as being free from speling
errors doesn’t imply good writing, being free from linting errors doesn’t imply good
code. But linting can still help you identify and remove certain faults.

How to Act on Feedback from Linting

Just as with spell check and grammar check, this real-time feedback can either be acted
on or ignored by developers. The intention is to provide developers with high-quality
suggestions but not to force them to make changes. If you find that certain types of rules
are not helpful and just add noise to the workspace, you should remove those rules.

Developers are under no obligation to act on the feedback from linting. If, however,
you want to ensure that most or all such rules are obeyed, you can use the quality gate
feature of many static analysis tools to enforce them.

Static Analysis—Quality Gates

Static analysis tools apply a standard set of automated analyses to code. There are three
levels at which this analysis can be done: to provide real-time feedback (linting), to pass
or fail a specific set of changes (quality gates), or to provide an assessment of the entire
codebase. The rules may be the same at every level, the difference is in the scope of
what'’s assessed. Linting is done “on the ground,” as developers are working on a small
block of code. Quality gates are typically applied at the level of a commit or a pull request
and take a “1,000 foot view” of changes that might span many files. And a full codebase
assessment gives a “30,000 foot view” of the state of the overall project.

As mentioned before, linting is not meant to enforce these analysis rules. By contrast,
quality gates provide a pass/warn/fail assessment of a group of changes.

287

CHAPTER 8 QUALITY AND TESTING

How to Establish Quality Gates

Any tool that gives you the ability to assess a specific set of changes, generate a pass/
warn/fail status, and prevent those changes from being merged or deployed can be used
as a quality gate.

Most static analysis tools such as SonarQube, Clayton, Codacy, or CodeClimate give
you this ability, when used in conjunction with pull requests and a CI/CD tool. Those
tools are discussed in more detail later.

Some of the commercial Salesforce release management tools also provide this as a
native capability, with integrated PMD scans.

Copado Compliance Hub provides a similar capability that is targeted specifically
at security-related changes to Salesforce. Compliance Hub works with metadata like
profiles, permission sets, Settings, and Custom Objects to ensure that there are no
unintentional or malicious changes that could impact the org’s security. For example,
changing the Org-wide default sharing for an object from private to public could
constitute a security breach. This is a very Salesforce-specific form of analysis.

When Do Quality Gates Run?

By definition, a quality gate either runs when a developer makes a commit in a shared
version control system or when they make a pull request. Applying these rules to pull
requests is the most common scenario. Pull requests aggregate information from static
analysis, unit test execution, and check-only deployments and facilitate a formal code
review armed with this additional insight.

Where Do Quality Gates Run?

Quality gates are run by the static analysis engine, typically as part of a CI process. As
such, they don’t require a Salesforce environment for execution. As shown in Figure 8-8,
this analysis can be applied as code comments, which are visible in pull requests. More
importantly, an overall pass/fail status can also be shown in the pull request itself as
shown in Figure 8-9.

288

CHAPTER 8 QUALITY AND TESTING

241 + return sfdx.package2.versionCreate({
242 + package2id: package. id,

243 + directory: package.path,

244 + wait: PKG_VERSION_CRFATION WAIT,
245 + quiet: false,

246 + json: false

247 + }.then(() = {

Dixie @dixie commented 2 weeks ago

/I\ Refactor this function to use “return” consistently. Why?

Reply...

Figure 8-8. SonarQube can be enabled to write back to a code repository with its
feedback

r’r & SonarTech commented 40 minutes ago Collaborator & X
¥

SonarQube analysis reported 7 issues:

« © 3critical
« @ 3 major
« © 1 minor

Watch the comments in this conversation to review them.

Add more commits by pushing to the feature/ws_measures_create branch on SonarSource/sonarqube.

X Failed — 1 errored and 2 successful checks Hide all checks

X sonarqube — SonarQube reported 7 issues, with 3 critical Details
v continuous-integration/ftravis-cl/push — The Travis Cl build passed Details
v continuous-integration/travis-cl/pr — The Travis Cl build passed Details
Merge with caution!

r) Merge pull request
You can also merge branches on the command line. = l“

Figure 8-9. SonarQube quality gate results shown in a pull request

289

CHAPTER 8 QUALITY AND TESTING

Data Needed for Quality Gates

Static analysis does not require data for execution.

Determining Quality Gate Criteria

The criteria used in a quality gate should ideally be consistent with the criteria used in
linting and in analysis of the complete codebase. This kind of consistency means that
everyone on the team can be aligned about the project’s compliance with these standard
rules. Project managers can take a high-level view of the state of the overall codebase,
tech leads can review a group of changes at the level of a pull request, and developers
can review linting feedback right within their IDE. This helps ensure that developers take
linting feedback seriously and that unhelpful rules are removed. It gives the tech lead
confidence that developers are not ignoring feedback from linters. And it gives a project
manager a way to see upward or downward trends in technical debt and other issues.

Considerations for Quality Gates

Quality gates are not a substitute for other forms of quality analysis, but they can help
ensure that certain kinds of faults are not introduced into the codebase. A passing
quality gate does not guarantee that the code is free from any quality issues; static
analysis doesn’t even guarantee that code will execute successfully. But it can be a useful
indication.

The first project where I used quality gates involved extensive use of JavaScript
inside Visualforce pages. We decided to implement JavaScript unit tests for this code,
but the existing codebase had negligible code coverage. We implemented a quality gate
in SonarQube that assessed the code coverage of recently changed JavaScript code (the
“leak period”). Any time we added code or refactored existing code, the quality gate
would assess the coverage of the modified lines and prevent us from deploying if the
coverage was below 80%. We made no effort to systematically write coverage for old
code; nevertheless, over several months we ratcheted up coverage across the entire
codebase as shown in Figure 8-10.

290

CHAPTER 8 QUALITY AND TESTING

History

December 52015 @ Condition coverage: 54.2%

T L
Nov 29 Dec 06

Figure 8-10. Increase in code coverage after using quality gates to enforce
coverage on any modified code

How to Act on Quality Gate Results

By definition, a passing quality gate allows you to proceed with subsequent steps in an
automated process, typically a deployment. By contrast, a failing quality gate will cause
your build to fail or your pull request to be rejected. Systems that provide a “warn” status
may allow the build to proceed while nevertheless showing you that there may be issues
that require attention.

Unit Testing

Unit tests are the best known type of automated test. Because the Apex test runner is part
of Salesforce, and because Salesforce requires 75% test coverage on Apex classes and
triggers, every Salesforce developer is familiar with Apex unit testing.

Technically, a unit test is a small, fast-running test to evaluate a particular unit of
code. I've divided the discussion of Apex tests between this section and the later section
“Code-Based Acceptance Tests” to indicate that not all tests written in Apex are truly
“unit tests.”

While they are developing, your team needs to be able to quickly run a small number
of tests to give them feedback whether their functionality is working and that they
haven'’t broken other code.

Whereas static analysis helps to enforce general good practices (coding standards),
automated testing checks the specific behavior of the system to ensure it’s correct.
Creating automated tests is an investment, so skill and thought are required to discern
when to use automated tests, what type of test to employ, and how to write the test. But

291

CHAPTER 8 QUALITY AND TESTING

over the life of an application, the cost of letting failures pass undetected into production
or repeating manual regression tests is far greater than the cost of building automated
tests from the outset.

Unit testing encourages developers to structure their code into smaller, more
modular functions. These types of functions are easier to test, but they are also easier to
reuse. This means more readable code and less redundancy. Well-tested code mitigates
the risk of future failure, and more modular code reduces complexity thus making code
safer to refactor and easier to maintain.

How to Run Unit Tests

There are four coding technologies used on the Salesforce platform, and so there are
differences in the test engines needed for each. The good news is that three of these
technologies are built on top of JavaScript, and Salesforce is increasingly converging on
Jest as a recommended test engine for JavaScript.

Apex

As mentioned, the Apex test runner is built into the platform. This test runner is
proprietary, and you can’t run Apex or Apex tests outside of Salesforce.

JavaScript in VisualForce

VisualForce has long allowed embedded JavaScript as a way to provide more dynamic
on-page functionality. My first introduction to unit testing JavaScript involved building
business-critical JavaScript that was hosted in Visualforce pages. I have never seen a test
framework that actually runs tests inside of a Visualforce page. Instead, we established a
strict separation of our JavaScript code into static resources, leaving very little JavaScript
in the Visualforce page itself.

We used Visualforce Remoting, and the only JavaScript we embedded into Visualforce
was to assign controller-binding variable values to local JavaScript variables. That left us
free to treat the code inside of the static resources as separate, independent functions.

You can use any JavaScript testing framework to test code that’s stored in static
resources. If you don’t already have a strong opinion, I would recommend Jest as a very
usable test engine.

292

CHAPTER 8 QUALITY AND TESTING

(Aura) Lightning Components

The original Lightning Components are written in a JavaScript framework called Aura.
Some teams within Salesforce created a Lightning Testing Service'® to allow these Aura
components to be unit tested. The Lightning Testing Service supports Jasmine and
Mocha, two JavaScript test engines. It’s possible that someone will port this over to Jest,
but that has not happened so far. All of these JavaScript test frameworks are very similar,
but they use slightly different syntaxes to define and run tests.

Unlike testing JavaScript in static resources or Lightning Web Components, these
Aura tests have to run inside a Salesforce org, and so the Lightning Testing Service is
installed as an unmanaged package in your org.

Lightning Web Components

Lightning Web Components bring many benefits such as being open source, standards-
compliant, fast to execute, and executable outside of Salesforce. In addition, they have
the first officially supported JavaScript testing framework for Salesforce.!® This testing
framework uses Jest as the engine.

Just as with the convergence on ESLint as the JavaScript static analysis tool of choice,
the JavaScript community seems to be converging around Jest as its preferred testing
engine. Whereas other test engines require you to use different tools to support aspects
of testing such as mocking, Jest bundles everything you need—the test engine, test
syntax, mocking frameworks, and more—into one package.

When Do Unit Tests Run?

Unit tests have two purposes: to verify the code currently under development and
to verify that current development hasn’t broken existing code. Each piece of code
generally has a small number of unit tests that directly pertain to it. These should be run
throughout the development process to ensure the code itself is functioning.

It’s also very helpful to identify any preexisting tests that pertain to related
functionality. You can also run those throughout your development to ensure you
haven'’t broken someone else’s work.

https://forcedotcom.github.io/LightningTestingService/

%https://developer.salesforce.com/docs/component-library/documentation/lwc/1wc.
testing

293

https://forcedotcom.github.io/LightningTestingService/
https://developer.salesforce.com/docs/component-library/documentation/lwc/lwc.testing
https://developer.salesforce.com/docs/component-library/documentation/lwc/lwc.testing

CHAPTER 8 QUALITY AND TESTING

Because Apex tests run more slowly than comparable Java or JavaScript tests, if teams
are practicing continuous delivery it may not be practical to rerun every Apex test before
every release. At a minimum, a subset of Apex unit tests should be rerun before each
release. Tools like ApexUnit'’ or the Developer Console query the ApexCodeCoverage
table via the Tooling API to dynamically determine which test classes cover which
pieces of code. The FlowTestCoverage object provides comparable information when
testing processes and autolaunched flows. This information can be used to dynamically
determine which tests to run based on which Apex code was changed. Running the full
suite of tests as often as possible is still necessary to identify regression failures due to
unintended side effects of a change.

One very helpful recent addition to the Salesforce extensions for VS Code was the
ability to trigger and monitor Apex unit tests from inside the IDE. Tests can run in the
sidebar of your IDE while you work on other changes to the codebase.

As mentioned later in the section on “Code-Based Acceptance Testing,” prior to
releasing, the entire set of unit tests should be rerun to ensure that new development
didn’t cause unexpected regression failures in other parts of the codebase.

Unit Testing Environments

Apex code and Apex unit tests can only run in a Salesforce org. Apex tests can also be
used to test other kinds of business process automation such as complex process builder
processes and autolaunched flows. During the development process, developers should
use their development scratch orgs to run tests related to the work they’re developing.
Scratch orgs can also be created dynamically by the CI/CD system and used to run unit
tests as part of the delivery pipeline.

JavaScript code in a Salesforce org (including Lightning Components) can be tested
using a JavaScript test framework. JavaScript code that runs on Visualforce pages might
be testable directly on a developer’s workstation if it can be extracted into a separate
static resource. In this case, those tests should be run locally as part of a pre-push hook
or using a CI/CD process that runs those JavaScript unit tests. Lightning Components
can be tested using the Lightning Testing Service,'® although these require a Salesforce
org to run. As with Apex unit tests, when developers are working on a particular piece

https://github.com/forcedotcom/ApexUnit

https://developer.salesforce.com/docs/atlas.en-us.lightning.meta/lightning/
lightning_testing_intro.htm

294

https://github.com/forcedotcom/ApexUnit
https://developer.salesforce.com/docs/atlas.en-us.lightning.meta/lightning/lightning_testing_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.lightning.meta/lightning/lightning_testing_intro.htm

CHAPTER 8 QUALITY AND TESTING

of functionality, they should repeatedly run the relevant tests in their development
org. To identify any regression failures, the complete set of Lightning tests should be
rerun in the same scratch org created for running all Apex unit tests. Another reason
for running these in scratch orgs is that unlike Apex tests, JavaScript tests have no
transaction management so they actually change data in the org, and those changes are
not automatically rolled back.

One very nice characteristic of the new Lightning Web Components is that they can
be tested outside of a browser, which allows those tests to be run very quickly.” LWC
testing uses Jest, which is arguably the easiest to use JavaScript testing framework.

Data Needed for Unit Tests

The purpose of unit tests is to test the underlying logic of the code. Therefore tests should
create their own test data so that their success or failure is determined by the code being
tested rather than the underlying data in the org.

When Apex tests were first introduced, they defaulted to being able to see all of the
data in the org. This behavior was reversed in the Spring '12 edition of Salesforce, so that
tests no longer have access to org data unless they use the @isTest(SeeAllData=true)
annotation. There remain some rare exceptions where it may be necessary to allow a test
to access data in the org, but this should generally be avoided. Tests that do not require
access to org data are called “data silo tests,” and they help avoid many problems. Relying
on data in the underlying org means that tests might pass in some orgs and not pass in
others. It also means that a user in that org can inadvertently break tests if they change or
delete data used by the test. Data silo tests also make it easier for Salesforce to detect and
resolve problems in upcoming releases, since Apex tests are run as part of a regression
testing process called the Apex Hammer.

As mentioned later in the section “Code-Based Acceptance Testing,” it’s possible
to specify test data using CSV files or using frameworks such as the open source Apex
Domain Builder.*

Apex tests run inside a Salesforce database transaction. This means that they can
create, modify, and query data, but that data is not persisted after the test finishes.

https://developer.salesforce.com/docs/component-library/documentation/lwc/1wc.
testing
®https://github.com/rootstockmfg/domainbuilderframework

295

https://developer.salesforce.com/docs/component-library/documentation/lwc/lwc.testing
https://developer.salesforce.com/docs/component-library/documentation/lwc/lwc.testing
https://github.com/rootstockmfg/domainbuilderframework

CHAPTER 8 QUALITY AND TESTING

JavaScript tests don’t run in a transaction, which means that any data they create
or modify in an org will remain in that org after the test completes. Lightning Web
Components and JavaScript in static resources can be tested outside of a Salesforce org,
using a framework like Jest to specify inputs and check outputs. These tests don’t use
a database, so data is held in memory and not persisted after the tests finish. But when
using the Lightning Testing Service to test (Aura) Lightning Components, you need to be
very careful to segregate test data from any other data.

There are three ways to segregate test data used by the Lightning Testing Service from
other data. First, you should not use the Lightning Testing Service in a production org;
instead run it in scratch orgs or testing sandboxes. Second, each test should create its
own data as described earlier and should ideally delete that data after finishing. Finally,
any data that’s created should be clearly named to distinguish it from any other data.

Creating Unit Tests

Salesforce has prepared helpful guides for creating Apex,*! LWC,? and Aura component
tests.” And you can find various third-party resources that explain how to test JavaScript
in static resources such as the Dreamforce '14 talk I gave entitled “JavaScript-heavy
Salesforce Applications.”*

Considerations for Unit Testing

Salesforce establishes some minimum guidelines for automated testing. Apex classes
and triggers must have 75% of their lines covered by automated tests before they can be
deployed to production. If you deploy Flows and Processes to a production org as part
of a CI/CD process, they also require code coverage if they are deployed as active. You
may also enforce your own code coverage thresholds for JavaScript code using external
quality gates like SonarQube.

There is a law of diminishing returns on test coverage. The Pareto principle dictates
that for many kinds of system, 80% of the progress will require 20% of the effort, while the
remaining 20% of the progress will require 80% of the effort. That remaining 20% will not

2lhttps://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/
apex_testing.htm

*https://developer.salesforce.com/docs/component-library/documentation/lwc/lwc.
testing

https://github.com/forcedotcom/LightningTestingService

*www.salesforce.com/video/192779/

296

https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_testing.htm
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_testing.htm
https://developer.salesforce.com/docs/component-library/documentation/lwc/lwc.testing
https://developer.salesforce.com/docs/component-library/documentation/lwc/lwc.testing
https://github.com/forcedotcom/LightningTestingService
www.salesforce.com/video/192779/

CHAPTER 8 QUALITY AND TESTING

necessarily bring much value, so you should never push hard for 100% test coverage.

I have personally been guilty of doing code acrobatics to try to achieve 100% test coverage.
As soon as you start noticing your Apex code becoming more complex and more difficult
to read or filling up with Test.isRunningTest () checks, you have started to go too far.

How to Act on Unit Test Results

When you're practicing test-driven development (TDD), you'll generally iterate quickly,
running tests every few minutes until you get your code to succeed. In those cases, test
success or failure provides you feedback on the functionality of your code. In general,
test failures provide a useful indication if you've broken some underlying functionality.

If you notice tests failing because of some harmless change that doesn’t impact non-
test code, you should consider whether your tests are architected in a flexible way—for
example, if you add a new required field to an object that can cause all the tests that
create those objects to fail. Using a central test factory to create objects allows you to add
such required fields in a single place. Your tests can call the test factory to define the base
objects and then modify their data as appropriate before creating them.

Comprehensive Tests

Although there are many types of automated testing, and many names used to describe
them, the book Continuous Delivery simplifies the various types of testing down into
“commit-stage testing” and “acceptance testing.” The previous section discussed the
use of static analysis and unit testing as commit-stage testing to provide fast feedback to
developers. This section addresses acceptance testing: running comprehensive checks
on the code prior to release.

Acceptance testing means checking to ensure that functional and nonfunctional
requirements are being met. In effect, testers are asking “Does this do what it’s supposed
to do?” or “Will end users accept what has been built?” The agile convention is to write
specifications in the form of user stories, each of which has associated acceptance
criteria. Acceptance testing confirms that the acceptance criteria (and sometimes other
expectations) are being met.

Acceptance testing can be done manually or in an automated way. Commit-stage
tests should run quickly and frequently and can run in a simplified testing environment
like a scratch org. Automated acceptance tests are intended to test end-to-end

297

CHAPTER 8 QUALITY AND TESTING

functionality, sometimes including external integrations. To provide realistic results,
automated acceptance tests should run in a production-like environment and will
generally take far longer to run. They are therefore run less frequently.

This section discusses both functional and nonfunctional testing. Functional tests,
whether automated or manual, are intended to check that code and configuration
functions as it should and doesn’t break other things. Nonfunctional tests look at other
aspects of the system such as security, maintainability, reliability, and performance.

As it says in Continuous Delivery, “The majority of tests running during the
acceptance test stage are functional acceptance tests, but not all. The goal of the
acceptance test stage is to assert that the system delivers the value the customer is
expecting and that it meets the acceptance criteria. The acceptance test stage also serves
as aregression test suite, verifying that no bugs are introduced into existing behavior by
new changes.”

We first discuss automated functional testing and nonfunctional testing, which both
typically make use of automated tools. We conclude with a discussion on manual QA
and user acceptance testing.

Automated Functional Testing

Automated functional testing builds on the unit tests described earlier, but may go
further to include long-running code-based tests, as well as Ul tests that simulate user
interactions through a web browser.

Code-Based Acceptance Testing

There is no technological difference between code-based unit tests described earlier and
code-based acceptance tests. I've divided this discussion between these two sections

to emphasize that the same technologies can be used for two purposes. Whereas unit
tests should run quickly and be narrowly focused on giving feedback to the developer,
acceptance tests may take hours to run and function as confirmation that code continues
to meet specifications and does not suffer from regression failures.

How to Run Acceptance Tests

Because the technology is the same, the same test engines described earlier in “How to
Run Unit Tests” can be used to run acceptance tests.

298

CHAPTER 8 QUALITY AND TESTING

When Do Acceptance Tests Run?

There are typically three occasions when code-based tests are run: during development,
during deployments, and triggered by some external process. The preceding section
discussed executing these tests during the development process, as unit tests. The same
unit tests that help developers ensure their code’s logic is reliable gradually accumulate
to become the acceptance test suite for the entire org.

Each test can be viewed as an executable specification for how the code should
function: given certain inputs, when a particular action occurs, then assert “do we get the
correct result?” If a test is written in this way, once added to the acceptance test suite, it
provides an ongoing indicator that the specified behavior is still intact. For this reason,
code-based acceptance tests provide a powerful built-in mechanism to protect the
integrity of your org’s customizations.

Salesforce generally has an extremely enthusiastic developer and admin community.
But this enthusiasm has been slow to spread to automated testing. Whereas some
languages such as Ruby have cultivated a passionate testing community, 42% of the
Salesforce orgs scanned by the Clayton analysis tool show a pattern of just using tests to
achieve coverage.” Appirio’s own CMC Metrics tool found an average of one assert for
every 222 lines of code across the more than 6,000 orgs we've scanned.

This anemic approach to testing indicates that a large portion of Salesforce
developers see code-based testing as an inconvenience and apply minimal effort beyond
what’s required to get a deployment to succeed.

Salesforce provides the ability to run Apex tests during a deployment. This behavior is
enforced when deploying to a production org, along with a 75% minimum code coverage
threshold. Tests run during a deployment execute in the target org after the metadata has
been successfully deployed to that org, and so can provide a very good indication of whether
the related Apex code will run successfully. If one of these tests fail, or if you are deploying
in check-only mode, Salesforce rolls back that deployment, thus preventing the deployment
from completing. The ability to manage deployments and test execution as an atomic
transaction (it either all succeeds or all fails) is one of the excellent capabilities of the platform.

JavaScript tests on Salesforce can’t run inside a Salesforce deployment transaction.
This means that you can run tests on (Aura) Lightning Components in a target org, for
example, but they can only run after the deployment has completed.

»https://medium.com/@lofrattini/what-we-learnt-scanning-10-2-billion-lines-of-
salesforce-code-131at7¢5995

299

https://medium.com/@lofrattini/what-we-learnt-scanning-10-2-billion-lines-of-salesforce-code-131af7c5995
https://medium.com/@lofrattini/what-we-learnt-scanning-10-2-billion-lines-of-salesforce-code-131af7c5995

CHAPTER 8 QUALITY AND TESTING

In addition to running tests as part of a deployment, you can trigger this test
execution at any time. The Salesforce CLI provides an sfdx force:apex:test:run
command, which you can run as part of a CI process or on a schedule. This command
provides the ability to specify one or more test suites if you want to run a predefined
set of tests. If desired, it’s also possible to use the Salesforce scheduler to run one or
more tests. You can create a small block of scheduled Apex that queries a group of
test IDs and then executes them on a schedule. See the section “Running Tests Using
ApexTestQueueltem” in the Apex Developer Guide.?

Acceptance Testing Environments

Code-based acceptance tests can generally be run in scratch orgs or testing sandboxes.
This is especially important for JavaScript and Ul tests, since these make actual changes
to the data in an org which are not rolled back after tests complete. Scratch orgs allow
you to create an org and to specify test data for that org. You can then ensure that the
testing environment starts clean every time.

Despite the fact that these tests can be run in scratch orgs, it is important to have a
comprehensive set of checks run in a production-like environment, and thus if there are
concerns that your scratch orgs may not fully resemble your sandboxes or production
orgs, automated acceptance tests should be run in a partial or full-data sandbox. This
can be the same sandbox used for manual testing, as long as the data used for automated
tests is clearly segregated from the data used for manual tests. You will also need a
mechanism for resetting this test data in the sandbox.

Data Needed for Acceptance Testing

As with code-based unit tests, the data used for code-based acceptance tests should
generally be stored within the test itself. Tests that rely on data in the org are necessarily
brittle, behave inconsistently if that data is changed, and represent a form of tight
coupling which makes it hard to refactor your codebase or make it modular.

Apex tests allow for larger volumes of data to be stored as static resources in CSV
format. That data can be loaded when a test class first begins to execute using the
@TestSetup annotation. Each test method has to query that data to access it, but

%https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex
testing unit_tests running.htm

300

https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_testing_unit_tests_running.htm
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_testing_unit_tests_running.htm

CHAPTER 8 QUALITY AND TESTING

the DML operation to load the data only runs once per test class. This reduces test
execution time and governor limit usage.

A new open source framework called the Apex Domain Builder (https://github.
com/rootstockmfg/domainbuilderframework) offers a very performant and readable
way of creating test data. Since Apex-based tests should run in isolation, it’s important
that each test class create the data that it will need for its test methods. This can easily
lead to lots of repetitive code and slower test execution and tends to clutter the test
methods with data setup steps that are irrelevant to the test itself. Domain Builder uses
a “fluent” syntax similar to that used in the FFLib modules mentioned in Chapter 5:
Application Architecture and in fact uses some of the same underlying code. Listing 8-1
shows the elegance of such an approach. Required and boilerplate field values can be
defined centrally in the Account_t class, so that inside the tests themselves you only need
to define the field values that should be specific to that test.

Listing 8-1. The Apex Domain Builder syntax for creating test data

@IsTest
private static void easyTestDataCreation() {

// Given
Contact_t jack = new Contact t().first('Jack').last('Harris');

new Account t()
.name('Acme Corp")
.add(new Opportunity t()

.amount (1000)
.closes (2019, 12)
.contact(jack))
.persist();
// When
// Then

301

https://github.com/rootstockmfg/domainbuilderframework
https://github.com/rootstockmfg/domainbuilderframework

CHAPTER 8 QUALITY AND TESTING

Creating Acceptance Tests

As mentioned before, you should write unit tests with the idea that they will each
become part of the acceptance test suite for the application.

Unit tests are typically written just to test the behavior of a specific unit of code
such as a method or to achieve code coverage so you can deploy. Seeing unit tests as
contributing to the integrity of the entire package or org helps you approach them in a
broader light, as acceptance tests.

To bridge these two goals, I've found it helpful to adopt the test-writing approach
known as behavior-driven development (BDD) introduced by Dan North,?” sometimes
also called acceptance test-driven development (ATDD).

The basic idea of BDD is simple: write each test as a specification of the behavior of
the system under test. Sometimes these tests are even called “specs.” Each test method
name should be a sentence describing the expected behavior, and each test should
follow a consistent given-when-then format.

Listing 8-2. A sample BDD-style test in Apex

@isTest

static void itShouldUpdateReservedSpotsOnInsert() {
System.runAs(TestUtil.careerPlanner()) {
// Given
Workshop ¢ thisEvent = TestFactory.aWorkshopWithFreeSpaces();
Integer initialAttendance = TestUtil.currentAttendance(thisEvent);
final Integer PRIMARY ATTENDEES = 3;
final Integer NUMBER_EACH = 4;

// When

Test.startTest();

TestFactory.insertAdditionalRegistrations(thisEvent, PRIMARY ATTENDEES,
NUMBER _EACH);

Test.stopTest();

*https://dannorth.net/introducing-bdd/

302

https://dannorth.net/introducing-bdd/

CHAPTER 8 QUALITY AND TESTING

// Then
Integer expectedAttendance = initialAttendance + PRIMARY_ATTENDEES =
NUMBER_EACH;
system.assertEquals(expectedAttendance, TestUtil.
currentAttendance(thisEvent),

'The attendance was not updated correctly after an insert');

}

Listing 8-2 shows a method named itShouldUpdateReservedSpotsOnInsert() which
clearly states the intended behavior of the class being tested. The BDD convention is for
each test to begin with itShould. ... The body of the test is grouped into three sections,
indicated by the comments // Given, // When, and // Then. This threefold division
provides a clear syntax and structure, and is equivalent to the older AAA (Arrange-Act-
Assert) division. I advise everyone to use this same structure to write their tests.

In all other respects, this is a normal Apex test. Some languages provide test
frameworks such as Cucumber that allow for a human-readable domain-specific test
language (DSL) with inputs and expected outputs separated from the actual code. That’s
not easy to achieve in Apex, but simply structuring your tests in this way provides many
of the same benefits.

Considerations for Acceptance Testing

In addition to focusing on acceptance criteria, acceptance tests may also cover a
broader scope than unit tests, testing multiple components. Because Apex tests are
subject to the same governor limit restrictions as other Apex code, there’s a limit to
how comprehensive these tests can be. Complex, multistep procedures, especially
those involving multiple Triggers, Processes, or Flows, can easily time out or exceed
CPU, DML, SOQL, or Heap size governor limits. Ul tests might be a better choice for
simulating complex test scenarios.

Acceptance test suites focus on thoroughness over speed. But speed is still
important. One of the most important ways to speed up your tests is to run them in
parallel. Jest runs JavaScript tests in parallel, but JavaScript tests are generally extremely
fast anyway. The Apex test engine runs up to five tests in parallel by default, but there’s
a checkbox in Setup » Custom Code » Apex Test Execution » Options to “Disable
Parallel Apex Testing.” Some teams have disabled parallel execution because they
encounter UNABLE_TO_LOCK_ROW errors when Apex tests access the same records.

303

CHAPTER 8 QUALITY AND TESTING

But this can make test execution extremely slow. As an alternative, mark all of your Apex
tests with the @IsTest(isParallel=true) annotation, but disable that annotation for
those which are not parallel safe.

You will never succeed in testing every aspect of a system, nor should you try. Even
with extensive collections of tests, failures will still sneak through your delivery pipeline.
Production failures are expensive, at least in terms of stress, and sometimes monetarily.
Production failures provide a valuable opportunity to do postmortems and to see whether
systems or tests could be put in place to prevent such failures from happening again.

Consider your acceptance tests an investment in the overall reliability of your org.

As mentioned earlier, you should prioritize the most business-critical aspects of your
processes. By doing this, your investments in testing will be practical and deliver a return
on investment by continually blocking deployments that trigger known failures.

How to Act on Acceptance Test Results

Apex tests that run as part of deployments will automatically cause the deployment

to fail if any Apex test fails. Deployments to production will also fail if any Apex class
or trigger has 0% coverage, or if the overall coverage for that deployment is less than
75%. This coverage gateway is well known and much dreaded by those deploying
Apex to production. There’s no feeling quite like battling through hundreds of
deployment errors, only to have your deployment fail with the error: Code coverage
is insufficient. Current coverage is 74.92840025717459% but it must be at
least 75% to deploy.

JavaScript test results are not built into deployments in the way Apex is, but can still
be used to pass or fail a build, by using your CI system. If you have any JavaScript testing
in your delivery process, you should run that as one stage in your delivery pipeline.
Failing tests should block later stages of the pipeline.

Tracking Code Coverage

Code coverage reports provide some indication of whether you have written thorough
tests. High code coverage doesn’t guarantee that you've written good tests; but low code
coverage guarantees that you have not.

The Salesforce Developer Console and some IDEs can show your Apex code
coverage including which lines are covered or not covered. Some code quality tools like
SonarQube also allow you to ingest unit test code coverage reports. This allows you to
track coverage over time, as shown in Figure 8-11, and to view coverage in a single Ul

304

CHAPTER 8 QUALITY AND TESTING

alongside code quality feedback as shown in Figure 8-12. One benefit of such tools is

that they can track coverage information for both Apex and JavaScript tests. Enabling this

capability may take a bit of experimentation.

Coverage

92.4% 336
Coverage Unit Tests

Figure 8-11. A snippet of the code coverage graph from SonarQube

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
2486

dan...

dan. ..
dan. ..

dan...
dan...

private void savelssues(InputFile son:
Collection<CheckMessage> messages
essages. forEach(message —> {

m
IR RO CE Ml ruleKey = checks.rulek

};

Issuable issuable = resourcePe

if (issuable != null) {
Issue issue = issuable.new
. ruleKey(ruleKey)
. line(message.getl
.message(message.c
.build();
issuable.addIssue(issue);

Figure 8-12. Many static analysis tools like SonarQube also show line-level

coverage results

Both CodeScan and SonarQube allow you to ingest Apex code coverage results

generated from the Salesforce CLI. To do this, you first run your Apex tests using sfdx

force:apex:test:run -c -d test-results -r json to generate the coverage results
in a file called test-results/test-result-codecoverage.json. This file can then be
uploaded at the same time you run your static analysis jobs. In CodeScan you add the

parameter sf.testfile=test-results/test-result-codecoverage.json to your

static analysis job, and in SonarQube you add the parameter sonar.apex.coverage.

305

CHAPTER 8 QUALITY AND TESTING

reportPath=test-results/test-result-codecoverage.json. Other quality analysis
tools may offer similar capabilities with different syntax.

If you are using Jest to test your JavaScript, you can output coverage files that can
then be ingested by SonarQube. Running npx jest --ci --coverage will create
coverage files in a coverage/ directory and summarize it in config/lcov.info as shown
in Figure 8-13. You can then specify that directory when running your static analysis
job by adding the parameter sonar.javascript.lcov.reportPaths=coverage/lcov.
info. This property will ensure that coverage information is uploaded and tracked in the
SonarQube user interface.

4 coverage
» lcov-report
clover.xml

coverage-final.json

Figure 8-13. Code coverage results output from Jest

Ul Testing

Automated acceptance tests can also be done using UI automation tools. The most
common Ul testing technology is Selenium, although commercial testing tools like
Provar and Tricentis Tosca are also available.

There are several benefits to using UI tests on Salesforce. First, they can be used to
test complex sequences of actions that would otherwise exceed Salesforce governor
limits if run using Apex. Second, they require significantly less expertise to create and
understand, since they use the Salesforce user interface which is already familiar to
manual testers and business users. Finally, they can be used to test things that can’t be
tested just with Apex or JavaScript, including things that happen in the web browser but
not directly inside of Salesforce.

Although they are easy to create, Ul tests are generally significantly slower than Apex
tests, which in turn are slower than JavaScript tests. UI tests are also notoriously brittle,
since even small changes to the UI can cause these tests to break if they are not written
carefully. Continuous Delivery makes the case for avoiding UI tests whenever alternatives
exist, but on the Salesforce platform, there are few alternatives. Creating robust tests is
likely to require careful thought, including involvement from developers and architects
to ensure that the tests remain reliable and performant.

306

CHAPTER 8 QUALITY AND TESTING

How to Run Ul Tests

As their name implies, Ul tests automate actions that are normally performed through
a user interface, and can verify the output that would appear in that user interface.
Salesforce does not provide a built-in engine for running UI tests. Therefore you'll need
to provide your own mechanism for running these tests.

Ul tests can be run programmatically like other code-based tests, using either
Selenium or Puppeteer. There are also several click-based tools that provide graphical
interfaces for building these UI tests.

Selenium is the most popular framework for building UI-based tests. It’s free and
allows you to use a wide range of programming languages such as JavaScript, Ruby, Java,
and Scala to drive interaction with a web browser. Selenium runs on any web browser,
on any platform. This capability allows companies like BrowserStack and SauceLabs
to offer Ul testing as a service, so that you can test your web applications across a wide
range of browsers and desktop or mobile platforms.

Puppeteer is a new offering from the team who builds Google Chrome that allows
you to build UI tests using JavaScript and to run them in a “headless” Chrome browser.
Many Ul tests actually run in a headless browser, which means that they interact with
web pages through the underlying DOM rather than actually rendering a user interface.
Puppeteer only supports JavaScript and Chrome. But it is quickly growing in popularity
due to its speed and simplicity. It won’t help you catch browser-specific edge cases, but it
handles 80% of the Ul testing needs, with less overhead to manage than Selenium.

Be advised that building Salesforce UI tests programmatically is not for the faint of
heart and brings significant challenges compared to testing home-grown web applications.
The Salesforce user interface is subject to change at least three times per year, and the
HTML underpinning it is dynamically generated, so you can’t rely on IDs or other elements
to remain consistent. Repetitive actions like logging in and data entry will need to be put
into centralized modules, so you don’t need to maintain many repetitive blocks of code.

For this reason, it’s almost certainly more cost-effective to use a prebuilt Salesforce
Ul testing solution. Both Copado and AutoRABIT offer the built-in ability to record user
interactions as Selenium scripts and to replay those as tests. They have invested time and
energy in handling repetitive tasks and can keep that up to date for all their customers as
the Salesforce UI evolves.

There are two other commercial options for Ul testing. Provar is a Salesforce-specific
Ul testing tool that allows you to set up and tear down test data, record and replay user
interactions, and run tests interchangeably across Lightning and Classic. The entire

307

CHAPTER 8 QUALITY AND TESTING

company is focused on supporting Salesforce, so they stay up to speed on the latest
releases and are able to handle complex Salesforce Uls such as the Service Console.

Another commercial Ul testing tool that supports Salesforce is Tricentis Tosca. Tosca
has a good reputation and strong capabilities. They may be a good fit if you want to test
non-Salesforce user interfaces as well. But if your only concern is testing Salesforce,
Provar is likely to be more robust.

When Do Ul Tests Run?

Because Ul tests typically take longer to run than unit tests, they’re not usually run by
developers as part of the development process. They are best suited to be run as part of
regression tests to confirm that deployments have not broken anything. Because they
can take so long to run, you should parallelize them if possible.

Ul Testing Environments

Unlike Apex or JavaScript tests, Ul tests depend on a fully rendered Salesforce user
interface to run. You have to actually deploy your customizations into a Salesforce
environment and then point your test engine to that environment. If you're able to supply
a full set of test data and keep it up to date, you can run these Ul tests in a scratch org.
This is ideal since the tests modify data during the course of execution and so may make
undesirable changes to long-running test sandboxes. Test sandboxes can be used, as long
as your Ul tests don’t make undesired changes to data that’s needed for manual testers.

Data Needed for Ul Tests

One of the biggest challenges in maintaining automated UI tests is that test data needs
to be maintained along with the tests themselves. As your Salesforce org evolves, you're
likely to need to add new kinds of configuration data, specify new fields on existing
objects, and adjust to ongoing changes to things like user roles.

If possible, it’s ideal if your automated UI tests can use the same test data you use
for your manual testers. Even code-based tests may depend on large groups of records
stored in CSV files, and you can reuse this same data in your Ul tests. Maintaining a
single consistent set of test data that can be loaded into scratch orgs for manual testers
or fed into the UI test engine will help ease the overall maintenance burden. Test data
updates then only need to be done once.

As with code-based tests, you should be sure to supply each UI test with the data
it needs and never make assumptions that underlying data will remain unchanged.

308

CHAPTER 8 QUALITY AND TESTING

A possible exception to this rule is when your tests depend on configuration that is
stored as data in sandboxes. Sandbox refreshes let you benefit from cloning underlying
configuration data (like CPQ data) from a production org, so that it remains up to date.
As mentioned earlier, Ul tests actually change data in the underlying org so take steps to
ensure that you are never changing data used by manual testers.

Creating Ul Tests

There are three ways of creating Ul tests: programmatically, by using a test recorder, or

by specifying a test data model. Programmatic tests work similarly to other code-based
tests, but rely on libraries (either Selenium or Puppeteer) that allow them to navigate to
URLs, modify input fields, check output, and so forth.

As mentioned earlier, the Salesforce Ul is subject to change at least three times a
year and is autogenerated with each page load. Standard HTML tags are dynamically
generated, CSS classes are subject to change, and the underlying DOM is basically far
more dynamic than a home-grown web app.

At Appirio, our QA team invested substantial time building a dynamic, Selenium-
based testing engine. They wrote standard modules to handle login, data load, record
page and list view navigation, and so forth. Unless you're prepared to invest substantial
time building and maintaining your own Salesforce testing architecture, I'd advise you to
use a prebuilt tool for your UI testing. Whereas there are ample online resources about
doing Salesforce deployments, you'll find almost no assistance on the Internet if you
decide to venture into automated testing of the Salesforce UI.

Provar and Tosca provide test recorders to record user interactions and supplement
that with the ability to use a test data model to load and query test data using the
API. That combination provides an excellent balance of reliability, speed, and usability.
Just as code-based tests shouldn’t bother to test standard Salesforce functionality, your
Ul tests shouldn’t take time to input test data into standard Salesforce record detail
pages. Test data should be loaded using the API, which is fast and reliable. Your tests can
then focus on validating complex, custom aspects of the UI or multistep processes.

Copado and AutoRABIT both use variations on the open source Selenium test
recorder to record user interactions.

The most important guideline when create custom pages that can be tested more
easily is to add Id attributes to all page elements. UI tests typically use HTML DOM Ids
to uniquely identify the elements in any page. Salesforce will either not generate Ids
or autogenerate them if none are specified. These autogenerated Ids can easily break

309

CHAPTER 8 QUALITY AND TESTING

Selenium scripts that were written to search for an Id that isn’t always present on the
page. If defining an Id is not feasible, you can use the class or other data attributes to
uniquely identify DOM elements.

It can be helpful to use a naming convention to name the Id attributes. This leads to
more readable and maintainable Ul scripts. Appirio typically recommends PageName_
FieldName_FieldType. For example, if you have a custom Case Summary page that has
a dropdown selector for owner, you can give that the Id CaseSummary_Owner_Picklist.
Both tests and code need to be clear to be maintainable.

Ul Testing Considerations

If you've used a test recorder to build your initial test, you have access to modify the steps
and the criteria used to select elements on the page. It’s this step that requires care and
sophistication. Any user can turn on a test recorder, make a few clicks, and enter a bit of
data. But for your tests to be stable, you should think about what field elements are most
likely to remain stable as your org evolves.

This is one of the reasons that the UI testing architecture needs to be robust and
flexible. If a new required field is added to the Account object, you want to be able to
update all of your Ul tests at the same time. If your tests are simply recorded sets of
clicks, you may be forced to rerecord them, unless you are comfortable editing the
underlying scripts or have built a modular testing architecture.

With the arrival of the tools mentioned earlier, Salesforce UI testing is a more
achievable goal than it was in 2016. UI testing provides unique opportunities for
ensuring your delivery pipeline is reliable. But adoption is still in its early phases, and
you should reserve this form of testing only for critical or complex processes that cannot
be tested by any other method.

I A
more slower
integration

Service Tests

more Unit Tests
isolation ! / “faster

Figure 8-14. The test pyramid, introduced by Mike Cohn

310

CHAPTER 8 QUALITY AND TESTING

Figure 8-14 is known as the test pyramid, an often-cited recommendation
for how many tests of different types to create.?® The diagram indicates that the
foundation of your test strategy should be code-based unit tests, which run quickly
and test isolated parts of your codebase. There should be more of these than any
other test. At the top of the test pyramid are UI tests, which test the entire integrated
system but are slower to run. You should have far fewer of these tests than unit
tests. The middle layer refers to acceptance tests which cover larger chunks of
functionality, but don’t require a fully rendered UI. You should have a middling
number of these. As mentioned, such tests go by various names, such as “integration

” u

tests,” “component tests,” and “service tests.”

There are several reasons you should have fewer UI tests than other types of test.
A single Ul test can cover many underlying pieces of functionality, and thus fewer tests
suffice. Ul tests also require more time and care to maintain, since a change to one
underlying piece of functionality can require a change to many UI tests, and so more
tests are more expensive. Since Ul tests cover broad segments of the org’s behavior,
they have vastly more permutations of inputs and possible outputs, and so it might be
tempting to use them to cover every edge case. The test pyramid advises restraint from
such temptations. You should test the critical path and fragile scenarios that are frequent

causes of regressions, but never try to cover every test case with UI tests.

How to Act on Ul Test Results

As with other types of tests, UI tests should be integrated into your delivery pipeline so
that you can run at least a subset of them every time you deploy code. UI tests can only
run after a deployment is completed, but if a UI test fails after deployment to one org,
your CI system can prevent that code from proceeding to subsequent orgs.

Perhaps more than other types of tests, Ul tests can be brittle and subject to false
positives. Ul tests that are “flappers,” alternating unpredictably between success and
failure, should be removed or fixed. Like the proverbial “boy who cried wolf,” tests that
generate frequent false positives will lead your team to ignore test results altogether, thus
undermining their effectiveness.

2https://martinfowler.com/articles/practical-test-pyramid.html

311

https://martinfowler.com/articles/practical-test-pyramid.html

CHAPTER 8 QUALITY AND TESTING

Nonfunctional Testing

Nonfunctional testing examines the structural characteristics of the code. As mentioned,
there are five structural characteristics to software quality: reliability, maintainability,
security, performance, and size.

There are different ways to evaluate those structural characteristics, both manual
and automated. In this section, we again look at static code analysis, this time in the
context of assessing the entire codebase, followed by discussions of security analysis,
performance analysis, and code reviews.

Static Analysis—Full Codebase

Static analysis provides fast, automated feedback on code quality with no risks and
little or no effort. For that reason, it’s now appearing for the third time in this chapter, in
hopes that you will hear this message loudly and clearly. I might be accused of repeating
the previous sections on linting and quality gates, but this section is introducing a third
distinct use of static analysis: assessing the entire codebase and evaluating trends over
time.

There are many tools which can help give insight into code quality by scanning
code and flagging vulnerabilities. Tools such as PMD, SonarQube, and CheckMarx can
identify many issues and track trends over time. This allows project teams to view the
current and historic code health of their project.

When the main focus is simply getting code to work, code quality may not be a
developer’s first priority (https://xkcd.com/844/ provides a lighthearted depiction of
this challenge). However, as professionals, improved code quality and efficiency should
be one of the main concerns for the project team (and consequently the developer).

Code quality maintenance and improvement requires attention and focus
throughout a project’s lifecycle. Issues with code quality, such as poorly designed or
difficult to understand code, will accumulate easily if left unchecked. These issues
are known as technical debt, and if left to grow they will make software maintenance
increasingly difficult, time-consuming, and risky. In the same way that one might deal
with financial debt, the key to mitigating technical debt is to acknowledge and address
quality risks or concerns as early as possible in the development process and not to let
them accumulate.

This section reviews recommended components and tools that project teams can
use to monitor and improve code quality across the entire codebase.

312

https://xkcd.com/844/

CHAPTER 8 QUALITY AND TESTING

How to Run Static Analysis

As indicated previously, static analysis tools can be used to give feedback on the code
currently being edited (linting), on a collection of changes being staged for deployment
(quality gates), or on the entire codebase. In some cases, the same engine can be used
for all three of these purposes. For example, SonarLint is able to connect to a SonarQube
instance to synchronize the ruleset between the two.

There are six well-established tools for performing static analysis on a Salesforce
codebase: Clayton, SonarQube, CodeScan, PMD, Codacy, and CodeClimate. We'll look at
each of these in turn before discussing how to integrate static analysis with your workflow.

Clayton

Among these static analysis tools, Clayton is the only one designed exclusively for
Salesforce. Clayton can connect directly to a Salesforce org, or more commonly to a code
repository stored in GitHub, GitLab, or Bitbucket. Clayton provides a library of rules
to select from, based on the experience and insights of Salesforce Certified Technical
Architects, principally its founder, Lorenzo Frattini. Clayton analyzes your metadata
based on the rules you select to identify security, maintainability, and performance flaws.
When used as a quality gate, Clayton can add code comments to a pull request or
block that pull request until issues are addressed. When run on the entire codebase,
Clayton generates a report that you can view through its user interface or export as a CSV.
In addition to offering a carefully thought-through set of rules, Clayton provides
references to training materials on Trailhead and clear suggestions for remedying any
errors that are detected.

SonarQube

SonarQube is an open-core product used to track quality metrics across multiple
languages and projects. SonarQube scans are typically run as part of continuous
integration jobs whenever changes are made to a codebase.

These scans identify issues ranging from excessive complexity to security flaws. It
can also track unit test coverage and code duplication. SonarQube tracks issues over
time, ranks them by severity, and attributes them to the developer who last touched that
line of code. This allows your project team to see quality trends, take action on particular
issues, and prevent code from proceeding through the continuous deployment process if
it shows significant quality issues.

313

CHAPTER 8 QUALITY AND TESTING

SonarQube examines and evaluates different aspects of your source code: from
minor styling details, potential bugs, and code defects to lack of test code coverage
and excessive complexity. SonarQube produces metrics and statistics that can reveal
problematic source code that’s a candidate for inspection or improvement.

Appirio made extensive use of the free Enforce plugin for SonarQube?® to provide
support for Salesforce Apex code analysis. That plugin only works for SonarQube
version 6 and below and struggles to parse some kinds of Apex. Since 2019, SonarQube
enterprise edition offers native Apex support. Appirio technical architect Pratz Joshi
collaborated with SonarSource to write specifications for many of the Apex rules.

It’s also possible to use SonarCloud.io for a fully SaaS-based code analysis solution.
SonarCloud now has feature parity with SonarQube, supporting more than 25 languages
without requiring you to install your own server.

CodeScan

CodeScan is a static analysis tool for Salesforce that is based on SonarQube. They use
SonarQube community edition as their underlying engine and user interface and have
written a very extensive set of rules for Apex, Lightning, and Visualforce. CodeScan offers
both a Cloud/SaaS edition and a self-hosted option.

Since it’s based on SonarQube, it has the same underlying capabilities, but has a
completely separate set of rules from the ones provided by SonarSource or Enforce.
CodeScan was among the first to market for Salesforce static analysis and offers the
largest number of quality rules among its competitors.

ApexPMD

Because it’s open source, PMD (https://pmd.github.io/) forms the underlying
analysis engine for many other products and is thus the most widely used static analysis
engine for Apex. Robert S6semann did most of the foundational work for ApexPMD and
remains its biggest and most popular champion. PMD itself does not provide a graphical
UL But tools such as Codacy or CodeClimate add a Ul layer on top of the PMD engine.
Many of the commercial Salesforce release management tools such as AutoRABIT also
include a built-in PMD scanner.

https://github.com/fundacionjala/enforce-sonarqube-plugin

314

https://pmd.github.io/
https://github.com/fundacionjala/enforce-sonarqube-plugin

CHAPTER 8 QUALITY AND TESTING

PMD can be run from the command line, or from within the ApexPMD extension for
VS Code, and its results output in multiple formats such as CSV and HTML.

PMD finds common programming flaws like unused variables, empty catch blocks,
unnecessary object creation, and so forth. It comes with a rich and highly configurable
set of rules that developers can quickly set up, straight out of the box. It also includes
CPD, the copy-paste-detector, to help identify duplicate code.

After installing the PMD extension for VS Code, you can use it to scan all the files in
your current workspace by running Apex Static Analysis: Current Workspace inthe
VS Code Command Palette. Problems will appear in the Problems panel, as shown in
Figure 8-15, and be indicated on the files themselves.

HandlerNext.cls-meta.xml 76 * MWrite a kev-value nair tn the farm's hody.
HandlerPipeline.cls 1 77 Method names should not start with capital letters
HandlerPipeline.cls-meta.xmi 78 public §tatic string WriteBodyPargmeter(

- : : 79 string key,

andlerQuarter.cls :1:] string value) {
HandlerQuarter.cls-meta.xml 81 strina rontentNisnnsitinn = 'Content-Nisnnsitinn: form—r
HandlerSOQL.cls 1 PROBLEMS QUTPUT DEBUG CONSOLE TERMINAL
Handler .cls-meta.xml| —

AnCieso0GE C ssmelHix 4 HandlerTopOpportunities.cls src/c
HandlerTopOpportunities.cls 1

. Avoid long parameter lists (3, 5)

HandlerTopOpportunities.cls-meta.x... 1
PURP 4 HandlerTravelApproval.cls sr

HandlerTravelApproval.cls

& Avoid long parameter lists (3, 2)
HandlerTravelApproval.cls-meta.xml

HttpFormBuilder.cls
HttpFormBuilder.cls-meta.xml

JWT.cls 1
'ﬁ' b GITLENS HISTORY

» RUNNING TASKS

4 HttpFormBuilder.cls :
i Variables that are final and static should be all capital (4, 5

i Method names should not start with capital letters [
i Method names should not start with capital letters (1

i Method names should not start with capital letters (36, 5)

P demo/master* T @ 4 A 61 MavensMate A Get Test Coverage

Figure 8-15. A full code analysis using Chuck Jonas’ VS Code PMD extension

People often struggle to get started with using PMD on the command line. You can
run this sample command inside a Salesforce project directory as an example to help
you get started:

$ pmd -d src -failOnViolation false -f text -language apex -R rulesets/
apex/style.xml,rulesets/apex/complexity.xml,rulesets/apex/performance.xml

315

CHAPTER 8 QUALITY AND TESTING

Breaking that down:

e -d src—Which subdirectory do you want to scan? This assumes
you're running the scan in a directory that has a subdirectory called

e -failOnViolation false—When running on the command line, set
this to false. If you want to run this as part of a CI job and you want the
scan to FAIL if PMD generates errors, you can set this flag to true.

o -f text—The file output format. Other formats include csv, xml, and
json.

o -language apex—The main language being scanned.

e -R rulesets/apex/style.xml,rulesets/apex/complexity.
xml,rulesets/apex/performance.xml—This is the critical
parameter, the three Apex rulesets. See the PMD documentation for a

complete list of rulesets.

PMD also includes a utility called CPD that can identify duplicate code in your org.
Again, here is a sample command you can use to get started:

$ cpd --files src --language apex --minimum-tokens 100 --format csv

Breaking that down:
e --files src—The subdirectory, same as earlier.
o --language apex—The code language, same as earlier.
e --minimum-tokens 100—The minimum number of “tokens” that

need to match for two sections to be considered duplicates. Smaller
values will find more matches, but more of them will be “false
positives” or insignificant duplication.

e --format csv—The output file format, same as earlier. Other options
include text, xml, and json.

316

CHAPTER 8 QUALITY AND TESTING

Codacy

Codacy provides a SaaS-based static analysis tool that connects to your codebase in
GitHub or Bitbucket and provides static analysis across many languages. Codacy uses
well-established analysis engines such as ESLint and PMD but provides a user interface,
authentication, and other capabilities on top of that.

Codacy also offers an Enterprise Edition that companies can host themselves. The
Enterprise Edition also supports GitLab.

CodeClimate

CodeClimate is similar to Codacy in using PMD and ESLint as its underlying analysis
engines for Apex and Lightning, respectively. CodeClimate provides a user interface to
allow you to track quality trends in your codebase over time.

CodeClimate offers two products: Velocity and Quality. CodeClimate Quality is the
actual static analysis tool. CodeClimate Velocity analyzes developer activity to help you
track DevOps metrics such as cycle time, as well as metrics of interest to engineering
managers such as what activities are consuming most of the team’s time.

When Does Static Analysis Run?

Some of the analysis tools mentioned earlier, such as Clayton, connect directly to your
code repository and run analysis when commits are pushed. Others such as SonarQube
or CodeScan require you to run the analysis as part of a CI job, which is then uploaded to
the tool.

Running regular scans builds a history that allows you to track trends over time.

Where Does Static Analysis Run?

Static analysis runs either in a CI job or in the backend of one of the SaaS analysis tools,
and never inside of your Salesforce org.

Data Needed for Static Analysis

As mentioned earlier, static analysis does not require test data to run.

317

CHAPTER 8 QUALITY AND TESTING

Creating Static Analysis Rules

Rather than creating static analysis rules, your focus is typically on selecting or
deselecting which rules will run from among the options provided by each tool. It is very
important to monitor your team’s response to various rules when you first roll them out,
so you can ensure they are providing value and not just noise.

Creating static analysis rules is generally outside the skillset of most developers.
One exception is configurable rules such as class naming conventions. Tools such as
SonarQube allow you to use regular expressions to specify acceptable patterns for your
class and method names.

Considerations for Static Analysis

There are two common reactions to scan results from those new to static analysis. One
reaction is cognitive overload, since these scans can expose thousands of issues in
need of remediation. It was SonarQube that first introduced me to the term “kilodays”
when describing the estimated time required to address issues on one codebase. The
other reaction is exaggerated optimism in the tools’ ability to identify quality issues.
Just because Clayton doesn’t find any issues with your code doesn’t mean that you've
written good code. It’s entirely possible to write buggy and incoherent code that passes
static analysis. Other forms of testing such as code reviews and unit tests are important
complements to these scans.

How to Act on Static Analysis Results

Tracking trends provides a way to identify whether issues are accumulating over time
and to see hotspots in your codebase. Figure 8-16 shows the analysis of a large codebase
in SonarQube. One particular Apex class, MetadataService.cls, is five times larger
than the next largest class and represents one quarter of the total issues in the codebase.
Understanding or updating this class is likely to be a nightmare for future developers,

so it should be prioritized for refactoring while the developers responsible for this
abomination are still around.

318

CHAPTER 8 QUALITY AND TESTING

Issues Measures Code Activity Administration~ More ~
Al Reliability Security (EIHGIELELIL"E Coverage Duplications Size G lexity lssues Leak Period: since previous version
- Technical Debt 150d
14,523 [14,523 (A
2 Added Technical Debt 150d
@ Code Smells & New Code Smells Maintainability Rating
Technical Debt Ratio 20%
Technical Debt Ratio on New Code 0.0%
Effort to Reach Maintainability Rating A /]
Maintainability Rating on New Code o
Size: Gode Smells
25d
20d
16d
5
a
5 124
B
Bd 2n
3 1h
o @il ;
0 2,000 4,000 6,000 8,000 10,000

Figure 8-16. A bubble chart from SonarQube revealing that one Apex class is
vastly more complex than anything else in the codebase

Security Analysis

Having thoroughly discussed static analysis, we can look at tools focused on security.
There is some overlap between static analysis tools and security analysis tools. All of
the static analysis tools discussed in the last section also include some security-focused
rules, but there are other tools that explicitly focus on security testing for Salesforce.
The points made in the static analysis section about how and when scans run generally
apply here as well. The two tools introduced here, CheckMarx and Fortify, can scan and
identify security vulnerabilities in Apex code. Salesforce also has a tool called Chimera
available for ISV partners to perform security scans on non-Salesforce web sites.

319

CHAPTER 8 QUALITY AND TESTING

IT Security is a challenging area, made more challenging by a shortage of skilled
workers and being left as an afterthought on many projects. Salesforce provides a highly
secure foundation for building applications and running your business. But its flexibility
means that customizations can expose security vulnerabilities if not thought through
carefully.

The security team at Salesforce has been trying for years to promote secure coding
best practices on the platform. And https://trust.salesforce.com/en/security/
security-resources/ provides a great collection of training materials that are important
for developers to internalize.

The automated tools mentioned here and in the static analysis section can buttress
the other security precautions you take in your development processes. There’s
no substitute for thoughtful architecture, but there are many common and subtle
vulnerabilities that can be readily caught by these automated tools.

CheckMarx

CheckMarx is far and away the dominant security analysis tool for Salesforce. Many
years ago, CheckMarx partnered with Salesforce to provide security analysis for Apex.
Salesforce maintains an instance of CheckMarx that they make freely available to
customers to perform scans on their own codebase.*® There are limits to how often
customers can run the free scans, so large Salesforce customers often procure their own
instances of CheckMarx to enable ongoing scans of their codebase. Having a CheckMarx
license also provides access to many features such as dynamically filtering and drilling
into results, marking some as false positives, and so on.

Unlike the static analysis tools mentioned earlier, CheckMarx provides the ability to
identify security issues that cross file boundaries. One of the most commonly surfaced
issues is SOQL injection vulnerability, in which input from a text field could find its way,
unfiltered, into a SOQL query and potentially expose private information. For example,
CheckMarx can identify when text field input is passed unsanitized from Visualforce
to an Apex controller to an Apex service class and finally into a query. In the same way,
CheckMarx can detect stored XSS attacks in which unsanitized script data might be
written into the database and possibly rendered in users’ browsers.

®https://security.secure.force.com/security/tools/forcecom/scanner

320

https://trust.salesforce.com/en/security/security-resources/
https://trust.salesforce.com/en/security/security-resources/
https://security.secure.force.com/security/tools/forcecom/scanner

CHAPTER 8 QUALITY AND TESTING

Micro Focus Fortify also provides Apex scanning capabilities, but CheckMarx is
almost unchallenged because of the sophistication of their tool and their partnership
with Salesforce. Their tool is expensive, and so not in the toolkit of most small or
medium enterprises, but it provides an important complement to developer training,
especially if you are building highly secure or Internet-facing applications.

The basic CheckMarx application can connect to a code repository to retrieve
your metadata, or you can manually upload it as a ZIP file. If you purchase the add-on
integration package, you can also use their command-line tool CxSAST or plugins for CI
tools like Jenkins, Bamboo, or VSTS to run security analysis as part of your build process.

Micro Focus Fortify

Fortify is a security analysis tool originally developed by HP. It is much less well known
in the Salesforce world, but does support scanning Apex. One benefit over CheckMarx
is that Fortify also provides an on-demand SaaS-based scanner. CheckMarx must be
installed on a server, whereas Fortify provides either cloud or on-premise options.

Performance Testing

Performance testing is very different from either static analysis or security analysis. It is
an aspect of nonfunctional testing that evaluates how well your applications will perform
under normal or higher-than-normal load. This is generally used to evaluate response
time (delay) and throughput (how many transactions per second the system can
handle). It also provides useful information on side effects, such as whether the response
time changes for other applications during the tests.

Salesforce handles performance tuning for the underlying platform for you, and
provides load balancing and many other mechanisms to ensure that your applications
scale and remain performant. In general you don’t need to worry about how well
Salesforce will handle large volumes of transactions as long as you're using built-in
capabilities of the platform.

But as you begin to create complex custom applications on the platform, you may
encounter scalability issues that don’t surface until you are receiving large numbers of
requests. Two of the most common scalability issues are large data volume (LDV) issues
and large traffic issues.

LDV issues relate to the amount of data stored in the org, rather than current usage.
They usually begin to arise when you are dealing with tens of millions of records on a
single object or are making reports or SOQL queries that are unusually expensive. If a

321

CHAPTER 8 QUALITY AND TESTING

query or report is inefficient, that issue will arise whether you are receiving 1 request or
1 million requests. Thus LDV issues can be investigated relatively easily by developers
and architects as long as there is an org with sufficient data. LDV issues are dealt with at
length in Salesforce’s documentation.

Large traffic issues are much harder to monitor and assess, since they happen in real
time and may not be visible to every user. For normal IT systems, monitoring traffic is a
large focus of the operations teams. Salesforce orgs are mostly accessed by employees
with user accounts, and so the number of users is typically predictable. But as you start
to expose your org to customers through Sites or Communities, you may be exposed to
more unpredictable levels of traffic.

This is just a superficial review of the topic, largely to introduce high-level
performance testing concepts that might be useful to help with LDV or traffic issues.
The following tools can be used to generate large volumes of randomized sample data
in a testing org prior to go-live. They can also be used for actual performance testing:
simulating real-time traffic to help determine whether performance issues begin to
appear when the system is under load.

How to Run Performance Tests

A simple subset of performance testing can be done just using Chrome Dev Tools or
Firebug from a developer’s machine. If your concern is simply with page load time, this
may be sufficient. When Lightning Components were first launched, they were slow
and buggy, and the Salesforce Lightning Inspector®! was extremely helpful to identify
performance bottlenecks. The Developer Console also remains a helpful way to identify
performance issues on the Salesforce backend. But none of these tools allow you to test
the system under large loads, which is the true meaning of performance testing.

To run performance tests, you will need a commercial tool such as Micro Focus
LoadRunner, an open source tool such as Apache JMeter, or a cloud-based testing tool
like SendGrid’s Loader.io. JMeter is popular and open source, but will require a bit more
scripting and experimentation to get working. Loader.io offers a free tier and a simple
SaaS-based user interface and may be sufficient to help you get started. LoadRunner
is the most well established of these but will require installation and high license fees.
There are now many other options as well.

Sthttps://chrome.google.com/webstore/detail/salesforce-lightning-insp/pcpmcffcomlc]
gpcheokdfcjipanjdpc?hl=en

322

https://chrome.google.com/webstore/detail/salesforce-lightning-insp/pcpmcffcomlcjgpcheokdfcjipanjdpc?hl=en
https://chrome.google.com/webstore/detail/salesforce-lightning-insp/pcpmcffcomlcjgpcheokdfcjipanjdpc?hl=en

CHAPTER 8 QUALITY AND TESTING

If your only goal is to generate large volumes of sample data, you may be able to use
a data-focused tool such as Odaseva or OwnBackup which provide tools for loading large
volumes of data.

Performance testing is normally divided into load testing and stress testing. Load
testing means simulating expected volumes of transactions and possibly varying that
load across the normal range. Stress testing simulates higher-than-normal numbers
of transactions to determine how the system behaves as loads increase. Stress testing
can either take the form of soak testing or spike testing. Soak testing applies a stable or
steadily increasing load over an extended period of time; in traditional applications
that’s useful to determine memory leaks, whereas in Salesforce it can give you an
indication of how data or asynchronous jobs accumulate over time, and whether you
see changes in the performance of the underlying Salesforce Pod. Spike testing applies
sudden bursts of traffic to assess what happens in extreme circumstances.

Performance testing tools have several main capabilities. First, they allow you to
design tests that can send data to Salesforce’s API or user interface. You can specify what
data you’ll send, how often, in what volumes, and so on. Second, they include tools to
actually orchestrate and generate that load. Like Ul testing tools, they can record and
replay user interactions in a browser, but in parallel at an extremely high rate; they can
also apply large numbers of API requests in parallel. Finally, these tools record response
times and error rates, summarizing this in time series graphs that allow you to monitor
throughput and correlate load with response time. Those time series graphs can also
reveal side effects like increasing response times on unrelated parts of Salesforce as your
main test load increases.

When Do Performance Tests Run?

Unlike the other types of testing discussed in this chapter, performance tests should not
be run on an ongoing basis as part of your development lifecycle. Salesforce prohibits
large-scale performance testing in sandboxes except by prior authorization. Salesforce
provides specific guidance on performance testing at https://help.salesforce.com/ar
ticleView?id=000335652&type=1. Such tests need to be planned and scheduled at least
2 weeks in advance and must be done in conjunction with Salesforce support staff so
that they can abort the tests if they cause adverse effects on other customers.

323

https://help.salesforce.com/articleView?id=000335652&type=1
https://help.salesforce.com/articleView?id=000335652&type=1

CHAPTER 8 QUALITY AND TESTING

Performance Testing Environments

Salesforce is a multitenant system, and the “pods” that host sandboxes generally

have lower spare processing capacity than production systems. The good news is

that if something performs well in a sandbox, it will generally perform even better in

a production org. Because this testing must be scheduled in advance and involves
creating and changing large volumes of data, performance testing should be done in a
full sandbox. It can also be done in a partial copy sandbox, but you'll need to ensure you
have enough space available to perform the tests.

Data Needed for Performance Tests

One of the main capabilities of performance testing tools is their ability to generate large
volumes of randomized data. This requires time to set up and configure, since the data
must be appropriate to the objects and fields under test. If your goal is to diagnose actual
performance issues seen in production, then you will definitely want a freshly cloned full
sandbox or at least a partial copy sandbox that includes data from all of the relevant objects.

Creating Performance Tests

As with any kind of testing, it’s important to start small and build your tests up gradually.
How exactly each test is created is highly dependent on the tool. An older Dreamforce
talk on performance testing by Raj Advani and Randy Case* offered a generalized four-
step process for building your performance tests: build a test plan, run a baseline test,
identify your target load, and scale up your tests gradually.

After selecting and setting up your performance testing engine, your first step is to
build your test plan. This is an essential preparation and is also something you'll need
to submit to Salesforce before you can schedule your test. Your test plan must identify
the key business transactions you want to test. Your focus should be on testing your
custom code and processes, not on testing Salesforce itself. Even if you discover some
performance bottlenecks coming from Salesforce, you won'’t be able to fix those, so focus
your tests on areas under your own control like Apex code and Processes. Your test plan
should assess what data will be needed, what data volumes and rates, and what APIs or
UI endpoints you'll be testing. The Salesforce help article at https://help.salesforce.
com/articleView?id=000335652&type=1 can be your guide.

“www.slideshare.net/developerforce/df121279-patterson-randy-changes

324

https://help.salesforce.com/articleView?id=000335652&type=1
https://help.salesforce.com/articleView?id=000335652&type=1
www.slideshare.net/developerforce/df121279-patterson-randy-changes

CHAPTER 8 QUALITY AND TESTING

You can and should run multiple baseline tests before actually beginning
performance testing. Baseline tests use your performance testing tools to execute
small groups of transactions. This lets you validate your scripts and establish baseline
expectations for performance.

Based on that initial information, and your expectations about the loads you need to
test, you can then identify your target load. Your target number should be realistic. For
example, if you estimate you may encounter 200 parallel requests, you do not need to
test against 10,000 parallel transactions.

Once you've identified your target load, when it comes time to coordinate your
load test with Salesforce, you should scale the test up gradually. Begin with half your
estimated load, then move to 75%, before finally running the full load.

Performance Testing Considerations

Again, performance testing is prohibited on Salesforce except by prior arrangement and
at a scheduled time. You can develop your performance tests by using these tools to load
small amounts of data, but if you start generating unusually high volumes of data, you
will violate Salesforce’s terms of use.

How to Act on Performance Test Results

The main purpose of performance testing is to gain confidence that your applications
will be able to handle normal traffic and some level of surge traffic. If issues are
identified, they become the starting point for analysis and remediation. Next steps
depend on the issue being uncovered. As mentioned, Salesforce provides excellent
resources for addressing large data volume issues, from indexing fields and checking
query plans to creating skinny tables and looking at archiving solutions.

Salesforce’s multitenant platform means that the performance of your org is not
entirely under your control. And their governor limits mean that you can hit hard limits
if you have not designed your applications in an efficient way. But performance testing
can give early insights into these issues and make the difference between going live with
confidence and experiencing unanticipated failures.

If your baseline tests indicate that a particular process takes 5 seconds to complete,
you may be looking to see the variability in that response time. The testing tools can
help you determine which stages in each transaction take the most time or are subject to
the most variance or errors. Identifying and remedying a small number of performance

hotspots can make a huge difference in the eventual performance.

325

CHAPTER 8 QUALITY AND TESTING

Code Reviews

Having extensively discussed various forms of automated tests, we now look at code
reviews, a manual form of nonfunctional testing. Code reviews are one of the most
powerful methods of ensuring consistent high-quality code, providing training to
developers, and ensuring that more than one person is familiar with every line of

code in the system. Code reviews can be performed by one or more senior members

of the development team, or they can be peer reviews done by other members of the
development team. An Extreme Programming (XP) version of the code review is “pair
programming” where developers always work in pairs, taking turns having “hands on the
keyboard,” but applying both of their minds to the problem at hand.

Coding standards are sets of rules adopted by development teams based on
collective experience and wisdom. These standards are typically adopted by an
organization, but may vary slightly from project to project. These standards may also
differ for each programming language (Apex, Visualforce, JavaScript, Python, etc.)
but typically concern metadata organization, indentation, commenting, declarations,
statements, white space, naming conventions, programming practices, and the like. The
main advantage of defining and holding true to standards is that every piece of code
looks and feels familiar. Consistent organization makes code more readable and helps
programmers understand code written by others more quickly.

If coding standards are followed consistently throughout a project and across an
organization, code can be more easily extended, refactored, and debugged.

Using coding standards in the development process is important to programmers for
a number of reasons:

o Software is almost never maintained for its whole life by its original
author.

» Enforcing collective standards reduces the time and cost required for
software maintenance.

o Code conventions improve the readability of software, allowing
programmers to understand unfamiliar code more quickly.

One easy way to ensure that code adheres to coding standards is to include (and
effectively use) a code review step in the development process. This ensures that you
always have at least two sets of experienced eyes on all of the code on your project.

326

CHAPTER 8 QUALITY AND TESTING

How to Perform Code Reviews

Often, code reviews are the responsibility of a project’s Tech Lead or Dev Lead, but
that may vary by project. Through the code review process, reviewers are able to coach
developers, provide feedback on code quality, and ensure the delivery of high-quality
code. Everyone learns and improves along the way.

Consider the following suggestions to improve code quality:

o Follow the programming language style guide for the language(s)
being developed in.

e Give descriptive names for methods and variables.
e Do not overdesign.

o Use efficient data structures and algorithms.

o Create proper test classes and modularize code.

e Document any complex manual steps, provide scripts to simplify
them if possible, and try to make your code self-documenting as
much as possible.

o Keep all elements of your project in a version control system.

By sticking to these points and using the code quality analysis tools suggested earlier,
project teams can create more readable, reliable, and manageable code. Improved code
quality helps development teams work quickly and safely, which benefits them and the
businesses they support.

When Are Code Reviews Performed

As mentioned, code reviews can either be done at the same time as development using
pair programming, informally after the fact through peer review, or as part of a formal
code review process, possibly using a pull request.

One of the most important recommendations to come out of the State of DevOps
Reports was based on analyzing the relationship between team performance and
how they managed code reviews and change approvals. As summarized in the book
Accelerate:

327

CHAPTER 8 QUALITY AND TESTING

[The State of DevOps Survey] asked about four possible scenarios:

1. All production changes must be approved by an external body
(such as a manager or change advisory board).

2. Only high-risk changes, such as database changes, require
approval.

3. We rely on peer review to manage changes.
4. We have no change approval process.

The results were surprising. We found that approval only for
high-risk changes was not correlated with software delivery
performance. Teams that reported no approval process or used
peer review achieved higher software delivery performance.
Finally, teams that required approval by an external body
achieved lower performance.

We investigated further the case of approval by an external body to
see if this practice correlated with stability. We found that external
approvals were negatively correlated with lead time, deployment
frequency, and restore time, and had no correlation with change
fail rate.®

Based on that analysis, they recommend using a lightweight change approval
process. Furthermore, while pull requests are an ideal approach for reviewing untrusted
contributions to open source projects, using them for code reviews within a team implies
the use of feature branches instead of trunk-based development and thus can interfere
with a team’s velocity and ability to refactor.

Such recommendations contrast sharply with the practices and expectations of
many teams, especially those subject to regulatory compliance. If you're in doubt,

I strongly recommend you read the three-page discussion on this topic in the book
Accelerate. In brief, it is logical that external reviewers with limited understanding or
time to evaluate changes will add little or no benefit compared with the teams who have
spent days creating and testing a feature. By contrast, pair programming or intrateam
reviews bring a more educated review.

¥Nicole Forsgren, Jez Humble, and Gene Kim, Accelerate: The Science of Lean Software and Devops
Building and Scaling High Performing Technology Organizations (IT Revolution Press, 2018): p. 79

328

CHAPTER 8 QUALITY AND TESTING

Peer review together with ensuring that all changes are tracked and deployed
through the delivery pipeline will satisfy both the letter and the spirit of “segregation
of duties.” Review processes cannot guarantee that a change won’t lead to a failure, but
being able to quickly deploy small changes reduces the risk of such deployments. It
also allows for easier debugging, faster rollback, and an efficient feedback loop to the
developers who most need to learn from any failures.

Code Review Environments

Code reviews are based directly on the source code and so don’t require a test
environment. They are most effective when done as peer reviews or pair programming,
but can also be done by reviewing pull requests in a version control system like GitHub.

Data Needed for Code Reviews

Code reviews are based directly on the source code and so don’t require any test data.

Performing Code Reviews

Code reviews provide an opportunity to give feedback on coding style, the efficiency
of the logic, naming conventions, and many other aspects of coding. Importantly,
code reviews also transform development from an isolated activity into a social and
collaborative activity.

Part of the mythos surrounding programming casts it as a solitary activity done by
socially awkward individuals who are more comfortable interacting with machines than
with humans. In the United States, that stereotype layers in images of young, white males
binging on junk food and working mostly at night. Those stereotypes are so strong that
they have affected university enrollment in computer science programs for decades,
leading to gender and racial imbalances across the IT industry.

In reality, programming never happens in isolation from the business or social needs
it's serving, and there are many social networks (in the original, human sense) that
support people in building code and making wise decisions.

Code reviews provide a way to transfer knowledge organically throughout a
team and so avoid knowledge getting overconcentrated in one person. They lead to
standardization and improved code quality, as well as deep camaraderie between those
involved.

329

CHAPTER 8 QUALITY AND TESTING

It was W. Edwards Deming, the father of industrial modernization, who debunked
the myth that domineering and judgmental managers help ensure a quality product.
Deming’s 14 points for management emphasize the importance of driving out fear,
breaking down barriers, eliminating performance reviews, and focusing on pride in
workmanship and achieving a common goal.

Although this book is full of exhortations to automate processes, it’s in the spirit of
freeing teams to focus on productive, valuable work. Software is a codification of shared
knowledge and so must necessarily be a shared activity. Code reviews provide a perfect
opportunity to carry that out.

Manual QA and Acceptance Testing

Having discussed both functional and nonfunctional testing, we finally look at manual
testing. Whereas code reviews are part of structural analysis, looking “under the hood”
at how applications are built, manual testing involves manually checking whether the
application functions as it should. This can be done by specialized members of the QA
team, or developers can take turns performing QA for one another’s work.

Manual testing is mentioned last, only after extensive discussion of many automated
test methods, not because it is not important, but because the time and skills of testers
will be far more valuable when used to supplement and extend the kinds of automated
testing described earlier. Where automated tests are available, they are cheaper, faster,
and easier to run than manual tests. Wherever possible, QA resources should focus on
exploratory testing and testing one-off scenarios that don’t justify automation.

Manual testing is a critical aspect of the development process. But one of the highest
value activities that testers can do is discern when a test should be automated and help
to implement effective automated tests. By automating critical aspects of the system,
and aspects that are brittle or require repeated testing, the skill and energy of testers
can remain focused on exploratory testing and high-value analysis that cannot be
automated.

There are typically two phases of manual acceptance testing. The first stage is
performed by members of the development or QA team themselves, prior to making
functionality available to potential users. The second stage involves user acceptance
testing (UAT), getting feedback from actual subject matter experts.

Prior to UAT, the development or QA team should perform a round of manual
exploratory testing as a sanity check to confirm that functionality seems to be working
as specified. Catching issues at this stage is far preferable to exposing UAT testers to

330

CHAPTER 8 QUALITY AND TESTING

obvious bugs. Not only does this allow bugs to be caught earlier, but UAT testers are
often performing this testing part-time, alongside their regular responsibilities, and will
quickly grow weary of sending obviously defective work back to development teams.

How to Do Manual QA and UAT

There is a distinct difference between the skills and attitude of a developer and the skills
and attitude of a tester. Developers focus on building things and moving on as quickly
as possible; testers focus on breaking things and not moving on until they are confident
something won't break.

With increased emphasis on automated testing, test-driven development, and other
methods of building in quality, the role of manual QA sometimes comes into question.
Teams are still experimenting with variations on the role of traditional testers, to see
what works best. Understandably there are tradeoffs with all approaches.

The leanest approach is to simply rely on developers to test their own work. While
developers should certainly test as much as possible, this doesn’t tend to work well.
Development takes a massive amount of mental energy and is sometimes done under
significant time pressure. Exhaustion and wishful thinking can combine to make
developers overoptimistic that they can quickly move on to their next task. Excessive
familiarity causes developers to make assumptions about how users will behave and
makes them stay close to the “happy path” of using the application the way it was designed.

Salesforce’s own IT teams are among the groups who have experimented with a variation
on this, which is to have developers alternate between doing their own work and testing
the work of others. Like peer reviews, this is a fantastic way of knowledge sharing and
encouraging dialog around solutions. But even when testing the work of others, developers
still display a bias toward moving things along rather than trying hard to break them.

Good testing is indeed a specialized skill, and although the role of QA testers is
evolving quickly, it’s not going away any time soon. Testers require patience, a tolerance
for repetitive behavior, and an eye for how applications might break when used in
unanticipated ways. QA testers hold institutional memory of the most common failures
that occur and can remain watchful to ensure developers don’t introduce regressions.

QA testers engage with developers in a dialectical way, representing the realistic
viewpoint that whatever can break will break. I've underrepresented the role of QA, since
I come from the development side, but it suffices to say that realism lies somewhere in
between the optimism of developers and the pessimism of testers. Therefore they should
continue to work together to deliver the best results.

331

CHAPTER 8 QUALITY AND TESTING

When to Do Manual QA and UAT

As mentioned, manual testing should be done on work that has passed all automated
tests and can thus be considered a candidate for release. This allows testers to use their
time more effectively to focus on exploratory testing.

User acceptance testing (UAT) is done once a team’s internal testers are satisfied
that work meets specifications and may be ready for use. User acceptance testers are
generally subject matter experts (SMEs) from the business team that has requested or
will use the application. On large transformation projects, there will typically be a UAT
phase of the project when SMEs work full or part-time to evaluate the systems that have
been built to ensure that they behave correctly under realistic conditions and represent
an improvement over what’s currently in use.

QA and UAT Environments

QA testing is a great candidate for shifting left and being done in a scratch org. This can
allow for very fast feedback, since QA can provide feedback in the same scratch org that
the developer is using or in a “Review App”—a scratch org spun up directly from the

CI system. This requires that you have test data stored in your code repository that is
sufficient to support the testing needs of the QA team. Although maintaining test data in
a code repository may be a new process for QA teams who are accustomed to testing in
a long-lived sandbox, it provides a powerful method to curate and improve a reasonable
set of test data that is seen by both developers and testers and which is regularly reset.

A key concept in Lean software development is to enable every worker to pull raw
materials to do their job whenever they have capacity. For QA testers, their raw materials
are features or fixes under development. In the absence of automated deployments, QA
teams are left waiting for deployments to happen, which is a massive source of waste.
Automating deployments reduces this waste, and allowing QA testers to create their own
scratch orgs to evaluate work in progress is an excellent example of workers being able to
pull raw materials in.

UAT testing should be done in a production-like environment, a partial or full
sandbox. This allows UAT testers to experiment with familiar data, including complex
scenarios that they have to handle during their daily work. This also ensures that they are
testing in an environment that is fully integrated with external systems. If functionality
is automatically deployed to this production-like environment, and behaves properly in
the face of realistic data and live integrations, then the same results can be expected in
production.

332

CHAPTER 8 QUALITY AND TESTING

Data Needed for QA and UAT

QA teams typically spend significant time creating, cloning, and updating collections
of manual testing data that they can use in their tests. Traditionally, teams use a single
QA sandbox, since this allows them to establish that testing data and share it across the
testing team. There’s usually opportunity to make the process of creating test data more
efficient.

Data management tools like OwnBackup and Odaseva allow you to anonymize
and import collections of data from production that can be used by testers. Salesforce
DX also includes mechanisms like data:tree:export to export collections of data into
version control so that it can then be loaded into scratch orgs for testing.

Effective practices for managing test data are still evolving, but wherever possible
it’s important to export test data in a form that can be reused, so that QA teams are not
shackled to a single org that never gets refreshed for fear of losing manually curated
testing data.

UAT data should match the data from the actual production org, which is why
partial and full copy sandboxes are the right place to perform such testing. Data
management tools give you the flexibility to selectively migrate data into developer
sandboxes, but it’s almost certainly more efficient to just use a sandbox that includes a
copy of production data.

The most important data for UAT is actually the configuration data that determines
business logic and essential information such as Products and Pricebooks. After that,
it’s critical that key Accounts, Opportunities, and so forth are created that match the
production system. UAT testers are uniquely able to exercise edge cases that might be
likely to fail. But to do this, they need to have familiar data from production.

QA and UAT Test Cases

For formal testing, it's common to create test cases, which are sequences of steps needed
to perform certain transactions. This is particularly important for QA testers since they
may be unfamiliar with business needs. But even UAT testers can benefit from having
explicit test cases generated by a senior member of their team so they can ensure they
are testing all the features that are under development.

333

CHAPTER 8 QUALITY AND TESTING

QA and UAT Considerations

There’s much more that can be said about these areas, and there are people who devote
their careers to managing teams of testers and facilitating user acceptance testing.

The reason for initiating this discussion here is to show where it fits in an increasingly
automated process of delivery and testing.

How to Act on QA and UAT Feedback

The final result of testing is either approval and release or sending the work back to
developers. In either case, the more time elapses from when features are first developed,
the less efficiently developers will be able to implement any feedback. Passing UAT

does not mean that features will actually be accepted and bug-free in the hands of large
groups of users. Users always have the last word in testing, and they too need feedback
mechanisms to express approval or to log issues.

Developers genuinely want to build the right things, and to build things right.
There’s an enormous amount of creativity and effort that goes into building things,
and developers are generally excited to share the results with users or to improve
applications based on their feedback. But just as when giving feedback to pets or
children, the more time elapses the less effective that feedback becomes.

I confessed earlier that developers just want to get work out the door. And this
entire book focuses on helping teams get their work out the door more quickly. But that
doesn’t mean that anyone benefits from shipping unreliable, half-baked functionality to
production. The point of automating delivery is to get features to QA, UAT, and end users
with the highest quality in the shortest time. Feedback from testers is the critical end
result of expediting delivery and is the most effective way to improve the product and
developers’ understanding of the real needs.

In the words of Jez Humble, “A key goal of continuous delivery is to change the
economics of the software delivery process to make it economically viable to work in
small batches. ... Working in small batches ... reduces the time it takes to get feedback
on our work, makes it easier to triage and remediate problems, [and] increases efficiency
and motivation.”**

$https://continuousdelivery.com/principles/

334

https://continuousdelivery.com/principles/

Summary

CHAPTER 8 QUALITY AND TESTING

Quality can be a moving target, challenging to define, and impossible to perfect. But by

considering these various aspects of quality—functional, structural, and process—teams

are enabled to be more effective in achieving a design that will meet both present and

future needs. By keeping a focus on quality and adopting a discipline of continuous

improvement, the goal of long-term user satisfaction becomes far easier to achieve.

Table 8-1 summarizes the different types of test described in this chapter.

Table 8-1. A summary of different types of test and their characteristics

Automated Environment Speed Purpose Technology
Fast Tests for
Developers
Linting Yes IDE Real time Coding style, PMD, SonarLint,
common faults ESLint
Quality gates Yes Desktop, CI Fast Code issue PMD, SonarQube,
engine, web overview, duplicate Clayton, Copado
application detection, trends
Unit tests Yes Scratchorg, <5 min Fast feedback for ~ Apex, Jest/Mocha
Dev sandbox, total developers
or locally
Comprehensive
Tests
Code-based Yes Scratchorg, Minutesto Comprehensive Apex, Jest/Mocha
acceptance test sandbox, hours (run regression tests
tests Cl job in parallel)
Ul tests Yes Scratchorg, Minutesto Regression Selenium, Provar,
test sandbox hours (run testing critical Puppeteer, Tosca
in parallel) parts of complex
applications

(continued)

335

CHAPTER 8 QUALITY AND TESTING

Table 8-1. (continued)

Automated Environment Speed Purpose Technology
Static analysis Yes Cl job, static ~ Fast Tracking trends and SonarQube,
analysis tool identifying quality ~ Clayton,
hotspots CodeScan,
PMD, Codacy,
CodeClimate
Security analysis Yes Security Minutes Sophisticated CheckMarx,
analysis tool identification of Fortify
security flaws
Performance Yes Full or partial Minutes to Occasional JMeter,
testing sandbox hours (run and targeted LoadRunner,
in parallel) performance Loader.io
analysis
Code reviews No In-person or Realtime Code quality Fellow
using pull or later analysis, shared developers
requests learning,

collaboration

Manual QAand No Testing Indefinite Exploratory testing Mouse, keyboard,
acceptance sandbox and getting monitor, human
tests feedback from

users

The purpose of testing is to ensure quality, and the process of testing is facilitated
by promoting features and fixes to progressively higher environments for progressively
more sophisticated testing. This process of promoting features is called deployment
and is the heart of continuous delivery. In the next chapter, we discuss mechanisms and
techniques to make your deployments as fast and painless as possible, thus allowing
your testing and release process to proceed as smoothly as possible.

336

CHAPTER 9

Deploying

Deploying means moving software and configuration between environments.
Deployment allows software to be built in a development environment, tested in one or
more test environment, and then released to one or more production environments.

In the case of traditional software, deployments send that software to a server
such as an EC2 host on AWS. In the case of Salesforce, deployments are changes to the
configuration of a Salesforce instance. In both cases, deployments have a reputation
for being painful and challenging, and have been one of the driving reasons behind the
development of DevOps approaches.

Why are deployments so challenging? First of all, any nontrivial piece of software is
complex, includes extensive logic, and varies its behavior based on user input, changing
data and other conditions. Second, it’s very hard to fully encapsulate software, since
it depends on the server and network infrastructure on which it runs, and typically
interacts with other applications.

The complexity of the application itself is understandable and somewhat
unavoidable. But deployment problems related to variations in server and network
infrastructure are enormously frustrating for developers. A difference in a proxy setting,
database configuration, environment variable, or version of a piece of server software
can make the difference between an application running fine and an application which
fails to run. Even worse, the application may run but experience strange behavior for
some users or occasional performance issues. Replicating such problems can require
hours or days of developer time, and resolving the behavior may depend on server-
wide changes that cause impacts for other applications as well. If there’s a deep divide
between development and operations teams, developers might even adopt a glib
attitude that “it worked in dev;,” even when the operation team is struggling.

337
© Andrew Davis 2019

A. Davis, Mastering Salesforce DevOps, https://doi.org/10.1007/978-1-4842-5473-8_9

CHAPTER9 DEPLOYING

The immense frustration of attempting to debug an application that “worked fine
in dev” but doesn’t work in a test or production environment has been a driving force
behind the rising use of containers (principally Docker containers) as the execution
environment for applications. Containers are lightweight execution environments
that can be created quickly, are identical every time they are created, and are isolated
from their surrounding environment. Containers guarantee a consistent execution
environment, which makes them extremely attractive platforms for deploying and
running applications. The ability to define (and update) containers using simple
configuration files that can be stored and modified as source code makes them even
more valuable.

Because Salesforce abstracts away the underlying server, database, and networking
infrastructure, Salesforce developers don’t experience the same infrastructure problems
that plague developers creating traditional applications. (The Salesforce employees who
actually build Salesforce may experience these pains, however!) Nevertheless, there is
an analogous problem faced by Salesforce developers in that they are deploying their
application into an Org which has its own customizations and competing applications.

It is equally possible for Salesforce developers to experience mysterious problems with
their production application that simply never appear in the development environment.
It is for these reasons that DevOps, and in particular continuous delivery, is so important
for the Salesforce world as well—and why it’s important to gradually bring your entire
org and all its applications into a well-defined delivery pipeline that provides you precise
visibility into what’s in each org and the differences between them.

At the heart of continuous delivery is automating deployments. People have been
doing deployments between Salesforce environments since the platform was created,
but there has been a tendency to do ad hoc deployments or manually modify target
environments. This chapter introduces the deployment technologies available, including
commercial tools, the process of resolving deployment errors, how to set up continuous
delivery, and how to manage org differences and multi-org scenarios. We conclude with
a discussion on how to analyze dependencies and the risks associated with deployments.

Deployment Technologies

What are the different techniques or technologies available to deploy to a Salesforce
instance?

338

CHAPTER9 DEPLOYING

The Underlying Options

There are only four underlying ways of deploying Salesforce metadata: using change
sets, using the Metadata API, using packages, and manually recreating the configuration
of one environment in another environment.

The change set Ul is built into Salesforce and provides a simple graphical interface
that can be used to deploy metadata between a production org and its related
sandboxes.

The Metadata API provides API-based access to read and update most Salesforce
configuration. This API is the tool that is most relevant to the task of continuous delivery.
This is also the foundation for all of the third-party release management tools.

The Metadata API also includes some limited capabilities for working with change sets.

Using packages as a mechanism for deployment has long been the approach for
ISVs to make applications available to customers. There are now several varieties of
packaging available on the Salesforce platform, and the use of unlocked packages is a
core part of the Salesforce DX workflow, described in detail later.

Manually recreating changes is a fallback that is still surprisingly common. As
of this writing, there are still many types of metadata that can’t be deployed in any
automated way. Fortunately, most of this “undeployable” metadata relates to minor
aspects of configuration that don’t need to change often. Almost all aspects of an
org’s configuration can be deployed automatically, but the gaps requiring manual
configuration are persistent and frustrating.

Another reason that manually recreating changes across environments is common
is lack of developer education on how to automate deployments. Fortunately, this gap is
easier for companies to address by themselves, and hopefully this book can help.

A surprising number of Salesforce developers are uneducated about the capabilities
of change sets and the Metadata API and may rely on manually recreating configuration
to “deploy” functionality that could easily be automated. Even very senior Salesforce
developers may be hanging on to the outdated view that “much” or “most” configuration
can’t be automatically deployed. The growing number of customers successfully
implementing continuous delivery is a proof that automated deployments are
achievable.

339

CHAPTER9 DEPLOYING

Manual Changes

The Metadata Coverage Report' and the Unsupported Metadata Types page® describe
the limitations of what Salesforce metadata can be deployed. Salesforce developers
should bookmark these pages and use these as the definitive reference for what can and
cannot be automatically deployed.

Salesforce has championed an “API first” approach for many years. For example, the
Salesforce Lightning Experience that began rolling out in 2015 was built on updates to
the Tooling API that allowed Salesforce to query its own APIs from the web browser to
retrieve information like lists of picklist values. Those responsible for doing Salesforce
deployments, however, have often felt that the promise of “complete metadata coverage”
was a mirage that never got any closer.

Despite annual improvements to the Metadata API, the pace of Salesforce
development meant that new features were regularly rolling out that could not be
automatically deployed. With each release, some of the Metadata API's backlog would be
retired, but new Salesforce capabilities keep being released, and so the backlog has been
growing almost as fast as it was being retired.

As mentioned in the introduction, this entire book deals with the “Salesforce Core”
product, and those parts of Salesforce such as Marketing Cloud and Commerce Cloud
that were the result of acquisitions require entirely separate processes to manage
deployments. Even on the core platform, there have been some notable and massive
gaps in the Metadata API. Community Cloud is built on the Core platform and has
been a major focus for Salesforce in recent years. Metadata API support for Community
customizations is still limited, as of this writing, but that is scheduled to be addressed
with the ExperienceBundle metadata type in the Winter '20 release.

Fortunately, there are now processes in place to ensure that any new capabilities
on the Salesforce core platform must be supported by the Metadata API. The Metadata
Coverage Report mentioned earlier is generated automatically by the build process that
builds Salesforce. And a quality check now ensures that any new capabilities created by
product teams at Salesforce must be accessible through this API.

'https://developer.salesforce.com/docs/metadata-coverage/

*https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/meta_
unsupported types.htm

340

https://developer.salesforce.com/docs/metadata-coverage/
https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/meta_unsupported_types.htm
https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/meta_unsupported_types.htm

CHAPTER9 DEPLOYING

The moral of this is that teams should continually strive to reduce their reliance on
manual “deployments,” but that certain edge cases will need to be handled manually
for the foreseeable future. For this reason, teams should maintain notes on necessary
manual steps in whatever system they use to track work items.

One workaround for automating these manual steps is the use of UI automation to
change configuration. Both AutoRABIT and Copado enable users to configure pre- and
postdeployment steps using Selenium. In fact, any UI test automation tools that work
on Salesforce can be scripted to perform this process. For example, to automate the
configuration of Account Teams, your script can navigate to the appropriate place in the
Setup Ul and confirm that all of the appropriate Account Team Roles are configured, and
if any are missing, the script can add them. This kind of scripting requires significantly
more work to set up and maintain than automating this behavior declaratively using
the Metadata API. In particular, you need to ensure those scripts are idempotent (don’t
unintentionally create duplicate functionality if they are run more than once) and guard
against unintended behavior. Your scripts are also vulnerable to breaking if Salesforce
updates parts of the UI.

Change Sets

Change sets are the only “clicks-not-code” deployment option built into Salesforce. This
is the default approach to deployment for most Salesforce admins and many Salesforce
developers. Nevertheless, change sets suffer from many limitations and have not been
improved much since they were initially introduced.

Change sets are specifically for managing deployments between a production
org and its related sandboxes. Change sets require that you first create inbound and
outbound deployment connections between the orgs that will be the sources and
destinations for each change. For security, these connections need to be configured in
each org, so that a particular “Dev” org might have an outbound connection to a “QA”
org and that “QA” org might have an inbound connection from “Dev” and outbound
connections to “UAT” and “Prod” orgs.

Once these deployment connections have been made, you can build a change set
in a source org by selecting the metadata items that you want to be included in that
deployment. Change sets provide a very helpful capability to “view dependent metadata.”
This means that you can, for example, select a single Lightning Application and then view
its dependencies to pull in the related Apex controller and any custom fields that controller
might reference. Once built, the change set can be uploaded to its target org.

341

CHAPTER9 DEPLOYING

Once a change set has been uploaded to the target org, you need to log in to that
target org to perform a validation of that change set. The validation ensures that there
is no missing metadata or other conflicts that would prevent a successful deployment.
Once validated, the change set can be deployed into the target org.

It is significant that the change sets are not directly deployed to the target org, rather
they are simply uploaded and made available in the target org. The actual deployment
needs to be performed by an administrator from inside that target org. This helps to
fulfill a compliance requirement of laws such as Sarbanes Oxley (SOX) that the people
responsible for developing applications should not directly have the power to deploy
those applications to the target org. This separation of duties is important in theory,
but problematic with change sets in that the person deploying them can only see the
names of the metadata items contained, and not their details. With both Salesforce and
traditional IT applications, approving admins generally lack the time and knowledge
necessary for detailed review of what they are installing in the target system. A change
set is more or less a black box, and admin approval is more or less a rubber stamp.
Compliance requirements are better met by using version control and continuous
delivery.

One benefit of requiring admins to trigger the final installation, however, is that the
target org can receive many change sets from different developers and install them all at
an allotted time after first notifying affected users. This still creates a bottleneck where the
developers need to handoff installation responsibilities to a busy admin. If that admin is
maintaining multiple sandboxes, this can cause delays when the development teams and
end users (or testers) need something installed but that admin is not available.

The main limitation of change sets is that they are tedious to build if you are
managing large volumes of changes. Tools like Gearset and Copado provide very nice
metadata pickers that allow users to sort and filter metadata by type, name, last modified
date, and last modified by. But the change set UI requires you to navigate to each
metadata type one by one and select the metadata items to be deployed. If you happen
to navigate to the next page without clicking “Add,” your selections are lost. There is no
indication in that UI of who last modified an item or when it was last modified, which
makes selecting changes a painstaking and error-prone process.

Some companies do not allow change sets to be uploaded to production directly
from development, which means the change set must first be uploaded to a testing
environment and then manually recreated in that testing environment and uploaded to
the production org.

342

CHAPTER9 DEPLOYING

Another limitation of change sets is that they don’t cover many types of metadata. Of
the 240 types of Salesforce metadata, change sets support only 53% of them, whereas the
Metadata API supports 93% of them. Change sets also don’t support removing metadata
from the target org, only adding or updating it.

Finally, change sets can only facilitate deployments between a single production org
and its related sandboxes. You cannot use change sets to deploy to multiple production
orgs.

These limitations of change sets have been a boon for the creators of commercial
deployment tools. The various commercial tools listed in the following provide vastly
more functionality than change sets, and most of them have far better user interfaces.
ClickDeploy’s marketing pitch emphasizes the superiority of their tool to change sets:
“Deploy Salesforce 10x faster than change sets. ... Deploy metadata types beyond the
ones supported by change set. ... Know exactly what you are deploying via instant line-
by-line diff viewer. ... No more tedious, manual rebuild of inbound change sets. Clone &
reuse inbound change list in a single click.”*

ClickDeploy has built an easy-to-use alternative to change sets. But at least some of
the benefits that they offer—deployment speed, supported metadata types, and line-by-
line visibility—are equally true of any tool that is based on the Metadata API.

The Metadata API

The Metadata API performs deployments many times faster than Change sets do and
also supports a far larger set of metadata. Every tool that supports Salesforce release
management is built on the Metadata API, so in theory all of these tools can claim to
be faster than change sets and to support more types of metadata. The speed of the
Metadata API (how fast metadata can be retrieved and deployed) is the upper limit for
all Salesforce release management tools; no tool can operate faster than the Metadata
API allows, although some of them are definitely far slower.

The Metadata API also defines the upper limit of which types of metadata a tool
can support. If something is not supported by the Metadata API, it is not deployable on
Salesforce. But not all third-party tools support all of the metadata types supported by
the Metadata API. For example, the now deprecated Force.com IDE based on Eclipse
supported only a limited subset of metadata. The most flexible tools use the Metadata
APTI’s “describe” calls to dynamically query a Salesforce org to determine which types of

Shttps://clickdeploy.io/ accessed 2019-02-17

343

https://clickdeploy.io/

CHAPTER9 DEPLOYING

metadata are supported, and then permit all of those types. Tools that have not built in
such dynamic logic are likely to always lag behind the Metadata API and to support only
a limited subset of metadata.

Org configuration that is not deployable using the Metadata API can only be set
manually. However some tools such as Copado and AutoRABIT have a clever capability
whereby they use Selenium automation to dynamically log in and check or change org
configuration. Selenium is normally only used for Ul testing, but this kind of automation
allows org setting changes to be propagated in an automated way.

With Salesforce DX, several new capabilities have been released or are in Pilot that
allow changes that otherwise wouldn’t be possible through the Metadata API. Sandbox
cloning is a new capability that allows all of the configuration (and data) in a sandbox to
be replicated to another sandbox. Scratch org definition files allow developers to define
scratch org features that are beyond the scope of the Metadata API. And the forthcoming
Org Shape and Scratch Org Snapshots provide capabilities similar to sandbox cloning
whereby characteristics of scratch orgs can be defined that are beyond the scope of
the Metadata API. All of these capabilities are in the context of provisioning new orgs
however, so they are not actually deployments.

The Metadata API remains the defining mechanism that both provides and limits
the capabilities of all other tools. All of the following tools simply provide different user
interfaces and different types of metadata storage and processing on top of the Metadata
API. Importantly, the Metadata API also allows retrieving and deploying metadata from
and to any Salesforce org, as long as you have authorization on that org. This makes
it a far more versatile tool than change sets, especially for companies with multiple
production orgs.

Deploying Using Packages

Packaging means making discrete collections of code and configuration into a single
bundle or package.

Salesforce enables several different types of packages, but they all function in a
similar way. Packages allow a developer to specify various metadata items and take a
snapshot of them which is uploaded to Salesforce and made available for installation
in other Salesforce orgs using a package installation URL such as https://login.
salesforce.com/packaging/installPackage.apexp?p0=04tB000000000Ad.

344

https://login.salesforce.com/packaging/installPackage.apexp?p0=04tB0000000O0Ad
https://login.salesforce.com/packaging/installPackage.apexp?p0=04tB0000000O0Ad

CHAPTER9 DEPLOYING

There are currently four types of Salesforce packages: classic unmanaged packages,
classic managed packages, second-generation managed packages, and unlocked
packages. Of these, this book deals mostly with unlocked packages. Although there
are differences in how these package types are created and their characteristics, they
all allow you to create package versions with an ID beginning with 04t that allow that
version to be installed in a target org using a package installation URL like the one
earlier.

Deploying Using an IDE

All the various Salesforce IDEs use the Metadata API in the background to make metadata
available to be created, read, updated, and deleted. Salesforce was originally a clicks-not-
code system, with no IDEs available or required for development. With the introduction of
Salesforce domain-specific languages such as Apex, Visualforce, Aura, and Lightning Web
Components, it became necessary to have a rich development environment.

The Dev Console created by Salesforce only allows for editing code files. But most
other IDEs give access to every type of XML-based metadata available in the Metadata
API. Because these tools already enable retrieving and deploying this metadata to the
development environment, many of them also allow this metadata to be deployed to
other environments as well.

One challenge with deployments is that they typically involve many interrelated
pieces of metadata. For example, an Apex class may depend on a particular field, and
that field may depend in turn on another field or object. IDEs typically work on one code
file at a time, so for an IDE to truly support deployments, it needs to provide a metadata
picker with which you can select multiple related pieces of metadata and then specify an
environment to deploy them to. For this reason, not all IDEs have built useful tools for
doing deployments.

Even when IDEs do allow for developers to do deployments directly, there are risks in
allowing them to do so. First and foremost, in the absence of version control, it is difficult
for an individual developer to ensure that they have the latest version of all affected
metadata, and that their deployment won’t overwrite customizations in the target org
and cause unintended consequences. Moreover, this behavior does not provide any
traceability about what a developer deployed, when, or why. This may violate compliance
requirements and certainly makes changes difficult to trace or roll back.

345

CHAPTER9 DEPLOYING

While the mechanism used to deploy from a developer’s IDE is essentially the same
as that used by the following scripted methods, this approach is increasingly problematic
as teams scale and as the sensitivity of the production environment increases. A last
minute deployment from a developer leaving for a camping trip far out of cellphone
coverage can lead to an enormously stressful and expensive production outage. The
team struggling to understand and recover from this disaster will have no visibility into
what exactly changed, making their cleanup process far more painful than it has to be.

Command-Line Scripts

Every operating system makes available a command line—a text-based interface for
interacting with the machine and its applications. Generally, everyone finds graphical
user interfaces (GUISs) to be easier to understand and interact with than command-line
interfaces (CLIs), but nevertheless the use and importance of CLIs persist and have
continued to grow. Why is this?

While GUTISs provide simplicity and clarity, and allow complex phenomena to be
visualized and acted upon, there are tradeoffs in that approach. A CLI allows infinite
flexibility in what commands are used, with which parameters, and in which order.
Importantly, they also allow commands to be tied together in sophisticated ways using
programming languages to define loops, modules, variables, and more. And once
written, these commands can be shared and run in an automated fashion. Creating
GUIs requires a development team to make decisions about what options to give users
and what information to show or hide. CLIs allow individuals and teams to choose what
information to access, what actions to take, and what logic should tie these interactions
together. In short, they allow the same flexibility as natural languages or programming
languages, but can be used to orchestrate processes across multiple applications and
multiple systems, making them immensely powerful.

Even if you're not accustomed to working on the command line, it’s important to
recognize that command-line scripts are the go-to tool for classic system administrators
and for developers looking to build automation into their workflow. Importantly, CLIs
are also the foundation used by DevOps tools for automating testing, analysis, builds,
deployments, and reporting.

346

CHAPTER9 DEPLOYING

Introduction to Scripting

If you have rarely used the command line and never written command-line scripts, this
process can seem daunting at first. As with anything, the initial steps you take are the
hardest. But if you follow clear guides, it’s easy to create a “Hello World” script. From there
you can gradually improve that script and build confidence. Before long you can have a
robust set of tools to help in all aspects of the software development and delivery process.

What's a script? The term script generally refers to small pieces of code where the
source code is readily visible and modifiable by its users. It's a common simplification
to divide high-level programming languages into three categories: compiled languages
like C++ are compiled into machine code that can be executed directly; interpreted
languages like JavaScript, Ruby, Python, and Perl are executed using an interpreter; and
scripting languages like Bash and PowerShell are executed using a shell. Most scripts are
based on the latter two types of language so that they can be modified and executed on
the fly, without having to be compiled.

Windows has two built-in scripting languages: Batch files and PowerShell. Unix
and Mac environments typically have many available shells, but the most common is
Bash. Even if you and your team are Windows users, it’s important to be aware of what
kinds of scripts can run on Linux environments. This is because the world’s servers
are predominantly Unix-based,* and it is increasingly common for CI/CD systems to
use Docker containers based on Linux. One reason that Macs have historically been
attractive to developers is that they allow the use of Unix commands and scripts.
Fortunately, Windows 10 and Server 2019 recently introduced the Windows Subsystem
for Linux which finally allows Linux shell scripts to run on Windows machines without
installing third-party tools.’

For these reasons, if you're just starting out on the command line, I would
recommend learning to use the Unix-style commands and shells. If you're on a Windows
machine, you'll first need to install the Windows Subsystem for Linux or use tools like
Cygwin or GitBash. But once you've done that, you can navigate any other computer in
the universe: Windows, Mac, or #nix. Unix command-line syntax and shells provide an
enormous array of tools for working with your filesystem and automating your workflow.
PowerShell will only ever be useful when working on Windows machines.

*For example, 70% of web servers are Unix-based https://w3techs.com/technologies/
overview/operating_system/all

*https://docs.microsoft.com/en-us/windows/wsl/about

347

https://w3techs.com/technologies/overview/operating_system/all
https://w3techs.com/technologies/overview/operating_system/all
https://docs.microsoft.com/en-us/windows/wsl/about

CHAPTER9 DEPLOYING

To avoid these kinds of platform incompatibilities altogether, and to get the benefit
of more sophisticated programming languages, many teams use JavaScript, Python,
Perl, or Ruby to write their scripts. These languages each provide interpreters to ensure
consistent cross-platform execution.

One beauty of Unix-compatible systems is that you can quickly and easily combine
and use scripts written in a variety of different languages. By convention, the first line
in Unix scripts specifies which interpreter should be used for that script. For example, I
wrote this book in Scrivener and used a set of scripts called Scrivomatic to automatically
process the raw files and convert those to DOCX and PDE The scripts were contributed
by different users over time and are written in a mix of Python, Bash, and Ruby. I can run
and modify any of those scripts with equal ease, without having to recompile them.

Listing 9-1 shows a sample Ruby script, while Listing 9-2 shows a simple Bash script.
Assuming Ruby is installed, both of these scripts are executable as is on any Unix or Mac

environment.

Listing 9-1. A simple Ruby script

#!/usr/bin/env ruby
input = $stdin.read
puts input.gsub(/Alpha/, 'Beta')

Listing 9-2. A simple Bash script

#!/bin/bash
cd "$(cd "$(dirname "${BASH SOURCE[O]}")" 8&& pwd)"

The first line in these files starts with a “shebang” (the “sharp” character # and the
“bang” character !) followed by the shell or interpreter that should be used to interpret
the remaining lines. These scripts can both be executed from the command line in the
same way, but they will use the appropriate shell or interpreter to run.

Shell scripts are typically just lists of commands, just as you might type on a
command line, with the possible addition of some simple variables, loops, conditions,
and functions. They are most useful when you are simply combining multiple
command-line instructions, with a bit of added logic.

Interpreted languages allow for more sophisticated logic, such as importing
modules, using data structures like objects and arrays, and using object-oriented
principles.

348

CHAPTER9 DEPLOYING

0ld School Salesforce Scripting

Salesforce itself is written in Java, which was the most promising up-and-coming
programming language when Salesforce began in 1999. These Java roots explain why
Salesforce metadata is expressed in XML, and the tools to support the development
lifecycle have traditionally been written in Java.

There are two command-line tools that have traditionally been key for the Salesforce
development lifecycle: the Ant Migration Tool (aka “Force.com Migration Tool”) and the
Salesforce Data Loader.

The Ant Migration Tool allows users to interact with the Metadata API using Ant.
Ant is the original Java build tool, released in 2001. At the time, Ant was state of the art
and used XML to define “targets” or actions that could be run in a particular order. The
Ant Migration Tool is written in Java and allows users to define Ant targets to retrieve
or deploy metadata, run tests, and so on. To use this, you first need to install Java, Ant,
and the Ant Migration Tool on your local machine and then define a build.xml file that
defines the commands you want to run.

Listing 9-3 shows a simple Ant build configuration that defines an Ant target that
you can run by executing ant retrieveDev. It depends on the Ant Migration Tool being
present in the local directory as 1ib/ant-salesforce 46.jar and the credentials for
the org being stored as a file called build.properties. Storing the Migration Tool (and
any other scripts you depend on) in version control is an important way to ensure that
those tools are available to everyone on your team and can be upgraded for everyone
simultaneously. By contrast, storing credentials in the separate build.properties file
allows these to be excluded from version control and instead live only on developers’
machines or be injected by a CI/CD tool.

Listing 9-3. A simple Ant build.xml configuration file using the Ant Migration
Tool

<project name="AntClassProject" basedir="." xmlns:sf="antlib:com.
salesforce”>
<!-- this taskdef helps locate the ant-salesforce jar in the project -->
<taskdef
resource="com/salesforce/antlib.xml"
classPath="1ib/ant-salesforce 46.jar"
uri="antlib:com.salesforce"/>

349

CHAPTER9 DEPLOYING
<property file="build.properties" />

<tstamp>

<format property="date" pattern="yyyy-MM-dd" />

<format property="dateTime" pattern="yyyy-MM-dd_kk-mm-ss" />
</tstamp>
<property name="projectSource" value="../src' />
<property name="entireProject" value="${projectSource}/package.xml" />
<property name="sourceDev" value='${basedir}/source/dev' />
<property name="logFile" value="${basedir}/log/${dateTime}.txt" />

<target name="retrieveDev">
<mkdir dir="log" />
<record name="${logFile}" action="start"/>
<echo>Retrieving from Dev...</echo>
<delete dir="${sourceDev}" />
<mkdir dir="${sourceDev}" />
<sf:retrieve username="${dev.username}"
password="${dev.password}"
serverurl="${dev.serverurl}"
retrieveTarget="${sourceDev}"
unpackaged="${entireProject}"
pollWaitMillis="10000"
maxPoll="5000" />
<record name="${logFile}" action="stop"/>
</target>
</project>

Ant scripts constitute “Old School Salesforce Scripting.” If you aren’t using these
already, don't start. First of all, Ant is not the build tool of choice for modern Java
developers. Ant was replaced by Maven and now by Gradle as the Java build tool of
choice. Maven made it easy to include external modules to help with common tasks,
and Gradle made it easy to write very readable build scripts. If you want to do anything
outside of executing basic commands, XML is an absolutely terrible language to write in.
And it’s generally not very readable.

350

CHAPTER9 DEPLOYING

If you are inheriting existing Ant scripts, you can easily import them into Gradle
and then benefit from Gradle’s rich and readable syntax. For example, Listing 9-4 shows
a brief Gradle snippet that imports an existing Ant script but then defines dependent
tasks in a very readable way. Executing gradle deploy20QA will trigger the Ant targets
deployAndDestroyQA and then deployProjectToQA. Before the release of the Salesforce
CLI, Gradle was the main language I used for build scripts.

Listing 9-4. A simple Gradle script that imports existing Ant targets

logging.level = Loglevel.INFO
ant.importBuild 'ant/build.xml’

task deploy20QA (dependsOn: ['deployAndDestroyQA', 'deployProjectToQA'])
task deploy2Full (dependsOn: ['deployAndDestroyFull', 'deployProjectToFull'])

task deploy2Training (dependsOn: ['deployAndDestroyTraining',
"deployProjectToTraining'])

task deploy2Prod (dependsOn: ['deployAndDestroyProd’, 'deployProjectToProd'])

The Salesforce Data Loader is a frontend for the Bulk API, used to retrieve and
load large volumes of Salesforce records. There is a GUI for the Data Loader, but it can
also be executed from the command line if you're on Windows, making it an excellent
companion to the Ant Migration Tool.

There are some other tools that have been written to support the Salesforce
development lifecycle such as Solenopsis® and Force-Dev-Tool,” but they are not as
commonly used as the tools mentioned earlier.

If you're inheriting existing scripts, expect to see these ones I've mentioned. If you're
getting started from scratch, focus on the following tools.

https://github.com/solenopsis/Solenopsis
"https://github.com/amtrack/force-dev-tool

351

https://github.com/solenopsis/Solenopsis
https://github.com/amtrack/force-dev-tool

CHAPTER9 DEPLOYING

Salesforce GCLI

The Salesforce CLI is one of the flagship innovations of Salesforce DX. The Salesforce CLI
is a unified wrapper around the Salesforce APIs that adds sophisticated capabilities for
managing the Salesforce software development lifecycle. Its capabilities are extensive
and growing, but here is a subset of some of the most notable:

o All the new capabilities of Salesforce DX are available through this
tool; no new capabilities are being added to the Ant Migration Tool,
which is scheduled for deprecation this year.

o Itsecurely manages credentials for all the orgs you need to access.

o Itprovides concise commands for creating and managing scratch
orgs, packages, and projects.

o Itautomatically converts metadata from the native Metadata API
format to the more usable “Source format.”

o It tracks the metadata in target orgs to allow quick synchronization of
changes between source and the org.

o It provides convenient commands to execute queries, anonymous
Apex, data loads, and more.

e It provides access to the Bulk API for data retrieval and loading.
o Itsupports the development of plugins.

o Itallows for command output to be formatted as JSON which makes
it easier to parse and chain commands.

The Salesforce CLI is now based on a generic CLI engine called OCLIF, the Open CLI
Framework, which itself is based on the Heroku CLI. OCLIF is still relatively new, but it
provides a mechanism to build custom CLI tools in Node.js that can support plugins and
auto-updating, among other capabilities.

There are many reasons why Node.js makes a compelling foundation for writing
the Salesforce CLI. First, JavaScript is now the dominant language used by both
professional and amateur developers?; Node.js allows you to write backend code such
as web servers and CLIs using JavaScript. Second, the Node package manager (NPM)

%https://insights.stackoverflow.com/survey/2018/#technology

352

https://insights.stackoverflow.com/survey/2018/#technology

CHAPTER9 DEPLOYING

provides the world’s largest collection of reusable software modules. Finally, JavaScript
is already familiar to Salesforce developers who build Lightning Components or client-
side JavaScript. VS Code and its extensions are also written in JavaScript (technically,
TypeScript), which allows developers to use the same tools and libraries for both.

Creating Salesforce CLI Plugins

The Salesforce CLI allows you to build or install plugins that contribute new
functionalities and take advantage of the many capabilities that the CLI offers. As
Salesforce did in so many other areas, they have made the CLI into a platform that allows
teams to build custom tools and lets ISVs and open source contributors build and share
powerful add-on capabilities.

From the beginning, the Salesforce CLI was designed with plugins in mind. The
standard Salesforce commands all exist in the force:... namespace to ensure that
plugins could offer commands like sfdx acme:org:list without interfering with standard
commands like sfdx force:org:list.

Salesforce now offers an official Salesforce CLI Plug-In Developer Guide® that
provides instructions on how to build plugins. OCLIF, mentioned earlier, provides
a generic foundation for building CLI tools that handles much of the complexity
associated with building a command-line toolbelt. OCLIF enabled capabilities like
accepting parameters, auto-updating, and more. Salesforce CLI plugins go further by
giving developers access to many of the same libraries, parameters, and data used in the
Salesforce CLI itself.

Plugins are developed in JavaScript or TypeScript and can make use of NPM libraries
like @salesforce/core and @salesforce/command to handle org authentication and other
actions. The Salesforce CLI handles parameters, logging, JSON output, and most of the
other “boilerplate” activities, so you can focus on building the commands you need.

This is a growing area of development. One of the most promising capabilities is the
possibility of creating “hooks”!’ into standard Salesforce commands. While not possible
as of this writing, hooks would allow a plugin to execute code before or after standard
Salesforce CLI commands are run. Imagine running a command sfdx force:org:create to
create a scratch org and having a plugin automatically notify your project management

*https://developer.salesforce.com/docs/atlas.en-us.sfdx_cli plugins.meta/sfdx_cli_
plugins/cli plugins.htm

"Yhttps://developer.salesforce.com/blogs/2018/04/developing-plugins-for-the-
salesforce-cli.html

353

https://developer.salesforce.com/docs/atlas.en-us.sfdx_cli_plugins.meta/sfdx_cli_plugins/cli_plugins.htm
https://developer.salesforce.com/docs/atlas.en-us.sfdx_cli_plugins.meta/sfdx_cli_plugins/cli_plugins.htm
https://developer.salesforce.com/blogs/2018/04/developing-plugins-for-the-salesforce-cli.html
https://developer.salesforce.com/blogs/2018/04/developing-plugins-for-the-salesforce-cli.html

CHAPTER9 DEPLOYING

tool that you now have a new environment. The possibilities are vast, and Salesforce is
working on the foundation to enable secure, signed plugins that can be distributed and
executed in a trusted fashion.

Free Salesforce Tools

The Salesforce CLI is an officially supported command-line tool managed by the Salesforce
DX team. There are also many free scripts or CLI tools that you might find helpful. Some,
like force-dev-tool, have been around for many years. Some like SFDX-falcon are much
newer. And some like CumulusClI are actually supported by teams within Salesforce.

This is an ever-changing field, and I don’t have deep familiarity with most of these
tools, but some of the best known are listed here for your benefit.

CumulusCI' is probably the best developed of these tools, but is unfortunately not
very well known. This project is managed by the Salesforce.org team who produces the
nonprofit success pack and other nonprofit resources. Over the course of several years,
they have built a highly sophisticated set of tools in Python to automate many aspects of
release management. They've even built tools based on the Robot Framework to make it
easier to perform Selenium UT testing on Salesforce.

SFDX-Falcon'? has become well known from the Salesforce DX Trailblazer
Community as one of the first full project templates for Salesforce DX. The tool is
optimized to help ISVs build managed packages and has evolved from simple Bash
scripts to being a full Salesforce CLI plugin.

Force-dev-tool'? was one of the earlier CLI tools to help with Salesforce
development. It's now in “reduced maintenance” mode, since the Salesforce CLI was
launched, but still receives updates occasionally. Appirio DX makes use of this project
behind the scenes to aid with parsing and managing Salesforce’s XML metadata.

The Salesforce Toolkit' created by Ben Edwards is a nicely designed group of tools
to help with common Salesforce challenges such as comparing org permissions. The
project is no longer maintained, but the apps are still fully functional and run on Heroku.
The source code is available so that they can also be forked and a private and trusted
instance can be created within your own company.

"https://github.com/SFDO-Tooling/CumulusCI
Zhttps://stdx-isv.github.io/sfdx-falcon/
Bhttps://github.com/amtrack/force-dev-tool#readme
“https://cloudtoolkit.co/

354

https://github.com/SFDO-Tooling/CumulusCI
https://sfdx-isv.github.io/sfdx-falcon/
https://github.com/amtrack/force-dev-tool#readme
https://cloudtoolkit.co/

CHAPTER9 DEPLOYING

These community-contributed tools are all works of love from their developers and
maintainers. Some now suffer from neglect, and I'm sure I've overlooked many others,
but many of these free tools provide powerful and effective solutions to development
and release management challenges.

Using package.json to Store Command Snippets

Despite my droning on about the benefits of command-line tools, no one actually

likes to remember complex sequences of commands and parameters. Command-line

instructions allow for infinite flexibility and combinations and are a lifesaver in solving

complex challenges. But once you've invested 5 minutes (or 5 hours) getting a sequence

of commands just right, you should save that somewhere so you and others can reuse it.
If you don’t already have strong opinions about where to save such commands, do

the following:

1. Install Node.js (which comes with npm).
2. Inyour project folder, run npm init to initialize a new project.

3. Unless you have ambitious plans to actually write code in Node.js,
just accept the defaults. This will create a file called package. json
in your project directory.

4. Edit that file, ignoring everything except for the scripts section.
Begin to curate the scripts section so that it contains a helpful
collection of common commands.

For example, the Trailhead Sample App lwc-recipes’® contains a package.json file
with the scripts block shown in Listing 9-5. The five “scripts” shown here are actually
just command-line sequences. To run any of them, just execute npm run scriptname
(e.g., npm run lint) from a terminal prompt anywhere inside that project folder. There
are numerous benefits of defining scripts in a package. json in this way:

1. They are stored in version control and shared with the team.
2. They can be run easily using npm run ...

3. They always run from within the project root folder, no matter
which folder you have navigated to in the terminal.

Bhttps://github.com/trailheadapps/lwc-recipes
355

https://github.com/trailheadapps/lwc-recipes

CHAPTER9 DEPLOYING

4. You can chain these commands, for example, the lint scriptin
turn calls 1int:1wc and lint:aura.

5. You can pass parameters to these commands. After the name of
the script, append - - followed by any parameters you want to pass
through. For example, running npm run test:unit -- --watch
will pass --watch as a parameter, which is equivalent to lwc-jest
--watch.

Listing 9-5. The scripts section from a package.json file, showing some common
script commands

"scripts": {
"lint": "npm run lint:lwc && npm run lint:aura",
"lint:1wc": "eslint */lwc/**",
"lint:aura": "sfdx force:lightning:lint force-app/main/default/
aura --exit",
"test": "npm run lint &% npm run test:unit",
"test:unit": "lwc-jest",

b
Other Scripting Techniques

When writing scripts, it is important to have a way to parse the outputs from each
command, so that they can be passed as inputs to subsequent commands. The most
straightforward way to start scripting using the Salesforce CLI is to pass the --json
parameter to each command and then to parse their output using the lightweight JSON
parsing utility jq.'° JQ allows you to read, query, and transform JSON output.

Andrew Fawcett wrote a helpful blog post of the different methods to build scripting
around Salesforce DX.'” Restating some of the points he shared there, piping the output
of a Salesforce DX command into jq provides a formatted output as shown in Listing 9-6,
which you can then refine further with queries and filters as shown in Listings 9-7 and 9-8.

https://stedolan.github.io/jq/
https://andyinthecloud.com/2019/02/10/salesforce-dx-integration-strategies/

356

https://stedolan.github.io/jq/
https://andyinthecloud.com/2019/02/10/salesforce-dx-integration-strategies/

CHAPTER9 DEPLOYING

Listing 9-6. Simply piping sfdx JSON output into jq provides a nicely formatted

output

$ sfdx force:config:list --json | jq

{
"status": 0,
"result": [
{
"key": "defaultdevhubusername",
"location": "Local",
"value": "MyDevHub"
}s
{
"key": "defaultusername",
"location": "Local",
"value": "test-viasf98g72x5@example.com"”
}
]
}

Listing 9-7.]Q allows you to go further by querying the results

$ sfdx force:config:list --json | jq '.result[o0]’
{

"key": "defaultdevhubusername",
"location": "Local",
"value": "MyDevHub"

}

Listing 9-8.]Q provides many sophisticated filtering options

$ sfdx force:config:list --json |

jq '.result[] | select(.key == "defaultdevhubusername").value'

"MyDevHub"

357

CHAPTER9 DEPLOYING

You can then stitch together complex sequences of commands using Bash scripts
and variables. Listing 9-9 shows us querying the alias of our default Dev Hub and
saving the result in a variable DEFAULT _DEVHUB. We then use this variable as the
targetusername for a SOQL query that simply lists the top ten creators of scratch orgs
in that Dev Hub.

Listing 9-9. This runs a simple query to show which users have created the
most scratch orgs on our default Dev Hub. Bash allows commands to be strung
together easily. Note the use of \ to allow commands to span multiple lines

#!/bin/bash

DEFAULT DEVHUB=$(sfdx force:config:list --json | \
jq --raw-output '.result[] | select(.key == "defaultdevhubusername").
value')

sfdx force:data:soql:query --query \
"SELECT CreatedBy.Name, Count(Id) FROM ScratchOrgInfo
GROUP BY CreatedBy.Name
ORDER BY Count(Id) DESC
LIMIT 10" \
--targetusername $DEFAULT DEVHUB

Bash scripts and JQ can take you a long way down the path of custom scripting.
But for full control over the process, you may want to move to using Node.js or another
programming language. Node.js is particularly convenient for scripting Salesforce DX,
since you can more easily dig into the Salesforce DX internals if needed.

If you're using Node.js, you can also take advantage of the Salesforce Core API
(https://forcedotcom.github.io/sfdx-core/). The Salesforce Core APIis not
a standard REST or SOAP API. Rather it’s a public API for accessing Salesforce DX
functionality programmatically from your local system. It contains a wide variety of
commands, but we’ve most commonly used it to access and run commands against the
Salesforce orgs that have been authorized by the user. This means that users can securely
authorize orgs one time, and then your scripts can make calls to Salesforce Core to
access and perform commands against those orgs.

358

https://forcedotcom.github.io/sfdx-core/

CHAPTER9 DEPLOYING

Salesforce Core is helpful, but doesn’t make all of the Salesforce CLI commands
available in Node. My colleague, Bryan Leboff, wrote an NPM module sfdx-node'® as
a wrapper around the Salesforce CLI. You can use this command to access Salesforce
CLI commands directly from your Node.js code. In Listing 9-10, we pass a configuration
object into sfdx.auth.webLogin({...}). Thisis the equivalent of running sfdx
force:auth:web:login --setdefaultdevhubusername ... from the command line to
authorize a new org.

Listing 9-10. This Node.js code snippet makes use of both the official salesforce/
core module and the unofficial sfdx-node module to authorize an org

const { SfdxProjectJson, Org } = require('@salesforce/core’);
const sfdx = require('sfdx-node');

const authWeb = async (destination, isDevHub) => {
if (!isDevHub) {
try {
const orgObj = await Org.create(destination);
return orgObj;
} catch (e) {
// Do nothing

}

}
return sfdx.auth.webLogin({

setdefaultdevhubusername: isDevHub,
setalias: destination,

};
};

module.exports = {
authleb,

};

"www . npmjs . com/package/sftdx-node

359

www.npmjs.com/package/sfdx-node

CHAPTER9 DEPLOYING

Writing scripts in this way is very powerful since you can use the rich, expressive
syntax of JavaScript, choose from any of the 800,000 NPM modules that might assist
with common challenges, and mix in Salesforce DX commands to accomplish any build
process you might require. Such scripting takes time and experimentation to build, but it
can be created and refined gradually as your processes evolve.

Commercial Salesforce Tools

Build vs. buy is a classic decision. Salesforce DX has been made freely available “as

a downpayment on our debt to developers” in the words of Jim Wunderlich from
Salesforce.'® However the Salesforce DX team is focused on building the underlying
capabilities rather than solving every common use case. For example, they have not thus
far released an admin-friendly user interface for managing the development lifecycle.

There are many commercial vendors who have built tools to help with the Salesforce
release management process. Most of these tools were built before Salesforce DX was
released, however, and so still emphasize the org-based workflow of selecting, retrieving,
and deploying individual pieces of metadata. They also emphasize a click-based
workflow, similar to Salesforce’s declarative tools.

These tools greatly reduce the pain of org-based deployments and may provide
benefit for your team. But the movement to Salesforce DX is a deep shift, so I would
encourage you to focus on achieving the goal of real source-based development and use
these tools to help your adoption of Salesforce DX, rather than just reducing the pain of
org-based development.

One caveat for using any of these commercial tools. I've seen numerous companies
adopt these tools, but attempt to limit costs by limiting the number of users who are
given licenses. The goal of your DevOps processes should be to empower developers and
remove bottlenecks in your process while at the same time establishing traceability and
automated testing. Having a small number of users use a commercial tool to deploy the
work of a larger development team will save license costs, but at the expense of making
the entire process less efficient. If you choose to use a commercial tool, be generous in
equipping all of your developers and admins to make use of it.

www.salesforce.com/video/317311/

360

www.salesforce.com/video/317311/

CHAPTER9 DEPLOYING

Appirio DX

Full disclosure: I'm the original architect and product manager for Appirio DX, and
DiXie (Figure 9-1) was drawn by my wife :-)

n

Figure 9-1. Appirio DX’s mascot, DiXie

Appirio DX is a suite of tools that Appirio developed to help their consultants and
customers develop and deliver Salesforce more effectively. Appirio has been one of the
top Salesforce consulting partners since its inception in 2006. In 2019, Appirio DX was
made available as a commercial product.

Appirio DX aims to make CI/CD and Salesforce DX easier to adopt. It is similar to
Salesforce DX in that it includes a CLI that can be run locally or as part of an automated
job. It removes or reduces the need for teams to write custom Salesforce DX scripts, by
providing commands and project templates for scenarios like initializing scratch orgs
and publishing package versions.

Appirio DX includes a desktop app that allows click-based developers to work
with Git branches, create scratch orgs, and synchronize changes from those orgs back
into version control. The desktop app also eases the installation and configuration of
developer-focused tools like Git and VS Code and provides capabilities like setting and
toggling proxy settings across these tools.

Appirio DX provides an instance of GitLab and SonarQube that customers can use
if they don’t want to provide their own DevOps stack. But the tools will run on any CI
platform, and you can supplement the workflow with your own command-line tools.

361

CHAPTER9 DEPLOYING

Appirio DX’s CI/CD process is defined using whatever config files are standard for
that CI platform, such as .gitlab-ci.yml or bitbucket-pipelines.yml files. As a result,
the process is set up and managed in the same way that a pure-code solution would
be, and is not obscured behind a GUI. For those who are comfortable with developer
tooling, this gives them visibility and the flexibility to bring their own tools. But those
more accustomed to click-based GUIs may find this daunting.

For teams using GitLab as their CI engine, Appirio DX can set up and configure the
complete CI/CD pipeline for you in minutes. As of this writing, other CI engines have to
be set up manually, but the process is straightforward. Appirio DX offers a Docker image
appirio/dx that provides a consistent, predefined execution environment in any of the
CI tools that support running jobs in Docker.

For teams wanting the control and visibility that other DevOps tools provide,
Appirio DX provides a readymade solution that allows you to get started quickly with
Salesforce DX.

Released: 2018

Architecture: Node.js and Docker, bring your own CI servers, or use Appirio DX’s
GitLab

Benefits:

e Similar to CI/CD tools on other technologies
o GitLab provided, but works with any Git-based version control host
e GitLab CI provided, but works with any CI server

e SonarQube static analysis provided, but allows the use of any third-
party tools

e Three development modes:
— CI/CD using the pre-SFDX Metadata API format
— SFDX package development process
— SFDX Org development process
o Includes an admin-friendly UI for syncing scratch org changes to Git

e A good fit for professional developers or DevOps specialists

362

CHAPTER9 DEPLOYING

Disadvantages:
o Click-friendly capabilities are limited.

o Feature set is limited compared to some of the more mature
Salesforce RM tools.

e Not a SaaS product (like Salesforce DX, some parts of Appirio DX
run on the desktop). Software can be installed and configured
automatically, but IT security restrictions might limit what tools can
be installed.

AutoRABIT

AutoRABIT provides a SaaS-based suite of tools that allows companies to manage
the complexities of the Salesforce release management process. One of their biggest
customers is Schneider Electric, which is one of the world’s largest Salesforce
tenants. AutoRABIT claims over 40 Fortune 500 customers, including 20 in the highly
regulated finance and healthcare industries. If needed, AutoRABIT can be deployed
behind corporate firewalls as an on-premise solution to satisfy corporate security and
compliance policies.

AutoRABIT allows users to connect multiple orgs, capture metadata differences,
and deploy those differences between orgs. They also support Salesforce DX capabilities
like creating scratch orgs. They have a powerful data loader that can be used to deploy
large volumes of data between orgs while preserving relationships. They have built-in
Selenium integration, including the ability to use Selenium to change org settings as
part of a deployment process. AutoRABIT acts as the CI engine that allows teams to
customize and orchestrate these processes according to their specific needs.

AutoRABIT has recently added a data backup and recovery solution, Vault, to their
product suite. Vault automates the capabilities of AutoRABIT’s Data Loader Pro to
make ongoing incremental backups of production orgs and sandboxes and to allow
data recovery that preserves references across objects. Vault backs up both data and
metadata, including Chatter messages and attachments, and provides unlimited storage.
This backup data can also be used to seed test environments, using a data masking
capability to maintain the security and privacy of user data.

AutoRABIT has a large range of capabilities, and their professional services team can
integrate with most other third-party tools (such as Jira, CheckMarx, and test automation
tools). They also offer a managed services option for ongoing support.

363

CHAPTER9 DEPLOYING

Common user complaints are that the Ul is slow and inflexible. Their metadata
picker doesn’t have the sorting and filtering capabilities of Copado or Gearset, which
makes manually selecting metadata a more tedious process.

AutoRABIT implementations take more time to provision (typically a month) and
also require their professional services team to be involved (professional services hours
are bundled with the up-front installation costs). Contrast this with Copado or Flosum,
which are downloadable from the AppExchange, or with ClickDeploy, which provides easy
OAuth-based single sign-on from your Salesforce org. This implies more lead time and
commitment from customers wishing to implement AutoRABIT, although the learning
curve on the tool is not necessarily steeper than most of the other commercial tools.

Released: 2014

Architecture: Built on OpenStack using Java

Benefits:

e SaaS-based, on public or private clouds. They also offer an on-
premise option.

o Hierarchical data migration (DataLoader Pro).

e Several prebuilt integrations into common tools (Jira, CheckMarx,
test automation tools, etc.).

Disadvantages:
o Takes along time to install and train users.
e Clumsy metadata picker.

e Ul can’tbe customized.

Blue Canvas

Blue Canvas is another newer release management tool for Salesforce. Blue Canvas uses
Git and Salesforce DX behind the scenes while providing a simple user interface for
authenticating to orgs and managing deployments between them.

At the heart of Blue Canvas is a system to take regular metadata snapshots of
connected orgs and record changes in Git, along with the user who made that change.
This allows you to use Git as a type of setup audit trail that provides more detail on the
nature of each change compared to Salesforce’s built-in audit trail. This is what my
colleague, Kyle Bowerman, referred to as “defensive version control”: passively tracking

364

CHAPTER9 DEPLOYING

changes made through the admin interface. Blue Canvas also supports “offensive version
control,” where changes tracked in version control are automatically deployed to further
environments.

Based on this underlying Git tracking, Blue Canvas allows you to compare the
metadata in any two orgs. Once the comparison has been made, you can select metadata
in your source org that you want to deploy to the target org. Blue Canvas will check for
merge conflicts and run a validation to ensure that changes can be deployed. These
deployment requests can then be grouped into a larger release and be released at once.

Blue Canvas also allows you to connect external Git repositories like GitHub so that
you can mirror the Blue Canvas repository into those.

Blue Canvas is still relatively early in their development. They recently added the
capability to run Provar tests after deployments. Provar is a Salesforce-specific tool
for doing U testing that allows you to perform regression testing to ensure that your
deployment has not broken functionality. They plan to allow for a wider variety of
postdeploy actions to be run.

Released: 2016

Architecture: AWS, AuthO, Go, Git, Salesforce DX

Benefits:

e Gitis built in to the tool, providing fast metadata comparisons and
deployments.

o Changes are tracked in Git in near real time and specify who made
the change.

Disadvantages:

o Blue Canvas doesn’t currently track profiles or permission sets
in their main tool, although they provide a very nice free tool to
compare and deploy permissions.

e No support for data migrations or Selenium-driven manual setup
steps.

ClickDeploy

ClickDeploy is one of the newest of the commercial release management tools and one
of the easiest to get started with. ClickDeploy is truly SaaS hosted in that there are no
downloadable tools and no managed packages to install in your org. They also offer a

365

CHAPTER9 DEPLOYING

free tier that allows up to 15 deploys per month, enough to serve a small customer or do
a POC. You can use your existing Salesforce credentials to sign in to ClickDeploy and use
OAuth to connect to any number of Salesforce orgs.

For those with simpler release management needs, ClickDeploy provides an easy
and superior alternative to change sets. You can connect to your source org, easily sort,
filter, and select metadata, and then deploy it to one or more target orgs. ClickDeploy
can be used to support multiple production orgs, something that is not possible with
change sets.

As teams mature, they can upgrade to the Pro version which provides unlimited
deployments and the ability to collaborate as a team. Team collaboration is fairly basic as
of this writing. Every user associated with the same production org is grouped together
into a team. Members of a team can collaborate around deployments, viewing, cloning,
modifying, validating, or executing a deployment. This provides team-level visibility into
the history of deployments.

ClickDeploy’s Enterprise version allows teams to collaborate using version control.
You can connect to all the common Git hosting providers to track the evolution of
metadata across your orgs. ClickDeploy provides a Salesforce-aware frontend for
Git to allow users to select metadata and commit it to a repository. You can compare
metadata between Git and a Salesforce org, and you can deploy metadata directly from
the code repository. Deployments can be based on the complete metadata in a branch,
differences between two branches, or an arbitrary subset of metadata from that branch.

Git support enables several capabilities. First, ClickDeploy allows you to build a
scheduled backup of your orgs to a Git repository. Importantly, you can customize
the metadata that is included in this backup. Incremental metadata changes will then
be recorded as Git commits each time the backup job runs. The other capability this
enables is to automate deployments from Git based on a schedule, or each time a
commit is pushed to the repository. This allows for continuous delivery without the need
for a separate CI tool.

ClickDeploy supports the Salesforce DX source format and can retrieve or deploy
metadata from or to scratch orgs. As of this writing, they do not support the creation of
scratch orgs or package versions.

The user interface is simple to understand and use and provides the essential tools
needed to manage deployments.

Released: 2017

Architecture: AWS

366

CHAPTER9 DEPLOYING

Benefits:
o Easyto get started with
o Freetier
o Nice metadata selection capabilities

e Metadata comparisons (org-to-org, org-to-Git, Git-to-org, Git
branch-to-branch)

e Gitintegration, including an admin-friendly UI to make commits,
and automated deployments from version control

Disadvantages:
o Doesn’t automate scratch org or package creation.
e No data migration tools.
e No support for Selenium testing or UT automation.

e« Team access controls are somewhat limited.

Copado

Full disclosure: I'm currently a product manager for Copado.

Copado was founded in 2013 by two European Salesforce release managers based
in Madrid, Spain, to ease the pain, complexity, and risk of the Salesforce deployment
process. Since then they have retained growth capital from Salesforce Ventures and
Insight Ventures, attracted over 150 global customers, and brought on a seasoned US
senior leadership team to build their US business.

Copado uses Salesforce as its user interface, for authentication, and to store data on
orgs, metadata, and deployments. But (unlike Flosum) it delegates backend processing
to Heroku. That allows Copado to leverage Heroku'’s power and speed to handle
metadata retrieval, processing, and deployments. This architecture allows customers
to customize aspects of the Copado frontend and tap into its data and business logic in
Salesforce.

Interestingly, Copado doesn’t store any data on Heroku; instead Heroku dynos are
created on an as-needed basis to perform metadata operations. Information about that
metadata (is that called “meta-metadata”?) is then stored in Salesforce. While Copado
boasts that this eases security reviews since dynos are never persisted, it also has a

367

CHAPTER9 DEPLOYING

startup cost. If Heroku is being used to deploy metadata from a code repository, it has
to clone that metadata first. If a deployment is being made based on org metadata, the
metadata is never cached in Heroku; it has to be retrieved each time. This leads to some
performance cost for each job. Copado claims to have optimized this process, fetching
only the minimal amount of history to enable the merge.

Unlike most competing tools, Copado includes its own Salesforce-based ALM
(Application Lifecycle Management) tools for creating stories, bugs, and so on. This
allows metadata changes to be associated with particular features or bugs in the ALM
tool and for deployments to be made at a feature-level granularity. This is somewhat
similar to GitHub issues, GitLab issues, or Jira-Bitbucket integration, where each Jira
issue can show which commits made reference to it. Copado includes native integration
with Jira, Azure Devops, VersionOne, and Rally to sync stories from existing ALM tools
and update their status.

Copado offers a Selenium recorder that simplifies the creation of Ul tests. It hosts the
Selenium tool in Heroku and can orchestrate functional testing as part of their quality
gates. The Selenium scripts can even be used to automate “manual” setup steps in an
org. Copado also offers a compliance tool to ensure that excessive permissions are not
deployed as part of the release process. Companies can write their own rules to match
their policies.

Copado is priced on a per user per month basis with two levels of licensing: one for
developers and the other for release managers. Additional CI functionality is currently
tied to a Branch Management license. The Selenium Test and Compliance Hub products
are also licensed separately. Copado uses a credit system, similar to Salesforce governor
limits, to enforce a “fair usage” policy. Copado claims that in practice customers never
hit these limits, but these ensure that usage remains proportional to the number of
licenses purchased.

Released: 2013

Architecture: Salesforce with Heroku as a processing engine

Benefits:

¢ Nice metadata picker

e Agood choice for those already using Salesforce itself to manage
their Salesforce development

e Rich suite of tools, including ALM, data migrations, and Selenium
testing

368

CHAPTER9 DEPLOYING

Disadvantages:

o Alllogs and other files are stored as attachments in the Salesforce
package, making them hard to read.

e The Ul is built on Salesforce and looks slightly awkward. For example,
notifications about job results are not very obvious.

e Jobs are run on Heroku but not stored on Heroku. This means that
each job takes a nontrivial amount of time to start (such as cloning
the repository).

Flosum

Flosum is a release management app for Salesforce that is built entirely on the Salesforce
core platform. They have the highest number of positive reviews among release
management tools on the AppExchange.

One benefit that Flosum derives from being built on Salesforce is that no additional
security reviews are required in companies that take a long time to whitelist new
software.

Flosum claims that their tool allows people to add custom automation such as
approval processes using familiar Salesforce tools. But since Flosum doesn’t live in
your main production org, it won’t have access to integrate with your users and data. So
any automation you build on top of Flosum will be disconnected from the rest of your
business processes.

Based on increasing demands from customers to support version control and CI/CD,
Flosum has built basic version control and CI/CD capabilities into their tool. They've
also built an integration with Git. But because all of these capabilities are built using
native Apex, they are very slow compared to other tools.

Flosum has done an impressive job of building version control, metadata
management, and CI/CD capabilities on the Salesforce platform. Their choice of
architecture greatly limits their speed and ability to integrate third-party tools, but they
have many satisfied customers and provide a vastly superior alternative to change sets.

Released: 2014

Architecture: Built on Salesforce

369

CHAPTER9 DEPLOYING

Benefits:
o Business logic can be customized using Salesforce mechanisms.

e Built on Salesforce, so no additional platforms to pass through

security review.
Disadvantages:
o Large operations are very slow.
o Expensive.

e Can’tintegrate standard DevOps tools.

Gearset

Gearset is a UK-based company founded by Redgate Software. Their Salesforce release
management product is based on Redgate’s experience building release management
tools for SQL Server, .NET, and Oracle.?’ Their aim has been to emphasize ease of use to
allow users of all technical backgrounds to adopt modern DevOps best practices.

Gearset is a SaaS$ tool that provides a full array of release management and DevOps
capabilities. Their enterprise customers include McKesson, IBM, and even Salesforce
themselves. They have a fast and easy-to-navigate user interface, allowing quick
selection of the metadata to deploy and making it easy to build up more complex
deployments including changes to things like profiles and permission sets.

Gearset has built intelligence into their comparison engine to automatically fix
common deployment issues like missing dependencies or obsolete flows, before
pushing your changes to Salesforce. This means deployments with Gearset are more
likely to work the first time, avoiding the time-consuming iteration cycle of fixing failed
deployments.

This intelligent comparison engine is used for manual deployments, as well as
automated deployments triggered from CI jobs. This means a higher deployment
success rate and less time spent iterating and fixing repetitive deployment failures.

Gearset’s Pro tier offers a drop-in replacement for change sets and is ideal for admins
and low-code developers. Connect any number and type of orgs, compare them to see
a detailed breakdown of their differences, explore dependencies between metadata
components and automatically include them in your deployment, and finally push your

®https://gearset.com/about
370

https://gearset.com/about

CHAPTER9 DEPLOYING

changes between orgs. Gearset integrates with all of the major Git hosting providers
and allows you to connect to any Git repo, making it easy to run comparisons and
deployments with Git branches, just as you would with orgs.

For larger teams, the Enterprise tier includes a variety of automation features,
including org monitoring to alert you to any changes made to your orgs, and scheduled
metadata backup. Gearset also comes with built-in continuous integration to monitor
Git branches and push any detected changes to your orgs. Finally, Gearset offers a data
deployment feature, making it easy to deploy hierarchical data between orgs, preserving
any relationships.

Gearset’s pricing is per user, allowing you to connect as many orgs as you like
and run unlimited comparisons and deployments. Support is included in the price.
Interestingly, Gearset doesn’t have a distinct support team, so questions and issues are
managed by the Gearset development team itself, likely yielding higher-quality initial
responses.

Released: 2016

Architecture: .NET and C# on AWS

Benefits:

e Nice UL
e Quick navigation of metadata.

o Metadata comparisons (org-to-org, org-to-git, git-to-org, git branch-
to-branch).

o Comparison engine automatically fixes common deployment errors.
o SaaS-based.

e Gitintegration with an admin-friendly UI, allowing admins and
developers to all work from version control together.

o Full Salesforce DX support, including scratch org creation.
o Hierarchical data migration.
Disadvantages:
o No support for Selenium testing or UI automation.
o Ulcan’t be customized.

e Can’t mix in third-party DevOps tools.

371

CHAPTER9 DEPLOYING

Metazoa Snapshot

Snapshot is a desktop-based change and release management tool for Salesforce. It was
first launched by DreamFactory in 2006, but the makers of Snapshot spun it off under a
separate company, Metazoa, in 2018.

Snapshot is written in Visual C++ and runs as a desktop app. The user interface
looks extremely dated, but it runs on Mac or Windows and has been updated recently to
include some Salesforce DX capabilities.

Snapshot is built around the concept of visual workspaces. Each workspace allows
the user to arrange snapshots (metadata retrieved from an org) and projects (local
folders containing metadata) graphically. Those snapshots and projects can then
be connected to build out a pipeline view that flows from development to testing to
production. This pipeline automatically batches metadata retrieval and deployment,
allowing it to bypass the 10,000 metadata item limits of the Metadata API.

Each snapshot or project allows you to perform actions on it by right-clicking and
selecting from the menu. Actions typically involve running reports on that org, and
Snapshot boasts over 40 reports that can be run, such as “generate a data dictionary.”

The connections between snapshots/projects enable actions such as doing
comparisons, deployments, or rollbacks. Chaining together snapshot connections
from development to production allows for continuous delivery, where changes can
be deployed from org to org in an automated way. Snapshot also provides support for
connecting to code repositories including Git, SVN, and TFS.

Snapshot runs on the user’s desktop, but allows users to synchronize workspaces
with other team members. For security purposes, org credentials are not stored online or
shared between team members. Admins can enforce controls on the activities of other
Metazoa users, for example, enforcing code quality gateways on deployments.

Snapshot also supports extracting and loading data while keeping complex data
relationships intact. It can scramble data fields, making it useful for seeding new
sandboxes while scrubbing sensitive data.

In short, Snapshot provides a versatile, admin-friendly toolkit with many commands
and reports that are not present in competing tools. Despite the “retro” user interface,
the underlying capabilities are robust and powerful.

Released: 2006

Architecture: Desktop app written in Visual C++

372

CHAPTER9 DEPLOYING

Benefits:
e Quick to download, install, and experiment with
o Allows management of multiple orgs
o Contains many reports that are not present in competing products
o Supports Salesforce DX metadata format

e Works relatively quickly (limited by the speed of your local machine
and the Salesforce APIs)

Disadvantages:
e Old-looking UI
o Doesn’t automate the scratch org or package creation process

e Not cloud-based, but configuration can be synced across teams

Packaging

Modular architecture is an important software architecture pattern that helps make
applications more manageable and easier to understand. Packaging is a form of modular
architecture that allows you to develop and deploy code and configuration in discrete
bundles. That makes software development and delivery far easier. As mentioned earlier,
packaging is a critical part of Salesforce DX and provides a superior method to manage
deployments.

Classic Packaging

For completeness, we'll briefly discuss classic packaging. But if you're looking for a quick
recommendation on how to build Salesforce packages, skip to “Second-Generation
Packaging” section.

Although Developer Edition orgs have no sandboxes and thus can’t make use of
change sets, all orgs are able to create packages. Until the recent release of unlocked
packages, the main audience for package-based deployments were ISVs producing

373

CHAPTER9 DEPLOYING

apps for the AppExchange. The Salesforce AppExchange is a business “app store” which
provides over 5,000 Salesforce apps, 40% of which are free.?! The vast majority of these
apps are actually managed or unmanaged packages.

Unmanaged packages and classic managed packages are actually based on the
same technology as change sets and have a similar user interface for building them. You
begin by giving a name and description for the package and then proceed to creating
your first version of the package by adding metadata to it. Package versions are named
and numbered, and you can set a password to prevent unauthorized individuals from
installing this metadata. In the case of unmanaged packages, you can optionally link
release notes and post-installation instructions and specify required dependencies in
the target org such as enabled features and object-level configuration like record types.

Once a package version is uploaded, it is given a unique 04t ID and is thus available
for installation into any org. If the package is published on the AppExchange, you can
then make this package version available using the AppExchange publisher tools.

One significant limitation of unmanaged packages compared to the other three types
of packaging is that once an unmanaged package is installed, its metadata is no longer
associated with that package. It is as if the unmanaged package is a cardboard shipping
container that is discarded after opening. This makes them useful for deployment, but
not at all useful for modularizing your code architecture.

Classic managed packages are similar to unmanaged packages in most ways, but
require the use of a namespace which is prepended onto metadata names like myMgdPkg
packageContents__ c. Partly for this reason, managed packages must be developed and
published from a Developer Edition org. The major benefits of managed packages are that

o Package components such as custom code cannot be inspected
in the org in which they’re installed, which helps to protect the
intellectual property of the publisher.

e Managed packages are upgradeable.
o Package components remain associated with the source package.
o Components are distinguished by their namespace.

o Package metadata has its own set of governor limits above and
beyond those in the installation org.

2https://appexchange.salesforce.com/appxContentListingDetail?listingId=aON3A00000F
HBPKUAP

374

https://appexchange.salesforce.com/appxContentListingDetail?listingId=a0N3A00000FHBPkUAP
https://appexchange.salesforce.com/appxContentListingDetail?listingId=a0N3A00000FHBPkUAP

CHAPTER9 DEPLOYING

For these reasons, commercial AppExchange apps are almost always managed
packages, while free AppExchange apps are almost always unmanaged packages.
Unmanaged packages are far easier to create, but don’t obscure their contents or allow
for upgrading. That makes them far simpler to maintain, but also harder to build a
business around.

Managed package development requires an additional layer of sophistication, one
which I'm not well qualified to comment on. In my view, managed package development
is a dark art, but there are many thriving ISVs who have successfully navigated the
challenges in building, upgrading, and supporting managed packages. See the Salesforce
developer documentation on managed packages and Andrew Fawcett’s excellent Force.
com Enterprise Architecture® for more detailed discussion on their development.

Unlike change sets, which give you the option to include dependencies, unmanaged
and classic managed packages automatically add dependencies to the package
metadata. This is because packages by definition need to be self-contained so they
can be installed in any org. Change sets, by contrast, can only be installed in related
sandboxes which necessarily share similar metadata. Excluding dependent metadata
from a change set limits the scope of changes (the blast radius) and means that
change sets don’t automatically upload the latest version of all dependencies from the
development sandbox.

Second-Generation Packaging

Salesforce DX brought a new type of packages, sometimes called second-generation
packages. Whereas unmanaged packages and classic managed packages are artifacts
created from org-based development, this new type of packaging is designed for source-
driven development. Unlocked packages are a type of second-generation package that
are well suited to enterprise development (building and migrating functionality for use
within a single enterprise). Second-generation managed packages are intended to be the
successor to classic managed packages and are intended to simplify the development
process for managed packages.

Second-generation package publishing is a key part of the Salesforce DX workflow,
and we've already discussed “Branching for Package Publishing” and “CI Jobs for
Package Publishing” in Chapter 7: The Delivery Pipeline. The concepts are similar to

2Andrew Fawcett. 2014. Force.Com Enterprise Architecture. Packt Publishing.

375

CHAPTER9 DEPLOYING

the concepts for managed and unmanaged packages, but second-generation packages
are defined using configuration files, published using the Salesforce CLI, and can easily
express dependencies on other packages as well as org-level features and settings.

Unlocked packages are discussed implicitly and explicitly throughout this book,
since our main focus is Salesforce DX development for the enterprise. A major
improvement over unmanaged packages is that metadata remains associated with the
unlocked package that included it, and that package deployments cannot overwrite
metadata that is included in another package.

One of the trickiest aspects of classic managed package development is the use of
namespaces, since each namespace is tightly bound to one and only one Developer
Edition org. Salesforce DX now allows a single Dev Hub to be associated with multiple
namespaces so that scratch orgs can be created that use any of those namespaces.
Second-generation managed packages can now also be published to the AppExchange.
It is a great relief that the enterprise workflow can now be united with the ISV workflow
and Salesforce DX technology can be used similarly for both.

Unlocked Packages

Change sets, the Metadata API, and most of the commercial Salesforce release
management tools are built around the concept of hand-selecting individual pieces of
metadata and deploying them between different environments. Deploying unpackaged
metadata in this way has many disadvantages. First, it puts the burden on the person
doing the deployment to ensure that they are not including too much or too little
metadata. Second, combining metadata from multiple developers requires some
Salesforce-specific XML processing. Third, the process is error-prone, and it’s hard to
ensure that metadata is being deployed consistently across environments. The use of
version control helps tremendously in this process, but still requires developers to pick
through metadata changes to determine which changes to commit.

Imagine if deploying your Salesforce customizations were as easy as installing a new
package from the AppExchange. Unlocked packages make this possible. These allow you
to bundle customizations into one or more packages and install them automatically or
manually.

Unlocked packages are stored on the Dev Hub. Thus a team building unlocked
packages should collaborate on the same Dev Hub so that they can contribute to the
same packages.

376

CHAPTER9 DEPLOYING

To build and publish unlocked packages:
1. First ensure that packaging is enabled in the Dev Hub.

2. Packages are basically a container for metadata. The sfdx-
project.json file has a “packageDirectories” section that
contains the configuration for each folder that will hold your
package metadata. When you first create a Salesforce DX project
using sfdx force:project:create, this file is initialized for you
and contains a single force-app folder. Update this file if needed
so that it points to the folder that holds your metadata.

3. Then create the package on your Dev Hub, specifying the
name and definition of your package by executing stdx
force:package:create along with appropriate options. This step
defines the package and gives it an ID that begins with 0Ho, but
does not actually add any metadata to the package.

4. When this command completes, the packageAliases section is
given a new alias pertaining to the newly created package, and the
packageDirectories section is given a new object corresponding
to the newly created package.

5. Having created the package, you can then begin creating package
versions using sfdx force:package:version:create along with
the appropriate options. These package versions encapsulate the
metadata in the package folder so that it can then be installed
in another org. The result of running this command is that the
packageAliases section will be given a new entry containing the
04t ID for the package version. That is the same ID that can be
used to publish the package.

Initial package creation is a one-time process, but the package version publishing
should be scripted as part of your CI process so that it will run every time the code in the
master branch for that package is updated. If you're building branch versions of your
package using the --branch flag, it’s a good practice to automatically set that parameter
based on the Git branch you're publishing from and to automatically add a Git tag to
the repository when a new version is published, as described in Chapter 7: The Delivery
Pipeline. This makes your Git repository a comprehensive reference to the version and

377

CHAPTER9 DEPLOYING

change history of your packages. You can add other automation such as only publishing
versions when a particular keyword such as “#publish” is included in the commit
message.

Although there is a little bit of setup required, once built, this simultaneously makes
your code architecture cleaner and deployments easier. By dividing your metadata into
subfolders, the application’s structure is made clear. By publishing package versions, you
can then deploy updated versions to any org using a single ID, instead of trying to deal
with hundreds or thousands of metadata files. There is no chance of including too much
or too little metadata, and the results are identical with every installation.

Package Dependencies

Salesforce DX allows you to specify package dependencies on other packages (unlocked
or managed) and on particular org configuration. Specifying such dependencies is one
of the most important aspects of packaging. Refactoring metadata so that it can be built
into unlocked packages is the single most challenging aspect of adopting Salesforce DX,
but it is also the most beneficial. This topic is addressed in more detail in the section on
"Packaging Code" in Chapter 5: Application Architecture.

Adding and Removing Metadata from Packages

Unlocked packages have a number of helpful characteristics that make it easier to adopt
packaging gradually. First, these packages can take ownership of existing metadata.

For example, imagine you have a custom object called MyObject__c in a particular org,
and you then build a package version that contains MyObject__c. When you install that
package in your org, it will take ownership of that custom object. The custom object will
then display a notice (shown in Figure 9-2) that it is part of an unlocked package and that
changes to it will be overwritten if the package is updated.

v This Custom Field Definition ks part of a package. You'll lose any edits you make directly in the org if you reinstall or upgrade the package. | iately inform your team of any changes you
make.

Figure 9-2. When viewing metadata that is part of an unlocked package, users see
an indication that the metadata is part of a package

This behavior allows you to create small unlocked packages that can gradually
subsume existing metadata and make it part of the package. There is no data loss or
interruption to business logic when doing this. Although you can add a namespace

378

CHAPTER9 DEPLOYING

to unlocked packages, doing so would prevent your package from taking ownership
of existing metadata, since the API name of the packaged metadata would actually be
myNamespace__MyObject__c and so wouldn’t match the existing metadata.

Unfortunately, if you attempt to update that metadata using the Metadata API,
you will not receive such a warning, so teams should put some additional automated
checks in place to ensure that there is no overlap between the metadata in their various
packages and their unpackaged metadata.

Similarly, it’s also possible to remove metadata from unlocked packages, either
because it’s no longer needed or to move it to another package. Propagating metadata
deletions has long been challenging in Salesforce. Deletions are not supported at all
in change sets, and with the Metadata API, deletions need to be explicitly listed in a
destructivechanges.xml file, which requires separate logic be built if tools want to
automate the deletion process.

Metadata that is deleted from an unlocked package will be removed from the target
org or marked as deprecated. In particular, metadata that contains data like custom
fields or custom objects is not deleted, since that could cause data loss. Instead, this
metadata is flagged as deprecated. This is a best practice recommended in the classic
book Refactoring Databases.” This allows data to be preserved and copied over to new
data structures. Care is needed however to update any integrations that point to the old
data structures and to ensure that data is replicated between the old and new structures
during that transition.

If you want to migrate metadata from one unlocked package to another, you can
simply move the metadata files from one package to the other. Publish new versions of
both packages. Then install the new version of the package that previously contained the
metadata in your target org using the command sfdx force:package:version:install
--upgradetype DeprecateOnlyTheDeprecateOnly flag ensures that metadata
which is removed from one package will be deprecated rather than removed. You can
then install the new version of the package which now contains that metadata, and it will
assume ownership and undeprecate that metadata without causing any change to the
data model, business logic, or UL

#Scott W. Ambler and Pramodkumar J. Sadalage. 2006. Refactoring Databases: Evolutionary
Database Design. Addison-Wesley Professional.

379

CHAPTER9 DEPLOYING

Resolving Deployment Errors

Deployment errors are extremely common when using CI/CD in legacy Salesforce
projects since it is very easy for the metadata tracked in version control to become
inconsistent. By enabling source synchronization, Salesforce DX greatly reduces the
frequency of deployment errors, although they are still a fact of life for Salesforce
development teams.

One very attractive capability of Gearset is their problem analyzers, which
automatically identify and fix problems like missing dependencies before the
deployment is performed. Copado includes a version of this which addresses the
common challenge of profile deployment errors by automatically modifying and
redeploying profiles.

General Approach to Debugging Deployment Errors

Resolving deployment errors is actually what consumes most of the time during
deployments. Resolving these errors quickly depends on an understanding of Salesforce,
its different types of metadata, and how they interdepend. I probably could have written
an entire book on how to tackle the various kinds of deployment errors, but I'm grateful
that you've even gotten to this point in this book, and I don’t want to press my luck. What
follows is a concise set of suggestions:

1. Don’t panic. On large deployments, it’'s not uncommon to get
hundreds of deployment errors. In many cases, these errors are
closely related to one another and resolving one issue can resolve
dozens of related issues.

2. [Ifthere are a large number of deployment errors, and you're not
using a tool that organizes them for you, I recommend you copy
the list into a spreadsheet to make it easier to manage and work
through the list.

3. Deployment errors can cascade to cause other errors; this means
that errors later in the list can be caused by errors earlier in the
list. Therefore the order of the errors is an important clue to
resolving them. For example, if a new field can’t be deployed, that
can cause a class that uses that field to fail. That class failure can

380

CHAPTER 9

cause the failure of other classes. That in turn can cause the failure
of Visualforce pages, which can themselves cause other errors. All
of those errors will be resolved once that field is deployed.

Begin by identifying and deleting any duplicate errors from your
list. They will all be resolved in the same way.

Then identify and delete any dependent errors that are actually
caused by earlier errors.

Then work through the errors from the top down. Take note of
any clues such as files, metadata names, or line numbers that are
mentioned in the message.

Being able to view the metadata line by line allows you to take
steps like temporarily commenting out lines of metadata that are
causing deployment errors so that you can get the main body of
the deployment to succeed.

In the case of large deployments, it can help to temporarily
remove pieces of metadata that give persistent errors, so that the
main deployment can go through. After deploying the main body
of the metadata, you can quickly iterate on the small number of
problematic metadata items you've isolated. This allows for faster
trial-and-error deployments as you work toward a resolution.

The type of error that is most challenging to debug is in the form
“An unexpected error occurred. Please include this Errorld if you
contact support: 94477506-8488 (-1165391008)” This error reflects
an internal “gack” or unhandled exception in Salesforce itself.

The error number shown is a number from Salesforce’s internal
logs, so to get any insight into it, you'll need to file a case with
Salesforce and request their Customer-Centered Engineering
team to look that up in Splunk. In the meantime, you'll need

to do some sleuthing to figure out what caused this error. This
debugging is far easier if you're doing frequent small deployments,
since that immediately narrows down the cause. Rather than
getting stuck for days, follow the recommendation in point 8 and
deploy your metadata in subgroups until you have isolated the
source of the problem.

DEPLOYING

381

CHAPTER9 DEPLOYING

Getting Help

I highly recommend the Salesforce Stack Exchange group (https://salesforce.
stackexchange.com/questions/tagged/deployment) for finding and resolving more
obscure deployment errors.

General Tips for Reducing Deployment Errors

To reduce the frequency of deployment errors, focus on deploying small batches of
changes frequently. In the case of org-based development, ensure that developers are
making use of feature branches that run validations of the metadata in their branch
against the next higher org (e.g., QA). If the metadata in a feature branch validates
successfully, it is likely to also deploy successfully when merged with the main branches
and deployed to higher orgs.

As mentioned earlier, using Salesforce DX scratch orgs for development greatly
simplifies the development process since it removes the need to handpick metadata
items from a source org, a very error-prone process. Instead, Salesforce DX works
through pushing and pulling metadata to and from a scratch org in its entirety. In most
cases, this ensures that the metadata is coherent.

Continuous Delivery

According to Jez Humble,

Continuous Delivery is the ability to get changes of all types—including
new features, configuration changes, bug fixes and experiments—into pro-
duction, or into the hands of users, safely and quickly in a sustainable way.

Our goal is to make deployments—whether of a large-scale distributed sys-
tem, a complex production environment, an embedded system, or an app—
predictable, routine affairs that can be performed on demand.

We achieve all this by ensuring our code is always in a deployable state, even
in the face of teams of thousands of developers making changes on a daily
basis. We thus completely eliminate the integration, testing and hardening
phases that traditionally followed ‘dev complete, as well as code freezes.*

#https://continuousdelivery.com

382

https://salesforce.stackexchange.com/questions/tagged/deployment
https://salesforce.stackexchange.com/questions/tagged/deployment
https://continuousdelivery.com

CHAPTER9 DEPLOYING

Continuous delivery is thus a maturation from the practice of making ad hoc
deployments to a state where deployments are happening on an ongoing basis.
Separating deployments from releases, as described later, allows you to practice
continuous delivery even if features should not be immediately released to users.

Why Continuous Delivery?

Continuous delivery builds on the practice of continuous integration, adding the
additional layer of ensuring that code is actually deployable from trunk at any time.

In Salesforce, the best way of doing this is to validate or deploy metadata to a target
environment whenever code changes on trunk. Your exact process may vary depending
on your needs, but assuming that you have two testing environments (QA and UAT) prior
to your production environment, a good default is to automatically deploy metadata
from your main branch to QA and then (if that succeeds) to immediately trigger a
validation (a deployment with the check-only flag set) of that metadata against UAT. This
ensures that there is no delay in your QA testers getting access to the latest functionality
from developers (or giving feedback if developers have broken something). It also helps
ensure that code is also deployable to UAT and that no one has made any “out of band”
changes to that environment that would interfere with your eventual releases.

Why perform deployments continually in this way? Consider the alternative, batching
deployments at the end of each week or each sprint. Such infrequent releases mean that
testers and users are continually waiting, and deployments are massive and accompanied
by massive numbers of deployment errors. In a typical team, one person might be
delegated to do the release, meaning that they have to lose half a day of work to resolve
errors, and have to make imprecise judgment calls, adding or removing metadata from the
deployment to get it to go through. They’re also typically under stress and time pressure to
complete the deployment within a particular window or outside normal working hours.
You might call this alternative approach “continuous waiting” or “periodic stress.”

Continuous delivery distributes deployments into small batches across time
and across the development team. This ensures that deployment challenges can be
addressed in small chunks, and distributes expertise in resolving deployment errors over
the entire team, which helps them to prevent these errors in the first place. If everyone
on your team did a perfect job of ensuring the metadata they commit to version control
was accurate and comprehensive, there would be no deployment errors. The best way to
give members of the team feedback on how well they're doing that is if they are actually
shown deployment results from each change they make.

383

CHAPTER9 DEPLOYING

Automating Deployments

Implicit in continuous delivery is the use of automated scripts or tools to perform
deployments. Most of the commercial Salesforce release management tools offer
continuous delivery capabilities in the sense that they can perform ongoing automated
deployments from version control. That’s also something that can be accomplished
through scripts run in traditional CI tools, which is the approach that Appirio DX takes.

Reducing the Size of Deployments

When automating deployments, one key is to be able to make deployments small
and fast while still having visibility into the state of the metadata in each org. Making
deployments small is important in reducing the risk and impact of each deployment.
It also helps to not change the lastModifiedDates of Salesforce metadata that has not
actually changed. Making deployments fast is important so that fixes and updates can be
released and tested quickly. It’s also important in case there are deployment errors, since
debugging and resolving those requires rerunning deployments repeatedly. The time
required to resolve all errors is proportional to the time required for a single deployment.
If you're building your own CI/CD process, one technique I've used with great
success for org-based deployments is to use Git tags to mark the points in time when
deployments were made successfully, and then to use Git diffs to determine what has
changed since that time. Tags are labels or “refs” which are used to mark a particular
point in a chain of Git commits. You may have more than one of these tags on the same
commit.
The branching for org-level configuration shows how to manage multiple orgs
from one repository. In this case, we use tags based on the org name and a timestamp.
Figure 9-3 shows an example of this with tags indicating that particular commits were
successfully deployed to int, uat, and prod environments.

| © uat-20180626172404 © int-201B0626165518 Merged in uat/activedevelop (pull request #995)

| UAT build Fix - Reverting the permissionset (Production/validate)
© int-20180626161447 Merged in uat/activedevelop (pull request #994)

UAT build Fix

© prod-20180626151918 Merged in production/validate (pull request #993) &

I

+ © int-20180626145650 Merged in uatfactivedevelop (pull request #992)
1

Figure 9-3. This diagram shows the use of tags to track successful deployments.
In this case, there are tags pertaining to uat, int, and prod environments

384

CHAPTER9 DEPLOYING

Tagging a commit with the org name after a deployment succeeds allows us to
determine what metadata has changed since the last deployment. The basic approach is
as follows.

Different branches have different rules that apply to them. When a commit is made
on a branch that governs the UAT environment, for example, we first use git describe
as shown in Listing 9-11 to determine the last successful deployment to the UAT
environment.

Listing 9-11. A Git describe command to find a tag that matches “uat-"
$ git describe --tags --match "uat-*" HEAD

Having found that tag, we then use that as the input into a git diff command as
shown in Listing 9-12 to determine what files have changed since that time.

Listing 9-12. A Git diff command to find files that have changed since a
particular point in time

$ git diff --name-only --ignore-all-space [name of the tag found above]

This command gives a list of changed files that you can then copy into a new
directory and use as the basis for your “differential deployment.” If you're using the
Metadata API format and not doing any further XML processing, you'll be limited to
deploying entire .object files, which can be massive. Even short of adopting other
Salesforce DX practices, using the “Source” format for metadata makes it easier to deploy
smaller subsets of metadata such as particular fields instead of complete objects.

If this subset of changed files deploys successfully, you can then tag the repository
with uat-[timestamp] to mark this commit as the new state of the repository.

Deploying Configuration Data

As explained in the section “Configuration Data Management” in Chapter 4: Developing
on Salesforce, using data to store configuration requires a thoughtful approach to ensure
that configuration can be easily migrated.

Wherever possible, you should use Custom Metadata instead of using Custom
Settings or Custom Objects to store configuration data. One main reason for this is
that Custom Metadata is deployable using the Metadata API along with the rest of your
configuration, so it does not require any special management process.

385

CHAPTER9 DEPLOYING

Deploying configuration that is stored as data (either in Custom Settings or in
Custom Objects) requires that data to be extracted from one org and loaded into another
org. You should store this configuration in version control, along with the scripts used for
extracting and loading it. You may also need to transform that data if it includes IDs or
other data that are org-specific. Some of the commercial release management tools like
AutoRABIT, Copado, Gearset, and Metazoa have built-in capabilities for doing this. If you
want to build this capability yourself, you'll be relying on Salesforce’s REST API (or Bulk
API if the configuration data is massive).

Some AppExchange apps like CPQ solutions and FinancialForce involve extremely
detailed configuration data. Vlocity built a sophisticated tool specifically to help their
customers extract and load their data packs?® as part of a CI/CD process.

Continuous Delivery Rituals

The term “continuous delivery” is often used to refer simply to automating deployments.
But there are several additional behaviors that truly characterize this practice. I've
referred to these as “rituals” here, to emphasize that these behaviors need to be
internalized to the point that they become automatic and need to be reinforced as
“sacred” to fully achieve the benefits of continuous delivery.

Continuous delivery evolved out of continuous integration and is based on the same
behavioral rituals. Those rituals are

e Codeis developed on a single trunk, with feature branches not
persisting more than a day.

o Every commit to that trunk triggers a set of automated tests.

o Ifthe build breaks, the team’s highest priority is to fix the build within
10 minutes (either by making a fix or reverting the changes).

In particular, paying attention to the build status and regarding it as critical to the
team’s operations is a learned behavior that needs to be reinforced by team leadership
and by the individual members of the team.

Examples of malpractices that contradict this ethic are committing on top of a
broken build. If the build is broken, everyone else should refrain from pushing their
commits to the trunk and if necessary swarm to help resolve the broken build.

»https://github.com/vlocityinc/vlocity build
386

https://github.com/vlocityinc/vlocity_build

CHAPTER9 DEPLOYING

Continuous delivery takes this process further by automatically performing
deployments or validations from trunk to one or more target environments with every
change. This allows for an additional layer of automated tests: unit tests that accompany
the deployment and postdeployment Ul tests.

The DevOps literature is filled with references to teams enacting elaborate release
processes and automation, but failing to pay attention to the build status over time. The
second law of thermodynamics in physics states that the entropy of any isolated system
can never decrease. In other words, things fall apart unless you continually apply effort.
The rituals of continuous delivery treat a green build as sacred, meaning that it is the
top priority of the team to ensure that they always have a clear path for any member of
the team to make a next deployment. Such behaviors are learned, but become entirely
natural once ingrained.

Deploying Across Multiple Production Orgs

Sandboxes, whether for development, testing, or training, are all related to a production
org. The implication is that the metadata in that production org and its related
sandboxes should always remain relatively similar, and any differences are meant to

be temporary. Thus deploying across sandboxes to a single production org is actually

a process of making those orgs more consistent with one another and resolving any
metadata differences that interfere with deployments.

It is an entirely different challenge when deploying across multiple production
orgs, where the metadata is generally meant to be different. Salesforce provides
methods to segregate data access within a single production org, so data isolation is
not normally a reason to have more than one production org. Companies who adopt
multiple production orgs generally do so because they need to serve independent
and incompatible needs across different business units within their organization.

See “Multiple Production Orgs” in Chapter 6: Environment Management for more
information.

Nevertheless, it's common for teams with multiple production orgs to want to share
certain functionality across orgs. If that functionality is available in a managed package
created by a third-party ISV, the problem is mostly solved. Managed packages ensure
consistent metadata across each installation. All that remains is ensuring that the
package is configured consistently and upgraded simultaneously across those orgs.

387

CHAPTER9 DEPLOYING

Prior to the arrival of unlocked packages, there was no easy way for enterprises
to syndicate metadata across multiple production orgs and still keep it in sync.
“Configuration drift” is a risk for any IT system, and since Salesforce customizations are
basically 100% configuration, Salesforce orgs are often the ultimate nightmare in terms
of configuration drift. A team might start by introducing a set of code and configuration
from one org into another org, but differences arise and increase continually as time
wears on.

Building and maintaining unlocked packages (or finding an alternative managed
package solution) is the only option I would recommend for organizations who need
to maintain similar functionality across more than one production org. Needless to say,
they also help maintain consistency across sandboxes.

Managing Org Differences

Perhaps a corollary of the second law of thermodynamics is that the differences between
any two Salesforce orgs will always increase unless you apply energy to keep them in
sync. User and API interactions with a Salesforce org generally lead to data changes, and
some activities such as creating or modifying reports or list views also lead to metadata
changes. Some of these org differences don’t matter from the point of view of the
development lifecycle; see “What'’s Safe to Change Directly in Production?” in

Chapter 12: Making It Better for examples.

Significant metadata differences between a related set of orgs can be divided
into intentional and unintentional differences. The role of governance is to eliminate
significant unintentional differences between orgs. Within the intentional differences,
some are temporary while others are meant to be long-term differences.

The earlier section on “CI Jobs for Org-Level Management” in Chapter 7: The
Delivery Pipeline provides an overview of how to practically manage both types of
intentional difference.

To summarize, temporary differences between orgs are due to features and fixes
being gradually promoted and tested. When using packages, temporary differences
simply mean that there are different versions of a package installed in different orgs. The
expectation is that the testing orgs will contain the latest version of a package, while the
production org may lag a few versions behind while testing is in progress.

388

CHAPTER9 DEPLOYING

When using org-based development, temporary differences are best managed
by the Git branching process, with the branches corresponding to the testing orgs
carrying metadata differences that have not yet been merged into the master branch,
corresponding to the production org. There is of course a contradiction between using
such a branching model and following true continuous integration or trunk-based
development, which is why it’s so important to gradually refactor your metadata into
packages, each of which can be developed on a single trunk.

Orgs have long-term differences related to integration endpoints, org-wide email
addresses, and other org-specific configuration. While the goal of version control is
to gain visibility into these similarities and differences, the goal of CI/CD is to enforce
control over the orgs.

Even within unlocked packages, it’s possible to accommodate org-specific
differences to some degree. The most effective approaches I've seen use custom
metadata records that cross-reference the org ID to look up org-specific data. In Apex,
you can call UserInfo.getOrganizationld, and in formula fields such as workflow rules,
you can reference {!$0rganization.Id}. You can then perform dynamic lookups such
as the one shown in Listing 9-13 to determine integration endpoints (for example).

Listing 9-13. An example of looking up Custom Metadata records based on an
OrgID

public static String getEndpoint(String serviceName) {
String orgld = UserInfo.getOrganizationId();

API_Endpoint_mdt endpoint = [
SELECT URL__ ¢
FROM API Endpoint mdt
WHERE OrgId c = :orgld

AND ServiceName c = :serviceName
AND isActive c=true
LIMIT 1];

return endpoint;

389

CHAPTER9 DEPLOYING

When managing org-level metadata, you can use that same custom metadata
approach. In addition, you can dynamically filter and replace values as part of the
deployment process.

XSLT is the most common syntax for searching and replacing across XML
documents. See Listing 9-14 for an example of the XML from a Salesforce Approval
Process and Listing 9-15 for an example of an XSLT transform. XSLT is a fairly obscure
and challenging syntax and requires dealing with XML namespaces (xmlns). Parsing the
XML using higher-level languages such as Node, Java, Python, or Perl may make this task
easier. It’s also possible to use standard Unix tools such as sed for this purpose, although
they are less precise.

The good news is that once you've figured out the initial syntax for your
replacements, subsequent replacements are easy. Listing 9-15 is not indicating that
you should maintain extensive collections of XSLT. If you choose to use XSLT, it is more
maintainable to autogenerate repetitive XSLT on the fly using simpler config files to
define your search terms and the replacement values.

Listing 9-14. An excerpt of the XML for an Approval Process referencing the user
wrongUser@yourOrg.com.sandbox

<?xml version="1.0" encoding="UTF-8"?>
<ApprovalProcess xmlns="http://soap.sforce.com/2006/04/metadata">
-l -
<approvalStep>
<allowDelegate>false</allowDelegate>
<assignedApprover>
<approver>
<name>wrongUser@yourOrg.com.sandbox</name>
<type>user</type>
</approver>
<whenMultipleApprovers>FirstResponse</whenMultipleApprovers>
</assignedApprover>
<label>Step 1</label>
<name>Step_1</name>
</approvalStep>
<l--iil -
</ApprovalProcess>

390

CHAPTER9 DEPLOYING

Listing 9-15. An example XSLT transformation to replace the user wrongUser@
yourOrg.com.sandbox with correctUser@yourOrg.com in an approval process

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="2.0"
xmlns:sf="http://soap.sforce.com/2006/04/metadata"
exclude-result-prefixes="sf">

<xsl:template match="sf:approvalStep/sf:assignedApprover/sf:approver/
sf:name/text()">
<xsl:value-of select="replace(., '(wrongUser@yourOrg.com.
sandbox) "', 'correctUser@yourOrg.com')"/>
</xsl:template>

<!-- By default, leave everything else as it is -->
<xsl:output exclude-result-prefixes="#all" omit-xml-
declaration="yes" indent="yes"/>
<xsl:template match="@*|node()">

<xsl:copy>

<xsl:apply-templates select="@*|node()"/>

</xsl:copy>

</xsl:template>

</xsl:stylesheet>

The example in Listings 9-14 and 9-15 is a bit contrived, since Salesforce has built-
in logic to translate sandbox usernames into production usernames for most metadata
types. For example, if you deploy metadata containing references to myuser@myOrg.
com.dev to a sandbox called “qa,” Salesforce will automatically look for a user named
myuser@myOrg.com.qa and update the metadata appropriately. But you will encounter
errors if there is no such user, and this automatic replacement does not happen in
references to org-wide email addresses or for certain metadata references like reports
shared to particular users. Salesforce is working on a resolution by allowing “Aliases” in
metadata that can vary on a per-org basis, but that is not available as of this writing.

The need to replace email addresses is the most common and most tedious
replacement you're likely to encounter, but there are a variety of situations where
having automatic replacements is beneficial. Another example is during the transition

391

CHAPTER9 DEPLOYING

between Salesforce versions, when it’s possible to download metadata that has tags
which are not yet supported in your production org. Being able to strip those out on
the fly is extremely helpful.

Dependency and Risk Analysis

As your process matures, one area that you might consider exploring is dynamically
assessing the risk that may be posed by particular changes. Some changes pose a bigger
risk to your org than others and might warrant careful review before they are made.

Some tooling providers such as Panaya* and Strongpoint*” have released tools for
Salesforce based on similar tools for other languages. Their tool assesses metadata
dependencies and rates proposed metadata changes based on their potential risk to the
org. For example, adding a validation rule on a heavily used field could interfere with
peoples’ work or automated process if it’s not well tested.

It's worth noting the research from the 2018 State of DevOps Report that change
approval processes have not been shown to increase org stability and definitely decrease
deployment velocity. This holds true even for selective change approval processes that
only apply to high-risk changes.

In my opinion, the most useful step you can take to limit the risk of deployments is to
track each change in version control and make frequent small deployments from version
control so that the impact of any single deployment is minimized, and any resulting
problems can easily be diagnosed and remedied. On this basis, your critical business
processes should be validated by automated tests tied to every deployment to ensure

they are never compromised.

Summary

Deployment is the heart of innovation delivery. I often liken the deployment process

to the shipping logistics managed by companies like UPS and FedEx. Whereas there’s
a lot of variation in the amount of time required to develop features and resolve bugs,
the process of deployment can be made into a fast and predictable process. The irony
of release management is that it’s not a high-value process; it doesn’t add much value

Zwww . panaya.com/product/rdx-for-salesforce/
*"https://strongpoint.io/salesforce

392

www.panaya.com/product/rdx-for-salesforce/
https://strongpoint.io/salesforce

CHAPTER9 DEPLOYING

compared to other aspects of software development. It’s thus important that your team
minimizes the time, effort, and pain involved in deployments by automating that process
and developing a steady cadence.

This chapter has outlined a variety of techniques you can use to build your own
release automation. And we've also introduced many of the excellent tools that have
been built to help with this process. In the next chapter, we’ll discuss releasing as a
separate activity from deploying. This distinction is extremely helpful since it allows you
to make the innovation delivery process as fast and fluid as possible, without exposing
your end users to ongoing unexpected changes.

393

CHAPTER 10

Releasing to Users

Deploying and releasing are different. Deploying refers to moving code and
configuration from one environment to another. Releasing means making that code and
configuration available to users. Releasing depends on deploying: if capabilities are not
moved to the environment that users are working in, they have no way to use them. But
it's possible to deploy without releasing, by simply “hiding” those capabilities from users
until they’re ready to use them.

As an analogy, when I was a child my parents would buy presents for my brother
and me in the weeks and months leading up to Christmas. But they would hide the
presents in the house until Christmas morning to surprise us. Their buying the presents
and bringing them to our house is like deploying. Their giving them to us on Christmas
morning is like releasing.

This practice of “decoupling” deployments from releases is also known as “dark
deploying” and is a highly recommended practice. The influential software consultancy
ThoughtWorks has recommended this practice' for many years. This is closely related to
the concepts of Canary Deployments and of Feature Flags.

There are several reasons why this practice is so useful. First, it reduces the stress and risk
associated with deployments. Deployments are often complicated affairs and can involve
careful timing, monitoring, and coordination between different teams. When deployments
also imply releasing to users, that simply adds to the stress and risk of the process. When
features can be deployed to an environment without having any risk or impact on users,
it allows those deployments to be done during normal business hours (as opposed to on
weekends or evenings) since there’s not the concern of interfering with people’s work.

Second, this makes releasing far simpler. Even if a deployment is complex, if releasing
to users is simply a matter of changing a flag or permission, it can be done at any time,
perhaps by an Admin, in coordination with announcements to users or customers. If
something doesn’t work, the feature can be disabled just as easily as it was enabled.

'www . thoughtworks . com/radar/techniques/decoupling-deployment-from-release

395
© Andrew Davis 2019

A. Davis, Mastering Salesforce DevOps, https://doi.org/10.1007/978-1-4842-5473-8_10

http://www.thoughtworks.com/radar/techniques/decoupling-deployment-from-release

CHAPTER 10 RELEASING TO USERS

Third, this allows for real in situ testing. You can enable the feature first for
administrators, then perhaps for a few testers or power users. Even if you've tested
extensively in a staging environment with full data, there’s no better confirmation that
your features will work in production than actually seeing them working in production!

Fourth, this allows you to deploy functionality that isn’t finished yet. This “benefit”
will seem shocking to most teams, but is actually a requirement for practicing
continuous deployment. For your team to be able to regularly check their code into
a common trunk, there has to be a mechanism for them to hide work that is not yet
ready for release. Rather than working in a feature branch or delaying deployment, it is
perfectly safe to deploy that functionality, as long as you're confident it is disabled.

This also allows for Canary Deployments. Canary Deployments refer to releasing
capabilities to a subset of users before releasing to all users. These early users act as
testers (sometimes without realizing they’re doing so) to reduce the risk of a major
change simultaneously affecting all users. The analogy comes from the old practice of
bringing canaries into coal mines to warn miners if natural gas was released into the
mine. The canaries died quickly if natural gas filled the mine. Their death would alert
the miners, hopefully giving them time to escape. Please never expose your users to
anything quite that dramatic.

Finally, although it’s important to get feedback from real production users as early
as possible, it's more common that releases to users are made only periodically. Even
when sophisticated techniques are available so that functionality could be released more
often, it’s important not to confuse or overwhelm users with continuous changes to the
user interface or functionality. Releasing, for example, on a monthly schedule allows for
an orderly announcement of the features to be made, which your users are more likely to
greet and read with enthusiasm.

Having explained the extensive benefits of separating releases from deployments, it’s
important to determine whether that’s the right approach for each particular situation.
In some cases, it’s overkill. The point is to know what you're doing, and why.

Releasing by Deploying

The default approach to releasing functionality is to release by deploying. This means
that prior to a deployment, certain functionality isn’t available to users, and once the
deployment completes successfully, the feature is immediately available to users.

396

CHAPTER 10 RELEASING TO USERS

A great example of when this is the correct approach is deploying bug fixes. Once they’ve
been tested, there is no reason to delay the release of a bug fix in any way. It should be
deployed and made available to users as early as possible.

Another case where functionality can and should be released immediately with a
deployment is for the minor tweaks to Uls or the creation of new database fields that
would traditionally be done by admins directly in production. As we discuss in the
section “Locking Everybody Out” in Chapter 12: Making It Better, it is critically important
that even Salesforce sysadmins not be allowed to modify the database, business logic,
or Ul directly in production. The reason is that even seemingly small and safe changes
(like adding a new field to a page layout) mean that production becomes out of sync with
version control. When production gets out of sync with version control, those changes do
not get propagated to development or testing environments and will be overwritten the
next time developers deploy updates to that functionality in production.

The key is to recognize that “Salesforce admin” actually has a dual meaning: the
traditional meaning of “someone who manages a production org” and the distinctively
Salesforce meaning of someone who builds and modifies applications using clicks not
code. Those in the latter role are more correctly termed “App Builders.” And they should
not be allowed anywhere close to your production org, except as users.

The alternative is to involve App Builders in the same process used by code-based
developers to deploy changes, namely, the Delivery Pipeline. That means that App
Builders should be making their changes in scratch orgs or development sandboxes,
tracking them in version control, and letting the delivery pipeline do what it does best:
deliver those changes to production. Read more about how to do this in the section “An
Admin’s Guide to Doing DevOps” in Chapter 12: Making It Better.

Revoking your admins “System Administrator” privileges in production forces
them to make even minor application updates using version control. But that doesn’t
mean that there should have to be a long lead time to releasing those features. On the
contrary, reducing lead time is one of our key goals. We don’t want to burden admins
unnecessarily, we just want them to track their changes and keep them in sync with
developers. So minor updates (minor layout changes, creating new report types, adding
fields to an object, etc.) can all be released immediately with a deployment without
requiring an additional layer of hiding and releasing.

397

CHAPTER 10 RELEASING TO USERS

Separating Deployments from Releases

But what about bigger changes? If there’s any chance that a new feature might negatively
impact users, cause confusion that requires training or announcements, or modify
business logic in a way that requires coordination with other groups, you should hide or
disable that feature when you deploy it. One important consequence of hiding features is
that you can then deploy continuously to production. Continuous deployment refers to
deploying features to production as soon as they’re built and tested. The benefit of this is
that you can make each deployment very small.

Small “batch” sizes are a key concept of lean manufacturing, and small deployments
are the lean software development equivalent. Small, frequent deployments minimize
the risk of each individual deployment and allow bug fixes and high-priority
deployments to be expedited.

The opposite, large infrequent deployments, implies that even bug fixes and high-
value features have to wait in line with every other change to the system. That delays the
delivery of value to end users. It also means that if a large deployment causes a problem,
it's far more challenging to discern which part of that deployment caused the problem.
When a critical problem occurs as a result of a large deployment, you may have to roll
back the entire deployment until the team is able to identify the root of the failure. And
depending on the nature of the deployment, it may not be easy to roll back.

Separating deployments from releases is a key capability to enable DevOps for your
team. The reason is that it forces the team to think about how features can be deployed
without impacting the system. This forces good design, designing in such a way that
changes are reversible and that the impact of changes can be controlled. As people in the
DevOps community describe it, you're “reducing the blast radius” of each change.

Let’s look at how this can be implemented.

Permissions

One of the oldest and simplest mechanisms to separate deployments from releases
is simply to not assign users the permission to see functionality until it’s ready. As
mentioned before, you should emphasize the use of Permission Sets rather than Profiles.
And this is an area where Permission Sets really shine.

Each package you're developing should have at least one Permission Set associated
with it that gives access to the capabilities in that package. When you first install that
package in your target org, the Permission Set is included, but it is not automatically

398

CHAPTER 10 RELEASING TO USERS

assigned to any users. This means that the Permission Set will need to be assigned to
users for them to get access to those capabilities. Voila! You've separated the deployment
from the release.

When an Admin decides that it’s time to release the feature, they simply assign the
Permission Set to the appropriate users. Want to do a Canary Deployment? Assign the
Permission Set to just a subset of your users. How easy was that??

But imagine if the Permission Set associated with your package has already been
assigned to all the appropriate production users. And you're now rolling out new
functionality that you don’t immediately want to expose to all users. You have several
options.

If the changes you're making might never be appropriate for some of the existing
users of your package, you should create a new Permission Set. For example, if your
package provides capabilities to customer support representatives, but you're adding
some features that would only be used by Live Agent chat users, you might create a new
Permission Set that is specifically for chat users. That allows Admins to assign the Chat
User Permission Set only when they’re ready to release those capabilities.

There is some risk, however, that in doing that your permission landscape becomes
unnecessarily complex. Complex permissions create a security and maintenance burden
for admins, so you should be sure that there’s a legitimate use case for a new Permission
Set before you create one.

It is of course possible to simply not add your new permissions to the Permission
Set and to then add those permissions manually in each environment. While that
accomplishes the goal of separating deployments from releases, it means that you're
reverting to a manual workflow that can lead to errors and which isn’t being tracked in
version control. Plus, as discussed in the section “Locking Everybody Out” in Chapter 12:
Making It Better, a wise team won’t even permit this kind of manual modification.
Therefore you need to consider one of the other options in the following.

Layouts

Another time-honored method for revealing features selectively to some users and not
to others is the use of Layouts. Salesforce’s page layouts allow a single object to have
multiple alternative layouts for the View and Edit screens. Which layout a user sees is
determined dynamically at runtime based on the user’s Profile and on the record type of
that record.

399

CHAPTER 10 RELEASING TO USERS

Each Layout defines not only which fields of an object are shown but also which
fields are read-only and which Quick Actions, Related Lists, and other embedded
functionality are shown. This allows a capability such as a new Quick Action for an
object to be hidden from users simply by being excluded from the Layout those users are
assigned.

Similar to the Chat User Permission Set case earlier, if you are rolling out capabilities
for a new team, you might want to create a new Layout to serve the needs of that team.
But the same caveats mentioned earlier apply. Be extremely careful about creating
a layout (or anything else) that you don’t think has a long-term purpose for the org.
Everything you create adds complexity, and capabilities built for short-term use have a
nasty habit of making their way into production and remaining for a very long time.

Dynamic Lightning Pages

One very nice capability that is now available in the Lightning App Builder is the ability
to have Dynamic Lightning Pages. These dynamic pages allow certain components to be
shown or not shown based on filters. Filters use formulas that can reference information
on a particular record (show this component when the value is greater than 100) or based
on attributes of the User viewing the data (show this component when the User has the
“BetaUser__c” flag enabled).

On Salesforce’s roadmap is the ability to add much more flexibility into App Builder,
including the ability to show and hide specific fields or layout sections in the same way.
App Builder’s capabilities provide a rich way to hide functionality until it’s ready.

Feature Flags

While modifying Layouts or using Dynamic Lightning Pages allows releases to be
controlled at the Ul level, it’s also possible to enable/disable functionality at the level of
business logic. Feature Flags (aka Feature Toggles) are another practice recommended
by Martin Fowler? at ThoughtWorks. Although “Feature Flags” may be new to you,
they’'ve actually been around since time immemorial (time began in 1970 in the Unix
universe) in the form of “settings.”

Yes, settings. You can make your own settings.

*https://martinfowler.com/bliki/FeatureToggle.html

400

https://martinfowler.com/bliki/FeatureToggle.html

CHAPTER 10 RELEASING TO USERS

Why not. Salesforce does it. The Salesforce Setup Ul contains thousands of settings
that are in effect Feature Toggles that just turn certain capabilities on and off. When
Salesforce wants to roll out a prerelease feature to a select group of Pilot users, they
simply have their provisioning team enable a hidden feature flag in the Pilot users’ org
which makes new capabilities available. Voila! Similar hidden capabilities (like enabling
Person Accounts) are known as “black tab” settings that Salesforce support agents can
enable at administrators’ request.

As Martin Fowler mentions, the use of Feature Flags should be a last resort, since it
requires some design and adds a bit of complexity. But it’s vastly preferable to releasing
by deploying if there’s any chance that a feature could cause risk or impact to users.

So how do you enable a Feature Flag? There are many possibilities.

A feature flag is simply a Boolean on/off setting that is checked at some point in your
logic and that might be enabled or disabled for different users or on different orgs.

First determine where you want this Feature Flag to be checked. If the feature should
be enabled or disabled in a Formula (such as selectively rolling out a new Approval
Process), you can only use Custom Metadata, Custom Settings, or Custom Permissions.
Features that will be checked from Flows or Process Builders can also use logic defined
in Apex Invocable Methods and REST External Services. If the feature will be enabled/
disabled inside code, you have even more options for how to implement the check.

Custom Metadata, Custom Settings, and Custom Permissions have the benefit
that they are stored in Salesforce’s Platform Cache and so can be accessed quickly and
without risking exceeding governor limits. They are also available in the formulas used in
Formula Fields, Validation Rules, Approval Process conditions, and elsewhere.

It's worth mentioning that originally, none of these three capabilities were available,
and application configuration was stored as data in Custom Objects. That’s still the
case with some kinds of applications like CPQ where “configuration data” is far more
complex and extensive than can be accommodated by those mechanisms. If you're
responsible for architecting an older application that is still using Custom Objects
for simple configuration, you should consider migrating to using Custom Metadata
instead. Otherwise, in addition to managing metadata in version control, you will need
a mechanism for tracking and deploying configuration data. See “Configuration Data
Management” in Chapter 4: Developing on Salesforce for more.

401

CHAPTER 10 RELEASING TO USERS

Flows and Processes can also call Apex Invocable Methods to calculate the value
of a flag and can even use External REST Services. For example, they could reach out
to an External Service defined using an OpenAPI-compliant REST service. This kind of
capability can be used to create a cross-system feature flag that can enable capabilities
both in Salesforce and in other integrated systems such as SAP or Oracle.

Feature Flags that will be checked by code such as Apex can use any conceivable
mechanism or calculation to determine whether to enable or disable a feature. Again,
Feature Flags are meant for short-term use so you should avoid over-engineering. But
code does allow for a wider variety of mechanisms, even in frontend code. For example,
a Lightning Component or a Visualforce page could set a cookie in a user’s browser to
determine whether to display a particular feature. This could even be a user-selectable
option, such as “enable compact display” that allows you to solicit user feedback.

One of the most important qualities of Custom Metadata is that their values can be
deployed between orgs, just like other Metadata. This means that developers can define
these values and push them out as part of a package. But Custom Metadata values can
also be overridden in a target org (unless they are marked as “Protected” and deployed
as part of a managed package). This means that a Custom Metadata record can be used
to enable a feature but can be turned off by default. It can then be selectively enabled in
an org to release that feature.

However, in general Custom Metadata should always be used instead of Custom
Settings. One exception is in the use of Hierarchical Custom Settings. Hierarchical
Custom Settings are ideal for use with feature flags, since they dynamically change their
value based on the environment, Profile, or user. For example, a setting can be turned off
at the org level, but enabled for all users with a particular Profile. Hierarchical custom
settings can even be overridden at the level of an individual user to allow that user to test
a feature.

One final note about Feature Flags is that they generally should be removed
once they've served their purpose. One of the risks of using Feature Flags is that their
designers forget to remove them when they’re no longer needed. They then just become
a useless if statement in your logic and a type of technical debt. Remove Feature Flags
once the feature is stable.

Remember, as John Byrd once said, “Good programmers write good code. Great

programmers write no code. Zen programmers delete code.”

Swww . quora.com/What-are-some-things-that-only-someone-who-has-been-programming-20-
50-years-would-know

402

http://www.quora.com/What-are-some-things-that-only-someone-who-has-been-programming-20-50-years-would-know
http://www.quora.com/What-are-some-things-that-only-someone-who-has-been-programming-20-50-years-would-know

CHAPTER 10 RELEASING TO USERS

Branching by Abstraction

There’s no problem in Computer Science that can’t be solved by adding
another layer of abstraction to it (except for the problem of too many layers
of abstraction).

—Fundamental Theorem of Software Engineering
(frequently attributed to John Wheeler)

The basic idea of separating deployments from releases is to hide work from end users,
either because it’s not ready for them or because they’re not ready for it.

So far, we've discussed multiple increasingly sophisticated ways to hide functionality
from users. Branching by abstraction has the fanciest name of any of these, but
is conceptually simple to understand. This approach was promoted in the book
Continuous Delivery, but, as indicated by the preceding quote, the concept dates back to
the earliest days of computer science.

Branching by abstraction provides a way to gradually transition from an old version
of a component to a new version of a component by adding an abstraction layer in
between. This technique is useful when that transition is risky or might take some time
to implement, since it allows you to make the transition gradually without branching in
version control or delaying deployments. This technique can be used in any technology
where one component can delegate processing to another component. In Salesforce this
means you can use it inside code, Flows, or Processes.

Figure 10-1 illustrates how this works. If you decide that a certain component needs
to be replaced, you create an abstraction layer that can be called instead of referencing
the component directly. Initially, that abstraction layer simply passes all requests on to
the component, making the initial implementation trivial and safe. As you then begin
work on a new version of the component, you can add some decision criteria into that
abstraction layer that allows you to delegate processing either to the old component or to
the new component.

403

CHAPTER 10 RELEASING TO USERS

Initial Implementation

‘ Consumer ' ! Consumer |

Abstraction)
layer

Component to
be replaced

Figure 10-1. Branching by abstraction

Transition to new Component

‘ Consumer l ‘ Consumer \

Abstraction
layer

New version of
component

Old version of
component

A practical example of how this works is if you want to transition from using a

Custom Object to store configuration data to using Custom Metadata. Let’s say your

current code includes many SOQL queries that look up values in the Custom Object to

determine the appropriate behavior. You've determined that you'll benefit from using

Custom Metadata to keep that configuration consistent across environments. This

simple example shows how you could branch by abstraction and gradually refactor your

codebase to support the new approach.

1. Listing 10-1 shows the initial version of CallingCode.cls that

directly makes a SOQL lookup to your configuration object. You

might have similar blocks of code scattered throughout your

codebase.

2. Create a class called ConfigurationService.cls as shown in
Listing 10-2 with a method called isFeatureEnabled(). This is

your abstraction layer.

3. Have isFeatureEnabled call another method called theOldway ()
in that class that performs your original SOQL query to access the

configuration data in the original configuration object.

404

CHAPTER 10 RELEASING TO USERS

4. Refactor CallingCode.cls as shown in Listing 10-3 to call
ConfigService instead of directly querying your configuration
object. You have now added a layer of abstraction without
changing the underlying logic.

5. Now add a method to ConfigService called theNewWay ()
that implements your new way of getting that configuration
information, in this case by querying Custom Metadata instead.

6. You can now develop and test the new way of accessing that
configuration and gradually implement that change across the
entire codebase. You can use any logic you want to selectively
implement the new way. You have now branched by abstraction.

Listing 10-1. The original state of CallingCode.cls, which directly performs
SOQL queries of a configuration object

public with sharing class CallingCode {
public CallingCode() {
String product = 'myProduct’;
Boolean enabled = [SELECT feature enabled c
FROM Configuration Object c
WHERE product c = :product][0]
.feature _enabled c;
}
}

Listing 10-2. ConfigService.cls, an abstraction layer that contains both the old
and the new ways of accessing configuration data

public with sharing abstract class ConfigService {
public static Boolean isFeatureEnabled(String product) {
// return theOldWay(product);
return theNewWay(product);

}

405

CHAPTER 10 RELEASING TO USERS

private static Boolean theOldWay(String product) {
return [SELECT feature enabled c
FROM Configuration Object c
WHERE product ¢ = :product][0]
.feature enabled c;

}

private static Boolean theNewWay(String product) {
return [SELECT feature enabled c
FROM Configuration Metadata mdt
WHERE product c = :product][0]
.feature_enabled c;

}
}

Listing 10-3. CallingCode.cls after adding the abstraction layer instead of
directly accessing configuration data

public with sharing class CallingCode {
public CallingCode() {
String product = 'myProduct’;
Boolean enabled = ConfigService.isFeatureEnabled(product);

}
}

In most cases, branching by abstraction should be a temporary solution, and the
abstraction layer can be removed after the change has been completely tested. In this
simple example, ConfigService is a useful way of avoiding repetitive SOQL queries and
so is beneficial to keep in place.

Summary

Releasing is often confused with deploying. The purpose of this chapter is to highlight
the differences between them and to outline techniques for deploying without
immediately releasing. In many cases, this means building your customizations so
they can be hidden or exposed dynamically. There is some cost in terms of time and

406

CHAPTER 10 RELEASING TO USERS

complexity in adding such a layer, but in many cases there are enormous benefits in
doing so. Such practices allow you to control the risk of deploying changes by enabling
you to turn functionality on or off as needed. Fast rollbacks, selective rollouts, A/B
testing, and more become possible once you've implemented this practice.

This concludes the main body of this book, the practice of Innovation Delivery.
Nestled in between development and operations, the software delivery phase has
historically been a viper’s nest of risk, pain, inefficiency, and confusion. The Salesforce
platform and those who build on it have evolved to the level of sophistication that it is
now critical to tame the delivery process.

The logistics companies who handle global and local trade (from container ships
to drone delivery) are unsung heroes in our modern economy. From hand-carried
parcels, to the Pony Express, to modern expedited delivery, the practice of shipping and
delivering physical goods has become steadily more reliable over hundreds of years.

At the heart of the DevOps movement is applying similar process improvements
to software delivery, enabling it to become steadily faster, safer, and more predictable.
By implementing the processes described here, and leveraging the many excellent
Salesforce deployment, tracking, and testing tools, your team can begin to free up
more and more of their time for creative, high-value work. It's my sincere wish that
all Salesforce development teams can eventually learn to “run the tightest ship in the
shipping business.”

407

PART IV

Salesforce Ops
(Administration)

The term DevOps has gained enormous traction over the last decade, and is a useful
catch-all to describe processes that allow for a high pace of innovation without
compromising stability. To emphasize the meaning of that term, I've divided this book
into sections on Dev, Ops, and the critical Delivery piece that connects them.

But the term “Ops” or “Operations” is almost never used in the Salesforce world to
refer to a team that runs or administers a Salesforce org. Why is that? Because Salesforce
is doing that job for you. Very few Salesforce admins “wear a pager” to alert them to
outages in the middle of the night. By contrast, Salesforce themselves employs fleets of
support staff, application developers, networking experts, database admins, and security
specialists to provide ongoing operational monitoring of their service.

By contrast, Salesforce Admins tend to focus on far more creative processes such as
building click-based capabilities for the benefit of their users, alongside some traditional
operational tasks like creating new user accounts.

Salesforce’s Awesome Admins, with their esprit de corps, Trailhead badges, podcasts,
and dance competitions,' are vastly cheerier and more passionate about their platform
than the stereotypical sysadmin, holed up in a server room in the basement of their

'https://admin.salesforce.com/get-your-dancing-shoes-on-and-take-the-awesome-admin-
challenge

https://admin.salesforce.com/get-your-dancing-shoes-on-and-take-the-awesome-admin-challenge
https://admin.salesforce.com/get-your-dancing-shoes-on-and-take-the-awesome-admin-challenge

PART IV SALESFORCE OPS (ADMINISTRATION)

organization. Classic sysadmins have been the basis of comical and self-deprecating
caricatures such as the BOFH (Bastard Operator From Hell).2 The problems inherent in
their being saddled with maintaining systems that they didn’t understand and didn’t
develop were a major basis for the birth of the DevOps movement.

Having already discussed “Click-Based Development on Salesforce,” in this final
section, we'll focus on the truly operational responsibilities that Salesforce admins take
on: keeping the lights on, and making things better.

*http://bofharchive.com/

410

http://bofharchive.com/

CHAPTER 11

Keeping the Lights On

Keeping the lights on in your Salesforce org is generally just a matter of paying your
Salesforce bill. They do most of the hard work for you. Nevertheless, in this chapter we’ll
look briefly at the different ways in which “Dev” and “Ops” can work together in the
Salesforce world, as well as how some of the other truly operational aspects of managing
a Salesforce org are relevant and can be understood as an extension as the broader
development lifecycle.

Salesforce Does the Hard Work for You

I decided to focus my career on the Salesforce platform in part because I enjoyed

the simplicity with which businesses and nonprofits could build on the platform.
When I first started looking at jobs in this field, I naturally looked at the job openings
at Salesforce themselves. I was a bit daunted to see the depth and sophistication

of the skills they seek in their employees: Oracle database administration, site
reliability engineering, offensive security engineering, network analysis, data science,
cryptography, the list goes on.

If you think that the content presented in this book is sophisticated, it’s nothing
compared to the level of product engineering happening under the hood to allow
Salesforce to scale globally, deliver features aggressively, and maintain industry-leading
uptime.

Fortunately, that’s all someone else’s job.

That's the reason we (or our employers) pay Salesforce, and the reason that
SaaS makes sense. Let someone else do the performance tuning on the databases.
Let someone else understand load balancers, cache invalidation, compilers, and
performance optimization. From our point of view, Salesforce basically just works.

411
© Andrew Davis 2019

A. Davis, Mastering Salesforce DevOps, https://doi.org/10.1007/978-1-4842-5473-8_11

CHAPTER 11 KEEPING THE LIGHTS ON

If there’s an outage or performance impairment in a Salesforce instance, we can
check https://trust.salesforce.com. It happens sometimes, but it’s rare, generally
short-lived, and followed by a root cause analysis and improvements to prevent it from
happening again.

We can also file support tickets with them, which generally get handled promptly.
You can pay for various tiers of support up to and including 24x7 Mission-Critical
Applications (MCA) phone support.

So from an operations point of view, keeping Salesforce in operation is enormously
complex—but fortunately not for admins.

What Does Dev and Ops Cooperation Mean?

The term DevOps originates from a talk by John Allspaw and Paul Hammond at the
2009 Velocity conference called “10 deploys a day: Dev and ops cooperation at Flickr.”!
That talk was significant for many reasons, but largely because it showed the benefits of
cooperation between two teams who had traditionally worked in isolation.

There are several reasons why this isolation had evolved. First, there is a
fundamental tension between the goals of development and operations. Developers’ job
is to continually innovate to better meet the evolving needs of the business. The goal of
admin/operations teams is to maintain a trusted system by keeping everything running
smoothly without downtime. For operations, innovation and change implies the risk
of breaking things. There is thus a tension between innovation and trust. These teams
often reported to different managers (e.g., CTO vs. CIO) and had competing goals and
incentives, which further deepened the separation.

Another reason for the separation was to enforce separation of duties, a compliance
requirement that dictates that those who develop a system should be different from
those who put it into production. Separation of duties is a long-standing principle in
financial accounting, and organizations subject to audits and regulatory oversight extend
that to their IT systems. Access controls are often used to actually prevent developers

from releasing code into production environments.

'www.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr

412

https://trust.salesforce.com
https://www.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr

CHAPTER 11 KEEPING THE LIGHTS ON

The basic reason why this separation became dysfunctional can be explained by
Conway’s Law:

Organizations which design systems are constrained to produce systems
which are copies of the communication structures of these organizations.?

Melvin Conway was a programmer, but Conway’s Law is a sociological statement
that basically says that your organizational communication structure will affect and limit
your architecture. The challenge that the Dev vs. Ops separation introduced was that
getting software running in production depends on both the software and the underlying
infrastructure, and the two cannot be optimized independently. So if the teams responsible
for these areas are not communicating well, naturally the overall system will suffer.

Matthew Skelton and Manuel Pais maintain a web site (https://web.
devopstopologies.com), documenting some of the many patterns and antipatterns for Devs
and Ops to work together effectively. The examples are thought-provoking, and in practice
our projects and teams may shift between different patterns and antipatterns over time.

Since the term DevOps was introduced, it’s been observed that there are frequently
many other communication gaps in the software value chain. Wherever there are role
boundaries, such gaps may exist, for example, between business analysts and architects,
between developers and QA testers, and between security specialists and everyone
else. Terms such as TestOps, DevTestOps, and DevSecOps have come into use, but the
underlying concept is the same: creating silos between teams increases inefficiency
and generally doesn’t succeed in reducing risk. The lesson here is that “DevOps” is not
really about “Dev” vs. “Ops” but rather about ensuring that there is strong cooperation
between all of the teams who participate in producing the final system.

The remedy for this dysfunction has been described as an “Inverse Conway
Maneuver.”? This sounds like a surgical technique, but basically means that you should
organize your teams (and their communication) in a way that is most conducive to your
desired architecture.

Bringing all of this academic discussion back down to earth, what does “Dev and ops
cooperation” look like on the Salesforce platform?

Since the actual “operations” of Salesforce is mostly handled by Salesforce
themselves, the cooperation challenges on the Salesforce platform tend to look different
than they might on other platforms. But the core idea remains the same: silos between

“www .melconway.com/Home/Conways_Law.html
Swww . thoughtworks . com/de/radar/techniques/inverse-conway-maneuver

413

https://web.devopstopologies.com
https://web.devopstopologies.com
https://www.melconway.com/Home/Conways_Law.html
https://www.thoughtworks.com/de/radar/techniques/inverse-conway-maneuver

CHAPTER 11 KEEPING THE LIGHTS ON

teams can negatively impact the organization’s effectiveness and the effectiveness of
individual teams. Cooperation and communication across teams are critical if they are
all collaborating around a single org.

If your Salesforce team is small, any cooperation problems are more likely due to
personalities rather than organization structure. If your team fits Amazon’s two pizza
rule (you can feed them all with two pizzas), your communication will hopefully be
pretty smooth, and confusion can be quickly resolved.

As teams scale and grow however, communication can be more challenging. Jez
Humble has often made the point* that enterprises are complex adaptive systems. By
definition this means that individuals, including the CEO, don’t have perfect knowledge
of the entire company and are not able to fully predict the effects of any action. Your
Salesforce org is also a complex adaptive system once it reaches a certain scale.

If you're the sole admin for a new, small org at a small company, you might be
familiar with every single customization and interaction in that org. But as your
company grows, the devand admin team grows, and time passes, the complexity grows
beyond what one person can hold in their mind. Even a solo admin is likely to forget the
details of customizations they implemented several months or years ago.

The basic point is that developers need to be aware of how their applications are
behaving in production so that they can debug or improve them if needed. And admins
need confidence that development has been well tested before they inherit it in their
production org. They also need applications to provide clear information about what
they’re doing and why, so problems can be resolved easily. The two groups need a way to
collaborate with each other easily should problems arise.

Version control can go a long way toward providing shared visibility and answers to
“what changed?” even across large and distributed teams. It’s also important to establish
lines of communication between those who initially built functionality, the users of that
functionality, and the admins who support those users.

Multiple development teams can be more easily supported when they can develop
their work as packages, with clear boundaries between them. Package boundaries
reduce the risk and uncertainty of merging large and complex metadata. Packages also
establish clarity about the original authors of certain functionality, making it easy for
admins to know who to talk to if questions or side effects arise.

“www . youtube.com/watch?v=TcbmRRy-vno

414

https://www.youtube.com/watch?v=TcbmRRy-vno

CHAPTER 11 KEEPING THE LIGHTS ON

You can think of your Salesforce “Operations” as being 80% handled by Salesforce
themselves and 20% by your own production admins. You can then consider the other
roles (or potential roles) you have in your team, such as business analysts, admins (the
app-building kind), code-based developers, testers, security specialists, and so on. If
you are all collaborating around a single production org, then there absolutely needs to
be good and clear cooperation between all of these teams, since that production orgis a
single interrelated system.

Since these disparate teams are (whether they like it or not) collaborating on a
single interrelated system, what are the possible ways in which silos might interfere with
effective cooperation? In the words of Skelton and Pais, “There is no ‘right’ team topology,
but several ‘bad’ topologies for any one organization.” Common failure modes include

o Not providing developers access to a Salesforce DX Dev Hub (you can
safely give them the “free limited access” production license).

e Long-running parallel development projects not developing in an
integrated environment.

o Developers having no access to test in a production-like

environment.
o Developers being unable to submit Salesforce support tickets.
o Infrequent release windows.
o Developers neglecting to establish production logging.

o Inefficient release paths or handoffs from development through to
production.

o Parallel consulting partner-led projects competing with one another.
Development teams from different vendors can easily introduce silos.

This list is not comprehensive, and challenges may change over time.

If you are maintaining multiple independent production orgs, then the need for
collaboration across the teams maintaining those orgs is reduced. But companies with
multiple orgs invariably have some common standards, processes, and applications
across those orgs, and it will be in everyone’s best interest if you establish a Center of
Excellence to allow for knowledge sharing across these teams.

415

CHAPTER 11 KEEPING THE LIGHTS ON

Salesforce Admin Activities

It's well beyond the scope of this book to share every aspect of activities an admin might
need to undertake. The focus in this section is to share tips that can make the overall
development lifecycle smoother.

User Management

User management is a fundamental aspect of a Salesforce admin’s responsibility. By
definition, an admin is delegated by the company to maintain the Salesforce org for the
users. It’s their responsibility to ensure that people who should have access to the org
promptly get the right level of access. It’s also their responsibility to ensure that people
who should not have access do not get that access.

The most reliable way to ensure correct access is for your company to maintain a
single sign-on (SSO) system that acts as the single source of truth for current employees
and to use that SSO for accessing Salesforce. Generally, password access to Salesforce
should be prevented, except for admins to use in case there’s a problem with the SSO.

There are two extremes of access that can interfere with the overall flow of
development. One extreme is having too many system administrators in production—
this brings a serious risk of untracked and conflicting changes. The other extreme is not
allowing developers any kind of access to a production org.

In some cases, your developers may not need or should not have access to Salesforce
production data or capabilities. For developers to effectively debug production issues,
they need to see debug logs, but seeing those logs requires “View All Data” permission
which may again be inappropriate.

The Salesforce DX Dev Hub is necessarily a production org, and for developers to use
Salesforce DX scratch orgs or packaging, they need a user account on that production org.
Salesforce offers a “Free Limited Access License” that allows use of a Dev Hub on production
without the ability to view data or change metadata in that org. If security concerns bar you
from even offering such safe and restricted licenses, you will need to establish a separate
production org that the developers can use collectively as their Dev Hub.

You will also need to establish one or more integration users that can be used by
integrated systems. Ideally, each integrated system (including your CI system) should
have its own integration user for security and logging purposes, but since integration
user licenses cost as much as regular user licenses, most companies opt to combine

multiple integrations under a smaller number of integration users.

416

CHAPTER 11 KEEPING THE LIGHTS ON

Security

Salesforce security follows a layered model, where different security mechanisms such
as Profiles, permission sets, and roles can provide increasing levels of access to users. By
default, no one can do or access anything, but each of these layers can add permissions;
these layers never remove privileges, permissions are additive.

Every Salesforce user is assigned a single Profile, which establishes their basic
security privileges. Salesforce provides some standard profiles, notably “Standard
User,” “System Administrator,” and “Integration User” These profiles can be cloned
and customized as needed. You can also create Permission Sets, which work similar to
profiles except that users can have more than one Permission Set.

It’s in the best interest of security as well as org governance for there to be a very
limited number of people holding System Administrator privileges. Salesforce provides
very granular access controls that allow you to add admin-like privileges to a permission
set, which you can then apply as needed to users.

Use Permission Sets Instead of Profiles

Because of an early design decision in the Metadata API, Profiles are notorious for being
the single biggest pain in the butt for Salesforce release managers. When you retrieve a
profile using the Metadata AP]I, the profile definition you receive varies depending on
what other metadata you have requested. Managing profiles in a CI tool thus requires
sophisticated tooling, and Salesforce release management is plagued by missing profile
permissions or deployment errors from permissions for metadata that is not present in
the target org. Even groups with sophisticated CI/CD processes sometimes choose to
manage profile permissions manually.

Salesforce is working on improvements, but in the meantime I would strongly
suggest you avoid using Profiles to provide permissions and use permission sets instead.
Since API version 40.0, Permission Sets are always retrieved and deployed in a consistent
way, making them a better candidate for CI/CD.

Permission sets can be used for every type of user characteristic except for the following:

o Page layout assignments (which page layout a user sees for a record)
e Login hours

o Login IP ranges

o Session settings

417

CHAPTER 11 KEEPING THE LIGHTS ON

o Password policies

o Delegated authentication

o Two-factor authentication with single sign-on
o Desktop client access

e Organization-wide email addresses allowed in the From field when
sending emails

I'would thus suggest that you use this list to determine what profiles you actually
need in your organization. For example, if you maintain a call center and for security you
want to lock call center users to a particular login IP range, whereas your salespeople
need access to Salesforce from any location, that’s perfect justification for having a
“Call Center” profile. Don't create different profiles for every category of user in your
organization. In fact, even the need for different page layout assignments is small, since
you can simply restrict access to certain fields to prevent those fields from cluttering a
record layout for users.

Managing Scheduled Jobs

Salesforce provides a system for scheduling jobs that can run periodically in an org.
Scheduled jobs are typically used to manage batch processing for activities that would be
too slow or too computationally expensive to run on the fly.

One large nonprofit organization I worked with prepared many layers of elaborate
reports on daily, monthly, quarterly, and annual cycles. The reports aggregated and
summarized data across millions of opportunities, far too much to be handled using
standard Salesforce reports. They opted to use Salesforce for this task instead of a
separate BI tool, and so our team wrote extensive batch Apex code to summarize all
of this data and then created scheduled jobs to run the appropriate batch jobs at the
appropriate times.

Such scheduled jobs can represent critically important aspects of your Salesforce
configuration. Therefore (you probably know where I'm going with this) they should
ideally also be stored in version control and an automated process used to ensure
that they are in place. Such a system becomes extremely helpful when promoting
such customizations between environments. If scheduled job definitions are stored in
version control, they can be promoted and tested gradually between environments and
deployed to production when the team is confident in them.

418

CHAPTER 11 KEEPING THE LIGHTS ON

Such a system needs to be idempotent, meaning that you need to ensure you can run
the job scheduling task repeatedly without it creating multiple jobs. In practice, I haven’t
seen many teams doing this, but it’s worth considering if scheduled jobs are critical for
you, and you want this level of reliability.

Probably the smoothest way to manage this is to write the scheduling system in Apex
itself, running queries to check existing schedule jobs and using the system.schedule()
methods to schedule any that are missing. You can then run this code as anonymous
Apex as a postdeployment step. Listing 11-1 shows the syntax for scheduling new jobs
and aborting all existing scheduled jobs. Production-ready code should include further
checks, such as validating existing jobs and ensuring that jobs are not running before

canceling them.

Listing 11-1. Starter code for scheduling and aborting jobs

public with sharing class JobScheduler {
public static void scheduleAll(){
System.schedule('scheduledJob1','0 0 2 ? * SAT', new
ScheduledJob1());
System.schedule('ScheduledJob2','0 1 * * * ?', new ScheduledJobi());

}

public static void abortAll(){
for(CronTrigger ct : getScheduledJobs()){
system.abortJob(ct.Id);

}
}

private static CronTrigger[] getScheduledJobs() {
final string SCHEDULED JOB = '7';
return [
SELECT Id, CronJobDetail.Name, CronExpression, State
FROM CronTrigger
WHERE CronJobDetail.JobType = :SCHEDULED JOB];

419

CHAPTER 11 KEEPING THE LIGHTS ON

One challenge related to scheduled jobs is that you can encounter a deployment
error if you update an Apex class that is referenced in a scheduled job. If your classes
are written such that changing a class definition midway through a scheduled job being
processed won'’t cause problems, you can enable the Apex Setting “Allow deployments of
components when corresponding Apex jobs are pending or in progress.”

Monitoring and Observability

Monitoring and observability are two concepts related to gaining insight into the
behavior of production systems to become aware of and diagnose any problems that
arise. Figure 11-1 helps explain the relationship between these concepts. Observability
refers to the degree to which you are able to get information about a particular behavior
or system, especially if you need to debug it. For example, debug logs provide one

form of observability, but only if those who can make sense of the logs have access

to them. Monitoring takes a broader, high-level view of the system, typically tracking
trends over time. Monitoring depends on observability because if the behavior of a
system can’t be observed, it can’t be monitored. Finally, analysis is the activity of using
monitoring to gain actionable insights into a system. This can be manual analysis, for
example, debugging, or automated analysis, for example, raising alerts if exceptions are
encountered or thresholds exceeded.

/\

Analysis

Monitoring

Observability

Figure 11-1. Analysis depends on monitoring, which in turn depends on
observability

The reason this topic is relevant in the context of DevOps is that if production
systems are not observable, it’s far more difficult to improve the system, and we're left
to rely on anecdotal feedback such as users submitting cases. A production system
has zero observability if there is no way to inspect that system to see how it’s behaving.
Conversely, providing access to debug logs, event notifications, and performance

420

CHAPTER 11 KEEPING THE LIGHTS ON

metrics means there’s a high degree of observability. For observability, more is better,
but there are legitimate security concerns that might cause teams to limit who has access
to that information.

In terms of monitoring, just because a system can be inspected deeply, doesn’t
mean that you should be monitoring every aspect of that system. Google’s Site Reliability
Engineering book advises:

Your monitoring system should address two questions: what’s broken, and
why? The “what’s broken” indicates the symptom; the “why” indicates a
(possibly intermediate) cause. ... “What” versus “why” is one of the most
important distinctions in writing good monitoring with maximum signal
and minimum noise.®

The Site Reliability Engineering book advises that there are four golden signals of
monitoring that you should focus on:

1. Latency (the time it takes to request a service)

2. Traffic (how much demand there is on your system)
3. Errors

4. Saturation (resource utilization).

Salesforce monitors and helps ensure low latency for their services. But you might
be interested to observe and monitor the page load time for a complex VisualForce page
you built, for example. Traffic is normally fairly predictable for your internal users, but
if you are hosting a Community, you might want to monitor that traffic, especially if it's
subject to surges due to marketing campaigns and so on. Error reporting is an important
topic that we’ll deal with later, as is saturation, which mostly equates to governor limits
for Salesforce.

Salesforce provides greatly simplified monitoring and observability tools compared
to what a traditional sysadmin might deal with when managing a server. This is
because Salesforce itself is handling the monitoring of things like uptime, CPU load,
network latency, and so on. Nevertheless, as users of Salesforce, we build business-
critical capabilities on that platform and so may need our own levels of monitoring
and observability. It’s worth looking at the existing options and ways they can best be
exploited.

*https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/

421

https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/

CHAPTER 11 KEEPING THE LIGHTS ON

Built-In Monitoring and Observability Tools

Salesforce continues to expand the different kinds of monitoring available to users.
These different tools are spread across the Setup UI, but many of them are in the
Environments » Jobs, Environments » Logs, and Environments » Monitoring
sections. Debug logs are typically the most useful for developers. The limits on debug
logs and the capabilities for parsing them have been greatly improved by the Salesforce
DX team, so that it’s finally possible to set your log levels to “Finest” without exceeding
log size limits, step through Apex code using the Apex Replay Debugger in Visual
Studio Code, and see how the values of your variables evolve as your code executes.
Frontend developers working with JavaScript and Lightning Components have had such
capabilities (e.g., via Chrome Dev Tools) for many years, so it’s a relief to now have such
visibility for Apex.

One challenge with debug logs is that you require the “Modify Users” and “View
All Data” permissions to see them, which may not be an acceptable level of access to
give developers in production. The simplest solution to this is to create a Permission
Set called (for example) “Debug and View All Data” that you can assign to developers
temporarily if they are struggling to debug a production issue. That’s similar to the
approach used to get hands-on support from Salesforce or an ISV in your org: an admin
“Grants Account Login Access” to the support agent for a period of time.

A workaround that my colleagues at Appirio use regularly is to create a custom object
to store error messages and an Apex class that writes the error details (including a stack
trace) to that object. That class can then be invoked inside try-catch blocks on code that
you want to monitor for errors. Once stored in a custom object, those error messages are
persisted across time and no longer require elevated permissions to access. You can use
Workflow Email Alerts to provide notifications and Dashboards for monitoring. You can
now also use Change Data Capture on that object or fire dedicated platform events to
make that information immediately available external monitoring tools.

There are other monitoring capabilities for different aspects of Salesforce. For
example, inbound and outbound email logs, data and file storage limits, daily API limits,
and background jobs pages.

422

CHAPTER 11 KEEPING THE LIGHTS ON

One of the simplest automated alerts you can establish is to “Set Up Governor Limit
Email Warnings” which send email warnings when Apex code uses more than 50% of
governor limits.® You may want to combine that with email filters to automatically ignore
certain kinds of notifications. But this provides basic insight into whether any of your
custom code might be at risk of exceeding governor limits.

Add-0n Monitoring and Observability Tools

Salesforce Shield is the best-known add-on to aid observability. Shield provides three
capabilities: platform encryption, field audit trail, and event monitoring. The event
monitoring capability of Shield aids observability by providing real-time access to
performance, security, and usage data from across Salesforce. This information can then
be ingested into third-party monitoring tools like Splunk. To whet your appetite for this,
Salesforce provides user login and logout information for free.

Salesforce also now provides Proactive Monitoring as an add-on service. Salesforce
customers who subscribe to mission-critical support or other premier support options
have historically been able to contact Salesforce to get access to similar monitoring
information to diagnose problems like page load times or transient errors. Proactive
Monitoring provides these capabilities as a standard bundle.

There are also a number of third-party solutions that can aid in monitoring.
ThousandEyes provides an enterprise-wide view of availability and page load
times, including details on which Salesforce data center is being accessed, and the
performance of each intermediate section of the Internet between your users and
Salesforce. This can be used to monitor uptime or to diagnose network issues that might
affect certain branches in a global organization, but it can also be used to monitor page
load times if you have concerns about particular applications.

AppNeta is similar to ThousandEyes in monitoring availability and load times, but
focuses more on analyzing and categorizing your internal network traffic with an eye
toward prioritizing higher-value traffic.

Opsview is an open-core product that provides visibility of system performance
across on-premise, private, and public cloud. Their Salesforce connector uses the
Salesforce REST API to monitor organizational limits. If you only need to monitor

https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_gov_
limits_emails.htm

423

https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_gov_limits_emails.htm
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_gov_limits_emails.htm

CHAPTER 11 KEEPING THE LIGHTS ON

Salesforce, it may be simpler to just periodically query those limits yourself using the
Salesforce Limits API.”

If you are hosting a Salesforce Community, Google Analytics remains one of the best
tools to aggregate and analyze user behavior like page views, click-through rate, and
time spent on each page. Because of its applicability to any web site, Google Analytics is
probably one of the best-known monitoring tools. For a time at Appirio, we used it to get
insight into employee usage of our internal Salesforce instance.

What to Monitor

As mentioned previously, the point of monitoring and observability is to help you
identify when something is going wrong, what it is, and why it’s happening. The goal is
to maintain a high signal-to-noise ratio, by only monitoring things that have real benefit
and minimizing distracting information. With observability, more is generally better. But
with monitoring, you should aim to be very targeted about what you want to monitor.

An occasion that often warrants monitoring is when rolling out a new business-
critical feature. These should be debugged and performance tested in a staging
environment, but it’s important to have a way to monitor their performance and usage
once they’ve actually rolled out. It's common for development teams to be exhausted
from the final push to take a new production application live. If your teams are oriented
around doing projects, they will be tempted to think of release day as the last day
that they have to think about that application. But if you think of each application as a
product, then release day is the first day that information becomes available on whether
the application is reliable and serving user needs.

There are two main things to monitor when it comes to new services: are they
working? And are they helping? To determine whether your applications are working, it
is important to gather error messages (e.g., into a custom object as described earlier) and
also to look at page load times if performance is a concern. For ad hoc analysis of page
load times, the Salesforce Developer Console is still the best tool in my opinion. The
Developer Console is a bit buggy, but hidden inside it are excellent tools for analyzing
performance. Salesforce wrote a blog post on how to make use of these capabilities.?

"nttps://developer.salesforce.com/docs/atlas.en-us.api rest.meta/api rest/dome
limits.htm

®https://developer.salesforce.com/page/A Guide to Application Performance_
Profiling_in Force.com

424

https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/dome_limits.htm
https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/dome_limits.htm
https://developer.salesforce.com/page/A_Guide_to_Application_Performance_Profiling_in_Force.com
https://developer.salesforce.com/page/A_Guide_to_Application_Performance_Profiling_in_Force.com

CHAPTER 11 KEEPING THE LIGHTS ON

Apex itself allows you to monitor limits using the Limits Class.? So you could also
monitor and log metrics such as heap size and CPU execution time on your newly released
applications if there’s a concern about a particular metric. Storing such performance
metrics in a custom object creates a Salesforce-native way to monitor application
performance. You can then build reports and dashboards around those if that helps.

Finally, one of the most important things you can do with monitoring systems is
to quiet, disable, or delete them once an application has proven to be stable and the
monitoring data no longer identifies any issues worthy of analysis. As the Site Reliability
Engineering book states:

Like all software systems, monitoring can become so complex that it’s frag-
ile, complicated to change, and a maintenance burden. Therefore, design
your monitoring system with an eye toward simplicity. ... Data collection,
aggregation, and alerting configuration that is rarely exercised ... should be
up for removal.

Other Duties As Assigned

Salesforce admins claimed the title “Awesome Admin” for themselves, and it’s well
deserved. They are often the main point of escalation for huge groups of users when
they encounter challenges or confusion. This chapter just scratches the surface of the
potential activities that admins might undertake or the issues that might arise in the
service of production users.

Summary

Whereas with traditional IT systems, it is the role of admins to optimize and keep those
systems running and patched, Salesforce does most of this hard work for you. Salesforce
Admins generally play a dual role: part actual administrator and part App Builder. That
dual role entrusts them with the responsibility of ensuring the production org is stable
and accessible while also giving them the opportunity to use their creativity to make

the org better. Having spoken about the administrative tasks of managing users, tuning
security, and ensuring monitoring, we now turn to the more creative work of improving
the org for the benefit of users.

https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_
methods system limits.htm#apex methods system limits

425

https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_methods_system_limits.htm#apex_methods_system_limits
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_methods_system_limits.htm#apex_methods_system_limits

CHAPTER 12

Making It Better

As mentioned before, the term “Admin” in Salesforce is overloaded. It can refer to the
traditional role of monitoring a production system to ensure it is stable and available to
users, but it is just as likely to refer to a user who makes click-based changes to build or
improve Salesforce. That latter role is better described as an “App Builder,” but that term
hasn’t gotten much traction beyond being the name of a Salesforce certification. For
example, the Admin Zone at Salesforce conferences or the Awesome Admin community*
online spends most of its energy explaining the click-based Builders and techniques for
innovating on the platform without code.

It's the ease of doing click-based (“declarative”) development that has caused so
many people to fall in love with the Salesforce platform. But even click-based innovation
implies risk, and unmanaged changes quickly devolve into chaos. Thus it’s important
to manage click-based development in the same way as code-based development:
promoting it systematically through development and testing environments, rather than
doing it directly in production.

The goal of ensuring Admins follow this systematic process is not to tamp down on
their creativity or slow their pace of innovation. In fact adopting a DevOps workflow
gives Admins even more power and control, since it ensures that their changes are
propagated to all environments, not just done in production. And it also gives the same
peace of mind that developers enjoy, knowing that changes can be tracked and rolled
back with ease should the need arise.

DevOps balances innovation with stability and security. And is thus equally
important for Salesforce App Builders as it is for coders.

'https://admin.salesforce.com/

427
© Andrew Davis 2019

A. Davis, Mastering Salesforce DevOps, https://doi.org/10.1007/978-1-4842-5473-8_12

https://admin.salesforce.com/

CHAPTER 12 MAKING IT BETTER

An Admin’s Guide to Doing DevOps

If your company has invested in a click-friendly release management tool like Copado,
consider yourself lucky. You can become a DevOps superstar with clicks not code. If
your company is taking a more traditional approach of directly using version control
and general-purpose CI tools like Jenkins, don’t worry. You have an opportunity to learn
powerful and flexible tools, and you can reuse those skills for as long as you work in IT.

A common adage is that DevOps tools are far less important than the culture shift
involved. What matters is that everyone whose work impacts your production org is able
to collaborate on common systems and that there is a shared sense of responsibility for
enabling innovation and reducing risk and confusion.

DevOps implies a process (moving from Dev to production), so it’s important to
appreciate the benefits of not making changes directly in production. Your work then is
to get access to a development environment, make and capture your changes from that
environment so that they can be sent through the deployment and testing process, and
participate in progressively improving that process.

Getting access to a development environment might mean using a shared Dev
sandbox or running commands to clone a short-lived sandbox or scratch org. As soon as
you begin working in a development environment, you will understand why developers
make such a fuss when those environments are out of sync with production.

Making your own changes (creating fields, using App Builder, etc.) is the part you're
already good at. This is the creative part of your job, and it’s natural if you initially resent
all of the overhead involved in capturing your changes to version control. But if you've
not spent much (or any) time writing code, it’s extremely empowering to begin tapping
into the process of seeing your configuration represented as XML and to track and
compare your work in version control alongside developers.

There’s an enormous mystique surrounding programming. Popular culture
perpetuates this, as do developers, who enjoy the air of mystery and exclusivity of doing
work that seems so alien to other people. But writing code is just writing. Code editors
are mostly just text editors. And the gap between coders and noncoders is just the gap
between those who are literate in a particular language and those who are not. Think
of getting comfortable with code as developing basic code literacy. Just as illiteracy
rates are falling globally (see Figure 12-1), so too code literacy will serve you well in the
modern world.

428

CHAPTER 12 MAKING IT BETTER

Global llliteracy rates over time
100
80
60
40
20
0
1800 1850 1900 1950 2000

Figure 12-1. World illiteracy has diminished at a remarkable pace’

Amazingly, code functions as a universal language. But it's one where computers
give you feedback about whether you've written it correctly or not. This makes it well
suited to introverts who are happy to learn without human interaction. But even
experienced coders struggle and fail like tiny children when first learning a new
programming language or technique. Their peers may think they have superhuman
skills, but, in private, even the most brilliant developers use “Hello World” examples and
painstakingly pore through code snippets to get started with new technologies.

In my view, what distinguishes programmers is only that they have the patience,
confidence, and motivation to work through this learning process again, and again, and
again. Even a little experience using Git and running command-line scripts can give you
the confidence that code is not a strange and inaccessible world. The best Salesforce
admins I know have taken delight and pride in getting a little experience with code and
the command line. Such experience unlocks the possibility of diving deeper into coding,
even if you choose not to.

*https://ourworldindata.org/literacy

429

https://ourworldindata.org/literacy

CHAPTER 12 MAKING IT BETTER

If you get over that hump, and get comfortable tracking your config changes in
version control, you are more or less home free. If your team has set up a CI engine and
delivery pipeline, tracking your work in version control is the only obscure and manual
process you have to do. Computers will do the rest of the work, running deployments
and automated testing.

You'll have to face deployment errors. But you would face those even if you worked
with change sets. And you might have to face Git merge conflicts. Merge conflicts for most
metadata types are not hard to resolve, especially using a code editor like VS Code. But merge
conflicts for Profiles and some other metadata types can be very ugly. This will help you
understand why Salesforce is increasingly promoting the use of Permission Sets instead.

Finally, once you're participating in this delivery pipeline, you share responsibility for
keeping it running and making it better. Making it better principally means improving the
automated tests. The testing tools your team is using may vary from developer-focused to
admin-friendly. UI testing tools like Provar, Selenium, and Tosca are designed to be more
accessible than code-based tests. If you have the opportunity to help build or specify those
tests, you are helping ensure that the changes you make will be protected over time.

The logic you embed in a Process or Flow may be every bit as complex as the logic in a
piece of code. Salesforce has begun to enforce code coverage requirements even on Flows
and Processes, which is an interesting decision that affirms Salesforce’s view that automated
testing is essential. Encourage your developers to write their unit tests in a flexible way so
that the expected inputs and outputs can be tuned easily. Behavior Driven Development
(BDD) style tests are meant to have human readable inputs and outputs that make it easy
to create multiple variations of a test to examine business logic against different edge cases.
If developers write tests in a modular way, you can easily copy and paste a single test and
adjust the inputs and expected outputs to help validate the logic of your Processes, Flows,
Workflows, or Validation Rules. Dabbling in unit tests is one of the easiest and lowest-risk
ways to start to code, since they have no impact on the org’s behavior.

The point of adopting this approach is to bring admins and developers together
in a common system that lets them experiment with less risk of impacting production
users. Even Salesforce experts will occasionally screw up. If you're not familiar with
working in a development org, it means that every experiment you do puts your data,
your users, and their affection for you at risk. Working on a common delivery pipeline
is an investment in collaboration and governance that gives you more reason to talk to
the development teams, and ensures you can build together with speed and deliver to
production with confidence.

430

CHAPTER 12 MAKING IT BETTER

Locking Everybody Out

My favorite story about the adoption of DevOps for Salesforce comes from Lex Williams,
formerly a lead member of technical staff on Salesforce’s own internal IT team. In

the spirit of “dogfooding,” Salesforce makes extensive use of their own product to run
their business. Salesforce’s production org is known as Org62. When Lex first joined
Salesforce’s IT team, there was no automated process in place to deploy customizations
to Org62. There was an automated build process based on Ant that was used to build the
multi-gigabyte JAR file that is Salesforce itself, but there was not a mechanism to manage
or track the customizations made to Org62.

Lex and team set about adapting some existing Perl scripts and setting up a Jenkins
instance that could be used to deploy code-based customizations. Of particular interest
was building and deploying the tool known as GUS, Salesforce’s Grand Unified System
for tracking features and bugs for their product team.? At the time (prior to the rise of
StackExchange), there were not many resources available for debugging issues with
Jenkins or other aspects of their automation, but Lex and team managed to pioneer an
automated workflow that allowed them to deploy GUS and other innovations to Org62.

Nevertheless, the customizations deployed by the IT team were only a fraction of
the total customizations being made by users in production. Salesforce grew to market
domination on the promise of quick and easy customization. So it is not surprising that a
massive number of Salesforce employees using Org62 expected to be able to make their
changes directly in production. Salesforce actually had hundreds of people with System
Administrator privileges in their org. And they were all making legitimate, valuable
customizations to serve the needs of thousands of other Salesforce employees.

Despite the expertise of these Salesforce admins, some small percentage of their
changes caused unexpected issues, small and large. Lex and the IT team regularly found
themselves having to tackle critical production issues with often mysterious origins.
Hours of debugging would frequently yield the conclusion that an ad hoc change made
by one of these admins had unintended consequences. Naturally, the IT team began
advocating for more control over changes being made in production.

3The core of GUS was made available on the App Exchange as Agile Accelerator:
https://appexchange.salesforce.com/listingDetail?1listingId=aON30000000ps3jEAA

431

https://appexchange.salesforce.com/listingDetail?listingId=a0N30000000ps3jEAA

CHAPTER 12 MAKING IT BETTER

Perhaps more than they would have at any other company, the IT team experienced
resistance. “What part of clicks not code don’t you understand?” Why should teams be
forced to route quick and simple changes through a regimented release schedule that
would cause weeks of delay to a valuable improvement? The most strident resistance
came from business users who depended on their admin colleagues to make quick
changes.

After years of back and forth debate, the IT team finally began to compile statistics
on the cost of responding to incidents caused by unplanned production changes. The
incident response itself (scuttling a team of several developers to debug an incident,
often outside of work hours) cost many thousands of dollars’ worth of productive time.
They showed how changes such as a field being removed from a layout could prevent
hundreds of users from doing their jobs; or a validation rule being added could break
critical integrations with the payment processing system. It was clear that the cost of
each incident was easily tens of thousands of dollars, if not more. It was clearly more
costly to allow uncontrolled innovation than it was to restrict it.

And thus Salesforce themselves locked all the sysadmins out of production, at least
in the sense of not allowing application changes to be made. Since roughly 2013, the
most “admin-friendly” company in the world has forced all admins to go through a
DevOps workflow to deploy their updates. With the result that every change is tracked,
changes are propagated to every development and testing org in the same way they’re
propagated to production, and incidents are far less common and far easier to debug
than they were before.

If that’s the way Salesforce manages their own org, why should we treat our orgs with
any less care?

So what does it mean to “lock people out of production”?

First identify which permissions can lead to changes that could break functionality or
cause the org to deviate unacceptably from the development and testing environments.
The minimum set of restricted permissions are

e Author Apex
e Customize Application

To prevent unnecessary restriction, I recommend you begin by only restricting those
two permissions. Making restrictions that inhibit people’s ability to do their work is a
very bad business strategy, so make sure you solicit input into the impact of any such

432

CHAPTER 12 MAKING IT BETTER

changes. But review the complete list of “Admin” permissions,* and decide if there are
any others you need to restrict. You should be extremely careful with giving the following
two permissions and remain aware of who is assigned those:

e Modify All Data
e View All Data
Having identified permissions of concern, here is a recommended sequence of steps:

1. Make sure you can clearly understand and articulate the reasons
this has to be done. If possible, provide business and financial
justification.

2. Check your motivation. You should not be doing this out
of distrust for users. Your focus should be on increasing the
company’s overall efficiency. There is some loss of efficiency by
restricting permissions; you have to be confident you can make
up for that loss through delivering capabilities from dev with more
speed and reliability.

3. Make sure that you have established a Delivery Pipeline and that
it uses Integration User accounts to do the deployments (see
Chapter 7: The Delivery Pipeline). Ensure those Integration User
accounts use secure credentials.

4. Ensure that all of your developers and App Builder admins are
comfortable making their changes in scratch orgs or developer
sandboxes and using the Delivery Pipeline to deploy those
changes to production, and that the process is reasonably fast and
reliable.

5. Identify which profiles and permission sets give users any of the
restricted permissions mentioned earlier and which users are
assigned those.

6. Consider whether the sensitive permissions can be removed
or separated into a new permission set that can be applied to a
smaller number of users.

*https://help.salesforce.com/articleView?id=000198725&1language=en US&type=1

433

https://help.salesforce.com/articleView?id=000198725&language=en_US&type=1

CHAPTER 12 MAKING IT BETTER

7. Identify a strictly limited number of people who can be relied
upon to retain real sysadmin access but who won’t be tempted to
make unauthorized changes.

8. Everyone other than the integration users and these few
sysadmins needs to be “locked out.” Anticipate the complaints
and the complainers, make sure you have firm executive backing
for this change, find a nice way to explain this to the affected users,
decide on a timeline, and then communicate the change.

9. It’s bestto roll these changes out in waves, spread across several
weeks, to minimize business impact and ensure that you and any
support teams can manage any issues reported by users.

10. Asyouimplement the changes, reiterate to the executive team
what’s happened, and why. Put on a helmet, hunker down, wait
for the complaints to pour in, find a nice way of deflecting the
complaints, and stand your ground.

11. Wait for the grumbling to die down, and then proceed with
administering a powerful and stable DevOps workflow for your
team. In the short term, you may be a villain. In the long run,
you're definitely a hero.

12. By the end of the process, you should have “locked out” everyone
other than the integration users and these few sysadmins, either
by removing the risky permissions from their Profiles/Permission
Sets or by changing which Profile/Permission Sets are assigned to
those users.

It is very helpful to have only one or two profiles or permission sets that grant admin-
level privileges and to label them clearly as having elevated privileges. As a security
precaution, it can also be helpful to add a dynamic step to your build process that
enforces this. You can write a script that reviews all profiles and permission sets other
than the ones with elevated privileges and either fails the build if restricted permissions
are detected or explicitly disables those permissions by setting the XML permission
to false. Actually setting permissions to false ensures that elevated permissions
are removed from profiles, even if they happen to be added manually in production.
Copado’s Compliance Hub is designed to help with concerns such as this.

434

CHAPTER 12 MAKING IT BETTER

What’s Safe to Change Directly in Production?

The beauty of Salesforce is the ease of making small changes quickly, without having to
involve programmers. It’s thus very important to draw a clear distinction between which
changes can safely be made in production and which changes need to go through the
delivery pipeline. This distinction depends on your company’s needs and may evolve
over time.

There are two types of changes that must go through the delivery pipeline:
1. Changes that could break things

2. Changes that should immediately be made available in all
development and testing environments

If these two reasons don’t apply, it’s safe to make the change directly in production.
But the overwhelming majority of configuration changes actually fall into one of those
categories.

The vast majority of metadata changes should go through the delivery pipeline. The
vast majority of data changes do not need to go through the delivery pipeline. Metadata
that can be safely changed in production includes

e Most Reports and Dashboards
e Most Documents

¢ Most Email Templates

e Most List Views

e Most Queues and Groups

The exceptions to this are when other metadata depend on these things, such as
reports whose values are used as part of Visualforce pages.

Apart from metadata, there are also data changes that are very risky if done directly
in production. For example:

o Configuration data that is used as part of business logic

o Complex configuration data (such as Products in CPQ systems) that
could break data integrations or business logic

435

CHAPTER 12 MAKING IT BETTER

Migrating such configuration data through your delivery pipeline requires a different
set of tools from metadata migrations. Commercial tools such as Copado, AutoRABIT,
and Gearset include hierarchical data migration as a native capability. There are also
dedicated tools that specialize in data migration such as Prodly Moover.

Tracking Issues and Feature Requests

Here we come full circle.

The DevOps continuum is often depicted as a loop (either a circle or an infinity
loop), because unlike linear production processes, software development is an ongoing
iterative process. New features are requested, developed, tested, and released. Users
identify defects (often from hard-to-foresee edge cases) and make new requests for the
software to further improve their lives. Those defects and feature requests then begin
their journey around this loop, as they are developed, tested, and delivered, only to yield
to the next round of requests.

Requests often begin their lives as support cases. Admins (as distinct from app
builders) are often directly beholden to end users, who might submit support tickets when
they encounter issues. Support cases have a different lifecycle from agile user stories, in
that support requests are definitely tied to the user(s) who submitted them, and there may
be SLAs that dictate a response be sent promptly. It falls to the admin to triage those tickets
and respond with instructions on how to do something or actions such as password resets.

It is only when there is not an immediate solution to a support case that it graduates
into an issue/defect report or a feature request and then demands a different approach.
At Appirio, our IT helpdesk used Salesforce cases to track support requests and a
homegrown, Salesforce-based agile project management tool called CMC to manage
Issues and User Stories. Our cases had a button that allowed them to be converted into
an Issue (for bugs) or a Story (for feature requests).

How to distinguish between these two types of request? The distinction is the same
as explained earlier in “What’s Safe to Change Directly in Production?” Things that are
safe to change directly in production can be attended to quickly by admins. All other
changes become requests for features or issue fixes.

Such a distinction is important for several reasons. First, it sets clear expectations for
users that their request can’t be completed immediately. Second, it allows issues and
features to be handled and prioritized alongside other work that the app builder admins
and developers need to tackle.

436

CHAPTER 12 MAKING IT BETTER

Issues and feature requests imply changes that might affect the behavior of the org,
or have side effects, and thus need a clear justification and need to be tracked and tested
like other configuration changes. Having a continuous delivery pipeline in place opens
up the possibility of expediting changes that are low risk and/or high priority.

Tracking a request as a feature or defect should not imply an indefinite lead time
though. Being able to release simple, low-risk changes quickly is a key benefit of an
automated deployment pipeline.

Summary

Salesforce admins are the frontline workers making the Salesforce org better for

users. Salesforce empowers them to do this through its ease of customization, and we
shouldn’t remove that ability without replacing it with something better. A smooth
running delivery pipeline that provides version control, automated deployments across
all environments, and robust automated testing is a superior system. But it is necessarily
more complex and will require admins to grow comfortable with the changed approach
and slight delay.

Reducing Lead Time (from committing a change to seeing it in production) is
a key DevOps metric. And no one is more sensitive to long lead times than admins,
who are accustomed to making instantaneous changes in production. Even most
Salesforce developers lack familiarity with continuous delivery; so this is definitely an
unfamiliar territory for most admins. But there’s joy and efficiency in admins being able
to collaborate with developers in a development environment. And there’s relaxation
and confidence in being able to roll back changes or investigate their origin. And
fundamentally, a situation where orgs are out of sync for no discernible reason is a
massive time waster for everyone involved.

Getting your admins participating happily in a delivery pipeline is the ultimate
accomplishment in Salesforce release management. Don’t expect to get there
immediately, and remember that some people will be slower to change than others. But
take note of your successes and build on them. Share internally when version control
“saves your butts.” And keep tracking and working to improve the key DevOps success
metrics: lead time, deployment frequency, change failure rate, recovery time, and
uptime.

437

CHAPTER 13

Conclusion

Salesforce began as an effort to simplify the enormous complexity of setting up an
application such as CRM. One of its overwhelming benefits has been the ease of creating
and updating functionality using click-based tools. Even Salesforce’s programming
languages provide rich prebuilt frameworks for interacting with data and the user
interface.

Through skillful sales and marketing, ambitious product engineering, and the
audacious success of building a community of 6 million click-based developers,
Salesforce has grown into a vast platform. Over 150,000 businesses have customized
the platform to meet their unique needs, in many cases creating tens of thousands
of components, both code and config. Salesforce now supports an entire world of
technologies and customizations, from blockchain, to Al, to social media, to user
communities, and beyond, most of which can be configured by citizen developers.

The growth of these capabilities has outpaced the sophistication of the methods
most Salesforce teams use to manage the development lifecycle. But fortunately the
challenge of taming the dev lifecycle is not unique to Salesforce, and there has been
an explosion of innovation and experience cultivated on this topic within the broader
IT world over the last decades. The DevOps movement has become a gathering place
for teams across all technologies to exchange ideas and improve tooling in support of
those efforts. And so the Salesforce community is increasingly looking to the DevOps
community to understand how to effectively manage such complex configuration at
scale.

Throughout this book I've used the word “should” a lot. It’s natural for most of
us, certainly me, to hear the word “should” and feel inadequate, like we’re not doing
enough. This book has attempted to introduce opportunities to improve our processes,
and I've shared encouragement, sometimes strongly, about practices we should adopt
or abandon (see, there’s that word again). But fundamentally, what we “should” do is to
make life easier and better for ourselves, our coworkers, and the people around us who
depend on our work.

439
© Andrew Davis 2019

A. Davis, Mastering Salesforce DevOps, https://doi.org/10.1007/978-1-4842-5473-8_13

CHAPTER 13 CONCLUSION

We “should” spend more time with our families, and not have to work weekends and
evenings doing deployments, or cleaning up in their aftermath. We “should” be able to
make small improvements quickly without making other people wait. We “should” be
able to exercise our creativity at work instead of being stuck doing monotonous tasks.
And we “should” be solving problems once, in an automated way, so that we or our
coworkers don’t have to face them again.

My motivation in writing this has been to share what I've learned in the process
of trying to make work more fun for myself, and more effective for the teams I've
worked with. Take every suggestion in this book as optional, and as something you can
experiment with, or not, depending on the needs of your team.

My other motivation in writing this has been to introduce Salesforce workers to the
world of DevOps, which has become an active and brilliant community filled with life
wisdom and technical excellence. Just as Salesforce solves many problems that bedevil
people who are struggling to set up and manage their own infrastructure, these DevOps
processes can solve many of the problems that Salesforce teams have historically
struggled with. My hope is that this book contributes to that conversation and helps
build another bridge between these communities of practice.

When we're customizing Salesforce to the needs of our organizations, our goal is to
deliver innovation and value. In working together—dev and ops, developer and admin,
business and IT, customer and company—we are building trust in each other and
increasingly building trusted processes. The goal of innovation is to create value; and
the goal of building trust is to reduce risk. Doing these two together, at high velocity and
large scale, is the essence of DevOps.

In closing, I'll quote Gary Gruver, who led a dramatic transformation of the HP
Laser]et Firmware division’s software delivery process, beginning in 2008. At that time,
the word “DevOps” had not yet been coined, and the book Continuous Delivery had not
yet been published. Nevertheless, the HP teams uncovered those same principles as they
worked to improve their processes in service of their overarching business needs.

At HP we never set out to do Agile. Our focus was simply on improving pro-
ductivity. ... We set off on a multiyear journey to transform the way we did
development with the business objective of freeing up capacity for innova-
tion and ensuring that, after the transformation, firmware would not be
the bottleneck for shipping new products. This clear objective really helped
guide our journey and prioritize the work along the way. ...

440

CHAPTER 13 CONCLUSION

We see many companies that embark on a “do Agile” journey. They plan a
big investment. They go to conferences to benchmark how well they are
“doing DevOps or Agile.” They see and feel improvements, but the manage-
ment teams struggle to show bottom-line business results to the CFO. Not
having clear business objectives is a key source of the problem. If they started
out by focusing on the business and just using DevOps ideas or implement-
ing some Agile methods that would provide the biggest improvements, they
would find it much easier to show bottom-line financial results. This worked
at HP. When we started, firmware had been the bottleneck in the business
for a couple of decades and we had no capacity for innovation. At the end
of a three-plus -year journey, ... We had dramatically reduced costs from
$100M to $55M per year and increased our capacity for innovation by eight
times.

To be clear, achieving these results was a huge team effort. ... Without the
collaboration with our partners throughout the business we could not have
achieved these results. Having a set of high-level business objectives that the
entire organization is focused on is the only way to get this type of cross-
organizational cooperation and partnership. These types of results will not
happen when you “do Agile.” It takes a laser-like focus on business objec-
tives, a process for identifying inefficiencies in the current process, and
implementing an ongoing, continuous improvement process."

This story of the HP LaserJet Firmware division has been celebrated extensively in
the DevOps community, in part because it shows how agility and radical transformation
is possible even with a decades-old technology that’s rooted in hardware. With a
complex topic like DevOps, it’s easy to get entranced with the technological changes
involved. It’s equally easy for business people to feel that things like continuous delivery
are irrelevant to their mission. But you can and should drive such process improvements
to gain business benefit. When the business case for DevOps is clear to everyone
involved, there’s never a problem sustaining long-term support for these initiatives.

I hope this book has provided guidance to help you begin or continue your
Salesforce DevOps journey. May your process of building trust while delivering
innovation become as simple and fun as the act of creating on Salesforce.

!Gary Gruver and Tommy Mouser, Leading the Transformation, Applying Agile and DevOps
Principles at Scale (IT Revolution, 2015), 25.

441

Bibliography

Ambler, Scott W. and Sadalage, Pramodkumar J. Refactoring Databases: Evolutionary
Database Design. Addison-Wesley Professional, 2006.

Benioff, Marc. Behind the Cloud. Wiley-Blackwell, 2009.

Beyer, Betsy, Chris Jones, Jennifer Petoff, and Niall Richard Murphy. Site Reliability
Engineering: How Google Runs Production Systems. O'Reilly Media, Inc., 2016.

Deming, W E. Out of the Crisis. Massachusetts Institute of Technology, Center for
Advanced Engineering Study, 1986.

Fawcett, Andrew. Force.Com Enterprise Architecture. Packt Publishing, 2014.

Forsgren, Nicole, Jez Humble, and Gene Kim. Accelerate: The Science of Lean
Software and Devops Building and Scaling High Performing Technology Organizations.
IT Revolution Press, 2018.

Gladwell, Malcolm. The Tipping Point: How Little Things Can Make a Big Difference.
Back Bay Books, 2002.

Goldratt, Eliyahu M. and Jeff Cox. The Goal: A Process of Ongoing Improvement.
North River Press, 2004.

Gruver, Gary and Mouser, Tommy. Leading the Transformation, Applying Agile and
DevOps Principles at Scale. IT Revolution, 2015.

Humble, Jez and David Farley. Continuous Delivery: Reliable Software Releases
Through Build, Test, and Deployment Automation). Addison-Wesley Professional, 2010.

Humble, Jez, Joanne Molesky, and Barry O'Reilly. Lean Enterprise: How High
Performance Organizations Innovate at Scale. O'Reilly Media, Inc, 2015.

Kim, Gene, Kevin Behr, and George Spafford. The Phoenix Project. IT Revolution
Press, 2013.

Kim, Gene, Patrick Debois, John Willis, and Jez Humble. The DevOps Handbook.
IT Revolution Press, 2016.

Kotter, John P. Leading Change. Harvard Business Review Press, 2012.

443
© Andrew Davis 2019

A. Davis, Mastering Salesforce DevOps, https://doi.org/10.1007/978-1-4842-5473-8

https://doi.org/10.1007/978-1-4842-5473-8

BIBLIOGRAPHY

Martin, Karen and Osterling, Mike. Value Stream Mapping: How to Visualize Work
and Align Leadership for Organizational Transformation. McGraw-Hill, 2013.

Martin, Robert C. Clean Code: A Handbook of Agile Software Craftsmanship. Prentice
Hall PTR, 2008.

Moore, G. A. Crossing the Chasm: Marketing and selling technology products to
mainstream customers. HarperBusiness, 1991.

Rogers, Everett. Diffusion of Innovations, 5th Edition. Simon and Schuster, 2003.

444

Index

A

Acceptance test-driven
development (ATDD), 302
Access token, 156
Ant Migration tool, 349, 350
Apex classes, 167
API first approach, 340
AppExchange, 374, 375
Appirio DX, 361-363
auth:jwt:grant, 160
Automated acceptance tests, 171
Automated functional testing
code-based acceptance
testing, 298
CMC metrics tool, 299
code coverage, 304-306
creation, 302, 303
data, 300, 301
scratch orgs/testing
sandboxes, 300
Ul testing, 306
creation, 309-310
environment, 308
Puppeteer, 307
Selenium, 307
test pyramid, 310
Automated tests, 280
AutoRABIT, 341, 363-364

© Andrew Davis 2019

B

Bastard operator from hell (BOFH), 410
Behavior-driven development (BDD),
272,302, 430
Blue Canvas, 364-365
Branching strategy
best-known strategies, 220-221
in Dreamhouse app, 218
feature branch
merging master, 229
workflow, 228
forking workflow, 240
granular feature management
branches, 238-239
cherry picking, 237-238
illlustration, 225
org-level configuration
example, 234, 236
exceptions, 230
metadata production, 230-233
publishing packages, 226, 227
repositories
ease of managing application, 224
fork, 219, 220
freedom and control, 223
KISS principle, 224
trunk, 218
research, 221

445

A. Davis, Mastering Salesforce DevOps, https://doi.org/10.1007/978-1-4842-5473-8

https://doi.org/10.1007/978-1-4842-5473-8

INDEX

Branching strategy (cont.)
trunk-based development vs feature
branching, 227
Business process standardization, 163

C

Canary deployments, 396
CI/CD
automating delivery process
environments, 245
merge requests, 245
multiproject pipeline, 244
pipelines, 244
tool, 243
build automation, 241
organization level management
metadata publishing, 261-264
YAML syntax, 264-266
package publishing
creating walking skeleton, 256
ID(s), 257
running unit tests, 259
trunk branch, 256
servers
configuration, 246
configuring jobs, 253
creating integration users, 252-253
environmental variables, 254-255
group-level configuration, 255
store project-specific secrets, 255
storing CI job configuration, 253
systems, 245, 246
user permission levels, 251
using Docker containers, 247-250
Click-based development, Salesforce, 410
data management (See Data
management)

446

declarative tools (See Declarative tools)
no-code, low-code, or pro-code, 84, 85
security model, 99 (See Security model)
ClickDeploy, 343, 365-367
Client-side programming
API access, 108
aura components, 107
lightning web components, 106-107
S-controls, 107
visualforce remote objects, 107
Code-based tests, 279
Code reviews, 171
Command-line interface (CLI), 25
Command-line scripts, 346
other techniques
Bash scripts, 358
JQ, 356-358
Node.js, 358, 359
Salesforce DX, 356, 357
package.json, 355, 356
Salesforce CLI, 352, 353
plugins, 353, 354
scripting
Ant Migration Tool, 349, 350
defined, 347
ruby script, 348
Salesforce data loader, 349, 351
Unix-compatible systems, 348
Windows, 347
Commit-stage tests, 281
Community Cloud, 340
Component tests, 279
Comprehensive tests
Automated functional (See Automated
functional testing)
manual QA and UAT, 330-331
nonfunctional testing (See
Nonfunctional testing)

Concurrent version system (CVS), 205

Containers, 338
Continuous Delivery, 297, 338, 382

automated deployments, 384, 385

automated tests, 387
behavioral rituals, 386
continuous integration, 383
deploying configuration
data, 385-386
deployment errors, 383
Continuous integration (CI), 241
Continuous testing, 281
Copado, 168, 341, 367-369
CPQ solutions, 386
Create, read, update, or
delete (CRUD), 101
Cross-Org Adapter, 166
CumulusClI, 354
Customer relationship
management (CRM), 2
Custom metadata, 119

D

Dark deploying, 395
Data management
bulk database operations, 94
changing the schema, 90
developer names, 91
field types, 91, 93
configuration data, 95-98
redundant backup systems, 95
schema, 89, 90
Data migrations, 172
Declarative tools
community builder, 86
lightning app builder, 86
process/flow builder, 87, 88

INDEX

Default Organization Template (DOT), 165
Delivery pipeline
branches (See Branching strategy)
CI/CD and automation (See CI/CD)
function, 203
version control
Git, 205
salesforce, 204, 205
Dependencies
AWS, 112
loose coupling, 111, 113
tight coupling, 111
Dependency injection (DI)
FedExService, 119
MyClass, 118
OrderingService, 119-121
OtherClass, 118
Deployment errors, debug, 382-383
Deployment technologies
changes sets
ClickDeploy, 343
limitation, 342, 343
managing deployments, 341
target org, 342
Command-line (See Command-line
scripts)
IDEs, 345, 346
manual changes, 340-341
Metadata API, 343-344
packages, 344-345
risk analysis, 392
traditional software, 337
DeprecateOnly flag, 379
Developer Console, 424
Developer Edition orgs, 145
Development tools
console, 72
IDE, 71

447

INDEX

Development tools (cont.)
Salesforce CLI, 71
VS Code, 73-75
Web IDE, 72
Welkin Suite, 75
DevOps, 140, 409, 412-415
agile manifesto, 32
better value, faster, safer,
happier, 42, 43
blameless postmortems, 38, 39
business impact, 40, 41
click-friendly release management
tool, 428
concepts, 29
continuous delivery, 6, 33, 34
continuous feedback, 34
continuous improvement, 35
cycle time, 28
enabling change, 53-57
generative culture, 37
infinity loop, 8, 30
lean management, 35, 36
measuring performance, 43-47
merge conflicts, 430
process/flow, 430
research, 8,9
Salesforce DX, 7
tools, 6
version control, 6
DevOps Research and Assessment
(DORA), 8
Dev vs. Ops, 30, 31
Domain layer, 128
Domain pattern, 132
Domain-specific test
language (DSL), 303
doSomething method, 118

448

E

Einstein Analytics tool, 166
Enhancing performance, 47

theory of constraints, 50-52

value stream mapping, 48-50
Enterprise design patterns

domain layer, 128

selector layer, 129-130

separation of concerns, 125

service layer, 126-127

unit of work concept, 127
Enterprise messaging

platform (EMP), 123, 199

Enterprise Service Buses (ESBs), 123
Event-driven architecture, 122-124
Extreme programming (XP), 326

F

Factory method/application factory
pattern, 130
Fast tests
linting, static analysis (See Linting,
static analysis)
quality gates, static analysis, 287
technical debt, 283
unit (See Unit testing)
FinancialForce, 386
Flosum, 369, 370
force:auth:sfdxurl:web, 158
Force-dev-tool, 354
Force-DI package, 119
Full codebase, static analysis
ApexPMD, 314, 316
Clayton, 313
Codacy, 317
CodeClimate, 317

CodeScan, 314
MetadataService.cls, 318
SonarQube, 313, 314

G, H
Gearset, 168, 370, 371
Generative cultures, 37
Git
actions, 208, 209
central repository, 207
definition, 207
naming conventions
commit messages, 212
conventional commits, 214, 216
feature branches, 213
Squashing commits, 214
preserving history of files, 216, 217
tools
command line, 211
CRLF settings, 210
GUIs, 211
host web interface, 212
IDE plugins, 211
Globally unique ID (GUID), 200
Grand Unified System (GUS), 431
Graphical user interfaces (GUIs), 346

|, J

Identity and Access Management (IAM), 99
Infrastructure as a Service (IaaS), 6
Integration test, 171, 280

K

Keep it simple and straightforward (KISS)
principle, 224
Key performance indicators (KPIs), 275

INDEX

L

Language Server Protocol (LSP), 75
Law of diffusion of innovation, 53, 54
Leading effective change,
DevOps

build on the change, 63

communicate the vision, 60

corporate culture, 63

encounter obstacles, 61

powerful coalition, 58

short term, creation, 62

urgency creation, 57, 58

vision for change, 59, 60
Lean management, 35, 36, 139
Lightning Dev Pro

Sandboxes (LDPS), 146, 195

Lines of code (LOC), 270
Linting, static analysis

Apex code, 284

ESLint rules, 286

feedback, 287

Manual acceptance tests, 171
Mean Time to Restore (MTTR), 45
Measuring performance, 43
change fail percentage, 45
deployment frequency, 44
lead time, 44
MTTR, 45
Metadata
API, 77,78, 339, 343-345
CI/CD process, 80, 81
configuration changes, 82
Coverage Report, 340
convertion between Salesforce DX
and API, 79

449

INDEX

Metadata (cont.)
manual changes, 83
retrieving changes, 81

Metazoa Snapshot, 372, 373

Modular development techniques
DI (See Dependency Injection (DI))
event-driven architecture, 122-124
naming conventions, 117

object-oriented programming, 117, 118

Monitoring and observability
add-on tools, 423
analysis, 420
built-in tools, 422, 423
signals, 421
Multifactor authentication (MFA), 99
Multiple production orgs, 387, 388
architecture, 162, 164
coordinate, 166, 167
merge, 165
mergers/acquisitions, 164
purchases, 164
splitting, 165, 166

N

Node package manager (NPM), 352
Nonfunctional testing
code reviews, 326-330
full codebase, static analysis (See Full
codebase, static analysis)
performance, 321-325
security analysis, 319
CheckMargx, 320, 321
Fortify, 321

O

Object-oriented programming, 117
Open CLI Framework (OCLIF), 352

450

Org62, 431

Org differences, managing
automatic replacements, 391
intentional and unintentional, 388
temporary differences, 388, 389
XSLT, 390, 391

OtherClass.doSomething() method, 118

P

Packages
depiction of, 136
Salesforce org, 135
sfdx-project.json file, 133, 134
Packaging
classic, 373-375
second-generation (See Second-
Generation packaging)
Panaya, 392
Pareto principle, 296
Performance tests, 171
Platform as a Service (PaaS), 3
Process quality, 275
Pub-sub architecture, 122

Q
Quality

functional, 270
hidden levels, 271
process, 271
structural, 270

R

Red bead experiment, 277
Refresh Token, 156

Releasing by deploying, 396, 397
Restricted permissions, 432-434

S

Salesforce, 1-3
background, 11
business needs, 440
click-based tools, 439
delivery pipeline,
changes, 435
deployments, 440
development lifecycle, 439
DX, 3-5
metadata, 435
version update
deploying, 197, 198
early access, 196, 197
Salesforce admin, 411
monitoring and observability, 420-425
permission sets, 417-418
scheduling jobs, 418-420
security, 417
user management, 416
Salesforce app builders, 427
sales force automation (SFA), 5
Salesforce CLI
defined, 352
hooks creation, 353
NPM, 352
OCLIF 352, 353
Salesforce Core API, 358
Salesforce Data Loader, 351
Salesforce DX, 356, 360
CLI, 25
concepts, 20
creation, 115,116
Dev Hub, 21
development lifecycle, 67-70
goal, 19
managed packages, 22

INDEX

metadata API vs. SFDX source
formats, 23, 25
modular architecture, 22, 113-115
modules, 22
Scratch Orgs, 21
second-generation packages, 23
unmanaged packages, 22
Salesforce orgs
API access, 155
auth commands, 158
bugs/issues, 174
dangers in production, 147, 148
Dev Hub, 154, 155
developing new functionality, 169, 170
environment strategy, 161
mapping existing orgs, 167, 169
OAuth 2.0 flow, 155-157
testing functionality, 170, 171
testing integrations, 172, 173
training, 174
types, 142
user interface, 153
Salesforce packages, 133, 345
Salesforce platform, 65
Salesforce’s Development Lifecycle
Guide, 148
Sandboxes
cloning/refreshing, 192
creation, 192, 193
definition, 145
developing, 148-149
disadvantages, 149-150
DX team, 152
login, 161
planning, 194
refresh process, 193, 194
size, 145

451

INDEX

Sarbanes Oxley (SOX), 342
Scratch Orgs, 146
aspects, 181
benefits, 150-152
create additional user
accounts, 186, 187
creation, 154, 177,179
development, 189-191
install, 183, 184
pushing metadata, 185
review apps, 191
setup process, 188
setup steps, 182
shape, 180
snapshots, 180, 182
workflow, 176
Scratch orgs vs. sandboxes, 187
Second-generation package
add and remove metadata, 378-379
package dependencies, 378
Salesforce DX workflow, 375
unlocked
AppExchange, 376
branch flag, 377
build and publish, 377
Dev Hub, 376
Security model
admin access, 101
infrastructure, 99
login and identity, 99-101
user access, 101-103
Selector layer, 129-130
Separating deployments from releases
branching by admissions, 403-406
dynamic lightning pages, 400
feature flags, 400-402
layouts, 399, 400
permission, 398, 399

452

Server-side programming
Apex, 104, 105
scripting and anonymous apex, 105, 106
visualforce, 105
SFDX-Falcon, 354
sfdx force:user:create command, 186
sfdx-project.json file, 114, 183
Single-org vs. multi-org strategy, 163
single sign-on (SSO), 99, 416
Site Reliability Engineering (SRE), 45
Software delivery, 65, 139
Software Development
Performance (SDP), 8, 40
Software/Platform as a Service
(SaaS/PaaS), 5
Squashing commits, 214
Static analysis, 171
Strongpoint, 392
Structural quality
maintainability, 272, 273
performance, 274
reliability, 272
security, 274
size, 274
Subject matter experts (SMEs), 332

T

Test-driven development (TDD), 272, 297
Testing, 275

automated, 280

business-critical customizations, 278

code, API, and UI, 279

commit-stage, 281

components, 279

continous, 281

cost of fixing bugs, 276

engine, 282

environments, 282
functional/nonfunctional, 279
integration, 279
KPIs, 275
manual, 280
red bead experiment, 277
shifting left cycle, 277
total quality management, 276
unit, 279
Testing functionality, 170
Tipping point, 54
Tracking issues and feature
requests, 436-437
Trigger handler patterns, 132
Trigger management, 131-132

U

Unit testing
Apex test runner, 292

INDEX

aura lightning components, 293
creation, 296
data needed, 295, 296
lightning web components, 293
Salesforce org, 294, 295
TDD, 297
VisualForce, 292
Unit tests, 171, 279
User acceptance testing (UAT),
269, 330, 332

V, W
Version control, 20

Visual Studio Code (VS Code), 73
Vlocity, 386

XY, Z

XSLT, 390

453

	Advance Praise for Mastering Salesforce DevOps
	Table of Contents
	About the Author
	About the Technical Reviewer
	Foreword
	Acknowledgments
	Chapter 1: Introduction
	Why Salesforce?
	What Is Salesforce DX?
	What Is DevOps?
	The Research on DevOps
	About This Book
	Background

	Part I: Foundations
	Chapter 2: Salesforce
	“Salesforce” vs. Salesforce
	How Is Salesforce Different?
	DevOps in the Salesforce World
	What Is Salesforce DX?
	What Are the Elements of Salesforce DX?
	The Dev Hub
	Scratch Orgs
	Second-Generation Packaging
	Metadata API vs. SFDX Source Formats
	Salesforce Command-Line Interface (CLI)

	Summary

	Chapter 3: DevOps
	What’s Driving the Need for DevOps?
	What Is DevOps?
	Dev vs. Ops
	The Real Meaning of Agile
	The Three Ways of DevOps
	Continuous Delivery
	Continuous Feedback
	Continuous Improvement

	Lean Management
	Generative Culture
	Blameless Postmortems

	The Research
	Business Impact of Adopting DevOps

	How DevOps Helps
	Better Value, Faster, Safer, Happier

	Measuring Performance
	Enhancing Performance
	Optimizing the Value Stream
	Theory of Constraints

	Enabling Change
	Leading Change
	Step 1: Create Urgency
	Step 2: Form a Powerful Coalition
	Step 3: Create a Vision for Change
	Step 4: Communicate the Vision
	Step 5: Remove Obstacles
	Step 6: Create Short-Term Wins
	Step 7: Build on the Change
	Step 8: Anchor the Changes in Corporate Culture

	Summary

	Part II: Salesforce Dev
	Chapter 4: Developing on Salesforce
	The Salesforce DX Dev Lifecycle
	Development Tools
	The Salesforce CLI
	What’s an Integrated Development Environment (IDE)?
	The Developer Console
	Workbench
	The Forthcoming Web IDE
	Visual Studio Code
	Other Salesforce IDEs

	Metadata (Config and Code)
	What Is Metadata?
	Metadata API File Format and package.xml
	Converting Between Salesforce DX and Metadata API Source Formats
	What Metadata Should You Not Track?
	Retrieving Changes
	Making Changes
	Manual Changes

	Click-Based Development on Salesforce
	Development—No-Code, Low-Code, and Pro-Code
	Declarative Development Tools
	Lightning App Builder
	Community Builder
	Process and Flow Builders

	Data Management
	Managing the Schema
	Changing the Schema
	Don’t Change DeveloperNames
	Changing Field Types

	Bulk Database Operations
	Data Backup
	Configuration Data Management

	The Security Model
	Infrastructure Security
	Login and Identity
	Admin Access
	User Access

	Code-Based Development on Salesforce
	Server-Side Programming
	Apex
	Visualforce
	Scripting and Anonymous Apex

	Client-Side Programming
	Lightning Web Components
	Lightning Aura Components
	JavaScript Remoting, S-Controls, and API Access

	Summary

	Chapter 5: Application Architecture
	The Importance of Modular Architecture
	Understanding Dependencies
	Salesforce DX Projects
	How Salesforce DX Projects Enable Modular Architecture
	Creating a Salesforce DX Project

	Modular Development Techniques
	Naming Conventions
	Object-Oriented Programming
	Dependency Injection
	Event-Driven Architecture

	Enterprise Design Patterns
	Separation of Concerns
	Service Layer
	Unit of Work
	Domain Layer
	Selector Layer
	Factory Method Pattern

	Trigger Management
	The One Trigger Rule
	The Trigger Handler Pattern
	The Domain Pattern
	Modular Triggers with Dependency Injection

	Packaging Code
	Summary

	Part III: Innovation Delivery
	Chapter 6: Environment Management
	An Org Is Not a Server
	Different Types of Orgs
	Which Org Should You Develop In?
	Why Not Develop in Production?
	Developing in Sandboxes
	The Disadvantages of Developing in Sandboxes
	The Benefits of Developing in Scratch Orgs
	Meeting in the Middle—A Sandbox Cloning Workflow

	Org Access and Security
	The Dev Hub
	Permissions Needed to Use the Dev Hub

	API-Based Authentication
	Salesforce DX Org Authorizations
	force:auth:web:login
	force:auth:sfdxurl:store
	auth:jwt:grant
	Postcreation Sandbox Login

	Environment Strategy
	Environment Strategy Guidelines
	Multiple Production Orgs
	Multiple Production Orgs As an Intentional Architecture
	Multiple Production Orgs As a Result of Mergers or Acquisitions
	Multiple Production Orgs As a Result of Department-Level Purchases
	Merging Production Orgs
	Splitting Production Orgs
	Coordinating Multiple Production Orgs

	Identifying and Mapping Existing Orgs
	Identifying Requirements for Testing, Fixes, Training, and Others
	Environment Requirements for Development
	Environment Requirements for Testing
	Environment Requirements for Testing Integrations and Data Migrations
	Environment Requirements for Training
	Environment Requirements for Resolving Bugs/Issues

	Creating and Using Scratch Orgs
	General Workflow
	Creating Scratch Orgs
	Org Shape and Scratch Org Snapshots

	Initializing Scratch Orgs
	Install Dependent Packages
	Push Metadata
	Create Additional User Accounts
	Load Sample or Testing Data
	Run Additional Setup Scripts

	Developing on Scratch Orgs
	Scratch Orgs As Review Apps

	Cloning and Refreshing Sandboxes
	Creating, Cloning, or Refreshing Sandboxes
	Planning Org Refreshes
	Planning and Communicating Changes to Org Structure
	Working with Lightning Dev Pro Sandboxes

	The Salesforce Upgrade Cycle
	Getting Early Access to a Release
	Deploying Between Environments That Are on Different Releases

	A Behind-the-Scenes Look at Orgs
	Summary

	Chapter 7: The Delivery Pipeline
	Why You Need Version Control on Salesforce
	Version Control
	Git Basics
	Git Tools
	Git Settings
	Git GUIs
	Git Embedded in the IDE
	Git on the Command Line
	Git Host Web Interface

	Naming Conventions
	Commit Messages
	Feature Branch Naming
	Squash Commits
	Semantic Release and Conventional Commits

	Preserving Git History When Converting to Salesforce DX

	Branching Strategy
	Trunk, Branches, and Forks
	Well-Known Branching Strategies
	The Research on Branching Strategies
	Freedom, Control, and Ease
	Branching for Package Publishing
	Guidelines if You Choose to Use Feature Branches
	Branching for Org-Level Configuration
	An Illustration of This Branching Strategy
	Branching Strategy with an Example

	Deploying Individual Features
	Granular Feature Management Using Cherry Picking
	Granular Feature Management Using Branches

	Forking Workflow for Large Programs

	CI/CD and Automation
	Automating the Delivery Process
	CI Basics
	Pipeline Configurations
	Multiproject Pipelines
	Seeing CI Results in Merge Requests
	Environments and Deployments

	CI Servers and Infrastructure
	Generic CI Systems vs. Salesforce-Specific CI Systems
	Choosing a CI Server
	Why Use Docker Containers to Execute CI Jobs?
	Example: Using GitLab

	User Permission Levels for CI Systems
	Creating Integration Users for Deployments

	Configuring CI/CD
	Why Store CI Configuration As Code?
	Storing Secrets and Using Environment Variables in CI Jobs
	Environment Variables in the CI System
	Project-Specific Variables on Your Local System
	Group-Level Configuration

	Example CI/CD Configuration
	CI Jobs for Package Publishing
	CI Jobs for Org-Level Management

	Summary

	Chapter 8: Quality and Testing
	Understanding Code Quality
	Functional, Structural, and Process Quality
	Understanding Structural Quality
	Reliability
	Maintainability
	Performance
	Security
	Size

	Understanding Process Quality

	Testing to Ensure Quality
	Why Test?
	What to Test?
	Testing Terminology
	Functional and Nonfunctional Tests
	Code, API, and UI Tests
	Unit, Component, and Integration Tests
	Manual, Automated, and Continuous Testing
	Commit-Stage Tests and Acceptance Tests

	Test Engines
	Test Environments
	Test Data Management

	Fast Tests for Developers
	Static Analysis—Linting
	How to Run Linting
	When Does Linting Run?
	Where Does Linting Run?
	Data Needed for Linting
	Linting Rules
	Considerations for Linting
	How to Act on Feedback from Linting

	Static Analysis—Quality Gates
	How to Establish Quality Gates
	When Do Quality Gates Run?
	Where Do Quality Gates Run?
	Data Needed for Quality Gates
	Determining Quality Gate Criteria
	Considerations for Quality Gates
	How to Act on Quality Gate Results

	Unit Testing
	How to Run Unit Tests
	Apex
	JavaScript in VisualForce
	(Aura) Lightning Components
	Lightning Web Components

	When Do Unit Tests Run?
	Unit Testing Environments
	Data Needed for Unit Tests
	Creating Unit Tests
	Considerations for Unit Testing
	How to Act on Unit Test Results

	Comprehensive Tests
	Automated Functional Testing
	Code-Based Acceptance Testing
	How to Run Acceptance Tests
	When Do Acceptance Tests Run?
	Acceptance Testing Environments
	Data Needed for Acceptance Testing
	Creating Acceptance Tests
	Considerations for Acceptance Testing
	How to Act on Acceptance Test Results
	Tracking Code Coverage

	UI Testing
	How to Run UI Tests
	When Do UI Tests Run?
	UI Testing Environments
	Data Needed for UI Tests
	Creating UI Tests
	UI Testing Considerations
	How to Act on UI Test Results

	Nonfunctional Testing
	Static Analysis—Full Codebase
	How to Run Static Analysis
	Clayton
	SonarQube
	CodeScan
	ApexPMD
	Codacy
	CodeClimate

	When Does Static Analysis Run?
	Where Does Static Analysis Run?
	Data Needed for Static Analysis
	Creating Static Analysis Rules
	Considerations for Static Analysis
	How to Act on Static Analysis Results

	Security Analysis
	CheckMarx
	Micro Focus Fortify

	Performance Testing
	How to Run Performance Tests
	When Do Performance Tests Run?
	Performance Testing Environments
	Data Needed for Performance Tests
	Creating Performance Tests
	Performance Testing Considerations
	How to Act on Performance Test Results

	Code Reviews
	How to Perform Code Reviews
	When Are Code Reviews Performed
	Code Review Environments
	Data Needed for Code Reviews
	Performing Code Reviews

	Manual QA and Acceptance Testing
	How to Do Manual QA and UAT
	When to Do Manual QA and UAT
	QA and UAT Environments
	Data Needed for QA and UAT
	QA and UAT Test Cases
	QA and UAT Considerations
	How to Act on QA and UAT Feedback

	Summary

	Chapter 9: Deploying
	Deployment Technologies
	The Underlying Options
	Manual Changes
	Change Sets
	The Metadata API
	Deploying Using Packages

	Deploying Using an IDE
	Command-Line Scripts
	Introduction to Scripting
	Old School Salesforce Scripting
	Salesforce CLI
	Creating Salesforce CLI Plugins
	Free Salesforce Tools
	Using package.json to Store Command Snippets
	Other Scripting Techniques

	Commercial Salesforce Tools
	Appirio DX
	AutoRABIT
	Blue Canvas
	ClickDeploy
	Copado
	Flosum
	Gearset
	Metazoa Snapshot

	Packaging
	Classic Packaging
	Second-Generation Packaging
	Unlocked Packages
	Package Dependencies
	Adding and Removing Metadata from Packages

	Resolving Deployment Errors
	General Approach to Debugging Deployment Errors
	Getting Help
	General Tips for Reducing Deployment Errors

	Continuous Delivery
	Why Continuous Delivery?
	Automating Deployments
	Reducing the Size of Deployments

	Deploying Configuration Data
	Continuous Delivery Rituals

	Deploying Across Multiple Production Orgs
	Managing Org Differences
	Dependency and Risk Analysis
	Summary

	Chapter 10: Releasing to Users
	Releasing by Deploying
	Separating Deployments from Releases
	Permissions
	Layouts
	Dynamic Lightning Pages
	Feature Flags
	Branching by Abstraction

	Summary

	Part IV: Salesforce Ops (Administration)
	Chapter 11: Keeping the Lights On
	Salesforce Does the Hard Work for You
	What Does Dev and Ops Cooperation Mean?
	Salesforce Admin Activities
	User Management
	Security
	Use Permission Sets Instead of Profiles

	Managing Scheduled Jobs
	Monitoring and Observability
	Built-In Monitoring and Observability Tools
	Add-On Monitoring and Observability Tools
	What to Monitor

	Other Duties As Assigned

	Summary

	Chapter 12: Making It Better
	An Admin’s Guide to Doing DevOps
	Locking Everybody Out
	What’s Safe to Change Directly in Production?
	Tracking Issues and Feature Requests
	Summary

	Chapter 13: Conclusion

	Bibliography
	Index

