
Better Deep Learning

Train Faster, Reduce Overfitting,
and Make Better Predictions

Jason Brownlee

i

Disclaimer

The information contained within this eBook is strictly for educational purposes. If you wish to apply
ideas contained in this eBook, you are taking full responsibility for your actions.
The author has made every effort to ensure the accuracy of the information within this book was
correct at time of publication. The author does not assume and hereby disclaims any liability to any
party for any loss, damage, or disruption caused by errors or omissions, whether such errors or
omissions result from accident, negligence, or any other cause.
No part of this eBook may be reproduced or transmitted in any form or by any means, electronic or
mechanical, recording or by any information storage and retrieval system, without written permission
from the author.

Acknowledgements

Special thanks to my proofreader Sarah Martin and my technical editors Andrei Cheremskoy, Michael
Sanderson, Arun Koshy.

Copyright

Better Deep Learning
© Copyright 2019 Jason Brownlee. All Rights Reserved.

Edition: v1.3

Contents

Copyright i

Contents ii

Preface iii

Introduction v

Welcome v

Framework for Better Deep Learning x

Diagnostic Learning Curves xix

I Better Learning 1

1 Improve Learning by Understanding Optimization 3
1.1 Neural Nets Learn a Mapping Function . 3
1.2 Learning Network Weights Is Hard . 4
1.3 Key Features of the Error Surface . 6
1.4 Navigating the Non-Convex Error Surface . 8
1.5 Implications for Training . 9
1.6 Components of the Learning Algorithm . 9
1.7 Further Reading . 11
1.8 Summary . 12

2 Configure Capacity with Nodes and Layers 14
2.1 Neural Network Model Capacity . 14
2.2 Nodes and Layers Keras API . 15
2.3 Model Capacity Case Study . 17
2.4 Extensions . 27
2.5 Further Reading . 27
2.6 Summary . 28

ii

CONTENTS iii

3 Configure Gradient Precision with Batch Size 29
3.1 Batch Size and Gradient Descent . 29
3.2 Gradient Descent Keras API . 31
3.3 Batch Size Case Study . 32
3.4 Extensions . 47
3.5 Further Reading . 47
3.6 Summary . 48

4 Configure What to Optimize with Loss Functions 49
4.1 Loss Functions . 49
4.2 Regression Loss Functions Case Study . 56
4.3 Binary Classification Loss Functions Case Study 64
4.4 Multiclass Classification Loss Functions Case Study 74
4.5 Extensions . 84
4.6 Further Reading . 84
4.7 Summary . 86

5 Configure Speed of Learning with Learning Rate 87
5.1 Learning Rate . 87
5.2 Learning Rate Keras API . 93
5.3 Learning Rate Case Study . 95
5.4 Extensions . 118
5.5 Further Reading . 118
5.6 Summary . 119

6 Stabilize Learning with Data Scaling 121
6.1 Data Scaling . 121
6.2 Data Scaling scikit-learn API . 123
6.3 Data Scaling Case Study . 125
6.4 Extensions . 138
6.5 Further Reading . 139
6.6 Summary . 139

7 Fix Vanishing Gradients with ReLU 141
7.1 Vanishing Gradients and ReLU . 141
7.2 ReLU Keras API . 152
7.3 ReLU Case Study . 152
7.4 Extensions . 164
7.5 Further Reading . 165
7.6 Summary . 166

8 Fix Exploding Gradients with Gradient Clipping 167
8.1 Exploding Gradients and Clipping . 167
8.2 Gradient Clipping Keras API . 169
8.3 Gradient Clipping Case Study . 170
8.4 Extensions . 178
8.5 Further Reading . 179

CONTENTS iv

8.6 Summary . 179

9 Accelerate Learning with Batch Normalization 180
9.1 Batch Normalization . 180
9.2 Batch Normalization Keras API . 186
9.3 Batch Normalization Case Study . 189
9.4 Extensions . 198
9.5 Further Reading . 198
9.6 Summary . 200

10 Deeper Models with Greedy Layer-Wise Pretraining 201
10.1 Greedy Layer-Wise Pretraining . 201
10.2 Greedy Layer-Wise Pretraining Case Study . 204
10.3 Extensions . 219
10.4 Further Reading . 219
10.5 Summary . 220

11 Jump-Start Training with Transfer Learning 221
11.1 Transfer Learning . 221
11.2 Transfer Learning Case Study . 222
11.3 Extensions . 240
11.4 Further Reading . 240
11.5 Summary . 241

II Better Generalization 243

12 Fix Overfitting with Regularization 245
12.1 Problem of Model Generalization and Overfitting 245
12.2 Reduce Overfitting by Constraining Complexity 247
12.3 Regularization Methods for Neural Networks . 248
12.4 Regularization Recommendations . 249
12.5 Further Reading . 250
12.6 Summary . 251

13 Penalize Large Weights with Weight Regularization 252
13.1 Weight Regularization . 252
13.2 Weight Regularization Keras API . 258
13.3 Weight Regularization Case Study . 260
13.4 Extensions . 268
13.5 Further Reading . 269
13.6 Summary . 270

14 Sparse Representations with Activity Regularization 272
14.1 Activity Regularization . 272
14.2 Activity Regularization Keras API . 276
14.3 Activity Regularization Case Study . 278

CONTENTS v

14.4 Extensions . 287
14.5 Further Reading . 288
14.6 Summary . 289

15 Force Small Weights with Weight Constraints 290
15.1 Weight Constraints . 290
15.2 Weight Constraints Keras API . 293
15.3 Weight Constraints Case Study . 295
15.4 Extensions . 302
15.5 Further Reading . 303
15.6 Summary . 304

16 Decouple Layers with Dropout 305
16.1 Dropout . 305
16.2 Dropout Keras API . 310
16.3 Dropout Case Study . 314
16.4 Extensions . 320
16.5 Further Reading . 321
16.6 Summary . 322

17 Promote Robustness with Noise 323
17.1 Noise Regularization . 323
17.2 Noise Regularization Keras API . 328
17.3 Noise Regularization Case Study . 330
17.4 Extensions . 341
17.5 Further Reading . 341
17.6 Summary . 343

18 Halt Training at the Right Time with Early Stopping 344
18.1 Early Stopping . 344
18.2 Early Stopping Keras API . 350
18.3 Early Stopping Case Study . 353
18.4 Extensions . 364
18.5 Further Reading . 364
18.6 Summary . 366

III Better Predictions 367

19 Reduce Model Variance with Ensemble Learning 369
19.1 High Variance of Neural Network Models . 369
19.2 Reduce Variance Using an Ensemble of Models 370
19.3 How to Ensemble Neural Network Models . 371
19.4 Summary of Ensemble Techniques . 375
19.5 Further Reading . 376
19.6 Summary . 377

CONTENTS vi

20 Combine Models From Multiple Runs with Model Averaging Ensemble 379
20.1 Model Averaging Ensemble . 379
20.2 Ensembles in Keras . 380
20.3 Model Averaging Ensemble Case Study . 382
20.4 Extensions . 396
20.5 Further Reading . 396
20.6 Summary . 397

21 Contribute Proportional to Trust with Weighted Average Ensemble 398
21.1 Weighted Average Ensemble . 398
21.2 Weighted Average Ensemble Case Study . 399
21.3 Extensions . 417
21.4 Further Reading . 417
21.5 Summary . 419

22 Fit Models on Different Samples with Resampling Ensembles 420
22.1 Resampling Ensembles . 420
22.2 Resampling Ensembles Case Study . 422
22.3 Extensions . 440
22.4 Further Reading . 441
22.5 Summary . 442

23 Models from Contiguous Epochs with Horizontal Voting Ensembles 443
23.1 Horizontal Voting Ensemble . 443
23.2 Horizontal Voting Ensembles Case Study . 444
23.3 Extensions . 456
23.4 Further Reading . 456
23.5 Summary . 457

24 Cyclic Learning Rate and Snapshot Ensembles 458
24.1 Snapshot Ensembles . 458
24.2 Snapshot Ensembles Case Study . 460
24.3 Extensions . 479
24.4 Further Reading . 480
24.5 Summary . 480

25 Learn to Combine Predictions with Stacked Generalization Ensemble 482
25.1 Stacked Generalization Ensemble . 482
25.2 Stacked Generalization Ensemble Case Study . 484
25.3 Extensions . 500
25.4 Further Reading . 500
25.5 Summary . 502

26 Combine Model Parameters with Average Model Weights Ensemble 503
26.1 Average Model Weight Ensemble . 503
26.2 Average Model Weight Ensemble Case Study . 505
26.3 Extensions . 523

CONTENTS vii

26.4 Further Reading . 523
26.5 Summary . 524

IV Appendix 525

A Getting Help 526
A.1 Applied Neural Networks . 526
A.2 Official Keras Destinations . 526
A.3 Where to Get Help with Keras . 527
A.4 How to Ask Questions . 527
A.5 Contact the Author . 528

B How to Setup Your Workstation 529
B.1 Overview . 529
B.2 Download Anaconda . 529
B.3 Install Anaconda . 531
B.4 Start and Update Anaconda . 533
B.5 Install Deep Learning Libraries . 536
B.6 Further Reading . 537
B.7 Summary . 537

V Conclusions 538

How Far You Have Come 539

Preface

Modern open source libraries for developing neural network models are amazing. Gone are the
days where we might spend weeks debugging the translation of poorly documented mathematics
into code in the hopes of getting even the simplest model running. Today, using libraries like
Keras, we can define and begin fitting a Multilayer Perceptron, Convolutional or even Recurrent
Neural Network model of arbitrary complexity in minutes.

While defining and fitting models has become trivial, getting good performance with a
neural network model on a specific problem remains challenging. Traditionally, configuring
neural networks in order to get good performance was referred to as a dark art. This is because
there are no clear rules on how to best prepare data and configure a model for a given problem.
Instead, experience must be developed over time from working on many different projects.
Nevertheless, neural networks have been used in academia and industry for decades now and
there are a suite of standard techniques, tips, and configurations that you can use to greatly
increase the likelihood of getting better-than-average performance with a neural network model.

I wrote this book to pull together the best classical and modern techniques in order to
provide a playbook that you can use to get better performance on your next project using deep
learning neural networks. A lot has changed in the last 5 to 10 years and there are activation
functions, regularization methods, and even new ensemble methods that result in remarkably
faster learning, lower generalization error, and more robust results. I hope that you’re as excited
as me about the journey ahead.

Jason Brownlee
2019

viii

Introduction

ix

Welcome

Welcome to Better Deep Learning. Deep learning neural networks have become easy to define
and fit, but it remains challenging to achieve good predictive modeling performance. Neural
networks have been studied in academia and used in industry for decades, and there is a wealth
of techniques, tips, and model configurations that are known to result in better than average
performance. In addition, the last 5 to 10 years has seen the development and adoption of
modern network configurations, regularization techniques, and ensemble algorithms that result
in superior performance. I designed this book to tie together classical and modern techniques
into a single playbook and teach you step-by-step how to improve the performance of deep
learning neural network models on your predictive modeling problems.

Who Is This Book For?

Before we get started, let’s make sure you are in the right place. This book is for developers that
know some applied machine learning and some deep learning. Maybe you want or need to start
using deep learning on your research project or on a project at work. This guide was written to
help you do that quickly and efficiently by compressing years of knowledge and experience into
a laser-focused course of hands-on tutorials. The lessons in this book assume a few things about
you, such as:

� You know your way around basic Python for programming.

� You know your way around basic NumPy for array manipulation.

� You know your way around basic Keras for deep learning.

This guide was written in the top-down and results-first machine learning style that you’re
used to from MachineLearningMastery.com.

About Your Outcomes

This book will teach you how to get results as a machine learning practitioner interested in getting
the most out of deep learning models on your own predictive modeling projects. Techniques
are demonstrated in the context of small well-understood predictive modeling problems and
Multilayer Perceptron neural network models, but can easily be applied to a wide range of
problems and with a suite of different types of neural network models. After reading and working
through this book, you will know:

x

xi

� A checklist of techniques that you can use to improve the performance of deep learning
neural network models on your own predictive modeling problems.

� How to accelerate learning through better configured stochastic gradient descent batch
size, loss functions, learning rates, and to avoid exploding gradients via gradient clipping.

� How to accelerate learning through correct data scaling, batch normalization, and use of
modern activation functions such as the rectified linear activation function.

� How to accelerate learning through choosing better initial weights with greedy layer-wise
pretraining and transfer learning.

� A gentle introduction to the problem of overfitting and a tour of regularization techniques.

� How to reduce overfitting by updating the loss function using techniques such as weight
regularization, weight constraints, and activation regularization.

� How to reduce overfitting using techniques such as dropout, the addition of noise, and
early stopping.

� A gentle introduction to how to combine the predictions from multiple models and a tour
of ensemble learning techniques.

� How to combine the predictions from multiple different models using techniques such
as weighted averaging ensembles and stacked generalization ensembles, also known as
blending.

� How to combine the predictions from multiple models saved during a single training run
with techniques such as horizontal ensembles and snapshot ensembles.

This new understanding of applied deep learning methods will impact your practice of
working through predictive modeling problems in the following ways:

� Confidently diagnose poor model training and problems such as premature convergence
and accelerate the model training process using one or a combination of modifications to
the learning algorithm.

� Confidently diagnose cases of overfitting the training dataset and reduce generalization
error using one or a combination of modifications of the model, loss function, or learning
algorithm.

� Confidently diagnose high variance in a final model and improve the average predictive
skill by combining the predictions from multiple models trained over a single or multiple
training runs.

This book will teach you how to get good results, quickly, but will NOT teach you how to
be a research scientist nor will it teach you all the theory behind why specific methods work.
For that, I would recommend good research papers and textbooks. See the Further Reading
section at the end of each tutorial for a good starting point.

xii

How to Read This Book

This book was written to be read linearly, from start to finish. That being said, if you know the
basics and need help with a specific problem type or technique, then you can flip straight to
that section and get started. This book was designed for you to read on your workstation, on
the screen. Not away from the computer or on a tablet or eReader. My hope is that you have
the book open right next to your editor and run the examples as you read about them.

This book is not intended to be read passively or be placed in a folder as a reference text.
It is a playbook, a workbook, and a guidebook intended for you to learn by doing and then
apply your new understanding to your own predictive modeling projects. To get the most out of
the book, I would recommend playing with the examples in each tutorial. Extend them, break
them, then fix them. Try some of the extensions presented at the end of each lesson and let me
know how you do.

About the Book Structure

This book was designed around three main activities for getting better results with deep learning
models: better or faster learning, better generalization to new data, and better predictions when
using final models. There are a lot of things you could learn about getting better results from
neural network models, from theory to applications to APIs. My goal is to take you straight
to getting results with laser-focused tutorials. I designed the tutorials to focus on how to get
things done. They give you the tools to both rapidly understand and apply each technique to
your own predictive modeling problems.

Each of the tutorials are designed to take you about one hour to read through and complete,
excluding the extensions and further reading. You can choose to work through the lessons one
per day, one per week, or at your own pace. I think momentum is critically important, and this
book is intended to be read and used, not to sit idle. I would recommend picking a schedule
and sticking to it. The tutorials are divided into three parts:

� Part 1: Better Learning. Discover the techniques to improve and accelerate the process
used to learn or optimize the weights of a neural network model.

� Part 2: Better Generalization. Discover the techniques to reduce overfitting of the
training dataset and improve the generalization of models on new data.

� Part 3: Better Predictions. Discover the techniques to improve the performance of
final models when used to make predictions on new data.

Each part targets a specific approach to improving model performance, and each tutorial
targets a specific learning outcome for a technique. This acts as a filter to ensure you are only
focused on the things you need to know to get to a specific result and do not get bogged down in
the math or near-infinite number of configuration parameters. The tutorials were not designed
to teach you everything there is to know about each of the techniques. They were designed to
give you an understanding of how they work and how to use them on your projects the fastest
way I know how: to learn by doing.

xiii

About Python Code Examples

The code examples were carefully designed to demonstrate the purpose of a given lesson. For
this reason, the examples are highly targeted.

� Models were demonstrated on small contrived datasets to give you the context and
confidence to bring the techniques to your own projects.

� Model configurations used were discovered through trial and error and are skillful but
not optimized. This leaves the door open for you to explore new and possibly better
configurations.

� Code examples are complete and standalone. The code for each lesson will run as-is with
no code from prior lessons or third parties required beyond the installation of the required
packages.

A complete working example is presented with each tutorial for you to inspect and copy
and paste. All source code is also provided with the book and I would recommend running
the provided files whenever possible to avoid any copy-paste issues. The provided code was
developed in a text editor and intended to be run on the command line. No special IDE or
notebooks are required. If you are using a more advanced development environment and are
having trouble, try running the example from the command line instead.

Neural network algorithms are stochastic. This means that they will make different predictions
when the same model configuration is run on the same training data. On top of that, each
experimental problem in this book is based around generating stochastic predictions. As a
result, this means you will not get exactly the same sample output presented in this book. This
is by design. I want you to get used to the stochastic nature of the neural network algorithms.
If this bothers you, please note:

� You can re-run a given example a few times and your results should be close to the values
reported.

� You can make the output consistent by fixing the random number seed.

� You can develop a robust estimate of the skill of a model by fitting and evaluating it
multiple times and taking the average of the final skill score (highly recommended).

All code examples were tested on a POSIX-compatible machine with Python 3 and Keras 2.
All code examples will run on modest and modern computer hardware and were executed on a
CPU. No GPUs are required to run the presented examples, although a GPU would make the
code run faster. I am only human and there may be a bug in the sample code. If you discover a
bug, please let me know so I can fix it and update the book and send out a free update.

About Further Reading

Each lesson includes a list of further reading resources. This may include:

� Research papers.

xiv

� Books and book chapters.

� Webpages.

� API documentation.

Wherever possible, I try to list and link to the relevant API documentation for key objects
and functions used in each lesson so you can learn more about them. When it comes to research
papers, I try to list papers that are first to use a specific technique or first in a specific problem
domain. These are not required reading, but can give you more technical details, theory, and
configuration details if you’re looking for it. Wherever possible, I have tried to link to the freely
available version of the paper on arxiv.org. You can search for and download any of the papers
listed on Google Scholar Search, scholar.google.com. Wherever possible, I have tried to link to
books on Amazon.

I don’t know everything, and if you discover a good resource related to a given lesson, please
let me know so I can update the book.

About Getting Help

You might need help along the way. Don’t worry; you are not alone.

� Help with a Technique? If you need help with the technical aspects of a specific model
or method, see the Further Reading sections at the end of each lesson.

� Help with Keras? If you need help with using the Keras library, see the list of resources
in Appendix A.

� Help with your workstation? If you need help setting up your environment, I would
recommend using Anaconda and following my tutorial in Appendix B.

� Help in general? You can shoot me an email. My details are in Appendix A.

Next

Are you ready? Let’s dive in! In the next tutorial, you will discover a framework that you can
use to diagnose problems with your deep learning neural network and techniques that you can
use to address each identified problem.

Framework for Better Deep Learning

Modern deep learning libraries such as Keras allow you to define and start fitting a wide range
of neural network models in minutes with just a few lines of code. Nevertheless, it is still
challenging to configure a neural network to get good performance on a new predictive modeling
problem. The challenge of getting good performance can be broken down into three main
areas: problems with learning, problems with generalization, and problems with predictions.
Once you have diagnosed the specific type of problem that you are having with a network, a
suite of classical and modern techniques can then be selected to address the issue and improve
performance. In this tutorial, you will discover a framework for diagnosing performance problems
with deep learning models and techniques that you can use to target and improve each specific
performance problem. After reading this tutorial, you will know:

� Defining and fitting neural networks has never been easier, although getting good perfor-
mance on new problems remains challenging.

� Neural network model performance problems can be decomposed into learning, generaliza-
tion, and prediction type problems.

� There are decades of techniques as well as modern methods that can be used to target
each type of model performance problem.

Let’s get started.

Overview

This tutorial is divided into seven parts; they are:

1. Neural Network Renaissance

2. Challenge of Configuring Neural Networks

3. Framework for Systematically Better Deep Learning

4. Better Learning Techniques

5. Better Generalization Techniques

6. Better Prediction Techniques

7. How to Use the Framework

xv

xvi

Neural Network Renaissance

Historically, neural network models had to be coded from scratch. You might spend days or
weeks translating poorly described mathematics into code and days or weeks more debugging
your code just to get a simple neural network model to run. Those days are in the past. Today,
you can define and begin fitting most types of neural networks in minutes with just a few lines
of code, thanks to open source libraries such as Keras built on top of sophisticated mathematical
libraries such as TensorFlow.

This means that standard models such as Multilayer Perceptrons can be developed and
evaluated rapidly, as well as more sophisticated models that may previously have been beyond
the capabilities of most practitioners to implement such as Convolutional Neural Networks
and Recurrent Neural Networks like the Long Short-Term Memory network. As deep learning
practitioners, we live in amazing and productive times. Nevertheless, even through new neural
network models can be defined and evaluated rapidly, there remains little guidance on how to
actually configure neural network models in order to get the most out of them.

Challenge of Configuring Neural Networks

Configuring neural network models is often referred to as a dark art. This is because there are
no hard and fast rules for configuring a network for a given problem. We cannot analytically
calculate the optimal model type or model configuration for a given dataset. Instead, there are
decades worth of techniques, heuristics, tips, tricks, and other tacit knowledge spread across
code, papers, blog posts, and in peoples’ heads. A shortcut to configuring a neural network on a
problem is to copy the configuration of another network for a similar problem. But this strategy
rarely leads to good results as model configurations are not transferable across problems. It
is also likely that you work on predictive modeling problems that are unlike other problems
described in the literature.

Fortunately, there are techniques that are known to address specific issues when configuring
and training a neural network that are available in modern deep learning libraries like Keras.
Further, discoveries have been made in the past 5 to 10 years in areas such as activation functions,
adaptive learning rates, regularization methods, and ensemble techniques that have been shown
to dramatically improve the performance of neural network models regardless of their specific
type. The techniques are available; you just need to know what they are and when to use them.

Framework for Systematically Better Deep Learning

Unfortunately, you cannot efficiently grid search across the techniques used to improve deep
learning performance. Almost universally, they uniquely change aspects of the training data,
learning process, model architecture, and more. Instead, you must diagnose the type of
performance problem you are having with your model, then carefully choose and evaluate a
given intervention tailored to that diagnosed problem. There are three types of problems that
are straightforward to diagnose with regard to poor performance of a deep learning neural
network model; they are:

� Problems with Learning. Problems with learning manifest in a model that cannot
effectively learn a training dataset or shows slow progress or bad performance when

xvii

learning the training dataset.

� Problems with Generalization. Problems with generalization manifest in a model
that overfits the training dataset and makes poor predictions on a holdout dataset.

� Problems with Predictions. Problems with predictions manifest in the stochastic
training algorithm having a strong influence on the final model, causing high variance in
behavior and performance.

This framework provides a systematic approach to thinking about the performance of your
deep learning model. There is some natural overlap and interaction between these areas of
concern. For example, problems with learning affect the ability of the model to generalize as
well as the variance in the predictions made from a final model. The sequential relationship
between the three areas in the proposed framework allows the issue of deep learning model
performance to be first isolated, then targeted with a specific technique or methodology. We
can summarize techniques that assist with each of these problems as follows:

� Better Learning. Techniques that improve or accelerate the adaptation of neural network
model weights in response to a training dataset.

� Better Generalization. Techniques that improve the performance of a neural network
model on a holdout dataset.

� Better Predictions. Techniques that reduce the variance in the performance of a final
model.

Now that we have a framework for systematically diagnosing a performance problem with
a deep learning neural network, let’s take a look at some examples of techniques that may be
used in each of these three areas of concern.

Better Learning Techniques

Better learning techniques are those changes to a neural network model or learning algorithm
that improve or accelerate the adaptation of the model weights in response to a training dataset
(Chapter 1). In this section, we will review the techniques used to improve the adaptation of the
model weights. This begins with the careful configuration of the capacity of the model and the
hyperparameters related to optimizing the neural network model using the stochastic gradient
descent algorithm and updating the weights using the backpropagation of error algorithm; for
example:

� Configure Capacity. Including including the number of nodes in a layer and the number
of layers used to define the scope of functions that can be learned by the model (Chapter 2).

� Configure Batch Size. Including exploring whether variations such as batch, stochastic
(online), or minibatch gradient descent are more appropriate (Chapter 3).

� Configure Loss Function. Including understanding the way different loss functions
must be interpreted and whether an alternate loss function would be appropriate for your
problem (Chapter 4).

xviii

� Configure Learning Rate. Including understanding the effect of different learning rates
on your problem and whether modern adaptive learning rate methods such as Adam would
be appropriate (Chapter 5).

This also includes simple data preparation and the automatic rescaling of inputs at deeper
layers.

� Data Scaling Techniques. Including the sensitivity that small network weights have to
the scale of input variables and the impact of large errors in the target variable have on
weight updates (Chapter 6).

� Batch Normalization. Including the sensitivity to changes in the distribution of inputs
to layers deep in a network model and the benefits of standardizing layer inputs to add
consistency of input and stability to the learning process (Chapter 9).

Stochastic gradient descent is a general optimization algorithm that can be applied to a wide
range of problems. Nevertheless, the optimization process (or learning process) can become
unstable and specific interventions are required; for example:

� Vanishing Gradients. Prevent the training of deep multiple-layered networks causing
layers close to the input layer to not have their weights updated; that can be addressed using
modern activation functions such as the rectified linear activation function (Chapter 7).

� Exploding Gradients. Large weight updates cause a numerical overflow or underflow
making the network weights take on a NaN or Inf value; that can be addressed using
gradient scaling or gradient clipping (Chapter 8).

The lack of data on some predictive modeling problems can prevent effective learning.
Specialized techniques can be used to jump-start the optimization process, providing a useful
initial set of weights or even whole models that can be used for feature extraction; for example:

� Greedy Layer-Wise Pretraining. Where layers are added one at a time to a model,
learning to interpret the output of prior layers and permitting the development of much
deeper models: a milestone technique in the field of deep learning (Chapter 10).

� Transfer Learning. Where a model is trained on a different, but somehow related,
predictive modeling problem and then used to seed the weights or used wholesale as a
feature extraction model to provide input to a model trained on the problem of interest
(Chapter 11).

Better Generalization Techniques

Better generalization techniques are those that change the neural network model or learning
algorithm to reduce the effect of the model overfitting the training dataset and improve the
performance of the model on a holdout validation or test dataset (Chapter 12). In this
section, we will review the techniques to reduce the generalization error of the model during
training. Techniques that are designed to reduce generalization error are commonly referred to

xix

as regularization techniques. Almost universally, regularization is achieved by somehow reducing
or limiting model complexity.

Perhaps the most widely understood measure of model complexity is the size or magnitude
of the model weights. A model with large weights is a sign that it may be overly specialized to
the inputs in the training data, making it unstable when used when making a prediction on new
unseen data. Keeping weights small via weight regularization is a powerful and widely used
technique.

� Weight Regularization. A change to the loss function that penalizes a model in
proportion to the norm (magnitude) of the model weights, encouraging smaller weights
and, in turn, a lower complexity model (Chapter 13).

Rather than simply encouraging the weights to remain small via an updated loss function, it
is possible to force the weights to be small using a constraint.

� Weight Constraint. Update to the model to rescale the weights when the vector norm
of the weights exceeds a threshold (Chapter 15).

The output of a neural network layer, regardless of where that layer is in the stack of layers,
can be thought of as an internal representation or set of extracted features with regard to the
input. Simpler internal representations can have a regularizing effect on the model and can be
encouraged through constraints that encourage sparsity (zero values).

� Activity Regularization. A change to the loss function that penalizes a model in
proportion to the norm (magnitude) of the layer activations, encouraging smaller or more
sparse internal representations (Chapter 14).

Noise can be added to the model to encourage robustness with regard to the raw inputs or
outputs from prior layers during training; for example:

� Dropout. Probabilistically removing connections (weights) while training the network to
break tight coupling between nodes across layers (Chapter 16).

� Input Noise. Addition of statistical variation or noise at the input layer or between
hidden layers to reduce the model’s dependence on specific input values (Chapter 17).

Often, overfitting can occur due simply to training the model for too long on the training
dataset. A simple solution is to stop the training early.

� Early Stopping. Monitor model performance on the hold out validation dataset during
training and stop the training process when performance on the validation set starts to
degrade (Chapter 18).

xx

Better Prediction Techniques

Better prediction techniques are those that complement the model training process in order to
reduce the variance in the expected performance of the final model (Chapter 19). In this section,
we will review the techniques to reduce the expected variance of a final deep learning neural
network model. The variance in the performance of the final model can be reduced by adding
bias. The most common way to introduce bias to the final model is to combine the predictions
from multiple models. This is referred to as ensemble learning.

More than reducing the variance of the performance of a final model, ensemble learning can
also result in better predictive performance. Effective ensemble learning methods require that
each contributing model have skill, meaning that the models make predictions that are better
than random, but that the prediction errors between the models have a low correlation. This
means, that the ensemble member models should have skill, but in different ways. This can be
achieved by varying one aspect of the ensemble; for example:

� Vary the training data used to fit each member.

� Vary the members that contribute to the ensemble prediction.

� Vary the way that the predictions from the ensemble members are combined.

The training data can be varied by fitting models on different subsamples of the dataset. This
might involve fitting and retaining models on different randomly selected subsets of the training
dataset, retaining models for each fold in a k-fold cross-validation, or retaining models across
different samples with replacement using the bootstrap method (e.g. bootstrap aggregation).
Collectively, we can think of these methods as resampling ensembles.

� Resampling Ensemble. Ensemble of models fit on different samples of the training
dataset (Chapter 22).

Perhaps the simplest way to vary the members of the ensemble involves gathering models
from multiple runs of the learning algorithm on the training dataset. The stochastic learning
algorithm will cause a slightly different fit on each run that, in turn, will have a slightly different
fit. Averaging the models across multiple runs will ensure the performance remains consistent.

� Model Averaging Ensemble. Retrain models across multiple runs of the same learning
algorithm on the same dataset (Chapter 20).

Variations on this approach may involve training models with different hyperparameter
configurations. It can be expensive to train multiple final deep learning models, especially
when one model may take days or weeks to fit. An alternative is to collect models for use as
contributing ensemble members during a single training run; for example:

� Horizontal Ensemble. Ensemble members collected from a contiguous block of training
epochs towards the end of a single training run (Chapter 23).

� Snapshot Ensemble. A training run using an aggressive cyclic learning rate where
ensemble members are collected at the trough of each cycle of the learning rate (Chapter 24).

xxi

The simplest way to combine the predictions from multiple ensemble members is to calculate
the average of the predictions in the case of regression, or the statistical mode (most frequent
prediction) in the case of classification. Alternately, the best way to combine the predictions
from multiple models can be learned; for example:

� Weighted Average Ensemble (blending). The contribution from each ensemble
member to an ensemble prediction is weighted using learned coefficients that indicates the
trust in each model (Chapter 21).

� Stacked Generalization (stacking). A new model is trained to learn how to best
combine the predictions from the ensemble members (Chapter 25).

An alternative to combining the predictions from the ensemble members, the models them-
selves may be combined; for example:

� Average Model Weight Ensemble. Weights from multiple neural network models are
averaged into a single model used to make a prediction (Chapter 26).

How to Use the Framework

We can think of the organization of techniques into the three areas of better learning, general-
ization, and prediction as a systematic framework for improving the performance of your neural
network model. There are too many techniques to reasonably investigate and evaluate each in
your project. Instead, you need to be methodical and use the techniques in a targeted way to
address a defined problem.

Step 1: Diagnose the Performance Problem

The first step in using this framework is to diagnose the performance problem that you are
having with your model. A robust diagnostic tool is to calculate a learning curve of loss and a
problem-specific metric (like RMSE for regression or accuracy for classification) on a train and
validation dataset over a given number of training epochs.

� If the loss on the training dataset is poor, stuck, or fails to improve, perhaps you have a
learning problem.

� If the loss or problem-specific metric on the training dataset continues to improve and
gets worse on the validation dataset, perhaps you have a generalization problem.

� If the loss or problem-specific metric on the validation dataset shows a high variance
towards the end of the run, perhaps you have a prediction problem.

Step 2: Select and Evaluate a Technique

Review the techniques that are designed to address your problem. Select a technique that
appears to be a good fit for your model and problem. This may require some prior experience
with the techniques and may be challenging for a beginner. Thankfully, there are heuristics and
best-practices that work well on most problems. For example:

xxii

� Learning Problem: Tuning the hyperparameters of the learning algorithm; specifically,
the learning rate offers the biggest leverage.

� Generalization Problem: Using weight regularization and early stopping works well
on most models with most problems, or try dropout with early stopping.

� Prediction Problem: Average the prediction from models collected over multiple runs
or multiple epochs on one run to add sufficient bias.

Pick an intervention, then read-up a little bit on it, including how it works, why it works,
and importantly, find examples for how practitioners before you have used it to get an idea for
how you might use it on your problem.

Step 3: Go To Step 1

Once you have identified an issue and addressed it with an intervention, repeat the process.
Developing a better model is an iterative process that may require multiple interventions at
multiple levels that complement each other. This is an empirical process. This means that you
are reliant on the robustness of your test harness to give you a reliable summary of performance
before and after an intervention. Spend the time to ensure your test harness is robust, guarantee
that the train, test, and validation datasets are clean and provide a suitably representative
sample of observation from your problem domain.

Further Reading

This section provides more resources on the topic if you are looking to go deeper.

Books

� Deep Learning, 2016.
https://amzn.to/2NJW3gE

� Pattern Recognition and Machine Learning, 2006.
https://amzn.to/2Q2rEeP

� Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks, 1999.
https://amzn.to/2poqOxc

Papers

� Practical Recommendations for Gradient-Based Training of Deep Architectures, 2012.
https://arxiv.org/abs/1206.5533

Articles

� Neural Network FAQ.
ftp://ftp.sas.com/pub/neural/FAQ.html

https://amzn.to/2NJW3gE
https://amzn.to/2Q2rEeP
https://amzn.to/2poqOxc
https://arxiv.org/abs/1206.5533
ftp://ftp.sas.com/pub/neural/FAQ.html

xxiii

Summary

In this tutorial, you discovered a framework for diagnosing performance problems with deep
learning models and techniques that you can use to target and improve each specific performance
problem. Specifically, you learned:

� Defining and fitting neural networks has never been easier, although getting good perfor-
mance on new problems remains challenging.

� Neural network model performance problems can be decomposed into learning, generaliza-
tion, and prediction type problems.

� There are decades of techniques as well as modern methods that can be used to target
each type of model performance problem.

Next

In the next tutorial you will discover how to use learning curves to diagnose mode behavior and
examples of common model dynamics.

Diagnostic Learning Curves

A learning curve is a plot of model learning performance over experience or time. Learning
curves are a widely used diagnostic tool in machine learning for algorithms that learn from
a training dataset incrementally. The model can be evaluated on the training dataset and
on a hold out validation dataset after each update during training and plots of the measured
performance can created to show learning curves. Reviewing learning curves of models during
training can be used to diagnose problems with learning, such as an underfit or overfit model,
as well as whether the training and validation datasets are suitably representative. In this
tutorial, you will discover learning curves and how they can be used to diagnose the learning
and generalization behavior of machine learning models, with example plots showing common
learning problems. After reading this tutorial, you will know:

� Learning curves are plots that show changes in learning performance over time in terms of
experience.

� Learning curves of model performance on the train and validation datasets can be used to
diagnose an underfit, overfit, or well-fit model.

� Learning curves of model performance can be used to diagnose whether the train or
validation datasets are not relatively representative of the problem domain.

Let’s get started.

Overview

This tutorial is divided into three parts; they are:

1. Learning Curves

2. Diagnosing Model Behavior

3. Diagnosing Unrepresentative Datasets

Learning Curves in Machine Learning

Generally, a learning curve is a plot that shows time or experience on the x-axis and learning or
improvement on the y-axis.

xxiv

xxv

Learning curves (LCs) are deemed effective tools for monitoring the performance of
workers exposed to a new task. LCs provide a mathematical representation of the
learning process that takes place as task repetition occurs.

— Learning curve models and applications: Literature review and research directions, 2011.

For example, if you were learning a musical instrument, your skill on the instrument could be
evaluated and assigned a numerical score each week for one year. A plot of the scores over the
52 weeks is a learning curve and would show how your learning of the instrument has changed
over time.

� Learning Curve: Line plot of learning (y-axis) over experience (x-axis).

Learning curves are widely used in machine learning for algorithms that learn (optimize their
internal parameters) incrementally over time, such as deep learning neural networks. The metric
used to evaluate learning could be maximizing, meaning that better scores (larger numbers)
indicate more learning. An example would be classification accuracy. It is more common to use
a score that is minimizing, such as loss or error whereby better scores (smaller numbers) indicate
more learning and a value of 0.0 indicates that the training dataset was learned perfectly and
no mistakes were made. During the training of a machine learning model, the current state of
the model at each step of the training algorithm can be evaluated. It can be evaluated on the
training dataset to give an idea of how well the model is learning. It can also be evaluated on a
hold-out validation dataset that is not part of the training dataset. Evaluation on the validation
dataset gives an idea of how well the model is generalizing.

� Train Learning Curve: Learning curve calculated from the training dataset that gives
an idea of how well the model is learning.

� Validation Learning Curve: Learning curve calculated from a hold-out validation
dataset that gives an idea of how well the model is generalizing.

It is common to create dual learning curves for a machine learning model during training on
both the training and validation datasets. In some cases, it is also common to create learning
curves for multiple metrics, such as in the case of classification predictive modeling problems,
where the model may be optimized according to cross-entropy loss and model performance is
evaluated using classification accuracy. In this case, two plots are created, one for the learning
curves of each metric, and each plot can show two learning curves, one for each of the train and
validation datasets.

� Optimization Learning Curves: Learning curves calculated on the metric by which
the parameters of the model are being optimized, e.g. loss.

� Performance Learning Curves: Learning curves calculated on the metric by which
the model will be evaluated and selected, e.g. accuracy.

Now that we are familiar with the use of learning curves in machine learning, let’s look at
some common shapes observed in learning curve plots.

xxvi

Diagnosing Model Behavior

The shape and dynamics of a learning curve can be used to diagnose the behavior of a machine
learning model and in turn perhaps suggest at the type of configuration changes that may be
made to improve learning and/or performance. There are three common dynamics that you are
likely to observe in learning curves; they are:

� Underfit.

� Overfit.

� Good Fit.

We will take a closer look at each with examples. The examples will assume that we are
looking at a minimizing metric, meaning that smaller relative scores on the y-axis indicate more
or better learning.

Underfit Learning Curves

Underfitting refers to a model that cannot learn the training dataset.

Underfitting occurs when the model is not able to obtain a sufficiently low error
value on the training set.

— Page 111, Deep Learning, 2016.

An underfit model can be identified from the learning curve of the training loss only. It may
show a flat line or noisy values of relatively high loss, indicating that the model was unable to
learn the training dataset at all. An example of this is provided below and is common when the
model does not have a suitable capacity for the complexity of the dataset.

xxvii

Figure 1: Example of Training Learning Curve Showing An Underfit Model That Does Not
Have Sufficient Capacity.

An underfit model may also be identified by a training loss that is decreasing and continues
to decrease at the end of the plot. This indicates that the model is capable of further learning
and possible further improvements and that the training process was halted prematurely.

xxviii

Figure 2: Example of Training Learning Curve Showing an Underfit Model That Requires
Further Training.

A plot of learning curves shows underfitting if:

� The training loss remains flat regardless of training.

� The training loss continues to decrease until the end of training.

Overfit Learning Curves

Overfitting refers to a model that has learned the training dataset too well, including the
statistical noise or random fluctuations in the training dataset.

... fitting a more flexible model requires estimating a greater number of parameters.
These more complex models can lead to a phenomenon known as overfitting the
data, which essentially means they follow the errors, or noise, too closely.

— Page 22, An Introduction to Statistical Learning: with Applications in R, 2013.

The problem with overfitting, is that the more specialized the model becomes to training
data, the less well it is able to generalize to new data, resulting in an increase in generalization
error. This increase in generalization error can be measured by the performance of the model
on the validation dataset.

xxix

This is an example of overfitting the data, [...]. It is an undesirable situation because
the fit obtained will not yield accurate estimates of the response on new observations
that were not part of the original training data set.

— Page 24, An Introduction to Statistical Learning: with Applications in R, 2013.

This often occurs if the model has more capacity than is required for the problem, and,
in turn, too much flexibility. It can also occur if the model is trained for too long. A plot of
learning curves shows overfitting if:

� The plot of training loss continues to decrease with experience.

� The plot of validation loss decreases to a point and begins increasing again.

The inflection point in validation loss may be the point at which training could be halted
as experience after that point shows the dynamics of overfitting. The example plot below
demonstrates a case of overfitting.

Figure 3: Example of Train and Validation Learning Curves Showing an Overfit Model.

xxx

Good Fit Learning Curves

A good fit is the goal of the learning algorithm and exists between an overfit and underfit model.
A good fit is identified by a training and validation loss that decreases to a point of stability
with a minimal gap between the two final loss values. The loss of the model will almost always
be lower on the training dataset than the validation dataset. This means that we should expect
some gap between the train and validation loss learning curves. This gap is referred to as the
generalization gap. A plot of learning curves shows a good fit if:

� The plot of training loss decreases to a point of stability.

� The plot of validation loss decreases to a point of stability and has a small gap with the
training loss.

Continued training of a good fit will likely lead to an overfit. The example plot below
demonstrates a case of a good fit.

Figure 4: Example of Train and Validation Learning Curves Showing a Good Fit.

Diagnosing Unrepresentative Datasets

Learning curves can also be used to diagnose properties of a dataset and whether it is relatively
representative. An unrepresentative dataset means a dataset that may not capture the statistical

xxxi

characteristics relative to another dataset drawn from the same domain, such as between a train
and a validation dataset. This can commonly occur if the number of samples in a dataset is too
small, relative to another dataset.

There are two common cases that could be observed; they are:

� Training dataset is relatively unrepresentative.

� Validation dataset is relatively unrepresentative.

Unrepresentative Train Dataset

An unrepresentative training dataset means that the training dataset does not provide sufficient
information to learn the problem, relative to the validation dataset used to evaluate it. This
may occur if the training dataset has too few examples as compared to the validation dataset.
This situation can be identified by a learning curve for training loss that shows improvement and
similarly a learning curve for validation loss that shows improvement, but a large gap remains
between both curves.

Figure 5: Example of Train and Validation Learning Curves Showing a Training Dataset That
May Be too Small Relative to the Validation Dataset.

xxxii

Unrepresentative Validation Dataset

An unrepresentative validation dataset means that the validation dataset does not provide
sufficient information to evaluate the ability of the model to generalize. This may occur if the
validation dataset has too few examples as compared to the training dataset. This case can be
identified by a learning curve for training loss that looks like a good fit (or other fits) and a
learning curve for validation loss that shows noisy movements around the training loss.

Figure 6: Example of Train and Validation Learning Curves Showing a Validation Dataset That
May Be too Small Relative to the Training Dataset.

It may also be identified by a validation loss that is lower than the training loss. In this
case, it indicates that the validation dataset may be easier for the model to predict than the
training dataset.

xxxiii

Figure 7: Example of Train and Validation Learning Curves Showing a Validation Dataset That
Is Easier to Predict Than the Training Dataset.

Further Reading

This section provides more resources on the topic if you are looking to go deeper.

Books

� Deep Learning, 2016.
https://amzn.to/2SmfnCA

� An Introduction to Statistical Learning: with Applications in R, 2013.
https://amzn.to/2SkKXAy

Papers

� Learning curve models and applications: Literature review and research directions, 2011.
https://www.sciencedirect.com/science/article/abs/pii/S016981411100062X

https://amzn.to/2SmfnCA
https://amzn.to/2SkKXAy
https://www.sciencedirect.com/science/article/abs/pii/S016981411100062X

xxxiv

Articles

� Learning curve, Wikipedia.
https://en.wikipedia.org/wiki/Learning_curve

� Overfitting, Wikipedia.
https://en.wikipedia.org/wiki/Overfitting

Summary

In this tutorial, you discovered learning curves and how they can be used to diagnose the
learning and generalization behavior of machine learning models. Specifically, you learned:

� Learning curves are plots that show changes in learning performance over time in terms of
experience.

� Learning curves of model performance on the train and validation datasets can be used to
diagnose an underfit, overfit, or well-fit model.

� Learning curves of model performance can be used to diagnose whether the train or
validation datasets are not relatively representative of the problem domain.

Next

Now that you are familiar with the framework for improving deep learning neural network model
performance and how to diagnose model behavior, we can start to look at specific techniques.
In the next part, you will discover techniques for improving convergence when training neural
network models.

https://en.wikipedia.org/wiki/Learning_curve
https://en.wikipedia.org/wiki/Overfitting

Part I

Better Learning

1

Overview

In this part you will discover techniques to improve the optimization problem of adapting neural
network model weights in order to learn a training dataset. After reading the chapters in this
part, you will know:

� How the challenge of training a neural network involves solving a non-convex optimization
problem with no guarantees of convergence on a viable solution (Chapter 1).

� How the capacity of the model controls the scope of functions that can be learned and
how the number of nodes and layers control capacity (Chapter 2).

� How the batch size controls the precision of the estimate of error used to update model
weights and in turn the stability and speed of convergence (Chapter 3).

� How loss functions control the nature of the function approximation problem that is being
solved (Chapter 4).

� How the learning rate controls the amount that model parameters are updated and in
turn the stability and speed of convergence (Chapter 5).

� How the training process is sensitive to the scale of input and target variables and how
normalization and standardization processes can dramatically improve model convergence
(Chapter 6).

� How the vanishing gradient problem can be addressed with the rectified linear activation
function and dramatically improve the likelihood and speed of convergence (Chapter 7).

� How the exploding gradient problem can be addressed with gradient norm scaling and
gradient value clipping (Chapter 8).

� How the speed of convergence can be accelerated through the standardizing of internal
representations with batch normalization (Chapter 9).

� How greedy layer-wise pretraining can facilitate the development of deeper models, a
milestone in the field of deep learning (Chapter 10).

� How transfer learning can be used as a feature extraction and weight initialization scheme
to short-cut the training process (Chapter 11).

2

Chapter 1

Improve Learning by Understanding
Optimization

Deep learning neural networks learn a mapping function from inputs to outputs. This is
achieved by updating the weights of the network in response to the errors the model makes
on the training dataset. Updates are made to continually reduce this error until either a good
enough model is found or the learning process gets stuck and stops. The process of training
neural networks is the most challenging part of using the technique in general and is by far the
most time consuming, both in terms of effort required to configure the process and computational
complexity required to execute the process. In this tutorial, you will discover the challenge of
finding model parameters for deep learning neural networks. After reading this tutorial, you
will know:

� Neural networks learn a mapping function from inputs to outputs that can be summarized
as solving the problem of function approximation.

� Unlike other machine learning algorithms, the parameters of a neural network must be
found by solving a non-convex optimization problem with many good solutions and many
misleadingly good solutions.

� The stochastic gradient descent algorithm is used to solve the optimization problem where
model parameters are updated each iteration using the backpropagation algorithm.

Let’s get started.

1.1 Neural Nets Learn a Mapping Function

Deep learning neural networks learn a mapping function. Developing a model requires historical
data from the domain that is used as training data. This data is comprised of observations
or examples from the domain with input elements that describe the conditions and an output
element that captures what the observation means. For example, a problem where the output is
a quantity would be described generally as a regression predictive modeling problem. Whereas
a problem where the output is a label would be described generally as a classification predictive
modeling problem.

3

1.2. Learning Network Weights Is Hard 4

A neural network model uses the examples to learn how to map specific sets of input variables
to the output variable. It must do this in such a way that this mapping works well for the
training dataset, but also works well on new examples not seen by the model during training.
This ability to work well on specific examples and new examples is called the ability of the
model to generalize.

A multilayer perceptron is just a mathematical function mapping some set of input
values to output values.

— Page 5, Deep Learning, 2016.

We can describe the relationship between the input variables and the output variables as a
complex mathematical function. For a given modeling problem, we must believe that a true
mapping function exists to best map input variables to output variables and that a neural
network model can do a reasonable job at approximating the true unknown underlying mapping
function.

A feedforward network defines a mapping and learns the value of the parameters
that result in the best function approximation.

— Page 168, Deep Learning, 2016.

As such, we can describe the broader problem that neural networks solve as function
approximation. They learn to approximate an unknown underlying mapping function given a
training dataset. They do this by learning weights (the model parameters), given a specific
network structure that we must specify.

It is best to think of feedforward networks as function approximation machines that
are designed to achieve statistical generalization, occasionally drawing some insights
from what we know about the brain, rather than as models of brain function.

— Page 169, Deep Learning, 2016.

1.2 Learning Network Weights Is Hard

Training deep learning neural networks is very challenging.

Optimization in general is an extremely difficult task. [...] When training neural
networks, we must confront the general non-convex case.

— Page 282, Deep Learning, 2016.

An optimization process can be understood conceptually as a search through a landscape for
a candidate solution that is sufficiently satisfactory. A point on the landscape is a specific set of
weights for the model, and the elevation of that point is an evaluation of the set of weights, where
valleys represent good models with small values of loss. This is a common conceptualization of
optimization problems and the landscape is referred to as an error surface.

1.2. Learning Network Weights Is Hard 5

In general, E(w) [the error function of the weights] is a multidimensional function
and impossible to visualize. If it could be plotted as a function of w [the weights],
however, E [the error function] might look like a landscape with hills and valleys ...

— Page 113, Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks,
1999.

The optimization algorithm iteratively steps across this landscape, updating the weights and
seeking out good or low elevation areas. For simple optimization problems, the shape of the
landscape is a big bowl and finding the bottom is easy, so easy that very efficient algorithms
can be designed to find the best solution. These types of optimization problems are referred to
mathematically as convex.

Figure 1.1: Example of a Convex Error Surface.

The error surface we wish to navigate when optimizing the weights of a neural network is
not a bowl shape. It is a landscape with many hills and valleys. These type of optimization
problems are referred to mathematically as non-convex.

Figure 1.2: Example of a Non-Convex Error Surface.

1.3. Key Features of the Error Surface 6

In fact, there does not exist an algorithm to solve the problem of finding an optimal set of
weights for a neural network in polynomial time. Mathematically, the optimization problem
solved by training a neural network is referred to as NP-complete (i.e. it belongs to a class of
hard to solve optimization problems).

We prove this problem NP-complete and thus demonstrate that learning in neural
networks has no efficient general solution.

— Neural Network Design and the Complexity of Learning, 1988.

1.3 Key Features of the Error Surface

There are many types of non-convex optimization problems, but the specific type of problem
we are solving when training a neural network is particularly challenging. We can characterize
the difficulty in terms of the features of the landscape or error surface that the optimization
algorithm may encounter and must navigate in order to be able to deliver a good solution.
There are many aspects of the optimization of neural network weights that make the problem
challenging, but three often-mentioned features of the error landscape are the presence of local
minima, flat regions, and the high-dimensionality of the search space.

Backpropagation can be very slow particularly for multilayered networks where the
cost surface is typically non-quadratic, non-convex, and high dimensional with many
local minima and/or flat regions.

— Page 13, Neural Networks: Tricks of the Trade, 2012.

1.3.1 Local Minima

Local minimal or local optima refer to the fact that the error landscape contains multiple regions
where the loss is relatively low. These are valleys, where solutions in those valleys look good
relative to the slopes and peaks around them. The problem is, in the broader view of the entire
landscape, the valley has a relatively high elevation and better solutions may exist. It is hard
to know whether the optimization algorithm is in a local minima or not, therefore, it is good
practice to start the optimization process with a lot of noise, allowing the landscape to be
sampled widely before selecting a valley to fall into.

By contrast, the lowest point in the landscape is referred to as the global minima. Neural
networks may have one or more global minima, and the challenge is that the difference between
the local and global minima may not make a lot of difference. The implication of this is that
often finding a good enough set of weights is more tractable and, in turn, more desirable than
finding a global optimal or best set of weights.

Nonlinear networks usually have multiple local minima of differing depths. The goal
of training is to locate one of these minima.

— Page 14, Neural Networks: Tricks of the Trade, 2012.

1.3. Key Features of the Error Surface 7

A classical approach to addressing the problem of local minima is to restart the search
process multiple times with a different starting point (random initial weights) and allow the
optimization algorithm to find a different, and hopefully better, local minima. This is called
multiple restarts or random restarts.

Random Restarts: One of the simplest ways to deal with local minima is to train
many different networks with different initial weights.

— Page 121, Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks,
1999.

1.3.2 Flat Regions (Saddle Points)

A flat region or saddle point is a point on the landscape where the gradient is zero. These
are flat regions at the bottom of valleys or regions between peaks. The problem is that a zero
gradient means that the optimization algorithm does not know which direction to move in order
to improve the model.

... the presence of saddlepoints, or regions where the error function is very flat,
can cause some iterative algorithms to become ‘stuck’ for extensive periods of time,
thereby mimicking local minima.

— Page 255, Neural Networks for Pattern Recognition, 1995.

Nevertheless, recent work may suggest that perhaps local minima and flat regions may be
less of a challenge than was previously believed.

Do neural networks enter and escape a series of local minima? Do they move at
varying speed as they approach and then pass a variety of saddle points? [...] we
present evidence strongly suggesting that the answer to all of these questions is no.

— Qualitatively characterizing neural network optimization problems, 2015.

1.3.3 High-Dimensional

The optimization problem solved when training a neural network is high-dimensional. Each
weight in the network represents another parameter or dimension of the error surface. Deep
neural networks often have millions of parameters, making the landscape to be navigated by
the algorithm extremely high-dimensional, as compared to more traditional machine learning
algorithms. The problem of navigating a high-dimensional space is that the addition of each
new dimension dramatically increases the distance between points in the search space. This is
often referred to as the curse of dimensionality.

This phenomenon is known as the curse of dimensionality. Of particular concern
is that the number of possible distinct configurations of a set of variables increases
exponentially as the number of variables increases.

— Page 155, Deep Learning, 2016.

1.4. Navigating the Non-Convex Error Surface 8

1.4 Navigating the Non-Convex Error Surface

A model with a specific set of weights can be evaluated on the training dataset and the average
error over all training examples can be thought of as the error of the model. A change to the
model weights will result in a change to the model error. Therefore, we seek a set of weights
that result in a model with a small error. This involves repeating the steps of evaluating the
model and updating the model parameters in order to step down the error surface. This process
is repeated until a set of parameters is found that is good enough or the search process gets
stuck. The settling of the optimization process on a solution is referred to as convergence, as
the process has converged on a solution.

This is a search or an optimization process and we refer to optimization algorithms that
operate in this way as gradient optimization algorithms, as they naively follow along the error
gradient. They are computationally expensive, slow, and their empirical behavior means that
using them in practice is more art than science. The algorithm that is most commonly used to
navigate the error surface is called stochastic gradient descent, or SGD for short.

Nearly all of deep learning is powered by one very important algorithm: stochastic
gradient descent or SGD.

— Page 151, Deep Learning, 2016.

Other global optimization algorithms designed for non-convex optimization problems could
be used, such as a genetic algorithm, but stochastic gradient descent is more efficient as it
uses the gradient information specifically to update the model weights via an algorithm called
backpropagation.

[Backpropagation] describes a method to calculate the derivatives of the network
training error with respect to the weights by a clever application of the derivative
chain-rule.

— Page 49, Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks,
1999.

Backpropagation refers to a technique from calculus to calculate the derivative (e.g. the
slope or the gradient) of the model error for specific model parameters, allowing model weights
to be updated to move down the gradient. As such, the algorithm used to train neural networks
is also often referred to as simply backpropagation.

Actually, back-propagation refers only to the method for computing the gradient,
while another algorithm, such as stochastic gradient descent, is used to perform
learning using this gradient.

— Page 204, Deep Learning, 2016.

1.5. Implications for Training 9

1.5 Implications for Training

The challenging nature of optimization problems to be solved when using deep learning neural
networks has implications when training models in practice. The best general algorithm known
for solving this problem is stochastic gradient descent, that although is effective, makes no
guarantees.

There is no formula to guarantee that (1) the network will converge to a good
solution, (2) convergence is swift, or (3) convergence even occurs at all.

— Page 13, Neural Networks: Tricks of the Trade, 2012.

We can summarize these implications as follows:

� Possibly Questionable Solution Quality. The optimization process may or may not
find a good solution and solutions can only be compared relatively, due to deceptive local
minima.

� Possibly Long Training Time. The optimization process may take a long time to find
a satisfactory solution, due to the iterative nature of the search.

� Possible Failure. The optimization process may fail to progress (get stuck) or fail to
locate a viable solution, due to the presence of flat regions.

The task of effective training is to carefully configure, test, and tune the hyperparameters of
the model and the learning process itself to best address this challenge. Thankfully, modern
advancements can dramatically simplify the search space and accelerate the search process,
often discovering models much larger, deeper, and with better performance than previously
thought possible.

1.6 Components of the Learning Algorithm

Training a deep learning neural network model using stochastic gradient descent with backprop-
agation involves choosing a number of components and hyperparameters, they are:

� Network Topology.

� Loss Function.

� Weight Initialization.

� Batch Size.

� Learning Rate.

� Epochs.

� Data Preparation.

1.6. Components of the Learning Algorithm 10

They are not all equal, some are more important than others. Further, they are not all
independent, some choices can lead to sensible defaults for other configuration elements. Let’s
take a closer look at each in turn.

The capacity of a neural network defines the scope of the mapping functions that the model
can approximate. A larger capacity means that the model is more flexible, but harder to train
as it has many more parameters that have to be learned and provides a more challenging
optimization problem to solve. The number of nodes in the hidden layer define the capacity,
and a network with a single hidden layer with a sufficient number of nodes can approximate
any mapping function (so-called universal approximation). Although, in practice this is not
practical and the addition of layers with fewer nodes can increase the capacity of the model and
make the optimization problem easier to solve.

� Network Topology. The number of nodes (or equivalent) in the hidden layers and the
number of hidden layers in the network (Chapter 2).

An error function must be chosen, often called the objective function, cost function, or the loss
function. Typically, a specific probabilistic framework for inference is chosen called Maximum
Likelihood. Under this framework, the commonly chosen loss functions are cross-entropy for
classification problems and mean squared error for regression problems.

� Loss Function. The function used to measure the performance of a model with a specific
set of weights on examples from the training dataset (Chapter 4).

The search or optimization process requires a starting point from which to begin model
updates. The starting point is defined by the initial model parameters or weights. Because
the error surface is non-convex, the optimization algorithm is sensitive to the initial starting
point. As such, small random values are chosen as the initial model weights, although different
techniques can be used to select the scale and distribution of these values. These techniques
are referred to as weight initialization methods. This can be tied to the choice of activation
function (covered in (Chapter 7)).

� Weight Initialization. The procedure by which the initial small random values are
assigned to model weights at the beginning of the training process.

When updating the model, a number of examples from the training dataset must be used to
calculate the model error, often referred to simply as loss. All examples in the training dataset
may be used, which may be appropriate for smaller datasets. Alternately, a single example may
be used which may be appropriate for problems where examples are streamed or where the
data changes often. A hybrid approach may be used where the number of examples from the
training dataset may be chosen and used to used to estimate the error gradient. The choice of
the number of examples is referred to as the batch size.

� Batch Size. The number of examples used to estimate the error gradient before updating
the model parameters (Chapter 3).

Once an error gradient has been estimated, the derivative of the activation function can be
calculated and used to update each parameter. There may be statistical noise in the training
dataset and in the estimate of the error gradient. Also, the depth of the model (number of

1.7. Further Reading 11

layers) and the fact that model parameters are updated separately means that it is hard to
calculate exactly how much to change each model parameter to best way to move the whole
model down the error surface. Instead, a small portion of the update to the weights is performed
each iteration. A hyperparameter called the learning rate controls how much to update model
weights and, in turn, controls how fast a model learns on the training dataset.

� Learning Rate: The amount that each model parameter is updated per iteration of the
learning algorithm (Chapter 5).

The training process must be repeated many times until a good or good enough set of
model parameters is discovered. The total number of iterations of the process is bounded by
the number of complete passes through the training dataset after which the training process
is terminated. This is referred to as the number of training epochs. This hyperparameter is
tightly related to both the choice of learning rate and batch size and can be set to a large value
and almost ignored when using some regularization methods (for example see early stopping in
Chapter 18).

� Epochs. The number of complete passes through the training dataset before the training
process is terminated.

An often neglected aspect is the nature of the data used to learn the mapping function. The
scale of the target variable is tightly related to the choice of activation function in the output
layer of the network. The scale of the of the input variables will strongly effect the scale of
the weights in the input and first few hidden layers of the network and in turn the stability of
the learning process. The concerns of the scale and structure of the data used for learning is
referred to as data preparation.

� Data Preparation. The schemes used to prepare the data prior to modeling in order to
ensure that it is suitable for the problem and for developing a stable model (Chapter 6).

There are many extensions to the learning algorithm, although these components and
hyperparameters generally control the learning algorithm for deep learning neural networks.
What makes this more challenging is that there are no rules to best configure a network for a
given problem.

Designing and training a network using backprop requires making many seemingly
arbitrary choices such as the number and types of nodes, layers, learning rates,
training and test sets, and so forth. These choices can be critical, yet there is
no foolproof recipe for deciding them because they are largely problem and data
dependent.

— Efficient BackProp, 1998.

1.7 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

1.8. Summary 12

1.7.1 Books

� Deep Learning, 2016.
https://amzn.to/2NJW3gE

� Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks, 1999.
https://amzn.to/2S8qRdI

� Neural Networks for Pattern Recognition, 1995.
https://amzn.to/2S8qdwt

� Neural Networks: Tricks of the Trade, 2012.
https://amzn.to/2DX69sk

1.7.2 Papers

� Efficient BackProp, 1998.
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf

� Training a 3-Node Neural Network is NP-Complete, 1992.
https://www.sciencedirect.com/science/article/pii/S0893608005800103

� Qualitatively characterizing neural network optimization problems, 2015.
https://arxiv.org/abs/1412.6544

� Neural Network Design and the Complexity of Learning, 1988.
https://authors.library.caltech.edu/26705/1/88-20.pdf

1.7.3 Articles

� Saddle point, Wikipedia.
https://en.wikipedia.org/wiki/Saddle_point

� Curse of dimensionality, Wikipedia.
https://en.wikipedia.org/wiki/Curse_of_dimensionality

� NP-completeness, Wikipedia.
https://en.wikipedia.org/wiki/NP-completeness

1.8 Summary

In this tutorial, you discovered the challenge of finding model parameters for deep learning
neural networks. Specifically, you learned:

� Neural networks learn a mapping function from inputs to outputs that can be summarized
as solving the problem of function approximation.

� Unlike other machine learning algorithms, the parameters of a neural network must be
found by solving a non-convex optimization problem with many good solutions and many
misleadingly good solutions.

https://amzn.to/2NJW3gE
https://amzn.to/2S8qRdI
https://amzn.to/2S8qdwt
https://amzn.to/2DX69sk
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
https://www.sciencedirect.com/science/article/pii/S0893608005800103
https://arxiv.org/abs/1412.6544
https://authors.library.caltech.edu/26705/1/88-20.pdf
https://en.wikipedia.org/wiki/Saddle_point
https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/NP-completeness

1.8. Summary 13

� The stochastic gradient descent algorithm is used to solve the optimization problem where
model parameters are updated each iteration using the backpropagation algorithm.

1.8.1 Next

In the next tutorial, you will discover how the number of nodes controls the capacity of a neural
network and in turn the scope of the functions that can be learned.

Chapter 2

Configure Capacity with Nodes and
Layers

The capacity of a deep learning neural network model controls the scope of the mapping functions
that it is able to learn. A model with too little capacity cannot learn the training dataset
meaning it will underfit, whereas a model with too much capacity may memorize the training
dataset, meaning it will overfit or may get stuck or lost during the optimization process. The
capacity of a neural network model is defined by configuring the number of nodes and the
number of layers. In this tutorial, you will discover how to control the capacity of a neural
network model and how capacity impacts what a model is capable of learning. After completing
this tutorial, you will know:

� Neural network model capacity is controlled both by the number of nodes and the number
of layers in the model.

� A model with a single hidden layer and sufficient number of nodes has the capability of
learning any mapping function, but the chosen learning algorithm may or may not be able
to realize this capability.

� Increasing the number of layers provides a short-cut to increasing the capacity of the model
with fewer resources, and modern techniques allow learning algorithms to successfully
train deep models.

Let’s get started.

2.1 Neural Network Model Capacity

The goal of a neural network is to learn how to map input examples to output examples. Neural
networks learn mapping functions. The capacity of a network refers to the range or scope of the
functions that the model can approximate.

Informally, a model’s capacity is its ability to fit a wide variety of functions.

— Pages 111-112, Deep Learning, 2016.

14

2.2. Nodes and Layers Keras API 15

A model with less capacity may not be able to sufficiently learn the training dataset. A
model with more capacity can model more different functions and may be able to learn a
function to sufficiently map inputs to outputs in the training dataset. Whereas a model with
too much capacity may memorize the training dataset and fail to generalize or get lost or stuck
in the search for a suitable mapping function. Generally, we can think of model capacity as a
control over whether the model is likely to underfit or overfit a training dataset.

We can control whether a model is more likely to overfit or underfit by altering its
capacity.

— Page 111, Deep Learning, 2016.

The capacity of a neural network can be controlled by two aspects of the model:

� Number of Nodes.

� Number of Layers.

A model with more nodes or more layers has a greater capacity and, in turn, is potentially
capable of navigating a larger set of mapping functions.

A model with more layers and more hidden units per layer has higher representational
capacity - it is capable of representing more complicated functions.

— Page 428, Deep Learning, 2016.

The number of nodes in a layer is referred to as the width. Developing wide networks with one
layer and many nodes was relatively straightforward. In theory, a network with enough nodes
in the single hidden layer can learn to approximate any mapping function, although in practice,
we don’t know how many nodes are sufficient or how to train such a model. The number of
layers in a model is referred to as its depth. Increasing the depth increases the capacity of the
model. Training deep models, e.g. those with many hidden layers, can be computationally more
efficient than training a single layer network with a vast number of nodes.

Modern deep learning provides a very powerful framework for supervised learning.
By adding more layers and more units within a layer, a deep network can represent
functions of increasing complexity.

— Page 167, Deep Learning, 2016.

Traditionally, it has been challenging to train neural network models with more than a
few layers due to problems such as vanishing gradients. More recently, modern methods have
allowed the training of deep network models, allowing the developing of models of surprising
depth that are capable of achieving impressive performance on challenging problems in a wide
range of domains.

2.2 Nodes and Layers Keras API

Keras allows you to easily add nodes and layers to your model.

2.2. Nodes and Layers Keras API 16

2.2.1 Configuring Model Nodes

The first argument of the layer specifies the number of nodes used in the layer. Fully connected
layers for the Multilayer Perceptron, or MLP, model are added via the Dense layer. For example,
we can create one fully-connected layer with 32 nodes as follows:

...

layer = Dense(32)

Listing 2.1: Example of specifying the number of nodes for a Dense layer.

Similarly, the number of nodes can be specified for recurrent neural network layers in the
same way. For example, we can create one LSTM layer with 32 nodes (or units) as follows:

...

layer = LSTM(32)

Listing 2.2: Example of specifying the number of nodes for an LSTM layer.

Convolutional neural networks, or CNNs, don’t have nodes, instead specify the number of
filter maps and their shape. The number and size of filter maps define the capacity of the layer.
We can define a two-dimensional CNN with 32 filter maps, each with a size of 3 by 3, as follows:

...

layer = Conv2D(32, (3,3))

Listing 2.3: Example of specifying the number of filter maps for a CNN layer.

2.2.2 Configuring Model Layers

Layers are added to a sequential model via calls to the add() function and passing in the layer.
Fully connected layers for the MLP can be added via repeated calls to the add() function
passing in the configured Dense layers; for example:

...

model = Sequential()

model.add(Dense(32))

model.add(Dense(64))

Listing 2.4: Example of specifying the number of layers for an MLP.

Similarly, the number of layers for a recurrent network can be added in the same way
to give a stacked recurrent model. An important difference is that recurrent layers expect a
three-dimensional input, therefore the prior recurrent layer must return the full sequence of
outputs rather than the single output for each node at the end of the input sequence. This can
be achieved by setting the return sequences argument to True. For example:

...

model = Sequential()

model.add(LSTM(32, return_sequences=True))

model.add(LSTM(32))

Listing 2.5: Example of specifying the number of layers for an LSTM.

Convolutional layers can be stacked directly, and it is common to stack one or two con-
volutional layers together followed by a pooling layer, then repeat this pattern of layers; for
example:

2.3. Model Capacity Case Study 17

...

model = Sequential()

model.add(Conv2D(16, (3,3)))

model.add(Conv2D(16, (3,3)))

model.add(MaxPooling2D((2,2)))

model.add(Conv2D(32, (3,3)))

model.add(Conv2D(32, (3,3)))

model.add(MaxPooling2D((2,2)))

Listing 2.6: Example of specifying the number of layers for a CNN.

Now that we know how to configure the number of nodes and layers for models in Keras, we
can look at how the capacity affects model performance on a multiclass classification problem.

2.3 Model Capacity Case Study

In this section, we will demonstrate how to use model capacity to control learning with a
MLP on a simple classification problem. This example provides a template for exploring model
capacity with your own neural network for classification and regression problems.

2.3.1 Multiclass Classification Problem

We will use a standard multiclass classification problem as the basis to demonstrate the effect
of model capacity on model performance. The scikit-learn class provides the make blobs()

function that can be used to create a multiclass classification problem with the prescribed
number of samples, input variables, classes, and variance of samples within a class. We can
configure the problem to have a specific number of input variables via the n features argument,
and a specific number of classes or centers via the centers argument. The random state can
be used to seed the pseudorandom number generator to ensure that we always get the same
samples each time the function is called. For example, the call below generates 1,000 examples
for a three class problem with two input variables.

...

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

Listing 2.7: Example of creating samples for the blobs problem.

The results are the input and output elements of a dataset that we can model. In order to
get a feeling for the complexity of the problem, we can plot each point on a two-dimensional
scatter plot and color each point by class value. The complete example is listed below.

scatter plot of blobs dataset

from sklearn.datasets.samples_generator import make_blobs

from matplotlib import pyplot

from numpy import where

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

scatter plot for each class value

for class_value in range(3):

select indices of points with the class label

row_ix = where(y == class_value)

2.3. Model Capacity Case Study 18

scatter plot for points with a different color

pyplot.scatter(X[row_ix, 0], X[row_ix, 1])

show plot

pyplot.show()

Listing 2.8: Example of plotting samples from the blobs problem.

Running the example creates a scatter plot of the entire dataset. We can see that the chosen
standard deviation of 2.0 means that the classes are not linearly separable (separable by a line),
causing many ambiguous points. This is desirable as it means that the problem is non-trivial
and will allow a neural network model to find many different good enough candidate solutions.

Figure 2.1: Scatter Plot of Blobs Dataset With Three Classes and Points Colored by Class
Value.

In order to explore model capacity, we need more complexity in the problem than three
classes and two variables. For the purposes of the following experiments, we will use 100 input
features and 20 classes; for example:

...

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=20, n_features=100, cluster_std=2, random_state=2)

Listing 2.9: Example of creating a large number of samples for the blobs problem.

2.3. Model Capacity Case Study 19

2.3.2 Change Model Capacity With Nodes

In this section, we will develop a Multilayer Perceptron model, or MLP, for the blobs multiclass
classification problem and demonstrate the effect that the number of nodes has on the ability
of the model to learn. We can start off by developing a function to prepare the dataset. The
input and output elements of the dataset can be created using the make blobs() function as
described in the previous section. Next, the target variable must be one hot encoded. This is so
that the model can learn to predict the probability of an input example belonging to each of the
20 classes. We can use the to categorical() Keras utility function to do this, for example:

one hot encode output variable

y = to_categorical(y)

Listing 2.10: Example of one hot encoding the target variable.

Next, we can split the 1,000 examples in half and use 500 examples as the training dataset
and 500 to evaluate the model.

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

return trainX, trainy, testX, testy

Listing 2.11: Example of preparing the dataset for modeling.

The create dataset() function below ties these elements together and returns the train
and test sets in terms of the input and output elements.

prepare multiclass classification dataset

def create_dataset():

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=20, n_features=100, cluster_std=2,

random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

return trainX, trainy, testX, testy

Listing 2.12: Example of defining a function for preparing the dataset for modeling.

We can call this function to prepare the dataset.

prepare dataset

trainX, trainy, testX, testy = create_dataset()

Listing 2.13: Example of preparing the dataset.

Next, we can define a function that will create the model, fit it on the training dataset, and
then evaluate it on the test dataset. The model needs to know the number of input variables in
order to configure the input layer and the number of target classes in order to configure the
output layer. These properties can be extracted from the training dataset directly.

2.3. Model Capacity Case Study 20

configure the model based on the data

n_input, n_classes = trainX.shape[1], testy.shape[1]

Listing 2.14: Example of determining the number of inputs and classes.

We will define an MLP model with a single hidden layer that uses the rectified linear
activation function and the He random weight initialization method. The output layer will
use the softmax activation function in order to predict a probability for each target class. The
number of nodes in the hidden layer will be provided via an argument called n nodes.

define model

model = Sequential()

model.add(Dense(n_nodes, input_dim=n_input, activation='relu',

kernel_initializer='he_uniform'))

model.add(Dense(n_classes, activation='softmax'))

Listing 2.15: Example of defining an MLP model.

The model will be optimized using stochastic gradient descent with a modest learning rate
of 0.01 with a high momentum of 0.9, and a categorical cross-entropy loss function will be used,
suitable for multiclass classification.

compile model

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

Listing 2.16: Example of compiling an MLP model.

The model will be fit for 100 training epochs, then the model will be evaluated on the test
dataset.

fit model on train set

history = model.fit(trainX, trainy, epochs=100, verbose=0)

evaluate model on test set

_, test_acc = model.evaluate(testX, testy, verbose=0)

Listing 2.17: Example of fitting and evaluating an MLP model.

Tying these elements together, the evaluate model() function below takes the number of
nodes and dataset as arguments and returns the history of the training loss at the end of each
epoch and the accuracy of the final model on the test dataset.

fit model with given number of nodes, returns test set accuracy

def evaluate_model(n_nodes, trainX, trainy, testX, testy):

configure the model based on the data

n_input, n_classes = trainX.shape[1], testy.shape[1]

define model

model = Sequential()

model.add(Dense(n_nodes, input_dim=n_input, activation='relu',

kernel_initializer='he_uniform'))

model.add(Dense(n_classes, activation='softmax'))

compile model

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model on train set

history = model.fit(trainX, trainy, epochs=100, verbose=0)

evaluate model on test set

2.3. Model Capacity Case Study 21

_, test_acc = model.evaluate(testX, testy, verbose=0)

return history, test_acc

Listing 2.18: Example of defining a function to define, fit and evaluate an MLP model.

We can call this function with different numbers of nodes to use in the hidden layer. The
problem is relatively simple; therefore, we will review the performance of the model with 1 to 7
nodes. We would expect that increasing the number of nodes would increase the capacity of the
model and allow the model to better learn the training dataset, at least to a point limited by
the chosen configuration for the learning algorithm (e.g. learning rate, batch size, and epochs).
The test accuracy for each configuration will be printed and the learning curves of training
accuracy with each configuration will be plotted.

evaluate model and plot learning curve with given number of nodes

num_nodes = [1, 2, 3, 4, 5, 6, 7]

for n_nodes in num_nodes:

evaluate model with a given number of nodes

history, result = evaluate_model(n_nodes, trainX, trainy, testX, testy)

summarize final test set accuracy

print('nodes=%d: %.3f' % (n_nodes, result))

plot learning curve

pyplot.plot(history.history['loss'], label=str(n_nodes))

show the plot

pyplot.legend()

pyplot.show()

Listing 2.19: Example of evaluating models with different numbers of nodes.

The full code listing is provided below for completeness.

study of mlp learning curves given different number of nodes for multi-class

classification

from sklearn.datasets.samples_generator import make_blobs

from keras.layers import Dense

from keras.models import Sequential

from keras.optimizers import SGD

from keras.utils import to_categorical

from matplotlib import pyplot

prepare multi-class classification dataset

def create_dataset():

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=20, n_features=100, cluster_std=2,

random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

return trainX, trainy, testX, testy

fit model with given number of nodes, returns test set accuracy

def evaluate_model(n_nodes, trainX, trainy, testX, testy):

configure the model based on the data

n_input, n_classes = trainX.shape[1], testy.shape[1]

2.3. Model Capacity Case Study 22

define model

model = Sequential()

model.add(Dense(n_nodes, input_dim=n_input, activation='relu',

kernel_initializer='he_uniform'))

model.add(Dense(n_classes, activation='softmax'))

compile model

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model on train set

history = model.fit(trainX, trainy, epochs=100, verbose=0)

evaluate model on test set

_, test_acc = model.evaluate(testX, testy, verbose=0)

return history, test_acc

prepare dataset

trainX, trainy, testX, testy = create_dataset()

evaluate model and plot learning curve with given number of nodes

num_nodes = [1, 2, 3, 4, 5, 6, 7]

for n_nodes in num_nodes:

evaluate model with a given number of nodes

history, result = evaluate_model(n_nodes, trainX, trainy, testX, testy)

summarize final test set accuracy

print('nodes=%d: %.3f' % (n_nodes, result))

plot learning curve

pyplot.plot(history.history['loss'], label=str(n_nodes))

show the plot

pyplot.legend()

pyplot.show()

Listing 2.20: Example of evaluating MLP models with differing numbers of nodes on the blobs
problem.

Running the example first prints the test accuracy for each model configuration.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that as the number of nodes is increased, the capacity of the model
to learn the problem is increased. This results in a progressive lowering of the generalization
error of the model on the test dataset until 6 and 7 nodes when the model learns the problem
perfectly.

nodes=1: 0.138

nodes=2: 0.380

nodes=3: 0.582

nodes=4: 0.890

nodes=5: 0.844

nodes=6: 1.000

nodes=7: 1.000

Listing 2.21: Example output from evaluating MLP models with differing numbers of nodes on
the blobs problem.

A line plot is also created showing cross-entropy loss on the training dataset for each model
configuration (1 to 7 nodes in the hidden layer) over the 100 training epochs. We can see that

2.3. Model Capacity Case Study 23

as the number of nodes is increased, the model is able to better decrease the loss, e.g. to better
learn the training dataset. This plot shows the direct relationship between model capacity, as
defined by the number of nodes in the hidden layer and the model’s ability to learn.

Figure 2.2: Line Plot of Cross-Entropy Loss Over Training Epochs for an MLP on the Training
Dataset for the Blobs Multiclass Classification Problem When Varying Model Nodes.

The number of nodes can be increased to the point (e.g. 1,000 nodes) where the learning
algorithm is no longer able to sufficiently learn the mapping function.

2.3.3 Change Model Capacity With Layers

We can perform a similar analysis and evaluate how the number of layers impacts the ability
of the model to learn the mapping function. Increasing the number of layers can often greatly
increase the capacity of the model, acting like a computational and learning shortcut to modeling
a problem. For example, a model with one hidden layer of 10 nodes is not equivalent to a model
with two hidden layers with five nodes each. The latter has a much greater capacity. The danger
is that a model with more capacity than is required is likely to overfit the training data, and as
with a model that has too many nodes, a model with too many layers will likely be unable to
learn the training dataset, getting lost or stuck during the optimization process.

First, we can update the evaluate model() function to fit an MLP model with a given
number of layers. We know from the previous section that an MLP with about seven or more

2.3. Model Capacity Case Study 24

nodes fit for 100 epochs will learn the problem perfectly. We will, therefore, use 10 nodes in
each layer to ensure the model has enough capacity in just one layer to learn the problem. The
updated function is listed below, taking the number of layers and dataset as arguments and
returning the training history and test accuracy of the model.

fit model with given number of layers, returns test set accuracy

def evaluate_model(n_layers, trainX, trainy, testX, testy):

configure the model based on the data

n_input, n_classes = trainX.shape[1], testy.shape[1]

define model

model = Sequential()

model.add(Dense(10, input_dim=n_input, activation='relu',

kernel_initializer='he_uniform'))

for _ in range(1, n_layers):

model.add(Dense(10, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(n_classes, activation='softmax'))

compile model

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, epochs=100, verbose=0)

evaluate model on test set

_, test_acc = model.evaluate(testX, testy, verbose=0)

return history, test_acc

Listing 2.22: Example of a function for evaluating a model with a differing number of layers.

Given that a single hidden layer model has enough capacity to learn this problem, we will
explore increasing the number of layers to the point where the learning algorithm becomes
unstable and can no longer learn the problem. If the chosen modeling problem was more complex,
we could explore increasing the layers and review the improvements in model performance to a
point of diminishing returns. In this case, we will evaluate the model with 1 to 5 layers, with
the expectation that at some point, the number of layers will result in a model that the chosen
learning algorithm is unable to adapt to the training data.

evaluate model and plot learning curve of model with given number of layers

all_history = list()

num_layers = [1, 2, 3, 4, 5]

for n_layers in num_layers:

evaluate model with a given number of layers

history, result = evaluate_model(n_layers, trainX, trainy, testX, testy)

print('layers=%d: %.3f' % (n_layers, result))

plot learning curve

pyplot.plot(history.history['loss'], label=str(n_layers))

pyplot.legend()

pyplot.show()

Listing 2.23: Example of evaluating MLPs with differing numbers of layers.

Tying these elements together, the complete example is listed below.

study of mlp learning curves given different number of layers for multi-class

classification

from sklearn.datasets.samples_generator import make_blobs

from keras.models import Sequential

from keras.layers import Dense

2.3. Model Capacity Case Study 25

from keras.optimizers import SGD

from keras.utils import to_categorical

from matplotlib import pyplot

prepare multi-class classification dataset

def create_dataset():

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=20, n_features=100, cluster_std=2,

random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

return trainX, trainy, testX, testy

fit model with given number of layers, returns test set accuracy

def evaluate_model(n_layers, trainX, trainy, testX, testy):

configure the model based on the data

n_input, n_classes = trainX.shape[1], testy.shape[1]

define model

model = Sequential()

model.add(Dense(10, input_dim=n_input, activation='relu',

kernel_initializer='he_uniform'))

for _ in range(1, n_layers):

model.add(Dense(10, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(n_classes, activation='softmax'))

compile model

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, epochs=100, verbose=0)

evaluate model on test set

_, test_acc = model.evaluate(testX, testy, verbose=0)

return history, test_acc

get dataset

trainX, trainy, testX, testy = create_dataset()

evaluate model and plot learning curve of model with given number of layers

all_history = list()

num_layers = [1, 2, 3, 4, 5]

for n_layers in num_layers:

evaluate model with a given number of layers

history, result = evaluate_model(n_layers, trainX, trainy, testX, testy)

print('layers=%d: %.3f' % (n_layers, result))

plot learning curve

pyplot.plot(history.history['loss'], label=str(n_layers))

pyplot.legend()

pyplot.show()

Listing 2.24: Example of evaluating MLP models with differing numbers of layers on the blobs
problem.

Running the example first prints the test accuracy for each model configuration.

2.3. Model Capacity Case Study 26

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that the model is capable of learning the problem well with up to
three layers, then begins to falter. We can see that performance really drops with five layers
and is expected to continue to fall if the number of layers is increased further.

layers=1: 1.000

layers=2: 1.000

layers=3: 1.000

layers=4: 0.948

layers=5: 0.794

Listing 2.25: Example output from evaluating MLP models with differing numbers of layers on
the blobs problem.

A line plot is also created showing cross-entropy loss on the training dataset for each model
configuration (1 to 5 layers) over the 100 training epochs. We can see that the dynamics of the
model with 1, 2, and 3 models (blue, orange and green) are pretty similar, learning the problem
quickly. Surprisingly, training loss with four and five layers shows signs of initially doing well,
then leaping up, suggesting that the model is likely stuck with a sub-optimal set of weights
rather than overfitting the training dataset.

Figure 2.3: Line Plot of Cross-Entropy Loss Over Training Epochs for an MLP on the Training
Dataset for the Blobs Multiclass Classification Problem When Varying Model Layers.

2.4. Extensions 27

The analysis shows that increasing the capacity of the model via increasing depth is a very
effective tool that must be used with caution as it can quickly result in a model with a large
capacity that may not be capable of learning the training dataset easily.

2.4 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Too Many Nodes. Update the experiment of increasing nodes to find the point where
the learning algorithm is no longer capable of learning the problem.

� Repeated Evaluation. Update an experiment to use the repeated evaluation of each
configuration to counter the stochastic nature of the learning algorithm.

� Harder Problem. Repeat the experiment of increasing layers on a problem that requires
the increased capacity provided by increased depth in order to perform well.

If you explore any of these extensions, I’d love to know.

2.5 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

2.5.1 Books

� Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks, 1999.
https://amzn.to/2vhyW8j

� Deep Learning, 2016.
https://amzn.to/2IXzUIY

2.5.2 APIs

� Keras Core Layers API.
https://keras.io/layers/core/

� Keras Convolutional Layers API.
https://keras.io/layers/convolutional/

� Keras Recurrent Layers API.
https://keras.io/layers/recurrent/

� Keras Utility Functions.
https://keras.io/utils/

� sklearn.datasets.make blobs API.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.

html

https://amzn.to/2vhyW8j
https://amzn.to/2IXzUIY
https://keras.io/layers/core/
https://keras.io/layers/convolutional/
https://keras.io/layers/recurrent/
https://keras.io/utils/
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html

2.6. Summary 28

2.5.3 Articles

� How many hidden layers should I use?, comp.ai.neural-nets FAQ.
http://www.faqs.org/faqs/ai-faq/neural-nets/part3/section-9.html

2.6 Summary

In this tutorial, you discovered how to control the capacity of a neural network model and how
capacity impacts what a model is capable of learning. Specifically, you learned:

� Neural network model capacity is controlled both by the number of nodes and the number
of layers in the model.

� A model with a single hidden layer and a sufficient number of nodes has the capability
of learning any mapping function, but the chosen learning algorithm may or may not be
able to realize this capability.

� Increasing the number of layers provides a short-cut to increasing the capacity of the model
with fewer resources, and modern techniques allow learning algorithms to successfully
train deep models.

2.6.1 Next

In the next tutorial, you will discover how the batch size controls the precision of the estimate
of the error gradient that in turn controls the stability and speed of convergence.

http://www.faqs.org/faqs/ai-faq/neural-nets/part3/section-9.html

Chapter 3

Configure Gradient Precision with
Batch Size

Neural networks are trained using gradient descent where the estimate of the error used to
update the weights is calculated based on a subset of the training dataset. The number of
examples from the training dataset used in the estimate of the error gradient is called the batch
size and is an important hyperparameter that influences the dynamics of the learning algorithm.
It is important to explore the dynamics of your model to ensure that you’re getting the most
out of it. In this tutorial, you will discover three different flavors of gradient descent and how
to explore and diagnose the effect of batch size on the learning process. After completing this
tutorial, you will know:

� Batch size controls the accuracy of the estimate of the error gradient when training neural
networks.

� Batch, Stochastic, and Minibatch gradient descent are the three main flavors of the learning
algorithm.

� There is a tension between batch size and the speed and stability of the learning process.

Let’s get started.

3.1 Batch Size and Gradient Descent

Neural networks are trained using the stochastic gradient descent optimization algorithm. This
involves using the current state of the model to make a prediction, comparing the prediction
to the actual values, and using the difference as an estimate of the error gradient. This error
gradient is then used to update the model weights and the process is repeated. The error
gradient is a statistical estimate. The more training examples used in the estimate, the more
accurate this estimate will be and the more likely that the weights of the network will be
adjusted in a way that will improve the performance of the model. The improved estimate of
the error gradient comes at the computational cost of having to use the model to make many
more predictions before the estimate can be calculated, and in turn, the weights updated.

29

3.1. Batch Size and Gradient Descent 30

Optimization algorithms that use the entire training set are called batch or de-
terministic gradient methods, because they process all of the training examples
simultaneously in a large batch.

— Page 278, Deep Learning, 2016.

Alternately, using fewer examples results in a less accurate estimate of the error gradient
that is highly dependent on the specific training examples used. This results in a noisy estimate
that, in turn, results in noisy updates to the model weights, e.g. many updates with perhaps
quite different estimates of the error gradient. Nevertheless, these noisy updates can result in
faster learning and sometimes a more robust model.

Optimization algorithms that use only a single example at a time are sometimes
called stochastic or sometimes online methods. The term online is usually reserved
for the case where the examples are drawn from a stream of continually created
examples rather than from a fixed-size training set over which several passes are
made.

— Page 278, Deep Learning, 2016.

The number of training examples used in the estimate of the error gradient is a hyperparameter
for the learning algorithm called the batch size, or simply the batch. A batch size of 32 means
that 32 samples from the training dataset will be used to estimate the error gradient before
the model weights are updated. One training epoch means that the learning algorithm has
made one pass through the training dataset (using every example once), where examples were
separated into randomly selected batch size groups.

Historically, a training algorithm where the batch size is set to the total number of training
examples is called batch gradient descent and a training algorithm where the batch size is set to 1
training example is called stochastic gradient descent or online gradient descent. A configuration
of the batch size anywhere in between (e.g. more than 1 example and less than the number of
examples in the training dataset) is called minibatch gradient descent.

� Batch Gradient Descent. Batch size is set to the total number of examples in the
training dataset.

� Stochastic Gradient Descent. Batch size is set to one.

� Minibatch Gradient Descent. Batch size is set to more than one and less than the
total number of examples in the training dataset.

For shorthand, the algorithm is often referred to as stochastic gradient descent regardless
of the batch size. Given that very large datasets are often used to train deep learning neural
networks, the batch size is rarely set to the size of the training dataset. Smaller batch sizes are
used for two main reasons:

� Smaller batch sizes are noisy, offering a regularizing effect and lower generalization error.

� Smaller batch sizes make it easier to fit one batch worth of training data in memory (i.e.
when using a GPU that has access to less local memory than system RAM).

3.2. Gradient Descent Keras API 31

A third reason is that the batch size is often set at something small, such as 32 examples,
and is not tuned by the practitioner. Small batch sizes such as 32 do work well generally.

... [batch size] is typically chosen between 1 and a few hundreds, e.g. [batch size] =
32 is a good default value

— Practical recommendations for gradient-based training of deep architectures, 2012.

The presented results confirm that using small batch sizes achieves the best training
stability and generalization performance, for a given computational cost, across a
wide range of experiments. In all cases the best results have been obtained with
batch sizes m = 32 or smaller, often as small as m = 2 or m = 4.

— Revisiting Small Batch Training for Deep Neural Networks, 2018.

Nevertheless, the batch size impacts how quickly a model learns and the stability of the
learning process. It is an important hyperparameter that should be well understood and tuned
by the deep learning practitioner.

3.2 Gradient Descent Keras API

Keras allows you to train your model using stochastic, batch, or minibatch gradient descent.
This can be achieved by setting the batch size argument on the call to the fit() function
when training your model. Let’s take a look at each approach in turn.

3.2.1 Batch Size Keras API

The example below sets the batch size argument to 1 for stochastic gradient descent.

...

model.fit(trainX, trainy, batch_size=1)

Listing 3.1: Example of stochastic gradient descent in Keras.

3.2.2 Batch Gradient Descent in Keras

The example below sets the batch size argument to the number of samples in the training
dataset for batch gradient descent.

...

model.fit(trainX, trainy, batch_size=len(trainX))

Listing 3.2: Example of batch gradient descent in Keras.

3.3. Batch Size Case Study 32

3.2.3 Minibatch Gradient Descent in Keras

The example below uses the default batch size of 32 for the batch size argument, which is
more than 1 for stochastic gradient descent and less that the size of your training dataset for
batch gradient descent.

...

model.fit(trainX, trainy)

Listing 3.3: Example of minibatch gradient descent with default batch size in Keras.

Alternately, the batch size can be specified to something other than 1 or the number of
samples in the training dataset, such as 64.

...

model.fit(trainX, trainy, batch_size=64)

Listing 3.4: Example of minibatch gradient descent in Keras.

3.3 Batch Size Case Study

In this section, we will demonstrate how to use gradient descent batch size to control learning
with a MLP on a simple classification problem. This example provides a template for exploring
batch size with your own neural network for classification and regression problems.

3.3.1 Multiclass Classification Problem

We will use a small multiclass classification problem as the basis to demonstrate the effect of
batch size on learning. The scikit-learn class provides the make blobs() function that can be
used to create a multiclass classification problem with the prescribed number of samples, input
variables, classes, and variance of samples within a class. The problem can be configured to
have two input variables (to represent the x and y coordinates of the points) and a standard
deviation of 2.0 for points within each group. We will use the same random state (seed for the
pseudorandom number generator) to ensure that we always get the same data points.

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

Listing 3.5: Example of generating samples for the blobs problem.

The results are the input and output elements of a dataset that we can model. In order to
get a feeling for the complexity of the problem, we can plot each point on a two-dimensional
scatter plot and color each point by class value. The complete example is listed below.

scatter plot of blobs dataset

from sklearn.datasets.samples_generator import make_blobs

from matplotlib import pyplot

from numpy import where

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

scatter plot for each class value

for class_value in range(3):

select indices of points with the class label

3.3. Batch Size Case Study 33

row_ix = where(y == class_value)

scatter plot for points with a different color

pyplot.scatter(X[row_ix, 0], X[row_ix, 1])

show plot

pyplot.show()

Listing 3.6: Example of plotting samples from the blobs problem.

Running the example creates a scatter plot of the entire dataset. We can see that the
standard deviation of 2.0 means that the classes are not linearly separable (separable by a line)
causing many ambiguous points. This is desirable as it means that the problem is non-trivial
and will allow a neural network model to find many different good enough candidate solutions.

Figure 3.1: Scatter Plot of Blobs Dataset With Three Classes and Points Colored by Class
Value.

3.3.2 MLP Fit With Batch Gradient Descent

We can develop a Multilayer Perceptron model (MLP) to address the multiclass classification
problem described in the previous section and train it using batch gradient descent. Firstly, we
need to one hot encode the target variable, transforming the integer class values into binary
vectors. This will allow the model to predict the probability of each example belonging to each
of the three classes, providing more nuance in the predictions and context when training the
model.

3.3. Batch Size Case Study 34

one hot encode output variable

y = to_categorical(y)

Listing 3.7: Example of one hot encoding the target variable.

Next, we will split the training dataset of 1,000 examples into a train and test dataset with
500 examples each. This even split will allow us to evaluate and compare the performance of
different configurations of the batch size on the model and its performance.

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

Listing 3.8: Example of preparing the dataset for modeling.

We will define an MLP model with an input layer that expects two input variables, for the
two variables in the dataset. The model will have a single hidden layer with 50 nodes and a
rectified linear activation function and He random weight initialization. Finally, the output layer
has 3 nodes in order to make predictions for the three classes and a softmax activation function.

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

Listing 3.9: Example of defining the MLP model.

We will optimize the model with stochastic gradient descent and use categorical cross-entropy
to calculate the error of the model during training. In this example, we will use batch gradient
descent, meaning that the batch size will be set to the size of the training dataset. The model
will be fit for 200 training epochs and the test dataset will be used as the validation set in order
to monitor the performance of the model on a holdout set during training. The effect will be
more time between weight updates and we would expect faster training than other batch sizes,
and more stable estimates of the gradient, which should result in a more stable performance of
the model during training.

compile model

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200, verbose=0,

batch_size=len(trainX))

Listing 3.10: Example of compiling and fitting the MLP model.

Once the model is fit, the performance is evaluated and reported on the train and test
datasets.

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

Listing 3.11: Example of evaluating the MLP model.

3.3. Batch Size Case Study 35

A line plot is created showing the train and test set accuracy of the model for each training
epoch. These learning curves provide an indication of three things: how quickly the model
learns the problem, how well it has learned the problem, and how noisy the updates were to the
model during training.

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 3.12: Example of plotting learning curves for the MLP model.

Tying these elements together, the complete example is listed below.

mlp for the blobs problem with batch gradient descent

from sklearn.datasets.samples_generator import make_blobs

from keras.layers import Dense

from keras.models import Sequential

from keras.optimizers import SGD

from keras.utils import to_categorical

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

compile model

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200, verbose=0,

batch_size=len(trainX))

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

3.3. Batch Size Case Study 36

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 3.13: Example of batch gradient descent for an MLP on the blobs problem.

Running the example first reports the performance of the model on the train and test
datasets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that performance was similar between the train and test sets with
81% and 83% respectively.

Train: 0.814, Test: 0.834

Listing 3.14: Example output from batch gradient descent for an MLP on the blobs problem.

A line plot of model loss and classification accuracy on the train (blue) and test (orange)
dataset is created. We can see that the model is relatively slow to learn this problem, converging
on a solution after about 100 epochs after which changes in model performance are minor.

3.3. Batch Size Case Study 37

Figure 3.2: Line Plot of Classification Accuracy on Train and Tests Sets of an MLP Fit With
Batch Gradient Descent.

3.3.3 MLP Fit With Stochastic Gradient Descent

The example of batch gradient descent from the previous section can be updated to instead use
stochastic gradient descent. This requires changing the batch size from the size of the training
dataset to 1.

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200, verbose=0,

batch_size=1)

Listing 3.15: Example of configuring stochastic gradient descent.

Stochastic gradient descent requires that the model make a prediction and have the weights
updated for each training example. This has the effect of dramatically slowing down the training
process as compared to batch gradient descent. The expectation of this change is that the
model learns faster (e.g. in terms of the learning curve) and that changes to the model are noisy,
resulting, in turn, in noisy performance over training epochs. The complete example with this
change is listed below.

mlp for the blobs problem with stochastic gradient descent

from sklearn.datasets.samples_generator import make_blobs

from keras.layers import Dense

3.3. Batch Size Case Study 38

from keras.models import Sequential

from keras.optimizers import SGD

from keras.utils import to_categorical

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

compile model

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200, verbose=0,

batch_size=1)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 3.16: Example of stochastic gradient descent for an MLP on the blobs problem.

Running the example first reports the performance of the model on the train and test
datasets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that performance was similar between the train and test sets, around
50% accuracy, but was dramatically worse (about 30 percentage points) than using batch
gradient descent. At least for this problem and the chosen model and model configuration,
stochastic (online) gradient descent is not appropriate.

Train: 0.508, Test: 0.530

Listing 3.17: Example output from stochastic gradient descent for an MLP on the blobs problem.

3.3. Batch Size Case Study 39

A line plot of model loss and classification accuracy on the train (blue) and test (orange)
dataset is created. The plot shows the unstable nature of the training process with the chosen
configuration. The poor performance and erratic changes to the model suggest that the learning
rate used to update weights after each training example may be too large and that a smaller
learning rate may make the learning process more stable.

Figure 3.3: Line Plot of Classification Accuracy on Train and Tests Sets of an MLP Fit With
Stochastic Gradient Descent.

We can test this by re-running the model fit with stochastic gradient descent and a smaller
learning rate. For example, we can drop the learning rate by an order of magnitude from 0.01
to 0.001.

compile model

opt = SGD(lr=0.001, momentum=0.9)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

Listing 3.18: Example of changing the learning rate for stochastic gradient descent.

The full code listing with this change is provided below for completeness.

mlp for the blobs problem with stochastic gradient descent (smaller learning rate)

from sklearn.datasets.samples_generator import make_blobs

from keras.layers import Dense

from keras.models import Sequential

3.3. Batch Size Case Study 40

from keras.optimizers import SGD

from keras.utils import to_categorical

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

compile model

opt = SGD(lr=0.001, momentum=0.9)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200, verbose=0,

batch_size=1)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 3.19: Example of stochastic gradient descent with smaller learning rate for an MLP on
the blobs problem.

Running this example tells a very different story.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

The reported performance is greatly improved, achieving classification accuracy on the train
and test sets on par with fit using batch gradient descent.

Train: 0.830, Test: 0.824

Listing 3.20: Example output from stochastic gradient descent with smaller learning rate for an
MLP on the blobs problem.

3.3. Batch Size Case Study 41

The line plot shows the expected behavior. Namely, that the model rapidly learns the
problem as compared to batch gradient descent, leaping up to about 80% accuracy in about
25 epochs rather than the 100 epochs seen when using batch gradient descent. We could have
stopped training at epoch 50 instead of epoch 200 due to the faster training. This is not
surprising. With batch gradient descent, 100 epochs involved 100 estimates of error and 100
weight updates. In stochastic gradient descent, 25 epochs involved (500× 25) or 12,500 weight
updates, providing more than 10-times more feedback, albeit more noisy feedback, about how
to improve the model.

The line plot also shows that train and test performance remain comparable during training,
as compared to the dynamics with batch gradient descent where the performance on the test
set was slightly better and remained so throughout training. Unlike batch gradient descent, we
can see that the noisy updates result in noisy performance throughout the duration of training.
This variance in the model means that it may be challenging to choose which model to use as
the final model, as opposed to batch gradient descent where performance is stabilized because
the model has converged.

Figure 3.4: Line Plot of Classification Accuracy on Train and Tests Sets of an MLP Fit With
Stochastic Gradient Descent and Smaller Learning Rate.

This example highlights the important relationship between batch size and the learning rate.
Namely, more noisy updates to the model require a smaller learning rate, whereas less noisy

3.3. Batch Size Case Study 42

more accurate estimates of the error gradient may be applied to the model more liberally. We
can summarize this as follows:

� Batch Gradient Descent: Use a relatively larger learning rate and more training epochs.

� Stochastic Gradient Descent: Use a relatively smaller learning rate and fewer training
epochs.

Mini-batch gradient descent provides an alternative approach.

3.3.4 MLP Fit With Minibatch Gradient Descent

An alternative to using stochastic gradient descent and tuning the learning rate is to hold the
learning rate constant and to change the batch size. In effect, it means that we specify the
rate of learning or amount of change to apply to the weights each time we estimate the error
gradient, but to vary the accuracy of the gradient based on the number of samples used to
estimate it. Holding the learning rate at 0.01 as we did with batch gradient descent, we can set
the batch size to 32, a widely adopted default batch size.

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200, verbose=0,

batch_size=32)

Listing 3.21: Example of configuring the model for minibatch gradient descent.

We would expect to get some of the benefits of stochastic gradient descent with a larger
learning rate. The complete example with this modification is listed below.

mlp for the blobs problem with minibatch gradient descent

from sklearn.datasets.samples_generator import make_blobs

from keras.layers import Dense

from keras.models import Sequential

from keras.optimizers import SGD

from keras.utils import to_categorical

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

compile model

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200, verbose=0,

batch_size=32)

evaluate the model

3.3. Batch Size Case Study 43

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 3.22: Example of minibatch gradient descent for an MLP on the blobs problem.

Running the example reports similar performance on both train and test sets, comparable
with batch gradient descent and stochastic gradient descent after we reduced the learning rate.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

Train: 0.808, Test: 0.826

Listing 3.23: Example output from minibatch gradient descent for an MLP on the blobs problem.

The line plot shows the dynamics of both stochastic and batch gradient descent. Specifically,
the model learns fast and has noisy updates but also stabilizes more towards the end of the run,
more so than stochastic gradient descent. Holding learning rate constant and varying the batch
size allows you to dial in the best of both approaches.

3.3. Batch Size Case Study 44

Figure 3.5: Line Plot of Classification Accuracy on Train and Tests Sets of an MLP Fit With
Minibatch Gradient Descent.

3.3.5 Effect of Batch Size on Model Behavior

We can refit the model with different batch sizes and review the impact the change in batch size
has on the speed of learning, stability during learning, and on the final result. First, we can
clean up the code and create a function to prepare the dataset.

prepare train and test dataset

def prepare_data():

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

return trainX, trainy, testX, testy

Listing 3.24: Example of a function for preparing the data for modeling.

Next, we can create a function to fit a model on the problem with a given batch size and
plot the learning curves of classification accuracy on the train and test datasets.

3.3. Batch Size Case Study 45

fit a model and plot learning curve

def fit_model(trainX, trainy, testX, testy, n_batch):

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

compile model

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200,

verbose=0, batch_size=n_batch)

plot learning curves

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.title('batch='+str(n_batch), pad=-40)

Listing 3.25: Example of a function for evaluating a model with a given batch size.

Finally, we can evaluate the model behavior with a suite of different batch sizes while holding
everything else about the model constant, including the learning rate.

prepare dataset

trainX, trainy, testX, testy = prepare_data()

create learning curves for different batch sizes

batch_sizes = [4, 8, 16, 32, 64, 128, 256, 450]

for i in range(len(batch_sizes)):

determine the plot number

plot_no = 420 + (i+1)

pyplot.subplot(plot_no)

fit model and plot learning curves for a batch size

fit_model(trainX, trainy, testX, testy, batch_sizes[i])

show learning curves

pyplot.show()

Listing 3.26: Example of evaluating models with different batch sizes.

The result will be a figure with eight plots of model behavior with eight different batch sizes.
Tying this together, the complete example is listed below.

mlp for the blobs problem with minibatch gradient descent with varied batch size

from sklearn.datasets.samples_generator import make_blobs

from keras.layers import Dense

from keras.models import Sequential

from keras.optimizers import SGD

from keras.utils import to_categorical

from matplotlib import pyplot

prepare train and test dataset

def prepare_data():

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 500

3.3. Batch Size Case Study 46

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

return trainX, trainy, testX, testy

fit a model and plot learning curve

def fit_model(trainX, trainy, testX, testy, n_batch):

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

compile model

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200,

verbose=0, batch_size=n_batch)

plot learning curves

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.title('batch='+str(n_batch), pad=-40)

prepare dataset

trainX, trainy, testX, testy = prepare_data()

create learning curves for different batch sizes

batch_sizes = [4, 8, 16, 32, 64, 128, 256, 450]

for i in range(len(batch_sizes)):

determine the plot number

plot_no = 420 + (i+1)

pyplot.subplot(plot_no)

fit model and plot learning curves for a batch size

fit_model(trainX, trainy, testX, testy, batch_sizes[i])

show learning curves

pyplot.show()

Listing 3.27: Example of evaluating and comparing models with different batch sizes.

Running the example creates a figure with eight line plots showing the classification accuracy
on the train and test sets of models with different batch sizes when using minibatch gradient
descent.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

The plots show that small batch results generally in rapid learning but a volatile learning
process with higher variance in the classification accuracy. Larger batch sizes slow down the
learning process (in terms of the learning curves) but the final stages result in a convergence to
a more stable model exemplified by lower variance in classification accuracy.

3.4. Extensions 47

Figure 3.6: Line Plots of Classification Accuracy on Train and Test Datasets With Different
Batch Sizes.

3.4 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Vary Learning Rate. Study the effect of different learning rate values on a logarithmic
scale with stochastic (online) gradient descent.

� Vary Epochs. Study the number of epochs required for convergence as the batch size is
increased to the size of the training dataset with minibatch gradient descent.

If you explore any of these extensions, I’d love to know.

3.5 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

3.6. Summary 48

3.5.1 Books

� Section 8.1.3: Batch and Minibatch Algorithms, Deep Learning, 2016.
https://amzn.to/2NJW3gE

3.5.2 Papers

� Revisiting Small Batch Training for Deep Neural Networks, 2018.
https://arxiv.org/abs/1804.07612

� Practical recommendations for gradient-based training of deep architectures, 2012.
https://arxiv.org/abs/1206.5533

3.5.3 Articles

� Stochastic gradient descent, Wikipedia.
https://en.wikipedia.org/wiki/Stochastic_gradient_descent

3.6 Summary

In this tutorial, you discovered three different flavors of gradient descent and how to explore
and diagnose the effect of batch size on the learning process. Specifically, you learned:

� Batch size controls the accuracy of the estimate of the error gradient when training neural
networks.

� Batch, Stochastic, and Minibatch gradient descent are the three main flavors of the learning
algorithm.

� There is a tension between batch size and the speed and stability of the learning process.

3.6.1 Next

In the next tutorial, you will discover how the loss function controls the nature of the optimization
problem that is being solved by stochastic gradient descent.

https://amzn.to/2NJW3gE
https://arxiv.org/abs/1804.07612
https://arxiv.org/abs/1206.5533
https://en.wikipedia.org/wiki/Stochastic_gradient_descent

Chapter 4

Configure What to Optimize with Loss
Functions

Neural networks are trained using stochastic gradient descent and require that you choose a loss
function when designing and configuring your model. There are many loss functions to choose
from and it can be challenging to know what to choose, or even what a loss function is and the
role it plays when training a neural network. In this tutorial, you will discover the role of loss
and loss functions in training deep learning neural networks and how to choose the right loss
function for your predictive modeling problems. After reading this tutorial, you will know:

� Neural networks are trained using an optimization process that requires a loss function to
calculate the model error.

� Maximum Likelihood provides a framework for choosing a loss function when training
neural networks and machine learning models in general.

� Cross-entropy and mean squared error are the two main types of loss functions to use
when training neural network models.

Let’s get started.

4.1 Loss Functions

In this section you will discover loss functions and how they are used to define the nature of the
optimization problem that is solved when adapting neural network weights to a training dataset.

4.1.1 Neural Network Learning as Optimization

A deep learning neural network learns to map a set of inputs to a set of outputs from training
data. We cannot calculate the perfect weights for a neural network; there are too many unknowns.
Instead, the problem of learning is cast as a search or optimization problem and an algorithm is
used to navigate the space of possible sets of weights the model may use in order to make good
or good enough predictions. Typically, a neural network model is trained using the stochastic
gradient descent optimization algorithm and weights are updated using the backpropagation of
error algorithm.

49

4.1. Loss Functions 50

The gradient in gradient descent refers to an error gradient. The model with a given set
of weights is used to make predictions and the error for those predictions is calculated. The
gradient descent algorithm seeks to change the weights so that the next evaluation reduces the
error, meaning the optimization algorithm is navigating down the gradient (or slope) of error.
Now that we know that training neural nets solves an optimization problem, we can look at
how the error of a given set of weights is calculated.

4.1.2 What Is a Loss Function and Loss?

In the context of an optimization algorithm, the function used to evaluate a candidate solution
(i.e. a set of weights) is referred to as the objective function. We may seek to maximize or
minimize the objective function, meaning that we are searching for a candidate solution that has
the highest or lowest score respectively. Typically, with neural networks, we seek to minimize
the error. As such, the objective function is often referred to as a cost function or a loss function
and the value calculated by the loss function is referred to as simply loss.

The function we want to minimize or maximize is called the objective function or
criterion. When we are minimizing it, we may also call it the cost function, loss
function, or error function.

— Page 82, Deep Learning, 2016.

The cost or loss function has an important job in that it must faithfully distill all aspects of
the model down into a single number in such a way that improvements in that number are a
sign of a better model.

The cost function reduces all the various good and bad aspects of a possibly complex
system down to a single number, a scalar value, which allows candidate solutions to
be ranked and compared.

— Page 155, Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks,
1999.

In calculating the error of the model during the optimization process, a loss function must
be chosen. This can be a challenging problem as the function must capture the properties of
the problem and be motivated by concerns that are important to the project and stakeholders.

It is important, therefore, that the function faithfully represent our design goals. If
we choose a poor error function and obtain unsatisfactory results, the fault is ours
for badly specifying the goal of the search.

— Page 155, Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks,
1999.

Now that we are familiar with the loss function and loss, we need to know what functions to
use.

4.1. Loss Functions 51

4.1.3 Maximum Likelihood

There are many functions that could be used to estimate the error of a set of weights in a neural
network. We prefer a function where the space of candidate solutions maps onto a smooth
(but high-dimensional) landscape that the optimization algorithm can reasonably navigate via
iterative updates to the model weights. Maximum likelihood estimation, or MLE, is a framework
for inference for finding the best statistical estimates of parameters from historical training data:
exactly what we are trying to do with the neural network.

Maximum likelihood seeks to find the optimum values for the parameters by maxi-
mizing a likelihood function derived from the training data.

— Page 39, Neural Networks for Pattern Recognition, 1995.

We have a training dataset with one or more input variables and we require a model to
estimate model weight parameters that best map examples of the inputs to the output or target
variable. Given input, the model is trying to make predictions that match the data distribution
of the target variable. Under maximum likelihood, a loss function estimates how closely the
distribution of predictions made by a model matches the distribution of target variables in the
training data.

One way to interpret maximum likelihood estimation is to view it as minimizing the
dissimilarity between the empirical distribution [...] defined by the training set and
the model distribution, with the degree of dissimilarity between the two measured
by the KL divergence. [...] Minimizing this KL divergence corresponds exactly to
minimizing the cross-entropy between the distributions.

— Page 132, Deep Learning, 2016.

A benefit of using maximum likelihood as a framework for estimating the model parameters
(weights) for neural networks and in machine learning in general is that as the number of
examples in the training dataset is increased, the estimate of the model parameters improves.
This is called the property of consistency.

Under appropriate conditions, the maximum likelihood estimator has the property
of consistency [...], meaning that as the number of training examples approaches
infinity, the maximum likelihood estimate of a parameter converges to the true value
of the parameter.

— Page 134, Deep Learning, 2016.

Now that we are familiar with the general approach of maximum likelihood, we can look at
the error function.

4.1. Loss Functions 52

4.1.4 Maximum Likelihood and Cross-Entropy

Under the maximum likelihood framework, the error between two probability distributions is
measured using cross-entropy. When modeling a classification problem where we are interested in
mapping input variables to a class label, we can model the problem as predicting the probability
of an example belonging to each class. In a binary classification problem, there would be two
classes, so we may predict the probability of the example belonging to the first class. In the
case of multiple-class classification, we can predict a probability for the example belonging to
each of the classes.

In the training dataset, the probability of an example belonging to a given class would be 1
or 0, as each sample in the training dataset is a known example from the domain. We know
the answer. Therefore, under maximum likelihood estimation, we would seek a set of model
weights that minimize the difference between the model’s predicted probability distribution
given the dataset and the distribution of probabilities in the training dataset. This is called the
cross-entropy.

In most cases, our parametric model defines a distribution [...] and we simply use
the principle of maximum likelihood. This means we use the cross-entropy between
the training data and the model’s predictions as the cost function.

— Page 178, Deep Learning, 2016.

Technically, cross-entropy comes from the field of information theory and has the unit of
bits. It is used to estimate the difference between an estimated and a predicted probability
distribution. In the case of regression problems where a quantity is predicted, it is common to
use the mean squared error (MSE) loss function instead.

A few basic functions are very commonly used. The mean squared error is popular for
function approximation (regression) problems [...] The cross-entropy error function
is often used for classification problems when outputs are interpreted as probabilities
of membership in an indicated class.

— Page 155-156, Neural Smithing: Supervised Learning in Feedforward Artificial Neural
Networks, 1999.

Nevertheless, under the framework of maximum likelihood estimation and assuming a
Gaussian distribution for the target variable, mean squared error can be considered the cross-
entropy between the distribution of the model predictions and the distribution of the target
variable.

Many authors use the term “cross-entropy” to identify specifically the negative
log-likelihood of a Bernoulli or softmax distribution, but that is a misnomer. Any
loss consisting of a negative log-likelihood is a cross-entropy between the empirical
distribution defined by the training set and the probability distribution defined by
model. For example, mean squared error is the cross-entropy between the empirical
distribution and a Gaussian model.

— Page 132, Deep Learning, 2016.

4.1. Loss Functions 53

Therefore, when using the framework of maximum likelihood estimation, we will implement
a cross-entropy loss function, which often in practice means a cross-entropy loss function
for classification problems and a mean squared error loss function for regression problems.
Almost universally, deep learning neural networks are trained under the framework of maximum
likelihood using cross-entropy as the loss function.

Most modern neural networks are trained using maximum likelihood. This means
that the cost function is [...] described as the cross-entropy between the training
data and the model distribution.

— Pages 178-179, Deep Learning, 2016.

In fact, adopting this framework may be considered a milestone in deep learning, as before
being fully formalized, it was sometimes common for neural networks for classification to use a
mean squared error loss function.

One of these algorithmic changes was the replacement of mean squared error with
the cross-entropy family of loss functions. Mean squared error was popular in the
1980s and 1990s, but was gradually replaced by cross-entropy losses and the principle
of maximum likelihood as ideas spread between the statistics community and the
machine learning community.

— Page 226, Deep Learning, 2016.

The maximum likelihood approach was adopted almost universally not just because of the
theoretical framework, but primarily because of the results it produces. Specifically, neural
networks for classification that use a sigmoid or softmax activation function in the output layer
learn faster and more robustly using a cross-entropy loss function.

The use of cross-entropy losses greatly improved the performance of models with
sigmoid and softmax outputs, which had previously suffered from saturation and
slow learning when using the mean squared error loss.

— Page 226, Deep Learning, 2016.

4.1.5 What Loss Function to Use?

We can summarize the previous section and directly suggest the loss functions that you should
use under a framework of maximum likelihood. Importantly, the choice of loss function is
directly related to the activation function used in the output layer of your neural network. These
two design elements are connected. Think of the configuration of the output layer as a choice
about the framing of your prediction problem, and the choice of the loss function as the way to
calculate the error for a given framing of your problem.

The choice of cost function is tightly coupled with the choice of output unit. Most
of the time, we simply use the cross-entropy between the data distribution and the
model distribution. The choice of how to represent the output then determines the
form of the cross-entropy function.

— Page 181, Deep Learning, 2016.

We will review best practice or default values for each problem type with regard to the
output layer and loss function.

4.1. Loss Functions 54

Regression Problem

A problem where you predict a real-value quantity.

� Output Layer Configuration: One node with a linear activation unit.

� Loss Function: Mean Squared Error (MSE).

Binary Classification Problem

A problem where you classify an example as belonging to one of two classes. The problem is
framed as predicting the likelihood of an example belonging to class one, e.g. the class that you
assign the integer value 1, whereas the other class is assigned the value 0.

� Output Layer Configuration: One node with a sigmoid activation unit.

� Loss Function: Cross-Entropy, also referred to as Logarithmic loss.

Multiclass Classification Problem

A problem where you classify an example as belonging to one of more than two classes. The
problem is framed as predicting the likelihood of an example belonging to each class.

� Output Layer Configuration: One node for each class using the softmax activation
function.

� Loss Function: Cross-Entropy, also referred to as Logarithmic loss.

4.1.6 How to Implement Loss Functions

In order to make the loss functions concrete, this section explains how each of the main types of
loss function works and how to calculate the score in Python.

Mean Squared Error Loss

Mean Squared Error loss, or MSE for short, is calculated as the average of the squared differences
between the predicted and actual values. The result is always positive regardless of the sign
of the predicted and actual values and a perfect value is 0.0. The loss value is minimized,
although it can be used in a maximization optimization process by making the score negative.
The Python function below provides a pseudocode-like working implementation of a function
for calculating the mean squared error for a list of actual and a list of predicted real-valued
quantities.

calculate mean squared error

def mean_squared_error(actual, predicted):

sum_square_error = 0.0

for i in range(len(actual)):

sum_square_error += (actual[i] - predicted[i])**2.0

mean_square_error = 1.0 / len(actual) * sum_square_error

return mean_square_error

Listing 4.1: Example of a function for implementing mean squared error.

4.1. Loss Functions 55

For an efficient implementation, I’d encourage you to use the scikit-learn mean squared error()

function1.

Cross-Entropy Loss (or Log Loss)

Cross-entropy loss is often simply referred to as cross-entropy, logarithmic loss, logistic loss, or
log loss for short. Each predicted probability is compared to the actual class output value (0
or 1) and a score is calculated that penalizes the probability based on the distance from the
expected value. The penalty is logarithmic, offering a small score for small differences (0.1 or
0.2) and enormous score for a large difference (0.9 or 1.0).

Cross-entropy loss is minimized, where smaller values represent a better model than larger
values. A model that predicts perfect probabilities has a cross-entropy or log loss of 0.0.
Cross-entropy for a binary or two class prediction problem is actually calculated as the average
cross-entropy across all examples. The Python function below provides a pseudocode-like
working implementation of a function for calculating the cross-entropy for a list of actual 0 and
1 values compared to predicted probabilities for the class 1.

from math import log

calculate binary cross-entropy

def binary_cross_entropy(actual, predicted):

sum_score = 0.0

for i in range(len(actual)):

sum_score += actual[i] * log(1e-15 + predicted[i])

mean_sum_score = 1.0 / len(actual) * sum_score

return -mean_sum_score

Listing 4.2: Example of a function for implementing binary cross-entropy.

Note, we add a very small value (in this case 1E-15) to the predicted probabilities to avoid
ever calculating the log of 0.0. This means that in practice, the best possible loss will be a
value very close to zero, but not exactly zero. Cross-entropy can be calculated for multiple-class
classification. The classes have been one hot encoded, meaning that there is a binary feature for
each class value and the predictions must have predicted probabilities for each of the classes.
The cross-entropy is then summed across each binary feature and averaged across all examples in
the dataset. The Python function below provides a pseudocode-like working implementation of
a function for calculating the cross-entropy for a list of actual one hot encoded values compared
to predicted probabilities for each class.

from math import log

calculate categorical cross-entropy

def categorical_cross_entropy(actual, predicted):

sum_score = 0.0

for i in range(len(actual)):

for j in range(len(actual[i])):

sum_score += actual[i][j] * log(1e-15 + predicted[i][j])

mean_sum_score = 1.0 / len(actual) * sum_score

return -mean_sum_score

1https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.

html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html

4.2. Regression Loss Functions Case Study 56

Listing 4.3: Example of a function for implementing multiclass cross-entropy.

For an efficient implementation, I’d encourage you to use the scikit-learn log loss() func-
tion2.

4.1.7 Loss Functions and Reported Model Performance

Given the framework of maximum likelihood, we want to use a cross-entropy or mean squared
error loss function in general with stochastic gradient descent. Nevertheless, we may or may not
want to report the performance of the model using the loss function. For example, logarithmic
loss is challenging to interpret, especially for non-machine learning practitioner stakeholders.
The same can be said for the mean squared error. Instead, it may be more important to report
the accuracy and root mean squared error for models used for classification and regression
respectively.

It may also be desirable to choose models based on these metrics instead of loss. This is an
important consideration, as the model with the minimum loss may not be the model with best
metric that is important to project stakeholders. A good division to consider is to use the loss
to evaluate and diagnose how well the model is learning. This includes all of the considerations
of the optimization process, such as overfitting, underfitting, and convergence. An alternate
metric can then be chosen that has meaning to the project stakeholders to both evaluate model
performance and perform model selection.

� Loss: Used to evaluate and diagnose model optimization only.

� Metric: Used to evaluate and choose models in the context of the project.

The same metric can be used for both concerns but it is more likely that the concerns of
the optimization process will differ from the goals of the project and different scores will be
required. Nevertheless, it is often the case that improving the loss improves or, at worst, has no
effect on the metric of interest.

4.2 Regression Loss Functions Case Study

A regression predictive modeling problem involves predicting a real-valued quantity. In this
section, we will investigate loss functions that are appropriate for regression predictive modeling
problems. As the context for this investigation, we will use a standard regression problem
generator provided by the scikit-learn library in the make regression() function. This function
will generate examples from a simple regression problem with a given number of input variables,
statistical noise, and other properties. We will use this function to define a problem that has
20 input features; 10 of the features will be meaningful and 10 will not be relevant. A total of
1,000 examples will be randomly generated. The pseudorandom number generator will be fixed
to ensure that we get the same 1,000 examples each time the code is run.

2https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html

4.2. Regression Loss Functions Case Study 57

generate regression dataset

X, y = make_regression(n_samples=1000, n_features=20, noise=0.1, random_state=1)

Listing 4.4: Example of generating samples for the regression problem.

Neural networks generally perform better when the real-valued input and output variables
are scaled to a sensible range. For this problem, each of the input variables and the target
variable have a Gaussian distribution; therefore, standardizing the data in this case is desirable.
We can achieve this using the StandardScaler transformer class also from the scikit-learn
library. On a real problem, we would prepare the scaler on the training dataset and apply it to
the train and test sets, but for simplicity, we will scale all of the data together before splitting
into train and test sets.

standardize dataset

X = StandardScaler().fit_transform(X)

y = StandardScaler().fit_transform(y.reshape(len(y),1))[:,0]

Listing 4.5: Example of standardizing data samples.

Once scaled, the data will be split evenly into train and test sets.

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

Listing 4.6: Example of splitting data into train and test sets.

A small Multilayer Perceptron (MLP) model will be defined to address this problem and
provide the basis for exploring different loss functions. The model will expect 20 features as
input as defined by the problem. The model will have one hidden layer with 25 nodes and will
use the rectified linear activation function. The output layer will have 1 node, given the one
real-value to be predicted, and will use the linear activation function.

define model

model = Sequential()

model.add(Dense(25, input_dim=20, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(1, activation='linear'))

Listing 4.7: Example of defining the MLP model.

The model will be fit with stochastic gradient descent with a learning rate of 0.01 and a
momentum of 0.9, both sensible default values. Training will be performed for 100 epochs and
the test set will be evaluated at the end of each epoch so that we can plot learning curves at
the end of the run.

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='...', optimizer=opt)

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=100, verbose=0)

Listing 4.8: Example of compiling and fitting the MLP model.

Now that we have the basis of a problem and model, we can take a look evaluating three
common loss functions that are appropriate for a regression predictive modeling problem.
Although an MLP is used in these examples, the same loss functions can be used when training
CNN and RNN models for regression.

4.2. Regression Loss Functions Case Study 58

4.2.1 Mean Squared Error Loss

The Mean Squared Error, or MSE, loss is the default loss to use for regression problems.
Mathematically, it is the preferred loss function under the inference framework of maximum
likelihood if the distribution of the target variable is Gaussian. It is the loss function to be
evaluated first and only changed if you have a good reason. Mean squared error is calculated as
the average of the squared differences between the predicted and actual values. The result is
always positive regardless of the sign of the predicted and actual values and a perfect value is 0.0.
The squaring means that larger mistakes result in more error than smaller mistakes, meaning
that the model is punished for making larger mistakes. The mean squared error loss function
can be used in Keras by specifying ‘mse’ or ‘mean squared error’ as the loss function when
compiling the model.

model.compile(loss='mean_squared_error')

Listing 4.9: Example of using mean squared error loss function.

It is recommended that the output layer has one node for the target variable and the linear
activation function is used.

model.add(Dense(1, activation='linear'))

Listing 4.10: Example of using linear activation function.

A complete example of demonstrating an MLP on the described regression problem is listed
below.

mlp for regression with mse loss function

from sklearn.datasets import make_regression

from sklearn.preprocessing import StandardScaler

from keras.models import Sequential

from keras.layers import Dense

from keras.optimizers import SGD

from matplotlib import pyplot

generate regression dataset

X, y = make_regression(n_samples=1000, n_features=20, noise=0.1, random_state=1)

standardize dataset

X = StandardScaler().fit_transform(X)

y = StandardScaler().fit_transform(y.reshape(len(y),1))[:,0]

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(25, input_dim=20, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(1, activation='linear'))

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='mean_squared_error', optimizer=opt)

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=100, verbose=0)

evaluate the model

train_mse = model.evaluate(trainX, trainy, verbose=0)

test_mse = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_mse, test_mse))

plot loss during training

4.2. Regression Loss Functions Case Study 59

pyplot.title('Mean Squared Error Loss')

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

pyplot.show()

Listing 4.11: Example of mean squared error loss for MLP on the regression problem.

Running the example first prints the mean squared error for the model on the train and test
datasets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that the model learned the problem achieving zero error, at least to
three decimal places.

Train: 0.001, Test: 0.002

Listing 4.12: Example output from mean squared error loss for MLP on the regression problem.

A line plot is also created showing the mean squared error loss over the training epochs for
both the train (blue) and test (orange) sets. We can see that the model converged reasonably
quickly and both train and test performance remained equivalent. The performance and
convergence behavior of the model suggest that mean squared error is a good match for a neural
network learning this problem.

4.2. Regression Loss Functions Case Study 60

Figure 4.1: Line plot of Mean Squared Error Loss over Training Epochs When Optimizing the
Mean Squared Error Loss Function.

4.2.2 Mean Squared Logarithmic Error Loss

There may be regression problems in which the target value has a spread of values and when
predicting a large value, you may not want to punish a model as heavily as mean squared
error. Instead, you can first calculate the natural logarithm of each of the predicted values, then
calculate the mean squared error. This is called the Mean Squared Logarithmic Error loss, or
MSLE for short. It has the effect of relaxing the punishing effect of large differences in large
predicted values.

As a loss measure, it may be more appropriate when the model is predicting unscaled
quantities directly. Nevertheless, we can demonstrate this loss function using our simple
regression problem. The model can be updated to use the ‘mean squared logarithmic error’

loss function and keep the same configuration for the output layer. We will also track the
mean squared error as a metric when fitting the model so that we can use it as a measure of
performance and plot the learning curve.

model.compile(loss='mean_squared_logarithmic_error', optimizer=opt, metrics=['mse'])

Listing 4.13: Example of using mean squared logistic error loss function.

The complete example of using the MSLE loss function is listed below.

4.2. Regression Loss Functions Case Study 61

mlp for regression with msle loss function

from sklearn.datasets import make_regression

from sklearn.preprocessing import StandardScaler

from keras.models import Sequential

from keras.layers import Dense

from keras.optimizers import SGD

from matplotlib import pyplot

generate regression dataset

X, y = make_regression(n_samples=1000, n_features=20, noise=0.1, random_state=1)

standardize dataset

X = StandardScaler().fit_transform(X)

y = StandardScaler().fit_transform(y.reshape(len(y),1))[:,0]

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(25, input_dim=20, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(1, activation='linear'))

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='mean_squared_logarithmic_error', optimizer=opt, metrics=['mse'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=100, verbose=0)

evaluate the model

_, train_mse = model.evaluate(trainX, trainy, verbose=0)

_, test_mse = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_mse, test_mse))

plot loss during training

pyplot.subplot(211)

pyplot.title('Mean Squared Logarithmic Error Loss', pad=-20)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot mse during training

pyplot.subplot(212)

pyplot.title('Mean Squared Error', pad=-20)

pyplot.plot(history.history['mean_squared_error'], label='train')

pyplot.plot(history.history['val_mean_squared_error'], label='test')

pyplot.legend()

pyplot.show()

Listing 4.14: Example of mean squared logistic error loss for MLP on the regression problem.

Running the example first prints the mean squared error for the model on the train and test
dataset.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that the model resulted in slightly worse MSE on both the training
and test dataset. It may not be a good fit for this problem as the distribution of the target
variable is a standard Gaussian.

Train: 0.206, Test: 0.257

4.2. Regression Loss Functions Case Study 62

Listing 4.15: Example output from mean squared logistic error loss for MLP on the regression
problem.

A line plot is also created showing the mean squared logistic error loss over the training
epochs for both the train (blue) and test (orange) sets (top), and a similar plot for the mean
squared error (bottom). We can see that the MSLE converged well over the 100 epochs algorithm;
it appears that the MSE may be showing signs of overfitting the problem, dropping fast and
starting to rise from epoch 20 onwards.

Figure 4.2: Line Plots of Mean Squared Logistic Error Loss and Mean Squared Error Over
Training Epochs.

4.2.3 Mean Absolute Error Loss

On some regression problems, the distribution of the target variable may be mostly Gaussian,
but may have outliers, e.g. large or small values far from the mean value. The Mean Absolute
Error, or MAE, loss is an appropriate loss function in this case as it is more robust to outliers.
It is calculated as the average of the absolute difference between the actual and predicted values.
The model can be updated to use the ‘mean absolute error’ loss function and keep the same
configuration for the output layer.

4.2. Regression Loss Functions Case Study 63

model.compile(loss='mean_absolute_error', optimizer=opt, metrics=['mse'])

Listing 4.16: Example of using mean absolute error loss function.

The complete example using the mean absolute error as the loss function on the regression
test problem is listed below.

mlp for regression with mae loss function

from sklearn.datasets import make_regression

from sklearn.preprocessing import StandardScaler

from keras.models import Sequential

from keras.layers import Dense

from keras.optimizers import SGD

from matplotlib import pyplot

generate regression dataset

X, y = make_regression(n_samples=1000, n_features=20, noise=0.1, random_state=1)

standardize dataset

X = StandardScaler().fit_transform(X)

y = StandardScaler().fit_transform(y.reshape(len(y),1))[:,0]

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(25, input_dim=20, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(1, activation='linear'))

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='mean_absolute_error', optimizer=opt, metrics=['mse'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=100, verbose=0)

evaluate the model

_, train_mse = model.evaluate(trainX, trainy, verbose=0)

_, test_mse = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_mse, test_mse))

plot loss during training

pyplot.subplot(211)

pyplot.title('Mean Absolute Error Loss', pad=-20)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot mse during training

pyplot.subplot(212)

pyplot.title('Mean Squared Error', pad=-20)

pyplot.plot(history.history['mean_squared_error'], label='train')

pyplot.plot(history.history['val_mean_squared_error'], label='test')

pyplot.legend()

pyplot.show()

Listing 4.17: Example of mean absolute error loss for MLP on the regression problem.

Running the example first prints the mean squared error for the model on the train and test
dataset.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

4.3. Binary Classification Loss Functions Case Study 64

In this case, we can see that the model learned the problem, achieving a near zero error, at
least to three decimal places.

Train: 0.002, Test: 0.002

Listing 4.18: Example output from mean absolute error loss for MLP on the regression problem.

A line plot is also created showing the mean absolute error loss over the training epochs
for both the train (blue) and test (orange) sets (top), and a similar plot for the mean squared
error (bottom). In this case, we can see that MAE does converge but shows a bumpy course,
although the dynamics of MSE don’t appear greatly affected. We know that the target variable
is a standard Gaussian with no large outliers, so MAE would not be a good fit in this case. It
might be more appropriate on this problem if we did not scale the target variable first.

Figure 4.3: Line plots of Mean Absolute Error Loss and Mean Squared Error over Training
Epochs.

4.3 Binary Classification Loss Functions Case Study

Binary classification predictive modeling problems are those where examples are assigned one
of two labels. The problem is often framed as predicting a value of 0 or 1 for the first or
second class and is often implemented as predicting the probability of the example belonging to
class value 1. In this section, we will investigate loss functions that are appropriate for binary

4.3. Binary Classification Loss Functions Case Study 65

classification predictive modeling problems. We will generate examples from the circles test
problem in scikit-learn as the basis for this investigation. The circles problem involves samples
drawn from two concentric circles on a two-dimensional plane, where points on the outer circle
belong to class 0 and points for the inner circle belong to class 1. Statistical noise is added
to the samples to add ambiguity and make the problem more challenging to learn. We will
generate 1,000 examples and add 10% statistical noise. The pseudorandom number generator
will be seeded with the same value to ensure that we always get the same 1,000 examples.

generate circles

X, y = make_circles(n_samples=1000, noise=0.1, random_state=1)

Listing 4.19: Example of generating samples from the two circles problem.

We can create a scatter plot of the dataset to get an idea of the problem we are modeling.
The complete example is listed below.

scatter plot of the circles dataset with points colored by class

from sklearn.datasets import make_circles

from numpy import where

from matplotlib import pyplot

generate circles

X, y = make_circles(n_samples=1000, noise=0.1, random_state=1)

select indices of points with each class label

for i in range(2):

samples_ix = where(y == i)

pyplot.scatter(X[samples_ix, 0], X[samples_ix, 1], label=str(i))

pyplot.legend()

pyplot.show()

Listing 4.20: Example of plotting samples from the two circles problem.

Running the example creates a scatter plot of the examples, where the input variables define
the location of the point and the class value defines the color, with class 0 blue and class 1
orange.

4.3. Binary Classification Loss Functions Case Study 66

Figure 4.4: Scatter Plot of Dataset for the Circles Binary Classification Problem.

The points are already reasonably scaled around 0, almost in [-1,1]. We won’t rescale them
in this case. The dataset is split evenly for train and test sets.

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

Listing 4.21: Example of splitting data into train and test datasets.

A simple MLP model can be defined to address this problem that expects two inputs for the
two features in the dataset, a hidden layer with 50 nodes, a rectified linear activation function
and an output layer that will need to be configured for the choice of loss function.

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(1, activation='...'))

Listing 4.22: Example of defining the MLP model.

The model will be fit using stochastic gradient descent with the sensible default learning
rate of 0.01 and momentum of 0.9.

opt = SGD(lr=0.01, momentum=0.9)

4.3. Binary Classification Loss Functions Case Study 67

model.compile(loss='...', optimizer=opt, metrics=['accuracy'])

Listing 4.23: Example of compiling the MLP model.

We will fit the model for 200 training epochs and evaluate the performance of the model
against the loss and accuracy at the end of each epoch so that we can plot learning curves.

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200, verbose=0)

Listing 4.24: Example of fitting the MLP model.

Now that we have the basis of a problem and model, we can take a look evaluating three
common loss functions that are appropriate for a binary classification predictive modeling
problem. Although an MLP is used in these examples, the same loss functions can be used
when training CNN and RNN models for binary classification.

4.3.1 Binary Cross-Entropy Loss

Cross-entropy is the default loss function to use for binary classification problems. It is intended
for use with binary classification where the target values are in the set {0, 1}. Mathematically,
it is the preferred loss function under the inference framework of maximum likelihood. It is the
loss function to be evaluated first and only changed if you have a good reason. Cross-entropy
will calculate a score that summarizes the average difference between the actual and predicted
probability distributions for predicting class 1. The score is minimized and a perfect cross-
entropy value is 0. Cross-entropy can be specified as the loss function in Keras by specifying
‘binary crossentropy’ when compiling the model.

model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])

Listing 4.25: Example of using binary cross-entropy loss.

The function requires that the output layer is configured with a single node and a ‘sigmoid’

activation in order to predict the probability for class 1.

model.add(Dense(1, activation='sigmoid'))

Listing 4.26: Example of using the sigmoid activation function.

The complete example of an MLP with cross-entropy loss for the two circles binary classifi-
cation problem is listed below.

mlp for the circles problem with cross-entropy loss

from sklearn.datasets import make_circles

from keras.models import Sequential

from keras.layers import Dense

from keras.optimizers import SGD

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_circles(n_samples=1000, noise=0.1, random_state=1)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

4.3. Binary Classification Loss Functions Case Study 68

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(1, activation='sigmoid'))

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss during training

pyplot.subplot(211)

pyplot.title('Binary Cross-Entropy Loss', pad=-20)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy during training

pyplot.subplot(212)

pyplot.title('Classification Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 4.27: Example of using binary cross-entropy for the two circles problem.

Running the example first prints the classification accuracy for the model on the train and
test dataset.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that the model learned the problem reasonably well, achieving
about 83% accuracy on the training dataset and about 84% on the test dataset. The scores are
reasonably close, suggesting the model is probably not over or underfit.

Train: 0.834, Test: 0.848

Listing 4.28: Example output from using binary cross-entropy for the two circles problem.

A figure is also created showing two line plots, the top with the cross-entropy loss over
epochs for the train (blue) and test (orange) dataset, and the bottom plot showing classification
accuracy over epochs. The plot shows that the training process converged well. The plot for
loss is smooth, given the continuous nature of the error between the probability distributions,
whereas the line plot for accuracy shows bumps, given examples in the train and test set
can ultimately only be predicted as correct or incorrect, providing less granular feedback on
performance.

4.3. Binary Classification Loss Functions Case Study 69

Figure 4.5: Line Plots of Cross-Entropy Loss and Classification Accuracy over Training Epochs
on the Two Circles Binary Classification Problem.

4.3.2 Hinge Loss

An alternative to cross-entropy for binary classification problems is the hinge loss function,
primarily developed for use with Support Vector Machine (SVM) models. It is intended for
use with binary classification where the target values are in the set {-1, 1}. The hinge loss
function encourages examples to have the correct sign, assigning more error when there is a
difference in the sign between the actual and predicted class values. Reports of performance
with the hinge loss are mixed, sometimes resulting in better performance than cross-entropy on
binary classification problems. Firstly, the target variable must be modified to have values in
the set {-1, 1}.
change y from {0,1} to {-1,1}

y[where(y == 0)] = -1

Listing 4.29: Example of preparing the target variable.

The hinge loss function can then be specified as ‘hinge’ in the compile function.

model.compile(loss='hinge', optimizer=opt, metrics=['accuracy'])

Listing 4.30: Example of using the hinge loss function.

4.3. Binary Classification Loss Functions Case Study 70

Finally, the output layer of the network must be configured to have a single node with a
hyperbolic tangent activation function capable of outputting a single value in the range [-1,

1].

model.add(Dense(1, activation='tanh'))

Listing 4.31: Example of using the hyperbolic tangent activation function.

The complete example of an MLP with a hinge loss function for the two circles binary
classification problem is listed below.

mlp for the circles problem with hinge loss

from sklearn.datasets import make_circles

from keras.models import Sequential

from keras.layers import Dense

from keras.optimizers import SGD

from matplotlib import pyplot

from numpy import where

generate 2d classification dataset

X, y = make_circles(n_samples=1000, noise=0.1, random_state=1)

change y from {0,1} to {-1,1}

y[where(y == 0)] = -1

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(1, activation='tanh'))

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='hinge', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss during training

pyplot.subplot(211)

pyplot.title('Hinge Loss', pad=-20)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy during training

pyplot.subplot(212)

pyplot.title('Classification Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 4.32: Example of using the hinge loss function for the two circles problem.

Running the example first prints the classification accuracy for the model on the train and
test dataset.

4.3. Binary Classification Loss Functions Case Study 71

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see slightly worse performance than using cross-entropy, with the chosen
model configuration with less than 80% accuracy on the train and test sets.

Train: 0.794, Test: 0.752

Listing 4.33: Example output from using the hinge loss function for the two circles problem.

A figure is also created showing two line plots, the top with the hinge loss over epochs for
the train (blue) and test (orange) dataset, and the bottom plot showing classification accuracy
over epochs. The plot of hinge loss shows that the model has converged and has reasonable loss
on both datasets. The plot of classification accuracy also shows signs of convergence, albeit at a
lower level of skill than may be desirable on this problem.

Figure 4.6: Line Plots of Hinge Loss and Classification Accuracy over Training Epochs on the
Two Circles Binary Classification Problem.

4.3.3 Squared Hinge Loss

The hinge loss function has many extensions, often the subject of investigation with SVM
models. A popular extension is called the squared hinge loss that simply calculates the square of

4.3. Binary Classification Loss Functions Case Study 72

the score hinge loss. It has the effect of smoothing the surface of the error function and making
it numerically easier to work with. If using a hinge loss does result in better performance on a
given binary classification problem, is likely that a squared hinge loss may be appropriate. As
with using the hinge loss function, the target variable must be modified to have values in the
set {-1, 1}.
change y from {0,1} to {-1,1}

y[where(y == 0)] = -1

Listing 4.34: Example of preparing the target variable.

The squared hinge loss can be specified as ‘squared hinge’ in the compile() function
when defining the model.

model.compile(loss='squared_hinge', optimizer=opt, metrics=['accuracy'])

Listing 4.35: Example of using the squared hinge loss function.

And finally, the output layer must use a single node with a hyperbolic tangent activation
function capable of outputting continuous values in the range [-1, 1].

model.add(Dense(1, activation='tanh'))

Listing 4.36: Example of using the hyperbolic tangent activation function.

The complete example of an MLP with the squared hinge loss function on the two circles
binary classification problem is listed below.

mlp for the circles problem with squared hinge loss

from sklearn.datasets import make_circles

from keras.models import Sequential

from keras.layers import Dense

from keras.optimizers import SGD

from matplotlib import pyplot

from numpy import where

generate 2d classification dataset

X, y = make_circles(n_samples=1000, noise=0.1, random_state=1)

change y from {0,1} to {-1,1}

y[where(y == 0)] = -1

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(1, activation='tanh'))

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='squared_hinge', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss during training

pyplot.subplot(211)

4.3. Binary Classification Loss Functions Case Study 73

pyplot.title('Squared Hinge Loss', pad=-20)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy during training

pyplot.subplot(212)

pyplot.title('Classification Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 4.37: Example of using the squared hinge loss function for the two circles problem.

Running the example first prints the classification accuracy for the model on the train and
test datasets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that for this problem and the chosen model configuration, the hinge
squared loss may not be appropriate, resulting in classification accuracy of less than 70% on the
train and test sets.

Train: 0.664, Test: 0.624

Listing 4.38: Example output from using the squared hinge loss function for the two circles
problem.

A figure is also created showing two line plots, the top with the squared hinge loss over
epochs for the train (blue) and test (orange) dataset, and the bottom plot showing classification
accuracy over epochs. The plot of loss shows that indeed, the model converged, but the shape
of the error surface is not as smooth as other loss functions where small changes to the weights
are causing large changes in loss.

4.4. Multiclass Classification Loss Functions Case Study 74

Figure 4.7: Line Plots of Squared Hinge Loss and Classification Accuracy over Training Epochs
on the Two Circles Binary Classification Problem.

4.4 Multiclass Classification Loss Functions Case Study

Multiclass classification predictive modeling problems are those where examples are assigned
one of more than two classes. The problem is often framed as predicting an integer value, where
each class is assigned a unique integer value from 0 to (num classes - 1). The problem is often
implemented as predicting the probability of the example belonging to each class. In this section,
we will investigate loss functions that are appropriate for multiclass classification predictive
modeling problems.

We will use the blobs problem as the basis for the investigation. The make blobs() function
provided by scikit-learn provides a way to generate examples given a specified number of
classes and input features. We will use this function to generate 1,000 examples for a 3-class
classification problem with 2 input variables. The pseudorandom number generator will be
seeded consistently so that the same 1,000 examples are generated each time the code is run.

generate dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

Listing 4.39: Example of generating samples for the blobs problem.

4.4. Multiclass Classification Loss Functions Case Study 75

The two input variables can be taken as x and y coordinates for points on a two-dimensional
plane. The example below creates a scatter plot of the entire dataset coloring points by their
class membership.

scatter plot of blobs dataset

from sklearn.datasets.samples_generator import make_blobs

from numpy import where

from matplotlib import pyplot

generate dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

select indices of points with each class label

for i in range(3):

samples_ix = where(y == i)

pyplot.scatter(X[samples_ix, 0], X[samples_ix, 1])

pyplot.show()

Listing 4.40: Example of plotting samples from the blobs problem.

Running the example creates a scatter plot showing the 1,000 examples in the dataset with
examples belonging to the 0, 1, and 2 classes colored blue, orange, and green respectively.

Figure 4.8: Scatter Plot of Examples Generated from the Blobs Multiclass Classification Problem.

The input features are Gaussian and could benefit from standardization; nevertheless, we will
keep the values unscaled in this example for brevity. The dataset will be split evenly between
train and test sets.

4.4. Multiclass Classification Loss Functions Case Study 76

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

Listing 4.41: Example of splitting the dataset into train and test datasets.

A small MLP model will be used as the basis for exploring loss functions. The model expects
two input variables, has 50 nodes in the hidden layer with the rectified linear activation function,
and an output layer that must be customized based on the selection of the loss function.

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(..., activation='...'))

Listing 4.42: Example of defining the MLP model.

The model is fit using stochastic gradient descent with a sensible default learning rate of
0.01 and a momentum of 0.9.

compile model

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='...', optimizer=opt, metrics=['accuracy'])

Listing 4.43: Example of compiling the MLP model.

The model will be fit for 100 epochs on the training dataset and the test dataset will be
used as a validation dataset, allowing us to evaluate both loss and classification accuracy on the
train and test sets at the end of each training epoch and draw learning curves.

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=100, verbose=0)

Listing 4.44: Example of fitting the MLP model.

Now that we have the basis of a problem and model, we can take a look evaluating three
common loss functions that are appropriate for a multiclass classification predictive modeling
problem. Although an MLP is used in these examples, the same loss functions can be used
when training CNN and RNN models for multiclass classification.

4.4.1 Multiclass Cross-Entropy Loss

Cross-entropy is the default loss function to use for multiclass classification problems. In this
case, it is intended for use with multiclass classification where the target values are in the set
{0, 1, 3, ..., n}, where each class is assigned a unique integer value. Mathematically, it
is the preferred loss function under the inference framework of maximum likelihood. It is the
loss function to be evaluated first and only changed if you have a good reason. Cross-entropy
will calculate a score that summarizes the average difference between the actual and predicted
probability distributions for all classes in the problem. The score is minimized and a perfect
cross-entropy value is 0. Cross-entropy can be specified as the loss function in Keras by specifying
‘categorical crossentropy’ when compiling the model.

4.4. Multiclass Classification Loss Functions Case Study 77

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

Listing 4.45: Example of using the categorical cross-entropy loss function.

The function requires that the output layer is configured with n nodes (one for each class),
in this case three nodes, and a ‘softmax’ activation in order to predict the probability for each
class.

model.add(Dense(3, activation='softmax'))

Listing 4.46: Example of using the softmax activation function.

In turn, this means that the target variable must be one hot encoded. This is to ensure
that each example has an expected probability of 1.0 for the actual class value and an expected
probability of 0.0 for all other class values. This can be achieved using the to categorical()

Keras function.

one hot encode output variable

y = to_categorical(y)

Listing 4.47: Example of one hot encoding the target variable.

The complete example of an MLP with cross-entropy loss for the multiclass blobs classification
problem is listed below.

mlp for the blobs multi-class classification problem with cross-entropy loss

from sklearn.datasets.samples_generator import make_blobs

from keras.layers import Dense

from keras.models import Sequential

from keras.optimizers import SGD

from keras.utils import to_categorical

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

compile model

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=100, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss during training

pyplot.subplot(211)

pyplot.title('Categorical Cross-Entropy Loss', pad=-20)

4.4. Multiclass Classification Loss Functions Case Study 78

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy during training

pyplot.subplot(212)

pyplot.title('Classification Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 4.48: Example of using the categorical cross-entropy loss function for the blobs problem.

Running the example first prints the classification accuracy for the model on the train and
test dataset.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see the model performed well, achieving a classification accuracy of
about 82% on the training dataset and about 82% on the test dataset.

Train: 0.824, Test: 0.820

Listing 4.49: Example output from using the categorical cross-entropy loss function for the
blobs problem.

A figure is also created showing two line plots, the top with the cross-entropy loss over
epochs for the train (blue) and test (orange) datasets, and the bottom plot showing classification
accuracy over epochs. In this case, the plot shows the model seems to have converged. The
line plots for both cross-entropy and accuracy both show good convergence behavior, although
somewhat bumpy. The model may be well configured given no sign of over or underfitting. The
learning rate or batch size may be tuned to even out the smoothness of the convergence in this
case.

4.4. Multiclass Classification Loss Functions Case Study 79

Figure 4.9: Line Plots of Cross-Entropy Loss and Classification Accuracy over Training Epochs
on the Blobs Multiclass Classification Problem.

4.4.2 Sparse Multiclass Cross-Entropy Loss

A possible cause of frustration when using cross-entropy with classification problems with a
large number of labels is the one hot encoding process. For example, predicting words in a
vocabulary may have tens or hundreds of thousands of categories, one for each label. This
can mean that the target element of each training example may require a one hot encoded
vector with tens or hundreds of thousands of zero values, requiring significant memory. Sparse
cross-entropy addresses this by performing the same cross-entropy calculation of error, without
requiring that the target variable be one hot encoded prior to training. Sparse cross-entropy can
be used in Keras for multiclass classification by using ‘sparse categorical crossentropy’

when calling the compile() function.

model.compile(loss='sparse_categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

Listing 4.50: Example of using the sparse categorical cross-entropy loss function.

The function requires that the output layer is configured with n nodes (one for each class),
in this case three nodes, and a ‘softmax’ activation in order to predict the probability for each
class.

model.add(Dense(3, activation='softmax'))

4.4. Multiclass Classification Loss Functions Case Study 80

Listing 4.51: Example of using the softmax activation function.

No one hot encoding of the target variable is required, a benefit of this loss function.
The complete example of training an MLP with sparse cross-entropy on the blobs multiclass
classification problem is listed below.

mlp for the blobs multi-class classification problem with sparse cross-entropy loss

from sklearn.datasets.samples_generator import make_blobs

from keras.layers import Dense

from keras.models import Sequential

from keras.optimizers import SGD

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

compile model

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='sparse_categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=100, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss during training

pyplot.subplot(211)

pyplot.title('Sparse Categorical Cross-Entropy Loss', pad=-20)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy during training

pyplot.subplot(212)

pyplot.title('Classification Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 4.52: Example of using the sparse categorical cross-entropy loss function for the blobs
problem.

Running the example first prints the classification accuracy for the model on the train and
test dataset.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

4.4. Multiclass Classification Loss Functions Case Study 81

In this case, we can see the model achieves good performance on the problem. In fact,
if you repeat the experiment many times, the average performance of sparse and non-sparse
cross-entropy should be comparable.

Train: 0.818, Test: 0.828

Listing 4.53: Example output from using the sparse categorical cross-entropy loss function for
the blobs problem.

A figure is also created showing two line plots, the top with the sparse cross-entropy loss over
epochs for the train (blue) and test (orange) dataset, and the bottom plot showing classification
accuracy over epochs. In this case, the plot shows good convergence of the model over training
with regard to loss and classification accuracy.

Figure 4.10: Line Plots of Sparse Cross-Entropy Loss and Classification Accuracy over Training
Epochs on the Blobs Multiclass Classification Problem.

4.4.3 Kullback Leibler Divergence Loss

Kullback Leibler Divergence, or KL Divergence for short, is a measure of how one probability
distribution differs from a baseline distribution. A KL divergence loss of 0 suggests the
distributions are identical. In practice, the behavior of KL Divergence is very similar to cross-
entropy. It calculates how much information is lost (in terms of bits) if the predicted probability
distribution is used to approximate the desired target probability distribution.

4.4. Multiclass Classification Loss Functions Case Study 82

As such, the KL divergence loss function is more commonly used when using models that
learn to approximate a more complex function than simply multiclass classification, such
as in the case of an autoencoder used for learning a dense feature representation under a
model that must reconstruct the original input. In this case, KL divergence loss would be
preferred. Nevertheless, it can be used for multiclass classification, in which case it is functionally
equivalent to multiclass cross-entropy. KL divergence loss can be used in Keras by specifying
‘kullback leibler divergence’ in the compile() function.

model.compile(loss='kullback_leibler_divergence', optimizer=opt, metrics=['accuracy'])

Listing 4.54: Example of using the KL divergence loss function.

As with cross-entropy, the output layer is configured with n nodes (one for each class), in
this case three nodes, and a ‘softmax’ activation in order to predict the probability for each
class. Also, as with categorical cross-entropy, we must one hot encode the target variable to
have an expected probability of 1.0 for the class value and 0.0 for all other class values.

one hot encode output variable

y = to_categorical(y)

Listing 4.55: Example of one hot encoding the target variable.

The complete example of training an MLP with KL divergence loss for the blobs multiclass
classification problem is listed below.

mlp for the blobs multi-class classification problem with kl divergence loss

from sklearn.datasets.samples_generator import make_blobs

from keras.layers import Dense

from keras.models import Sequential

from keras.optimizers import SGD

from keras.utils import to_categorical

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

compile model

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='kullback_leibler_divergence', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=100, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss during training

pyplot.subplot(211)

pyplot.title('Kullback Leibler Divergence Loss', pad=-20)

4.4. Multiclass Classification Loss Functions Case Study 83

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy during training

pyplot.subplot(212)

pyplot.title('Classification Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 4.56: Example of using the KL divergence loss function for the blobs problem.

Running the example first prints the classification accuracy for the model on the train and
test dataset.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we see performance that is similar to those results seen with cross-entropy loss,
in this case about 80% accuracy on the train and test dataset.

Train: 0.826, Test: 0.808

Listing 4.57: Example output from using the KL divergence loss function for the blobs problem.

A figure is also created showing two line plots, the top with the KL divergence loss over
epochs for the train (blue) and test (orange) dataset, and the bottom plot showing classification
accuracy over epochs. In this case, the plot shows good convergence behavior for both loss and
classification accuracy. It is very likely that an evaluation of cross-entropy would result in nearly
identical behavior given the similarities in the measure.

4.5. Extensions 84

Figure 4.11: Line Plots of KL Divergence Loss and Classification Accuracy over Training Epochs
on the Blobs Multiclass Classification Problem.

4.5 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Alternate Regression Loss. Experiment with alternate loss functions for regression
such as Mean Absolute Percentage Error or MAPE.

� Alternate Classification Loss. Experiment with alternate loss functions for classifica-
tion such as categorical hinge loss.

� Repeated Evaluation. Create a repeated evaluation experiment and compare the
average final loss and accuracy for categorical cross-entropy, sparse cross-entropy and KL
divergence to confirm they are functionally equivalent.

If you explore any of these extensions, I’d love to know.

4.6 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

4.6. Further Reading 85

4.6.1 Books

� Deep Learning, 2016.
https://amzn.to/2NJW3gE

� Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks, 1999.
https://amzn.to/2S8qRdI

� Neural Networks for Pattern Recognition, 1995.
https://amzn.to/2S8qdwt

4.6.2 Papers

� On Loss Functions for Deep Neural Networks in Classification, 2017.
https://arxiv.org/abs/1702.05659

4.6.3 APIs

� Keras Loss Functions API.
https://keras.io/losses/

� Keras Activation Functions API.
https://keras.io/activations/

� sklearn.preprocessing.StandardScaler API.
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.

html

� sklearn.datasets.make regression API.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.

html

� sklearn.datasets.make circles API.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.

html

� sklearn.datasets.make blobs API.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.

html

4.6.4 Articles

� Maximum likelihood estimation, Wikipedia.
https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

� Kullback-Leibler divergence, Wikipedia.
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

� Cross entropy, Wikipedia.
https://en.wikipedia.org/wiki/Cross_entropy

https://amzn.to/2NJW3gE
https://amzn.to/2S8qRdI
https://amzn.to/2S8qdwt
https://arxiv.org/abs/1702.05659
https://keras.io/losses/
https://keras.io/activations/
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
https://en.wikipedia.org/wiki/Maximum_likelihood_estimation
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Cross_entropy

4.7. Summary 86

� Mean squared error, Wikipedia.
https://en.wikipedia.org/wiki/Mean_squared_error

� Hinge loss, Wikipedia.
https://en.wikipedia.org/wiki/Hinge_loss

� Kullback-Leibler divergence, Wikipedia.
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

� Loss Functions in Neural Networks, 2017.
https://isaacchanghau.github.io/post/loss_functions/

� Log Loss, FastAI Wiki.
http://wiki.fast.ai/index.php/Log_Loss

4.7 Summary

In this tutorial, you discovered the role of loss and loss functions in training deep learning
neural networks and how to choose the right loss function for your predictive modeling problems.
Specifically, you learned:

� Neural networks are trained using an optimization process that requires a loss function to
calculate the model error.

� Maximum Likelihood provides a framework for choosing a loss function when training
neural networks and machine learning models in general.

� Cross-entropy and mean squared error are the two main types of loss functions to use
when training neural network models.

4.7.1 Next

In the next tutorial, you will discover how the learning rate controls the amount that model
parameters are updated and in turn the stability and speed of convergence.

https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Hinge_loss
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://isaacchanghau.github.io/post/loss_functions/
http://wiki.fast.ai/index.php/Log_Loss

Chapter 5

Configure Speed of Learning with
Learning Rate

The weights of a neural network cannot be calculated using an analytical method. Instead, the
weights must be discovered via an empirical optimization procedure called stochastic gradient
descent. The optimization problem addressed by stochastic gradient descent for neural networks
is challenging and the space of solutions (sets of weights) may be comprised of many good
solutions (called global optima) as well as easy to find, but low in skill solutions (called local
optima). The amount of change to the model during each step of this search process, or the
step size, is called the learning rate and provides perhaps the most important hyperparameter
to tune for your neural network in order to achieve good performance on your problem. In this
tutorial, you will discover the learning rate hyperparameter used when training deep learning
neural networks. After completing this tutorial, you will know:

� Learning rate controls how quickly or slowly a neural network model learns a problem.

� How to configure the learning rate with sensible defaults, diagnose behavior, and develop
a sensitivity analysis.

� How to further improve performance with learning rate schedules, momentum, and adaptive
learning rates.

Let’s get started.

5.1 Learning Rate

In this section you will discover the learning rate, the effect it has on the model during training
and tips on how to configure the learning rate when training your own neural network models.

5.1.1 What Is the Learning Rate?

Deep learning neural networks are trained using the stochastic gradient descent algorithm.
Stochastic gradient descent is an optimization algorithm that estimates the error gradient for the
current state of the model using examples from the training dataset, then updates the weights of
the model using the backpropagation of errors algorithm, referred to as simply backpropagation.

87

5.1. Learning Rate 88

The amount that the weights are updated during training is referred to as the step size or the
learning rate. Specifically, the learning rate is a configurable hyperparameter used in the training
of neural networks that has a small positive value, often in the range between 0.0 and 1.0.

... learning rate, a positive scalar determining the size of the step.

— Page 86, Deep Learning, 2016.

The learning rate is often represented using the notation of the lowercase Greek letter eta
(η). During training, the backpropagation of error estimates the amount of error for which each
weight in a node in the network is responsible. Instead of updating the weight with the full
amount, it is scaled by the learning rate. This means that a learning rate of 0.1, a traditionally
common default value, would mean that weights in the network are updated 0.1 × (estimated
weight error) or 10% of the estimated weight error each time the weights are updated.

5.1.2 Effect of Learning Rate

A neural network learns or approximates a function to best map inputs to outputs from examples
in the training dataset. The learning rate hyperparameter controls the rate or speed at which
the model learns. Specifically, it controls the amount of apportioned error that the weights
of the model are updated with each time they are updated, such as at the end of each batch
of training examples. Given a perfectly configured learning rate, the model will learn to best
approximate the function given available resources (the number of layers and the number of
nodes per layer) in a given number of training epochs (passes through the training data).

Generally, a large learning rate allows the model to learn faster, at the cost of arriving on a
sub-optimal final set of weights. A smaller learning rate may allow the model to learn a more
optimal or even globally optimal set of weights but may take significantly longer to train. At
extremes, a learning rate that is too large will result in weight updates that will be too large and
the performance of the model (such as its loss on the training dataset) will oscillate over training
epochs. Oscillating performance is said to be caused by weights that diverge (are divergent). A
learning rate that is too small may never converge or may get stuck on a suboptimal solution.

When the learning rate is too large, gradient descent can inadvertently increase
rather than decrease the training error. [...] When the learning rate is too small,
training is not only slower, but may become permanently stuck with a high training
error.

— Page 429, Deep Learning, 2016.

In the worst case, weight updates that are too large may cause the weights to explode (i.e.
result in a numerical overflow).

When using high learning rates, it is possible to encounter a positive feedback loop
in which large weights induce large gradients which then induce a large update to
the weights. If these updates consistently increase the size of the weights, then [the
weights] rapidly moves away from the origin until numerical overflow occurs.

— Page 238, Deep Learning, 2016.

Therefore, we should not use a learning rate that is too large or too small. Nevertheless, we
must configure the model in such a way that on average a good enough set of weights is found
to approximate the mapping problem as represented by the training dataset.

5.1. Learning Rate 89

5.1.3 How to Configure Learning Rate

It is important to find a good value for the learning rate for your model on your training dataset.
The learning rate may, in fact, be the most important hyperparameter to configure for your
model.

The initial learning rate [...] This is often the single most important hyperparameter
and one should always make sure that it has been tuned [...] If there is only time to
optimize one hyper-parameter and one uses stochastic gradient descent, then this is
the hyper-parameter that is worth tuning

— Practical recommendations for gradient-based training of deep architectures, 2012.

In fact, if there are resources to tune hyperparameters, much of this time should be dedicated
to tuning the learning rate.

The learning rate is perhaps the most important hyperparameter. If you have time
to tune only one hyperparameter, tune the learning rate.

— Page 429, Deep Learning, 2016.

Unfortunately, we cannot analytically calculate the optimal learning rate for a given model
on a given dataset. Instead, a good (or good enough) learning rate must be discovered via trial
and error.

... in general, it is not possible to calculate the best learning rate a priori.

— Page 72, Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks,
1999.

The range of values to consider for the learning rate is less than 1.0 and greater than 10−6.

Typical values for a neural network with standardized inputs (or inputs mapped to
the (0,1) interval) are less than 1 and greater than 10−6

— Practical recommendations for gradient-based training of deep architectures, 2012.

The learning rate will interact with many other aspects of the optimization process, and the
interactions may be nonlinear. Nevertheless, in general, smaller learning rates will require more
training epochs. Conversely, larger learning rates will require fewer training epochs. Further,
smaller batch sizes are better suited to smaller learning rates given the noisy estimate of the
error gradient. A traditional default value for the learning rate is 0.1 or 0.01, and this may
represent a good starting point on your problem.

A default value of 0.01 typically works for standard multi-layer neural networks but
it would be foolish to rely exclusively on this default value

— Practical recommendations for gradient-based training of deep architectures, 2012.

5.1. Learning Rate 90

Diagnostic plots can be used to investigate how the learning rate impacts the rate of learning
and learning dynamics of the model. One example is to create a line plot of loss over training
epochs during training. The line plot can show many properties, such as:

� The rate of learning over training epochs, such as fast or slow.

� Whether model has learned too quickly (sharp rise and plateau) or is learning too slowly
(little or no change).

� Whether the learning rate might be too large via oscillations in loss.

Configuring the learning rate is challenging and time-consuming.

The choice of the value for [the learning rate] can be fairly critical, since if it is
too small the reduction in error will be very slow, while, if it is too large, divergent
oscillations can result.

— Page 95, Neural Networks for Pattern Recognition, 1995.

An alternative approach is to perform a sensitivity analysis of the learning rate for the chosen
model, also called a grid search. This can help to both highlight an order of magnitude where
good learning rates may reside, as well as describe the relationship between learning rate and
performance. It is common to grid search learning rates on a log scale from 0.1 to 10−5 or 10−6.

Typically, a grid search involves picking values approximately on a logarithmic scale,
e.g., a learning rate taken within the set {.1, .01, 10−3, 10−4 , 10−5}

— Page 434, Deep Learning, 2016.

When plotted, the results of such a sensitivity analysis often show a U shape, where loss
decreases (performance improves) as the learning rate is decreased with a fixed number of
training epochs to a point where loss sharply increases again because the model fails to converge.

5.1.4 Add Momentum to the Learning Process

Training a neural network can be made easier with the addition of history to the weight update.
Specifically, an exponentially weighted average of the prior updates to the weight can be included
when the weights are updated. This change to stochastic gradient descent is called momentum
and adds inertia to the update procedure, causing many past updates in one direction to continue
in that direction in the future.

The momentum algorithm accumulates an exponentially decaying moving average
of past gradients and continues to move in their direction.

— Page 296, Deep Learning, 2016.

Momentum can accelerate learning on those problems where the high-dimensional weight
space that is being navigated by the optimization process has structures that mislead the
gradient descent algorithm, such as flat regions or steep curvature.

5.1. Learning Rate 91

The method of momentum is designed to accelerate learning, especially in the face
of high curvature, small but consistent gradients, or noisy gradients.

— Page 296, Deep Learning, 2016.

The amount of inertia of past updates is controlled via the addition of a new hyperparameter,
often referred to as the momentum or velocity and uses the notation of the Greek lowercase
letter alpha (α).

... the momentum algorithm introduces a variable v that plays the role of velocity –
it is the direction and speed at which the parameters move through parameter space.
The velocity is set to an exponentially decaying average of the negative gradient.

— Page 296, Deep Learning, 2016.

It has the effect of smoothing the optimization process, slowing updates to continue in the
previous direction instead of getting stuck or oscillating.

One very simple technique for dealing with the problem of widely differing eigenvalues
is to add a momentum term to the gradient descent formula. This effectively adds
inertia to the motion through weight space and smoothes out the oscillations

— Page 267, Neural Networks for Pattern Recognition, 1995.

Momentum is set to a value greater than 0.0 and less than one, where common values such
as 0.9 and 0.99 are used in practice.

Common values of [momentum] used in practice include .5, .9, and .99.

— Page 298, Deep Learning, 2016.

Momentum does not make it easier to configure the learning rate, as the step size is
independent of the momentum. Instead, momentum can improve the speed of the optimization
process in concert with the step size, improving the likelihood that a better set of weights is
discovered in fewer training epochs.

5.1.5 Use a Learning Rate Schedule

An alternative to using a fixed learning rate is to instead vary the learning rate over the training
process. The way in which the learning rate changes over time (training epochs) is referred to
as the learning rate schedule or learning rate decay. Perhaps the simplest learning rate schedule
is to decrease the learning rate linearly from a large initial value to a small value. This allows
large weight changes in the beginning of the learning process and small changes or fine-tuning
towards the end of the learning process.

In practice, it is necessary to gradually decrease the learning rate over time, so we
now denote the learning rate at iteration [...] This is because the SGD gradient
estimator introduces a source of noise (the random sampling of m training examples)
that does not vanish even when we arrive at a minimum.

5.1. Learning Rate 92

— Page 294, Deep Learning, 2016.

In fact, using a learning rate schedule may be a best practice when training neural networks.
Instead of choosing a fixed learning rate hyperparameter, the configuration challenge involves
choosing the initial learning rate and a learning rate schedule. It is possible that the choice of
the initial learning rate is less sensitive than choosing a fixed learning rate, given the better
performance that a learning rate schedule may permit. The learning rate can be decayed to a
small value close to zero. Alternately, the learning rate can be decayed over a fixed number
of training epochs, then kept constant at a small value for the remaining training epochs to
facilitate more time fine-tuning.

In practice, it is common to decay the learning rate linearly until iteration [tau].
After iteration [tau], it is common to leave [the learning rate] constant.

— Page 295, Deep Learning, 2016.

5.1.6 Adaptive Learning Rates

The performance of the model on the training dataset can be monitored by the learning algorithm
and the learning rate can be adjusted in response. This is called an adaptive learning rate.
Perhaps the simplest implementation is to make the learning rate smaller once the performance
of the model plateaus, such as by decreasing the learning rate by a factor of two or an order of
magnitude.

A reasonable choice of optimization algorithm is SGD with momentum with a
decaying learning rate (popular decay schemes that perform better or worse on
different problems include decaying linearly until reaching a fixed minimum learning
rate, decaying exponentially, or decreasing the learning rate by a factor of 2-10 each
time validation error plateaus).

— Page 425, Deep Learning, 2016.

Alternately, the learning rate can be increased again if performance does not improve for a
fixed number of training epochs. An adaptive learning rate method will generally outperform a
model with a badly configured learning rate.

The difficulty of choosing a good learning rate a priori is one of the reasons adaptive
learning rate methods are so useful and popular. A good adaptive algorithm will
usually converge much faster than simple back-propagation with a poorly chosen
fixed learning rate.

— Page 72, Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks,
1999.

Although no single method works best on all problems, there are three adaptive learning
rate methods that have proven to be robust over many types of neural network architectures
and problem types. They are AdaGrad, RMSProp, and Adam, and all maintain and adapt
learning rates for each of the weights in the model. Perhaps the most popular is Adam, as it
builds upon RMSProp and adds momentum.

5.2. Learning Rate Keras API 93

At this point, a natural question is: which algorithm should one choose? Un-
fortunately, there is currently no consensus on this point. Currently, the most
popular optimization algorithms actively in use include SGD, SGD with momentum,
RMSProp, RMSProp with momentum, AdaDelta and Adam.

— Page 309, Deep Learning, 2016.

A robust strategy may be to first evaluate the performance of a model with a modern version
of stochastic gradient descent with adaptive learning rates, such as Adam, and use the result
as a baseline. Then, if time permits, explore whether improvements can be achieved with a
carefully selected learning rate or simpler learning rate schedule.

5.2 Learning Rate Keras API

The Keras deep learning library allows you to easily configure the learning rate for a number of
different variations of the stochastic gradient descent optimization algorithm.

5.2.1 Stochastic Gradient Descent

Keras provides the SGD class that implements the stochastic gradient descent optimizer with a
learning rate and momentum. First, an instance of the class must be created and configured,
then specified to the optimizer argument when calling the compile() function on the model.
The default learning rate is 0.01 and no momentum is used by default.

from keras.optimizers import SGD

...

opt = SGD()

model.compile(..., optimizer=opt)

Listing 5.1: Example of gradient descent with the default learning rate in Keras.

The learning rate can be specified via the lr argument and the momentum can be specified
via the momentum argument.

from keras.optimizers import SGD

...

opt = SGD(lr=0.01, momentum=0.9)

model.compile(..., optimizer=opt)

Listing 5.2: Example of gradient descent with specified learning rate and momentum in Keras.

The class also supports weight decay via the decay argument. With learning rate decay, the
learning rate is calculated each update (e.g. end of each mini-batch) as follows:

lrate = initial lrate× 1

1 + decay× iteration
(5.1)

Where lrate is the learning rate for the current epoch, initial lrate is the learning
rate specified as an argument to SGD, decay is the decay rate which is greater than zero and
iteration is the current update number.

5.2. Learning Rate Keras API 94

from keras.optimizers import SGD

...

opt = SGD(lr=0.01, momentum=0.9, decay=0.01)

model.compile(..., optimizer=opt)

Listing 5.3: Example of gradient descent with learning rate decay in Keras.

5.2.2 Learning Rate Schedule

Keras supports learning rate schedules via callbacks (for more on callbacks, see Section 18.2).
The callbacks operate separately from the optimization algorithm, although they adjust the
learning rate used by the optimization algorithm. It is recommended to use the SGD when
using a learning rate schedule callback. Callbacks are instantiated and configured, then specified
in a list to the callbacks argument of the fit() function when training the model.

Keras provides the ReduceLROnPlateau callback that will adjust the learning rate when a
plateau in model performance is detected, e.g. no change for a given number of training epochs.
This callback is designed to reduce the learning rate after the model stops improving with the
hope of fine-tuning model weights. The ReduceLROnPlateau callback requires you to specify
the metric to monitor during training via the monitor argument, the value that the learning
rate will be multiplied by via the factor argument and the patience argument that specifies
the number of training epochs to wait before triggering the change in learning rate. For example,
we can monitor the validation loss and reduce the learning rate by an order of magnitude if
validation loss does not improve for 100 epochs:

snippet of using the ReduceLROnPlateau callback

from keras.callbacks import ReduceLROnPlateau

...

rlrop = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=100)

model.fit(..., callbacks=[rlrop])

Listing 5.4: Example of using the ReduceLROnPlateau callback in Keras.

Keras also provides LearningRateScheduler callback that allows you to specify a function
that is called each epoch in order to adjust the learning rate. You can define your Python
function that takes two arguments (epoch and current learning rate lrate) and returns the
new learning rate.

snippet of using the LearningRateScheduler callback

from keras.callbacks import LearningRateScheduler

...

def my_learning_rate(epoch, lrate)

return lrate

lrs = LearningRateScheduler(my_learning_rate)

model.fit(..., callbacks=[lrs])

Listing 5.5: Example of using the LearningRateScheduler callback in Keras.

5.3. Learning Rate Case Study 95

5.2.3 Adaptive Learning Rate Gradient Descent

Keras also provides a suite of extensions of simple stochastic gradient descent that support
adaptive learning rates. Because each method adapts the learning rate, often one learning rate
per model weight, little configuration is often required. Three commonly used adaptive learning
rate methods include:

RMSProp Optimizer

from keras.optimizers import RMSprop

...

opt = RMSprop()

model.compile(..., optimizer=opt)

Listing 5.6: Example of the RMSprop optimizer in Keras.

Adagrad Optimizer

from keras.optimizers import Adagrad

...

opt = Adagrad()

model.compile(..., optimizer=opt)

Listing 5.7: Example of the Adagrad optimizer in Keras.

Adam Optimizer

from keras.optimizers import Adam

...

opt = Adam()

model.compile(..., optimizer=opt)

Listing 5.8: Example of the Adam optimizer in Keras.

5.3 Learning Rate Case Study

In this section, we will demonstrate how to use the learning rate to control convergence with a
MLP on a simple classification problem. This example provides a template for exploring the
learning rate with your own neural network for classification and regression problems.

5.3.1 Multiclass Classification Problem

We will use a small multiclass classification problem as the basis to demonstrate the effect of
learning rate on model performance. The scikit-learn class provides the make blobs() function
that can be used to create a multiclass classification problem with the prescribed number of
samples, input variables, classes, and variance of samples within a class. The problem can be
configured to have two input variables (to represent the x and y coordinates of the points) and a
standard deviation of 2.0 for points within each group. We will use the same random state (seed
for the pseudorandom number generator) to ensure that we always get the same data points.

5.3. Learning Rate Case Study 96

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

Listing 5.9: Example of creating samples for the blobs problem.

The results are the input and output elements of a dataset that we can model. In order to
get a feeling for the complexity of the problem, we can plot each point on a two-dimensional
scatter plot and color each point by class value. The complete example is listed below.

scatter plot of blobs dataset

from sklearn.datasets.samples_generator import make_blobs

from matplotlib import pyplot

from numpy import where

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

scatter plot for each class value

for class_value in range(3):

select indices of points with the class label

row_ix = where(y == class_value)

scatter plot for points with a different color

pyplot.scatter(X[row_ix, 0], X[row_ix, 1])

show plot

pyplot.show()

Listing 5.10: Example of plotting samples from the blobs problem.

Running the example creates a scatter plot of the entire dataset. We can see that the
standard deviation of 2.0 means that the classes are not linearly separable (separable by a line),
causing many ambiguous points. This is desirable as it means that the problem is non-trivial
and will allow a neural network model to find many different good enough candidate solutions.

5.3. Learning Rate Case Study 97

Figure 5.1: Scatter Plot of Blobs Dataset With Three Classes and Points Colored by Class
Value.

5.3.2 Effect of Learning Rate and Momentum

In this section, we will develop a Multilayer Perceptron (MLP) model to address the blobs
classification problem and investigate the effect of different learning rates and momentum.

Learning Rate Dynamics

The first step is to develop a function that will create the samples from the problem and split
them into train and test datasets. Additionally, we must also one hot encode the target variable
so that we can develop a model that predicts the probability of an example belonging to each
class. The prepare data() function below implements this behavior, returning train and test
sets split into input and output elements.

prepare train and test dataset

def prepare_data():

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 500

5.3. Learning Rate Case Study 98

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

return trainX, trainy, testX, testy

Listing 5.11: Example of a function for preparing the dataset for modeling.

Next, we can develop a function to fit and evaluate an MLP model. First, we will define a
simple MLP model that expects two input variables from the blobs problem, has a single hidden
layer with 50 nodes, and an output layer with three nodes to predict the probability for each
of the three classes. Nodes in the hidden layer will use the rectified linear activation function,
whereas nodes in the output layer will use the softmax activation function.

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

Listing 5.12: Example of defining the MLP model.

We will use the stochastic gradient descent optimizer and require that the learning rate
be specified so that we can evaluate different rates. The model will be trained to minimize
cross-entropy.

compile model

opt = SGD(lr=lrate)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

Listing 5.13: Example of compiling the MLP model.

The model will be fit for 200 training epochs, found with a little trial and error, and the test
set will be used as the validation dataset so we can get an idea of the generalization error of the
model during training.

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200, verbose=0)

Listing 5.14: Example of fitting the MLP model.

Once fit, we will plot the accuracy of the model on the train and test sets over the training
epochs.

plot learning curves

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.title('lrate='+str(lrate), pad=-50)

Listing 5.15: Example of plotting learning curves for the MLP model.

The fit model() function below ties together these elements and will fit a model and plot
its performance given the train and test datasets as well as a specific learning rate to evaluate.

fit a model and plot learning curve

def fit_model(trainX, trainy, testX, testy, lrate):

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

compile model

5.3. Learning Rate Case Study 99

opt = SGD(lr=lrate)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200, verbose=0)

plot learning curves

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.title('lrate='+str(lrate), pad=-50)

Listing 5.16: Example of defining a function for fitting and evaluating an MLP model.

We can now investigate the dynamics of different learning rates on the train and test accuracy
of the model. In this example, we will evaluate learning rates on a logarithmic scale from 1E-0
(1.0) to 1E-7 and create line plots for each learning rate by calling the fit model() function.

create learning curves for different learning rates

learning_rates = [1E-0, 1E-1, 1E-2, 1E-3, 1E-4, 1E-5, 1E-6, 1E-7]

for i in range(len(learning_rates)):

determine the plot number

plot_no = 420 + (i+1)

pyplot.subplot(plot_no)

fit model and plot learning curves for a learning rate

fit_model(trainX, trainy, testX, testy, learning_rates[i])

show learning curves

pyplot.show()

Listing 5.17: Example of evaluating a range of different learning rates.

Tying all of this together, the complete example is listed below.

study of learning rate on accuracy for blobs problem

from sklearn.datasets.samples_generator import make_blobs

from keras.layers import Dense

from keras.models import Sequential

from keras.optimizers import SGD

from keras.utils import to_categorical

from matplotlib import pyplot

prepare train and test dataset

def prepare_data():

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

return trainX, trainy, testX, testy

fit a model and plot learning curve

def fit_model(trainX, trainy, testX, testy, lrate):

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

compile model

5.3. Learning Rate Case Study 100

opt = SGD(lr=lrate)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200, verbose=0)

plot learning curves

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.title('lrate='+str(lrate), pad=-50)

prepare dataset

trainX, trainy, testX, testy = prepare_data()

create learning curves for different learning rates

learning_rates = [1E-0, 1E-1, 1E-2, 1E-3, 1E-4, 1E-5, 1E-6, 1E-7]

for i in range(len(learning_rates)):

determine the plot number

plot_no = 420 + (i+1)

pyplot.subplot(plot_no)

fit model and plot learning curves for a learning rate

fit_model(trainX, trainy, testX, testy, learning_rates[i])

show learning curves

pyplot.show()

Listing 5.18: Example of evaluating the dynamics of a range of different learning rates for an
MLP on the blobs problem.

Running the example creates a single figure that contains eight line plots for the eight
different evaluated learning rates. Classification accuracy on the training dataset is marked in
blue, whereas accuracy on the test dataset is marked in orange.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

The plots show oscillations in behavior for the too-large learning rate of 1.0 and the inability
of the model to learn anything with the too-small learning rates of 1E-6 and 1E-7. We can
see that the model was able to learn the problem well with the learning rates 1E-1, 1E-2
and 1E-3, although successively slower as the learning rate was decreased. With the chosen
model configuration, the results suggest a moderate learning rate of 0.1 results in good model
performance on the train and test sets.

5.3. Learning Rate Case Study 101

Figure 5.2: Line Plots of Train and Test Accuracy for a Suite of Learning Rates on the Blobs
Classification Problem.

Momentum Dynamics

Momentum can smooth the progression of the learning algorithm that, in turn, can accelerate
the training process. We can adapt the example from the previous section to evaluate the effect
of momentum with a fixed learning rate. In this case, we will choose the learning rate of 0.01
that in the previous section converged to a reasonable solution, but required more epochs than
the learning rate of 0.1 The fit model() function can be updated to take a momentum argument
instead of a learning rate argument, that can be used in the configuration of the SGD class and
reported on the resulting plot. The updated version of this function is listed below.

fit a model and plot learning curve

def fit_model(trainX, trainy, testX, testy, momentum):

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

compile model

opt = SGD(lr=0.01, momentum=momentum)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200, verbose=0)

5.3. Learning Rate Case Study 102

plot learning curves

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.title('momentum='+str(momentum), pad=-80)

Listing 5.19: Example updated function for evaluating MLPs with different values of momentum.

It is common to use momentum values close to 1.0, such as 0.9 and 0.99. In this example,
we will demonstrate the dynamics of the model without momentum compared to the model
with momentum values of 0.5 and higher momentum values.

create learning curves for different momentums

momentums = [0.0, 0.5, 0.9, 0.99]

for i in range(len(momentums)):

determine the plot number

plot_no = 220 + (i+1)

pyplot.subplot(plot_no)

fit model and plot learning curves for a momentum

fit_model(trainX, trainy, testX, testy, momentums[i])

show learning curves

pyplot.show()

Listing 5.20: Example evaluating different momentum values.

Tying all of this together, the complete example is listed below.

study of momentum on accuracy for blobs problem

from sklearn.datasets.samples_generator import make_blobs

from keras.layers import Dense

from keras.models import Sequential

from keras.optimizers import SGD

from keras.utils import to_categorical

from matplotlib import pyplot

prepare train and test dataset

def prepare_data():

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

return trainX, trainy, testX, testy

fit a model and plot learning curve

def fit_model(trainX, trainy, testX, testy, momentum):

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

compile model

opt = SGD(lr=0.01, momentum=momentum)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200, verbose=0)

5.3. Learning Rate Case Study 103

plot learning curves

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.title('momentum='+str(momentum), pad=-80)

prepare dataset

trainX, trainy, testX, testy = prepare_data()

create learning curves for different momentums

momentums = [0.0, 0.5, 0.9, 0.99]

for i in range(len(momentums)):

determine the plot number

plot_no = 220 + (i+1)

pyplot.subplot(plot_no)

fit model and plot learning curves for a momentum

fit_model(trainX, trainy, testX, testy, momentums[i])

show learning curves

pyplot.show()

Listing 5.21: Example of evaluating the dynamics of a range of different momentum values for
an MLP on the blobs problem.

Running the example creates a single figure that contains four line plots for the different
evaluated momentum values. Classification accuracy on the training dataset is marked in blue,
whereas accuracy on the test dataset is marked in orange.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

We can see that the addition of momentum does accelerate the training of the model.
Specifically, momentum values of 0.9 and 0.99 achieve reasonable train and test accuracy within
about 50 training epochs as opposed to 200 training epochs when momentum is not used. In all
cases where momentum is used, the accuracy of the model on the holdout test dataset appears
to be more stable, showing less volatility over the training epochs.

5.3. Learning Rate Case Study 104

Figure 5.3: Line Plots of Train and Test Accuracy for a Suite of Momentums on the Blobs
Classification Problem.

5.3.3 Effect of Learning Rate Schedules

We will look at two learning rate schedules in this section. The first is the decay built into the
SGD class and the second is the ReduceLROnPlateau callback.

Learning Rate Decay

The SGD class provides the decay argument that specifies the learning rate decay. It may not
be clear from the equation or the code as to the effect that this decay has on the learning rate
over updates. We can make this clearer with a worked example. The function below implements
the learning rate decay as implemented in the SGD class.

learning rate decay

def decay_lrate(initial_lrate, decay, iteration):

return initial_lrate * (1.0 / (1.0 + decay * iteration))

Listing 5.22: Example of a function for calculating a decaying learning rate.

We can use this function to calculate the learning rate over multiple updates with different
decay values. We will compare a range of decay values [1E-1, 1E-2, 1E-3, 1E-4] with an initial
learning rate of 0.01 and 200 weight updates.

5.3. Learning Rate Case Study 105

decays = [1E-1, 1E-2, 1E-3, 1E-4]

lrate = 0.01

n_updates = 200

for decay in decays:

calculate learning rates for updates

lrates = [decay_lrate(lrate, decay, i) for i in range(n_updates)]

plot result

pyplot.plot(lrates, label=str(decay))

Listing 5.23: Example of a evaluating different decay rates.

The complete example is listed below.

demonstrate the effect of decay on the learning rate

from matplotlib import pyplot

learning rate decay

def decay_lrate(initial_lrate, decay, iteration):

return initial_lrate * (1.0 / (1.0 + decay * iteration))

decays = [1E-1, 1E-2, 1E-3, 1E-4]

lrate = 0.01

n_updates = 200

for decay in decays:

calculate learning rates for updates

lrates = [decay_lrate(lrate, decay, i) for i in range(n_updates)]

plot result

pyplot.plot(lrates, label=str(decay))

pyplot.legend()

pyplot.show()

Listing 5.24: Example of plotting the effect of different learning rate decay rates.

Running the example creates a line plot showing learning rates over updates for different
decay values. We can see that in all cases, the learning rate starts at the initial value of 0.01.
We can see that a small decay value of 1E-4 (red) has almost no effect, whereas a large decay
value of 1E-1 (blue) has a dramatic effect, reducing the learning rate to below 0.002 within 50
epochs (about one order of magnitude less than the initial value) and arriving at the final value
of about 0.0004 (about two orders of magnitude less than the initial value).

We can see that the change to the learning rate is not linear. We can also see that changes
to the learning rate are dependent on the batch size, after which an update is performed. In the
example from the previous section, a default batch size of 32 across 500 examples results in 16
updates per epoch and 3,200 updates across the 200 epochs. Using a decay of 0.1 and an initial
learning rate of 0.01, we can calculate the final learning rate to be a tiny value of about 3.1E-05.

5.3. Learning Rate Case Study 106

Figure 5.4: Line Plot of the Effect of Decay on Learning Rate Over Multiple Weight Updates.

We can update the example from the previous section to evaluate the dynamics of different
learning rate decay values. Fixing the learning rate at 0.01 and not using momentum, we would
expect that a very small learning rate decay would be preferred, as a large learning rate decay
would rapidly result in a learning rate that is too small for the model to learn effectively. The
fit model() function can be updated to take a decay argument that can be used to configure
decay for the SGD class. The updated version of the function is listed below.

fit a model and plot learning curve

def fit_model(trainX, trainy, testX, testy, decay):

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

compile model

opt = SGD(lr=0.01, decay=decay)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200, verbose=0)

plot learning curves

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.title('decay='+str(decay), pad=-80)

5.3. Learning Rate Case Study 107

Listing 5.25: Example of the updated function for evaluating model with different learning rate
decay rates.

We can evaluate the same four decay values of [1E-1, 1E-2, 1E-3, 1E-4] and their effect on
model accuracy. The complete example is listed below.

study of decay rate on accuracy for blobs problem

from sklearn.datasets.samples_generator import make_blobs

from keras.layers import Dense

from keras.models import Sequential

from keras.optimizers import SGD

from keras.utils import to_categorical

from matplotlib import pyplot

prepare train and test dataset

def prepare_data():

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

return trainX, trainy, testX, testy

fit a model and plot learning curve

def fit_model(trainX, trainy, testX, testy, decay):

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

compile model

opt = SGD(lr=0.01, decay=decay)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200, verbose=0)

plot learning curves

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.title('decay='+str(decay), pad=-80)

prepare dataset

trainX, trainy, testX, testy = prepare_data()

create learning curves for different decay rates

decay_rates = [1E-1, 1E-2, 1E-3, 1E-4]

for i in range(len(decay_rates)):

determine the plot number

plot_no = 220 + (i+1)

pyplot.subplot(plot_no)

fit model and plot learning curves for a decay rate

fit_model(trainX, trainy, testX, testy, decay_rates[i])

show learning curves

pyplot.show()

5.3. Learning Rate Case Study 108

Listing 5.26: Example of evaluating the dynamics of different learning rate decay rates with an
MLP on the blobs problem.

Running the example creates a single figure that contains four line plots for the different
evaluated learning rate decay values. Classification accuracy on the training dataset is marked
in blue, whereas accuracy on the test dataset is marked in orange.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

We can see that the large decay values of 1E-1 and 1E-2 indeed decay the learning rate too
rapidly for this model on this problem and result in poor performance. The smaller decay values
result in better performance, with the value of 1E-4 perhaps causing in a similar result as not
using decay at all. In fact, we can calculate the final learning rate with a decay of 1E-4 to be
about 0.0075, only a little bit smaller than the initial value of 0.01.

Figure 5.5: Line Plots of Train and Test Accuracy for a Suite of Decay Rates on the Blobs
Classification Problem.

Drop Learning Rate on Plateau

The ReduceLROnPlateau will drop the learning rate by a factor after no change in a monitored
metric for a given number of epochs. We can explore the effect of different patience values,

5.3. Learning Rate Case Study 109

which is the number of epochs to wait for a change before dropping the learning rate. We will
use the default learning rate of 0.01 and drop the learning rate by an order of magnitude by
setting the factor argument to 0.1.

rlrp = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=patience, min_delta=1E-7)

Listing 5.27: Example of configuring the ReduceLROnPlateau callback.

It will be interesting to review the effect on the learning rate over the training epochs. We
can do that by creating a new Keras Callback that is responsible for recording the learning rate
at the end of each training epoch. We can then retrieve the recorded learning rates and create a
line plot to see how the learning rate was affected by drops. We can create a custom Callback

called LearningRateMonitor. The on train begin() function is called at the start of training,
and in it we can define an empty list of learning rates. The on epoch end() function is called at
the end of each training epoch and in it we can retrieve the optimizer and the current learning
rate from the optimizer and store it in the list. The complete LearningRateMonitor callback
is listed below.

monitor the learning rate

class LearningRateMonitor(Callback):

start of training

def on_train_begin(self, logs={}):

self.lrates = list()

end of each training epoch

def on_epoch_end(self, epoch, logs={}):

get and store the learning rate

optimizer = self.model.optimizer

lrate = float(backend.get_value(optimizer.lr))

self.lrates.append(lrate)

Listing 5.28: Example of defining a custom callback to monitor the value of the learning rate.

The fit model() function developed in the previous sections can be updated to create and
configure the ReduceLROnPlateau callback and our new LearningRateMonitor callback and
register them with the model in the call to fit. The function will also take patience as an
argument so that we can evaluate different values.

fit model

rlrp = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=patience, min_delta=1E-7)

lrm = LearningRateMonitor()

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200, verbose=0,

callbacks=[rlrp, lrm])

Listing 5.29: Example of fitting a model with learning rate callbacks.

We will want to create a few plots in this example, so instead of creating subplots directly,
the fit model() function will return the list of learning rates as well as loss and accuracy on
the training dataset for each training epochs. The function with these updates is listed below.

fit a model and plot learning curve

def fit_model(trainX, trainy, testX, testy, patience):

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

5.3. Learning Rate Case Study 110

compile model

opt = SGD(lr=0.01)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

rlrp = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=patience,

min_delta=1E-7)

lrm = LearningRateMonitor()

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200,

verbose=0, callbacks=[rlrp, lrm])

return lrm.lrates, history.history['loss'], history.history['acc']

Listing 5.30: Example of updated function to evaluate learning rate schedule with different
patience values.

The patience in the ReduceLROnPlateau controls how often the learning rate will be dropped.
We will test a few different patience values suited for this model on the blobs problem and keep
track of the learning rate, loss, and accuracy series from each run.

create learning curves for different patiences

patiences = [2, 5, 10, 15]

lr_list, loss_list, acc_list, = list(), list(), list()

for i in range(len(patiences)):

fit model and plot learning curves for a patience

lr, loss, acc = fit_model(trainX, trainy, testX, testy, patiences[i])

lr_list.append(lr)

loss_list.append(loss)

acc_list.append(acc)

Listing 5.31: Example of evaluating a range of different patience values for the learning rate
schedule.

At the end of the run, we will create figures with line plots for each of the patience values for
the learning rates, training loss, and training accuracy for each patience value. We can create a
helper function to easily create a figure with subplots for each series that we have recorded.

create line plots for a series

def line_plots(patiences, series):

for i in range(len(patiences)):

pyplot.subplot(220 + (i+1))

pyplot.plot(series[i])

pyplot.title('patience='+str(patiences[i]), pad=-80)

pyplot.show()

Listing 5.32: Example of plotting the dynamics of different patience values for the learning rate
schedule.

Tying these elements together, the complete example is listed below.

study of patience for the learning rate drop schedule on the blobs problem

from sklearn.datasets.samples_generator import make_blobs

from keras.layers import Dense

from keras.models import Sequential

from keras.optimizers import SGD

from keras.utils import to_categorical

from keras.callbacks import Callback

from keras.callbacks import ReduceLROnPlateau

from keras import backend

5.3. Learning Rate Case Study 111

from matplotlib import pyplot

monitor the learning rate

class LearningRateMonitor(Callback):

start of training

def on_train_begin(self, logs={}):

self.lrates = list()

end of each training epoch

def on_epoch_end(self, epoch, logs={}):

get and store the learning rate

optimizer = self.model.optimizer

lrate = float(backend.get_value(optimizer.lr))

self.lrates.append(lrate)

prepare train and test dataset

def prepare_data():

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

return trainX, trainy, testX, testy

fit a model and plot learning curve

def fit_model(trainX, trainy, testX, testy, patience):

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

compile model

opt = SGD(lr=0.01)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

rlrp = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=patience,

min_delta=1E-7)

lrm = LearningRateMonitor()

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200,

verbose=0, callbacks=[rlrp, lrm])

return lrm.lrates, history.history['loss'], history.history['acc']

create line plots for a series

def line_plots(patiences, series):

for i in range(len(patiences)):

pyplot.subplot(220 + (i+1))

pyplot.plot(series[i])

pyplot.title('patience='+str(patiences[i]), pad=-80)

pyplot.show()

prepare dataset

trainX, trainy, testX, testy = prepare_data()

create learning curves for different patiences

patiences = [2, 5, 10, 15]

5.3. Learning Rate Case Study 112

lr_list, loss_list, acc_list, = list(), list(), list()

for i in range(len(patiences)):

fit model and plot learning curves for a patience

lr, loss, acc = fit_model(trainX, trainy, testX, testy, patiences[i])

lr_list.append(lr)

loss_list.append(loss)

acc_list.append(acc)

plot learning rates

line_plots(patiences, lr_list)

plot loss

line_plots(patiences, loss_list)

plot accuracy

line_plots(patiences, acc_list)

Listing 5.33: Example of evaluating the dynamics of learning rate schedules with an MLP on
the blobs problem.

Running the example creates three figures, each containing a line plot for the different
patience values.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

The first figure shows line plots of the learning rate over the training epochs for each of the
evaluated patience values. We can see that the smallest patience value of two rapidly drops the
learning rate to a minimum value within 25 epochs, the largest patience of 15 only suffers one
drop in the learning rate. From these plots, we would expect the patience values of 5 and 10 for
this model on this problem to result in better performance as they allow the larger learning rate
to be used for some time before dropping the rate to refine the weights.

5.3. Learning Rate Case Study 113

Figure 5.6: Line Plots of Learning Rate Over Epochs for Different Patience Values Used in the
ReduceLROnPlateau Schedule.

The next figure shows the loss on the training dataset for each of the patience values. The
plot shows that the patience values of 2 and 5 result in a rapid convergence of the model,
perhaps to a sub-optimal loss value. In the case of a patience level of 10 and 15, loss drops
reasonably until the learning rate is dropped below a level that large changes to the loss can be
seen. This occurs halfway for the patience of 10 and nearly the end of the run for patience 15.

5.3. Learning Rate Case Study 114

Figure 5.7: Line Plots of Training Loss Over Epochs for Different Patience Values Used in the
ReduceLROnPlateau Schedule.

The final figure shows the training set accuracy over training epochs for each patience
value. We can see that indeed the small patience values of 2 and 5 epochs results in premature
convergence of the model to a less-than-optimal model at around 65% and less than 75%
accuracy respectively. The larger patience values result in better performing models, with the
patience of 10 showing convergence just before 150 epochs, whereas the patience 15 continues
to show the effects of a volatile accuracy given the nearly completely unchanged learning rate.
These plots show how a learning rate that is decreased a sensible way for the problem and
chosen model configuration can result in both a skillful and converged stable set of final weights,
a desirable property in a final model at the end of a training run.

5.3. Learning Rate Case Study 115

Figure 5.8: Line Plots of Training Accuracy Over Epochs for Different Patience Values Used in
the ReduceLROnPlateau Schedule.

5.3.4 Effect of Adaptive Learning Rates

Learning rates and learning rate schedules are both challenging to configure and critical to the
performance of a deep learning neural network model. Keras provides a number of different
popular variations of stochastic gradient descent with adaptive learning rates, such as:

� Adaptive Gradient Algorithm (AdaGrad).

� Root Mean Square Propagation (RMSprop).

� Adaptive Moment Estimation (Adam).

Each provides a different methodology for adapting learning rates for each weight in the
network. There is no single best algorithm, and the results of racing optimization algorithms
(comparing the performance of many methods) on one problem are unlikely to be transferable
to new problems. We can study the dynamics of different adaptive learning rate methods on the
blobs problem. The fit model() function can be updated to take the name of an optimization
algorithm to evaluate, which can be specified to the optimizer argument when the MLP model
is compiled. The default parameters for each method will then be used. The updated version of
the function is listed below.

5.3. Learning Rate Case Study 116

fit a model and plot learning curve

def fit_model(trainX, trainy, testX, testy, optimizer):

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

compile model

model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200, verbose=0)

plot learning curves

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.title('opt='+optimizer, pad=-80)

Listing 5.34: Example of updated function to evaluate different adaptive learning rate techniques.

We can explore the three popular methods of RMSprop, AdaGrad and Adam and compare
their behavior to simple stochastic gradient descent with a static learning rate. We would expect
the adaptive learning rate versions of the algorithm to perform similarly or better, perhaps
adapting to the problem in fewer training epochs, but importantly, to result in a more stable
model.

prepare dataset

trainX, trainy, testX, testy = prepare_data()

create learning curves for different optimizers

optimizers = ['sgd', 'rmsprop', 'adagrad', 'adam']

for i in range(len(optimizers)):

determine the plot number

plot_no = 220 + (i+1)

pyplot.subplot(plot_no)

fit model and plot learning curves for an optimizer

fit_model(trainX, trainy, testX, testy, optimizers[i])

show learning curves

pyplot.show()

Listing 5.35: Example of evaluating different adaptive learning rate techniques.

Tying these elements together, the complete example is listed below.

study of sgd with adaptive learning rates in the blobs problem

from sklearn.datasets.samples_generator import make_blobs

from keras.models import Sequential

from keras.layers import Dense

from keras.utils import to_categorical

from matplotlib import pyplot

prepare train and test dataset

def prepare_data():

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

5.3. Learning Rate Case Study 117

trainy, testy = y[:n_train], y[n_train:]

return trainX, trainy, testX, testy

fit a model and plot learning curve

def fit_model(trainX, trainy, testX, testy, optimizer):

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

compile model

model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200, verbose=0)

plot learning curves

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.title('opt='+optimizer, pad=-80)

prepare dataset

trainX, trainy, testX, testy = prepare_data()

create learning curves for different optimizers

optimizers = ['sgd', 'rmsprop', 'adagrad', 'adam']

for i in range(len(optimizers)):

determine the plot number

plot_no = 220 + (i+1)

pyplot.subplot(plot_no)

fit model and plot learning curves for an optimizer

fit_model(trainX, trainy, testX, testy, optimizers[i])

show learning curves

pyplot.show()

Listing 5.36: Example of evaluating the dynamics of adaptive learning rate techniques with an
MLP on the blobs problem.

Running the example creates a single figure that contains four line plots for the different
evaluated optimization algorithms. Classification accuracy on the training dataset is marked in
blue, whereas accuracy on the test dataset is marked in orange.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

Again, we can see that SGD with a default learning rate of 0.01 and no momentum does
learn the problem, but requires nearly all 200 epochs and results in volatile accuracy on the
training data and much more so on the test dataset. The plots show that all three adaptive
learning rate methods learning the problem faster and with dramatically less volatility in train
and test set accuracy.

Both RMSProp and Adam demonstrate similar performance, effectively learning the problem
within 50 training epochs and spending the remaining training time making very minor weight
updates, but not converging as we saw with the learning rate schedules in the previous section.

5.4. Extensions 118

Figure 5.9: Line Plots of Train and Test Accuracy for a Suite of Adaptive Learning Rate
Methods on the Blobs Classification Problem.

5.4 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Tune Learning. Update the learning rate experiment to automatically vary the learning
rate within a discovered best order of magnitude.

� Initial Learning Rate. Vary the initial learning for an adaptive learning rate method
such as Adam and compare results.

If you explore any of these extensions, I’d love to know.

5.5 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

5.6. Summary 119

5.5.1 Books

� Chapter 8: Optimization for Training Deep Models, Deep Learning, 2016.
https://amzn.to/2NJW3gE

� Chapter 6: Learning Rate and Momentum, Neural Smithing: Supervised Learning in
Feedforward Artificial Neural Networks, 1999.
https://amzn.to/2S8qRdI

� Section 5.7: Gradient descent, Neural Networks for Pattern Recognition, 1995.
https://amzn.to/2S8qdwt

5.5.2 Papers

� Practical recommendations for gradient-based training of deep architectures, 2012.
https://arxiv.org/abs/1206.5533

5.5.3 APIs

� Keras Optimizers API.
https://keras.io/optimizers/

� Keras Callbacks API.
https://keras.io/callbacks/

� optimizers.py Keras Source Code.
https://github.com/keras-team/keras/blob/master/keras/optimizers.py

� sklearn.datasets.make blobs API.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.

html

5.5.4 Articles

� Stochastic gradient descent, Wikipedia.
https://en.wikipedia.org/wiki/Stochastic_gradient_descent

� What learning rate should be used for backprop?, Neural Network FAQ.
ftp://ftp.sas.com/pub/neural/FAQ2.html#A_learn_rate

5.6 Summary

In this tutorial, you discovered the learning rate hyperparameter used when training deep
learning neural networks. Specifically, you learned:

� Learning rate controls how quickly or slowly a neural network model learns a problem.

� How to configure the learning rate with sensible defaults, diagnose behavior, and develop
a sensitivity analysis.

https://amzn.to/2NJW3gE
https://amzn.to/2S8qRdI
https://amzn.to/2S8qdwt
https://arxiv.org/abs/1206.5533
https://keras.io/optimizers/
https://keras.io/callbacks/
https://github.com/keras-team/keras/blob/master/keras/optimizers.py
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
ftp://ftp.sas.com/pub/neural/FAQ2.html#A_learn_rate

5.6. Summary 120

� How to further improve performance with learning rate schedules, momentum, and adaptive
learning rates.

5.6.1 Next

In the next tutorial, you will discover how the learning process is sensitive the scale of input and
target variables, and how data normalization and standardization can have a dramatic effect on
convergence.

Chapter 6

Stabilize Learning with Data Scaling

Deep learning neural networks learn how to map inputs to outputs from examples in a training
dataset. The weights of the model are initialized to small random values and updated via an
optimization algorithm in response to estimates of error on the training dataset. Given the use
of small weights in the model and the use of error between predictions and actual values, the
scale of inputs and outputs used to train the model are an important factor. Unscaled input
variables can result in a slow or unstable learning process, whereas unscaled target variables
on regression problems can result in exploding gradients causing the learning process to fail.
Data preparation involves using techniques such as normalization and standardization to rescale
input and output variables prior to training a neural network model. In this tutorial, you will
discover how to improve neural network stability and modeling performance by scaling data.
After completing this tutorial, you will know:

� Data scaling is a recommended pre-processing step when working with deep learning
neural networks.

� Data scaling can be achieved by normalizing or standardizing real-valued input and output
variables.

� How to apply standardization and normalization to improve the performance of a Multilayer
Perceptron model on a regression predictive modeling problem.

Let’s get started.

6.1 Data Scaling

In this section you will discover the data scaling, the effect it has on the model during training
and tips on how to scale input and target variables when training your own neural network
models.

6.1.1 The Scale of Your Data Matters

Deep learning neural network models learn a mapping from input variables to an output variable.
As such, the scale and distribution of the data may be different for each variable. Input variables
may have different units (e.g. feet, kilometers, and hours) that, in turn, may mean the variables

121

6.1. Data Scaling 122

have different scales. Differences in the scales across input variables may increase the difficulty
of the problem being modeled. An example of this is that large input values (e.g. a spread of
hundreds or thousands of units) can result in a model that learns large weight values. A model
with large weight values is often unstable, meaning that it may suffer from poor performance
during learning and sensitivity to input values resulting in higher generalization error.

One of the most common forms of pre-processing consists of a simple linear rescaling
of the input variables.

— Page 298, Neural Networks for Pattern Recognition, 1995.

A target variable with a large spread of values, in turn, may result in large error gradient
values causing weight values to change dramatically, making the learning process unstable.
Scaling input and output variables is a critical step in using neural network models.

In practice it is nearly always advantageous to apply pre-processing transformations
to the input data before it is presented to a network. Similarly, the outputs of the
network are often post-processed to give the required output values.

— Page 296, Neural Networks for Pattern Recognition, 1995.

6.1.2 Scaling Input Variables

The input variables are those that the network takes on the input or visible layer in order to
make a prediction. A good rule of thumb is that input variables should be small values, probably
in the range of 0-1 or standardized with a zero mean and a standard deviation of one. Whether
input variables require scaling depends on the specifics of your problem and of each variable.
You may have a sequence of quantities as inputs, such as prices or temperatures.

Scaling speeds learning because it helps to balance out the rate at which the weights
connected to the input nodes learn.

— Efficient BackProp, 1998.

If the distribution of the quantity is normal, then it should be standardized, otherwise the
data should be normalized. This applies if the range of quantity values is large (10s, 100s,
etc.) or small (0.01, 0.0001). If the quantity values are small (near 0-1) and the distribution
is limited (e.g. standard deviation near 1) then perhaps you can get away with no scaling of
the data. Problems can be complex and it may not be clear how to best scale input data. If in
doubt, normalize the input sequence. If you have the resources, explore modeling with the raw
data, standardized data, and normalized data and see if there is a beneficial difference in the
performance of the resulting model.

If the input variables are combined linearly, as in an MLP [Multilayer Perceptron],
then it is rarely strictly necessary to standardize the inputs, at least in theory. [...]
However, there are a variety of practical reasons why standardizing the inputs can
make training faster and reduce the chances of getting stuck in local optima.

— Should I normalize/standardize/rescale the data? Neural Nets FAQ.

6.2. Data Scaling scikit-learn API 123

6.1.3 Scaling Output Variables

The output variable is the variable predicted by the network. You must ensure that the scale
of your output variable matches the scale of the activation function (transfer function) on the
output layer of your network.

If your output activation function has a range of [0,1], then obviously you must
ensure that the target values lie within that range. But it is generally better to
choose an output activation function suited to the distribution of the targets than
to force your data to conform to the output activation function.

— Should I normalize/standardize/rescale the data? Neural Nets FAQ.

If your problem is a regression problem, then the output will be a real value. This is best
modeled with a linear activation function. If the distribution of the value is normal, then you
can standardize the output variable. Otherwise, the output variable can be normalized.

6.2 Data Scaling scikit-learn API

There are two types of scaling of your data that you may want to consider: normalization and
standardization. These can both be achieved using the scikit-learn library.

6.2.1 Data Normalization

Normalization is a rescaling of the data from the original range so that all values are within
the range of 0 and 1. Normalization requires that you know or are able to accurately estimate
the minimum and maximum observable values. You may be able to estimate these values from
your available data. If an x value to be normalized is outside the bounds of the minimum and
maximum values, the resulting value will not be in the range of 0 and 1. You could check for
these observations prior to making predictions and either remove them from the dataset or limit
them to the pre-defined maximum or minimum values. You can normalize your dataset using
the scikit-learn object MinMaxScaler. Good practice usage with the MinMaxScaler and other
scaling techniques is as follows:

� Fit the scaler using available training data. For normalization, this means the
training data will be used to estimate the minimum and maximum observable values. This
is done by calling the fit() function.

� Apply the scale to training data. This means you can use the normalized data to
train your model. This is done by calling the transform() function.

� Apply the scale to data going forward. This means you can prepare new data in the
future on which you want to make predictions.

The default scale for the MinMaxScaler is to rescale variables into the range [0,1], although
a preferred scale can be specified via the feature range argument and specify a tuple including
the min and the max for all variables.

6.2. Data Scaling scikit-learn API 124

create scaler

scaler = MinMaxScaler(feature_range=(-1,1))

Listing 6.1: Example of defining a MinMaxScaler.

If needed, the transform can be inverted. This is useful for converting predictions back into
their original scale for reporting or plotting. This can be done by calling the inverse transform()

function. The example below provides a general demonstration for using the MinMaxScaler to
normalize data.

demonstrate data normalization with sklearn

from sklearn.preprocessing import MinMaxScaler

load data

data = ...

create scaler

scaler = MinMaxScaler()

fit scaler on data

scaler.fit(data)

apply transform

normalized = scaler.transform(data)

inverse transform

inverse = scaler.inverse_transform(normalized)

Listing 6.2: Example of using a MinMaxScaler.

You can also perform the fit and transform in a single step using the fit transform()

function; for example:

demonstrate data normalization with sklearn

from sklearn.preprocessing import MinMaxScaler

load data

data = ...

create scaler

scaler = MinMaxScaler()

fit and transform in one step

normalized = scaler.fit_transform(data)

inverse transform

inverse = scaler.inverse_transform(normalized)

Listing 6.3: Example of alternate way of using a MinMaxScaler.

6.2.2 Data Standardization

Standardizing a dataset involves rescaling the distribution of values so that the mean of observed
values is 0 and the standard deviation is 1. It is sometimes referred to as whitening. This
can be thought of as subtracting the mean value or centering the data. Like normalization,
standardization can be useful, and even required in some machine learning algorithms when your
data has input values with differing scales. Standardization assumes that your observations fit a
Gaussian distribution (bell curve) with a well behaved mean and standard deviation. You can
still standardize your data if this expectation is not met, but you may not get reliable results.
It may be a preferred data preparation scheme for use with neural networks.

Convergence is usually faster if the average of each input variable over the training
set is close to zero.

6.3. Data Scaling Case Study 125

— Efficient BackProp, 1998.

Standardization requires that you know or are able to accurately estimate the mean and
standard deviation of observable values. You may be able to estimate these values from your
training data. You can standardize your dataset using the scikit-learn object StandardScaler.

demonstrate data standardization with sklearn

from sklearn.preprocessing import StandardScaler

load data

data = ...

create scaler

scaler = StandardScaler()

fit scaler on data

scaler.fit(data)

apply transform

standardized = scaler.transform(data)

inverse transform

inverse = scaler.inverse_transform(standardized)

Listing 6.4: Example of using a StandardScaler.

You can also perform the fit and transform in a single step using the fit transform()

function; for example:

demonstrate data standardization with sklearn

from sklearn.preprocessing import StandardScaler

load data

data = ...

create scaler

scaler = StandardScaler()

fit and transform in one step

standardized = scaler.fit_transform(data)

inverse transform

inverse = scaler.inverse_transform(standardized)

Listing 6.5: Example of alternate way of using a StandardScaler.

6.3 Data Scaling Case Study

In this section, we will demonstrate how to use data scaling to improve convergence with a MLP
on a simple classification problem. This example provides a template for exploring data scaling
with your own neural network for classification and regression problems.

6.3.1 Regression Predictive Modeling Problem

A regression predictive modeling problem involves predicting a real-valued quantity. We
can use a standard regression problem generator provided by the scikit-learn library in the
make regression() function. This function will generate examples from a simple regression
problem with a given number of input variables, statistical noise, and other properties. We
will use this function to define a problem that has 20 input features; 10 of the features will be
meaningful and 10 will not be relevant. A total of 1,000 examples will be randomly generated.
The pseudorandom number generator will be fixed to ensure that we get the same 1,000 examples
each time the code is run.

6.3. Data Scaling Case Study 126

generate regression dataset

X, y = make_regression(n_samples=1000, n_features=20, noise=0.1, random_state=1)

Listing 6.6: Example of generating samples for the regression problem.

Each input variable has a Gaussian distribution, as does the target variable. We can
demonstrate this by creating histograms of some of the input variables and the output variable.

regression predictive modeling problem

from sklearn.datasets import make_regression

from matplotlib import pyplot

generate regression dataset

X, y = make_regression(n_samples=1000, n_features=20, noise=0.1, random_state=1)

histograms of input variables

pyplot.subplot(211)

pyplot.hist(X[:, 0])

pyplot.subplot(212)

pyplot.hist(X[:, 1])

pyplot.show()

histogram of target variable

pyplot.hist(y)

pyplot.show()

Listing 6.7: Example of generating samples and plotting their distribution for the regression
problem.

Running the example creates two figures. The first shows histograms of the first two of the
twenty input variables, showing that each has a Gaussian data distribution.

6.3. Data Scaling Case Study 127

Figure 6.1: Histograms of Two of the Twenty Input Variables for the Regression Problem.

The second figure shows a histogram of the target variable, showing a much larger range for
the variable as compared to the input variables and, again, a Gaussian data distribution.

6.3. Data Scaling Case Study 128

Figure 6.2: Histogram of the Target Variable for the Regression Problem.

Now that we have a regression problem that we can use as the basis for the investigation,
we can develop a model to address it.

6.3.2 Multilayer Perceptron With Unscaled Data

We can develop a Multilayer Perceptron (MLP) model for the regression problem. A model will
be demonstrated on the raw data, without any scaling of the input or output variables. We
expect that model performance will be generally poor. The first step is to split the data into
train and test sets so that we can fit and evaluate a model. We will generate 1,000 examples
from the domain and split the dataset in half, using 500 examples for the train and test datasets.

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

Listing 6.8: Example of preparing the dataset for modeling.

Next, we can define an MLP model. The model will expect 20 inputs in the 20 input variables
in the problem. A single hidden layer will be used with 25 nodes and a rectified linear activation
function. The output layer has one node for the single target variable and a linear activation
function to predict real values directly.

6.3. Data Scaling Case Study 129

define model

model = Sequential()

model.add(Dense(25, input_dim=20, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(1, activation='linear'))

Listing 6.9: Example of defining the MLP model.

The mean squared error loss function will be used to optimize the model and the stochastic
gradient descent optimization algorithm will be used with the sensible default configuration of a
learning rate of 0.01 and a momentum of 0.9.

compile model

model.compile(loss='mean_squared_error', optimizer=SGD(lr=0.01, momentum=0.9))

Listing 6.10: Example of compiling the MLP model.

The model will be fit for 100 training epochs and the test set will be used as a validation
set, evaluated at the end of each training epoch. The mean squared error is calculated on the
train and test datasets at the end of training to get an idea of how well the model learned the
problem.

evaluate the model

train_mse = model.evaluate(trainX, trainy, verbose=0)

test_mse = model.evaluate(testX, testy, verbose=0)

Listing 6.11: Example of evaluating the MLP model.

Finally, learning curves of mean squared error on the train and test sets at the end of each
training epoch are graphed using line plots, providing learning curves to get an idea of the
dynamics of the model while learning the problem.

plot loss during training

pyplot.title('Mean Squared Error')

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

pyplot.show()

Listing 6.12: Example of plotting learning curves for the MLP model.

Tying these elements together, the complete example is listed below.

mlp with unscaled data for the regression problem

from sklearn.datasets import make_regression

from keras.layers import Dense

from keras.models import Sequential

from keras.optimizers import SGD

from matplotlib import pyplot

generate regression dataset

X, y = make_regression(n_samples=1000, n_features=20, noise=0.1, random_state=1)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(25, input_dim=20, activation='relu', kernel_initializer='he_uniform'))

6.3. Data Scaling Case Study 130

model.add(Dense(1, activation='linear'))

compile model

model.compile(loss='mean_squared_error', optimizer=SGD(lr=0.01, momentum=0.9))

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=100, verbose=0)

evaluate the model

train_mse = model.evaluate(trainX, trainy, verbose=0)

test_mse = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_mse, test_mse))

plot loss during training

pyplot.title('Mean Squared Error')

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

pyplot.show()

Listing 6.13: Example of evaluating an MLP model on the unscaled regression problem.

Running the example fits the model and calculates the mean squared error on the train and
test sets. In this case, the model is unable to learn the problem, resulting in predictions of NaN
values. The model weights exploded during training given the very large errors and, in turn,
error gradients calculated for weight updates.

Train: nan, Test: nan

Listing 6.14: Example output from evaluating an MLP model on the unscaled regression problem.

This demonstrates that, at the very least, some data scaling is required for the target
variable. A line plot of training history is created but does not show anything as the model
almost immediately results in a NaN mean squared error.

6.3.3 Multilayer Perceptron With Scaled Output Variables

The example can be updated to scale the target variable. Reducing the scale of the target
variable will, in turn, reduce the size of the gradient used to update the weights and result
in a more stable model and training process. Given the Gaussian distribution of the target
variable, a natural method for rescaling the variable would be to standardize the variable. This
requires estimating the mean and standard deviation of the variable and using these estimates
to perform the rescaling. It is best practice is to estimate the mean and standard deviation of
the training dataset and use these variables to scale the train and test dataset. This is to avoid
any data leakage during the model evaluation process. The scikit-learn transformers expect
input data to be matrices of rows and columns, therefore the 1D arrays for the target variable
will have to be reshaped into 2D arrays prior to the transforms.

reshape 1d arrays to 2d arrays

trainy = trainy.reshape(len(trainy), 1)

testy = testy.reshape(len(trainy), 1)

Listing 6.15: Example of reshaping the target variables.

We can then create and apply the StandardScaler to rescale the target variable.

created scaler

scaler = StandardScaler()

fit scaler on training dataset

6.3. Data Scaling Case Study 131

scaler.fit(trainy)

transform training dataset

trainy = scaler.transform(trainy)

transform test dataset

testy = scaler.transform(testy)

Listing 6.16: Example of standardizing the target variables.

Rescaling the target variable means that estimating the performance of the model and
plotting the learning curves will calculate an MSE in squared units of the scaled variable rather
than squared units of the original scale. This can make interpreting the error within the context
of the domain challenging. In practice, it may be helpful to estimate the performance of the
model by first inverting the transform on the test dataset target variable and on the model
predictions and estimating model performance using the root mean squared error on the unscaled
data. This is left as an exercise to the reader. The complete example of standardizing the target
variable for the MLP on the regression problem is listed below.

mlp with scaled outputs on the regression problem

from sklearn.datasets import make_regression

from sklearn.preprocessing import StandardScaler

from keras.layers import Dense

from keras.models import Sequential

from keras.optimizers import SGD

from matplotlib import pyplot

generate regression dataset

X, y = make_regression(n_samples=1000, n_features=20, noise=0.1, random_state=1)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

reshape 1d arrays to 2d arrays

trainy = trainy.reshape(len(trainy), 1)

testy = testy.reshape(len(trainy), 1)

created scaler

scaler = StandardScaler()

fit scaler on training dataset

scaler.fit(trainy)

transform training dataset

trainy = scaler.transform(trainy)

transform test dataset

testy = scaler.transform(testy)

define model

model = Sequential()

model.add(Dense(25, input_dim=20, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(1, activation='linear'))

compile model

model.compile(loss='mean_squared_error', optimizer=SGD(lr=0.01, momentum=0.9))

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=100, verbose=0)

evaluate the model

train_mse = model.evaluate(trainX, trainy, verbose=0)

test_mse = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_mse, test_mse))

plot loss during training

pyplot.title('Mean Squared Error Loss')

6.3. Data Scaling Case Study 132

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

pyplot.show()

Listing 6.17: Example of evaluating an MLP model regression problem with standardized target
variables.

Running the example fits the model and calculates the mean squared error on the train and
test sets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, the model does appear to learn the problem and achieves near-zero mean
squared error, at least to three decimal places.

Train: 0.003, Test: 0.007

Listing 6.18: Example output from evaluating an MLP model regression problem with
standardized target variables.

A line plot of the mean squared error on the train (blue) and test (orange) dataset over each
training epoch is created. In this case, we can see that the model rapidly learns to effectively
map inputs to outputs for the regression problem and achieves good performance on both
datasets over the course of the run, neither overfitting or underfitting the training dataset.

6.3. Data Scaling Case Study 133

Figure 6.3: Line Plot of Mean Squared Error on the Train a Test Datasets for Each Training
Epoch.

It may be interesting to repeat this experiment and normalize the target variable instead
and compare results.

6.3.4 Multilayer Perceptron With Scaled Input Variables

We have seen that data scaling can stabilize the training process when fitting a model for
regression with a target variable that has a wide spread. It is also possible to improve the
stability and performance of the model by scaling the input variables. In this section, we will
design an experiment to compare the performance of different scaling methods for the input
variables. The input variables also have a Gaussian data distribution, like the target variable,
therefore we would expect that standardizing the data would be the best approach. This is just
a heuristic and it is always best to evaluate different scaling methods and discover what actually
works best.

We can compare the performance of the unscaled input variables to models fit with either
standardized or normalized input variables. The first step is to define a function to create
the same 1,000 data samples, split them into train and test sets, and apply the data scaling
methods specified via input arguments. The get dataset() function below implements this,
requiring the scaler to be provided for the input and target variables and returns the train and
test datasets split into input and output components ready to train and evaluate a model.

6.3. Data Scaling Case Study 134

prepare dataset with input and output scalers, can be none

def get_dataset(input_scaler, output_scaler):

generate dataset

X, y = make_regression(n_samples=1000, n_features=20, noise=0.1, random_state=1)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

scale inputs

if input_scaler is not None:

fit scaler

input_scaler.fit(trainX)

transform training dataset

trainX = input_scaler.transform(trainX)

transform test dataset

testX = input_scaler.transform(testX)

if output_scaler is not None:

reshape 1d arrays to 2d arrays

trainy = trainy.reshape(len(trainy), 1)

testy = testy.reshape(len(trainy), 1)

fit scaler on training dataset

output_scaler.fit(trainy)

transform training dataset

trainy = output_scaler.transform(trainy)

transform test dataset

testy = output_scaler.transform(testy)

return trainX, trainy, testX, testy

Listing 6.19: Example of a function for scaling the data for modeling.

Next, we can define a function to fit an MLP model on a given dataset and return the mean
squared error for the fit model on the test dataset. The evaluate model() function below
implements this behavior.

fit and evaluate mse of model on test set

def evaluate_model(trainX, trainy, testX, testy):

define model

model = Sequential()

model.add(Dense(25, input_dim=20, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(1, activation='linear'))

compile model

model.compile(loss='mean_squared_error', optimizer=SGD(lr=0.01, momentum=0.9))

fit model

model.fit(trainX, trainy, epochs=100, verbose=0)

evaluate the model

test_mse = model.evaluate(testX, testy, verbose=0)

return test_mse

Listing 6.20: Example of a function for fitting and evaluating an MLP model.

Neural networks are trained using a stochastic learning algorithm. This means that the
same model fit on the same data may result in a different performance. We can address this in
our experiment by repeating the evaluation of each model configuration, in this case a choice
of data scaling, multiple times and report performance as the mean of the error scores across
all of the runs. We will repeat each run 30 times to ensure the mean is statistically robust.

6.3. Data Scaling Case Study 135

The repeated evaluation() function below implements this, taking the scaler for input and
output variables as arguments, evaluating a model 30 times with those scalers, printing error
scores along the way, and returning a list of the calculated error scores from each run.

evaluate model multiple times with given input and output scalers

def repeated_evaluation(input_scaler, output_scaler, n_repeats=30):

get dataset

trainX, trainy, testX, testy = get_dataset(input_scaler, output_scaler)

repeated evaluation of model

results = list()

for _ in range(n_repeats):

test_mse = evaluate_model(trainX, trainy, testX, testy)

print('>%.3f' % test_mse)

results.append(test_mse)

return results

Listing 6.21: Example of a function the repeated evaluation of an MLP model.

Finally, we can run the experiment and evaluate the same model on the same dataset three
different ways:

� No scaling of inputs, standardized outputs.

� Normalized inputs, standardized outputs.

� Standardized inputs, standardized outputs.

The mean and standard deviation of the error for each configuration is reported, then box
and whisker plots are created to summarize the error scores for each configuration.

unscaled inputs

results_unscaled_inputs = repeated_evaluation(None, StandardScaler())

normalized inputs

results_normalized_inputs = repeated_evaluation(MinMaxScaler(), StandardScaler())

standardized inputs

results_standardized_inputs = repeated_evaluation(StandardScaler(), StandardScaler())

summarize results

print('Unscaled: %.3f (%.3f)' % (mean(results_unscaled_inputs),

std(results_unscaled_inputs)))

print('Normalized: %.3f (%.3f)' % (mean(results_normalized_inputs),

std(results_normalized_inputs)))

print('Standardized: %.3f (%.3f)' % (mean(results_standardized_inputs),

std(results_standardized_inputs)))

plot results

results = [results_unscaled_inputs, results_normalized_inputs, results_standardized_inputs]

labels = ['unscaled', 'normalized', 'standardized']

pyplot.boxplot(results, labels=labels)

pyplot.show()

Listing 6.22: Example of a evaluating a range of different input scaling procedures.

Tying these elements together, the complete example is listed below.

compare scaling methods for mlp inputs on regression problem

from sklearn.datasets import make_regression

from sklearn.preprocessing import StandardScaler

from sklearn.preprocessing import MinMaxScaler

6.3. Data Scaling Case Study 136

from keras.layers import Dense

from keras.models import Sequential

from keras.optimizers import SGD

from matplotlib import pyplot

from numpy import mean

from numpy import std

prepare dataset with input and output scalers, can be none

def get_dataset(input_scaler, output_scaler):

generate dataset

X, y = make_regression(n_samples=1000, n_features=20, noise=0.1, random_state=1)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

scale inputs

if input_scaler is not None:

fit scaler

input_scaler.fit(trainX)

transform training dataset

trainX = input_scaler.transform(trainX)

transform test dataset

testX = input_scaler.transform(testX)

if output_scaler is not None:

reshape 1d arrays to 2d arrays

trainy = trainy.reshape(len(trainy), 1)

testy = testy.reshape(len(trainy), 1)

fit scaler on training dataset

output_scaler.fit(trainy)

transform training dataset

trainy = output_scaler.transform(trainy)

transform test dataset

testy = output_scaler.transform(testy)

return trainX, trainy, testX, testy

fit and evaluate mse of model on test set

def evaluate_model(trainX, trainy, testX, testy):

define model

model = Sequential()

model.add(Dense(25, input_dim=20, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(1, activation='linear'))

compile model

model.compile(loss='mean_squared_error', optimizer=SGD(lr=0.01, momentum=0.9))

fit model

model.fit(trainX, trainy, epochs=100, verbose=0)

evaluate the model

test_mse = model.evaluate(testX, testy, verbose=0)

return test_mse

evaluate model multiple times with given input and output scalers

def repeated_evaluation(input_scaler, output_scaler, n_repeats=30):

get dataset

trainX, trainy, testX, testy = get_dataset(input_scaler, output_scaler)

repeated evaluation of model

results = list()

for _ in range(n_repeats):

6.3. Data Scaling Case Study 137

test_mse = evaluate_model(trainX, trainy, testX, testy)

print('>%.3f' % test_mse)

results.append(test_mse)

return results

unscaled inputs

results_unscaled_inputs = repeated_evaluation(None, StandardScaler())

normalized inputs

results_normalized_inputs = repeated_evaluation(MinMaxScaler(), StandardScaler())

standardized inputs

results_standardized_inputs = repeated_evaluation(StandardScaler(), StandardScaler())

summarize results

print('Unscaled: %.3f (%.3f)' % (mean(results_unscaled_inputs),

std(results_unscaled_inputs)))

print('Normalized: %.3f (%.3f)' % (mean(results_normalized_inputs),

std(results_normalized_inputs)))

print('Standardized: %.3f (%.3f)' % (mean(results_standardized_inputs),

std(results_standardized_inputs)))

plot results

results = [results_unscaled_inputs, results_normalized_inputs, results_standardized_inputs]

labels = ['unscaled', 'normalized', 'standardized']

pyplot.boxplot(results, labels=labels)

pyplot.show()

Listing 6.23: Example of evaluating an MLP model with different methods for scaling the input.

Running the example prints the mean squared error for each model run along the way. After
each of the three configurations have been evaluated 30 times each, the mean errors for each are
reported.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that as we expected, scaling the input variables does result in a
model with better performance. Unexpectedly, better performance is seen using normalized
inputs instead of standardized inputs. This may be related to the choice of the rectified linear
activation function in the first hidden layer.

...

>0.010

>0.012

>0.005

>0.008

>0.008

Unscaled: 0.007 (0.004)

Normalized: 0.001 (0.000)

Standardized: 0.008 (0.004)

Listing 6.24: Example output from evaluating an MLP model with different methods for scaling
the input.

A figure with three box and whisker plots is created summarizing the spread of error scores
for each configuration. The plots show that there was little difference between the distributions
of error scores for the unscaled and standardized input variables, and that the normalized input
variables result in better performance and more stable or a tighter distribution of error scores.

6.4. Extensions 138

These results highlight that it is important to actually experiment and confirm the results of
data scaling methods rather than assuming that a given data preparation scheme will work best
based on the observed distribution of the data.

Figure 6.4: Box and Whisker Plots of Mean Squared Error With Unscaled, Normalized and
Standardized Input Variables for the Regression Problem.

6.4 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Normalize Target Variable. Update the example and normalize instead of standardize
the target variable and compare results.

� Compared Scaling for Target Variable. Update the example to compare standardizing
and normalizing the target variable using repeated experiments and compare the results.

� Other Scales. Update the example to evaluate other min/max scales when normalizing
and compare performance, e.g. [-1, 1] and [0.0, 0.5].

If you explore any of these extensions, I’d love to know.

6.5. Further Reading 139

6.5 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

6.5.1 Books

� Section 8.2: Input normalization and encoding, Neural Networks for Pattern Recognition,
1995.
https://amzn.to/2S8qdwt

6.5.2 Papers

� Efficient BackProp, 1998.
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf

6.5.3 APIs

� sklearn.datasets.make regression API.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.

html

� sklearn.preprocessing.MinMaxScaler API.
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.

html

� sklearn.preprocessing.StandardScaler API.
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.

html

6.5.4 Articles

� Should I normalize/standardize/rescale the data? Neural Nets FAQ.
ftp://ftp.sas.com/pub/neural/FAQ2.html#A_std

6.6 Summary

In this tutorial, you discovered how to improve neural network stability and modeling performance
by scaling data. Specifically, you learned:

� Data scaling is a recommended pre-processing step when working with deep learning
neural networks.

� Data scaling can be achieved by normalizing or standardizing real-valued input and output
variables.

� How to apply standardization and normalization to improve the performance of a Multilayer
Perceptron model on a regression predictive modeling problem.

https://amzn.to/2S8qdwt
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
ftp://ftp.sas.com/pub/neural/FAQ2.html#A_std

6.6. Summary 140

6.6.1 Next

In the next tutorial, you will discover how to solve the vanishing gradients problem via the use
of the rectified linear activation function.

Chapter 7

Fix Vanishing Gradients with ReLU

In a neural network, the activation function is responsible for transforming the summed weighted
input from the node into the activation of the node or output for that input. The rectified
linear activation function is a piecewise linear function that will output the input directly if is
positive, otherwise, it will output zero. It has become the default activation function for many
types of neural networks because a model that uses it is easier to train and often achieves better
performance. In this tutorial, you will discover the rectified linear activation function for deep
learning neural networks. After completing this tutorial, you will know:

� The sigmoid and hyperbolic tangent activation functions cannot be used in networks with
many layers due to the vanishing gradient problem.

� The rectified linear activation function overcomes the vanishing gradient problem, allowing
models to learn faster and perform better.

� The rectified linear activation is the default activation when developing Multilayer Percep-
tron and convolutional neural networks.

Let’s get started.

7.1 Vanishing Gradients and ReLU

In this section you will discover problem of vanishing gradients, the effect it has on the model
during training and the use of the rectified linear activation function to address the problem.

7.1.1 Limitations of Sigmoid and Tanh Activation Functions

A neural network is comprised of layers of nodes and learns to map examples of inputs to outputs.
For a given node, the inputs are multiplied by the weights in a node and summed together.
This value is referred to as the summed activation of the node. The summed activation is then
transformed via an activation function and defines the specific output or activation of the node.
The simplest activation function is referred to as the linear activation, where no transform is
applied at all. A network comprised of only linear activation functions is very easy to train,
but cannot learn complex mapping functions. Linear activation functions are still used in the
output layer for networks that predict a quantity (e.g. regression problems).

141

7.1. Vanishing Gradients and ReLU 142

Nonlinear activation functions are preferred as they allow the nodes to learn more complex
structures in the data. Traditionally, two widely used nonlinear activation functions are the
sigmoid and hyperbolic tangent activation functions. The sigmoid activation function, also called
the logistic function, is traditionally a very popular activation function for neural networks. The
input to the function is transformed into a value between 0.0 and 1.0. Inputs that are much
larger than 1.0 are transformed to the value 1.0, similarly, values much smaller than 0.0 are
snapped to 0.0. The shape of the function for all possible inputs is an S-shape from zero up
through 0.5 to 1.0. For a long time, through the early 1990s, it was the default activation used
on neural networks. The hyperbolic tangent function, or tanh for short, is a similar shaped
nonlinear activation function that outputs values between -1.0 and 1.0. In the later 1990s and
through the 2000s, the tanh function was preferred over the sigmoid activation function as
models that used it were easier to train and often had better predictive performance.

... the hyperbolic tangent activation function typically performs better than the
logistic sigmoid.

— Page 195, Deep Learning, 2016.

A general problem with both the sigmoid and tanh functions is that they saturate. This
means that large values snap to 1.0 and small values snap to -1 or 0 for tanh and sigmoid
respectively. Further, the functions are only really sensitive to changes around the mid-point of
their input, such as 0.5 for sigmoid and 0.0 for tanh. The limited sensitivity and saturation
of the function happen regardless of whether the summed activation from the node provided
as input contains useful information or not. Once saturated, it becomes challenging for the
learning algorithm to continue to adapt the weights to improve the performance of the model.

... sigmoidal units saturate across most of their domain-they saturate to a high value
when z is very positive, saturate to a low value when z is very negative, and are
only strongly sensitive to their input when z is near 0.

— Page 195, Deep Learning, 2016.

Finally, as the capability of hardware increased through GPUs, very deep neural networks
using sigmoid and tanh activation functions could not easily be trained. Layers deep in large
networks using these nonlinear activation functions fail to receive useful gradient information.
Error is back propagated through the network and used to update the weights. The amount of
error decreases dramatically with each additional layer through which it is propagated, given
the derivative of the chosen activation function. This is called the vanishing gradient problem
and prevents deep (multilayered) networks from learning effectively.

Vanishing gradients make it difficult to know which direction the parameters should
move to improve the cost function

— Page 290, Deep Learning, 2016.

Although the use of nonlinear activation functions allows neural networks to learn complex
mapping functions, they effectively prevent the learning algorithm from working with deep
networks. Workarounds were found in the late 2000s and early 2010s using alternate network
types such as Boltzmann machines and layer-wise training or unsupervised pre-training.

7.1. Vanishing Gradients and ReLU 143

7.1.2 Rectified Linear Activation Function

In order to use stochastic gradient descent with backpropagation of errors to train deep neural
networks, an activation function is needed that looks and acts like a linear function, but is, in
fact, a nonlinear function allowing complex relationships in the data to be learned. The function
must also provide more sensitivity to the activation sum input and avoid easy saturation. The
solution had been bouncing around in the field for some time, although was not highlighted
until papers in 2009 and 2011 shone a light on it. The solution is to use the rectified linear
activation function, or ReL for short. A node or unit that implements this activation function is
referred to as a rectified linear activation unit, or ReLU for short. Often, networks that use the
rectifier function for the hidden layers are referred to as rectified networks.

Adoption of ReLU may easily be considered one of the few milestones in the deep learning
revolution, e.g. the techniques that now permit the routine development of very deep neural
networks.

[another] major algorithmic change that has greatly improved the performance of
feedforward networks was the replacement of sigmoid hidden units with piecewise
linear hidden units, such as rectified linear units.

— Page 226, Deep Learning, 2016.

The rectified linear activation function is a simple calculation that returns the value provided
as input directly, or the value 0.0 if the input is 0.0 or less. We can describe this using a simple
if-statement:

if input > 0:

return input

else:

return 0

Listing 7.1: Example of rectified linear activation function with an if-statement.

We can describe this function g() mathematically using the max() function over the set of
0.0 and the input z; for example:

g(z) = max{0, z} (7.1)

The function is linear for values greater than zero, meaning it has a lot of the desirable
properties of a linear activation function when training a neural network using backpropagation.
Yet, it is a nonlinear function as negative values are always output as zero.

Because rectified linear units are nearly linear, they preserve many of the properties
that make linear models easy to optimize with gradient-based methods. They also
preserve many of the properties that make linear models generalize well.

— Page 175, Deep Learning, 2016.

Because the rectified function is linear for half of the input domain and nonlinear for the
other half, it is referred to as a piecewise linear function or a hinge function.

However, the function remains very close to linear, in the sense that is a piecewise
linear function with two linear pieces.

7.1. Vanishing Gradients and ReLU 144

— Page 175, Deep Learning, 2016.

Now that we are familiar with the rectified linear activation function, let’s look at how we
can implement it in Python.

7.1.3 How to Implement the Rectified Linear Activation Function

We can implement the rectified linear activation function easily in Python. Perhaps the simplest
implementation is using the max() function; for example:

rectified linear function

def rectified(x):

return max(0.0, x)

Listing 7.2: Example implementation of the rectified linear activation function.

We expect that any positive value will be returned unchanged whereas an input value of 0.0
or a negative value will be returned as the value 0.0. Below are a few examples of inputs and
outputs of the rectified linear activation function.

demonstrate the rectified linear function

rectified linear function

def rectified(x):

return max(0.0, x)

demonstrate with a positive input

x = 1.0

print('rectified(%.1f) is %.1f' % (x, rectified(x)))

x = 1000.0

print('rectified(%.1f) is %.1f' % (x, rectified(x)))

demonstrate with a zero input

x = 0.0

print('rectified(%.1f) is %.1f' % (x, rectified(x)))

demonstrate with a negative input

x = -1.0

print('rectified(%.1f) is %.1f' % (x, rectified(x)))

x = -1000.0

print('rectified(%.1f) is %.1f' % (x, rectified(x)))

Listing 7.3: Example of transforms with the rectified linear activation function.

Running the example, we can see that positive values are returned regardless of their size,
whereas negative values are snapped to the value 0.0.

rectified(1.0) is 1.0

rectified(1000.0) is 1000.0

rectified(0.0) is 0.0

rectified(-1.0) is 0.0

rectified(-1000.0) is 0.0

Listing 7.4: Example output from transforms with the rectified linear activation function.

We can get an idea of the relationship between inputs and outputs of the function by plotting
a series of inputs and the calculated outputs. The example below generates a series of integers
from -10 to 10 and calculates the rectified linear activation for each input, then plots the result.

7.1. Vanishing Gradients and ReLU 145

plot inputs and outputs

from matplotlib import pyplot

rectified linear function

def rectified(x):

return max(0.0, x)

define a series of inputs

series_in = [x for x in range(-10, 11)]

calculate outputs for our inputs

series_out = [rectified(x) for x in series_in]

line plot of raw inputs to rectified outputs

pyplot.plot(series_in, series_out)

pyplot.show()

Listing 7.5: Example of plotting transforms with the rectified linear activation function.

Running the example creates a line plot showing that all negative values and zero inputs are
snapped to 0.0, whereas the positive outputs are returned as-is, resulting in a linearly increasing
slope, given that we created a linearly increasing series of positive values (e.g. 1 to 10).

Figure 7.1: Line Plot of Rectified Linear Activation for Negative and Positive Inputs.

The derivative of the rectified linear function is also easy to calculate. Recall that the
derivative of the activation function is required when updating the weights of a node as part of

7.1. Vanishing Gradients and ReLU 146

the backpropagation of error. The derivative of the function is the slope. The slope for negative
values is 0.0 and the slope for positive values is 1.0. Traditionally, the field of neural networks
has avoided any activation function that was not completely differentiable, perhaps delaying the
adoption of the rectified linear function and other piecewise-linear functions. Technically, we
cannot calculate the derivative when the input is 0.0, therefore, we can assume it is zero. This
is not a problem in practice.

For example, the rectified linear function g(z) = max{0, z} is not differentiable at
z = 0. This may seem like it invalidates g for use with a gradient-based learning
algorithm. In practice, gradient descent still performs well enough for these models
to be used for machine learning tasks.

— Page 192, Deep Learning, 2016.

Using the rectified linear activation function offers many advantages; let’s take a look at a
few in the next section.

7.1.4 Advantages of the Rectified Linear Activation Function

The rectified linear activation function has rapidly become the default activation function when
developing most types of neural networks. As such, it is important to take a moment to review
some of the benefits of the approach, first highlighted by Xavier Glorot, et al. in their milestone
2012 paper on using ReLU titled Deep Sparse Rectifier Neural Networks.

Computational Simplicity

The rectifier function is trivial to implement, requiring a max() function. This is unlike the
tanh and sigmoid activation function that require the use of an exponential calculation.

Computations are also cheaper: there is no need for computing the exponential
function in activations

— Deep Sparse Rectifier Neural Networks, 2011.

Representational Sparsity

An important benefit of the rectifier function is that it is capable of outputting a true zero
value. This is unlike the tanh and sigmoid activation functions that learn to approximate a zero
output, e.g. a value very close to zero, but not a true zero value. This means that negative
inputs can output true zero values allowing the activation of hidden layers in neural networks to
contain one or more true zero values. This is called a sparse representation and is a desirable
property in representational learning as it can accelerate learning and simplify the model. An
area where efficient representations such as sparsity are studied and sought is in autoencoders,
where a network learns a compact representation of an input (called the code layer), such as an
image or series, before it is reconstructed from the compact representation.

One way to achieve actual zeros in h for sparse (and denoising) autoencoders [...]
The idea is to use rectified linear units to produce the code layer. With a prior that
actually pushes the representations to zero (like the absolute value penalty), one
can thus indirectly control the average number of zeros in the representation.

— Page 507, Deep Learning, 2016.

7.1. Vanishing Gradients and ReLU 147

Linear Behavior

The rectifier function mostly looks and acts like a linear activation function. In general, a neural
network is easier to optimize when its behavior is linear or close to linear.

Rectified linear units [...] are based on the principle that models are easier to
optimize if their behavior is closer to linear.

— Page 194, Deep Learning, 2016.

Key to this property is that networks trained with this activation function almost completely
avoid the problem of vanishing gradients, as the gradients remain proportional to the node
activations.

Because of this linearity, gradients flow well on the active paths of neurons (there
is no gradient vanishing effect due to activation non-linearities of sigmoid or tanh
units).

— Deep Sparse Rectifier Neural Networks, 2011.

Train Deep Networks

Importantly, the (re-)discovery and adoption of the rectified linear activation function meant that
it became possible to exploit improvements in hardware and successfully train deep multilayered
networks with a nonlinear activation function using backpropagation. In turn, cumbersome
networks such as Boltzmann machines could be left behind as well as cumbersome training
schemes such as layer-wise training and unlabeled pre-training.

... deep rectifier networks can reach their best performance without requiring any
unsupervised pre-training on purely supervised tasks with large labeled datasets.
Hence, these results can be seen as a new milestone in the attempts at understanding
the difficulty in training deep but purely supervised neural networks, and closing
the performance gap between neural networks learnt with and without unsupervised
pre-training.

— Deep Sparse Rectifier Neural Networks, 2011.

7.1.5 Tips for Using the Rectified Linear Activation

In this section, we’ll take a look at some tips when using the rectified linear activation function
in your own deep learning neural networks.

Use ReLU as the Default Activation Function

For a long time, the default activation to use was the sigmoid activation function. Later, it was
the tanh activation function. For modern deep learning neural networks, the default activation
function is the rectified linear activation function.

Prior to the introduction of rectified linear units, most neural networks used the
logistic sigmoid activation function or the hyperbolic tangent activation function.

7.1. Vanishing Gradients and ReLU 148

— Page 195, Deep Learning, 2016.

Most papers that achieve state-of-the-art results will describe a network using ReLU. For
example, in the milestone 2012 paper by Alex Krizhevsky, et al. titled ImageNet Classification
with Deep Convolutional Neural Networks, the authors developed a deep convolutional neural
network with ReLU activations that achieved state-of-the-art results on the ImageNet photo
classification dataset.

... we refer to neurons with this nonlinearity as Rectified Linear Units (ReLUs).
Deep convolutional neural networks with ReLUs train several times faster than their
equivalents with tanh units.

If in doubt, start with ReLU in your neural network, then perhaps try other piecewise linear
activation functions to see how their performance compares.

In modern neural networks, the default recommendation is to use the rectified linear
unit or ReLU

— Page 174, Deep Learning, 2016.

Use ReLU with MLPs, CNNs, but Probably Not RNNs

The ReLU can be used with most types of neural networks. It is recommended as the default
for both Multilayer Perceptron (MLP) and Convolutional Neural Networks (CNNs). The use
of ReLU with CNNs has been investigated thoroughly, and almost universally results in an
improvement in results, initially, surprisingly so.

... how do the non-linearities that follow the filter banks influence the recognition
accuracy. The surprising answer is that using a rectifying non-linearity is the single
most important factor in improving the performance of a recognition system.

— What is the best multi-stage architecture for object recognition?, 2009.

Work investigating ReLU with CNNs is what provoked their use with other network types.

[others] have explored various rectified nonlinearities [...] in the context of convolu-
tional networks and have found them to improve discriminative performance.

— Rectified Linear Units Improve Restricted Boltzmann Machines, 2010.

When using ReLU with CNNs, they can be used as the activation function on the filter
maps themselves, followed then by a pooling layer.

A typical layer of a convolutional network consists of three stages [...] In the second
stage, each linear activation is run through a nonlinear activation function, such as
the rectified linear activation function. This stage is sometimes called the detector
stage.

— Page 339, Deep Learning, 2016.

7.1. Vanishing Gradients and ReLU 149

Traditionally, LSTMs use the tanh activation function for the activation of the cell state
and the sigmoid activation function for the node output. Given their careful design, ReLU
were thought to not be appropriate for Recurrent Neural Networks (RNNs) such as the Long
Short-Term Memory Network (LSTM) by default.

At first sight, ReLUs seem inappropriate for RNNs because they can have very large
outputs so they might be expected to be far more likely to explode than units that
have bounded values.

— A Simple Way to Initialize Recurrent Networks of Rectified Linear Units, 2015.

Nevertheless, there has been some work on investigating the use of ReLU as the output
activation in LSTMs, the result of which is a careful initialization of network weights to ensure
that the network is stable prior to training. This is outlined in the 2015 paper titled A Simple
Way to Initialize Recurrent Networks of Rectified Linear Units.

Try a Smaller Bias Input Value

The bias is the input on the node that has a fixed value. The bias has the effect of shifting the
activation function and it is traditional to set the bias input value to 1.0. When using ReLU in
your network, consider setting the bias to a small value, such as 0.1.

... it can be a good practice to set all elements of [the bias] to a small, positive value,
such as 0.1. This makes it very likely that the rectified linear units will be initially
active for most inputs in the training set and allow the derivatives to pass through.

— Page 193, Deep Learning, 2016.

There are some conflicting reports as to whether this is required, so compare performance to
a model with a 1.0 bias input.

Use He Weight Initialization

Before training a neural network,the weights of the network must be initialized to small random
values. When using ReLU in your network and initializing weights to small random values
centered on zero, then by default half of the units in the network will output a zero value.

For example, after uniform initialization of the weights, around 50% of hidden units
continuous output values are real zeros

— Deep Sparse Rectifier Neural Networks, 2011.

There are many heuristic methods to initialize the weights for a neural network, yet there
is no best weight initialization scheme and little relationship beyond general guidelines for
mapping weight initialization schemes to the choice of activation function. Prior to the wide
adoption of ReLU, Xavier Glorot and Yoshua Bengio proposed an initialization scheme in their
2010 paper titled Understanding the difficulty of training deep feedforward neural networks that
quickly became the default when using sigmoid and tanh activation functions, generally referred
to as Xavier initialization. Weights are set at random values sampled uniformly from a range

7.1. Vanishing Gradients and ReLU 150

proportional to the size of the number of nodes in the previous layer (specifically +/- 1√
n

where

n is the number of nodes in the prior layer). Kaiming He, et al. in their 2015 paper titled
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
suggested that Xavier initialization and other schemes were not appropriate for ReLU and
extensions.

Glorot and Bengio proposed to adopt a properly scaled uniform distribution for
initialization. This is called “Xavier” initialization [...]. Its derivation is based on
the assumption that the activations are linear. This assumption is invalid for ReLU

— Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet
Classification, 2015.

They proposed a small modification of Xavier initialization to make it suitable for use with
ReLU, now commonly referred to as He initialization (specifically +/- 2√

n
where n is the number

of nodes in the prior layer). In practice, both Gaussian and uniform versions of the scheme can
be used.

Scale Input Data

It is good practice to scale input data prior to using a neural network. This may involve
standardizing variables to have a zero mean and unit variance or normalizing each value to the
scale 0-to-1. Without data scaling on many problems, the weights of the neural network can
grow large, making the network unstable and increasing the generalization error. This good
practice of scaling inputs applies whether using ReLU for your network or not.

Use Weight Penalty

By design, the output from ReLU is unbounded in the positive domain. This means that in
some cases, the output can continue to grow in size. As such, it may be a good idea to use a
form of weight regularization, such as an L1 or L2 vector norm.

Another problem could arise due to the unbounded behavior of the activations;
one may thus want to use a regularizer to prevent potential numerical problems.
Therefore, we use the L1 penalty on the activation values, which also promotes
additional sparsity

— Deep Sparse Rectifier Neural Networks, 2011.

This can be a good practice to both promote sparse representations (e.g. with L1 regulariza-
tion) and reduced generalization error of the model.

7.1.6 Extensions and Alternatives to ReLU

The ReLU does have some limitations. Key among the limitations of ReLU is the case where
large weight updates can mean that the summed input to the activation function is always
negative, regardless of the input to the network. This means that a node with this problem will
forever output an activation value of 0.0. This is referred to as a dying ReLU.

7.1. Vanishing Gradients and ReLU 151

the gradient is 0 whenever the unit is not active. This could lead to cases where a
unit never activates as a gradient-based optimization algorithm will not adjust the
weights of a unit that never activates initially. Further, like the vanishing gradients
problem, we might expect learning to be slow when training ReL networks with
constant 0 gradients.

— Rectifier Nonlinearities Improve Neural Network Acoustic Models, 2013.

Some popular extensions to the ReLU relax the nonlinear output of the function to allow
small negative values in some way. The Leaky ReLU (LReLU or LReL) modifies the function to
allow small negative values when the input is less than zero.

The leaky rectifier allows for a small, non-zero gradient when the unit is saturated
and not active

— Rectifier Nonlinearities Improve Neural Network Acoustic Models, 2013.

The Exponential Linear Unit, or ELU, is a generalization of the ReLU that uses a parame-
terized exponential function to transition from the positive to small negative values.

ELUs have negative values which pushes the mean of the activations closer to zero.
Mean activations that are closer to zero enable faster learning as they bring the
gradient closer to the natural gradient

— Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs), 2016.

The Parametric ReLU, or PReLU, learns parameters that control the shape and leaky-ness
of the function.

... we propose a new generalization of ReLU, which we call Parametric Rectified
Linear Unit (PReLU). This activation function adaptively learns the parameters of
the rectifiers

— Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet
Classification, 2015.

Maxout is an alternative piecewise linear function that returns the maximum of the inputs,
designed to be used in conjunction with the dropout regularization technique.

We define a simple new model called maxout (so named because its output is the
max of a set of inputs, and because it is a natural companion to dropout) designed
to both facilitate optimization by dropout and improve the accuracy of dropout’s
fast approximate model averaging technique.

— Maxout Networks, 2013.

7.2. ReLU Keras API 152

7.2 ReLU Keras API

The rectified linear activation function can be used directly in Keras. It can be specified as a
standalone layer via the Activation layer.

...

model.append(Activation('relu'))

Listing 7.6: Example of ReLU activation layer.

The rectifier activation function can also be specified directly on the layer, such as in the
case of a Dense, Conv2D, and LSTM layer via the activation argument.

...

model.append(Dense(..., activation='relu'))

Listing 7.7: Example of ReLU activation on a Dense layer.

Keras also supports variations of the rectified linear activation function as standalone layers,
such as the parametric ReLU via the PReLU layer and the leaky ReLU via the LeakyReLU layer.

7.3 ReLU Case Study

In this section, we will demonstrate how to use ReLU to counter the vanishing gradient problem
with a MLP on a simple classification problem. This example provides a template for exploring
ReLU with your own neural network for classification and regression problems.

7.3.1 Binary Classification Problem

As the basis for our exploration, we will use a very simple two-class or binary classification
problem. The scikit-learn class provides the make circles() function that can be used to
create a binary classification problem with the prescribed number of samples and statistical
noise. Each example has two input variables that define the x and y coordinates of the point on
a two-dimensional plane. The points are arranged in two concentric circles (they have the same
center) for the two classes. The number of points in the dataset is specified by a parameter, half
of which will be drawn from each circle. Gaussian noise can be added when sampling the points
via the noise argument that defines the standard deviation of the noise, where 0.0 indicates
no noise or points drawn exactly from the circles. The seed for the pseudorandom number
generator can be specified via the random state argument that allows the exact same points to
be sampled each time the function is called. The example below generates 1,000 examples from
the two circles with noise and a value of 1 to seed the pseudorandom number generator.

generate circles

X, y = make_circles(n_samples=1000, noise=0.1, random_state=1)

Listing 7.8: Example of generating samples from the two circles problem.

We can create a graph of the dataset, plotting the x and y coordinates of the input variables
(X) and coloring each point by the class value (0 or 1). The complete example is listed below.

scatter plot of the circles dataset with points colored by class

from sklearn.datasets import make_circles

from numpy import where

7.3. ReLU Case Study 153

from matplotlib import pyplot

generate circles

X, y = make_circles(n_samples=1000, noise=0.1, random_state=1)

select indices of points with each class label

for i in range(2):

samples_ix = where(y == i)

pyplot.scatter(X[samples_ix, 0], X[samples_ix, 1], label=str(i))

pyplot.legend()

pyplot.show()

Listing 7.9: Example of plotting samples from the two circles problem.

Running the example creates a plot showing the 1,000 generated data points with the class
value of each point used to color each point. We can see points for class 0 are blue and represent
the outer circle, and points for class 1 are orange and represent the inner circle. The statistical
noise of the generated samples means that there is some overlap of points between the two
circles, adding some ambiguity to the problem, making it non-trivial. This is desirable as a
neural network may choose one of among many possible solutions to classify the points between
the two circles and always make some errors.

Figure 7.2: Scatter Plot of Circles Dataset With Points Colored By Class Value.

Now that we have defined a problem as the basis for our exploration, we can look at
developing a model to address it.

7.3. ReLU Case Study 154

7.3.2 Multilayer Perceptron Model

We can develop a Multilayer Perceptron model to address the two circles problem. This will be
a simple feedforward neural network model, designed as we were taught in the late 1990s and
early 2000s. First, we will generate 1,000 data points from the two circles problem and rescale
the inputs to the range [-1, 1]. The data is almost already in this range, but we will make
sure. Normally, we would prepare the data scaling using a training dataset and apply it to a
test dataset. To keep things simple in this tutorial, we will scale all of the data together before
splitting it into train and test sets.

generate 2d classification dataset

X, y = make_circles(n_samples=1000, noise=0.1, random_state=1)

scale input data to [-1,1]

scaler = MinMaxScaler(feature_range=(-1, 1))

X = scaler.fit_transform(X)

Listing 7.10: Example of scaling the data ready for modeling.

Next, we will split the data into train and test sets. Half of the data will be used for training
and the remaining 500 examples will be used as the test set. In this tutorial, the test set will
also serve as the validation dataset so we can get an idea of how the model performs on the
holdout set during training.

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

Listing 7.11: Example of splitting the data into train and test sets.

Next, we will define the model. The model will have an input layer with two inputs, for the
two variables in the dataset, one hidden layer with five nodes, and an output layer with one
node used to predict the class probability. The hidden layer will use the hyperbolic tangent
activation function (tanh) and the output layer will use the logistic activation function (sigmoid)
to predict class 0 or class 1 or something in between. Using the hyperbolic tangent activation
function in hidden layers was the best practice in the 1990s and 2000s, performing generally
better than the logistic function when used in the hidden layer. It was also good practice to
initialize the network weights to small random values from a uniform distribution. Here, we will
initialize weights randomly from the range [0.0, 1.0].

define model

model = Sequential()

init = RandomUniform(minval=0, maxval=1)

model.add(Dense(5, input_dim=2, activation='tanh', kernel_initializer=init))

model.add(Dense(1, activation='sigmoid', kernel_initializer=init))

Listing 7.12: Example of defining the MLP model.

The model uses the binary cross-entropy loss function and is optimized using stochastic
gradient descent with a learning rate of 0.01 and a large momentum of 0.9.

compile model

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])

Listing 7.13: Example of compiling the MLP model.

7.3. ReLU Case Study 155

The model is trained for 500 training epochs and the test dataset is evaluated at the end of
each epoch along with the training dataset.

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=500, verbose=0)

Listing 7.14: Example of fitting the MLP model.

After the model is fit, it is evaluated on both the train and test dataset and the accuracy
scores are displayed.

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

Listing 7.15: Example of evaluating the MLP model.

Finally, the accuracy of the model during each step of training is graphed as a line plot,
showing the dynamics of the model as it learned the problem.

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 7.16: Example of plotting learning curves for the MLP model.

Tying all of this together, the complete example is listed below.

mlp with tanh for the two circles classification problem

from sklearn.datasets import make_circles

from sklearn.preprocessing import MinMaxScaler

from keras.layers import Dense

from keras.models import Sequential

from keras.optimizers import SGD

from keras.initializers import RandomUniform

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_circles(n_samples=1000, noise=0.1, random_state=1)

scale input data to [-1,1]

scaler = MinMaxScaler(feature_range=(-1, 1))

X = scaler.fit_transform(X)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

7.3. ReLU Case Study 156

init = RandomUniform(minval=0, maxval=1)

model.add(Dense(5, input_dim=2, activation='tanh', kernel_initializer=init))

model.add(Dense(1, activation='sigmoid', kernel_initializer=init))

compile model

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=500, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 7.17: Example of evaluating a tanh-based MLP for the two circles problem.

Running the example fits the model in just a few seconds. The model performance on the
train and test sets is calculated and displayed.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

We can see that in this case, the model learned the problem well, achieving an accuracy of
about 81.6% on both the train and test datasets.

Train: 0.800, Test: 0.820

Listing 7.18: Example output from evaluating an old-style MLP for the two circles problem.

A line plot of model loss and accuracy on the train and test sets is created, showing the
change in performance over all 500 training epochs. The plots suggest, for this run, that the
performance begins to slow around epoch 200 at about 80% accuracy for both the train and
test sets.

7.3. ReLU Case Study 157

Figure 7.3: Line Plot of Train and Test Set Accuracy Over Training Epochs for MLP in the
Two Circles Problem.

Now that we have seen how to develop a classical MLP using the tanh activation function for
the two circles problem, we can look at modifying the model to have many more hidden layers.

7.3.3 Deeper MLP Model

Traditionally, developing deep Multilayer Perceptron models was challenging. Deep models
using the hyperbolic tangent activation function do not train easily, and much of this poor
performance is blamed on the vanishing gradient problem. We can attempt to investigate this
using the MLP model developed in the previous section. The number of hidden layers can be
increased from 1 to 5; for example:

define model

init = RandomUniform(minval=0, maxval=1)

model = Sequential()

model.add(Dense(5, input_dim=2, activation='tanh', kernel_initializer=init))

model.add(Dense(5, activation='tanh', kernel_initializer=init))

model.add(Dense(5, activation='tanh', kernel_initializer=init))

model.add(Dense(5, activation='tanh', kernel_initializer=init))

model.add(Dense(5, activation='tanh', kernel_initializer=init))

model.add(Dense(1, activation='sigmoid', kernel_initializer=init))

7.3. ReLU Case Study 158

Listing 7.19: Example of defining a much deeper tanh-based MLP.

We can then re-run the example and review the results. The complete example of the deeper
MLP is listed below.

deeper mlp with tanh for the two circles classification problem

from sklearn.datasets import make_circles

from sklearn.preprocessing import MinMaxScaler

from keras.layers import Dense

from keras.models import Sequential

from keras.optimizers import SGD

from keras.initializers import RandomUniform

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_circles(n_samples=1000, noise=0.1, random_state=1)

scaler = MinMaxScaler(feature_range=(-1, 1))

X = scaler.fit_transform(X)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

init = RandomUniform(minval=0, maxval=1)

model = Sequential()

model.add(Dense(5, input_dim=2, activation='tanh', kernel_initializer=init))

model.add(Dense(5, activation='tanh', kernel_initializer=init))

model.add(Dense(5, activation='tanh', kernel_initializer=init))

model.add(Dense(5, activation='tanh', kernel_initializer=init))

model.add(Dense(5, activation='tanh', kernel_initializer=init))

model.add(Dense(1, activation='sigmoid', kernel_initializer=init))

compile model

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=500, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 7.20: Example of evaluating a deeper tanh-based MLP for the two circles problem.

7.3. ReLU Case Study 159

Running the example first prints the performance of the fit model on the train and test
datasets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that performance is quite poor on both the train and test sets
achieving around 50% accuracy. This suggests that the model as configured could not learn the
problem nor generalize a solution.

Train: 0.588, Test: 0.552

Listing 7.21: Example output from evaluating a deeper tanh-based MLP for the two circles
problem.

The line plots of model accuracy on the train and test sets during training tell a similar
story. We can see that performance is bad and actually gets worse as training progresses.

Figure 7.4: Line Plot of Train and Test Set Accuracy of Over Training Epochs for Deep MLP
in the Two Circles Problem.

7.3.4 Deeper MLP Model with ReLU

The rectified linear activation function has supplanted the hyperbolic tangent activation function
as the new preferred default when developing Multilayer Perceptron networks, as well as other

7.3. ReLU Case Study 160

network types like CNNs. This is because the activation function looks and acts like a linear
function, making it easier to train and less likely to saturate, but is, in fact, a nonlinear function,
forcing negative inputs to the value 0. It is claimed as one possible approach to addressing
the vanishing gradients problem when training deeper models. When using the rectified linear
activation function (or ReLU for short), it is good practice to use the He weight initialization
scheme. We can define the MLP with five hidden layers using ReLU and He initialization, listed
below.

define model

model = Sequential()

model.add(Dense(5, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(5, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(5, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(5, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(5, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(1, activation='sigmoid'))

Listing 7.22: Example of defining a much deeper ReLU-based MLP.

Tying this together, the complete code example is listed below.

deeper mlp with relu for the two circles classification problem (5 hidden layers)

from sklearn.datasets import make_circles

from sklearn.preprocessing import MinMaxScaler

from keras.layers import Dense

from keras.models import Sequential

from keras.optimizers import SGD

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_circles(n_samples=1000, noise=0.1, random_state=1)

scaler = MinMaxScaler(feature_range=(-1, 1))

X = scaler.fit_transform(X)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(5, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(5, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(5, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(5, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(5, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(1, activation='sigmoid'))

compile model

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=500, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

7.3. ReLU Case Study 161

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 7.23: Example of evaluating a deeper ReLU-based MLP for the two circles problem.

Running the example prints the performance of the model on the train and test datasets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that this small change has allowed the model to learn the problem,
achieving about 84% accuracy on both datasets, outperforming the single layer model using the
tanh activation function.

Train: 0.842, Test: 0.846

Listing 7.24: Example output from evaluating a deeper ReLU-based MLP for the two circles
problem.

A line plot of model accuracy on the train and test sets over training epochs is also created.
The plot shows quite different dynamics to what we have seen so far. The model appears to
rapidly learn the problem, converging on a solution in about 100 epochs.

7.3. ReLU Case Study 162

Figure 7.5: Line Plot of Train and Test Set Accuracy of Over Training Epochs for Deep MLP
with ReLU in the Two Circles Problem.

Use of the ReLU activation function has allowed us to fit a much deeper model for this
simple problem, but this capability does not extend infinitely. For example, increasing the
number of layers results in slower learning to a point at about 20 layers where the model is no
longer capable of learning the problem, at least with the chosen configuration. For example,
below is a line plot of train and test accuracy of the same model with 15 hidden layers that
shows that it is still capable of learning the problem (at least some of the time).

7.3. ReLU Case Study 163

Figure 7.6: Line Plot of Train and Test Set Accuracy of Over Training Epochs for Deep MLP
with ReLU with 15 Hidden Layers.

Below is a line plot of train and test accuracy over epochs with the same model with 20
layers, showing that the configuration is no longer capable of learning the problem (at least
some of the time).

7.4. Extensions 164

Figure 7.7: Line Plot of Train and Test Set Accuracy of Over Training Epochs for Deep MLP
with ReLU with 20 Hidden Layers.

Although use of the ReLU worked, we cannot be confident that use of the tanh function
failed because of vanishing gradients and ReLU succeed because it overcame this problem.

7.4 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Weight Initialization. Update the deep MLP with tanh activation to use Xavier uniform
weight initialization and report the results.

� Learning Algorithm. Update the deep MLP with tanh activation to use an adaptive
learning algorithm such as Adam and report the results.

� Weight Changes. Update the tanh and relu examples to record and plot the L1 vector
norm of model weights each epoch as a proxy for how much each layer is changed during
training and compare results.

� Study Model Depth. Create an experiment using the MLP with tanh activation and
report the performance of models as the number of hidden layers is increased from 1 to 10.

7.5. Further Reading 165

� Increase Breadth. Increase the number of nodes in the hidden layers of the MLP with
tanh activation from 5 to 25 and report performance as the number of layers are increased
from 1 to 10.

If you explore any of these extensions, I’d love to know.

7.5 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

7.5.1 Books

� Section 6.3.1: Rectified Linear Units and Their Generalizations, Deep Learning, 2016.
https://amzn.to/2QHVWmW

7.5.2 Papers

� What is the best multi-stage architecture for object recognition?, 2009
https://ieeexplore.ieee.org/document/5459469

� Rectified Linear Units Improve Restricted Boltzmann Machines, 2010.
https://dl.acm.org/citation.cfm?id=3104425

� Deep Sparse Rectifier Neural Networks, 2011.
http://proceedings.mlr.press/v15/glorot11a

� Rectifier Nonlinearities Improve Neural Network Acoustic Models, 2013.
http://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf

� Understanding the difficulty of training deep feedforward neural networks, 2010.
http://proceedings.mlr.press/v9/glorot10a.html

� Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classifi-
cation, 2015.
https://arxiv.org/abs/1502.01852

� Maxout Networks, 2013.
https://arxiv.org/abs/1302.4389

� Random Walk Initialization for Training Very Deep Feedforward Networks, 2014.
https://arxiv.org/abs/1412.6558

� Gradient Flow in Recurrent Nets: the Difficulty of Learning Long-Term Dependencies, 2001.
http://www.iro.umontreal.ca/~lisa/publications2/index.php/publications/show/

55

https://amzn.to/2QHVWmW
https://ieeexplore.ieee.org/document/5459469
https://dl.acm.org/citation.cfm?id=3104425
http://proceedings.mlr.press/v15/glorot11a
http://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
http://proceedings.mlr.press/v9/glorot10a.html
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1302.4389
https://arxiv.org/abs/1412.6558
http://www.iro.umontreal.ca/~lisa/publications2/index.php/publications/show/55
http://www.iro.umontreal.ca/~lisa/publications2/index.php/publications/show/55

7.6. Summary 166

7.5.3 APIs

� Keras Activation Functions API.
https://keras.io/activations/

� Keras Advanced Activation Functions API.
https://keras.io/layers/advanced-activations/

� max API.
https://docs.python.org/3/library/functions.html#max

� RandomUniform Keras Weight Initialization API.
https://keras.io/initializers/#randomuniform

� SGD Keras Optimizer API.
https://keras.io/optimizers/#sgd

7.5.4 Articles

� Neural Network FAQ.
ftp://ftp.sas.com/pub/neural/FAQ.html

� Activation function, Wikipedia.
https://en.wikipedia.org/wiki/Activation_function

� Vanishing gradient problem, Wikipedia.
https://en.wikipedia.org/wiki/Vanishing_gradient_problem

� Rectifier (neural networks), Wikipedia.
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)

� Piecewise Linear Function, Wikipedia.
https://en.wikipedia.org/wiki/Piecewise_linear_function

7.6 Summary

In this tutorial, you discovered the rectified linear activation function for deep learning neural
networks. Specifically, you learned:

� The sigmoid and hyperbolic tangent activation functions cannot be used in networks with
many layers due to the vanishing gradient problem.

� The rectified linear activation function overcomes the vanishing gradient problem, allowing
models to learn faster and perform better.

� The rectified linear activation is the default activation when developing Multilayer Percep-
tron and convolutional neural networks.

7.6.1 Next

In the next tutorial, you will discover how to fix the exploding gradients problem through the
use of gradient clipping.

https://keras.io/activations/
https://keras.io/layers/advanced-activations/
https://docs.python.org/3/library/functions.html#max
https://keras.io/initializers/#randomuniform
https://keras.io/optimizers/#sgd
ftp://ftp.sas.com/pub/neural/FAQ.html
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Vanishing_gradient_problem
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Piecewise_linear_function

Chapter 8

Fix Exploding Gradients with Gradient
Clipping

Training a neural network can become unstable given the choice of error function, learning
rate, or even the scale of the target variable. Large updates to weights during training can
cause a numerical overflow or underflow often referred to as exploding gradients. The problem
of exploding gradients is more common with recurrent neural networks, such as LSTMs given
the accumulation of gradients unrolled over hundreds of input time steps. A common and
relatively easy solution to the exploding gradients problem is to change the derivative of the
error before propagating it backward through the network and using it to update the weights.
Two approaches include rescaling the gradients given a chosen vector norm and clipping gradient
values that exceed a preferred range. Together, these methods are referred to as gradient clipping.
In this tutorial, you will discover the exploding gradient problem and how to improve neural
network training stability using gradient clipping. After completing this tutorial, you will know:

� Training neural networks can become unstable, leading to a numerical overflow or underflow
referred to as exploding gradients.

� The training process can be made stable by changing the error gradients either by scaling
the vector norm or clipping gradient values to a range.

� How to update an MLP model for a regression predictive modeling problem with exploding
gradients to have a stable training process using gradient clipping methods.

Let’s get started.

8.1 Exploding Gradients and Clipping

Neural networks are trained using the stochastic gradient descent optimization algorithm. This
requires first the estimation of the loss on one or more training examples, then the calculation of
the derivative of the loss, which is propagated backward through the network in order to update
the weights. Weights are updated using a fraction of the back propagated error controlled by
the learning rate. It is possible for the updates to the weights to be so large that the weights
either overflow or underflow their numerical precision. In practice, the weights can take on
the value of an NaN (not a number) or Inf (infinity) when they overflow or underflow and for

167

8.1. Exploding Gradients and Clipping 168

practical purposes the network will be useless from that point forward, forever predicting NaN

values as signals flow through the invalid weights.

The difficulty that arises is that when the parameter gradient is very large, a gradient
descent parameter update could throw the parameters very far, into a region where
the objective function is larger, undoing much of the work that had been done to
reach the current solution.

— Page 413, Deep Learning, 2016.

The underflow or overflow of weights is generally refers to as an instability of the network
training process and is known by the name exploding gradients as the unstable training process
causes the network to fail to train in such a way that the model is essentially useless. In a given
neural network, such as a Convolutional Neural Network or Multilayer Perceptron, this can
happen due to a poor choice of configuration. Some examples include:

� Poor choice of learning rate that results in large weight updates.

� Poor choice of data preparation, allowing large differences in the target variable.

� Poor choice of loss function, allowing the calculation of large error values.

Exploding gradients is also a problem in recurrent neural networks such as the Long Short-
Term Memory network given the accumulation of error gradients in the unrolled recurrent
structure. Exploding gradients can be avoided in general by careful configuration of the network
model, such as choice of small learning rate, scaled target variables, and a standard loss function.
Nevertheless, exploding gradients may still be an issue with recurrent networks with a large
number of input time steps.

One difficulty when training LSTM with the full gradient is that the derivatives
sometimes become excessively large, leading to numerical problems. To prevent this,
[we] clipped the derivative of the loss with respect to the network inputs to the
LSTM layers (before the sigmoid and tanh functions are applied) to lie within a
predefined range.

— Generating Sequences With Recurrent Neural Networks, 2013.

A common solution to exploding gradients is to change the error derivative before propagating
it backward through the network and using it to update the weights. By rescaling the error
derivative, the updates to the weights will also be rescaled, dramatically decreasing the likelihood
of an overflow or underflow. There are two main methods for updating the error derivative; they
are:

� Gradient Scaling.

� Gradient Clipping.

Gradient scaling involves normalizing the error gradient vector such that vector norm
(magnitude) equals a defined value, such as 1.0.

8.2. Gradient Clipping Keras API 169

... one simple mechanism to deal with a sudden increase in the norm of the gradients
is to rescale them whenever they go over a threshold

— On the difficulty of training Recurrent Neural Networks, 2013.

Gradient clipping involves forcing the gradient values (element-wise) to a specific minimum
or maximum value if the gradient exceeded an expected range. Together, these methods are
often simply referred to as gradient clipping.

When the traditional gradient descent algorithm proposes to make a very large
step, the gradient clipping heuristic intervenes to reduce the step size to be small
enough that it is less likely to go outside the region where the gradient indicates the
direction of approximately steepest descent.

— Page 289, Deep Learning, 2016.

It is a method that only addresses the numerical stability of training deep neural network
models and does not offer any general improvement in performance. The value for the gradient
vector norm or preferred range can be configured by trial and error, by using common values
used in the literature or by first observing common vector norms or ranges via experimentation
and then choosing a sensible value.

In our experiments we have noticed that for a given task and model size, training is
not very sensitive to this [gradient norm] hyperparameter and the algorithm behaves
well even for rather small thresholds.

— On the difficulty of training Recurrent Neural Networks, 2013.

It is common to use the same gradient clipping configuration for all layers in the network.
Nevertheless, there are examples where a larger range of error gradients are permitted in the
output layer compared to hidden layers.

The output derivatives [...] were clipped in the range [-100, 100], and the LSTM
derivatives were clipped in the range [-10, 10]. Clipping the output gradients proved
vital for numerical stability; even so, the networks sometimes had numerical problems
late on in training, after they had started overfitting on the training data.

— Generating Sequences With Recurrent Neural Networks, 2013.

8.2 Gradient Clipping Keras API

Keras supports gradient clipping on each optimization algorithm, with the same scheme applied
to all layers in the model. Gradient clipping can be used with an optimization algorithm,
such as stochastic gradient descent, via including an additional argument when configuring the
optimization algorithm. Two types of gradient clipping can be used: gradient norm scaling and
gradient value clipping.

8.3. Gradient Clipping Case Study 170

8.2.1 Gradient Norm Scaling

Gradient norm scaling involves changing the derivatives of the loss function to have a given
vector norm when the L2 vector norm (sum of the squared values) of the gradient vector exceeds
a threshold value. For example, we could specify a norm of 1.0, meaning that if the vector norm
for a gradient exceeds 1.0, then the values in the vector will be rescaled so that the norm of
the vector equals 1.0. This can be used in Keras by specifying the clipnorm argument on the
optimizer; for example:

...

configure sgd with gradient norm clipping

opt = SGD(lr=0.01, momentum=0.9, clipnorm=1.0)

Listing 8.1: Example of gradient norm scaling in Keras.

8.2.2 Gradient Value Clipping

Gradient value clipping involves clipping the derivatives of the loss function to have a given
value if a gradient value is less than a negative threshold or more than the positive threshold.
For example, we could specify a norm of 0.5, meaning that if a gradient value was less than -0.5,
it is set to -0.5 and if it is more than 0.5, then it will be set to 0.5. This can be used in Keras
by specifying the clipvalue argument on the optimizer, for example:

...

configure sgd with gradient value clipping

opt = SGD(lr=0.01, momentum=0.9, clipvalue=0.5)

Listing 8.2: Example of gradient value clipping in Keras.

8.3 Gradient Clipping Case Study

In this section, we will demonstrate how to use gradient clipping to counter the exploding
gradients problem with a MLP on a simple classification problem. This example provides a
template for exploring gradient clipping with your own neural network for classification and
regression problems.

8.3.1 Regression Predictive Modeling Problem

A regression predictive modeling problem involves predicting a real-valued quantity. We
can use a standard regression problem generator provided by the scikit-learn library in the
make regression() function. This function will generate examples from a simple regression
problem with a given number of input variables, statistical noise, and other properties. We
will use this function to define a problem that has 20 input features; 10 of the features will be
meaningful and 10 will not be relevant. A total of 1,000 examples will be randomly generated.
The pseudorandom number generator will be fixed to ensure that we get the same 1,000 examples
each time the code is run.

generate regression dataset

X, y = make_regression(n_samples=1000, n_features=20, noise=0.1, random_state=1)

8.3. Gradient Clipping Case Study 171

Listing 8.3: Example of generating samples for the regression problem.

Each input variable has a Gaussian distribution, as does the target variable. We can create
plots of the target variable showing both the distribution and spread. The complete example is
listed below.

regression predictive modeling problem

from sklearn.datasets import make_regression

from matplotlib import pyplot

generate regression dataset

X, y = make_regression(n_samples=1000, n_features=20, noise=0.1, random_state=1)

histogram of target variable

pyplot.subplot(121)

pyplot.hist(y)

boxplot of target variable

pyplot.subplot(122)

pyplot.boxplot(y)

pyplot.show()

Listing 8.4: Example of generating samples and plotting their distribution for the regression
problem.

Running the example creates a figure with two plots showing a histogram and a box and
whisker plot of the target variable. The histogram shows the Gaussian distribution of the target
variable. The box and whisker plot shows that the range of samples varies between about -400
to 400 with a mean of about 0.0.

8.3. Gradient Clipping Case Study 172

Figure 8.1: Histogram and Box and Whisker Plot of the Target Variable for the Regression
Problem.

8.3.2 Multilayer Perceptron With Exploding Gradients

We can develop a Multilayer Perceptron (MLP) model for the regression problem. A model will
be demonstrated on the raw data, without any scaling of the input or output variables. This is
a good example to demonstrate exploding gradients as a model trained to predict the unscaled
target variable will result in error gradients with values in the hundreds or even thousands,
depending on the batch size used during training. Such large gradient values are likely to lead
to unstable learning or an overflow of the weight values. The first step is to split the data into
train and test sets so that we can fit and evaluate a model. We will generate 1,000 examples
from the domain and split the dataset in half, using 500 examples for train and test sets.

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

Listing 8.5: Example of preparing the dataset ready for modeling.

Next, we can define an MLP model. The model will expect 20 inputs in the 20 input variables
in the problem. A single hidden layer will be used with 25 nodes and a rectified linear activation

8.3. Gradient Clipping Case Study 173

function. The output layer has one node for the single target variable and a linear activation
function to predict real values directly.

define model

model = Sequential()

model.add(Dense(25, input_dim=20, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(1, activation='linear'))

Listing 8.6: Example of defining the MLP model.

The mean squared error loss function will be used to optimize the model and the stochastic
gradient descent optimization algorithm will be used with the sensible default configuration of a
learning rate of 0.01 and a momentum of 0.9.

compile model

model.compile(loss='mean_squared_error', optimizer=SGD(lr=0.01, momentum=0.9))

Listing 8.7: Example of compiling the MLP model.

The model will be fit for 100 training epochs and the test set will be used as a validation
set, evaluated at the end of each training epoch.

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=100, verbose=0)

Listing 8.8: Example of fitting the MLP model.

The mean squared error is calculated on the train and test datasets at the end of training to
get an idea of how well the model learned the problem.

evaluate the model

train_mse = model.evaluate(trainX, trainy, verbose=0)

test_mse = model.evaluate(testX, testy, verbose=0)

Listing 8.9: Example of evaluating the MLP model.

Finally, learning curves of mean squared error on the train and test sets at the end of each
training epoch are graphed using line plots, providing learning curves to get an idea of the
dynamics of the model while learning the problem.

plot loss during training

pyplot.title('Mean Squared Error')

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

pyplot.show()

Listing 8.10: Example of plotting the learning curves for the MLP model.

Tying these elements together, the complete example is listed below.

mlp with unscaled data for the regression problem

from sklearn.datasets import make_regression

from keras.layers import Dense

from keras.models import Sequential

from keras.optimizers import SGD

from matplotlib import pyplot

generate regression dataset

X, y = make_regression(n_samples=1000, n_features=20, noise=0.1, random_state=1)

8.3. Gradient Clipping Case Study 174

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(25, input_dim=20, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(1, activation='linear'))

compile model

model.compile(loss='mean_squared_error', optimizer=SGD(lr=0.01, momentum=0.9))

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=100, verbose=0)

evaluate the model

train_mse = model.evaluate(trainX, trainy, verbose=0)

test_mse = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_mse, test_mse))

plot loss during training

pyplot.title('Mean Squared Error')

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

pyplot.show()

Listing 8.11: Example of fitting and evaluating an MLP with exploding gradients on the
regression problem.

Running the example fits the model and calculates the mean squared error on the train and
test sets. In this case, the model is unable to learn the problem, resulting in predictions of NaN
values. The model weights exploded during training given the very large errors and in turn
error gradients calculated for weight updates.

Train: nan, Test: nan

Listing 8.12: Example output from fitting and evaluating an MLP with exploding gradients on
the regression problem.

This demonstrates that some intervention is required with regard to the target variable for
the model to learn this problem. A line plot of training history is created but does not show
anything as the model almost immediately results in a NaN mean squared error. A traditional
solution would be to rescale the target variable using either standardization or normalization, and
this approach is recommended for MLPs. Nevertheless, an alternative that we will investigate
in this case will be the use of gradient clipping.

8.3.3 MLP With Gradient Norm Scaling

We can update the training of the model in the previous section to add gradient norm scaling.
This can be implemented by setting the clipnorm argument on the optimizer. For example,
the gradients can be rescaled to have a vector norm (magnitude or length) of 1.0, as follows:

compile model

opt = SGD(lr=0.01, momentum=0.9, clipnorm=1.0)

model.compile(loss='mean_squared_error', optimizer=opt)

Listing 8.13: Example of updating the optimizer to use gradient norm scaling.

8.3. Gradient Clipping Case Study 175

The complete example with this change is listed below.

mlp with unscaled data for the regression problem with gradient norm scaling

from sklearn.datasets import make_regression

from keras.layers import Dense

from keras.models import Sequential

from keras.optimizers import SGD

from matplotlib import pyplot

generate regression dataset

X, y = make_regression(n_samples=1000, n_features=20, noise=0.1, random_state=1)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(25, input_dim=20, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(1, activation='linear'))

compile model

opt = SGD(lr=0.01, momentum=0.9, clipnorm=1.0)

model.compile(loss='mean_squared_error', optimizer=opt)

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=100, verbose=0)

evaluate the model

train_mse = model.evaluate(trainX, trainy, verbose=0)

test_mse = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_mse, test_mse))

plot loss during training

pyplot.title('Mean Squared Error')

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

pyplot.show()

Listing 8.14: Example of fitting and evaluating an MLP with gradient norm scaling on the
regression problem.

Running the example fits the model and evaluates it on the train and test sets, printing the
mean squared error.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that scaling the gradient with a vector norm of 1.0 has resulted in a
stable model capable of learning the problem and converging on a solution.

Train: 5.082, Test: 27.433

Listing 8.15: Example output from fitting and evaluating an MLP with gradient norm scaling
on the regression problem.

A line plot is also created showing the means squared error loss on the train and test datasets
over training epochs. The plot shows how loss dropped from large values above 20,000 down to
small values below 100 rapidly over 20 epochs.

8.3. Gradient Clipping Case Study 176

Figure 8.2: Line Plot of Mean Squared Error Loss for the Train (blue) and Test (orange)
Datasets Over Training Epochs With Gradient Norm Scaling.

There is nothing special about the vector norm value of 1.0, and other values could be
evaluated and the performance of the resulting model compared.

8.3.4 MLP With Gradient Value Clipping

Another solution to the exploding gradient problem is to clip the gradient if it becomes too
large or too small. We can update the training of the MLP to use gradient clipping by adding
the clipvalue argument to the optimization algorithm configuration. For example, the code
below clips the gradient to the range [-5 to 5].

compile model

opt = SGD(lr=0.01, momentum=0.9, clipvalue=5.0)

model.compile(loss='mean_squared_error', optimizer=opt)

Listing 8.16: Example of updating the optimizer to use gradient value clipping.

The complete example of training the MLP with gradient clipping is listed below.

mlp with unscaled data for the regression problem with gradient clipping

from sklearn.datasets import make_regression

from keras.layers import Dense

from keras.models import Sequential

8.3. Gradient Clipping Case Study 177

from keras.optimizers import SGD

from matplotlib import pyplot

generate regression dataset

X, y = make_regression(n_samples=1000, n_features=20, noise=0.1, random_state=1)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(25, input_dim=20, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(1, activation='linear'))

compile model

opt = SGD(lr=0.01, momentum=0.9, clipvalue=5.0)

model.compile(loss='mean_squared_error', optimizer=opt)

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=100, verbose=0)

evaluate the model

train_mse = model.evaluate(trainX, trainy, verbose=0)

test_mse = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_mse, test_mse))

plot loss during training

pyplot.title('Mean Squared Error')

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

pyplot.show()

Listing 8.17: Example of fitting and evaluating an MLP with gradient value clipping on the
regression problem.

Running this example fits the model and evaluates it on the train and test sets, printing the
mean squared error.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

We can see that in this case, the model is able to learn the problem without exploding
gradients achieving an MSE of below 10 on both the train and test sets.

Train: 9.487, Test: 9.985

Listing 8.18: Example output from fitting and evaluating an MLP with gradient value clipping
on the regression problem.

A line plot is also created showing the means squared error loss on the train and test datasets
over training epochs. The plot shows that the model learns the problem fast, achieving a sub-100
MSE loss within just a few training epochs.

8.4. Extensions 178

Figure 8.3: Line Plot of Mean Squared Error Loss for the Train (blue) and Test (orange)
Datasets Over Training Epochs With Gradient Value Clipping.

A clipped range of [-5, 5] was chosen arbitrarily; you can experiment with different sized
ranges and compare performance of the speed of learning and final model performance.

8.4 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Vector Norm Values. Update the example to evaluate different gradient vector norm
values and compare performance.

� Vector Clip Values. Update the example to evaluate different gradient value ranges
and compare performance.

� Vector Norm and Clip. Update the example to use a combination of vector norm
scaling and vector value clipping on the same training run and compare performance.

If you explore any of these extensions, I’d love to know.

8.5. Further Reading 179

8.5 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

8.5.1 Books

� Section 8.2.4: Cliffs and Exploding Gradients, Deep Learning, 2016.
https://amzn.to/2NJW3gE

� Section 10.11.1: Clipping Gradients, Deep Learning, 2016.
https://amzn.to/2NJW3gE

8.5.2 Papers

� On the difficulty of training Recurrent Neural Networks, 2013.
https://arxiv.org/abs/1211.5063

� Generating Sequences With Recurrent Neural Networks, 2013.
https://arxiv.org/abs/1308.0850

8.5.3 APIs

� Keras Optimizers API.
https://keras.io/optimizers/

� Keras Optimizers Source Code.
https://github.com/keras-team/keras/blob/master/keras/optimizers.py

� sklearn.datasets.make regression API.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.

html

8.6 Summary

In this tutorial, you discovered the exploding gradient problem and how to improve neural
network training stability using gradient clipping. Specifically, you learned:

� Training neural networks can become unstable, leading to a numerical overflow or underflow
referred to as exploding gradients.

� The training process can be made stable by changing the error gradients, either by scaling
the vector norm or clipping gradient values to a range.

� How to update an MLP model for a regression predictive modeling problem with exploding
gradients to have a stable training process using gradient clipping methods.

8.6.1 Next

In the next tutorial, you will discover how to accelerate the training process through the use of
batch normalization.

https://amzn.to/2NJW3gE
https://amzn.to/2NJW3gE
https://arxiv.org/abs/1211.5063
https://arxiv.org/abs/1308.0850
https://keras.io/optimizers/
https://github.com/keras-team/keras/blob/master/keras/optimizers.py
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html

Chapter 9

Accelerate Learning with Batch
Normalization

Training deep neural networks with tens of layers is challenging as they can be sensitive to the
initial random weights and configuration of the learning algorithm. One possible reason for
this difficulty is the distribution of the inputs to layers deep in the network may change after
each minibatch when the weights are updated. This can cause the learning algorithm to forever
chase a moving target. This change in the distribution of inputs to layers in the network is
referred to by the technical name internal covariate shift. Batch normalization is a technique for
training very deep neural networks that standardizes the inputs to a layer for each minibatch.
This has the effect of stabilizing the learning process and dramatically reducing the number of
training epochs required to train deep networks. In this tutorial, you will discover the batch
normalization method used to accelerate the training of deep learning neural networks. After
reading this tutorial, you will know:

� Deep neural networks are challenging to train, not least because the input from prior
layers can change after weight updates.

� Batch normalization is a technique to standardize the inputs to a network, applied to
either the activations of a prior layer or inputs directly.

� Batch normalization accelerates training, in some cases by halving the number of epochs
(or better), and provides some regularization effect, reducing generalization error.

Let’s get started.

9.1 Batch Normalization

In this section you will discover batch normalization, the effect it has on the training process
and the tips for using batch normalization on your own deep learning models.

9.1.1 Problem of Training Deep Networks

Training deep neural networks, e.g. networks with tens of hidden layers, is challenging. One
aspect of this challenge is that the model is updated layer-by-layer backward from the output to

180

9.1. Batch Normalization 181

the input using an estimate of error that assumes the weights in the layers prior to the current
layer are fixed.

Very deep models involve the composition of several functions or layers. The gradient
tells how to update each parameter, under the assumption that the other layers do
not change. In practice, we update all of the layers simultaneously.

— Page 317, Deep Learning, 2016.

Because all layers are changed during an update, the update procedure is forever chasing a
moving target. For example, the weights of a layer are updated given an expectation that the
prior layer outputs values with a given distribution. This distribution is likely changed after the
weights of the prior layer are updated.

Training Deep Neural Networks is complicated by the fact that the distribution
of each layer’s inputs changes during training, as the parameters of the previous
layers change. This slows down the training by requiring lower learning rates and
careful parameter initialization, and makes it notoriously hard to train models with
saturating nonlinearities.

— Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate
Shift, 2015.

The authors of the paper introducing batch normalization refer to change in the distribution
of inputs during training as internal covariate shift.

We refer to the change in the distributions of internal nodes of a deep network, in
the course of training, as Internal Covariate Shift.

— Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate
Shift, 2015.

9.1.2 Standardize Layer Inputs

Batch normalization, or batchnorm for short, is proposed as a technique to help coordinate the
update of multiple layers in the model.

Batch normalization provides an elegant way of reparametrizing almost any deep
network. The reparametrization significantly reduces the problem of coordinating
updates across many layers.

— Page 318, Deep Learning, 2016.

It does this by scaling the output of the layer, specifically by standardizing the activations
of each input variable per minibatch, such as the activations of a node from the previous layer.
Recall that standardization refers to rescaling data to have a mean of zero and a standard
deviation of one, e.g. a standard Gaussian.

9.1. Batch Normalization 182

Batch normalization reparametrizes the model to make some units always be stan-
dardized by definition

— Page 319, Deep Learning, 2016.

This process is also called whitening when applied to images in computer vision.

By whitening the inputs to each layer, we would take a step towards achieving the
fixed distributions of inputs that would remove the ill effects of the internal covariate
shift.

— Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate
Shift, 2015.

Standardizing the activations of the prior layer means that assumptions the subsequent layer
makes about the spread and distribution of inputs during the weight update will not change, at
least not dramatically. This has the effect of stabilizing and speeding-up the training process of
deep neural networks.

Batch normalization acts to standardize only the mean and variance of each unit
in order to stabilize learning, but allows the relationships between units and the
nonlinear statistics of a single unit to change.

— Page 320, Deep Learning, 2016.

Normalizing the inputs to the layer has an effect on the training of the model, dramatically
reducing the number of epochs required. It can also have a regularizing effect, reducing
generalization error much like the use of activation regularization.

Batch normalization can have a dramatic effect on optimization performance, espe-
cially for convolutional networks and networks with sigmoidal nonlinearities.

— Page 425, Deep Learning, 2016.

Although reducing internal covariate shift was a motivation in the development of the method,
there is some suggestion that instead batch normalization is effective because it smooths and, in
turn, simplifies the optimization function that is being solved when training the network.

... BatchNorm impacts network training in a fundamental way: it makes the
landscape of the corresponding optimization problem be significantly more smooth.
This ensures, in particular, that the gradients are more predictive and thus allow for
use of larger range of learning rates and faster network convergence.

— How Does Batch Normalization Help Optimization? (No, It Is Not About Internal Covariate
Shift), 2018.

9.1. Batch Normalization 183

9.1.3 How to Standardize Layer Inputs

Batch normalization can be implemented during training by calculating the mean and standard
deviation of each input variable to a layer per minibatch and using these statistics to perform
the standardization. Alternately, a running average of mean and standard deviation can be
maintained across minibatches, but may result in unstable training.

It is natural to ask whether we could simply use the moving averages [...] to perform
the normalization during training [...]. This, however, has been observed to lead to
the model blowing up.

— Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized
Models, 2017.

After training, the mean and standard deviation of inputs for the layer can be set as mean
values observed over the training dataset. For small minibatch sizes or minibatches that do not
contain a representative distribution of examples from the training dataset, the differences in
the standardized inputs between training and inference (using the model after training) can
result in noticeable differences in performance. This can be addressed with a modification of
the method called Batch Renormalization (or BatchRenorm for short) that makes the estimates
of the variable mean and standard deviation more stable across minibatches.

Batch Renormalization extends batchnorm with a per-dimension correction to ensure
that the activations match between the training and inference networks.

— Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized
Models, 2017.

This standardization of inputs may be applied to input variables for the first hidden layer
or to the activations from a hidden layer for deeper layers. In practice, it is common to allow
the layer to learn two new parameters, namely a new mean and standard deviation, Beta and
Gamma respectively, that allow the automatic scaling and shifting of the standardized layer
inputs. These parameters are learned by the model as part of the training process.

Note that simply normalizing each input of a layer may change what the layer
can represent. [...] These parameters are learned along with the original model
parameters, and restore the representation power of the network.

— Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate
Shift, 2015.

Importantly the backpropagation algorithm is updated to operate upon the transformed
inputs, and error is also used to update the new scale and shifting parameters learned by the
model. The standardization is applied to the inputs to the layer, namely the input variables
or the output of the activation function from the prior layer. Given the choice of activation
function, the distribution of the inputs to the layer may be quite non-Gaussian. In this case,
there may be benefit in standardizing the summed activation before the activation function in
the previous layer.

9.1. Batch Normalization 184

We add the BN transform immediately before the nonlinearity [...] We could have
also normalized the layer inputs u, but since u is likely the output of another
nonlinearity, the shape of its distribution is likely to change during training, and
constraining its first and second moments would not eliminate the covariate shift.

— Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate
Shift, 2015.

9.1.4 Examples of Using Batch Normalization

This section provides a few examples of milestone papers and popular models that make use of
batch normalization. In the 2015 paper that introduced the technique titled Batch Normalization:
Accelerating Deep Network Training by Reducing Internal Covariate Shift, the authors Sergey
Ioffe and Christian Szegedy from Google demonstrated a dramatic speedup of an Inception-based
convolutional neural network for photo classification over a baseline method.

By only using Batch Normalization [...], we match the accuracy of Inception in less
than half the number of training steps.

Kaiming He, et al. in their 2015 paper titled Deep Residual Learning for Image Recognition
used batch normalization after the convolutional layers in their very deep model referred to as
ResNet and achieve then state-of-the-art results on the ImageNet dataset, a standard photo
classification task.

We adopt batch normalization (BN) right after each convolution and before activation
...

Christian Szegedy, et al. from Google in their 2016 paper titled Rethinking the Inception
Architecture for Computer Vision used batch normalization in their updated inception model
referred to as GoogleNet Inception-v3, achieving then state-of-the-art results on the ImageNet
dataset.

BN-auxiliary refers to the version in which the fully connected layer of the auxiliary
classifier is also batch-normalized, not just the convolutions.

Dario Amodei from Baidu in their 2016 paper titled Deep Speech 2: End-to-End Speech
Recognition in English and Mandarin use a variation of batch normalization recurrent neural
networks in their end-to-end deep model for speech recognition.

... we find that when applied to very deep networks of RNNs on large data sets,
the variant of BatchNorm we use substantially improves final generalization error in
addition to accelerating training

9.1.5 Tips for Using Batch Normalization

This section provides tips and suggestions for using batch normalization with your own neural
networks.

9.1. Batch Normalization 185

Use With Different Network Types

Batch normalization is a general technique that can be used to normalize the inputs to a layer.
It can be used with most network types, such as Multilayer Perceptrons, Convolutional Neural
Networks and Recurrent Neural Networks.

Probably Use Before the Activation

Batch normalization may be used on the inputs to the layer before or after the activation
function in the previous layer. It may be more appropriate after the activation function for
s-shaped functions like the hyperbolic tangent and logistic function. It may be appropriate
before the activation function for activations that may result in non-Gaussian distributions like
the rectified linear activation function, the modern default for most network types.

The goal of Batch Normalization is to achieve a stable distribution of activation
values throughout training, and in our experiments we apply it before the nonlinearity
since that is where matching the first and second moments is more likely to result in
a stable distribution

— Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate
Shift, 2015.

Perhaps test both approaches with your network.

Use Large Learning Rates

Using batch normalization makes the network more stable during training. This may require the
use of much larger than normal learning rates, that in turn may further speed up the learning
process.

In a batch-normalized model, we have been able to achieve a training speedup from
higher learning rates, with no ill side effects

— Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate
Shift, 2015.

The faster training also means that the decay rate used for the learning rate may be increased.

Less Sensitive to Weight Initialization

Deep neural networks can be quite sensitive to the technique used to initialize the weights prior
to training. The stability to training brought by batch normalization can make training deep
networks less sensitive to the choice of weight initialization method.

Alternate to Data Preparation

Batch normalization could be used to standardize raw input variables that have differing scales.
If the mean and standard deviations calculated for each input feature are calculated over the
minibatch instead of over the entire training dataset, then the batch size must be sufficiently
representative of the range of each variable. It may not be appropriate for variables that have a
data distribution that is highly non-Gaussian, in which case it might be better to perform data
scaling as a pre-processing step.

9.2. Batch Normalization Keras API 186

Don’t Use With Dropout

Batch normalization offers some regularization effect, reducing generalization error, perhaps no
longer requiring the use of dropout for regularization.

Removing Dropout from Modified BN-Inception speeds up training, without increas-
ing overfitting.

— Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate
Shift, 2015.

Further, it may not be a good idea to use batch normalization and dropout in the same
network. The reason is that the statistics used to normalize the activations of the prior layer
may become noisy given the random dropping out of nodes during the dropout procedure.

Batch normalization also sometimes reduces generalization error and allows dropout
to be omitted, due to the noise in the estimate of the statistics used to normalize
each variable.

— Page 425, Deep Learning, 2016.

9.2 Batch Normalization Keras API

This section demonstrates how to use batch normalization with the Keras API.

9.2.1 Batch Normalization in Keras

Keras provides support for batch normalization via the BatchNormalization layer. For example:

bn = BatchNormalization()

Listing 9.1: Example of creating a batch normalization layer.

The layer will transform inputs so that they are standardized, meaning that they will have
a mean of zero and a standard deviation of one. During training, the layer will keep track of
statistics for each input variable and use them to standardize the data. Further, the standardized
output can be scaled using the learned parameters of Beta and Gamma that define the new
mean and standard deviation for the output of the transform. The layer can be configured
to control whether these additional parameters will be used or not via the center and scale

attributes respectively. By default, they are enabled.
The statistics used to perform the standardization, e.g. the mean and standard deviation

of each variable, are updated for each mini batch and a running average is maintained. A
momentum argument allows you to control how much of the statistics from the previous mini
batch to include when the update is calculated. By default, this is kept high with a value of
0.99. This can be set to 0.0 to only use statistics from the current minibatch, as described in
the original paper.

bn = BatchNormalization(momentum=0.0)

Listing 9.2: Example of creating a batch normalization layer with momentum.

9.2. Batch Normalization Keras API 187

At the end of training, the mean and standard deviation statistics in the layer at that
time will be used to standardize inputs when the model is used to make a prediction. The
default configuration estimating mean and standard deviation across all mini batches is probably
sensible.

9.2.2 BatchNormalization in Models

Batch normalization can be used at most points in a model and with most types of deep learning
neural networks.

Input and Hidden Layer Inputs

The BatchNormalization layer can be added to your model to standardize raw input variables
or the outputs of a hidden layer. Batch normalization is not recommended as an alternative to
proper data preparation for your model. Nevertheless, when used to standardize the raw input
variables, the layer must specify the input shape argument; for example:

...

model = Sequential

model.add(BatchNormalization(input_shape=(2,)))

...

Listing 9.3: Example of batch normalization for input.

When used to standardize the outputs of a hidden layer, the layer can be added to the model
just like any other layer.

...

model = Sequential

...

model.add(BatchNormalization())

...

Listing 9.4: Example of batch normalization between hidden layers.

Use Before or After the Activation Function

The BatchNormalization layer layer can be used to standardize inputs before or after the
activation function of the previous layer. The original paper that introduced the method suggests
adding batch normalization before the activation function of the previous layer, for example:

...

model = Sequential

model.add(Dense(32))

model.add(BatchNormalization())

model.add(Activation('relu'))

...

Listing 9.5: Example of batch normalization before the activation function.

Some reported experiments suggest better performance when adding the batch normalization
layer after the activation function of the previous layer; for example:

9.2. Batch Normalization Keras API 188

...

model = Sequential

model.add(Dense(32, activation='relu'))

model.add(BatchNormalization())

...

Listing 9.6: Example of batch normalization after the activation function.

If time and resources permit, it may be worth testing both approaches on your model and use
the approach that results in the best performance. Let’s take a look at how batch normalization
can be used with some common network types.

MLP Batch Normalization

The example below adds batch normalization after the activation function between Dense hidden
layers.

example of batch normalization for an mlp

from keras.layers import Dense

from keras.layers import BatchNormalization

...

model.add(Dense(32, activation='relu'))

model.add(BatchNormalization())

model.add(Dense(1))

...

Listing 9.7: Example of batch normalization for an MLP model.

CNN Batch Normalization

The example below adds batch normalization after the activation function between a convolu-
tional and max pooling layers.

example of batch normalization for an cnn

from keras.layers import Dense

from keras.layers import Conv2D

from keras.layers import MaxPooling2D

from keras.layers import BatchNormalization

...

model.add(Conv2D(32, (3,3), activation='relu'))

model.add(Conv2D(32, (3,3), activation='relu'))

model.add(BatchNormalization())

model.add(MaxPooling2D())

model.add(Dense(1))

...

Listing 9.8: Example of batch normalization for a CNN model.

RNN Batch Normalization

The example below adds batch normalization after the activation function between an LSTM and
Dense hidden layers.

9.3. Batch Normalization Case Study 189

example of batch normalization for a lstm

from keras.layers import Dense

from keras.layers import LSTM

from keras.layers import BatchNormalization

...

model.add(LSTM(32))

model.add(BatchNormalization())

model.add(Dense(1))

...

Listing 9.9: Example of batch normalization for an LSTM model.

9.3 Batch Normalization Case Study

In this section, we will demonstrate how to use batch normalization to accelerate the training
of an MLP on a simple binary classification problem. This example provides a template for
applying batch normalization to your own neural network for classification and regression
problems.

9.3.1 Binary Classification Problem

We will use a standard binary classification problem that defines two two-dimensional concentric
circles of observations, one circle for each class. Each observation has two input variables with
the same scale and a class output value of either 0 or 1. This dataset is called the circles
dataset because of the shape of the observations in each class when plotted. We can use the
make circles() function to generate observations from this problem. We will add noise to the
data and seed the random number generator so that the same samples are generated each time
the code is run.

generate 2d classification dataset

X, y = make_circles(n_samples=1000, noise=0.1, random_state=1)

Listing 9.10: Example of a generating samples for the circles problem.

We can plot the dataset where the two variables are taken as x and y coordinates on a graph
and the class value is taken as the color of the observation. The complete example of generating
the dataset and plotting it is listed below.

scatter plot of the circles dataset with points colored by class

from sklearn.datasets import make_circles

from numpy import where

from matplotlib import pyplot

generate circles

X, y = make_circles(n_samples=1000, noise=0.1, random_state=1)

select indices of points with each class label

for i in range(2):

samples_ix = where(y == i)

pyplot.scatter(X[samples_ix, 0], X[samples_ix, 1], label=str(i))

pyplot.legend()

pyplot.show()

Listing 9.11: Example of plotting samples from the circles problem.

9.3. Batch Normalization Case Study 190

Running the example creates a scatter plot showing the concentric circles shape of the
observations in each class. We can see the noise in the dispersal of the points making the circles
less obvious.

Figure 9.1: Scatter Plot of Circles Dataset With Color Showing the Class Value of Each Sample.

This is a good test problem because the classes cannot be separated by a line, e.g. are not
linearly separable, requiring a nonlinear method such as a neural network to address.

9.3.2 Multilayer Perceptron Model

We can develop a Multilayer Perceptron model, or MLP, as a baseline for this problem. First,
we will split the 1,000 generated samples into a train and test dataset, with 500 examples in
each. This will provide a sufficiently large sample for the model to learn from and an equally
sized (fair) evaluation of its performance.

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

Listing 9.12: Example of preparing the dataset for model.

9.3. Batch Normalization Case Study 191

We will define a simple MLP model. The network must have two inputs in the visible
layer for the two variables in the dataset. The model will have a single hidden layer with 50
nodes, chosen arbitrarily, and use the rectified linear activation function and the He random
weight initialization method. The output layer will be a single node with the sigmoid activation
function, capable of predicting a 0 for the outer circle and a 1 for the inner circle of the problem.
The model will be trained using stochastic gradient descent with a modest learning rate of
0.01 and a large momentum of 0.9, and the optimization will be directed using the binary
cross-entropy loss function.

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(1, activation='sigmoid'))

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])

Listing 9.13: Example of defining the MLP model.

Once defined, the model can be fit on the training dataset. We will use the holdout test
dataset as a validation dataset and evaluate its performance at the end of each training epoch.
The model will be fit for 100 epochs, chosen after a little trial and error.

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=100, verbose=0)

Listing 9.14: Example of fitting the MLP model.

At the end of the run, the model is evaluated on the train and test dataset and the accuracy
is reported.

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

Listing 9.15: Example of evaluating the MLP model.

Finally, line plots are created showing model accuracy on the train and test sets at the end
of each training epoch providing learning curves. This plot of learning curves is useful as it
gives an idea of how quickly and how well the model has learned the problem.

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 9.16: Example of plotting learning curves the MLP model.

9.3. Batch Normalization Case Study 192

Tying these elements together, the complete example is listed below.

mlp for the two circles problem

from sklearn.datasets import make_circles

from keras.models import Sequential

from keras.layers import Dense

from keras.optimizers import SGD

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_circles(n_samples=1000, noise=0.1, random_state=1)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(1, activation='sigmoid'))

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=100, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 9.17: Example evaluating an MLP on the two circles problem.

Running the example fits the model and evaluates it on the train and test sets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that the model achieved an accuracy of about 84% on the test
dataset and achieved comparable performance on both the train and test sets, given the same
size and similar composition of both datasets.

Train: 0.826, Test: 0.840

Listing 9.18: Example output from evaluating an MLP on the two circles problem.

A graph is created showing line plots of the classification accuracy on the train (blue) and
test (orange) datasets. The plot shows comparable performance of the model on both datasets

9.3. Batch Normalization Case Study 193

during the training process. We can see that performance leaps up over the first 30-to-40 epochs
to above 80% accuracy then is slowly refined.

Figure 9.2: Line Plot of MLP Classification Accuracy on Train and Test Datasets Over Training
Epochs.

This result, and specifically the dynamics of the model during training, provide a baseline
that can be compared to the same model with the addition of batch normalization.

9.3.3 MLP With Batch Normalization

The model introduced in the previous section can be updated to add batch normalization. The
expectation is that the addition of batch normalization would accelerate the training process,
offering similar or better classification accuracy of the model in fewer training epochs. Batch
normalization is also reported as providing a modest form of regularization, meaning that it
may also offer a small reduction in generalization error demonstrated by a small increase in
classification accuracy on the holdout test dataset. A new BatchNormalization layer can
be added to the model after the hidden layer before the output layer. Specifically, after the
activation function of the prior hidden layer.

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

9.3. Batch Normalization Case Study 194

model.add(BatchNormalization())

model.add(Dense(1, activation='sigmoid'))

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])

Listing 9.19: Example of updating the model to use batch normalization.

The complete example with this modification is listed below.

mlp for the two circles problem with batchnorm after activation function

from sklearn.datasets import make_circles

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import BatchNormalization

from keras.optimizers import SGD

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_circles(n_samples=1000, noise=0.1, random_state=1)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(BatchNormalization())

model.add(Dense(1, activation='sigmoid'))

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=100, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 9.20: Example evaluating an MLP with batch normalization after activation on the two
circles problem.

Running the example first prints the classification accuracy of the model on the train and
test dataset.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

9.3. Batch Normalization Case Study 195

In this case, we can see comparable performance of the model on both the train and test set
of about 84% accuracy, very similar to what we saw in the previous section, if not a little bit
better.

Train: 0.842, Test: 0.846

Listing 9.21: Example output from evaluating an MLP with batch normalization after activation
on the two circles problem.

A graph of the learning curves is also created showing classification accuracy on both the
train and test sets for each training epoch. In this case, we can see that the model has learned the
problem faster than the model in the previous section without batch normalization. Specifically,
we can see that classification accuracy on the train and test datasets leaps above 80% within the
first 20 epochs, as opposed to 30-to-40 epochs in the model without batch normalization. The
plot also shows the effect of batch normalization during training. We can see lower performance
on the training dataset than the test dataset: scores on the training dataset that are lower than
the performance on the test dataset at the end of the training run. This is likely the effect of
the input collected and updated each minibatch.

Figure 9.3: Line Plot Classification Accuracy of MLP With Batch Normalization After Activation
Function on Train and Test Datasets Over Training Epochs.

We can also try a variation of the model where batch normalization is applied prior to the
activation function of the hidden layer, instead of after the activation function.

9.3. Batch Normalization Case Study 196

define model

model = Sequential()

model.add(Dense(50, input_dim=2, kernel_initializer='he_uniform'))

model.add(BatchNormalization())

model.add(Activation('relu'))

model.add(Dense(1, activation='sigmoid'))

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])

Listing 9.22: Example of updating the model to use batch normalization before the activation
function.

The complete code listing with this change to the model is listed below.

mlp for the two circles problem with batchnorm before activation function

from sklearn.datasets import make_circles

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Activation

from keras.layers import BatchNormalization

from keras.optimizers import SGD

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_circles(n_samples=1000, noise=0.1, random_state=1)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(50, input_dim=2, kernel_initializer='he_uniform'))

model.add(BatchNormalization())

model.add(Activation('relu'))

model.add(Dense(1, activation='sigmoid'))

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=100, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

9.3. Batch Normalization Case Study 197

Listing 9.23: Example evaluating an MLP with batch normalization before activation on the
two circles problem.

Running the example first prints the classification accuracy of the model on the train and
test dataset.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see comparable performance of the model on the train and test datasets,
but slightly worse than the model without batch normalization.

Train: 0.832, Test: 0.834

Listing 9.24: Example output from evaluating an MLP with batch normalization before activation
on the two circles problem.

The line plot of the learning curves on the train and test sets also tells a different story.
The plot shows the model learning perhaps at the same pace as the model without batch
normalization, but the performance of the model on the training dataset is much worse, hovering
around 70% to 75% accuracy, again likely an effect of the statistics collected and used over each
minibatch. At least for this model configuration on this specific dataset, it appears that batch
normalization is more effective after the rectified linear activation function.

9.4. Extensions 198

Figure 9.4: Line Plot Classification Accuracy of MLP With Batch Normalization Before
Activation Function on Train and Test Datasets Over Training Epochs.

9.4 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Without Beta and Gamma. Update the example to not use the beta and gamma
parameters in the batch normalization layer and compare results.

� Without Momentum. Update the example to not use momentum in the batch normal-
ization layer during training and compare results.

� Input Layer. Update the example to use batch normalization after the input to the
model and compare results.

If you explore any of these extensions, I’d love to know.

9.5 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

9.5. Further Reading 199

9.5.1 Books

� Section 8.7.1: Batch Normalization, Deep Learning, 2016.
https://amzn.to/2NJW3gE

� Section 7.3.1: Advanced architecture patterns, Deep Learning With Python, 2017.
https://amzn.to/2Ck4ImT

9.5.2 Papers

� Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate
Shift, 2015.
https://arxiv.org/abs/1502.03167

� Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized
Models, 2017.
https://arxiv.org/abs/1702.03275

� How Does Batch Normalization Help Optimization? (No, It Is Not About Internal Covari-
ate Shift), 2018.
https://arxiv.org/abs/1805.11604

9.5.3 APIs

� Keras Regularizers API.
https://keras.io/regularizers/

� Keras Core Layers API.
https://keras.io/layers/core/

� Keras Convolutional Layers API.
https://keras.io/layers/convolutional/

� Keras Recurrent Layers API.
https://keras.io/layers/recurrent/

� BatchNormalization Keras API.
https://keras.io/layers/normalization/

� sklearn.datasets.make circles API.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.

html

9.5.4 Articles

� Batch normalization, Wikipedia.
https://en.wikipedia.org/wiki/Batch_normalization

� Batch Normalization before or after ReLU?, Reddit.
https://www.reddit.com/r/MachineLearning/comments/67gonq/d_batch_normalization_

before_or_after_relu/

https://amzn.to/2NJW3gE
https://amzn.to/2Ck4ImT
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1702.03275
https://arxiv.org/abs/1805.11604
https://keras.io/regularizers/
https://keras.io/layers/core/
https://keras.io/layers/convolutional/
https://keras.io/layers/recurrent/
https://keras.io/layers/normalization/
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
https://en.wikipedia.org/wiki/Batch_normalization
https://www.reddit.com/r/MachineLearning/comments/67gonq/d_batch_normalization_before_or_after_relu/
https://www.reddit.com/r/MachineLearning/comments/67gonq/d_batch_normalization_before_or_after_relu/

9.6. Summary 200

� The Batch Normalization layer of Keras is broken, Vasilis Vryniotis, 2018.
http://blog.datumbox.com/the-batch-normalization-layer-of-keras-is-broken/

� Studies of Batch Normalization Before and After Activation Function.
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md

9.6 Summary

In this tutorial, you discovered the batch normalization method used to accelerate the training
of deep learning neural networks. Specifically, you learned:

� Deep neural networks are challenging to train, not least because the input from prior
layers can change after weight updates.

� Batch normalization is a technique to standardize the inputs to a network, applied to
either the activations of a prior layer or inputs directly.

� Batch normalization accelerates training, in some cases by halving the number of epochs
(or better), and provides some regularization effect, reducing generalization error.

9.6.1 Next

In the next tutorial, you will discover how to develop deeper neural network models with greedy
layer-wise pretraining.

http://blog.datumbox.com/the-batch-normalization-layer-of-keras-is-broken/
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md

Chapter 10

Deeper Models with Greedy
Layer-Wise Pretraining

Training deep neural networks was traditionally challenging as the vanishing gradient meant
that weights in layers close to the input layer were not updated in response to errors calculated
on the training dataset. An innovation and important milestone in the field of deep learning was
greedy layer-wise pretraining that allowed very deep neural networks to be successfully trained,
achieving then state-of-the-art performance. In this tutorial, you will discover greedy layer-wise
pretraining as a technique for developing deep multilayered neural network models.

After completing this tutorial, you will know:

� Greedy layer-wise pretraining provides a way to develop deep multilayered neural networks
whilst only ever training shallow networks.

� Pretraining can be used to iteratively deepen a supervised model or an unsupervised
model that can be repurposed as a supervised model.

� Pretraining may be useful for problems with small amounts labeled data and large amounts
of unlabeled data.

Let’s get started.

10.1 Greedy Layer-Wise Pretraining

Traditionally, training deep neural networks with many layers was challenging. As the number
of hidden layers is increased, the amount of error information propagated back to earlier layers
is dramatically reduced. This means that weights in hidden layers close to the output layer
are updated normally, whereas weights in hidden layers close to the input layer are updated
minimally or not at all. Generally, this problem prevented the training of very deep neural
networks and was referred to as the vanishing gradient problem. An important milestone in the
resurgence of neural networks that initially allowed the development of deeper neural network
models was the technique of greedy layer-wise pretraining, often simply referred to as pretraining.

The deep learning renaissance of 2006 began with the discovery that this greedy
learning procedure could be used to find a good initialization for a joint learning

201

10.1. Greedy Layer-Wise Pretraining 202

procedure over all the layers, and that this approach could be used to successfully
train even fully connected architectures.

— Page 528, Deep Learning, 2016.

Pretraining involves successively adding a new hidden layer to a model and refitting, allowing
the newly added model to learn the inputs from the existing hidden layer, often while keeping
the weights for the existing hidden layers fixed. This gives the technique the name layer-wise as
the model is trained one layer at a time. The technique is referred to as greedy because of the
piecewise or layer-wise approach to solving the harder problem of training a deep network. As
an optimization process, dividing the training process into a succession of layer-wise training
processes is seen as a greedy shortcut that likely leads to an aggregate of locally optimal solutions,
a shortcut to a good enough global solution.

Greedy algorithms break a problem into many components, then solve for the optimal
version of each component in isolation. Unfortunately, combining the individually
optimal components is not guaranteed to yield an optimal complete solution.

— Page 323, Deep Learning, 2016.

Pretraining is based on the assumption that it is easier to train a shallow network instead of
a deep network and contrives a layer-wise training process that we are always only ever fitting a
shallow model.

... builds on the premise that training a shallow network is easier than training a
deep one, which seems to have been validated in several contexts.

— Page 529, Deep Learning, 2016.

The key benefits of pretraining are:

� Simplified training process.

� Facilitates the development of deeper networks.

� Useful as a weight initialization scheme.

� Perhaps lower generalization error.

In general, pretraining may help both in terms of optimization and in terms of
generalization.

— Page 325, Deep Learning, 2016.

There are two main approaches to pretraining; they are:

� Supervised greedy layer-wise pretraining.

� Unsupervised greedy layer-wise pretraining.

10.1. Greedy Layer-Wise Pretraining 203

Broadly, supervised pretraining involves successively adding hidden layers to a model trained
on a supervised learning task. Unsupervised pretraining involves using the greedy layer-wise
process to build up an unsupervised autoencoder model, to which a supervised output layer is
later added.

It is common to use the word “pretraining” to refer not only to the pretraining stage
itself but to the entire two phase protocol that combines the pretraining phase and
a supervised learning phase. The supervised learning phase may involve training a
simple classifier on top of the features learned in the pretraining phase, or it may
involve supervised fine-tuning of the entire network learned in the pretraining phase.

— Page 529, Deep Learning, 2016.

Unsupervised pretraining may be appropriate when you have a significantly larger number of
unlabeled examples that can be used to initialize a model prior to using a much smaller number
of examples to fine tune the model weights for a supervised task.

... we can expect unsupervised pretraining to be most helpful when the number
of labeled examples is very small. Because the source of information added by
unsupervised pretraining is the unlabeled data, we may also expect unsupervised
pretraining to perform best when the number of unlabeled examples is very large.

— Page 532, Deep Learning, 2016.

Although the weights in prior layers are held constant, it is common to fine tune all weights
in the network at the end after the addition of the final layer. As such, this allows pretraining
to be considered a type of weight initialization method.

... it makes use of the idea that the choice of initial parameters for a deep neural
network can have a significant regularizing effect on the model (and, to a lesser
extent, that it can improve optimization).

— Pages 530-531, Deep Learning, 2016.

Greedy layer-wise pretraining is an important milestone in the history of deep learning,
that allowed the early development of networks with more hidden layers than was previously
possible. The approach can be useful on some problems; for example, it is best practice to use
unsupervised pretraining for text data in order to provide a richer distributed representation of
words and their interrelationships via Word2Vec.

Today, unsupervised pretraining has been largely abandoned, except in the field
of natural language processing [...] the advantage of pretraining is that one can
pretrain once on a huge unlabeled set (for example with a corpus containing billions
of words), learn a good representation (typically of words, but also of sentences),
and then use this representation or fine-tune it for a supervised task for which the
training set contains substantially fewer examples.

— Page 535, Deep Learning, 2016.

10.2. Greedy Layer-Wise Pretraining Case Study 204

Nevertheless, it is likely that better performance may be achieved using modern methods
such as better activation functions, weight initialization, variants of gradient descent, and
regularization methods.

Today, we now know that greedy layer-wise pretraining is not required to train fully
connected deep architectures, but the unsupervised pretraining approach was the
first method to succeed.

— Page 528, Deep Learning, 2016.

10.2 Greedy Layer-Wise Pretraining Case Study

In this section, we will demonstrate how to use greedy layer-wise pretraining to develop
deeper MLP models on a multiclass classification problem. This example provides a template
for applying greedy layer-wise pretraining to your own neural network for classification and
regression problems.

10.2.1 Multiclass Classification Problem

We will use a small multiclass classification problem as the basis to demonstrate the effect
of greedy layer-wise pretraining on model performance. The scikit-learn class provides the
make blobs() function that can be used to create a multiclass classification problem with the
prescribed number of samples, input variables, classes, and variance of samples within a class.
The problem will be configured with two input variables (to represent the x and y coordinates
of the points) and a standard deviation of 2.0 for points within each group. We will use the
same random state (seed for the pseudorandom number generator) to ensure that we always get
the same data points.

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

Listing 10.1: Example of a generating samples for the blobs problem.

The results are the input and output elements of a dataset that we can model. In order to
get a feeling for the complexity of the problem, we can plot each point on a two-dimensional
scatter plot and color each point by class value. The complete example is listed below.

scatter plot of blobs dataset

from sklearn.datasets.samples_generator import make_blobs

from matplotlib import pyplot

from numpy import where

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

scatter plot for each class value

for class_value in range(3):

select indices of points with the class label

row_ix = where(y == class_value)

scatter plot for points with a different color

pyplot.scatter(X[row_ix, 0], X[row_ix, 1])

show plot

pyplot.show()

10.2. Greedy Layer-Wise Pretraining Case Study 205

Listing 10.2: Example of plotting samples from the blobs problem.

Running the example creates a scatter plot of the entire dataset. We can see that the
standard deviation of 2.0 means that the classes are not linearly separable (separable by a line),
causing many ambiguous points. This is desirable as it means that the problem is non-trivial
and will allow a neural network model to find many different good enough candidate solutions.

Figure 10.1: Scatter Plot of Blobs Dataset With Three Classes and Points Colored by Class
Value.

10.2.2 Supervised Greedy Layer-Wise Pretraining

In this section, we will use greedy layer-wise supervised learning to build up a deep Multilayer
Perceptron (MLP) model for the blobs supervised learning multiclass classification problem.
Pretraining is not required to address this simple predictive modeling problem. Instead, this is
a demonstration of how to perform supervised greedy layer-wise pretraining that can be used as
a template for larger and more challenging supervised learning problems. As a first step, we can
develop a function to create 1,000 samples from the problem and split them evenly into train
and test datasets. The prepare data() function below implements this and returns the train
and test sets in terms of the input and output components.

prepare the dataset

10.2. Greedy Layer-Wise Pretraining Case Study 206

def prepare_data():

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

return trainX, testX, trainy, testy

Listing 10.3: Example of a function for preparing the dataset for modeling.

We can call this function to prepare the data.

prepare data

trainX, testX, trainy, testy = prepare_data()

Listing 10.4: Example of calling the function to prepare the dataset for modeling.

Next, we can train and fit a base model. This will be an MLP that expects two inputs for
the two input variables in the dataset and has one hidden layer with 10 nodes and uses the
rectified linear activation function. The output layer has three nodes in order to predict the
probability for each of the three classes and uses the softmax activation function.

define model

model = Sequential()

model.add(Dense(10, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

Listing 10.5: Example of defining an MLP model for the blobs problem.

The model is fit using stochastic gradient descent with the sensible default learning rate of
0.01 and a high momentum value of 0.9. The model is optimized using cross-entropy loss.

compile model

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

Listing 10.6: Example of compiling an MLP model for the blobs problem.

The model is then fit on the training dataset for 100 epochs with a default batch size of 32
examples.

fit model

model.fit(trainX, trainy, epochs=100, verbose=0)

Listing 10.7: Example of fitting an MLP model for the blobs problem.

The get base model() function below ties these elements together, taking the training
dataset as arguments and returning a fit baseline model.

define and fit the base model

def get_base_model(trainX, trainy):

define model

model = Sequential()

model.add(Dense(10, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

compile model

10.2. Greedy Layer-Wise Pretraining Case Study 207

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

model.fit(trainX, trainy, epochs=100, verbose=0)

return model

Listing 10.8: Example of a function for fitting and returning a model for the blobs problem.

We can call this function to prepare the base model to which we can later add layers one at
a time.

get the base model

model = get_base_model(trainX, trainy)

Listing 10.9: Example of calling the function to fit the model on the dataset.

We need to be able to easily evaluate the performance of a model on the train and test sets.
The evaluate model() function below takes the train and test sets as arguments as well as a
model and returns the accuracy on both datasets.

evaluate a fit model

def evaluate_model(model, trainX, testX, trainy, testy):

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

return train_acc, test_acc

Listing 10.10: Example of a function to evaluate a fit model.

We can call this function to calculate and report the accuracy of the base model and store
the scores away in a dictionary against the number of layers in the model (currently two, one
hidden and one output layer) so we can plot the relationship between layers and accuracy later.

evaluate the base model

scores = dict()

train_acc, test_acc = evaluate_model(model, trainX, testX, trainy, testy)

print('> layers=%d, train=%.3f, test=%.3f' % (len(model.layers), train_acc, test_acc))

Listing 10.11: Example of summarizing the performance of a fit model.

We can now outline the process of greedy layer-wise pretraining. A function is required
that can add a new hidden layer and retrain the model but only update the weights in the
newly added layer and in the output layer. This requires first storing the current output layer
including its configuration and current set of weights.

remember the current output layer

output_layer = model.layers[-1]

Listing 10.12: Example of referencing the output layer.

Then removing the output layer from the stack of layers in the model.

remove the output layer

model.pop()

Listing 10.13: Example of removing the output layer.

All of the remaining layers in the model can then be marked as non-trainable, meaning that
their weights cannot be updated when the fit() function is called again.

10.2. Greedy Layer-Wise Pretraining Case Study 208

mark all remaining layers as non-trainable

for layer in model.layers:

layer.trainable = False

Listing 10.14: Example of making all hidden layers not trainable.

We can then add a new hidden layer, in this case with the same configuration as the first
hidden layer added in the base model.

add a new hidden layer

model.add(Dense(10, activation='relu', kernel_initializer='he_uniform'))

Listing 10.15: Example of adding a new hidden layer.

Finally, the output layer can be added back and the model can be refit on the training
dataset.

re-add the output layer

model.add(output_layer)

fit model

model.fit(trainX, trainy, epochs=100, verbose=0)

Listing 10.16: Example of restoring the output layer.

We can tie all of these elements into a function named add layer() that takes the model
and the training dataset as arguments.

add one new layer and re-train only the new layer

def add_layer(model, trainX, trainy):

remember the current output layer

output_layer = model.layers[-1]

remove the output layer

model.pop()

mark all remaining layers as non-trainable

for layer in model.layers:

layer.trainable = False

add a new hidden layer

model.add(Dense(10, activation='relu', kernel_initializer='he_uniform'))

re-add the output layer

model.add(output_layer)

fit model

model.fit(trainX, trainy, epochs=100, verbose=0)

Listing 10.17: Example of a function to add and train a new hidden layer to an existing model.

This function can then be called repeatedly based on the number of layers we wish to add to
the model. In this case, we will add 10 layers, one at a time, and evaluate the performance of
the model after each additional layer is added to get an idea of how it is impacting performance.
Train and test accuracy scores are stored in the dictionary against the number of layers in the
model.

add layers and evaluate the updated model

n_layers = 10

for i in range(n_layers):

add layer

add_layer(model, trainX, trainy)

evaluate model

10.2. Greedy Layer-Wise Pretraining Case Study 209

train_acc, test_acc = evaluate_model(model, trainX, testX, trainy, testy)

print('> layers=%d, train=%.3f, test=%.3f' % (len(model.layers), train_acc, test_acc))

store scores for plotting

scores[len(model.layers)] = (train_acc, test_acc)

Listing 10.18: Example of a evaluating the performance of models with added pre-trained layers.

At the end of the run, a line plot is created showing the number of layers in the model
(x-axis) compared to the model accuracy on the train and test datasets. We would expect the
addition of layers to improve the performance of the model on the training dataset and perhaps
even on the test dataset.

plot number of added layers vs accuracy

pyplot.plot(scores.keys(), [scores[k][0] for k in scores.keys()], label='train', marker='.')

pyplot.plot(scores.keys(), [scores[k][1] for k in scores.keys()], label='test', marker='.')

pyplot.legend()

pyplot.show()

Listing 10.19: Example of plotting the number of pre-trained layers vs model performance.

Tying all of these elements together, the complete example is listed below.

supervised greedy layer-wise pretraining for blobs classification problem

from sklearn.datasets.samples_generator import make_blobs

from keras.layers import Dense

from keras.models import Sequential

from keras.optimizers import SGD

from keras.utils import to_categorical

from matplotlib import pyplot

prepare the dataset

def prepare_data():

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

return trainX, testX, trainy, testy

define and fit the base model

def get_base_model(trainX, trainy):

define model

model = Sequential()

model.add(Dense(10, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

compile model

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

model.fit(trainX, trainy, epochs=100, verbose=0)

return model

evaluate a fit model

def evaluate_model(model, trainX, testX, trainy, testy):

10.2. Greedy Layer-Wise Pretraining Case Study 210

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

return train_acc, test_acc

add one new layer and re-train only the new layer

def add_layer(model, trainX, trainy):

remember the current output layer

output_layer = model.layers[-1]

remove the output layer

model.pop()

mark all remaining layers as non-trainable

for layer in model.layers:

layer.trainable = False

add a new hidden layer

model.add(Dense(10, activation='relu', kernel_initializer='he_uniform'))

re-add the output layer

model.add(output_layer)

fit model

model.fit(trainX, trainy, epochs=100, verbose=0)

prepare data

trainX, testX, trainy, testy = prepare_data()

get the base model

model = get_base_model(trainX, trainy)

evaluate the base model

scores = dict()

train_acc, test_acc = evaluate_model(model, trainX, testX, trainy, testy)

print('> layers=%d, train=%.3f, test=%.3f' % (len(model.layers), train_acc, test_acc))

scores[len(model.layers)] = (train_acc, test_acc)

add layers and evaluate the updated model

n_layers = 10

for i in range(n_layers):

add layer

add_layer(model, trainX, trainy)

evaluate model

train_acc, test_acc = evaluate_model(model, trainX, testX, trainy, testy)

print('> layers=%d, train=%.3f, test=%.3f' % (len(model.layers), train_acc, test_acc))

store scores for plotting

scores[len(model.layers)] = (train_acc, test_acc)

plot number of added layers vs accuracy

pyplot.plot(scores.keys(), [scores[k][0] for k in scores.keys()], label='train', marker='.')

pyplot.plot(scores.keys(), [scores[k][1] for k in scores.keys()], label='test', marker='.')

pyplot.legend()

pyplot.show()

Listing 10.20: Example of supervised pre-training on the blobs problem.

Running the example reports the classification accuracy on the train and test sets for the
base model (two layers), then after each additional layer is added (from three to 12 layers).

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that the baseline model does reasonably well on this problem. As the
layers are increased, we can roughly see an increase in accuracy for the model on the training

10.2. Greedy Layer-Wise Pretraining Case Study 211

dataset, likely as it is beginning to overfit the data. We see a rough drop in classification
accuracy on the test dataset, likely because of the overfitting.

> layers=2, train=0.816, test=0.830

> layers=3, train=0.834, test=0.830

> layers=4, train=0.836, test=0.824

> layers=5, train=0.830, test=0.824

> layers=6, train=0.848, test=0.820

> layers=7, train=0.830, test=0.826

> layers=8, train=0.850, test=0.824

> layers=9, train=0.840, test=0.838

> layers=10, train=0.842, test=0.830

> layers=11, train=0.850, test=0.830

> layers=12, train=0.850, test=0.826

Listing 10.21: Example output from supervised pre-training on the blobs problem.

A line plot is also created showing the train (blue) and test set (orange) accuracy as each
additional layer is added to the model. In this case, the plot suggests a slight overfitting of the
training dataset, but perhaps better test set performance after seven added layers.

Figure 10.2: Line Plot for Supervised Greedy Layer-Wise Pretraining Showing Model Layers vs
Train and Test Set Classification Accuracy on the Blobs Classification Problem.

An interesting extension to this example would be to allow all weights in the model to be

10.2. Greedy Layer-Wise Pretraining Case Study 212

fine tuned with a small learning rate for a large number of training epochs to see if this can
further reduce generalization error.

10.2.3 Unsupervised Greedy Layer-Wise Pretraining

In this section, we will explore using greedy layer-wise pretraining with an unsupervised model.
Specifically, we will develop an autoencoder model that will be trained to reconstruct input data.
In order to use this unsupervised model for classification, we will remove the output layer, add
and fit a new output layer for classification. This is slightly more complex than the previous
supervised greedy layer-wise pretraining, but we can reuse many of the same ideas and code
from the previous section.

The first step is to define, fit, and evaluate an autoencoder model. We will use the same
two-layer base model as we did in the previous section, except modify it to predict the input as
the output and use mean squared error to evaluate how good the model is at reconstructing a
given input sample. The base autoencoder() function below implements this, taking the train
and test sets as arguments, then defines, fits, and evaluates the base unsupervised autoencoder
model, printing the reconstruction error on the train and test sets and returning the model.

define, fit and evaluate the base autoencoder

def base_autoencoder(trainX, testX):

define model

model = Sequential()

model.add(Dense(10, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(2, activation='linear'))

compile model

model.compile(loss='mse', optimizer=SGD(lr=0.01, momentum=0.9))

fit model

model.fit(trainX, trainX, epochs=100, verbose=0)

evaluate reconstruction loss

train_mse = model.evaluate(trainX, trainX, verbose=0)

test_mse = model.evaluate(testX, testX, verbose=0)

print('> reconstruction error train=%.3f, test=%.3f' % (train_mse, test_mse))

return model

Listing 10.22: Example of a function fit a base autoencoder.

We can call this function in order to prepare our base autoencoder to which we can add and
greedily train layers.

get the base autoencoder

model = base_autoencoder(trainX, testX)

Listing 10.23: Example of creating the base autoencoder.

Evaluating an autoencoder model on the blobs multiclass classification problem requires a
few steps. The hidden layers will be used as the basis of a classifier with a new output layer
that must be trained then used to make predictions before adding back the original output layer
so that we can continue to add layers to the autoencoder. The first step is to reference, then
remove the output layer of the autoencoder model.

remember the current output layer

output_layer = model.layers[-1]

remove the output layer

model.pop()

10.2. Greedy Layer-Wise Pretraining Case Study 213

Listing 10.24: Example of removing the output layer of the autoencoder.

All of the remaining hidden layers in the autoencoder must be marked as non-trainable so
that the weights are not changed when we train the new output layer.

mark all remaining layers as non-trainable

for layer in model.layers:

layer.trainable = False

Listing 10.25: Example of marking all pre-trained layers as non-trainable.

We can now add a new output layer that predicts the probability of an example belonging
to reach of the three classes. The model must also be re-compiled using a new loss function
suitable for multiclass classification.

add new output layer

model.add(Dense(3, activation='softmax'))

compile model

model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.01, momentum=0.9),

metrics=['acc'])

Listing 10.26: Example of adding a new classification output layer.

The model can then be re-fit on the training dataset, specifically training the output layer
on how to make class predictions using the learned features from the autoencoder as input. The
classification accuracy of the fit model can then be evaluated on the train and test datasets.

fit model

model.fit(trainX, trainy, epochs=100, verbose=0)

evaluate model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

Listing 10.27: Example of training a new classification output layer.

Finally, we can put the autoencoder back together but removing the classification output
layer, adding back the original autoencoder output layer and recompiling the model with an
appropriate loss function for reconstruction.

put the model back together

model.pop()

model.add(output_layer)

model.compile(loss='mse', optimizer=SGD(lr=0.01, momentum=0.9))

Listing 10.28: Example of restoring the autoencoder output layer.

We can tie this together into an evaluate autoencoder as classifier() function that
takes the model as well as the train and test sets, then returns the train and test set classification
accuracy.

evaluate the autoencoder as a classifier

def evaluate_autoencoder_as_classifier(model, trainX, trainy, testX, testy):

remember the current output layer

output_layer = model.layers[-1]

remove the output layer

model.pop()

10.2. Greedy Layer-Wise Pretraining Case Study 214

mark all remaining layers as non-trainable

for layer in model.layers:

layer.trainable = False

add new output layer

model.add(Dense(3, activation='softmax'))

compile model

model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.01, momentum=0.9),

metrics=['acc'])

fit model

model.fit(trainX, trainy, epochs=100, verbose=0)

evaluate model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

put the model back together

model.pop()

model.add(output_layer)

model.compile(loss='mse', optimizer=SGD(lr=0.01, momentum=0.9))

return train_acc, test_acc

Listing 10.29: Example of a function for evaluating the autoencoder as a classification model.

This function can be called to evaluate the baseline autoencoder model and then store the
accuracy scores in a dictionary against the number of layers in the model (in this case two).

evaluate the base model

scores = dict()

train_acc, test_acc = evaluate_autoencoder_as_classifier(model, trainX, trainy, testX,

testy)

print('> classifier accuracy layers=%d, train=%.3f, test=%.3f' % (len(model.layers),

train_acc, test_acc))

scores[len(model.layers)] = (train_acc, test_acc)

Listing 10.30: Example of calling the function to evaluate an autoencoder as a classification
model.

We are now ready to define the process for adding and pretraining layers to the model. The
process for adding layers is much the same as the supervised case in the previous section, except
we are optimizing reconstruction loss rather than classification accuracy for the new layer. The
add layer to autoencoder() function below adds a new hidden layer to the autoencoder model,
updates the weights for the new layer and the hidden layers, then reports the reconstruction error
on the train and test sets input data. The function does re-mark all prior layers as non-trainable,
which is redundant because we already did this in the evaluate autoencoder as classifier()

function, but I have left it in, in case you decide to reuse this function in your own project.

add one new layer and re-train only the new layer

def add_layer_to_autoencoder(model, trainX, testX):

remember the current output layer

output_layer = model.layers[-1]

remove the output layer

model.pop()

mark all remaining layers as non-trainable

for layer in model.layers:

layer.trainable = False

add a new hidden layer

model.add(Dense(10, activation='relu', kernel_initializer='he_uniform'))

re-add the output layer

10.2. Greedy Layer-Wise Pretraining Case Study 215

model.add(output_layer)

fit model

model.fit(trainX, trainX, epochs=100, verbose=0)

evaluate reconstruction loss

train_mse = model.evaluate(trainX, trainX, verbose=0)

test_mse = model.evaluate(testX, testX, verbose=0)

print('> reconstruction error train=%.3f, test=%.3f' % (train_mse, test_mse))

Listing 10.31: Example of adding a hidden layer to the autoencoder model.

We can now repeatedly call this function, adding layers, and evaluating the effect by using
the autoencoder as the basis for evaluating a new classifier.

add layers and evaluate the updated model

n_layers = 5

for _ in range(n_layers):

add layer

add_layer_to_autoencoder(model, trainX, testX)

evaluate model

train_acc, test_acc = evaluate_autoencoder_as_classifier(model, trainX, trainy, testX,

testy)

print('> classifier accuracy layers=%d, train=%.3f, test=%.3f' % (len(model.layers),

train_acc, test_acc))

store scores for plotting

scores[len(model.layers)] = (train_acc, test_acc)

Listing 10.32: Example of adding layers and evaluating the autoencoder as a classification
model.

As before, all accuracy scores are collected and we can use them to create a line graph of
the number of model layers vs train and test set accuracy.

plot number of added layers vs accuracy

keys = scores.keys()

pyplot.plot(keys, [scores[k][0] for k in keys], label='train', marker='.')

pyplot.plot(keys, [scores[k][1] for k in keys], label='test', marker='.')

pyplot.legend()

pyplot.show()

Listing 10.33: Example of plotting the performance of the number of autoencoder layers vs
model performance.

Tying all of this together, the complete example of unsupervised greedy layer-wise pretraining
for the blobs multiclass classification problem is listed below.

unsupervised greedy layer-wise pretraining for blobs classification problem

from sklearn.datasets.samples_generator import make_blobs

from keras.layers import Dense

from keras.models import Sequential

from keras.optimizers import SGD

from keras.utils import to_categorical

from matplotlib import pyplot

prepare the dataset

def prepare_data():

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

10.2. Greedy Layer-Wise Pretraining Case Study 216

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

return trainX, testX, trainy, testy

define, fit and evaluate the base autoencoder

def base_autoencoder(trainX, testX):

define model

model = Sequential()

model.add(Dense(10, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(2, activation='linear'))

compile model

model.compile(loss='mse', optimizer=SGD(lr=0.01, momentum=0.9))

fit model

model.fit(trainX, trainX, epochs=100, verbose=0)

evaluate reconstruction loss

train_mse = model.evaluate(trainX, trainX, verbose=0)

test_mse = model.evaluate(testX, testX, verbose=0)

print('> reconstruction error train=%.3f, test=%.3f' % (train_mse, test_mse))

return model

evaluate the autoencoder as a classifier

def evaluate_autoencoder_as_classifier(model, trainX, trainy, testX, testy):

remember the current output layer

output_layer = model.layers[-1]

remove the output layer

model.pop()

mark all remaining layers as non-trainable

for layer in model.layers:

layer.trainable = False

add new output layer

model.add(Dense(3, activation='softmax'))

compile model

model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.01, momentum=0.9),

metrics=['acc'])

fit model

model.fit(trainX, trainy, epochs=100, verbose=0)

evaluate model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

put the model back together

model.pop()

model.add(output_layer)

model.compile(loss='mse', optimizer=SGD(lr=0.01, momentum=0.9))

return train_acc, test_acc

add one new layer and re-train only the new layer

def add_layer_to_autoencoder(model, trainX, testX):

remember the current output layer

output_layer = model.layers[-1]

remove the output layer

model.pop()

mark all remaining layers as non-trainable

10.2. Greedy Layer-Wise Pretraining Case Study 217

for layer in model.layers:

layer.trainable = False

add a new hidden layer

model.add(Dense(10, activation='relu', kernel_initializer='he_uniform'))

re-add the output layer

model.add(output_layer)

fit model

model.fit(trainX, trainX, epochs=100, verbose=0)

evaluate reconstruction loss

train_mse = model.evaluate(trainX, trainX, verbose=0)

test_mse = model.evaluate(testX, testX, verbose=0)

print('> reconstruction error train=%.3f, test=%.3f' % (train_mse, test_mse))

prepare data

trainX, testX, trainy, testy = prepare_data()

get the base autoencoder

model = base_autoencoder(trainX, testX)

evaluate the base model

scores = dict()

train_acc, test_acc = evaluate_autoencoder_as_classifier(model, trainX, trainy, testX,

testy)

print('> classifier accuracy layers=%d, train=%.3f, test=%.3f' % (len(model.layers),

train_acc, test_acc))

scores[len(model.layers)] = (train_acc, test_acc)

add layers and evaluate the updated model

n_layers = 5

for _ in range(n_layers):

add layer

add_layer_to_autoencoder(model, trainX, testX)

evaluate model

train_acc, test_acc = evaluate_autoencoder_as_classifier(model, trainX, trainy, testX,

testy)

print('> classifier accuracy layers=%d, train=%.3f, test=%.3f' % (len(model.layers),

train_acc, test_acc))

store scores for plotting

scores[len(model.layers)] = (train_acc, test_acc)

plot number of added layers vs accuracy

keys = scores.keys()

pyplot.plot(keys, [scores[k][0] for k in keys], label='train', marker='.')

pyplot.plot(keys, [scores[k][1] for k in keys], label='test', marker='.')

pyplot.legend()

pyplot.show()

Listing 10.34: Example of unsupervised pre-training on the blobs problem.

Running the example reports both reconstruction error and classification accuracy on the
train and test sets for the model for the base model (two layers) then after each additional layer
is added (from three to 12 layers).

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that reconstruction error starts low, in fact near-perfect, then slowly
increases during training. Accuracy on the training dataset seems to decrease as layers are
added to the encoder, although accuracy test seems to improve as layers are added, at least
until the model has five layers, after which performance appears to crash.

10.2. Greedy Layer-Wise Pretraining Case Study 218

> reconstruction error train=0.000, test=0.000

> classifier accuracy layers=2, train=0.830, test=0.832

> reconstruction error train=0.001, test=0.002

> classifier accuracy layers=3, train=0.826, test=0.842

> reconstruction error train=0.002, test=0.002

> classifier accuracy layers=4, train=0.820, test=0.838

> reconstruction error train=0.016, test=0.028

> classifier accuracy layers=5, train=0.828, test=0.834

> reconstruction error train=2.311, test=2.694

> classifier accuracy layers=6, train=0.764, test=0.762

> reconstruction error train=2.192, test=2.526

> classifier accuracy layers=7, train=0.764, test=0.760

Listing 10.35: Example output from unsupervised pre-training on the blobs problem.

A line plot is also created showing the train (blue) and test set (orange) accuracy as each
additional layer is added to the model. In this case, the plot suggests there may be some minor
benefits in the unsupervised greedy layer-wise pretraining, but perhaps beyond five layers the
model becomes unstable.

Figure 10.3: Line Plot for Unsupervised Greedy Layer-Wise Pretraining Showing Model Layers
vs Train and Test Set Classification Accuracy on the Blobs Classification Problem.

An interesting extension would be to explore whether fine tuning of all weights in the model

10.3. Extensions 219

prior or after fitting a classifier output layer improves performance.

10.3 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Fine Tuning. Update the example to use a smaller learning rate and fine-tune the
pre-trained layers and compare performance.

� Improve Autoencoder. Update the example to monitor loss on the autoencoder and
tune the model to further reduce the loss.

If you explore any of these extensions, I’d love to know.

10.4 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

10.4.1 Books

� Section 8.7.4: Supervised Pretraining, Deep Learning, 2016.
https://amzn.to/2NJW3gE

� Section 15.1: Greedy Layer-Wise Unsupervised Pretraining, Deep Learning, 2016.
https://amzn.to/2NJW3gE

10.4.2 APIs

� Getting started with the Keras Sequential model.
https://keras.io/getting-started/sequential-model-guide/

� Keras Core Layers API.
https://keras.io/layers/core/

� sklearn.datasets.make blobs API.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.

html

10.4.3 Papers

� Greedy Layer-Wise Training of Deep Networks, 2007.
https://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks

� Why Does Unsupervised Pre-training Help Deep Learning, 2010.
http://www.jmlr.org/papers/v11/erhan10a.html

https://amzn.to/2NJW3gE
https://amzn.to/2NJW3gE
https://keras.io/getting-started/sequential-model-guide/
https://keras.io/layers/core/
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
https://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks
http://www.jmlr.org/papers/v11/erhan10a.html

10.5. Summary 220

10.5 Summary

In this tutorial, you discovered greedy layer-wise pretraining as a technique for developing deep
multilayered neural network models. Specifically, you learned:

� Greedy layer-wise pretraining provides a way to develop deep multilayered neural networks
whilst only ever training shallow networks.

� Pretraining can be used to iteratively deepen a supervised model or an unsupervised
model that can be repurposed as a supervised model.

� Pretraining may be useful for problems with small amounts labeled data and large amounts
of unlabeled data.

10.5.1 Next

In the next tutorial, you will discover how to reuse models trained on related but different
problems called transfer learning for feature extraction and weight initialization.

Chapter 11

Jump-Start Training with Transfer
Learning

An interesting benefit of deep learning neural networks is that they can be reused on related
problems. Transfer learning refers to a technique for predictive modeling on a different but
somehow similar problem that can then be reused partly or wholly to accelerate the training and
improve the performance of a model on the problem of interest. In deep learning, this means
reusing the weights in one or more layers from a pre-trained network model in a new model
and either keeping the weights fixed, fine tuning them, or adapting the weights entirely when
training the model. In this tutorial, you will discover how to use transfer learning to improve
the performance of deep learning neural networks in Python with Keras. After completing this
tutorial, you will know:

� Transfer learning is a method for reusing a model trained on a related predictive modeling
problem.

� Transfer learning can be used to accelerate the training of neural networks as either a
weight initialization scheme or feature extraction method.

� How to use transfer learning to improve the performance of an MLP for a multiclass
classification problem.

Let’s get started.

11.1 Transfer Learning

Transfer learning generally refers to a process where a model trained on one problem is used in
some way on a second related problem.

Transfer learning and domain adaptation refer to the situation where what has been
learned in one setting (i.e., distribution P1) is exploited to improve generalization in
another setting (say distribution P2).

— Page 536, Deep Learning, 2016.

221

11.2. Transfer Learning Case Study 222

In deep learning, transfer learning is a technique whereby a neural network model is first
trained on a problem similar to the problem that is being solved. One or more layers from the
trained model are then used in a new model trained on the problem of interest.

This is typically understood in a supervised learning context, where the input is
the same but the target may be of a different nature. For example, we may learn
about one set of visual categories, such as cats and dogs, in the first setting, then
learn about a different set of visual categories, such as ants and wasps, in the second
setting.

— Page 536, Deep Learning, 2016.

Transfer learning has the benefit of decreasing the training time for a neural network model,
resulting in lower generalization error. There are two main approaches to implementing transfer
learning; they are:

� Weight Initialization.

� Feature Extraction.

The weights in re-used layers may be used as the starting point for the training process and
adapted in response to the new problem. This usage treats transfer learning as a type of weight
initialization scheme. This may be useful when the first related problem has a lot more labeled
data than the problem of interest and the similarity in the structure of the problem may be
useful in both contexts.

... the objective is to take advantage of data from the first setting to extract infor-
mation that may be useful when learning or even when directly making predictions
in the second setting.

— Page 538, Deep Learning, 2016.

Alternately, the weights of the network may not be adapted in response to the new problem,
and only new layers after the reused layers may be trained to interpret their output. This usage
treats transfer learning as a type of feature extraction scheme. An example of this approach
is the re-use of deep convolutional neural network models trained for photo classification as
feature extractors when developing photo captioning models. Variations on these usages may
involve not training the weights of the model on the new problem initially, but later fine tuning
all weights of the learned model with a small learning rate.

11.2 Transfer Learning Case Study

In this section, we will demonstrate how to use transfer learning to develop MLP models on
a multiclass classification problem. This example provides a template for applying transfer
learning to your own neural network for classification and regression problems.

11.2. Transfer Learning Case Study 223

11.2.1 Multiclass Classification Problem

We will use a small multiclass classification problem as the basis to demonstrate transfer learning.
The scikit-learn class provides the make blobs() function that can be used to create a multiclass
classification problem with the prescribed number of samples, input variables, classes, and
variance of samples within a class. We can configure the problem to have two input variables
(to represent the x and y coordinates of the points) and a standard deviation of 2.0 for points
within each group. We will use the same random state (seed for the pseudorandom number
generator) to ensure that we always get the same data points.

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=1)

Listing 11.1: Example of a generating samples for the blobs problem 1.

The results are the input and output elements of a dataset that we can model. The
random state argument can be varied to give different versions of the problem (different cluster
centers). We can use this to generate samples from two different problems: train a model on
one problem and re-use the weights to better learn a model for a second problem. Specifically,
we will refer to random state=1 as Problem 1 and random state=2 as Problem 2.

� Problem 1. Blobs problem with two input variables and three classes with the random state

argument set to one.

� Problem 2. Blobs problem with two input variables and three classes with the random state

argument set to two.

In order to get a feeling for the complexity of the problem, we can plot each point on a
two-dimensional scatter plot and color each point by class value. The complete example is listed
below.

plot of blobs multiclass classification problems 1 and 2

from sklearn.datasets.samples_generator import make_blobs

from numpy import where

from matplotlib import pyplot

generate samples for blobs problem with a given random seed

def samples_for_seed(seed):

generate samples

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2,

random_state=seed)

return X, y

create a scatter plot of points colored by class value

def plot_samples(X, y, classes=3):

plot points for each class

for i in range(classes):

select indices of points with each class label

samples_ix = where(y == i)

plot points for this class with a given color

pyplot.scatter(X[samples_ix, 0], X[samples_ix, 1])

generate multiple problems

n_problems = 2

11.2. Transfer Learning Case Study 224

for i in range(1, n_problems+1):

specify subplot

pyplot.subplot(210 + i)

generate samples

X, y = samples_for_seed(i)

scatter plot of samples

plot_samples(X, y)

plot figure

pyplot.show()

Listing 11.2: Example of plotting samples from the blobs problems 1 and 2.

Running the example generates a sample of 1,000 examples for Problem 1 and Problem 2
and creates a scatter plot for each sample, coloring the data points by their class value.

Figure 11.1: Scatter Plots of Blobs Dataset for Problems 1 and 2 With Three Classes and Points
Colored by Class Value.

This provides a good basis for transfer learning as each version of the problem has similar
input data with a similar scale, although with different target information (e.g. cluster centers).
We would expect that aspects of a model fit on one version of the blobs problem (e.g. Problem
1) to be useful when fitting a model on a new version of the blobs problem (e.g. Problem 2).

11.2. Transfer Learning Case Study 225

11.2.2 Multilayer Perceptron Model for Problem 1

In this section, we will develop a Multilayer Perceptron model (MLP) for Problem 1 and save the
model to file so that we can reuse the weights later. First, we will develop a function to prepare
the dataset for modeling. After the make blobs() function is called with a given random seed
(e.g, one in this case for Problem 1), the target variable must be one hot encoded so that we
can develop a model that predicts the probability of a given sample belonging to each of the
target classes. The prepared samples can then be split in half, with 500 examples for both the
train and test datasets. The samples for seed() function below implements this, preparing
the dataset for a given random number generator seed and retuning the train and test sets split
into input and output components.

prepare a blobs examples with a given random seed

def samples_for_seed(seed):

generate samples

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2,

random_state=seed)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

return trainX, trainy, testX, testy

Listing 11.3: Example of for generating a dataset for a blobs problem.

We can call this function to prepare a dataset for Problem 1 as follows.

prepare data

trainX, trainy, testX, testy = samples_for_seed(1)

Listing 11.4: Example of generating a dataset for Problem 1.

Next, we can define and fit a model on the training dataset. The model will expect two
inputs for the two variables in the data. The model will have two hidden layers with five nodes
each and the rectified linear activation function. Two layers are probably not required for this
function, although we’re interested in the model learning some deep structure that we can reuse
across instances of this problem. The output layer has three nodes, one for each class in the
target variable and the softmax activation function.

define model

model = Sequential()

model.add(Dense(5, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(5, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

Listing 11.5: Example of defining the MLP model.

Given that the problem is a multiclass classification problem, the categorical cross-entropy
loss function is minimized and the stochastic gradient descent with the default learning rate
and no momentum is used to learn the problem.

compile model

model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])

Listing 11.6: Example of compiling the MLP model.

11.2. Transfer Learning Case Study 226

The model is fit for 100 epochs on the training dataset and the test set is used as a validation
dataset during training, evaluating the performance on both datasets at the end of each epoch
so that we can plot learning curves.

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=100, verbose=0)

Listing 11.7: Example of fitting the MLP model.

The fit model() function ties these elements together, taking the train and test datasets
as arguments and returning the fit model and training history.

define and fit model on a training dataset

def fit_model(trainX, trainy, testX, testy):

define model

model = Sequential()

model.add(Dense(5, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(5, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

compile model

model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=100, verbose=0)

return model, history

Listing 11.8: Example of defining a function to fit an MLP model.

We can call this function with the prepared dataset to obtain a fit model and the history
collected during the training process.

fit model on train dataset

model, history = fit_model(trainX, trainy, testX, testy)

Listing 11.9: Example of calling the function to fit an MLP model.

Finally, we can summarize the performance of the model. The classification accuracy of the
model on the train and test sets can be evaluated.

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

Listing 11.10: Example of evaluating a fit model.

The history collected during training can be used to create line plots showing both the loss
and classification accuracy for the model on the train and test sets over each training epoch,
providing learning curves.

plot loss during training

pyplot.subplot(211)

pyplot.title('Loss')

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy during training

pyplot.subplot(212)

pyplot.title('Accuracy')

pyplot.plot(history.history['acc'], label='train')

11.2. Transfer Learning Case Study 227

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 11.11: Example of plotting learning curves for the fit model.

The summarize model() function below implements this, taking the fit model, training
history, and dataset as arguments and printing the model performance and creating a plot of
model learning curves.

summarize the performance of the fit model

def summarize_model(model, history, trainX, trainy, testX, testy):

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss during training

pyplot.subplot(211)

pyplot.title('Loss')

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy during training

pyplot.subplot(212)

pyplot.title('Accuracy')

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 11.12: Example of a function for evaluating a fit model.

We can call this function with the fit model and prepared data.

evaluate model behavior

summarize_model(model, history, trainX, trainy, testX, testy)

Listing 11.13: Example of calling the function for evaluating a fit model.

At the end of the run, we can save the model to file so that we may load it later and use it
as the basis for some transfer learning experiments. Note that saving the model to file requires
that you have the h5py library installed. This library can be installed via pip as follows:

sudo pip install h5py

Listing 11.14: Example installing the h5py library with pip.

The fit model can be saved by calling the save() function on the model.

save model to file

model.save('model.h5')

Listing 11.15: Example of saving the fit model.

Tying these elements together, the complete example of fitting an MLP on Problem 1,
summarizing the model’s performance, and saving the model to file is listed below.

fit mlp model on problem 1 and save model to file

from sklearn.datasets.samples_generator import make_blobs

11.2. Transfer Learning Case Study 228

from keras.models import Sequential

from keras.layers import Dense

from keras.utils import to_categorical

from matplotlib import pyplot

prepare a blobs examples with a given random seed

def samples_for_seed(seed):

generate samples

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2,

random_state=seed)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

return trainX, trainy, testX, testy

define and fit model on a training dataset

def fit_model(trainX, trainy, testX, testy):

define model

model = Sequential()

model.add(Dense(5, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(5, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

compile model

model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=100, verbose=0)

return model, history

summarize the performance of the fit model

def summarize_model(model, history, trainX, trainy, testX, testy):

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss during training

pyplot.subplot(211)

pyplot.title('Loss')

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy during training

pyplot.subplot(212)

pyplot.title('Accuracy')

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

prepare data

trainX, trainy, testX, testy = samples_for_seed(1)

fit model on train dataset

model, history = fit_model(trainX, trainy, testX, testy)

evaluate model behavior

11.2. Transfer Learning Case Study 229

summarize_model(model, history, trainX, trainy, testX, testy)

save model to file

model.save('model.h5')

Listing 11.16: Example of fitting and saving an MLP model on Problem 1.

Running the example fits and evaluates the performance of the model, printing the classifi-
cation accuracy on the train and test sets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that the model performed well on Problem 1, achieving a classification
accuracy of about 92% on both the train and test datasets.

Train: 0.916, Test: 0.920

Listing 11.17: Example output from fitting an MLP on Problem 1.

A figure is also created summarizing the learning curves of the model, showing both the loss
(top) and accuracy (bottom) for the model on both the train (blue) and test (orange) datasets
at the end of each training epoch. In this case, we can see that the model learned the problem
reasonably quickly and well, perhaps converging in about 40 epochs and remaining reasonably
stable on both datasets.

Figure 11.2: Loss and Accuracy Learning Curves on the Train and Test Sets for an MLP on
Problem 1.

11.2. Transfer Learning Case Study 230

Now that we have seen how to develop a standalone MLP for the blobs Problem 1, we can
look at the doing the same for Problem 2 that can be used as a baseline.

11.2.3 Standalone MLP Model for Problem 2

The example in the previous section can be updated to fit an MLP model to Problem 2. It is
important to get an idea of performance and learning dynamics on Problem 2 for a standalone
model first as this will provide a baseline in performance that can be used to compare to a
model fit on the same problem using transfer learning. A single change is required that changes
the call to samples for seed() to use the pseudorandom number generator seed of two instead
of one.

prepare data

trainX, trainy, testX, testy = samples_for_seed(2)

Listing 11.18: Example of preparing the dataset for Problem 2.

For completeness, the full example with this change is listed below.

fit mlp model on problem 2 and save model to file

from sklearn.datasets.samples_generator import make_blobs

from keras.models import Sequential

from keras.layers import Dense

from keras.utils import to_categorical

from matplotlib import pyplot

prepare a blobs examples with a given random seed

def samples_for_seed(seed):

generate samples

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2,

random_state=seed)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

return trainX, trainy, testX, testy

define and fit model on a training dataset

def fit_model(trainX, trainy, testX, testy):

define model

model = Sequential()

model.add(Dense(5, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(5, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

compile model

model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=100, verbose=0)

return model, history

summarize the performance of the fit model

def summarize_model(model, history, trainX, trainy, testX, testy):

evaluate the model

11.2. Transfer Learning Case Study 231

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss during training

pyplot.subplot(211)

pyplot.title('Loss')

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy during training

pyplot.subplot(212)

pyplot.title('Accuracy')

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

prepare data

trainX, trainy, testX, testy = samples_for_seed(2)

fit model on train dataset

model, history = fit_model(trainX, trainy, testX, testy)

evaluate model behavior

summarize_model(model, history, trainX, trainy, testX, testy)

Listing 11.19: Example of fitting and saving an MLP model on Problem 2.

Running the example fits and evaluates the performance of the model, printing the classifi-
cation accuracy on the train and test sets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that the model performed okay on Problem 2, but not as well as was
seen on Problem 1, achieving a classification accuracy of about 79% on both the train and test
datasets.

Train: 0.794, Test: 0.794

Listing 11.20: Example output from fitting an MLP on Problem 2.

A figure is also created summarizing the learning curves of the model. In this case, we can
see that the model converged more slowly than we saw on Problem 1 in the previous section.
This suggests that this version of the problem may be slightly more challenging, at least for the
chosen model configuration.

11.2. Transfer Learning Case Study 232

Figure 11.3: Loss and Accuracy Learning Curves on the Train and Test Sets for an MLP on
Problem 2.

Now that we have a baseline of performance and learning dynamics for an MLP on Problem
2, we can see how the addition of transfer learning affects the MLP on this problem.

11.2.4 MLP With Transfer Learning for Problem 2

The model that was fit on Problem 1 can be loaded and the weights can be used as the initial
weights for a model fit on Problem 2. This is a type of transfer learning where learning on a
different but related problem is used as a type of weight initialization scheme. This requires that
the fit model() function be updated to load the model and refit it on examples for Problem 2.
The model saved in model.h5 can be loaded using the load model() Keras function.

load model

model = load_model('model.h5')

Listing 11.21: Example loading a saved model.

Once loaded, the model can be compiled and fit as per normal. The updated fit model()

with this change is listed below.

load and re-fit model on a training dataset

def fit_model(trainX, trainy, testX, testy):

load model

11.2. Transfer Learning Case Study 233

model = load_model('model.h5')

compile model

model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])

re-fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=100, verbose=0)

return model, history

Listing 11.22: Example a function for loading and re-fitting the model.

We would expect that a model that uses the weights from a model fit on a different but
related problem to learn the problem perhaps faster in terms of the learning curve and perhaps
result in lower generalization error, although these aspects would be dependent on the choice of
problems and model. For completeness, the full example with this change is listed below.

transfer learning with mlp model on problem 2

from sklearn.datasets.samples_generator import make_blobs

from keras.utils import to_categorical

from keras.models import load_model

from matplotlib import pyplot

prepare a blobs examples with a given random seed

def samples_for_seed(seed):

generate samples

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2,

random_state=seed)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

return trainX, trainy, testX, testy

load and re-fit model on a training dataset

def fit_model(trainX, trainy, testX, testy):

load model

model = load_model('model.h5')

compile model

model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])

re-fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=100, verbose=0)

return model, history

summarize the performance of the fit model

def summarize_model(model, history, trainX, trainy, testX, testy):

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss during training

pyplot.subplot(211)

pyplot.title('Loss')

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy during training

11.2. Transfer Learning Case Study 234

pyplot.subplot(212)

pyplot.title('Accuracy')

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

prepare data

trainX, trainy, testX, testy = samples_for_seed(2)

fit model on train dataset

model, history = fit_model(trainX, trainy, testX, testy)

evaluate model behavior

summarize_model(model, history, trainX, trainy, testX, testy)

Listing 11.23: Example of transfer learning for Problem 2.

Running the example fits and evaluates the performance of the model, printing the classifi-
cation accuracy on the train and test sets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that the model achieved a lower generalization error, achieving an
accuracy of about 81% on the test dataset for Problem 2 as compared to the standalone model
that achieved about 79% accuracy.

Train: 0.786, Test: 0.810

Listing 11.24: Example output from transfer learning for Problem 2.

A figure is also created summarizing the learning curves of the model. In this case, we
can see that the model does appear to have a similar learning curve, although we do see
apparent improvements in the learning curve for the test set (orange line) both in terms of
better performance earlier (epoch 20 onward) and above the performance of the model on the
training set.

11.2. Transfer Learning Case Study 235

Figure 11.4: Loss and Accuracy Learning Curves on the Train and Test Sets for an MLP With
Transfer Learning on Problem 2.

We have only looked at single runs of a standalone MLP model and an MLP with transfer
learning. Neural network algorithms are stochastic, therefore an average of performance across
multiple runs is required to see if the observed behavior is real or a statistical fluke.

11.2.5 Comparison of Models on Problem 2

In order to determine whether using transfer learning for the blobs multiclass classification
problem has a real effect, we must repeat each experiment multiple times and analyze the average
performance across the repeats. We will compare the performance of the standalone model
trained on Problem 2 to a model using transfer learning, averaged over 30 repeats. Further,
we will investigate whether keeping the weights in some of the layers fixed improves model
performance. The model trained on Problem 1 has two hidden layers. By keeping the first
or the first and second hidden layers fixed, the layers with unchangeable weights will act as a
feature extractor and may provide features that make learning Problem 2 easier, affecting the
speed of learning and/or the accuracy of the model on the test set. As the first step, we will
simplify the fit model() function to fit the model and discard any training history so that we
can focus on the final accuracy of the trained model.

define and fit model on a training dataset

11.2. Transfer Learning Case Study 236

def fit_model(trainX, trainy):

define model

model = Sequential()

model.add(Dense(5, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(5, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

compile model

model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])

fit model

model.fit(trainX, trainy, epochs=100, verbose=0)

return model

Listing 11.25: Example a function to fit and return a model.

Next, we can develop a function that will repeatedly fit a new standalone model on Problem
2 on the training dataset and evaluate accuracy on the test set. The eval standalone model()

function below implements this, taking the train and test sets as arguments as well as the
number of repeats and returns a list of accuracy scores for models on the test dataset.

repeated evaluation of a standalone model

def eval_standalone_model(trainX, trainy, testX, testy, n_repeats):

scores = list()

for _ in range(n_repeats):

define and fit a new model on the train dataset

model = fit_model(trainX, trainy)

evaluate model on test dataset

_, test_acc = model.evaluate(testX, testy, verbose=0)

scores.append(test_acc)

return scores

Listing 11.26: Example a function for the repeated evaluation of a model.

Summarizing the distribution of accuracy scores returned from this function will give an
idea of how well the chosen standalone model performs on Problem 2.

repeated evaluation of standalone model

standalone_scores = eval_standalone_model(trainX, trainy, testX, testy, n_repeats)

print('Standalone %.3f (%.3f)' % (mean(standalone_scores), std(standalone_scores)))

Listing 11.27: Example a of repeated evaluation of a model.

Next, we need an equivalent function for evaluating a model using transfer learning. In each
loop, the model trained on Problem 1 must be loaded from file, fit on the training dataset for
Problem 2, then evaluated on the test set for Problem 2. In addition, we will configure 0, 1, or
2 of the hidden layers in the loaded model to remain fixed. Keeping 0 hidden layers fixed means
that all of the weights in the model will be adapted when learning Problem 2, using transfer
learning as a weight initialization scheme. Whereas, keeping both (2) of the hidden layers fixed
means that only the output layer of the model will be adapted during training, using transfer
learning as a feature extraction method.

The eval transfer model() function below implements this, taking the train and test
datasets for Problem 2 as arguments as well as the number of hidden layers in the loaded model
to keep fixed and the number of times to repeat the experiment. The function returns a list of
test accuracy scores and summarizing this distribution will give a reasonable idea of how well
the model with the chosen type of transfer learning performs on Problem 2.

11.2. Transfer Learning Case Study 237

repeated evaluation of a model with transfer learning

def eval_transfer_model(trainX, trainy, testX, testy, n_fixed, n_repeats):

scores = list()

for _ in range(n_repeats):

load model

model = load_model('model.h5')

mark layer weights as fixed or not trainable

for i in range(n_fixed):

model.layers[i].trainable = False

re-compile model

model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])

fit model on train dataset

model.fit(trainX, trainy, epochs=100, verbose=0)

evaluate model on test dataset

_, test_acc = model.evaluate(testX, testy, verbose=0)

scores.append(test_acc)

return scores

Listing 11.28: Example a of a function for repeated evaluation of a transfer learning model.

We can call this function repeatedly, setting n fixed to 0, 1, 2 in a loop and summarizing
performance as we go; for example:

repeated evaluation of transfer learning model, vary fixed layers

n_fixed = 3

for i in range(n_fixed):

scores = eval_transfer_model(trainX, trainy, testX, testy, i, n_repeats)

print('Transfer (fixed=%d) %.3f (%.3f)' % (i, mean(scores), std(scores)))

Listing 11.29: Example a reporting performance from evaluating transfer learning models.

In addition to reporting the mean and standard deviation of each model, we can collect all
scores and create a box and whisker plot to summarize and compare the distributions of model
scores. Tying all of the these elements together, the complete example is listed below.

compare standalone mlp model performance to transfer learning

from sklearn.datasets.samples_generator import make_blobs

from keras.layers import Dense

from keras.models import Sequential

from keras.utils import to_categorical

from keras.models import load_model

from matplotlib import pyplot

from numpy import mean

from numpy import std

prepare a blobs examples with a given random seed

def samples_for_seed(seed):

generate samples

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2,

random_state=seed)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 500

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

11.2. Transfer Learning Case Study 238

return trainX, trainy, testX, testy

define and fit model on a training dataset

def fit_model(trainX, trainy):

define model

model = Sequential()

model.add(Dense(5, input_dim=2, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(5, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(3, activation='softmax'))

compile model

model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])

fit model

model.fit(trainX, trainy, epochs=100, verbose=0)

return model

repeated evaluation of a standalone model

def eval_standalone_model(trainX, trainy, testX, testy, n_repeats):

scores = list()

for _ in range(n_repeats):

define and fit a new model on the train dataset

model = fit_model(trainX, trainy)

evaluate model on test dataset

_, test_acc = model.evaluate(testX, testy, verbose=0)

scores.append(test_acc)

return scores

repeated evaluation of a model with transfer learning

def eval_transfer_model(trainX, trainy, testX, testy, n_fixed, n_repeats):

scores = list()

for _ in range(n_repeats):

load model

model = load_model('model.h5')

mark layer weights as fixed or not trainable

for i in range(n_fixed):

model.layers[i].trainable = False

re-compile model

model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])

fit model on train dataset

model.fit(trainX, trainy, epochs=100, verbose=0)

evaluate model on test dataset

_, test_acc = model.evaluate(testX, testy, verbose=0)

scores.append(test_acc)

return scores

prepare data for problem 2

trainX, trainy, testX, testy = samples_for_seed(2)

n_repeats = 30

dists, dist_labels = list(), list()

repeated evaluation of standalone model

standalone_scores = eval_standalone_model(trainX, trainy, testX, testy, n_repeats)

print('Standalone %.3f (%.3f)' % (mean(standalone_scores), std(standalone_scores)))

dists.append(standalone_scores)

dist_labels.append('standalone')

repeated evaluation of transfer learning model, vary fixed layers

11.2. Transfer Learning Case Study 239

n_fixed = 3

for i in range(n_fixed):

scores = eval_transfer_model(trainX, trainy, testX, testy, i, n_repeats)

print('Transfer (fixed=%d) %.3f (%.3f)' % (i, mean(scores), std(scores)))

dists.append(scores)

dist_labels.append('transfer f='+str(i))

box and whisker plot of score distributions

pyplot.boxplot(dists, labels=dist_labels)

pyplot.show()

Listing 11.30: Example of evaluating different configurations for transfer learning.

Running the example first reports the mean and standard deviation of classification accuracy
on the test dataset for each model.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that the standalone model achieved an accuracy of about 78% on
Problem 2 with a large standard deviation of 10%. In contrast, we can see that the spread of all
of the transfer learning models is much smaller, ranging from about 0.05% to 1.5%.

This difference in the standard deviations of the test accuracy scores shows the stability that
transfer learning can bring to the model, reducing the variance in the performance of the final
model introduced via the stochastic learning algorithm. Comparing the mean test accuracy of
the models, we can see that transfer learning that used the model as a weight initialization
scheme (fixed=0) resulted in better performance than the standalone model with about 80%
accuracy. Keeping all hidden layers fixed (fixed=2) and using them as a feature extraction
scheme resulted in worse performance on average than the standalone model. It suggests that
the approach is too restrictive in this case.

Interestingly, we see best performance when the first hidden layer is kept fixed (fixed=1) and
the second hidden layer is adapted to the problem with a test classification accuracy of about
81%. This suggests that in this case, the problem benefits from both the feature extraction and
weight initialization properties of transfer learning. It may be interesting to see how results of
this last approach compare to the same model where the weights of the second hidden layer
(and perhaps the output layer) are re-initialized with random numbers. This comparison would
demonstrate whether the feature extraction properties of transfer learning alone or both feature
extraction and weight initialization properties are beneficial.

Standalone 0.787 (0.101)

Transfer (fixed=0) 0.805 (0.004)

Transfer (fixed=1) 0.817 (0.005)

Transfer (fixed=2) 0.750 (0.014)

Listing 11.31: Example output from evaluating different configurations for transfer learning.

A figure is created showing four box and whisker plots. The box shows the middle 50% of
each data distribution, the orange line shows the median, and the dots show outliers. The box
and whisker plot for the standalone model shows a number of outliers, indicating that on average,
the model performs well, but there is a chance that it can perform very poorly. Conversely, we
see that the behavior of the models with transfer learning are more stable, showing a tighter
distribution in performance.

11.3. Extensions 240

Figure 11.5: Box and Whisker Plot Comparing Standalone and Transfer Learning Models via
Test Set Accuracy on the Blobs Multiclass Classification Problem.

11.3 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Reverse Experiment. Train and save a model for Problem 2 and see if it can help when
using it for transfer learning on Problem 1.

� Add Hidden Layer. Update the example to keep both hidden layers fixed, but add a
new hidden layer with randomly initialized weights after the fixed layers before the output
layer and compare performance.

� Randomly Initialize Layers. Update the example to randomly initialize the weights of
the second hidden layer and the output layer and compare performance.

If you explore any of these extensions, I’d love to know.

11.4 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

11.5. Summary 241

11.4.1 Books

� Section 5.2: Transfer Learning and Domain Adaptation, Deep Learning, 2016.
https://amzn.to/2NJW3gE

11.4.2 Papers

� Deep Learning of Representations for Unsupervised and Transfer Learning, 2011.
http://proceedings.mlr.press/v27/bengio12a.html

� Domain Adaptation for Large-Scale Sentiment Classification: A Deep Learning Approach,
2011.
https://dl.acm.org/citation.cfm?id=3104547

� Is Learning The n-th Thing Any Easier Than Learning The First?, 1996.
http://papers.nips.cc/paper/1034-is-learning-the-n-th-thing-any-easier-than-learning-the-first.

pdf

11.4.3 APIs

� Getting started with the Keras Sequential model.
https://keras.io/getting-started/sequential-model-guide/

� Keras Core Layers API.
https://keras.io/layers/core/

� sklearn.datasets.make blobs API.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.

html

11.4.4 Articles

� Transfer learning, Wikipedia.
https://en.wikipedia.org/wiki/Transfer_learning

11.5 Summary

In this tutorial, you discovered how to use transfer learning to improve the performance of deep
learning neural networks in Python with Keras. Specifically, you learned:

� Transfer learning is a method for reusing a model trained on a related predictive modeling
problem.

� Transfer learning can be used to accelerate the training of neural networks as either a
weight initialization scheme or feature extraction method.

� How to use transfer learning to improve the performance of an MLP for a multiclass
classification problem.

https://amzn.to/2NJW3gE
http://proceedings.mlr.press/v27/bengio12a.html
https://dl.acm.org/citation.cfm?id=3104547
http://papers.nips.cc/paper/1034-is-learning-the-n-th-thing-any-easier-than-learning-the-first.pdf
http://papers.nips.cc/paper/1034-is-learning-the-n-th-thing-any-easier-than-learning-the-first.pdf
https://keras.io/getting-started/sequential-model-guide/
https://keras.io/layers/core/
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
https://en.wikipedia.org/wiki/Transfer_learning

11.5. Summary 242

11.5.1 Next

This was the last tutorial in this Part on learning. In the next part, you will discover tutorials
for reducing the overfitting and improve the generalization of neural network models.

Part II

Better Generalization

243

Overview

In this part you will discover techniques that you can use to reduce overfitting and improve the
generalization of your deep learning neural network models. After reading the chapters in this
part, you will know:

� How techniques that reduce model complexity have a regularizing effect resulting in less
overfitting and better generalization (Chapter 12).

� How to add a penalty to the loss function to encourage smaller model weights (Chapter 13).

� How to add a penalty to the loss function to encourage sparse internal representations
(Chapter 14).

� How to add a constraint to the model to force small model weights and lower complexity
models (Chapter 15).

� How to add dropout weights during training to decouple model layers (Chapter 16).

� How to add noise to the training process to promote model robustness (Chapter 17).

� How to use early stopping to halt model training at the right time (Chapter 18).

244

Chapter 12

Fix Overfitting with Regularization

Training a deep neural network that can generalize well to new data is a challenging problem.
A model with too little capacity cannot learn the problem, whereas a model with too much
capacity can learn it too well and overfit the training dataset. Both cases result in a model that
does not generalize well. A modern approach to reducing generalization error is to use a larger
model that may be required to use regularization during training that keeps the weights of the
model small. These techniques not only reduce overfitting, but they can also lead to faster
optimization of the model and better overall performance. In this tutorial, you will discover
the problem of overfitting when training neural networks and how it can be addressed with
regularization methods. After reading this tutorial, you will know:

� Underfitting can easily be addressed by increasing the capacity of the network, but
overfitting requires the use of specialized techniques.

� Regularization methods like weight decay provide an easy way to control overfitting for
large neural network models.

� A modern recommendation for regularization is to use early stopping with dropout and a
weight constraint.

Let’s get started.

12.1 Problem of Model Generalization and Overfitting

The objective of a neural network is to have a final model that performs well both on the data
that we used to train it (e.g. the training dataset) and the new data on which the model will be
used to make predictions.

The central challenge in machine learning is that we must perform well on new,
previously unseen inputs - not just those on which our model was trained. The
ability to perform well on previously unobserved inputs is called generalization.

— Page 110, Deep Learning, 2016.

245

12.1. Problem of Model Generalization and Overfitting 246

We require that the model learn from known examples and generalize from those known
examples to new examples in the future. We use methods like a train/test split or k-fold
cross-validation to estimate the ability of the model to generalize to new data. Learning and
also generalizing to new cases is hard. Too little learning and the model will perform poorly on
the training dataset and on new data. The model will underfit the problem. Too much learning
and the model will perform well on the training dataset and poorly on new data, the model will
overfit the problem. In both cases, the model has not generalized.

� Underfit Model. A model that fails to sufficiently learn the problem and performs
poorly on a training dataset and does not perform well on a holdout sample.

� Overfit Model. A model that learns the training dataset too well, performing well on
the training dataset but does not perform well on a hold out sample.

� Good Fit Model. A model that suitably learns the training dataset and generalizes well
to the hold out dataset.

A model fit can be considered in the context of the bias-variance trade-off. An underfit
model has high bias and low variance. Regardless of the specific samples in the training data, it
cannot learn the problem. An overfit model has low bias and high variance. The model learns
the training data too well and performance varies widely with new unseen examples or even
statistical noise added to examples in the training dataset.

In order to generalize well, a system needs to be sufficiently powerful to approximate
the target function. If it is too simple to fit even the training data then generalization
to new data is also likely to be poor. [...] An overly complex system, however, may
be able to approximate the data in many different ways that give similar errors and
is unlikely to choose the one that will generalize best ...

— Page 241, Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks,
1999.

We can address underfitting by increasing the capacity of the model. Capacity refers to
the ability of a model to fit a variety of functions; more capacity, means that a model can fit
more types of functions for mapping inputs to outputs. Increasing the capacity of a model is
easily achieved by changing the structure of the model, such as adding more layers and/or more
nodes to layers. Because an underfit model is so easily addressed, it is more common to have an
overfit model. An overfit model is easily diagnosed by monitoring the performance of the model
during training by evaluating it on both a training dataset and on a holdout validation dataset.
Graphing line plots of the performance of the model during training, called learning curves, will
show a familiar pattern.

For example, line plots of the loss (that we seek to minimize) of the model on train and
validation datasets will show a line for the training dataset that drops and may plateau and a
line for the validation dataset that drops at first, then at some point begins to rise again.

As training progresses, the generalization error may decrease to a minimum and
then increase again as the network adapts to idiosyncrasies of the training data.

12.2. Reduce Overfitting by Constraining Complexity 247

— Page 250, Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks,
1999.

A learning curve plot tells the story of the model learning the problem until a point at which
it begins overfitting and its ability to generalize to the unseen validation dataset begins to get
worse.

12.2 Reduce Overfitting by Constraining Complexity

There are two ways to approach an overfit model:

1. Reduce overfitting by training the network on more examples.

2. Reduce overfitting by changing the complexity of the network.

A benefit of very deep neural networks is that their performance continues to improve as
they are fed larger and larger datasets. A model with a near-infinite number of examples will
eventually plateau in terms of what the capacity of the network is capable of learning. A model
can overfit a training dataset because it has sufficient capacity to do so. Reducing the capacity
of the model reduces the likelihood of the model overfitting the training dataset, to a point
where it no longer overfits. The capacity of a neural network model, it’s complexity, is defined
by both it’s structure in terms of nodes and layers and the parameters in terms of its weights.
Therefore, we can reduce the complexity of a neural network to reduce overfitting in one of two
ways:

� Change network complexity by changing the network structure (number of weights).

� Change network complexity by changing the network parameters (values of weights).

In the case of neural networks, the complexity can be varied by changing the number
of adaptive parameters in the network. This is called structural stabilization. [...]
The second principal approach to controlling the complexity of a model is through
the use of regularization which involves the addition of a penalty term to the error
function.

— Page 332, Neural Networks for Pattern Recognition, 1995.

For example, the structure could be tuned such as via grid search until a suitable number of
nodes and/or layers is found to reduce or remove overfitting for the problem. Alternately, the
model could be overfit and pruned by removing nodes until it achieves suitable performance on
a validation dataset. It is more common to instead constrain the complexity of the model by
ensuring the parameters (weights) of the model remain small. Small parameters suggest a less
complex and, in turn, more stable model that is less sensitive to statistical fluctuations in the
input data.

Large weighs tend to cause sharp transitions in the [activation] functions and thus
large changes in output for small changes in inputs.

12.3. Regularization Methods for Neural Networks 248

— Page 269, Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks,
1999.

It is more common to focus on methods that constrain the size of the weights in a neural
network because a single network structure can be defined that is under-constrained, e.g. has a
much larger capacity than is required for the problem, and regularization can be used during
training to ensure that the model does not overfit. In such cases, performance can even be
better as the additional capacity can be focused on better learning generalizable concepts in the
problem. Techniques that seek to reduce overfitting (reduce generalization error) by keeping
network weights small are referred to as regularization methods. More specifically, regularization
refers to a class of approaches that add additional information to transform an ill-posed problem
into a more stable well-posed problem.

A problem is said to be ill-posed if small changes in the given information cause large
changes in the solution. This instability with respect to the data makes solutions
unreliable because small measurement errors or uncertainties in parameters may
be greatly magnified and lead to wildly different responses. [...] The idea behind
regularization is to use supplementary information to restate an ill-posed problem in
a stable form.

— Page 266, Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks,
1999.

Regularization methods are so widely used to reduce overfitting that the term regularization
may be used for any method that improves the generalization error of a neural network model.

Regularization is any modification we make to a learning algorithm that is intended
to reduce its generalization error but not its training error. Regularization is one of
the central concerns of the field of machine learning, rivaled in its importance only
by optimization.

— Page 120, Deep Learning, 2016.

12.3 Regularization Methods for Neural Networks

The simplest and perhaps most common regularization method is to add a penalty to the loss
function in proportion to the size of the weights in the model.

� Weight Regularization: Penalize the model during training based on the magnitude of
the weights (Chapter 13).

This will encourage the model to map the inputs to the outputs of the training dataset
in such a way that the weights of the model are kept small. This approach is called weight
regularization or weight decay and has proven very effective for decades for both simpler linear
models and neural networks.

A simple alternative to gathering more data is to reduce the size of the model
or improve regularization, by adjusting hyperparameters such as weight decay
coefficients ...

12.4. Regularization Recommendations 249

— Page 427, Deep Learning, 2016.

Below is a list of five of the most common additional regularization methods.

� Activity Regularization: Penalize the model during training based on the magnitude
of the activations (Chapter 14).

� Weight Constraint: Constrain the magnitude of weights to be within a range or below
a limit (Chapter 15).

� Dropout: Probabilistically remove inputs during training (Chapter 16).

� Noise: Add statistical noise to inputs during training (Chapter 17).

� Early Stopping: Monitor model performance on a validation set and stop training when
performance degrades (Chapter 18).

Most of these methods have been demonstrated (or proven) to approximate the effect
of adding a penalty to the loss function. Each method approaches the problem differently,
offering benefits in terms of a mixture of generalization performance, configurability, and/or
computational complexity.

12.4 Regularization Recommendations

This section outlines some recommendations for using regularization methods for deep learning
neural networks. You should always consider using regularization, unless you have a very large
dataset, e.g. big-data scale.

Unless your training set contains tens of millions of examples or more, you should
include some mild forms of regularization from the start.

— Page 426, Deep Learning, 2016.

A good general recommendation is to design a neural network structure that is under-
constrained and to use regularization to reduce the likelihood of overfitting.

... controlling the complexity of the model is not a simple matter of finding the model
of the right size, with the right number of parameters. Instead, [...] in practical
deep learning scenarios, we almost always do find that the best fitting model (in the
sense of minimizing generalization error) is a large model that has been regularized
appropriately.

— Page 229, Deep Learning, 2016.

Early stopping should almost universally be used in addition to a method to keep weights
small during training.

Early stopping should be used almost universally.

12.5. Further Reading 250

— Page 426, Deep Learning, 2016.

Some more specific recommendations include:

� Classical: use early stopping and weight decay (L2 weight regularization).

� Alternate: use early stopping and added noise with a weight constraint.

� Modern: use early stopping and dropout, in addition to a weight constraint.

These recommendations would suit Multilayer Perceptrons and Convolutional Neural Net-
works. Some recommendations for recurrent neural nets include:

� Classical: use early stopping with added weight noise and a weight constraint such as
maximum norm.

� Modern: use early stopping with a backpropagation-through-time-aware version of
dropout and a weight constraint.

There are no silver bullets when it comes to regularization and systematic experimentation
is strongly encouraged.

12.5 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

12.5.1 Books

� Chapter 7: Regularization for Deep Learning, Deep Learning, 2016.
https://amzn.to/2NJW3gE

� Section 5.5: Regularization in Neural Networks, Pattern Recognition and Machine Learning,
2006.
https://amzn.to/2Q2rEeP

� Chapter 16: Heuristics for Improving Generalization, Neural Smithing: Supervised Learning
in Feedforward Artificial Neural Networks, 1999.
https://amzn.to/2Dxo4XU

� Chapter 9: Learning and Generalization, Neural Networks for Pattern Recognition, 1995.
https://amzn.to/2I9gNMP

12.5.2 Articles

� What is overfitting and how can I avoid it? Neural Network FAQ.
ftp://ftp.sas.com/pub/neural/FAQ3.html#A_over

� Regularization (mathematics), Wikipedia.
https://en.wikipedia.org/wiki/Regularization_(mathematics)

https://amzn.to/2NJW3gE
https://amzn.to/2Q2rEeP
https://amzn.to/2Dxo4XU
https://amzn.to/2I9gNMP
ftp://ftp.sas.com/pub/neural/FAQ3.html#A_over
https://en.wikipedia.org/wiki/Regularization_(mathematics)

12.6. Summary 251

12.6 Summary

In this tutorial, you discovered the problem of overfitting when training neural networks and
how it can be addressed with regularization methods. Specifically, you learned:

� Underfitting can easily be addressed by increasing the capacity of the network, but
overfitting requires the use of specialized techniques.

� Regularization methods like weight decay provide an easy way to control overfitting for
large neural network models.

� A modern recommendation for regularization is to use early stopping with dropout and a
weight constraint.

12.6.1 Next

In the next tutorial, you will discover how to add a penalty to the loss function to encourage
the training of models with smaller weights and in turn less overfitting.

Chapter 13

Penalize Large Weights with Weight
Regularization

Neural networks learn a set of weights that best map inputs to outputs. A network with large
network weights can be a sign of an unstable network where small changes in the input can lead
to large changes in the output. This can be a sign that the network has overfit the training
dataset and will likely perform poorly when making predictions on new data. A solution to
this problem is to update the learning algorithm to encourage the network to keep the weights
small. This is called weight regularization and it can be used as a general technique to reduce
overfitting of the training dataset and improve the generalization of the model. In this tutorial,
you will discover weight regularization as an approach to reduce overfitting for neural networks.
After reading this tutorial, you will know:

� Large weights in a neural network are a sign of a more complex network that has overfit
the training data.

� Penalizing a network based on the size of the network weights during training can reduce
overfitting.

� An L1 or L2 vector norm penalty can be added to the optimization of the network to
encourage smaller weights.

Let’s get started.

13.1 Weight Regularization

In this section you will discover the problem with neural networks that have large weights, a
technique that you can use to encourage the development of models with smaller weights called
weight regularization and tips for using this technique in your own projects.

13.1.1 Problem With Large Weights

When fitting a neural network model, we must learn the weights of the network (i.e. the model
parameters) using stochastic gradient descent and the training dataset. The longer we train
the network, the more specialized the weights will become to the training data, overfitting the

252

13.1. Weight Regularization 253

training data. The weights will grow in size in order to handle the specifics of the examples seen
in the training data. Large weights make the network unstable. Although the weights will be
specialized to the training dataset, minor variation or statistical noise on the expected inputs
will result in large differences in the output.

Large weights tend to cause sharp transitions in the node functions and thus large
changes in output for small changes in the inputs.

— Page 269 Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks,
1999.

Generally, we refer to this model as having a large variance and a small bias. That is, the
model is sensitive to the specific examples, the statistical noise, in the training dataset. A model
with large weights is more complex than a model with smaller weights. It is a sign of a network
that may be overly specialized to training data. In practice, we prefer to choose the simpler
models to solve a problem (e.g. Occam’s razor). We prefer models with smaller weights.

... given some training data and a network architecture, multiple sets of weight
values (multiple models) could explain the data. Simpler models are less likely to
over-fit than complex ones. A simple model in this context is a model where the
distribution of parameter values has less entropy

— Page 107, Deep Learning with Python, 2017.

Another possible issue is that there may be many input variables, each with different levels
of relevance to the output variable. Sometimes we can use methods to aid in selecting input
variables, but often the interrelationships between variables is not obvious. Having small weights
or even zero weights for less relevant or irrelevant inputs to the network will allow the model to
focus learning. This too will result in a simpler model.

13.1.2 Encourage Small Weights

The learning algorithm can be updated to encourage the network toward using small weights.
One way to do this is to change the calculation of loss used in the optimization of the network
to also consider the size of the weights. Remember, that when we train a neural network, we
minimize a loss function, such as the log loss in classification or mean squared error in regression.
In calculating the loss between the predicted and expected values in a batch, we can add the
current size of all weights in the network or add in a layer to this calculation. This is called
a penalty because we are penalizing the model proportional to the size of the weights in the
model.

Many regularization approaches are based on limiting the capacity of models, such
as neural networks, linear regression, or logistic regression, by adding a [...] penalty
to the objective function.

— Page 230, Deep Learning, 2016.

13.1. Weight Regularization 254

Larger weights result in a larger penalty, in the form of a larger loss score. The optimization
algorithm will then push the model to have smaller weights, i.e. weights no larger than needed
to perform well on the training dataset. Smaller weights are considered more regular or less
specialized and as such, we refer to this penalty as weight regularization. When this approach of
penalizing model coefficients is used in other machine learning models such as linear regression
or logistic regression, it may be referred to as shrinkage, because the penalty encourages the
coefficients to shrink during the optimization process.

Shrinkage. This approach involves fitting a model involving all p predictors. However,
the estimated coefficients are shrunken towards zero [...] This shrinkage (also known
as regularization) has the effect of reducing variance

— Page 204, An Introduction to Statistical Learning: with Applications in R, 2013.

The addition of a weight size penalty or weight regularization to a neural network has the
effect of reducing generalization error and of allowing the model to pay less attention to less
relevant input variables.

1) It suppresses any irrelevant components of the weight vector by choosing the
smallest vector that solves the learning problem. 2) If the size is chosen right, a
weight decay can suppress some of the effect of static noise on the targets.

— A Simple Weight Decay Can Improve Generalization, 1992.

13.1.3 How to Penalize Large Weights

There are two parts to penalizing the model based on the size of the weights. The first is
the calculation of the size of the weights, and the second is the amount of attention that the
optimization process should pay to the penalty.

Calculate Weight Size

Neural network weights are real-values that can be positive or negative, as such, simply adding
the weights is not sufficient. There are two main approaches used to calculate the size of the
weights, they are:

� Calculate the sum of the absolute values of the weights, called the L1 norm (or L1).

� Calculate the sum of the squared values of the weights, called the L2 norm (or L2).

L1 encourages weights to 0.0 if possible, resulting in more sparse weights (weights with more
0.0 values). L2 offers more nuance, both penalizing larger weights more severely, but resulting
in less sparse weights. The use of L2 in linear and logistic regression is often referred to as
Ridge Regression. This is useful to know when trying to develop an intuition for the penalty or
examples of its usage.

In other academic communities, L2 regularization is also known as ridge regression
or Tikhonov regularization.

13.1. Weight Regularization 255

— Page 231, Deep Learning, 2016.

The weights may be considered a vector and the magnitude of a vector is called its norm,
from linear algebra. As such, penalizing the model based on the size of the weights is also
referred to as a weight or parameter norm penalty. It is possible to include both L1 and L2
approaches to calculating the size of the weights as the penalty. This is akin to the use of both
penalties used in the Elastic Net algorithm for linear and logistic regression. The L2 approach
is perhaps the most used and is traditionally referred to as weight decay in the field of neural
networks. It is called shrinkage in statistics, a name that encourages you to think of the impact
of the penalty on the model weights during the learning process.

This particular choice of regularizer is known in the machine learning literature
as weight decay because in sequential learning algorithms, it encourages weight
values to decay towards zero, unless supported by the data. In statistics, it provides
an example of a parameter shrinkage method because it shrinks parameter values
towards zero.

— Page 144-145, Pattern Recognition and Machine Learning, 2006.

Recall that each node has input weights and a bias weight. The bias weight is generally not
included in the penalty because the input is constant.

Control Impact of the Penalty

The calculated size of the weights is added to the loss objective function when training the
network. Rather than adding each weight to the penalty directly, they can be weighted using
a new hyperparameter called alpha (α) or sometimes lambda. This controls the amount of
attention that the learning process should pay to the penalty. Or put another way, the amount
to penalize the model based on the size of the weights. The alpha hyperparameter has a value
between 0.0 (no penalty) and 1.0 (full penalty). This hyperparameter controls the amount of
bias in the model from 0.0, or low bias (high variance), to 1.0, or high bias (low variance).

If the penalty is too strong, the model will underestimate the weights and underfit the
problem. If the penalty is too weak, the model will be allowed to overfit the training data. The
vector norm of the weights is often calculated per-layer, rather than across the entire network.
This allows more flexibility in the choice of the type of regularization used (e.g. L1 for inputs,
L2 elsewhere) and flexibility in the alpha value, although it is common to use the same alpha
value on each layer by default.

In the context of neural networks, it is sometimes desirable to use a separate penalty
with a different a coefficient for each layer of the network. Because it can be expensive
to search for the correct value of multiple hyperparameters, it is still reasonable to
use the same weight decay at all layers just to reduce the size of search space.

— Page 230, Deep Learning, 2016.

13.1. Weight Regularization 256

13.1.4 Examples of Weight Regularization

It can be helpful to look at some examples of weight regularization configurations reported in
the literature. It is important to select and tune a regularization technique specific to your
network and dataset, although real examples can also give an idea of common configurations
that may be a useful starting point. Recall that 0.1 can be written in scientific notation as 1e-1
or 1E-1 or as an exponential 10−1, 0.01 as 1e-2 or 10−2 and so on.

Examples of MLP Weight Regularization

Weight regularization was borrowed from penalized regression models in statistics. The most
common type of regularization is L2, also called simply weight decay, with values often on a
logarithmic scale between 0 and 0.1, such as 0.1, 0.001, 0.0001, etc.

Reasonable values of lambda [regularization hyperparameter] range between 0 and
0.1.

— Page 144, Applied Predictive Modeling, 2013.

The classic text on Multilayer Perceptrons Neural Smithing: Supervised Learning in Feed-
forward Artificial Neural Networks provides a worked example demonstrating the impact of
weight decay by first training a model without any regularization, then steadily increasing
the penalty. They demonstrate graphically that weight decay has the effect of improving the
resulting decision function.

... net was trained [...] with weight decay increasing from 0 to 1E-5 at 1200 epochs,
to 1E-4 at 2500 epochs, and to 1E-3 at 400 epochs. [...] The surface is smoother
and transitions are more gradual

This is an interesting procedure that may be worth investigating. The authors also comment
on the difficulty of predicting the effect of weight decay on a problem.

... it is difficult to predict ahead of time what value is needed to achieve desired
results. The value of 0.001 was chosen arbitrarily because it is a typically cited
round number

Examples of CNN Weight Regularization

Weight regularization does not seem widely used in CNN models, or if it is used, its use is not
widely reported. L2 weight regularization with very small regularization hyperparameters such
as (e.g. 0.0005 or 5 × 10−4) may be a good starting point. Alex Krizhevsky, et al. from the
University of Toronto in their 2012 paper titled ImageNet Classification with Deep Convolutional
Neural Networks developed a deep CNN model for the ImageNet dataset, achieving then
state-of-the-art results reported:

...and weight decay of 0.0005. We found that this small amount of weight decay was
important for the model to learn. In other words, weight decay here is not merely a
regularizer: it reduces the model’s training error.

13.1. Weight Regularization 257

Karen Simonyan and Andrew Zisserman from Oxford in their 2015 paper titled Very Deep
Convolutional Networks for Large-Scale Image Recognition develop a CNN for the ImageNet
dataset and report:

The training was regularised by weight decay (the L2 penalty multiplier set to
5× 10−4)

Francois Chollet from Google (and author of Keras) in his 2016 paper titled Xception:
Deep Learning with Depthwise Separable Convolutions reported the weight decay for both the
Inception V3 CNN model from Google (not clear from the Inception V3 paper) and the weight
decay used in his improved Xception for the ImageNet dataset:

The Inception V3 model uses a weight decay (L2 regularization) rate of 4e-5, which
has been carefully tuned for performance on ImageNet. We found this rate to be
quite suboptimal for Xception and instead settled for 1e-5.

Examples of LSTM Weight Regularization

It is common to use weight regularization with LSTM models. An often used configuration is L2
(weight decay) and very small hyperparameters (e.g. 10−6). It is often not reported what weights
are regularized (input, recurrent, and/or bias), although one would assume that both input and
recurrent weights are regularized only. Gabriel Pereyra, et al. from Google Brain in the 2017
paper titled Regularizing Neural Networks by Penalizing Confident Output Distributions apply
a seq2seq LSTMs models to predicting characters from the Wall Street Journal and report:

All models used weight decay of 10−6

Barret Zoph and Quoc Le from Google Brain in the 2017 paper titled Neural Architecture
Search with Reinforcement Learning use LSTMs and reinforcement learning to learn network
architectures to best address the CIFAR-10 dataset and report:

weight decay of 1e-4

Ron Weiss, et al. from Google Brain and Nvidia in their 2017 paper titled Sequence-to-
Sequence Models Can Directly Translate Foreign Speech develop a sequence-to-sequence LSTM
for speech translation and report:

L2 weight decay is used with a weight of 10−6

13.1.5 Tips for Using Weight Regularization

This section provides some tips for using weight regularization with your neural network.

Use With All Network Types

Weight regularization is a generic approach. It can be used with most, perhaps all, types of
neural network models, not least the most common network types of Multilayer Perceptrons,
Convolutional Neural Networks, and Long Short-Term Memory Recurrent Neural Networks. In
the case of LSTMs, it may be desirable to use different penalties or penalty configurations for
the input and recurrent connections.

13.2. Weight Regularization Keras API 258

Standardize Input Data

It is generally good practice to update input variables to have the same scale. When input
variables have different scales, the scale of the weights of the network will, in turn, vary
accordingly. This introduces a problem when using weight regularization because the absolute
or squared values of the weights must be added for use in the penalty. This problem can be
addressed by either normalizing or standardizing input variables.

Use a Larger Network

It is common for larger networks (more layers or more nodes) to more easily overfit the training
data. When using weight regularization, it is possible to use larger networks with less risk of
overfitting. A good configuration strategy may be to start with larger networks and use weight
decay.

Grid Search Parameters

It is common to use small values for the regularization hyperparameter that controls the
contribution of each weight to the penalty. Perhaps start by testing values on a log scale, such
as 0.1, 0.001, and 0.0001. Then use a grid search at the order of magnitude that shows the most
promise.

Use L1 + L2 Together

Rather than trying to choose between L1 and L2 penalties, use both. Modern and effective
linear regression methods such as the Elastic Net use both L1 and L2 penalties at the same
time and this can be a useful approach to try. This gives you both the nuance of L2 and the
sparsity encouraged by L1.

Use on a Trained Network

The use of weight regularization may allow more elaborate training schemes. For example, a
model may be fit on training data first without any regularization, then updated later with the
use of a weight penalty to reduce the size of the weights of the already well-performing model.

13.2 Weight Regularization Keras API

This section demonstrates how to use weight regularization techniques with the Keras API.

13.2.1 Create Weight Regularizers

Keras provides a weight regularization API that allows you to add a penalty for weight size to
the loss function. Three different regularizer instances are provided; they are:

� L1: Sum of the absolute weights.

� L2: Sum of the squared weights.

13.2. Weight Regularization Keras API 259

� L1L2: Sum of the absolute and the squared weights.

The regularizers are provided under keras.regularizers module and have the names l1,
l2 and l1 l2. Each takes the regularizer hyperparameter as an argument. For example:

example of creating an l2 regularizer

from keras.regularizers import l2

reg = l2(0.01)

Listing 13.1: Example of creating an L2 regularizer in Keras.

13.2.2 Weight Regularization on Layers

By default, no regularizer is used in any layers. A weight regularizer can be added to
each layer when the layer is defined in a Keras model. This is achieved by setting the
kernel regularizer argument on each layer. A separate regularizer can also be used for
the bias via the bias regularizer argument, although this is less often used. Let’s look at
some examples.

Weight Regularization for MLPs

The example below sets an l2 regularizer on a Dense fully connected layer:

example of l2 on a dense layer

from keras.layers import Dense

from keras.regularizers import l2

...

model.add(Dense(32, kernel_regularizer=l2(0.01), bias_regularizer=l2(0.01)))

...

Listing 13.2: Example of adding weight regularization to an MLP.

Weight Regularization for CNNs

Like the Dense layer, the Convolutional layers (e.g. Conv1D and Conv2D) also use the kernel regularizer

and bias regularizer arguments to define a regularizer. The example below sets an l2 regu-
larizer on a Conv2D convolutional layer:

example of l2 on a convolutional layer

from keras.layers import Conv2D

from keras.regularizers import l2

...

model.add(Conv2D(32, (3,3), kernel_regularizer=l2(0.01), bias_regularizer=l2(0.01)))

...

Listing 13.3: Example of adding weight regularization to a CNN.

Weight Regularization for RNNs

Recurrent layers like the LSTM layer offer more flexibility in regularizing the weights. The
input, recurrent, and bias weights can all be regularized separately via the kernel regularizer,
recurrent regularizer, and bias regularizer arguments. The example below sets an l2

regularizer on an LSTM recurrent layer:

13.3. Weight Regularization Case Study 260

example of l2 on an lstm layer

from keras.layers import LSTM

from keras.regularizers import l2

...

model.add(LSTM(32, kernel_regularizer=l2(0.01), recurrent_regularizer=l2(0.01),

bias_regularizer=l2(0.01)))

...

Listing 13.4: Example of adding weight regularization to an LSTM.

Now that we know how to use the weight regularization API, let’s look at a worked example.

13.3 Weight Regularization Case Study

In this section, we will demonstrate how to use weight regularization to reduce overfitting of an
MLP on a simple binary classification problem. This example provides a template for applying
weight regularization to your own neural network for classification and regression problems.

13.3.1 Binary Classification Problem

We will use a standard binary classification problem that defines two semi-circles of observations:
one semi-circle for each class. Each observation has two input variables with the same scale and
a class output value of either 0 or 1. This dataset is called the moons dataset because of the
shape of the observations in each class when plotted. We can use the make moons() function to
generate observations from this problem. We will add noise to the data and seed the random
number generator so that the same samples are generated each time the code is run.

generate 2d classification dataset

X, y = make_moons(n_samples=100, noise=0.2, random_state=1)

Listing 13.5: Example of creating samples for the moons problem.

We can plot the dataset where the two variables are taken as x and y coordinates on a graph
and the class value is taken as the color of the observation. The complete example of generating
the dataset and plotting it is listed below.

scatter plot of moons dataset

from sklearn.datasets import make_moons

from matplotlib import pyplot

from numpy import where

generate 2d classification dataset

X, y = make_moons(n_samples=100, noise=0.2, random_state=1)

scatter plot for each class value

for class_value in range(2):

select indices of points with the class label

row_ix = where(y == class_value)

scatter plot for points with a different color

pyplot.scatter(X[row_ix, 0], X[row_ix, 1])

show plot

pyplot.show()

Listing 13.6: Example of plotting samples from the two moons problem.

13.3. Weight Regularization Case Study 261

Running the example creates a scatter plot showing the semi-circle or moon shape of the
observations in each class. We can see the noise in the dispersal of the points making the moons
less obvious.

Figure 13.1: Scatter Plot of Moons Dataset With Color Showing the Class Value of Each Sample.

This is a good test problem because the classes cannot be separated by a line, e.g. are not
linearly separable, requiring a nonlinear method such as a neural network to address. We have
only generated 100 samples, which is small for a neural network, providing the opportunity to
overfit the training dataset and have higher error on the test dataset: a good case for using
regularization. Further, the samples have noise, giving the model an opportunity to learn aspects
of the samples that don’t generalize.

13.3.2 Overfit Multilayer Perceptron Model

We can develop an MLP model to address this binary classification problem. The model will
have one hidden layer with more nodes that may be required to solve this problem, providing
an opportunity to overfit. We will also train the model for longer than is required to ensure the
model overfits. Before we define the model, we will split the dataset into train and test sets,
using 30 examples to train the model and 70 to evaluate the fit model’s performance.

generate 2d classification dataset

X, y = make_moons(n_samples=100, noise=0.2, random_state=1)

13.3. Weight Regularization Case Study 262

split into train and test

n_train = 30

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

Listing 13.7: Example of preparing the data modeling.

Next, we can define the model. The model uses 500 nodes in the hidden layer and the
rectified linear activation function. A sigmoid activation function is used in the output layer in
order to predict class values of 0 or 1. The model is optimized using the binary cross-entropy loss
function, suitable for binary classification problems and the efficient Adam version of gradient
descent.

define model

model = Sequential()

model.add(Dense(500, input_dim=2, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

Listing 13.8: Example of defining a model for the moons problem.

The defined model is then fit on the training data for 4,000 epochs and the default batch size
of 32. We will use the test set as the validation dataset to get an idea of the model performance
on a hold out dataset during training

fit model

history = model.fit(trainX, trainy, epochs=4000, validation_data=(testX, testy), verbose=0)

Listing 13.9: Example of fitting a model for the moons problem.

Next, we will evaluate the performance of the model on the test dataset and report the
result.

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

Listing 13.10: Example of evaluating a model for the moons problem.

Finally, we will plot learning curves of model performance in terms of cross-entropy loss and
classification accuracy on the train and test datasets for each epoch during training.

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 13.11: Example of plotting learning curves of model performance during training.

13.3. Weight Regularization Case Study 263

We can tie all of these pieces together; the complete example is listed below.

overfit mlp for the moons dataset

from sklearn.datasets import make_moons

from keras.models import Sequential

from keras.layers import Dense

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_moons(n_samples=100, noise=0.2, random_state=1)

split into train and test sets

n_train = 30

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(500, input_dim=2, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, epochs=4000, validation_data=(testX, testy), verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 13.12: Example of fitting an MLP for the two moons problem.

Running the example first reports the model performance on the train and test datasets.
We can see that the model has better performance on the training dataset than the test dataset,
one possible sign of overfitting.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

Train: 1.000, Test: 0.914

Listing 13.13: Example output fitting an MLP on the two moons problem.

Line plots showing learning curves of cross-entropy loss and classification accuracy on the
train and test sets for each training epoch are also created. The learning curve for loss shows a
clear pattern of overfitting, mirrored in the learning curve for the classification accuracy.

13.3. Weight Regularization Case Study 264

Figure 13.2: Line Plots of Learning Curves for Loss and Accuracy on Train and Test Datasets
While Training.

13.3.3 MLP Model With Weight Regularization

We can add weight regularization to the hidden layer to reduce the overfitting of the model to
the training dataset and improve the performance on the holdout set. We will use the L2 vector
norm also called weight decay with a regularization parameter (called alpha or lambda) of 0.001,
chosen arbitrarily. This can be done by adding the kernel regularizer argument to the layer
and setting it to an instance of l2.

model.add(Dense(500, input_dim=2, activation='relu', kernel_regularizer=l2(0.001)))

Listing 13.14: Updated layer to use weight regularization.

The updated example of fitting and evaluating the model on the moons dataset with weight
regularization is listed below.

mlp with weight regularization for the moons dataset

from sklearn.datasets import make_moons

from keras.models import Sequential

from keras.layers import Dense

from keras.regularizers import l2

from matplotlib import pyplot

generate 2d classification dataset

13.3. Weight Regularization Case Study 265

X, y = make_moons(n_samples=100, noise=0.2, random_state=1)

split into train and test sets

n_train = 30

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(500, input_dim=2, activation='relu', kernel_regularizer=l2(0.001)))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, epochs=4000, validation_data=(testX, testy), verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 13.15: Example of updated MLP using weight regularization for the two moons problem.

Running the example first reports the performance of the model on the train and test
datasets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we see no change in the accuracy on the training dataset and an improvement
on the test dataset.

Train: 1.000, Test: 0.943

Listing 13.16: Example output from updated MLP using weight regularization for the two
moons problem.

We would expect that the telltale learning curve for overfitting would also have been changed
through the use of weight regularization. Instead of the accuracy of the model on the test set
increasing and then decreasing again, we should see it continually rise during training. As
expected, we see the learning curves for loss and accuracy on the test dataset plateau, indicating
that the model has no longer overfit the training dataset.

13.3. Weight Regularization Case Study 266

Figure 13.3: Line Plots Learning Curves for Loss and Accuracy on Train and Test Datasets
While Training Without Overfitting.

13.3.4 Grid Search Regularization Hyperparameter

Once you can confirm that weight regularization may improve your overfit model, you can test
different values of the regularization parameter. It is a good practice to first grid search through
some orders of magnitude between 0.0 and 0.1, then once a level is found, to grid search on
that level. We can grid search through the orders of magnitude by defining the values to test,
looping through each and recording the train and test performance.

...

grid search values

values = [1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6]

all_train, all_test = list(), list()

for param in values:

...

model.add(Dense(500, input_dim=2, activation='relu', kernel_regularizer=l2(param)))

...

all_train.append(train_acc)

all_test.append(test_acc)

Listing 13.17: Example of a grid search for regularization values.

13.3. Weight Regularization Case Study 267

Once we have all of the values, we can graph the results as a line plot to help spot any
patterns in the configurations to the train and test accuracies. Because parameters jump orders
of magnitude (powers of 10), we can create a line plot of the results using a logarithmic scale.
The Matplotlib library allows this via the semilogx() function. For example:

pyplot.semilogx(values, all_train, label='train', marker='o')

pyplot.semilogx(values, all_test, label='test', marker='o')

Listing 13.18: Example of plotting the results from grid searching regularization values.

The complete example for grid searching weight regularization values on the moon dataset
is listed below.

grid search regularization values for moons dataset

from sklearn.datasets import make_moons

from keras.layers import Dense

from keras.models import Sequential

from keras.regularizers import l2

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_moons(n_samples=100, noise=0.2, random_state=1)

split into train and test

n_train = 30

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

grid search values

values = [1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6]

all_train, all_test = list(), list()

for param in values:

define model

model = Sequential()

model.add(Dense(500, input_dim=2, activation='relu', kernel_regularizer=l2(param)))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

model.fit(trainX, trainy, epochs=4000, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Param: %f, Train: %.3f, Test: %.3f' % (param, train_acc, test_acc))

all_train.append(train_acc)

all_test.append(test_acc)

plot train and test means

pyplot.semilogx(values, all_train, label='train', marker='o')

pyplot.semilogx(values, all_test, label='test', marker='o')

pyplot.legend()

pyplot.show()

Listing 13.19: Example grid searching weight regularization values for the two moons problem.

Running the example prints the parameter value and the accuracy on the train and test sets
for each evaluated model.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

13.4. Extensions 268

In this case, the results suggest that 0.01 or 0.001 may be sufficient and may provide good
bounds for further grid searching.

Param: 0.100000, Train: 0.967, Test: 0.829

Param: 0.010000, Train: 1.000, Test: 0.943

Param: 0.001000, Train: 1.000, Test: 0.943

Param: 0.000100, Train: 1.000, Test: 0.929

Param: 0.000010, Train: 1.000, Test: 0.929

Param: 0.000001, Train: 1.000, Test: 0.914

Listing 13.20: Example output from grid searching weight regularization values for the two
moons problem.

A line plot of the results is also created, showing the increase in test accuracy with larger
weight regularization parameter values, at least to a point. We can see that using the largest
value of 0.1 results in a large drop in both train and test accuracy.

Figure 13.4: Line Plot of Model Accuracy on Train and Test Datasets With Different Weight
Regularization Parameters.

13.4 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

13.5. Further Reading 269

� Try Alternates. Update the example to use L1 or the combined L1L2 methods instead
of L2 regularization.

� Report Weight Norm. Update the example to calculate the magnitude of the network
weights and demonstrate that regularization indeed made the magnitude smaller.

� Regularize Output Layer. Update the example to regularize the output layer of the
model and compare the results.

� Regularize Bias. Update the example to regularize the bias weight and compare the
results.

� Repeated Model Evaluation. Update the example to fit and evaluate the model
multiple times and report the mean and standard deviation of model performance.

� Grid Search Along Order of Magnitude. Update the grid search example to grid
search within the best-performing order of magnitude of parameter values.

� Repeated Regularization of Model. Create a new example to continue the training
of a fit model with increasing levels of regularization (e.g. 1E-6, 1E-5, etc.) and see if it
results in a better performing model on the test set.

If you explore any of these extensions, I’d love to know.

13.5 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

13.5.1 Books

� Section 7.1: Parameter Norm Penalties, Deep Learning, 2016.
https://amzn.to/2NJW3gE

� Section 5.5: Regularization in Neural Networks, Pattern Recognition and Machine Learning,
2006.
https://amzn.to/2Q2rEeP

� Section 16.5: Weight Decay, Neural Smithing: Supervised Learning in Feedforward Artificial
Neural Networks, 1999.
https://amzn.to/2PBsezv

� Section 4.4.2: Adding weight regularization, Deep Learning with Python, 2017.
https://amzn.to/2wVqZDq

� Section 6.2: Shrinkage Methods, An Introduction to Statistical Learning: with Applications
in R, 2013.
https://amzn.to/2MXGK7I

https://amzn.to/2NJW3gE
https://amzn.to/2Q2rEeP
https://amzn.to/2PBsezv
https://amzn.to/2wVqZDq
https://amzn.to/2MXGK7I

13.6. Summary 270

13.5.2 Papers

� A Simple Weight Decay Can Improve Generalization, 1992.
https://papers.nips.cc/paper/563-a-simple-weight-decay-can-improve-generalization

� Note on generalization, regularization and architecture selection in nonlinear learning
systems, 1991.
https://ieeexplore.ieee.org/abstract/document/239541/

13.5.3 APIs

� Keras Regularization API.
https://keras.io/regularizers/

� Keras Core Layers API.
https://keras.io/layers/core/

� Keras Convolutional Layers API.
https://keras.io/layers/convolutional/

� Keras Recurrent Layers API.
https://keras.io/layers/recurrent/

� sklearn.datasets.make moons API.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.

html

� matplotlib.pyplot.semilogx API.
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.semilogx.html

13.5.4 Articles

� Regularization (mathematics), Wikipedia.
https://en.wikipedia.org/wiki/Regularization_(mathematics)

� Weight Decay in Neural Networks, Metacademy.
https://metacademy.org/graphs/concepts/weight_decay_neural_networks

� Why large weights are prohibited in neural networks?
https://datascience.stackexchange.com/questions/23287/why-large-weights-are-prohibited-in-neural-networks

13.6 Summary

In this tutorial, you discovered weight regularization as an approach to reduce overfitting for
neural networks. Specifically, you learned:

� Large weights in a neural network are a sign of a more complex network that has overfit
the training data.

https://papers.nips.cc/paper/563-a-simple-weight-decay-can-improve-generalization
https://ieeexplore.ieee.org/abstract/document/239541/
https://keras.io/regularizers/
https://keras.io/layers/core/
https://keras.io/layers/convolutional/
https://keras.io/layers/recurrent/
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.semilogx.html
https://en.wikipedia.org/wiki/Regularization_(mathematics)
https://metacademy.org/graphs/concepts/weight_decay_neural_networks
https://datascience.stackexchange.com/questions/23287/why-large-weights-are-prohibited-in-neural-networks

13.6. Summary 271

� Penalizing a network based on the size of the network weights during training can reduce
overfitting.

� An L1 or L2 vector norm penalty can be added to the optimization of the network to
encourage smaller weights.

13.6.1 Next

In the next tutorial, discover how to update the loss function to encourage the training of models
with simpler internal representations.

Chapter 14

Sparse Representations with Activity
Regularization

Deep learning models are capable of automatically learning a rich internal representation from
raw input data. This is called feature or representation learning. Better learned representations,
in turn, can lead to better insights into the domain, e.g. via visualization of learned features,
and to better predictive models that make use of the learned features. A problem with learned
features is that they can be too specialized to the training data, or overfit, and not generalize well
to new examples. Large values in the learned representation can be a sign of the representation
being overfit. Activity or representation regularization provides a technique to encourage the
learned representations, the output or activation of the hidden layer or layers of the network, to
stay small and sparse. In this tutorial, you will discover activation regularization as a technique
to improve the generalization of learned features in neural networks. After reading this tutorial,
you will know:

� Neural networks learn features from data and models, such as autoencoders and encoder-
decoder models, and explicitly seek effective learned representations.

� Similar to weights, large values in learned features, e.g. large activations, may indicate an
overfit model.

� The addition of penalties to the loss function that penalize a model in proportion to the
magnitude of the activations may result in more robust and generalized learned features.

Let’s get started.

14.1 Activity Regularization

In this section you will discover the problem with neural networks that have large activity, a
technique that you can use to encourage the development of models with sparse activity called
activity regularization and tips for using this technique in your own projects.

14.1.1 Problem With Learned Features

Deep learning models are able to perform feature learning. That is, during the training of the
network, the model will automatically extract the salient features from the input patterns or

272

14.1. Activity Regularization 273

learn features. These features may be used in the network in order to predict a quantity for
regression or predict a class value for classification. These internal representations are tangible
things. The output of a hidden layer within the network represent the learned features by the
model at that point in the network.

There is a field of study focused on the efficient and effective automatic learning of features,
often investigated by having a network reduce an input to a small learned feature before using a
second network to reconstruct the original input from the learned feature. Models of this type
are called auto-encoders, or encoder-decoders, and their learned features can be useful to learn
more about the domain (e.g. via visualization) and in predictive models. The learned features,
or encoded inputs, must be large enough to capture the salient features of the input but also
focused enough to not overfit the specific examples in the training dataset. As such, there is a
tension between the expressiveness and the generalization of the learned features.

More importantly, when the dimension of the code in an encoder-decoder architecture
is larger than the input, it is necessary to limit the amount of information carried
by the code, lest the encoder-decoder may simply learn the identity function in a
trivial way and produce uninteresting features.

— Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object
Recognition, 2007.

In the same way that large weights in the network can signify an unstable and overfit model,
large output values in the learned features can signify the same problems. It is desirable to have
small values in the learned features, e.g. small outputs or activations from the encoder network.

14.1.2 Encourage Small Activations

The loss function of the network can be updated to penalize models in proportion to the
magnitude of their activation. This is similar to weight regularization where the loss function is
updated to penalize the model in proportion to the magnitude of the weights. The output of a
layer is referred to as its activation or activity, as such, this form of penalty or regularization is
referred to as activation regularization or activity regularization.

... place a penalty on the activations of the units in a neural network, encouraging
their activations to be sparse.

— Page 254, Deep Learning, 2016.

The output of an encoder or, generally, the output of a hidden layer in a neural network
may be considered the representation of the problem at that point in the model. As such, this
type of penalty may also be referred to as representation regularization. The desire to have
small activations or even very few activations with mostly zero values is also called a desire for
sparsity. As such, this type of penalty is also referred to as sparse feature learning.

One way to limit the information content of an overcomplete code is to make it
sparse.

— Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object
Recognition, 2007.

14.1. Activity Regularization 274

The encouragement of sparse learned features in autoencoder models is referred to as sparse
autoencoders.

A sparse autoencoder is simply an autoencoder whose training criterion involves a
sparsity penalty on the code layer, in addition to the reconstruction error

— Page 505, Deep Learning, 2016.

Sparsity is most commonly sought when a larger-than-required hidden layer (e.g. over-
complete) is used to learn features that may encourage overfitting. The introduction of a sparsity
penalty counters this problem and encourages better generalization. A sparse overcomplete
learned feature has been shown to be more effective than other types of learned features offering
better robustness to noise and even transforms in the input, e.g. learned features of images may
have improved invariance to the position of objects in the image.

Sparse-overcomplete representations have a number of theoretical and practical
advantages, as demonstrated in a number of recent studies. In particular, they have
good robustness to noise, and provide a good tiling of the joint space of location and
frequency. In addition, they are advantageous for classifiers because classification is
more likely to be easier in higher dimensional spaces.

— Sparse Feature Learning for Deep Belief Networks, 2007.

There is a general focus on sparsity of the representations rather than small vector magnitudes.
A study of these representations that is more general than the use of neural networks is known
as sparse coding.

Sparse coding provides a class of algorithms for finding succinct representations
of stimuli; given only unlabeled input data, it learns basis functions that capture
higher-level features in the data.

— Efficient Sparse Coding Algorithms, 2007.

14.1.3 How to Encourage Small Activations

An activation penalty can be applied per-layer, perhaps only at one layer that is the focus of
the learned representation, such as the output of the encoder model or the middle (bottleneck)
of an autoencoder model. A constraint can be applied that adds a penalty proportional to the
magnitude of the vector output of the layer. The activation values may be positive or negative,
so we cannot simply sum the values. Two common methods for calculating the magnitude of
the activation are:

� Sum of the absolute activation values, called L1 vector norm.

� Sum of the squared activation values, called the L2 vector norm.

The L1 norm encourages sparsity, e.g. allows some activations to become zero, whereas the
L2 norm encourages small activations values in general. Use of the L1 norm may be a more
commonly used penalty for activation regularization. A hyperparameter must be specified that
indicates the amount or degree that the loss function will weight or pay attention to the penalty.
Common values are on a logarithmic scale between 0 and 0.1, such as 0.1, 0.001, 0.0001, etc.
Activity regularization can be used in conjunction with other regularization techniques, such as
weight regularization.

14.1. Activity Regularization 275

14.1.4 Examples of Activation Regularization

This section provides some examples of activation regularization in order to provide some context
for how the technique may be used in practice. Regularized or sparse activations were originally
sought as an approach to support the development of much deeper neural networks, early in the
history of deep learning. As such, many examples may make use of architectures like restricted
Boltzmann machines (RBMs) that have been replaced by more modern methods. Another big
application of weight regularization is in autoencoders with semi-labeled or unlabeled data,
so-called sparse autoencoders. Xavier Glorot, et al. at the University of Montreal introduced
the use of the rectified linear activation function to encourage sparsity of representation. They
used an L1 penalty and evaluate deep supervised MLPs on a range of classical computer vision
classification tasks such as MNIST and CIFAR10.

Additionally, an L1 penalty on the activations with a coefficient of 0.001 was added
to the cost function during pre-training and fine-tuning in order to increase the
amount of sparsity in the learned representations

— Deep Sparse Rectifier Neural Networks, 2011.

Stephen Merity, et al. from Salesforce Research used L2 activation regularization with
LSTMs on outputs and recurrent outputs for natural language process in conjunction with
dropout regularization. They tested a suite of different activation regularization coefficient
values on a range of language modeling problems.

While simple to implement, activity regularization and temporal activity regulariza-
tion are competitive with other far more complex regularization techniques and offer
equivalent or better results.

— Revisiting Activation Regularization for Language RNNs, 2017.

14.1.5 Tips for Using Activation Regularization

This section provides some tips for using activation regularization with your neural network.

Use With All Network Types

Activation regularization is a generic approach. It can be used with most, perhaps all, types of
neural network models, not least the most common network types of Multilayer Perceptrons,
Convolutional Neural Networks, and Long Short-Term Memory Recurrent Neural Networks.

Use With Autoencoders and Encoder-Decoders

Activity regularization may be best suited to those model types that explicitly seek an efficient
learned representation. These include models such as autoencoders (i.e. sparse autoencoders)
and encoder-decoder models, such as encoder-decoder LSTMs used for sequence-to-sequence
prediction problems.

14.2. Activity Regularization Keras API 276

Experiment With Different Norms

The most common activation regularization is the L1 norm as it encourages sparsity. Experiment
with other types of regularization such as the L2 norm or using both the L1 and L2 norms at
the same time, e.g. like the Elastic Net linear regression algorithm.

Use Rectified Linear Activation

The rectified linear activation function, also called relu, is an activation function that is now
widely used in the hidden layer of deep neural networks. Unlike classical activation functions such
as tanh (hyperbolic tangent function) and sigmoid (logistic function), the relu function allows
exact zero values easily. This makes it a good candidate when learning sparse representations,
such as with the L1 vector norm activation regularization.

Grid Search Parameters

It is common to use small values for the regularization hyperparameter that controls the
contribution of each activation to the penalty. Perhaps start by testing values on a log scale,
such as 0.1, 0.001, and 0.0001. Then use a grid search at the order of magnitude that shows the
most promise.

Standardize Input Data

It is a generally good practice to rescale input variables to have the same scale. When input
variables have different scales, the scale of the weights of the network will, in turn, vary
accordingly. Large weights can saturate the nonlinear transfer function and reduce the variance
in the output from the layer. This may introduce a problem when using activation regularization.
This problem can be addressed by either normalizing or standardizing input variables.

Use an Overcomplete Representation

Configure the layer chosen to be the learned features, e.g. the output of the encoder or the
bottleneck in the autoencoder, to have more nodes that may be required. This is called an
overcomplete representation that will encourage the network to overfit the training examples.
This can be countered with a strong activation regularization in order to encourage a rich
learned representation that is also sparse.

14.2 Activity Regularization Keras API

This section demonstrates how to use activity regularization techniques with the Keras API.

14.2.1 Activity Regularization in Keras

Keras supports activity regularization. There are three different regularization techniques
supported, each provided as a class in the keras.regularizers module:

� l1: Activity is calculated as the sum of absolute values.

14.2. Activity Regularization Keras API 277

� l2: Activity is calculated as the sum of the squared values.

� l1 l2: Activity is calculated as the sum of absolute and sum of the squared values.

Each of the l1 and l2 regularizers takes a single hyperparameter that controls the amount
that each activity contributes to the sum. The l1 l2 regularizer takes two hyperparameters,
one for each of the l1 and l2 methods. The regularizer class must be imported and then
instantiated; for example:

import regularizer

from keras.regularizers import l1

instantiate regularizer

reg = l1(0.001)

Listing 14.1: Example of creating an L1 regularizer.

14.2.2 Activity Regularization on Layers

Activity regularization is specified on a layer in Keras. This can be achieved by setting the
activity regularizer argument on the layer to an instantiated and configured regularizer
class. The regularizer is applied to the output of the layer, but you have control over what
the output of the layer actually means. Specifically, you have flexibility as to whether the
layer output means that the regularization is applied before or after the activation function.
For example, you can specify the function and the regularization on the layer, in which case
activation regularization is applied to the output of the activation function, in this case, relu.

...

model.add(Dense(32, activation='relu', activity_regularizer=l1(0.001)))

...

Listing 14.2: Example of activity regularization after activation.

Alternately, you can specify a linear activation function (the default, that does not perform
any transform) which means that the activation regularization is applied on the raw outputs,
then, the activation function can be added as a subsequent layer.

...

model.add(Dense(32, activation='linear', activity_regularizer=l1(0.001)))

model.add(Activation('relu'))

...

Listing 14.3: Example of activity regularization before activation.

The latter is probably the preferred usage of activation regularization as described in Deep
Sparse Rectifier Neural Networks in order to allow the model to learn to take activations to a
true zero value in conjunction with the rectified linear activation function. Nevertheless, the
two possible uses of activation regularization may be explored in order to discover what works
best for your specific model and dataset. Let’s take a look at how activity regularization can be
used with some common layer types.

14.3. Activity Regularization Case Study 278

MLP Activity Regularization

The example below sets l1 norm activity regularization on a Dense fully connected layer.

example of l1 norm on activity from a dense layer

from keras.layers import Dense

from keras.regularizers import l1

...

model.add(Dense(32, activity_regularizer=l1(0.001)))

...

Listing 14.4: Example of activity regularization for an MLP.

CNN Activity Regularization

The example below sets l1 norm activity regularization on a Conv2D convolutional layer.

example of l1 norm on activity from a cnn layer

from keras.layers import Conv2D

from keras.regularizers import l1

...

model.add(Conv2D(32, (3,3), activity_regularizer=l1(0.001)))

...

Listing 14.5: Example of activity regularization for a CNN.

RNN Activity Regularization

The example below sets l1 norm activity regularization on an LSTM recurrent layer.

example of l1 norm on activity from an lstm layer

from keras.layers import LSTM

from keras.regularizers import l1

...

model.add(LSTM(32, activity_regularizer=l1(0.001)))

...

Listing 14.6: Example of activity regularization for an LSTM.

Now that we know how to use the activity regularization API, let’s look at a worked example.

14.3 Activity Regularization Case Study

In this section, we will demonstrate how to use activity regularization to reduce overfitting of
an MLP on a simple binary classification problem. Although activity regularization is most
often used to encourage sparse learned representations in autoencoder and encoder-decoder
models, it can also be used directly within normal neural networks to achieve the same effect
and improve the generalization of the model. This example provides a template for applying
activity regularization to your own neural network for classification and regression problems.

14.3. Activity Regularization Case Study 279

14.3.1 Binary Classification Problem

We will use a standard binary classification problem that defines two two-dimensional concentric
circles of observations, one circle for each class. Each observation has two input variables with
the same scale and a class output value of either 0 or 1. This dataset is called the circles
dataset because of the shape of the observations in each class when plotted. We can use the
make circles() function to generate observations from this problem. We will add noise to the
data and seed the random number generator so that the same samples are generated each time
the code is run.

generate 2d classification dataset

X, y = make_circles(n_samples=100, noise=0.1, random_state=1)

Listing 14.7: Example of creating samples for the two circles problem.

We can plot the dataset where the two variables are taken as x and y coordinates on a graph
and the class value is taken as the color of the observation. The complete example of generating
the dataset and plotting it is listed below.

scatter plot of circles dataset

from sklearn.datasets import make_circles

from matplotlib import pyplot

from numpy import where

generate 2d classification dataset

X, y = make_circles(n_samples=100, noise=0.1, random_state=1)

scatter plot for each class value

for class_value in range(2):

select indices of points with the class label

row_ix = where(y == class_value)

scatter plot for points with a different color

pyplot.scatter(X[row_ix, 0], X[row_ix, 1])

show plot

pyplot.show()

Listing 14.8: Example of plotting samples from the two circles problem.

Running the example creates a scatter plot showing the concentric circles shape of the
observations in each class. We can see the noise in the dispersal of the points making the circles
less obvious.

14.3. Activity Regularization Case Study 280

Figure 14.1: Scatter Plot of Circles Dataset with Color Showing the Class Value of Each Sample.

This is a good test problem because the classes cannot be separated by a line, e.g. are not
linearly separable, requiring a nonlinear method such as a neural network to address. We have
only generated 100 samples, which is small for a neural network, providing the opportunity to
overfit the training dataset and have higher error on the test dataset: a good case for using
regularization. Further, the samples have noise, giving the model an opportunity to learn aspects
of the samples that don’t generalize.

14.3.2 Overfit Multilayer Perceptron

We can develop an MLP model to address this binary classification problem. The model will
have one hidden layer with more nodes that may be required to solve this problem, providing
an opportunity to overfit. We will also train the model for longer than is required to ensure the
model overfits. Before we define the model, we will split the dataset into train and test sets,
using 30 examples to train the model and 70 to evaluate the fit model’s performance.

generate 2d classification dataset

X, y = make_circles(n_samples=100, noise=0.1, random_state=1)

split into train and test

n_train = 30

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

14.3. Activity Regularization Case Study 281

Listing 14.9: Example of preparing the data for modeling.

Next, we can define the model. The hidden layer uses 500 nodes and the rectified linear
activation function. A sigmoid activation function is used in the output layer in order to predict
class values of 0 or 1. The model is optimized using the binary cross-entropy loss function,
suitable for binary classification problems and the efficient Adam version of gradient descent.

define model

model = Sequential()

model.add(Dense(500, input_dim=2, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

Listing 14.10: Example of defining the MLP model.

The defined model is then fit on the training data for 4,000 epochs and the default batch
size of 32. We will also use the test dataset as a validation dataset.

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=4000, verbose=0)

Listing 14.11: Example of fitting the MLP model.

We can evaluate the performance of the model on the test dataset and report the result.

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

Listing 14.12: Example of evaluating the MLP model.

Finally, we will plot the performance of the model on both the train and test set each
epoch. If the model does indeed overfit the training dataset, we would expect the line plot
of cross-entropy loss and classification accuracy to show the pattern of overfitting. That is
improvement on both train and test sets until an inflection point after which performance
continues to improve for the train set and begins to get worse for the test set.

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 14.13: Example of plotting learning curves for the MLP model.

We can tie all of these pieces together, the complete example is listed below.

14.3. Activity Regularization Case Study 282

mlp overfit on the two circles dataset

from sklearn.datasets import make_circles

from keras.layers import Dense

from keras.models import Sequential

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_circles(n_samples=100, noise=0.1, random_state=1)

split into train and test

n_train = 30

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(500, input_dim=2, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=4000, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 14.14: Example of an overfit MLP on the two circles problem.

Running the example reports the model performance on the train and test datasets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

We can see that the model has better performance on the training dataset than the test
dataset, one possible sign of overfitting.

Train: 1.000, Test: 0.757

Listing 14.15: Example output from the overfit MLP on the two circles problem.

A figure is created showing line plots of the model loss and accuracy on the train and test
sets. We can see the expected shape of an overfit model where test accuracy increases to a point
and then begins to decrease again. The effect is even more dramatic with loss, showing a large
increase in test set loss as training continues.

14.3. Activity Regularization Case Study 283

Figure 14.2: Line Plots of Accuracy on Train and Test Datasets While Training Showing an
Overfit.

14.3.3 Overfit MLP With Activation Regularization

We can update the example to use activation regularization. There are a few different regular-
ization methods to choose from, but it is probably a good idea to use the most common, which
is the L1 vector norm. This regularization has the effect of encouraging a sparse representation
(lots of zeros), which is supported by the rectified linear activation function that permits true
zero values. We can do this by using the keras.regularizers.l1 class in Keras.

We will configure the layer to use the linear activation function so that we can regularize the
raw outputs, then add a relu activation layer after the regularized outputs of the layer. We will
set the regularization hyperparameter to 1E-4 or 0.0001, found with a little trial and error.

model.add(Dense(500, input_dim=2, activation='linear', activity_regularizer=l1(0.0001)))

model.add(Activation('relu'))

Listing 14.16: Example of adding activity regularization before activation.

The complete updated example with the L1 norm constraint is listed below:

mlp overfit on the two circles dataset with activation regularization before activation

from sklearn.datasets import make_circles

from keras.layers import Dense

from keras.models import Sequential

14.3. Activity Regularization Case Study 284

from keras.regularizers import l1

from keras.layers import Activation

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_circles(n_samples=100, noise=0.1, random_state=1)

split into train and test

n_train = 30

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(500, input_dim=2, activation='linear', activity_regularizer=l1(0.0001)))

model.add(Activation('relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=4000, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 14.17: Example of an MLP with activity regularization before activation on the two
circles problem.

Running the example reports the model performance on the train and test datasets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that activity regularization resulted in a slight drop in accuracy on
the training dataset down from 100% to 96% and a lift in accuracy on the test set up from 78%
to 81%.

Train: 0.967, Test: 0.814

Listing 14.18: Example output from an MLP with activity regularization before activation on
the two circles problem.

Reviewing the line plot of train and test accuracy, we can see that it no longer appears that
the model has overfit the training dataset, at least not as strongly. Model accuracy on both the
train and test sets continues to increase to a plateau.

14.3. Activity Regularization Case Study 285

Figure 14.3: Line Plots of Accuracy on Train and Test Datasets While Training With Activity
Regularization.

For completeness, we can compare results to a version of the model where activity regular-
ization is applied after the relu activation function.

model.add(Dense(500, input_dim=2, activation='relu', activity_regularizer=l1(0.0001)))

Listing 14.19: Example of adding activity regularization after activation.

The complete example is listed below.

mlp overfit on the two circles dataset with activation regularization after activation

from sklearn.datasets import make_circles

from keras.layers import Dense

from keras.models import Sequential

from keras.regularizers import l1

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_circles(n_samples=100, noise=0.1, random_state=1)

split into train and test

n_train = 30

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

14.3. Activity Regularization Case Study 286

model.add(Dense(500, input_dim=2, activation='relu', activity_regularizer=l1(0.0001)))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=4000, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 14.20: Example of an MLP with activity regularization after activation on the two circles
problem.

Running the example reports the model performance on the train and test datasets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that, at least on this problem and with this model, activation
regularization after the activation function did not improve generalization error; in fact, it made
it worse.

Train: 1.000, Test: 0.757

Listing 14.21: Example output from an MLP with activity regularization after activation on the
two circles problem.

Reviewing the line plot of train and test accuracy, we can see that indeed the model still
shows the signs of having overfit the training dataset.

14.4. Extensions 287

Figure 14.4: Line Plots of Accuracy on Train and Test Datasets While Training With Activity
Regularization, Still Overfit.

This suggests that it may be worth experimenting with both approaches for implementing
activity regularization with your own dataset, to confirm that you are getting the most out of
the method.

14.4 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Report Activation Mean. Update the example to calculate the mean activation of the
regularized layer and confirm that indeed the activations have been made more sparse.

� Grid Search. Update the example to grid search different values for the regularization
hyperparameter.

� Alternate Norm. Update the example to evaluate the L2 or L1 and L2 vector norm for
regularizing the hidden layer outputs.

� Repeated Evaluation. Update the example to fit and evaluate the model multiple times
and report the mean and standard deviation of model performance.

If you explore any of these extensions, I’d love to know.

14.5. Further Reading 288

14.5 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

14.5.1 Books

� Section 7.10 Sparse Representations, Deep Learning, 2016.
https://amzn.to/2NJW3gE

14.5.2 Papers

� Deep Sparse Rectifier Neural Networks, 2011.
http://proceedings.mlr.press/v15/glorot11a.html

� Sparse Feature Learning for Deep Belief Networks, 2007.
http://papers.nips.cc/paper/3363-sparse-feature-learning-for-deep-belief-networks

� Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recog-
nition, 2007.
https://ieeexplore.ieee.org/document/4270182/

� Efficient sparse coding algorithms, 2007.
https://dl.acm.org/citation.cfm?id=2976557

� Measuring Invariances in Deep Networks, 2009.
https://papers.nips.cc/paper/3790-measuring-invariances-in-deep-networks

� Sparse deep belief net model for visual area V2, 2007.
https://papers.nips.cc/paper/3313-sparse-deep-belief-net-model-for-visual-area-v2

� Revisiting Activation Regularization for Language RNNs, 2017.
https://arxiv.org/abs/1708.01009

� Sparse Activity and Sparse Connectivity in Supervised Learning, 2013.
http://jmlr.org/papers/v14/thom13a.html

14.5.3 APIs

� Keras Regularizers API.
https://keras.io/regularizers/

� Keras Core Layers API.
https://keras.io/layers/core/

� Keras Convolutional Layers API.
https://keras.io/layers/convolutional/

� Keras Recurrent Layers API.
https://keras.io/layers/recurrent/

https://amzn.to/2NJW3gE
http://proceedings.mlr.press/v15/glorot11a.html
http://papers.nips.cc/paper/3363-sparse-feature-learning-for-deep-belief-networks
https://ieeexplore.ieee.org/document/4270182/
https://dl.acm.org/citation.cfm?id=2976557
https://papers.nips.cc/paper/3790-measuring-invariances-in-deep-networks
https://papers.nips.cc/paper/3313-sparse-deep-belief-net-model-for-visual-area-v2
https://arxiv.org/abs/1708.01009
http://jmlr.org/papers/v14/thom13a.html
https://keras.io/regularizers/
https://keras.io/layers/core/
https://keras.io/layers/convolutional/
https://keras.io/layers/recurrent/

14.6. Summary 289

� sklearn.datasets.make circles API.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.

html

14.5.4 Articles

� Sparse coding, Scholarpedia.
http://www.scholarpedia.org/article/Sparse_coding

� Sparse autoencoder, CS294A Lecture notes.
https://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf

14.6 Summary

In this tutorial, you discovered activation regularization as a technique to improve the general-
ization of learned features. Specifically, you learned:

� Neural networks learn features from data and models, such as autoencoders and encoder-
decoder models, and explicitly seek effective learned representations.

� Similar to weights, large values in learned features, e.g. large activations, may indicate an
overfit model.

� The addition of penalties to the loss function that penalize a model in proportion to the
magnitude of the activations may result in more robust and generalized learned features.

14.6.1 Next

In the next tutorial, you will discover how to update the model and add a constraint that
ensures that model weights are kept small during training.

http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
http://www.scholarpedia.org/article/Sparse_coding
https://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf

Chapter 15

Force Small Weights with Weight
Constraints

Weight regularization methods like weight decay introduce a penalty to the loss function when
training a neural network to encourage the network to use small weights. Smaller weights in a
neural network can result in a model that is more stable and less likely to overfit the training
dataset, in turn having better performance when making a prediction on new data. Unlike
weight regularization, a weight constraint is a trigger that checks the size or magnitude of the
weights and scales them so that they are all below a pre-defined threshold. The constraint
forces weights to be small and can be used instead of weight decay and in conjunction with
more aggressive network configurations, such as very large learning rates. In this tutorial, you
will discover the use of weight constraint regularization as an alternative to weight penalties to
reduce overfitting in deep neural networks.

After reading this tutorial, you will know:

� Weight penalties encourage but do not require neural networks to have small weights.

� Weight constraints, such as the L2 norm and maximum norm, can be used to force neural
networks to have small weights during training.

� Weight constraints can improve generalization when used in conjunction with other
regularization methods like dropout.

Let’s get started.

15.1 Weight Constraints

In this section you will discover the problem with neural networks that have large weighs, a
technique that you can use to force the development of models with small weights called weight
constraints and tips for using this technique in your own projects.

15.1.1 Alternative to Penalties for Large Weights

Large weights in a neural network are a sign of overfitting. A network with large weights has
very likely learned the statistical noise in the training data. This results in a model that is

290

15.1. Weight Constraints 291

unstable, and very sensitive to changes to the input variables. In turn, the overfit network
has poor performance when making predictions on new unseen data. A popular and effective
technique to address the problem is to update the loss function that is optimized during training
to take the size of the weights into account.

This is called a penalty, as the larger the weights of the network become, the more the
network is penalized, resulting in larger loss and, in turn, larger updates. The effect is that
the penalty encourages weights to be small, or no larger than is required during the training
process, in turn reducing overfitting. A problem in using a penalty is that although it does
encourage the network toward smaller weights, it does not force smaller weights. A neural
network trained with weight regularization penalty may still allow large weights, in some cases
very large weights.

15.1.2 Force Small Weights

An alternate solution to using a penalty for the size of network weights is to use a weight
constraint. A weight constraint is an update to the network that checks the size of the weights
(e.g. their vector norm), and if the size exceeds a predefined limit, the weights are rescaled so
that their size is below the limit or between a range. You can think of a weight constraint as an
if-then rule checking the size of the weights while the network is being trained and only coming
into effect and making weights small when required. Note, for efficiency, it does not have to be
implemented as an if-then rule and often is not.

Unlike adding a penalty to the loss function, a weight constraint ensures the weights of
the network are small, instead of merely encouraging them to be small. It can be useful
on those problems or with networks that resist other regularization methods, such as weight
penalties. Weight constraints prove especially useful when you have configured your network to
use alternative regularization methods to weight regularization and yet still desire the network
to have small weights in order to reduce overfitting. One often-cited example is the use of a
weight constraint regularization with dropout regularization.

Although dropout alone gives significant improvements, using dropout along with
[weight constraint] regularization, [...] provides a significant boost over just using
dropout.

— Dropout: A Simple Way to Prevent Neural Networks from Overfitting, 2014.

15.1.3 How to Use a Weight Constraint

A constraint is enforced on each node within a layer. All nodes within the layer use the same
constraint, and often multiple hidden layers within the same network will use the same constraint.
Recall that when we talk about the vector norm in general, that this is the magnitude of the
vector of weights in a node, and by default is calculated as the L2 norm, e.g. the square root of
the sum of the squared values in the vector. Some examples of constraints that could be used
include:

� Force the vector norm to be 1.0 (e.g. the unit norm).

� Limit the maximum size of the vector norm (e.g. the maximum norm).

15.1. Weight Constraints 292

� Limit the minimum and maximum size of the vector norm (e.g. the min max norm).

The maximum norm, also called max-norm or maxnorm, is a popular constraint because it
is less aggressive than other norms such as the unit norm, simply setting an upper bound.

Max-norm regularization has been previously used [...] It typically improves the
performance of stochastic gradient descent training of deep neural nets ...

— Dropout: A Simple Way to Prevent Neural Networks from Overfitting, 2014.

When using a limit or a range, a hyperparameter must be specified. Given that weights are
small, the hyperparameter too is often a small integer value, such as a value between 1 and 4.

... we can use max-norm regularization. This constrains the norm of the vector of
incoming weights at each hidden unit to be bound by a constant c. Typical values
of c range from 3 to 4.

— Dropout: A Simple Way to Prevent Neural Networks from Overfitting, 2014.

If the norm exceeds the specified range or limit, the weights are rescaled or normalized such
that their magnitude is below the specified parameter or within the specified range.

If a weight-update violates this constraint, we renormalize the weights of the hidden
unit by division. Using a constraint rather than a penalty prevents weights from
growing very large no matter how large the proposed weight-update is.

— Improving neural networks by preventing co-adaptation of feature detectors, 2012.

The constraint can be applied after each update to the weights, e.g. at the end of each
minibatch.

15.1.4 Example Uses of Weight Constraints

This section provides a few cherry-picked examples from recent research papers where a weight
constraint was used. Geoffrey Hinton, et al. in their 2012 paper titled Improving neural networks
by preventing co-adaptation of feature detectors used a maxnorm constraint on CNN models
applied to the MNIST handwritten digit classification task and ImageNet photo classification
task.

All layers had L2 weight constraints on the incoming weights of each hidden unit.

Nitish Srivastava, et al. in their 2014 paper titled Dropout: A Simple Way to Prevent Neural
Networks from Overfitting used a maxnorm constraint with an MLP on the MNIST handwritten
digit classification task and with CNNs on the streetview house numbers dataset with the
parameter configured via a holdout validation set.

Max-norm regularization was used for weights in both convolutional and fully
connected layers.

Jan Chorowski, et al. in their 2015 paper titled Attention-Based Models for Speech Recognition
use LSTM and attention models for speech recognition with a max norm constraint set to 1.

We first trained our models with a column norm constraint with the maximum norm
1 ...

15.2. Weight Constraints Keras API 293

15.1.5 Tips for Using Weight Constraints

This section provides some tips for using weight constraints with your neural network.

Use With All Network Types

Weight constraints are a generic approach. They can be used with most, perhaps all, types of
neural network models, not least the most common network types of Multilayer Perceptrons,
Convolutional Neural Networks, and Long Short-Term Memory Recurrent Neural Networks. In
the case of LSTMs, it may be desirable to use different constraints or constraint configurations
for the input and recurrent connections.

Standardize Input Data

It is a good general practice to rescale input variables to have the same scale. When input
variables have different scales, the scale of the weights of the network will, in turn, vary
accordingly. This introduces a problem when using weight constraints because large weights
will cause the constraint to trigger more frequently. This problem can be done by either
normalization or standardization of input variables.

Use a Larger Learning Rate

The use of a weight constraint allows you to be more aggressive during the training of the
network. Specifically, a larger learning rate can be used, allowing the network to, in turn, make
larger updates to the weights each update. This is cited as an important benefit to using weight
constraints. Such as the use of a constraint in conjunction with dropout:

Using a constraint rather than a penalty prevents weights from growing very large no
matter how large the proposed weight-update is. This makes it possible to start with
a very large learning rate which decays during learning, thus allowing a far more
thorough search of the weight-space than methods that start with small weights and
use a small learning rate.

— Improving neural networks by preventing co-adaptation of feature detectors, 2012.

Try Other Constraints

Explore the use of other weight constraints, such as a minimum and maximum range, non-
negative weights, and more. You may also choose to use constraints on some weights and not
others, such as not using constraints on bias weights in an MLP or not using constraints on
recurrent connections in an LSTM.

15.2 Weight Constraints Keras API

This section demonstrates how to use weight constraints with the Keras API.

15.2. Weight Constraints Keras API 294

15.2.1 Weight Constraints in Keras

The Keras API supports weight constraints. The constraints are specified per-layer, but applied
and enforced per-node within the layer. Using a constraint generally involves setting the
kernel constraint argument on the layer for the input weights and the bias constraint for
the bias weights. Generally, weight constraints are not used on the bias weights. A suite of
different vector norms can be used as constraints, provided as classes in the keras.constraints
module. They are:

� Maximum norm (max norm), to force weights to have a magnitude at or below a given
limit.

� Non-negative norm (non neg), to force weights to have a positive magnitude.

� Unit norm (unit norm), to force weights to have a magnitude of 1.0.

� Min-Max norm (min max norm), to force weights to have a magnitude between a range.

For example, a constraint can imported and instantiated:

import norm

from keras.constraints import max_norm

instantiate norm

norm = max_norm(3.0)

Listing 15.1: Example of creating an max norm constraint.

15.2.2 Weight Constraints on Layers

The weight norms can be used with most layers in Keras. In this section, we will look at some
common examples.

MLP Weight Constraint

The example below sets a max norm weight constraint on a Dense fully connected layer.

example of max norm on a dense layer

from keras.layers import Dense

from keras.constraints import max_norm

...

model.add(Dense(32, kernel_constraint=max_norm(3), bias_constraint=max_norm(3)))

...

Listing 15.2: Example of adding a weight constraint to an MLP.

CNN Weight Constraint

The example below sets a max norm weight constraint on a Conv2D convolutional layer.

15.3. Weight Constraints Case Study 295

example of max norm on a cnn layer

from keras.layers import Conv2D

from keras.constraints import max_norm

...

model.add(Conv2D(32, (3,3), kernel_constraint=max_norm(3), bias_constraint=max_norm(3)))

...

Listing 15.3: Example of adding a weight constraint to a CNN.

RNN Weight Constraint

Unlike other layer types, recurrent neural networks allow you to set a weight constraint on
both the input weights and bias, as well as the recurrent input weights. The constraint for the
recurrent weights is set via the recurrent constraint argument to the layer. The example
below sets a maximum max norm constraint on a LSTM layer.

example of max norm on an lstm layer

from keras.layers import LSTM

from keras.constraints import max_norm

...

model.add(LSTM(32, kernel_constraint=max_norm(3), recurrent_constraint=max_norm(3),

bias_constraint=max_norm(3)))

...

Listing 15.4: Example of adding a weight constraint to an LSTM.

Now that we know how to use the weight constraint API, let’s look at a worked example.

15.3 Weight Constraints Case Study

In this section, we will demonstrate how to use weight constraints to reduce overfitting of an
MLP on a simple binary classification problem. This example provides a template for applying
weight constraints to your own neural network for classification and regression problems.

15.3.1 Binary Classification Problem

We will use a standard binary classification problem that defines two semi-circles of observations,
one semi-circle for each class. Each observation has two input variables with the same scale and
a class output value of either 0 or 1. This dataset is called the moons dataset because of the
shape of the observations in each class when plotted. We can use the make moons() function to
generate observations from this problem. We will add noise to the data and seed the random
number generator so that the same samples are generated each time the code is run.

generate 2d classification dataset

X, y = make_moons(n_samples=100, noise=0.2, random_state=1)

Listing 15.5: Example of creating samples for the two moons problem.

We can plot the dataset where the two variables are taken as x and y coordinates on a graph
and the class value is taken as the color of the observation. The complete example of generating
the dataset and plotting it is listed below.

15.3. Weight Constraints Case Study 296

scatter plot of moons dataset

from sklearn.datasets import make_moons

from matplotlib import pyplot

from numpy import where

generate 2d classification dataset

X, y = make_moons(n_samples=100, noise=0.2, random_state=1)

scatter plot for each class value

for class_value in range(2):

select indices of points with the class label

row_ix = where(y == class_value)

scatter plot for points with a different color

pyplot.scatter(X[row_ix, 0], X[row_ix, 1])

show plot

pyplot.show()

Listing 15.6: Example of plotting samples from the two moons problem.

Running the example creates a scatter plot showing the semi-circle or moon shape of the
observations in each class. We can see the noise in the dispersal of the points making the moons
less obvious.

Figure 15.1: Scatter Plot of Moons Dataset With Color Showing the Class Value of Each Sample.

This is a good test problem because the classes cannot be separated by a line, e.g. are not
linearly separable, requiring a nonlinear method such as a neural network to address. We have

15.3. Weight Constraints Case Study 297

only generated 100 samples, which is small for a neural network, providing the opportunity to
overfit the training dataset and have higher error on the test dataset: a good case for using
regularization. Further, the samples have noise, giving the model an opportunity to learn aspects
of the samples that don’t generalize.

15.3.2 Overfit Multilayer Perceptron

We can develop an MLP model to address this binary classification problem. The model will
have one hidden layer with more nodes than may be required to solve this problem, providing
an opportunity to overfit. We will also train the model for longer than is required to ensure the
model overfits. Before we define the model, we will split the dataset into train and test sets,
using 30 examples to train the model and 70 to evaluate the fit model’s performance.

generate 2d classification dataset

X, y = make_moons(n_samples=100, noise=0.2, random_state=1)

split into train and test

n_train = 30

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

Listing 15.7: Example of preparing data samples for modeling.

Next, we can define the model. The hidden layer uses 500 nodes in the hidden layer and the
rectified linear activation function. A sigmoid activation function is used in the output layer in
order to predict class values of 0 or 1. The model is optimized using the binary cross-entropy loss
function, suitable for binary classification problems and the efficient Adam version of gradient
descent.

define model

model = Sequential()

model.add(Dense(500, input_dim=2, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

Listing 15.8: Example of defining an MLP model.

The defined model is then fit on the training data for 4,000 epochs and the default batch
size of 32. We will also use the test dataset as a validation dataset.

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=4000, verbose=0)

Listing 15.9: Example of fitting an MLP model.

We can evaluate the performance of the model on the test dataset and report the result.

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

Listing 15.10: Example of evaluating an MLP model.

Finally, we will plot the performance of the model on both the train and test set each epoch.
If the model does indeed overfit the training dataset, we would expect the line plot of loss and

15.3. Weight Constraints Case Study 298

accuracy on the training set to continue to improve and the test set start to get worse once the
model learns statistical noise in the training dataset.

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 15.11: Example of plotting learning curves for an MLP model.

We can tie all of these pieces together; the complete example is listed below.

mlp overfit on the moons dataset

from sklearn.datasets import make_moons

from keras.layers import Dense

from keras.models import Sequential

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_moons(n_samples=100, noise=0.2, random_state=1)

split into train and test

n_train = 30

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(500, input_dim=2, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=4000, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

15.3. Weight Constraints Case Study 299

Listing 15.12: Example of an overfit MLP on the two moons problem.

Running the example reports the model performance on the train and test datasets. We can
see that the model has better performance on the training dataset than the test dataset, one
possible sign of overfitting.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

Train: 1.000, Test: 0.914

Listing 15.13: Example output from the overfit MLP on the two moons problem.

A figure is created showing line plots of the model loss and accuracy on the train and test
sets. We can see that expected shape of an overfit model where test accuracy increases to a
point and then begins to decrease again.

Figure 15.2: Line Plots of Accuracy on Train and Test Datasets While Training Showing an
Overfit.

15.3. Weight Constraints Case Study 300

15.3.3 Overfit MLP With Weight Constraint

We can update the example to use a weight constraint. There are a few different weight
constraints to choose from. A good simple constraint for this model is to simply normalize the
weights so that the norm is equal to 1.0. This constraint has the effect of forcing all incoming
weights to be small. We can do this by using the unit norm in Keras. This constraint can be
added to the first hidden layer as follows:

model.add(Dense(500, input_dim=2, activation='relu', kernel_constraint=unit_norm()))

Listing 15.14: Example of adding a unit norm weight constraint.

We can also achieve the same result by using the min max norm and setting the min and
maximum to 1.0, for example:

model.add(Dense(500, input_dim=2, activation='relu',

kernel_constraint=min_max_norm(min_value=1.0, max_value=1.0)))

Listing 15.15: Example of adding a min-max norm weight constraint.

We cannot achieve the same result with the maximum norm constraint as it will allow norms
at or below the specified limit; for example:

model.add(Dense(500, input_dim=2, activation='relu', kernel_constraint=max_norm(1.0)))

Listing 15.16: Example of adding a max norm weight constraint.

The complete updated example with the unit norm constraint is listed below:

mlp overfit on the moons dataset with a unit norm constraint

from sklearn.datasets import make_moons

from keras.layers import Dense

from keras.models import Sequential

from keras.constraints import unit_norm

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_moons(n_samples=100, noise=0.2, random_state=1)

split into train and test

n_train = 30

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(500, input_dim=2, activation='relu', kernel_constraint=unit_norm()))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=4000, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

15.3. Weight Constraints Case Study 301

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 15.17: Example of an MLP with a weight constraint on the two moons problem.

Running the example reports the model performance on the train and test datasets. We can
see that indeed the strict constraint on the size of the weights has improved the performance of
the model on the holdout set without impacting performance on the training set.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

Train: 1.000, Test: 0.943

Listing 15.18: Example output from the MLP with a weight constraint on the two moons
problem.

Reviewing the line plot of train and test loss and accuracy, we can see that it no longer
appears that the model has overfit the training dataset. Model accuracy on both the train and
test sets continues to improve to a plateau.

15.4. Extensions 302

Figure 15.3: Line Plots of Accuracy on Train and Test Datasets While Training With Weight
Constraints.

15.4 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Report Weight Norm. Update the example to calculate the magnitude of the unit
weights and demonstrate that the constraint indeed made the magnitude smaller.

� Constrain Output Layer. Update the example to add a constraint to the output layer
of the model and compare the results.

� Constrain Bias. Update the example to add a constraint to the bias weight and compare
the results.

� Repeated Evaluation. Update the example to fit and evaluate the model multiple times
and report the mean and standard deviation of model performance.

If you explore any of these extensions, I’d love to know.

15.5. Further Reading 303

15.5 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

15.5.1 Books

� Section 7.2: Norm Penalties as Constrained Optimization, Deep Learning, 2016.
https://amzn.to/2NJW3gE

15.5.2 Papers

� Dropout: A Simple Way to Prevent Neural Networks from Overfitting, 2014.
http://jmlr.org/papers/v15/srivastava14a.html

� Rank, Trace-Norm and Max-Norm, 2005.
https://link.springer.com/chapter/10.1007/11503415_37

� Improving neural networks by preventing co-adaptation of feature detectors, 2012.
https://arxiv.org/abs/1207.0580

15.5.3 APIs

� Keras Constraints API.
https://keras.io/constraints/

� Keras constraints.py.
https://github.com/keras-team/keras/blob/master/keras/constraints.py

� Keras Core Layers API.
https://keras.io/layers/core/

� Keras Convolutional Layers API.
https://keras.io/layers/convolutional/

� Keras Recurrent Layers API.
https://keras.io/layers/recurrent/

� sklearn.datasets.make moons API.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.

html

15.5.4 Articles

� Norm (mathematics), Wikipedia.
https://en.wikipedia.org/wiki/Norm_(mathematics)

� Regularization, Neural Networks Part 2: Setting up the Data and the Loss, CS231n
Convolutional Neural Networks for Visual Recognition.
http://cs231n.github.io/neural-networks-2/#reg

https://amzn.to/2NJW3gE
http://jmlr.org/papers/v15/srivastava14a.html
https://link.springer.com/chapter/10.1007/11503415_37
https://arxiv.org/abs/1207.0580
https://keras.io/constraints/
https://github.com/keras-team/keras/blob/master/keras/constraints.py
https://keras.io/layers/core/
https://keras.io/layers/convolutional/
https://keras.io/layers/recurrent/
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
https://en.wikipedia.org/wiki/Norm_(mathematics)
http://cs231n.github.io/neural-networks-2/#reg

15.6. Summary 304

15.6 Summary

In this tutorial, you discovered the use of weight constraint regularization as an alternative to
weight penalties to reduce overfitting in deep neural networks. Specifically, you learned:

� Weight penalties encourage but do not require neural networks to have small weights.

� Weight constraints such as the L2 norm and maximum norm can be used to force neural
networks to have small weights during training.

� Weight constraints can improve generalization when used in conjunction with other
regularization methods, like dropout.

15.6.1 Next

In the next tutorial, you will discover dropout regularization that can decouple the layers in
your neural network model.

Chapter 16

Decouple Layers with Dropout

Deep learning neural networks are likely to quickly overfit a training dataset with few examples.
Ensembles of neural networks with different model configurations are known to reduce overfitting,
but require the additional computational expense of training and maintaining multiple models.
A single model can be used to simulate having a large number of different network architectures
by randomly dropping out nodes during training. This is called dropout and offers a very
computationally cheap and remarkably effective regularization method to reduce overfitting and
generalization error in deep neural networks of all kinds. In this tutorial, you will discover the
use of dropout regularization for reducing overfitting and improving the generalization of deep
neural networks. After reading this tutorial, you will know:

� Large weights in a neural network are a sign of a more complex network that has overfit
the training data.

� Probabilistically dropping out nodes in the network is a simple and effective regularization
method.

� A large network with more training epochs and the use of a weight constraint are suggested
when using dropout.

Let’s get started.

16.1 Dropout

In this section you will discover that you can simulate the development of a large ensemble of
neural network models in a single model called dropout, how you can use it to reduce overfitting,
and tips for using this technique on your own projects.

16.1.1 Problem With Overfitting

Large neural nets trained on relatively small datasets can overfit the training data. This has
the effect of the model learning the statistical noise in the training data, which results in poor
performance when the model is evaluated on new data, e.g. a test dataset. Generalization error
increases due to overfitting. One approach to reduce overfitting is to fit all possible different
neural networks on the same dataset and to average the predictions from each model. This is

305

16.1. Dropout 306

not feasible in practice, and can be approximated using a small collection of different models,
called an ensemble.

With unlimited computation, the best way to regularize a fixed-sized model is to
average the predictions of all possible settings of the parameters, weighting each
setting by its posterior probability given the training data.

— Dropout: A Simple Way to Prevent Neural Networks from Overfitting, 2014.

A problem even with the ensemble approximation is that it requires multiple models to be
fit and stored, which can be a challenge if the models are large, requiring days or weeks to train
and tune.

16.1.2 Randomly Drop Nodes

Dropout is a regularization method that approximates training a large number of neural networks
with different architectures in parallel. During training, some number of node outputs are
randomly ignored or dropped out. This has the effect of making the layer look-like and be
treated-like a layer with a different number of nodes and connectivity to the prior layer. In
effect, each update to a layer during training is performed with a different view of the configured
layer.

By dropping a unit out, we mean temporarily removing it from the network, along
with all its incoming and outgoing connections

— Dropout: A Simple Way to Prevent Neural Networks from Overfitting, 2014.

Dropout has the effect of making the training process noisy, forcing nodes within a layer
to probabilistically take on more or less responsibility for the inputs. This conceptualization
suggests that perhaps dropout breaks-up situations where network layers co-adapt to correct
mistakes from prior layers, in turn making the model more robust.

... units may change in a way that they fix up the mistakes of the other units. This
may lead to complex co-adaptations. This in turn leads to overfitting because these
co-adaptations do not generalize to unseen data. [...]

— Dropout: A Simple Way to Prevent Neural Networks from Overfitting, 2014.

Dropout simulates a sparse activation from a given layer, which interestingly, in turn,
encourages the network to actually learn a sparse representation as a side-effect. As such, it
may be used as an alternative to activity regularization for encouraging sparse representations
in autoencoder models.

We found that as a side-effect of doing dropout, the activations of the hidden units
become sparse, even when no sparsity inducing regularizers are present.

— Dropout: A Simple Way to Prevent Neural Networks from Overfitting, 2014.

Because the outputs of a layer under dropout are randomly subsampled, it has the effect of
reducing the capacity or thinning the network during training. As such, a wider network, e.g.
more nodes, may be required when using dropout.

16.1. Dropout 307

16.1.3 How to Dropout

Dropout is implemented per-layer in a neural network. It can be used with most types of layers,
such as dense fully connected layers, convolutional layers, and recurrent layers such as the long
short-term memory network layer. Dropout may be implemented on any or all hidden layers in
the network as well as the visible or input layer. It is not used on the output layer.

The term “dropout” refers to dropping out units (hidden and visible) in a neural
network.

— Dropout: A Simple Way to Prevent Neural Networks from Overfitting, 2014.

A new hyperparameter is introduced that specifies the probability at which outputs of the
layer are dropped out, or inversely, the probability at which outputs of the layer are retained.
The interpretation is an implementation detail that can differ from paper to code library. A
common value is a probability of 0.5 for retaining the output of each node in a hidden layer and
a value close to 1.0, such as 0.8, for retaining inputs from the visible layer.

In the simplest case, each unit is retained with a fixed probability p independent of
other units, where p can be chosen using a validation set or can simply be set at 0.5,
which seems to be close to optimal for a wide range of networks and tasks. For the
input units, however, the optimal probability of retention is usually closer to 1 than
to 0.5.

— Dropout: A Simple Way to Prevent Neural Networks from Overfitting, 2014.

Dropout is not used after training when making a prediction with the fit network. The
weights of the network will be larger than normal because of dropout. Therefore, before finalizing
the network, the weights are first scaled by the chosen dropout rate. The network can then be
used as per normal to make predictions.

If a unit is retained with probability p during training, the outgoing weights of that
unit are multiplied by p at test time

— Dropout: A Simple Way to Prevent Neural Networks from Overfitting, 2014.

The rescaling of the weights can be performed at training time instead, after each weight
update at the end of the minibatch. This is sometimes called inverse dropout and does not
require any modification of weights during training. Both the Keras and PyTorch deep learning
libraries implement dropout in this way.

At test time, we scale down the output by the dropout rate. [...] Note that this
process can be implemented by doing both operations at training time and leaving
the output unchanged at test time, which is often the way it’s implemented in
practice

— Page 109, Deep Learning With Python, 2017.

Dropout works well in practice, perhaps replacing the need for weight regularization (e.g.
weight decay) and activation regularization (e.g. representation sparsity).

16.1. Dropout 308

... dropout is more effective than other standard computationally inexpensive regular-
izers, such as weight decay, filter norm constraints and sparse activity regularization.
Dropout may also be combined with other forms of regularization to yield a further
improvement.

— Page 265, Deep Learning, 2016.

16.1.4 Examples of using Dropout

This section summarizes some examples where dropout was used in recent research papers to
provide a suggestion for how and where it may be used. Geoffrey Hinton, et al. in their 2012
paper that first introduced dropout titled Improving neural networks by preventing co-adaptation
of feature detectors used the method with a range of different neural networks on different
problem types achieving improved results, including handwritten digit recognition (MNIST),
photo classification (CIFAR-10), and speech recognition (TIMIT).

... we use the same dropout rates - 50% dropout for all hidden units and 20%
dropout for visible units

Nitish Srivastava, et al. in their 2014 journal paper introducing dropout titled Dropout:
A Simple Way to Prevent Neural Networks from Overfitting used dropout on a wide range of
computer vision, speech recognition, and text classification tasks and found that it consistently
improved performance on each problem.

We trained dropout neural networks for classification problems on data sets in
different domains. We found that dropout improved generalization performance on
all data sets compared to neural networks that did not use dropout.

On the computer vision problems, different dropout rates were used down through the layers
of the network in conjunction with a max-norm weight constraint.

Dropout was applied to all the layers of the network with the probability of retaining
the unit being p = (0.9, 0.75, 0.75, 0.5, 0.5, 0.5) for the different layers of the network
(going from input to convolutional layers to fully connected layers). In addition, the
max-norm constraint with c = 4 was used for all the weights.

A simpler configuration was used for the text classification task.

We used probability of retention p = 0.8 in the input layers and 0.5 in the hidden
layers. Max-norm constraint with c = 4 was used in all the layers.

Alex Krizhevsky, et al. in their famous 2012 paper titled ImageNet Classification with
Deep Convolutional Neural Networks achieved (at the time) state-of-the-art results for photo
classification on the ImageNet dataset with deep convolutional neural networks and dropout
regularization.

We use dropout in the first two fully-connected layers [of the model]. Without
dropout, our network exhibits substantial overfitting. Dropout roughly doubles the
number of iterations required to converge.

16.1. Dropout 309

George Dahl, et al. in their 2013 paper titled Improving deep neural networks for LVCSR
using rectified linear units and dropout used a deep neural network with rectified linear activation
functions and dropout to achieve (at the time) state-of-the-art results on a standard speech
recognition task. They used a Bayesian optimization procedure to configure the choice of
activation function and the amount of dropout.

... the Bayesian optimization procedure learned that dropout wasn’t helpful for
sigmoid nets of the sizes we trained. In general, ReLUs and dropout seem to work
quite well together.

16.1.5 Tips for Using Dropout Regularization

This section provides some tips for using dropout regularization with your neural network.

Use With All Network Types

Dropout regularization is a generic approach. It can be used with most, perhaps all, types of
neural network models, not least the most common network types of Multilayer Perceptrons,
Convolutional Neural Networks, and Long Short-Term Memory Recurrent Neural Networks. In
the case of LSTMs, it may be desirable to use different dropout rates for the input and recurrent
connections.

Dropout Rate

The default interpretation of the dropout hyperparameter is the probability of training a given
node in a layer, where 1.0 means no dropout, and 0.0 means no outputs from the layer. A good
value for dropout in a hidden layer is between 0.5 and 0.8. Input layers use a larger dropout
(retention) rate, such as of 0.8.

Use a Larger Network

It is common for larger networks (more layers or more nodes) to more easily overfit the training
data. When using dropout regularization, it is possible to use larger networks with less risk of
overfitting. In fact, a large network (more nodes per layer) may be required as dropout will
probabilistically reduce the capacity of the network. A good rule of thumb is to divide the
number of nodes in the layer before dropout by the proposed dropout rate and use that as the
number of nodes in the new network that uses dropout. For example, a network with 100 nodes
and a proposed dropout rate of 0.5 will require 200 nodes (100

0.5
) when using dropout.

If n is the number of hidden units in any layer and p is the probability of retaining
a unit [...] a good dropout net should have at least n

p
units

— Dropout: A Simple Way to Prevent Neural Networks from Overfitting, 2014.

16.2. Dropout Keras API 310

Grid Search Parameters

Rather than guess at a suitable dropout rate for your network, test different rates systematically.
For example, test values between 1.0 and 0.1 in increments of 0.1. This will both help you
discover what works best for your specific model and dataset, as well as how sensitive the model
is to the dropout rate. A more sensitive model may be unstable and could benefit from an
increase in size.

Use a Weight Constraint

Network weights will increase in size in response to the probabilistic removal of layer activations.
Large weight size can be a sign of an unstable network. To counter this effect a weight constraint
can be imposed to force the norm (magnitude) of all weights in a layer to be below a specified
value. For example, the maximum norm constraint is recommended with a value between 3 and
4.

... we can use max-norm regularization. This constrains the norm of the vector of
incoming weights at each hidden unit to be bound by a constant c. Typical values
of c range from 3 to 4.

— Dropout: A Simple Way to Prevent Neural Networks from Overfitting, 2014.

This does introduce an additional hyperparameter that may require tuning for the model.

Use With Smaller Datasets

Like other regularization methods, dropout is more effective on those problems where there is a
limited amount of training data and the model is likely to overfit the training data. Problems
where there is a large amount of training data may see less benefit from using dropout.

For very large datasets, regularization confers little reduction in generalization error.
In these cases, the computational cost of using dropout and larger models may
outweigh the benefit of regularization.

— Page 265, Deep Learning, 2016.

16.2 Dropout Keras API

This section demonstrates how to use dropout with the Keras API.

16.2.1 Dropout in Keras

Keras supports dropout regularization. The simplest form of dropout in Keras is provided
by a Dropout core layer. When created, the dropout rate can be specified to the layer as the
probability of setting each input to the layer to zero. This is different from the definition of
dropout rate from the papers, in which the rate refers to the probability of retaining an input.
Therefore, when a dropout rate of 0.8 is suggested in a paper (retain 80%), this will, in fact, will
be a dropout rate of 0.2 (set 20% of inputs to zero). Below is an example of creating a dropout
layer with a 50% chance of setting inputs to zero.

16.2. Dropout Keras API 311

layer = Dropout(0.5)

Listing 16.1: Example of creating a Dropout layer.

16.2.2 Dropout on Layers

The Dropout layer is added to a model between existing layers and applies to outputs of the
prior layer that are fed to the subsequent layer. For example, given two dense layers:

...

model.append(Dense(32))

model.append(Dense(32))

...

Listing 16.2: Example of two Dense hidden layers.

We can insert a dropout layer between them, in which case the outputs or activations of the
first layer have dropout applied to them, which are then taken as input to the next layer.

...

model.append(Dense(32))

model.append(Dropout(0.5))

model.append(Dense(32))

...

Listing 16.3: Example of a Dropout layer between two Dense hidden layers.

Dropout can also be applied to the visible layer, e.g. the inputs to the network. This requires
that you define the network with the Dropout layer as the first layer and add the input shape

argument to the layer to specify the expected shape of the input samples.

...

model.add(Dropout(0.5, input_shape=(2,)))

...

Listing 16.4: Example of a Dropout input layer.

Let’s take a look at how dropout regularization can be used with some common network
types.

MLP Dropout Regularization

The example below adds dropout between two Dense fully connected layers.

example of dropout between fully connected layers

from keras.layers import Dense

from keras.layers import Dropout

...

model.add(Dense(32))

model.add(Dropout(0.5))

model.add(Dense(1))

...

Listing 16.5: Example of Dropout for an MLP.

16.2. Dropout Keras API 312

CNN Dropout Regularization

Dropout can be used after convolutional layers (e.g. Conv2D) and after pooling layers (e.g.
MaxPooling2D). Often, dropout is only used after the pooling layers, but this is just a rough
heuristic.

example of dropout for a CNN

from keras.layers import Dense

from keras.layers import Conv2D

from keras.layers import MaxPooling2D

from keras.layers import Dropout

...

model.add(Conv2D(32, (3,3)))

model.add(Conv2D(32, (3,3)))

model.add(MaxPooling2D())

model.add(Dropout(0.5))

model.add(Dense(1))

...

Listing 16.6: Example of Dropout for a CNN.

In this case, dropout is applied to each element or cell within the feature maps. An alternative
way to use dropout with convolutional neural networks is to dropout entire feature maps from
the convolutional layer which are then not used during pooling. This is called spatial dropout
(or Spatial Dropout).

Instead we formulate a new dropout method which we call SpatialDropout. For a
given convolution feature tensor [...] [we] extend the dropout value across the entire
feature map.

— Efficient Object Localization Using Convolutional Networks, 2015.

Spatial Dropout is provided in Keras via the SpatialDropout2D layer (as well as 1D and
3D versions).

example of spatial dropout for a CNN

from keras.layers import Dense

from keras.layers import Conv2D

from keras.layers import MaxPooling2D

from keras.layers import SpatialDropout2D

...

model.add(Conv2D(32, (3,3)))

model.add(Conv2D(32, (3,3)))

model.add(SpatialDropout2D(0.5))

model.add(MaxPooling2D())

model.add(Dense(1))

...

Listing 16.7: Example of Spatial Dropout for a CNN.

RNN Dropout Regularization

The example below adds dropout between two layers: an LSTM recurrent layer and a Dense fully
connected layers.

16.2. Dropout Keras API 313

example of dropout between LSTM and fully connected layers

from keras.layers import Dense

from keras.layers import LSTM

from keras.layers import Dropout

...

model.add(LSTM(32))

model.add(Dropout(0.5))

model.add(Dense(1))

...

Listing 16.8: Example of Dropout for an LSTM.

This example applies dropout to, in this case, 32 outputs from the LSTM layer provided as
input to the Dense layer. Alternately, the inputs to the LSTM layer may be subjected to dropout.
In this case, a different dropout mask is applied to each time step within each sample presented
to the LSTM.

example of dropout before LSTM layer

from keras.layers import Dense

from keras.layers import LSTM

from keras.layers import Dropout

...

model.add(Dropout(0.5, input_shape=(...)))

model.add(LSTM(32))

model.add(Dense(1))

...

Listing 16.9: Example of Dropout for input to an LSTM.

There is an alternative way to use dropout with recurrent layers like the LSTM. The same
dropout mask may be used by the LSTM for all inputs within a sample. The same approach
may be used for recurrent input connections across the time steps of the sample. This approach
to dropout with recurrent models is called a Variational RNN.

The proposed technique (Variational RNN [...]) uses the same dropout mask at
each time step, including the recurrent layers. [...] Implementing our approximate
inference is identical to implementing dropout in RNNs with the same network
units dropped at each time step, randomly dropping inputs, outputs, and recurrent
connections. This is in contrast to existing techniques, where different network units
would be dropped at different time steps, and no dropout would be applied to the
recurrent connections

— A Theoretically Grounded Application of Dropout in Recurrent Neural Networks, 2016.

Keras supports Variational RNNs (i.e. consistent dropout across the time steps of a sample
for inputs and recurrent inputs) via two arguments on the recurrent layers, namely dropout for
inputs and recurrent dropout for recurrent inputs.

example of variational LSTM dropout

from keras.layers import Dense

from keras.layers import LSTM

from keras.layers import Dropout

...

16.3. Dropout Case Study 314

model.add(LSTM(32, dropout=0.5, recurrent_dropout=0.5))

model.add(Dense(1))

...

Listing 16.10: Example of Dropout for an LSTM over time.

16.3 Dropout Case Study

In this section, we will demonstrate how to use dropout regularization to reduce overfitting of an
MLP on a simple binary classification problem. This example provides a template for applying
dropout regularization to your own neural network for classification and regression problems.

16.3.1 Binary Classification Problem

We will use a standard binary classification problem that defines two two-dimensional concentric
circles of observations, one circle for each class. Each observation has two input variables with
the same scale and a class output value of either 0 or 1. This dataset is called the circles
dataset because of the shape of the observations in each class when plotted. We can use the
make circles() function to generate observations from this problem. We will add noise to the
data and seed the random number generator so that the same samples are generated each time
the code is run.

generate 2d classification dataset

X, y = make_circles(n_samples=100, noise=0.1, random_state=1)

Listing 16.11: Example of creating samples for the two circles problem.

We can plot the dataset where the two variables are taken as x and y coordinates on a graph
and the class value is taken as the color of the observation. The complete example of generating
the dataset and plotting it is listed below.

scatter plot of circles dataset

from sklearn.datasets import make_circles

from matplotlib import pyplot

from numpy import where

generate 2d classification dataset

X, y = make_circles(n_samples=100, noise=0.1, random_state=1)

scatter plot for each class value

for class_value in range(2):

select indices of points with the class label

row_ix = where(y == class_value)

scatter plot for points with a different color

pyplot.scatter(X[row_ix, 0], X[row_ix, 1])

show plot

pyplot.show()

Listing 16.12: Example of plotting samples from the two circles problem.

Running the example creates a scatter plot showing the concentric circles shape of the
observations in each class. We can see the noise in the dispersal of the points making the circles
less obvious.

16.3. Dropout Case Study 315

Figure 16.1: Scatter Plot of Circles Dataset with Color Showing the Class Value of Each Sample.

This is a good test problem because the classes cannot be separated by a line, e.g. are not
linearly separable, requiring a nonlinear method such as a neural network to address. We have
only generated 100 samples, which is small for a neural network, providing the opportunity to
overfit the training dataset and have higher error on the test dataset: a good case for using
regularization. Further, the samples have noise, giving the model an opportunity to learn aspects
of the samples that don’t generalize.

16.3.2 Overfit Multilayer Perceptron

We can develop an MLP model to address this binary classification problem. The model will
have one hidden layer with more nodes than may be required to solve this problem, providing
an opportunity to overfit. We will also train the model for longer than is required to ensure the
model overfits. Before we define the model, we will split the dataset into train and test sets,
using 30 examples to train the model and 70 to evaluate the fit model’s performance.

generate 2d classification dataset

X, y = make_circles(n_samples=100, noise=0.1, random_state=1)

split into train and test

n_train = 30

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

16.3. Dropout Case Study 316

Listing 16.13: Example of preparing the dataset for modeling.

Next, we can define the model. The hidden layer uses 500 nodes in the hidden layer and the
rectified linear activation function. A sigmoid activation function is used in the output layer in
order to predict class values of 0 or 1. The model is optimized using the binary cross-entropy loss
function, suitable for binary classification problems and the efficient Adam version of gradient
descent.

define model

model = Sequential()

model.add(Dense(500, input_dim=2, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

Listing 16.14: Example of defining an MLP model.

The defined model is then fit on the training data for 4,000 epochs and the default batch
size of 32. We will also use the test dataset as a validation dataset.

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=4000, verbose=0)

Listing 16.15: Example of fitting MLP model.

We can evaluate the performance of the model on the test dataset and report the result.

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

Listing 16.16: Example of evaluating fit MLP model.

Finally, we will plot the performance of the model on both the train and test set each epoch.
If the model does indeed overfit the training dataset, we would expect the line plot of accuracy
on the training set to continue to increase and the test set to rise and then fall again as the
model learns statistical noise in the training dataset.

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 16.17: Example of plotting MLP model performance.

We can tie all of these pieces together; the complete example is listed below.

16.3. Dropout Case Study 317

mlp overfit on the two circles dataset

from sklearn.datasets import make_circles

from keras.layers import Dense

from keras.models import Sequential

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_circles(n_samples=100, noise=0.1, random_state=1)

split into train and test

n_train = 30

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(500, input_dim=2, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=4000, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 16.18: Example of MLP fit on the two circles problem.

Running the example reports the model performance on the train and test datasets. We can
see that the model has better performance on the training dataset than the test dataset, one
possible sign of overfitting.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

Train: 1.000, Test: 0.771

Listing 16.19: Example output fitting an MLP on the two circles problem.

A figure is created showing line plots of the model performance on the train and test sets.
We can see that expected shape of an overfit model where test loss and accuracy improve to a
point and then begin get worse as training continues.

16.3. Dropout Case Study 318

Figure 16.2: Line Plots of Accuracy on Train and Test Datasets While Training Showing an
Overfit.

16.3.3 MLP With Dropout Regularization

We can update the example to use dropout regularization. We can do this by simply inserting a
new Dropout layer between the hidden layer and the output layer. In this case, we will specify
a dropout rate (probability of setting outputs from the hidden layer to zero) to 40% or 0.4.

define model

model = Sequential()

model.add(Dense(500, input_dim=2, activation='relu'))

model.add(Dropout(0.4))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

Listing 16.20: Example of MLP with dropout.

The complete updated example with the addition of dropout after the hidden layer is listed
below:

mlp with dropout on the two circles dataset

from sklearn.datasets import make_circles

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Dropout

16.3. Dropout Case Study 319

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_circles(n_samples=100, noise=0.1, random_state=1)

split into train and test

n_train = 30

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(500, input_dim=2, activation='relu'))

model.add(Dropout(0.4))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=4000, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 16.21: Example of MLP with dropout fit on the two circles problem.

Running the example reports the model performance on the train and test datasets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this specific case, we can see that dropout resulted in a slight drop in accuracy on the
training dataset, down from 100% to 96%, and a lift in accuracy on the test set, up from 77%
to 81%.

Train: 0.967, Test: 0.814

Listing 16.22: Example output fitting an MLP with dropout on the two circles problem.

Reviewing the line plot of train and test accuracy during training, we can see that it no
longer appears that the model has overfit the training dataset. Model accuracy on both the
train and test sets continues to increase to a plateau, albeit with a lot of noise given the use of
dropout during training.

16.4. Extensions 320

Figure 16.3: Line Plots of Accuracy on Train and Test Datasets While Training With Dropout
Regularization.

16.4 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Input Dropout. Update the example to use dropout on the input variables and compare
results.

� Weight Constraint. Update the example to add a max-norm weight constraint to the
hidden layer and compare results.

� Repeated Evaluation. Update the example to repeat the evaluation of the overfit and
dropout model and summarize and compare the average results.

� Grid Search Rate. Develop a grid search of dropout probabilities and report the
relationship between dropout rate and test set accuracy.

If you explore any of these extensions, I’d love to know.

16.5. Further Reading 321

16.5 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

16.5.1 Books

� Section 7.12: Dropout, Deep Learning, 2016.
https://amzn.to/2NJW3gE

� Section 4.4.3: Adding dropout, Deep Learning With Python, 2017.
https://amzn.to/2wVqZDq

16.5.2 Papers

� Improving neural networks by preventing co-adaptation of feature detectors, 2012.
https://arxiv.org/abs/1207.0580

� Dropout: A Simple Way to Prevent Neural Networks from Overfitting, 2014.
http://jmlr.org/papers/v15/srivastava14a.html

� Improving deep neural networks for LVCSR using rectified linear units and dropout, 2013.
https://ieeexplore.ieee.org/document/6639346/

� Dropout Training as Adaptive Regularization, 2013.
https://arxiv.org/abs/1307.1493

� Efficient Object Localization Using Convolutional Networks, 2015.
https://arxiv.org/abs/1411.4280

� A Theoretically Grounded Application of Dropout in Recurrent Neural Networks, 2016.
https://arxiv.org/abs/1512.05287

16.5.3 API

� Keras Regularizers API.
https://keras.io/regularizers/

� Keras Core Layers API.
https://keras.io/layers/core/

� Keras Convolutional Layers API.
https://keras.io/layers/convolutional/

� Keras Recurrent Layers API.
https://keras.io/layers/recurrent/

� sklearn.datasets.make circles API.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.

html

https://amzn.to/2NJW3gE
https://amzn.to/2wVqZDq
https://arxiv.org/abs/1207.0580
http://jmlr.org/papers/v15/srivastava14a.html
https://ieeexplore.ieee.org/document/6639346/
https://arxiv.org/abs/1307.1493
https://arxiv.org/abs/1411.4280
https://arxiv.org/abs/1512.05287
https://keras.io/regularizers/
https://keras.io/layers/core/
https://keras.io/layers/convolutional/
https://keras.io/layers/recurrent/
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html

16.6. Summary 322

16.5.4 Articles

� Dropout (neural networks), Wikipedia.
https://en.wikipedia.org/wiki/Dropout_(neural_networks)

� Regularization, CS231n Convolutional Neural Networks for Visual Recognition.
http://cs231n.github.io/neural-networks-2/#reg

� How was ‘Dropout’ conceived? Was there an ‘aha’ moment?
https://www.reddit.com/r/MachineLearning/comments/4w6tsv/ama_we_are_the_google_

brain_team_wed_love_to/d64yyas

16.6 Summary

In this tutorial, you discovered the use of dropout regularization for reducing overfitting and
improving the generalization of deep neural networks. Specifically, you learned:

� Large weights in a neural network are a sign of a more complex network that has overfit
the training data.

� Probabilistically dropping out nodes in the network is a simple and effective regularization
method.

� A large network with more training epochs and the use of a weight constraint are suggested
when using dropout.

16.6.1 Next

In the next tutorial, you will discover how to improve neural network model robustness by
adding statistical noise.

https://en.wikipedia.org/wiki/Dropout_(neural_networks)
http://cs231n.github.io/neural-networks-2/#reg
https://www.reddit.com/r/MachineLearning/comments/4w6tsv/ama_we_are_the_google_brain_team_wed_love_to/d64yyas
https://www.reddit.com/r/MachineLearning/comments/4w6tsv/ama_we_are_the_google_brain_team_wed_love_to/d64yyas

Chapter 17

Promote Robustness with Noise

Training a neural network with a small dataset can cause the network to memorize all training
examples, in turn leading to poor performance on a holdout dataset. Small datasets may also
represent a harder mapping problem for neural networks to learn, given the patchy or sparse
sampling of points in the high-dimensional input space. One approach to making the input
space smoother and easier to learn is to add noise to inputs during training. In this tutorial, you
will discover that adding noise to a neural network during training can improve the robustness
of the network, resulting in better generalization and faster learning. After reading this tutorial,
you will know:

� Small datasets can make learning challenging for neural nets and the examples can be
memorized.

� Adding noise during training can make the training process more robust and reduce
generalization error.

� Noise is traditionally added to the inputs, but can also be added to weights, gradients,
and even activation functions.

Let’s get started.

17.1 Noise Regularization

In this section you will discover the brittleness of large network weights and how the addition of
statistical noise can provide a regularizing effect, as well as tips to help when adding noise to
your own neural network models.

17.1.1 Challenge of Small Training Datasets

Small datasets can introduce problems when training large neural networks. The first problem
is that the network may effectively memorize the training dataset. Instead of learning a general
mapping from inputs to outputs, the model may learn the specific input examples and their
associated outputs. This will result in a model that performs well on the training dataset, and
poor on new data, such as a holdout dataset. The second problem is that a small dataset
provides less opportunity to describe the structure of the input space and its relationship to the

323

17.1. Noise Regularization 324

output. More training data provides a richer description of the problem from which the model
may learn. Fewer data points means that rather than a smooth input space, the points may
represent a jarring and disjointed structure that may result in a difficult, if not unlearnable,
mapping function. It is not always possible to acquire more data. Further, getting a hold of
more data may not address these problems.

17.1.2 Add Random Noise During Training

One approach to improving generalization error and to improving the structure of the mapping
problem is to add random noise.

Many studies [...] have noted that adding small amounts of input noise (jitter) to
the training data often aids generalization and fault tolerance.

— Page 273, Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks,
1999.

At first, this sounds like a recipe for making learning more challenging. It is a counter-
intuitive suggestion to improving performance because one would expect noise to degrade
performance of the model during training.

Heuristically, we might expect that the noise will ‘smear out’ each data point and
make it difficult for the network to fit individual data points precisely, and hence
will reduce over-fitting. In practice, it has been demonstrated that training with
noise can indeed lead to improvements in network generalization.

— Page 347, Neural Networks for Pattern Recognition, 1995.

The addition of noise during the training of a neural network model has a regularization effect
and, in turn, improves the robustness of the model. It has been shown to have a similar impact
on the loss function as the addition of a penalty term, as in the case of weight regularization
methods.

It is well known that the addition of noise to the input data of a neural network
during training can, in some circumstances, lead to significant improvements in
generalization performance. Previous work has shown that such training with noise
is equivalent to a form of regularization in which an extra term is added to the error
function.

— Training with Noise is Equivalent to Tikhonov Regularization, 2008.

In effect, adding noise expands the size of the training dataset. Each time a training sample
is exposed to the model, random noise is added to the input variables making them different
every time it is exposed to the model. In this way, adding noise to input samples is a simple
form of data augmentation.

Injecting noise in the input to a neural network can also be seen as a form of data
augmentation.

17.1. Noise Regularization 325

— Page 241, Deep Learning, 2016.

Adding noise means that the network is less able to memorize training samples because they
are changing all of the time, resulting in smaller network weights and a more robust network
that has lower generalization error. The noise means that it is as though new samples are being
drawn from the domain in the vicinity of known samples, smoothing the structure of the input
space. This smoothing may mean that the mapping function is easier for the network to learn,
resulting in better and faster learning.

... input noise and weight noise encourage the neural-network output to be a smooth
function of the input or its weights, respectively.

— The Effects of Adding Noise During Backpropagation Training on a Generalization
Performance, 1996.

17.1.3 How and Where to Add Noise

The most common type of noise used during training is the addition of Gaussian noise to input
variables. Gaussian noise, or white noise, has a mean of zero and a standard deviation of one
and can be generated as needed using a pseudorandom number generator. The addition of
Gaussian noise to the inputs to a neural network was traditionally referred to as jitter or random
jitter after the use of the term in signal processing to refer to the uncorrelated random noise
in electrical circuits. The amount of noise added (e.g. the spread or standard deviation) is a
configurable hyperparameter. Too little noise has no effect, whereas too much noise makes the
mapping function too challenging to learn.

This is generally done by adding a random vector onto each input pattern before it
is presented to the network, so that, if the patterns are being recycled, a different
random vector is added each time.

— Training with Noise is Equivalent to Tikhonov Regularization, 2008.

The standard deviation of the random noise controls the amount of spread and can be
adjusted based on the scale of each input variable. It can be easier to configure if the scale of
the input variables has first been normalized. Noise is only added during training. No noise is
added during the evaluation of the model or when the model is used to make predictions on
new data. The addition of noise is also an important part of automatic feature learning, such as
in the case of autoencoders, so-called denoising autoencoders that explicitly require models to
learn robust features in the presence of noise added to inputs.

We have seen that the reconstruction criterion alone is unable to guarantee the
extraction of useful features as it can lead to the obvious solution “simply copy the
input” or similarly uninteresting ones that trivially maximizes mutual information.
[...] we change the reconstruction criterion for a both more challenging and more
interesting objective: cleaning partially corrupted input, or in short denoising.

— Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a
Local Denoising Criterion, 2010.

17.1. Noise Regularization 326

Although additional noise to the inputs is the most common and widely studied approach,
random noise can be added to other parts of the network during training. Some examples
include:

� Add noise to activations, i.e. the outputs of each layer.

� Add noise to weights, i.e. an alternative to the inputs.

� Add noise to the gradients, i.e. the direction to update weights.

� Add noise to the outputs, i.e. the labels or target variables.

The addition of noise to the layer activations allows noise to be used at any point in the
network. This can be beneficial for very deep networks. Noise can be added to the layer
outputs themselves, but this is more likely achieved via the use of a noisy activation function.
The addition of noise to weights allows the approach to be used throughout the network in
a consistent way instead of adding noise to inputs and layer activations. This is particularly
useful in recurrent neural networks.

Another way that noise has been used in the service of regularizing models is by
adding it to the weights. This technique has been used primarily in the context of
recurrent neural networks. [...] Noise applied to the weights can also be interpreted
as equivalent (under some assumptions) to a more traditional form of regularization,
encouraging stability of the function to be learned.

— Page 242, Deep Learning, 2016.

The addition of noise to gradients focuses more on improving the robustness of the optimiza-
tion process itself rather than the structure of the input domain. The amount of noise can start
high at the beginning of training and decrease over time, much like a decaying learning rate.
This approach has proven to be an effective method for very deep networks and for a variety of
different network types.

We consistently see improvement from injected gradient noise when optimizing a wide
variety of models, including very deep fully-connected networks, and special-purpose
architectures for question answering and algorithm learning. [...] Our experiments
indicate that adding annealed Gaussian noise by decaying the variance works better
than using fixed Gaussian noise

— Adding Gradient Noise Improves Learning for Very Deep Networks, 2015.

Adding noise to the activations, weights, or gradients all provide a more generic approach
to adding noise that is invariant to the types of input variables provided to the model. If the
problem domain is believed or expected to have mislabeled examples, then the addition of noise
to the class label can improve the model’s robustness to this type of error. Although, it can be
easy to derail the learning process. Adding noise to a continuous target variable in the case of
regression or time series forecasting is much like the addition of noise to the input variables and
may be a better use case.

17.1. Noise Regularization 327

17.1.4 Examples of Adding Noise During Training

This section summarizes some examples where the addition of noise during training has been used.
Lasse Holmstrom studied the addition of random noise both analytically and experimentally
with MLPs in the 1992 paper titled Using Additive Noise in Back-Propagation Training. They
recommend first standardizing input variables then using cross-validation to choose the amount
of noise to use during training.

If a single general-purpose noise design method should be suggested, we would
pick maximizing the cross-validated likelihood function. This method is easy to
implement, is completely data-driven, and has a validity that is supported by
theoretical consistency results

Klaus Gref, et al. in their 2016 paper titled LSTM: A Search Space Odyssey used a
hyperparameter search for the standard deviation for Gaussian noise on the input variables
for a suite of sequence prediction tasks and found that it almost universally resulted in worse
performance.

Additive Gaussian noise on the inputs, a traditional regularizer for neural networks,
has been used for LSTM as well. However, we find that not only does it almost
always hurt performance, it also slightly increases training times.

Alex Graves, et al. in their groundbreaking 2013 paper titled Speech recognition with deep
recurrent neural networks that achieved then state-of-the-art results for speech recognition added
noise to the weights of LSTMs during training.

... weight noise [was used] (the addition of Gaussian noise to the network weights
during training). Weight noise was added once per training sequence, rather than
at every timestep. Weight noise tends to ‘simplify’ neural networks, in the sense
of reducing the amount of information required to transmit the parameters, which
improves generalisation.

In a prior 2011 paper that studies different types of static and adaptive weight noise titled
Practical Variational Inference for Neural Networks, Graves recommends using early stopping
in conjunction with the addition of weight noise with LSTMs.

... in practice early stopping is required to prevent overfitting when training with
weight noise.

17.1.5 Tips for Adding Noise During Training

This section provides some tips for adding noise during training with your neural network.

Problem Types for Adding Noise

Noise can be added to training regardless of the type of problem that is being addressed. It
is appropriate to try adding noise to both classification and regression type problems. The
type of noise can be specialized to the types of data used as input to the model, for example,
two-dimensional noise in the case of images and signal noise in the case of audio data.

17.2. Noise Regularization Keras API 328

Add Noise to Different Network Types

Adding noise during training is a generic method that can be used regardless of the type of
neural network that is being used. It was a method used primarily with Multilayer Perceptrons
given their prior dominance, but can be and is used with Convolutional and Recurrent Neural
Networks.

Rescale Data First

It is important that the addition of noise has a consistent effect on the model. This requires
that the input data is rescaled so that all variables have the same scale, so that when noise is
added to the inputs with a fixed variance, it has the same effect. The also applies to adding
noise to weights and gradients as they too are affected by the scale of the inputs. This can be
achieved via standardization or normalization of input variables. If random noise is added after
data scaling, then the variables may need to be rescaled again, perhaps per minibatch.

Test the Amount of Noise

You cannot know how much noise will benefit your specific model on your training dataset.
Experiment with different amounts, and even different types of noise, in order to discover what
works best. Be systematic and use controlled experiments, perhaps on smaller datasets across a
range of values.

Noisy Training Only

Noise is only added during the training of your model. Be sure that any source of noise is not
added during the evaluation of your model, or when your model is used to make predictions on
new data.

17.2 Noise Regularization Keras API

This section demonstrates how to add noise with the Keras API.

17.2.1 Noise Regularization in Keras

Keras supports the addition of noise to models via the GaussianNoise layer. This is a layer
that will add noise to inputs of a given shape. The noise has a mean of zero and requires that a
standard deviation of the noise be specified as a hyperparameter. For example:

import noise layer

from keras.layers import GaussianNoise

define noise layer

layer = GaussianNoise(0.1)

Listing 17.1: Example of creating a GaussianNoise layer.

The output of the layer will have the same shape as the input, with the only modification
being the addition of noise to the values.

17.2. Noise Regularization Keras API 329

17.2.2 Noise Regularization in Models

The GaussianNoise layer can be used in a few different ways with a neural network model.
Firstly, it can be used as an input layer to add noise to input variables directly. This is the
traditional use of noise as a regularization method in neural networks. Below is an example of
defining a GaussianNoise layer as an input layer for a model that takes 2 input variables.

...

model.add(GaussianNoise(0.01, input_shape=(2,)))

...

Listing 17.2: Example of adding a GaussianNoise layer to a model.

Noise can also be added between hidden layers in the model. Given the flexibility of Keras,
the noise can be added before or after the use of the activation function. It may make more sense
to add it before the activation; nevertheless, both options are possible. Below is an example of
a GaussianNoise layer that adds noise to the linear output of a Dense layer before a rectified
linear activation function, perhaps a more appropriate use of noise between hidden layers.

...

model.add(Dense(32))

model.add(GaussianNoise(0.1))

model.add(Activation('relu'))

model.add(Dense(32))

...

Listing 17.3: Example of adding a GaussianNoise layer before activation.

Noise can also be added after the activation function, much like using a noisy activation
function. One downside of this usage is that the resulting values may be out-of-range from what
the activation function may normally provide. For example, a value with added noise may be
less than zero, whereas the relu activation function will only ever output values 0 or larger.

...

model.add(Dense(32, activation='reu'))

model.add(GaussianNoise(0.1))

model.add(Dense(32))

...

Listing 17.4: Example of adding a GaussianNoise layer after activation.

Let’s take a look at how noise regularization can be used with some common network types.

MLP Noise Regularization

The example below adds noise between two Dense fully connected layers.

example of noise between fully connected layers

from keras.layers import Dense

from keras.layers import GaussianNoise

from keras.layers import Activation

...

model.add(Dense(32))

model.add(GaussianNoise(0.1))

model.add(Activation('relu'))

model.add(Dense(1))

17.3. Noise Regularization Case Study 330

...

Listing 17.5: Example of adding a Noise to an MLP model.

CNN Noise Regularization

The example below adds noise after a pooling layer in a convolutional network.

example of noise for a CNN

from keras.layers import Dense

from keras.layers import Conv2D

from keras.layers import MaxPooling2D

from keras.layers import GaussianNoise

...

model.add(Conv2D(32, (3,3)))

model.add(Conv2D(32, (3,3)))

model.add(MaxPooling2D())

model.add(GaussianNoise(0.1))

model.add(Dense(1))

...

Listing 17.6: Example of adding a Noise to a CNN model.

RNN Noise Regularization

The example below adds noise between an LSTM recurrent layer and a Dense fully connected
layer.

example of noise between LSTM and fully connected layers

from keras.layers import Dense

from keras.layers import Activation

from keras.layers import LSTM

from keras.layers import GaussianNoise

...

model.add(LSTM(32))

model.add(GaussianNoise(0.5))

model.add(Activation('relu'))

model.add(Dense(1))

...

Listing 17.7: Example of adding a Noise to an LSTM model.

Now that we have seen how to add noise to neural network models, let’s look at a case study
of adding noise to an overfit model to reduce generalization error.

17.3 Noise Regularization Case Study

In this section, we will demonstrate how to use noise regularization to reduce overfitting of an
MLP on a simple binary classification problem. This example provides a template for applying
noise regularization to your own neural network for classification and regression problems.

17.3. Noise Regularization Case Study 331

17.3.1 Binary Classification Problem

We will use a standard binary classification problem that defines two two-dimensional concentric
circles of observations, one circle for each class. Each observation has two input variables with
the same scale and a class output value of either 0 or 1. This dataset is called the circles
dataset because of the shape of the observations in each class when plotted. We can use the
make circles() function to generate observations from this problem. We will add noise to the
data and seed the random number generator so that the same samples are generated each time
the code is run.

generate 2d classification dataset

X, y = make_circles(n_samples=100, noise=0.1, random_state=1)

Listing 17.8: Example of creating samples for the two circles problem.

We can plot the dataset where the two variables are taken as x and y coordinates on a graph
and the class value is taken as the color of the observation. The complete example of generating
the dataset and plotting it is listed below.

scatter plot of circles dataset

from sklearn.datasets import make_circles

from matplotlib import pyplot

from numpy import where

generate 2d classification dataset

X, y = make_circles(n_samples=100, noise=0.1, random_state=1)

scatter plot for each class value

for class_value in range(2):

select indices of points with the class label

row_ix = where(y == class_value)

scatter plot for points with a different color

pyplot.scatter(X[row_ix, 0], X[row_ix, 1])

show plot

pyplot.show()

Listing 17.9: Example of plotting samples from the two circles problem.

Running the example creates a scatter plot showing the concentric circles shape of the
observations in each class. We can see the noise in the dispersal of the points making the circles
less obvious.

17.3. Noise Regularization Case Study 332

Figure 17.1: Scatter Plot of Circles Dataset with Color Showing the Class Value of Each Sample.

This is a good test problem because the classes cannot be separated by a line, e.g. are not
linearly separable, requiring a nonlinear method such as a neural network to address. We have
only generated 100 samples, which is small for a neural network, providing the opportunity to
overfit the training dataset and have higher error on the test dataset, a good case for using
regularization. Further, the samples have noise, giving the model an opportunity to learn aspects
of the samples that don’t generalize.

17.3.2 Overfit Multilayer Perceptron

We can develop an MLP model to address this binary classification problem. The model will
have one hidden layer with more nodes than may be required to solve this problem, providing
an opportunity to overfit. We will also train the model for longer than is required to ensure the
model overfits. Before we define the model, we will split the dataset into train and test sets,
using 30 examples to train the model and 70 to evaluate the fit model’s performance.

generate 2d classification dataset

X, y = make_circles(n_samples=100, noise=0.1, random_state=1)

split into train and test

n_train = 30

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

17.3. Noise Regularization Case Study 333

Listing 17.10: Example of preparing the dataset for modeling.

Next, we can define the model. The hidden layer uses 500 nodes in the hidden layer and the
rectified linear activation function. A sigmoid activation function is used in the output layer in
order to predict class values of 0 or 1. The model is optimized using the binary cross-entropy loss
function, suitable for binary classification problems and the efficient Adam version of gradient
descent.

define model

model = Sequential()

model.add(Dense(500, input_dim=2, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

Listing 17.11: Example of defining an MLP model.

The defined model is then fit on the training data for 4,000 epochs and the default batch
size of 32. We will also use the test dataset as a validation dataset.

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=4000, verbose=0)

Listing 17.12: Example of fitting an MLP model.

We can evaluate the performance of the model on the test dataset and report the result.

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

Listing 17.13: Example of evaluating an MLP model.

Finally, we will plot the performance of the model on both the train and test set each epoch.
If the model does indeed overfit the training dataset, we would expect the line plot of accuracy
on the training set to continue to increase and the test set to rise and then fall again as the
model learns statistical noise in the training dataset.

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 17.14: Example of plotting learning curves for the fit MLP model.

We can tie all of these pieces together; the complete example is listed below.

17.3. Noise Regularization Case Study 334

mlp overfit on the two circles dataset

from sklearn.datasets import make_circles

from keras.layers import Dense

from keras.models import Sequential

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_circles(n_samples=100, noise=0.1, random_state=1)

split into train and test

n_train = 30

trainX, testX = X[: n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(500, input_dim=2, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=4000, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 17.15: Example of MLP fit on the two circles problem.

Running the example reports the model performance on the train and test datasets. We can
see that the model has better performance on the training dataset than the test dataset, one
possible sign of overfitting.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

Train: 1.000, Test: 0.771

Listing 17.16: Example output fitting an MLP on the two circles problem.

A figure is created showing line plots of the model accuracy on the train and test sets. We
can see that expected shape of an overfit model where test accuracy increases to a point and
then begins to decrease again.

17.3. Noise Regularization Case Study 335

Figure 17.2: Line Plots of Accuracy on Train and Test Datasets While Training Showing an
Overfit.

17.3.3 MLP With Input Layer Noise

The dataset is defined by points that have a controlled amount of statistical noise. Nevertheless,
because the dataset is small, we may wish to add further noise to the input values. This will
have the effect of creating more samples or resampling the domain, making the structure of
the input space artificially smoother. This may make the problem easier to learn and improve
generalization performance. We can add a GaussianNoise layer as the input layer. The amount
of noise must be small. Given that the input values are within the range [0, 1], we will add
Gaussian noise with a mean of 0.0 and a standard deviation of 0.01, chosen arbitrarily.

define model

model = Sequential()

model.add(GaussianNoise(0.01, input_shape=(2,)))

model.add(Dense(500, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

Listing 17.17: Example of updating the MLP model to add noise to the input.

The complete example with this change is listed below.

mlp overfit on the two circles dataset with input noise

17.3. Noise Regularization Case Study 336

from sklearn.datasets import make_circles

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import GaussianNoise

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_circles(n_samples=100, noise=0.1, random_state=1)

split into train and test

n_train = 30

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(GaussianNoise(0.01, input_shape=(2,)))

model.add(Dense(500, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=4000, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 17.18: Example of MLP with noise added to input on the two circles problem.

Running the example reports the model performance on the train and test datasets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we may see a small lift in performance of the model on the test dataset, with
no negative impact on the training dataset.

Train: 1.000, Test: 0.786

Listing 17.19: Example output the MLP with noise added to input on the two circles problem.

We clearly see the impact of the added noise on the evaluation of the model during training
as graphed on the line plot. The noise causes the accuracy of the model to jump around during
training, possibly due to the noise introducing points that conflict with true points from the
training dataset. Perhaps a lower input noise standard deviation would be more appropriate.

17.3. Noise Regularization Case Study 337

The model still shows a pattern of being overfit, with a rise and then fall in test accuracy over
training epochs.

Figure 17.3: Line Plot of Train and Test Accuracy With Input Layer Noise.

17.3.4 MLP With Hidden Layer Noise

An alternative approach to adding noise to the input values is to add noise between the hidden
layers. This can be done by adding noise to the linear output of the layer (weighted sum) before
the activation function is applied, in this case a rectified linear activation function. We can also
use a larger standard deviation for the noise as the model is less sensitive to noise at this level
given the presumably larger weights from being overfit. We will use a standard deviation of 0.1,
again, chosen arbitrarily.

define model

model = Sequential()

model.add(Dense(500, input_dim=2))

model.add(GaussianNoise(0.1))

model.add(Activation('relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

Listing 17.20: Example of updating the MLP model to add noise before activation.

17.3. Noise Regularization Case Study 338

The complete example with Gaussian noise between the hidden layers is listed below.

mlp overfit on the two circles dataset with hidden layer noise

from sklearn.datasets import make_circles

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Activation

from keras.layers import GaussianNoise

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_circles(n_samples=100, noise=0.1, random_state=1)

split into train and test

n_train = 30

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(500, input_dim=2))

model.add(GaussianNoise(0.1))

model.add(Activation('relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=4000, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 17.21: Example of MLP with noise added to the hidden layer before activation for the
two circles problem.

Running the example reports the model performance on the train and test datasets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see a marked increase in the performance of the model on the hold out
test set.

Train: 0.933, Test: 0.814

Listing 17.22: Example output the MLP with noise added to the hidden layer before activation
for the two circles problem.

17.3. Noise Regularization Case Study 339

We can also see from the line plot of accuracy over training epochs that the model no longer
appears to show the properties of being overfit with regard to classification accuracy. The
learning curves for loss do still show a pattern of being overfit.

Figure 17.4: Line Plot of Train and Test Accuracy With Hidden Layer Noise.

We can also experiment and add the noise after the outputs of the first hidden layer pass
through the activation function.

define model

model = Sequential()

model.add(Dense(500, input_dim=2, activation='relu'))

model.add(GaussianNoise(0.1))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

Listing 17.23: Example of updating the MLP model to add noise after activation.

The complete example is listed below.

mlp overfit on the two circles dataset with hidden layer noise (alternate)

from sklearn.datasets import make_circles

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import GaussianNoise

from matplotlib import pyplot

17.3. Noise Regularization Case Study 340

generate 2d classification dataset

X, y = make_circles(n_samples=100, noise=0.1, random_state=1)

split into train and test

n_train = 30

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(500, input_dim=2, activation='relu'))

model.add(GaussianNoise(0.1))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=4000, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 17.24: Example of MLP with noise added to the hidden layer after activation for the
two circles problem.

Running the example reports the model performance on the train and test datasets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

Surprisingly, we see little difference in the performance of the model, perhaps a small lift in
performance.

Train: 1.000, Test: 0.829

Listing 17.25: Example output the MLP with noise added to the hidden layer after activation
for the two circles problem.

Again, we can see from the line plot of accuracy over training epochs that the model no
longer shows sign of overfitting.

17.4. Extensions 341

Figure 17.5: Line Plot of Train and Test Accuracy With Hidden Layer Noise (alternate).

17.4 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Repeated Evaluation. Update the example to use repeated evaluation of the model
with and without noise and report performance as the mean and standard deviation over
repeats.

� Grid Search Standard Deviation. Develop a grid search in order to discover the
amount of noise that reliably results in the best performing model.

� Input and Hidden Noise. Update the example to introduce noise at both the input
and hidden layers of the model.

If you explore any of these extensions, I’d love to know.

17.5 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

17.5. Further Reading 342

17.5.1 Books

� Section 7.5: Noise Robustness, Deep Learning, 2016.
https://amzn.to/2NJW3gE

� Chapter 17: Training with Noisy Inputs, Neural Smithing: Supervised Learning in Feed-
forward Artificial Neural Networks, 1999.
https://amzn.to/2Dxo4XU

� Section 9.3: Training with Noise, Neural Networks for Pattern Recognition, 1995.
https://amzn.to/2I9gNMP

17.5.2 Papers

� Creating artificial neural networks that generalize, 1991.
https://www.sciencedirect.com/science/article/pii/0893608091900332

� Deep networks for robust visual recognition, 2010.
https://dl.acm.org/citation.cfm?id=3104456

� Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with
a Local Denoising Criterion, 2010.
http://www.jmlr.org/papers/v11/vincent10a.html

� Analyzing noise in autoencoders and deep networks, 2014.
https://arxiv.org/abs/1406.1831

� The Effects of Adding Noise During Backpropagation Training on a Generalization Per-
formance, 1996.
https://ieeexplore.ieee.org/document/6796981/

� Training with Noise is Equivalent to Tikhonov Regularization, 2008.
https://www.mitpressjournals.org/doi/abs/10.1162/neco.1995.7.1.108

� Adding Gradient Noise Improves Learning for Very Deep Networks, 2016.
https://arxiv.org/abs/1511.06807

� Noisy Activation Functions, 2016.
http://proceedings.mlr.press/v48/gulcehre16.html

17.5.3 APIs

� Keras Regularizers API.
https://keras.io/regularizers/

� Keras Core Layers API.
https://keras.io/layers/core/

� Keras Convolutional Layers API.
https://keras.io/layers/convolutional/

https://amzn.to/2NJW3gE
https://amzn.to/2Dxo4XU
https://amzn.to/2I9gNMP
https://www.sciencedirect.com/science/article/pii/0893608091900332
https://dl.acm.org/citation.cfm?id=3104456
http://www.jmlr.org/papers/v11/vincent10a.html
https://arxiv.org/abs/1406.1831
https://ieeexplore.ieee.org/document/6796981/
https://www.mitpressjournals.org/doi/abs/10.1162/neco.1995.7.1.108
https://arxiv.org/abs/1511.06807
http://proceedings.mlr.press/v48/gulcehre16.html
https://keras.io/regularizers/
https://keras.io/layers/core/
https://keras.io/layers/convolutional/

17.6. Summary 343

� Keras Recurrent Layers API.
https://keras.io/layers/recurrent/

� Keras Noise API.
https://keras.io/layers/noise/

� sklearn.datasets.make circles API.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.

html

17.5.4 Articles

� What is jitter? (Training with noise), Neural Network FAQ.
ftp://ftp.sas.com/pub/neural/FAQ3.html#A_jitter

� Jitter, Wikipedia.
https://en.wikipedia.org/wiki/Jitter

17.6 Summary

In this tutorial, you discovered that adding noise to a neural network during training can
improve the robustness of the network resulting in better generalization and faster learning.
Specifically, you learned:

� Small datasets can make learning challenging for neural nets and the examples can be
memorized.

� Adding noise during training can make the training process more robust and reduce
generalization error.

� Noise is traditionally added to the inputs, but can also be added to weights, gradients,
and even activation functions.

17.6.1 Next

In the next tutorial, you will discover how to halt model training at the right time with early
stopping.

https://keras.io/layers/recurrent/
https://keras.io/layers/noise/
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
ftp://ftp.sas.com/pub/neural/FAQ3.html#A_jitter
https://en.wikipedia.org/wiki/Jitter

Chapter 18

Halt Training at the Right Time with
Early Stopping

A major challenge in training neural networks is how long to train them. Too little training
will mean that the model will underfit the train and the test sets. Too much training will
mean that the model will overfit the training dataset and have poor performance on the test
set. A compromise is to train on the training dataset but to stop training at the point when
performance on a validation dataset starts to degrade. This simple, effective, and widely used
approach to training neural networks is called early stopping. In this tutorial, you will discover
that stopping the training of a neural network early before it has overfit the training dataset
can reduce overfitting and improve the generalization of deep neural networks. After reading
this tutorial, you will know:

� The challenge of training a neural network long enough to learn the mapping, but not so
long that it overfits the training data.

� Model performance on a holdout validation dataset can be monitored during training and
training stopped when generalization error starts to increase.

� The use of early stopping requires the selection of a performance measure to monitor, a
trigger to stop training, and a selection of the model weights to use.

Let’s get started.

18.1 Early Stopping

In this section discover the problem of training a model for too long and the regularizing effect
that halting the training process at the right time can have, as well as tips for using early
stopping in your own projects.

18.1.1 The Problem of Training Just Enough

Training neural networks is challenging. When training a large network, there will be a point
during training when the model will stop generalizing and start learning the statistical noise
in the training dataset. This overfitting of the training dataset will result in an increase in

344

18.1. Early Stopping 345

generalization error, making the model less useful at making predictions on new data. The
challenge is to train the network long enough that it is capable of learning the mapping from
inputs to outputs, but not training the model so long that it overfits the training data.

However, all standard neural network architectures such as the fully connected
multi-layer perceptron are prone to overfitting [10]: While the network seems to get
better and better, i.e., the error on the training set decreases, at some point during
training it actually begins to get worse again, i.e., the error on unseen examples
increases.

— Early Stopping — But When?, 2002.

One approach to solving this problem is to treat the number of training epochs as a
hyperparameter and train the model multiple times with different values, then select the number
of epochs that result in the best performance on the train or a holdout test dataset. The
downside of this approach is that it requires multiple models to be trained and discarded. This
can be computationally inefficient and time-consuming, especially for large models trained on
large datasets over days or weeks.

18.1.2 Stop Training When Generalization Error Increases

An alternative approach is to train the model once for a large number of training epochs.
During training, the model is evaluated on a holdout validation dataset after each epoch. If
the performance of the model on the validation dataset starts to degrade (e.g. loss begins to
increase or accuracy begins to decrease), then the training process is stopped.

... the error measured with respect to independent data, generally called a validation
set, often shows a decrease at first, followed by an increase as the network starts
to over-fit. Training can therefore be stopped at the point of smallest error with
respect to the validation data set

— Page 259, Pattern Recognition and Machine Learning, 2006.

The model at the time that training is stopped is then used and is known to have good
generalization performance. This procedure is called early stopping and is perhaps one of the
oldest and most widely used forms of neural network regularization.

This strategy is known as early stopping. It is probably the most commonly used
form of regularization in deep learning. Its popularity is due both to its effectiveness
and its simplicity.

— Page 247, Deep Learning, 2016.

If regularization methods like weight decay that update the loss function to encourage less
complex models are considered explicit regularization, then early stopping may be thought of as
a type of implicit regularization, much like using a smaller network that has less capacity.

Regularization may also be implicit as is the case with early stopping.

— Understanding deep learning requires rethinking generalization, 2017.

18.1. Early Stopping 346

18.1.3 How to Stop Training Early

Early stopping requires that you configure your network to be under constrained, meaning that
it has more capacity than is required for the problem. When training the network, a larger
number of training epochs is used than may normally be required, to give the network plenty of
opportunity to fit, then begin to overfit the training dataset. There are three elements to using
early stopping; they are:

� Monitoring model performance.

� Trigger to stop training.

� The choice of model to use.

Monitoring Performance

The performance of the model must be monitored during training. This requires the choice of
a dataset that is used to evaluate the model and a metric used to evaluate the model. It is
common to split the training dataset and use a subset, such as 30%, as a validation dataset used
to monitor performance of the model during training. This validation set is not used to train
the model. It is also common to use the loss on a validation dataset as the metric to monitor,
although you may also use prediction error in the case of regression, or accuracy in the case of
classification.

The loss of the model on the training dataset will also be available as part of the training
procedure, and additional metrics may also be calculated and monitored on the training dataset.
Performance of the model is evaluated on the validation set at the end of each epoch, which
adds an additional computational cost during training. This can be reduced by evaluating the
model less frequently, such as every 2, 5, or 10 training epochs.

Early Stopping Trigger

Once a scheme for evaluating the model is selected, a trigger for stopping the training process
must be chosen. The trigger will use a monitored performance metric to decide when to stop
training. This is often the performance of the model on the holdout dataset, such as the
loss. In the simplest case, training is stopped as soon as the performance on the validation
dataset decreases as compared to the performance on the validation dataset at the prior training
epoch (e.g. an increase in loss). More elaborate triggers may be required in practice. This is
because the training of a neural network is stochastic and can be noisy. Plotted on a graph, the
performance of a model on a validation dataset may go up and down many times. This means
that the first sign of overfitting may not be a good place to stop training.

... the validation error can still go further down after it has begun to increase [...]
Real validation error curves almost always have more than one local minimum.

— Early Stopping — But When?, 2002.

Some more elaborate triggers may include:

� No change in metric over a given number of epochs.

18.1. Early Stopping 347

� An absolute change in a metric.

� A decrease in performance observed over a given number of epochs.

� Average change in metric over a given number of epochs.

Some delay or patience in stopping is almost always a good idea.

... results indicate that “slower” criteria, which stop later than others, on the average
lead to improved generalization compared to “faster” ones. However, the training
time that has to be expended for such improvements is rather large on average and
also varies dramatically when slow criteria are used.

— Early Stopping — But When?, 2002.

Model Choice

At the time that training is halted, the model is known to have slightly worse generalization
error than a model at a prior epoch. As such, some consideration may need to be given as to
exactly which model is saved. Specifically, the training epoch from which weights in the model
that are saved to file. This will depend on the trigger chosen to stop the training process. For
example, if the trigger is a simple decrease in performance from one epoch to the next, then the
weights for the model at the prior epoch will be preferred. If the trigger is required to observe a
decrease in performance over a fixed number of epochs, then the model at the beginning of the
trigger period will be preferred. Perhaps a simple approach is to always save the model weights
if the performance of the model on a holdout dataset is better than at the previous epoch. That
way, you will always have the model with the best performance on the holdout set.

Every time the error on the validation set improves, we store a copy of the model
parameters. When the training algorithm terminates, we return these parameters,
rather than the latest parameters.

— Page 246, Deep Learning, 2016.

18.1.4 Examples of Early Stopping

This section summarizes some examples where early stopping has been used. Yoon Kim in his
seminal application of convolutional neural networks to sentiment analysis in the 2014 paper
titled Convolutional Neural Networks for Sentence Classification used early stopping with 10%
of the training dataset used as the validation hold outset.

We do not otherwise perform any dataset-specific tuning other than early stopping
on dev sets. For datasets without a standard dev set we randomly select 10% of the
training data as the dev set.

Chiyuan Zhang, et al. from MIT, Berkeley, and Google in their 2017 paper titled Understand-
ing deep learning requires rethinking generalization highlight that on very deep convolutional
neural networks for photo classification where there is an abundant dataset that early stopping
may not always offer benefit, as the model is less likely to overfit such large datasets.

18.1. Early Stopping 348

[regarding] the training and testing accuracy on ImageNet [results suggest] a reference
of potential performance gain for early stopping. However, on the CIFAR10 dataset,
we do not observe any potential benefit of early stopping.

Yarin Gal and Zoubin Ghahramani from Cambridge in their 2015 paper titled A Theoretically
Grounded Application of Dropout in Recurrent Neural Networks use early stopping as an
unregularized baseline for LSTM models on a suite of language modeling problems.

Lack of regularisation in RNN models makes it difficult to handle small data, and to
avoid overfitting researchers often use early stopping, or small and under-specified
models ...

Alex Graves, et al., in their famous 2013 paper titled Speech recognition with deep recurrent
neural networks achieved state-of-the-art results with LSTMs for speech recognition, while
making use of early stopping.

Regularisation is vital for good performance with RNNs, as their flexibility makes
them prone to overfitting. Two regularisers were used in this paper: early stopping
and weight noise ...

18.1.5 Tips for Early Stopping

This section provides some tips for using early stopping regularization with your neural network.

When to Use Early Stopping

Early stopping is so easy to use, e.g. with the simplest trigger, that there is little reason to not
use it when training neural networks. Use of early stopping may be a staple of the modern
training of deep neural networks.

Early stopping should be used almost universally.

— Page 425, Deep Learning, 2016.

Plot Learning Curves to Select a Trigger

Before using early stopping, it may be interesting to fit an under constrained model and monitor
the performance of the model on a train and validation dataset. Plotting the performance of the
model in real-time or at the end of a long run will show how noisy the training process is with
your specific model and dataset. This may help in the choice of a trigger for early stopping.

Monitor an Important Metric

Loss is an easy metric to monitor during training and to trigger early stopping. The problem is
that loss does not always capture what is most important about the model to you and your
project.

Sometimes, the loss function we actually care about (say classification error) is not
one that can be optimized efficiently. [...] In such situations, one typically optimizes
a surrogate loss function instead, which acts as a proxy but has advantages.

18.1. Early Stopping 349

— Page 276, Deep Learning, 2016.

It may be better to choose a performance metric to monitor that best defines the performance
of the model in terms of the way you intend to use it. This may be the metric that you intend
to use to report the performance of the model.

Suggested Training Epochs

A problem with early stopping is that the model does not make use of all available training
data. It may be desirable to avoid overfitting and to train on all possible data, especially on
problems where the amount of training data is very limited. A recommended approach would
be to treat the number of training epochs as a hyperparameter and to grid search a range of
different values, perhaps using k-fold cross-validation. This will allow you to fix the number of
training epochs and fit a final model on all available data.

Early stopping could be used instead. The early stopping procedure could be repeated a
number of times. The epoch number at which training was stopped could be recorded. Then,
the average of the epoch number across all repeats of early stopping could be used when fitting
a final model on all available training data. This process could be performed using a different
split of the training set into train and validation steps each time early stopping is run. An
alternative might be to use early stopping with a validation dataset, then update the final model
with further training on the held out validation set.

Early Stopping With Cross-Validation

Early stopping could be used with k-fold cross-validation, although it is not recommended. The
k-fold cross-validation procedure is designed to estimate the generalization error of a model
by repeatedly refitting and evaluating it on different subsets of a dataset. Early stopping is
designed to monitor the generalization error of one model and stop training when generalization
error begins to degrade. They are at odds because cross-validation assumes you don’t know the
generalization error and early stopping is trying to give you the best model based on knowledge
of generalization error.

It may be desirable to use cross-validation to estimate the performance of models with
different hyperparameter values, such as learning rate or network structure, whilst also using
early stopping. In this case, if you have the resources to repeatedly evaluate the performance of
the model, then perhaps the number of training epochs may also be treated as a hyperparameter
to be optimized, instead of using early stopping. Instead of using cross-validation with early
stopping, early stopping may be used directly without repeated evaluation when evaluating
different hyperparameter values for the model (e.g. different learning rates). One possible point
of confusion is that early stopping is sometimes referred to as cross-validated training. Further,
research into early stopping that compares triggers may use cross-validation to compare the
impact of different triggers.

Overfit Validation

Repeating the early stopping procedure many times may result in the model overfitting the
validation dataset. This can happen just as easily as overfitting the training dataset. One
approach is to only use early stopping once all other hyperparameters of the model have been

18.2. Early Stopping Keras API 350

chosen. Another strategy may be to use a different split of the training dataset into train and
validation sets each time early stopping is used.

18.2 Early Stopping Keras API

This section describes how to use early stopping with the Keras API.

18.2.1 Using Callbacks in Keras

A callback is a snippet of code that can be executed at a specific point during training, such as
before or after training, an epoch or a batch. They provide a way to execute code and interact
with the training model process automatically. Callbacks can be provided to the fit() function
via the callbacks argument. First, callback must be instantiated.

...

cb = Callback(...)

Listing 18.1: Example of creating a callback.

Then, one or more callbacks that you intend to use must be added to a Python list.

...

cb_list = [cb, ...]

Listing 18.2: Example of creating a list of callbacks.

Finally, the list of callbacks is provided to the callback argument when fitting the model.

...

model.fit(..., callbacks=cb_list)

Listing 18.3: Example of creating using a list of callbacks when fitting a model.

18.2.2 Evaluating a Validation Dataset in Keras

Early stopping requires that a validation dataset is evaluated during training. This can be
achieved by specifying the validation dataset to the fit() function when training your model.
There are two ways of doing this. The first involves you manually splitting your training data
into a train and validation dataset and specifying the validation dataset to the fit() function
via the validation data argument. For example:

...

model.fit(train_X, train_y, validation_data=(val_x, val_y))

Listing 18.4: Example of specifying a validation dataset.

Alternately, the fit() function can automatically split your training dataset into train and
validation sets based on a percentage split specified via the validation split argument. The
validation split is a value between 0 and 1 and defines the percentage amount of the training
dataset to use for the validation dataset. For example:

18.2. Early Stopping Keras API 351

...

model.fit(train_X, train_y, validation_split=0.3)

Listing 18.5: Example of specifying a validation dataset as a percentage of the training set.

In both cases, the model is not trained on the validation dataset. Instead, the model is
evaluated on the validation dataset at the end of each training epoch.

18.2.3 Monitoring Model Performance

The loss function chosen to be optimized for your model is calculated at the end of each epoch.
To callbacks, this is made available via the name loss. If a validation dataset is specified to
the fit() function via the validation data or validation split arguments, then the loss
on the validation dataset will be made available via the name val loss. Additional metrics
can be monitored during the training of the model. They can be specified when compiling the
model via the metrics argument to the compile function. This argument takes a Python list of
known metric functions, such as mse for mean squared error and acc for accuracy. For example:

...

model.compile(..., metrics=['acc'])

Listing 18.6: Example of monitoring accuracy during training.

If additional metrics are monitored during training, they are also available to the callbacks
via the same name, such as acc for accuracy on the training dataset and val acc for the
accuracy on the validation dataset. Or, mse for mean squared error on the training dataset and
val mse on the validation dataset.

18.2.4 Early Stopping Callback

Keras supports the early stopping of training via a callback called EarlyStopping. This callback
allows you to specify the performance measure to monitor, the trigger, and once triggered, it
will stop the training process. The EarlyStopping callback is configured when instantiated via
arguments. The monitor allows you to specify the performance measure to monitor in order to
end training. Recall from the previous section that the calculation of measures on the validation
dataset will have the val prefix, such as val loss for the loss on the validation dataset.

es = EarlyStopping(monitor='val_loss')

Listing 18.7: Example of early stopping monitoring validation loss.

Based on the choice of performance measure, the mode argument will need to be specified
as whether the objective of the chosen metric is to increase (maximize or max) or to decrease
(minimize or min). For example, we would seek a minimum for validation loss and a minimum
for validation mean squared error, whereas we would seek a maximum for validation accuracy.

es = EarlyStopping(monitor='val_loss', mode='min')

Listing 18.8: Example of early stopping monitoring a minimized validation loss.

By default, mode is set to auto and knows that you want to minimize loss or maximize
accuracy. That is all that is needed for the simplest form of early stopping. Training will stop

18.2. Early Stopping Keras API 352

when the chosen performance measure stops improving. To discover the training epoch on which
training was stopped, the verbose argument can be set to 1. Once stopped, the callback will
print the epoch number.

es = EarlyStopping(monitor='val_loss', mode='min', verbose=1)

Listing 18.9: Example of early stopping with verbose output.

Often, the first sign of no further improvement may not be the best time to stop training.
This is because the model may coast into a plateau of no improvement or even get slightly worse
before getting much better. We can account for this by adding a delay to the trigger in terms
of the number of epochs on which we would like to see no improvement. This can be done by
setting the patience argument.

es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=50)

Listing 18.10: Example of early stopping with patience.

The exact amount of patience will vary between models and problems. Reviewing plots
of your performance measure can be very useful to get an idea of how noisy the optimization
process for your model on your data may be. By default, any change in the performance measure,
no matter how fractional, will be considered an improvement. You may want to consider an
improvement that is a specific increment, such as 1 unit for mean squared error or 1% for
accuracy. This can be specified via the min delta argument.

es = EarlyStopping(monitor='val_acc', mode='max', min_delta=1)

Listing 18.11: Example of early stopping with a minimum delta.

Finally, it may be desirable to only stop training if performance stays above or below a given
threshold or baseline. For example, if you have familiarity with the training of the model (e.g.
learning curves) and know that once a validation loss of a given value is achieved that there
is no point in continuing training. This can be specified by setting the baseline argument.
This might be more useful when fine tuning a model, after the initial wild fluctuations in the
performance measure seen in the early stages of training a new model are past.

es = EarlyStopping(monitor='val_loss', mode='min', baseline=0.4)

Listing 18.12: Example of early stopping with a baseline.

18.2.5 Model Checkpointing

The EarlyStopping callback will stop training once triggered, but the model at the end of
training may not be the model with best performance on the validation dataset. An additional
callback is required that will save the best model observed during training for later use. This is
the ModelCheckpoint callback. The ModelCheckpoint callback is flexible in the way it can be
used, but in this case we will use it only to save the best model observed during training as
defined by a chosen performance measure on the validation dataset. Saving and loading models
requires that HDF5 support has been installed on your workstation. For example, using the
pip Python installer, this can be achieved as follows:

sudo pip install h5py

Listing 18.13: Install the h5py library via pip.

18.3. Early Stopping Case Study 353

You can learn more from the h5py Installation documentation1. The callback will save the
model to file, which requires that a path and filename be specified via the first argument.

mc = ModelCheckpoint('best_model.h5')

Listing 18.14: Example of creating a model checkpoint callback.

The preferred loss function to be monitored can be specified via the monitor argument, in
the same way as the EarlyStopping callback. For example, loss on the validation dataset (the
default).

mc = ModelCheckpoint('best_model.h5', monitor='val_loss')

Listing 18.15: Example of model checkpoint that monitors validation loss.

Also, as with the EarlyStopping callback, we must specify the mode as either minimizing
or maximizing the performance measure. Again, the default is auto, which is aware of the
standard performance measures.

mc = ModelCheckpoint('best_model.h5', monitor='val_loss', mode='min')

Listing 18.16: Example of model checkpoint that monitors a minimized validation loss.

Finally, we are interested in only the very best model observed during training, rather than
the best compared to the previous epoch, which might not be the best overall if training is noisy.
This can be achieved by setting the save best only argument to True.

mc = ModelCheckpoint('best_model.h5', monitor='val_loss', mode='min', save_best_only=True)

Listing 18.17: Example of model checkpoint that only saves the best.

That is all that is needed to ensure the model with the best performance is saved when
using early stopping, or in general. It may be interesting to know the value of the performance
measure and at what epoch the model was saved. This can be printed by the callback by setting
the verbose argument to 1.

mc = ModelCheckpoint('best_model.h5', monitor='val_loss', mode='min', verbose=1)

Listing 18.18: Example of model checkpoint with verbose output.

The saved model can then be loaded and evaluated any time by calling the load model()

function.

load a saved model

from keras.models import load_model

saved_model = load_model('best_model.h5')

Listing 18.19: Example of loading a checkpoint model.

Now that we know how to use the early stopping and model checkpoint APIs, let’s look at a
worked example.

18.3 Early Stopping Case Study

In this section, we will demonstrate how to use early stopping to reduce overfitting of an MLP
on a simple binary classification problem. This example provides a template for applying early
stopping to your own neural network for classification and regression problems.

1http://docs.h5py.org/en/latest/build.html

http://docs.h5py.org/en/latest/build.html

18.3. Early Stopping Case Study 354

18.3.1 Binary Classification Problem

We will use a standard binary classification problem that defines two semi-circles of observations,
one semi-circle for each class. Each observation has two input variables with the same scale and
a class output value of either 0 or 1. This dataset is called the moons dataset because of the
shape of the observations in each class when plotted. We can use the make moons() function to
generate observations from this problem. We will add noise to the data and seed the random
number generator so that the same samples are generated each time the code is run.

generate 2d classification dataset

X, y = make_moons(n_samples=100, noise=0.2, random_state=1)

Listing 18.20: Example of creating samples for the two moons problem.

We can plot the dataset where the two variables are taken as x and y coordinates on a graph
and the class value is taken as the color of the observation. The complete example of generating
the dataset and plotting it is listed below.

scatter plot of moons dataset

from sklearn.datasets import make_moons

from matplotlib import pyplot

from numpy import where

generate 2d classification dataset

X, y = make_moons(n_samples=100, noise=0.2, random_state=1)

scatter plot for each class value

for class_value in range(2):

select indices of points with the class label

row_ix = where(y == class_value)

scatter plot for points with a different color

pyplot.scatter(X[row_ix, 0], X[row_ix, 1])

show plot

pyplot.show()

Listing 18.21: Example of plotting samples from the two moons problem.

Running the example creates a scatter plot showing the semi-circle or moon shape of the
observations in each class. We can see the noise in the dispersal of the points making the moons
less obvious.

18.3. Early Stopping Case Study 355

Figure 18.1: Scatter Plot of Moons Dataset With Color Showing the Class Value of Each Sample.

This is a good test problem because the classes cannot be separated by a straight line, e.g.
are not linearly separable, requiring a nonlinear method such as a neural network to address. We
have only generated 100 samples, which is small for a neural network, providing the opportunity
to overfit the training dataset and have higher error on the test dataset: a good case for using
regularization. Further, the samples have noise, giving the model an opportunity to learn aspects
of the samples that don’t generalize.

18.3.2 Overfit Multilayer Perceptron

We can develop an MLP model to address this binary classification problem. The model will
have one hidden layer with more nodes than may be required to solve this problem, providing
an opportunity to overfit. We will also train the model for longer than is required to ensure the
model overfits. Before we define the model, we will split the dataset into train and test sets,
using 30 examples to train the model and 70 to evaluate the fit model’s performance.

generate 2d classification dataset

X, y = make_moons(n_samples=100, noise=0.2, random_state=1)

split into train and test

n_train = 30

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

18.3. Early Stopping Case Study 356

Listing 18.22: Example of creating datasets ready for modeling.

Next, we can define the model. The hidden layer uses 500 nodes and the rectified linear
activation function. A sigmoid activation function is used in the output layer in order to predict
class values of 0 or 1. The model is optimized using the binary cross-entropy loss function,
suitable for binary classification problems and the efficient Adam version of gradient descent.

define model

model = Sequential()

model.add(Dense(500, input_dim=2, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

Listing 18.23: Example of defining the MLP model.

The defined model is then fit on the training data for 4,000 epochs and the default batch
size of 32. We will also use the test dataset as a validation dataset. This is just a simplification
for this example. In practice, you would split the training set into train and validation and also
hold back a test set for final model evaluation.

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=4000, verbose=0)

Listing 18.24: Example of fitting the MLP model.

We can evaluate the performance of the model on the test dataset and report the result.

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

Listing 18.25: Example of evaluating the MLP model.

Finally, we will plot the loss and accuracy of the model on both the train and test set each
epoch. If the model does indeed overfit the training dataset, we would expect the line plot of
loss (and accuracy) on the training set to continue to increase and the test set to rise and then
fall again as the model learns statistical noise in the training dataset.

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 18.26: Example of plotting learning curves for the MLP model.

We can tie all of these pieces together; the complete example is listed below.

18.3. Early Stopping Case Study 357

mlp overfit on the moons dataset

from sklearn.datasets import make_moons

from keras.layers import Dense

from keras.models import Sequential

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_moons(n_samples=100, noise=0.2, random_state=1)

split into train and test

n_train = 30

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(500, input_dim=2, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=4000, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 18.27: Example of MLP fit on the two moons problem.

Running the example reports the model performance on the train and test datasets. We can
see that the model has better performance on the training dataset than the test dataset, one
possible sign of overfitting.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

Train: 1.000, Test: 0.914

Listing 18.28: Example output fitting an MLP on the two moons problem.

A figure is created showing line plots of the model loss and accuracy on the train and test
sets. We can see that expected shape of an overfit model where test accuracy increases to a
point and then begins to decrease again. Reviewing the figure, we can also see flat spots in
the ups and downs in the validation loss. Any early stopping will have to account for these
behaviors. We would also expect that a good time to stop training might be around epoch 800.

18.3. Early Stopping Case Study 358

Figure 18.2: Line Plots of Loss on Train and Test Datasets While Training Showing an Overfit
Model.

18.3.3 Overfit MLP With Early Stopping

We can update the example and add very simple early stopping. As soon as the loss of the
model begins to increase on the test dataset, we will stop training. First, we can define the
EarlyStopping callback.

simple early stopping

es = EarlyStopping(monitor='val_loss', mode='min', verbose=1)

Listing 18.29: Example of defining an early stopping callback for the MLP.

We can then update the call to the fit() function and specify a list of callbacks via the
callback argument.

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=4000, verbose=0,

callbacks=[es])

Listing 18.30: Example of fitting the MLP with the early stopping callback.

The complete example with the addition of simple early stopping is listed below.

mlp overfit on the moons dataset with simple early stopping

18.3. Early Stopping Case Study 359

from sklearn.datasets import make_moons

from keras.models import Sequential

from keras.layers import Dense

from keras.callbacks import EarlyStopping

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_moons(n_samples=100, noise=0.2, random_state=1)

split into train and test

n_train = 30

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(500, input_dim=2, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

simple early stopping

es = EarlyStopping(monitor='val_loss', mode='min', verbose=1)

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=4000, verbose=0,

callbacks=[es])

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 18.31: Example of MLP with early stopping fit on the two moons problem.

Running the example reports the model performance on the train and test datasets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

We can also see that the callback stopped training at epoch 219. This is too early as we
would expect an early stop to be around epoch 800. This is also highlighted by the classification
accuracy on both the train and test sets, which is worse than no early stopping.

Epoch 00219: early stopping

Train: 0.967, Test: 0.814

Listing 18.32: Example output fitting an MLP with early stopping on the two moons problem.

18.3. Early Stopping Case Study 360

Reviewing the line plot of train and test loss, we can indeed see that training was stopped
at the point when validation loss began to plateau for the first time.

Figure 18.3: Line Plot of Train and Test Loss During Training With Simple Early Stopping.

We can improve the trigger for early stopping by waiting a while before stopping. This can
be achieved by setting the patience argument. In this case, we will wait 200 epochs before
training is stopped. Specifically, this means that we will allow training to continue for up to an
additional 200 epochs after the point that validation loss started to degrade, giving the training
process an opportunity to get across flat spots or find some additional improvement.

patient early stopping

es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=200)

Listing 18.33: Example of fitting the MLP with patient early stopping.

The complete example with this change is listed below.

mlp overfit on the moons dataset with patient early stopping

from sklearn.datasets import make_moons

from keras.models import Sequential

from keras.layers import Dense

from keras.callbacks import EarlyStopping

from matplotlib import pyplot

generate 2d classification dataset

18.3. Early Stopping Case Study 361

X, y = make_moons(n_samples=100, noise=0.2, random_state=1)

split into train and test

n_train = 30

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(500, input_dim=2, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

patient early stopping

es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=200)

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=4000, verbose=0,

callbacks=[es])

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 18.34: Example of MLP with patient early stopping fit on the two moons problem.

Running the example, we can see that training was stopped much later, in this case just
before epoch 1,000.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

We can also see that the performance on the test dataset is better than not using any early
stopping.

Epoch 00986: early stopping

Train: 1.000, Test: 0.943

Listing 18.35: Example output fitting an MLP with patient early stopping on the two moons
problem.

Reviewing the line plot of loss during training, we can see that the patience allowed the
training to progress past some small flat and bad spots.

18.3. Early Stopping Case Study 362

Figure 18.4: Line Plot of Train and Test Loss During Training With Patient Early Stopping.

We can also see that test loss started to increase again in the last approximately 100 epochs.
This means that although the performance of the model has improved, we may not have the
best performing or most stable model at the end of training. We can address this by using
a ModelChecckpoint callback. In this case, we are interested in saving the model with the
best accuracy on the test dataset. We could also seek the model with the best loss on the test
dataset, but this may or may not correspond to the model with the best accuracy.

This highlights an important concept in model selection. The notion of the best model during
training may conflict when evaluated using different performance measures. Try to choose
models based on the metric by which they will be evaluated and presented in the domain. In a
balanced binary classification problem, this will most likely be classification accuracy. Therefore,
we will use accuracy on the validation in the ModelCheckpoint callback to save the best model
observed during training.

mc = ModelCheckpoint('best_model.h5', monitor='val_acc', mode='max', verbose=1,

save_best_only=True)

Listing 18.36: Example of a model checkpoint callback for the MLP with early stopping.

During training, the entire model will be saved to the file best model.h5 only when accuracy
on the validation dataset improves overall across the entire training process. A verbose output
will also inform us as to the epoch and accuracy value each time the model is saved to the same

18.3. Early Stopping Case Study 363

file (e.g. overwritten). This new additional callback can be added to the list of callbacks when
calling the fit() function.

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=4000, verbose=0,

callbacks=[es, mc])

Listing 18.37: Example of fitting the MLP model with early stopping and model checkpoint
callbacks.

We are no longer interested in the line plot of loss during training; it will be much the
same as the previous run. Instead, we want to load the saved model from file and evaluate its
performance on the test dataset.

load the saved model

saved_model = load_model('best_model.h5')

evaluate the model

_, train_acc = saved_model.evaluate(trainX, trainy, verbose=0)

_, test_acc = saved_model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

Listing 18.38: Example of loading and evaluating the saved model checkpoint.

The complete example with these changes is listed below.

mlp overfit on the moons dataset with patient early stopping and model checkpointing

from sklearn.datasets import make_moons

from keras.models import Sequential

from keras.layers import Dense

from keras.callbacks import EarlyStopping

from keras.callbacks import ModelCheckpoint

from keras.models import load_model

generate 2d classification dataset

X, y = make_moons(n_samples=100, noise=0.2, random_state=1)

split into train and test

n_train = 30

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(500, input_dim=2, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

simple early stopping

es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=200)

mc = ModelCheckpoint('best_model.h5', monitor='val_acc', mode='max', verbose=1,

save_best_only=True)

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=4000, verbose=0,

callbacks=[es, mc])

load the saved model

saved_model = load_model('best_model.h5')

evaluate the model

_, train_acc = saved_model.evaluate(trainX, trainy, verbose=0)

_, test_acc = saved_model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

Listing 18.39: Example of MLP with patient early stopping with model checkpointing fit on the
two moons problem.

18.4. Extensions 364

Running the example, we can see the verbose output from the ModelCheckpoint callback
for both when a new best model is saved and from when no improvement was observed. We can
see that the best model was observed at epoch 879 during this run.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

Again, we can see that early stopping continued patiently until after epoch 1,000. Note that
epoch 880 + a patience of 200 is not epoch 1,044. Recall that early stopping is monitoring loss
on the validation dataset and that the model checkpoint is saving models based on accuracy.
As such, the patience of early stopping started at an epoch other than 880.

...

Epoch 00878: val_acc did not improve from 0.92857

Epoch 00879: val_acc improved from 0.92857 to 0.94286, saving model to best_model.h5

Epoch 00880: val_acc did not improve from 0.94286

...

Epoch 01042: val_acc did not improve from 0.94286

Epoch 01043: val_acc did not improve from 0.94286

Epoch 01044: val_acc did not improve from 0.94286

Epoch 01044: early stopping

Train: 1.000, Test: 0.943

Listing 18.40: Example output fitting an MLP with patient early stopping with model
checkpointing on the two moons problem.

In this case, we don’t see any further improvement in model accuracy on the test dataset.
Nevertheless, we have followed a good practice. Why not monitor validation accuracy for early
stopping? This is a good question. The main reason is that accuracy is a coarse measure
of model performance during training and that loss provides more nuance when using early
stopping with classification problems. The same measure may be used for early stopping and
model checkpointing in the case of regression, such as mean squared error.

18.4 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Use Accuracy. Update the example to monitor accuracy on the test dataset rather than
loss, and plot learning curves showing accuracy.

� Use True Validation Set. Update the example to split the training set into train and
validation sets, then evaluate the model on the test dataset.

� Regression Example. Create a new example of using early stopping to address overfitting
on a simple regression problem and monitoring mean squared error.

If you explore any of these extensions, I’d love to know.

18.5 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

18.5. Further Reading 365

18.5.1 Books

� Section 7.8: Early Stopping, Deep Learning, 2016.
https://amzn.to/2NJW3gE

� Section 5.5.2: Early stopping, Pattern Recognition and Machine Learning, 2006.
https://amzn.to/2Q2rEeP

� Section 16.1: Early Stopping, Neural Smithing: Supervised Learning in Feedforward
Artificial Neural Networks, 1999.
https://amzn.to/2poqOxc

18.5.2 Papers

� Early Stopping — But When?, 2002.
https://link.springer.com/chapter/10.1007/3-540-49430-8_3

� Improving model selection by nonconvergent methods, 1993.
https://www.sciencedirect.com/science/article/pii/S0893608005801224

� Automatic early stopping using cross validation: quantifying the criteria, 1997.
https://www.sciencedirect.com/science/article/pii/S0893608098000100

� Understanding deep learning requires rethinking generalization, 2017.
https://arxiv.org/abs/1611.03530

18.5.3 APIs

� H5Py Installation Documentation.
http://docs.h5py.org/en/latest/build.html

� Keras Regularizers API.
https://keras.io/regularizers/

� Keras Core Layers API.
https://keras.io/layers/core/

� Keras Convolutional Layers API.
https://keras.io/layers/convolutional/

� Keras Recurrent Layers API.
https://keras.io/layers/recurrent/

� Keras Callbacks API.
https://keras.io/callbacks/

� sklearn.datasets.make moons API.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.

html

https://amzn.to/2NJW3gE
https://amzn.to/2Q2rEeP
https://amzn.to/2poqOxc
https://link.springer.com/chapter/10.1007/3-540-49430-8_3
https://www.sciencedirect.com/science/article/pii/S0893608005801224
https://www.sciencedirect.com/science/article/pii/S0893608098000100
https://arxiv.org/abs/1611.03530
http://docs.h5py.org/en/latest/build.html
https://keras.io/regularizers/
https://keras.io/layers/core/
https://keras.io/layers/convolutional/
https://keras.io/layers/recurrent/
https://keras.io/callbacks/
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html

18.6. Summary 366

18.5.4 Articles

� Early stopping, Wikipedia.
https://en.wikipedia.org/wiki/Early_stopping

18.6 Summary

In this tutorial, you discovered that stopping the training of neural network early before it has
overfit the training dataset can reduce overfitting and improve the generalization of deep neural
networks. Specifically, you learned:

� The challenge of training a neural network long enough to learn the mapping, but not so
long that it overfits the training data.

� Model performance on a holdout validation dataset can be monitored during training and
training stopped when generalization error starts to increase.

� The use of early stopping requires the selection of a performance measure to monitor, a
trigger for stopping training, and a selection of the model weights to use.

18.6.1 Next

This is the end of the Part on Generalization. In the next Part, you will discover techniques for
improving the predictions from your neural network model.

https://en.wikipedia.org/wiki/Early_stopping

Part III

Better Predictions

367

Overview

In this part you will discover how to make better predictions with final models using model
ensembles. After reading the chapters in this part, you will know:

� How to reduce the variance of final models and improve the skill of predictions with model
ensembles (Chapter 19).

� How to average the predictions from multiple models (Chapter 20).

� How to weight the predictions from multiple models in proportion to the trust in each
model (Chapter 21).

� How to develop ensemble members from the resampling methods used to estimate model
performance (Chapter 22).

� How to develop ensemble members from contiguous epochs from a single model training
run (Chapter 23).

� How to develop ensemble members from the trough of an aggressive cyclical learning rate
schedule across a single training run (Chapter 24).

� How to develop a new model to learn how to best combine the predictions from multiple
ensemble members (Chapter 25).

� How to combine the model parameters or weights instead of the predictions from multiple
ensemble members (Chapter 26).

368

Chapter 19

Reduce Model Variance with Ensemble
Learning

Deep learning neural networks are nonlinear methods. They offer increased flexibility and can
scale in proportion to the amount of training data available. A downside of this flexibility
is that they learn via a stochastic training algorithm which means that they are sensitive to
the specifics of the training data and random initialization, and may find a different set of
weights each time they are trained, which in turn produce different predictions. Generally, this
is referred to as neural networks having a high variance and it can be frustrating when trying to
develop a final model to use for making predictions.

A successful approach to reducing the variance of neural network models is to train multiple
models instead of a single model and to combine the predictions from these models. This is
called ensemble learning and not only reduces the variance of predictions but also can result in
predictions that are better than any single model. In this tutorial, you will discover methods for
deep learning neural networks to reduce variance and improve prediction performance. After
reading this tutorial, you will know:

� Neural network models are nonlinear and have a high variance, which can be frustrating
when preparing a final model for making predictions.

� Ensemble learning combines the predictions from multiple neural network models to reduce
the variance of predictions and reduce generalization error.

� Techniques for ensemble learning can be grouped by the element that is varied, such as
training data, the model, and how predictions are combined.

Let’s get started.

19.1 High Variance of Neural Network Models

Training deep neural networks can be very computationally expensive. Very deep networks
trained on millions of examples may take days, weeks, and sometimes months to train.

Google’s baseline model [...] was a deep convolutional neural network [...] that had
been trained for about six months using asynchronous stochastic gradient descent
on a large number of cores.

369

19.2. Reduce Variance Using an Ensemble of Models 370

— Distilling the Knowledge in a Neural Network, 2015.

After the investment of so much time and resources, there is no guarantee that the final
model will have low generalization error, performing well on examples not seen during training.

... train many different candidate networks and then to select the best, [...] and to
discard the rest. There are two disadvantages with such an approach. First, all of
the effort involved in training the remaining networks is wasted. Second, [...] the
network which had best performance on the validation set might not be the one
with the best performance on new test data.

— Pages 364-365, Neural Networks for Pattern Recognition, 1995.

Neural network models are a nonlinear method. This means that they can learn complex
nonlinear relationships in the data. A downside of this flexibility is that they are sensitive to
initial conditions, both in terms of the initial random weights and in terms of the statistical
noise in the training dataset. This stochastic nature of the learning algorithm means that each
time a neural network model is trained, it may learn a slightly (or dramatically) different version
of the mapping function from inputs to outputs, that in turn will have different performance
on the training and holdout datasets. As such, we can think of a neural network as a method
that has a low bias and high variance. Even when trained on large datasets to satisfy the high
variance, having any variance in a final model that is intended to be used to make predictions
can be frustrating.

19.2 Reduce Variance Using an Ensemble of Models

A solution to the high variance of neural networks is to train multiple models and combine their
predictions. The idea is to combine the predictions from multiple good but different models. A
good model has skill, meaning that its predictions are better than random chance. Importantly,
the models must be good in different ways; they must make different prediction errors.

The reason that model averaging works is that different models will usually not
make all the same errors on the test set.

— Page 256, Deep Learning, 2016.

Combining the predictions from multiple neural networks adds a bias that in turn counters
the variance of a single trained neural network model. The results are predictions that are less
sensitive to the specifics of the training data, choice of training scheme, and the serendipity of a
single training run. In addition to reducing the variance in the prediction, the ensemble can
also result in better predictions than any single best model.

... the performance of a committee can be better than the performance of the best
single network used in isolation.

— Page 365, Neural Networks for Pattern Recognition, 1995.

19.3. How to Ensemble Neural Network Models 371

This approach belongs to a general class of methods called ensemble learning that describes
methods that attempt to make the best use of the predictions from multiple models prepared
for the same problem. Generally, ensemble learning involves training more than one network on
the same dataset, then using each of the trained models to make a prediction before combining
the predictions in some way to make a final outcome or prediction.

In fact, ensembling of models is a standard approach in applied machine learning to ensure
that the most stable and best possible prediction is made. For example, Alex Krizhevsky, et al.
in their famous 2012 paper titled Imagenet classification with deep convolutional neural networks
that introduced very deep convolutional neural networks for photo classification (i.e. AlexNet)
used model averaging across multiple well-performing CNN models to achieve state-of-the-art
results at the time. Performance of one model was compared to ensemble predictions averaged
over two, five, and seven different models.

Averaging the predictions of five similar CNNs gives an error rate of 16.4%. [...] Aver-
aging the predictions of two CNNs that were pre-trained [...] with the aforementioned
five CNNs gives an error rate of 15.3%.

Ensembling is also the approach used by winners in machine learning competitions.

Another powerful technique for obtaining the best possible results on a task is model
ensembling. [...] If you look at machine-learning competitions, in particular on
Kaggle, you’ll see that the winners use very large ensembles of models that inevitably
beat any single model, no matter how good.

— Page 264, Deep Learning With Python, 2017.

19.3 How to Ensemble Neural Network Models

Perhaps the oldest and still most commonly used ensembling approach for neural networks
is called a committee of networks. A collection of networks with the same configuration and
different initial random weights is trained on the same dataset. Each model is then used to
make a prediction and the actual prediction is calculated as the average of the predictions. The
number of models in the ensemble is often kept small both because of the computational expense
in training models and because of the diminishing returns in performance from adding more
ensemble members. Ensembles may be as small as three, five, or 10 trained models. The field of
ensemble learning is well studied and there are many variations on this simple theme. It can
be helpful to think of varying each of the three major elements of the ensemble method; for
example:

� Training Data: Vary the choice of data used to train each model in the ensemble.

� Ensemble Models: Vary the choice of the models used in the ensemble.

� Combinations: Vary the choice of the way that outcomes from ensemble members are
combined.

Let’s take a closer look at each element in turn.

19.3. How to Ensemble Neural Network Models 372

19.3.1 Varying Training Data

The data used to train each member of the ensemble can be varied. The simplest approach
would be to use k-fold cross-validation to estimate the generalization error of the chosen model
configuration. In this procedure, k different models are trained on k different subsets of the
training data. These k models can then be saved and used as members of an ensemble. Another
popular approach involves resampling the training dataset with replacement, then training a
network using the resampled dataset. The resampling procedure means that the composition of
each training dataset is different with the possibility of duplicated examples allowing the model
trained on the dataset to have a slightly different expectation of the density of the samples, and
in turn different generalization error.

This approach is called bootstrap aggregation, or bagging for short, and was designed for use
with unpruned decision trees that have high variance and low bias. Typically a large number of
decision trees are used, such as hundreds or thousands, given that they are fast to prepare.

... a natural way to reduce the variance and hence increase the prediction accuracy
of a statistical learning method is to take many training sets from the population,
build a separate prediction model using each training set, and average the resulting
predictions. [...] Of course, this is not practical because we generally do not have
access to multiple training sets. Instead, we can bootstrap, by taking repeated
samples from the (single) training data set.

— Pages 216-317, An Introduction to Statistical Learning with Applications in R, 2013.

An equivalent approach might be to use a smaller subset of the training dataset without
regularization to allow faster training and some overfitting. The desire for slightly under-
optimized models applies to the selection of ensemble members more generally.

... the members of the committee should not individually be chosen to have optimal
trade-off between bias and variance, but should have relatively smaller bias, since
the extra variance can be removed by averaging.

— Page 366, Neural Networks for Pattern Recognition, 1995.

Other approaches may involve selecting a random subspace of the input space to allocate
to each model, such as a subset of the hyper-volume in the input space or a subset of input
features.

19.3.2 Varying Models

Training the same under-constrained model on the same data with different initial conditions
will result in different models given the difficulty of the problem, and the stochastic nature of
the learning algorithm. This is because the optimization problem that the network is trying
to solve is so challenging that there are many good and different solutions to map inputs to
outputs.

19.3. How to Ensemble Neural Network Models 373

Most neural network algorithms achieve sub-optimal performance specifically due to
the existence of an overwhelming number of sub-optimal local minima. If we take a
set of neural networks which have converged to local minima and apply averaging we
can construct an improved estimate. One way to understand this fact is to consider
that, in general, networks which have fallen into different local minima will perform
poorly in different regions of feature space and thus their error terms will not be
strongly correlated.

— When networks disagree: Ensemble methods for hybrid neural networks, 1995.

This may result in a reduced variance, but may not dramatically improve generalization error.
The errors made by the models may still be too highly correlated because the models all have
learned similar mapping functions. An alternative approach might be to vary the configuration
of each ensemble model, such as using networks with different capacity (e.g. number of layers
or nodes) or models trained under different conditions (e.g. learning rate or regularization).
The result may be an ensemble of models that have learned a more heterogeneous collection
of mapping functions and in turn have a lower correlation in their predictions and prediction
errors.

Differences in random initialization, random selection of minibatches, differences
in hyperparameters, or different outcomes of non-deterministic implementations of
neural networks are often enough to cause different members of the ensemble to
make partially independent errors.

— Pages 257-258, Deep Learning, 2016.

Such an ensemble of differently configured models can be achieved through the normal
process of developing the network and tuning its hyperparameters. Each model could be saved
during this process and a subset of better models chosen to comprise the ensemble.

Slightly inferiorly trained networks are a free by-product of most tuning algorithms;
it is desirable to use such extra copies even when their performance is significantly
worse than the best performance found. Better performance yet can be achieved
through careful planning for an ensemble classification by using the best available
parameters and training different copies on different subsets of the available database.

— Neural Network Ensembles, 1990.

In cases where a single model may take weeks or months to train, another alternative may
be to periodically save the best model during the training process, called snapshot or checkpoint
models, then select ensemble members among the saved models. This provides the benefits of
having multiple models trained on the same data, although collected during a single training
run.

Snapshot Ensembling produces an ensemble of accurate and diverse models from
a single training process. At the heart of Snapshot Ensembling is an optimization
process which visits several local minima before converging to a final solution. We
take model snapshots at these various minima, and average their predictions at test
time.

19.3. How to Ensemble Neural Network Models 374

— Snapshot Ensembles: Train 1, get M for free, 2017.

A variation on the Snapshot ensemble is to save models from a range of epochs, perhaps
identified by reviewing learning curves of model performance on the train and validation datasets
during training. Ensembles from such contiguous sequences of models are referred to as horizontal
ensembles.

First, networks trained for a relatively stable range of epoch are selected. The
predictions of the probability of each label are produced by standard classifiers [over]
the selected epoch[s], and then averaged.

— Horizontal and vertical ensemble with deep representation for classification, 2013.

A further enhancement of the snapshot ensemble is to systematically vary the optimization
procedure during training to force different solutions (i.e. sets of weights), the best of which can
be saved to checkpoints. This might involve injecting an oscillating amount of noise over training
epochs or oscillating the learning rate during training epochs. A variation of this approach
called Stochastic Gradient Descent with Warm Restarts (SGDR) demonstrated faster learning
and state-of-the-art results for standard photo classification tasks.

Our SGDR simulates warm restarts by scheduling the learning rate to achieve
competitive results [...] roughly two to four times faster. We also achieved new state-
of-the-art results with SGDR, mainly by using even wider [models] and ensembles of
snapshots from SGDR’s trajectory.

— SGDR: Stochastic Gradient Descent with Warm Restarts, 2016.

A benefit of very deep neural networks is that the intermediate hidden layers provide a
learned representation of the low-resolution input data. The hidden layers can output their
internal representations directly, and the output from one or more hidden layers from one very
deep network can be used as input to a new classification model. This is perhaps most effective
when the deep model is trained using an autoencoder model. This type of ensemble is referred
to as a vertical ensemble.

This method ensembles a series of classifiers whose inputs are the representation
of intermediate layers. A lower error rate is expected because these features seem
diverse.

— Horizontal and vertical ensemble with deep representation for classification, 2013.

19.3.3 Varying Combinations

The simplest way to combine the predictions is to calculate the average of the predictions from
the ensemble members. This can be improved slightly by weighting the predictions from each
model, where the weights are optimized using a hold-out validation dataset. This provides a
weighted average ensemble that is sometimes called model blending.

19.4. Summary of Ensemble Techniques 375

... we might expect that some members of the committee will typically make better
predictions than other members. We would therefore expect to be able to reduce
the error still further if we give greater weight to some committee members than to
others. Thus, we consider a generalized committee prediction given by a weighted
combination of the predictions of the members ...

— Page 367, Neural Networks for Pattern Recognition, 1995.

One further step in complexity involves using a new model to learn how to best combine the
predictions from each ensemble member. The model could be a simple linear model (e.g. much
like the weighted average), but could be a sophisticated nonlinear method that also considers
the specific input sample in addition to the predictions provided by each member. This general
approach of learning a new model is called model stacking, or stacked generalization.

Stacked generalization works by deducing the biases of the generalizer(s) with respect
to a provided learning set. This deduction proceeds by generalizing in a second
space whose inputs are (for example) the guesses of the original generalizers when
taught with part of the learning set and trying to guess the rest of it, and whose
output is (for example) the correct guess. [...] When used with a single generalizer,
stacked generalization is a scheme for estimating (and then correcting for) the error
of a generalizer which has been trained on a particular learning set and then asked
a particular question.

— Stacked generalization, 1992.

There are more sophisticated methods for stacking models, such as boosting where ensemble
members are added one at a time in order to correct the mistakes of prior models. The added
complexity means this approach is less often used with large neural network models. Another
combination that is a little bit different is to combine the weights of multiple neural networks
with the same structure. The weights of multiple networks can be averaged, to hopefully result in
a new single model that has better overall performance than any original model. This approach
is called model weight averaging.

... suggests it is promising to average these points in weight space, and use a network
with these averaged weights, instead of forming an ensemble by averaging the outputs
of networks in model space

— Averaging Weights Leads to Wider Optima and Better Generalization, 2018.

19.4 Summary of Ensemble Techniques

In summary, we can list some of the more common and interesting ensemble methods for neural
networks organized by each element of the method that can be varied, as follows:

� Varying Training Data (Chapter 22)

– k-fold Cross-Validation Ensemble.

19.5. Further Reading 376

– Bootstrap Aggregation (bagging) Ensemble.

– Random Training Subset Ensemble.

� Varying Models

– Multiple Training Run Ensemble (Chapter 20 and Chapter 21).

– Hyperparameter Tuning Ensemble.

– Snapshot Ensemble (Chapter 24).

– Horizontal Epochs Ensemble (Chapter 23).

– Vertical Representational Ensemble.

� Varying Combinations

– Model Averaging Ensemble (Chapter 20).

– Weighted Average Ensemble (Chapter 21).

– Stacked Generalization (stacking) Ensemble (Chapter 25).

– Boosting Ensemble.

– Model Weight Averaging Ensemble (Chapter 26).

There is no single best ensemble method; perhaps experiment with a few approaches or let
the constraints of your project guide you.

19.5 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

19.5.1 Books

� Section 9.6 Committees of networks, Neural Networks for Pattern Recognition, 1995.
https://amzn.to/2I9gNMP

� Section 7.11 Bagging and Other Ensemble Methods, Deep Learning, 2016.
https://amzn.to/2NJW3gE

� Section 7.3.3 Model ensembling, Deep Learning With Python, 2017.
https://amzn.to/2NJq1pf

� Section 8.2 Bagging, Random Forests, Boosting, An Introduction to Statistical Learning
with Applications in R, 2013.
https://amzn.to/2zxHR5E

https://amzn.to/2I9gNMP
https://amzn.to/2NJW3gE
https://amzn.to/2NJq1pf
https://amzn.to/2zxHR5E

19.6. Summary 377

19.5.2 Papers

� Neural Network Ensembles, 1990.
https://ieeexplore.ieee.org/abstract/document/58871/

� Neural Network Ensembles, Cross Validation, and Active Learning, 1994.
https://dl.acm.org/citation.cfm?id=2998716

� When networks disagree: Ensemble methods for hybrid neural networks, 1995.
https://www.worldscientific.com/doi/abs/10.1142/9789812795885_0025

� Snapshot Ensembles: Train 1, get M for free, 2017.
https://arxiv.org/abs/1704.00109

� SGDR: Stochastic Gradient Descent with Warm Restarts, 2016.
https://arxiv.org/abs/1608.03983

� Horizontal and vertical ensemble with deep representation for classification, 2013.
https://arxiv.org/abs/1306.2759

� Stacked generalization, 1992.
https://www.sciencedirect.com/science/article/pii/S0893608005800231

� Averaging Weights Leads to Wider Optima and Better Generalization, 2018.
https://arxiv.org/abs/1803.05407

19.5.3 Articles

� Ensemble learning, Wikipedia.
https://en.wikipedia.org/wiki/Ensemble_learning

� Bootstrap aggregating, Wikipedia.
https://en.wikipedia.org/wiki/Bootstrap_aggregating

� Boosting (machine learning), Wikipedia.
https://en.wikipedia.org/wiki/Boosting_(machine_learning)

19.6 Summary

In this tutorial, you discovered ensemble methods for deep learning neural networks to reduce
variance and improve prediction performance. Specifically, you learned:

� Neural network models are nonlinear and have a high variance, which can be frustrating
when preparing a final model for making predictions.

� Ensemble learning combines the predictions from multiple neural network models to reduce
the variance of predictions and reduce generalization error.

� Techniques for ensemble learning can be grouped by the element that is varied, such as
training data, the model, and how predictions are combined.

https://ieeexplore.ieee.org/abstract/document/58871/
https://dl.acm.org/citation.cfm?id=2998716
https://www.worldscientific.com/doi/abs/10.1142/9789812795885_0025
https://arxiv.org/abs/1704.00109
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1306.2759
https://www.sciencedirect.com/science/article/pii/S0893608005800231
https://arxiv.org/abs/1803.05407
https://en.wikipedia.org/wiki/Ensemble_learning
https://en.wikipedia.org/wiki/Bootstrap_aggregating
https://en.wikipedia.org/wiki/Boosting_(machine_learning)

19.6. Summary 378

19.6.1 Next

In the next tutorial, you will discover how to average the predictions made by multiple neural
network models.

Chapter 20

Combine Models From Multiple Runs
with Model Averaging Ensemble

Deep learning neural network models are highly flexible nonlinear algorithms capable of learning
a near infinite number of mapping functions. A frustration with this flexibility is the high
variance in a final model. The same neural network model trained on the same dataset may
find one of many different possible good enough solutions each time it is run. Model averaging
is an ensemble learning technique that reduces the variance in a final neural network model,
sacrificing spread (and possibly better scores) in the performance of the model for a confidence
in what performance to expect from the model. In this tutorial, you will discover how to develop
a model averaging ensemble in Keras to reduce the variance in a final model. After completing
this tutorial, you will know:

� Model averaging is an ensemble learning technique that can be used to reduce the expected
variance of deep learning neural network models.

� How to implement model averaging in Keras for classification and regression predictive
modeling problems.

� How to work through a multiclass classification problem and use model averaging to reduce
the variance of the final model.

Let’s get started.

20.1 Model Averaging Ensemble

Deep learning neural network models are nonlinear methods that learn via a stochastic training
algorithm. This means that they are highly flexible, capable of learning complex relationships
between variables and approximating any mapping function, given enough resources. A downside
of this flexibility is that the models suffer high variance. This means that the models are highly
dependent on the specific training data used to train the model and on the initial conditions
(random initial weights) and serendipity during the training process. The result is a final model
that makes different predictions each time the same model configuration is trained on the same
dataset.

379

20.2. Ensembles in Keras 380

This can be frustrating when training a final model for use in making predictions on new
data, such as operationally or in a machine learning competition. The high variance of the
approach can be addressed by training multiple models for the problem and combining their
predictions. This approach is called model averaging and belongs to a family of techniques
called ensemble learning.

20.2 Ensembles in Keras

The simplest way to develop a model averaging ensemble in Keras is to train multiple models
on the same dataset then combine the predictions from each of the trained models.

20.2.1 Train Multiple Models

Training multiple models may be resource intensive, depending on the size of the model and the
size of the training data. You may have to train the models sequentially on the same hardware.
For very large models, it may be worth training the models in parallel using cloud infrastructure
such as Amazon Web Services.

The number of models required for the ensemble may vary based on the complexity of the
problem and model. A benefit of the approach is that you can continue to create models, add
them to the ensemble, and evaluate their impact on the performance by making predictions on
a holdout test set. For small models, you can train the models sequentially and keep them in
memory for use in your experiment. For example:

...

train models and keep them in memory

n_members = 10

models = list()

for _ in range(n_members):

define and fit model

model = ...

store model in memory as ensemble member

models.add(models)

...

Listing 20.1: Example of training multiple models in memory.

For large models, perhaps trained on different hardware, you can save each model to file.

...

train models and keep them to file

n_members = 10

for i in range(n_members):

define and fit model

model = ...

save model to file

filename = 'model_' + str(i + 1) + '.h5'

model.save(filename)

print('Saved: %s' % filename)

...

Listing 20.2: Example of training multiple models and saving them to file.

20.2. Ensembles in Keras 381

Models can then be loaded later. Small models can all be loaded into memory at the same
time, whereas very large models may have to be loaded one at a time to make a prediction, then
later to have the predictions combined.

from keras.models import load_model

...

load pre-trained ensemble members

n_members = 10

models = list()

for i in range(n_members):

load model

filename = 'model_' + str(i + 1) + '.h5'

model = load_model(filename)

store in memory

models.append(model)

...

Listing 20.3: Example of loading multiple models from file.

20.2.2 Combine Predictions

Once the models have been prepared, each model can be used to make a prediction and the
predictions can be combined. In the case of a regression problem where each model is predicting
a real-valued output, the values can be collected and the average calculated.

...

make predictions

yhats = [model.predict(testX) for model in models]

yhats = array(yhats)

calculate average

outcomes = mean(yhats)

Listing 20.4: Example of averaging predictions for a regression problem.

In the case of a classification problem, there are two options: to combine the predicted class
labels or to combine the predicted probabilities. The class labels can be combined by calculating
the statistical mode (most frequent value), for example:

...

make predictions

yhats = [model.predict_classes(testX) for model in models]

yhats = array(yhats)

calculate mode

outcomes, _ = mode(yhats)

Listing 20.5: Example of calculating the mode for a classification problem.

A downside of this approach is that for small ensembles or problems with a large number of
classes, the sample of predictions may not be large enough for the mode to be meaningful. In
the case of a binary classification problem, a sigmoid activation function is used on the output
layer and the average of the predicted probabilities can be calculated much like a regression
problem. In the case of a multiclass classification problem with more than two classes, a softmax
activation function is used on the output layer and the sum of the probabilities for each predicted
class can be calculated before taking the argmax to get the class value, for example:

20.3. Model Averaging Ensemble Case Study 382

...

make predictions

yhats = [model.predict(testX) for model in models]

yhats = array(yhats)

sum across ensembles

summed = numpy.sum(yhats, axis=0)

argmax across classes

outcomes = argmax(summed, axis=1)

Listing 20.6: Example of calculating the argmax for class probabilities.

These approaches for combining predictions of Keras models will work just as well for
Multilayer Perceptron, Convolutional, and Recurrent Neural Networks. Now that we know how
to average predictions from multiple neural network models in Keras, let’s work through a case
study.

20.3 Model Averaging Ensemble Case Study

In this section, we will demonstrate how to use the model average ensemble to reduce the
variance of an MLP on a simple multiclass classification problem. This example provides a
template for applying the model average ensemble to your own neural network for classification
and regression problems.

20.3.1 Multiclass Classification Problem

We will use a small multiclass classification problem as the basis to demonstrate a model
averaging ensemble. The scikit-learn class provides the make blobs() function that can be
used to create a multiclass classification problem with the prescribed number of samples, input
variables, classes, and variance of samples within a class. We use this problem with 500 examples,
with two input variables (to represent the x and y coordinates of the points) and a standard
deviation of 2.0 for points within each group. We will use the same random state (seed for the
pseudorandom number generator) to ensure that we always get the same 500 points.

generate 2d classification dataset

X, y = make_blobs(n_samples=500, centers=3, n_features=2, cluster_std=2, random_state=2)

Listing 20.7: Example of generating samples for the blobs problem.

The results are the input and output elements of a dataset that we can model. In order to
get a feeling for the complexity of the problem, we can graph each point on a two-dimensional
scatter plot and color each point by class value. The complete example is listed below.

scatter plot of blobs dataset

from sklearn.datasets.samples_generator import make_blobs

from matplotlib import pyplot

from numpy import where

generate 2d classification dataset

X, y = make_blobs(n_samples=500, centers=3, n_features=2, cluster_std=2, random_state=2)

scatter plot for each class value

for class_value in range(3):

select indices of points with the class label

row_ix = where(y == class_value)

20.3. Model Averaging Ensemble Case Study 383

scatter plot for points with a different color

pyplot.scatter(X[row_ix, 0], X[row_ix, 1])

show plot

pyplot.show()

Listing 20.8: Example of plotting samples from the blobs problem.

Running the example creates a scatter plot of the entire dataset. We can see that the
standard deviation of 2.0 means that the classes are not linearly separable (separable by a line)
causing many ambiguous points. This is desirable as it means that the problem is non-trivial
and will allow a neural network model to find many different good enough candidate solutions
resulting in a high variance.

Figure 20.1: Scatter Plot of Blobs Dataset with Three Classes and Points Colored by Class
Value.

20.3.2 MLP Model for Multiclass Classification

Now that we have defined a problem, we can define a model to address it. We will define a
model that is perhaps under-constrained and not tuned to the problem. This is intentional to
demonstrate the high variance of a neural network model seen on truly large and challenging
supervised learning problems. The problem is a multiclass classification problem, and we will
model it using a softmax activation function on the output layer. This means that the model

20.3. Model Averaging Ensemble Case Study 384

will predict a vector with 3 elements with the probability that the sample belongs to each of the
3 classes. Therefore, the first step is to one hot encode the class values.

y = to_categorical(y)

Listing 20.9: Example of one hot encoding the target variable.

Next, we must split the dataset into training and test sets. We will use the test set both
to evaluate the performance of the model and to plot its performance during training with a
learning curve. We will use 30% of the data for training and 70% for the test set. This is an
example of a challenging problem where we have more unlabeled examples than we do labeled
examples.

split into train and test

n_train = int(0.3 * X.shape[0])

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

Listing 20.10: Example of preparing the dataset for modeling.

Next, we can define and compile the model. The model will expect samples with two
input variables. The model then has a single hidden layer with 15 nodes and a rectified linear
activation function, then an output layer with 3 nodes to predict the probability of each of the
3 classes and a softmax activation function. Because the problem is multiclass, we will use the
categorical cross-entropy loss function to optimize the model and the efficient Adam flavor of
stochastic gradient descent.

define model

model = Sequential()

model.add(Dense(15, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

Listing 20.11: Example of defining the MLP model.

The model is fit for 200 training epochs and we will evaluate the model each epoch on the
test set, using the test set as a validation set.

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200, verbose=0)

Listing 20.12: Example of fitting the MLP model.

At the end of the run, we will evaluate the performance of the model on both the train and
the test sets.

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

Listing 20.13: Example of evaluate the MLP model.

Then finally, we will plot learning curves of the model loss and accuracy over each training
epoch on both the training and test dataset.

20.3. Model Averaging Ensemble Case Study 385

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 20.14: Example of plotting model performance.

The complete example is listed below.

fit high variance mlp on blobs classification problem

from sklearn.datasets.samples_generator import make_blobs

from keras.utils import to_categorical

from keras.models import Sequential

from keras.layers import Dense

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_blobs(n_samples=500, centers=3, n_features=2, cluster_std=2, random_state=2)

y = to_categorical(y)

split into train and test

n_train = int(0.3 * X.shape[0])

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(15, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

20.3. Model Averaging Ensemble Case Study 386

Listing 20.15: Example of fitting an MLP on the blobs problem.

Running the example first prints the performance of the final model on the train and test
datasets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that the model achieved about 84% accuracy on the training dataset
and about 76 % accuracy on the test dataset; not terrible.

Train: 0.847, Test: 0.763

Listing 20.16: Example output fitting an MLP on the blobs problem.

A line plot is also created showing the learning curves for the model accuracy on the train
and test sets over each training epoch. We can see that the model is not really overfit, but
is perhaps a little underfit and may benefit from an increase in capacity, more training, and
perhaps some regularization. We intentionally hold back all of these improvements to force high
variance for our case study.

Figure 20.2: Line Plot Learning Curves of Model Accuracy on Train and Test Dataset Over
Each Training Epoch.

20.3. Model Averaging Ensemble Case Study 387

20.3.3 High Variance of MLP Model

It is important to demonstrate that the model indeed has a variance in its prediction. We
can demonstrate this by repeating the fit and evaluation of the same model configuration on
the same dataset and summarizing the final performance of the model. To do this, we first
split the fit and evaluation of the model out as a function that we can call repeatedly. The
evaluate model() function below takes the train and test dataset, fits a model, then evaluates
it, retuning the accuracy of the model on the test dataset.

fit and evaluate a neural net model on the dataset

def evaluate_model(trainX, trainy, testX, testy):

define model

model = Sequential()

model.add(Dense(15, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

model.fit(trainX, trainy, epochs=200, verbose=0)

evaluate the model

_, test_acc = model.evaluate(testX, testy, verbose=0)

return test_acc

Listing 20.17: Example of a function to fit and evaluate an MLP model.

We can call this function 30 times, saving the test accuracy scores.

repeated evaluation

n_repeats = 30

scores = list()

for _ in range(n_repeats):

score = evaluate_model(trainX, trainy, testX, testy)

print('> %.3f' % score)

scores.append(score)

Listing 20.18: Example of repeated evaluation of a model.

Once collected, we can summarize the distribution scores, first in terms of the mean and
standard deviation, assuming the distribution is Gaussian, which is very reasonable.

summarize the distribution of scores

print('Scores Mean: %.3f, Standard Deviation: %.3f' % (mean(scores), std(scores)))

Listing 20.19: Example of summarizing scores from repeated evaluation.

We can then summarize the distribution both as a histogram to show the shape of the
distribution and as a box and whisker plot to show the spread and body of the distribution.

histogram of distribution

pyplot.hist(scores, bins=10)

pyplot.show()

boxplot of distribution

pyplot.boxplot(scores)

pyplot.show()

Listing 20.20: Example of plotting the distribution of scores from repeated evaluation.

The complete example of summarizing the variance of the MLP model on the chosen blobs
dataset is listed below.

20.3. Model Averaging Ensemble Case Study 388

demonstrate high variance of mlp model on blobs classification problem

from sklearn.datasets.samples_generator import make_blobs

from keras.utils import to_categorical

from keras.models import Sequential

from keras.layers import Dense

from numpy import mean

from numpy import std

from matplotlib import pyplot

fit and evaluate a neural net model on the dataset

def evaluate_model(trainX, trainy, testX, testy):

define model

model = Sequential()

model.add(Dense(15, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

model.fit(trainX, trainy, epochs=200, verbose=0)

evaluate the model

_, test_acc = model.evaluate(testX, testy, verbose=0)

return test_acc

generate 2d classification dataset

X, y = make_blobs(n_samples=500, centers=3, n_features=2, cluster_std=2, random_state=2)

y = to_categorical(y)

split into train and test

n_train = int(0.3 * X.shape[0])

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

repeated evaluation

n_repeats = 30

scores = list()

for _ in range(n_repeats):

score = evaluate_model(trainX, trainy, testX, testy)

print('> %.3f' % score)

scores.append(score)

summarize the distribution of scores

print('Scores Mean: %.3f, Standard Deviation: %.3f' % (mean(scores), std(scores)))

histogram of distribution

pyplot.hist(scores, bins=10)

pyplot.show()

boxplot of distribution

pyplot.boxplot(scores)

pyplot.show()

Listing 20.21: Example of repeated evaluation of an MLP on the blobs problem.

Running the example first prints the accuracy of each model on the test set, finishing with
the mean and standard deviation of the sample of accuracy scores.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that the average of the sample is 77% with a standard deviation of
about 1.4%. Assuming a Gaussian distribution, we would expect 99% of accuracy scores to fall

20.3. Model Averaging Ensemble Case Study 389

between about 73% and 81% (i.e. 3 standard deviations above and below the mean). We can
take the standard deviation of the accuracy of the model on the test set as an estimate for the
variance of the predictions made by the model.

...

> 0.751

> 0.789

> 0.791

> 0.766

> 0.766

Scores Mean: 0.770, Standard Deviation: 0.014

Listing 20.22: Example output from repeated evaluation an MLP on the blobs problem.

A histogram of the accuracy scores is also created, showing a very rough Gaussian shape,
perhaps with a longer right tail. A large sample and a different number of bins on the plot
might better expose the true underlying shape of the distribution.

Figure 20.3: Histogram of Model Test Accuracy Over 30 Repeats.

A box and whisker plot is also created showing a line at the median at about 76.5% accuracy
on the test set and the interquartile range or middle 50% of the samples between about 78%
and 76%.

20.3. Model Averaging Ensemble Case Study 390

Figure 20.4: Box and Whisker Plot of Model Test Accuracy Over 30 Repeats.

The analysis of the sample of test scores clearly demonstrates a variance in the performance
of the same model trained on the same dataset. A spread of likely scores of about 8 percentage
points (81% to 73%) on the test set could reasonably be considered large, e.g. a high variance
result.

20.3.4 Model Averaging Ensemble

We can use model averaging to both reduce the variance of the model and possibly reduce the
generalization error of the model. Specifically, this would result in a smaller standard deviation
on the holdout test set and a better performance on the training set. We can check both of
these assumptions. First, we must develop a function to prepare and return a fit model on the
training dataset.

fit model on dataset

def fit_model(trainX, trainy):

define model

model = Sequential()

model.add(Dense(15, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

model.fit(trainX, trainy, epochs=200, verbose=0)

20.3. Model Averaging Ensemble Case Study 391

return model

Listing 20.23: Example of a function to return a fit MLP model.

Next, we need a function that can take a list of ensemble members and make a prediction
for an out-of-sample dataset. This could be one or more samples arranged in a two-dimensional
array of samples and input features. Tip: you can use this function yourself for testing ensembles
and for making predictions with ensembles on new data.

make an ensemble prediction for multiclass classification

def ensemble_predictions(members, testX):

make predictions

yhats = [model.predict(testX) for model in members]

yhats = array(yhats)

sum across ensemble members

summed = numpy.sum(yhats, axis=0)

argmax across classes

result = argmax(summed, axis=1)

return result

Listing 20.24: Example of a function for making ensemble predictions.

We don’t know how many ensemble members will be appropriate for this problem. Therefore,
we can perform a sensitivity analysis of the number of ensemble members and how it impacts
test accuracy. This means we need a function that can evaluate a specified number of ensemble
members and return the accuracy of a prediction combined from those members.

evaluate a specific number of members in an ensemble

def evaluate_n_members(members, n_members, testX, testy):

select a subset of members

subset = members[:n_members]

print(len(subset))

make prediction

yhat = ensemble_predictions(subset, testX)

calculate accuracy

return accuracy_score(testy, yhat)

Listing 20.25: Example of a function for evaluating predictions from a given number of ensemble
members.

Finally, we can create a line plot of the number of ensemble members (x-axis) versus the
accuracy of a prediction averaged across that many members on the test dataset (y-axis).

plot score vs number of ensemble members

x_axis = [i for i in range(1, n_members+1)]

pyplot.plot(x_axis, scores)

pyplot.show()

Listing 20.26: Example of a line plot of the number of ensemble members vs predictive
performance.

The complete example is listed below.

model averaging ensemble and a study of ensemble size on test accuracy

from sklearn.datasets.samples_generator import make_blobs

from keras.utils import to_categorical

from keras.models import Sequential

20.3. Model Averaging Ensemble Case Study 392

from keras.layers import Dense

from sklearn.metrics import accuracy_score

from matplotlib import pyplot

from numpy import array

from numpy import argmax

import numpy

fit model on dataset

def fit_model(trainX, trainy):

define model

model = Sequential()

model.add(Dense(15, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

model.fit(trainX, trainy, epochs=200, verbose=0)

return model

make an ensemble prediction for multi-class classification

def ensemble_predictions(members, testX):

make predictions

yhats = [model.predict(testX) for model in members]

yhats = array(yhats)

sum across ensemble members

summed = numpy.sum(yhats, axis=0)

argmax across classes

result = argmax(summed, axis=1)

return result

evaluate a specific number of members in an ensemble

def evaluate_n_members(members, n_members, testX, testy):

select a subset of members

subset = members[:n_members]

print(len(subset))

make prediction

yhat = ensemble_predictions(subset, testX)

calculate accuracy

return accuracy_score(testy, yhat)

generate 2d classification dataset

X, y = make_blobs(n_samples=500, centers=3, n_features=2, cluster_std=2, random_state=2)

split into train and test

n_train = int(0.3 * X.shape[0])

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

trainy = to_categorical(trainy)

fit all models

n_members = 20

members = [fit_model(trainX, trainy) for _ in range(n_members)]

evaluate different numbers of ensembles

scores = list()

for i in range(1, n_members+1):

score = evaluate_n_members(members, i, testX, testy)

print('> %.3f' % score)

scores.append(score)

plot score vs number of ensemble members

20.3. Model Averaging Ensemble Case Study 393

x_axis = [i for i in range(1, n_members+1)]

pyplot.plot(x_axis, scores)

pyplot.show()

Listing 20.27: Example of a study of the number of ensemble members vs predictive performance
on the blobs problem.

Running the example first fits 20 models on the same training dataset, which may take less
than a minute on modern hardware. Then, different sized ensembles are tested from 1 member
to all 20 members and test accuracy results are printed for each ensemble size.

...

16

> 0.760

17

> 0.763

18

> 0.766

19

> 0.763

20

> 0.763

Listing 20.28: Example output from a study of the number of ensemble members vs predictive
performance on the blobs problem.

Finally, a line plot is created showing the relationship between ensemble size and performance
on the test set. We can see that performance improves to about five members, after which
performance plateaus around 76% accuracy. This is close to the average test set performance
observed during the analysis of the repeated evaluation of the model.

20.3. Model Averaging Ensemble Case Study 394

Figure 20.5: Line Plot of Ensemble Size Versus Model Test Accuracy.

Finally, we can update the repeated evaluation experiment to use an ensemble of five models
instead of a single model and compare the distribution of scores. The complete example of a
repeated evaluated five-member ensemble of the blobs dataset is listed below.

repeated evaluation of model averaging ensemble on blobs dataset

from sklearn.datasets.samples_generator import make_blobs

from sklearn.metrics import accuracy_score

from keras.utils import to_categorical

from keras.models import Sequential

from keras.layers import Dense

from numpy import array

from numpy import argmax

from numpy import mean

from numpy import std

import numpy

fit model on dataset

def fit_model(trainX, trainy):

define model

model = Sequential()

model.add(Dense(15, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

20.3. Model Averaging Ensemble Case Study 395

model.fit(trainX, trainy, epochs=200, verbose=0)

return model

make an ensemble prediction for multi-class classification

def ensemble_predictions(members, testX):

make predictions

yhats = [model.predict(testX) for model in members]

yhats = array(yhats)

sum across ensemble members

summed = numpy.sum(yhats, axis=0)

argmax across classes

result = argmax(summed, axis=1)

return result

evaluate ensemble model

def evaluate_members(members, testX, testy):

make prediction

yhat = ensemble_predictions(members, testX)

calculate accuracy

return accuracy_score(testy, yhat)

generate 2d classification dataset

X, y = make_blobs(n_samples=500, centers=3, n_features=2, cluster_std=2, random_state=2)

split into train and test

n_train = int(0.3 * X.shape[0])

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

trainy = to_categorical(trainy)

repeated evaluation

n_repeats = 30

n_members = 5

scores = list()

for _ in range(n_repeats):

fit all models

members = [fit_model(trainX, trainy) for _ in range(n_members)]

evaluate ensemble

score = evaluate_members(members, testX, testy)

print('> %.3f' % score)

scores.append(score)

summarize the distribution of scores

print('Scores Mean: %.3f, Standard Deviation: %.3f' % (mean(scores), std(scores)))

Listing 20.29: Example of a repeated evaluation of a model average ensemble on the blobs
problem.

Running the example may take a few minutes as five models are fit and evaluated and this
process is repeated 30 times. The performance of each model on the test set is printed to provide
an indication of progress. The mean and standard deviation of the model performance is printed
at the end of the run.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

...

> 0.766

20.4. Extensions 396

> 0.763

> 0.766

> 0.771

> 0.769

Scores Mean: 0.768, Standard Deviation: 0.006

Listing 20.30: Example output from a repeated evaluation of a model average ensemble on the
blobs problem.

In this case, we can see that the average performance of a five-member ensemble on the
dataset is 76.8%. This is very close to the average of 77% seen for a single model. The important
difference is the standard deviation shrinking from 1.4% for a single model to 0.6% with an
ensemble of five models. We might expect that a given ensemble of five models on this problem
to have a performance fall between about 74% and about 78% with a likelihood of 99%.

Averaging the same model trained on the same dataset gives us a spread for improved
reliability, a property often highly desired in a final model to be used operationally. More models
in the ensemble will further decrease the standard deviation of the accuracy of an ensemble
on the test dataset given the law of large numbers, at least to a point of diminishing returns.
This demonstrates that for this specific model and prediction problem, that a model averaging
ensemble with five members is sufficient to reduce the variance of the model. This reduction in
variance, in turn, also means a better on-average performance when preparing a final model.

20.4 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Average Class Prediction. Update the example to average the class integer prediction
instead of the class probability prediction and compare results.

� Save and Load Models. Update the example to save ensemble members to file, then
load them from a separate script for evaluation.

� Sensitivity of Variance. Create a new example that performs a sensitivity analysis of
the number of ensemble members on the standard deviation of model performance on the
test set over a given number of repeats and report the point of diminishing returns.

If you explore any of these extensions, I’d love to know.

20.5 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

20.5.1 APIs

� Getting started with the Keras Sequential model.
https://keras.io/getting-started/sequential-model-guide/

� Keras Core Layers API.
https://keras.io/layers/core/

https://keras.io/getting-started/sequential-model-guide/
https://keras.io/layers/core/

20.6. Summary 397

� scipy.stats.mode API.
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mode.html

� numpy.argmax API.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html

� sklearn.datasets.make blobs API.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.

html

20.6 Summary

In this tutorial, you discovered how to develop a model averaging ensemble in Keras to reduce
the variance in a final model. Specifically, you learned:

� Model averaging is an ensemble learning technique that can be used to reduce the expected
variance of deep learning neural network models.

� How to implement model averaging in Keras for classification and regression predictive
modeling problems.

� How to work through a multiclass classification problem and use model averaging to reduce
the variance of the final model.

20.6.1 Next

In the next tutorial, you will discover how to weigh the contributions of ensemble members to a
prediction in proportion to the trust in each model.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mode.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html

Chapter 21

Contribute Proportional to Trust with
Weighted Average Ensemble

A modeling averaging ensemble combines the prediction from each model equally and often
results in better performance on average than a given single model. Sometimes there are very
good models that we wish to contribute more to an ensemble prediction, and perhaps less skillful
models that may be useful but should contribute less to an ensemble prediction. A weighted
average ensemble is an approach that allows multiple models to contribute to a prediction in
proportion to their trust or estimated performance. In this tutorial, you will discover how to
develop a weighted average ensemble of deep learning neural network models in Python with
Keras. After completing this tutorial, you will know:

� Model averaging ensembles are limited because they require that each ensemble member
contribute equally to predictions.

� Weighted average ensembles allow the contribution of each ensemble member to a prediction
to be weighted proportionally to the trust or performance of the member on a holdout
dataset.

� How to implement a weighted average ensemble in Keras and compare results to a model
averaging ensemble and standalone models.

Let’s get started.

21.1 Weighted Average Ensemble

Model averaging is an approach to ensemble learning where each ensemble member contributes
an equal amount to the final prediction. In the case of regression, the ensemble prediction is
calculated as the average of the member predictions. In the case of predicting a class label, the
prediction is calculated as the mode of the member predictions. In the case of predicting a class
probability, the prediction can be calculated as the argmax of the summed probabilities for each
class label. A limitation of this approach is that each model has an equal contribution to the
final prediction made by the ensemble. There is a requirement that all ensemble members have
skill as compared to random chance, although some models are known to perform much better
or much worse than other models.

398

21.2. Weighted Average Ensemble Case Study 399

A weighted ensemble is an extension of a model averaging ensemble where the contribution
of each member to the final prediction is weighted by the performance of the model. The model
weights are small positive values and the sum of all weights equals one, allowing the weights to
indicate the percentage of trust or expected performance from each model.

One can think of the weight Wk as the belief in predictor k and we therefore constrain
the weights to be positive and sum to one.

— Learning with ensembles: How over-fitting can be useful, 1996.

Uniform values for the weights (e.g. 1
k

where k is the number of ensemble members) means
that the weighted ensemble acts as a simple averaging ensemble. There is no analytical solution
to finding the weights (we cannot calculate them); instead, the value for the weights can be
estimated using either the training dataset or a holdout validation dataset. Finding the weights
using the same training set used to fit the ensemble members will likely result in an overfit
model. A more robust approach is to use a holdout validation dataset unseen by the ensemble
members during training.

The simplest, perhaps most exhaustive approach would be to grid search weight values
between 0 and 1 for each ensemble member. Alternately, an optimization procedure such as a
linear solver or gradient descent optimization can be used to estimate the weights using a unit
norm weight constraint to ensure that the vector of weights sum to one. Unless the holdout
validation dataset is large and representative, a weighted ensemble has an opportunity to overfit
as compared to a simple averaging ensemble. A simple alternative to adding more weight to
a given model without calculating explicit weight coefficients is to add a given model more
than once to the ensemble. Although less flexible, it allows a given well-performing model to
contribute more than once to a given prediction made by the ensemble.

21.2 Weighted Average Ensemble Case Study

In this section, we will demonstrate how to use the weighted average ensemble to reduce the
variance of an MLP on a simple multiclass classification problem. This example provides a
template for applying the weighted average ensemble to your own neural network for classification
and regression problems.

21.2.1 Multiclass Classification Problem

We will use a small multiclass classification problem as the basis to demonstrate the weighted
averaging ensemble. The scikit-learn class provides the make blobs() function that can be
used to create a multiclass classification problem with the prescribed number of samples, input
variables, classes, and variance of samples within a class. The problem can be configured to
have two input variables (to represent the x and y coordinates of the points) and a standard
deviation of 2.0 for points within each group. We will use the same random state (seed for the
pseudorandom number generator) to ensure that we always get the same data points.

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

Listing 21.1: Example of creating samples for the blobs problem.

21.2. Weighted Average Ensemble Case Study 400

The results are the input and output elements of a dataset that we can model. In order to
get a feeling for the complexity of the problem, we can plot each point on a two-dimensional
scatter plot and color each point by class value. The complete example is listed below.

scatter plot of blobs dataset

from sklearn.datasets.samples_generator import make_blobs

from matplotlib import pyplot

from numpy import where

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

scatter plot for each class value

for class_value in range(3):

select indices of points with the class label

row_ix = where(y == class_value)

scatter plot for points with a different color

pyplot.scatter(X[row_ix, 0], X[row_ix, 1])

show plot

pyplot.show()

Listing 21.2: Example of plotting samples from the blobs problem.

Running the example creates a scatter plot of the entire dataset. We can see that the
standard deviation of 2.0 means that the classes are not linearly separable (separable by a line)
causing many ambiguous points. This is desirable as it means that the problem is non-trivial
and will allow a neural network model to find many different good enough candidate solutions
resulting in a high variance.

21.2. Weighted Average Ensemble Case Study 401

Figure 21.1: Scatter Plot of Blobs Dataset With Three Classes and Points Colored by Class
Value.

21.2.2 Multilayer Perceptron Model

Before we define a model, we need to contrive a problem that is appropriate for the weighted
average ensemble. In our problem, the training dataset is relatively small. Specifically, there is
a 10:1 ratio of examples in the training dataset to the holdout dataset. This mimics a situation
where we may have a vast number of unlabeled examples and a small number of labeled examples
with which to train a model. We will create 1,100 data points from the blobs problem. The
model will be trained on the first 100 points and the remaining 1,000 will be held back in a test
dataset, unavailable to the model.

The problem is a multiclass classification problem, and we will model it using a softmax
activation function on the output layer. This means that the model will predict a vector
with three elements with the probability that the sample belongs to each of the three classes.
Therefore, we must one hot encode the class values before we split the rows into the train and
test datasets. We can do this using the Keras to categorical() function.

generate 2d classification dataset

X, y = make_blobs(n_samples=1100, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

21.2. Weighted Average Ensemble Case Study 402

n_train = 100

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

print(trainX.shape, testX.shape)

Listing 21.3: Example of preparing the datasets for modeling.

Next, we can define and compile the model. The model will expect samples with two input
variables. The model then has a single hidden layer with 25 nodes and a rectified linear activation
function, then an output layer with three nodes to predict the probability of each of the three
classes and a softmax activation function. Because the problem is multiclass, we will use the
categorical cross-entropy loss function to optimize the model and the efficient Adam flavor of
stochastic gradient descent.

define model

model = Sequential()

model.add(Dense(25, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

Listing 21.4: Example of defining an MLP model.

The model is fit for 500 training epochs and we will evaluate the model each epoch on the
test set, using the test set as a validation set.

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=500, verbose=0)

Listing 21.5: Example of fitting an MLP model.

At the end of the run, we will evaluate the performance of the model on the train and test
sets.

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

Listing 21.6: Example of evaluating an MLP model.

Then finally, we will plot learning curves of the model accuracy over each training epoch on
both the training and validation datasets.

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 21.7: Example of plotting learning curves for the MLP model.

21.2. Weighted Average Ensemble Case Study 403

Tying all of this together, the complete example is listed below.

develop an mlp for blobs dataset

from sklearn.datasets.samples_generator import make_blobs

from keras.utils import to_categorical

from keras.models import Sequential

from keras.layers import Dense

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_blobs(n_samples=1100, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 100

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(25, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=500, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 21.8: Example of fitting an MLP on the blobs problem.

Running the example first prints the shape of each dataset for confirmation, then the
performance of the final model on the train and test datasets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that the model achieved about 85% accuracy on the training dataset,
which we know is optimistic, and about 81% on the test dataset, which we would expect to be
more realistic.

Train: 0.850, Test: 0.816

Listing 21.9: Example output fitting an MLP on the blobs problem.

21.2. Weighted Average Ensemble Case Study 404

A line plot is also created showing the learning curves for the model loss and accuracy on
the train and test sets over each training epoch. We can see that training accuracy is more
optimistic over most of the run as we also noted with the final scores.

Figure 21.2: Line Plot Learning Curves of Model Accuracy on Train and Test Dataset over
Each Training Epoch.

Now that we have identified that the model is a good candidate for developing an ensemble,
we can next look at developing a simple model averaging ensemble.

21.2.3 Model Averaging Ensemble

We can develop a simple model averaging ensemble before we look at developing a weighted
average ensemble (covered in depth in Chapter 20). The results of the model averaging ensemble
can be used as a point of comparison as we would expect a well configured weighted average
ensemble to perform better. First, we need to fit multiple models from which to develop an
ensemble. We will define a function named fit model() to create and fit a single model on the
training dataset that we can call repeatedly to create as many models as we wish.

fit model on dataset

def fit_model(trainX, trainy):

trainy_enc = to_categorical(trainy)

define model

21.2. Weighted Average Ensemble Case Study 405

model = Sequential()

model.add(Dense(25, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

model.fit(trainX, trainy_enc, epochs=500, verbose=0)

return model

Listing 21.10: Example of function for fitting and returning an MLP model.

We can call this function to create a pool of 10 models.

fit all models

n_members = 10

members = [fit_model(trainX, trainy) for _ in range(n_members)]

Listing 21.11: Example of creating a list of fit models.

Next, we can develop model averaging ensemble. We don’t know how many members would
be appropriate for this problem, so we can create ensembles with different sizes from one to
10 members and evaluate the performance of each on the test set. We can also evaluate the
performance of each standalone model in the performance on the test set. This provides a useful
point of comparison for the model averaging ensemble, as we expect that the ensemble will
out-perform a randomly selected single model on average.

Each model predicts the probabilities for each class label, e.g. has three outputs. A single
prediction can be converted to a class label by using the argmax() function on the predicted
probabilities, e.g. return the index in the prediction with the largest probability value. We
can ensemble the predictions from multiple models by summing the probabilities for each class
prediction and using the argmax() on the result. The ensemble predictions() function below
implements this behavior.

make an ensemble prediction for multiclass classification

def ensemble_predictions(members, testX):

make predictions

yhats = [model.predict(testX) for model in members]

yhats = array(yhats)

sum across ensemble members

summed = numpy.sum(yhats, axis=0)

argmax across classes

result = argmax(summed, axis=1)

return result

Listing 21.12: Example of a function for making ensemble predictions.

We can estimate the performance of an ensemble of a given size by selecting the required
number of models from the list of all models, calling the ensemble predictions() function to
make a prediction, then calculating the accuracy of the prediction by comparing it to the true
values. The evaluate n members() function below implements this behavior.

evaluate a specific number of members in an ensemble

def evaluate_n_members(members, n_members, testX, testy):

select a subset of members

subset = members[:n_members]

make prediction

yhat = ensemble_predictions(subset, testX)

21.2. Weighted Average Ensemble Case Study 406

calculate accuracy

return accuracy_score(testy, yhat)

Listing 21.13: Example of a function for evaluating an ensemble with a given number of members.

The scores of the ensembles of each size can be stored to be plotted later, and the scores for
each individual model are collected and the average performance reported.

evaluate different numbers of ensembles on hold out set

single_scores, ensemble_scores = list(), list()

for i in range(1, len(members)+1):

evaluate model with i members

ensemble_score = evaluate_n_members(members, i, testX, testy)

evaluate the i'th model standalone

testy_enc = to_categorical(testy)

_, single_score = members[i-1].evaluate(testX, testy_enc, verbose=0)

summarize this step

print('> %d: single=%.3f, ensemble=%.3f' % (i, single_score, ensemble_score))

ensemble_scores.append(ensemble_score)

single_scores.append(single_score)

summarize average accuracy of a single final model

print('Accuracy %.3f (%.3f)' % (mean(single_scores), std(single_scores)))

Listing 21.14: Example of a evaluating the performance of different sized ensembles.

Finally, we create a graph that shows the accuracy of each individual model (blue dots) and
the performance of the model averaging ensemble as the number of members is increased from
one to 10 members (orange line). Tying all of this together, the complete example is listed
below.

model averaging ensemble for the blobs dataset

from sklearn.datasets.samples_generator import make_blobs

from sklearn.metrics import accuracy_score

from keras.utils import to_categorical

from keras.models import Sequential

from keras.layers import Dense

from matplotlib import pyplot

from numpy import mean

from numpy import std

import numpy

from numpy import array

from numpy import argmax

fit model on dataset

def fit_model(trainX, trainy):

trainy_enc = to_categorical(trainy)

define model

model = Sequential()

model.add(Dense(25, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

model.fit(trainX, trainy_enc, epochs=500, verbose=0)

return model

make an ensemble prediction for multi-class classification

def ensemble_predictions(members, testX):

21.2. Weighted Average Ensemble Case Study 407

make predictions

yhats = [model.predict(testX) for model in members]

yhats = array(yhats)

sum across ensemble members

summed = numpy.sum(yhats, axis=0)

argmax across classes

result = argmax(summed, axis=1)

return result

evaluate a specific number of members in an ensemble

def evaluate_n_members(members, n_members, testX, testy):

select a subset of members

subset = members[:n_members]

make prediction

yhat = ensemble_predictions(subset, testX)

calculate accuracy

return accuracy_score(testy, yhat)

generate 2d classification dataset

X, y = make_blobs(n_samples=1100, centers=3, n_features=2, cluster_std=2, random_state=2)

split into train and test

n_train = 100

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

fit all models

n_members = 10

members = [fit_model(trainX, trainy) for _ in range(n_members)]

evaluate different numbers of ensembles on hold out set

single_scores, ensemble_scores = list(), list()

for i in range(1, len(members)+1):

evaluate model with i members

ensemble_score = evaluate_n_members(members, i, testX, testy)

evaluate the i'th model standalone

testy_enc = to_categorical(testy)

_, single_score = members[i-1].evaluate(testX, testy_enc, verbose=0)

summarize this step

print('> %d: single=%.3f, ensemble=%.3f' % (i, single_score, ensemble_score))

ensemble_scores.append(ensemble_score)

single_scores.append(single_score)

summarize average accuracy of a single final model

print('Accuracy %.3f (%.3f)' % (mean(single_scores), std(single_scores)))

plot score vs number of ensemble members

x_axis = [i for i in range(1, len(members)+1)]

pyplot.plot(x_axis, single_scores, marker='o', linestyle='None')

pyplot.plot(x_axis, ensemble_scores, marker='o')

pyplot.show()

Listing 21.15: Example of a modeling averaging ensemble on the blobs problem.

Running the example first reports the performance of each single model as well as the model
averaging ensemble of a given size with 1, 2, 3, etc. members.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

On this run, the average performance of the single models is reported at about 80.4% and

21.2. Weighted Average Ensemble Case Study 408

we can see that an ensemble with between five and nine members will achieve a performance
between 80.8% and 81%. As expected, the performance of a modest-sized model averaging
ensemble out-performs the performance of a randomly selected single model on average.

> 1: single=0.803, ensemble=0.803

> 2: single=0.805, ensemble=0.808

> 3: single=0.798, ensemble=0.805

> 4: single=0.809, ensemble=0.809

> 5: single=0.808, ensemble=0.811

> 6: single=0.805, ensemble=0.808

> 7: single=0.805, ensemble=0.808

> 8: single=0.804, ensemble=0.809

> 9: single=0.810, ensemble=0.810

> 10: single=0.794, ensemble=0.808

Accuracy 0.804 (0.005)

Listing 21.16: Example output from modeling averaging ensemble on the blobs problem.

Next, a graph is created comparing the accuracy of single models (blue dots) to the model
averaging ensemble of increasing size (orange line). On this run, the orange line of the ensembles
clearly shows better or comparable performance (if dots are hidden) than the single models.

Figure 21.3: Line Plot Showing Single Model Accuracy (blue dots) and Accuracy of Ensembles
of Increasing Size (orange line).

21.2. Weighted Average Ensemble Case Study 409

Now that we know how to develop a model averaging ensemble, we can extend the approach
one step further by weighting the contributions of the ensemble members.

21.2.4 Grid Search Weighted Average Ensemble

The model averaging ensemble allows each ensemble member to contribute an equal amount to
the prediction of the ensemble. We can update the example so that instead, the contribution
of each ensemble member is weighted by a coefficient that indicates the trust or expected
performance of the model. Weight values are small values between 0 and 1 and are treated
like a percentage, such that the weights across all ensemble members sum to one. First, we
must update the ensemble predictions() function to make use of a vector of weights for each
ensemble member. Instead of simply summing the predictions across each ensemble member,
we must calculate a weighted sum. We can implement this manually using for loops, but this is
terribly inefficient; for example:

calculated a weighted sum of predictions

def weighted_sum(weights, yhats):

rows = list()

for j in range(yhats.shape[1]):

enumerate values

row = list()

for k in range(yhats.shape[2]):

enumerate members

value = 0.0

for i in range(yhats.shape[0]):

value += weights[i] * yhats[i,j,k]

row.append(value)

rows.append(row)

return array(rows)

Listing 21.17: Example of manually calculating a weighted average for predictions.

Instead, we can use efficient NumPy functions to implement the weighted sum such as
einsum() or tensordot(). Full discussion of these functions is a little out of scope so please
refer to the API documentation for more information on how to use these functions as they are
challenging if you are new to linear algebra and/or NumPy. We will use tensordot() function
to apply the tensor product with the required summing; the updated ensemble predictions()

function is listed below.

make an ensemble prediction for multiclass classification

def ensemble_predictions(members, weights, testX):

make predictions

yhats = [model.predict(testX) for model in members]

yhats = array(yhats)

weighted sum across ensemble members

summed = tensordot(yhats, weights, axes=((0),(0)))

argmax across classes

result = argmax(summed, axis=1)

return result

Listing 21.18: Example of making weighted ensemble predictions.

Next, we must update evaluate ensemble() to pass along the weights when making the
prediction for the ensemble.

21.2. Weighted Average Ensemble Case Study 410

evaluate a specific number of members in an ensemble

def evaluate_ensemble(members, weights, testX, testy):

make prediction

yhat = ensemble_predictions(members, weights, testX)

calculate accuracy

return accuracy_score(testy, yhat)

Listing 21.19: Example of evaluating an ensemble of a given size.

We will use a modest-sized ensemble of five members, that appeared to perform well in the
model averaging ensemble.

fit all models

n_members = 5

members = [fit_model(trainX, trainy) for _ in range(n_members)]

Listing 21.20: Example of creating a list of ensemble members.

We can then estimate the performance of each individual model on the test dataset as a
reference.

evaluate averaging ensemble (equal weights)

weights = [1.0/n_members for _ in range(n_members)]

score = evaluate_ensemble(members, weights, testX, testy)

print('Equal Weights Score: %.3f' % score)

Listing 21.21: Example of evaluating an equally weighted ensemble.

Finally, we can develop a weighted average ensemble. A simple, but exhaustive approach to
finding weights for the ensemble members is to grid search values. We can define a course grid
of weight values from 0.0 to 1.0 in steps of 0.1, then generate all possible five-element vectors
with those values. Generating all possible combinations is called a Cartesian product, which can
be implemented in Python using the itertools.product() function from the standard library.

A limitation of this approach is that the vectors of weights will not sum to one (called the
unit norm), as required. We can force reach generated weight vector to have a unit norm by
calculating the sum of the absolute weight values (called the L1 norm) and dividing each weight
by that value. The normalize() function below implements this hack.

normalize a vector to have unit norm

def normalize(weights):

calculate l1 vector norm

result = norm(weights, 1)

check for a vector of all zeros

if result == 0.0:

return weights

return normalized vector (unit norm)

return weights / result

Listing 21.22: Example of a function for normalizing ensemble member weights.

We can now enumerate each weight vector generated by the Cartesian product, normalize
it, and evaluate it by making a prediction and keeping the best to be used in our final weight
averaging ensemble.

grid search weights

def grid_search(members, testX, testy):

21.2. Weighted Average Ensemble Case Study 411

define weights to consider

w = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

best_score, best_weights = 0.0, None

iterate all possible combinations (cartesian product)

for weights in product(w, repeat=len(members)):

skip if all weights are equal

if len(set(weights)) == 1:

continue

hack, normalize weight vector

weights = normalize(weights)

evaluate weights

score = evaluate_ensemble(members, weights, testX, testy)

if score > best_score:

best_score, best_weights = score, weights

print('>%s %.3f' % (best_weights, best_score))

return list(best_weights)

Listing 21.23: Example of a function for grid searching weights for an ensemble.

Once discovered, we can report the performance of our weight average ensemble on the test
dataset, which we would expect to be better than the best single model and ideally better than
the model averaging ensemble.

grid search weights

weights = grid_search(members, testX, testy)

score = evaluate_ensemble(members, weights, testX, testy)

print('Grid Search Weights: %s, Score: %.3f' % (weights, score))

Listing 21.24: Example of grid searching weights for a weighted ensemble.

The complete example is listed below.

grid search for coefficients in a weighted average ensemble for the blobs problem

from sklearn.datasets.samples_generator import make_blobs

from sklearn.metrics import accuracy_score

from keras.utils import to_categorical

from keras.models import Sequential

from keras.layers import Dense

from numpy import array

from numpy import argmax

from numpy import tensordot

from numpy.linalg import norm

from itertools import product

fit model on dataset

def fit_model(trainX, trainy):

trainy_enc = to_categorical(trainy)

define model

model = Sequential()

model.add(Dense(25, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

model.fit(trainX, trainy_enc, epochs=500, verbose=0)

return model

make an ensemble prediction for multi-class classification

21.2. Weighted Average Ensemble Case Study 412

def ensemble_predictions(members, weights, testX):

make predictions

yhats = [model.predict(testX) for model in members]

yhats = array(yhats)

weighted sum across ensemble members

summed = tensordot(yhats, weights, axes=((0),(0)))

argmax across classes

result = argmax(summed, axis=1)

return result

evaluate a specific number of members in an ensemble

def evaluate_ensemble(members, weights, testX, testy):

make prediction

yhat = ensemble_predictions(members, weights, testX)

calculate accuracy

return accuracy_score(testy, yhat)

normalize a vector to have unit norm

def normalize(weights):

calculate l1 vector norm

result = norm(weights, 1)

check for a vector of all zeros

if result == 0.0:

return weights

return normalized vector (unit norm)

return weights / result

grid search weights

def grid_search(members, testX, testy):

define weights to consider

w = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

best_score, best_weights = 0.0, None

iterate all possible combinations (cartesian product)

for weights in product(w, repeat=len(members)):

skip if all weights are equal

if len(set(weights)) == 1:

continue

hack, normalize weight vector

weights = normalize(weights)

evaluate weights

score = evaluate_ensemble(members, weights, testX, testy)

if score > best_score:

best_score, best_weights = score, weights

print('>%s %.3f' % (best_weights, best_score))

return list(best_weights)

generate 2d classification dataset

X, y = make_blobs(n_samples=1100, centers=3, n_features=2, cluster_std=2, random_state=2)

split into train and test

n_train = 100

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

fit all models

n_members = 5

members = [fit_model(trainX, trainy) for _ in range(n_members)]

evaluate each single model on the test set

21.2. Weighted Average Ensemble Case Study 413

testy_enc = to_categorical(testy)

for i in range(n_members):

_, test_acc = members[i].evaluate(testX, testy_enc, verbose=0)

print('Model %d: %.3f' % (i+1, test_acc))

evaluate averaging ensemble (equal weights)

weights = [1.0/n_members for _ in range(n_members)]

score = evaluate_ensemble(members, weights, testX, testy)

print('Equal Weights Score: %.3f' % score)

grid search weights

weights = grid_search(members, testX, testy)

score = evaluate_ensemble(members, weights, testX, testy)

print('Grid Search Weights: %s, Score: %.3f' % (weights, score))

Listing 21.25: Example of a grid searching a weighted average ensemble on the blobs problem.

Running the example first creates the five single models and evaluates their performance on
the test dataset.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

On this run, we can see that model 2 has the best solo performance of about 81.7% accuracy.
Next, a model averaging ensemble is created with a performance of about 80.7%, which is
reasonable compared to most of the models, but not all.

Model 1: 0.798

Model 2: 0.817

Model 3: 0.798

Model 4: 0.806

Model 5: 0.810

Equal Weights Score: 0.807

Listing 21.26: Example output of model performance for ensemble members and equally weighted
ensemble.

Next, the grid search is performed. It is pretty slow and may take about twenty minutes on
modern hardware. The process could easily be made parallel using libraries such as Joblib. Each
time a new top performing set of weights is discovered, it is reported along with its performance
on the test dataset. We can see that during the run, the process discovered that using model 2
alone resulted in a good performance, until it was replaced with something better. We can see
that the best performance was achieved on this run using the weights that focus only on the
first and second models with the accuracy of 81.8% on the test dataset. This out-performs both
the single models and the model averaging ensemble on the same dataset.

>[0. 0. 0. 0. 1.] 0.810

>[0. 0. 0. 0.5 0.5] 0.814

>[0. 0. 0. 0.33333333 0.66666667] 0.815

>[0. 1. 0. 0. 0.] 0.817

>[0.23076923 0.76923077 0. 0. 0.] 0.818

Grid Search Weights: [0.23076923076923075, 0.7692307692307692, 0.0, 0.0, 0.0], Score: 0.818

Listing 21.27: Example output for model weights and the performance of the weighted average
ensemble.

An alternate approach to finding weights would be a random search, which has been shown
to be effective more generally for model hyperparameter tuning.

21.2. Weighted Average Ensemble Case Study 414

21.2.5 Weighted Average MLP Ensemble

An alternative to searching for weight values is to use a directed optimization process. Opti-
mization is a search process, but instead of sampling the space of possible solutions randomly
or exhaustively, the search process uses any available information to make the next step in the
search, such as toward a set of weights that has lower error. The SciPy library offers many
excellent optimization algorithms, including local and global search methods.

SciPy provides an implementation of the Differential Evolution method. This is one of
the few stochastic global search algorithms that just works for function optimization with
continuous inputs, and it works well. The differential evolution() SciPy function requires
that function is specified to evaluate a set of weights and return a score to be minimized. We
can minimize the classification error (1 - accuracy). As with the grid search, we most normalize
the weight vector before we evaluate it. The loss function() function below will be used as
the evaluation function during the optimization process.

loss function for optimization process, designed to be minimized

def loss_function(weights, members, testX, testy):

normalize weights

normalized = normalize(weights)

calculate error rate

return 1.0 - evaluate_ensemble(members, normalized, testX, testy)

Listing 21.28: Example of loss function for global search algorithm.

We must also specify the bounds of the optimization process. We can define the bounds as a
five-dimensional hypercube (e.g. 5 weights for the 5 ensemble members) with values between
0.0 and 1.0.

define bounds on each weight

bound_w = [(0.0, 1.0) for _ in range(n_members)]

Listing 21.29: Example of parameter bounds for global search algorithm.

Our loss function requires three parameters in addition to the weights, which we will provide
as a tuple to then be passed along to the call to the loss function() each time a set of weights
is evaluated.

arguments to the loss function

search_arg = (members, testX, testy)

Listing 21.30: Example of arguments for evaluating the performance of a model under the global
search algorithm.

We can now call our optimization process. We will limit the total number of iterations of
the algorithms to 1,000, and use a smaller than default tolerance to detect if the search process
has converged.

global optimization of ensemble weights

result = differential_evolution(loss_function, bound_w, search_arg, maxiter=1000, tol=1e-7)

Listing 21.31: Example of executing the global search algorithm.

The result of the call to differential evolution() is a dictionary that contains all kinds
of information about the search. Importantly, the x key contains the optimal set of weights
found during the search. We can retrieve the best set of weights, then report them and their
performance on the test set when used in a weighted ensemble.

21.2. Weighted Average Ensemble Case Study 415

get the chosen weights

weights = normalize(result['x'])

print('Optimized Weights: %s' % weights)

evaluate chosen weights

score = evaluate_ensemble(members, weights, testX, testy)

print('Optimized Weights Score: %.3f' % score)

Listing 21.32: Example of evaluating the weights found via global optimization.

Tying all of this together, the complete example is listed below.

global optimization to find coefficients for weighted ensemble on blobs problem

from sklearn.datasets.samples_generator import make_blobs

from sklearn.metrics import accuracy_score

from keras.utils import to_categorical

from keras.models import Sequential

from keras.layers import Dense

from numpy import array

from numpy import argmax

from numpy import tensordot

from numpy.linalg import norm

from scipy.optimize import differential_evolution

fit model on dataset

def fit_model(trainX, trainy):

trainy_enc = to_categorical(trainy)

define model

model = Sequential()

model.add(Dense(25, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

model.fit(trainX, trainy_enc, epochs=500, verbose=0)

return model

make an ensemble prediction for multi-class classification

def ensemble_predictions(members, weights, testX):

make predictions

yhats = [model.predict(testX) for model in members]

yhats = array(yhats)

weighted sum across ensemble members

summed = tensordot(yhats, weights, axes=((0),(0)))

argmax across classes

result = argmax(summed, axis=1)

return result

evaluate a specific number of members in an ensemble

def evaluate_ensemble(members, weights, testX, testy):

make prediction

yhat = ensemble_predictions(members, weights, testX)

calculate accuracy

return accuracy_score(testy, yhat)

normalize a vector to have unit norm

def normalize(weights):

calculate l1 vector norm

21.2. Weighted Average Ensemble Case Study 416

result = norm(weights, 1)

check for a vector of all zeros

if result == 0.0:

return weights

return normalized vector (unit norm)

return weights / result

loss function for optimization process, designed to be minimized

def loss_function(weights, members, testX, testy):

normalize weights

normalized = normalize(weights)

calculate error rate

return 1.0 - evaluate_ensemble(members, normalized, testX, testy)

generate 2d classification dataset

X, y = make_blobs(n_samples=1100, centers=3, n_features=2, cluster_std=2, random_state=2)

split into train and test

n_train = 100

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

fit all models

n_members = 5

members = [fit_model(trainX, trainy) for _ in range(n_members)]

evaluate each single model on the test set

testy_enc = to_categorical(testy)

for i in range(n_members):

_, test_acc = members[i].evaluate(testX, testy_enc, verbose=0)

print('Model %d: %.3f' % (i+1, test_acc))

evaluate averaging ensemble (equal weights)

weights = [1.0/n_members for _ in range(n_members)]

score = evaluate_ensemble(members, weights, testX, testy)

print('Equal Weights Score: %.3f' % score)

define bounds on each weight

bound_w = [(0.0, 1.0) for _ in range(n_members)]

arguments to the loss function

search_arg = (members, testX, testy)

global optimization of ensemble weights

result = differential_evolution(loss_function, bound_w, search_arg, maxiter=1000, tol=1e-7)

get the chosen weights

weights = normalize(result['x'])

print('Optimized Weights: %s' % weights)

evaluate chosen weights

score = evaluate_ensemble(members, weights, testX, testy)

print('Optimized Weights Score: %.3f' % score)

Listing 21.33: Example of using global search to find weights for weighted average ensemble on
the blobs problem.

Running the example first creates five single models and evaluates the performance of each
on the test dataset.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

We can see on this run that models 3 and 4 both perform best with an accuracy of about

21.3. Extensions 417

82.2%. Next, a model averaging ensemble with all five members is evaluated on the test set
reporting an accuracy of 81.8%, which is better than some, but not all, single models.

Model 1: 0.814

Model 2: 0.811

Model 3: 0.822

Model 4: 0.822

Model 5: 0.809

Equal Weights Score: 0.818

Listing 21.34: Example output of model performance for ensemble members and equally weighted
ensemble.

The optimization process is relatively quick. We can see that the process found a set of
weights that pays most attention to models 3 and 4, and spreads the remaining attention out
among the other models, achieving an accuracy of about 82.4%, out-performing the model
averaging ensemble and individual models.

Optimized Weights: [0.1660322 0.09652591 0.33991854 0.34540932 0.05211403]

Optimized Weights Score: 0.824

Listing 21.35: Example output for model weights and the performance of the weighted average
ensemble.

It is important to note that in these examples, we have treated the test dataset as though
it were a validation dataset. This was done to keep the examples focused and technically
simpler. In practice, the choice and tuning of the weights for the ensemble would be chosen by
a validation dataset, and single models, model averaging ensembles, and weighted ensembles
would be compared on a separate test set.

21.3 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Parallelize Grid Search. Update the grid search example to use the Joblib library to
parallelize weight evaluation.

� Implement Random Search. Update the grid search example to use a random search
of weight coefficients.

� Try a Local Search. Try a local search procedure provided by the SciPy library instead
of the global search and compare performance.

� Repeat Global Optimization. Repeat the global optimization procedure multiple
times for a given set of models to see if differing sets of weights can be found across the
runs.

If you explore any of these extensions, I’d love to know.

21.4 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

21.4. Further Reading 418

21.4.1 Papers

� When Networks Disagree: Ensemble Methods for Hybrid Neural Networks, 1995.
https://www.worldscientific.com/doi/pdf/10.1142/9789812795885_0025

� Neural Network Ensembles, Cross Validation, and Active Learning, 1995.
https://papers.nips.cc/paper/1001-neural-network-ensembles-cross-validation-and-active-learning.

pdf

� Learning with ensembles: How over-fitting can be useful, 1996.
http://papers.nips.cc/paper/1044-learning-with-ensembles-how-overfitting-can-be-useful.

pdf

21.4.2 APIs

� Getting started with the Keras Sequential model.
https://keras.io/getting-started/sequential-model-guide/

� Keras Core Layers API.
https://keras.io/layers/core/

� numpy.argmax API.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html

� sklearn.datasets.make blobs API.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.

html

� numpy.einsum API.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.einsum.html

� numpy.tensordot API.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.tensordot.html

� itertools.product API.
https://docs.python.org/3/library/itertools.html#itertools.product

� scipy.optimize API.
https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html

� scipy.optimize.differential evolution API.
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_

evolution.html

21.4.3 Articles

� Ensemble averaging (machine learning), Wikipedia.
https://en.wikipedia.org/wiki/Ensemble_averaging_(machine_learning)

� Cartesian product, Wikipedia.
https://en.wikipedia.org/wiki/Cartesian_product

https://www.worldscientific.com/doi/pdf/10.1142/9789812795885_0025
https://papers.nips.cc/paper/1001-neural-network-ensembles-cross-validation-and-active-learning.pdf
https://papers.nips.cc/paper/1001-neural-network-ensembles-cross-validation-and-active-learning.pdf
http://papers.nips.cc/paper/1044-learning-with-ensembles-how-overfitting-can-be-useful.pdf
http://papers.nips.cc/paper/1044-learning-with-ensembles-how-overfitting-can-be-useful.pdf
https://keras.io/getting-started/sequential-model-guide/
https://keras.io/layers/core/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.einsum.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.tensordot.html
https://docs.python.org/3/library/itertools.html#itertools.product
https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://en.wikipedia.org/wiki/Ensemble_averaging_(machine_learning)
https://en.wikipedia.org/wiki/Cartesian_product

21.5. Summary 419

� Implementing a Weighted Majority Rule Ensemble Classifier, 2015.
https://sebastianraschka.com/Articles/2014_ensemble_classifier.html

21.5 Summary

In this tutorial, you discovered how to develop a weighted average ensemble of deep learning
neural network models in Python with Keras. Specifically, you learned:

� Model averaging ensembles are limited because they require that each ensemble member
contribute equally to predictions.

� Weighted average ensembles allow the contribution of each ensemble member to a prediction
to be weighted proportionally to the trust or performance of the member on a holdout
dataset.

� How to implement a weighted average ensemble in Keras and compare results to a model
averaging ensemble and standalone models.

21.5.1 Next

In the next tutorial, you will discover how you can develop ensemble members from the resampling
methods used to estimate the performance of a neural network model.

https://sebastianraschka.com/Articles/2014_ensemble_classifier.html

Chapter 22

Fit Models on Different Samples with
Resampling Ensembles

Ensemble learning are methods that combine the predictions from multiple models. It is
important in ensemble learning that the models that comprise the ensemble are good, making
different prediction errors. Predictions that are good in different ways can result in a prediction
that is both more stable and often better than the predictions of any individual member model.
One way to achieve differences between models is to train each model on a different subset of the
available training data. Models are trained on different subsets of the training data naturally
through the use of resampling methods such as cross-validation and the bootstrap, designed to
estimate the average performance of the model generally on unseen data. The models used in
this estimation process can be combined in what is referred to as a resampling-based ensemble,
such as a cross-validation ensemble or a bootstrap aggregation (or bagging) ensemble. In this
tutorial, you will discover how to develop a suite of different resampling-based ensembles for
deep learning neural network models. After completing this tutorial, you will know:

� How to estimate model performance using random-splits and develop an ensemble from
the models.

� How to estimate performance using 10-fold cross-validation and develop a cross-validation
ensemble.

� How to estimate performance using the bootstrap and combine models using a bagging
ensemble.

Let’s get started.

22.1 Resampling Ensembles

Combining the predictions from multiple models can result in more stable predictions, and
in some cases, predictions that have better performance than any of the contributing models.
Effective ensembles require members that disagree. Each member must have skill (e.g. perform
better than random chance), but ideally, perform well in different ways. Technically, we can
say that we prefer ensemble members to have low correlation in their predictions, or prediction
errors.

420

22.1. Resampling Ensembles 421

One approach to encourage differences between ensembles is to use the same learning
algorithm on different training datasets. This can be achieved by repeatedly resampling a
training dataset that is in turn used to train a new model. Multiple models are fit using slightly
different perspectives on the training data and, in turn, make different errors and often more
stable and better predictions when combined. We can refer to these methods generally as data
resampling ensembles. A benefit of this approach is that resampling methods may be used that
do not make use of all examples in the training dataset. Any examples that are not used to
fit the model can be used as a test dataset to estimate the generalization error of the chosen
model configuration. There are three popular resampling methods that we could use to create a
resampling ensemble; they are:

� Random Splits. The dataset is repeatedly sampled with a random split of the data into
train and test sets.

� k-fold Cross-Validation. The dataset is split into k equally sized folds, k models are
trained and each fold is given an opportunity to be used as the holdout set where the
model is trained on all remaining folds.

� Bootstrap Aggregation. Random samples are collected with replacement and examples
not included in a given sample are used as the test set.

Perhaps the most widely used resampling ensemble method is bootstrap aggregation, more
commonly referred to as bagging. The resampling with replacement allows more difference
in the training dataset, biasing the model and, in turn, resulting in more difference between
the predictions of the resulting models. Resampling ensemble models makes some specific
assumptions about your project:

� That a robust estimate of model performance on unseen data is required; if not, then a
single train/test split can be used.

� That there is a potential for a lift in performance using an ensemble of models; if not,
then a single model fit on all available data can be used.

� That the computational cost of fitting more than one neural network model on a sample
of the training dataset is not prohibitive; if not, all resources should be put into fitting a
single model.

Neural network models are remarkably flexible, therefore the lift in performance provided
by a resampling ensemble is not always possible given that individual models trained on all
available data can perform so well. As such, the sweet spot for using a resampling ensemble
is the case where there is a requirement for a robust estimate of performance and multiple
models can be fit to calculate the estimate, but there is also a requirement for one (or more) of
the models created during the estimate of performance to be used as the final model (e.g. a
new final model cannot be fit on all available training data). Now that we are familiar with
resampling ensemble methods, we can work through an example of applying each method in
turn.

22.2. Resampling Ensembles Case Study 422

22.2 Resampling Ensembles Case Study

In this section, we will demonstrate how to use the resampling ensemble to reduce the variance
of an MLP on a simple multiclass classification problem. This example provides a template for
applying the resampling ensemble to your own neural network for classification and regression
problems.

22.2.1 Multiclass Classification Problem

We will use a small multiclass classification problem as the basis to demonstrate a model
resampling ensembles. The scikit-learn class provides the make blobs() function that can
be used to create a multiclass classification problem with the prescribed number of samples,
input variables, classes, and variance of samples within a class. We use this problem with
1,000 examples, with input variables (to represent the x and y coordinates of the points) and a
standard deviation of 2.0 for points within each group. We will use the same random state (seed
for the pseudorandom number generator) to ensure that we always get the same 1,000 points.

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

Listing 22.1: Example of creating samples for the blobs problem.

The results are the input and output elements of a dataset that we can model. In order to
get a feeling for the complexity of the problem, we can plot each point on a two-dimensional
scatter plot and color each point by class value. The complete example is listed below.

scatter plot of blobs dataset

from sklearn.datasets.samples_generator import make_blobs

from matplotlib import pyplot

from numpy import where

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

scatter plot for each class value

for class_value in range(3):

select indices of points with the class label

row_ix = where(y == class_value)

scatter plot for points with a different color

pyplot.scatter(X[row_ix, 0], X[row_ix, 1])

show plot

pyplot.show()

Listing 22.2: Example of plotting samples from the blobs problem.

Running the example creates a scatter plot of the entire dataset. We can see that the
standard deviation of 2.0 means that the classes are not linearly separable (separable by a line)
causing many ambiguous points. This is desirable as it means that the problem is non-trivial
and will allow a neural network model to find many different good enough candidate solutions
resulting in a high variance.

22.2. Resampling Ensembles Case Study 423

Figure 22.1: Scatter Plot of Blobs Dataset with Three Classes and Points Colored by Class
Value.

22.2.2 Single Multilayer Perceptron Model

We will define a Multilayer Perceptron neural network, or MLP, that learns the problem
reasonably well. The problem is a multiclass classification problem, and we will model it using
a softmax activation function on the output layer. This means that the model will predict a
vector with 3 elements with the probability that the sample belongs to each of the 3 classes.
Therefore, the first step is to one hot encode the class values.

y = to_categorical(y)

Listing 22.3: Example of one hot encoding the target variable.

Next, we must split the dataset into training and test sets. We will use the test set both
to evaluate the performance of the model and to plot its performance during training with
a learning curve. We will use 90% of the data for training and 10% for the test set. We are
choosing a large split because it is a noisy problem and a well-performing model requires as
much data as possible to learn the complex classification function.

split into train and test

n_train = int(0.9 * X.shape[0])

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

22.2. Resampling Ensembles Case Study 424

Listing 22.4: Example of preparing the dataset for modeling.

Next, we can define and combine the model. The model will expect samples with two
input variables. The model then has a single hidden layer with 50 nodes and a rectified linear
activation function, then an output layer with 3 nodes to predict the probability of each of the
3 classes, and a softmax activation function. Because the problem is multiclass, we will use the
categorical cross-entropy loss function to optimize the model and the efficient Adam flavor of
stochastic gradient descent.

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

Listing 22.5: Example of defining the MLP model.

The model is fit for 50 training epochs and we will evaluate the model each epoch on the
test set, using the test set as a validation set.

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=50, verbose=0)

Listing 22.6: Example of fitting the MLP model.

At the end of the run, we will evaluate the performance of the model on both the train and
the test sets.

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

Listing 22.7: Example of evaluating the MLP model.

Then finally, we will plot learning curves of the model accuracy over each training epoch on
both the training and test datasets.

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 22.8: Example of plotting learning curves for the MLP model.

The complete example is listed below.

22.2. Resampling Ensembles Case Study 425

develop an mlp for blobs dataset

from sklearn.datasets.samples_generator import make_blobs

from keras.utils import to_categorical

from keras.models import Sequential

from keras.layers import Dense

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = int(0.9 * X.shape[0])

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=50, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 22.9: Example of fitting an MLP on the blobs problem.

Running the example first prints the performance of the final model on the train and test
datasets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that the model achieved about 83% accuracy on the training dataset
and about 88% accuracy on the test dataset. The chosen split of the dataset into train and test
sets means that the test set is small and not representative of the broader problem. In turn,
performance on the test set is not representative of the model; in this case, it is optimistically
biased.

Train: 0.832, Test: 0.850

22.2. Resampling Ensembles Case Study 426

Listing 22.10: Example output fitting an MLP on the blobs problem.

A line plot is also created showing the learning curves for the model accuracy on the train
and test sets over each training epoch. We can see that the model has a reasonably stable fit.

Figure 22.2: Line Plot Learning Curves of Model Accuracy on Train and Test Dataset Over
Each Training Epoch.

22.2.3 Random Splits Ensemble

The instability of the model and the small test dataset mean that we don’t really know how
well this model will perform on new data in general. We can try a simple resampling method of
repeatedly generating new random splits of the dataset in train and test sets and fit new models.
Calculating the average of the performance of the model across each split will give a better
estimate of the model’s generalization error. We can then combine multiple models trained on
the random splits with the expectation that performance of the ensemble is likely to be more
stable and better than the average single model.

We will generate 10 times more sample points from the problem domain and hold them back
as an unseen dataset. The evaluation of a model on this much larger dataset will be used as a
proxy or a much more accurate estimate of the generalization error of a model for this problem.

22.2. Resampling Ensembles Case Study 427

This extra dataset is not a test dataset. Technically, it is for the purposes of this demonstration,
but we are pretending that this data is unavailable at model training time.

generate 2d classification dataset

dataX, datay = make_blobs(n_samples=55000, centers=3, n_features=2, cluster_std=2,

random_state=2)

X, newX = dataX[:5000, :], dataX[5000:, :]

y, newy = datay[:5000], datay[5000:]

Listing 22.11: Example creating a much larger dataset for modeling.

So now we have 5,000 examples to train our model and estimate its general performance. We
also have 50,000 examples that we can use to better approximate the true general performance
of a single model or an ensemble. Next, we need a function to fit and evaluate a single model on
a training dataset and return the performance of the fit model on a test dataset. We also need
the model that was fit so that we can use it as part of an ensemble. The evaluate model()

function below implements this behavior.

evaluate a single mlp model

def evaluate_model(trainX, trainy, testX, testy):

encode targets

trainy_enc = to_categorical(trainy)

testy_enc = to_categorical(testy)

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

model.fit(trainX, trainy_enc, epochs=50, verbose=0)

evaluate the model

_, test_acc = model.evaluate(testX, testy_enc, verbose=0)

return model, test_acc

Listing 22.12: Example defining a function to fit and evaluate an MLP model.

Next, we can create random splits of the training dataset and fit and evaluate models on
each split. We can use the train test split() function from the scikit-learn library to create
a random split of a dataset into train and test sets. It takes the X and y arrays as arguments and
the test size specifies the size of the test dataset in terms of a percentage. We will use 10%
of the 5,000 examples as the test. We can then call the evaluate model() to fit and evaluate
a model. The returned accuracy and model can then be added to lists for later use. In this
example, we will limit the number of splits, and in turn, the number of fit models to 10.

multiple train-test splits

n_splits = 10

scores, members = list(), list()

for _ in range(n_splits):

split data

trainX, testX, trainy, testy = train_test_split(X, y, test_size=0.10)

evaluate model

model, test_acc = evaluate_model(trainX, trainy, testX, testy)

print('>%.3f' % test_acc)

scores.append(test_acc)

members.append(model)

22.2. Resampling Ensembles Case Study 428

Listing 22.13: Example creating ensemble members from random train/test splits.

After fitting and evaluating the models, we can estimate the expected performance of a
given model with the chosen configuration for the domain.

summarize expected performance

print('Estimated Accuracy %.3f (%.3f)' % (mean(scores), std(scores)))

Listing 22.14: Example summarizing the performance of single models.

We don’t know how many of the models will be useful in the ensemble. It is likely that there
will be a point of diminishing returns, after which the addition of further members no longer
changes the performance of the ensemble. Nevertheless, we can evaluate different ensemble sizes
from 1 to 10 and plot their performance on the unseen holdout dataset. We can also evaluate
each model on the holdout dataset and calculate the average of these scores to get a much better
approximation of the true performance of the chosen model on the prediction problem.

evaluate different numbers of ensembles on hold out set

single_scores, ensemble_scores = list(), list()

for i in range(1, n_splits+1):

ensemble_score = evaluate_n_members(members, i, newX, newy)

newy_enc = to_categorical(newy)

_, single_score = members[i-1].evaluate(newX, newy_enc, verbose=0)

print('> %d: single=%.3f, ensemble=%.3f' % (i, single_score, ensemble_score))

ensemble_scores.append(ensemble_score)

single_scores.append(single_score)

Listing 22.15: Example of evaluating ensembles of differing sizes.

Finally, we can compare and calculate a more robust estimate of the general performance of
an average model on the prediction problem, then plot the performance of the ensemble size to
accuracy on the holdout dataset.

plot score vs number of ensemble members

print('Accuracy %.3f (%.3f)' % (mean(single_scores), std(single_scores)))

x_axis = [i for i in range(1, n_splits+1)]

pyplot.plot(x_axis, single_scores, marker='o', linestyle='None')

pyplot.plot(x_axis, ensemble_scores, marker='o')

pyplot.show()

Listing 22.16: Example of plotting ensemble performance vs ensemble size.

Tying all of this together, the complete example is listed below.

random-splits mlp ensemble on blobs dataset

from sklearn.datasets.samples_generator import make_blobs

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

from keras.utils import to_categorical

from keras.models import Sequential

from keras.layers import Dense

from matplotlib import pyplot

from numpy import mean

from numpy import std

from numpy import array

from numpy import argmax

22.2. Resampling Ensembles Case Study 429

import numpy

evaluate a single mlp model

def evaluate_model(trainX, trainy, testX, testy):

encode targets

trainy_enc = to_categorical(trainy)

testy_enc = to_categorical(testy)

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

model.fit(trainX, trainy_enc, epochs=50, verbose=0)

evaluate the model

_, test_acc = model.evaluate(testX, testy_enc, verbose=0)

return model, test_acc

make an ensemble prediction for multi-class classification

def ensemble_predictions(members, testX):

make predictions

yhats = [model.predict(testX) for model in members]

yhats = array(yhats)

sum across ensemble members

summed = numpy.sum(yhats, axis=0)

argmax across classes

result = argmax(summed, axis=1)

return result

evaluate a specific number of members in an ensemble

def evaluate_n_members(members, n_members, testX, testy):

select a subset of members

subset = members[:n_members]

make prediction

yhat = ensemble_predictions(subset, testX)

calculate accuracy

return accuracy_score(testy, yhat)

generate 2d classification dataset

dataX, datay = make_blobs(n_samples=55000, centers=3, n_features=2, cluster_std=2,

random_state=2)

X, newX = dataX[:5000, :], dataX[5000:, :]

y, newy = datay[:5000], datay[5000:]

multiple train-test splits

n_splits = 10

scores, members = list(), list()

for _ in range(n_splits):

split data

trainX, testX, trainy, testy = train_test_split(X, y, test_size=0.10)

evaluate model

model, test_acc = evaluate_model(trainX, trainy, testX, testy)

print('>%.3f' % test_acc)

scores.append(test_acc)

members.append(model)

summarize expected performance

print('Estimated Accuracy %.3f (%.3f)' % (mean(scores), std(scores)))

22.2. Resampling Ensembles Case Study 430

evaluate different numbers of ensembles on hold out set

single_scores, ensemble_scores = list(), list()

for i in range(1, n_splits+1):

ensemble_score = evaluate_n_members(members, i, newX, newy)

newy_enc = to_categorical(newy)

_, single_score = members[i-1].evaluate(newX, newy_enc, verbose=0)

print('> %d: single=%.3f, ensemble=%.3f' % (i, single_score, ensemble_score))

ensemble_scores.append(ensemble_score)

single_scores.append(single_score)

plot score vs number of ensemble members

print('Accuracy %.3f (%.3f)' % (mean(single_scores), std(single_scores)))

x_axis = [i for i in range(1, n_splits+1)]

pyplot.plot(x_axis, single_scores, marker='o', linestyle='None')

pyplot.plot(x_axis, ensemble_scores, marker='o')

pyplot.show()

Listing 22.17: Example of a random splits ensemble on the blobs problem.

Running the example first fits and evaluates 10 models on 10 different random splits of the
dataset into train and test sets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

From these scores, we estimate that the average model fit on the dataset will achieve an
accuracy of about 83% with a standard deviation of about 1.9%.

>0.816

>0.836

>0.818

>0.806

>0.814

>0.824

>0.830

>0.848

>0.868

>0.858

Estimated Accuracy 0.832 (0.019)

Listing 22.18: Example output from summarizing single model performance.

We then evaluate the performance of each model on the unseen dataset and the performance
of ensembles of models from 1 to 10 models. From these scores, we can see that a more accurate
estimate of the performance of an average model on this problem is about 82% and that the
estimated performance is optimistic.

> 1: single=0.821, ensemble=0.821

> 2: single=0.821, ensemble=0.820

> 3: single=0.820, ensemble=0.820

> 4: single=0.820, ensemble=0.821

> 5: single=0.821, ensemble=0.821

> 6: single=0.820, ensemble=0.821

> 7: single=0.820, ensemble=0.821

> 8: single=0.820, ensemble=0.821

> 9: single=0.820, ensemble=0.820

> 10: single=0.820, ensemble=0.821

22.2. Resampling Ensembles Case Study 431

Accuracy 0.820 (0.000)

Listing 22.19: Example output from summarizing train/test split ensemble performance.

A lot of the difference between the accuracy scores is happening in the fractions of percent.
A graph is created showing the accuracy of each individual model on the unseen holdout dataset
as blue dots and the performance of an ensemble with a given number of members from 1-10 as
an orange line and dots. We can see that using an ensemble of 4-to-8 members, at least in this
case, results in an accuracy that is better than most of the individual runs (orange line is above
many blue dots).

Figure 22.3: Line Plot Showing Single Model Accuracy (blue dots) vs Accuracy of Ensembles of
Varying Size for Random-Split Resampling.

The graph does show some individual models can perform better than an ensemble of
models (blue dots above the orange line), but we are unable to choose these models. Here, we
demonstrate that without additional data (e.g. the out-of-sample dataset) that an ensemble
of 4-to-8 members will give better on average performance than a randomly selected train-test
model. More repeats (e.g. 30 or 100) may result in a more stable ensemble performance.

22.2. Resampling Ensembles Case Study 432

22.2.4 Cross-Validation Ensemble

A problem with repeated random splits as a resampling method for estimating the average
performance of model is that it is optimistic. An approach designed to be less optimistic and
is widely used as a result is the k-fold cross-validation method. The method is less biased
because each example in the dataset is only used one time in the test dataset to estimate model
performance, unlike random train-test splits where a given example may be used to evaluate a
model many times. The procedure has a single parameter called k that refers to the number of
groups that a given data sample is to be split into. The average of the scores of each model
provides a less biased estimate of model performance. A typical value for k is 10.

Because neural network models are computationally very expensive to train, it is common
to use the best performing model during cross-validation as the final model. Alternately, the
resulting models from the cross-validation process can be combined to provide a cross-validation
ensemble that is likely to have better performance on average than a given single model. We
can use the KFold class from scikit-learn to split the dataset into k folds. It takes as arguments
the number of splits, whether or not to shuffle the sample, and the seed for the pseudorandom
number generator used prior to the shuffle.

prepare the k-fold cross-validation configuration

n_folds = 10

kfold = KFold(n_folds, True, 1)

Listing 22.20: Example of configuring k-fold cross-validation.

Once the class is instantiated, it can be enumerated to get each split of indexes into the
dataset for the train and test sets.

cross validation estimation of performance

scores, members = list(), list()

for train_ix, test_ix in kfold.split(X):

select samples

trainX, trainy = X[train_ix], y[train_ix]

testX, testy = X[test_ix], y[test_ix]

evaluate model

model, test_acc = evaluate_model(trainX, trainy, testX, testy)

print('>%.3f' % test_acc)

scores.append(test_acc)

members.append(model)

Listing 22.21: Example of creating a k-fold cross-validation ensemble.

Once the scores are calculated on each fold, the average of the scores can be used to report
the expected performance of the approach.

summarize expected performance

print('Estimated Accuracy %.3f (%.3f)' % (mean(scores), std(scores)))

Listing 22.22: Example of estimating the performance of single models.

Now that we have collected the 10 models evaluated on the 10 folds, we can use them to
create a cross-validation ensemble. It seems intuitive to use all 10 models in the ensemble,
nevertheless, we can evaluate the accuracy of each subset of ensembles from 1 to 10 members as
we did in the previous section. The complete example of analyzing the cross-validation ensemble
is listed below.

22.2. Resampling Ensembles Case Study 433

cross-validation mlp ensemble on blobs dataset

from sklearn.datasets.samples_generator import make_blobs

from sklearn.model_selection import KFold

from sklearn.metrics import accuracy_score

from keras.utils import to_categorical

from keras.models import Sequential

from keras.layers import Dense

from matplotlib import pyplot

from numpy import mean

from numpy import std

from numpy import array

from numpy import argmax

import numpy

evaluate a single mlp model

def evaluate_model(trainX, trainy, testX, testy):

encode targets

trainy_enc = to_categorical(trainy)

testy_enc = to_categorical(testy)

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

model.fit(trainX, trainy_enc, epochs=50, verbose=0)

evaluate the model

_, test_acc = model.evaluate(testX, testy_enc, verbose=0)

return model, test_acc

make an ensemble prediction for multi-class classification

def ensemble_predictions(members, testX):

make predictions

yhats = [model.predict(testX) for model in members]

yhats = array(yhats)

sum across ensemble members

summed = numpy.sum(yhats, axis=0)

argmax across classes

result = argmax(summed, axis=1)

return result

evaluate a specific number of members in an ensemble

def evaluate_n_members(members, n_members, testX, testy):

select a subset of members

subset = members[:n_members]

make prediction

yhat = ensemble_predictions(subset, testX)

calculate accuracy

return accuracy_score(testy, yhat)

generate 2d classification dataset

dataX, datay = make_blobs(n_samples=55000, centers=3, n_features=2, cluster_std=2,

random_state=2)

X, newX = dataX[:5000, :], dataX[5000:, :]

y, newy = datay[:5000], datay[5000:]

22.2. Resampling Ensembles Case Study 434

prepare the k-fold cross-validation configuration

n_folds = 10

kfold = KFold(n_folds, True, 1)

cross validation estimation of performance

scores, members = list(), list()

for train_ix, test_ix in kfold.split(X):

select samples

trainX, trainy = X[train_ix], y[train_ix]

testX, testy = X[test_ix], y[test_ix]

evaluate model

model, test_acc = evaluate_model(trainX, trainy, testX, testy)

print('>%.3f' % test_acc)

scores.append(test_acc)

members.append(model)

summarize expected performance

print('Estimated Accuracy %.3f (%.3f)' % (mean(scores), std(scores)))

evaluate different numbers of ensembles on hold out set

single_scores, ensemble_scores = list(), list()

for i in range(1, n_folds+1):

ensemble_score = evaluate_n_members(members, i, newX, newy)

newy_enc = to_categorical(newy)

_, single_score = members[i-1].evaluate(newX, newy_enc, verbose=0)

print('> %d: single=%.3f, ensemble=%.3f' % (i, single_score, ensemble_score))

ensemble_scores.append(ensemble_score)

single_scores.append(single_score)

plot score vs number of ensemble members

print('Accuracy %.3f (%.3f)' % (mean(single_scores), std(single_scores)))

x_axis = [i for i in range(1, n_folds+1)]

pyplot.plot(x_axis, single_scores, marker='o', linestyle='None')

pyplot.plot(x_axis, ensemble_scores, marker='o')

pyplot.show()

Listing 22.23: Example of a cross-validation ensemble on the blobs problem.

Running the example first prints the performance of each of the 10 models on each of the
folds of the cross-validation.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

The average performance of these models is reported as about 82%, which appears to be less
optimistic than the random-splits approach used in the previous section.

>0.834

>0.870

>0.818

>0.806

>0.836

>0.804

>0.820

>0.830

>0.828

>0.822

Estimated Accuracy 0.827 (0.018)

Listing 22.24: Example output from summarizing single model performance.

22.2. Resampling Ensembles Case Study 435

Next, each of the saved models is evaluated on the unseen holdout set. The average of these
scores is also about 82%, highlighting that, at least in this case, the cross-validation estimation
of the general performance of the model was reasonable.

> 1: single=0.819, ensemble=0.819

> 2: single=0.820, ensemble=0.820

> 3: single=0.820, ensemble=0.820

> 4: single=0.821, ensemble=0.821

> 5: single=0.820, ensemble=0.821

> 6: single=0.821, ensemble=0.821

> 7: single=0.820, ensemble=0.820

> 8: single=0.819, ensemble=0.821

> 9: single=0.820, ensemble=0.821

> 10: single=0.820, ensemble=0.821

Accuracy 0.820 (0.001)

Listing 22.25: Example output from summarizing cross-validation ensemble performance.

A graph of single model accuracy (blue dots) and ensemble size vs accuracy (orange line) is
created. As in the previous example, the real difference between the performance of the models
is in the fractions of percent in model accuracy. The orange line shows that as the number of
members increases, the accuracy of the ensemble increases to a point of diminishing returns. We
can see that, at least in this case, using four or more of the models fit during cross-validation in
an ensemble gives better performance than almost all individual models. We can also see that a
default strategy of using all models in the ensemble would be effective.

22.2. Resampling Ensembles Case Study 436

Figure 22.4: Line Plot Showing Single Model Accuracy (blue dots) vs Accuracy of Ensembles of
Varying Size for Cross-Validation Resampling.

22.2.5 Bagging Ensemble

A limitation of random splits and k-fold cross-validation from the perspective of ensemble
learning is that the models are very similar. The bootstrap method is a statistical technique
for estimating quantities about a population by averaging estimates from multiple small data
samples. Importantly, samples are constructed by drawing observations from a large data sample
one at a time and returning them to the data sample after they have been chosen. This allows
a given observation to be included in a given small sample more than once. This approach to
sampling is called sampling with replacement.

The method can be used to estimate the performance of neural network models. Examples
not selected in a given sample can be used as a test set to estimate the performance of the
model. The bootstrap is a robust method for estimating model performance. It does suffer
a little from an optimistic bias, but is often almost as accurate as k-fold cross-validation in
practice. The benefit for ensemble learning is that each data sample is biased, allowing a given
example to appear many times in the sample. This, in turn, means that the models trained
on those samples will be biased, importantly in different ways. The result can be ensemble
predictions that can be more accurate.

Generally, use of the bootstrap method in ensemble learning is referred to as bootstrap

22.2. Resampling Ensembles Case Study 437

aggregation or bagging. We can use the resample() function from scikit-learn to select a
subsample with replacement. The function takes an array to subsample and the size of the
resample as arguments. We will perform the selection in rows indices that we can in turn use
to select rows in the X and y arrays. The size of the sample will be 4,500, or 90% of the data,
although the test set may be larger than 10% as given the use of resampling, more than 500
examples may have been left unselected.

multiple train-test splits

n_splits = 10

scores, members = list(), list()

for _ in range(n_splits):

select indexes

ix = [i for i in range(len(X))]

train_ix = resample(ix, replace=True, n_samples=4500)

test_ix = [x for x in ix if x not in train_ix]

select data

trainX, trainy = X[train_ix], y[train_ix]

testX, testy = X[test_ix], y[test_ix]

evaluate model

model, test_acc = evaluate_model(trainX, trainy, testX, testy)

print('>%.3f' % test_acc)

scores.append(test_acc)

members.append(model)

Listing 22.26: Example of creating a bootstrap ensemble.

It is common to use simple overfit models like unpruned decision trees when using a bagging
ensemble learning strategy (e.g. an ensemble averaging used to add bias to a suite of high variance
models). Better performance may be seen with over-constrained and overfit neural networks.
Nevertheless, we will use the same MLP from previous sections in this example. Additionally,
it is common to continue to add ensemble members in bagging until the performance of the
ensemble plateaus, as bagging does not overfit the dataset. We will again limit the number of
members to 10 as in previous examples. The complete example of bootstrap aggregation for
estimating model performance and ensemble learning with a Multilayer Perceptron is listed
below.

bagging mlp ensemble on blobs dataset

from sklearn.datasets.samples_generator import make_blobs

from sklearn.utils import resample

from sklearn.metrics import accuracy_score

from keras.utils import to_categorical

from keras.models import Sequential

from keras.layers import Dense

from matplotlib import pyplot

from numpy import mean

from numpy import std

from numpy import array

from numpy import argmax

import numpy

evaluate a single mlp model

def evaluate_model(trainX, trainy, testX, testy):

encode targets

trainy_enc = to_categorical(trainy)

testy_enc = to_categorical(testy)

22.2. Resampling Ensembles Case Study 438

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

model.fit(trainX, trainy_enc, epochs=50, verbose=0)

evaluate the model

_, test_acc = model.evaluate(testX, testy_enc, verbose=0)

return model, test_acc

make an ensemble prediction for multi-class classification

def ensemble_predictions(members, testX):

make predictions

yhats = [model.predict(testX) for model in members]

yhats = array(yhats)

sum across ensemble members

summed = numpy.sum(yhats, axis=0)

argmax across classes

result = argmax(summed, axis=1)

return result

evaluate a specific number of members in an ensemble

def evaluate_n_members(members, n_members, testX, testy):

select a subset of members

subset = members[:n_members]

make prediction

yhat = ensemble_predictions(subset, testX)

calculate accuracy

return accuracy_score(testy, yhat)

generate 2d classification dataset

dataX, datay = make_blobs(n_samples=55000, centers=3, n_features=2, cluster_std=2,

random_state=2)

X, newX = dataX[:5000, :], dataX[5000:, :]

y, newy = datay[:5000], datay[5000:]

multiple train-test splits

n_splits = 10

scores, members = list(), list()

for _ in range(n_splits):

select indexes

ix = [i for i in range(len(X))]

train_ix = resample(ix, replace=True, n_samples=4500)

test_ix = [x for x in ix if x not in train_ix]

select data

trainX, trainy = X[train_ix], y[train_ix]

testX, testy = X[test_ix], y[test_ix]

evaluate model

model, test_acc = evaluate_model(trainX, trainy, testX, testy)

print('>%.3f' % test_acc)

scores.append(test_acc)

members.append(model)

summarize expected performance

print('Estimated Accuracy %.3f (%.3f)' % (mean(scores), std(scores)))

evaluate different numbers of ensembles on hold out set

single_scores, ensemble_scores = list(), list()

22.2. Resampling Ensembles Case Study 439

for i in range(1, n_splits+1):

ensemble_score = evaluate_n_members(members, i, newX, newy)

newy_enc = to_categorical(newy)

_, single_score = members[i-1].evaluate(newX, newy_enc, verbose=0)

print('> %d: single=%.3f, ensemble=%.3f' % (i, single_score, ensemble_score))

ensemble_scores.append(ensemble_score)

single_scores.append(single_score)

plot score vs number of ensemble members

print('Accuracy %.3f (%.3f)' % (mean(single_scores), std(single_scores)))

x_axis = [i for i in range(1, n_splits+1)]

pyplot.plot(x_axis, single_scores, marker='o', linestyle='None')

pyplot.plot(x_axis, ensemble_scores, marker='o')

pyplot.show()

Listing 22.27: Example of a bagging ensemble on the blobs problem.

Running the example prints the model performance on the unused examples for each
bootstrap sample.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

We can see that, in this case, the expected performance of the model is less optimistic than
random train-test splits and is perhaps quite similar to the finding for k-fold cross-validation.

>0.829

>0.820

>0.830

>0.821

>0.831

>0.820

>0.834

>0.815

>0.829

>0.827

Estimated Accuracy 0.825 (0.006)

Listing 22.28: Example output from summarizing single model performance.

Perhaps due to the bootstrap sampling procedure, we see that the actual performance of
each model is a little worse on the much larger unseen holdout dataset. This is to be expected
given the bias introduced by the sampling with replacement of the bootstrap.

> 1: single=0.819, ensemble=0.819

> 2: single=0.818, ensemble=0.820

> 3: single=0.820, ensemble=0.820

> 4: single=0.818, ensemble=0.821

> 5: single=0.819, ensemble=0.820

> 6: single=0.820, ensemble=0.820

> 7: single=0.820, ensemble=0.820

> 8: single=0.819, ensemble=0.820

> 9: single=0.820, ensemble=0.820

> 10: single=0.819, ensemble=0.820

Accuracy 0.819 (0.001)

Listing 22.29: Example output from summarizing bagging ensemble performance.

22.3. Extensions 440

The created line plot is encouraging. We see that after about four members that the bagged
ensemble achieves better performance on the holdout dataset than any individual model. No
doubt, given the slightly lower average performance of individual models.

Figure 22.5: Line Plot Showing Single Model Accuracy (blue dots) vs Accuracy of Ensembles of
Varying Size for Bagging.

22.3 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Single Model. Compare the performance of each ensemble to one model trained on all
available data.

� CV Ensemble Size. Experiment with larger and smaller ensemble sizes for the cross-
validation ensemble and compare their performance.

� Bagging Ensemble Limit. Increase the number of members in the bagging ensemble
to find the point of diminishing returns.

If you explore any of these extensions, I’d love to know.

22.4. Further Reading 441

22.4 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

22.4.1 Papers

� Neural Network Ensembles, Cross Validation, and Active Learning, 1995.
http://papers.nips.cc/paper/1001-neural-network-ensembles-cross-validation-and-active-learning.

pdf

22.4.2 APIs

� Getting started with the Keras Sequential model.
https://keras.io/getting-started/sequential-model-guide/

� Keras Core Layers API.
https://keras.io/layers/core/

� numpy.argmax API.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html

� sklearn.datasets.make blobs API.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.

html

� sklearn.model selection.train test split API.
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_

test_split.html

� sklearn.model selection.KFold API.
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.

html

� sklearn.utils.resample API.
http://scikit-learn.org/stable/modules/generated/sklearn.utils.resample.html

22.4.3 Articles

� Cross-validation (statistics), Wikipedia.
https://en.wikipedia.org/wiki/Cross-validation_(statistics)

� Bootstrapping (statistics), Wikipedia.
https://en.wikipedia.org/wiki/Bootstrapping_(statistics)

� Bootstrap aggregating, Wikipedia.
https://en.wikipedia.org/wiki/Bootstrap_aggregating

http://papers.nips.cc/paper/1001-neural-network-ensembles-cross-validation-and-active-learning.pdf
http://papers.nips.cc/paper/1001-neural-network-ensembles-cross-validation-and-active-learning.pdf
https://keras.io/getting-started/sequential-model-guide/
https://keras.io/layers/core/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
http://scikit-learn.org/stable/modules/generated/sklearn.utils.resample.html
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
https://en.wikipedia.org/wiki/Bootstrapping_(statistics)
https://en.wikipedia.org/wiki/Bootstrap_aggregating

22.5. Summary 442

22.5 Summary

In this tutorial, you discovered how to develop a suite of different resampling-based ensembles
for deep learning neural network models. Specifically, you learned:

� How to estimate model performance using random-splits and develop an ensemble from
the models.

� How to estimate performance using 10-fold cross-validation and develop a cross-validation
ensemble.

� How to estimate performance using the bootstrap and combine models using a bagging
ensemble.

22.5.1 Next

In the next tutorial, you will discover how to develop ensemble members from a contiguous
block of epochs from a single model training run.

Chapter 23

Models from Contiguous Epochs with
Horizontal Voting Ensembles

Predictive modeling problems where the training dataset is small relative to the number of
unlabeled examples are challenging. Neural networks can perform well on these types of problems,
although they can suffer from high variance in model performance as measured on a training
or hold-out validation datasets. This makes choosing which model to use as the final model
risky, as there is no clear signal as to which model is better than another toward the end of the
training run. The horizontal voting ensemble is a simple method to address this issue, where a
collection of models saved over contiguous training epochs towards the end of a training run are
saved and used as an ensemble that results in more stable and better performance on average
than randomly choosing a single final model. In this tutorial, you will discover how to reduce
the variance of a final deep learning neural network model using a horizontal voting ensemble.
After completing this tutorial, you will know:

� That it is challenging to choose a final neural network model that has high variance on a
training dataset.

� Horizontal voting ensembles provide a way to reduce variance and improve average model
performance for models with high variance using a single training run.

� How to develop a horizontal voting ensemble in Python using Keras to improve the
performance of a final Multilayer Perceptron model for multiclass classification.

Let’s get started.

23.1 Horizontal Voting Ensemble

Ensemble learning combines the predictions from multiple models. A challenge when using
ensemble learning when using deep learning methods is that given the use of very large datasets
and large models, a given training run may take days, weeks, or even months. Training multiple
models may not be feasible. An alternative source of models that may contribute to an ensemble
are the state of a single model at different points during training. Horizontal voting is an
ensemble method proposed by Jingjing Xie, et al. in their 2013 paper Horizontal and Vertical
Ensemble with Deep Representation for Classification.

443

23.2. Horizontal Voting Ensembles Case Study 444

The method involves using multiple models from the end of a contiguous block of epochs
before the end of training in an ensemble to make predictions. The approach was developed
specifically for those predictive modeling problems where the training dataset is relatively small
compared to the number of predictions required by the model. This results in a model that has
a high variance in performance during training. In this situation, using the final model or any
given model toward the end of the training process is risky given the variance in performance.

... the error rate of classification would first decline and then tend to be stable with
the training epoch grows. But when size of labeled training set is too small, the
error rate would oscillate [...] So it is difficult to choose a magic epoch to obtain a
reliable output.

— Horizontal and Vertical Ensemble with Deep Representation for Classification, 2013.

Instead, the authors suggest using all of the models in an ensemble from a contiguous block
of epochs during training, such as models from the last 200 epochs. The result are predictions
by the ensemble that are as good as or better than any single model in the ensemble.

To reduce the instability, we put forward a method called Horizontal Voting. First,
networks trained for a relatively stable range of epoch are selected. The predictions
of the probability of each label are produced by standard classifiers with top level
representation of the selected epoch, and then averaged.

— Horizontal and Vertical Ensemble with Deep Representation for Classification, 2013.

As such, the horizontal voting ensemble method provides an ideal method for both cases
where a given model requires vast computational resources to train, and/or cases where final
model selection is challenging given the high variance of training due to the use of a relatively
small training dataset. Now that are we are familiar with horizontal voting, we can implement
the procedure.

23.2 Horizontal Voting Ensembles Case Study

In this section, we will demonstrate how to use the horizontal voting ensemble to reduce the
variance of an MLP on a simple multiclass classification problem. This example provides a
template for applying the horizontal voting ensemble to your own neural network for classification
and regression problems.

23.2.1 Multiclass Classification Problem

We will use a small multiclass classification problem as the basis to demonstrate a horizontal
voting ensemble. The scikit-learn class provides the make blobs() function that can be used to
create a multiclass classification problem with the prescribed number of samples, input variables,
classes, and variance of samples within a class. The problem can be configured to have two
input variables (to represent the x and y coordinates of the points) and a standard deviation of
2.0 for points within each group. We will use the same random state (seed for the pseudorandom
number generator) to ensure that we always get the same data points.

23.2. Horizontal Voting Ensembles Case Study 445

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

Listing 23.1: Example of creating samples for the blobs problem.

The results are the input and output elements of a dataset that we can model. In order to
get a feeling for the complexity of the problem, we can graph each point on a two-dimensional
scatter plot and color each point by class value. The complete example is listed below.

scatter plot of blobs dataset

from sklearn.datasets.samples_generator import make_blobs

from matplotlib import pyplot

from numpy import where

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

scatter plot for each class value

for class_value in range(3):

select indices of points with the class label

row_ix = where(y == class_value)

scatter plot for points with a different color

pyplot.scatter(X[row_ix, 0], X[row_ix, 1])

show plot

pyplot.show()

Listing 23.2: Example of plotting samples from the blobs problem.

Running the example creates a scatter plot of the entire dataset. We can see that the
standard deviation of 2.0 means that the classes are not linearly separable (can be separated
by a line) causing many ambiguous points. This is desirable as it means that the problem is
non-trivial and will allow a neural network model to find many different good enough candidate
solutions resulting in a high variance.

23.2. Horizontal Voting Ensembles Case Study 446

Figure 23.1: Scatter Plot of Blobs Dataset With Three Classes and Points Colored by Class
Value.

23.2.2 Multilayer Perceptron Model

Before we define a model, we need to contrive a problem that is appropriate for a horizontal
voting ensemble. In our problem, the training dataset is relatively small. Specifically, there is a
10:1 ratio of examples in the training dataset to the holdout dataset. This mimics a situation
where we may have a vast number of unlabeled examples and a small number of labeled examples
with which to train a model. We will create 1,100 data points from the blobs problem. The
model will be trained on the first 100 points and the remaining 1,000 will be held back in a test
dataset, unavailable to the model.

generate 2d classification dataset

X, y = make_blobs(n_samples=1100, centers=3, n_features=2, cluster_std=2, random_state=2)

split into train and test

n_train = 100

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

print(trainX.shape, testX.shape)

Listing 23.3: Example of preparing dataset for modeling.

The problem is a multiclass classification problem, and we will model it using a softmax
activation function on the output layer. This means that the model will predict a vector

23.2. Horizontal Voting Ensembles Case Study 447

with three elements with the probability that the sample belongs to each of the three classes.
Therefore, we must one hot encode the class values, ideally before we split the rows into the
train, test, and validation datasets so that it is a single function call.

y = to_categorical(y)

Listing 23.4: Example of one hot encoding the target value.

Next, we can define and combine the model. The model will expect samples with two
input variables. The model then has a single hidden layer with 25 nodes and a rectified linear
activation function, then an output layer with three nodes to predict the probability of each of
the three classes and a softmax activation function. Because the problem is multiclass, we will
use the categorical cross-entropy loss function to optimize the model and the efficient Adam
flavor of stochastic gradient descent.

define model

model = Sequential()

model.add(Dense(25, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

Listing 23.5: Example of defining MLP model.

The model is fit for 1,000 training epochs and we will evaluate the model each epoch on the
training set, using the test set as a validation set.

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=1000, verbose=0)

Listing 23.6: Example of fitting MLP model.

At the end of the run, we will evaluate the performance of the model on the train and test
sets.

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

Listing 23.7: Example of evaluating MLP model.

Then finally, we will plot learning curves of the model accuracy over each training epoch on
both the training and validation datasets.

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 23.8: Example of plotting learning curves for MLP model.

23.2. Horizontal Voting Ensembles Case Study 448

Tying all of this together, the complete example is listed below.

develop an mlp for blobs dataset

from sklearn.datasets.samples_generator import make_blobs

from keras.utils import to_categorical

from keras.models import Sequential

from keras.layers import Dense

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_blobs(n_samples=1100, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 100

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(25, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=1000, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 23.9: Example of fitting an MLP on the blobs problem.

Running the example first prints the shape of each dataset for confirmation, then the
performance of the final model on the train and test datasets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that the model achieved about 86% accuracy on the training dataset
that we know is optimistic, and about 81% on the test dataset, which we would expect to be
more realistic.

Train: 0.860, Test: 0.814

Listing 23.10: Example output fitting an MLP on the blobs problem.

23.2. Horizontal Voting Ensembles Case Study 449

A line plot is also created showing the learning curves for the model accuracy on the train
and test sets over each training epoch. We can see that training accuracy is more optimistic
over the whole run as we also noted with the final scores. We can see that the accuracy of the
model has high variance on the training dataset as compared to the test set, as we would expect.
The variance in the model highlights the fact that choosing the model at the end of the run or
any model from about epoch 400 is challenging as accuracy on the training dataset has a high
variance. We also see a muted version of the variance on the test dataset.

Figure 23.2: Line Plot Learning Curves of Model Accuracy on Train and Test Dataset over
Each Training Epoch.

Now that we have identified that the model is a good candidate for a horizontal voting
ensemble, we can begin to implement the technique.

23.2.3 Save Horizontal Models

There may be many ways to implement a horizontal voting ensemble. Perhaps the simplest is
to manually drive the training process, one epoch at a time, then save models at the end of
the epoch if we have exceeded an upper limit on the number of epochs. For example, with our
test problem, we will train the model for 1,000 epochs and perhaps save models from epoch 950
onwards (e.g. between and including epochs 950 and 999).

23.2. Horizontal Voting Ensembles Case Study 450

fit model

n_epochs, n_save_after = 1000, 950

for i in range(n_epochs):

fit model for a single epoch

model.fit(trainX, trainy, epochs=1, verbose=0)

check if we should save the model

if i >= n_save_after:

model.save('models/model_' + str(i) + '.h5')

Listing 23.11: Example of fitting and saving horizontal ensemble members.

Models can be saved to file using the save() function on the model and specifying a filename
that includes the epoch number. To avoid clutter with our source files, we will save all models
under a new models/ folder in the current working directory.

create directory for models

makedirs('models')

Listing 23.12: Example of creating folder used to save models.

Note, saving and loading neural network models in Keras requires that you have the h5py

library installed. You can install this library using pip as follows:

pip install h5py

Listing 23.13: Example installing the h5py library with pip.

Tying all of this together, the complete example of fitting the model on the training dataset
and saving all models from the last 50 epochs is listed below.

save horizontal voting ensemble members during training

from sklearn.datasets.samples_generator import make_blobs

from keras.utils import to_categorical

from keras.models import Sequential

from keras.layers import Dense

from os import makedirs

generate 2d classification dataset

X, y = make_blobs(n_samples=1100, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 100

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(25, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

create directory for models

makedirs('models')

fit model

n_epochs, n_save_after = 1000, 950

for i in range(n_epochs):

fit model for a single epoch

model.fit(trainX, trainy, epochs=1, verbose=0)

check if we should save the model

23.2. Horizontal Voting Ensembles Case Study 451

if i >= n_save_after:

model.save('models/model_' + str(i) + '.h5')

Listing 23.14: Example of saving horizontal ensemble members to file.

Running the example creates the models/ folder and saves 50 models into the directory.
Note, to re-run this example, you must delete the models/ directory so that the script can
recreate it.

23.2.4 Make Horizontal Ensemble Predictions

Now that we have created the models, we can use them in a horizontal voting ensemble. First,
we need to load the models into memory. This is reasonable as the models are small. If you are
trying to develop a horizontal voting ensemble with very large models, it might be easier to load
models one at a time, make a prediction, then load the next model and repeat the process. The
function load all models() below will load models from the models/ directory. It takes the
start and end epochs as arguments so that you can experiment with different groups of models
saved over contiguous epochs.

load models from file

def load_all_models(n_start, n_end):

all_models = list()

for epoch in range(n_start, n_end):

define filename for this ensemble

filename = 'models/model_' + str(epoch) + '.h5'

load model from file

model = load_model(filename)

add to list of members

all_models.append(model)

print('>loaded %s' % filename)

return all_models

Listing 23.15: Example of a function for loading saved ensemble members.

We can call the function to load all of the models. We can then reverse the list of models so
that the models at the end of the run are at the beginning of the list. This will be helpful later
when we test voting ensembles of different sizes, including models sequentially from the end of
the run backward through training epochs, in case the best models really were at the end of the
run.

load models in order

members = load_all_models(950, 1000)

print('Loaded %d models' % len(members))

reverse loaded models so we build the ensemble with the last models first

members = list(reversed(members))

Listing 23.16: Example of a loading saved ensemble members.

Next, we can evaluate each saved model on the test dataset, as well as a voting ensemble of
the last n contiguous models from training. We want to know how well each model actually
performed on the test dataset and, importantly, the distribution of model performance on the
test dataset, so that we know how well (or poorly) an average model chosen from the end of the
run would perform in practice. We don’t know how many members to include in the horizontal

23.2. Horizontal Voting Ensembles Case Study 452

voting ensemble. Therefore, we can test different numbers of contiguous members, working
backward from the final model.

First, we need a function to make a prediction with a list of ensemble members. Each member
predicts the probabilities for each of the three output classes. The probabilities are added and
we use an argmax to select the class with the most support. The ensemble predictions()

function below implements this voting based prediction scheme.

make an ensemble prediction for multiclass classification

def ensemble_predictions(members, testX):

make predictions

yhats = [model.predict(testX) for model in members]

yhats = array(yhats)

sum across ensemble members

summed = numpy.sum(yhats, axis=0)

argmax across classes

result = argmax(summed, axis=1)

return result

Listing 23.17: Example of a function for making ensemble predictions.

Next, we need a function to evaluate a subset of the ensemble members of a given size. The
subset needs to be selected, predictions made, and the performance of the ensemble estimated by
comparing the predictions to the expected values. The evaluate n members() function below
implements this ensemble size evaluation.

evaluate a specific number of members in an ensemble

def evaluate_n_members(members, n_members, testX, testy):

select a subset of members

subset = members[:n_members]

make prediction

yhat = ensemble_predictions(subset, testX)

calculate accuracy

return accuracy_score(testy, yhat)

Listing 23.18: Example of a function for evaluating an ensemble of a given size.

We can now enumerate through different sized horizontal voting ensembles from 1 to 50.
Each member is evaluated alone, then the ensemble of that size is evaluated and scores are
recorded.

evaluate different numbers of ensembles on hold out set

single_scores, ensemble_scores = list(), list()

for i in range(1, len(members)+1):

evaluate model with i members

ensemble_score = evaluate_n_members(members, i, testX, testy)

evaluate the i'th model standalone

testy_enc = to_categorical(testy)

_, single_score = members[i-1].evaluate(testX, testy_enc, verbose=0)

summarize this step

print('> %d: single=%.3f, ensemble=%.3f' % (i, single_score, ensemble_score))

ensemble_scores.append(ensemble_score)

single_scores.append(single_score)

Listing 23.19: Example of a evaluating ensembles of different given sizes.

23.2. Horizontal Voting Ensembles Case Study 453

At the end of the evaluations, we report the distribution of scores of single models on the
test dataset. The average score is what we would expect on average if we picked any of the
saved models as a final model.

summarize average accuracy of a single final model

print('Accuracy %.3f (%.3f)' % (mean(single_scores), std(single_scores)))

Listing 23.20: Example of summarizing single model performance.

Finally, we can plot the scores. The scores of each standalone model are plotted as blue dots
and line plot is created for each ensemble of contiguous models (orange).

plot score vs number of ensemble members

x_axis = [i for i in range(1, len(members)+1)]

pyplot.plot(x_axis, single_scores, marker='o', linestyle='None')

pyplot.plot(x_axis, ensemble_scores, marker='o')

pyplot.show()

Listing 23.21: Example of plotting single model and ensemble model performance.

Our expectation is that a fair sized ensemble will outperform a randomly selected model
and that there is a point of diminishing returns in choosing the ensemble size. The complete
example is listed below.

load models and make predictions using a horizontal voting ensemble

from sklearn.datasets.samples_generator import make_blobs

from sklearn.metrics import accuracy_score

from keras.utils import to_categorical

from keras.models import load_model

from matplotlib import pyplot

from numpy import mean

from numpy import std

from numpy import array

from numpy import argmax

import numpy

load models from file

def load_all_models(n_start, n_end):

all_models = list()

for epoch in range(n_start, n_end):

define filename for this ensemble

filename = 'models/model_' + str(epoch) + '.h5'

load model from file

model = load_model(filename)

add to list of members

all_models.append(model)

print('>loaded %s' % filename)

return all_models

make an ensemble prediction for multi-class classification

def ensemble_predictions(members, testX):

make predictions

yhats = [model.predict(testX) for model in members]

yhats = array(yhats)

sum across ensemble members

summed = numpy.sum(yhats, axis=0)

argmax across classes

23.2. Horizontal Voting Ensembles Case Study 454

result = argmax(summed, axis=1)

return result

evaluate a specific number of members in an ensemble

def evaluate_n_members(members, n_members, testX, testy):

select a subset of members

subset = members[:n_members]

make prediction

yhat = ensemble_predictions(subset, testX)

calculate accuracy

return accuracy_score(testy, yhat)

generate 2d classification dataset

X, y = make_blobs(n_samples=1100, centers=3, n_features=2, cluster_std=2, random_state=2)

split into train and test

n_train = 100

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

load models in order

members = load_all_models(950, 1000)

print('Loaded %d models' % len(members))

reverse loaded models so we build the ensemble with the last models first

members = list(reversed(members))

evaluate different numbers of ensembles on hold out set

single_scores, ensemble_scores = list(), list()

for i in range(1, len(members)+1):

evaluate model with i members

ensemble_score = evaluate_n_members(members, i, testX, testy)

evaluate the i'th model standalone

testy_enc = to_categorical(testy)

_, single_score = members[i-1].evaluate(testX, testy_enc, verbose=0)

summarize this step

print('> %d: single=%.3f, ensemble=%.3f' % (i, single_score, ensemble_score))

ensemble_scores.append(ensemble_score)

single_scores.append(single_score)

summarize average accuracy of a single final model

print('Accuracy %.3f (%.3f)' % (mean(single_scores), std(single_scores)))

plot score vs number of ensemble members

x_axis = [i for i in range(1, len(members)+1)]

pyplot.plot(x_axis, single_scores, marker='o', linestyle='None')

pyplot.plot(x_axis, ensemble_scores, marker='o')

pyplot.show()

Listing 23.22: Example of evaluating horizontal ensemble models.

First, the 50 saved models are loaded into memory.

...

>loaded models/model_990.h5

>loaded models/model_991.h5

>loaded models/model_992.h5

>loaded models/model_993.h5

>loaded models/model_994.h5

>loaded models/model_995.h5

>loaded models/model_996.h5

>loaded models/model_997.h5

>loaded models/model_998.h5

23.2. Horizontal Voting Ensembles Case Study 455

>loaded models/model_999.h5

Listing 23.23: Example output from loading the saved models.

Next, the performance of each single model is evaluated on the holdout test dataset, and the
ensemble of that size (1, 2, 3, etc.) is created and evaluated on the holdout test dataset.

> 1: single=0.814, ensemble=0.814

> 2: single=0.816, ensemble=0.816

> 3: single=0.812, ensemble=0.816

> 4: single=0.812, ensemble=0.815

> 5: single=0.811, ensemble=0.815

...

> 46: single=0.817, ensemble=0.818

> 47: single=0.812, ensemble=0.818

> 48: single=0.811, ensemble=0.818

> 49: single=0.810, ensemble=0.818

> 50: single=0.811, ensemble=0.818

Listing 23.24: Example output from evaluating single models.

Roughly, we can see that the ensemble appears to outperform most single models, consistently
achieving accuracy around 81.8%. Next, the distribution of the accuracy of single models is
reported. We can see that picking any of the saved models at random would result in a model
with the accuracy of 81.6% on average with a reasonably tight standard deviation of 0.3%. We
would require that a horizontal ensemble out-perform this average in order to be useful.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

Accuracy 0.816 (0.003)

Listing 23.25: Example output from summarizing the distribution of single model performance.

Finally, a graph is created summarizing the performance of each single model (blue dot) and
the ensemble of each size from 1 to 50 members. We can see from the blue dots that there is
no structure to the models over the epochs, e.g. if the last models during training were better,
there would be a downward trend in accuracy from left to right. We can see that as we add
more ensemble members, the better the performance of the horizontal voting ensemble in the
orange line. We can see a flattening of performance on this problem perhaps between 23 and 33
epochs; that might be a good choice.

23.3. Extensions 456

Figure 23.3: Line Plot Showing Single Model Accuracy (blue dots) vs Accuracy of Ensembles of
Varying Size With a Horizontal Voting Ensemble.

23.3 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Dataset Size. Repeat the experiments with a smaller or larger sized dataset with a
similar ratio of training to test examples.

� Larger Ensemble. Re-run the example with hundreds of final models and report the
impact of the large ensemble sizes of accuracy on the test set.

� Random Sampling of Models. Re-run the example and compare the performance of
ensembles of the same size with models saved over contiguous epochs to a random selection
of saved models.

If you explore any of these extensions, I’d love to know.

23.4 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

23.5. Summary 457

23.4.1 Papers

� Horizontal and Vertical Ensemble with Deep Representation for Classification, 2013.
https://arxiv.org/abs/1306.2759

23.4.2 APIs

� Getting started with the Keras Sequential model.
https://keras.io/getting-started/sequential-model-guide/

� Keras Core Layers API.
https://keras.io/layers/core/

� numpy.argmax API.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html

� sklearn.datasets.make blobs API.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.

html

� How can I save a Keras model?.
https://keras.io/getting-started/faq/#how-can-i-save-a-keras-model

� Keras Callbacks API.
https://keras.io/callbacks

23.5 Summary

In this tutorial, you discovered how to reduce the variance of a final deep learning neural network
model using a horizontal voting ensemble. Specifically, you learned:

� It is challenging to choose a final neural network model that has high variance on a training
dataset.

� Horizontal voting ensembles provide a way to reduce variance and improve average model
performance for models with high variance using a single training run.

� How to develop a horizontal voting ensemble in Python using Keras to improve the
performance of a final Multilayer Perceptron model for multiclass classification.

23.5.1 Next

In the next tutorial, you will discover how to develop ensemble members from the troughs of an
aggressive cyclical learning rate schedule over a single model training run.

https://arxiv.org/abs/1306.2759
https://keras.io/getting-started/sequential-model-guide/
https://keras.io/layers/core/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
https://keras.io/getting-started/faq/#how-can-i-save-a-keras-model
https://keras.io/callbacks

Chapter 24

Cyclic Learning Rate and Snapshot
Ensembles

Model ensembles can achieve lower generalization error than single models but are challenging
to develop with deep learning neural networks given the computational cost of training each
single model. An alternative is to train multiple model snapshots during a single training run
and combine their predictions to make an ensemble prediction. A limitation of this approach is
that the saved models will be similar, resulting in similar predictions and predictions errors and
not offering much benefit from combining their predictions.

Effective ensembles require a diverse set of skillful ensemble members that have differing
distributions of prediction errors. One approach to promoting a diversity of models saved during
a single training run is to use an aggressive learning rate schedule that forces large changes in
the model weights and, in turn, the nature of the model saved at each snapshot. In this tutorial,
you will discover how to develop snapshot ensembles of models saved using an aggressive learning
rate schedule over a single training run. After completing this tutorial, you will know:

� Snapshot ensembles combine the predictions from multiple models saved during a single
training run.

� Diversity in model snapshots can be achieved through the use of aggressively cycling the
learning rate used during a single training run.

� How to save model snapshots during a single run and load snapshot models to make
ensemble predictions.

Let’s get started.

24.1 Snapshot Ensembles

A problem with ensemble learning with deep learning methods is the large computational cost of
training multiple models. This is because of the use of very deep models and very large datasets
that can result in model training times that may extend to days, weeks, or even months.

Despite its obvious advantages, the use of ensembling for deep networks is not
nearly as widespread as it is for other algorithms. One likely reason for this lack

458

24.1. Snapshot Ensembles 459

of adaptation may be the cost of learning multiple neural networks. Training
deep networks can last for weeks, even on high performance hardware with GPU
acceleration.

— Snapshot Ensembles: Train 1, get M for free, 2017.

One approach to ensemble learning for deep learning neural networks is to collect multiple
models from a single training run. This addresses the computational cost of training multiple
deep learning models as models can be selected and saved during training, then used to make an
ensemble prediction. A key benefit of ensemble learning is in improved performance compared
to the predictions from single models. This can be achieved through the selection of members
that have good skill, but in different ways, providing a diverse set of predictions to be combined.
A limitation of collecting multiple models during a single training run is that the models may
be good, but too similar.

This can be addressed by changing the learning algorithm for the deep neural network to
force the exploration of different network weights during a single training run that will result, in
turn, with models that have differing performance. One way that this can be achieved is by
aggressively changing the learning rate used during training. An approach to systematically
and aggressively changing the learning rate during training to result in very different network
weights is referred to as Stochastic Gradient Descent with Warm Restarts or SGDR for short,
described by Ilya Loshchilov and Frank Hutter in their 2017 paper SGDR: Stochastic Gradient
Descent with Warm Restarts.

Their approach involves systematically changing the learning rate over training epochs,
called cosine annealing. This approach requires the specification of two hyperparameters: the
initial learning rate and the total number of training epochs. The cosine annealing method
has the effect of starting with a large learning rate that is relatively rapidly decreased to a
minimum value before being dramatically increased again. The model weights are subjected to
the dramatic changes during training, having the effect of using good weights as the starting
point for the subsequent learning rate cycle, but allowing the learning algorithm to converge to
a different solution.

The resetting of the learning rate acts like a simulated restart of the learning process and
the re-use of good weights as the starting point of the restart is referred to as a warm restart, in
contrast to a cold restart where a new set of small random numbers may be used as a starting
point. The good weights at the bottom of each cycle can be saved to file, providing a snapshot
of the model. These snapshots can be collected together at the end of the run and used in a
model averaging ensemble. The saving and use of these models during an aggressive learning
rate schedule is referred to as a Snapshot Ensemble and was described by Gao Huang, et al. in
their 2017 paper titled Snapshot Ensembles: Train 1, get M for free and subsequently also used
in an updated version of the Loshchilov and Hutter paper.

... we let SGD converge M times to local minima along its optimization path. Each
time the model converges, we save the weights and add the corresponding network
to our ensemble. We then restart the optimization with a large learning rate to
escape the current local minimum.

— Snapshot Ensembles: Train 1, get M for free, 2017.

24.2. Snapshot Ensembles Case Study 460

The ensemble of models is created during the course of training a single model, therefore,
the authors claim that the ensemble forecast is provided at no additional cost.

[the approach allows] learning an ensemble of multiple neural networks without
incurring any additional training costs.

— Snapshot Ensembles: Train 1, get M for free, 2017.

Although a cosine annealing schedule is used for the learning rate, other aggressive learning
rate schedules could be used, such as the simpler cyclical learning rate schedule described by
Leslie Smith in the 2017 paper titled Cyclical Learning Rates for Training Neural Networks. Now
that we are familiar with the snapshot ensemble technique, we can look at how to implement it
in Python with Keras.

24.2 Snapshot Ensembles Case Study

In this section, we will demonstrate how to use the snapshot ensemble to reduce the variance of
an MLP on a simple multiclass classification problem. This example provides a template for
applying the snapshot ensemble to your own neural network for classification and regression
problems.

24.2.1 Multiclass Classification Problem

We will use a small multiclass classification problem as the basis to demonstrate the snapshot
ensemble. The scikit-learn class provides the make blobs() function that can be used to create
a multiclass classification problem with the prescribed number of samples, input variables,
classes, and variance of samples within a class. The problem can be configured to have two
input variables (to represent the x and y coordinates of the points) and a standard deviation of
2.0 for points within each group. We will use the same random state (seed for the pseudorandom
number generator) to ensure that we always get the same data points.

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

Listing 24.1: Example of creating samples for the blobs problem.

The result is the input and output elements of a dataset that we can model. In order to get
a feeling for the complexity of the problem, we can plot each point on a two-dimensional scatter
plot and color each point by class value. The complete example is listed below.

scatter plot of blobs dataset

from sklearn.datasets.samples_generator import make_blobs

from matplotlib import pyplot

from numpy import where

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

scatter plot for each class value

for class_value in range(3):

select indices of points with the class label

row_ix = where(y == class_value)

scatter plot for points with a different color

24.2. Snapshot Ensembles Case Study 461

pyplot.scatter(X[row_ix, 0], X[row_ix, 1])

show plot

pyplot.show()

Listing 24.2: Example of plotting samples from the blobs problem.

Running the example creates a scatter plot of the entire dataset. We can see that the
standard deviation of 2.0 means that the classes are not linearly separable (separable by a line)
causing many ambiguous points. This is desirable as it means that the problem is non-trivial
and will allow a neural network model to find many different good enough candidate solutions
resulting in a high variance.

Figure 24.1: Scatter Plot of Blobs Dataset With Three Classes and Points Colored by Class
Value.

24.2.2 Multilayer Perceptron Model

Before we define a model, we need to contrive a problem that is appropriate for the ensemble.
In our problem, the training dataset is relatively small. Specifically, there is a 10:1 ratio of
examples in the training dataset to the holdout dataset. This mimics a situation where we may
have a vast number of unlabeled examples and a small number of labeled examples with which
to train a model. We will create 1,100 data points from the blobs problem. The model will

24.2. Snapshot Ensembles Case Study 462

be trained on the first 100 points and the remaining 1,000 will be held back in a test dataset,
unavailable to the model.

The problem is a multiclass classification problem, and we will model it using a softmax
activation function on the output layer. This means that the model will predict a vector
with three elements with the probability that the sample belongs to each of the three classes.
Therefore, we must one hot encode the class values before we split the rows into the train and
test datasets. We can do this using the Keras to categorical() function.

generate 2d classification dataset

X, y = make_blobs(n_samples=1100, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 100

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

Listing 24.3: Example of preparing dataset for modeling.

Next, we can define and compile the model. The model will expect samples with two input
variables. The model then has a single hidden layer with 25 nodes and a rectified linear activation
function, then an output layer with three nodes to predict the probability of each of the three
classes and a softmax activation function. Because the problem is multiclass, we will use the
categorical cross-entropy loss function to optimize the model and stochastic gradient descent
with a small learning rate and momentum.

define model

model = Sequential()

model.add(Dense(25, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

Listing 24.4: Example of defining the MLP model.

The model is fit for 200 training epochs and we will evaluate the model each epoch on the
test set, using the test set as a validation set.

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200, verbose=0)

Listing 24.5: Example of fitting the MLP model.

At the end of the run, we will evaluate the performance of the model on the train and test
sets.

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

Listing 24.6: Example of evaluate the MLP model.

Then finally, we will plot learning curves of the model accuracy over each training epoch on
both the training and validation datasets.

24.2. Snapshot Ensembles Case Study 463

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 24.7: Example of plotting learning curves for the MLP.

Tying all of this together, the complete example is listed below.

develop an mlp for blobs dataset

from sklearn.datasets.samples_generator import make_blobs

from keras.utils import to_categorical

from keras.models import Sequential

from keras.layers import Dense

from keras.optimizers import SGD

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_blobs(n_samples=1100, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 100

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(25, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=200, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

24.2. Snapshot Ensembles Case Study 464

pyplot.legend()

pyplot.show()

Listing 24.8: Example of fitting an MLP on the blobs problem.

Running the example prints the performance of the final model on the train and test datasets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that the model achieved about 82% accuracy on the training dataset,
which we know is optimistic, and about 79% on the test dataset, which we would expect to be
more realistic.

Train: 0.820, Test: 0.791

Listing 24.9: Example output fitting an MLP on the blobs problem.

A line plot is also created showing the learning curves for the model accuracy on the train
and test sets over each training epoch. We can see that training accuracy is more optimistic
over most of the run as we also noted with the final scores.

Figure 24.2: Line Plot Learning Curves of Model Accuracy on Train and Test Dataset over
Each Training Epoch.

Next, we can look at how to implement an aggressive learning rate schedule.

24.2. Snapshot Ensembles Case Study 465

24.2.3 Cosine Annealing Learning Rate

An effective snapshot ensemble requires training a neural network with an aggressive learning
rate schedule. The cosine annealing schedule is an example of an aggressive learning rate
schedule where learning rate starts high and is dropped relatively rapidly to a minimum value
near zero before being increased again to the maximum. We can implement the schedule as
described in the 2017 paper Snapshot Ensembles: Train 1, get M for free. The equation requires
the total training epochs, maximum learning rate, and number of cycles as arguments as well as
the current epoch number. The function then returns the learning rate for the given epoch.

Figure 24.3: Equation for the Cosine Annealing Learning Rate Schedule.

Where a(t) is the learning rate at epoch t, a0 is the maximum learning rate, T is the total
epochs, M is the number of cycles, mod is the modulo operation, and square brackets indicate
a floor operation. The function cosine annealing() below implements the equation.

cosine annealing learning rate schedule

def cosine_annealing(epoch, n_epochs, n_cycles, lrate_max):

epochs_per_cycle = floor(n_epochs/n_cycles)

cos_inner = (pi * (epoch % epochs_per_cycle)) / (epochs_per_cycle)

return lrate_max/2 * (cos(cos_inner) + 1)

Listing 24.10: Example of a function for calculating the cosine annealing learning rate schedule.

We can test this implementation by plotting the learning rate over 100 epochs with five
cycles (e.g. 20 epochs long) and a maximum learning rate of 0.01. The complete example is
listed below.

example of a cosine annealing learning rate schedule

from matplotlib import pyplot

from math import pi

from math import cos

from math import floor

cosine annealing learning rate schedule

def cosine_annealing(epoch, n_epochs, n_cycles, lrate_max):

epochs_per_cycle = floor(n_epochs/n_cycles)

cos_inner = (pi * (epoch % epochs_per_cycle)) / (epochs_per_cycle)

return lrate_max/2 * (cos(cos_inner) + 1)

create learning rate series

n_epochs = 100

n_cycles = 5

lrate_max = 0.01

series = [cosine_annealing(i, n_epochs, n_cycles, lrate_max) for i in range(n_epochs)]

plot series

pyplot.plot(series)

24.2. Snapshot Ensembles Case Study 466

pyplot.show()

Listing 24.11: Example of plotting the cosine annealing learning rate schedule.

Running the example creates a line plot of the learning rate schedule over 100 epochs. We
can see that the learning rate starts at the maximum value at epoch 0 and decreases rapidly to
epoch 19, before being reset at epoch 20, the start of the next cycle. The cycle is repeated five
times as specified in the argument.

Figure 24.4: Line Plot of Cosine Annealing Learning Rate Schedule.

We can implement this schedule as a custom callback in Keras. This allows the parameters
of the schedule to be specified and for the learning rate to be logged so we can ensure it had
the desired effect. A custom callback can be defined as a Python class that extends the Keras
Callback class. In the class constructor, we can take the required configuration as arguments
and save them for use, specifically the total number of training epochs, the number of cycles for
the learning rate schedule, and the maximum learning rate. We can use our cosine annealing()

defined above to calculate the learning rate for a given training epoch. The Callback class
allows an on epoch begin() function to be overridden that will be called prior to each training
epoch. We can override this function to calculate the learning rate for the current epoch and set
it in the optimizer. We can also keep track of the learning rate in an internal list. The complete
custom callback is defined below.

24.2. Snapshot Ensembles Case Study 467

define custom learning rate schedule

class CosineAnnealingLearningRateSchedule(Callback):

constructor

def __init__(self, n_epochs, n_cycles, lrate_max, verbose=0):

self.epochs = n_epochs

self.cycles = n_cycles

self.lr_max = lrate_max

self.lrates = list()

calculate learning rate for an epoch

def cosine_annealing(self, epoch, n_epochs, n_cycles, lrate_max):

epochs_per_cycle = floor(n_epochs/n_cycles)

cos_inner = (pi * (epoch % epochs_per_cycle)) / (epochs_per_cycle)

return lrate_max/2 * (cos(cos_inner) + 1)

calculate and set learning rate at the start of the epoch

def on_epoch_begin(self, epoch, logs=None):

calculate learning rate

lr = self.cosine_annealing(epoch, self.epochs, self.cycles, self.lr_max)

set learning rate

backend.set_value(self.model.optimizer.lr, lr)

log value

self.lrates.append(lr)

Listing 24.12: Example of a Keras callback for the cosine annealing learning rate schedule.

We can create an instance of the callback and set the arguments. We will train the model
for 400 epochs and set the number of cycles to be 50 epochs long, or 400

50
cycles, a suggestion

made and configuration used throughout the snapshot ensembles paper.

We lower the learning rate at a very fast pace, encouraging the model to converge
towards its first local minimum after as few as 50 epochs.

— Snapshot Ensembles: Train 1, get M for free, 2017.

The paper also suggests that the learning rate can be set each sample or each minibatch
instead of prior to each epoch to give more nuance to the updates, but we will leave this as a
future exercise.

... we update the learning rate at each iteration rather than at every epoch. This
improves the convergence of short cycles, even when a large initial learning rate is
used.

— Snapshot Ensembles: Train 1, get M for free, 2017.

Once the callback is instantiated and configured, we can specify it as part of the list of
callbacks to the call to the fit() function to train the model.

define learning rate callback

n_epochs = 400

n_cycles = n_epochs / 50

ca = CosineAnnealingLearningRateSchedule(n_epochs, n_cycles, 0.01)

fit model

24.2. Snapshot Ensembles Case Study 468

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=n_epochs,

verbose=0, callbacks=[ca])

Listing 24.13: Example of a using the cosine annealing learning rate schedule callback.

At the end of the run, we can confirm that the learning rate schedule was performed by
plotting the contents of the lrates list.

plot learning rate

pyplot.plot(ca.lrates)

pyplot.show()

Listing 24.14: Example of a plotting the learning rates recorded during training.

Tying these elements together, the complete example of training an MLP on the blobs
problem with a cosine annealing learning rate schedule is listed below.

mlp with cosine annealing learning rate schedule on blobs problem

from sklearn.datasets.samples_generator import make_blobs

from keras.utils import to_categorical

from keras.models import Sequential

from keras.layers import Dense

from keras.callbacks import Callback

from keras.optimizers import SGD

from keras import backend

from math import pi

from math import cos

from math import floor

from matplotlib import pyplot

define custom learning rate schedule

class CosineAnnealingLearningRateSchedule(Callback):

constructor

def __init__(self, n_epochs, n_cycles, lrate_max, verbose=0):

self.epochs = n_epochs

self.cycles = n_cycles

self.lr_max = lrate_max

self.lrates = list()

calculate learning rate for an epoch

def cosine_annealing(self, epoch, n_epochs, n_cycles, lrate_max):

epochs_per_cycle = floor(n_epochs/n_cycles)

cos_inner = (pi * (epoch % epochs_per_cycle)) / (epochs_per_cycle)

return lrate_max/2 * (cos(cos_inner) + 1)

calculate and set learning rate at the start of the epoch

def on_epoch_begin(self, epoch, logs=None):

calculate learning rate

lr = self.cosine_annealing(epoch, self.epochs, self.cycles, self.lr_max)

set learning rate

backend.set_value(self.model.optimizer.lr, lr)

log value

self.lrates.append(lr)

generate 2d classification dataset

X, y = make_blobs(n_samples=1100, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

24.2. Snapshot Ensembles Case Study 469

y = to_categorical(y)

split into train and test

n_train = 100

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(25, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

opt = SGD(momentum=0.9)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

define learning rate callback

n_epochs = 400

n_cycles = n_epochs / 50

ca = CosineAnnealingLearningRateSchedule(n_epochs, n_cycles, 0.01)

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=n_epochs,

verbose=0, callbacks=[ca])

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot learning rate

pyplot.plot(ca.lrates)

pyplot.show()

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 24.15: Example of fitting an MLP with the cosine annealing learning rate schedule.

Running the example first reports the accuracy of the model on the training and test sets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we do not see much difference in the performance of the final model as compared
to the previous section.

Train: 0.860, Test: 0.819

Listing 24.16: Example output fitting an MLP with the cosine annealing learning rate schedule.

A line plot of the learning rate schedule is created, showing eight cycles of 50 epochs each.

24.2. Snapshot Ensembles Case Study 470

Figure 24.5: Cosine Annealing Learning Rate Schedule While Fitting an MLP on the Blobs
Problem.

Finally, a line plot of model loss and accuracy on the train and test sets is created over each
training epoch. We can see that although the learning rate was changed dramatically, there was
not a dramatic effect on model performance, likely because the chosen classification problem is
not very difficult.

24.2. Snapshot Ensembles Case Study 471

Figure 24.6: Line Plot of Train and Test Set Accuracy on the Blobs Dataset With a Cosine
Annealing Learning Rate Schedule.

Now that we know how to implement the cosine annealing learning schedule, we can use it
to prepare a snapshot ensemble.

24.2.4 MLP Snapshot Ensemble

We can develop a snapshot ensemble in two parts. The first part involves creating a custom
callback to save the model at the bottom of each learning rate schedule. The second part
involves loading the saved models and using them to make an ensemble prediction.

Save Snapshot Models During Training

The CosineAnnealingLearningRateSchedule can be updated to override the on epoch end()

function called at the end of each training epoch. In this function, we can check if the current
epoch that just ended was the end of a cycle. If so, we can save the model to file. Below is the
updated callback, named the SnapshotEnsemble class. A debug message is printed each time
a model is saved as confirmation that models are being saved at the right time. For example,
with 50-epoch long cycles, we would expect a model to be saved on epoch 49, 99, etc. and the
learning rate reset at epoch 50, 100, etc.

24.2. Snapshot Ensembles Case Study 472

snapshot ensemble with custom learning rate schedule

class SnapshotEnsemble(Callback):

constructor

def __init__(self, n_epochs, n_cycles, lrate_max, verbose=0):

self.epochs = n_epochs

self.cycles = n_cycles

self.lr_max = lrate_max

self.lrates = list()

calculate learning rate for epoch

def cosine_annealing(self, epoch, n_epochs, n_cycles, lrate_max):

epochs_per_cycle = floor(n_epochs/n_cycles)

cos_inner = (pi * (epoch % epochs_per_cycle)) / (epochs_per_cycle)

return lrate_max/2 * (cos(cos_inner) + 1)

calculate and set learning rate at the start of the epoch

def on_epoch_begin(self, epoch, logs={}):

calculate learning rate

lr = self.cosine_annealing(epoch, self.epochs, self.cycles, self.lr_max)

set learning rate

backend.set_value(self.model.optimizer.lr, lr)

log value

self.lrates.append(lr)

save models at the end of each cycle

def on_epoch_end(self, epoch, logs={}):

check if we can save model

epochs_per_cycle = floor(self.epochs / self.cycles)

if epoch != 0 and (epoch + 1) % epochs_per_cycle == 0:

save model to file

filename = "snapshot_model_%d.h5" % int((epoch + 1) / epochs_per_cycle)

self.model.save(filename)

print('>saved snapshot %s, epoch %d' % (filename, epoch))

Listing 24.17: Example of a Keras callback for saving snapshot ensemble members.

We will train the model for 500 epochs, to give 10 models to choose from later when making
an ensemble prediction. The complete example of using this new snapshot ensemble to save
models to file is listed below.

example of saving models for a snapshot ensemble

from sklearn.datasets.samples_generator import make_blobs

from keras.utils import to_categorical

from keras.models import Sequential

from keras.layers import Dense

from keras.callbacks import Callback

from keras.optimizers import SGD

from keras import backend

from math import pi

from math import cos

from math import floor

snapshot ensemble with custom learning rate schedule

class SnapshotEnsemble(Callback):

constructor

def __init__(self, n_epochs, n_cycles, lrate_max, verbose=0):

24.2. Snapshot Ensembles Case Study 473

self.epochs = n_epochs

self.cycles = n_cycles

self.lr_max = lrate_max

self.lrates = list()

calculate learning rate for epoch

def cosine_annealing(self, epoch, n_epochs, n_cycles, lrate_max):

epochs_per_cycle = floor(n_epochs/n_cycles)

cos_inner = (pi * (epoch % epochs_per_cycle)) / (epochs_per_cycle)

return lrate_max/2 * (cos(cos_inner) + 1)

calculate and set learning rate at the start of the epoch

def on_epoch_begin(self, epoch, logs={}):

calculate learning rate

lr = self.cosine_annealing(epoch, self.epochs, self.cycles, self.lr_max)

set learning rate

backend.set_value(self.model.optimizer.lr, lr)

log value

self.lrates.append(lr)

save models at the end of each cycle

def on_epoch_end(self, epoch, logs={}):

check if we can save model

epochs_per_cycle = floor(self.epochs / self.cycles)

if epoch != 0 and (epoch + 1) % epochs_per_cycle == 0:

save model to file

filename = "snapshot_model_%d.h5" % int((epoch + 1) / epochs_per_cycle)

self.model.save(filename)

print('>saved snapshot %s, epoch %d' % (filename, epoch))

generate 2d classification dataset

X, y = make_blobs(n_samples=1100, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 100

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(50, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

opt = SGD(momentum=0.9)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

create snapshot ensemble callback

n_epochs = 500

n_cycles = n_epochs / 50

ca = SnapshotEnsemble(n_epochs, n_cycles, 0.01)

fit model

model.fit(trainX, trainy, validation_data=(testX, testy), epochs=n_epochs, verbose=0,

callbacks=[ca])

Listing 24.18: Example of saving snapshot ensemble members.

Running the example reports that 10 models were saved for the 10-ends of the cosine
annealing learning rate schedule.

24.2. Snapshot Ensembles Case Study 474

>saved snapshot snapshot_model_1.h5, epoch 49

>saved snapshot snapshot_model_2.h5, epoch 99

>saved snapshot snapshot_model_3.h5, epoch 149

>saved snapshot snapshot_model_4.h5, epoch 199

>saved snapshot snapshot_model_5.h5, epoch 249

>saved snapshot snapshot_model_6.h5, epoch 299

>saved snapshot snapshot_model_7.h5, epoch 349

>saved snapshot snapshot_model_8.h5, epoch 399

>saved snapshot snapshot_model_9.h5, epoch 449

>saved snapshot snapshot_model_10.h5, epoch 499

Listing 24.19: Example output from saving snapshot ensemble members.

Load Models and Make Ensemble Prediction

Once the snapshot models have been saved to file, they can be loaded and used to make an
ensemble prediction. The first step is to load the models into memory. For large models, this
could be done one model at a time, make a prediction, and move on to the next model before
combining predictions. In this case, the models are relatively small and we can load all 10 from
file as a list.

load models from file

def load_all_models(n_models):

all_models = list()

for i in range(n_models):

define filename for this ensemble

filename = 'snapshot_model_' + str(i + 1) + '.h5'

load model from file

model = load_model(filename)

add to list of members

all_models.append(model)

print('>loaded %s' % filename)

return all_models

Listing 24.20: Example of loading saved snapshot ensemble members.

We would expect that models saved towards the end of the run may have better performance
than models saved earlier in the run. As such, we can reverse the list of loaded models so that
the older models are first.

reverse loaded models so we build the ensemble with the last models first

members = list(reversed(members))

Listing 24.21: Example of reversing the order of saved snapshot ensemble members.

We don’t know how many snapshots are required to make a good prediction for this problem.
We can explore the effect of the number of ensemble members on test set accuracy by creating
ensembles of increasing size starting with the final model at epoch 499, then adding the model
saved at epoch 449, and so on until all 10 models are included. First, we require a function to
make a prediction given a list of models. Given that each model predicts the probabilities of
each of the output classes, we can sum the predicted probabilities across the models and select
the class with the most support via the argmax() function. The ensemble predictions()

function below implements this functionality.

24.2. Snapshot Ensembles Case Study 475

make an ensemble prediction for multiclass classification

def ensemble_predictions(members, testX):

make predictions

yhats = [model.predict(testX) for model in members]

yhats = array(yhats)

sum across ensemble members

summed = numpy.sum(yhats, axis=0)

argmax across classes

result = argmax(summed, axis=1)

return result

Listing 24.22: Example of a function for making ensemble predictions.

We can then evaluate an ensemble of a given size by selecting the first n members from the
list of models, making a prediction by calling the ensemble predictions() function, and then
calculating and returning the accuracy of the prediction. The evaluate n members() function
below implements this behavior.

evaluate a specific number of members in an ensemble

def evaluate_n_members(members, n_members, testX, testy):

select a subset of members

subset = members[:n_members]

make prediction

yhat = ensemble_predictions(subset, testX)

calculate accuracy

return accuracy_score(testy, yhat)

Listing 24.23: Example of a function for evaluating an ensemble of a given size.

The performance of each ensemble can also be contrasted with the performance of each
standalone model and the average performance of all standalone models.

evaluate different numbers of ensembles on hold out set

single_scores, ensemble_scores = list(), list()

for i in range(1, len(members)+1):

evaluate model with i members

ensemble_score = evaluate_n_members(members, i, testX, testy)

evaluate the i'th model standalone

testy_enc = to_categorical(testy)

_, single_score = members[i-1].evaluate(testX, testy_enc, verbose=0)

summarize this step

print('> %d: single=%.3f, ensemble=%.3f' % (i, single_score, ensemble_score))

ensemble_scores.append(ensemble_score)

single_scores.append(single_score)

summarize average accuracy of a single final model

print('Accuracy %.3f (%.3f)' % (mean(single_scores), std(single_scores)))

Listing 24.24: Example of evaluating different sized snapshot ensembles.

Finally, we can plot the performance of each individual snapshot model (blue dots) compared
to the performance of an ensemble that includes all models up to and including each individual
model (orange line).

plot score vs number of ensemble members

x_axis = [i for i in range(1, len(members)+1)]

pyplot.plot(x_axis, single_scores, marker='o', linestyle='None')

24.2. Snapshot Ensembles Case Study 476

pyplot.plot(x_axis, ensemble_scores, marker='o')

pyplot.show()

Listing 24.25: Example of plotting ensemble performance vs ensemble size.

The complete example of making snapshot ensemble predictions with different sized ensembles
is listed below.

load models and make a snapshot ensemble prediction

from sklearn.datasets.samples_generator import make_blobs

from sklearn.metrics import accuracy_score

from keras.utils import to_categorical

from keras.models import load_model

from matplotlib import pyplot

from numpy import mean

from numpy import std

from numpy import array

from numpy import argmax

import numpy

load models from file

def load_all_models(n_models):

all_models = list()

for i in range(n_models):

define filename for this ensemble

filename = 'snapshot_model_' + str(i + 1) + '.h5'

load model from file

model = load_model(filename)

add to list of members

all_models.append(model)

print('>loaded %s' % filename)

return all_models

make an ensemble prediction for multi-class classification

def ensemble_predictions(members, testX):

make predictions

yhats = [model.predict(testX) for model in members]

yhats = array(yhats)

sum across ensemble members

summed = numpy.sum(yhats, axis=0)

argmax across classes

result = argmax(summed, axis=1)

return result

evaluate a specific number of members in an ensemble

def evaluate_n_members(members, n_members, testX, testy):

select a subset of members

subset = members[:n_members]

make prediction

yhat = ensemble_predictions(subset, testX)

calculate accuracy

return accuracy_score(testy, yhat)

generate 2d classification dataset

X, y = make_blobs(n_samples=1100, centers=3, n_features=2, cluster_std=2, random_state=2)

split into train and test

n_train = 100

24.2. Snapshot Ensembles Case Study 477

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

print(trainX.shape, testX.shape)

load models in order

members = load_all_models(10)

print('Loaded %d models' % len(members))

reverse loaded models so we build the ensemble with the last models first

members = list(reversed(members))

evaluate different numbers of ensembles on hold out set

single_scores, ensemble_scores = list(), list()

for i in range(1, len(members)+1):

evaluate model with i members

ensemble_score = evaluate_n_members(members, i, testX, testy)

evaluate the i'th model standalone

testy_enc = to_categorical(testy)

_, single_score = members[i-1].evaluate(testX, testy_enc, verbose=0)

summarize this step

print('> %d: single=%.3f, ensemble=%.3f' % (i, single_score, ensemble_score))

ensemble_scores.append(ensemble_score)

single_scores.append(single_score)

summarize average accuracy of a single final model

print('Accuracy %.3f (%.3f)' % (mean(single_scores), std(single_scores)))

plot score vs number of ensemble members

x_axis = [i for i in range(1, len(members)+1)]

pyplot.plot(x_axis, single_scores, marker='o', linestyle='None')

pyplot.plot(x_axis, ensemble_scores, marker='o')

pyplot.show()

Listing 24.26: Example of loading and evaluating different sized snapshot ensembles.

Running the example first loads all 10 models into memory.

>loaded snapshot_model_1.h5

>loaded snapshot_model_2.h5

>loaded snapshot_model_3.h5

>loaded snapshot_model_4.h5

>loaded snapshot_model_5.h5

>loaded snapshot_model_6.h5

>loaded snapshot_model_7.h5

>loaded snapshot_model_8.h5

>loaded snapshot_model_9.h5

>loaded snapshot_model_10.h5

Loaded 10 models

Listing 24.27: Example output from loading saved snapshot ensemble members.

Next, each snapshot model is evaluated on the test dataset and the accuracy is reported.
This is contrasted with the accuracy of a snapshot ensemble that includes all snapshot models
working backward from the end of the run including the single model. The results show that as
we work backward from the end of the run, the performance of the snapshot models gets worse,
as we might expect.

Combining snapshot models into an ensemble shows that performance increases up to and
including the last 3-to-5 models, reaching about 82%. This can be compared to the average
performance of a snapshot model of about 80% test set accuracy.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.

24.2. Snapshot Ensembles Case Study 478

Consider running the example a few times and compare the average performance.

> 1: single=0.813, ensemble=0.813

> 2: single=0.814, ensemble=0.813

> 3: single=0.822, ensemble=0.822

> 4: single=0.810, ensemble=0.820

> 5: single=0.813, ensemble=0.818

> 6: single=0.811, ensemble=0.815

> 7: single=0.807, ensemble=0.813

> 8: single=0.805, ensemble=0.813

> 9: single=0.805, ensemble=0.813

> 10: single=0.790, ensemble=0.813

Accuracy 0.809 (0.008)

Listing 24.28: Example output from evaluating standalone models and snapshot ensembles of
different sizes.

Finally, a line plot is created plotting the same test set accuracy scores. We can set the
performance of each individual snapshot model as a blue dot and the snapshot ensemble of
increasing size (number of members) from 1 to 10 members as an orange line. At least on this
run, we can see that the snapshot ensemble quickly out-performs the final model at 82.2% with
3 members and all other saved models before performance degrades back down to about the
same as the final model at 81.3%.

24.3. Extensions 479

Figure 24.7: Line Plot of Single Snapshot Models (blue dots) vs Snapshot Ensembles of Varied
Sized (orange line).

24.3 Extensions

Extensions This section lists some ideas for extending the tutorial that you may wish to explore.

� Vary Cycle Length. Update the example to use a shorter or longer cycle length and
compare results.

� Vary Maximum Learning Rate. Update the example to use a larger or smaller
maximum learning rate and compare results.

� Update Learning Rate Per Batch. Update the example to calculate the learning rate
per-batch instead of per-epoch.

� Repeated Evaluation. Update the example to repeat the evaluation of the model to
confirm that the approach indeed leads to an improved performance over the final model
on the blobs problem.

� Cyclic Learning Rate. Update the example to use a cyclic learning rate schedule and
compare results.

If you explore any of these extensions, I’d love to know.

24.4. Further Reading 480

24.4 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

24.4.1 Papers

� Snapshot Ensembles: Train 1, get M for free, 2017.
https://arxiv.org/abs/1704.00109

� SGDR: Stochastic Gradient Descent with Warm Restarts, 2017.
https://arxiv.org/abs/1608.03983

� Cyclical Learning Rates for Training Neural Networks, 2017.
https://arxiv.org/abs/1506.01186

24.4.2 APIs

� Getting started with the Keras Sequential model.
https://keras.io/getting-started/sequential-model-guide/

� Keras Core Layers API.
https://keras.io/layers/core/

� Keras Stochastic Gradient Descent API.
https://keras.io/optimizers/#sgd

� Keras Callbacks API.
https://keras.io/callbacks/

� numpy.argmax API.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html

� sklearn.datasets.make blobs API.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.

html

24.5 Summary

In this tutorial, you discovered how to develop snapshot ensembles of models saved using an
aggressive learning rate schedule over a single training run. Specifically, you learned:

� Snapshot ensembles combine the predictions from multiple models saved during a single
training run.

� Diversity in model snapshots can be achieved through the use of aggressively cycling the
learning rate used during a single training run.

� How to save model snapshots during a single run and load snapshot models to make
ensemble predictions.

https://arxiv.org/abs/1704.00109
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1506.01186
https://keras.io/getting-started/sequential-model-guide/
https://keras.io/layers/core/
https://keras.io/optimizers/#sgd
https://keras.io/callbacks/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html

24.5. Summary 481

24.5.1 Next

In the next tutorial, you will discover how to train a new model to learn how to best combine
the predictions from multiple ensemble members.

Chapter 25

Learn to Combine Predictions with
Stacked Generalization Ensemble

Model averaging is an ensemble technique where multiple submodels contribute equally to a
combined prediction. Model averaging can be improved by weighting the contributions of each
submodel to the combined prediction by the expected performance of the submodel. This
can be extended further by training an entirely new model to learn how to best combine the
contributions from each submodel. This approach is called stacked generalization, or stacking
for short, and can result in better predictive performance than any single contributing model.
In this tutorial, you will discover how to develop a stacked generalization ensemble for deep
learning neural networks. After completing this tutorial, you will know:

� Stacked generalization is an ensemble method where a new model learns how to best
combine the predictions from multiple existing models.

� How to develop a stacking model using neural networks as a submodel and a scikit-learn
classifier as the meta-learner.

� How to develop a stacking model where neural network submodels are embedded in a
larger stacking ensemble model for training and prediction.

Let’s get started.

25.1 Stacked Generalization Ensemble

A model averaging ensemble combines the predictions from multiple trained models. A limitation
of this approach is that each model contributes the same amount to the ensemble prediction,
regardless of how well the model performed. A variation of this approach, called a weighted
average ensemble, weighs the contribution of each ensemble member by the trust or expected
performance of the model on a holdout dataset. This allows well-performing models to contribute
more and less-well-performing models to contribute less. The weighted average ensemble provides
an improvement over the model average ensemble.

A further generalization of this approach is replacing the linear weighted sum (e.g. linear
regression) model used to combine the predictions of the submodels with any learning algorithm.
This approach is called stacked generalization, or stacking for short. In stacking, an algorithm

482

25.1. Stacked Generalization Ensemble 483

takes the outputs of submodels as input and attempts to learn how to best combine the input
predictions to make a better output prediction. It may be helpful to think of the stacking
procedure as having two levels: level 0 and level 1.

� Level 0: The level 0 data is the training dataset inputs and level 0 models learn to make
predictions from this data.

� Level 1: The level 1 data takes the output of the level 0 models as input and the single
level 1 model, or meta-learner, learns to make predictions from this data.

Stacked generalization works by deducing the biases of the generalizer(s) with respect
to a provided learning set. This deduction proceeds by generalizing in a second
space whose inputs are (for example) the guesses of the original generalizers when
taught with part of the learning set and trying to guess the rest of it, and whose
output is (for example) the correct guess.

— Stacked Generalization, 1992.

Unlike a weighted average ensemble, a stacked generalization ensemble can use the set of
predictions as a context and conditionally decide to weigh the input predictions differently,
potentially resulting in better performance. Interestingly, although stacking is described as an
ensemble learning method with two or more level 0 models, it can be used in the case where
there is only a single level 0 model. In this case, the level 1, or meta-learner, model learns to
correct the predictions from the level 0 model.

... although it can also be used when one has only a single generalizer, as a technique
to improve that single generalizer

— Stacked Generalization, 1992.

It is important that the meta-learner is trained on a separate dataset to the examples used
to train the level 0 models to avoid overfitting. A simple way that this can be achieved is by
splitting the training dataset into a train and validation set. The level 0 models are then trained
on the train set. The level 1 model is then trained using the validation set, where the raw inputs
are first fed through the level 0 models to get predictions that are used as inputs to the level 1
model. A limitation of the hold-out validation set approach to training a stacking model is that
level 0 and level 1 models are not trained on the full dataset.

A more sophisticated approach to training a stacked model involves using k-fold cross-
validation to develop the training dataset for the meta-learner model. Each level 0 model is
trained using k-fold cross-validation (or even leave-one-out cross-validation for maximum effect);
the models are then discarded, but the predictions are retained. This means for each model,
there are predictions made by a version of the model that was not trained on those examples, e.g.
like having holdout examples, but in this case for the entire training dataset. The predictions
are then used as inputs to train the meta-learner. Level 0 models are then trained on the entire
training dataset and together with the meta-learner, the stacked model can be used to make
predictions on new data. In practice, it is common to use different algorithms to prepare each
of the level 0 models, to provide a diverse set of predictions.

25.2. Stacked Generalization Ensemble Case Study 484

... stacking is not normally used to combine models of the same type [...] it is applied
to models built by different learning algorithms.

— Practical Machine Learning Tools and Techniques, Second Edition, 2005.

It is also common to use a simple linear model to combine the predictions. Because use of
a linear model is common, stacking is more recently referred to as model blending or simply
blending, especially in machine learning competitions.

... the multi-response least squares linear regression technique should be employed
as the high-level generalizer. This technique provides a method of combining level-0
models’ confidence

— Issues in Stacked Generalization, 1999.

A stacked generalization ensemble can be developed for regression and classification problems.
In the case of classification problems, better results have been seen when using the prediction of
class probabilities as input to the meta-learner instead of class labels.

... class probabilities should be used instead of the single predicted class as input
attributes for higher-level learning. The class probabilities serve as the confidence
measure for the prediction made.

— Issues in Stacked Generalization, 1999.

Now that we are familiar with stacked generalization, we can work through a case study of
developing a stacked deep learning model.

25.2 Stacked Generalization Ensemble Case Study

In this section, we will demonstrate how to use the stacking ensemble to reduce the variance of
an MLP on a simple multiclass classification problem. This example provides a template for
applying the stacking ensemble to your own neural network for classification and regression
problems.

25.2.1 Multiclass Classification Problem

We will use a small multiclass classification problem as the basis to demonstrate the stacking
ensemble. The scikit-learn class provides the make blobs() function that can be used to create
a multiclass classification problem with the prescribed number of samples, input variables,
classes, and variance of samples within a class. The problem can be configured to have two
input variables (to represent the x and y coordinates of the points) and a standard deviation of
2.0 for points within each group. We will use the same random state (seed for the pseudorandom
number generator) to ensure that we always get the same data points.

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

Listing 25.1: Example of creating samples for the blobs problem.

25.2. Stacked Generalization Ensemble Case Study 485

The results are the input and output elements of a dataset that we can model. In order to
get a feeling for the complexity of the problem, we can graph each point on a two-dimensional
scatter plot and color each point by class value. The complete example is listed below.

scatter plot of blobs dataset

from sklearn.datasets.samples_generator import make_blobs

from matplotlib import pyplot

from numpy import where

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

scatter plot for each class value

for class_value in range(3):

select indices of points with the class label

row_ix = where(y == class_value)

scatter plot for points with a different color

pyplot.scatter(X[row_ix, 0], X[row_ix, 1])

show plot

pyplot.show()

Listing 25.2: Example of plotting samples from the blobs problem.

Running the example creates a scatter plot of the entire dataset. We can see that the
standard deviation of 2.0 means that the classes are not linearly separable (separable by a line)
causing many ambiguous points. This is desirable as it means that the problem is non-trivial
and will allow a neural network model to find many different good enough candidate solutions,
resulting in a high variance.

25.2. Stacked Generalization Ensemble Case Study 486

Figure 25.1: Scatter Plot of Blobs Dataset With Three Classes and Points Colored by Class
Value.

25.2.2 Multilayer Perceptron Model

Before we define a model, we need to contrive a problem that is appropriate for the stacking
ensemble. In our problem, the training dataset is relatively small. Specifically, there is a 10:1
ratio of examples in the training dataset to the holdout dataset. This mimics a situation where
we may have a vast number of unlabeled examples and a small number of labeled examples
with which to train a model. We will create 1,100 data points from the blobs problem. The
model will be trained on the first 100 points and the remaining 1,000 will be held back in a test
dataset, unavailable to the model.

The problem is a multiclass classification problem, and we will model it using a softmax
activation function on the output layer. This means that the model will predict a vector
with three elements with the probability that the sample belongs to each of the three classes.
Therefore, we must one hot encode the class values before we split the rows into the train and
test datasets. We can do this using the Keras to categorical() function.

generate 2d classification dataset

X, y = make_blobs(n_samples=1100, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

25.2. Stacked Generalization Ensemble Case Study 487

n_train = 100

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

print(trainX.shape, testX.shape)

Listing 25.3: Example of preparing the dataset for modeling.

Next, we can define and combine the model. The model will expect samples with two
input variables. The model then has a single hidden layer with 25 nodes and a rectified linear
activation function, then an output layer with three nodes to predict the probability of each of
the three classes and a softmax activation function. Because the problem is multiclass, we will
use the categorical cross-entropy loss function to optimize the model and the efficient Adam
flavor of stochastic gradient descent.

define model

model = Sequential()

model.add(Dense(25, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

Listing 25.4: Example of defining the MLP model.

The model is fit for 500 training epochs and we will evaluate the model each epoch on the
test set, using the test set as a validation set.

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=500, verbose=0)

Listing 25.5: Example of fitting the MLP model.

At the end of the run, we will evaluate the performance of the model on the train and test
sets.

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

Listing 25.6: Example of evaluating the MLP model.

Then finally, we will plot learning curves of the model accuracy over each training epoch on
both the training and validation datasets.

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 25.7: Example of plotting learning curves for the MLP model.

25.2. Stacked Generalization Ensemble Case Study 488

Tying all of this together, the complete example is listed below.

develop an mlp for blobs dataset

from sklearn.datasets.samples_generator import make_blobs

from keras.utils import to_categorical

from keras.models import Sequential

from keras.layers import Dense

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_blobs(n_samples=1100, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 100

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(25, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=500, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 25.8: Example of fitting an MLP on the blobs problem.

Running the example first prints the shape of each dataset for confirmation, then the
performance of the final model on the train and test datasets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that the model achieved about 83% accuracy on the training dataset,
which we know is optimistic, and about 82% on the test dataset, which we would expect to be
more realistic.

Train: 0.830, Test: 0.821

Listing 25.9: Example output fitting an MLP on the blobs problem.

25.2. Stacked Generalization Ensemble Case Study 489

A line plot is also created showing the learning curves for the model accuracy on the train
and test sets over each training epoch. We can see that training accuracy is more optimistic
over most of the run as we also noted with the final scores.

Figure 25.2: Line Plot Learning Curves of Model Accuracy on Train and Test Dataset Over
Each Training Epoch.

We can now look at using instances of this model as part of a stacking ensemble.

25.2.3 Train and Save Sub-Models

To keep this example simple, we will use multiple instances of the same model as level-0 or
submodels in the stacking ensemble. We will also use a holdout validation dataset to train the
level-1 or meta-learner in the ensemble. A more advanced example may use different types
of MLP models (deeper, wider, etc.) as submodels and train the meta-learner using k-fold
cross-validation. In this section, we will train multiple submodels and save them to file for later
use in our stacking ensembles. The first step is to create a function that will define and fit an
MLP model on the training dataset.

fit model on dataset

def fit_model(trainX, trainy):

define model

model = Sequential()

25.2. Stacked Generalization Ensemble Case Study 490

model.add(Dense(25, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

model.fit(trainX, trainy, epochs=500, verbose=0)

return model

Listing 25.10: Example of a function for fitting and returning an MLP model.

Next, we can create a sub-directory to store the models. Note, if the directory already exists,
you may have to delete it when re-running this code.

create directory for models

makedirs('models')

Listing 25.11: Example creating a folder to store saved models.

Finally, we can create multiple instances of the MLP and save each to the models/ subdirec-
tory with a unique filename. In this case, we will create five submodels, but you can experiment
with a different number of models and see how it impacts model performance.

fit and save models

n_members = 5

for i in range(n_members):

fit model

model = fit_model(trainX, trainy)

save model

filename = 'models/model_' + str(i + 1) + '.h5'

model.save(filename)

print('>Saved %s' % filename)

Listing 25.12: Example fitting and saving ensemble members.

We can tie all of these elements together; the complete example of training the submodels
and saving them to file is listed below.

example of saving sub-models for later use in a stacking ensemble

from sklearn.datasets.samples_generator import make_blobs

from keras.utils import to_categorical

from keras.models import Sequential

from keras.layers import Dense

from os import makedirs

fit model on dataset

def fit_model(trainX, trainy):

define model

model = Sequential()

model.add(Dense(25, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

model.fit(trainX, trainy, epochs=500, verbose=0)

return model

generate 2d classification dataset

X, y = make_blobs(n_samples=1100, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

25.2. Stacked Generalization Ensemble Case Study 491

y = to_categorical(y)

split into train and test

n_train = 100

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

create directory for models

makedirs('models')

fit and save models

n_members = 5

for i in range(n_members):

fit model

model = fit_model(trainX, trainy)

save model

filename = 'models/model_' + str(i + 1) + '.h5'

model.save(filename)

print('>Saved %s' % filename)

Listing 25.13: Example of fitting and saving MLP ensemble members.

Running the example creates the models/ subfolder and saves five trained models with
unique filenames.

>Saved models/model_1.h5

>Saved models/model_2.h5

>Saved models/model_3.h5

>Saved models/model_4.h5

>Saved models/model_5.h5

Listing 25.14: Example output from fitting and saving MLP ensemble members.

Next, we can look at training a meta-learner to make best use of the predictions from these
submodels.

25.2.4 Separate Stacking Model

We can now train a meta-learner that will best combine the predictions from the submodels
and ideally perform better than any single submodel. The first step is to load the saved models.
We can use the load model() Keras function and create a Python list of loaded models.

load models from file

def load_all_models(n_models):

all_models = list()

for i in range(n_models):

define filename for this ensemble

filename = 'models/model_' + str(i + 1) + '.h5'

load model from file

model = load_model(filename)

add to list of members

all_models.append(model)

print('>loaded %s' % filename)

return all_models

Listing 25.15: Example of a function for loading saved ensemble members.

We can call this function to load our five saved models from the models/ sub-directory.

25.2. Stacked Generalization Ensemble Case Study 492

load all models

n_members = 5

members = load_all_models(n_members)

print('Loaded %d models' % len(members))

Listing 25.16: Example loading ensemble members.

It would be useful to know how well the single models perform on the test dataset as we
would expect a stacking model to perform better. We can easily evaluate each single model on
the training dataset and establish a baseline of performance.

evaluate standalone models on test dataset

for model in members:

testy_enc = to_categorical(testy)

_, acc = model.evaluate(testX, testy_enc, verbose=0)

print('Model Accuracy: %.3f' % acc)

Listing 25.17: Example evaluating standalone model performance.

Next, we can train our meta-learner. This requires two steps:

� Prepare a training dataset for the meta-learner.

� Use the prepared training dataset to fit a meta-learner model.

We will prepare a training dataset for the meta-learner by providing examples from the test
set to each of the submodels and collecting the predictions. In this case, each model will output
three predictions for each example for the probabilities that a given example belongs to each of
the three classes. Therefore, the 1,000 examples in the test set will result in five arrays with
the shape [1000, 3]. We can combine these arrays into a three-dimensional array with the
shape [1000, 5, 3] by using the dstack() NumPy function that will stack each new set of
predictions.

As input for a new model, we will require 1,000 examples with some number of features.
Given that we have five models and each model makes three predictions per example, then we
would have 15 (3× 5) features for each example provided to the submodels. We can transform
the [1000, 5, 3] shaped predictions from the submodels into a [1000, 15] shaped array to
be used to train a meta-learner using the reshape() NumPy function and flattening the final
two dimensions. The stacked dataset() function implements this step.

create stacked model input dataset as outputs from the ensemble

def stacked_dataset(members, inputX):

stackX = None

for model in members:

make prediction

yhat = model.predict(inputX, verbose=0)

stack predictions into [rows, members, probabilities]

if stackX is None:

stackX = yhat

else:

stackX = dstack((stackX, yhat))

flatten predictions to [rows, members x probabilities]

stackX = stackX.reshape((stackX.shape[0], stackX.shape[1]*stackX.shape[2]))

return stackX

Listing 25.18: Example of a function for creating a stacking dataset.

25.2. Stacked Generalization Ensemble Case Study 493

Once prepared, we can use this input dataset along with the output, or y part, of the test
set to train a new meta-learner. In this case, we will train a simple logistic regression algorithm
from the scikit-learn library. Logistic regression only supports binary classification, although the
implementation of logistic regression in scikit-learn in the LogisticRegression class supports
multiclass classification (more than two classes) using a multinomial scheme. The function
fit stacked model() below will prepare the training dataset for the meta-learner by calling
the stacked dataset() function, then fit a logistic regression model that is then returned.

fit a model based on the outputs from the ensemble members

def fit_stacked_model(members, inputX, inputy):

create dataset using ensemble

stackedX = stacked_dataset(members, inputX)

fit standalone model

model = LogisticRegression(solver='lbfgs', multi_class='multinomial')

model.fit(stackedX, inputy)

return model

Listing 25.19: Example of a function for fitting a stacked model.

We can call this function and pass in the list of loaded models and the training dataset.

fit stacked model using the ensemble

model = fit_stacked_model(members, testX, testy)

Listing 25.20: Example of fitting a stacked model.

Once fit, we can use the stacked model, including the members and the meta-learner, to make
predictions on new data. This can be achieved by first using the submodels to make an input
dataset for the meta-learner, e.g. by calling the stacked dataset() function, then making a
prediction with the meta-learner. The stacked prediction() function below implements this.

make a prediction with the stacked model

def stacked_prediction(members, model, inputX):

create dataset using ensemble

stackedX = stacked_dataset(members, inputX)

make a prediction

yhat = model.predict(stackedX)

return yhat

Listing 25.21: Example of a function for making a stacked prediction.

We can use this function to make a prediction on new data; in this case, we can demonstrate
it by making predictions on the test set.

evaluate model on test set

yhat = stacked_prediction(members, model, testX)

acc = accuracy_score(testy, yhat)

print('Stacked Test Accuracy: %.3f' % acc)

Listing 25.22: Example of making a stacked prediction.

Tying all of these elements together, the complete example of fitting a linear meta-learner
for the stacking ensemble of MLP submodels is listed below.

stacked generalization with linear meta model on blobs dataset

from sklearn.datasets.samples_generator import make_blobs

from sklearn.metrics import accuracy_score

25.2. Stacked Generalization Ensemble Case Study 494

from sklearn.linear_model import LogisticRegression

from keras.models import load_model

from keras.utils import to_categorical

from numpy import dstack

load models from file

def load_all_models(n_models):

all_models = list()

for i in range(n_models):

define filename for this ensemble

filename = 'models/model_' + str(i + 1) + '.h5'

load model from file

model = load_model(filename)

add to list of members

all_models.append(model)

print('>loaded %s' % filename)

return all_models

create stacked model input dataset as outputs from the ensemble

def stacked_dataset(members, inputX):

stackX = None

for model in members:

make prediction

yhat = model.predict(inputX, verbose=0)

stack predictions into [rows, members, probabilities]

if stackX is None:

stackX = yhat

else:

stackX = dstack((stackX, yhat))

flatten predictions to [rows, members x probabilities]

stackX = stackX.reshape((stackX.shape[0], stackX.shape[1]*stackX.shape[2]))

return stackX

fit a model based on the outputs from the ensemble members

def fit_stacked_model(members, inputX, inputy):

create dataset using ensemble

stackedX = stacked_dataset(members, inputX)

fit standalone model

model = LogisticRegression(solver='lbfgs', multi_class='multinomial')

model.fit(stackedX, inputy)

return model

make a prediction with the stacked model

def stacked_prediction(members, model, inputX):

create dataset using ensemble

stackedX = stacked_dataset(members, inputX)

make a prediction

yhat = model.predict(stackedX)

return yhat

generate 2d classification dataset

X, y = make_blobs(n_samples=1100, centers=3, n_features=2, cluster_std=2, random_state=2)

split into train and test

n_train = 100

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

25.2. Stacked Generalization Ensemble Case Study 495

load all models

n_members = 5

members = load_all_models(n_members)

print('Loaded %d models' % len(members))

evaluate standalone models on test dataset

for model in members:

testy_enc = to_categorical(testy)

_, acc = model.evaluate(testX, testy_enc, verbose=0)

print('Model Accuracy: %.3f' % acc)

fit stacked model using the ensemble

model = fit_stacked_model(members, testX, testy)

evaluate model on test set

yhat = stacked_prediction(members, model, testX)

acc = accuracy_score(testy, yhat)

print('Stacked Test Accuracy: %.3f' % acc)

Listing 25.23: Example of fitting a logistic regression stacking model.

Running the example first loads the submodels into a list and evaluates the performance of
each. We can see that the best performing model is the final model with an accuracy of about
81.3%.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

>loaded models/model_1.h5

>loaded models/model_2.h5

>loaded models/model_3.h5

>loaded models/model_4.h5

>loaded models/model_5.h5

Loaded 5 models

Model Accuracy: 0.805

Model Accuracy: 0.806

Model Accuracy: 0.804

Model Accuracy: 0.809

Model Accuracy: 0.813

Listing 25.24: Example output from loading and evaluating standalone MLP models.

Next, a logistic regression meta-learner is trained on the predicted probabilities from each
submodel on the test set, then the entire stacking model is evaluated on the test set. We can
see that in this case, the meta-learner out-performed each of the submodels on the test set,
achieving an accuracy of about 82.4%.

Stacked Test Accuracy: 0.824

Listing 25.25: Example output from evaluating the stacking model.

25.2.5 Integrated Stacking Model

When using neural networks as submodels, it may be desirable to use a neural network as a
meta-learner. Specifically, the sub-networks can be embedded in a larger multi-headed neural
network that then learns how to best combine the predictions from each input submodel. It

25.2. Stacked Generalization Ensemble Case Study 496

allows the stacking ensemble to be treated as a single large model. The benefit of this approach
is that the outputs of the submodels are provided directly to the meta-learner. Further, it is also
possible to update the weights of the submodels in conjunction with the meta-learner model,
if this is desirable. This can be achieved using the Keras functional interface for developing
models.

After the models are loaded as a list, a larger stacking ensemble model can be defined where
each of the loaded models is used as a separate input-head to the model. This requires that all
of the layers in each of the loaded models be marked as not trainable so the weights cannot be
updated when the new larger model is being trained. Keras also requires that each layer has a
unique name, therefore the names of each layer in each of the loaded models will have to be
updated to indicate to which ensemble member they belong.

update all layers in all models to not be trainable

for i in range(len(members)):

model = members[i]

for layer in model.layers:

make not trainable

layer.trainable = False

rename to avoid 'unique layer name' issue

layer.name = 'ensemble_' + str(i+1) + '_' + layer.name

Listing 25.26: Example of updating layer names and layers to be non-trainable.

Once the submodels have been prepared, we can define the stacking ensemble model. The
input layer for each of the submodels will be used as a separate input head to this new model.
This means that k copies of any input data will have to be provided to the model, where k is the
number of input models, in this case, 5. The outputs of each of the models can then be merged.
In this case, we will use a simple concatenation merge, where a single 15-element vector will be
created from the three class-probabilities predicted by each of the 5 models. We will then define
a hidden layer to interpret this input to the meta-learner and an output layer that will make
its own probabilistic prediction. The define stacked model() function below implements this
and will return a stacked generalization neural network model given a list of trained submodels.

define stacked model from multiple member input models

def define_stacked_model(members):

update all layers in all models to not be trainable

for i in range(len(members)):

model = members[i]

for layer in model.layers:

make not trainable

layer.trainable = False

rename to avoid 'unique layer name' issue

layer.name = 'ensemble_' + str(i+1) + '_' + layer.name

define multi-headed input

ensemble_visible = [model.input for model in members]

concatenate merge output from each model

ensemble_outputs = [model.output for model in members]

merge = concatenate(ensemble_outputs)

hidden = Dense(10, activation='relu')(merge)

output = Dense(3, activation='softmax')(hidden)

model = Model(inputs=ensemble_visible, outputs=output)

plot graph of ensemble

plot_model(model, show_shapes=True, to_file='model_graph.png')

compile

25.2. Stacked Generalization Ensemble Case Study 497

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

return model

Listing 25.27: Example of a function for defining a stacked MLP model.

A plot of the network graph is created when this function is called to give an idea of how
the ensemble model fits together.

define ensemble model

stacked_model = define_stacked_model(members)

Listing 25.28: Example of defining a stacked MLP model.

Creating the plot requires that pygraphviz is installed. If this is a challenge on your
workstation, you can comment out the call to the plot model() function.

Figure 25.3: Visualization of Stacked Generalization Ensemble of Neural Network Models.

Once the model is defined, it can be fit. We can fit it directly on the holdout test dataset.
Because the submodels are not trainable, their weights will not be updated during training and
only the weights of the new hidden and output layer will be updated. The fit stacked model()

function below will fit the stacking neural network model on for 300 epochs.

fit a stacked model

def fit_stacked_model(model, inputX, inputy):

prepare input data

X = [inputX for _ in range(len(model.input))]

encode output data

inputy_enc = to_categorical(inputy)

fit model

model.fit(X, inputy_enc, epochs=300, verbose=0)

Listing 25.29: Example of a function for fitting the stacked MLP model.

We can call this function providing the defined stacking model and the test dataset.

fit stacked model on test dataset

fit_stacked_model(stacked_model, testX, testy)

Listing 25.30: Example of fitting the stacked MLP model.

Once fit, we can use the new stacked model to make a prediction on new data. This is as
simple as calling the predict() function on the model. One minor change is that we require k
copies of the input data in a list to be provided to the model for each of the k submodels. The
predict stacked model() function below simplifies this process of making a prediction with
the stacking model.

25.2. Stacked Generalization Ensemble Case Study 498

make a prediction with a stacked model

def predict_stacked_model(model, inputX):

prepare input data

X = [inputX for _ in range(len(model.input))]

make prediction

return model.predict(X, verbose=0)

Listing 25.31: Example of a function for making a prediction with a stacked MLP model.

We can call this function to make a prediction for the test dataset and report the accuracy.
We would expect the performance of the neural network learner to be better than any individual
submodel and perhaps competitive with the linear meta-learner used in the previous section.

make predictions and evaluate

yhat = predict_stacked_model(stacked_model, testX)

yhat = argmax(yhat, axis=1)

acc = accuracy_score(testy, yhat)

print('Stacked Test Accuracy: %.3f' % acc)

Listing 25.32: Example of making a prediction with a stacked MLP model.

Tying all of these elements together, the complete example is listed below.

stacked generalization with neural net meta model on blobs dataset

from sklearn.datasets.samples_generator import make_blobs

from sklearn.metrics import accuracy_score

from keras.models import load_model

from keras.utils import to_categorical

from keras.utils import plot_model

from keras.models import Model

from keras.layers import Dense

from keras.layers.merge import concatenate

from numpy import argmax

load models from file

def load_all_models(n_models):

all_models = list()

for i in range(n_models):

define filename for this ensemble

filename = 'models/model_' + str(i + 1) + '.h5'

load model from file

model = load_model(filename)

add to list of members

all_models.append(model)

print('>loaded %s' % filename)

return all_models

define stacked model from multiple member input models

def define_stacked_model(members):

update all layers in all models to not be trainable

for i in range(len(members)):

model = members[i]

for layer in model.layers:

make not trainable

layer.trainable = False

rename to avoid 'unique layer name' issue

25.2. Stacked Generalization Ensemble Case Study 499

layer.name = 'ensemble_' + str(i+1) + '_' + layer.name

define multi-headed input

ensemble_visible = [model.input for model in members]

concatenate merge output from each model

ensemble_outputs = [model.output for model in members]

merge = concatenate(ensemble_outputs)

hidden = Dense(10, activation='relu')(merge)

output = Dense(3, activation='softmax')(hidden)

model = Model(inputs=ensemble_visible, outputs=output)

plot graph of ensemble

plot_model(model, show_shapes=True, to_file='model_graph.png')

compile

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

return model

fit a stacked model

def fit_stacked_model(model, inputX, inputy):

prepare input data

X = [inputX for _ in range(len(model.input))]

encode output data

inputy_enc = to_categorical(inputy)

fit model

model.fit(X, inputy_enc, epochs=300, verbose=0)

make a prediction with a stacked model

def predict_stacked_model(model, inputX):

prepare input data

X = [inputX for _ in range(len(model.input))]

make prediction

return model.predict(X, verbose=0)

generate 2d classification dataset

X, y = make_blobs(n_samples=1100, centers=3, n_features=2, cluster_std=2, random_state=2)

split into train and test

n_train = 100

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

load all models

n_members = 5

members = load_all_models(n_members)

print('Loaded %d models' % len(members))

define ensemble model

stacked_model = define_stacked_model(members)

fit stacked model on test dataset

fit_stacked_model(stacked_model, testX, testy)

make predictions and evaluate

yhat = predict_stacked_model(stacked_model, testX)

yhat = argmax(yhat, axis=1)

acc = accuracy_score(testy, yhat)

print('Stacked Test Accuracy: %.3f' % acc)

Listing 25.33: Example of fitting an MLP stacking model.

Running the example first loads the five submodels.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.

25.3. Extensions 500

Consider running the example a few times and compare the average performance.

A larger stacking ensemble neural network is defined and fit on the test dataset, then the
new model is used to make a prediction on the test dataset. We can see that, in this case, the
model achieved an accuracy of about 83.3%, out-performing the linear model from the previous
section.

>loaded models/model_1.h5

>loaded models/model_2.h5

>loaded models/model_3.h5

>loaded models/model_4.h5

>loaded models/model_5.h5

Loaded 5 models

Stacked Test Accuracy: 0.833

Listing 25.34: Example output from evaluating a stacking MLP model.

25.3 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Alternate Meta-Learner. Update the example to use an alternate meta-learner classifier
model to the logistic regression model.

� Single Level 0 Model. Update the example to use a single level-0 model and compare
the results.

� Vary Level 0 Models. Develop a study that demonstrates the relationship between test
classification accuracy and the number of submodels used in the stacked ensemble.

� Cross-Validation Stacking Ensemble. Update the example to use k-fold cross-
validation to prepare the training dataset for the meta-learner model.

� Use Raw Input in Meta-Learner. Update the example so that the meta-learner
algorithms take the raw input data for the sample as well as the output from the submodels
and compare performance.

If you explore any of these extensions, I’d love to know.

25.4 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

25.4.1 Books

� Section 8.8 Model Averaging and Stacking, The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, Second Edition, 2016.
https://amzn.to/2DYeHAO

https://amzn.to/2DYeHAO

25.4. Further Reading 501

� Section 7.5 Combining multiple models, Data Mining: Practical Machine Learning Tools
and Techniques, Second Edition, 2005.
https://amzn.to/2pBxIPN

� Section 9.8.2 Stacked Generalization, Neural Networks for Pattern Recognition, 1995.
https://amzn.to/2pAQAOR

25.4.2 Papers

� Stacked generalization, 1992.
https://www.sciencedirect.com/science/article/pii/S0893608005800231

� Issues in Stacked Generalization, 1999.
https://www.jair.org/index.php/jair/article/view/10228

25.4.3 APIs

� Getting started with the Keras Sequential model.
https://keras.io/getting-started/sequential-model-guide/

� Keras Core Layers API.
https://keras.io/layers/core/

� numpy.argmax API.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html

� sklearn.datasets.make blobs API.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.

html

� numpy.dstack API.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dstack.html

� sklearn.linear model.LogisticRegression API.
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.

html

25.4.4 Articles

� Stacked Generalization (Stacking) Bibliography.
http://machine-learning.martinsewell.com/ensembles/stacking/

� Ensemble learning, Wikipedia.
https://en.wikipedia.org/wiki/Ensemble_learning

https://amzn.to/2pBxIPN
https://amzn.to/2pAQAOR
https://www.sciencedirect.com/science/article/pii/S0893608005800231
https://www.jair.org/index.php/jair/article/view/10228
https://keras.io/getting-started/sequential-model-guide/
https://keras.io/layers/core/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dstack.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
http://machine-learning.martinsewell.com/ensembles/stacking/
https://en.wikipedia.org/wiki/Ensemble_learning

25.5. Summary 502

25.5 Summary

In this tutorial, you discovered how to develop a stacked generalization ensemble for deep
learning neural networks. Specifically, you learned:

� Stacked generalization is an ensemble method where a new model learns how to best
combine the predictions from multiple existing models.

� How to develop a stacking model using neural networks as a submodel and a scikit-learn
classifier as the meta-learner.

� How to develop a stacking model where neural network submodels are embedded in a
larger stacking ensemble model for training and prediction.

25.5.1 Next

In the next tutorial, you will discover how to combine the model parameters or weights from
multiple ensemble members, instead of their predictions.

Chapter 26

Combine Model Parameters with
Average Model Weights Ensemble

The training process of neural networks is a challenging optimization process that can often
fail to converge. This can mean that the model at the end of training may not be a stable or
best-performing set of weights to use as a final model. One approach to address this problem
is to use an average of the weights from multiple models seen toward the end of the training
run. This is called Polyak-Ruppert averaging and can be further improved by using a linearly
or exponentially decreasing weighted average of the model weights. In addition to resulting in
a more stable model, the performance of the averaged model weights can also result in better
performance. In this tutorial, you will discover how to combine the weights from multiple
different models into a single model for making predictions. After completing this tutorial, you
will know:

� The stochastic and challenging nature of training neural networks can mean that the
optimization process does not converge.

� Creating a model with the average of the weights from models observed towards the end
of a training run can result in a more stable and sometimes better-performing solution.

� How to develop final models created with the equal, linearly, and exponentially weighted
average of model parameters from multiple saved models.

Let’s get started.

26.1 Average Model Weight Ensemble

Learning the weights for a deep neural network model requires solving a high-dimensional
non-convex optimization problem. A challenge with solving this optimization problem is that
there are many good solutions and it is possible for the learning algorithm to bounce around
and fail to settle in on one. In the area of stochastic optimization, this is referred to as problems
with the convergence of the optimization algorithm on a solution, where a solution is defined by
a set of specific weight values.

A symptom you may see if you have a problem with the convergence of your model is train
and/or test loss value that shows higher than expected variance, e.g. it thrashes or bounces

503

26.1. Average Model Weight Ensemble 504

up and down over training epochs. One approach to address this problem is to combine the
weights collected towards the end of the training process. Generally, this might be referred to
as temporal averaging and is known as Polyak Averaging or Polyak-Ruppert averaging, named
for the original developers of the method.

Polyak averaging consists of averaging together several points in the trajectory
through parameter space visited by an optimization algorithm.

— Page 322, Deep Learning, 2016.

Averaging multiple noisy sets of weights during the learning process may paradoxically sound
less desirable than tuning the optimization process itself, but may prove a desirable solution,
especially for very large neural networks that may take days, weeks, or even months to train.

The essential advancement was reached on the basis of the paradoxical idea: a slow
algorithm having less than optimal convergence rate must be averaged.

— Acceleration of Stochastic Approximation by Averaging, 1992.

Averaging the weights of multiple models from a single training run has the effect of calming
down the noisy optimization process that may be noisy because of the choice of learning
hyperparameters (e.g. learning rate) or the shape of the mapping function that is being learned.
The result is a final model or set of weights that may offer a more stable, and perhaps more
accurate result.

The basic idea is that the optimization algorithm may leap back and forth across a
valley several times without ever visiting a point near the bottom of the valley. The
average of all of the locations on either side should be close to the bottom of the
valley though.

— Page 322, Deep Learning, 2016.

The simplest implementation of Polyak-Ruppert averaging involves calculating the average
of the weights of the models over the last few training epochs.

This can be improved by calculating a weighted average, where more weight is applied to
more recent models, which is linearly decreased through prior epochs. An alternative and more
widely used approach is to use an exponential decay in the weighted average.

Polyak-Ruppert averaging has been shown to improve the convergence of standard
SGD [...] . Alternatively, an exponential moving average over the parameters can be
used, giving higher weight to more recent parameter value.

— Adam: A Method for Stochastic Optimization, 2014.

Using an average or weighted average of model weights in the final model is a common
technique in practice for ensuring the very best results are achieved from the training run. The
approach is one of many tricks used in the Google Inception V2 and V3 deep convolutional
neural network models for photo classification, a milestone in the field of deep learning.

Model evaluations are performed using a running average of the parameters computed
over time.

— Rethinking the Inception Architecture for Computer Vision, 2015.

26.2. Average Model Weight Ensemble Case Study 505

26.2 Average Model Weight Ensemble Case Study

In this section, we will demonstrate how to use the average model weight ensemble to reduce
the variance of an MLP on a simple multiclass classification problem. This example provides
a template for applying the average model weight ensemble to your own neural network for
classification and regression problems.

26.2.1 Multiclass Classification Problem

We will use a small multiclass classification problem as the basis to demonstrate the model
weight ensemble. The scikit-learn class provides the make blobs() function that can be used to
create a multiclass classification problem with the prescribed number of samples, input variables,
classes, and variance of samples within a class. The problem can be configured to have two
input variables (to represent the x and y coordinates of the points) and a standard deviation of
2.0 for points within each group. We will use the same random state (seed for the pseudorandom
number generator) to ensure that we always get the same data points.

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

Listing 26.1: Example of creating samples for the blobs problem.

The results are the input and output elements of a dataset that we can model. In order to
get a feeling for the complexity of the problem, we can plot each point on a two-dimensional
scatter plot and color each point by class value. The complete example is listed below.

scatter plot of blobs dataset

from sklearn.datasets.samples_generator import make_blobs

from matplotlib import pyplot

from numpy import where

generate 2d classification dataset

X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2)

scatter plot for each class value

for class_value in range(3):

select indices of points with the class label

row_ix = where(y == class_value)

scatter plot for points with a different color

pyplot.scatter(X[row_ix, 0], X[row_ix, 1])

show plot

pyplot.show()

Listing 26.2: Example of plotting samples from the blobs problem.

Running the example creates a scatter plot of the entire dataset. We can see that the
standard deviation of 2.0 means that the classes are not linearly separable (separable by a line)
causing many ambiguous points. This is desirable as it means that the problem is non-trivial
and will allow a neural network model to find many different good enough candidate solutions
resulting in a high variance.

26.2. Average Model Weight Ensemble Case Study 506

Figure 26.1: Scatter Plot of Blobs Dataset With Three Classes and Points Colored by Class
Value.

26.2.2 Multilayer Perceptron Model

Before we define a model, we need to contrive a problem that is appropriate for the ensemble.
In our problem, the training dataset is relatively small. Specifically, there is a 10:1 ratio of
examples in the training dataset to the holdout dataset. This mimics a situation where we may
have a vast number of unlabeled examples and a small number of labeled examples with which
to train a model. We will create 1,100 data points from the blobs problem. The model will
be trained on the first 100 points and the remaining 1,000 will be held back in a test dataset,
unavailable to the model.

The problem is a multiclass classification problem, and we will model it using a softmax
activation function on the output layer. This means that the model will predict a vector
with three elements with the probability that the sample belongs to each of the three classes.
Therefore, we must one hot encode the class values before we split the rows into the train and
test datasets. We can do this using the Keras to categorical() function.

generate 2d classification dataset

X, y = make_blobs(n_samples=1100, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

26.2. Average Model Weight Ensemble Case Study 507

n_train = 100

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

Listing 26.3: Example of defining the dataset for modeling.

Next, we can define and compile the model. The model will expect samples with two input
variables. The model then has a single hidden layer with 25 nodes and a rectified linear activation
function, then an output layer with three nodes to predict the probability of each of the three
classes and a softmax activation function. Because the problem is multiclass, we will use the
categorical cross-entropy loss function to optimize the model and stochastic gradient descent
with a small learning rate and momentum.

define model

model = Sequential()

model.add(Dense(25, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

Listing 26.4: Example of defining the MLP model.

The model is fit for 500 training epochs and we will evaluate the model each epoch on the
test set, using the test set as a validation set.

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=500, verbose=0)

Listing 26.5: Example of fitting the MLP model.

At the end of the run, we will evaluate the performance of the model on the train and test
sets.

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

Listing 26.6: Example of evaluating the MLP model.

Then finally, we will plot learning curves of the model accuracy over each training epoch on
both the training and validation datasets.

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 26.7: Example of plotting learning curves for the MLP model.

26.2. Average Model Weight Ensemble Case Study 508

Tying all of this together, the complete example is listed below.

develop an mlp for blobs dataset

from sklearn.datasets.samples_generator import make_blobs

from keras.utils import to_categorical

from keras.models import Sequential

from keras.layers import Dense

from keras.optimizers import SGD

from matplotlib import pyplot

generate 2d classification dataset

X, y = make_blobs(n_samples=1100, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 100

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(25, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

opt = SGD(lr=0.01, momentum=0.9)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

fit model

history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=500, verbose=0)

evaluate the model

_, train_acc = model.evaluate(trainX, trainy, verbose=0)

_, test_acc = model.evaluate(testX, testy, verbose=0)

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

plot loss learning curves

pyplot.subplot(211)

pyplot.title('Cross-Entropy Loss', pad=-40)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

plot accuracy learning curves

pyplot.subplot(212)

pyplot.title('Accuracy', pad=-40)

pyplot.plot(history.history['acc'], label='train')

pyplot.plot(history.history['val_acc'], label='test')

pyplot.legend()

pyplot.show()

Listing 26.8: Example of fitting an MLP on the blobs problem.

Running the example prints the performance of the final model on the train and test datasets.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that the model achieved about 85% accuracy on the training dataset,
which we know is optimistic, and about 80% on the test dataset, which we would expect to be
more realistic.

Train: 0.850, Test: 0.804

Listing 26.9: Example output fitting an MLP on the blobs problem.

26.2. Average Model Weight Ensemble Case Study 509

A line plot is also created showing the learning curves for the model accuracy on the train and
test sets over each training epoch. We can see that training accuracy is more optimistic over most
of the run, as we also noted with the final scores. Importantly, we do see a reasonable amount
of variance in the accuracy during training on both the train and test datasets, potentially
providing a good basis for using model weight averaging.

Figure 26.2: Line Plot Learning Curves of Model Accuracy on Train and Test Dataset over
Each Training Epoch.

26.2.3 Save Multiple Models to File

One approach to the model weight ensemble is to keep a running average of model weights in
memory. There are three downsides to this approach:

� It requires that you know beforehand the way in which the model weights will be combined;
perhaps you want to experiment with different approaches.

� It requires that you know the number of epochs to use for training; maybe you want to
use early stopping.

� It requires that you keep at least one copy of the entire network in memory; this could be
very expensive for large models and fragile if the training process crashes or is killed.

26.2. Average Model Weight Ensemble Case Study 510

An alternative is to save model weights to file during training as a first step, and later
combine the weights from the saved models in order to make a final model. Perhaps the simplest
way to implement this is to manually drive the training process, one epoch at a time, then save
models at the end of the epoch if we have exceeded an upper limit on the number of epochs.
For example, with our test problem, we will train the model for 500 epochs and perhaps save
models from epoch 490 onwards (e.g. between and including epochs 490 and 499).

fit model

n_epochs, n_save_after = 500, 490

for i in range(n_epochs):

fit model for a single epoch

model.fit(trainX, trainy, epochs=1, verbose=0)

check if we should save the model

if i >= n_save_after:

model.save('model_' + str(i) + '.h5')

Listing 26.10: Example of fitting and saving multiple MLP models.

Models can be saved to file using the save() function on the model and specifying a filename
that includes the epoch number. Note, saving and loading neural network models in Keras
requires that you have the h5py library installed. You can install this library using pip as
follows:

pip install h5py

Listing 26.11: Example installing the h5py library with pip.

Tying all of this together, the complete example of fitting the model on the training dataset
and saving all models from the last 10 epochs is listed below.

save models to file toward the end of a training run

from sklearn.datasets.samples_generator import make_blobs

from keras.utils import to_categorical

from keras.models import Sequential

from keras.layers import Dense

generate 2d classification dataset

X, y = make_blobs(n_samples=1100, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 100

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

define model

model = Sequential()

model.add(Dense(25, input_dim=2, activation='relu'))

model.add(Dense(3, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

n_epochs, n_save_after = 500, 490

for i in range(n_epochs):

fit model for a single epoch

model.fit(trainX, trainy, epochs=1, verbose=0)

check if we should save the model

if i >= n_save_after:

model.save('model_' + str(i) + '.h5')

26.2. Average Model Weight Ensemble Case Study 511

Listing 26.12: Example of saving MLP models to file.

Running the example saves 10 models into the current working directory.

26.2.4 New Model With Average Models Weights

We can create a new model from multiple existing models with the same architecture. First, we
need to load the models into memory. This is reasonable as the models are small. If you are
working with very large models, it might be easier to load models one at a time and average
the weights in memory. The load model() Keras function can be used to load a saved model
from file. The function load all models() below will load models from the current working
directory. It takes the start and end epochs as arguments so that you can experiment with
different groups of models saved over contiguous epochs.

load models from file

def load_all_models(n_start, n_end):

all_models = list()

for epoch in range(n_start, n_end):

define filename for this ensemble

filename = 'model_' + str(epoch) + '.h5'

load model from file

model = load_model(filename)

add to list of members

all_models.append(model)

print('>loaded %s' % filename)

return all_models

Listing 26.13: Example of a function for loading saved models.

We can call the function to load all of the models.

load models in order

members = load_all_models(490, 500)

print('Loaded %d models' % len(members))

Listing 26.14: Example of loading saved models.

Once loaded, we can create a new model with the weighted average of the model weights.
Each model has a get weights() function that returns a list of arrays, one for each layer in
the model. We can enumerate each layer in the model, retrieve the same layer from each model,
and calculate the weighted average. This will give us a set of weights. We can then use the
clone model() Keras function to create a clone of the architecture and call set weights()

function to use the average weights we have prepared. The model weight ensemble() function
below implements this.

create a model from the weights of multiple models

def model_weight_ensemble(members, weights):

determine how many layers need to be averaged

n_layers = len(members[0].get_weights())

create an set of average model weights

avg_model_weights = list()

for layer in range(n_layers):

collect this layer from each model

26.2. Average Model Weight Ensemble Case Study 512

layer_weights = array([model.get_weights()[layer] for model in members])

weighted average of weights for this layer

avg_layer_weights = average(layer_weights, axis=0, weights=weights)

store average layer weights

avg_model_weights.append(avg_layer_weights)

create a new model with the same structure

model = clone_model(members[0])

set the weights in the new

model.set_weights(avg_model_weights)

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

return model

Listing 26.15: Example of a function for averaging weights from multiple models.

Tying these elements together, we can load the 10 models and calculate the equally weighted
average (arithmetic average) of the model weights. The complete listing is provided below.

average the weights of multiple loaded models

from keras.models import load_model

from keras.models import clone_model

from numpy import average

from numpy import array

load models from file

def load_all_models(n_start, n_end):

all_models = list()

for epoch in range(n_start, n_end):

define filename for this ensemble

filename = 'model_' + str(epoch) + '.h5'

load model from file

model = load_model(filename)

add to list of members

all_models.append(model)

print('>loaded %s' % filename)

return all_models

create a model from the weights of multiple models

def model_weight_ensemble(members, weights):

determine how many layers need to be averaged

n_layers = len(members[0].get_weights())

create an set of average model weights

avg_model_weights = list()

for layer in range(n_layers):

collect this layer from each model

layer_weights = array([model.get_weights()[layer] for model in members])

weighted average of weights for this layer

avg_layer_weights = average(layer_weights, axis=0, weights=weights)

store average layer weights

avg_model_weights.append(avg_layer_weights)

create a new model with the same structure

model = clone_model(members[0])

set the weights in the new

model.set_weights(avg_model_weights)

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

return model

load all models into memory

26.2. Average Model Weight Ensemble Case Study 513

members = load_all_models(490, 500)

print('Loaded %d models' % len(members))

prepare an array of equal weights

n_models = len(members)

weights = [1/n_models for i in range(1, n_models+1)]

create a new model with the weighted average of all model weights

model = model_weight_ensemble(members, weights)

summarize the created model

model.summary()

Listing 26.16: Example of loading models and creating a new model with the average of their
weights.

Running the example first loads the 10 models from file.

>loaded model_490.h5

>loaded model_491.h5

>loaded model_492.h5

>loaded model_493.h5

>loaded model_494.h5

>loaded model_495.h5

>loaded model_496.h5

>loaded model_497.h5

>loaded model_498.h5

>loaded model_499.h5

Loaded 10 models

Listing 26.17: Example output from loading saved models.

A model weight ensemble is created from these 10 models giving equal weight to each model
and a summary of the model structure is reported.

Layer (type) Output Shape Param #

===

dense_1 (Dense) (None, 25) 75

dense_2 (Dense) (None, 3) 78

===

Total params: 153

Trainable params: 153

Non-trainable params: 0

Listing 26.18: Example output from summarizing the new model.

26.2.5 Predicting With an Average Model Weight Ensemble

Now that we know how to calculate a weighted average of model weights, we can evaluate
predictions with the resulting model. One issue is that we don’t know how many models
are appropriate to combine in order to achieve good performance. We can address this by
evaluating model weight averaging ensembles with the last n models and vary n to see how many
models results in good performance. The evaluate n members() function below will create a
new model from a given number of loaded models. Each model is given an equal weight in

26.2. Average Model Weight Ensemble Case Study 514

contributing to the final model, then the model weight ensemble() function is called to create
the final model that is then evaluated on the test dataset.

evaluate a specific number of members in an ensemble

def evaluate_n_members(members, n_members, testX, testy):

reverse loaded models so we build the ensemble with the last models first

members = list(reversed(members))

select a subset of members

subset = members[:n_members]

prepare an array of equal weights

weights = [1.0/n_members for i in range(1, n_members+1)]

create a new model with the weighted average of all model weights

model = model_weight_ensemble(subset, weights)

make predictions and evaluate accuracy

_, test_acc = model.evaluate(testX, testy, verbose=0)

return test_acc

Listing 26.19: Example of evaluating a model created from a given number of members.

Importantly, the list of loaded models is reversed first to ensure that the last n models in
the training run are used, which we would assume might have better performance on average.

reverse loaded models so we build the ensemble with the last models first

members = list(reversed(members))

Listing 26.20: Example of reversing the list of loaded ensemble members.

We can then evaluate models created from different numbers of the last n models saved
from the training run from the last 1-model to the last 10 models. In addition to evaluating the
combined final model, we can also evaluate each saved standalone model on the test dataset to
compare performance.

evaluate different numbers of ensembles on hold out set

single_scores, ensemble_scores = list(), list()

for i in range(1, len(members)+1):

evaluate model with i members

ensemble_score = evaluate_n_members(members, i, testX, testy)

evaluate the i'th model standalone

_, single_score = members[i-1].evaluate(testX, testy, verbose=0)

summarize this step

print('> %d: single=%.3f, ensemble=%.3f' % (i, single_score, ensemble_score))

ensemble_scores.append(ensemble_score)

single_scores.append(single_score)

Listing 26.21: Example of evaluating a suite of different average model weight models.

The collected scores can be plotted, with blue dots for the accuracy of the single saved
models and the orange line for the test accuracy for the model that combines the weights the
last n models.

plot score vs number of ensemble members

x_axis = [i for i in range(1, len(members)+1)]

pyplot.plot(x_axis, single_scores, marker='o', linestyle='None')

pyplot.plot(x_axis, ensemble_scores, marker='o')

pyplot.show()

Listing 26.22: Example of plotting model performance vs the number of contributing members.

26.2. Average Model Weight Ensemble Case Study 515

Tying all of this together, the complete example is listed below.

average of model weights on blobs problem

from sklearn.datasets.samples_generator import make_blobs

from keras.utils import to_categorical

from keras.models import load_model

from keras.models import clone_model

from matplotlib import pyplot

from numpy import average

from numpy import array

load models from file

def load_all_models(n_start, n_end):

all_models = list()

for epoch in range(n_start, n_end):

define filename for this ensemble

filename = 'model_' + str(epoch) + '.h5'

load model from file

model = load_model(filename)

add to list of members

all_models.append(model)

print('>loaded %s' % filename)

return all_models

create a model from the weights of multiple models

def model_weight_ensemble(members, weights):

determine how many layers need to be averaged

n_layers = len(members[0].get_weights())

create an set of average model weights

avg_model_weights = list()

for layer in range(n_layers):

collect this layer from each model

layer_weights = array([model.get_weights()[layer] for model in members])

weighted average of weights for this layer

avg_layer_weights = average(layer_weights, axis=0, weights=weights)

store average layer weights

avg_model_weights.append(avg_layer_weights)

create a new model with the same structure

model = clone_model(members[0])

set the weights in the new

model.set_weights(avg_model_weights)

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

return model

evaluate a specific number of members in an ensemble

def evaluate_n_members(members, n_members, testX, testy):

select a subset of members

subset = members[:n_members]

prepare an array of equal weights

weights = [1.0/n_members for i in range(1, n_members+1)]

create a new model with the weighted average of all model weights

model = model_weight_ensemble(subset, weights)

make predictions and evaluate accuracy

_, test_acc = model.evaluate(testX, testy, verbose=0)

return test_acc

26.2. Average Model Weight Ensemble Case Study 516

generate 2d classification dataset

X, y = make_blobs(n_samples=1100, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 100

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

load models in order

members = load_all_models(490, 500)

print('Loaded %d models' % len(members))

reverse loaded models so we build the ensemble with the last models first

members = list(reversed(members))

evaluate different numbers of ensembles on hold out set

single_scores, ensemble_scores = list(), list()

for i in range(1, len(members)+1):

evaluate model with i members

ensemble_score = evaluate_n_members(members, i, testX, testy)

evaluate the i'th model standalone

_, single_score = members[i-1].evaluate(testX, testy, verbose=0)

summarize this step

print('> %d: single=%.3f, ensemble=%.3f' % (i, single_score, ensemble_score))

ensemble_scores.append(ensemble_score)

single_scores.append(single_score)

plot score vs number of ensemble members

x_axis = [i for i in range(1, len(members)+1)]

pyplot.plot(x_axis, single_scores, marker='o', linestyle='None')

pyplot.plot(x_axis, ensemble_scores, marker='o')

pyplot.show()

Listing 26.23: Example the performance of average model weight ensemble models with differing
number of contributing members.

Running the example first loads the 10 saved models.

>loaded model_490.h5

>loaded model_491.h5

>loaded model_492.h5

>loaded model_493.h5

>loaded model_494.h5

>loaded model_495.h5

>loaded model_496.h5

>loaded model_497.h5

>loaded model_498.h5

>loaded model_499.h5

Loaded 10 models

Listing 26.24: Example output from loading saved models.

The performance of each individually saved model is reported as well as an ensemble model
with weights averaged from all models up to and including each model, working backward from
the end of the training run. The results show that the best test accuracy was about 81.4%
achieved by the last two models. We can see that the test accuracy of the model weight ensemble
levels out the performance and performs just as well.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

26.2. Average Model Weight Ensemble Case Study 517

> 1: single=0.814, ensemble=0.814

> 2: single=0.814, ensemble=0.814

> 3: single=0.811, ensemble=0.813

> 4: single=0.805, ensemble=0.813

> 5: single=0.807, ensemble=0.811

> 6: single=0.805, ensemble=0.807

> 7: single=0.802, ensemble=0.809

> 8: single=0.805, ensemble=0.808

> 9: single=0.805, ensemble=0.808

> 10: single=0.810, ensemble=0.807

Listing 26.25: Example output from evaluating single models and ensemble models.

A line plot is also created showing the test accuracy of each single model (blue dots) and
the performance of the model weight ensemble (orange line). We can see that averaging the
model weights does level out the performance of the final model and performs at least as well as
the final model of the run.

Figure 26.3: Line Plot of Single Model Test Performance (blue dots) and Model Weight Ensemble
Test Performance (orange line).

26.2. Average Model Weight Ensemble Case Study 518

26.2.6 Linearly and Exponentially Decreasing Weighted Average

We can update the example and evaluate a linearly decreasing weighting of the model weights
in the ensemble. The weights can be calculated as follows:

prepare an array of linearly decreasing weights

weights = [i/n_members for i in range(n_members, 0, -1)]

Listing 26.26: Example of using a linearly decreasing weighting for ensemble members.

This can be used instead of the equal weights in the evaluate n members() function. The
complete example is listed below.

linearly decreasing weighted average of models on blobs problem

from sklearn.datasets.samples_generator import make_blobs

from keras.utils import to_categorical

from keras.models import load_model

from keras.models import clone_model

from matplotlib import pyplot

from numpy import average

from numpy import array

load models from file

def load_all_models(n_start, n_end):

all_models = list()

for epoch in range(n_start, n_end):

define filename for this ensemble

filename = 'model_' + str(epoch) + '.h5'

load model from file

model = load_model(filename)

add to list of members

all_models.append(model)

print('>loaded %s' % filename)

return all_models

create a model from the weights of multiple models

def model_weight_ensemble(members, weights):

determine how many layers need to be averaged

n_layers = len(members[0].get_weights())

create an set of average model weights

avg_model_weights = list()

for layer in range(n_layers):

collect this layer from each model

layer_weights = array([model.get_weights()[layer] for model in members])

weighted average of weights for this layer

avg_layer_weights = average(layer_weights, axis=0, weights=weights)

store average layer weights

avg_model_weights.append(avg_layer_weights)

create a new model with the same structure

model = clone_model(members[0])

set the weights in the new

model.set_weights(avg_model_weights)

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

return model

evaluate a specific number of members in an ensemble

def evaluate_n_members(members, n_members, testX, testy):

26.2. Average Model Weight Ensemble Case Study 519

select a subset of members

subset = members[:n_members]

prepare an array of linearly decreasing weights

weights = [i/n_members for i in range(n_members, 0, -1)]

create a new model with the weighted average of all model weights

model = model_weight_ensemble(subset, weights)

make predictions and evaluate accuracy

_, test_acc = model.evaluate(testX, testy, verbose=0)

return test_acc

generate 2d classification dataset

X, y = make_blobs(n_samples=1100, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 100

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

load models in order

members = load_all_models(490, 500)

print('Loaded %d models' % len(members))

reverse loaded models so we build the ensemble with the last models first

members = list(reversed(members))

evaluate different numbers of ensembles on hold out set

single_scores, ensemble_scores = list(), list()

for i in range(1, len(members)+1):

evaluate model with i members

ensemble_score = evaluate_n_members(members, i, testX, testy)

evaluate the i'th model standalone

_, single_score = members[i-1].evaluate(testX, testy, verbose=0)

summarize this step

print('> %d: single=%.3f, ensemble=%.3f' % (i, single_score, ensemble_score))

ensemble_scores.append(ensemble_score)

single_scores.append(single_score)

plot score vs number of ensemble members

x_axis = [i for i in range(1, len(members)+1)]

pyplot.plot(x_axis, single_scores, marker='o', linestyle='None')

pyplot.plot(x_axis, ensemble_scores, marker='o')

pyplot.show()

Listing 26.27: Example the performance of linearly weighted ensembles.

Running the example reports the performance of each single model again, and this time the
test accuracy of each average model weight ensemble with a linearly decreasing contribution of
models.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

We can see that, at least in this case, the ensemble achieves a small bump in performance
above any standalone model to about 81.5% accuracy.

...

> 1: single=0.814, ensemble=0.814

> 2: single=0.814, ensemble=0.815

> 3: single=0.811, ensemble=0.814

26.2. Average Model Weight Ensemble Case Study 520

> 4: single=0.805, ensemble=0.813

> 5: single=0.807, ensemble=0.813

> 6: single=0.805, ensemble=0.813

> 7: single=0.802, ensemble=0.811

> 8: single=0.805, ensemble=0.810

> 9: single=0.805, ensemble=0.809

> 10: single=0.810, ensemble=0.809

Listing 26.28: Example output from linearly weighted ensembles.

The line plot shows the bump in performance and shows a more stable performance in terms
of test accuracy over the different sized ensembles created, as compared to the use of an evenly
weighted ensemble.

Figure 26.4: Line Plot of Single Model Test Performance (blue dots) and Model Weight Ensemble
Test Performance (orange line) With a Linear Decay.

We can also experiment with an exponential decay of the contribution of models. This
requires that a decay rate (alpha) is specified. The example below creates weights for an
exponential decay with a decrease rate of 2.

prepare an array of exponentially decreasing weights

alpha = 2.0

weights = [exp(-i/alpha) for i in range(1, n_members+1)]

26.2. Average Model Weight Ensemble Case Study 521

Listing 26.29: Example of using an exponentially decreasing weighting for ensemble members.

The complete example with an exponential decay for the contribution of models to the
average weights in the ensemble model is listed below.

exponentially decreasing weighted average of models on blobs problem

from sklearn.datasets.samples_generator import make_blobs

from keras.utils import to_categorical

from keras.models import load_model

from keras.models import clone_model

from matplotlib import pyplot

from numpy import average

from numpy import array

from math import exp

load models from file

def load_all_models(n_start, n_end):

all_models = list()

for epoch in range(n_start, n_end):

define filename for this ensemble

filename = 'model_' + str(epoch) + '.h5'

load model from file

model = load_model(filename)

add to list of members

all_models.append(model)

print('>loaded %s' % filename)

return all_models

create a model from the weights of multiple models

def model_weight_ensemble(members, weights):

determine how many layers need to be averaged

n_layers = len(members[0].get_weights())

create an set of average model weights

avg_model_weights = list()

for layer in range(n_layers):

collect this layer from each model

layer_weights = array([model.get_weights()[layer] for model in members])

weighted average of weights for this layer

avg_layer_weights = average(layer_weights, axis=0, weights=weights)

store average layer weights

avg_model_weights.append(avg_layer_weights)

create a new model with the same structure

model = clone_model(members[0])

set the weights in the new

model.set_weights(avg_model_weights)

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

return model

evaluate a specific number of members in an ensemble

def evaluate_n_members(members, n_members, testX, testy):

select a subset of members

subset = members[:n_members]

prepare an array of exponentially decreasing weights

alpha = 2.0

weights = [exp(-i/alpha) for i in range(1, n_members+1)]

26.2. Average Model Weight Ensemble Case Study 522

create a new model with the weighted average of all model weights

model = model_weight_ensemble(subset, weights)

make predictions and evaluate accuracy

_, test_acc = model.evaluate(testX, testy, verbose=0)

return test_acc

generate 2d classification dataset

X, y = make_blobs(n_samples=1100, centers=3, n_features=2, cluster_std=2, random_state=2)

one hot encode output variable

y = to_categorical(y)

split into train and test

n_train = 100

trainX, testX = X[:n_train, :], X[n_train:, :]

trainy, testy = y[:n_train], y[n_train:]

load models in order

members = load_all_models(490, 500)

print('Loaded %d models' % len(members))

reverse loaded models so we build the ensemble with the last models first

members = list(reversed(members))

evaluate different numbers of ensembles on hold out set

single_scores, ensemble_scores = list(), list()

for i in range(1, len(members)+1):

evaluate model with i members

ensemble_score = evaluate_n_members(members, i, testX, testy)

evaluate the i'th model standalone

_, single_score = members[i-1].evaluate(testX, testy, verbose=0)

summarize this step

print('> %d: single=%.3f, ensemble=%.3f' % (i, single_score, ensemble_score))

ensemble_scores.append(ensemble_score)

single_scores.append(single_score)

plot score vs number of ensemble members

x_axis = [i for i in range(1, len(members)+1)]

pyplot.plot(x_axis, single_scores, marker='o', linestyle='None')

pyplot.plot(x_axis, ensemble_scores, marker='o')

pyplot.show()

Listing 26.30: Example the performance of exponentially weighted ensembles.

Running the example shows a small improvement in performance much like the use of a
linear decay in the weighted average of the saved models.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

> 1: single=0.814, ensemble=0.814

> 2: single=0.814, ensemble=0.815

> 3: single=0.811, ensemble=0.814

> 4: single=0.805, ensemble=0.814

> 5: single=0.807, ensemble=0.813

> 6: single=0.805, ensemble=0.813

> 7: single=0.802, ensemble=0.813

> 8: single=0.805, ensemble=0.813

> 9: single=0.805, ensemble=0.813

> 10: single=0.810, ensemble=0.813

Listing 26.31: Example output from exponentially weighted ensembles.

26.3. Extensions 523

The line plot of the test accuracy scores shows the stronger stabilizing effect of using the
exponential decay instead of the linear or equal weighting of models.

Figure 26.5: Line Plot of Single Model Test Performance (blue dots) and Model Weight Ensemble
Test Performance (orange line) With an Exponential Decay.

26.3 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Number of Models. Evaluate the effect of many more models contributing their weights
to the final model.

� Decay Rate. Evaluate the effect on test performance of using different decay rates for
an exponentially weighted average.

If you explore any of these extensions, I’d love to know.

26.4 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

26.5. Summary 524

26.4.1 Books

� Section 8.7.3 Polyak Averaging, Deep Learning, 2016.
https://amzn.to/2A1vOOd

26.4.2 Papers

� Acceleration of Stochastic Approximation by Averaging, 1992.
https://epubs.siam.org/doi/abs/10.1137/0330046

� Efficient estimations from a slowly convergent robbins-monro process, 1988.
https://ecommons.cornell.edu/handle/1813/8664

26.4.3 APIs

� Getting started with the Keras Sequential model.
https://keras.io/getting-started/sequential-model-guide/

� Keras Core Layers API.
https://keras.io/layers/core/

� sklearn.datasets.make blobs API.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.

html

� numpy.average API.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.average.html

26.5 Summary

In this tutorial, you discovered how to combine the weights from multiple different models into
a single model for making predictions. Specifically, you learned:

� The stochastic and challenging nature of training neural networks can mean that the
optimization process does not converge.

� Creating a model with the average of the weights from models observed towards the end
of a training run can result in a more stable and sometimes better-performing solution.

� How to develop final models created with the equal, linearly, and exponentially weighted
average of model parameters from multiple saved models.

26.5.1 Next

This was the last tutorial in this Part. Next you will discover the Appendix and resources that
you can use to dive deeper into the topic of getting better performance with neural networks.

https://amzn.to/2A1vOOd
https://epubs.siam.org/doi/abs/10.1137/0330046
https://ecommons.cornell.edu/handle/1813/8664
https://keras.io/getting-started/sequential-model-guide/
https://keras.io/layers/core/
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.average.html

Part IV

Appendix

525

Appendix A

Getting Help

This is just the beginning of your journey with better deep learning in Python. As you start to
work on methods or expand your existing knowledge of algorithms you may need help. This
chapter points out some of the best sources of help.

A.1 Applied Neural Networks

This section lists some of the best books on the practical considerations of working with neural
network models.

� Deep Learning With Python, 2017.
https://amzn.to/2NJq1pf

� Deep Learning, 2016.
https://amzn.to/2NJW3gE

� Neural Networks: Tricks of the Trade, 2012.
https://amzn.to/2S83KiB

� Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks, 1999.
https://amzn.to/2poqOxc

� Neural Networks for Pattern Recognition, 1995.
https://amzn.to/2I9gNMP

A.2 Official Keras Destinations

This section lists the official Keras sites that you may find helpful.

� Keras Official Blog.
https://blog.keras.io/

� Keras API Documentation.
https://keras.io/

� Keras Source Code Project.
https://github.com/keras-team/keras

526

https://amzn.to/2NJq1pf
https://amzn.to/2NJW3gE
https://amzn.to/2S83KiB
https://amzn.to/2poqOxc
https://amzn.to/2I9gNMP
https://blog.keras.io/
https://keras.io/
https://github.com/keras-team/keras

A.3. Where to Get Help with Keras 527

A.3 Where to Get Help with Keras

This section lists the 9 best places I know where you can get help with Keras.

� Keras Users Google Group.
https://groups.google.com/forum/#!forum/keras-users

� Keras Slack Channel (you must request to join).
https://keras-slack-autojoin.herokuapp.com/

� Keras on Gitter.
https://gitter.im/Keras-io/Lobby#

� Keras tag on StackOverflow.
https://stackoverflow.com/questions/tagged/keras

� Keras tag on CrossValidated.
https://stats.stackexchange.com/questions/tagged/keras

� Keras tag on DataScience.
https://datascience.stackexchange.com/questions/tagged/keras

� Keras Topic on Quora.
https://www.quora.com/topic/Keras

� Keras Github Issues.
https://github.com/keras-team/keras/issues

� Keras on Twitter.
https://twitter.com/hashtag/keras

A.4 How to Ask Questions

Knowing where to get help is the first step, but you need to know how to get the most out of
these resources. Below are some tips that you can use:

� Boil your question down to the simplest form. E.g. not something broad like my model
does not work or how does x work.

� Search for answers before asking questions.

� Provide complete code and error messages.

� Boil your code down to the smallest possible working example that demonstrates the issue.

These are excellent resources both for posting unique questions, but also for searching
through the answers to questions on related topics.

https://groups.google.com/forum/#!forum/keras-users
https://keras-slack-autojoin.herokuapp.com/
https://gitter.im/Keras-io/Lobby#
https://stackoverflow.com/questions/tagged/keras
https://stats.stackexchange.com/questions/tagged/keras
https://datascience.stackexchange.com/questions/tagged/keras
https://www.quora.com/topic/Keras
https://github.com/keras-team/keras/issues
https://twitter.com/hashtag/keras

A.5. Contact the Author 528

A.5 Contact the Author

You are not alone. If you ever have any questions about deep learning or this book, please
contact me directly. I will do my best to help.

Jason Brownlee
Jason@MachineLearningMastery.com

Appendix B

How to Setup Your Workstation

It can be difficult to install a Python machine learning environment on some platforms. Python
itself must be installed first and then there are many packages to install, and it can be confusing
for beginners. In this tutorial, you will discover how to setup a Python machine learning
development environment using Anaconda.

After completing this tutorial, you will have a working Python environment to begin learning,
practicing, and developing machine learning and deep learning software. These instructions are
suitable for Windows, macOS, and Linux platforms. I will demonstrate them on macOS, so you
may see some mac dialogs and file extensions.

B.1 Overview

In this tutorial, we will cover the following steps:

1. Download Anaconda

2. Install Anaconda

3. Start and Update Anaconda

4. Install Deep Learning Libraries

Note: The specific versions may differ as the software and libraries are updated frequently.

B.2 Download Anaconda

In this step, we will download the Anaconda Python package for your platform. Anaconda is a
free and easy-to-use environment for scientific Python.

� 1. Visit the Anaconda homepage.
https://www.continuum.io/

� 2. Click Anaconda from the menu and click Download to go to the download page.
https://www.continuum.io/downloads

529

https://www.continuum.io/
https://www.continuum.io/downloads

B.2. Download Anaconda 530

Figure B.1: Click Anaconda and Download.

� 3. Choose the download suitable for your platform (Windows, OSX, or Linux):

– Choose Python 3.6

– Choose the Graphical Installer

B.3. Install Anaconda 531

Figure B.2: Choose Anaconda Download for Your Platform.

This will download the Anaconda Python package to your workstation. I’m on macOS, so I
chose the macOS version. The file is about 426 MB. You should have a file with a name like:

Anaconda3-4.4.0-MacOSX-x86_64.pkg

Listing B.1: Example filename on macOS.

B.3 Install Anaconda

In this step, we will install the Anaconda Python software on your system. This step assumes
you have sufficient administrative privileges to install software on your system.

� 1. Double click the downloaded file.

� 2. Follow the installation wizard.

B.3. Install Anaconda 532

Figure B.3: Anaconda Python Installation Wizard.

Installation is quick and painless. There should be no tricky questions or sticking points.

B.4. Start and Update Anaconda 533

Figure B.4: Anaconda Python Installation Wizard Writing Files.

The installation should take less than 10 minutes and take up a little more than 1 GB of
space on your hard drive.

B.4 Start and Update Anaconda

In this step, we will confirm that your Anaconda Python environment is up to date. Anaconda
comes with a suite of graphical tools called Anaconda Navigator. You can start Anaconda
Navigator by opening it from your application launcher.

B.4. Start and Update Anaconda 534

Figure B.5: Anaconda Navigator GUI.

You can use the Anaconda Navigator and graphical development environments later; for now,
I recommend starting with the Anaconda command line environment called conda. Conda is
fast, simple, it’s hard for error messages to hide, and you can quickly confirm your environment
is installed and working correctly.

� 1. Open a terminal (command line window).

� 2. Confirm conda is installed correctly, by typing:

conda -V

Listing B.2: Check the conda version.

You should see the following (or something similar):

conda 4.3.21

Listing B.3: Example conda version.

� 3. Confirm Python is installed correctly by typing:

python -V

Listing B.4: Check the Python version.

You should see the following (or something similar):

Python 3.6.1 :: Anaconda 4.4.0 (x86_64)

Listing B.5: Example Python version.

B.4. Start and Update Anaconda 535

If the commands do not work or have an error, please check the documentation for help for
your platform. See some of the resources in the Further Reading section.

� 4. Confirm your conda environment is up-to-date, type:

conda update conda

conda update anaconda

Listing B.6: Update conda and anaconda.

You may need to install some packages and confirm the updates.

� 5. Confirm your SciPy environment.

The script below will print the version number of the key SciPy libraries you require for
machine learning development, specifically: SciPy, NumPy, Matplotlib, Pandas, Statsmodels,
and Scikit-learn. You can type python and type the commands in directly. Alternatively, I
recommend opening a text editor and copy-pasting the script into your editor.

check library version numbers

scipy

import scipy

print('scipy: %s' % scipy.__version__)

numpy

import numpy

print('numpy: %s' % numpy.__version__)

matplotlib

import matplotlib

print('matplotlib: %s' % matplotlib.__version__)

pandas

import pandas

print('pandas: %s' % pandas.__version__)

statsmodels

import statsmodels

print('statsmodels: %s' % statsmodels.__version__)

scikit-learn

import sklearn

print('sklearn: %s' % sklearn.__version__)

Listing B.7: Code to check that key Python libraries are installed.

Save the script as a file with the name: versions.py. On the command line, change your
directory to where you saved the script and type:

python versions.py

Listing B.8: Run the script from the command line.

You should see output like the following:

scipy: 1.1.0

numpy: 1.15.4

matplotlib: 3.0.2

pandas: 0.23.4

statsmodels: 0.9.0

sklearn: 0.20.0

Listing B.9: Sample output of versions script.

B.5. Install Deep Learning Libraries 536

B.5 Install Deep Learning Libraries

In this step, we will install Python libraries used for deep learning, specifically: Theano,
TensorFlow, and Keras. Note: I recommend using Keras for deep learning and Keras only
requires one of Theano or TensorFlow to be installed. You do not need both. There may be
problems installing TensorFlow on some Windows machines.

� 1. Install the Theano deep learning library by typing:

conda install theano

Listing B.10: Install Theano with conda.

� 2. Install the TensorFlow deep learning library by typing:

conda install -c conda-forge tensorflow

Listing B.11: Install TensorFlow with conda.

Alternatively, you may choose to install using pip and a specific version of TensorFlow for
your platform.

� 3. Install Keras by typing:

pip install keras

Listing B.12: Install Keras with pip.

� 4. Confirm your deep learning environment is installed and working correctly.

Create a script that prints the version numbers of each library, as we did before for the SciPy
environment.

check deep learning version numbers

theano

import theano

print('theano: %s' % theano.__version__)

tensorflow

import tensorflow

print('tensorflow: %s' % tensorflow.__version__)

keras

import keras

print('keras: %s' % keras.__version__)

Listing B.13: Code to check that key deep learning libraries are installed.

Save the script to a file deep versions.py. Run the script by typing:

python deep_versions.py

Listing B.14: Run script from the command line.

You should see output like:

theano: 1.0.3

tensorflow: 1.12.0

keras: 2.2.4

Listing B.15: Sample output of the deep learning versions script.

B.6. Further Reading 537

B.6 Further Reading

This section provides resources if you want to know more about Anaconda.

� Anaconda homepage.
https://www.continuum.io/

� Anaconda Navigator.
https://docs.continuum.io/anaconda/navigator.html

� The conda command line tool.
http://conda.pydata.org/docs/index.html

� Instructions for installing TensorFlow in Anaconda.
https://www.tensorflow.org/get_started/os_setup#anaconda_installation

B.7 Summary

Congratulations, you now have a working Python development environment for machine learning
and deep learning. You can now learn and practice machine learning and deep learning on your
workstation.

https://www.continuum.io/
https://docs.continuum.io/anaconda/navigator.html
http://conda.pydata.org/docs/index.html
https://www.tensorflow.org/get_started/os_setup#anaconda_installation

Part V

Conclusions

538

How Far You Have Come

You made it. Well done. Take a moment and look back at how far you have come. You now
know:

� A checklist of techniques that you can use to improve the performance of deep learning
neural network models on your own predictive modeling problems.

� How to accelerate learning through better configured stochastic gradient descent batch
size, loss functions, learning rates, and to avoid exploding gradients via gradient clipping.

� How to accelerate learning through correct data scaling, batch normalization, and use of
modern activation functions such as the rectified linear activation function.

� How to accelerate learning through choosing better initial weights with greedy layer-wise
pretraining and transfer learning.

� A gentle introduction to the problem of overfitting and a tour of regularization techniques.

� How to reduce overfitting by updating the loss function using techniques such as weight
regularization, weight constraints, and activation regularization.

� How to reduce overfitting using techniques such as dropout, the addition of noise, and
early stopping.

� A gentle introduction to how to combine the predictions from multiple models and a tour
of ensemble learning techniques.

� How to combine the predictions from multiple different models using techniques such
as weighted averaging ensembles and stacked generalization ensembles, also known as
blending.

� How to combine the predictions from multiple models saved during a single training run
with techniques such as horizontal ensembles and snapshot ensembles.

Don’t make light of this. You have come a long way in a short amount of time. You have
developed the important and valuable set of skills for improving the performance of deep learning
neural network models. You can now confidently:

� Diagnose poor model training and problems such as premature convergence and accelerate
the model training process using one or a combination of modifications to the learning
algorithm.

539

540

� Diagnose cases of overfitting the training dataset and reduce generalization error using
one or a combination of modifications of the model, loss function, or learning algorithm.

� Diagnose high variance in a final model and improve the average predictive skill by
combining the predictions from multiple models trained over a single or multiple training
runs.

The sky’s the limit.

Thank You!

I want to take a moment and sincerely thank you for letting me help you start your journey
toward better deep learning. I hope you keep learning and have fun as you continue to master
machine learning.

Jason Brownlee
2019

	Copyright
	Contents
	Preface
	Introduction
	Welcome
	Framework for Better Deep Learning
	Diagnostic Learning Curves

	I Better Learning
	Improve Learning by Understanding Optimization
	Neural Nets Learn a Mapping Function
	Learning Network Weights Is Hard
	Key Features of the Error Surface
	Navigating the Non-Convex Error Surface
	Implications for Training
	Components of the Learning Algorithm
	Further Reading
	Summary

	Configure Capacity with Nodes and Layers
	Neural Network Model Capacity
	Nodes and Layers Keras API
	Model Capacity Case Study
	Extensions
	Further Reading
	Summary

	Configure Gradient Precision with Batch Size
	Batch Size and Gradient Descent
	Gradient Descent Keras API
	Batch Size Case Study
	Extensions
	Further Reading
	Summary

	Configure What to Optimize with Loss Functions
	Loss Functions
	Regression Loss Functions Case Study
	Binary Classification Loss Functions Case Study
	Multiclass Classification Loss Functions Case Study
	Extensions
	Further Reading
	Summary

	Configure Speed of Learning with Learning Rate
	Learning Rate
	Learning Rate Keras API
	Learning Rate Case Study
	Extensions
	Further Reading
	Summary

	Stabilize Learning with Data Scaling
	Data Scaling
	Data Scaling scikit-learn API
	Data Scaling Case Study
	Extensions
	Further Reading
	Summary

	Fix Vanishing Gradients with ReLU
	Vanishing Gradients and ReLU
	ReLU Keras API
	ReLU Case Study
	Extensions
	Further Reading
	Summary

	Fix Exploding Gradients with Gradient Clipping
	Exploding Gradients and Clipping
	Gradient Clipping Keras API
	Gradient Clipping Case Study
	Extensions
	Further Reading
	Summary

	Accelerate Learning with Batch Normalization
	Batch Normalization
	Batch Normalization Keras API
	Batch Normalization Case Study
	Extensions
	Further Reading
	Summary

	Deeper Models with Greedy Layer-Wise Pretraining
	Greedy Layer-Wise Pretraining
	Greedy Layer-Wise Pretraining Case Study
	Extensions
	Further Reading
	Summary

	Jump-Start Training with Transfer Learning
	Transfer Learning
	Transfer Learning Case Study
	Extensions
	Further Reading
	Summary

	II Better Generalization
	Fix Overfitting with Regularization
	Problem of Model Generalization and Overfitting
	Reduce Overfitting by Constraining Complexity
	Regularization Methods for Neural Networks
	Regularization Recommendations
	Further Reading
	Summary

	Penalize Large Weights with Weight Regularization
	Weight Regularization
	Weight Regularization Keras API
	Weight Regularization Case Study
	Extensions
	Further Reading
	Summary

	Sparse Representations with Activity Regularization
	Activity Regularization
	Activity Regularization Keras API
	Activity Regularization Case Study
	Extensions
	Further Reading
	Summary

	Force Small Weights with Weight Constraints
	Weight Constraints
	Weight Constraints Keras API
	Weight Constraints Case Study
	Extensions
	Further Reading
	Summary

	Decouple Layers with Dropout
	Dropout
	Dropout Keras API
	Dropout Case Study
	Extensions
	Further Reading
	Summary

	Promote Robustness with Noise
	Noise Regularization
	Noise Regularization Keras API
	Noise Regularization Case Study
	Extensions
	Further Reading
	Summary

	Halt Training at the Right Time with Early Stopping
	Early Stopping
	Early Stopping Keras API
	Early Stopping Case Study
	Extensions
	Further Reading
	Summary

	III Better Predictions
	Reduce Model Variance with Ensemble Learning
	High Variance of Neural Network Models
	Reduce Variance Using an Ensemble of Models
	How to Ensemble Neural Network Models
	Summary of Ensemble Techniques
	Further Reading
	Summary

	Combine Models From Multiple Runs with Model Averaging Ensemble
	Model Averaging Ensemble
	Ensembles in Keras
	Model Averaging Ensemble Case Study
	Extensions
	Further Reading
	Summary

	Contribute Proportional to Trust with Weighted Average Ensemble
	Weighted Average Ensemble
	Weighted Average Ensemble Case Study
	Extensions
	Further Reading
	Summary

	Fit Models on Different Samples with Resampling Ensembles
	Resampling Ensembles
	Resampling Ensembles Case Study
	Extensions
	Further Reading
	Summary

	Models from Contiguous Epochs with Horizontal Voting Ensembles
	Horizontal Voting Ensemble
	Horizontal Voting Ensembles Case Study
	Extensions
	Further Reading
	Summary

	Cyclic Learning Rate and Snapshot Ensembles
	Snapshot Ensembles
	Snapshot Ensembles Case Study
	Extensions
	Further Reading
	Summary

	Learn to Combine Predictions with Stacked Generalization Ensemble
	Stacked Generalization Ensemble
	Stacked Generalization Ensemble Case Study
	Extensions
	Further Reading
	Summary

	Combine Model Parameters with Average Model Weights Ensemble
	Average Model Weight Ensemble
	Average Model Weight Ensemble Case Study
	Extensions
	Further Reading
	Summary

	IV Appendix
	Getting Help
	Applied Neural Networks
	Official Keras Destinations
	Where to Get Help with Keras
	How to Ask Questions
	Contact the Author

	How to Setup Your Workstation
	Overview
	Download Anaconda
	Install Anaconda
	Start and Update Anaconda
	Install Deep Learning Libraries
	Further Reading
	Summary

	V Conclusions
	How Far You Have Come

