O'REILLY"

TypeScript
Cookbook

Real World Type-Level
Programming

Stefan Baumgartner

Praise for TypeScript Cookbook

In TypeScript Cookbook, Stefan Baumgartner deftly covers everything from project setup
to advanced typing techniques, providing a wealth of practical examples
and valuable insights to make you a TypeScript expert ready for any challenge.

—Addy Osmani
Head of Chrome Developer Experience, Google

Typescript Cookbook is an essential resource for developers who want to learn how to use
TypeScript effectively. Stefan packs clear and concise recipes for solving real-world
problems into a comprehensive playbook that upskills you from novice to expert.

—Simona Cotin
Engineering Manager for Angular, Google

TypeScript Cookbook shows you how to solve all sorts of problems with advanced types.
Even better, it teaches you how to use TypeScript’s features to write new types for yourself.

—Nathan Shively-Sanders
Software Engineer on the TypeScript team

TypeScript Cookbook is an extremely valuable reference for anyone working
with TypeScript. It condenses a ton of valuable information into
a format you can dip into and out of easily.

—Matt Pocock
Author of Total TypeScript

TypeScript can sometimes slow developers down, but TypeScript Cookbook is the perfect
remedy! The comprehensive solutions offered for common TypeScript problems
make it an indispensable tool for improving productivity.

— Vanessa Bohner
Lead Front-End Developer, Zavvy

TypeScript Cookbook is a lovely read and a fount of information. I thoroughly enjoyed
the succinct questions and answers followed by well-crafted discussions of the nuances
behind them. I learned a ton of neat tricks and snazzy new patterns from each of the
chapters. It would behoove any TypeScript developer to learn those nuances, tricks,
and patterns—in particular from this book. Would highly recommend!

—]Josh Goldberg
Author of Learning TypeScript

I recognized so many issues that I'd come across in my own TypeScript and
found Stefan’s advice on them to be clear, precise, and insightful. I feel
more confident with TypeScript with this reference by my side.

—Phil Nash, Developer Advocate, Sonar

TypeScript Cookbook

Real World Type-Level Programming

Stefan Baumgartner

Beijing + Boston « Farnham -« Sebastopol + Tokyo [K@2a{=|HNE

TypeScript Cookbook

by Stefan Baumgartner

Copyright © 2023 Stefan Baumgartner. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Amanda Quinn Indexer: WordCo Indexing Services, Inc.
Development Editor: Shira Evans Interior Designer: David Futato

Production Editor: Elizabeth Faerm Cover Designer: Karen Montgomery
Copyeditor: Piper Editorial Consulting, LLC lllustrator: Kate Dullea

Proofreader: Shannon Turlington
August 2023: First Edition

Revision History for the First Edition
2023-08-08: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098136659 for release details.

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. TypeScript Cookbook, the cover image,
and related trade dress are trademarks of O’'Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While
the publisher and the author have used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

978-1-098-13665-9
[LST]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098136659

Table of Contents

FOreword.ooovii ix
Preface. ..o Xi
L (1) T 0 (1T 1
1.1 Type-Checking JavaScript 2
1.2 Installing TypeScript 6
1.3 Keeping Types on the Side 9
1.4 Migrating a Project to TypeScript 11
1.5 Loading Types from Definitely Typed 13
1.6 Setting Up a Full-Stack Project 16
1.7 Setting Up Tests 21
1.8 Typing ECMAScript Modules from URLSs 24
1.9 Loading Different Module Types in Node 27
1.10 Working with Deno and Dependencies 30
1.11 Using Predefined Configurations 33
R T o T3 35
2.1 Annotating Effectively 35
2.2 Working with any and unknown 39
2.3 Choosing the Right Object Type 42
2.4 Working with Tuple Types 45
2.5 Understanding Interfaces Versus Type Aliases 48
2.6 Defining Function Overloads 50
2.7 Defining this Parameter Types 53
2.8 Working with Symbols 56
2.9 Understanding Value and Type Namespaces 59

3. TheType SYSteM. oottt ittt ettt ittt e ensenneennesennssnneonnes 63

3.1 Modeling Data with Union and Intersection Types 63
3.2 Explicitly Defining Models with Discriminated Union Types 68
3.3 Exhaustiveness Checking with the Assert never Technique 70
3.4 Pinning Types with Const Context 74
3.5 Narrowing Types with Type Predicates 77
3.6 Understanding void 79
3.7 Dealing with Error Types in catch Clauses 82
3.8 Creating Exclusive Or Models with Optional never 85
3.9 Effectively Using Type Assertions 88
3.10 Using Index Signatures 91
3.11 Distinguishing Missing Properties and Undefined Values 95
3.12 Working with Enums 97
3.13 Defining Nominal Types in a Structural Type System 102
3.14 Enabling Loose Autocomplete for String Subsets 106
L T T 109
4.1 Generalizing Function Signatures 110
4.2 Creating Related Function Arguments 112
4.3 Getting Rid of any and unknown 116
4.4 Understanding Generic Instantiation 118
4.5 Generating New Object Types 123
4.6 Modifying Objects with Assertion Signatures 127
4.7 Mapping Types with Type Maps 130
4.8 Using ThisType to Define this in Objects 134
4.9 Adding Const Context to Generic Type Parameters 138
5. Conditional TYPes. ... vveree ettt iieeie e eeeeenieeneeeneaanaaaes 143
5.1 Managing Complex Function Signatures 143
5.2 Filtering with never 147
5.3 Grouping Elements by Kind 151
5.4 Removing Specific Object Properties 157
5.5 Inferring Types in Conditionals 160
6. String Template Literal Types.ovvvneriiiiiiiiiiiiiriiiieiiiennennnnss 167
6.1 Defining a Custom Event System 168
6.2 Creating Event Callbacks with
String Manipulation Types and Key Remapping 170
6.3 Writing a Formatter Function 174
6.4 Extracting Format Parameter Types 177
6.5 Dealing with Recursion Limits 180
6.6 Using Template Literals as Discriminants 183

vi | Tableof Contents

10.

1.

. VariadicTuple TYPes. . .o v vttt it ittt iir i aas

7.1 Typing a concat Function

7.2 Typing a promisify Function

7.3 Typing a curry Function

7.4 Typing a Flexible curry Function

7.5 Typing the Simplest curry function

7.6 Creating an Enum from a Tuple

7.7 Splitting All Elements of a Function Signature

Helper TYpes. . ..o v ettt it

8.1 Setting Specific Properties Optional

8.2 Modifying Nested Objects

8.3 Remapping Types

8.4 Getting All Required Keys

8.5 Allowing at Least One Property

8.6 Allowing Exactly One and All or None
8.7 Converting Union to Intersection Types
8.8 Using type-fest

. The Standard Library and External Type Definitions...................ccooeeee

9.1 Iterating over Objects with Object.keys

9.2 Explicitly Highlighting Unsafe Operations with
Type Assertions and unknown

9.3 Working with defineProperty

9.4 Expanding Types for Array.prototype.includes

9.5 Filtering Nullish Values

9.6 Extending Modules

9.7 Augmenting Globals

9.8 Adding Non-JS Modules to the Module Graph

TypeScriptandReact.covviiiiiiii ittt i i
10.1 Writing Proxy Components

10.2 Writing Controlled Components

10.3 Typing Custom Hooks

10.4 Typing Generic forwardRef Components

10.5 Providing Types for the Context API

10.6 Typing Higher-Order Components

10.7 Typing Callbacks in React’s Synthetic Event System

10.8 Typing Polymorphic Components

CIaSSS. . v vttt
11.1 Choosing the Right Visibility Modifier

189
192
197
200
203
206
210

213
213
217
220
223
226
231
235
242

247
248

251
253
259
263
264
267
271

275
276
279
281
284
288
293
296
299

303
304

Table of Contents

vii

12. Type Development Strategies

11.2 Explicitly Defining Method Overrides

11.3 Describing Constructors and Prototypes

11.4 Using Generics in Classes

11.5 Deciding When to Use Classes or Namespaces
11.6 Writing Static Classes

11.7 Working with Strict Property Initialization
11.8 Working with this Types in Classes

11.9 Writing Decorators

12.1 Writing Low Maintenance Types

12.2 Refining Types Step by Step

12.3 Checking Contracts with satisfies

12.4 Testing Complex Types

12.5 Validating Data Types at Runtime with Zod
12.6 Working Around Index Access Restrictions
12.7 Deciding Whether to Use Function Overloads or Conditional Types
12.8 Naming Generics

12.9 Prototyping on the TypeScript Playground
12.10 Providing Multiple Library Versions

12.11 Knowing When to Stop

309
313
316
319
324
328
332
336

343
344
346
357
361
363
368
370
377
379
384
387

viii

| Table of Contents

Foreword

I am always excited to witness the evolution of programming languages and the
impact they make on software development. TypeScript, a superset of JavaScript, is
no exception. In fact, TypeScript has swiftly risen to become one of the most widely
used programming languages, carving out a unique space for itself in the world of
web development. As this language has garnered significant adoption and praise, it is
only fitting that it be given the comprehensive treatment it deserves in TypeScript
Cookbook.

As an avid TypeScript user, I must say that the precision and robustness it has
brought to JavaScript have been both empowering and astonishing. One of the key
reasons behind this is its type safety, which has addressed a long-standing criticism of
JavaScript. By allowing developers to define strict types for variables, TypeScript has
made it easier to catch errors during the compilation process, significantly improving
code quality and maintainability.

TypeScript Cookbook is a much-needed guide. The preface rightly establishes Type-
Script’s skyrocketing popularity. However, this rising interest in TypeScript also
brings to light the challenges developers face in adopting it. It is here that this book is
set to make a difference.

Drenched in practicality, this book is meticulously designed to address real-world
challenges faced by TypeScript users. It is an amalgamation of more than one hun-
dred recipes that deal with a gamut of concepts ranging from basic to advanced. As
developers, we often find ourselves fighting the type-checker, and that’s where this
book will serve as your sword and shield. With in-depth explanations, you will not
only learn how to work with TypeScript efficiently but also understand the thought
processes behind the concepts.

One of the many laudable aspects of TypeScript Cookbook is its approach toward
embracing TypeScript’s rapid evolution. With TypeScript getting regular releases per
year, staying up to date is a Herculean task. This book does a splendid job focusing on
the long-lasting aspects of TypeScript and ensures that your learning remains relevant
despite the ever-changing landscape.

In addition to a plethora of recipes, the book encourages you to comprehend the
intricate connection between JavaScript and TypeScript. Understanding the symbiotic
relationship between these two languages is paramount in unlocking TypeScript’s true
potential. Whether you are struggling with type assertions, generics, or even integrat-
ing TypeScript with popular libraries and frameworks such as React, this book covers
itall.

This book also excels in serving as both a guide and a reference. As a guide, it seam-
lessly takes you from novice to expert. As a reference, it serves as a reliable compan-
ion throughout your TypeScript journey. The organization of the book is impeccable,
ensuring that each chapter can be consumed in isolation, yet forming a cohesive
knowledge base when put together.

With TypeScript’s popularity showing no signs of slowing down, TypeScript Cookbook
is poised to be an essential resource for every TypeScript enthusiast. From real-world
examples to a treasure trove of solutions, this book is the compass you need to navi-
gate the exciting world of TypeScript.

Whether you are getting your feet wet or looking to dive into the depths of Type-
Script, this book is a beacon of knowledge. I extend my heartfelt congratulations to
Stefan Baumgartner for crafting this masterpiece and welcome you all to savor the
recipes of success in TypeScript.

Let the journey into TypeScript begin.

—Addy Osmani
Engineering Lead
Google Chrome
July 2023

x | Foreword

Preface

The only way you can read this sentence is by opening this book, either physically or
digitally. This tells me you are interested in TypeScript, one of the most popular pro-
gramming languages in recent years. According to the 2022 State of JavaScript survey,
almost 70% of all participants actively use TypeScript. The 2022 StackOverflow sur-
vey lists TypeScript as one of the top five most popular languages and the fourth
highest in user satisfaction. At the beginning of 2023, TypeScript counts more than 40
million weekly downloads on NPM.

Without a doubt: TypeScript is a phenomenon!

Despite its popularity, TypeScript still gives a lot of developers a hard time. Fighting
the type-checker is one phrase you hear often; another one is throwing a couple of any’s
in there so it shuts up. Some people feel slowed down, writing just to please the com-
piler when they know their code has to work. However, TypeScript’s sole purpose is to
make JavaScript developers more productive and efficient. Does the tool ultimately
fail to meet its goals, or do we as developers expect something different from the tool
than it is designed to deliver?

The answer is somewhere in the middle, and this is where TypeScript Cookbook
comes in. In this book, you will find more than one hundred recipes that deal with
everything from complex project setups to advanced typing techniques. You will
learn about the intricacies and inner workings of the type system, as well as the trade-
offs and exceptions it has to make to not interfere with its foundation: JavaScript. You
also will learn methodologies, design patterns, and development techniques to create
better and more robust TypeScript code. In the end, you will understand not only
how to do something but also why.

My goal is to give you a guide that takes you from novice to expert, as well as a quick
reference you can use well after you've read the book. With TypeScript’s four releases
per year, it's impossible to list all the most up-to-date features in a single book. This is
why we focus on long-lasting aspects of the programming language, to prepare you
for all the changes to come. Welcome to the TypeScript cookbook.

Xi

https://2022.stateofjs.com
https://survey.stackoverflow.co/2022
https://survey.stackoverflow.co/2022
https://oreil.ly/ZHWn8
https://oreil.ly/ZHWn8

Who This Book Is For

This book is for developers, engineers, and architects who know enough JavaScript to
be dangerous and have gotten their feet wet in TypeScript. You understand the funda-
mental concepts of types and how to apply them, and you understand the immediate
benefits of static types. You are at a point where things get interesting: you need a
deeper knowledge of the type system, and you need to actively work with TypeScript
not only to ensure a robust and scaleable application but also to guarantee collabora-
tion between you and your colleagues.

You want to learn about how something behaves in TypeScript, as well as understand
the reasoning behind its behavior. This is what you get in TypeScript Cookbook. You
will learn project setup, quirks, and behavior of the type system; complex types and
their use cases; and working with frameworks and applying type development meth-
odology. This book is designed to take you from novice to apprentice, and eventually
to expert. If you need a guide to actively learn more of TypeScript’s sophisticated fea-
tures, but also a reference you can rely on throughout your career, this book will do
right by you.

What's in This Book?

A predominant goal of writing TypeScript Cookbook was to focus on solutions for
everyday problems. TypeScript is a remarkable programming language, and the fea-
tures of the type system are so powerful that we reach a point where people challenge
themselves with advanced TypeScript puzzles. While these brain teasers are entertain-
ing, they often lack real-world context and thus are not part of this book.

I want to make sure that the content presented is something you will encounter in
your day-to-day life as a TypeScript developer, with problems that stem from real-
world situations and solutions that are holistic. I will teach you techniques and meth-
odologies you can use in multiple scenarios, not just in a single recipe. Throughout
the book you will find references to earlier recipes, showing you how a specific techi-
que can be applied in a new context.

The examples are either ripped directly from the source code of real projects or strip-
ped down to essentials to illustrate a concept without requiring too much domain
knowledge. While some examples are very specific, you will also see a lot of Person
objects that have the name “Stefan” (and you will be able to see me age throughout
the book).

The book will focus almost exclusively on the features TypeScript adds on top of Java-
Script; thus, to understand the example fully, you need to understand a reasonable
amount of JavaScript. I don't expect you to be a JavaScript guru but being able to read
basic JavaScript code is a must. Since JavaScript and TypeScript have this strong

xii | Preface

https://tsch.js.org

relationship, some chapters in the book discuss JavaScript features and their behavior,
but always through the lens of TypeScript.

A cookbook is designed to give you a quick solution to a problem: a recipe. In this
book, every recipe ends with a discussion, giving you broader context and meaning
for the solution. Depending on the style of the author, the focus of O’Reilly’s
cookbooks lies either on the solution or on the discussion. TypeScript Cookbook is
unmistakably a discussion book. In my almost 20-year career as a person who writes
software, I've never encountered situations in which one solution fits all problems.
That’s why I want to show you in detail how we came to our conclusions, their mean-
ing, and the trade-offs. Ultimately, this book should be a guide for discussions like
that. Why make an educated guess when you have proper arguments for your
decisions?

Organization of This Book

TypeScript Cookbook takes you through the language from start to finish. We start
with project setup, talk about basic types and the inner workings of the type system,
and ultimately go into advanced territory like conditional types and helper types. We
continue with chapters that explore very specific features, like the duality of classes
and support for React, and end with learnings on how to best approach type
development.

While there is a thread and buildup, each chapter and each recipe can be consumed
on its own. Each lesson has been designed to point out the connection to previous (or
next!) recipes in the book, but each chapter is ultimately self-contained. Feel free to
consume it from start to finish, or use the “choose your own adventure” approach
with its many references. Here is a brief overview of the content.

TypeScript wants to work with all flavors of JavaScript, and there are a lot of different
flavors. In Chapter 1, “Project Setup” you will learn about configuration possibilities
for different language runtimes, module systems, and target platforms.

Chapter 2, “Basic Types” guides you through the type hierarchy, tells you the differ-
ence between any and unknown, teaches you which code contributes to which name-
space, and answers the age-old question of whether to choose a type alias or an inter-
face to describe your object types.

One of the longer chapters in the book is Chapter 3, “The Type System”. Here you
will learn everything about union and intersection types, how to define discriminated
union types, how to use the assert never and optional never techniques, and how to
narrow and widen types based on your use case. After this chapter, you will under-
stand why TypeScript has type assertions and no type casts, why enums are generally
frowned upon, and how you find the nominal bits in a structural type system.

Preface | xiii

TypeScript has a generic type system, which we will see in detail in Chapter 4,
“Generics”. Generics not only make your code more reusable but are also the
entrance to the more advanced features of TypeScript. This chapter marks the point
where you ascend from TypeScript basics to the more sophisticated areas of the type
system, a fitting end to the first part.

Chapter 5, “Conditional Types” explains why the TypeScript type system is also its
own metaprogramming language. With the possibility of choosing types based on
certain conditions, people invented the most outstanding things, like a full-fledged
SQL parser or a dictionary in the type system. We use conditional types as a tool to
make a static type system more flexible for dynamic situations.

In Chapter 6, “String Template Literal Types” you see how TypeScript integrates a
string parser in the type system. Extracting names from format strings, defining a
dynamic event system based on string input, and creating identifiers dynamically:
nothing seems impossible!

You get a little taste of functional programming in Chapter 7, “Variadic Tuple Types”.
The tuple has a special meaning in TypeScript and helps describe function parameters
and object-like arrays, and it creates flexible helper functions.

Even more metaprogramming happens in Chapter 8, “Helper Types”. TypeScript has
a few built-in helper types that make it easier for you to derive types from other types.
In this chapter, you learn not only how to use them but also how to create your own.
This chapter also marks the next breakpoint in TypeScript Cookbook because at this
point you have learned all the basic ingredients of the language and type system,
which you then can apply in the next part.

After spending eight chapters understanding all the nitty-gritty of the type system, it’s
time to integrate your knowledge with type definitions done by others in Chapter 9,
“The Standard Library and External Type Definitions”. In this chapter you will see
situations that work differently than expected, and see how you can bend the built-in
type definitions to your will.

In Chapter 10, “TypeScript and React” you will learn how one of the most popular
JavaScript frameworks is integrated in TypeScript, features that make the syntax
extension JSX possible, and how this fits into the overall concept of TypeScript. You
will also learn how to write robust types for components and hooks, and how to deal
with a type definition file that has been attached to the actual library after the fact.

The next chapter is about classes, a staple of object-oriented programming that was
available in TypeScript long before their counterpart existed in JavaScript. This leads
to an interesting duality of features discussed in detail in Chapter 11, “Classes”.

The book ends with Chapter 12, “Type Development Strategies”. Here I focus on giv-
ing you the skills to create advanced types on your own, to make the right decisions

xiv | Preface

on how to move your project along, and to deal with libraries that validate types for
you. You also will learn about special workarounds and hidden features, and discuss
how to name generics or if advanced types are a bit too much. This chapter is particu-
larly fun because after a long journey from novice to apprentice, you will reach expert
status.

All examples are available as a TypeScript playground or CodeSandbox project at the
book’s website. The playgrounds in particular offer an intermediate state, so you can
fiddle around on your own and play with the behaviors. I always say that you can't
learn a programming language just by reading about it; you need to actively code and
get your hands dirty to understand how everything plays together. See this as an invi-
tation to have fun with programming types.

Conventions Used in This Book

Programming Conventions

TypeScript allows for many programming styles and formatting options. To avoid
bike-shedding, 1 chose to autoformat all examples using Prettier. If you are used to a
different formatting style—maybe you prefer commas instead of semicolons after
each property declaration of your types—you are more than welcome to continue
with your preference.

TypeScript Cookbook has a lot of examples and deals with a lot of functions. There are
many ways to write functions, and I've chosen to write mostly function declarations
instead of function expressions, except where it was crucial to explain the differences
between both notations. On all other occasions, its mostly a matter of taste rather
than for technical reasons.

All examples have been checked against TypeScript 5.0, the most recent release at the
time of this book’s writing. TypeScript changes constantly and so do the rules. This
book ensures that we mostly focus on things that are long-lasting and can be trusted
across versions. Where I expect further development or fundamental change, I pro-
vide respective warnings and notes.

Preface | xv

https://typescript-cookbook.com
https://prettier.io

Typesetting Conventions
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

\

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://typescript-cookbook.com.

If you have a technical question or a problem using the code examples, please send
email to support@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you're reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O'Reilly

xvi | Preface

https://typescript-cookbook.com
mailto:support@oreilly.com

books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “TypeScript Cookbook by Stefan
Baumgartner (O’Reilly). Copyright 2023 Stefan Baumgartner, 978-1-098-13665-9.

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

0'Reilly Online Learning

o » For more than 40 years, O’Reilly Media has provided technol-
O REILLY ogy and business training, knowledge, and insight to help

companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil ly/typescript-cookbook.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Preface | xvii

mailto:permissions@oreilly.com
https://oreilly.com
https://oreilly.com
mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/typescript-cookbook
https://oreilly.com
https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments

Alexander Rosemann, Sebastian Gierlinger, Dominik Angerer, and Georg Kothmeier
are the first people I go to if I have something new cooking. Our regular meetings and
interactions not only are entertaining but also provide me with the necessary feed-
back to evaluate all my choices. They are the first people that heard about the book,
and also the first ones that gave feedback.

Interacting with Matt Pocock, Joe Previte, Dan Vanderkam, Nathan Shively-Sanders,
and Josh Goldberg on social media brought plenty of new ideas to the table. Their
approach to TypeScript might differ from mine, but they ultimately broadened my
horizon and made sure that I didn’t end up too opinionated.

Phil Nash, Simona Cotin, and Vanessa Bohner have not only been early reviewers of
the final manuscript but also long-time companions and friends who are always here
to sanity-check my ideas. Addy Osmani has been an inspiration throughout my entire
career, and 'm very proud that he agreed to open my new book.

Lena Matscheko, Alexandra Rapeanu, and Mike Kuss did not hesitate to bombard me
with technical challenges and questions based on their real-world experiences. Where
I lacked a good example, they flooded me with excellent source material to distill.

I would lose track of all of TypeScripts developments if it wasn't for Peter Kroner,
who constantly knocks on my door when there’s a new TypeScript version coming
out. Our podcast episodes together on TypeScript releases are legendary, and also
increasingly not about TypeScript.

My tech editors Mark Halpin, Fabian Friedl, and Bernhard Mayr provided the best
technical feedback I could wish for. They challenged every assumption, checked on
every code sample, and made sure all my reasoning made sense and that I didn’t skip
a beat. Their love of detail and their ability to discuss on such a high level ensured
that this book is not just another collection of hot takes but a guide and reference that
stands on a solid foundation.

This book would not exist if not for Amanda Quinn. After writing TypeScript in 50
Lessons in 2020, I thought I'd said everything I needed to say about TypeScript. It was
Amanda who pursued me to give the idea of a cookbook a go, to see which ideas I
would find that wouldn’t make the cut for my first book. After three hours I had a
complete proposal and table of contents with more than one hundred entries.
Amanda was right: I had so much more to say, and I'm eternally grateful for her
support and her guidance.

xviii | Preface

https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

Where Amanda helped in the early phases, Shira Evans made sure that the project
made good progress and didn’t derail. Her feedback was invaluable, and her prag-
matic and hands-on approach made it a joy to work together.

Elizabeth Faerm and Theresa Jones took care of the production. Their eye for detail is
outstanding, and they made sure that the production phase is exciting and actually a
lot of fun! The final result is a beautiful experience I can’t get enough of.

During writing I had great assistance from Porcupine Tree, Beck, Nobuo Uematsu,
Camel, The Beta Band, and many others.

The biggest contribution to this book comes from my family. Doris, Clemens, and
Aaron are everything I've ever wished for, and without their endless love and support,
I wouldn't be able to pursue my ambitions. Thank you for everything.

Preface | xix

CHAPTER 1
Project Setup

You want to get started with TypeScript, fantastic! The big question is: how do you
start? You can integrate TypeScript into your projects in many ways, and all are
slightly different depending on your projects needs. Just as JavaScript runs on many
runtimes, there are plenty of ways to configure TypeScript so it meets your target’s
needs.

This chapter covers all the possibilities of introducing TypeScript to your project, as
an extension next to JavaScript that gives you basic autocompletion and error indica-
tion, up to full-fledged setups for full-stack applications on Node.js and the browser.

Since JavaScript tooling is a field with endless possibilities—some say that a new Java-
Script build chain is released every week, almost as much as new frameworks— this
chapter focuses more on what you can do with the TypeScript compiler alone,
without any extra tool.

TypeScript offers everything you need for your transpilation needs, except the ability
to create minified and optimized bundles for web distribution. Bundlers like ESBuild
or Webpack take care of this task. Also, there are setups that include other transpilers
like Babel.js that can play nicely with TypeScript.

Bundlers and other transpilers are not within the scope of this chapter. Refer to their
documentation for the inclusion of TypeScript and use the knowledge in this chapter
to get the right configuration setup.

TypeScript being a project with more than a decade of history, it carries some
remains from older times that, for the sake of compatibility, TypeScript can’t just get
rid of. Therefore, this chapter will spotlight modern JavaScript syntax and recent
developments in web standards.

https://esbuild.github.io
https://webpack.js.org
https://babeljs.io

If you still need to target Internet Explorer 8 or Node.js 10, first: 'm sorry, these plat-
forms are really hard to develop for. However, second: you will be able to put together
the pieces for older platforms with the knowledge from this chapter and the official
TypeScript documentation.

1.1 Type-Checking JavaScript

Problem

You want to get basic type-checking for JavaScript with the least amount of effort
possible.

Solution

Add a single-line comment with @ts-check at the beginning of every JavaScript file
you want to type-check. With the right editors, you already get red squiggly lines
whenever TypeScript encounters things that don't quite add up.

Discussion

TypeScript has been designed as a superset of JavaScript, and every valid JavaScript is
also valid TypeScript. This means TypeScript is also really good at figuring out poten-
tial errors in regular JavaScript code.

We can use this if we don’t want a full-blown TypeScript setup but want some basic
hints and type-checks to ease our development workflow.

A good prerequisite if you only want to type-check JavaScript is a good editor or IDE.
An editor that goes really well with TypeScript is Visual Studio Code. Visual Studio
Code—or VSCode for short—was the first major project to utilize TypeScript, even
before TypeScript’s release.

A lot of people recommend VSCode if you want to write JavaScript or TypeScript. But
really, every editor is great as long as it features TypeScript support. And nowadays
most of them do.

With Visual Studio Code we get one very important thing for type-checking Java-
Script: red squiggly lines when something doesn’t quite add up, as you can see in
Figure 1-1. This is the lowest barrier to entry. TypeScript’s type system has different
levels of strictness when working with a codebase.

2 | Chapter 1: Project Setup

https://typescriptlang.org
https://typescriptlang.org
https://code.visualstudio.com

sce hello.js — 01 0O B8 [0 08]
@ Js hellojs 1 X «© OO0 @ O -
Js hello.js > ...
p You, 9 months ago | 1 author (You)
1 //@ts-check
2 let a_number = 1000;
P '
4 if (Math.random() < 0.5) {
5 ‘ a_number = "Hello, World!" Type 'string' is not assignable to type '
&l> 6 }
7
8 console.log(a_number x 10);
9
10 T
A 11 function addVAT(price, vat = 0.2) {
12 return price * (1 + vat)
13 }
b 14
15 //@ts—expect-error
16 addVAT (1000, "0.2")
17
@ 18
19 //@ts—expect-error
{8} 20 addVAT(looa).toUpperCase@ You, 9 months ago * update
o ®1A0 #& LiveShare Ln 20, Col 27 Spaces:2 UTF-8 LF {} JavaScript & [|

Figure 1-1. Red squiggly lines in code editors: first-level feedback if something in your
code doesn’t add up

First, the type system will try to infer types from JavaScript code through usage. If you
have a line like this in your code:

let a_number = 1000;
TypeScript will correctly infer number as the type of a_number.

One difficulty with JavaScript is that types are dynamic. Bindings via let, var, or
const can change type based on usage.' Take a look at the following example:

let a_number = 1000;

if (Math.random() < 0.5) {
a_number = "Hello, World!";

}

console.log(a_number * 10);

1 Objects assigned to a const binding can still change values and properties, and thus change their types.

1.1 Type-Checking JavaSaript | 3

We assign a number to a_number and change the binding to a string if the condition
in the next line evaluates to true. This wouldn't be much of a problem if we didn't try
to multiply a_number on the last line. In approximately 50% of all cases, this example
will produce unwanted behavior.

TypeScript can help here. With the addition of a single-line comment with @ts-check
at the very top of our JavaScript file, TypeScript activates the next strictness level:
type-checking JavaScript files based on the type information available in the
JavaScript file.

In our example, TypeScript will figure out that we tried to assign a string to a binding
that TypeScript has inferred to be a number. We will get an error in our editor:

// @ts-check
let a_number = 1000;

if (Math.random() < 0.5) {

a_number = "Hello, World!";
// "-- Type 'string' is not assignable to type 'number'.ts(2322)
}

console.log(a_number * 10);

Now we can start to fix our code, and TypeScript will guide us.

Type inference for JavaScript goes a long way. In the following example, TypeScript
infers types by looking at operations like multiplication and addition as well as
default values:

function addVAT(price, vat = 0.2) {
return price * (1 + vat);

}

The function addvat takes two arguments. The second argument is optional, as it has
been set to a default value of 0.2. TypeScript will alert you if you try to pass a value
that doesn't work:

addVAT(1000, "a string");
// A-- Argument of type 'string' is not assignable
// to parameter of type 'number'.ts(2345)

Also, since we use multiplication and addition operations within the function body,
TypeScript understands that we will return a number from this function:

addVAT(1000).toUpperCase();
// A-- Property 'toUpperCase' does not
// exist on type 'number'.ts(2339)

In some situations you need more than type inference. In JavaScript files, you can
annotate function arguments and bindings through JSDoc type annotations. JSDoc is
a comment convention that allows you to describe your variables and function

4 | Chapter 1: Project Setup

https://jsdoc.app

interfaces in a way that’s not only readable for humans but also interpretable by
machines. TypeScript will pick up your annotations and use them as types for the

type system:

/** @type {number} */
let amount;

amount = '12';

// A-- Argument of type 'string' is not assignable
// to parameter of type 'number'.ts(2345)

/'k*

* Adds VAT to a price
*

* @param {number} price The price without VAT
* @param {number} vat The VAT [0-1]

*

* @returns {number}
*/

function addVAT(price, vat = 0.2) {
return price * (1 + vat);

}

JSDoc also allows you to define new, complex types for objects:

/**
* @typedef {Object} Article
* @property {number} price
* @property {number} vat
* @property {string} string
* @property {boolean=} sold
*
/

/'k*
* Now we can use Article as a proper type
* @param {[Article]} articles
*/
function totalAmount(articles) {
return articles.reduce((total, article) => {
return total + addVAT(article);
}, 0);
}

The syntax might feel a bit clunky, though; we will find better ways to annotate
objects in Recipe 1.3.

Given that you have a JavaScript codebase that is well documented via JSDoc, adding
a single line on top of your files will give you a really good understanding if some-
thing goes wrong in your code.

1.1 Type-Checking JavaSaript | 5

1.2 Installing TypeScript

Problem

Red squigglies in the editor are not enough: you want command-line feedback, status
codes, configuration, and options to type-check JavaScript and compile TypeScript.

Solution
Install TypeScript via Node’s primary package registry: NPM.

Discussion

TypeScript is written in TypeScript, compiled to JavaScript, and uses the Node.js Java-
Script runtime as its primary execution environment.” Even if youre not writing a
Node.js app, the tooling for your JavaScript applications will run on Node. So, make
sure you get Node.js from the official website and get familiar with its command-line
tools.

For a new project, make sure you initialize your project’s folder with a fresh
package.json. This file contains all the information for Node and its package manager
NPM to figure out your projects contents. Generate a new package.json file with
default contents in your project’s folder with the NPM command-line tool:

$ npm init -y

Throughout this book, you will see commands that should be exe-
cuted in your terminal. For convenience, we show these commands
as they would appear on BASH or similar shells available for Linux,
macOS, or the Windows subsystem for Linux. The leading $ sign is
a convention to indicate a command, but it is not meant to be writ-
ten by you. Note that all commands also work on the regular
Windows command-line interface as well as PowerShell.

NPM is Node’s package manager. It comes with a CLI, a registry, and other tools that
allow you to install dependencies. Once you initialize your package.json, install
TypeScript from NPM. We install it as a development dependency, meaning that
TypeScript won't be included if you intend to publish your project as a library to
NPM itself:

$ npm install -D typescript

2 TypeScript also works in other JavaScript runtimes, such as Deno and the browser, but they are not intended
as main targets.

6 | Chapter 1: Project Setup

https://npmjs.com
https://nodejs.org
https://nodejs.org
https://nodejs.org

You can globally install TypeScript so you have the TypeScript compiler available
everywhere, but I strongly suggest installing TypeScript separately per project.
Depending on how frequently you visit your projects, you will end up with different
TypeScript versions that are in sync with your projects code. Installing (and updat-
ing) TypeScript globally might break projects you haven’t touched in a while.

If you install frontend dependencies via NPM, you will need an
additional tool to make sure that your code also runs in your
browser: a bundler. TypeScript doesn’t include a bundler that works
with the supported module systems, so you need to set up the
proper tooling. Tools like Webpack are common, and so is ESBuild.
All tools are designed to execute TypeScript as well. Or you can go
full native, as described in Recipe 1.8.

Now that TypeScript is installed, initialize a new TypeScript project. Use NPX for
that: it allows you to execute a command-line utility that you installed relative to your
project.

With:
$ npx tsc --init

you can run your projects local version of the TypeScript compiler and pass the init
flag to create a new tsconfig.json.

The tsconfig.json is the main configuration file for your TypeScript project. It contains
all the configuration needed so that TypeScript understands how to interpret your
code, how to make types available for dependencies, and if you need to turn certain
features on or off.

Per default, TypeScript sets these options for you:
{

"compilerOptions": {
"target": "es2016",
"module": "commonjs",
"esModuleInterop": true,
"forceConsistentCasingInFileNames": true,
"strict": true,
"skipLibCheck": true

}

}

Let’s look at them in detail.

target is es2016, which means that if you run the TypeScript compiler, it will com-
pile your TypeScript files to an ECMAScript 2016 compatible syntax. Depending on
your supported browsers or environments, you can set that either to something more
recent (ECMAScript versions are named after the year of release) or to something

1.2 Installing TypeScript | 7

https://webpack.js.org
https://esbuild.github.io

older such as es5 for people who have to support very old Internet Explorer versions.
Of course, I hope you don’t have to.

module is commonjs. This allows you to write ECMAScript module syntax, but instead
of carrying this syntax over to the output, TypeScript will compile it to the Com-
mon]JS format. This means that:

import { name } from "./my-module";

console.log(name);

//...

becomes:

const my_module_1 = require("./my-module");

console.log(my_module_1.name);
once you compile. Common]S was the module system for Node.js and has become
very common because of Node’s popularity. Node.js has since adopted ECMAScript
modules as well, something we'll tackle in Recipe 1.9.

esModuleInterop ensures modules that aren’t ECMAScript modules are aligned to
the standard once imported. forceConsistentCasingInFileNames helps people
using case-sensitive file systems cooperate with folks who use case-insensitive file sys-
tems. And skipLibCheck assumes that your installed type definition files (more on
that later) have no errors. So your compiler won't check them and will become a little
faster.

One of the most interesting features is TypeScript’s strict mode. If set to true, Type-
Script will behave differently in certain areas. It's a way for the TypeScript team to
define their view on how the type system should behave.

If TypeScript introduces a breaking change because the view on the type system
changes, it will get incorporated in strict mode. This ultimately means that your code
might break if you update TypeScript and always run in strict mode.

To give you time to adapt to changes, TypeScript also allows you to turn certain strict
mode features on or off, feature by feature.

In addition to the default settings, I strongly recommend two more:

{
"compilerOptions": {
Y/
"rootDir": "./src",
"outDir": "./dist"
}
}

8 | Chapter 1: Project Setup

This tells TypeScript to pick up source files from a src folder and put the compiled
files into a dist folder. This setup allows you to separate your built files from the ones
you author. You will have to create the src folder, of course; the dist folder will be cre-
ated after you compile.

Oh, compilation. Once you have your project set up, create an index.ts file in src:
console.log("Hello World");

The .ts extension indicates it’s a TypeScript file. Now run:
$ npx tsc

in your command line and see the compiler at work.

1.3 Keeping Types on the Side

Problem

You want to write regular JavaScript with no extra build step but still get some editor
support and proper type information for your functions. However, you don't want to
define your complex object types with JSDoc as shown in Recipe 1.1.

Solution

Keep type definition files “on the side” and run the TypeScript compiler in the “check
JavaScript” mode.

Discussion

Gradual adoption has always been a dedicated goal for TypeScript. With this techni-
que, which I dubbed “types on the side,” you can write TypeScript syntax for object
types and advanced features like generics and conditional types (see Chapter 5)
instead of clunky JSDoc comments, but you still write JavaScript for your actual app.

Somewhere in your project, maybe in a @types folder, create a type definition file. Its
ending is .d.ts, and as opposed to regular .ts files, its purpose is to hold declarations
but no actual code.

This is where you can write your interfaces, type aliases, and complex types:
// @types/person.d.ts

// An interface for objects of this shape
export interface Person {

name: string;

age: number;

}

1.3 Keeping Types on the Side | 9

// An interface that extends the original one
// this is tough to write with JSDoc comments alone.
export interface Student extends Person {

semester: number;

}
Note that you export the interfaces from the declaration files. This is so you can
import them in your JavaScript files:

// index.js

/** @typedef { import ("../@types/person").Person } Person */
The comment on the first line tells TypeScript to import the Person type from
@types/person and make it available under the name Person.

Now you can use this identifier to annotate function parameters or objects just like
you would with primitive types like string:

// index.js, continued

/**
* @param {Person} person
*/

function printPerson(person) {
console.log(person.name);

}
To make sure that you get editor feedback, you still need to set @ts-check at the

beginning of your JavaScript files as described in Recipe 1.1. Or, you can configure
your project to always check JavaScript.

Open tsconfig.json and set the check3Js flag to true. This will pick up all the JavaScript
files from your src folder and give you constant feedback on type errors in your edi-
tor. You also can run npx tsc to see if you have errors in your command line.

If you don’t want TypeScript to transpile your JavaScript files to older versions of
JavaScript, make sure you set noEmit to true:

{

"compilerOptions": {
"checkJs": true,
"noEmit": true,

}

}

With that, TypeScript will look at your source files and will give you all the type infor-
mation you need, but it won’t touch your code.

This technique is also known to scale. Prominent JavaScript libraries like Preact work
like this and provide fantastic tooling for their users as well as their contributors.

10 | Chapter 1: Project Setup

https://preactjs.org

1.4 Migrating a Project to TypeScript

Problem

You want to get the full benefits of TypeScript for your project, but you need to
migrate an entire codebase.

Solution

Rename your modules file by file from .js to .ts. Use several compiler options and fea-
tures that help you iron out errors.

Discussion

The benefit of having TypeScript files instead of JavaScript files with types is that your
types and implementations are in one file, which gives you better editor support and
access to more TypeScript features, and increases compatibility with other tools.

However, just renaming all files from .js to .ts most likely will result in tons of errors.
This is why you should go file by file and gradually increase type safety as you go
along.

The biggest problem when migrating is that youre suddenly dealing with a Type-
Script project, not with JavaScript. Still, lots of your modules will be JavaScript and,
with no type information, they will fail the type-checking step.

Make it easier for yourself and for TypeScript by turning off type-checking for Java-
Script, but allow TypeScript modules to load and refer to JavaScript files:

{
"compilerOptions": {
"checkJs": false,
"allowls": true

}
}

Should you run npx tsc now, you will see that TypeScript picks up all JavaScript and
TypeScript files in your source folder and creates respective JavaScript files in your
destination folder. TypeScript will also transpile your code to be compatible with the
specified target version.

If you are working with dependencies, you will see that some of them don’t come
with type information. This will also produce TypeScript errors:

import _ from "lodash";
// A- Could not find a declaration
// file for module 'lodash'.

1.4 Migrating a Project to TypeScript | 11

Install third-party type definitions to get rid of this error. See Recipe 1.5.

Once you migrate file by file, you might realize that you won’t be able to get all typ-
ings for one file in one go. There are dependencies, and you will quickly go down the
rabbit hole of having too many files to adjust before you can tackle the one that you
actually need.

You can always decide just to live with the error. By default, TypeScript sets the com-
piler option noEmitOnError to false:

{ "compilerOptions": {
"noEmitOnError": false
}
}
This means that no matter how many errors you have in your project, TypeScript will
generate result files, trying not to block you. This might be a setting you want to turn
on after you finish migrating.

In strict mode, TypeScript’s feature flag noImplicitAny is set to true. This flag will
make sure that you don’t forget to assign a type to a variable, constant, or function
parameter. Even if it’s just any:

function printPerson(person: any) {
// This doesn't make sense, but is ok with any
console.log(person.gobbleydegook);

}

// This also doesn't make sense, but any allows it

printPerson(123);
any is the catchall type in TypeScript. Every value is compatible with any, and any
allows you to access every property or call every method. any effectively turns off
type-checking, giving you some room to breathe during your migration process.

Alternatively, you can annotate your parameters with unknown. This also allows you
to pass everything to a function but won't allow you to do anything with it until you
know more about the type.

You can also decide to ignore errors by adding a @ts-ignore comment before the line
you want to exclude from type-checking. A @ts-nocheck comment at the beginning
of your file turns off type-checking entirely for this particular module.

A comment directive that is fantastic for migration is @ts-expect-error. It works
like @ts-ignore as it will swallow errors from the type-checking progress but will
produce red squiggly lines if no type error is found.

12 | Chapter 1: Project Setup

When migrating, this helps you find the spots that you successfully moved to Type-
Script. When there are no @ts-expect-error directives left, you're done:
function printPerson(person: Person) {

console.log(person.name);

}

// This error will be swallowed
// @ts-expect-error
printPerson(123);

function printNumber(nr: number) {
console.log(nr);

}

// v- Unused '@ts-expect-error' directive.ts(2578)
// @ts-expect-error
printNumber(123);

The great thing about this technique is that you flip responsibilities. Usually, you have
to make sure that you pass in the right values to a function; now you can make sure
that the function is able to handle the right input.

All possibilities for getting rid of errors throughout your migration process have one
thing in common: they’re explicit. You need to explicitly set @ts-expect-error com-
ments, annotate function parameters as any, or ignore files entirely from type-
checking. With that, you can always search for those escape hatches during the
migration process and make sure that, over time, you got rid of them all.

1.5 Loading Types from Definitely Typed

Problem

You rely on a dependency that hasn't been written in TypeScript and therefore lacks
typings.

Solution

From Definitely Typed, install community-maintained type definitions.

Discussion

Definitely Typed is one of the biggest and most active repositories on GitHub and
collects high-quality TypeScript type definitions developed and maintained by
the community.

1.5 Loading Types from Definitely Typed | 13

https://oreil.ly/nZ4xZ

The number of maintained type definitions is close to 10,000, and there is rarely a
JavaScript library not available.

All type definitions are linted, checked, and deployed to the Node.js package registry
NPM under the @types namespace. NPM has an indicator on each package’s infor-
mation site that shows if Definitely Typed type definitions are available, as you can
see in Figure 1-2.

& Naphthalene Possum Management Pro Teams Pricing Documsntation

“pm Q Search packages sign in
react |pr =

18.2.8 + Public - Published 10 months ago

B Readme B code & 1Dependency & 105,721 Dependents W 1,297 Versions

react Install

> npm i react

React is a JavaScript library for creating user

interfaces. Repasitory
© github.com/facebook/react
The react package contains only the "
lomepage
functionality necessary to define React & reactjs.org/
components. It is typically used together with a ¥ Weekly Downloads
20,921,57

React renderer like react-dom for the web, or

Figure 1-2. The NPM site for React shows a DT logo next to the package name; this
indicates available type definitions from Definitely Typed

Clicking on this logo leads you to the actual site for type definitions. If a package has
first-party type definitions already available, it shows a small TS logo next to the
package name, as shown in Figure 1-3.

14 | Chapter 1: Project Setup

& Nebulous Plasma Muffin Pro Teams Pricing Documantation

npm Q search packages signin
@types/react [€—

18.2.8 - Public - Published &4 days ago

B readme B code & 3Dependencies & 15,141 Dependents W 457 Versions

Installation Install

> npm i @types/react

I npm install --save atypes/react

Repository

Su mmary © github.com/DefinitelyTyped/D...

Homepage

This package contains type definitions for React & github.com/DefinitelyTyped/b...

{https://react.dev/).
4 Weekly Downloads
Details 2300, 3o MIMINTI

Figure 1-3. Type definitions for React from Definitely Typed

To install, for example, typings for the popular JavaScript framework React, you
install the @types/react package to your local dependencies:

Installing React
$ npm install --save react

Installing Type Definitions
$ npm install --save-dev @types/react

In this example we install types to development dependencies,
since we consume them while developing the application, and the
compiled result has no use of the types anyway.

By default, TypeScript will pick up type definitions it can find that are in visible
@types folders relative to your project’s root folder. It will also pick up all type defini-
tions from node_modules/@types; note that this is where NPM installs, for
example, @types/react.

1.5 Loading Types from Definitely Typed | 15

We do this because the typeRoots compiler option in tsconfig.json is set to @types
and . /node_modules/@types. Should you need to override this setting, make sure to
include the original folders if you want to pick up type definitions from Definitely
Typed:
{
"compilerOptions": {
"typeRoots": ["./typings", "./node_modules/@types"]
}
}
Note that just by installing type definitions into node_modules/@types, TypeScript will
load them during compilation. This means that if some types declare globals, Type-
Script will pick them up.

You might want to explicitly state which packages should be allowed to contribute to
the global scope by specifying them in the types setting in your compiler options:

{
"compilerOptions": {
"types": ["node", "jest"]
}
}

Note that this setting will only affect the contributions to the global scope. If you load
node modules via import statements, TypeScript still will pick up the correct types
from @types:

// If “@types/lodash’ is installed, we get proper

// type defintions for this NPM package
import _ from "lodash"

const result = _.flattenDeep([1, [2, [3, [4]], 511);

We will revisit this setting in Recipe 1.7.

1.6 Setting Up a Full-Stack Project

Problem

You want to write a full-stack application targeting Node.js and the browser, with
shared dependencies.

Solution

Create two tsconfig files for each frontend and backend, and load shared
dependencies as composites.

16 | Chapter 1: Project Setup

Discussion

Node.js and the browser both run JavaScript, but they have a very different under-
standing of what developers should do with the environment. Node.js is meant for
servers, command-line tools, and everything that runs without a Ul—headless. It has
its own set of APIs and standard library. This little script starts an HT TP server:

const http = require('http'); (1)

const hostname = '127.0.0.1"';
const port = process.env.PORT || 3000; (2]

const server = http.createServer((req, res) => {
res.statusCode = 200;
res.setHeader('Content-Type', 'text/plain');
res.end('Hello World');

s

server.listen(port, hostname, () => {
console.log("Server running at http://${hostname}:${port}/); (3)
H;

While it's without a doubt JavaScript, some things are unique to Node.js:

"http" is a built-in Node.js module for everything related to HTTP. It is loaded
via require, which is an indicator for Node’s module system called Common]S.
There are other ways to load modules in Node.js as we see in Recipe 1.9, but
recently Common]JS has been the most common.

The process object is a global object containing information on environment
variables and the current Node.js process in general. This is also unique to
Node.js.

The console and its functions are available in almost every JavaScript runtime,
but what it does in Node is different from what it does in the browser. In Node, it
prints on STDOUT; in the browser, it will print a line to the development tools.

There are of course many more unique APIs for Node.js. But the same goes for Java-
Script in the browser:

import { msg } from "./msg.js’; (1)

document . querySelector('button')?.addEventListener("click", () => { @
console.log(msg); (3]

s

1.6 Setting Up a Full-Stack Project | 17

© After years without a way to load modules, ECMAScript modules have found
their way into JavaScript and the browsers. This line loads an object from another
JavaScript module. This runs in the browser natively and is a second module sys-
tem for Node.js (see Recipe 1.9).

©® JavaScript in the browser is meant to interact with UI events. The document
object and the idea of a querySelector that points to elements in the Document
Object Model (DOM) are unique to the browser. So is adding an event listener
and listening on “click” events. You don’t have this in Node.js.

©® And again, console. It has the same API as in Node.js, but the result is a bit
different.

The differences are so big, it's hard to create one TypeScript project that handles both.
If you are writing a full-stack application, you need to create two TypeScript configu-
ration files that deal with each part of your stack.

Let’s work on the backend first. Let’s assume you want to write an Express.js server in
Node.js (Express is a popular server framework for Node). First, you create a new
NPM project as shown in Recipe 1.1. Then, install Express as a dependency:

$ npm install --save express
And install type definitions for Node.js and Express from Definitely Typed:
$ npm install -D @types/express @types/node

Create a new folder called server. This is where your Node.js code goes. Instead of
creating a new tsconfig.json via tsc, create a new fsconfig.json in your projects server
folder. Here are the contents:

// server/tsconfig.json
{
"compilerOptions": {

"target": "ESNext",
"lib": ["ESNext"],
"module": "commonjs",
"rootDir": "./",
"moduleResolution": "node",
"types": ["node"],
"outDir": "../dist/server",
"esModuleInterop": true,
"forceConsistentCasingInFileNames": true,
"strict": true,
"skipLibCheck": true

18 | Chapter 1: Project Setup

You should already know a lot of this, but a few things stand out:

o The module property is set to commonjs, the original Node.js module system. All
import and export statements will be transpiled to their Common]S counterpart.

 The types property is set to ["node"]. This property includes all the libraries you
want to have globally available. If "node" is in the global scope, you will get type
information for require, process, and other Node.js specifics that are in the
global space.

To compile your server-side code, run:
$ npx tsc -p server/tsconfig.json
Now for the client:

// client/tsconfig.json
{

"compilerOptions": {
"target": "ESNext",
"1ib": ["DOM", "ESNext"],
"module": "ESNext",

"rootDir": "./",
"moduleResolution": "node",
"types": [],

"outDir": "../dist/client",

"esModuleInterop": true,
"forceConsistentCasingInFileNames": true,
"strict": true,
"skipLibCheck": true
}
}

There are some similarities, but again, a few things stand out:

o You add DOM to the 1ib property. This gives you type definitions for everything
related to the browser. Where you needed to install Node.js typings via Definitely
Typed, TypeScript ships the most recent type definitions for the browser with the
compiler.

o The types array is empty. This will remove "node" from our global typings. Since
you only can install type definitions per package.json, the "node" type definitions
we installed earlier would be available in the entire code base. For the client
part, however, you want to get rid of them.

To compile your frontend code, run:

$ npx tsc -p client/tsconfig.json

Please note that you configured two distinct tsconfig.json files. Editors like Visual Stu-
dio Code pick up configuration information only for tsconfig.json files per folder. You

1.6 Setting Up a Full-Stack Project | 19

could as well name them tsconfig.server.json and tsconfig.client.json and have them in
your project’s root folder (and adjust all directory properties). tsc will use the correct
configurations and throw errors if it finds any, but the editor will mostly stay silent or
work with a default configuration.

Things get a bit hairier if you want to have shared dependencies. One way to achieve
shared dependencies is to use project references and composite projects. This means
that you extract your shared code in its own folder, but tell TypeScript that this is
meant to be a dependency project of another one.

Create a shared folder on the same level as client and server. Create a tsconfig.json in
shared with these contents:

// shared/tsconfig.json
{

"compilerOptions": {
"composite": true,
"target": "ESNext",
"module": "ESNext",
"rootDir": "../shared/",
"moduleResolution": "Node",
"types": [],

"declaration": true,
"outDir": "../dist/shared",
"esModuleInterop": true,
"forceConsistentCasingInFileNames": true,
"strict": true,
"skipLibCheck": true
1,
}

Two things stand out again:

o The flag composite is set to true. This allows other projects to reference this one.

o The declaration flag is also set to true. This will generate d.ts files from your
code so other projects can consume type information.

To include them in your client and server code, add this line to client/tsconfig.json
and server/tsconfig.json:

// server/tsconfig.json
// client/tsconfig.json
{
"compilerOptions": {
// Same as before
1,
"references": [
{ "path": "../shared/tsconfig.json" }
1
}

20 | Chapter 1: Project Setup

And you are all set. You can write shared dependencies and include them in your
client and server code.

There is a caveat, however. This works great if you share, for example, only models
and type information, but the moment you share actual functionality, you will see
that the two different module systems (Common]S in Node, ECMAScript modules in
the browser) can’t be unified in one compiled file. You either create an ESNext mod-
ule and can't import it in Common]S code or create Common]S code and can't
import it in the browser.

There are two things you can do:

o Compile to Common]S and let a bundler take care of the module resolution
work for the browser.

o Compile to ECMAScript modules and write modern Node.js applications based
on ECMAScript modules. See Recipe 1.9 for more information.

Since you are starting out new, I strongly recommend the second option.

1.7 Setting Up Tests

Problem

You want to write tests, but the globals for testing frameworks interfere with your
production code.

Solution

Create a separate tsconfig for development and build, and exclude all test files in the
latter one.

Discussion

In the JavaScript and Node.js ecosystem, there are a lot of unit testing frameworks
and test runners. They vary in detail, have different opinions, or are tailored for cer-
tain needs. Some of them might just be prettier than others.

While test runners like Ava rely on importing modules to get the framework into
scope, others provide a set of globals. Take Mocha, for example:

import assert from "assert";
import { add } from "..";

describe("Adding numbers", () => {
it("should add two numbers", () => {
assert.equal(add(2, 3), 5);

1.7 Setting Up Tests | 21

https://oreil.ly/R6xFr
https://mochajs.org

s
s
assert comes from the Node.js built-in assertion library, but describe, it, and many
more are globals provided by Mocha. They also only exist when the Mocha CLI is
running.

This provides a bit of a challenge for your type setup, as those functions are necessary
to write tests but aren’t available when you execute your actual application.

The solution is to create two different configuration files: a regular tsconfig.json for
development that your editor can pick up (remember Recipe 1.6) and a separate
tsconfig.build.json that you use when you want to compile your application.

The first one includes all the globals you need, including types for Mocha; the latter
makes sure no test file is included within your compilation.

Lets go through this step by step. We look at Mocha as an example, but other test
runners that provide globals like Jest work just the same way.

First, install Mocha and its types:

$ npm install --save-dev mocha @types/mocha @types/node

Create a new tsconfig.base.json. Since the only differences between development and
build are the set of files to be included and the libraries activated, you want to have all
the other compiler settings located in one file you can reuse for both. An example file
for a Node.js application would look like this:

// tsconfig.base. json
{

"compilerOptions": {
"target": "esnext",
"module": "commonjs",
"esModuleInterop": true,
"forceConsistentCasingInFileNames": true,
"strict": true,
"outDir": "./dist",
"skipLibCheck": true

}

}

The source files should be located in src; test files should be located in an adjacent

folder test. The setup you create in this recipe will also allow you to create files ending
with .fest.ts anywhere in your project.

Create a new tsconfig.json with your base development configuration. This one is
used for editor feedback and for running tests with Mocha. You extend the basic set-
tings from tsconfig.base.json and inform TypeScript which folders to pick up
for compilation:

22 | Chapter 1: Project Setup

https://jestjs.io

// tsconfig.json
{

"extends": "./tsconfig.base.json",
"compilerOptions": {
"types": ["node", "mocha"],
"rootDirs": ["test", "src"
}
}
Note that you add types for Node and Mocha. The types property defines which
globals are available and, in the development setting, you have both.

Additionally, you might find that compiling your tests before executing them is cum-
bersome. There are shortcuts to help you. For example, ts-node runs your local
installation of Node.js and does an in-memory TypeScript compilation first:

$ npm install --save-dev ts-node

$ npx mocha -r ts-node/register tests/*.ts
With the development environment set up, it’s time for the build environment. Create
a tsconfig.build.json. It looks similar to tsconfig.json, but you will spot the difference
right away:

// tsconfig.build.json

{
"extends": "./tsconfig.base.json",
"compilerOptions": {
"types": ["node"],
"rootDirs": ["src"
1,
"exclude": ["**/*. test.ts", "**/test/**"]
}

In addition to changing types and rootDirs, you define which files to exclude from
type-checking and compilation. You use wild-card patterns that exclude all files end-
ing with .test.ts that are located in test folders. Depending on your taste, you can also
add .spec.ts or spec folders to this array.

Compile your project by referring to the right JSON file:
$ npx tsc -p tsconfig.build.json

You will see that in the result files (located in dist), you won't see any test file. Also,
while you still can access describe and it when editing your source files, you will get
an error if you try to compile:

$ npx tsc -p tsconfig.build.json

src/index.ts:5:1 - error TS2593: Cannot find name 'describe'.

Do you need to install type definitions for a test runner?

Try ‘npm i1 --save-dev @types/jest’ or ‘npm 1 --save-dev @types/mocha’
and then add 'jest' or 'mocha' to the types field in your tsconfig.

1.7 Setting Up Tests | 23

5 describe("this does not work", () => {})

Found 1 error in src/index.ts:5

If you don't like polluting your globals during development mode, you can choose a
similar setup as in Recipe 1.6, but it won't allow you to write tests adjacent to your
source files.

Finally, you can always opt for a test runner that prefers the module system.

1.8 Typing ECMAScript Modules from URLs

Problem

You want to work without bundlers and use the browser’s module-loading capabili-
ties for your app, yet you still want to have all the type information.

Solution

Set target and module in your tsconfig’s compiler options to esnext and point to
your modules with a .js extension. In addition, install types to dependencies via NPM,
and use the path property in your tsconfig to tell TypeScript where to look for types:

// tsconfig.json

{
"compilerOptions": {
"target": "esnext",
"module": "esnext",
"paths": {
"https://esm.sh/lodash@4.17.21": [
"node_modules/@types/lodash/index.d.ts"
1
}
}
}
Discussion

Modern browsers support module loading out of the box. Instead of bundling your
app into a smaller set of files, you can use the raw JavaScript files directly.

Content Delivery Networks (CDNs) like esm.sh, unpkg, and others are designed to
distribute node modules and JavaScript dependencies as URLs, consumable by native
ECMAScript module loading.

24 | Chapter 1: Project Setup

https://esm.sh
https://unpkg.com

With proper caching and state-of-the-art HTTP, ECMAScript modules become a real
alternative for apps.

TypeScript does not include a modern bundler, so you would need to install an extra
tool anyway. But if you decide to go module first, there are a few things to consider
when working with TypeScript.

What you want to achieve is to write import and export statements in TypeScript but
preserve the module-loading syntax and let the browser handle module resolution:

// File module.ts
export const obj = {
name: "Stefan",

};

// File index.ts
import { obj } from "./module";

console.log(obj.name);

To achieve this, tell TypeScript to:

1. Compile to an ECMAScript version that understands modules

2. Use the ECMAScript module syntax for module code generation

Update two properties in your tsconfig.json:

// tsconfig.json

{

"compilerOptions": {
"target": "esnext",
"module": "esnext"

}

}

module tells TypeScript how to transform import and export statements. The default
converts module loading to Common]S, as seen in Recipe 1.2. Setting module to
esnext will use ECMAScript module loading and thus preserve the syntax.

target tells TypeScript the ECMAScript version you want to transpile your code to.
Once a year, there’s a new ECMAScript release with new features. Setting target to
esnext will always target the latest ECMAScript version.

Depending on your compatibility goals, you might want to set this property to the
ECMAScript version compatible with the browsers you want to support. This is usu-
ally a version with a year (e.g. es2015, es2016, es2017, etc). ECMAScript modules
work with every version from es2015 on. If you go for an older version, you won't be
able to load ECMAScript modules natively in the browser.

1.8 Typing ECMAScript Modules from URLs | 25

Changing these compiler options already does one important thing: it leaves the syn-
tax intact. A problem occurs once you want to run your code.

Usually, import statements in TypeScript point to files without an extension. You
write import { obj } from "./module", leaving out .ts. Once you compile, this
extension is still missing. But the browser needs an extension to actually point to the
respective JavaScript file.

The solution: Add a .js extension, even though you are pointing to a .fs file when you
develop. TypeScript is smart enough to pick that up:

// index.ts

// This still loads types from 'module.ts', but keeps
// the reference intact once we compile 1it.
import { obj } from './module.js';

console.log(obj.name);
For your project’s modules, that’s all you need!

It gets a lot more interesting when you want to use dependencies. If you go native,
you might want to load modules from a CDN, like esm.sh:

import _ from "https://esm.sh/lodash@4.17.21"
// A~ Error 2307

const result = _.flattenDeep([1, [2, [3, [4]], 51D);

console.log(result);

TypeScript will error with the following message: “Cannot find module ... or its cor-
responding type declarations. (2307)”

TypeScript's module resolution works when files are on your disk, not on a server via
HTTP. To get the info we need, we have to provide TypeScript with a resolution of
our own.

Even though we are loading dependencies from URLs, the type information for these
dependencies lives with NPM. For lodash, you can install type information from
Definitely Typed:

$ npm install -D @types/lodash

For dependencies that come with their own types, you can install the dependencies
directly:

$ npm install -D preact

26 | Chapter 1: Project Setup

https://esm.sh

Once the types are installed, use the path property in your compiler options to tell
TypeScript how to resolve your URL:

// tsconfig.json

{
"compilerOptions": {
Y/
"paths": {
"https://esm.sh/lodash@4.17.21": [
"node_modules/@types/lodash/index.d.ts"
1
}
}
}

Be sure to point to the right file!

There’s also an escape hatch if you don’t want to use typings, or if you just can't find
typings. Within TypeScript, we can use any to intentionally disable type-checking.
For modules, we can do something very similar—ignore the TypeScript error:

// @ts-ignore
import _ from "https://esm.sh/lodash@4.17.21"

ts-ignore removes the next line from type-checking and can be used everywhere
you want to ignore type errors (see Recipe 1.4). This effectively means that you won't
get any type information for your dependencies and you might run into errors, but it
might be the ultimate solution for unmaintained, old dependencies that you just need
but won't find any types for.

1.9 Loading Different Module Types in Node

Problem

You want to use ECMAScript modules in Node.js and the Common]S interoperability
feature for libraries.

Solution

Set TypeScript’s module resolution to "nodeNext" and name your files .mts or .cts.

Discussion

With the advent of Node.js, the Common]JS module system has become one of the
most popular module systems in the JavaScript ecosystem.

The idea is simple and effective: define exports in one module and require them
in another:

1.9 Loading Different Module Typesin Node | 27

// person.js
function printPerson(person) {
console.log(person.name);

}

exports = {
printPerson,

};

// index.js
const person = require("./person");
person.printPerson({ name: "Stefan", age: 40 });

This system has been a huge influence on ECMAScript modules and also has been
the default for TypeScripts module resolution and transpiler. If you look at the
ECMAScript modules syntax in Example 1-1, you can see that the keywords allow for
different transpilations. This means that with the commonjs module setting, your
import and export statements are transpiled to require and exports.

Example 1-1. Using the ECMAScript module system

// person.ts

type Person = {
name: string;
age: number;

};

export function printPerson(person) {
console.log(person.name);

}

// index.ts
import * as person from "./person";
person.printPerson({ name: "Stefan", age: 40 });

With ECMAScript modules stabilizing, Node.js has also started to adopt them. Even
though the basics of both module systems seem to be very similar, there are some dif-
ferences in the details, such as handling default exports or loading ECMAScript mod-
ules asynchronously.

As there is no way to treat both module systems the same but with different syntax,
the Node.js maintainers decided to give both systems room and assigned different file
endings to indicate the preferred module type. Table 1-1 shows the different endings,
how they’re named in TypeScript, what TypeScript compiles them to, and what they
can import. Thanks to the Common]S interoperability, it’s fine to import Common]S
modules from ECMAScript modules, but not the other way around.

28 | Chapter 1: Project Setup

Table 1-1. Module endings and what they import

Ending TypeScript Compilesto Canimport

Js s CommonJS s, .gs
.gs .cts CommonJS s, .gs
.mjs .mts ES Modules s, .¢fs, .mjs

Library developers who publish on NPM get extra information in their package.json
file to indicate the main type of a package (module or commonjs), and to point to a list
of main files or fallbacks so module loaders can pick up the right file:

// package.json

{
"name": "dependency",
"type": "module",
"exports": {

" {
// Entry-point for ‘import "dependency"' in ES Modules
"import": "./esm/index.js",
// Entry-point for ‘require("dependency") in CommonJS
"require": "./commonjs/index.cjs",
}’
1,
// CommonJS Fallback
"main": "./commonjs/index.cjs"

}

In TypeScript, you write mainly ECMAScript module syntax and let the compiler
decide which module format to create in the end. Now there are possibly two: Com-
mon]S and ECMAScript modules.

To allow for both, you can set module resolution in your tsconfig.json to NodeNext:

{
"compilerOptions": {
"module": "NodeNext"
/) ...
}
}

With that flag, TypeScript will pick up the right modules as described in your depen-
dencies package.json, will recognize .mts and .cts endings, and will follow Table 1-1
for module imports.

For you as a developer, there are differences in importing files. Since Common]S
didn’t require endings when importing, TypeScript still supports imports without
endings. The example in Example 1-1 still works, if all you use is Common]S.

1.9 Loading Different Module Typesin Node | 29

Importing with file endings, just like in Recipe 1.8, allows modules to be imported in
both ECMAScript modules and Common]S modules:

// index.mts
import * as person from "./person.js"; // works in both
person.printPerson({ name: "Stefan", age: 40});

Should Common]S interoperability not work, you can always fall back on a require
statement. Add "node" as global types to your compiler options:

// tsconfig.json

{

"compilerOptions": {
"module": "NodeNext",
"types": ["node"],

}

}

Then, import with this TypeScript-specific syntax:

// index.mts
import person = require("./person.cjs");

person.printPerson({ name: "Stefan", age: 40 });

In a Common]JS module, this will be just another require call; in ECMAScript mod-
ules, this will include Node.js helper functions:

// compiled index.mts

import { createRequire as _createRequire } from "module";
const __require = _createRequire(import.meta.url);

const person = __require("./person.cjs");
person.printPerson({ name: "Stefan", age: 40 });

Note that this will reduce compatibility with non-Node.js environments like the
browser, but it might eventually fix interoperability issues.

1.10 Working with Deno and Dependencies

Problem

You want to use TypeScript with Deno, a modern JavaScript runtime for applications
outside the browser.

Solution
That’s easy; TypeScript is built in.

30 | Chapter 1: Project Setup

Discussion

Deno is a modern JavaScript runtime created by the same people who developed
Node.js. Deno is similar to Node.js in many ways, but with significant differences:

+ Deno adopts web platform standards for their main APIs, meaning that you will
find it easier to port code from the browser to the server.

o It allows file system or network access only if you explicitly activate it.

o It doesn't handle dependencies via a centralized registry, but—again adopting
browser features—via URLs.

Oh, and it comes with built-in development tooling and TypeScript!

Deno is the tool with the lowest barrier if you want to try TypeScript. No need to
download any other tool (the tsc compiler is already built in), no need for TypeScript
configurations. You write .ts files, and Deno handles the rest:

// main.ts

function sayHello(name: string) {
console.log(‘Hello ${name}");

}

sayHello("Stefan");

$ deno run main.ts

Deno’s TypeScript can do everything tsc can do, and it is updated with every Deno
update. However, there are some differences when you want to configure it.

First, the default configuration has differences in its default settings as opposed to the
default configuration issued by tsc --init. Strict mode feature flags are set differ-
ently, and it includes support for React (on the server side!).

To make changes to the configuration, you should create a deno.json file in your root
folder. Deno will automatically pick this up, unless you tell it not to. deno.json
includes several configurations for the Deno runtime, including TypeScript compiler
options:

{
"compilerOptions": {
// Your TSC compiler options
1,
"fmt": {
// Options for the auto-formatter
}s
"lint": {
// Options for the linter
}
}

1.10 Working with Deno and Dependencies | 31

You can see more possibilities on the Deno website.

The default libraries are different as well. Even though Deno supports web platform
standards and has browser-compatible APIs, it needs to make some cuts because
there is no graphical user interface. That's why some types—for example, the DOM
library—clash with what Deno provides.

Some libraries of interest are:

o deno.ns, the default Deno namespace
o deno.window, the global object for Deno
o deno.worker, the equivalent for Web Workers in the Deno runtime
DOM and subsets are included in Deno, but they are not switched on by default. If

your application targets both the browser and Deno, configure Deno to include all
browser and Deno libraries:

// deno.json

{
"compilerOptions": {
"target": "esnext",
"lib": ["dom", "dom.iterable", "dom.asynciterable", "deno.ns"]
}
}

Aleph.js is an example of a framework that targets both Deno and the browser.

Also different with Deno is how type information for dependencies is distributed.
External dependencies in Deno are loaded via URLs from a CDN. Deno itself hosts
its standard library at https://deno.land/std.

But you can also use CDNG like esm.sh or unpkg, like in Recipe 1.8. These CDNs dis-
tribute types by sending an X-TypeScript-Types header with the HTTP request,
showing Deno was to load type declarations. This also goes for dependencies that
don’t have first-party type declarations but rely on Definitely Typed.

So the moment you install your dependency, Deno will fetch not only the source files
but also all the type information.

If you don't load a dependency from a CDN but rather have it locally, you can point
to a type declaration file the moment you import the dependency:

// @deno-types="./charting.d.ts"
import * as charting from "./charting.js";

32 | Chapter 1: Project Setup

https://oreil.ly/zGA--
https://alephjs.org
https://deno.land/std
https://esm.sh
https://unpkg.com

or include a reference to the typings in the library itself:

// charting.js

/// <reference types="./charting.d.ts" />
This reference is also called a triple-slash directive and is a TypeScript feature, not a
Deno feature. There are various triple-slash directives, mostly used for pre-
ECMAScript module dependency systems. The documentation gives a really good
overview. If you stick with ECMAScript modules, you most likely won't use triple-
slash directives, though.

1.11 Using Predefined Configurations

Problem

You want to use TypeScript for a certain framework or platform but dont know
where to start with your configuration.

Solution

Use a predefined configuration from tsconfig/bases and extend from there.

Discussion

Just like Definitely Typed hosts community-maintained type definitions for popular
libraries, tsconfig/bases hosts a set of community-maintained recommendations for
TypeScript configurations you can use as a starting point for your own project. This
includes frameworks like Ember.js, Svelte, or Next.js as well as JavaScript runtimes
like Node.js and Deno.

The configuration files are reduced to a minimum, dealing mostly with recom-
mended libraries, modules, and target settings, and a bunch of strict mode flags that
make sense for the respective environment.

For example, this is the recommended configuration for Node.js 18, with a recom-
mended strict mode setting and with ECMAScript modules:

{

"$schema": "https://json.schemastore.org/tsconfig",
"display": "Node 18 + ESM + Strictest",
"compilerOptions": {

"lib": [

"es2022"

1,

"module": "es2022",

"target": "es2022",

"strict": true,

"esModuleInterop": true,

1.11 Using Predefined Configurations | 33

https://oreil.ly/EvUWm
https://oreil.ly/ljsVT

"skipLibCheck": true,
"forceConsistentCasingInFileNames": true,
"moduleResolution": "node",
"allowUnusedLabels": false,
"allowUnreachableCode": false,
"exactOptionalPropertyTypes": true,
"noFallthroughCasesInSwitch": true,
"noImplicitOverride": true,
"noImplicitReturns"”: true,
"noPropertyAccessFromIndexSignature”: true,
"noUncheckedIndexedAccess": true,
"noUnusedLocals": true,
"noUnusedParameters": true,
"importsNotUsedAsValues": "error",
"checkJs": true
}
}

To use this configuration, install it via NPM:
$ npm install --save-dev @tsconfig/nodel8-strictest-esm

and wire it up in your own TypeScript configuration:

{
"extends": "@tsconfig/nodel8-strictest-esm/tsconfig.json",
"compilerOptions": {
// ...
}
}

This will pick up all the settings from the predefined configuration. You can now start
setting your own properties, for example, root and out directories.

34 | Chapter 1: Project Setup

CHAPTER 2
Basic Types

Now that you are all set up, it's time to write some TypeScript! Starting out should be
easy, but you will soon run into situations where youre unsure if youre doing the
right thing. Should you use interfaces or type aliases? Should you annotate or let type
inference do its magic? What about any and unknown: are they safe to use? Some peo-
ple on the internet said you should never use them, so why are they part of
TypeScript?

All these questions will be answered in this chapter. We will look at the basic types
that make TypeScript and learn how an experienced TypeScript developer will use
them. You can use this as a foundation for the upcoming chapters, so you get a feel
for how the TypeScript compiler gets to its types and how it interprets your
annotations.

This is about the interaction between your code, the editor, and the compiler. And it’s
about going up and down the type hierarchy, as we will see in Recipe 2.3. Whether
youre an experienced TypeScript developer or just starting out, you'll find useful
information in this chapter.

2.1 Annotating Effectively

Problem

Annotating types is cumbersome and boring.

Solution

Annotate only when you want your types checked.

35

Discussion

A type annotation is a way to explicitly tell which types to expect. You know, the
prominent stuff in other programming languages, where the verbosity of String
Builder stringBuilder = new StringBuilder() makes sure that youre really,
really dealing with a StringBuilder. The opposite is type inference, where Type-
Script tries to figure out the type for you:

// Type inference
let aNumber = 2;
// aNumber: number

// Type annotation
let anotherNumber: number = 3;
// anotherNumber: number

Type annotations are also the most obvious and visible syntax difference between
TypeScript and JavaScript.

When you start learning TypeScript, you might want to annotate everything to
express the types youd expect. This might feel like the obvious choice, but you can
also use annotations sparingly and let TypeScript figure out types for you.

A type annotation is a way for you to express where contracts have to be checked. If
you add a type annotation to a variable declaration, you tell the compiler to check if
types match during the assignment:
type Person = {
name: string;

age: number;

}s
const me: Person = createPerson();

If createPerson returns something that isn't compatible with Person, TypeScript will
throw an error. Do this if you really want to be sure youre dealing with the right type.

Also, from this moment on, me is of type Person, and TypeScript will treat it as a
Person. If there are more properties in me—for example, a profession—TypeScript
won't allow you to access them. It’s not defined in Person.

If you add a type annotation to a function signature’s return value, you tell the com-
piler to check if types match the moment you return that value:

function createPerson(): Person {
return { name: "Stefan", age: 39 };

}

36 | Chapter2:Basic Types

If you return something that doesn’t match Person, TypeScript will throw an error.
Do this if you want to be completely sure that you return the correct type. This espe-
cially comes in handy if you are working with functions that construct big objects
from various sources.

If you add a type annotation to a function signature’s parameters, you tell the com-
piler to check if types match the moment you pass along arguments:

function printPerson(person: Person) {
console.log(person.name, person.age);

}

printPerson(me);

In my opinion this is the most important and unavoidable type annotation. Every-
thing else can be inferred:

type Person = {
name: string;
age: number;

};

// Inferred!
// return type is { name: string, age: number }
function createPerson() {

return { name: "Stefan", age: 39 };

}

// Inferred!
// me: { name: string, age: number}
const me = createPerson();

// Annotated! You have to check i1f types are compatible
function printPerson(person: Person) {
console.log(person.name, person.age);

}

// ALl works
printPerson(me);

You can use inferred object types where you expect an annotation because TypeScript
has a structural type system. In a structural type system, the compiler will only take
into account the members (properties) of a type, not the actual name.

Types are compatible if all members of the type to check against are available in the
type of the value. We also say that the shape or structure of a type has to match:

type Person = {
name: string;
age: number;

b

2.1 Annotating Effectively | 37

type User = {
name: string;
age: number;
id: number;

b

function printPerson(person: Person) {
console.log(person.name, person.age);

}

const user: User = {
name: "Stefan",
age: 40,
id: 815,

b

printPerson(user); // works!

User has more properties than Person, but all properties that are in Person are also in
User, and they have the same type. This is why it’s possible to pass User objects to
printPerson, even though the types don’t have any explicit connection.

However, if you pass a literal, TypeScript will complain that there are excess proper-
ties that should not be there:

printPerson({
name: "Stefan",
age: 40,
id: 1000,
// *- Argument of type '{ name: string; age: number; id: number; }'
// is not assignable to parameter of type 'Person'.
// Object literal may only specify known properties,
// and 'id' does not exist in type 'Person’'.(2345)

s

This makes sure that you didn't expect properties to be present in this type and then
wonder why changing them has no effect.

With a structural type system, you can create interesting patterns with carrier vari-
ables with the type inferred, and you can reuse the same variable in different parts of
your software, with no similar connection to each other:

type Person = {
name: string;
age: number;

b

type Studying = {
semester: number;

b

type Student = {

38 | (Chapter2:Basic Types

id: string;
age: number;
semester: number;

};

function createPerson() {
return { name: "Stefan", age: 39, semester: 25, id: "XPA" };

}

function printPerson(person: Person) {
console.log(person.name, person.age);

}

function studyForAnotherSemester(student: Studying) {
student.semester++;

}

function isLongTimeStudent(student: Student) {
return student.age - student.semester / 2 > 30 && student.semester > 20;

}

const me = createPerson();

// All work!
printPerson(me);
studyForAnotherSemester(me);
isLongTimeStudent(me);

Student, Person, and Studying have some overlap but are unrelated to each other.
createPerson returns something that is compatible with all three types. If you have
annotated too much, you would need to create a lot more types and a lot more checks
than necessary, without any benefit.

So annotate wherever you want to have your types checked, at least for function
arguments.

2.2 Working with any and unknown

Problem

There are two top types in TypeScript, any and unknown. Which one should you use?

Solution

Use any if you effectively want to deactivate typing; use unknown when you need to
be cautious.

2.2 Working with any and unknown | 39

Discussion

Both any and unknown are top types, which means that every value is compatible with
any or unknown:

const name: any = "Stefan";
const person: any = { name: "Stefan", age: 40 };
const notAvailable: any = undefined;

Since any is a type every value is compatible with, you can access any property
without restriction:

const name: any = "Stefan";
// This is ok for TypeScript, but will crash in JavaScript
console.log(name.profession.experience[0].level);

any is also compatible with every subtype, except never. This means you can narrow
the set of possible values by assigning a new type:

const me: any = "Stefan";

// Good!

const name: string = me;

// Bad, but ok for the type system.
const age: number = me;

Being so permissive, any can be a constant source of potential errors and pitfalls since
you effectively deactivate type-checking.

While everybody seems to agree that you shouldn’t use any in your codebases, there
are some situations where any is really useful:

Migration
When you go from JavaScript to TypeScript, chances are that you already have a
large codebase with a lot of implicit information on how your data structures and
objects work. It might be a chore to get everything spelled out in one go. any can
help you migrate to a safer codebase incrementally.

Untyped third-party dependencies
You might have a JavaScript dependency that still refuses to use TypeScript (or
something similar). Or even worse: there are no up-to-date types for it. Definitely
Typed is a great resource, but it’s also maintained by volunteers. It’s a formaliza-
tion of something that exists in JavaScript but is not directly derived from it.
There might be errors (even in such popular type definitions like React’s), or they
just might not be up to date!

This is where any can help you. When you know how the library works, if the
documentation is good enough to get you going, and if you use it sparingly, any
can be an option instead of fighting types.

40 | Chapter2:BasicTypes

JavaScript prototyping
TypeScript works a bit differently from JavaScript and needs to make a lot of
trade-offs to ensure that you don’t run into edge cases. This also means that if
you write certain things that would work in JavaScript, youd get errors in
TypeScript:

type Person = {
name: string;
age: number;

};

function printPerson(person: Person) {

for (let key in person) {

console.log("${key}: ${person[key]l});

// Element implicitly has an 'any' --*
// type because expression of type 'string’
// can't be used to index type 'Person’.
// No index signature with a parameter of type 'string'
// was found on type 'Person'.(7053)

}
}

Find out why this is an error in Recipe 9.1. In cases like this, any can help you to
switch off type-checking for a moment because you know what youre doing. And
since you can go from every type to any, but also back to every other type, you have
little, explicit unsafe blocks throughout your code where you are in charge of what’s
happening:
function printPerson(person: any) {
for (let key in person) {
console.log("${key}: ${person[key]});
}
}
Once you know this part of your code works, you can start adding the right types,
work around TypeScript’s restrictions, and type assertions:

function printPerson(person: Person) {
for (let key in person) {
console.log("${key}: ${person[key as keyof Person]}’);
3
}
Whenever you use any, make sure you activate the noImplicitAny flag in your fscon-
fig.json; it is activated by default in strict mode. TypeScript needs you to explicitly
annotate any when you don’t have a type through inference or annotation. This helps
find potentially problematic situations later on.

2.2 Working with any and unknown | 41

An alternative to any is unknown. It allows for the same values, but the things you can
do with it are very different. Where any allows you to do everything, unknown allows
you to do nothing. All you can do is pass values around; the moment you want to call
a function or make the type more specific, you first need to do type-checks:

const me: unknown = "Stefan";

const name: string = me;

// A- Type 'unknown' is not assignable to type 'string'.(2322)
const age: number = me;

// A- Type 'unknown' is not assignable to type 'number'.(2322)

Type-checks and control flow analysis help you do more with unknown:

function doSomething(value: unknown) {
if (typeof value === "string") {
// value: string
console.log("It's a string", value.toUpperCase());
} else if (typeof value === "number") {
// value: number
console.log("it's a number", value * 2);

}
}

If your apps work with a lot of different types, unknown is great for making sure that
you can carry values throughout your code but don't run into any safety problems
because of any’s permissiveness.

2.3 Choosing the Right Object Type

Problem

You want to allow for values that are JavaScript objects, but there are three different
object types: object, Object, and {}. Which one should you use?

Solution

Use object for compound types like objects, functions, and arrays. Use {} for every-
thing that has a value.

Discussion

TypeScript divides its types into two branches. The first branch, primitive types,
includes number, boolean, string, symbol, bigint, and some subtypes. The second
branch, compound types, includes everything that is a subtype of an object and is ulti-
mately composed of other compound types or primitive types. Figure 2-1 provides
an overview.

42 | Chapter2:BasicTypes

comcccbeccaadaaaad T
E Primitive i\ Compound 1
: types Object types :
' '
: I |
H !
: number string Array :
(]

T L T |
: (N (V s) : ! * e * 2 * * :
' . .]

(] .

: n:mltr)r?r Zgh”rﬁ [boo|eanJ ;‘;fﬁg‘; E: [Class J Tuple [Regex] [Functlon] :
: _ J U J . . : i . J '
'] J

Ve = - - e e = -

Figure 2-1. The type hierarchy in TypeScript

In some situations you want to target values that are compound types, either because
you want to modify certain properties or because you just want to be safe that you
don’t pass any primitive values. For example Object.create creates a new object and
takes its prototype as the first argument. This can only be a compound type; other-
wise, your runtime JavaScript code would crash:

Object.create(2);
// Uncaught TypeError: Object prototype may only be an Object or null: 2
// at Function.create (<anonymous>)

In TypeScript, three types seem to do the same thing: The empty object type {3, the

uppercase O Object interface, and the lowercase O object type. Which one do you
use for compound types?

{} and Object allow for roughly the same values, which are everything but null or
undefined (given that strict mode or strictNullChecks is activated):

let obj: {}; // Similar to Object
obj = 32;

obj = "Hello";

obj = true;

2.3 Choosing the Right Object Type | 43

obj = () => { console.log("Hello") };
obj = undefined; // Error

obj = null; // Error

obj = { name: "Stefan", age: 40 };
obj = [1;

obj = /.*/;

The Object interface is compatible with all values that have the Object prototype,
which is every value from every primitive and compound type.

However, Object is a defined interface in TypeScript, and it has some requirements
for certain functions. For example, the toString method, which is toString() =>
string and part of any non-nullish value, is part of the Object prototype. If you
assign a value with a different tostring method, TypeScript will error:

let okObj: {} = {
toString() {
return false;

}
s // 0K

let obj: Object = {
toString() {
return false;

}
// *- Type 'boolean' is not assignable to type 'string'.ts(2322)

}

Object can cause some confusion due to this behavior, so in most cases, youre good
with {}.

TypeScript also has a lowercase object type. This is more the type you're looking for,
as it allows for any compound type but no primitive types:

let obj: object;

obj = 32; // Error

obj = "Hello"; // Error

obj = true; // Error

obj = () => { console.log("Hello") };
obj = undefined; // Error

obj = null; // Error

obj = { name: "Stefan", age: 40 };
obj = [I;

obj = /.*/;

If you want a type that excludes functions, regexes, arrays, and the like, see Chapter 5,
where we create one on our own.

44 | Chapter 2:Basic Types

2.4 Working with Tuple Types

Problem

You are using JavaScript arrays to organize your data. The order is important, and so
are the types at each position. But TypeScript’s type inference makes it really cumber-
some to work with.

Solution
Annotate with tuple types.

Discussion

Like objects, JavaScript arrays are a popular way to organize data in a complex object.
Instead of writing a typical Person object as we did in other recipes, you can store
entries element by element:

const person = ["Stefan", 40]; // name and age

The benefit of using arrays over objects is that array elements don’t have property
names. When you assign each element to variables using destructuring, it becomes
really easy to assign custom names:

// objects.js

// Using objects

const person = {
name: "Stefan",
age: 40,

b

const { name, age } = person;

console.log(name); // Stefan
console.log(age); // 40

const { anotherName = name, anotherAge = age } = person;

console.log(anotherName); // Stefan
console.log(anotherAge); // 40

// arrays.js
// Using arrays
const person = ["Stefan", 40]; // name and age

const [name, age] = person;

console.log(name); // Stefan
console.log(age); // 40

2.4 Working with Tuple Types | 45

const [anotherName, anotherAge] = person;

console.log(anotherName); // Stefan

console.log(anotherAge); // 40
For APIs where you need to assign new names constantly, using arrays is very com-
fortable, as explained in Chapter 10.

When using TypeScript and relying on type inference, however, this pattern can cause
some issues. By default, TypeScript infers the array type from an assignment. Arrays
are open-ended collections with the same element in each position:

const person = ["Stefan", 40];
// person: (string | number)[]

So TypeScript thinks that person is an array, where each element can be either a
string or a number, and it allows for plenty of elements after the original two. This
means when youre destructuring, each element is also of type string or number:

const [name, age] = person;

// name: string | number

// age: string | number
That makes a comfortable pattern in JavaScript really cumbersome in Typescript. You
would need to do control flow checks to narrow the type to the actual one, where it
should be clear from the assignment that this is not necessary.

Whenever you think you need to do extra work in JavaScript just to satisfy Type-
Script, there’s usually a better way. In that case, you can use tuple types to be more
specific about how your array should be interpreted.

Tuple types are a sibling of array types that work on a different semantic. While arrays
can be potentially endless in size and each element is of the same type (no matter how
broad), tuple types have a fixed size, and each element has a distinct type.

All you need to do to get tuple types is to explicitly annotate:

const person: [string, number] = ["Stefan", 40];

const [name, age] = person;
// name: string
// age: number

Fantastic! Tuple types have a fixed length; this means the length is also encoded in the
type. So assignments that go out of bounds are not possible; TypeScript will throw an
error:

person[1] = 41; // OK!

person[2] = false; // Error
//”- Type 'false' is not assignable to type 'undefined'.(2322)

46 | Chapter2:BasicTypes

TypeScript also allows you to add labels to tuple types. This is just metainformation
for editors and compiler feedback, but it allows you to be clearer about what to expect
from each element:

type Person = [name: string, age: number];

This will help you and your colleagues to understand what to expect, just like with
object types.

Tuple types can also be used to annotate function arguments. This function:

function hello(name: string, msg: string): void {
/) ...
}

can also be written with tuple types:

function hello(...args: [name: string, msg: string]): {
/) ...
}

And you can be very flexible in defining it:

function h(a: string, b: string, c: string): void {
Y/
}

// equal to
function h(a: string, b: string, ...r: [string]): void {

//...
}

// equal to
function h(a: string, ...r: [string, string]): void {

//...
}

// equal to
function h(...r: [string, string, string]): void {

/...
}

These are also known as rest elements, something that we have in JavaScript that

allow you to define functions with an almost limitless argument list; when it is the last

element, the rest element sucks all excess arguments in. When you need to collect

arguments in your code, you can use a tuple before you apply them to your function:

const person: [string, number] = ["Stefan", 40];

function hello(...args: [name: string, msg: string]): {
/] ...
}

hello(...person);

Tuple types are useful for many scenarios. For more information about tuple types,
see Chapters 7 and 10.

2.4 Working with Tuple Types | 47

2.5 Understanding Interfaces Versus Type Aliases

Problem

TypeScript declares object types in two ways: interfaces and type aliases. Which one
should you use?

Solution

Use type aliases for types within your project’s boundary, and use interfaces for con-
tracts that are meant to be consumed by others.

Discussion

Both approaches to defining object types have been the subject of many blog articles
over the years. And all of them became outdated over time. As of this writing there is
little difference between type aliases and interfaces. And everything that was different
has been gradually aligned.

Syntactically, the difference between interfaces and type aliases is nuanced:

type PersonAsType = {
name: string;
age: number;
address: string[];
greet(): string;

b

interface PersonAsInterface {
name: string;
age: number;
address: string[];
greet(): string;
}

You can use interfaces and type aliases for the same things, in the same scenarios:

o In an implements declaration for classes
o Asa type annotation for object literals

« For recursive type structures

However, there is one important difference that can cause side effects you usually
don’t want to deal with: interfaces allow for declaration merging, but type aliases
don’t. Declaration merging allows for adding properties to an interface even after it
has been declared:

48 | Chapter2:BasicTypes

interface Person {
name: string;

}

interface Person {
age: number;

}

// Person is now { name: string; age: number; }

TypeScript often uses this technique in lib.d.ts files, making it possible to just add del-
tas of new JavaScript APIs based on ECMAScript versions. This is a great feature if
you want to extend, for example, Window, but it can backfire in other scenarios, for
example:

// Some data we collect in a web form
interface FormData {

name: string;

age: number;

address: string[];

}

// A function that sends this data to a backend

function send(data: FormData) {
console.log(data.entries()) // this compiles!
// but crashes horrendously in runtime

}

So, where does the entries() method come from? It's a DOM API! FormData is one
of the interfaces provided by browser APIs, and there are a lot of them. They are
globally available, and nothing keeps you from extending those interfaces. And you
get no notification if you do.

You can of course argue about proper naming, but the problem persists for all inter-
faces that you make available globally, maybe from some dependency where you
aren’t even aware they add an interface to the global space.

Changing this interface to a type alias immediately makes you aware of this problem:

type FormData = {
// 7~-- Duplicate identifier 'FormData'.(2300)
name: string;
age: number;
address: string[];
IH
Declaration merging is a fantastic feature if you are creating a library that is con-
sumed by other parts in your project, maybe even other projects written entirely by
other teams. It allows you to define an interface that describes your application but
allows your users to adapt it to reality. Think of a plug-in system, where loading new

2.5 Understanding Interfaces Versus Type Aliases | 49

modules enhances functionality: declaration merging is a feature that you do not
want to miss.

Within your module’s boundaries, however, using type aliases prevents you from
accidentally reusing or extending already declared types. Use type aliases when you
don’t expect others to consume them.

Performance

Using type aliases over interfaces has sparked some discussion, as interfaces have
been considered much more performant in their evaluation than type aliases, even
resulting in a performance recommendation on the official TypeScript wiki. This rec-
ommendation should be taken with a grain of salt.

On creation, simple type aliases may perform faster than interfaces because interfaces
are never closed and might be merged with other declarations. But interfaces may
perform faster in other places because they’re known ahead of time to be object types.
Ryan Canavaugh from the TypeScript team expects performance differences to be
measurable with an extraordinary number of interfaces or type aliases to be declared:
around five thousand according to this tweet.

If your TypeScript code base doesn’t perform well, it'’s not because you declared too
many type aliases instead of interfaces, or vice versa.

2.6 Defining Function Overloads

Problem

Your function’s API is very flexible and allows for arguments of various types, where
context is important. This is hard to type in just a single function signature.

Solution

Use function overloads.

Discussion

JavaScript is very flexible when it comes to function arguments. You can pass basi-
cally any parameters, of any length. As long as the function body treats the input cor-
rectly, youre good. This allows for very ergonomic APIs, but its also very tough to

type.
Think of a conceptual task runner. With a task function you define new tasks by

name and either pass a callback or pass a list of other tasks to be executed. Or both—a
list of tasks that needs to be executed before the callback runs:

50 | Chapter2:Basic Types

https://oreil.ly/8Y0hP
https://oreil.ly/Y_2oS

task("default", ["scripts", "styles"]);

task("scripts", ["lint"], () => {
// ...
H;

task("styles", () => {
/] ..
s
If you're thinking, “this looks a lot like Gulp six years ago,” youre right. Its flexible
API where you couldn’t do much wrong was also one of the reasons Gulp was so
popular.

Typing functions like this can be a nightmare. Optional arguments, different types at
the same position—this is tough to do even if you use union types:'

type CallbackFn = () => void;

function task(
name: string, param2: string[] | CallbackFn, param3?: CallbackFn
): void {
Y/
}

This catches all variations from the preceding example, but it’s also wrong, as it allows
for combinations that don’t make any sense:

task(
"what",
O ={
console.log("Two callbacks?");
1,
O={
console.log("That's not supported, but the types say yes!");
}

);
Thankfully, TypeScript has a way to solve problems like this: function overloads. Its
name hints at similar concepts from other programming languages: the same defin-
tion but with different behavior. The biggest difference in TypeScript, as opposed to
other programming languages, is that function overloads work only on a type system
level and have no effect on the actual implementation.

The idea is that you define every possible scenario as its own function signature. The
last function signature is the actual implementation:

1 Union types are a way to combine two different types into one (see more in Chapter 3).

2.6 Defining Function Overloads | 51

// Types for the type system
function task(name: string, dependencies: string[]): void;
function task(name: string, callback: CallbackFn): void
function task(name: string, dependencies: string[], callback: CallbackFn): void
// The actual implementation
function task(
name: string, param2: string[] | CallbackFn, param3?: CallbackFn
): void {
Y72
}

A couple of things are important to note here.

First, TypeScript only picks up the declarations before the actual implementation as
possible types. If the actual implementation signature is also relevant, duplicate it.

Also, the actual implementation function signature can’t be anything. TypeScript
checks if the overloads can be implemented with the implementation signature.

If you have different return types, it is your responsibility to make sure that inputs
and outputs match:

function fn(input: number): number
function fn(input: string): string
function fn(input: number | string): number | string {

if(typeof input === "number") {
return "this also works";

} else {
return 1337;

}

}

const typeSaysNumberButItsAString = fn(12);
const typeSaysStringButItsANumber = fn("Hello world");

The implementation signature usually works with a very broad type, which means
you have to do a lot of checks that you would need to do in JavaScript anyway. This is
good as it urges you to be extra careful.

If you need overloaded functions as their own type, to use them in annotations and
assign multiple implementations, you can always create a type alias:

type TaskFn = {
(name: string, dependencies: string[]): void;
(name: string, callback: CallbackFn): void;
(name: string, dependencies: string[], callback: CallbackFn): void;

}

As you can see, you only need the type system overloads, not the actual
implementation definition.

52 | Chapter2:Basic Types

2.7 Defining this Parameter Types

Problem

You are writing callback functions that make assumptions about thtis, but you don't
know how to define this when writing the function standalone.

Solution

Define a this parameter type at the beginning of a function signature.

Discussion

One source of confusion for aspiring JavaScript developers is the ever-changing
nature of the this object pointer:

Sometimes when writing JavaScript, I want to shout, “This is ridiculous!” But then I
never know what this refers to.

—Unknown JavaScript developer

The preceding statement is true especially if your background is a class-based object-
oriented programming language, where this always refers to an instance of a class.
this in JavaScript is entirely different but not necessarily harder to understand.
What's more, TypeScript can greatly help get more closure about this in usage.

this lives within the scope of a function, and that points to an object or value bound
to that function. In regular objects, this is pretty straightforward:

const author = {
name: "Stefan",
// function shorthand
hi() {

console.log(this.name);
}s
1

author.hi(); // prints 'Stefan’

But functions are values in JavaScript, and they can be bound to a different context,
effectively changing the value of this:

const author = {
name: "Stefan",

1

function hi() {
console.log(this.name);

}

2.7 Defining this Parameter Types | 53

const pet = {
name: "Finni",
kind: "Cat",
b

hi.apply(pet); // prints "Finni"
hi.call(author); // prints "Stefan"

const boundHi = hi.bind(author);

boundHi(); // prints "Stefan"

It doesn't help that the semantics of this change again if you use arrow functions
instead of regular functions:

class Person {
constructor(name) {
this.name = name;

}
hi() {

console.log(this.name);

}

hi_timeout() {
setTimeout(function() {
console.log(this.name);
1, 0);
}

hi_timeout_arrow() {
setTimeout(() => {
console.log(this.name);
1, 0);
}
}

const person = new Person("Stefan")

person.hi(); // prints "Stefan"

person.hi_timeout(); // prints "undefined"

person.hi_timeout_arrow(); // prints "Stefan"
With TypeScript, we can get more information on what this is and, more impor-
tantly, what it’s supposed to be through this parameter types.

Take a look at the following example. We access a button element via DOM APIs and
bind an event listener to it. Within the callback function, this is of type HTMLButton
Element, which means you can access properties like classList:

const button = document.querySelector("button");
button?.addEventListener("click", function() {

54 | Chapter2:Basic Types

this.classList.toggle("clicked");
H;
The information on this is provided by the addEventListener function. If you
extract your function in a refactoring step, you retain the functionality, but Type-
Script will error, as it loses context for this:

const button = document.querySelector("button");
button.addEventListener("click", handleToggle);

function handleToggle() {
this.classList.toggle("clicked");

// *- 'this' implicitly has type 'any'

// because it does not have a type annotation

}
The trick is to tell TypeScript that this is supposed to be a specific type. You can do
this by adding a parameter at the very first position in your function signature named
this:

const button = document.querySelector("button");

button?.addEventListener("click", handleToggle);

function handleToggle(this: HTMLButtonElement) {
this.classList.toggle("clicked");

}
This argument gets removed once compiled. TypeScript now has all the information
it needs to make sure this needs to be of type HTMLButtonElement, which also means
that you get errors once you use handleToggle in a different context:

handleToggle();

// "- The 'this' context of type 'void' is not

// assignable to method's 'this' of type 'HTMLButtonElement'.
You can make handleToggle even more useful if you define this to be HTMLElement,
a supertype of HTMLButtonElement:

const button = document.querySelector("button");
button?.addEventListener("click", handleToggle);

const input = document.querySelector("input");
input?.addEventListener("click", handleToggle);

function handleToggle(this: HTMLElement) {
this.classList.toggle("clicked");
}
When working with this parameter types, you might want to use two helper types
that can either extract or remove this parameters from your function type:

function handleToggle(this: HTMLElement) {
this.classList.toggle("clicked");

2.7 Defining this Parameter Types | 55

}

type ToggleFn = typeof handleToggle;
// (this: HTMLElement) => void

type WithoutThis = OmitThisParameter<ToggleFn>
// ():>V0id

type ToggleFnThis = ThisParameterType<ToggleFn>
// HTMLElement

There are more helper types for this in classes and objects. See more in Recipes 4.8
and 11.8.

2.8 Working with Symbols

Problem

You see the type symbol popping up in some error messages, but you don't know
what symbols mean or how you can use them.

Solution

Create symbols for object properties you want to be unique and not iterable. They’re
great for storing and accessing sensitive information.

Discussion

symbol is a primitive data type in JavaScript and TypeScript, which, among other
things, can be used for object properties. Compared to number and string, symbols
have some unique features.

Symbols can be created using the Symbol() factory function:
const TITLE = Symbol('title')

Symbol has no constructor function. The parameter is an optional description. By
calling the factory function, TITLE is assigned the unique value of this freshly created
symbol. This symbol is now unique and distinguishable from all other symbols, and it
doesn’t clash with any other symbols that have the same description:

const ACADEMIC_TITLE = Symbol('title')
const ARTICLE_TITLE = Symbol('title'")

if(ACADEMIC_TITLE === ARTICLE_TITLE) {
// This is never true

}

The description helps you to get info on the symbol during development time:

56 | Chapter2:Basic Types

console.log(ACADEMIC_TITLE.description) // title
console.log(ACADEMIC_TITLE.toString()) // Symbol(title)

Symbols are great if you want to have comparable values that are exclusive and
unique. For runtime switches or mode comparisons:

// A really bad logging framework
const LEVEL_INFO = Symbol('INFO')
const LEVEL_DEBUG = Symbol('DEBUG")
const LEVEL_WARN = Symbol('WARN')
const LEVEL_ERROR = Symbol('ERROR")

function log(msg, level) {
switch(level) {
case LEVEL_WARN:
console.warn(msg); break
case LEVEL_ERROR:
console.error(msg); break;
case LEVEL_DEBUG:
console.log(msg);
debugger; break;
case LEVEL_INFO:
console.log(msg);
}
}

Symbols also work as property keys but are not iterable, which is great for
serialization:

const print = Symbol('print')

const user = {
name: 'Stefan',
age: 40,
[print]: function() {
console.log(${this.name} is ${this.age} years old")
}
}

JSON.stringify(user) // { name: 'Stefan', age: 40 }
user[print]() // Stefan is 40 years old

A global symbols registry allows you to access tokens across your whole application:

Symbol.for('print') // creates a global symbol

const user = {
name: 'Stefan’',
age: 37,
// uses the global symbol
[Symbol.for('print')]: function() {
console.log(${this.name} is ${this.age} years old")
}
}

2.8 Working with Symbols | 57

The first call to Symbol.for creates a symbol, and the second call uses the same sym-
bol. If you store the symbol value in a variable and want to know the key, you can use
Symbol.keyFor():

const usedSymbolKeys = []

function extendObject(obj, symbol, value) {
//0h, what symbol is this?
const key = Symbol.keyFor(symbol)
//Alright, let's better store this
if(!usedSymbolKeys.includes(key)) {
usedSymbolKeys.push(key)

}
obj[symbol] = value
}

// now it's time to retreive them all
function printAllValues(obj) {
usedSymbolKeys.forEach(key => {
console.log(obj[Symbol.for(key)])
b
}

Nifty!

TypeScript has full support for symbols, and they are prime citizens in the type sys-
tem. symbol itself is a data type annotation for all possible symbols. See the extend
Object function in the preceding code block. To allow for all symbols to extend our
object, we can use the symbol type:

const sym = Symbol('foo')

function extendObject(obj: any, sym: symbol, value: any) {
obj[sym] = value

extendObject({}, sym, 42) // Works with all symbols

There’s also the subtype unique symbol. A unique symbol is closely tied to the decla-
ration, allowed only in const declarations, and referencing this exact symbol and
nothing else.

You can think of a nominal type in TypeScript for a very nominal value in JavaScript.
To get to the type of unique symbol, you need to use the typeof operator:

const PROD: unique symbol = Symbol('Production mode')
const DEV: unique symbol = Symbol('Development mode')

function showWarning(msg: string, mode: typeof DEV | typeof PROD) {
/] ...
}

58 | Chapter2:Basic Types

At the time of writing, the only possible nominal type is TypeScripts structural
type system.

Symbols stand at the intersection between nominal and opaque types in TypeScript
and JavaScript. They are the closest things we get to nominal type-checks at runtime.

2.9 Understanding Value and Type Namespaces

Problem

It’s confusing that you can use certain names as type annotations and not others.

Solution

Learn about type and value namespaces, and which names contribute to what.

Discussion

TypeScript is a superset of JavaScript, which means it adds more things to an already
existing and defined language. Over time you learn to spot which parts are JavaScript
and which parts are TypeScript.

It really helps to see TypeScript as this additional layer of types upon regular Java-
Script, a thin layer of metainformation that will be peeled off before your JavaScript
code runs in one of the available runtimes. Some people even speak about TypeScript
code “erasing to JavaScript” once compiled.

TypeScript being this layer on top of JavaScript also means that different syntax con-
tributes to different layers. While a function or const creates a name in the Java-
Script part, a type declaration or an interface contributes a name in the TypeScript
layer:

// Collection is in TypeScript land! --> type
type Collection = Person[]

// printCollection is in JavaScript land! --> value
function printCollection(coll: Collection) {
console.log(...coll.entries)

}

We also say that declarations contribute a name to either the type namespace or the
value namespace. Since the type layer is on top of the value layer, it’s possible to con-
sume values in the type layer, but not vice versa. We also have explicit keywords for
that:

// a value
const person = {
name: "Stefan",

2.9 Understanding Value and Type Namespaces | 59

b

// a type
type Person = typeof person;

typeof creates a name available in the type layer from the value layer below.

It gets irritating when there are declaration types that create both types and values.
Classes, for instance, can be used in the TypeScript layer as a type as well as in Java-
Script as a value:

// declaration
class Person {
name: string;

constructor(n: string) {
this.name = n;
}
}

// used as a value
const person = new Person("Stefan");

// used as a type
type Collection = Person[];

function printPersons(coll: Collection) {
/.
}
And naming conventions can trick you. Usually, we define classes, types, interfaces,
enums, and so on with a capital first letter. And even if they may contribute values,
they for sure contribute types. Well, until you write uppercase functions for your
React app, as the convention dictates.

If you're used to using names as types and values, youre going to scratch your head if
you suddenly get a good old “TS2749: YourType refers to a value, but is being used as
a type” error:

type PersonProps = {
name: string;

b

function Person({ name }: PersonProps) {
/) ...
}

type PrintComponentProps = {
collection: Person[];
// - 'Person’' refers to a value,
// but is being used as a type
}

60 | Chapter2:Basic Types

This is where TypeScript can get really confusing. What is a type, what is a value, why
do we need to separate them, and why doesn't this work like in other programming
languages? Suddenly, you are confronted with typeof calls or even the InstanceType
helper type, because you realize that classes actually contribute two types (see Chap-
ter 11).

Classes contribute a name to the type namespace, and since TypeScript is a structural
type system, they allow values that have the same shape as an instance of a certain
class. So this is allowed:

class Person {
name: string;

constructor(n: string) {
this.name = n;
}
}

function printPerson(person: Person) {
console.log(person.name);

}

printPerson(new Person("Stefan")); // ok
printPerson({ name: "Stefan" }); // also ok

However, instanceof checks, which are working entirely in the value namespace and
just have implications in the type namespace, would fail, as objects with the same
shape may have the same properties but are not an actual instance of a class:

function checkPerson(person: Person) {
return person instanceof Person;

}

checkPerson(new Person("Stefan")); // true
checkPerson({ name: "Stefan" }); // false

So its useful to understand what contributes types and what contributes value.
Table 2-1, adapted from the TypeScript docs, sums it up nicely.

Table 2-1. Type and value namespaces

Declaration type Type Value

Class X X
Enum X X
Interface X
Type Alias X
Function X
Variable X

2.9 Understanding Value and Type Namespaces | 61

If you stick with functions, interfaces (or type aliases, see Recipe 2.5), and variables at
the beginning, you will get a feel for what you can use where. If you work with classes,
think about the implications a bit longer.

62 | Chapter2:Basic Types

CHAPTER 3
The Type System

In the previous chapter you learned about the basic building blocks that allow you to
make your JavaScript code more expressive. But if you are experienced in JavaScript,
you understand that TypeScript’s fundamental types and annotations cover only a
small set of its inherent flexibility.

TypeScript is supposed to make intentions in JavaScript clearer, and it wants to do so
without sacrificing this flexibility, especially since it allowed developers to design fan-
tastic APIs used and loved by millions. Think of TypeScript more as a way to formal-
ize JavaScript, rather than restrict it. Enter TypeScript’s type system.

In this chapter, you will develop a mental model for how to think about types. You
will learn how to define sets of values as widely or as narrowly as you need, and how
to change their scope throughout your control flow. You will also learn how to lever-
age a structural type system and when to break with the rules.

This chapter marks the line between TypeScript foundations and advanced type tech-
niques. But whether you are an experienced TypeScript developer or just starting out,
this mental model will be the baseline for everything to come.

3.1 Modeling Data with Union and Intersection Types

Problem

You have an elaborate data model you want to describe in TypeScript.

Solution

Use union and intersection types to model your data. Use literal types to define
specific variants.

63

Discussion

Suppose you are creating a data model for a toy shop. Each item in this toy shop has
some basic properties: name, quantity, and the recommended minimum age. Addi-
tional properties are relevant only for each particular type of toy, which requires you
to create several derivations:

type BoardGame = {
name: string;
price: number;
quantity: number;
minimumAge: number;
players: number;

};

type Puzzle = {
name: string;
price: number;
quantity: number;
minimumAge: number;
pieces: number;

};

type Doll = {
name: string;
price: number;
quantity: number;
minimumAge: number;
material: string;

I H
For the functions you create, you need a type that is representative of all toys, a super-
type that contains just the basic properties common to all toys:

type ToyBase = {
name: string;
price: number;
quantity: number;
minimumAge: number;

};

function printToy(toy: ToyBase) {
J* ... %/
}

const doll: Doll = {
name: "Mickey Mouse",
price: 9.99,
quantity: 10000,
minimumAge: 2,
material: "plush",

64 | Chapter3:The Type System

b
printToy(doll); // works

This works, as you can print all dolls, board games, or puzzles with that function, but
there’s one caveat: you lose the information of the original toy within printToy. You
can print only common properties, not specific ones.

For a type representing all possible toys, you can create a union type:

// Union Toy
type Toy = Doll | BoardGame | Puzzle;

function printToy(toy: Toy) {
Jx %)

}
A good way to think of a type is as a set of compatible values. For each value, either
annotated or not, TypeScript checks if this value is compatible with a certain type. For
objects, this also includes values with more properties than defined in their type.
Through inference, values with more properties are assigned a subtype in the struc-
tural type system. And values of subtypes are also part of the supertype set.

A union type is a union of sets. The number of compatible values gets broader, and
there is also some overlap between types. For example, an object that has both
material and players can be compatible with both Doll and BoardGame. This is a
detail to look out for, and you can see a method to work with that detail in Recipe 3.2.

Figure 3-1 illustrates the concept of a union type in the form of a Venn diagram. Set
theory analogies work well here, too.

BoardGame

Figure 3-1. Visualization of a union type; each type represents a set of compatible values,
and a union type represents the union sets

3.1 Modeling Data with Union and Intersection Types | 65

You can create union types everywhere, and with primitive types:

function takesNumberOrString(value: number | string) {
J* ... %/
}

takesNumberOrString(2); // ok
takesNumberOrString("Hello"); // ok

This allows you to widen the set of values as much as you like.

What you also see in the toy shop example is some redundancy: the ToyBase proper-
ties are repeated. It would be much nicer if we could use ToyBase as the basis of each
union part. And we can, using intersection types:

type ToyBase = {
name: string;
price: number;
quantity: number;
minimumAge: number;

b

// Intersection of ToyBase and { players: number }
type BoardGame = ToyBase & {
players: number;

};

// Intersection of ToyBase and { pieces: number }
type Puzzle = ToyBase & {
pileces: number;

b

// Intersection of ToyBase and { material: string }
type Doll = ToyBase & {
material: string;

1
Just like union types, intersection types resemble their counterparts from set theory.
They tell TypeScript that compatible values need to be of type A and type B. The type
now accepts a narrower set of values, one that includes all properties from both types,
including their subtypes. Figure 3-2 shows a visualization of an intersection type.

Intersection types also work on primitive types, but they are of no good use. An inter-
section of string & number results in never, as no value satisfies both string and
number properties.

66 | Chapter3:The Type System

ToyBase material: string,

}

Figure 3-2. Visualization of an intersection type of two types; the set of possible values
gets narrower

Instead of type aliases and intersection types you can also define
your models with interfaces. In Recipe 2.5 we talk about the differ-
ences between them, and there are a few you need to look out for.
So a type BoardGame = ToyBase & { /* ... */ } can easily be
described as interface BoardGame extends ToyBase { /* ...
*/ }. However, you can’t define an interface that is a union type.
You can define a union of interfaces, though.

These are already great ways to model data within TypeScript, but we can do a little
more. In TypeScript, literal values can be represented as a literal type. We can define a
type that is just, for example, the number 1, and the only compatible value is 1:

type One = 1;

const one: One = 1; // nothing else can be assigned.
This is called a literal type, and while it doesn’t seem to be quite useful alone, it is of
great use when you combine multiple literal types to a union. For the Doll type, for
example, we can explicitly set allowed values for material:

type Doll = ToyBase & {

material: "plush" | "plastic";
b
function checkDoll(doll: Doll) {
if (doll.material === "plush") {
// do something with plush
} else {
// doll.material is "plastic", there are no other options
}

}

3.1 Modeling Data with Union and Intersection Types | 67

This makes assigning any value other than "plush" or "plastic" impossible and
makes our code much more robust.

With union types, intersection types, and literal types, it becomes much easier to
define even elaborate models.

3.2 Explicitly Defining Models with
Discriminated Union Types

Problem

Parts of your modeled union type have a huge overlap in their properties, so it
becomes cumbersome to distinguish them in control flow.

Solution

Add a kind property to each union part with a string literal type, and check for its
contents.

Discussion

Let’s look at a data model similar to what we created in Recipe 3.1. This time, we want
to define various shapes for a graphics software:

type Circle = {
radius: number;

b

type Square = {
x: number;

1

type Triangle = {
x: number;
y: number;

b
type Shape = Circle | Triangle | Square;

There are some similarities between the types but there is also still enough informa-
tion to differentiate between them in an area function:

function area(shape: Shape) {
if ("radius" in shape) {
// shape is Circle
return Math.PI * shape.radius * shape.radius;
} else if ("y" in shape) {
// shape is Triangle
return (shape.x * shape.y) / 2;

68 | Chapter3: The Type System

} else {
// shape is Square
return shape.x * shape.x;
}
}
This works, but it comes with a few caveats. While Circle is the only type with a
radius property, Triangle and Square share the x property. Since Square consists
only of the x property, this makes Triangle a subtype of Square.

Given how we defined the control flow to check for the distinguishing subtype prop-
erty y first, this is not an issue, but it’s just too easy to check for x alone and create a
branch in the control flow that computes the area for both Triangle and Square in
the same manner, which is just wrong.

It is also hard to extend Shape. If we look at the required properties for a rectangle,
we see that it contains the same properties as Triangle:

type Rectangle = {
X: number;
y: number;

I
type Shape = Circle | Triangle | Square | Rectangle;

There is no clear way to differentiate between each part of a union. To make sure each
part of a union is distinguishable, we need to extend our models with an identitying
property that makes absolutely clear what we are dealing with.

This can happen through the addition of a kind property. This property takes a string
literal type identifying the part of the model.

As seen in Recipe 3.1, TypeScript allows you to subset primitive types like string,
number, bigint, and boolean to concrete values. Which means that every value is also
a type, a set that consists of exactly one compatible value.

So for our model to be clearly defined, we add a kind property to each model part
and set it to an exact literal type identifying this part:

type Circle = {
radius: number;
kind: "circle";

b

type Square = {
x: number;
kind: "square";

IH

type Triangle = {
X: number;

3.2 Explicitly Defining Models with Discriminated Union Types | 69

y: number;
kind: "triangle";

b
type Shape = Circle | Triangle | Square;

Note that we don't set kind to string but to the exact literal type "circle" (or
"square" and "triangle", respectively). This is a type, not a value, but the only com-
patible value is the literal string.

Adding the kind property with string literal types ensures there can’t be any overlap
between parts of the union, as the literal types are not compatible with one another.
This technique is called discriminated union types and effectively tears away each set
that’s part of the union type Shape, pointing to an exact set.

This is fantastic for the area function, as we can effectively distinguish, for example,
in a switch statement:

function area(shape: Shape) {
switch (shape.kind) {
case "circle": // shape is Circle
return Math.PI * shape.radius * shape.radius;
case "triangle": // shape is Triangle
return (shape.x * shape.y) / 2;
case "square": // shape is Square
return shape.x * shape.x;
default:
throw Error("not possible");

}
}

Not only does it become absolutely clear what we are dealing with, but it is also very
future proof to upcoming changes, as we will see in Recipe 3.3.

3.3 Exhaustiveness Checking with the
Assert never Technique

Problem

Your discriminated union types change over time, adding new parts to the union. It
becomes difficult to track all occurrences in your code where you need to adapt to
these changes.

Solution

Create exhaustiveness checks where you assert that all remaining cases can never
happen with an assertNever function.

70 | Chapter3: The Type System

Discussion
Let’s look at the full example from Recipe 3.2:

type Circle = {
radius: number;
kind: "circle";

};

type Square = {
X: number;
kind: "square";

b

type Triangle = {
x: number;
y: number;
kind: "triangle";

b
type Shape = Circle | Triangle | Square;

function area(shape: Shape) {
switch (shape.kind) {
case "circle": // shape is Circle
return Math.PI * shape.radius * shape.radius;
case "triangle": // shape is Triangle
return (shape.x * shape.y) / 2;
case "square": // shape is Square
return shape.x * shape.x;
default:
throw Error("not possible");
}
}

Using discriminated unions, we can distinguish between each part of a union. The
area function uses a switch-case statement to handle each case separately. Thanks to
string literal types for the kind property, there can be no overlap between types.

Once all options are exhausted, in the default case we throw an error, indicating that
we reached an invalid situation that should never occur. If our types are right
throughout the codebase, this error should never be thrown.

Even the type system tells us that the default case is an impossible scenario. If we add
shape in the default case and hover over it, TypeScript tells us that shape is of type
never:

function area(shape: Shape) {
switch (shape.kind) {
case "circle": // shape is Circle
return Math.PI * shape.radius * shape.radius;
case "triangle": // shape is Triangle

3.3 Exhaustiveness Checking with the Assert never Technique | 71

return (shape.x * shape.y) / 2;
case "square": // shape is Square
return shape.x * shape.x;
default:
console.error("Shape not defined:", shape); // shape is never
throw Error("not possible");

}
}
never is an interesting type. It's TypeScript bottom type, meaning that it’s at the very
end of the type hierarchy. Where any and unknown include every possible value, no
value is compatible to never. It’s the empty set, which explains the name. If one of
your values happens to be of type never, you are in a situation that should never
happen.

The type of shape in the default cases changes immediately if we extend the type
Shape with, for example, a Rectangle:

type Rectangle = {
X: number;
y: number;
kind: "rectangle";

b
type Shape = Circle | Triangle | Square | Rectangle;

function area(shape: Shape) {
switch (shape.kind) {
case "circle": // shape is Circle
return Math.PI * shape.radius * shape.radius;
case "triangle": // shape is Triangle
return (shape.x * shape.y) / 2;
case "square": // shape is Square
return shape.x * shape.x;
default:
console.error("Shape not defined:", shape); // shape is Rectangle
throw Error("not possible");
}
}

This is control flow analysis at its best: TypeScript knows at exactly every point in
time which types your values have. In the default branch, shape is of type
Rectangle, but we are expected to deal with rectangles. Wouldn't it be great if Type-
Script could tell us that we missed taking care of a potential type? With the change,
we now run into it every time we calculate the shape of a rectangle. The default case
was meant to handle (from the perspective of the type system) impossible situations;
wed like to keep it that way.

72 | Chapter3: The Type System

This is already bad in one situation, and it gets worse if you use the exhaustiveness
checking pattern multiple times in your codebase. You can't tell for sure that you
didn’t miss one spot where your software will ultimately crash.

One technique to ensure that you handled all possible cases is to create a helper func-
tion that asserts that all options are exhausted. It should ensure that the only values
possible are no values:

function assertNever(value: never) {
console.error("Unknown value", value);
throw Error("Not possible");

}

Usually, you see never as an indicator that you are in an impossible situation. Here,
we use it as an explicit type annotation for a function signature. You might ask: which
values are we supposed to pass? And the answer is: none! In the best case, this func-
tion will never get called.

However, if we substitute the original default case from our example with assert
Never, we can use the type system to ensure that all possible values are compatible,
even if there are no values:

function area(shape: Shape) {
switch (shape.kind) {
case "circle": // shape is Circle
return Math.PI * shape.radius * shape.radius;
case "triangle": // shape is Triangle
return (shape.x * shape.y) / 2;
case "square": // shape is Square
return shape.x * shape.x;
default: // shape is Rectangle

assertNever(shape);
// A-- Error: Argument of type 'Rectangle' is not
// assignable to parameter of type 'never'

}
}

Great! We now get red squiggly lines whenever we forget to exhaust all options. Type-
Script won't compile this code without an error, and it’s easy to spot all occurrences in
our codebase where we need to add the Rectangle case:

function area(shape: Shape) {
switch (shape.kind) {
case "circle": // shape is Circle
return Math.PI * shape.radius * shape.radius;
case "triangle": // shape is Triangle
return (shape.x * shape.y) / 2;
case "square": // shape is Square
return shape.x * shape.x;
case "rectangle":
return shape.x * shape.y;

3.3 Exhaustiveness Checking with the Assert never Technique | 73

default: // shape is never
assertNever(shape); // shape can be passed to assertNever!

}
}

Even though never has no compatible values and is used to indicate—for the type
system—an impossible situation, we can use the type as type annotation to make sure
we don’t forget about possible situations. Seeing types as sets of compatible values that
can get broader or narrower based on control flow leads us to techniques like
assertNever, a very helpful little function that can strengthen our codebase’s quality.

3.4 Pinning Types with Const Context

Problem

You can’t assign object literals to your carefully modeled discriminated union types.

Solution

Pin the type of your literals using type assertions and const context.

Discussion

In TypeScript, it’s possible to use each value as its own type. These are called literal
types and allow you to subset bigger sets to just a couple of valid values.

Literal types in TypeScript are not only a nice trick to point to specific values but are
also an essential part of how the type system works. This becomes obvious when you
assign values of primitive types to different bindings via let or const.

If we assign the same value twice, once via let and once via const, TypeScript infers
two different types. With the let binding, TypeScript will infer the broader primitive

type:
let name = "Stefan"; // name is string

With a const binding, TypeScript will infer the exact literal type:
const name = "Stefan"; // name is "Stefan"

Object types behave slightly differently. let bindings still infer the broader set:

// person is { name: string }
let person = { name: "Stefan" };

But so do const bindings:

// person is { name: string }
const person = { name: "Stefan" };

74 | Chapter3: The Type System

The reasoning behind this is in JavaScript, while the binding itself is constant, which
means I can’t reassign person, the values of an object’s property can change:

// person is { name: string }
const person = { name: "Stefan" };

person.name = "Not Stefan"; // works!

This behavior is correct in the sense that it mirrors the behavior of JavaScript, but it
can cause problems when we are very exact with our data models.

In the previous recipes we modeled data using union and intersection types. We used
discriminated union types to distinguish between types that are too similar.

The problem is that when we use literals for data, TypeScript will usually infer the
broader set, which makes the values incompatible to the types defined. This produces
a very lengthy error message:

type Circle = {
radius: number;
kind: "circle";

};

type Square = {
X: number;
kind: "square";

b

type Triangle = {
x: number;
y: number;
kind: "triangle";

b
type Shape = Circle | Triangle | Square;

function area(shape: Shape) {
VA4
}

const circle = {
radius: 2,
kind: "circle",

1

area(circle);
// "-- Argument of type '{ radius: number; kind: string;

r

// is not assignable to parameter of type 'Shape’.

// Type '{ radius: number; kind: string; }' is not

// assignable to type 'Circle’.

// Types of property 'kind' are incompatible.

// Type 'string' is not assignable to type '"circle"'.

3.4 Pinning Types with Const Context | 75

There are several ways to solve this problem. First, we can use explicit annotations to
ensure the type. As described in Recipe 2.1, each annotation is a type-check, which
means the value on the righthand side is checked for compatibility. Since there is no
inference, Typescript will look at the exact values to decide whether an object literal is
compatible:

// Exact type

const circle: Circle = {
radius: 2,
kind: "circle",

b
area(circle); // Works!

// Broader set

const circle: Shape = {
radius: 2,
kind: "circle",

b
area(circle); // Also works!

Instead of type annotations, we can also do type assertions at the end of the
assignment:

// Type assertion
const circle = {
radius: 2,
kind: "circle",
} as Circle;

area(circle); // Works!

Sometimes, however, annotations can limit us. This is true especially when we have to
work with literals that contain more information and are used in different places with
different semantics.

From the moment we annotate or assert as Circle, the binding will always be a circle,
no matter which values circle actually carries.

But we can be much more fine-grained with assertions. Instead of asserting that the
entire object is of a certain type, we can assert single properties to be of a certain type:

const circle = {
radius: 2,
kind: "circle" as "circle",

b
area(circle); // Works!

Another way to assert as exact values is to use const context with an as const type
assertion; TypeScript locks the value in as literal type:

76 | Chapter3: The Type System

const circle = {
radius: 2,
kind: "circle" as const,

b
area(circle); // Works!

If we apply const context to the entire object, we also make sure that the values are
read-only and won’t be changed:
const circle = {
radius: 2,

kind: "circle",
} as const;

area2(circle); // Works!

circle.kind = "rectangle";
// A-- Cannot assign to 'kind' because
// it is a read-only property.

Const context type assertions are a very handy tool if we want to pin values to their
exact literal type and keep them that way. If there are a lot of object literals in your
code base that are not supposed to change but need to be consumed in various occa-
sions, const context can help!

3.5 Narrowing Types with Type Predicates

Problem

Based on certain conditions, you can assert that a value is of a narrower type than
originally assigned, but TypeScript can’t narrow it for you.

Solution

Add type predicates to a helper function’s signature to indicate the impact of a
Boolean condition for the type system.

Discussion

With literal types and union types, TypeScript allows you to define very specific sets
of values. For example, we can define a die with six sides easily:

type Dice =1 | 2 | 3| 4| 5| 6;

While this notation is expressive, and the type system can tell you exactly which val-
ues are valid, it requires some work to get to this type.

3.5 Narrowing Types with Type Predicates | 77

Let’s imagine we have some kind of game where users are allowed to input any num-
ber. If it’s a valid number of dots, we are doing certain actions.

We write a conditional check to see if the input number is part of a set of values:

function rollDice(input: number) {
if ([1, 2, 3, 4, 5, 6].includes(input)) {
// ‘input’ is still ‘number', even though we know it
// should be Dice
}
}
The problem is that even though we do a check to make sure the set of values is
known, TypeScript still handles input as number. There is no way for the type system
to make the connection between your check and the change in the type system.

But you can help the type system. First, extract your check into its own helper
function:

function isDice(value: number): boolean {

return [1, 2, 3, 4, 5, 6].includes(value);

}
Note that this check returns a boolean. Either this condition is true or it’s false. For
functions that return a Boolean value, we can change the return type of the function
signature to a type predicate.

We tell TypeScript that if this function returns true, we know more about the value
that has been passed to the function. In our case, value is of type Dice:
function isDice(value: number): value is Dice {
return [1, 2, 3, 4, 5, 6].includes(value);
}
With that, TypeScript gets a hint of what the actual types of your values are, allowing
you to do more fine-grained operations on your values:

function rollDice(input: number) {
if (isDice(input)) {
// Great! “input' is now ‘Dice’
} else {
// input is still ‘number’
}
}

TypeScript is restrictive and doesn't allow any assertion with type predicates. It needs
to be a type that is narrower than the original type. For example, getting a string
input and asserting a subset of number as output will error:

type Dice =1 | 2 | 3| 4| 5] 6;

function isDice(value: string): value is Dice {
// Error: A type predicate's type must be assignable to

78 | Chapter3: The Type System

// its parameter's type. Type 'number' is not assignable to type 'string’.
return ["1", "2", "3", "4", "5", "6"].includes(value);
}
This fail-safe mechanism gives you some guarantee on the type level, but there is a
caveat: it won't check if your conditions make sense. The original check in isDice
ensures that the value passed is included in an array of valid numbers.

The values in this array are your choice. If you include a wrong number, TypeScript
will still think value is a valid Dice, even though your check does not line up:

// Correct on a type-level

// incorrect set of values on a value-level

function isDice(value: number): value is Dice {

return [1, 2, 3, 4, 5, 7].includes(value);

}
This is easy to trip over. The condition in Example 3-1 is true for integer numbers but
wrong if you pass a floating point number. For example, 3.1415 would be a valid Dice
dot count!

Example 3-1. Incorrect logic for isDice for floating point numbers

// Correct on a type-level, incorrect logic
function isDice(value: number): value is Dice {
return value >= 1 && value <= 6;

}

Actually, any condition works for TypeScript. Return true and TypeScript will think
value is Dice:

function isDice(value: number): value is Dice {
return true;

}

TypeScript puts type assertions in your hand. It is your duty to make sure those asser-
tions are valid and sound. If you rely heavily on type assertions via type predicates,
make sure that you test accordingly.

3.6 Understanding void

Problem

You know votid as a concept from other programming languages, but in TypeScript it
can behave a little bit differently.

Solution

Embrace void as a substitutable type for callbacks.

3.6 Understandingvoid | 79

Discussion

You might know void from programming languages like Java or C#, where it indi-
cates the absence of a return value. void also exists in TypeScript, and at first glance it
does the same thing: if your functions or methods aren’t returning something, the
return type is void.

void in JavaScript

void also exists as an operator in JavaScript and has a very special behavior. It evalu-
ates the expression next to it but guarantees to return undefined:

let 1 = void 2; // 1 === undefined

What are the use cases for void? First, in ECMAScript 3, you could override
undefined and give it an actual value. void always returned the real undefined.

Second, it’s a nice way to call immediately invoked functions:

// executes immediately.
void function() {
console.log('Hey');

10s
All without polluting the global namespace:

void function aRecursion(i) {
if(i > 0) {
console.log(i--);
aRecursion(i);
}
HEH

console.log(typeof aRecursion); // undefined

Since void always returns undefined and void always evaluates the expression next to
it, you have a very terse way of returning from a function without returning a value
but still calling a callback, for example:

// returning something else than undefined would crash the app
function middleware(nextCallback) {
if(conditionApplies()) {
return void nextCallback();

}
}

Which brings me to the most important use case of void: it’s a security gate for your
app. When your function is always supposed to return undefined, you can make sure
that this is always the case:

button.onclick = () => void doSomething();

80 | (Chapter3:The Type System

At second glance, however, the behavior of void is a bit more nuanced, and so is its
position in the type system. void in TypeScript is a subtype of undefined. Functions
in JavaScript always return something. Either a function explicitly returns a value, or
it implicitly returns undefined:

function iHaveNoReturnValue(i) {
console.log(i);

}

let check = iHaveNoReturnValue(2);
// check is undefined

If we created a type for iHaveNoReturnValue, it would show a function type with
void as return type:

function iHaveNoReturnValue(i) {
console.log(i);

}

type Fn = typeof i1HaveNoReturnValue;

// type Fn = (i: any) => void
void as type can also be used for parameters and all other declarations. The only
value that can be passed is undefined:

function iTakeNoParameters(x: void): void { }

iTakeNoParameters(); // works
iTakeNoParameters(undefined); // works
iTakeNoParameters(void 2); // works

void and undefined are pretty much the same. There’s one significant difference
though: void as a return type can be substituted with different types, to allow for

advanced callback patterns. Let’s create a fetch function, for example. Its task is to get
a set of numbers and pass the results to a callback function, provided as a parameter:

function fetchResults(
callback: (statusCode: number, results: number[]) => void

) {
// get results from somewhere ...
callback(200, results);

}
The callback function has two parameters in its signature—a status code and the
results—and the return type is void. We can call fetchResults with callback func-
tions that match the exact type of callback:

function normalHandler(statusCode: number, results: number[]): void {
// do something with both parameters

}

fetchResults(normalHandler);

3.6 Understanding void | 81

But if a function type specifies return type void, functions with a different, more spe-
cific return type are also accepted:

function handler(statusCode: number): boolean {
// evaluate the status code ...
return true;

}

fetchResults(handler); // compiles, no problem!

The function signatures don’t match exactly, but the code still compiles. First, its OK
to provide functions with a shorter argument list in their signature. JavaScript can call
functions with excess parameters, and if they aren’t specified in the function, they’re
simply ignored. No need to carry more parameters than you actually need.

Second, the return type is boolean, but TypeScript will still pass this function along.
This is useful when declaring a void return type. The original caller fetchResults
does not expect a return value when calling the callback. So for the type system, the
return value of callback is still undefined, even though it could be something else.

As long as the type system won't allow you to work with the return value, your code
should be safe:

function fetchResults(
callback: (statusCode: number, results: number[]) => void

) o

// get results from somewhere ...

const didItWork = callback(200, results);

// didItWork i1s ‘undefined' in the type system,

// even though it would be a boolean with ‘handler".
}

That's why we can pass callbacks with any return type. Even if the callback returns
something, this value isn't used and goes into the void.

The power lies within the calling function, which knows best what to expect from the
callback function. And if the calling function doesn’t require a return value at all from
the callback, anything goes!

TypeScript calls this feature substitutability: the ability to substitute one thing for
another, wherever it makes sense. This might seem odd at first. But especially when
you work with libraries that you didn’t author, you will find this feature to be very
valuable.

3.7 Dealing with Error Types in catch Clauses

Problem

You can't annotate explicit error types in try-catch blocks.

82 | Chapter3: The Type System

Solution

Annotate with any or unknown and use type predicates (see Recipe 3.5 to narrow to
specific error types).

Discussion

When you are coming from languages like Java, C++, or C#, you are used to doing
your error handling by throwing exceptions and subsequently catching them in a cas-
cade of catch clauses. There are arguably better ways to do error handling, but this
one has been around for ages and, given history and influences, has found its way
into JavaScript.!

“Throwing” errors and “catching” them is a valid way to handle errors in JavaScript
and TypeScript, but there is a big difference when it comes to specifying your catch
clauses. When you try to catch a specific error type, TypeScript will error.

Example 3-2 uses the popular data-fetching library Axios to show the problem.

Example 3-2. Catching explicit error types does not work

try {
// something with the popular fetching library Axios, for example
} catch(e: AxiosError) {

// ANAAAAAAAA Error 1196: Catch clause variable
// type annotation must be 'any' or
// "unknown' i1f specified.

}

There are a few reasons for this:

Any type can be thrown

In JavaScript, you are allowed to throw every expression. Of course, you can throw
“exceptions” (or errors, as we call them in JavaScript), but it’s also possible to throw
any other value:

throw "What a weird error"; // OK

throw 404; // 0K

throw new Error("What a weird error"); // 0K
Since any valid value can be thrown, the possible values to catch are already broader
than your usual subtype of Error.

1 For example, the Rust Programming Language has been lauded for its error handling.

3.7 Dealing with Error Types in catch Clauses | 83

https://axios-http.com

There is only one catch clause in JavaScript

JavaScript has only one catch clause per try statement. In the past there have been
proposals for multiple catch clauses and even conditional expressions, but due to the
lack of interest in JavaScript in the early 2000s, they never manifested.

Instead, you should use this one catch clause and do instanceof and typeof checks,
as proposed on MDN.

This example is also the only correct way to narrow types for catch clauses in
TypeScript:

try {
myroutine(); // There's a couple of errors thrown here

} catch (e) {
if (e instanceof TypeError) {
// A TypeError
} else if (e instanceof RangeError) {
// Handle the RangeError
} else if (e instanceof EvalError) {
// you guessed it: EvalError
} else if (typeof e === "string") {
// The error is a string
} else if (axilos.isAxiosError(e)) {
// axios does an error check for us!
} else {
// everything else
logMyErrors(e);
}
}

Since all possible values can be thrown, and we only have one catch clause per try
statement to handle them, the type range of e is exceptionally broad.

Any exception can happen

Since you know about every error that can happen, wouldn’t a proper union type with
all possible “throwables” work just as well? In theory, yes. In practice, there is no way
to tell which types the exception will have.

Next to all your user-defined exceptions and errors, the system might throw errors
when something is wrong with the memory when it encountered a type mismatch or
one of your functions has been undefined. A simple function call could exceed your
call stack and cause the infamous stack overflow.

The broad set of possible values, the single catch clause, and the uncertainty of errors
that happen allow only two types for e: any and unknown.

84 | Chapter3: The Type System

https://oreil.ly/NMn8O
https://oreil.ly/ipzoR

All reasons apply if you reject a Promise. The only thing TypeScript allows you to
specify is the type of a fulfilled Promise. A rejection can happen on your behalf or
through a system error:

const somePromise = () =>
new Promise((fulfil, reject) => {
if (someConditionIsValid()) {
fulfil(42);
} else {
reject("0Oh no!");
}
s

somePromise()
.then((val) => console.log(val)) // val is number
.catch((e) => console.log(e)); // can be anything, really;

It becomes clearer if you call the same Promise in an async/await flow:

try {

const z = await somePromise(); // z is number
} catch(e) {

// same thing, e can be anything!
}

If you want to define your own errors and catch accordingly, you can either write
error classes and do instance of checks or create helper functions that check for cer-
tain properties and tell the correct type via type predicates. Axios is again a good
example for that:

function isAxiosError(payload: any): payload is AxiosError {
return payload !== null
&& typeof payload === 'object'
&& payload.isAxiosError;
}
Error handling in JavaScript and TypeScript can be a “false friend” if you come from
other programming languages with similar features. Be aware of the differences and
trust the TypeScript team and type-checker to give you the correct control flow to
make sure your errors are handled effectively.

3.8 Creating Exclusive Or Models with Optional never

Problem

Your model requires you to have mutually exclusive parts of a union, but your API
can’t rely on the kind property to differentiate.

3.8 Creating Exclusive Or Models with Optional never | 85

Solution

Use the optional never technique to exclude certain properties.

Discussion

You want to write a function that handles the result of a select operation in your
application. This select operation gives you the list of possible options as well as the
list of selected options. This function can deal with calls from a select operation that
produces only a single value as well as from a select operation that results in multiple
values.

Since you need to adapt to an existing API, your function should be able to handle
both and decide for the single and multiple cases within the function.

Of course there are better ways to model APIs, and we can talk
endlessly about that. But sometimes you have to deal with existing
APIs that are not that great to begin with. TypeScript gives you
techniques and methods to correctly type your data in scenarios

like this.

Your model mirrors that API, as you can pass either a single value or multiple
values:

type SelectBase = {
options: string[];

b

type SingleSelect = SelectBase & {
value: string;

b

type MultipleSelect = SelectBase & {
values: string[];

b
type SelectProperties = SingleSelect | MultipleSelect;

function selectCallback(params: SelectProperties) {
if ("value" in params) {
// handle single cases
} else if ("values" in params) {
// handle multiple cases
}
}

selectCallback({
options: ["dracula", "monokai", "vscode"],
value: "dracula",

86 | Chapter3:The Type System

s

selectCallback({
options: ["dracula", "monokai", "vscode"],
values: ["dracula", "vscode"],

s

This works as intended, but remember the structural type system features of Type-
Script. Defining SingleSelect as a type allows also for values of all subtypes, which
means that objects that have both the value property and the values property are
also compatible to SingleSelect. The same goes for MultipleSelect. Nothing keeps
you from using the selectCallback function with an object that contains both:

selectCallback({
options: ["dracula", "monokai", "vscode"],
values: ["dracula", "vscode"],
value: "dracula",

Y); // still works! Which one to choose?

The value you pass here is valid, but it doesn’t make sense in your application. You
couldn’t decide whether this is a multiple select operation or a single select operation.

In cases like this we again need to separate the two sets of values just enough so our
model becomes clearer. We can do this by using the optional never technique.? It
involves taking the properties that are exclusive to each branch of a union and adding
them as optional properties of type never to the other branches:

type SelectBase = {
options: string[];

b

type SingleSelect = SelectBase & {
value: string;
values?: never;

b

type MultipleSelect = SelectBase & {
value?: never;
values: string[];
IH
You tell TypeScript that this property is optional in this branch, and when it’s set,
there is no compatible value for it. With that, all objects that contain both properties
are invalid to SelectProperties:

selectCallback({
options: ["dracula", "monokai", "vscode"],

2 Shout-out to Dan Vanderkam who was first to call this technique “optional never” on his fantastic Effective
TypeScript blog.

3.8 Creating Exclusive Or Models with Optional never | 87

https://effectivetypescript.com
https://effectivetypescript.com

values: ["dracula", "vscode"],
value: "dracula",

b
// » Argument of type '{ options: string[]; values: string[]; value: string; }'
// 1s not assignable to parameter of type 'SelectProperties’.

The union types are separated again, without the inclusion of a kind property. This
works great for models where the discriminating properties are just a few. If your
model has too many distinct properties, and you can afford to add a kind property,
use discriminated union types as shown in Recipe 3.2.

3.9 Effectively Using Type Assertions

Problem

Your code produces the correct results, but the types are way too wide. You know
better!

Solution

Use type assertions to narrow to a smaller set using the as keyword, indicating an
unsafe operation.

Discussion

Think of rolling a die and producing a number between one and six. The JavaScript
function is one line, using the Math library. You want to work with a narrowed type, a
union of six literal number types indicating the results. However, your operation pro-
duces a number, and number is a type too wide for your results:

type Dice =1 | 2 | 3 | 4| 5] 6;

function rollDice(): Dice {

let num = Math.floor(Math.random() * 6) + 1;

return num;
//” Type 'number' is not assignable to type 'Dice’.(2322)
}

Since number allows for more values than Dice, TypeScript won't allow you to narrow
the type just by annotating the function signature. This works only if the type is
wider, a supertype:

// All dice are numbers
function asNumber(dice: Dice): number {
return dice;

}

88 | Chapter3: The Type System

Instead, just like with type predicates from Recipe 3.5, we can tell TypeScript that we
know better, by asserting that the type is narrower than expected:

type Dice =1 | 2 | 3 | 4| 5| 6;

function rollDice(): Dice {
let num = Math.floor(Math.random() * 6) + 1;
return num as Dice;

}

Just like type predicates, type assertions work only within the supertypes and sub-
types of an assumed type. We can either set the value to a wider supertype or change
it to a narrower subtype. TypeScript won't allow us to switch sets:

function asString(num: number): string {
return num as string;

// A- Conversion of type 'number' to type 'string' may

// be a mistake because neither type sufficiently

// overlaps with the other.

// If this was intentional, convert the expression to 'unknown' first.
}

Using the as Dice syntax is quite handy. It indicates a type change that we as devel-
opers are responsible for. This means that if something turns out wrong, we can easily
scan our code for the as keyword and find possible culprits.

In everyday language, people tend to call type assertions type casts.
This arguably comes from similarity to actual, explicit type casts in
C, Java, and the like. However, a type assertion is very different
from a type cast. A type cast not only changes the set of compatible
values but also changes the memory layout and even the values
themselves. Casting a floating point number to an integer will cut
off the mantissa. A type assertion in TypeScript, on the other hand,
changes only the set of compatible values. The value stays the same.
It’s called a type assertion because you assert that the type is some-
thing either narrower or wider, giving more hints to the type sys-
tem. So if you are in a discussion on changing types, call them
assertions, not casts.

Assertions are also often used when you assemble the properties of an object. You
know that the shape is going to be of, for example, Person, but you need to set the
properties first:

type Person = {
name: string;
age: number;

b

function createDemoPerson(name: string) {

3.9 Effectively Using Type Assertions | 89

const person = {} as Person;

person.name = name;

person.age = Math.floor(Math.random() * 95);
return person;

}

A type assertion tells TypeScript that the empty object is supposed to be Person at the
end. Subsequently, TypeScript allows you to set properties. It’s also an unsafe opera-
tion, because you might forget that you set a property and TypeScript would not com-
plain. Even worse, Person might change and get more properties, and you would get
no indication at all that you are missing properties:

type Person = {
name: string;
age: number;
profession: string;

b

function createDemoPerson(name: string) {
const person = {} as Person;
person.name = name;
person.age = Math.floor(Math.random() * 95);
// Where's Profession?
return person;

}

In situations like this, it’s better to opt for a safe object creation. Nothing keeps you
from annotating and making sure that you set all the required properties with the
assignment:

type Person = {
name: string;
age: number;

};

function createDemoPerson(name: string) {
const person: Person = {
name,
age: Math.floor(Math.random() * 95),
b
return person;

}

While type annotations are safer than type assertions, in situations like rollDice
there is no better choice. In other TypeScript scenarios you do have a choice but
might want to prefer type assertions, even if you could annotate.

When we use the fetch API, for example, getting JSON data from a backend, we can
call fetch and assign the results to an annotated type:

type Person = {
name: string;

90 | Chapter3:The Type System

age: number;

b
const ppl: Person[] = await fetch("/api/people").then((res) => res.json());

res.json() results in any, and everything that is any can be changed to any other
type through a type annotation. There is no guarantee that the results are actually
Person[]. We can write the same line differently, by asserting that the result is a
Person[], narrowing any to something more specific:

const ppl = await fetch("/api/people").then((res) => res.json()) as Person[];

For the type system, this is the same thing, but we can easily scan situations where
there might be problems. What if the model in "/api/people" changes? It's harder to
spot errors if we are just looking for annotations. An assertion here is an indicator of
an unsafe operation.

What really helps is to think of creating a set of models that works within your appli-
cation boundaries. The moment you rely on something from the outside, like APIs,
or the correct calculation of a number, type assertions can indicate that you've crossed
the boundary.

Just like using type predicates (see Recipe 3.5), type assertions put the responsibility
of a correct type in your hands. Use them wisely.

3.10 Using Index Signatures

Problem

You want to work with objects where you know the type of the values, but you don’t
know all the property names up front.

Solution

Use index signatures to define an open set of keys but with defined value types.

Discussion

There is a style in web APIs where you get collections in the form of a JavaScript
object, where the property name is roughly equivalent to a unique identifier and the
values have the same shape. This style is great if you are mostly concerned about keys,
as a simple Object.keys call gives you all relevant IDs, allowing you to quickly filter
and index the values you are looking for.

Lets think of a performance review across all your websites, where you gather rele-
vant performance metrics and group them by the domain’s name:

3.10 Using Index Signatures | 91

const timings = {
"fettblog.eu": {
ttfb: 300,
fcp: 1000,
si: 1200,
lcp: 1500,
tti: 1100,
tbt: 10,
}s
"typescript-book.com": {
ttfb: 400,
fcp: 1100,
si: 1100,
lcp: 2200,
tti: 1100,
tbt: 0,
1,
b

If we want to find the domain with the lowest timing for a given metric, we can create
a function where we loop over all keys, index each metrics entry, and compare:

function findLowestTiming(collection, metric) {
let result = {
domain: ""
value: Number.MAX_VALUE,
1
for (const domain in collection) {
const timing = collection[domain];
if (timing[metric] < result.value) {
result.domain = domain;
result.value = timing[metric];
}
}
return result.domain;

}

As we are good programmers, we want to type our function accordingly so that we
make sure we don’t pass any data that doesn’t match our idea of a metric collection.
Typing the value for the metrics on the righthand side is pretty straightforward:

type Metrics = {
// Time to first byte
ttfb: number;
// First contentful paint
fcp: number;
// Speed Index
si: number;
// Largest contentful paint
lcp: number;
// Time to interactive
tti: number;
// Total blocking time

92 | Chapter3: The Type System

tbt: number;
1Y
Defining a shape that has a yet-to-be-defined set of keys is trickier, but TypeScript has
a tool for that: index signatures. We can tell TypeScript that we don't know which
property names there are, but we know they will be of type string and they will point
to Metrics:

type MetricCollection = {
[domain: string]: Timings;
IH
And that’s all we need to type findLowestTiming. We annotate collection with
Metric Collection and make sure we only pass keys of Metrics for the second
parameter:

function findLowestTiming(
collection: MetricCollection,
key: keyof Metrics

): string {
let result = {
domain: "",
value: Number.MAX_VALUE,
b

for (const domain in collection) {
const timing = collection[domain];
if (timing[key] < result.value) {
result.domain = domain;
result.value = timing[key];
}
}

return result.domain;

}
This is great, but there are some caveats. TypeScript allows you to read properties of
any string, but it does not do any checks if the property is actually available, so be
aware:

const emptySet: MetricCollection = {};
let timing = emptySet["typescript-cookbook.com"].fcp * 2; // No type errors!

Changing your index signature type to be either Metrics or undefined is a more real-
istic representation. It says you can index with all possible strings, but there might be
no value; this results in a couple more safeguards but is ultimately the right choice:

type MetricCollection = {
[domain: string]: Metrics | undefined;

b

function findLowestTiming(
collection: MetricCollection,
key: keyof Metrics

3.10 Using Index Signatures | 93

): string {
let result = {
domain: "",
value: Number.MAX_VALUE,
IH
for (const domain in collection) {
const timing = collection[domain]; // Metrics | undefined
// extra check for undefined values
if (timing && timing[key] < result.value) {
result.domain = domain;
result.value = timing[key];
}
}

return result.domain;

}

const emptySet: MetricCollection = {};

// access with optional chaining and nullish coalescing

let timing = (emptySet["typescript-cookbook.com"]?.fcp ?2? 0) * 2;
The value being either Metrics or undefined is not exactly like a missing property,
but it’s close enough and good enough for this use case. You can read about the
nuance between missing properties and undefined values in Recipe 3.11. To set the
property keys as optional, you tell TypeScript that domain is not the entire set of
string but a subset of string with a so-called mapped type:

type MetricCollection = {
[domain in string]?: Metrics;
1Y
You can define index signatures for everything that is a valid property key: string,
number, or symbol, and with mapped types also everything that is a subset of those.
For example, you can define a type to index only valid faces of a die:

type Throws = {
[xin1 | 2] 3] 4] 5] 6]: number;
15
You can also add properties to your type. Take this ElementCollection, for example,
which allows you to index items via a number but also has additional properties for
get and filter functions as well as a length property:

type ElementCollection = {
[y: number]: HTMLElement | undefined;
get(index: number): HTMLElement | undefined;
length: number;
filter(callback: (element: HTMLElement) => boolean): ElementCollection;

IH
If you combine your index signatures with other properties, you need to make sure
that the broader set of your index signature includes the types from the specific prop-
erties. In the previous example there is no overlap between the number index

94 | Chapter3: The Type System

signature and the string keys of your other properties, but if you define an index sig-
nature of strings that maps to string and want to have a count property of type num
ber next to it, TypeScript will error:
type StringDictionary = {
[index: string]: string;
count: number;
// Error: Property 'count' of type 'number' is not assignable
// to 'string' index type 'string'.(2411)
1Y
And it makes sense: if all string keys point to a string, why would count point to
something else? There’s ambiguity, and TypeScript won't allow this. You would have
to widen the type of your index signature to make sure that the smaller set is part of
the bigger set:

type StringOrNumberDictionary = {
[index: string]: string | number;
count: number; // works

};

Now count subsets both the type from the index signature and the type of the proper-
ty’s value.

Index signatures and mapped types are powerful tools that allow you to work with
web APIs as well as data structures that allow for flexible access to elements. Some-
thing that we know and love from JavaScript is now securely typed in TypeScript.

3.11 Distinguishing Missing Properties
and Undefined Values

Problem

Missing properties and undefined values are not the same! You will run into situa-
tions where this difference matters.

Solution

Activate exactOptionalPropertyTypes in fsconfig to enable stricter handling of
optional properties.

Discussion

Our software has user settings where we can define the user’s language and their pre-
ferred color overrides. It’'s an additional theme, which means that the basic colors are
already set in a "default" style. This means that the user setting for theme is

3.11 Distinguishing Missing Properties and Undefined Values | 95

optional: either it is available or it isn't. We use TypeScripts optional properties
for that:

type Settings = {
language: "en" | "de" | "fr";
theme?: "dracula" | "monokai" | "github";
1Y
With strictNullChecks active, accessing theme somewhere in your code widens the
number of possible values. You have not only the three theme overrides but also the

possibility of undefined:

function applySettings(settings: Settings) {
// theme is "dracula" | "monokai" | "github" | undefined
const theme = settings.theme;

}
This is great behavior, as you really want to make sure that this property is set; other-
wise, it could result in runtime errors. TypeScript adding undefined to the list of pos-
sible values of optional properties is good, but it doesn’t entirely mirror the behavior
of JavaScript. Optional properties means that this key is missing from the object,
which is subtle but important. For example, a missing key would return false in
property checks:

function getTheme(settings: Settings) {
if ('theme' in settings) { // only true if the property is set!
return settings.theme;

}

return 'default';

}

const settings: Settings = {
language: "de",

}

const settingsUndefinedTheme: Settings = {
language: "de",
theme: undefined,

};

console.log(getTheme(settings)) // "default"”
console.log(getTheme(settingsUndefinedTheme)) // undefined
Here, we get entirely different results even though the two settings objects seem simi-
lar. What's worse is that an undefined theme is a value we don’t consider valid. Type-
Script doesn’t lie to us, though, as it’s fully aware that an in check only tells us if the
property is available. The possible return values of getTheme include undefined
as well:

96 | Chapter3: The Type System

type Fn = typeof getTheme;

// type Fn = (settings: Settings)

// => "dracula" | "monokai" | "github" | "default" | undefined
And there are arguably better checks to see if the correct values are here. With nullish
coalescing the preceding code becomes:

function getTheme(settings: Settings) {
return settings.theme ?? "default";

}

type Fn = typeof getTheme;

// type Fn = (settings: Settings)

// => "dracula" | "monokai" | "github" | "default"
Still, in checks are valid and used by developers, and the way TypeScript interprets
optional properties can cause ambiguity. Reading undefined from an optional prop-
erty is correct, but setting optional properties to undefined isn’t. By switching on
exactOptionalPropertyTypes, TypeScript changes this behavior:

// exactOptionalPropertyTypes is true
const settingsUndefinedTheme: Settings = {
language: "de",
theme: undefined,

b

// Error: Type '{ language: "de"; theme: undefined; }' is

// not assignable to type 'Settings' with 'exactOptionalPropertyTypes: true'.

// Consider adding 'undefined' to the types of the target's properties.

// Types of property 'theme' are incompatible.

// Type 'undefined' is not assignable to type

// '"dracula" | "monokai" | "github"'.(2375)
exactOptionalPropertyTypes aligns TypeScript’s behavior even more to JavaScript.
This flag is not within strict mode, however, so you need to set it yourself if you
encounter problems like this.

3.12 Working with Enums

Problem

TypeScript enums are a nice abstraction, but they seem to behave very differently
compared to the rest of the type system.

Solution

Use them sparingly, prefer const enums, know their caveats, and maybe choose
union types instead.

3.12Working with Enums | 97

Discussion

Enums in TypeScript allow a developer to define a set of named constants, which
makes it easier to document intent or create a set of distinct cases.

They’re defined using the enum keyword:

enum Direction {
up,
Down,
Left,
Right,
b

Like classes, they contribute to the value and type namespaces, which means you can
use Direction when annotating types or in your JavaScript code as values:

// used as type

function move(direction: Direction) {
/...

}

// used as value
move(Direction.Up);

They are a syntactic extension to JavaScript, which means they not only work on a
type system level but also emit JavaScript code:

var Direction;

(function (Direction) {
Direction[Direction["Up"] = 0] = "Up";
Direction[Direction["Down"] = 1] = "Down";
Direction[Direction["Left"] = 2] = "Left";
Direction[Direction["Right"] = 3] = "Right";

B (Direction || (Direction = {}));

When you define your enum as a const enum, TypeScript tries to substitute the usage
with the actual values, getting rid of the emitted code:

const enum Direction {
up,
Down,
Left,
Right,
b

// When having a const enum, TypeScript

// transpiles move(Direction.Up) to this:

move(O /* Direction.Up */);
TypeScript supports both string and numeric enums, and both variants behave
very differently.

98 | Chapter3:The Type System

TypeScript enums are by default numeric, which means that every variant of that
enum has a numeric value assigned, starting at 0. The starting point and actual values
of enum variants can be a default or user defined:

// Default

enum Direction {
Up, // @
Down, // 1
Left, // 2
Right, // 3

b

enum Direction {
up=1, J/1
Down, // 2
Left, // 3
Right = 5, // 5
b

In a way, numeric enums define the same set as a union type of numbers:
type Direction =0 | 1 | 2 | 3;

But there are significant differences. Where a union type of numbers allows only a
strictly defined set of values, a numeric enum allows for every value to be assigned:

function move(direction: Direction) { /* ... */ }
move(30);// This is ok!
The reason is that there is a use case of implementing flags with numeric enums:

// Possible traits of a person, can be multiple
enum Traits {

None, // 0000
Friendly = 1, // 0001 or 1 << 0
Mean =1<<1, // 0010
Funny =1<<2, // 0100
Boring =1 << 3, // 1000
}
// (0010 | 0100) === 0110

let aPersonsTraits = Traits.Mean | Traits.Funny;

if ((aPersonsTraits & Traits.Mean) === Traits.Mean) {
// Person is mean, amongst other things

}

Enums provide syntactic sugar for this scenario. To make it easier for the compiler to
see which values are allowed, TypeScript expands compatible values for numeric
enums to the entire set of number.

3.12 Working with Enums | 99

Enum variants can also be initialized with strings instead of numbers, effectively cre-
ating a string enum. If you choose to write a string enum, you have to define each
variant, as strings can't be incremented:

enum Status {

Admin = "Admin",

User = "User",

Moderator = "Moderator",
b

String enums are more restrictive than numeric enums. They only allow you to pass
actual variants of the enum rather than the entire set of strings. However, they don’t
allow you to pass the string equivalent:

function closeThread(threadId: number, status: Status): {

/) ...
}
closeThread(10, "Admin");
// A-- Argument of type '"Admin"' is not assignable to
// parameter of type 'Status'

closeThread(10, Status.Admin); // This works

Unlike every other type in TypeScript, string enums are nominal types. This also
means two enums with the same set of values are not compatible with each other:

enum Roles {

Admin = "Admin",
User = "User",
Moderator = "Moderator",
b
closeThread(10, Roles.Admin);
// A-- Argument of type 'Roles.Admin' is not
// assignable to parameter of type 'Status’

This can be a source of confusion and frustration, especially when values come from
another source that doesn’t have knowledge of your enums but does have the correct
string values.

Use enums wisely and know their caveats. Enums are great for feature flags and a set
of named constants where you intentionally want people to use the data structure
instead of just values.

Since TypeScript 5.0, the interpretation of number enums has
become much stricter; now they behave, like string enums, as nom-
inal types and don’t include the entire set of numbers as values. You
still might find codebases that rely on the unique features of pre-5.0
number enums, so be aware!

100 | Chapter3:The Type System

Also try to prefer const enums wherever possible, as non-const enums can add size
to your codebase that might be redundant. I have seen projects with more than two
thousand flags in a non-const enum, resulting in huge tooling overhead, compile
time overhead, and subsequently, runtime overhead.

Or, don't use them at all. A simple union type works similarly and is much more
aligned with the rest of the type system:

type Status = "Admin" | "User" | "Moderator";

function closeThread(threadId: number, status: Status) {
/) ...
}

closeThread(10, "Admin"); // ALl good

You get all the benefits from enums such as proper tooling and type safety without
going the extra round and risking outputting code that you don’t want. It also
becomes clearer what you need to pass and where to get the value from.

If you want to write your code enum-style, with an object and a named identifier, a
const object with a Values helper type might just give you the desired behavior and
is much closer to JavaScript. The same technique is also applicable to string unions:
const Direction = {
Up: 0O,
Down: 1,
Left: 2,
Right: 3,
} as const;

// Get to the const values of Direction
type Direction = (typeof Direction)[keyof typeof Direction];

// (typeof Direction)[keyof typeof Direction] yields @ | 1 | 2 | 3
function move(direction: Direction) {

/...
}

move(30); // This breaks!

move(0); //This works!

move(Direction.Left); // This also works!
This line is particularly interesting:

//=0]1]2]3
type Direction = (typeof Direction)[keyof typeof Direction];

A few things happen that are not that usual:

3.12Working with Enums | 101

o We declare a type with the same name as a value. This is possible because Type-
Script has distinct value and type namespaces.

o Using the typeof operator, we grab the type from Direction. As Direction is in
const context, we get the literal type.

o We index the type of Direction with its own keys, leaving us all the values on the
righthand side of the object: 0, 1, 2, and 3. In short: a union type of numbers.

Using union types leaves no surprises:

 You know what code you end up with within the output.

 You don’'t end up with changed behavior because somebody decides to go from a
string enum to a numeric enum.

 You have type safety where you need it.

+ You give your colleagues and users the same conveniences as provided by enums.

But to be fair, a simple string union type does just what you need: type safety, auto-
complete, and predictable behavior.

3.13 Defining Nominal Types in a Structural Type System

Problem

Your application has several types that are aliases for the same primitive type but with
entirely different semantics. Structural typing treats them the same, but it shouldn’t!

Solution

Use wrapping classes or create an intersection of your primitive type with a literal
object type and use this to differentiate two integers.

Discussion

TypeScript’s type system is structural. This means that if two types have a similar
shape, values of this type are compatible with each other:

type Person = {
name: string;
age: number;

b

type Student = {
name: string;
age: number;

}

102 | Chapter3:The Type System

function acceptsPerson(person: Person) {

/...
}

const student: Student = {
name: "Hannah",
age: 27,

b

acceptsPerson(student); // all ok

JavaScript relies heavily on object literals, and TypeScript tries to infer the type or
shape of those literals. A structural type system makes a lot of sense in this scenario,
as values can come from anywhere and need to be compatible with interface and type
definitions.

However, there are situations where you need to be more definitive with your types.
For object types, we learned about techniques like discriminated unions with the kind
property in Recipe 3.2, or exclusive or with “optional never" in Recipe 3.8. string
enums are also nominal, as we see in Recipe 3.12.

Those measurements are good enough for object types and enums, but they don't
solve the problem if you have two independent types that use the same set of values as
primitive types. What if your eight-digit account number and your balance all point
to the number type and you mix them up? Getting an eight-figure number on your
balance sheet is a nice surprise, but it’s likely not correct.

Or perhaps you need to validate user input strings and want to make sure that you
carry around only the validated user input in your program, not falling back to the
original, probably unsafe, string.

TypeScript allows you to mimic nominal types within the type system to get more
security. The trick is also to separate the sets of possible values with distinct proper-
ties just enough to ensure the same values don’t fall into the same set.

One way to achieve this would be wrapping classes. Instead of working with the val-
ues directly, we wrap each value in a class. With a private kind property we make
sure they don’t overlap:

class Balance {
private kind = "balance";
value: number;

constructor(value: number) {
this.value = value;

}
}

class AccountNumber {

3.13 Defining Nominal Types in a Structural Type System | 103

private kind = "account";
value: number;

constructor(value: number) {
this.value = value;

}
}

What's interesting here is that since we use private properties, TypeScript will differ-
entiate between the two classes. Right now, both kind properties are of type string.
Even though they feature a different value, they can be changed internally. But classes
work differently. If private or protected members are present, TypeScript considers
two types compatible if they originate from the same declaration. Otherwise, they
aren't considered compatible.

This allows us to refine this pattern with a more general approach. Instead of defining
a kind member and setting it to a value, we define a _nominal member in each class
declaration that is of type void. This separates both classes just enough but keeps us
from using _nominal in just any way. void only allows us to set _nominal to
undefined, and undefined is a falsy, and thus highly useless:

class Balance {
private _nominal: void = undefined;
value: number;

constructor(value: number) {
this.value = value;
}
}

class AccountNumber {
private _nominal: void = undefined;
value: number;

constructor(value: number) {
this.value = value;
}
}

const account = new AccountNumber(12345678);
const balance = new Balance(10000);

function acceptBalance(balance: Balance) {
/] ...
}

acceptBalance(balance); // ok
acceptBalance(account);

// ~ Argument of type 'AccountNumber' is not
// assignable to parameter of type 'Balance’.

104 | Chapter3:The Type System

// Types have separate declarations of a

// private property '_nominal’. (2345)
We can now differentiate between two types that would have the same set of values.
The only downside to this approach is that we wrap the original type, which means
that every time we want to work with the original value, we need to unwrap it.

A different way to mimic nominal types is to intersect the primitive type with a
branded object type with a kind property. This way, we retain all the operations from
the original type, but we need to require type assertions to tell TypeScript that we
want to use those types differently.

As we learned in Recipe 3.9, we can safely assert another type if it is a subtype or
supertype of the original:

type Credits = number & { _kind: "credits" };
type AccountNumber = number & { _kind: "accountNumber" };

const account = 12345678 as AccountNumber;
let balance = 10000 as Credits;
const amount = 3000 as Credits;

function increase(balance: Credits, amount: Credits): Credits {
return (balance + amount) as Credits;

}

balance = increase(balance, amount);

balance = increase(balance, account);

// ~ Argument of type 'AccountNumber' is not

// assignable to parameter of type 'Credits’.

// Type 'AccountNumber' is not assignable to type '{ _kind: "credits"; }'.
// Types of property '_kind' are incompatible.

// Type '"accountNumber"' is not assignable to type '"credits"'.(2345)

Also note that the addition of balance and amount still works as originally intended
but produces a number again. This is why we need to add another assertion:

const result = balance + amount; // result is number
const credits = (balance + amount) as Credits; // credits is Credits

Both approaches have their advantages and disadvantages, and whether you prefer
one or the other mostly depends on your scenario. Both approaches are workarounds
and techniques developed by the community based on their understanding of the
type system’s behavior.

There are discussions on the TypeScript issue tracker on GitHub about opening the
type system for nomimal types, and the possibility is constantly under investigation.
One idea is to use the unique keyword from Symbols to differentiate:

3.13 Defining Nominal Types in a Structural Type System | 105

https://oreil.ly/XxmUV

// Hypothetical code, this does not work!
type Balance = unique number;
type AccountNumber = unique number;

As time of writing, this idea—and many others—remains a future possibility.

3.14 Enabling Loose Autocomplete for String Subsets

Problem

Your API allows for any string to be passed, but you still want to show a couple of
string values for autocomplete.

Solution

Add string & {} to your union type of string literals.

Discussion

Let’s say you define an API for access to a content management system. There are
predefined content types like post, page, and asset, but developers can define their
own.

You create a retrieve function with a single parameter, the content type, that allows
entries to be loaded:

type Entry = {
// tbd.
b

function retrieve(contentType: string): Entry[] {
// tbd.
}
This works well enough, but you want to give your users a hint on the default options
for content type. A possibility is to create a helper type that lists all predefined content
types as string literals in a union with string:

type ContentType = "post" | "page" | "asset" | string;

function retrieve(content: ContentType): Entry[] {
// tbd
}
This describes your situation very well but comes with a downside: post, page, and
asset are subtypes of string, so putting them in a union with string effectively
swallows the detailed information into the broader set.

106 | Chapter3:The Type System

This means you don't get statement completion hints via your editor, as you can see
in Figure 3-3.

eoe autocomplete.ts — chapter03 DB [o8

TS autocomplete.ts @ o --

TS autocomplete.ts > ...

/O 1 type Entry = { -
2 /o
3 h
Jag 4
5 type ContentType = "post" | "page" | "asset" | string;
l> 6
o 7 function retrieve(content: ContentType): Entry[] {
8 7 =
B:l? 9 return []
e }
11 ‘retrieve(content: string): Entryl[]

A 12 retrievel("})]

®
{2

b ®@O0AO0 # Live Share Ln 12, Col 11 Spaces: 4 UTF-8 LF {3 TypeScript & Q

Figure 3-3. TypeScript widens ContentType to the entire set of string, thus swallowing
autocomplete information

To retain autocomplete information and preserve the literal types, we need to inter-
sect string with the empty object type {}:
type ContentType = "post" | "page" | "asset" | string & {};

The effect of this change is more subtle. It doesn't alter the number of compatible val-
ues to ContentType, but it will set TypeScript into a mode that prevents subtype
reduction and preserves the literal types.

You can see the effect in Figure 3-4, where ContentType is not reduced to string, and
therefore all literal values are available for statement completion in the text editor.

3.14 Enabling Loose Autocomplete for String Subsets | 107

ece autocomplete.ts — chapter03 DO B8 [08
Ig TS autocomplete.ts @ m -
TS autocomplete.ts > ...
/O 1 type Entry = { B
2 Y7
3 I8
oy 4
5 type ContentType = "post" | "page" | "asset" | string & {};
6
ﬁ[> 7 function retrieve(content: ContentType): Entry[] {
8 /e =
E:I? 9 return []
10 }
1 |retrieve(content: ContentType): Entry[]
A 12 ret rieve" "
(= asset asset
(= page
(= post
®
G
o ®OAO0 # LiveShare Ln12,Col 11 Spaces:4 UTF-8 LF {§ TypeScript & Q)

Figure 3-4. Intersecting string with the empty object retains statement completion hints

Still, every string is a valid ContentType; it just changes the developer experience of
your API and gives hints where needed.

This technique is used by popular libraries like CSSType or the Definitely Typed type
definitions for React.

108 | Chapter3:The Type System

https://oreil.ly/lwtC5
https://oreil.ly/epbLV
https://oreil.ly/epbLV

CHAPTER 4
Generics

Until now, our main goal was to take the inherent flexibility of JavaScript and find a
way to formalize it through the type system. We added static types for a dynamically
typed language, to communicate intent, get tooling, and catch bugs before they
happen.

Some parts in JavaScript don't really care about static types, though. For example, an
isKeyAvailableInObject function should only check if a key is available in an
object; it doesn't need to know about the concrete types. To properly formalize a
function like this we can use TypeScript’s structural type system and describe either a
very wide type for the price of information or a very strict type for the price of
flexibility.

But we don’t want to pay any price. We want both flexibility and information. Gener-
ics in TypeScript are just the silver bullet we need. We can describe complex relation-
ships and formalize structure for data that has not been defined yet.

Generics, along with its gang of mapped types, type maps, type modifiers, and helper
types, open the door to metatyping, where we can create new types based on old ones
and keep relationships between types intact while the newly generated types challenge
our original code for possible bugs.

This is the entrance to advanced TypeScript concepts. But fear not, there shant be
dragons, unless we define them.

109

4.1 Generalizing Function Signatures

Problem

You have two functions that work the same, but on different and largely incompatible
types.

Solution

Generalize their behavior using generics.

Discussion

You are writing an application that stores several language files (for example, subti-
tles) in an object. The keys are the language codes, and the values are URLs. You load
language files by selecting them via a language code, which comes from some API or
user interface as string. To make sure the language code is correct and valid, you add
an isLanguageAvailable function that does an in check and sets the correct type
using a type predicate:

type Languages = {
de: URL;
en: URL;
pt: URL;
es: URL;
fr: URL;
ja: URL;
b

function islLanguageAvailable(
collection: Languages,
lang: string

): lang is keyof Languages {
return lang in collection;

}

function loadlLanguage(collection: Languages, lang: string) {
if (isLanguageAvailable(collection, lang)) {
// lang is keyof Languages
collection[lang]; // access ok!
}
}

Same application, different scenario, entirely different file. You load media data into
an HTML element: either audio, video, or a combination with certain animations in a
canvas element. All elements exist in the application already, but you need to select
the right one based on input from an API. Again, the selection comes as string, and

110 | Chapter 4: Generics

you write an isElementAllowed function to ensure that the input is actually a valid
key of your AllowedElements collection:

type AllowedElements = {
video: HTMLVideoElement;
audio: HTMLAudioElement;
canvas: HTMLCanvasElement;

b

function isElementAllowed(
collection: AllowedElements,
elem: string

): elem is keyof AllowedElements {
return elem in collection;

}

function selectElement(collection: AllowedElements, elem: string) {
if (isElementAllowed(collection, elem)) {
// elem is keyof AllowedElements
collection[elem]; // access ok
}
}
You don’t need to look too closely to see that both scenarios are very similar. The type
guard functions especially catch our eye. If we strip away all the type information and
align the names, they are identical:
function isAvailable(obj, key) {
return key in obj;
}
The two of them exist because of the type information we get. Not because of the
input parameters, but because of the type predicates. In both scenarios we can tell
more about the input parameters by asserting a specific keyof type.

The problem is that both input types for the collection are entirely different and have
no overlap. Except for the empty object, for which we don't get that much valuable
information if we create a keyof type. keyof {} is actually never.

But there is some type information here that we can generalize. We know the first
input parameter is an object. And the second one is a property key. If this check eval-
uates to true, we know that the first parameter is a key of the second parameter.

To generalize this function, we can add a generic type parameter to isAvailable
called Obj, put in angle brackets. This is a placeholder for an actual type that will be
substituted once isAvailable is used. We can use this generic type parameter like we
would use AllowedElements or Languages and can add a type predicate. Since Obj
can be substituted for every type, key needs to include all possible property keys—
string, symbol, and number:

4.1 Generalizing Function Signatures | 111

function isAvailable<Obj>(

obj: 0bj,

key: string | number | symbol
): key is keyof 0bj {

return key in obj;

}

function loadLanguage(collection: Languages, lang: string) {
if (isAvailable(collection, lang)) {
// lang is keyof Languages
collection[lang]; // access ok!
}
}

function selectElement(collection: AllowedElements, elem: string) {
if (isAvailable(collection, elem)) {
// elem is keyof AllowedElements
collection[elem]; // access ok

}
}

And there you have it: one function that works in both scenarios, no matter which
types we substitute Obj for. Just like JavaScript works! We still get the same function-
ality, and we get the right type information. Index access becomes safe, without sacri-
ficing flexibility.

The best part? We can use isAvailable just like we would use an untyped JavaScript
equivalent. This is because TypeScript infers types for generic type parameters
through usage. And this comes with some neat side effects. You can read more about
that in Recipe 4.3.

4.2 Creating Related Function Arguments

Problem

You write functions where the second parameter is dependent on the first one.

Solution

Annotate each parameter with a generic type and create a relationship between them
through generic constraints.

Discussion

Similar to Recipe 4.1, our application stores a list of subtitles in an object of type
Languages. Languages has a set of keys describing the language code and a URL
as the value:

112 | Chapter4: Generics

type Languages = {
de: URL;
en: URL;
pt: URL;
es: URL;
fr: URL;
ja: URL;
b

const languages: Languages = { /* ... */ };

There are several lists like this in our application, and we can abstract them in a type
called URLL1ist, whose index signatures allow for any string key:
type URLList = {
[x: string]: URL;

b
URLList is a supertype of Languages: every value of type Languages is a URLList, but
not every URLList is Languages. Still, we can use URLList to write a function called
fetchFile, where we load a specific entry from this list:

function fetchFile(urls: URLList, key: string) {
return fetch(urls[key]).then((res) => res.json());
}

const de = fetchFile(languages, "de");

const it = fetchFile(languages, "it");
The problem is that type string for key allows for way too many entries. For exam-
ple, no Italian subtitles are defined, but fetchFile doesn't keep us from loading "it"
as a language code anyway. When we load items from a specific URLList, it would be
great to also know which keys we can access.

We can solve this by substituting the broader type for a generic and setting a generic
constraint to make sure we pass a subtype of URLList. This way, the function signa-
ture behaves very similarly to before, but we can work with the subtituted types much
better. We define a generic type parameter List which is a subtype of URLList and set
key to keyof List:

function fetchFile<List extends URLList>(urls: List, key: keyof List) {
return fetch(urls[key]).then((res) => res.json());
}

const de = fetchFile(languages, "de");

const it = fetchFile(languages, "it");

// 5

// Argument of type '"it"' is not assignable to
// parameter of type 'keyof Languages'.(2345)

4.2 (reating Related Function Arguments | 113

The moment we call fetchFile, List will be substituted for an actual type, and we
know that "it" is not part of the keys of Languages. TypeScript will show us when we
made a typo or selected elements that aren’t part of our data types.

This also works if we are loading many keys. The same constraints, the same effect:

function fetchFiles<List extends URLList>(urls: List, keys: (keyof List)[]) {
const els = keys.map((el) =>
fetch(urls[el])
.then((res) => res.json())
.then((data) => [el, data])
)5
return els;

}

const de_and_fr = fetchFiles(languages, ["de", "fr"]); // Promise<any[]=[]
const de_and_it = fetchFiles(languages, ["de", "it"]);

// .

// Type '"it"' is not assignable to type 'keyof Languages'.(2322)

We store the results in a tuple with the language key as first element and the data as
the second element. However, when we get the result, it's an array of Promises that
resolve to an any[]. This is understandable, as fetch does not tell us anything about
the data loaded, and with data being of type any and thus having the broadest type, it
just swallows e, which is keyof List.

But we know more at this stage. We know, for example, that [el, data] is not an
array but a tuple. There is a subtle but important difference, as shown in Recipe 2.4. If
we annotate the result with a tuple type, we get more information from our return
values:

function fetchFiles<List extends URLList>(urls: List, keys: (keyof List)[]) {
const els = keys.map((el) =>
fetch(urls[el])
.then((res) => res.json())
.then((data) => {
const entry: [keyof List, any] = [el, data];
return entry;

b
)5
return els;

}

const de_and_fr = fetchFiles(languages, ["de", "fr"]);

fetchFiles now returns an array of Promises of [keyof List, any].So the moment
we substitute List for Languages, we know that the only possible keys can be
language codes.

114 | Chapter 4: Generics

However, there’s still one caveat. As the preceding code sample shows, the only lan-
guages available in de_and_fr are German and French, but the compiler doesn’t warn
us that we check for English later on. The compiler should be able to do that, because
this condition will always return false:
for (const result of de_and_fr) {
if (result[0] === "en") {
// English?
}
}
The problem is that we are dealing again with a type that is way too broad. Yes, keyof
List is already a lot narrower than string, but we can substitute all keys for a smaller
set as well.

We need to repeat the same process:

1. Create a new generic type parameter.
2. Set the broader type as a constraint of the newly created generic type parameter.

3. Use the parameter in the function signature to be substituted for an actual type.

And just like that, we can also substitute keyof List with a subtype: "de" | "fr":

function fetchFiles<List extends URLList, Keys extends keyof List>(
urls: List,
keys: Keys[]

) {
const els = keys.map((el) =>
fetch(urls[el])
.then((res) => res.json())
.then((data) => {
const entry: [Keys, any] = [el, data];
return entry;
b
)5
return els;
}

const de_and_fr = fetchFiles(languages, ["de", "fr"]);

What’s nice about this is that we can set relationships between generic type parame-
ters. The second type parameter can be constrained by something from the first
generic type parameter. This allows us to narrow very specifically, until we substitute
with real values. The effect? We know about possible values of our types anywhere in
our code. So we won't check for English language if we can already say that we never
requested to load English:

for (const entry of de_and_fr) {
const result = await entry;
if (result[0] === "en") {

4.2 (reating Related Function Arguments | 115

// This condition will always return 'false' since the types
//. '"de" | "fr"' and '"en"' have no overlap.(2367)
}
}

One check that we didn’t get rid of is to see which language is at position 0.

One thing that we didn’t take into account is generic instantiation. We let type param-
eters be substituted for real values through usage, just like type inference. But we also
could substitute them explicitly through annotations:

const de_and_ja = fetchFiles<Languages, "ja" | "de">(languages, ["de"]);

Here the types tell us there might be Japanese subtitles as well, even though we can

see from usage that we load only German ones. Let this be a reminder, and get more
insights in Recipe 4.4.

4.3 Getting Rid of any and unknown

Problem

Generic type parameters, any, and unknown all seem to describe very wide sets of val-
ues. When should you use what?

Solution

Use generic type parameters when you get to the actual type eventually; refer to
Recipe 2.2 on the decision between any and unknown.

Discussion

When we are using generics, they might seem like a substitute for any and unknown.
Take an identity function—its only job is to return the value passed as input
parameter:

function identity(value: any): any {
return value;

}

let a = identity("Hello!");
let b = identity(false);
let ¢ = identity(2);

It takes values of every type, and the return type of it can also be anything. We can
write the same function using unknown if we want to safely access properties:
function identity(value: unknown): unknown {

return value;

}

116 | Chapter 4: Generics

let a = identity("Hello!");
let b = identity(false);
let c = identity(2);

We can even mix and match any and unknown, but the result is always the same: Type
information is lost. The type of the return value is what we define it to be.

Now let’s write the same function with generics instead of any or unknown. Its type
annotations say that the generic type is also the return type:

function identity<T>(t: T): T {
return t;

}
We can use this function to pass in any value and see which type TypeScript infers:

let a = identity("Hello!"); // a is string
let b = identity(2000); // b is number
let ¢ = identity({ a: 2 }); // ¢ is { a: number }

Assigning to a binding with const instead of let gives slightly different results:

const a = identity("Hello!"); // a is "Hello!"

const b = identity(2000); // b 1s 2000

const ¢ = identity({ a: 2 }); // c is { a: number }
For primitive types, TypeScript substitutes the generic type parameter with the actual
type. We can make great use of this in more advanced scenarios.

With TypeScript’s generics, it’s also possible to annotate the generic type parameter:

const a = identity<string>("Hello!"); // a is string

const b = identity<number>(2000); // b i1s number

const ¢ = identity<{ a: 2 }>({ a: 2 }); // c is { a: 2 }
If this behavior reminds you of annotation and inference described in Recipe 3.4, you
are absolutely right. It's very similar but with generic type parameters in functions.

When using generics without constraints, we can write functions that work with val-
ues of any type. Inside, they behave like unknown, which means we can do type guards
to narrow the type. The biggest difference is that once we use the function, we substi-
tute our generics with real types, not losing any information on typing at all.

This allows us to be a bit clearer with our types than just allowing everything. This
pairs function takes two arguments and creates a tuple:

function pairs(a: unknown, b: unknown): [unknown, unknown] {
return [a, b];

}

const a = pairs(1, "1"); // [unknown, unknown]

With generic type parameters, we get a nice tuple type:

4.3 Getting Rid of any and unknown | 117

function pairs<T, U>(a: T, b: U): [T, U] {
return [a, b];

}

const b = pairs(1, "1"); // [number, string]

Using the same generic type parameter, we can make sure we get tuples only where
each element is of the same type:
function pairs<T>(a: T, b: T): [T, T] {

return [a, b];

}

const ¢ = pairs(1l, "1");

// 4

// Argument of type 'string' is not assignable to parameter of type 'number'
So, should you use generics everywhere? Not necessarily. This chapter includes many
solutions that rely on getting the right type information at the right time. When you
are happy with a wider set of values and can rely on subtypes being compatible, you
don’t need to use generics at all. If you have any and unknown in your code, think
whether you need the actual type at some point. Adding a generic type parameter
instead might help.

4.4 Understanding Generic Instantiation

Problem

You understand how generics are substituted for real types, but sometimes errors like
“Foo is assignable to the constraint of type Bar, but could be instantiated with a differ-
ent subtype of constraint Baz” confuse you.

Solution

Remember that values of a generic type can be—explicitly and implicitly—substituted
with a variety of subtypes. Write subtype-friendly code.

Discussion
You create a filter logic for your application. You have different filter rules that you
can combine using "and" | "or" combinators. You can also chain regular filter rules

with the outcome of combinatorial filters. You create your types based on this
behavior:

type FilterRule = {
field: string;
operator: string;
value: any;

118 | Chapter 4: Generics

b

type CombinatorialFilter = {
combinator: "and" | "or";
rules: FilterRule[];

};

type ChainedFilter = {
rules: (CombinatorialFilter | FilterRule)[];
b

type Filter = CombinatorialFilter | ChainedFilter;

Now you want to write a reset function that, based on an already provided filter,
resets all rules. You use type guards to distinguish between CombinatorialFilter
and ChainedFilter:

function reset(filter: Filter): Filter {
if ("combinator" in filter) {
// filter is CombinatorialFilter
return { combinator: "and", rules: [] };

}
// filter is ChainedFilter
return { rules: [] };

}

const filter: CombinatorialFilter = { rules: [], combinator: "or" };
const resetFilter = reset(filter); // resetfFilter is Filter

The behavior is what you are after, but the return type of reset is too wide. When we
pass a CombinatorialFilter, we should be sure that the reset filter is also a
CombinatorialFilter. Here it’s the union type, just like our function signature indi-
cates. But you want to make sure that if you pass a filter of a certain type, you also get
the same return type. So you replace the broad union type with a generic type param-
eter that is constrained to Filter. The return type works as intended, but the imple-
mentation of your function throws errors:

function reset<F extends Filter>(filter: F): F {

if ("combinator" in filter) {

return { combinator: "and", rules: [] };

// ~ '{ combinator: "and"; rules: never[]; }' i1s assignable to
// the constraint of type 'F', but 'F' could be instantiated
// with a different subtype of constraint 'Filter'.

}

return { rules: [] };
//” '{ rules: never[]; }' is assignable to the constraint of type 'F',
// but 'F' could be instantiated with a different subtype of
// constraint 'Filter'.

}

const resetFilter = reset(filter); // resetFilter is CombinatorialFilter

4.4 Understanding Generic Instantiation | 119

While you want to differentiate between two parts of a union, TypeScript thinks more
broadly. It knows that you might pass in an object that is structurally compatible with
Filter, but it has more properties and is therefore a subtype.

This means you can call reset with F instantiated to a subtype, and your program
would happily override all excess properties. This is wrong, and TypeScript tells you
that:

const onDemandFilter = reset({
combinator: "and",
rules: [],
evaluated: true,
result: false,
s
/* filter is {
combinator: "and";
rules: never[];
evaluated: boolean;
result: boolean;

b ¥
Overcome this by writing subtype-friendly code. Clone the input object (still type F),

set the properties that need to be changed accordingly, and return something that is
still of type F:

function reset<F extends Filter>(filter: F): F {
const result = { ...filter }; // result is F
result.rules = [];
if ("combinator" in result) {
result.combinator = "and";

}

return result;

}

const resetFilter = reset(filter); // resetFilter is CombinatorialFilter

Generic types can be one of many in a union, but they can be much, much more.
TypeScript’s structural type system allows you to work on a variety of subtypes, and
your code needs to reflect that.

Here’s a different scenario but with a similar outcome. You want to create a tree data
structure and write a recursive type that stores all tree items. This type can be
subtyped, so you write a createRootItem function with a generic type parameter
since you want to instantiate it with the correct subtype:

type Treeltem = {
id: string;
children: TreeItem[];
collapsed?: boolean;

}

120 | Chapter 4: Generics

function createRootItem<T extends Treeltem>(): T {
return {
id: "root",
children: [],
IH
// '{ id: string; children: never[]; }' is assignable to the constraint
// of type 'T', but 'T' could be instantiated with a different subtype
// of constraint 'Treeltem'.(2322)
}

const root = createRootItem(); // root is Treeltem

We get a similar error as before, since we can’t possibly say that the return value will
be compatible with all the subtypes. To solve this problem, get rid of the generic! We
know how the return type will look—it’s a TreeItem:

function createRootItem(): Treeltem {
return {
id: "root",
children: [],
b
}

The simplest solutions are often the better ones. But now you want to extend your
software by being able to attach children of type or subtype TreeItem to a newly cre-
ated root. We don’t add any generics yet and are somewhat dissatisfied:

function attachToRoot(children: Treeltem[]): Treeltem {
return {
id: "root",
children,
b
}

const root = attachToRoot([]); // Treeltem

root is of type TreeItem, but we lose any information about the subtyped children.
Even if we add a generic type parameter just for the children, constrained to Tree
Item, we don't retain this information on the go:

function attachToRoot<T extends TreeItem>(children: T[]): Treeltem {
return {
id: "root",
children,
};
}

const root = attachToRoot([
{
id: "child",
children: [],
collapsed: false,

4.4 Understanding Generic Instantiation | 121

marked: true,

1,
1); // root is Treeltem

When we start adding a generic type as a return type, we run into the same problems
as before. To solve this issue, we need to split the root item type from the children
item type, by opening up TreeItem to be a generic, where we can set Children to be a
subtype of TreeItem.

Since we want to avoid any circular references, we need to set Children to a default
BaseTreeItem, so we can use TreeItem both as a constraint for Children and for
attachToRoot:

type BaseTreeItem = {
id: string;
children: BaseTreeltem[];

}

type Treeltem<Children extends Treeltem = BaseTreeltem> = {
id: string;
children: Children[];
collapsed?: boolean;

b

function attachToRoot<T extends Treeltem>(children: T[]): Treeltem<T> {
return {
id: "root",
children,
I
}

const root = attachToRoot([
{
id: "child",
children: [],
collapsed: false,
marked: true,
1,
D;
/*
root is Treeltem<{
id: string;
children: never[];
collapsed: false;
marked: boolean;
}>
*/

Again, we write subtype friendly and treat our input parameters as their own, instead
of making assumptions.

122 | Chapter 4: Generics

4.5 Generating New Object Types

Problem

You have a type in your application that is related to your model. Every time the
model changes, you need to change your types as well.

Solution

Use generic mapped types to create new object types based on the original type.

Discussion

Lets go back to the toy shop from Recipe 3.1. Thanks to union types, intersection
types, and discriminated union types, we were able to model our data quite nicely:

type ToyBase = {
name: string;
description: string;
minimumAge: number;

};

type BoardGame = ToyBase & {
kind: "boardgame";
players: number;

b

type Puzzle = ToyBase & {
kind: "puzzle";
pleces: number;

};

type Doll = ToyBase & {
kind: "doll";
material: "plush" | "plastic";

b
type Toy = Doll | Puzzle | BoardGame;

Somewhere in our code, we need to group all toys from our model in a data structure
that can be described by a type called GroupedToys. GroupedToys has a property for
each category (or "kind") and a Toy array as value. A groupToys function takes an
unsorted list of toys and groups them by kind:

type GroupedToys = {
boardgame: Toy[];
puzzle: Toy[];
doll: Toy[];

b

4.5 Generating New Object Types | 123

function groupToys(toys: Toy[]): GroupedToys {
const groups: GroupedToys = {
boardgame: [],
puzzle: [],
doll: [],
b
for (let toy of toys) {
groups[toy.kind].push(toy);
}

return groups;

}

There are already some niceties in this code. First, we use an explicit type annotation
when declaring groups. This ensures we are not forgetting any category. Also, since
the keys of GroupedToys are the same as the union of "kind" types in Toy, we can
easily index access groups by toy.kind.

Months and sprints pass, and we need to touch our model again. The toy shop is now
selling original or maybe alternate vendors of interlocking toy bricks. We wire the
new type Bricks up to our Toy model:

type Bricks = ToyBase & {
kind: "bricks",
pieces: number;
brand: string;

}

type Toy = Doll | Puzzle | BoardGame | Bricks;

Since groupToys needs to deal with Bricks, too, we get a nice error because Grouped
Toys has no clue about a "bricks" kind:

function groupToys(toys: Toy[]): GroupedToys {
const groups: GroupedToys = {
boardgame: [],
puzzle: [],
doll: [1],
IH
for (let toy of toys) {
groups[toy.kind].push(toy);
// - Element implicitly has an 'any' type because expression
// of type '"boardgame" | "puzzle" | "doll" | "bricks"' can't

// be used to index type 'GroupedToys'.

// Property 'bricks' does not exist on type 'GroupedToys'.(7053)
}
return groups;

}

This is desired behavior in TypeScript: knowing when types don’t match anymore.
This should draw our attention. Let’s give GroupedToys and groupToys an update:

124 | Chapter 4: Generics

type GroupedToys = {
boardgame: Toy[];
puzzle: Toy[];
doll: Toy[];
bricks: Toy[];

b

function groupToys(toys: Toy[]): GroupedToys {
const groups: GroupedToys = {
boardgame: [],
puzzle: [],
doll: [],
bricks: [],
b
for (let toy of toys) {
groups[toy.kind].push(toy);
}

return groups;

}

There is one bothersome thing: the task of grouping toys is always the same. No mat-
ter how much our model changes, we will always select by kind and push into an
array. We would need to maintain groups with every change, but if we change how
we think about groups, we can optimize for change. First, we change the type
GroupedToys to feature optional properties. Second, we initialize each group with an
empty array if there hasn’t been any initialization yet:

type GroupedToys = {
boardgame?: Toy[];
puzzle?: Toy[];
doll?: Toy[];
bricks?: Toy[];

b

function groupToys(toys: Toy[]): GroupedToys {
const groups: GroupedToys = {};
for (let toy of toys) {
// Initialize when not available
groups[toy.kind] = groups[toy.kind] ?? [];
groups[toy.kind]?.push(toy);
}

return groups;

}

We don't need to maintain groupToys anymore. The only thing that needs mainte-
nance is the type GroupedToys. If we look closely at GroupedToys, we see that there is
an implicit relation to Toy. Each property key is part of Toy["kind"]. Let'’s make this

relation explicit. With a mapped type, we create a new object type based on each type
in Toy["kind"].

4.5 Generating New Object Types | 125

Toy["kind"] is a union of string literals: "boardgame" | "puzzle" | "doll" |
"bricks". Since we have a very reduced set of strings, each element of this union will
be used as its own property key. Let that sink in for a moment: we can use a type to be
a property key of a newly generated type. Each property has an optional type modifier
and points to a Toy[]:

type GroupedToys = {

[k in Toy["kind"]]?: Toy[];

IH
Fantastic! Every time we change Toy, we immediately change Toy[]. Our code needs
no change at all; we can still group by kind as we did before.

This is a pattern we have the potential to generalize. Let’s create a Group type that
takes a collection and groups it by a specific selector. We want to create a generic type
with two type parameters:

o The Collection can be anything.

o The Selector, a key of Collection, so it can create the respective properties.
Our first attempt would be to take what we had in GroupedToys and replace the con-
crete types with type parameters. This creates what we need but also causes an error:

// How to use it
type GroupedToys = Group<Toy, "kind"s>;

type Group<Collection, Selector extends keyof Collection> = {
[x in Collection[Selector]]?: Collection[];

// A Type 'Collection[Selector]' is not assignable
// to type 'string [number | symbol'.

// Type 'Collection[keyof Collection]' is not

// assignable to type 'string [number | symbol'.
// Type 'Collection[string] | Collection[number]
// | Collection[symbol]' is not assignable to
// type 'string | number | symbol'.

// Type 'Collection[string]' is not assignable to
// type 'string | number | symbol'.(2322)

1

TypeScript warns us that Collection[string] | Collection[number] | Collec
tion[symbol] could result in anything, not just things that can be used as a key.
That’s true, and we need to prepare for that. We have two options.

First, use a type constraint on Collection that points to Record<string, any>.
Record is a utility type that generates a new object where the first parameter gives you
all keys and the second parameter gives you the types:

// This type is built-in!
type Record<K extends string | number | symbol, T> = { [P in K]: T; };

126 | Chapter 4: Generics

This elevates Collection to a wildcard object, effectively disabling the type-check
from Groups. This is OK because if something would be an unusable type for a prop-
erty key, TypeScript will throw it away anyway. So the final Group has two constrained
type parameters:

type Group<

Collection extends Record<string, any>,
Selector extends keyof Collection

> = {
[x in Collection[Selector]]: Collection[];

IH
The second option is to do a check for each key to see if it is a valid string key. We can
use a conditional type to see if Collection[Selector] is in fact a valid type for a key.
Otherwise, we would remove this type by choosing never. Conditional types are their
own beast, and we tackle this in Recipe 5.4 extensively:

type Group<Collection, Selector extends keyof Collection> = {

[k in Collection[Selector] extends string
? Collection[Selector]
: never]?: Collection[];

¥
Note that we did remove the optional type modifier. We do this because making keys
optional is not the task of grouping. We have another type for that: Partial<T>,
another mapped type that makes every property in an object type optional:

// This type is built-in!

type Partial<T> = { [P in keyof T]?: T[P] };
No matter which Group helper you create, you can now create a GroupedToys object
by telling TypeScript that you want a Partial (changing everything to optional prop-
erties) of a Group of Toys by "kind":

type GroupedToys = Partial<Group<Toy, "kind">>;

Now that reads nicely.

4.6 Modifying Objects with Assertion Signatures

Problem

After a certain function execution in your code, you know the type of a value has
changed.

Solution

Use assertion signatures to change types independently of if and switch statements.

4.6 Modifying Objects with Assertion Signatures | 127

Discussion

JavaScript is a very flexible language. Its dynamic typing features allow you to change
objects at runtime, adding new properties on the fly. And developers use this. There
are situations where you, for example, run over a collection of elements and need to
assert certain properties. You then store a checked property and set it to true, just so
you know that you passed a certain mark:

function check(person: any) {
person.checked = true;

}

const person = {
name: "Stefan",
age: 27,

b

check(person); // person now has the checked property

person.checked; // this is true!

You want to mirror this behavior in the type system; otherwise, you would need to
constantly do extra checks if certain properties are in an object, even though you can
be sure that they exist.

One way to assert that certain properties exist are, well, type assertions. We say that at
a certain point in time, this property has a different type:

(person as typeof person & { checked: boolean }).checked = true;

Good, but you would need to do this type assertion over and over again, as they don’t
change the original type of person. Another way to assert that certain properties are
available is to create type predicates, like those shown in Recipe 3.5:

function check<T>(obj: T): obj is T & { checked: true } {
(obj as T & { checked: boolean }).checked = true;
return true;

}

const person = {
name: "Stefan",
age: 27,

}s

if (check(person)) {
person.checked; // checked is true!

}

This situation is a bit different, though, which makes the check function feel clumsy:
you need to do an extra condition and return true in the predicate function. This
doesn’t feel right.

128 | Chapter 4: Generics

Thankfully, TypeScript has another technique we can leverage in situations like this:
assertion signatures. Assertion signatures can change the type of a value in control
flow, without the need for conditionals. They have been modeled for the Node.js
assert function, which takes a condition, and it throws an error if it isn’'t true. This
means that, after calling assert, you might have more information than before. For
example, if you call assert and check if a value has a type of string, you know that
after this assert function the value should be string:

function assert(condition: any, msg?: string): asserts condition {
if (!condition) {
throw new Error(msg);

}
}

function yell(str: any) {
assert(typeof str === "string");
// str is string
return str.toUpperCase();

}

Please note that the function short-circuits if the condition is false. It throws an error,
the never case. If this function passes, you can really assert the condition.

While assertion signatures have been modeled for the Node.js assert function, you
can assert any type you like. For example, you can have a function that takes any
value for an addition, but you assert that the values need to be number to continue:

function assertNumber(val: any): asserts val is number {
if (typeof val !== "number") {
throw Error("value is not a number");
}
}

function add(x: unknown, y: unknown): number {
assertNumber(x); // x is number
assertNumber(y); // vy is number
return x + y;

}
All the examples you find on assertion signatures are based after assertions and short-
circuit with errors. But we can take the same technique to tell TypeScript that more
properties are available. We write a function that is very similar to check in the predi-
cate function before, but this time we don't need to return true. We set the property,
and since objects are passed by value in JavaScript, we can assert that after calling this
function whatever we pass has a property checked, which is true:

function check<T>(obj: T): asserts obj is T & { checked: true } {
(obj as T & { checked: boolean }).checked = true;
}

4.6 Modifying Objects with Assertion Signatures | 129

const person = {
name: "Stefan",
age: 27,

b

check(person);

And with that, we can modify a value’s type on the fly. It’s a little-known technique
that can help you a lot.

4.7 Mapping Types with Type Maps

Problem

You write a factory function that creates an object of a specific subtype based on a
string identifier, and there are a lot of possible subtypes.

Solution

Store all subtypes in a type map, widen with index access, and use mapped types like
Partial<T>.

Discussion

Factory functions are great if you want to create variants of complex objects based on
some basic information. One scenario that you might know from browser JavaScript
is the creation of elements. The document.createElement function accepts an ele-
ment’s tag name, and you get an object where you can modify all necessary
properties.

You want to spice up this creation with a neat factory function you call create
Element. Not only does it take the element’s tag name, but it also makes a list of prop-
erties so you don't need to set each property individually:

// Using create Element

// a i1s HTMLAnchorElement

const a = createElement("a", { href: "https://fettblog.eu" });

// b 1s HTMLVideoElement

const b = createElement("video", { src: "/movie.mp4", autoplay: true });
// ¢ 1s HTMLElement

const c = createElement("my-element");

You want to create good types for this, so you need to take care of two things:

» Make sure you create only valid HTML elements.

o Provide a type that accepts a subset of an HTML element’s properties.

130 | Chapter4: Generics

Let’s take care of the valid HTML elements first. There are around 140 possible
HTML elements, which is a lot. Each of those elements has a tag name, which can be
represented as a string, and a respective prototype object in the DOM. Using the dom
lib in your tsconfig.json, TypeScript has information on those prototype objects in the
form of types. And you can figure out all 140 element names.

A good way to provide a mapping between element tag names and prototype objects
is to use a type map. A type map is a technique where you take a type alias or interface
and let keys point to the respective type variants. You can then get the correct type
variant using index access of a string literal type:

type AllElements = {
a: HTMLAnchorElement;
div: HTMLDivElement;
video: HTMLVideoElement;
//... and ~140 more!

b

// HTMLAnchorElement

type A = AllElements["a"];
It looks like accessing a JavaScript object’s properties using index access, but remem-
ber that were still working on a type level. This means index access can be broad:

type AllElements = {
a: HTMLAnchorElement;
div: HTMLDivElement;
video: HTMLVideoElement;
//... and ~140 more!

b

// HTMLAnchorElement | HTMLDivELement
type AandDiv = AllElements["a" | "div"];

Let’s use this map to type the createElement function. We use a generic type parame-
ter constrained to all keys of ALlElements, which allows us to pass only valid HTML
elements:

function createElement<T extends keyof AllElements>(tag: T): AllElements[T] {

return document.createElement(tag as string) as AllElements[T];

}

// a is HTMLAnchorElement

const a = createElement("a");
Use generics here to pin a string literal to a literal type, which we can use to index the
right HTML element variant from the type map. Also note that using document.
createElement requires two type assertions. One makes the set wider (T to string),
and one makes the set narrower (HTMLElement to Al1Elements[T]). Both assertions

4.7 Mapping Types with Type Maps | 131

indicate that we have to deal with an API outside our control, as established in Recipe
3.9. We will deal with the assertions later on.

Now we want to provide the option to pass extra properties for said HTML elements,
to set an href to an HTMLAnchorElement, and so forth. All properties are already in
the respective HTMLElement variants, but they’re required, not optional. We can make
all properties optional with the built-in type Partial<T>. It's a mapped type that takes
all properties of a certain type and adds a type modifier:

type Partial<T> = { [P in keyof T]?: T[P] };

We extend our function with an optional argument props that is a Partial of the

indexed element from Al1Elements. This way, we know that if we pass an "a", we can
only set properties that are available in HTMLAnchorElement:

function createElement<T extends keyof AllElements>(
tag: T,
props?: Partial<AllElements[T]>
): AllElements[T] {
const elem = document.createElement(tag as string) as AllElements[T];
return Object.assign(elem, props);

}

const a = createElement("a", { href: "https://fettblog.eu" });

const x = createElement("a", { src: "https://fettblog.eu" });

//

// Argument of type '{ src: string; }' is not assignable to parameter
// of type 'Partial<HTMLAnchorElement>'.

// Object literal may only specify known properties, and 'src' does not
// exist in type 'Partial<HTMLAnchorElement>"'. (2345)

1

Fantastic! Now it’s up to you to figure out all 140 HTML elements. Or not. Somebody
already did the work and put HTMLElementTagNameMap into lib.dom.ts. So let’s use this
instead:

function createElement<T extends keyof HTMLElementTagNameMap>(
tag: T,
props?: Partial<HTMLElementTagNameMap[T]>
): HTMLElementTagNameMap[T] {
const elem = document.createElement(tag);
return Object.assign(elem, props);

}

This is also the interface used by document.createElement, so there is no friction
between your factory function and the built-in one. No extra assertions necessary.

There is only one caveat. You are restricted to the 140 elements provided by HTML
ElementTagNameMap. What if you want to create SVG elements, or web components
that can have fully customized element names? Your factory function suddenly is
too constrained.

132 | Chapter4: Generics

To allow for more—as document.createElement does—we would need to add all
possible strings to the mix again. HTMLElementTagNameMap is an interface. So we can
use declaration merging to extend the interface with an indexed signature, where we
map all remaining strings to HTMLUnknownElement:

interface HTMLElementTagNameMap {
[x: string]: HTMLUnknownElement;
b

function createElement<T extends keyof HTMLElementTagNameMap>(
tag: T,
props?: Partial<HTMLElementTagNameMap[T]>
): HTMLElementTagNameMap[T] {
const elem = document.createElement(tag);
return Object.assign(elem, props);

}

// a i1s HTMLAnchorElement

const a = createElement("a", { href: "https://fettblog.eu" });
// b 1s HTMLUnknownElement

const b = createElement("my-element");

Now we have everything we want:

o A great factory function to create typed HTML elements
o The possibility to set element properties with just one configuration object

o The flexibility to create more elements than defined

The last is great, but what if you only want to allow for web components? Web com-
ponents have a convention; they need to have a dash in their tag name. We can model
this using a mapped type on a string template literal type. You will learn all about
string template literal types in Chapter 6.

For now, the only thing you need to know is that we create a set of strings where the
pattern is any string followed by a dash followed by any string. This is enough to
ensure we only pass correct element names.

Mapped types work only with type aliases, not interface declarations, so we need to
define an AllElements type again:

type AllElements = HTMLElementTagNameMap &
{
[x in “${string}-${string}]: HTMLElement;
1

function createElement<T extends keyof AllElements>(
tag: T,
props?: Partial<AllElements[T]>

): AllElements[T] {

4.7 Mapping Types with Type Maps | 133

const elem = document.createElement(tag as string) as AllElements[T];
return Object.assign(elem, props);

}

const a = createElement("a", { href: "https://fettblog.eu" }); // OK
const b = createElement("my-element"); // 0K

const c = createElement("thisWillError");

// .

// Argument of type '"thiswillError"' is not

// assignable to parameter of type '‘S{string}-S{string}’
// | keyof HTMLElementTagNameMap'. (2345)

Fantastic. With the AllElements type we also get type assertions back, which we don’t
like that much. In that case, instead of asserting, we can also use a function overload,
defining two declarations: one for our users, and one for us to implement the func-
tion. You can learn more about this function overload technique in Recipes 2.6 and
12.7:

function createElement<T extends keyof AllElements>(
tag: T,
props?: Partial<AllElements[T]>
): AllElements[T];
function createElement(tag: string, props?: Partial<HTMLElement>): HTMLElement {
const elem = document.createElement(tag);
return Object.assign(elem, props);
}
We are all set. We defined a type map with mapped types and index signatures, using
generic type parameters to be very explicit about our intentions. A great combination

of multiple tools in our TypeScript tool belt.

4.8 Using ThisType to Define this in Objects

Problem

Your app requires complex configuration objects with methods, where this has a dif-
ferent context depending on usage.

Solution

Use the built-in generic ThisType<T> to define the correct this.

134 | Chapter4: Generics

Discussion

Frameworks like Vue]JS rely a lot on factory functions, where you pass a comprehen-
sive configuration object to define initial data, computed properties, and methods for
each instance. You want to create a similar behavior for components of your app. The
idea is to provide a configuration object with three properties:

A data function
The return value is the initial data for the instance. You should not have access to
any other properties from the configuration object in this function.

A computed property
This is for computed properties, which are based on the initial data. Computed
properties are declared using functions. They can access initial data just like
normal properties.

A methods property
Methods can be called and can access computed properties as well as the initial
data. When methods access computed properties, they access it like they would
access normal properties: no need to call the function.

Looking at the configuration object in use, there are three different ways to interpret
this. In data, this doesn’t have any properties at all. In computed, each function can
access the return value of data via this just like it would be part of their object. In
methods, each method can access computed properties and data via this in the same
way:
const instance = create({
data() {
return {

firstName: "Stefan",
lastName: "Baumgartner",

b
1
computed: {
fullName() {
// has access to the return object of data
return this.firstName + " " + this.lastName;
1,
1
methods: {
hi() {
// use computed properties just like normal properties
alert(this.fullName.toLowerCase());
1,
}s
s

4.8 Using ThisType to Define thisin Objects | 135

https://vuejs.org

This behavior is special but not uncommon. And with a behavior like that, we defi-
nitely want to rely on good types.

In this lesson we will focus only on the types, not on the actual
implementation, as that would exceed this chapter’s scope.

Let’s create types for each property. We define a type Options, which we are going to
refine step by step. First is the data function. data can be user defined, so we want to
specify data using a generic type parameter. The data we are looking for is specified
by the return type of the data function:

type Options<Data> = {

data(this: {})?: Data;

IH
So once we specify an actual return value in the data function, the Data placeholder
gets substituted with the real object’s type. Note that we also define this to point to
the empty object, which means that we don't get access to any other property from
the configuration object.

Next, we define computed. computed is an object of functions. We add another generic
type parameter called Computed and let the value of Computed be typed through usage.
Here, this changes to all the properties of Data. Since we can’t set this like we do in
the data function, we can use the built-in helper type ThisType and set it to the
generic type parameter Data:
type Options<Data, Computed> = {
data(this: {})7?: Data;
computed?: Computed & ThisType<Data>;
1Y
This allows us to access, for example, this.firstName, like in the previous example.
Last but not least, we want to specify methods. methods is again special, as you are
getting access not only to Data via this but also to all methods and to all computed
properties as properties.

Computed holds all computed properties as functions. We would need their value,
though—more specifically, their return value. If we access fullName via property
access, we expect it to be a string.

136 | Chapter4: Generics

For that, we create a helper type called MapFnToProp. It takes a type that is an object of
functions and maps it to the return values’ types. The built-in ReturnType helper type
is perfect for this scenario:

// An object of functions ...
type FnObj = Record<string, () => any>;

// ... to an object of return types
type MapFnToProp<FunctionObj extends FnObj> = {
[K in keyof FunctionObj]: ReturnType<FunctionObj[K]>;

b
We can use MapFnToProp to set ThisType for a newly added generic type parameter
called Methods. We also add Data and Methods to the mix. To pass the Computed
generic type parameter to MapFnToProp, it needs to be constrained to FnObj, the same
constraint of the first parameter FunctionObj in MapFnToProp:

type Options<Data, Computed extends FnObj, Methods> = {
data(this: {})?: Data;
computed?: Computed & ThisType<Data>;
methods?: Methods & ThisType<Data & MapFnToProp<Computed> & Methods>;
b
And that’s the type! We take all generic type properties and add them to the create
factory function:

declare function create<Data, Computed extends FnObj, Methods>(
options: Options<Data, Computed, Methods>
): any;
Through usage, all generic type parameters will be substituted. And the way Options
is typed, we get all the autocomplete necessary to ensure we don’t run into troubles, as
seen in Figure 4-1.

This example shows wonderfully how TypeScript can be used to type elaborate APIs
where a lot of object manipulation is happening underneath.’

1 Special thanks to the creators of Type Challenges for this beautiful example.

4.8 Using ThisType to Define this in Objects | 137

https://oreil.ly/pHc9j

96 create({

97 data() {

98 // @ts-expect-error

99 this.firstname;

100 // @ts-expect-error

101 this.getRandom();

102 // @ts-expect-error

103 this.data();

lod

105 return {

106 firstName: "Stefan",

107 lastName: "Baumgartner",

108 age: 40,

109 };

110 },

111 computed: {

112 fullName() {

113 return ‘${this.firstName} ${this.lastName}";
114 1,

115 },

116 methods: {

117 getRandom() {

118 return Math.random():

119 1, £ age

120 hi() { & firstName
121 alert(this.lastNa @ fullName
122 alert(this.fullna @ getRandom
123 alert(this.getRan @ hi

120 1, & lastName
125 test() { @ test

126 ‘ console.log(this.)

127 1,

128 ¥,

129 1;

130

Figure 4-1. The methods configuration in the factory function having all the access to the
correct properties

4.9 Adding Const Context to Generic Type Parameters

Problem

When you pass complex, literal values to a function, TypeScript widens the type to
something more general. While this is desired behavior in a lot of cases, in some you
want to work on the literal types rather than the widened type.

Solution

Add a const modifier in front of your generic type parameter to keep the passed
values in const context.

138 | Chapter 4: Generics

Discussion

Single-page application (SPA) frameworks tend to reimplement a lot of browser func-
tionality in JavaScript. For example, features like the History API made it possible to
override the regular navigation behavior, which SPA frameworks use to switch
between pages without a real page reload, by swapping the content of the page and
changing the URL in the browser.

Imagine working on a minimalistic SPA framework that uses a so-called router to
navigate between pages. Pages are defined as components, and a ComponentConstruc
tor interface knows how to instantiate and render new elements on your website:

interface ComponentConstructor {
new(): Component;

}

interface Component {
render(): HTMLElement;
}

The router should take a list of components and associated paths, stored as string.
When creating a router through the router function, it should return an object that
lets you navigate the desired path:

type Route = {
path: string;
component: ComponentConstructor;

}

function router(routes: Route[]) {
return {
navigate(path: string) {
/) ...
1,
I
}

How the actual navigation is implemented is of no concern to us right now; instead,
we want to focus on the typings of the function interface.

The router works as intended; it takes an array of Route objects and returns an object
with a navigate function, which allows us to trigger the navigation from one URL to
the other and renders the new component:

const rtr = router([

{
path: "/",
component: Main,
}s
{

path: "/about",

4.9 Adding Const Context to Generic Type Parameters | 139

https://oreil.ly/KMBgj

component: About,
IR
D

rtr.navigate("/faq");

What you immediately see is that the types are way too broad. If we allow navigating
to every string available, nothing keeps us from using bogus routes that lead
nowhere. We would need to implement some sort of error handling for information
that is already ready and available. So why not use it?

Our first idea would be to replace the concrete type with a generic type parameter.
The way TypeScript deals with generic substitution is that if we have a literal type,
TypeScript will subtype accordingly. Introducing T for Route and using T["path"]
instead of string comes close to what we want to achieve:

function router<T extends Route>(routes: T[]) {
return {
navigate(path: T["path"]) {
/] ...
I8
I
}
In theory, this should work. If we remind ourselves what TypeScript does with literal,
primitives types in that case, we would expect the value to be narrowed to the literal

type:

function getPath<T extends string>(route: T): T {
return route;

}

const path = getPath("/"); // "/"

You can read more on that in Recipe 4.3. One important detail is that path in the pre-
vious example is in a const context, because the returned value is immutable.

The only problem is that we are working with objects and arrays, and TypeScript
tends to widen types in objects and arrays to something more general to allow for the
mutability of values. If we look at a similar example, but with a nested object, we see
that TypeScript takes the broader type instead:

type Routes = {
paths: string[];
b

function getPaths<T extends Routes>(routes: T): T["paths"] {
return routes.paths;

}

const paths = getPaths({ paths: ["/", "/about"] }); // string[]

140 | Chapter 4: Generics

For objects, the const context for paths is only for the binding of the variable, not for
its contents. This eventually leads to losing some of the information we need to cor-
rectly type navigate.

A way to work around this limitation is to manually apply const context, which needs
us to redefine the input parameter to be readonly:

function router<T extends Route>(routes: readonly T[]) {
return {
navigate(path: T["path"]) {
history.pushState({}, "", path);
1
1
}

const rtr = router([

{
path: "/",
component: Main,
1
{
path: "/about",
component: About,

1

] as const);

rtr.navigate("/about");

This works but also requires that we not forget a very important detail when coding.
And actively remembering workarounds is always a recipe for disaster.

Thankfully, TypeScript allows us to request const context from generic type parame-
ters. Instead of applying it to the value, we substitute the generic type parameter for a
concrete value but in const context by adding the const modifier to the generic type
parameter:

function router<const T extends Route>(routes: T[]) {
return {
navigate(path: T["path"]) {
// tbd
1,
I
}

We can then use our router just as we are accustomed to and even get autocomplete
for possible paths:

const rtr = router([

{
path: "/",
component: Main,

1

4.9 Adding Const Context to Generic Type Parameters | 141

{
path: "/about",

component: About,

3
D

rtr.navigate("/about");

Even better, we get proper errors when we pass in something bogus:

const rtr = router([

{
path: "/",
component: Main,
}s
{

path: "/about",
component: About,

1
D)

rtr.navigate("/faq");

// 4
// Argument of type '"/faq"' is not assignable to
// parameter of type '"/" | "/about"'.(2345)

The beautiful thing: it’s all hidden in the function’s API. What we expect becomes
clearer, the interface tells us the constraints, and we don’t have to do anything extra

when using router to ensure type safety.

142 | Chapter 4: Generics

CHAPTER 5
Conditional Types

In this chapter, we will take a good look at a feature that is unique to TypeScript: con-
ditional types. Conditional types allow us to select types based on subtype checks,
allowing us to move around in the type space and get even more flexibility in how we
want to design interfaces and function signatures.

Conditional types are a powerful tool that allows you to make up types on the fly. It
makes TypeScript’s type system turing complete, as shown in this GitHub issue,
which is both outstanding but also a bit frightening. With so much power in your
hands, it’s easy to lose focus on which types you actually need, leading you into dead
ends or crafting types that are too hard to read. Throughout this book, we will discuss
the usage of conditional types thoroughly, always reassessing that what we do actually
leads to our desired goal.

Note that this chapter is much shorter than others. This is not because there’s not a lot
to say about conditional types: quite the contrary. It's more because we will see good
use of conditional types in the subsequent chapters. Here, we want to focus on the
fundamentals and establish terminology that you can use and refer to whenever you
need some type magic.

5.1 Managing Complex Function Signatures

Problem

You are creating a function with varying parameters and return types. Managing all
variations using function overloads gets increasingly complex.

Solution

Use conditional types to define a set of rules for parameter and return types.

143

https://oreil.ly/igPhB

Discussion

You create software that presents certain attributes as labels based on user-defined
input. You distinguish between StringLabel and NumberLabel to allow for different
kinds of filter operations and searches:

type StringLabel = {
name: string;

};

type NumberLabel = {
id: number;

b
User input is either a string or a number. The createlLabel function takes the input
as a primitive type and produces either a StringLabel or NumberLabel object:

function createLabel(input: number | string): NumberLabel | StringLabel {
if (typeof input === "number") {
return { id: input };
} else {
return { name: input };
}
}

With the basic functionality done, you see that your types are way too broad. If you
enter a number, the return type of createLabel is still NumberLabel | StringLabel,
when it can only be NumberLabel. The solution? Adding function overloads to explic-
itly define type relationships, like we learned in Recipe 2.6:
function createlabel(input: number): Numberlabel;
function createLabel(input: string): StringlLabel;
function createlLabel(input: number | string): NumberLabel | StringLabel {
if (typeof input === "number") {
return { id: input };
} else {
return { name: input };
}
}
The way function overloads work is that the overloads themselves define types for
usage, whereas the last function declaration defines the types for the implementation
of the function body. With createLabel, we are able to pass in a string and get a
StringLabel or pass in a number and get a NumberLabel, as those are the types avail-
able to the outside.

This is problematic in cases where we couldn’t narrow the input type beforehand. We
lack a function type to the outside that allows us to pass in input that is either number
or string:

144 | Chapter5: Conditional Types

function inputToLabel(input: string | number) {
return createlLabel(input);
// 4
// No overload matches this call. (2769)

}

To circumvent this, we add another overload that mirrors the implementation func-
tion signature for very broad input types:

function createlLabel(input: number): NumberlLabel;
function createlLabel(input: string): StringlLabel;
function createLabel(input: number | string): NumberLabel | StringLabel;
function createLabel(input: number | string): NumberLabel | StringLabel {
if (typeof input === "number") {
return { i1d: input };
} else {
return { name: input };
}
}

What we see here is that we already need three overloads and four function signature
declarations total to describe the most basic behavior for this functionality. And from
there on, it just gets worse.

We want to extend our function to be able to copy existing StringLabel and Number
Label objects. This ultimately means more overloads:

function createLabel(input: number): NumberLabel;
function createlLabel(input: string): Stringlabel;
function createLabel(input: StringLabel): StringlLabel;
function createlLabel(input: NumberLabel): NumberLabel;
function createlLabel(input: string | StringLabel): StringLabel;
function createlLabel(input: number | NumberlLabel): NumberlLabel;
function createlabel(
input: number | string | StringLabel | NumberLabel
): NumberLabel | StringLabel;
function createlabel(
input: number | string | StringLabel | NumberLabel
): NumberLabel | StringLabel {

if (typeof input === "number") {
return { id: input };
} else if (typeof input === "string") {

return { name: input };

} else if ("id" in input) {
return { id: input.id };

} else {
return { name: input.name };

5.1 Managing Complex Function Signatures | 145

Truth be told, depending on how expressive we want our type hints to be, we can
write fewer but also a lot more function overloads. The problem is still apparent:
more variety results in more complex function signatures.

One tool in TypeScript’s toolbelt can help with situations like this: conditional types.
Conditional types allow us to select a type based on certain subtype checks. We ask if
a generic type parameter is of a certain subtype and, if so, return the type from the
true branch, or otherwise return the type from the false branch.

For example, the following type returns the input parameter if T is a subtype of
string (which means all strings or very specific ones). Otherwise, it returns never:

type IsString<T> = T extends string ? T : never;

type A = IsString<string>; // string

type B = IsString<"hello" | "world"s; // string

type C = IsString<1000>; // never
TypeScript borrows this syntax from JavaScript’s ternary operator. And just like
JavaScript’s ternary operator, it checks if certain conditions are valid. But instead of
having the typical set of conditions you know from a programming language, Type-
Script’s type system checks only if the values of the input type are included in the set
of values we check against.

With that tool, we are able to write a conditional type called GetLabel<T>. We check
if the input is either of string or StringLabel. If so, we return StringLabel; else, we
know that it must be a NumberLabel:

type GetLabel<T> = T extends string | StringlLabel ? StringLabel : NumberlLabel;

This type only checks if the inputs string, StringLabel, number, and NumberLabel
are in the else branch. If we want to be on the safe side, we would also include a
check against possible inputs that produce a NumberLabel by nesting conditional
types:
type GetLabel<T> = T extends string | StringLabel
? StringLabel
: T extends number | NumberLabel

? NumberLabel
: never;

Now its time to wire up our generics. We add a new generic type parameter T to

createlabel that is constrained to all possible input types. This T parameter serves as
input for GetLabel<T>, where it will produce the respective return type:

function createlLabel<T extends number | string | StringlLabel | NumberLabel>(
input: T
): GetLabel<T> {
if (typeof input === "number") {
return { id: input } as GetLabel<T>;

146 | Chapter5: Conditional Types

} else if (typeof input === "string") {
return { name: input } as GetLabel<T>;

} else if ("id" in input) {
return { id: input.id } as GetLabel<T>;

} else {
return { name: input.name } as GetlLabel<T>;

}

}

Now we are ready to handle all possible type combinations and will still get the cor-
rect return type from getLabel, all in just one line of code.

If you look closely, you will see that we needed to work around type-checks for the
return type. Unfortunately, TypeScript is not able to do proper control flow analysis
when working with generics and conditional types. A little type assertion tells Type-
Script that we are dealing with the right return type.

Another workaround would be to think of the function signature with conditional
types as an overload to the original broadly typed function:

function createlLabel<T extends number | string | StringlLabel | NumberLabel>(
input: T

): GetLabel<T>;

function createlLabel(
input: number | string | StringLabel | NumberLabel

): NumberLabel | StringLabel {

if (typeof input === "number") {
return { id: input };
} else if (typeof input === "string") {

return { name: input };
} else if ("id" in input) {
return { i1d: input.id };
} else {
return { name: input.name };
}
}
This way, we have a flexible type for the outside world that tells exactly what output
we get based on our input. And for implementation, you have the full flexibility you
know from a broad set of types.

Does this mean you should prefer conditional types over function overloads in all
scenarios? Not necessarily. In Recipe 12.7 we look at situations where function over-
loads are the better choice.

5.2 Filtering with never

Problem

You have a union of various types but you just want to have all subtypes of string.

5.2 Filtering with never | 147

Solution
Use a distributive conditional type to filter for the right type.

Discussion

Let’s say you have some legacy code in your application where you tried to re-create
frameworks like jQuery. You have your own kind of ElementList that has helper
functions to add and remove class names to objects of type HTMLElement, or to bind
event listeners to events.

Additionally, you can access each element of your list through index access. A type
for such an ElementList can be described using an index access type for number
index access, together with regular string property keys:

type ElementList = {

addClass: (className: string) => ElementList;

removeClass: (className: string) => ElementlList;

on: (event: string, callback: (ev: Event) => void) => ElementlList;
length: number;

[x: number]: HTMLElement;

b

This data structure has been designed to have a fluent interface. Meaning that if you
call methods like addClass or removeClass, you get the same object back so you can
chain your method calls.

A sample implementation of these methods could look like this:

// begin excerpt
addClass: function (className: string): ElementList {
for (let 1 = 0; 1 < this.length; i++) {
this[1].classList.add(className);
}
return this;
1,
removeClass: function (className: string): ElementList {
for (let 1 = 0; 1 < this.length; i++) {
this[1].classList.remove(className);
}
return this;
1,
on: function (event: string, callback: (ev: Event) => void): ElementList {
for (let 1 = 0; 1 < this.length; i++) {
this[1].addEventListener(event, callback);
}
return this;
1,
// end excerpt

148 | Chapter5: Conditional Types

As an extension of a built-in collection like Array or NodeList, changing things on a
set of HTMLElement objects becomes really convenient:

declare const myCollection: ElementList;

myCollection
.addClass("toggle-off")
.removeClass("toggle-on")
.on("click", (e) == {});

Let’s say you need to maintain your jQuery substitute and figure out that direct ele-
ment access has proven to be somewhat unsafe. When parts of your application can
change things directly, it becomes harder for you to figure out where changes come
from, if not from your carefully designed ElementList data structure:

myCollection[1].classList.toggle("toggle-on");

Since you can't change the original library code (too many departments depend on
it), you decide to wrap the original ElementList in a Proxy.

Proxy objects take an original target object and a handler object that defines how to
handle access. The following implementation shows a Proxy that allows only read
access, and only if the property key is of type string and not a string that is a string
representation of a number:

const safeAccessCollection = new Proxy(myCollection, {
get(target, property) {
if (
typeof property === "string" &&
property in target &&
"" + parseInt(property) !== property
) {
return target[property as keyof typeof target];
}

return undefined;

},
s

Handler objects in Proxy objects receive only string or symbol
properties. If you do index access with a number—for example, 0—
JavaScript converts this to the string "0".

This works great in JavaScript, but our types don’t match anymore. The return type of
the Proxy constructor is ElementList again, which means that the number index
access is still intact:

// Works in TypeScript throws in JavaScript
safeAccessCollection[0].classList.toggle("toggle-on");

5.2Filtering with never | 149

We need to tell TypeScript that we are now dealing with an object with no number
index access by defining a new type.

Let’s look at the keys of ElementList. If we use the keyof operator, we get a union
type of all possible access methods for objects of type ElementList:

" "

// resolves to "addClass" | "removeClass" | "on

type ElementListKeys = keyof ElementlList;

| "length" | number

It contains four strings as well as all possible numbers. Now that we have this union,
we can create a conditional type that gets rid of everything that isn't a string:

type JustStrings<T> = T extends string ? T : never;

JustStrings<T> is what we call a distributive conditional type. Since T is on its own in
the condition—not wrapped in an object or array—TypeScript will treat a conditional
type of a union as a union of conditional types. Effectively, TypeScript does the same
conditional check for every member of the union T.

In our case, it goes through all members of keyof ElementList:

type JustElementListStrings =

"addClass" extends string ? "addClass" : never
"removeClass" extends string ? "removeClass" : never
on" extends string ? "on" : never

"length" extends string ? "length" : never

number extends string ? number : never;

The only condition that hops into the false branch is the last one, where we check if
number is a subtype of string, which it isn’t. If we resolve every condition, we end up
with a new union type:

type JustElementListStrings =
"addClass"

"removeClass"

"on"

"length"

never;

A union with never effectively drops never. If you have a set with no possible value
and you join it with a set of values, the values remain:

type JustElementListStrings =
"addClass"

| "removeClass"
| "on"

| "length";

This is exactly the list of keys we consider safe to access! By using the Pick helper
type, we can create a type that is effectively a supertype of ElementList by picking all
keys that are of type string:

type SafeAccess = Pick<ElementList, JustStrings<keyof ElementList>>;

150 | Chapter5: Conditional Types

If we hover over it, we see that the resulting type is exactly what we were looking for:

type SafeAccess = {
addClass: (className: string) => ElementList;
removeClass: (className: string) => ElementlList;
on: (event: string, callback: (ev: Event) => void) => ElementList;
length: number;

IH
Let’s add the type as an annotation to safeAccessCollection. Since it’s possible to

assign to a supertype, TypeScript will treat safeAccessCollection as a type with no
number index access from that moment on:

const safeAccessCollection: Pick<
ElementList,
JustStrings<keyof ElementList>
> = new Proxy(myCollection, {
get(target, property) {
if (
typeof property === "string" &&
property in target &&
"" + parselnt(property) !== property
) {
return target[property as keyof typeof target];

}

return undefined;
b
s
When we now try to access elements from safeAccessCollection, TypeScript will
greet us with an error:

safeAccessCollection[1].classList.toggle("toggle-on");

// » Element implicitly has an 'any' type because expression of

// type '1' can't be used to index type

// 'Pick<ElementList, "addClass" | "removeClass" | "on" | "length"s'.
And that’s exactly what we need. The power of distributive conditional types is that
we change members of a union. We will see another example in Recipe 5.3, where we
work with built-in helper types.

5.3 Grouping Elements by Kind

Problem

Your Group type from Recipe 4.5 works fine, but the type for each entry of the group
is too broad.

5.3 Grouping ElementsbyKind | 151

Solution

Use the Extract helper type to pick the right member from a union type.

Discussion

Let’s go back to the toy shop example from Recipes 3.1 and 4.5. We started with a
thoughtfully crafted model, with discriminated union types allowing us to get exact
information about every possible value:

type ToyBase = {
name: string;
description: string;
minimumAge: number;

1

type BoardGame = ToyBase & {
kind: "boardgame";
players: number;

b

type Puzzle = ToyBase & {
kind: "puzzle";
pleces: number;

1

type Doll = ToyBase & {
kind: "doll";
material: "plush" | "plastic";

b
type Toy = Doll | Puzzle | BoardGame;

We then found a way to derive another type called GroupedToys from Toy, where we
take the union type members of the kind property as property keys for a mapped
type, where each property is of type Toy[]:

type GroupedToys = {

[k in Toy["kind"]]?: Toy[];

}
Thanks to generics, we were able to define a helper type Group<Collection, Selec
tor> to reuse the same pattern for different scenarios:

type Group<
Collection extends Record<string, any>,
Selector extends keyof Collection
> =
[K in Collection[Selector]]: Collection[];
b

type GroupedToys = Partial<Group<Toy, "kind">>;

152 | Chapter5: Conditional Types

The helper type works great, but there’s one caveat. If we hover over the generated
type, we see that while Group<Collection, Selector> is able to pick the discrimi-
nant of the Toy union type correctly, all properties point to a very broad Toy[]:

type GroupedToys = {
boardgame?: Toy[] | undefined;
puzzle?: Toy[] | undefined;
doll?: Toy[] | undefined;
I H
But shouldn’t we know more? For example, why does boardgame point to a Toy[]
when the only realistic type should be BoardGame[]. Same for puzzles and dolls, and
all the subsequent toys we want to add to our collection. The type we are expecting
should look more like this:

type GroupedToys = {

boardgame?: BoardGame[] | undefined;

puzzle?: Puzzle[] | undefined;
doll?: Doll[] | undefined;

IH
We can achieve this type by extracting the respective member from the Collection
union type. Thankfully, there is a helper type for that: Extract<T, U>, where T is the
collection, U is part of T.

Extract<T, Us is defined as:
type Extract<T, U> = T extends U ? T : never;

As T in the condition is a naked type, T is a distributive conditional type, which means
TypeScript checks if each member of T is a subtype of U, and if this is the case, it keeps
this member in the union type. How would this work for picking the right group of
toys from Toy?

Let’s say we want to pick Doll from Toy. Doll has a couple of properties, but the kind
property separates distinctly from the rest. So for a type to look only for Doll would
mean that we extract from Toy every type where { kind: "doll" }:

type ExtractedDoll = Extract<Toy, { kind: "doll" }>;

With distributive conditional types, a conditional type of a union is a union of condi-
tional types, so each member of T is checked against U:
type ExtractedDoll =

BoardGame extends { kind: "doll" } ? BoardGame : never

Puzzle extends { kind: "doll" } ? Puzzle : never |

Doll extends { kind: "doll" } ? Doll : never;
Both BoardGame and Puzzle are not subtypes of { kind: "doll" }, so they resolve to
never. But Doll is a subtype of { kind: "doll" },so it resolves to Doll:

type ExtractedDoll = never | never | Doll;

5.3 Grouping ElementsbyKind | 153

In a union with never, never just disappears. So the resulting type is Dol1l:
type ExtractedDoll = Doll;

This is exactly what we are looking for. Let’s get that check into our Group helper type.
Thankfully, we have all parts available to extract a specific type from a groups
collection:

o The Collection itself, a placeholder that eventually is substituted with Toy

o The discriminant property in Selector, which eventually is substituted with
"kind"

o The discriminant type we want to extract, which is a string type and coinciden-
tally also the property key we map out in Group: K

So the generic version of Extract<Toy, { kind: "doll" }> within Group<Collec
tion, Selector> is this:
type Group<
Collection extends Record<string, any>,
Selector extends keyof Collection
> = {
[K in Collection[Selector]]: Extract<Collection, { [P in Selector]: K }>[];
b
If we substitute Collection with Toy and Selector with "kind", the type reads as
follows:

[K in Collection[Selector]]
Take each member of Toy["kind"]—in that case, "boardgame", "puzzle", and
"doll"—as a property key for a new object type.

Extract<Collection, ..>
Extract from the Collection, the union type Toy, each member that is a subtype
of...

{ [P in Selector]: K }
Go through each member of Selector—in our case, it’s just "kind"—and create
an object type that points to "boardgame" when the property key is "boardgame",
"puzzle" when the property key is "puzzle", and so on.

That’s how we pick for each property key the right member of Toy. The result is as
expected:

type GroupedToys = Partial<Group<Toy, "kind">>;
// resolves to:
type GroupedToys = {

boardgame?: BoardGame[] | undefined;

puzzle?: Puzzle[] | undefined;

154 | Chapter5: Conditional Types

doll?: Doll[] | undefined;
b

Fantastic! The type is now a lot clearer, and we can make sure that we don’t need to
deal with puzzles when we selected board games. But some new problems have

popped up.
Since the types of each property are much more refined and don’t point to the very

broad Toy type, TypeScript struggles a bit with resolving each collection in our group
correctly:

function groupToys(toys: Toy[]): GroupedToys {
const groups: GroupedToys = {};
for (let toy of toys) {
groups[toy.kind] = groups[toy.kind] ?? [];
// * Type 'BoardGame[] | Doll[] | Puzzle[]' is not assignable to
// type '(BoardGame[] & Puzzle[] & Doll[]) | undefined'. (2322)
groups[toy.kind]?.push(toy);
// A
// Argument of type 'Toy' is not assignable to
// parameter of type 'never'. (2345)
}
return groups;

}

The problem is that TypeScript still thinks of toy as potentially being all toys, whereas
each property of group points to some very specific ones. There are three ways to
solve this issue.

First, we could again check for each member individually. Since TypeScript thinks of
toy as a very broad type, narrowing makes the relationship clear again:

function groupToys(toys: Toy[]): GroupedToys {
const groups: GroupedToys = {};
for (let toy of toys) {
switch (toy.kind) {
case "boardgame":
groups[toy.kind] = groups[toy.kind] ?? [];
groups[toy.kind]?.push(toy);
break;
case "doll":
groups[toy.kind] = groups[toy.kind] ?? [];
groups[toy.kind]?.push(toy);
break;
case "puzzle":
groups[toy.kind] = groups[toy.kind] ?? [];
groups[toy.kind]?.push(toy);
break;
}
}
return groups;

}

5.3 Grouping ElementsbyKind | 155

That works, but there’s lots of duplication and repetition we want to avoid.

Second, we can use a type assertion to widen the type of groups[toy.kind] so Type-
Script can ensure index access:

function groupToys(toys: Toy[]): GroupedToys {
const groups: GroupedToys = {};
for (let toy of toys) {
(groups[toy.kind] as Toy[]) = groups[toy.kind] ?? [];
(groups[toy.kind] as Toy[])?.push(toy);
}

return groups;

}

This effectively works like before our change to GroupedToys, and the type assertion
tells us that we intentionally changed the type here to get rid of type errors.

Third, we can work with a little indirection. Instead of adding toy directly to a group,
we use a helper function assign where we work with generics:

function groupToys(toys: Toy[]): GroupedToys {
const groups: GroupedToys = {};
for (let toy of toys) {
assign(groups, toy.kind, toy);
}

return groups;

}

function assign<T extends Record<string, K[]>, K>(
groups: T,
key: keyof T,
value: K

) {
// Initialize when not available
groups[key] = groups[key] ?? [];
groups[key]?.push(value);

}

Here, we narrow the right member of the Toy union by using TypeScripts generic
substitution:

o groups is T, aRecord<string, K[]>.K[] can be potentially broad.

o key isin relation to T: a property key of T.

o value is of type K.

All three function parameters are in relation to one another, and the way we designed
the type relations allows us to safely access groups[key] and push value to the array.

156 | Chapter5: Conditional Types

Also, the types of each parameter when we call assign fulfill the generic type con-
straints we just set. If you want to know more about this technique, check out Recipe
12.6.

5.4 Removing Specific Object Properties

Problem

You want to create a generic helper type for objects, where you select properties based
on their type rather than the property’s name.

Solution
Filter with conditional types and type assertions when mapping property keys.

Discussion

TypeScript allows you to create types based on other types, so you can keep them up
to date without maintaining every one of their derivates. We've seen examples in ear-
lier items, like Recipe 4.5. In the following scenario, we want to adapt an existing
object type based on the types of its properties. Let’s look at a type for Person:

type Person = {
name: string;
age: number;
profession?: string;

b

It consists of two strings—profession and name—and a number: age. We want to
create a type that consists only of string type properties:

type PersonStrings = {
name: string;
profession?: string;
¥
TypeScript already has certain helper types to deal with filtering property names. For
example, the mapped type Pick<T> takes a subset of an object’s keys to create a new
object that contains only those keys:

type Pick<T, K extends keyof T> = {
[P in K]: T[P];
}

// Only includes "name"
type PersonName = Pick<Person, "name">;

// Includes "name" and "profession"
type PersonStrings = Pick<Person, "name" | "profession's;

5.4 Removing Specific Object Properties | 157

If we want to remove certain properties, we can use Omit<T>, which works just like
Pick<T> with the small difference that we map through a slightly altered set of prop-
erties, one where we remove property names that we don’t want to include:

type Omit<T, K extends string | number | symbol> = {
[P in Exclude<keyof T, K>]: T[P];
}

// Omits age, thus includes "name" and "profession"

type PersonWithoutAge = Omit<Person, "age"s>;
To select the right properties based on their type, rather than their name, we would
need to create a similar helper type, one where we map a dynamically generated set of
property names that point only to the types we are looking for. We know from Recipe
5.2 that when using conditional types over a union type, we can use never to filter
elements from this union.

So a first possibility could be that we map all property keys of Person and check if
Person[K] is a subset of our desired type. If so, we return the type; otherwise, we
return never:

// Not there yet
type PersonStrings = {
[K in keyof Person]: Person[K] extends string ? Person[K] : never;

IH
This is good, but it comes with a caveat: the types we are checking are not in a union
but are types from a mapped type. So instead of filtering property keys, we would get
properties that point to type never, meaning that we would forbid certain properties
to be set at all.

Another idea would be to set the type to undefined, treating the property as sort of
optional but, as we learned in Recipe 3.11, missing properties and undefined values
are not the same.

What we actually want to do is drop the property keys that point to a certain type.
This can be achieved by putting the condition not on the righthand side of the object
but on the lefthand side, where the properties are created.

Just like with the Omit type, we need to make sure that we map over a specific set of
properties. When mapping keyof Person, it is possible to change the type of the
property key with a type assertion. Just like with regular type assertions, there is a sort
of fail-safe mechanism, meaning you just can't assert it to be anything: it has to be
within the boundaries of a property key.

We want to assert that K part of the set if Person[K] is of type string. If this is true,
we keep K; otherwise, we filter the element of the set with never. With never being on
the lefthand side of the object, the property gets dropped:

158 | Chapter5: Conditional Types

type PersonStrings = {
[K in keyof Person as Person[K] extends string ? K : never]: Person[K];
¥
And with that, we select only property keys that point to string values. There is one
catch: optional string properties have a broader type than regular strings, as
undefined is also included as a possible value. Using a union type ensures that
optional properties are also kept:

type PersonStrings = {
[K in keyof Person as Person[K] extends string | undefined
? K
: never]: Person[K];
1Y
The next step is making this type generic. We create a type Select<0, T> by replac-
ing Person with 0 and string with T:
type Select<0, T> = {
[K in keyof O as O[K] extends T | undefined ? K : never]: O[K];
};
This new helper type is versatile. We can use it to select properties of a certain type
from our own object types:

type PersonStrings = Select<Person, string>;
type PersonNumbers = Select<Person, number>;

But we can also figure out, for example, which functions in the string prototype
return a number:

type StringFnsReturningNumber = Select<String, (...args: any[]) => number>;

An inverse helper type Remove<0, T>, where we want to remove property keys of a
certain type, is very similar to Select<0, T>. The only difference is to switch the
condition and return never in the true branch:

type Remove<0, T> = {
[K in keyof O as O[K] extends T | undefined ? never : K]: O[K];
b

type PersonWithoutStrings = Remove<Person, string>;
This is especially helpful if you create a serializable version of your object types:

type User = {
name: string;
age: number;
profession?: string;
posts(): string[];
greeting(): string;

}

type SerializeableUser = Remove<User, Function>;

5.4 Removing Specific Object Properties | 159

By knowing that you can do conditional types while mapping out keys, you suddenly
have access to a wide range of potential helper types. More about that in Chapter 8.

5.5 Inferring Types in Conditionals

Problem

You want to create a class for object serialization, which removes all unserializable
properties of an object like functions. If your object has a serialize function, the
serializer takes the return value of the function instead of serializing the object on its
own. How can you type that?

Solution

Use a recursive conditional type to modify the existing object type. For objects that
implement serialize, use the infer keyword to pin the generic return type to a
concrete type.

Discussion

Serialization is the process of converting data structures and objects into a format that
can be stored or transferred. Think of taking a JavaScript object and storing its data
on disk, just to pick it up later by deserializing it again into JavaScript.

JavaScript objects can hold any type of data: primitive types like strings or numbers,
as well as compound types like objects, and even functions. Functions are interesting
as they don’t contain data but behavior: something that can’t be serialized well. One
approach to serializing JavaScript objects is to get rid of functions entirely. And this is
what we want to implement in this lesson.

We start with a simple object type Person, which contains the usual subjects of data
we want to store: a person’s name and age. It also has a hello method, which pro-
duces a string:

type Person = {
name: string;
age: number;
hello: () => string;
IH
We want to serialize objects of this type. A Serializer class contains an empty con-
structor and a generic function serialize. Note that we add the generic type param-
eter to serialize and not to the class. That way, we can reuse serialize for different
object types. The return type points to a generic type Serialize<T>, which will be the
result of the serialization process:

160 | Chapter5: Conditional Types

class Serializer {
constructor() {}
serialize<T>(obj: T): Serialize<T> {
// tbd...
}
}
We will take care of the implementation later. For now lets focus on the
Serialize<T> type. The first idea that comes to mind is to just drop properties that
are functions. We already defined a Remove<0, T> type in Recipe 5.4 that comes in
handy, as it does exactly that—removes properties that are of a certain type:
type Remove<0, T> = {

[K in keyof 0 as O[K] extends T | undefined ? never : K]: O[K];
b

type Serialize<T> = Remove<T, Function>;

The first iteration is done, and it works for simple, one-level-deep objects. Objects
can be complex, however. For example, Person could nest other objects, which in
turn also could have functions:

type Person = {
name: string;
age: number;
profession: {
title: string;
level: number;
printProfession: () => void;
IH
hello: () => string;
b
To solve this, we need to check each property if it is another object, and if so, use the
Serialize<T> type again. A mapped type called NestSerialization checks in a con-
ditional type if each property is of type object and returns a serialized version of that

type in the true branch and the type itself in the false branch:

type NestSerialization<T> = {
[K in keyof T]: T[K] extends object ? Serialize<T[K]> : T[K];
IH
We redefine Serialize<T> by wrapping the original Remove<T, Function> type of
Serialize<T> in NestSerialization, effectively creating a recursive type:
Serialize<T> uses NestSerialization<T> uses Serialize<T>, and so on:

type Serialize<T> = NestSerialization<Remove<T, Function>>;

TypeScript can handle type recursion to a certain degree. In this case, it can see that
there is literally a condition to break out of type recursion in NestSerialization.

5.5 Inferring Types in Conditionals | 161

And that’s serialization type! Now for the implementation of the function, which is
curiously a straight translation of our type declaration in JavaScript. We check for
every property if it’s an object. If so, we call serialize again. If not, we carry over the
property only if it isn’t a function:

class Serializer {
constructor() {}
serialize<T>(obj: T): Serialize<T> {
const ret: Record<string, any> = {};

for (let k in obj) {
if (typeof obj[k] === "object") {
ret[k] = this.serialize(obj[k]);
} else if (typeof obj[k] !== "function") {
ret[k] = obj[k];
}
}
return ret as Serialize<T>;
}
}

Note that since we are generating a new object within serialize, we start out with a
very broad Record<string, any>, which allows us to set any string property key to
basically anything, and assert at the end that we created an object that fits our return
type. This pattern is common when you create new objects, but it ultimately requires
you to be 100% sure that you did everything right. Please test this function
extensively.

With the first implementation done, we can create a new object of type Person and
pass it to our newly generated serializer:

const person: Person = {
name: "Stefan",
age: 40,
profession: {
title: "Software Developer",
level: 5,
printProfession() {
console.log("${this.title}, Level ${this.level});
1,
1
hello() {
return ‘Hello ${this.name};
1,
b

const serializer = new Serializer();
const serializedPerson = serializer.serialize(person);
console.log(serializedPerson);

162 | Chapter5: Conditional Types

The result is as expected: the type of serializedPerson lacks all information on
methods and functions. And if we log serializedPerson, we also see that all meth-
ods and functions are gone. The type matches the implementation result:

[LoG]: {
"name": "Stefan",
"age": 40,
"profession": {
"title": "Software Developer",
"level": 5
}
}

But we are not done yet. The serializer has a special feature. Objects can implement a
serialize method, and if they do, the serializer takes the output of this method
instead of serializing the object on its own. Let’s extend the Person type to feature a
serialize method:

type Person = {
name: string;
age: number;
profession: {
title: string;
level: number;
printProfession: () => void;
};
hello: () => string;
serialize: () => string;

b

const person: Person = {
name: "Stefan",
age: 40,
profession: {
title: "Software Developer",
level: 5,
printProfession() {
console.log(" ${this.title}, Level ${this.level});
1,
1,
hello() {
return ‘Hello ${this.name}’;
1
serialize() {
return ‘${this.name}: ${this.profession.title} L${this.profession.level}’;
1,
b

5.5 Inferring Types in Conditionals | 163

We need to adapt the Serialize<T> type. Before running NestSerialization, we
check in a conditional type if the object implements a serialize method. We do so
by asking if T is a subtype of a type that contains a serialize method. If so, we need
to get to the return type, because that’s the result of serialization.

This is where the infer keyword comes into play. It allows us to take a type from a
condition and use it as a type parameter in the true branch. We tell TypeScript, if this
condition is true, take the type that you found there and make it available to us:

type Serialize<T> = T extends { serialize(): infer R }
? R
: NestSerialization<Remove<T, Function>>;

Think of R as being any at first. If we check Person against { serialize(): any } we
hop into the true branch, as Person has a serialize function, making it a valid sub-
type. But any is broad, and we are interested in the specific type at the position of any.
The infer keyword can pick that exact type. So Serialize<T> now reads:

o If T contains a serialize method, get its return type and return it.

o Otherwise, start serialization by deeply removing all properties that are of type
Function.

We want to mirror that type’s behavior in our JavaScript implementation as well. We
do a couple of type-checks (checking if serialize is available and if it’s a function)
and ultimately call it. TypeScript requires us to be explicit with type guards, to be
absolutely sure that this function exists:

class Serializer {
constructor() {}
serialize<T>(obj: T): Serialize<T> {
if (
// is an object
typeof obj === "object" &&
// not null
obj &&
// serialize is available
"serialize" in obj &&
// and a function
typeof obj.serialize === "function"
) o

return obj.serialize();
}

const ret: Record<string, any> = {};

for (let k in obj) {
if (typeof obj[k] === "object") {
ret[k] = this.serialize(obj[k]);
} else if (typeof obj[k] !== "function") {

164 | Chapter5: Conditional Types

ret[k] = obj[k];
}
}

return ret as Serialize<T>;

}
}

With this change, the type of serializedPerson is string, and the result is as
expected:

[LOG]: "Stefan: Software Developer L5"

This powerful tool helps greatly with object generation. And there’s beauty in the fact
that we create a type using a declarative metalanguage that is TypeScript’s type sys-
tem, to ultimately see the same process imperatively written in JavaScript.

5.5 Inferring Types in Conditionals | 165

CHAPTER 6
String Template Literal Types

In TypeScript’s type system, every value is also a type. We call them literal types, and
in union with other literal types, you can define a type that is very clear about which
values it can accept. Let’s take subsets of string as an example. You can define exactly
which strings should be part of your set and rule out a ton of errors. The other end of
the spectrum would be the entire set of strings again.

But what if there is something between? What if we can define types that check if cer-
tain string patterns are available, and let the rest be more flexible? String template lit-
eral types do exactly that. They allow us to define types where certain parts of a string
are predefined; the rest is open and flexible for a variety of uses.

But even more, in conjunction with conditional types, it’s possible to split strings into
bits and pieces and reuse the same bits for new types. This is an incredibly powerful
tool, especially if you think about how much code in JavaScript relies on patterns
within strings.

In this chapter, we look at a variety of use cases for string template literal types. From
following simple string patterns to extracting parameters and types based on format
strings, you will see the enabling power of parsing strings as types.

But we keep it real. Everything you see here comes from real-world examples. What
you can accomplish with string template literal types seems endless. People push the
usage of string template literal types to the extreme by writing spell checkers or
implementing SQL parsers; there seems to be no limit to what you can do with this
mind-blowing feature.

167

https://oreil.ly/63z2Y
https://oreil.ly/foSvx

6.1 Defining a Custom Event System

Problem

i Vi Wi Vv Vi -
You are creating a custom event system and want to make sure every event name fol
lows a convention and starts with "on".

Solution

Use string template literal types to describe string patterns.

Discussion

Its common in JavaScript event systems to have some sort of prefix that indicates a
particular string is an event. Usually, event or event handler strings start with on, but
depending on the implementation, this can be different.

You want to create your own event system and want to honor this convention. With
TypeScript’s string types it is possible to either accept all possible strings or subset to a
union type of string literal types. While one is too broad, the other one is not flexible
enough for our needs. We don't want to define every possible event name up front; we
want to adhere to a pattern.

Thankfully, a type called string template literal type or just template literal type is
exactly what we are looking for. Template literal types allow us to define string literals
but leave certain parts flexible.

For example, a type that accepts all strings that start with on could look like this:

type EventName = ‘on${string}";

Syntactically, template literal types borrow from JavaScript's template strings. They
start and end with a backtick, followed by any string.

Using the specific syntax ${} allows adding JavaScript expressions, like variables,
function calls, and the like to strings:

function greet(name: string) {
return 'Hi, ${name}!’;

}

greet("Stefan"); // "Hi, Stefan!"

168 | Chapter 6: String Template Literal Types

Template literal types in TypeScript are very similar. Instead of JavaScript expressions,
they allow us to add a set of values in the form of types. A type defining the string
representation of all available heading elements in HTML could look like this:

type Levels =1 | 2 | 3 | 4| 5| 6;

/) resolves to "H1" | "H2" | "H3" | "H4" | "HS" | "He"
type Headings = "H${Levels};

Levels is a subset of number, and Headings reads as “starts with H, followed by a

value compatible with Levels” You can’t put every type in here, only ones that have a

string representation.

Let’s go back to EventName:
type EventName = ‘on${string}";

Defined like this, EventName reads like “starts with "on", followed by any string” This
includes the empty string. Let’s use EventName to create a simple event system. In the
first step, we only want to collect callback functions.

For that, we define a Callback type that is a function type with one parameter: an
EventObject. The EventObject is a generic type that contains the value with the
event information:

type EventObject<T> = {
val: T;
1

type Callback<T = any> = (ev: EventObject<T>) => void;
Furthermore, we need a type to store all registered event callbacks, Events:

type Events = {
[x: EventName]: Callback[] | undefined;
b

We use EventName as index access as it is a valid subtype of string. Each index points
to an array of callbacks. With our types defined, we set up an EventSysten class:

class EventSystem {
events: Events;
constructor() {
this.events = {};

}

defineEventHandler(ev: EventName, cb: Callback): void {
this.events[ev] = this.events[ev] ?? [];
this.events[ev]?.push(cb);

}

trigger(ev: EventName, value: any) {
let callbacks = this.events[ev];

6.1 Defining a Custom Event System | 169

if (callbacks) {
callbacks.forEach((cb) => {
cb({ val: value });
IDN
}
}
}
The constructor creates a new events storage, and defineEventHandler takes an
EventName and Callback and stores them in said events storage. Also, trigger takes
an EventName and, if callbacks are registered, executes every registered callback with
an EventObject.

The first step is done. We now have type safety when defining events:

const system = new EventSystem();

system.defineEventHandler("click", () => {});

// ~ Argument of type '"click"' is not assignable to parameter

//. of type '‘onS{string}''.(2345)

system.defineEventHandler("onClick", () => {});

system.defineEventHandler("onchange", () => {});
In Recipe 6.2 we will look at how we can use string manipulation types and key
remapping to enhance our system.

6.2 Creating Event Callbacks with
String Manipulation Types and Key Remapping

Problem

You want to provide a watch function that takes any object and adds watcher func-
tions for each property, allowing you to define event callbacks.

Solution

Use key remapping to create new string property keys. Use string manipulation types
to have proper camel casing for watcher functions.

Discussion

Our event system from Recipe 6.1 is taking shape. We are able to register event han-
dlers and trigger events. Now we want to add watch functionality. The idea is to
extend valid objects with methods for registering callbacks that are executed every
time a property changes. For example, when we define a person object, we should be
able to listen to onAgeChanged and onNameChanged events:

let person = {
name: "Stefan",

170 | Chapter 6: String Template Literal Types

age: 40,
b

const watchedPerson = system.watch(person);

watchedPerson.onAgeChanged((ev) => {
console.log(ev.val, "changed!!");

s

watchedPerson.age = 41; // triggers callbacks

So for each property, there will be a method that starts with on, ends with Changed,
and accepts callback functions with event object parameters.

To define the new event handler methods, we create a helper type called Watched
Object<T>, where we add bespoke methods:

type WatchedObject<T> = {
[K in string & keyof T as ‘on${K}Changed']: (
ev: Callback<T[K]>
) => void;

};
There’s a lot to unpack. Let’s go through it step by step:

1. We define a mapped type by iterating over all keys from T. Since we care only
about string property keys, we use the intersection string & keyof T to get rid
of potential symbols or numbers.

2. Next, we remap this key to a new string, defined by a string template literal type. It
starts with on, then takes the key K from our mapping process, and appends
Changed.

3. The property key points to a function that accepts a callback. The callback itself
has an event object as an argument, and by correctly substituting its generics, we
can make sure this event object contains the original type of our watched object.
This means when we call onAgeChanged, the event object will actually contain a
number.

This is already fantastic but lacks significant detail. When we use WatchedObject on
person like that, all generated event handler methods lack an uppercase character
after on. To solve this, we can use one of the built-in string manipulation types to
capitalize string types:
type WatchedObject<T> = {
[K in string & keyof T as ‘on${Capitalize<K>}Changed']: (
ev: Callback<T[K]>
) => void;

b

6.2 Creating Event Callbacks with String Manipulation Types and Key Remapping | 171

Next to Capitalize, Lowercase, Uppercase, and Uncapitalize are also available. If

we hover over WatchedObject<typeof person>, we can see what the generated type
looks like:

type WatchedPerson = {
onNameChanged: (ev: Callback<string>) => void;
onAgeChanged: (ev: Callback<number>) => void;

b

With our types set up, we start with the implementation. First, we create two helper
functions:

function capitalize(inp: string) {
return inp.charAt(0).toUpperCase() + inp.slice(l);
}

function handlerName(name: string): EventName {
return ‘on${capitalize(name)}Changed’ as EventName;

}

We need both helper functions to mimic TypeScript’s behavior of remapping and
manipulating strings. capitalize changes the first letter of a string to its uppercase
equivalent, and handlerName adds a prefix and suffix to it. With handlerName we
need a little type assertion to signal TypeScript that the type has changed. With the
many ways we can transform strings in JavaScript, TypeScript can’t figure out that this
will result in a capitalized version.

Next, we implement the watch functionality in the event system. We create a generic
function that accepts any object and returns an object that contains both the original
properties and the watcher properties.

To successfully implement triggering of event handlers on property change, we use
Proxy objects to intercept get and set calls:

class EventSystem {
// cut for brevity
watch<T extends object>(obj: T): T & WatchedObject<T> {
const self = this;
return new Proxy(obj, {
get(target, property) {
// (1)
if (
typeof property === "string" &&
property.startsWith("on") &&
property.endsWith("Changed")
) {
// (2)
return (cb: Callback) => {
self.defineEventHandler (property as EventName, cb);
b
}

172 | Chapter 6: String Template Literal Types

// (3)
return target[property as keyof T];
}s
// set to be done ...
}) as T & WatchedObject<T>;
}
}

The get calls we want to intercept are whenever we access the properties of
WatchedObject<T>:

o They start with on and end with Changed.

o If that’s the case, we return a function that accepts callbacks. The function itself
adds callbacks to the event storage via defineEventHandler.

o In all other cases we do regular property access.

Now, every time we set a value of the original object, we want to trigger stored events.
This is why we modify all set calls:

class EventSystem {
// ... cut for brevity
watch<T extends object>(obj: T): T & WatchedObject<T> {
const self = this;
return new Proxy(obj, {
// get from above ...
set(target, property, value) {

if (property in target && typeof property === "string") {
// (1)
target[property as keyof T] = value;
/7 (2)

self.trigger(handlerName(property), value);
return true;

}

return false;

}s
}) as T & WatchedObject<T>;

}
}

The process is as follows:

1. Set the value. We need to update the object anyway.

2. Call the trigger function to execute all registered callbacks.

Please note that we need a couple of type assertions to nudge TypeScript in the right
direction. We are creating new objects, after all.

And that’s it! Try the example from the beginning to see your event system in action:

6.2 Creating Event Callbacks with String Manipulation Types and Key Remapping | 173

let person = {
name: "Stefan",
age: 40,

b

const watchedPerson = system.watch(person);

watchedPerson.onAgeChanged((ev) => {
console.log(ev.val, "changed!!");

s

watchedPerson.age = 41; // logs "41 changed!!"

String template literal types along with string manipulation types and key remapping
allow us to create types for new objects on the fly. These powerful tools make the use
of advanced JavaScript object creation more robust.

6.3 Writing a Formatter Function

Problem

You want to create typings for a function that takes a format string and substitutes
placeholders with actual values.

Solution

Create a conditional type that infers the placeholder name from a string template
literal type.

Discussion

Your application has a way of defining format strings by defining placeholders with
curly braces. A second parameter takes an object with substitutions, so for each
placeholder defined in the format string, there is one property key with the respective
value:

format("Hello {world}. My name is {you}.", {
world: "World",
you: "Stefan",
s
Let’s create typings for this function, where we make sure that your users don’t forget
to add the required properties. As a first step, we define the function interface with
some very broad types. The format string is of type string, and the formatting
parameters are in a Record of string keys and literally any value. We focus on the
types first; the function body’s implementation comes later:

174 | Chapter 6: String Template Literal Types

function format(fmtString: string, params: Record<string, any>): string {
throw "unimplemented";

}
As a next step, we want to lock function arguments to concrete values or literal types
by adding generics. We change the type of fmtString to be of a generic type T, which
is a subtype of string. This allows us to still pass strings to the function, but the
moment we pass a literal string, we can analyze the literal type and look for patterns
(see Recipe 4.3 for more details):

function format<T extends string>(
fmtString: T,
params: Record<string, any>

): string {
throw "unimplemented";

}

Now that we locked in T, we can pass it as a type parameter to a generic type Format
Keys. This is a conditional type that will scan our format string for curly braces:

type FormatKeys<
T extends string

> = T extends "${string}{${string}}${string}’
2T
: never;

Here, we check if the format string:

o Starts with a string; this can also be an empty string
« Contains a {, followed by any string, followed by a }
o Is followed again by any string

This effectively means that we check if there is exactly one placeholder in the format
string. If so, we return the entire format string, and if not, we return never:

type A = FormatKeys<"Hello {world}">; // "Hello {world}"
type B = FormatKeys<"Hello">; // never

FormatKeys can tell us if the strings we pass in are format strings or not, but we are
actually much more interested in a specific part of the format string: the piece
between the curly braces. Using TypeScript’s infer keyword, we can tell TypeScript
that, if the format string matches this pattern, then grab whatever literal type you find
between the curly braces and put it in a type variable:

type FormatKeys<
T extends string

> = T extends "${string}{${infer Key}}${string}’
? Key
: never;

6.3 Writing a Formatter Function | 175

That way, we can extract substrings and reuse them for our needs:

FormatKeys<"Hello {world}">; // "world"
FormatKeys<"Hello">; // never

type A
type B

Fantastic! We extracted the first placeholder name. Now on to the rest. Since there
might be placeholders following, we take everything after the first placeholder and
store it in a type variable called Rest. This condition will be always true, because
either Rest is the empty string or it contains an actual string that we can analyze
again.

We take the Rest and in the true branch call FormatKeys<Rest> in a union type of
Key:

type FormatKeys<
T extends string

> = T extends "${string}{${infer Key}}${infer Rest}’
? Key | FormatKeys<Rest>
: never;

This is a recursive conditional type. The result will be a union of placeholders, which
we can use as keys for the formatting object:

type A = FormatKeys<"Hello {world}">; // "world"
type B = FormatKeys<"Hello {world}. I'm {you}.">; // "world" | "you"
type C = FormatKeys<"Hello">; // never

Now it’s time to wire up FormatKeys. Since we already locked in T, we can pass it as
an argument to FormatKeys, which we can use as an argument for Record:

function format<T extends string>(
fmtString: T,
params: Record<FormatKeys<T>, any>
): string {
throw "unimplemented";

}

And with that, our typings are all ready. On to the implementation! The implementa-
tion is beautifully inverted to how we defined our types. We go over all keys from
params and replace all occurrences within curly braces with the respective value:

function format<T extends string>(
fmtString: T,
params: Record<FormatKeys<T>, any>
): string {
let ret: string = fmtString;
for (let k in params) {
ret = ret.replaceAll({${k}} , params[k as keyof typeof params]);
}
return ret;

}

Notice two particular typings:

176 | Chapter 6: String Template Literal Types

o We need to annotate ret with string. fmtString is with T, a subtype of string;
thus ret would also be T. This would mean we couldn’t change values because the
type of T would change. Annotating it to a broader string type helps us modify
ret.

o We also need to assert that the object key k is actually a key of params. This is an
unfortunate workaround that is due to some fail-safe mechanisms of TypeScript.
Read more on this topic in Recipe 9.1.

With the information from Recipe 9.1, we can redefine format to get rid of some type
assertions to reach our final version of the format function:

function format<T extends string, K extends Record<FormatKeys<T>, any>>(
fmtString: T,
params: K
): string {
let ret: string = fmtString;
for (let k in params) {
ret = ret.replaceAll({${k}} , params[k]);
}

return ret;

}

Being able to split strings and extract property keys is extremely powerful. TypeScript
developers all over the world use this pattern to strengthen types, for example, for
web servers like Express. We will see more examples of how we can use this tool to
get better types.

6.4 Extracting Format Parameter Types

Problem

You want to extend the formatting function from Recipe 6.3 with the ability to define
types for your placeholders.

Solution
Create a nested conditional type and look up types with a type map.

Discussion

Let’s extend the example from the previous lesson. We now want to not only know all
placeholders but also be able to define a certain set of types with the placeholders.
Types should be optional, be indicated with a colon after the placeholder name, and
be one of JavaScript’s primitive types. We expect to get type errors when we pass in a
value that is of the wrong type:

6.4 Extracting Format Parameter Types | 177

https://expressjs.com

format("Hello {world:string}. I'm {you}, {age:number} years old.", {
world: "World",

age: 40,
you: "Stefan",
b

For reference, let’s look at the original implementation from Recipe 6.3:

type FormatKeys<

extends string

T extends ‘S${string}{${infer Key}}${infer Rest}"
Key | FormatKeys<Rest>

: never;

—

>

-~

function format<T extends string>(
fmtString: T,
params: Record<FormatKeys<T>, any>
): string {
let ret: string = fmtString;
for (let k in params) {
ret = ret.replace({${k}} , params[k as keyof typeof params]);
}

return ret;

}

To achieve this, we need to do two things:

1. Change the type of params from Record<FormatKeys<T>, any> to an actual
object type that has proper types associated with each property key.

2. Adapt the string template literal type within FormatKeys to be able to extract
primitive JavaScript types.

For the first step, we introduce a new type called FormatObj<T>. It works just as For
matKeys did, but instead of simply returning string keys, it maps out the same keys to
a new object type. This requires us to chain the recursion using intersection types
instead of a union type (we add more properties with each recursion) and to change
the breaking condition from never to {}. If we did an intersection with never, the
entire return type becomes never. This way, we don’t add any new properties to the
return type:

type FormatObj<
T extends string
> = T extends "${string}{${infer Key}}${infer Rest}’
? { [K in Key]: any } & FormatObj<Rest>
SR H
FormatObj<T> works the same way as Record<FormatKeys<T>, any>. We still didn’t

extract any placeholder type, but we made it easy to set the type for each placeholder
now that we are in control of the entire object type.

178 | Chapter 6: String Template Literal Types

As a next step, we change the parsing condition in FormatObj<T> to also look out for
colon delimiters. If we find a : character, we infer the subsequent string literal type in
Type and use it as the type for the mapped-out key:

type FormatObj<
T extends string
> = T extends "${string}{${infer Key}:${infer Type}}${infer Rest}’
? { [K in Key]: Type } & FormatObj<Rest>
R
We are very close; there’s just one caveat. We infer a string literal type. This means
that if we, for example, parse {age:number}, the type of age would be the literal string
"number". We need to convert this string to an actual type. We could do another con-
ditional type or use a map type as a lookup:

type MapFormatType = {
string: string;
number: number;
boolean: boolean;
[x: string]: any;

¥

That way, we can simply check which type is associated with which key and have a
fantastic fallback for all other strings:

type A = MapFormatType["string"]; // string
type B = MapFormatType["number"]; // number
type C = MapFormatType["notavailable"]; // any

Let’s wire MapFormatType up to FormatObj<T>:

type FormatObj<
T extends string
> = T extends "${string}{${infer Key}:${infer Type}}${infer Rest}’
? { [K in Key]: MapFormatType[Type] } & FormatObj<Rest>
R
We are almost there! The problem now is that we expect every placeholder to also
define a type. We want to make types optional. But our parsing condition explicitly
asks for : delimiters, so every placeholder that doesn’t define a type doesn’t produce a
property, either.

The solution is to do the check for types after we check for placeholder:

type FormatObj<
T extends string
> = T extends "${string}{${infer Key}}${infer Rest}’
? Key extends ‘S${infer KeyPart}:${infer TypePart}"
? { [K in KeyPart]: MapFormatType[TypePart] } & FormatObj<Rest>
: { [K in Key]: any } & FormatObj<Rest>
SR H

The type reads as follows:

6.4 Extracting Format Parameter Types | 179

1. Check if there is a placeholder available.

2. If a placeholder is available, check if there is a type annotation. If so, map the key
to a format type; otherwise, map the original key to any.

3. In all other cases, return the empty object.

And that’s it. There is one fail-safe guard that we can add. Instead of allowing any
type for placeholders without a type definition, we can at least expect that the type
implements toString(). This ensures we always get a string representation:

type FormatObj<
T extends string
> = T extends "${string}{${infer Key}}${infer Rest}"
? Key extends ‘S${infer KeyPart}:${infer TypePart}"
? { [K in KeyPart]: MapFormatType[TypePart] } & FormatObj<Rest>
: { [K in Key]: { toString(): string } } & FormatObj<Rest>
: {k

And with that, let’s apply the new type to format and change the implementation:

function format<T extends string, K extends FormatObj<T>>(
fmtString: T,
params: K
): string {
let ret: string = fmtString;
for (let k in params) {
let val = “S${params[k]}";
let searchPattern = new RegExp({${k}:?.*2}", "g");
ret = ret.replaceAll(searchPattern, val);

}

return ret;

}

We help ourselves with a regular expression to replace names with potential type
annotations. There is no need to check types within the function. TypeScript should
be enough to help in this case.

What we've seen is that conditional types in combination with string template literal
types and other tools like recursion and type lookups allow us to specify complex
relationships with a couple of lines of code. Our types get better, our code gets more
robust, and it’s a joy for developers to use APIs like this.

6.5 Dealing with Recursion Limits

Problem

You craft an elaborate string template literal type that converts any string to a valid
property key. With your setup of helper types, you run into recursion limits.

180 | Chapter 6: String Template Literal Types

Solution

Use the accumulation technique to enable tail-call optimization.

Discussion

TypeScript’s string template literal types in combination with conditional types allow
you to create new string types on the fly, which can serve as property keys or check
your program for valid strings.

They work using recursion, which means that just like a function, you can call the
same type over and over again, up to a certain limit.

For example, this type Trim<T> removes whitespaces at the start and end of your
string type:
type Trim<T extends string> =

T extends ° ${infer X} ' ? Trim<X> :

T extends ‘${infer X} ° ? Trim<X> :

T
It checks if there’s a whitespace at the beginning, infers the rest, and does the same
check over again. Once all whitespaces at the beginning are gone, the same checks
happen for whitespaces at the end. Once all whitespaces at the beginning and end are
gone, it is finished and hops into the last branch—returning the remaining string:

type Trimmed = Trim<" key ">; // "key"

Calling the type over and over is recursion, and writing it like that works reasonably
well. TypeScript can see from the type that the recursive calls stand on their own, and
it can evaluate them as tail-call optimized, which means it can evaluate the next step
of the recursion within the same call stack frame.

If you want to know more about the call stack in JavaScript,
Thomas Hunter’s book Distributed Systems with Node.js (O’Reilly)
gives a great introduction.

We want to use TypeScript’s feature to recursively call conditional types to create a
valid string identifier out of any string, by removing whitespace and invalid
characters.

First, we write a helper type similar to Trim<T> that gets rid of any whitespace it finds:

type RemoveWhiteSpace<T extends string> = T extends '${infer A} S${infer B}’
? RemovelWhiteSpace< ${Uncapitalize<A>}${Capitalize} >
T

6.5 Dealing with Recursion Limits | 181

https://learning.oreilly.com/library/view/distributed-systems-with/9781492077282

It checks if there is a whitespace, infers the strings in front of the whitespace and after
the whitespace (which can be empty strings), and calls the same type again with a
newly formed string type. It also uncapitalizes the first inference and capitalizes the
second inference to create a camel-case-like string identifier.

It does so until all whitespaces are gone:
type Identifier = RemoveWhiteSpace<"Hello World!">; // "helloWorld!"

Next, we want to check if the remaining characters are valid. We again use recursion
to take a string of valid characters, split them into single string types with only one
character, and create a capitalized and uncapitalized version:

type StringSplit<T extends string> = T extends “${infer Char}${infer Rest}’
? Capitalize<Char> | Uncapitalize<Char> | StringSplit<Rest>
: never;
type Chars = StringSplit<"abcdefghijklmnopgrstuvwxyz">;
// HaN / NAH / Nb!l / HBN / HCN / Nc'H / Nd!l / HDN / HeN

| "]
A B R R B B R N R S B A L
A I B A B L L B A T R A I
A B I A I B A R R L B Bl
A B B R I B R A S B B
/]

We shave off the first character we find, capitalize it, uncapitalize it, and do the same
with the rest until no more strings are left. Note that this recursion can't be tail-call
optimized, as we put the recursive call in a union type with the results from each
recursion step. Here we would reach a recursion limit when we hit 50 characters (a
hard limit from the TypeScript compiler). With basic characters, we are fine!

But we hit the first limits when we are doing the next step, the creation of the Identi
fier. Here we check for valid characters. First, we call the RemoveWhiteSpace<T>
type, which allows us to get rid of whitespaces and camel-cases the rest. Then we
check the result against valid characters.

Just like in StringSplit<T>, we shave off the first character but do another type-
check within inference. We see if the character we just shaved off is one of the valid
characters. Then we get the rest. We combine the same string again but do a recursive
check with the remaining string. If the first character isn't valid, then we call Create
Identifier<T> with the rest:

type Createldentifier<T extends string> =
RemoveWhiteSpace<T> extends ‘S${infer A extends Chars}${infer Rest}’
? "${A}${CreateIdentifier<Rest>}"
// * Type instantiation is excessively deep and possibly infinite.(2589)_.
: RemoveWhiteSpace<T> extends 'S${infer A}${infer Rest}’
? Createldentifier<Rest>
: TS

182 | Chapter 6: String Template Literal Types

And here we hit the first recursion limit. TypeScript warns us—with an error—that
this type instantiation is possibly infinite and excessively deep. It seems that if we use
the recursive call within a string template literal type, this might result in call stack
errors and blow up. So TypeScript breaks. It can’t do tail-call optimization here.

Createldentifier<T> might still produce correct results, even
though TypeScript errors when you write your type. Those are
hard-to-spot bugs because they might hit you when you don’t
expect them. Be sure to not let TypeScript produce any results
when errors happen.

There’s one way to work around it. To activate tail-call optimization, the recursive call
needs to stand alone. We can achieve this by using the so-called accumulator techni-
que. Here, we pass a second type parameter called Acc, which is of a type string and
is instantiated with the empty string. We use this as an accumulator where we store
the intermediate result, passing it over and over again to the next call:

type CreateIdentifier<T extends string, Acc extends string = ""> =

RemovelWhiteSpace<T> extends '${infer A extends Chars}${infer Rest}’

? Createldentifier<Rest, "${Acc}${A} >

: RemoveWhiteSpace<T> extends ‘S${infer A}${infer Rest}’

? Createldentifier<Rest, Acc>

. Acc;
This way, the recursive call is standing on its own again, and the result is the second
parameter. When we are done with recursive calls, the recursion-breaking branch, we
return the accumulator, as it is our finished result:

type Identifier = Createldentifier<"Hello Wor!ld!">; // "helloWorld"

There might be more clever ways to produce identifiers from any string, but note that
the same thing can hit you deep down in any elaborate conditional type where you
use recursion. The accumulator technique is a good way to mitigate problems like
this.

6.6 Using Template Literals as Discriminants

Problem

You model requests to a backend as a state machine, going from pending to either
error or success. Those states should work for different backend requests, but the
underlying types should be the same.

Solution

Use string template literals as discriminants for a discriminated union.

6.6 Using Template Literals as Discriminants | 183

Discussion

The way you fetch data from a backend always follows the same structure. You do a
request, and it's pending to be either fulfilled and return some data—success—or
rejected and return with an error. For example, to log in a user, all possible states can
look like this:

type UserRequest =
I {
state: "USER_PENDING";
}

I {
state: "USER_ERROR";

message: string;

}
[{
state: "USER_SUCCESS";
data: User;
b

When we fetch a user’s order, we have the same states available. The only difference is
in the success payload and in the names of each state, which are tailored to the type of
request:

type OrderReguest =

I {
state: "ORDER_PENDING";

}

I {
state: "ORDER_ERROR";

message: string;
}

I {
state: "ORDER_SUCCESS";

data: Order;
IH
When we deal with a global state handling mechanism, such as Redux, we want to
differentiate by using identifiers like this. We still want to narrow it to the respective
state types!

TypeScript allows you to create discriminated union types where the discriminant is a
string template literal type. So we can sum up all possible backend requests using the
same pattern:

type Pending = {

state: '${Uppercase<string>} PENDING;
b

type Err = {
state: '"${Uppercase<string>} ERROR';
message: string;

184 | Chapter 6: String Template Literal Types

https://redux.js.org

b

type Success = {
state: '${Uppercase<string>} SUCCESS";
data: any;

b
type BackendRequest = Pending | Err | Success;

This already gives us an edge. We know that the state property of each union type
member needs to start with an uppercase string, followed by an underscore and
the respective state as a string. And we can narrow it to the subtypes just as we are
used to:

function execute(req: BackendRequest) {
switch (req.state) {
case "USER_PENDING":
// req: Pending
console.log("Login pending...");
break;
case "USER_ERROR":
// req: Err
throw new Error(Login failed: ${req.message}’);
case "USER_SUCCESS":
// req: Success
login(req.data);
break;
case "ORDER_PENDING":
// req: Pending
console.log("Fetching orders pending");
break;
case "ORDER_ERROR":
// req: Err
throw new Error(Fetching orders failed: ${req.message}’);
case "ORDER_SUCCESS":
// req: Success
displayOrder(req.data);
break;
}
}

Having the entire set of strings as the first part of the discriminant might be a bit too
much. We can subset to a variety of known requests and use string manipulation
types to get the right subtypes:

type RequestConstants = "user" | "order";
type Pending = {

state: '${Uppercase<RequestConstants>}_ PENDING;
b

type Err = {

6.6 Using Template Literals as Discriminants | 185

state: '${Uppercase<RequestConstants>} ERROR;
message: string;

b

type Success = {
state: '${Uppercase<RequestConstants>} SUCCESS';
data: any;
1
That’s how to get rid of typos! Even better, let’s say we store all data in a global state
object of type Data. We can derive all possible BackendRequest types from here. By
using keyof Data, we get the string keys that make up the BackendRequest state:

type Data = {
user: User | null;
order: Order | null;

b
type RequestConstants = keyof Data;

type Pending = {
state: '${Uppercase<RequestConstants>} PENDING';
b

type Err = {
state: '${Uppercase<RequestConstants>} ERROR';
message: string;

};
This already works well for Pending and Err, but in the Success case we want to have
the actual data type associated with "user" or "order".

A first option would be to use index access to get the correct types for the data prop-
erty from Data:

type Success = {
state: '${Uppercase<RequestConstants>} SUCCESS";
data: NonNullable<Data[RequestConstants]>;

b

NonNullable<T> gets rid of null and undefined in a union type
With the compiler flag strictNullChecks on, both null and
undefined are excluded from all types. This means you need to
manually add them if you have nullish states and manually exclude
them when you want to make sure that they don't.

186 | Chapter 6: String Template Literal Types

But this would mean that data can be both User or Order for all backend requests,
and more if we add new ones. To avoid breaking the connection between the identi-
fier and its associated data type, we map through all RequestConstants, create state
objects, and then use index access of RequestConstants again to produce a union

type:

type Success = {
[K in RequestConstants]: {
state: ‘${Uppercase<K>} SUCCESS';
data: NonNullable<Data[K]>;
IH
}[RequestConstants];

Success is now equal to the manually created union type:

type Success = {
state: "USER_SUCCESS";
data: User;

I Ao
state: "ORDER_SUCCESS";
data: Order;

b

6.6 Using Template Literals as Discriminants | 187

CHAPTER 7
Variadic Tuple Types

Tuple types are arrays with a fixed length and where every type of each element is
defined. Tuples are heavily used in libraries like React as it’s easy to destructure and
name elements, but outside of React they also have gained recognition as a nice alter-
native to objects.

A variadic tuple type is a tuple type that has the same properties—defined length and
the type of each element is known—but where the exact shape is yet to be defined.
They basically tell the type system that there will be some elements, but we don’t
know yet which ones they will be. They are generic and meant to be substituted with
real types.

What sounds like a fairly boring feature is much more exciting when we understand
that tuple types can also be used to describe function signatures, as tuples can be
spread out to function calls as arguments. This means we can use variadic tuple types
to get the most information out of functions and function calls, and functions that
accept functions as parameters.

This chapter provides a lot of use cases on how we can use variadic tuple types to
describe several scenarios where we use functions as parameters and need to get the
most information from them. Without variadic tuple types, these scenarios would be
hard to develop or outright impossible. After reading through, you will see variadic
tuple types as a key feature for functional programming patterns.

7.1 Typing a concat Function

Problem

You have a concat function that takes two arrays and concatenates them. You want to
have exact types, but using function overloads is too cumbersome.

189

Solution

Use variadic tuple types.

Discussion

concat is a lovely helper function that takes two arrays and combines them. It uses
array spreading and is short, nice, and readable:

function concat(arrl, arr2) {
return [...arrl, ...arr2];

}

Creating types for this function can be hard, especially if you have certain expecta-
tions from your types. Passing in two arrays is easy, but what should the return type
look like? Are you happy with a single array type in return, or do you want to know
the types of each element in this array?

Let’s go for the latter: we want tuples so we know the type of each element we pass to
this function. To correctly type a function like this so that it takes all possible edge
cases into account, we would end up in a sea of overloads:

// 7 overloads for an empty second array
function concat(arril: [], arr2: []): [1;
function concat<A>(arri: [A], arr2: []): [A];
function concat<A, B>(arrl: [A, B], arr2: []): [A, B];
function concat<A, B, C>(arrl: [A, B, C], arr2: []): [A, B, C];
function concat<A, B, C, D>(arrl: [A, B, C, D], arr2: []): [A, B, C, D];
function concat<A, B, C, D, E>(
arrl: [A, B, C, D, E],
arr2: []
): [A, B, C, D, EI;
function concat<A, B, C, D, E, F>(
arrl: [A, B, C, D, E, F],
arr2: []
): [A, B, C, D, E, F];
// 7 more for arr2 having one element
function concat<A2>(arri: [], arr2: [A2]): [A2];
function concat<Al, A2>(arrl: [A1], arr2: [A2]): [A1, A2];
function concat<Al, B1, A2>(arrl: [A1l, B1], arr2: [A2]): [A1, B1, A2];
function concat<Al, B1, C1, A2>(
arrl: [A1, B1, C1],
arr2: [A2]
): [A1, B1, C1, A2];
function concat<Al, B1, C1, D1, A2>(
arrl: [A1, B1, C1, D1],
arr2: [A2]
): [A1, B1, C1, D1, A2];
function concat<Al, B1, C1, D1, E1, A2>(
arrl: [A1, B1, C1, D1, E1],
arr2: [A2]

190 | Chapter7:Variadic Tuple Types

): [A1, B1, C1, D1, E1, A2];
function concat<A1l, B1, C1, D1, E1, F1, A2>(
arrl: [A1, B1, C1, D1, E1, F1],
arr2: [A2]
): [A1, B1, C1, D1, E1, F1, A2];
// and so on, and so forth
And this only takes into account arrays that have up to six elements. The combina-
tions for typing a function like this with overloads is exhausting. But there is an easier

way: variadic tuple types.

A tuple type in TypeScript is an array with the following features:

o The length of the array is defined.

o The type of each element is known (and does not have to be the same).

For example, this is a tuple type:

type PersonProps = [string, number];

const [name, age]: PersonProps = ['Stefan', 37];

A variadic tuple type is a tuple type that has the same properties—defined length and
the type of each element is known—but where the exact shape is yet to be defined.
Since we don’t know the type and length yet, we can only use variadic tuple types in
generics:

type Foo<T extends unknown[]> = [string, ...T, number];

type T1 = Foo<[boolean]>; // [string, boolean, number]
type T2 = Foo<[number, number]>; // [string, number, number, number]
type T3 = Foo<[]>; // [string, number]

This is similar to rest elements in functions, but the big difference is that variadic
tuple types can happen anywhere in the tuple, and multiple times:

type Bar<
T extends unknown[],
U extends unknown[]
> =[...T, string, ...U];

type T4 = Bar<[boolean], [number]>; // [boolean, string, number]
type T5 = Bar<[number, number], [boolean]>; // [number, number, string, boolean]
type T6 = Bar<[], [1]>; // [string]

When we apply this to the concat function, we have to introduce two generic param-
eters, one for each array. Both need to be constrained to arrays. Then, we can create a
return type that combines both array types in a newly created tuple type:

function concat<T extends unknown[], U extends unknown[]>(
arrl: T,
arr2: U

7.1Typing a concat Function | 191

y: [...T, ...U] {

return [...arr1, ...arr2];

}

// const test: (string | number)[]

const test = concat([1, 2, 3], [6, 7, "a"]);
The syntax is beautiful; it’s very similar to the actual concatenation in JavaScript. The
result is also really good: we get a (string | number)[], which is already something
we can work with.

But we work with tuple types. If we want to know exactly which elements we are con-
catenating, we have to transform the array types into tuple types, by spreading out the
generic array type into a tuple type:

function concat<T extends unknown[], U extends unknown[]>(
arrl: [...T],

arr2: [...U]
y: [...T, ...Uu] {
return [...arrl, ...arr2];

}
And with that, we also get a tuple type in return:

// const test: [number, number, number, number, number, string]
const test = concat([1, 2, 3], [6, 7, "a"]);

The good news is that we don’t lose anything. If we pass arrays where we don’t know
each element up front, we still get array types in return:

declare const a: string[]
declare const b: number[]

// const test: (string | number)[]
const test = concat(a, b);

Being able to describe this behavior in a single type is definitely much more flexible
and readable than writing every possible combination in a function overload.

7.2 Typing a promisify Function

Problem

You want to convert callback-style functions to Promises and have them perfectly
typed.

Solution

Function arguments are tuple types. Make them generic using variadic tuple types.

192 | Chapter7:Variadic Tuple Types

Discussion

Before Promises were a thing in JavaScript it was very common to do asynchronous
programming using callbacks. Functions would usually take a list of arguments, fol-
lowed by a callback function that would be executed once the results were there, such
as functions to load a file or do a very simplified HTTP request:

function loadFile(

filename: string,

encoding: string,

callback: (result: File) => void
) {

// TODO
}

loadFile("./data.json", "utf-8", (result) => {
// do something with the file
s

function request(url: URL, callback: (result: JSON) => void) {
// TODO
}

request("https://typescript-cookbook.com", (result) => {
// TODO
s

Both follow the same pattern: arguments first, a callback with the result last. This
works but can be clumsy if you have lots of asynchronous calls that result in callbacks
within callbacks, also known as the “the pyramid of doom”™:

loadFile("./data.txt", "utf-8", (file) => {
// pseudo API
file.readText((url) => {
request(url, (data) => {
// do something with data
b
b
b

Promises take care of that. Not only do they find a way to chain asynchronous calls
instead of nesting them, they also are the gateway for async/await, allowing us to
write asynchronous code in a synchronous form:
loadFilePromise("./data.txt", "utf-8")
.then((file) => file.text())
.then((url) => request(url))

.then((data) => {
// do something with data

s

// with async/await

7.2 Typing a promisify Function | 193

https://oreil.ly/Ye3Qr

const file = await loadFilePromise("./data.txt". "utf-8");
const url = await file.text();

const data = await request(url);

// do something with data.

Much nicer! Thankfully, it is possible to convert every function that adheres to the
callback pattern to a Promise. We want to create a promisify function to do that for
us automatically:

function promisify(fn: unknown): Promise<unknown> {
// To be implemented
}

const loadFilePromise = promisify(loadFile);
const requestPromise = promisify(request);

But how do we type this? Variadic tuple types to the rescue!

Every function head can be described as a tuple type. For example:
declare function hello(name: string, msg: string): void;

is the same as:
declare function hello(...args: [string, string]): void;

And we can be very flexible in defining it:

declare function h(a: string, b: string, c: string): void;

// equal to

declare function h(a: string, b: string, ...r: [string]): void;
// equal to

declare function h(a: string, ...r: [string, string]): void;
// equal to

declare function h(...r: [string, string, string]): void;

This is also known as a rest element, something we have in JavaScript that allows you
to define functions with an almost limitless argument list, where the last element, the
rest element, sucks all excess arguments in.

For example, this generic tuple function takes an argument list of any type and
creates a tuple out of it:

function tuple<T extends any[]>(...args: T): T {
return args;

}

const numbers: number[] = getArrayOfNumbers();
const t1 = tuple("foo", 1, true); // [string, number, boolean]
const t2 = tuple("bar", ...numbers); // [string, ...number[]]

194 | Chapter7:Variadic Tuple Types

The thing is, rest elements always have to be last. In JavaScript, it's not possible to
define an almost endless argument list somewhere in between. With variadic tuple
types, however, we can do this in TypeScript!

Let’s look again at the loadFile and request functions again. If we described the
parameters of both functions as tuples, they would look like this:

function loadFile(...args: [string, string, (result: File) => void]) {
// TODO
}

function request2(...args: [URL, (result: JSON) => void]) {
// ToDO
}
Let’s look for similarities. Both end with a callback with a varying result type. We can
align the types for both callbacks by substituting the variations with a generic one.
Later, in usage, we substitute generics for actual types. So JSON and File become the
generic type parameter Res.

Now for the parameters before Res. They are arguably totally different, but even they
have something in common: they are elements within a tuple. This calls for a variadic
tuple. We know they will have a concrete length and concrete types, but right now we
just take a placeholder for them. Let’s call them Args.

So a function type describing both function signatures could look like this:

type Fn<Args extends unknown[], Res> = (
...args: [...Args, (result: Res) => void]
) => void;

Take your new type for a spin:

type LoadFileFn = Fn<[string, string], File>;
type RequestFn = Fn<[URL], JSON>;

This is exactly what we need for the promisify function. We are able to extract all
relevant parameters—the ones before the callback and the result type—and bring
them into a new order.

Lets start by inlining the newly created function type directly into the function
signature of promisify:

function promisify<Args extends unknown[], Res>(

fn: (...args: [...Args, (result: Res) => void]) => void
): (...args: Args) => Promise<Res> {

// soon
}

7.2 Typing a promisify Function | 195

promisify now reads:

o There are two generic type parameters: Args, which needs to be an array (or
tuple), and Res.

o The parameter of promisify is a function where the first arguments are the ele-
ments of Args and the last argument is a function with a parameter of type Res.

o promisify returns a function that takes Args for parameters and returns a
Promise of Res.

If you try out the new typings for promisify, you can see that we get exactly the type
we want.

But it gets even better. If you look at the function signature, it’s absolutely clear which
arguments we expect, even if they are variadic and will be substituted with real types.
We can use the same types for the implementation of promisify:

function promisify<Args extends unknown[], Res>(
fn: (...args: [...Args, (result: Res) => void]) => void
): (...args: Args) => Promise<Res> {
return function (...args: Args) { (1)
return new Promise((resolve) => {
function callback(res: Res) { (3]
resolve(res);

}
fn.call(null, ...[...args, callback]); (4]

i9H
3
}

So what does it do?
© We return a function that accepts all parameters except for the callback.
©® This function returns a newly created Promise.

© Since we don't have a callback yet, we need to construct it. What does it do? It
calls the resolve function from the Promise, producing a result.

O What has been split needs to be brought back together! We add the callback to
the arguments and call the original function.

And that’s it. A working promisify function for functions that adhere to the callback
pattern. Perfectly typed. And we even keep the parameter names.

196 | Chapter7:Variadic Tuple Types

7.3 Typing a curry Function

Problem

You write a curry function. Currying is a technique that converts a function that takes
several arguments into a sequence of functions that each takes a single argument.

You want to provide excellent types.

Solution

Combine conditional types with variadic tuple types, always shaving off the first
parameter.

Discussion

Currying is a very well-known technique in functional programming. Currying con-
verts a function that takes several arguments into a sequence of functions that each
takes a single argument.

The underlying concept is called “partial application of function arguments.” We use
it to maximize the reuse of functions. The “Hello, World!” of currying implements an
add function that can partially apply the second argument later:

function add(a: number, b: number) {
return a + b;

}

const curriedAdd = curry(add); // convert: (a: number) => (b: number) => number
const add5 = curriedAdd(5); // apply first argument. (b: number) => number
const resultl = add5(2); // second argument. Result: 7

const result2 = add5(3); // second argument. Result: 8

What feels arbitrary at first is useful when you work with long argument lists. The
following generalized function either adds or removes classes to an HTMLElement.

We can prepare everything except for the final event:

function applyClass(
this: HTMLElement, // for TypeScript only
method: "remove" | "add",
className: string,
event: Event

) o
if (this === event.target) {
this.classList[method](className);
}
}

const applyClassCurried = curry(applyClass); // convert

7.3 Typing a curry Function | 197

const removeToggle = applyClassCurried("remove")("hidden");

document.querySelector(".toggle")?.addEventListener("click", removeToggle);

This way, we can reuse removeToggle for several events on several elements. We can
also use applyClass for many other situations.

Currying is a fundamental concept of the programming language Haskell and gives a
nod to the mathematician Haskell Brooks Curry, the namesake for both the program-
ming language and the technique. In Haskell, every operation is curried, and pro-
grammers make good use of it.

JavaScript borrows heavily from functional programming languages, and it is possible
to implement partial application with its built-in functionality of binding:

function add(a: number, b: number, c: number) {
return a + b + ¢;

}

// Partial application
const partialAdd5And3 = add.bind(this, 5, 3);
const result = partialAdd5And3(2); // third argument

Since functions are first-class citizens in JavaScript, we can create a curry function
that takes a function as an argument and collects all arguments before executing it:

function curry(fn) {
let curried = (...args) => {
// 1f you haven't collected enough arguments
if (fn.length !== args.length) {
// partially apply arguments and
// return the collector function
return curried.bind(null, ...args);

}
// otherwise call all functions
return fn(...args);

b

return curried;

}

The trick is that every function stores the number of defined arguments in its length
property. That's how we can recursively collect all necessary arguments before apply-
ing them to the function passed.

So what’s missing? Types! Let’s create a type that works for a currying pattern where
every sequenced function can take exactly one argument. We do this by creating a
conditional type that does the inverse of what the curried function inside the curry
function does: removing arguments.

So let’s create a Curried<F> type. The first thing is to check if the type is indeed
a function:

198 | Chapter7:Variadic Tuple Types

type Curried<F> = F extends (...args: infer A) => infer R
? /* to be done */
: never; // not a function, this should not happen

We also infer the arguments as A and the return type as R. Next step, we shave off the
first parameter as F, and store all remaining parameters in L (for last):

type Curried<F> = F extends (...args: infer A) => infer R
? A extends [infer F, ...infer L]
? /* to be done */
: () =R
: never;
Should there be no arguments, we return a function that takes no arguments. Last
check: we check if the remaining parameters are empty. This means we reached the
end of removing arguments from the argument list:

type Curried<F> = F extends (...args: infer A) => infer R

? A extends [infer F, ...infer L]
? L extends []
? (a: F) => R
: (a: F) => Curried<(...args: L) => R>
: () =R
: never;

Should some parameters remain, we call the Curried type again, but with the remain-
ing parameters. This way, we shave off a parameter step by step, and if you take a
good look, you can see that the process is almost identical to what we do in the
curried function. Where we deconstruct parameters in Curried<F>, we collect them
again in curried(fn).

With the type done, let’s add it to curry:

function curry<F extends Function>(fn: F): Curried<F> {
let curried: Function = (...args: any) => {
if (fn.length !== args.length) {
return curried.bind(null, ...args);

}

return fn(...args);
IH
return curried as Curried<F>;
}
We need a few assertions and some any because of the flexible nature of the type. But
with as and any as keywords, we mark which portions are considered unsafe types.

And that’s it! We can get curried away!

7.3 Typing a curry Function | 199

7.4 Typing a Flexible curry Function

Problem

The curry function from Recipe 7.3 allows for an arbitrary number of arguments to
be passed, but your typings allow you to take only one argument at a time.

Solution

Extend your typings to create function overloads for all possible tuple combinations.

Discussion

In Recipe 7.3 we ended up with function types that allow us to apply function argu-
ments one at a time:

function addThree(a: number, b: number, c: number) {
return a + b + c;

}

const adder = curried(addThree);
const add7 = adder(5)(2);
const result = add7(2);

However, the curry function itself can take an arbitrary list of arguments:

function addThree(a: number, b: number, c: number) {
return a + b + ¢;

}

const adder = curried(addThree);
const add7 = adder(5, 2); // this is the difference
const result = add7(2);

This allows us to work on the same use cases but with a lot fewer function invoca-
tions. So let’s adapt our types to take advantage of the full curry experience.

This example illustrates really well how the type system works as
just a thin layer on top of JavaScript. By adding assertions and any
at the right positions, we effectively define how curry should work,
whereas the function itself is much more flexible. Be aware that
when you define complex types on top of complex functionality,
you might cheat your way to the goal, and it’s in your hands how
the types work in the end. Test accordingly.

200 | Chapter7: Variadic Tuple Types

Our goal is to create a type that can produce all possible function signatures for every
partial application. For the addThree function, all possible types would look like this:
type Adder = (a: number) => (b: number) => (c: number) => number;
type Adder = (a: number) => (b: number, c: number) => number;

type Adder = (a: number, b: number) => (c: number) => number;
type Adder = (a: number, b: number, c: number) => number;

See also Figure 7-1 for a visualization of all possible call graphs.

——

[number, number,
i number] _’®

~———

[]—-> [number, number] =i [number]

L) [number] —P! [number]

[number]]—>®

)

% [number, number]

)

& &

Figure 7-1. A graph showing all possible function call combinations of addThree when
curried; there are three branches to start, with a possible fourth branch

The first thing we do is to slightly adapt the way we call the Curried helper type. In
the original type, we do the inference of function arguments and return types in the
helper type. Now we need to carry along the return value over multiple type invoca-
tions, so we extract the return type and arguments directly in the curry function:

function curry<A extends any[], R extends any>(
fn: (...args: A) => R
): Curried<A, R> {
// see before, we're not changing the implementation

}
Next, we redefine the Curried type. It now features two generic type parameters: A for
arguments, R for the return type. As a first step, we check if the arguments contain
tuple elements. We extract the first element F and all remaining elements L. If there
are no elements left, we return the return type R:

type Curried<A extends any[], R extends any> = A extends [infer F, ...infer L]

? // to be done
. R;

7.4 Typing a Flexible curry Function | 201

It's not possible to extract multiple tuples via the rest operator. That’s why we still
need to shave off the first element and collect the remaining elements in L. But that’s
OK; we need at least one parameter to effectively do partial application.

When we are in the true branch, we create the function definitions. In the previous
example, we returned a function that returns a recursive call; now we need to provide
all possible partial applications.

Since function arguments are nothing but tuple types (see Recipe 7.2), arguments of
function overloads can be described as a union of tuple types. A type Overloads takes
a tuple of function arguments and creates all partial applications:

type Overloads<A extends any[]> = A extends [infer A, ...infer L]
? [A] | [A, ...Overloads<L>] | []

N H
If we pass a tuple, we get a union starting from the empty tuple and then growing to
one argument, then to two arguments, etc., and up to a tuple that includes all
arguments:

// type Overloaded = [] | [string, number, string] | [string] | [string, number]
type Overloaded = Overloads<[string, number, string]>;
Now that we can define all overloads, we take the remaining arguments of the origi-
nal functions’ argument list and create all possible function calls that also include the
first argument:
type Curried<A extends any[], R extends any> = A extends [infer F, ...infer L]
? <K extends Overloads<L>>(
arg: F,
...args: K
) => /* to be done */
: R;
Applied to the addThree example from before, this part would create the first argu-
ment F as number and then combine it with [], [number], and [number, number].

Now for the return type. This is again a recursive call to Curried, just like in Recipe
7.2. Remember, we chain functions in a sequence. We pass in the same return type—
we need to get there eventually—but also need to pass all remaining arguments that
we haven't spread out in the function overloads. So if we call addThree only with
number, the two remaining numbers need to be arguments of the next iteration of
Curried. This is how we create a tree of possible invocations.

To get to the possible combinations, we need to remove the arguments we already
described in the function signature from the remaining arguments. A helper type
Remove<T, U> goes through both tuples and shaves off one element each, until one of
the two tuples runs out of elements:

202 | Chapter7: Variadic Tuple Types

type Remove<T extends any[], U extends any[]> = U extends [infer _, ...infer UL]
? T extends [infer _, ...infer TL]
? Remove<TL, UL>
: never
N

Wiring that up to Curried, and we get the final result:

type Curried<A extends any[], R extends any> = A extends [infer F, ...infer L]
? <K extends Overloads<L>>(
arg: F,
...args: K
) => Curried<Remove<L, K>, R>
: R;

Curried<A, R> now produces the same call graph as described in Figure 7-1 but is
flexible for all possible functions that we pass in curry. Proper type safety for maxi-
mum flexibility (shout-out to GitHub user Akira Matsuzaki who provided the
missing piece in their Type Challenges solution).

7.5 Typing the Simplest curry function

Problem

The curry functions and their typings are impressive but come with a lot of caveats.
Are there any simpler solutions?

Solution

Create a curry function with only a single sequential step. TypeScript can figure out
the proper types on its own.

Discussion

In the last piece of the curry trilogy, I want you to sit back and think a bit about what
we saw in Recipes 7.3 and 7.4. We created very complex types that work almost like
the actual implementation through TypeScripts metaprogramming features. And
while the results are impressive, there are some caveats we have to think about:

o The way the types are implemented for both Recipes 7.3 and 7.4 is a bit different,
but the results vary a lot! Still, the curry function underneath stays the same. The
only way this works is by using any in arguments and type assertions for the
return type. What this means is that we effectively disable type-checking by forc-
ing TypeScript to adhere to our view of the world. It’s great that TypeScript can
do that, and at times it’s also necessary (such as the creation of new objects), but
it can backfire, especially when both implementation and types get very complex.

7.5 Typing the Simplest curry function | 203

Tests for both types and implementation are a must. We talk about testing types
in Recipe 12.4.

o You lose information. Especially when currying, keeping argument names is
essential to know which arguments already have applied. The solutions in the
earlier recipes couldn’t keep argument names but defaulted to a generic-sounding
a or args. If your argument types are, for example, all strings, you can’t say which
string you are currently writing.

o While the result in Recipe 7.4 gives you proper type-checking, autocomplete is
limited because of the nature of the type. You know only that a second argument
is needed the moment you type it. One of TypeScript’s main features is giving you
the right tooling and information to make you more productive. The flexible
Curried type reduces your productivity to guesswork again.

Again, while those types are impressive, there is no denying that they come with
some huge trade-offs. This raises the question: should we even go for it? I think it
really depends on what you try to achieve.

In the case of currying and partial application, there are two camps. The first camp
loves functional programming patterns and tries to leverage JavaScript’s functional
capabilities to the max. They want to reuse partial applications as much as possible
and need advanced currying functionalities. The other camp sees the benefit of func-
tional programming patterns in certain situations—for example, waiting for the final
parameter to give the same function to multiple events. They often are happy with
applying as much as possible, but then provide the rest in a second step.

We have dealt with only the first camp until now. If you’re in the second camp, you
most likely only need a currying function that applies a few parameters partially, so
you can pass in the rest in a second step: no sequence of parameters of one argument,

and no flexible application of as many arguments as you like. An ideal interface
would look like this:

function applyClass(
this: HTMLElement, // for TypeScript only
method: "remove" | "add",
className: string,
event: Event

) {
if (this === event.target) {
this.classList[method](className);
}
}

const removeToggle = curry(applyClass, "remove", "hidden");

document.querySelector("button")?.addEventListener("click", removeToggle);

204 | Chapter7: Variadic Tuple Types

curry is a function that takes another function f as an argument and then a sequence
t of parameters of f. It returns a function that takes the remaining parameters u of f,
which calls f with all possible parameters. The function could look like this in
JavaScript:

function curry(f, ...t) {
return (...u) => f(...t, ...u);
}

Thanks to the rest and spread operator, curry becomes a one-liner. Now lets type
this! We will have to use generics, as we deal with parameters that we don’t know yet.
There’s the return type R, as well as both parts of the function’s arguments, T and U.
The latter are variadic tuple types and need to be defined as such.

With a generic type parameter T and U comprising the arguments of f, a type for f
looks like this:

type Fn<T extends any[], U extends any[]> =
(...args: [...T, ...U]) => any;
Function arguments can be described as tuples, and here we say those function argu-
ments should be split into two parts. Let’s inline this type to curry and use another
generic type parameter for the return type R:

function curry<T extends any[], U extends any[], R>(
f: (...args: [...T, ...U]) => R,
LWt T

) {
return (...u: U) => f(...t, ...u);

}
And that’s all the types we need: simple, straightforward, and the types look very sim-
ilar to the actual implementation. With a few variadic tuple types, TypeScript gives us:

« 100% type safety. TypeScript directly infers the generic types from your usage,
and they are correct. No laboriously crafted types through conditional types and
recursion.

o We get autocomplete for all possible solutions. The moment you add a , to
announce the next step of your arguments, TypeScript will adapt types and give
you a hint about what to expect.

o We don't lose any information. Since we don’t construct new types, TypeScript
keeps the labels from the original type, and we know which arguments to expect.

7.5 Typing the Simplest curry function | 205

Yes, curry is not as flexible as the original version, but for a lot of use cases, this
might be the right choice. It’s all about the trade-offs we accept for our use case.

If you work with tuples a lot, you can name the elements of your

tuple types: type Person = [name: string, age: number];.
Those labels are just annotations and are removed after
transpilation.

Ultimately, the curry function and its many different implementations stand for the
many ways you can use TypeScript to solve a particular problem. You can go all out
with the type system and use it for very complex and elaborate types, or you can
reduce the scope a bit and let the compiler do the work for you. Your choice depends
on your goals and what you try to achieve.

7.6 Creating an Enum from a Tuple

Problem

You like how enums make it easy to select valid values, but after reading Recipe 3.12
you don’t want to deal with all their caveats.

Solution

Create your enums from a tuple. Use conditional types, variadic tuple types, and the
"length" property to type the data structure.

Discussion

In Recipe 3.12 we discussed all possible caveats when using number and string
enums. We ended up with a pattern that is much closer to the type system but gives
you the same developer experience as regular enums:

const Direction = {
Up: 0O,
Down: 1,
Left: 2,
Right: 3,
} as const;

// Get to the const values of Direction
type Direction = (typeof Direction)[keyof typeof Direction];

// (typeof Direction)[keyof typeof Direction] yields 60 [1 [2 | 3
function move(direction: Direction) {

// tbd
}

206 | Chapter7: Variadic Tuple Types

move(30); // This breaks!
move(0); //This works!

move(Direction.Left); // This also works!

It’s a very straightforward pattern with no surprises, but it can result in a lot of work
for you if you are dealing with lots of entries, especially if you want to have string
enums:

const Commands = {
Shift: "shift",
Xargs: "xargs",
Tail: "tail",
Head: "head",
Uniq: "uniq",

Cut: "cut",
Awk: "awk",
Sed: "sed",
Grep: "grep",

Echo: "echo",
} as const;

There is duplication, which may result in typos, which may lead to undefined behav-
ior. A helper function that creates an enum like this for you helps deal with redun-
dancy and duplication. Let’s say you have a collection of items like this:

const commandItems = [
"echo",
"grep”,
"sed",
"awk",
"cut",
"uniq",
"head",
"tail",
"xargs",
"shift",

] as const;

A helper function createEnunm iterates through every item, creating an object with
capitalized keys that point either to a string value or to a number value, depending on
your input parameters:

function capitalize(x: string): string {

return x.charAt(0).toUpperCase() + x.slice(1);
}

// Typings to be done

function createEnum(arr, numeric) {
let obj = {};
for (let [1, el] of arr.entries()) {

7.6 Creating an Enum fromaTuple | 207

obj[capitalize(el)] = numeric ? 1 : el;
}

return obj;

}

const Command = createEnum(commandItems); // string enum
const CommandN = createEnum(commandItems, true); // number enum

Let’s create types for this! We need to take care of two things:

o Create an object from a tuple. The keys are capitalized.

o Set the values of each property key to either a string value or a number value. The
number values should start at 0 and increase by one with each step.

To create object keys, we need a union type we can map out. To get all object keys, we
need to convert our tuple to a union type. A helper type TupleToUnion takes a string
tuple and converts it to a union type. Why only string tuples? Because we need object
keys, and string keys are the easiest to use.

TupleToUnion<T> is a recursive type. Like we did in other lessons, we are shaving off
single elements—this time at the end of the tuple—and then calling the type again
with the remaining elements. We put each call in a union, effectively getting a union
type of tuple elements:

type TupleToUnion<T extends readonly string[]> = T extends readonly [
...infer Rest extends string[],
infer Key extends string

1
? Key | TupleToUnion<Rest>
: never;

With a map type and a string manipulation type, we can create the string enum ver-
sion of Enum<T>:

type Enum<T extends readonly string[], N extends boolean = false> = Readonly<

{

[K in TupleToUnion<T> as Capitalize<K>]: K

}

>3

For the number enum version, we need to get a numerical representation of each
value. If we think about it, we have already stored it somewhere in our original data.
Let’s look at how TupleToUnion deals with a four-element tuple:

// The type we want to convert to a union type
type Direction = ["up", "down", "left", "right"];

// Calling the helper type
type DirectionUnion = TupleToUnion<Direction>;

// Extracting the last, recursively calling TupleToUnion with the Rest

208 | Chapter7: Variadic Tuple Types

type DirectionUnion = "right" | TupleToUnion<["up", "down", "left"]>;

// Extracting the last, recursively calling TupleToUnion with the Rest
type DirectionUnion = "right" | "left" | TupleToUnion<["up", "down"]>;

// Extracting the last, recursively calling TupleToUnion with the Rest
type DirectionUnion = "right" | "left" | "down" | TupleToUnion<["up"]>;

// Extracting the last, recursively calling TupleToUnion with an empty tuple
type DirectionUnion = "right" | "left" | "down" | "up" | TupleToUnion<[]>;

// The conditional type goes into the else branch, adding never to the union
type DirectionUnion = "right" | "left" | "down" | "up" | never;

// never in a union is swallowed

type DirectionUnion = "right" | "left" | "down" | "up";
If you look closely, you can see that the length of the tuple is decreasing with each
call. First, it’s three elements, then two, then one, and ultimately there are no elements
left. Tuples are defined by the length of the array and the type at each position in the
array. TypeScript stores the length as a number for tuples, accessible via the "length"

property:
type DirectionLength = Direction["length"]; // 4

So with each recursive call, we can get the length of the remaining elements and use
this as a value for the enum. Instead of just returning the enum keys, we return an
object with the key and its possible number value:

type TupleToUnion<T extends readonly string[]> = T extends readonly [
...infer Rest extends string[],
infer Key extends string

1
? { key: Key; val: Rest["length"] } | TupleToUnion<Rest>
: never;

We use this newly created object to decide whether we want to have number values or
string values in our enum:

type Enum<T extends readonly string[], N extends boolean = false> = Readonly<

{
[K in TupleToUnion<T> as Capitalize<K["key"]>]: N extends true
? K["val"]
. K["key"];
}

>3

And that’s it! We wire up our new Enum<T, N> type to the createEnum function:

type Values<T> = T[keyof T];

function createEnum<T extends readonly string[], B extends boolean>(

7.6 Creating an Enum fromaTuple | 209

arr: T,
numeric?: B
) {
let obj: any = {};
for (let [1, el] of arr.entries()) {
obj[capitalize(el)] = numeric ? 1 : el;
}

return obj as Enum<T, B>;

}

const Command = createEnum(commandItems, false);
type Command = Values<typeof Command>;

Being able to access the length of a tuple within the type system is one of the hidden
gems in TypeScript. This allows for many things, as shown in this example, but also
fun stuff like implementing calculators in the type system. As with all advanced fea-
tures in TypeScript, use them wisely.

7.7 Splitting All Elements of a Function Signature

Problem

You know how to grab argument types and return types from functions within a
function, but you want to use the same types outside as well.

Solution

Use the built-in Parameters<F> and ReturnType<F> helper types.

Discussion

In this chapter, we have dealt with helper functions and how they can grab informa-
tion from functions that are arguments. For example, this defer function takes a
function and all its arguments and returns another function that will execute it. With
some generic types, we can capture everything we need:

function defer<Par extends unknown[], Ret>(
fn: (...par: Par) => Ret,
...args: Par

)t () => Ret {
return () => fn(...args);

}

const log = defer(console.log, "Hello, world!");
log();

210 | Chapter7: Variadic Tuple Types

This works great if we pass functions as arguments because we can easily pick the
details and reuse them. But certain scenarios need a function’s arguments and its
return type outside of a generic function. Thankfully, we can leverage some built-in
TypeScript helper types. With Parameters<F> we get a function’s arguments as a
tuple; with ReturnType<F> we get the return type of a function. So the defer function
from before could be written like:

type Fn = (...args: any[]) => any;

function defer<F extends Fn>(
fn: F,
...args: Parameters<F>

): () => ReturnType<F> {
return () => fn(...args);

}

Both Parameters<F> and ReturnType<F> are conditional types that rely on function/
tuple types and are very similar. In Parameters<F> we infer the arguments, and in
ReturnType<F> we infer the return type:

type Parameters<F extends (...args: any) => any> =
F extends (...args: infer P) => any ? P : never;

type ReturnType<F extends (...args: any) => any> =
F extends (...args: any) => infer R ? R : any;

We can use those helper types, for example, to prepare function arguments outside of
functions. Take this search function:

type Result = {
page: URL;
title: string;
description: string;

b

function search(query: string, tags: string[]): Promise<Result[]> {
throw "to be done";

}

With Parameters<typeof search> we get an idea of which parameters to expect. We
define them outside of the function call and spread them as arguments when calling:

const searchParams: Parameters<typeof search> = [
"Variadic tuple tpyes",
["TypeScript", "JavaScript"],

I;

search(...searchParams);
const deferredSearch = defer(search, ...searchParams);

Both helpers come in handy when you generate new types as well; see Recipe 4.8 for
an example.

7.7 Splitting All Elements of a Function Signature | 211

CHAPTER 8
Helper Types

One of TypeScript’s strengths is the ability to derive types from other types. This
allows you to define relationships between types, where updates in one type trickle
through to all derived types automatically. This reduces maintenance and ultimately
results in more robust type setups.

When creating derived types, we usually apply the same type modifications but in dif-
ferent combinations. TypeScript already has a set of built-in utility types, some of
which we've already seen in this book. But sometimes they are not enough. Some sit-
uations require you either to apply known techniques differently or to dig deep into
the inner workings of the type system to produce the desired result. You might need
your own set of helper types.

This chapter introduces you to the concept of helper types and shows you some use
cases where a custom helper type expands your ability to derive types from others
tremendously. Each type is designed to work in different situations, and each type
should teach you a new aspect of the type system. Of course, the list of types you see
here is by no means complete, but they give you a good entry point and enough
resources to branch out.

In the end, TypeScripts type system can be seen as its own functional meta-
programming language, where you combine small, single-purpose helper types with
bigger helper types to make type derivates as easy as applying a single type to your
existing models.

8.1 Setting Specific Properties Optional

Problem

You want to derive types where you set specific properties optional.

213

https://oreil.ly/inM2y

Solution

Create a custom helper type SetOptional that intersects two object types: one that
maps over all selected properties using the optional mapped type modifier and one
that maps over all remaining properties.

Discussion

All your models in your TypeScript project are set and defined, and you want to refer
to them throughout your code:

type Person = {
name: string;
age: number;
profession: string;
¥
One situation that occurs pretty often is that you need something that looks like
Person but does not require all properties to be set; some of them can be optional.
This will make your API more open to other structures and types that are of similar
shape but lack one or two fields. You don’t want to maintain different types (see
Recipe 12.1) but rather derive them from the original model, which is still in use.

TypeScript has a built-in helper type called Partial<T> that modifies all properties to
be optional:
type Partial<T> = { [P in keyof T]?: T[P]; };

It's a mapped type that maps out over all keys and uses the optional mapped type modi-
fier to set each property to optional. The first step in making a SetOptional type is to
reduce the set of keys that can be set as optional:

type SelectPartial<T, K extends keyof T> = {
[P in K]?: T[P]
b

The optional mapped type modifier applies the symbol for an
optional property—the question mark—to a set of properties. You
learned about mapped type modifiers in Recipe 4.5.

In SelectPartial<T, K extends keyof T>, we don't map over all keys, just a subset
of keys provided. With the extends keyof T generic constraint, we make sure that
we pass only valid property keys. If we apply SelectPartial to Person to select
"age", we end up with a type where we see only the age property, which is set
to optional:

214 | Chapter 8: Helper Types

type Age = SelectPartial<Person, "age'"s;

// type Age = { age?: number | undefined };
The first half is done: everything we want to set as optional is optional. But the rest of
the properties are missing. Let’s get them back to the object type.

The easiest way of extending an existing object type with more properties is to create
an intersection type with another object type. So in our case, we take what we've writ-
ten in SelectPartial and intersect it with a type that includes all remaining keys.

We can get all remaining keys by using the Exclude helper type. Exclude<T, U>isa
conditional type that compares two sets. If elements from set T are in U, they will be
removed using never; otherwise, they stay in the type:

type Exclude<T, U> = T extends U ? never : T;

This works in contrast to Extract<T, U> which we described in Recipe 5.3.
Exclude<T, U> is a distributive conditional type (see Recipe 5.2) and distributes the
conditional type over every element of a union:

// This example shows how TypeScript evaluates a
// helper type step by step.

type ExcludeAge = Exclude<"name" | "age", "age"s;

// 1. Distribute
type ExcludeAge =

"name" extends "age" ? never : "name"
"age" extends "age" ? never : "age";
// 2. Evaluate
type ExcludeAge = "name" | never;

// 3. Remove unnecessary ‘never’
type ExcludeAge = "name";

This is exactly what we want! In SetOptional, we create one type that picks all
selected keys and makes them optional, then we exclude the same keys from the big-
ger set of all of the object’s keys:

type SetOptional<T, K extends keyof T> = {
[P in K]?: T[P];
} &
{
[P in Exclude<keyof T, K>]: T[P];

3

The intersection of both types is the new object type, which we can use with any
model we like:

8.1 Setting Specific Properties Optional | 215

type OptionalAge = SetOptional<Person, "age'">;

/*
type OptionalAge = {
name: string;
age?: number | undefined;
profession: string;
}s
*/
If we want to make more than one key optional, we need to provide a union type with
all desired property keys:

type OptionalAgeAndProf = SetOptional<Person, "age" | "profession"s;

TypeScript not only allows you to define types like this yourself but also has a set of
built-in helper types that you can easily combine for similar effect. We could write the
same type SetOptional solely based on helper types:

type SetOptional<T, K extends keyof T> = Partial<Pick<T, K>> & Omit<T, K>;

o Pick<T, K> selects keys K from object T.

o Omit<T, K> selects everything but K from object T (using Exclude under the
hood).

o And we already learned what Partial<T> does.

Depending on how you like to read types, this combination of helper types can be
easier to read and understand, especially since the built-in types are much better
known among developers.

There is only one problem: if you hover over your newly generated types, TypeScript
will show you how the type is made, not what the actual properties are. With the
Remap helper type from Recipe 8.3, we can make our types more readable and usable:

type SetOptional<T, K extends keyof T> = Remap<
Partial<Pick<T, K>> & Omit<T, K>
5.

If you think about your type arguments as a function interface, you might want to
think about your type parameters as well. One optimization you could do is to set the
second argument—the selected object keys—to a default value:

type SetOptional<T, K extends keyof T = keyof T> = Remap<
Partial<Pick<T, K>> & Omit<T, K>

>3

With K extends keyof T = keyof T, we can make sure that we set all property keys
as optional, and only select specific ones if we need them. Our helper type just
became a little bit more flexible.

216 | Chapter8: Helper Types

In the same vein, you can start creating types for other situations, like SetRequired,
where you want to make sure that some keys are definitely required:

type SetRequired<T, K extends keyof T = keyof T> = Remap<
Required<Pick<T, K>> & Omit<T, K>

>

Or OnlyRequired, where all keys you provide are required, but the rest are optional:

type OnlyRequired<T, K extends keyof T = keyof T> = Remap<
Required<Pick<T, K>> & Partial<Omit<T, K>>

>3

The best thing: you end up with an arsenal of helper types that can be used through-
out multiple projects.

8.2 Modifying Nested Objects

Problem

Object helper types like Partial, Required, and Readonly modify only the first level
of an object and won't touch nested object properties.

Solution

Create recursive helper types that do the same operation on nested objects.

Discussion

Say that your application has different settings that can be configured by users. To
make it easy for you to extend settings over time, you store only the difference
between a set of defaults and the settings your user configured:

type Settings = {
mode: "light" | "dark";
playbackSpeed: number;
subtitles: {
active: boolean;
color: string;
1
b

const defaults: Settings = {
mode: "dark",
playbackSpeed: 1.0,
subtitles: {
active: false,
color: "white",
1,
b

8.2 Modifying Nested Objects | 217

The function applySettings takes both the defaults and the settings from your users.
You defined them as Partial<Settings>, since the user needs to provide only some
keys; the rest will be taken from the default settings:

function applySettings(
defaultSettings: Settings,
userSettings: Partial<Settings>
): Settings {
return { ...defaultSettings, ...userSettings };

}

This works really well if you need to set certain properties on the first level:
let settings = applySettings(defaults, { mode: "light" });

But this causes problems if you want to modify specific properties deeper down in
your object, like setting subtitles to active:

let settings = applySettings(defaults, { subtitles: { active: true } });

// g

// Property 'color' is missing in type '{ active: true; }'

// but required in type '{ active: boolean; color: string; }'.(2741)
TypeScript complains that for subtitles you need to provide the entire object. This
is because Partial<T>—like its siblings Required<T> and Readonly<T>—modifies
only the first level of an object. Nested objects will be treated as simple values.

To change this, we need to create a new type called DeepPartial<T>, which recur-
sively goes through every property and applies the optional mapped type modifier for
each level:

type DeepPartial<T> = {
[K in keyof T]?: DeepPartial<T[K]>;
15
The first draft already works well, thanks to TypeScript stopping recursion at primi-
tive values, but it has the potential to result in unreadable output. A simple condition
that checks that we go deep only if we are dealing with an object makes our type
much more robust and the result more readable:

type DeepPartial<T> = T extends object
2 {

}
: T

[K in keyof T]?: DeepPartial<T[K]>;

For example, DeepPartial<Settings> results in the following output:

type DeepPartialSettings = {
mode?: "light" | "dark" | undefined;
playbackSpeed?: number | undefined;
subtitles?: {
active?: boolean | undefined;

218 | Chapter8: Helper Types

color?: string | undefined;
} | undefined;
b
This is exactly what we've been aiming for. If we use DeepPartial<T> in apply
Settings, we see that the actual usage of applySettings works, but TypeScript greets
us with another error:

function applySettings(
defaultSettings: Settings,
userSettings: DeepPartial<Settings>
): Settings {
return { ...defaultSettings, ...userSettings };
// 4
// Type '{ mode: "light" | "dark"; playbackSpeed: number;
// subtitles: { active?: boolean | undefined;
// color?: string | undefined; }; }' is not assignable to type 'Settings'.

}
Here, TypeScript complains that it can’t merge the two objects into something that
results in Settings, as some of the DeepPartial set elements might not be assignable
to Settings. And this is true! Object merge using destructuring also works only on
the first level, just like Partial<T> has defined for us. This means that if we called
applySettings like before, we would get a totally different type than for settings:

let settings = applySettings(defaults, { subtitles: { active: true } });
// results in

let settings = {
mode: "dark",
playbackSpeed: 1,
subtitles: {
active: true

}
15
color is all gone! This is one situation where TypeScript’s type might be unintuitive at
first: why do object modification types go only one level deep? Because JavaScript
goes only one level deep! But ultimately, they point out bugs you wouldn’t have
caught otherwise.

To circumvent this situation, you need to apply your settings recursively. This can be
nasty to implement yourself, so we resort to lodash and its merge function for
this functionality:

import { merge } from "lodash";

function applySettings(
defaultSettings: Settings,
userSettings: DeepPartial<Settings>

8.2 Modifying Nested Objects | 219

): Settings {
return merge(defaultSettings, userSettings)

}

merge defines its interface to produce an intersection of two objects:

function merge<TObject, TSource>(
object: TObject, source: TSource
): TObject & TSource {
Y72
}
Again, exactly what we are looking for. An intersection of Settings and Deep
Partial<Settings> also produces an intersection of both, which is—due to the
nature of the types—Settings again.

So we end up with expressive types that tell us exactly what to expect, correct results
for the output, and another helper type for our arsenal. You can create DeepReadonly
and DeepRequired similarly.

8.3 Remapping Types

Problem

Constructing types gives you flexible, self-maintaining types, but the editor hints
leave a lot to be desired.

Solution

Use the Remap<T> and DeepRemap<T> helper types to improve editor hints.

Discussion

When you use TypeScript’s type system to construct new types, by using helper types,
complex conditional types, or even simple intersections, you might end up with edi-
tor hints that are hard to decipher.

Let’s look at OnlyRequired from Recipe 8.1. The type uses four helper types and one
intersection to construct a new type in which all keys provided as the second type
parameter are set to required, while all others are set to optional:

type OnlyRequired<T, K extends keyof T = keyof T> =
Required<Pick<T, K>> & Partial<Omit<T, K>>;

This way of writing types gives you a good idea of what’s happening. You can read the
functionality based on how helper types are composed with one another. However,

when you are actually using the types on your models, you might want to know more
than the actual construction of the type:

220 | Chapter8: Helper Types

type Person = {
name: string;
age: number;
profession: string;

b
type NameRequired = OnlyRequired<Person, "name'"s;

If you hover over NameRequired, you see that TypeScript gives you information on
how the type was constructed based on the parameters you provide, but the editor
hint won’'t show you the result, the final type being constructed with those helper
types. You can see the editor’s feedback in Figure 8-1.

type NameRequired = Required<Pick<Person, "name">> &
Partial<Omit<Person, "name'">>

type NameRequired = OnlyRequired<Person, "name">;

Figure 8-1. Editor hints on complex types expand very shallowly; without knowing the
types underneath and their functionality, it becomes hard to understand the result

To make the final result look like an actual type and to spell out all the properties, we
have to use a simple yet effective type called Remap:

type Remap<T> = {
[K in keyof T]: T[K];
IH
Remap<T> is just an object type that goes through every property and maps it to the
value defined. No modifications, no filters, just putting out what’s being put in. Type-
Script will print out every property of mapped types, so instead of seeing the con-
struction, you see the actual type, as shown in Figure 8-2.

type NameRequired = {
name: string;
age?: number | undefined;
profession?: string | undefined;

}

type NameRequired = Remap<OnlyRequired<Person, "name">>;

Figure 8-2. With Remap<T>, the presentation of NameRequired becomes much
more readable

8.3 Remapping Types | 221

Beautiful! This has become a staple in TypeScript utility type libraries. Some call it
Debug; others call it Simplify. Remap is just another name for the same tool and the
same effect: getting an idea of what your result will look like.

Like other mapped types Partial<T>, Readonly<T>, and Required<T>, Remap<T> also
works on the first level only. A nested type like Settings that includes the Subtitles
type will be remapped to the same output, and the editor feedback will be the same:

type Subtitles = {
active: boolean;
color: string;

b

type Settings = {
mode: "light" | "dark";
playbackSpeed: number;
subtitles: Subtitles;
b

But also, as shown in Recipe 8.2, we can create a recursive variation that remaps all
nested object types:

type DeepRemap<T> = T extends object
2 {

}
: T;

[K in keyof T]: DeepRemap<T[K]>;

Applying DeepRemap<T> to Settings will also expand Subtitles:

type SettingsRemapped = DeepRemap<Settings>;
// results in

type SettingsRemapped = {
mode: "light" | "dark";
playbackSpeed: number;
subtitles: {
active: boolean;
color: string;
I
b

Using Remap is mostly a matter of taste. Sometimes you want to know about the
implementation, and sometimes the terse view of nested types is more readable than
the expanded versions. But in other scenarios, you actually care about the result itself.
In those cases, having a Remap<T> helper type handy and available is
definitely helpful.

222 | Chapter8: Helper Types

8.4 Getting All Required Keys

Problem

You want to create a type that extracts all required properties from an object.

Solution

Create a mapped helper type GetRequired<T> that filters keys based on a subtype
check against its required counterpart.

Discussion

Optional properties have a tremendous effect on type compatibility. A simple type
modifier, the question mark, widens the original type significantly. They allow us to
define fields that might be there, but they can be used only if we do additional checks.

This means we can make our functions and interfaces compatible with types that lack
certain properties entirely:

type Person = {
name: string;
age?: number;

b

function printPerson(person: Person): void {
/] ...
}

type Student = {
name: string;
semester: number;

b

const student: Student = {
name: "Stefan",
semester: 37,

b
printPerson(student); // all good!

We see that age is defined in Person but not at all defined in Student. Since it’s
optional, it doesn't keep us from using printPerson with objects of type Student.
The set of compatible values is wider, as we can use objects of types that drop age
entirely.

TypeScript solves that by attaching undefined to properties that are optional. This is
the truest representation of “it might be there”

8.4 Getting All Required Keys | 223

This fact is important if we want to check if property keys are required or not. Lets
start by doing the most basic check. We have an object and want to check if all keys
are required. We use the helper type Required<T>, which modifies all properties to be
required. The simplest check is to see if an object type—for example, Name—is a sub-
set of its Required<T> counterpart:

type Name = {
name: string;

b

type Test = Name extends Required<Name> ? true : false;
// type Test = true

Here, Test results in true, because if we change all properties to required using

Required<T>, we still get the same type. However, things change if we introduce an
optional property:
type Person = {
name: string;

age?: number;

b

type Test = Person extends Required<Person> ? true : false;
// type Test = false

Here, Test results in false, because type Person with the optional property age
accepts a much broader set of values than Required<Person>, where age needs to be
set. Contrary to this check, if we swap Person and Required<Person>, we can see that
the narrower type Required<Person> is in fact a subset of Person:

type Test = Required<Person> extends Person ? true : false;
// type Test = true

What we've checked so far is if the entire object has the required keys. But what we
actually want is to get an object that includes only property keys that are set to
required. This means we need to do this check with each property key. The need to
iterate the same check over a set of keys is a good indicator for a mapped type.

Our next step is to create a mapped type that does the subset check for each property,
to see if the resulting values include undefined:

type RequiredPerson = {
[K in keyof Person]: Person[K] extends Required<Person[K]> ? true : false;

b

/*
type RequiredPerson = {
name: true;
age?: true | undefined;
}
*/

224 | Chapter8: Helper Types

This is a good guess but gives us results that don't work. Each property resolves to
true, meaning that the subset checks only for the value types without undefined.
This is because Required<T> works on objects, not on primitive types. Something
that gets us more robust results is checking if Person[K] includes any nullable values.
NonNullable<T> removes undefined and null:

type RequiredPerson = {
[K in keyof Person]: Person[K] extends NonNullable<Person[K]> ? true : false;

};
/*

type RequiredPerson =
name: true;
age?: false [undefined;
}
*/
That’s better, but still not where we want it to be. undefined is back again, as it’s being
added by the property modifier. Also, the property is still in the type, and we want to
get rid of it.

What we need to do is reduce the set of possible keys. So instead of checking for the
values, we do a conditional check on each property while we are mapping out keys.
We check if Person[K] is a subset of Required<Person>[K], doing a proper check
against the bigger subset. If this is the case, we print out the key K; otherwise, we drop
the property using never (see Recipe 5.2):

type RequiredPerson = {
[K in keyof Person as Person[K] extends Required<Person>[K]
? K
: never]: Person[K];
¥
This gives us the results we want. Now we substitute Person for a generic type param-
eter and our helper type GetRequired<T> is done:

type GetRequired<T> = {
[K in keyof T as T[K] extends Required<T>[K]
? K
: never]: T[K];
IH
From here on, we can derive variations like GetOptional<T>. However, checking if
something is optional is not as easy as checking if some property keys are required,
but we can use GetRequired<T> and a keyof operator to get all the required property
keys:

type RequiredKeys<T> = keyof GetRequired<T>;

8.4 Getting All Required Keys | 225

After that, we use the RequiredKeys<T> to omit them from our target object:
type GetOptional<T> = Omit<T, RequiredKeys<T>>;

Again, a combination of multiple helper types produces derived, self-maintaining

types.
8.5 Allowing at Least One Property

Problem

You have a type for which you want to make sure that at least one property is set.

Solution

Create a Split<T> helper type that splits an object into a union of one-property
objects.

Discussion

Your application stores a set of URLs—for example, for video formats—in an object
where each key identifies a different format:

type VideoFormatURLs = {
format360p: URL;
format480p: URL;
format720p: URL;
format1080p: URL;

b

You want to create a function loadvideo that can load any of those video format
URLs but needs to load at least one URL.

If loadvideo accepts parameters of type VideoFormatURLs, you need to provide all
video format URLs:

function loadVideo(formats: VideoFormatURLs) {

// tbd
}
loadVvideo({
format360p: new URL("..."),
format480p: new URL("..."),
format720p: new URL("..."),
format1080p: new URL("..."),
b

226 | Chapter8: Helper Types

But some videos might not exist, so a subset of all available types is actually what
you're looking for. Partial<VideoFormatURLs> gives you that:

function loadVideo(formats: Partial<VideoFormatURLs>) {

// tbd
}
loadvideo({
format480p: new URL("..."),
format720p: new URL("..."),
b

But since all keys are optional, you would also allow the empty object as a valid
parameter:

loadvideo({});

This results in undefined behavior. You want to have at least one URL so you can load
that video.

We have to find a type expressing that we expect at least one of the available video
formats: a type that allows us to pass all of them and some of them but also prevents
us from passing none.

Let’s start with the “only one” cases. Instead of finding one type, let’s create a union
type that combines all situations where there’s only one property set:

type AvailableVideoFormats =

I {
format360p: URL;

}

[{
format480p: URL;

}

I {
format720p: URL;

}

[{
format1080p: URL;

b

This allows us to pass in objects that only have one property set. Next, let’s add the
situations where we have two properties set:

type AvailableVideoFormats =

I {
format360p: URL;

}

I {
format480p: URL;

}

I {
format720p: URL;

8.5 Allowing at Least One Property | 227

}
I {
format1080p: URL;

I H
Wait! That’s the same type! But that’s the way union types work. If they aren’t discri-

minated (see Recipe 3.2), union types will allow for values that are located at all inter-
sections of the original set, as shown in Figure 8-3.

format360p | format480p | format720p | format1080p

format360p | format480p | format720p
format360p | format480p | format1080p

format360p format480p

format360p | format720p

format720p

format360p | format720p | format1080p

format480p | format1080p

/

format720p |

format1080p
‘ format1080p

format480p | format720p | format1080p

Figure 8-3. The union type AvailableVideoFormats

Each union member defines a set of possible values. The intersections describe the

values where both types overlap. All possible combinations can be expressed with this
union.

So now that we know the type, it would be fantastic to derive it from the original type.

We want to split an object type into a union of types where each member contains
exactly one property.

228 | Chapter8: Helper Types

One way to get a union type related to VideoFormatURLs is to use the keyof operator:
type AvailableVideoFormats = keyof VideoFormatURLs;

This yields "format360p" | "format480p" | "format720p" | "format1080p", a
union of the keys. We can use the keyof operator to index access the original type:

type AvailableVideoFormats = VideoFormatURLs[keyof VideoFormatURLs];

This yields URL, which is just one type, but in reality it is a union of the types of val-
ues. Now we only need to find a way to get proper values that represent an actual
object type and are related to each property key.

Read this phrase again: “related to each property key” This calls for a mapped type!
We can map through all VideoFormatURLs to get the property key to the righthand
side of the object:

type AvailableVideoFormats = {
[K in keyof VideoFormatURLs]: K;
b

/* ylelds

type AvailableVideoFormats = {
format360p: "format360p";
format480p: "format480p";
format720p: "format720p";
format1080p: "format1080p";

kB

With that, we can index access the mapped type and get value types for each element.
But were not only setting the key to the righthand side but also creating another
object type that takes this string as a property key and maps it to the respective value

type:

type AvailableVideoFormats = {
[K in keyof VideoFormatURLs]: {
[P in K]: VideoFormatURLs[P]
I
}s

/* yields
type AvailableVideoFormats = {
format360p: {
format360p: URL;
3
format480p: {
format480p: URL;
IH
format720p: {
format720p: URL;
3
format1080p: {

8.5 Allowing at Least One Property | 229

format1080p: URL;
b
b

Now we can use index access again to grep each value type from the righthand side
into a union:

type AvailableVideoFormats = {
[K in keyof VideoFormatURLs]: {
[P in K]: VideoFormatURLsS[P]
IH
} keyof VideoFormatURLs];

/* yields
type AvailableVideoFormats =

I {
format360p: URL;

format480p: URL;

\\
N

format720p: URL;

I {
format1080p: URL;

+
*/
And that's what we've been looking for! As a next step, we take the concrete types and
substitute them with generics, resulting in the Split<T> helper type:

type Split<T> = {
[K in keyof T]: {
[P in K]: T[P];
IH
} keyof T];

Another helper type in our arsenal. Using it with loadVideo gives us exactly the
behavior we have been aiming for:

function loadVideo(formats: Split<VideoFormatURLs>) {

// tbd
}

loadvideo({});

// A

// Argument of type '{}' is not assignable to parameter
// of type 'Split<VideoFormatURLs>"

loadVideo({
format480p: new URL("..."),
1s // all good

230 | Chapter8: Helper Types

Split<T> is a nice way to see how basic type system functionality can change the
behavior of your interfaces significantly, and how some simple typing techniques like
mapped types, index access types, and property keys can be used to get a tiny yet
powerful helper type.

8.6 Allowing Exactly One and All or None

Problem

Next to requiring at least one like in Recipe 8.5, you also want to provide scenarios
where users provide exactly one or all or none.

Solution

Create ExactlyOne<T> and AL10rNone<T, K>. Both rely on the optional never techni-
que in combination with a derivate of Split<T>.

Discussion

With Split<T> from Recipe 8.5 we create a nice helper type that makes it possible to
describe the scenario where we want at least one parameter provided. This is some-
thing that Partial<T> can’t provide for us, but regular union types can.

Starting from this idea we, might also run into scenarios where we want our users to
provide exactly one, making sure they don’t add too many options.

One technique that can be used here is optional never, which we learned in Recipe
3.8. Next to all the properties you want to allow, you set all the properties you don’t
want to allow to optional and their value to never. This means the moment you write
the property name, TypeScript wants you to set its value to something that is compat-
ible with never, which you can't, as the never has no values.

A union type where we put all property names in an exclusive or relation is the key.
We get a union type with each property already with Split<T>:

type Split<T> = {
[K in keyof T]: {
[P in K]: T[P];
IH
} keyof T];

All we need to do is to intersect each element with the remaining keys and set them to
optional never:

type ExactlyOne<T> = {
[K in keyof T]: {
[P in K]: T[P];
} &

8.6 Allowing Exactly One and All orNone | 231

{
[P in Exclude<keyof T, K>]?: never; // optional never
IH
}keyof T];

With that, the resulting type is more extensive but tells us exactly which properties to
exclude:

type ExactlyOneVideoFormat = ({

format360p: URL;
& {

format480p?: never;

format720p?: never;

format1080p?: never;
bl

format480p: URL;
& {

format360p?: never;

format720p?: never;

format1080p?: never;
bl

format720p: URL;
& {

format320p?: never;

format480p?: never;

format1080p?: never;
bl

format1080p: URL;
& {

format320p?: never;

format480p?: never;

format720p?: never;

s

And it works as expected:

function loadVideo(formats: ExactlyOne<VideoFormatURLs>) {
// tbd
}

loadVideo({
format360p: new URL("..."),

Y); // works

loadVideo({
format360p: new URL("..."),
format1080p: new URL("..."),
b
/7

// Argument of type '{ format360p: URL; format1080p: URL; }'
// 1s not assignable to parameter of type 'ExactlyOne<VideoFormatURLs>"'.

232 | Chapter8: Helper Types

ExactlyOne<T> is so much like Split<T> that we could think of extending Split<T>
with the functionality to include the optional never pattern:

type Split<T, OptionalNever extends boolean = false> = {
[K in keyof T]: {
[P in K]: T[P];
} &
(OptionalNever extends false
2 {}
: {
[P in Exclude<keyof T, K>]?: never;

bs
} keyof T];

type ExactlyOne<T> = Split<T, true>;

We add a new generic type parameter OptionalNever, which we default to false. We
then intersect the part where we create new objects with a conditional type that
checks if the parameter OptionalNever is actually false. If so, we intersect with the
empty object (leaving the original object intact); otherwise, we add the optional never
part to the object. ExactlyOne<T> is refactored to Split<T, true>, where we activate
the OptionalNever flag.

Another scenario very similar to Split<T> or ExactlyOne<T> is to provide all argu-
ments or no arguments. Think of splitting video formats into standard definition
(SD: 360p and 480p) and high definition (HD: 720p and 1080p). In your app, you
want to make sure that if your users provide SD formats, they should provide all pos-
sible formats. It’s OK to have a single HD format.

This is also where the optional never technique comes in. We define a type that
requires all selected keys or sets them to never if only one is provided:

type AllOrNone<T, Keys extends keyof T> = (

I {
[K in Keys]-?: T[K]; // all available
}
I {
[K in Keys]?: never; // or none
}

);

If you want to make sure that you provide also all HD formats, add the rest to it via
an intersection:

type AllOrNone<T, Keys extends keyof T> = (

I {
[K in Keys]-?: T[K];

}

I {
[K in Keys]?: never;

}

8.6 Allowing Exactly One and All orNone | 233

) & {
[K in Exclude<keyof T, Keys>]: T[K] // the rest, as it was defined
}

Or if HD formats are totally optional, add them via a Partial<T>:

type Al10rNone<T, Keys extends keyof T> = (

I {
[K in Keys]-?: T[K];

}

I {
[K in Keys]?: never;

}

) & Partial<Omit<T, Keys>>; // the rest, but optional

But then you run into the same problem as in Recipe 8.5, where you can provide val-
ues that don’t include any formats at all. Intersecting the all or none variation with
Split<T> is the solution we are aiming for:

type Al10rNone<T, Keys extends keyof T> = (

I {
[K in Keys]-?: T[K];

}

I {
[K in Keys]?: never;

}

) & Split<T>;
And it works as intended:

function loadVideo(

formats: AllOrNone<VideoFormatURLs, "format360p" | "format480p">
) o
// TBD
}
loadVideo({
format360p: new URL("..."),
format480p: new URL("..."),
s // oK
loadvideo({
format360p: new URL("..."),
format480p: new URL("..."),
format1080p: new URL("..."),
s // oK
loadvideo({
format1080p: new URL("..."),
s // oK
loadvideo({
format360p: new URL("..."),
format1080p: new URL("..."),

234 | Chapter8: Helper Types

H;

// » Argument of type '{ format360p: URL; format1080p: URL; }' 1is
// not assignable to parameter of type

// '"({ format366p: URL; format480p: URL; } & ... (abbreviated)

If we look closely at what AL10rNone does, we can easily rewrite it with built-in helper
types:

type Al10rNone<T, Keys extends keyof T> = (
| Required<Pick<T, Keys>>
| Partial<Record<Keys, never>>
) &
Split<T>;
This is arguably more readable but also more to the point of metaprogramming in
the type system. You have a set of helper types, and you can combine them to create
new helper types: almost like a functional programming language, but on sets of val-
ues, in the type system.

8.7 Converting Union to Intersection Types

Problem

Your model is defined as a union type of several variants. To derive other types from
it, you first need to convert the union type to an intersection type.

Solution

Create a UnionToIntersection<T> helper type that uses contravariant positions.

Discussion

In Recipe 8.5 we discussed how we can split a model type into a union of its variants.
Depending on how your application works, you may want to define the model as a
union type of several variants right from the beginning:

type BasicVideoData = {
// tbd
}

type Format320 = { urls: { format320p: URL } };
type Format480 = { urls: { format480p: URL } };
type Format720 = { urls: { format720p: URL } };
type Format1080 = { urls: { format1080p: URL } };

type Video = BasicVideoData & (Format320 | Format480 | Format720 | Format1080);

8.7 Converting Union to Intersection Types | 235

The type Video allows you to define several formats but requires you to define at
least one:

const videol: Video = {

Y/
urls: {
format320p: new URL("https://..."),
IR
Y /7 ok
const video2: Video = {
/..
urls: {

format320p: new URL("https://..."),
format480p: new URL("https://..."),
1,
Y /7 ok

const video3: Video = {
/) ...
urls: {
format1080p: new URL("https://..."),
1
Y /7 oK

However, putting them in a union has some side effects—for example, when you
need all available keys:

type FormatKeys = keyof Video["urls"];
// FormatKeys = never

// This is not what we want here!

function selectFormat(format: FormatKeys): void {
// tbd.

}

You might expect FormatKeys to provide a union type of all keys that are nested in
urls. Index access on a union type, however, tries to find the lowest common
denominator. And in this case, there is none. To get a union type of all format keys,
you need to have all keys within one type:

type Video = BasicVideoData & {
urls: {
format320p: URL;
format480p: URL;
format720p: URL;
format1080p: URL;
b
b

type FormatKeys = keyof Video["urls"];

236 | Chapter8: Helper Types

// type FormatKeys =
// "format320p" | "format480p" | "format720p" | "format1080p";

A way to create an object like this is to modify the union type to an intersection type.

In Recipe 8.5, modeling data in a single type was the way to go; in
this recipe, we see that modeling data as a union type is more to
our liking. In reality, there is no single answer to how you define
your models. Use the representation that best fits your application
domain and that doesn’t get in your way too much. The important
thing is to be able to derive other types as you need them. This
reduces maintenance and allows you to create more robust types.
In Chapter 12 and especially Recipe 12.1 we will look at the princi-
ple of “low maintenance types.”

Converting a union type to an intersection type is a peculiar task in TypeScript and
requires some deep knowledge of the inner workings of the type system. To learn all
these concepts, we look at the finished type, and then see what happens under the
hood:

type UnionToIntersection<T> =
(T extends any ? (x: T) => any : never) extends
(x: infer R) => any ? R : never;

There is a lot to unpack here:

o We have two conditional types. The first one seems to always result in the true
branch, so why do we need it?

o The first conditional type wraps the type in a function argument, and the second
conditional type unwraps it again. Why is this necessary?

o And how do both conditional types transform a union type to an intersection
type?
Let’s analyze UnionToIntersection<T> step by step.

In the first conditional within UnionToIntersection<T>, we use the generic type
argument as a naked type:

type UnionToIntersection<T> =
(T extends any ? (x: T) => any : never) //...

This means we check if T is in a subtype condition without wrapping it in some other
type:
type Naked<T> = T extends ...; // a naked type

type NotNaked<T> = { o: T } extends ...; // a non-naked type

8.7 Converting Union to Intersection Types | 237

Naked types in conditional types have a certain feature. If T is a union, they run the
conditional type for each constituent of the union. So with a naked type, a conditional
of union types becomes a union of conditional types:

type WrapNaked<T> = T extends any ? { o: T } : never;
type Foo = WrapNaked<string | number | boolean>;
// A naked type, so this equals to

type Foo =
WrapNaked<string> | WrapNaked<number> | WrapNaked<boolean>;

// equals to

type Foo =
string extends any ? { o: string } : never |
number extends any ? { o: number } : never |
boolean extends any ? { o: boolean } : never;

type Foo =
{ o: string } | { o: number } | { o: boolean };

As compared to the non-naked version:

type WrapNaked<T> = { o: T } extends any ? { o: T } : never;
type Foo = WrapNaked<string | number | boolean>;
// A non-naked type, so this equals to

type Foo =
{ o: string | number | boolean } extends any ?
{ o: string | number | boolean } : never;

type Foo = { o: string | number | boolean };

Subtle, but considerably different for complex types!

In our example, we use the naked type and ask if it extends any (which it always does;
any is the allow-it-all top type):

type UnionToIntersection<T> =
(T extends any ? (x: T) => any : never) //...

Since this condition is always true, we wrap our generic type in a function, where T is
the type of the function’s parameter. But why are we doing that?

This leads to the second condition:

type UnionToIntersection<T> =
(T extends any ? (x: T) => any : never) extends
(x: infer R) => any ? R : never

238 | Chapter8: Helper Types

As the first condition always yields true, meaning that we wrap our type in a function
type, the other condition also always yields true. We are basically checking if the type
we just created is a subtype of itself. But instead of passing through T, we infer a new
type R, and return the inferred type.

What we do is wrap and unwrap type T via a function type.

Doing this via function arguments brings the new inferred type R in a contravariant
position.

So what does contravariance mean? The opposite of contravariance is covariance, and
what you would expect from normal subtyping:

declare let b: string;
declare let c: string | number;

c=b// 0K

string is a subtype of string | number; all elements of string appear in string |
number, so we can assign b to c. c still behaves as we originally intended. This is cova-
riance.

This, on the other hand, won’t work:

type Fun<X> = (...args: X[]) => void;

declare let f: Fun<string>;
declare let g: Fun<string | number>;

g = f // this cannot be assigned

We can't assign f to g, because then we would also be able to call f with a number! We
miss part of the contract of g. This is contravariance.

The interesting thing is that contravariance effectively works like an intersection: if f
accepts string and g accepts string | number, the type that is accepted by both is
(string | number) & string, which is string.

Covariance and Contravariance

Orginate.com says that “variance determines how instances of paramterized types are
subtypes or supertypes of one another”

TypeScript uses variance to see if types can be substantiated for another type in an
expression. Next to the description in this recipe, Figure 8-4, based on material by
Rice University, shows how covariance and contravariance play out.

8.7 Converting Union to Intersection Types | 239

https://oreil.ly/dX3DM
https://oreil.ly/ftfP7

Covariance Contravariance
f Hierarchy of x: [Hierarchy of x:)
TIPS o
[Entertainment| (Music] | Rock (Energy source Plant | Bamboo |
(Producers: 1 Consumers:)

e \

& > @ >
Producer of

entertainment] Musician | kDavid Bowie]

L J

. - Consumers
| Omnivore Herbivore | | of bamboo |

\ J

Can be produced by

O ad L
A &2 m w8y
& 2 Ao s

Figure 8-4. Covariance and contravariance explained through consumers and producers

Can be consumed by

ARE;

Product
Source

\
- ear op or Gr G0 Gn GP GP P PGP GD GD GP GP GP GD GPD GD GP GP AP GP P aGp GD e

When we put types in contravariant positions within a conditional type, TypeScript
creates an intersection out of it. Meaning that since we infer from a function argu-
ment, TypeScript knows that we have to fulfill the complete contract, creating an
intersection of all constituents in the union.

Basically, union to intersection.
Let’s run it through:

type UnionToIntersection<T> =
(T extends any ? (x: T) => any : never) extends
(x: infer R) => any ? R : never;

type Intersected = UnionToIntersection<Video["urls"]>;
// equals to
type Intersected = UnionToIntersection<

{ format320p: URL } |
{ format480p: URL } |

240 | Chapter8: Helper Types

{ format720p: URL } |
{ format1080p: URL }

>3

We have a naked type; this means we can do a union of conditionals:

type Intersected =
| UnionToIntersection<{ format320p: URL }>
| UnionToIntersection<{ format480p: URL }>
| UnionToIntersection<{ format720p: URL }>
| UnionToIntersection<{ format1080p: URL }>;

Let’s expand UnionToIntersection<T>:

type Intersected =

| ({ format320p: URL } extends any ?
(x: { format320p: URL }) => any : never) extends
(x: infer R) => any ? R : never

| ({ format480p: URL } extends any ?
(x: { format480p: URL }) => any : never) extends
(x: infer R) => any ? R : never

| ({ format720p: URL } extends any ?
(x: { format720p: URL }) => any : never) extends
(x: infer R) => any ? R : never

| ({ format1080p: URL } extends any ?
(x: { format1080p: URL }) => any : never) extends
(x: infer R) => any ? R : never;

And evaluate the first conditional:

type Intersected =
| ((x: { format320p: URL }) => any) extends (x: infer R) => any ? R : never
| ((x: { format480p: URL }) => any) extends (x: infer R) => any ? R : never
| ((x: { format720p: URL }) => any) extends (x: infer R) => any ? R : never
| ((x: { format1080p: URL }) => any) extends (x: infer R) => any ? R : never;

Let’s evaluate conditional two, where we infer R:

type Intersected =
| { format320p: URL } | { format480p: URL }
| { format720p: URL } | { format1080p: URL };

But wait! R is inferred from a contravariant position. We have to make an intersec-
tion; otherwise, we lose type compatibility:

type Intersected =
{ format320p: URL } & { format480p: URL } &
{ format720p: URL } & { format1080p: URL };

And that’s what we have been looking for! So, applied to our original example:

type FormatKeys = keyof UnionToIntersection<Video["urls"]>;

8.7 Converting Union to Intersection Types | 241

FormatKeys is now "format320p" | "format480p" | "format720p" | "for
mat1080p"#. Whenever we add another format to the original union, the FormatKeys
type updates automatically. Maintain once; use everywhere.

8.8 Using type-fest

Problem

You love your helper types so much that you want to create a utility library for easy
access.

Solution
Chances are type-fest already has everything you need.

Discussion

The whole idea of this chapter was to introduce you to a couple of useful helper types
that are not part of standard Typescript but have proven to be highly flexible for
many scenarios: single-purpose generic helper types that can be combined and com-
posed to derive types based on your existing models. You write your models once,
and all other types get updated automatically. This idea of having low maintenance
types, by deriving types from others, is unique to TypeScript and appreciated by tons
of developers who create complex applications or libraries.

You might end up using your helper types a lot, so you start out combining them in a
utility library for easy access, but chances are one of the existing libraries already has
everything you need. Using a well-defined set of helper types is nothing new, and
plenty out there give you everything you've seen in this chapter. Sometimes it’s exactly
the same but under a different name; other times it’s a similar idea but solved differ-
ently. The basics are most likely covered by all type libraries, but one library, type-fest,
is not only useful but actively maintained, well documented, and widely used.

Type-fest has a few aspects that make it stand out. First, it’s extensively documented.
Not only does its documentation include the usage of a certain helper type, but it also
includes use cases and scenarios that tell you where you might want to use this helper
type. One example is Integer<T>, which makes sure that the number you provide
does not have any decimals.

242 | Chapter8: Helper Types

https://oreil.ly/Cw4Kc

This is a utility type that almost made it into TypeScript Cookbook, but I saw that giv-
ing you the snippet from type-fest tells you everything you need to know about
the type:

/**

A ‘number’ that is an integer.

You can't pass a ‘bigint' as they are already guaranteed to be integers.
Use-case: Validating and documenting parameters.

@example

import type {Integer} from 'type-fest';
declare function setYear<T extends number>(length: Integer<T>): void;

@see Negativelnteger

@see NonNegativelInteger

@category Numeric

*/

// ‘S{bigint}" i1s a type that matches a valid bigint

// literal without the 'n’ (ex. 1, 0b1, 0ol, 0x1)

// Because T is a number and not a string we can effectively use
// this to filter out any numbers containing decimal points

export type Integer<T extends number> = '${T} extends "${bigint}" ? T : never;

The rest of the file deals with negative integers, non-negative integers, floating point
numbers, and so on. It’s a real treasure trove of information if you want to know more
about how types are constructed.

Second, type-fest deals with edge cases. In Recipe 8.2, we learned about recursive
types and defined DeepPartial<Ts. Its type-fest counterpart, PartialDeep<T>, is a bit
more extensive:

export type PartialDeep<T, Opts extends PartialDeepOptions = {}> =
T extends BuiltIns
2T
: T extends Map<infer KeyType, infer ValueType>
? PartialMapDeep<KeyType, ValueType, Opts>
: T extends Set<infer ItemType>
? PartialSetDeep<ItemType, Opts>
: T extends ReadonlyMap<infer KeyType, infer ValueType>
? PartialReadonlyMapDeep<KeyType, ValueType, Opts>
: T extends ReadonlySet<infer ItemType>
? PartialReadonlySetDeep<ItemType, Opts>
: T extends ((...arguments: any[]) => unknown)
? T | undefined
: T extends object
? T extends ReadonlyArray<infer ItemType>
? Opts['recurseIntoArrays'] extends true
? ItemType[] extends T
? readonly ItemType[] extends T
? ReadonlyArray<PartialDeep<ItemType | undefined, Opts>>

8.8 Using type-fest | 243

: Array<PartialDeep<ItemType | undefined, Opts>>
: PartialObjectDeep<T, Opts>
H
: PartialObjectDeep<T, Opts>
: unknown;

/**

Same as ‘PartialDeep’, but accepts only ‘Map's and as inputs.

Internal helper for ‘PartialDeep’.

*/

type PartialMapDeep<KeyType, ValueType, Options extends PartialDeepOptions> =
{} & Map<PartialDeep<KeyType, Options>, PartialDeep<ValueType, Options>>;

/**

Same as ‘PartialDeep’, but accepts only ‘Set's as inputs.

Internal helper for ‘PartialDeep".

*/

type PartialSetDeep<T, Options extends PartialDeepOptions> =
{} & Set<PartialDeep<T, Options>>;

/'k*
Same as ‘PartialDeep’, but accepts only ‘ReadonlyMap's as inputs.
Internal helper for ‘PartialDeep’.
*/
type PartialReadonlyMapDeep<
KeyType, ValueType,
Options extends PartialDeepOptions
> = {} & ReadonlyMap<
PartialDeep<KeyType, Options>,
PartialDeep<ValueType, Options>

>3

/**

Same as ‘PartialDeep’, but accepts only ‘ReadonlySet's as inputs.

Internal helper for ‘PartialDeep’.

*/

type PartialReadonlySetDeep<T, Options extends PartialDeepOptions> =
{} & ReadonlySet<PartialDeep<T, Options>>;

/**
Same as ‘PartialDeep’, but accepts only ‘object's as inputs.
Internal helper for ‘PartialDeep".
*/
type PartialObjectDeep<
ObjectType extends object,
Options extends PartialDeepOptions
> = {
[KeyType in keyof ObjectType]?: PartialDeep<ObjectType[KeyType], Options>
b

There is no need to go through the entirety of this implementation, but it should give
you an idea about how hardened their implementations for certain utility types are.

244 | Chapter8: Helper Types

PartialDeep<T> is extensive and deals with all possible edge cases,
but it also comes at a cost of being complex and hard to swallow for
the TypeScript type-checker. Depending on your use case, the sim-
pler version from Recipe 8.2 might be the one you’re looking for.

Third, they don't add helper types just for the sake of adding them. Their Readme file
has a list of declined types and the reasoning behind the decline: either the use cases
are limited or better alternatives exist. Just like everything, they document their
choices really, really well.

Fourth, type-fest educates about existing helper types. Helper types have existed in
TypeScript forever but barely have been documented in the past. Years ago, my blog
attempted to be a resource on built-in helper types, until the official documentation
added a chapter on utility types. Utility types are not something that you easily pick
up just by using TypeScript. You need to understand that they exist and need to read
up on them. type-fest has an entire section dedicated to built-ins, with examples and
use cases.

Last, but not least, it’s widely adopted and developed by reliable open source develop-
ers. Its creator, Sindre Sorhus, has worked on open source projects for decades and
has a track record of fantastic projects. type-fest is just another stroke of genius.
Chances are a lot of your work relies on his work.

With type-fest you get another resource of helper types you can add to your project.
Decide for yourself if you want to keep a small set of helper types or if you rely on the
implementations by the community.

8.8 Using type-fest | 245

https://oreil.ly/eRtx9
https://oreil.ly/K5cXq
https://oreil.ly/K5cXq
https://oreil.ly/thSin

CHAPTER 9

The Standard Library
and External Type Definitions

TypeScript’s lead architect, Anders Hejlsberg, once said that he envisions “TypeScript
to be the Switzerland of JavaScript,” meaning that it doesn’'t prefer or work toward
compatibility with a single framework but rather tries to cater to all JavaScript frame-
works and flavors. In the past, TypeScript worked on a decorator implementation to
convince Google not to pursue the JavaScript dialect AtScript for Angular, which was
TypeScript plus decorators. The TypeScript decorator implementation also serves as a
template for a respective ECMAScript proposal on decorators. TypeScript also under-
stands the JSX syntax extension, allowing frameworks like React or Preact to use
TypeScript without limitations.

But even if TypeScript tries to cater to all JavaScript developers and makes a huge
effort to integrate new and useful features for a plethora of frameworks, there are still
things it can’t or won't do. Maybe because a certain feature is too niche, or maybe
because a decision would have huge implications for too many developers.

This is why TypeScript has been designed to be extensible by default. A lot of Type-
Script’s features like namespaces, modules, and interfaces allow for declaration merg-
ing, which gives you the possibility to add type definitions to your liking.

In this chapter, we look at how TypeScript deals with standard JavaScript functional-
ity like modules, arrays, and objects. We will see some of their limitations, analyze the
reasoning behind their limitations, and provide reasonable workarounds. You will see
that TypeScript has been designed to be very flexible for various flavors of JavaScript,
starting with sensible defaults, and giving you the opportunity to extend when you
see fit.

247

https://oreil.ly/ZrcKR
https://oreil.ly/76JuE

9.1 Iterating over Objects with Object.keys

Problem

When you try to access object properties via iterating over its keys, TypeScript throws
red squiggly lines at you, telling you that "*string’ can’t be used to index type”

Solution

Use a for-in loop instead of Object.keys and lock your type using generic type
parameters.

Discussion

A prominent head-scratcher in TypeScript is trying to access an object property via
iterating through its keys. This pattern is so common in JavaScript, yet TypeScript
seems to keep you from using it at all costs. We use this simple line to iterate over an
object’s properties:

Object.keys(person).map(k => person[k])

It leads to TypeScript throwing red squigglies at you and developers flipping tables:
“Element implicitly has an 'any' type because expression of type 'string' can’t be
used to index type 'Person'” In this situation, experienced JavaScript developers feel
like TypeScript is working against them. But as with all decisions in TypeScript, there
is a good reason why TypeScript behaves like this.

Let’s find out why. Take a look at this function:

type Person = {
name: string;
age: number;

b

function printPerson(p: Person) {
Object.keys(p).forEach((k) => {
console.log(k, p[k]);
// "
// Element implicitly has an 'any' type because expression
// of type 'string' can't be used to index type 'Person’.
s
}

All we want is to print a Person’s fields by accessing them through its keys. Type-
Script won't allow this. Object.keys(p) returns a string[], which is too wide to
allow accessing a very defined object shape Person.

248 | Chapter9: The Standard Library and External Type Definitions

But why is that? Isn’t it obvious that we only access keys that are available? That’s the
whole point of using Object.keys! It is, but we are also able to pass objects that are
subtypes of Person, which can have more properties than defined in Person:

const me = {

name: "Stefan",

age: 40,

website: "https://fettblog.eu",
b

printPerson(me); // All good!

printPerson still should work correctly. It prints more properties, but it doesn’t
break. It’s still the keys of p, so every property should be accessible. But what if you
don’t access only p?

Let’s assume Object.keys gives you (keyof Person)[]. You can easily write some-
thing like this:

function printPerson(p: Person) {
const you: Person = {

name: "Reader",

age: NaN,

1

Object.keys(p).forEach((k) => {
console.log(k, you[k]);
bs
}

const me = {
name: "Stefan",

age: 40,

website: "https://fettblog.eu",
b
printPerson(me);

If Object.keys(p) returns an array of type keyof Person[], you will be able to
access other objects of Person, too. This might not add up. In our example, we just
print undefined. But what if you try to do something with those values? This will
break at runtime.

TypeScript prevents you from scenarios like this. While we might think Object.keys
is keyof Person, in reality, it can be so much more.

One way to mitigate this problem is to use type guards:

function isKey<T>(x: T, k: PropertyKey): k is keyof T {
return k in Xx;

}

9.1 Iterating over Objects with Object.keys | 249

function printPerson(p: Person) {
Object.keys(p).forEach((k) => {

if (isKey(p, k)) console.log(k, p[k]); // ALl fine!

b

}

But this adds an extra step that frankly shouldn't be there.

There’s another way to iterate over objects, using for-in loops:

function printPerson(p: Person) {

for (let k in p) {
console.log(k, p[k]);

// 4

// Element implicitly has an 'any' type because expression

// of type 'string' can't be used to index type 'Person’.
}

}

TypeScript will throw the same error for the same reason because you still can do
things like this:

function printPerson(p: Person) {
const you: Person = {
name: "Reader",
age: NaN,

};

for (let k in p) {
console.log(k, you[k]l);
}
}

const me = {

name: "Stefan",

age: 40,

website: "https://fettblog.eu",
b

printPerson(me);

And it will break at runtime. However, writing it like this gives you a little edge over
the Object.keys version. TypeScript can be much more exact in this scenario if you
add a generic:

function printPerson<T extends Person>(p: T) {
for (let k in p) {
console.log(k, p[kl); // This works
}
}

Instead of requiring p to be Person (and thus be compatible with all subtypes of
Person), we add a new generic type parameter T that is a subtype of Person. This

250 | Chapter9: The Standard Library and External Type Definitions

means all types that have been compatible with this function signature are still com-
patible, but the moment we use p, we are dealing with an explicit subtype, not the
broader supertype Person.

We substitute T for something that is compatible with Person but where TypeScript
knows that it's concrete enough to prevent errors.

The preceding code works. k is of type keyof T. That’s why we can access p, which is
of type T. And this technique still prevents us from accessing types that lack specific
properties:
function printPerson<T extends Person>(p: T) {
const you: Person = {
name: "Reader",
age: NaN,
3
for (let k in p) {

console.log(k, you[k]);

//
// Type 'Extract<keyof T, string>' cannot be used to index type 'Person’

}
}

We can’t access a Person with keyof T. They might be different. But since T is a sub-
type of Person, we still can assign properties, if we know the exact property names:

p.age = you.age
And that’s exactly what we want.

TypeScript being very conservative about its types here is something that might seem
odd at first, but it helps you in scenarios you wouldn't think of. I guess this is the part
where JavaScript developers usually scream at the compiler and think they’re “fight-
ing” it, but maybe TypeScript saved you without you knowing it. For situations where
this gets annoying, TypeScript at least gives you ways to work around it.

9.2 Explicitly Highlighting Unsafe Operations with
Type Assertions and unknown

Problem

Parsing arbitrary data via JSON operations can go wrong if the data is not correct.
TypeScript’s defaults don’t provide any safeguards for these unsafe operations.

Solution

Explicitly highlight unsafe operations by using type assertions instead of type annota-
tions, and make sure they are enforced by patching the original types with unknown.

9.2 Explicitly Highlighting Unsafe Operations with Type Assertions and unknown | 251

Discussion

In Recipe 3.9 we spoke about how to effectively use type assertions. Type assertions
are an explicit call to the type system to say that some type should be a different one,
and based on some set of guardrails—for example, not saying number is actually
string—TypeScript will treat this particular value as the new type.

With TypeScript’s rich and extensive type system, sometimes type assertions are
inevitable. Sometimes you even want them, as shown in Recipe 3.9 where we use the
fetch API to get JSON data from a backend. One way is to call fetch and assign the
results to an annotated type:

type Person = {
name: string;
age: number;

}
const ppl: Person[] = await fetch("/api/people").then((res) => res.json());

res.json() results in any,' and everything that is any can be changed to any other
type through a type annotation. There is no guarantee that the result is actually
Person[].

The other way is to use a type assertion instead of a type annotation:
const ppl = await fetch("/api/people").then((res) => res.json()) as Person[];

For the type system, this is the same thing, but we can easily scan situations where
there might be problems. If we don’t validate our incoming values against types (with,
for example, Zod; see Recipe 12.5), then having a type assertion here is an effective
way of highlighting unsafe operations.

Unsafe operations in a type system are situations where we tell the type system that
we expect values to be of a certain type, but we don’t have any guarantee from the
type system itself that this will actually be true. This happens mostly at the borders of
our application, where we load data from someplace, deal with user input, or parse
data with built-in methods.

Unsafe operations can be highlighted by using certain keywords that indicate an
explicit change in the type system. Type assertions (as), type predicates (is), or asser-
tion signatures (asserts) help us find those situations. In some cases, TypeScript
even forces us either to comply with its view of types or to explicitly change the rules
based on our situations. But not always.

1 Back when the API defintiion was created, unknown didn’t exist. Also, TypeScript has a strong
focus on developer productivity, and with res. json() being a widely used method, this would’ve
broken countless applications.

252 | Chapter9: The Standard Library and External Type Definitions

When we fetch data from some backend, it is just as easy to annotate as it is to write a
type assertion. Things like that can be overlooked if we don’t force ourselves to use
the correct technique.

But we can help TypeScript help us do the right thing. The problem is the call to
res.json(), which comes from the Body interface in lib.dom.d.ts:

interface Body {
readonly body: ReadableStream<Uint8Array> | null;
readonly bodyUsed: boolean;
arrayBuffer(): Promise<ArrayBuffer>;
blob(): Promise<Blob>;
formData(): Promise<FormData>;
json(): Promise<any>;
text(): Promise<string>;
}
The json() call returns a Promise<any>, and any is the loosey-goosey type where
TypeScript just ignores any type-check at all. We would need any’s cautious brother,
unknown. Thanks to declaration merging, we can override the Body type definition

and define json() to be a bit more restrictive:

interface Body {
json(): Promise<unknown>;

}

The moment we do a type annotation, TypeScript yells at us that we can’t assign
unknown to Person[]:

const ppl: Person[] = await fetch("/api/people").then((res) => res.json());
/o
// Type 'unknown' is not assignable to type 'Person[]'.ts(2322)

But TypeScript is still happy if we do a type assertion:

const ppl = await fetch("/api/people").then((res) => res.json()) as Person[];

And with that, we can force TypeScript to highlight unsafe operations.?

9.3 Working with defineProperty

Problem

You define properties on the fly using Object.defineProperty, but TypeScript
doesn’t pick up changes.

2 Credit to Dan Vanderkam’s Effective TypeScript blog for inspiration on this subject.

9.3 Working with defineProperty | 253

https://effectivetypescript.com

Solution

Create a wrapper function and use assertion signatures to change the object’s type.

Discussion

In JavaScript, you can define object properties on the fly with Object.define
Property. This is useful if you want your properties to be read-only. Think of a stor-
age object that has a maximum value that shouldn’t be overwritten:

const storage = {
currentValue: 0

b

Object.defineProperty(storage, 'maxValue', {
value: 9001,
writable: false

s

console.log(storage.maxValue); // 9001
storage.maxValue = 2;

console.log(storage.maxValue); // still 9001

defineProperty and property descriptors are very complex. They allow you to do
everything with properties that usually is reserved for built-in objects. So theyre
common in larger codebases. TypeScript has a problem with defineProperty:

const storage = {
currentValue: 0

};

Object.defineProperty(storage, 'maxValue', {
value: 9001,
writable: false

s

console.log(storage.maxValue);

/! -

// Property 'maxValue' does not exist on type '{ currentValue: number; }'.
If we don’t explicitly assert to a new type, we don’t get maxValue attached to the type
of storage. However, for simple use cases, we can help ourselves using
assertion signatures.

254 | Chapter9: The Standard Library and External Type Definitions

While TypeScript might not feature object changes when using
Object.defineProperty, there is a chance that the team will add
typings or special behavior for cases like this in the future. For
example, checking if an object has a certain property using the in
keyword didn’t affect types for years. This changed in 2022 with
TypeScript 4.9.

Think of an assertIsNumber function where you can make sure some value is of type
number. Otherwise, it throws an error. This is similar to the assert function in
Node.js:

function assertIsNumber(val: any) {
if (typeof val !== "number") {
throw new AssertionError("Not a number!");
}
}

function multiply(x, y) {
assertIsNumber(x);
assertIsNumber(y);
// at this point I'm sure x and y are numbers
// if one assert condition is not true, this position
// is never reached
return x * y;

}

To comply with behavior like this, we can add an assertion signature that tells Type-
Script that we know more about the type after this function:

function assertIsNumber(val: any) : asserts val is number
if (typeof val !== "number") {
throw new AssertionError("Not a number!");

}
}
This works a lot like type predicates (see Recipe 3.5) but without the control flow of a
condition-based structure like 1f or switch:

function multiply(x, y) {
assertIsNumber(x);
assertIsNumber(y);
// Now also TypeScript knows that both x and y are numbers
return x * y;

}

If you look at it closely, you can see those assertion signatures can change the type of a
parameter or variable on the fly. This is what Object.defineProperty does as well.

The following helper does not aim to be 100% accurate or complete. It might have
errors, and it might not tackle every edge case of the defineProperty specification.

9.3 Working with defineProperty | 255

https://oreil.ly/YpyGG

But it will give us the basic functionality. First, we define a new function called
defineProperty that we use as a wrapper function for Object.defineProperty:

function defineProperty<
Obj extends object,
Key extends PropertyKey,
PDesc extends PropertyDescriptors>
(obj: Obj, prop: Key, val: PDesc) {
Object.defineProperty(obj, prop, val);
}

We work with three generics:

o The object we want to modity, of type Obj, which is a subtype of object.

 Type Key, which is a subtype of PropertyKey (built-in): string | number |
symbol.

o PDesc, a subtype of PropertyDescriptor (built-in). This allows us to define the
property with all its features (writability, enumerability, reconfigurability).

We use generics because TypeScript can narrow them to a very specific unit type.
PropertyKey, for example, is all numbers, strings, and symbols. But if we use Key
extends PropertyKey, we can pinpoint prop to be, for example, type "maxValue".
This is helpful if we want to change the original type by adding more properties.

The Object.defineProperty function either changes the object or throws an error
should something go wrong. That’s exactly what an assertion function does. Our cus-
tom helper defineProperty thus does the same.

Let's add an assertion signature. Once defineProperty successfully executes, our
object has another property. We are creating some helper types for that. The signature
first:

function defineProperty<
Obj extends object,
Key extends PropertyKey,
PDesc extends PropertyDescriptor>
(obj: Obj, prop: Key, val: PDesc):
asserts obj is Obj & DefineProperty<Key, PDesc> {
Object.defineProperty(obj, prop, val);
}

obj then is of type Obj (narrowed through a generic) and our newly defined property.

This is the DefineProperty helper type:

type DefineProperty<
Prop extends PropertyKey,
Desc extends PropertyDescriptor> =
Desc extends { writable: any, set(val: any): any } ? never :

256 | Chapter9: The Standard Library and External Type Definitions

Desc extends { writable: any, get(): any } ? never :

Desc extends { writable: false } ? Readonly<InferValue<Prop, Desc>> :

Desc extends { writable: true } ? InferValue<Prop, Desc> :

Readonly<InferValue<Prop, Desc>>;
First, we deal with the writable property of a PropertyDescriptor. It’s a set of con-
ditions to define some edge cases and conditions of how the original property
descriptors work:

o If we set writable and any property accessor (get, set), we fail. never tells us
that an error was thrown.

o If we set writable to false, the property is read-only. We defer to the Infer
Value helper type.

o If we setwritable to true, the property is not read-only. We defer as well.

o The last default case is the same as writable: false, so Readonly<Infer
Value<Prop, Desc>>. (Readonly<T> is built-in.)

This is the InferValue helper type, dealing with the set value property:

type InferValue<Prop extends PropertyKey, Desc> =
Desc extends { get(): any, value: any } ? never :
Desc extends { value: infer T } ? Record<Prop, T> :
Desc extends { get(): infer T } ? Record<Prop, T> : never;

Again a set of conditions:

» Do we have a getter and a value set? Object.defineProperty throws an error, so
never.

o If we have set a value, let’s infer the type of this value and create an object with
our defined property key and the value type.

o Or we infer the type from the return type of a getter.

« Anything else we forget. TypeScript won't let us work with the object as it’s
becoming never.

Lots of helper types, but roughly 20 lines of code to get it right:

type InferValue<Prop extends PropertyKey, Desc> =
Desc extends { get(): any, value: any } ? never :
Desc extends { value: infer T } ? Record<Prop, T> :
Desc extends { get(): infer T } ? Record<Prop, T> : never;

type DefineProperty<
Prop extends PropertyKey,
Desc extends PropertyDescriptor> =
Desc extends { writable: any, set(val: any): any } ? never :
Desc extends { writable: any, get(): any } ? never :

9.3 Working with defineProperty | 257

Desc extends { writable: false } ? Readonly<InferValue<Prop, Desc>> :
Desc extends { writable: true } ? InferValue<Prop, Desc> :
Readonly<InferValue<Prop, Desc>>

function defineProperty<
0Obj extends object,
Key extends PropertyKey,
PDesc extends PropertyDescriptor>
(obj: Obj, prop: Key, val: PDesc):
asserts obj is Obj & DefineProperty<Key, PDesc> {
Object.defineProperty(obj, prop, val)
}

Let’s see what TypeScript does with our changes:

const storage = {
currentValue: 0

};

defineProperty(storage, 'maxValue', {
writable: false, value: 9001
s

storage.maxValue; // it's a number
storage.maxValue = 2; // Error! It's read-only

const storageName = 'My Storage';
defineProperty(storage, 'name', {
get() {
return storageName
}
b

storage.name; // it's a string!

// 1t's not possible to assign a value and a getter
defineProperty(storage, 'broken', {

get() {

return storageName

1,
value: 4000

s

// storage is never because we have a malicious
// property descriptor
storage;

While this might not cover everything, there is already a lot done for simple
property definitions.

258 | Chapter9: The Standard Library and External Type Definitions

9.4 Expanding Types for Array.prototype.includes

Problem

TypeScript won't be able to look for an element of a broad type like string or number
within a very narrow tuple or array.

Solution

Create generic helper functions with type predicates, where you change the
relationship between type parameters.

Discussion

We create an array called actions, which contains a set of actions in string format
that we want to execute. The resulting type of this actions array is string[].

The execute function takes any string as an argument. We check if this is a valid
action, and if so, do something:

// actions: string[]
const actions = ["CREATE", "READ", "UPDATE", "DELETE"];

function execute(action: string) {
if (actions.includes(action)) {
// do something with action
}
}

It gets a little trickier if we want to narrow the string[] to something more concrete,
a subset of all possible strings. By adding const context via as const, we can narrow
actions to be of type readonly ["CREATE", "READ", "UPDATE", "DELETE"].

This is handy if we want to do exhaustiveness checking to make sure we have cases
for all available actions. However, actions.includes does not agree with us:

// Adding const context
// actions: readonly ["CREATE", "READ", "UPDATE", "DELETE"]
const actions = ["CREATE", "READ", "UPDATE", "DELETE"] as const;

function execute(action: string) {
if (actions.includes(action)) {
// "
// Argument of type 'string' is not assignable to parameter of type
// '"CREATE" | "READ" | "UPDATE" | "DELETE"'.(2345)
}
}

9.4 Expanding Types for Array.prototype.includes | 259

Why is that? Let’s look at the typings of Array<T> and ReadonlyArray<T> (we work
with the latter due to const context):

interface Array<T> {

/**
* Determines whether an array includes a certain element,
* returning true or false as appropriate.
* @param searchElement The element to search for.
* @param fromIndex The position in this array at which
* to begin searching for searchElement.
*/

includes(searchElement: T, fromIndex?: number): boolean;

}

interface ReadonlyArray<T> {

/**
* Determines whether an array includes a certain element,
* returning true or false as appropriate.
* @param searchElement The element to search for.
* @param fromIndex The position in this array at which
* to begin searching for searchElement.
*/

includes(searchElement: T, fromIndex?: number): boolean;

}
The element we want to search for (searchElement) needs to be of the same type as
the array itself! So if we have Array<string> (or string[] or Readonly

Array<string>), we can search only for strings. In our case, this would mean that
action needs to be of type "CREATE" | "READ" | "UPDATE" | "DELETE".

Suddenly, our program doesn’t make a lot of sense anymore. Why do we search for
something if the type already tells us that it can be just one of four strings? If we
change the type for action to "CREATE" | "READ" | "UPDATE" | "DELETE",
actions.includes becomes obsolete. If we don’t change it, TypeScript throws an
error at us, and rightfully so!

One of the problems is that TypeScript lacks the possibility to check for contravariant
types with, for example, upper-bound generics. We can tell if a type should be a subset
of type T with constructs like extends; we can’t check if a type is a superset of T. At
least not yet!

So what can we do?

Option 1: Redeclare ReadonlyArray

One option that comes to mind is changing how includes in ReadonlyArray should
behave. Thanks to declaration merging, we can add our own definitions for Readonly
Array that are a bit looser in the arguments and more specific in the result, like this:

260 | Chapter9: The Standard Library and External Type Definitions

interface ReadonlyArray<T> {
includes(searchElement: any, fromIndex?: number): searchElement is T;

}

This allows for a broader set of searchElement values to be passed (literally any!),
and if the condition is true, we tell TypeScript through a type predicate that search
Element is T (the subset we are looking for).

Turns out, this works pretty well:

const actions = ["CREATE", "READ", "UPDATE", "DELETE"] as const;

function execute(action: string) {
if(actions.includes(action)) {
// action: "CREATE" | "READ" | "UPDATE" | "DELETE"
}
}
There’s a problem, though. The solution works but takes the assumption of what’s
correct and what needs to be checked. If you change action to number, TypeScript
usually throws an error that you can’t search for that kind of type. actions only con-
sists of string, so why even look at number? This is an error you want to catch:

// type number has no relation to actions at all
function execute(action: number) {
if(actions.includes(action)) {
// do something

}
}

With our change to ReadonlyArray, we lose this check as searchElement is any.
While the functionality of action.includes still works as intended, we might not see
the right problem once we change function signatures along the way.

Also, and more important, we change the behavior of built-in types. This might
change your type-checks somewhere else and might cause problems in the long run!

If you do a type patch by changing behavior from the standard
library, be sure to do this module scoped, and not globally.

There is another way.

Option 2: A helper with type assertions

As originally stated, one of the problems is that TypeScript lacks the possibility to
check if a value belongs to a superset of a generic parameter. With a helper function,
we can turn this relationship around:

9.4 Expanding Types for Array.prototype.includes | 261

function includes<T extends U, U>(coll: ReadonlyArray<T>, el: U): el is T {
return coll.includes(el as T);

}

The includes function takes the ReadonlyArray<T> as an argument and searches for
an element that is of type U. We check through our generic bounds that T extends U,
which means that U is a superset of T (or T is a subset of U). If the method returns true,
we can say for sure that el is of the narrower type U.

The only thing that we need to make the implementation work is to do a little type
assertion the moment we pass el to Array.prototype.includes. The original prob-
lem is still there! The type assertion el as T is OK, though, as we check possible
problems already in the function signature.

This means the moment we change, for example, action to number, we get the right
errors throughout our code:

function execute(action: number) {
if(includes(actions, action)) {
// 4
// Argument of type 'readonly ["CREATE", "READ", "UPDATE", "DELETE"]'
// 1s not assignable to parameter of type 'readonly number[]'.
}
}

And this is the behavior we want. A nice touch is that TypeScript wants us to change

the array, not the element we are looking for. This is due to the relationship between
the generic type parameters.

The same solutions also work if you run into similar troubles with
Array.prototype.indexOf.

TypeScript aims to get all standard JavaScript functionality correct, but sometimes
you have to make trade-offs. This case calls for trade-offs: do you allow for an argu-
ment list that’s looser than you would expect, or do you throw errors for types where
you already should know more?

Type assertions, declaration merging, and other tools help us get around that in situa-
tions where the type system can’t help us. Not until it becomes better than before, by
allowing us to move even further in the type space.

262 | Chapter9: The Standard Library and External Type Definitions

9.5 Filtering Nullish Values

Problem

You want to use the Boolean constructor to filter nullish values from an array, but
TypeScript still yields the same types, including null and undefined.

Solution

Overload the filter method from Array using declaration merging.

Discussion

Sometimes you have collections that could include nullish values (undefined or
null):

// const array: (number [null | undefined)[]

const array = [1, 2, 3, undefined, 4, null];
To continue working, you want to remove those nullish values from your collection.
This is typically done using the filter method of Array, maybe by checking the tru-
thiness of a value. null and undefined are falsy, so they get filtered out:

const filtered = array.filter((val) => !!val);

A convenient way of checking the truthiness of a value is by passing it to the Boolean
constructor. This is short, on point, and very elegant to read:

// const array: (number [null | undefined)[]
const filtered = array.filter(Boolean);

But sadly, it doesn’t change our type. We still have null and undefined as possible
types for the filtered array.

By opening up the Array interface and adding another declaration for filter, we can
add this special case as an overload:

interface Array<T> {
filter(predicate: BooleanConstructor): NonNullable<T>[]
}

interface ReadonlyArray<T> {
filter(predicate: BooleanConstructor): NonNullable<T>[]
}

And with that, we get rid of nullish types and have more clarity on the type of our
array’s contents:

// const array: number[]
const filtered = array.filter(Boolean);

9.5 Filtering Nullish Values | 263

Neat! What’s the caveat? Literal tuples and arrays. BooleanConstructor filters not
only nullish values but also falsy values. To get the right elements, we not only have to
return NonNullable<T> but also introduce a type that checks for truthy values:

type Truthy<T> = T extends | false | © | On ? never : T;

interface Array<T> {
filter(predicate: BooleanConstructor): Truthy<NonNullable<T>>[];
}

interface ReadonlyArray<T> {
filter(predicate: BooleanConstructor): Truthy<NonNullable<T>>[];
}

// as const creates a readonly tuple
const array = [0, 1, 2, 3, *', -0, On, false, undefined, null] as const;

// const filtered: (1 | 2 | 3)[]

const filtered = array.filter(Boolean);
const nullOrOne: Array<0 | 1> = [0, 1, 0, 1];

// const onlyOnes: 1[]
const onlyOnes = nullOrOne.filter(Boolean);

The example includes @n which is 0 in the BigInt type. This type is
available only from ECMAScript 2020 on.

This gives us the right idea of which types to expect, but since ReadonlyArray<T>
takes the tuple’s elements types and not the tuple type itself, we lose information on
the order of types within the tuple.

As with all extensions to existing TypeScript types, be aware that this might cause side
effects. Scope them locally and use them carefully.

9.6 Extending Modules

Problem

You work with libraries that provide their own view of HTML elements, like Preact or
React. But sometimes their type definitions don’t include the latest features. You want
to patch them.

264 | Chapter9: The Standard Library and External Type Definitions

Solution

Use declaration merging on the module and interface level.

Discussion

JSX is a syntax extension to JavaScript, introducing an XML-like way of describing
and nesting components. Basically, everything that can be described as a tree of ele-
ments can be expressed in JSX. JSX was introduced by the creators of the popular
React framework to make it possible to write and nest components in an HTML-like
way within JavaScript, where it is actually transpiled to a series of function calls:

<button onClick={() => alert('YES')}>Click me</button>
// Transpiles to:

React.createElement("button", { onClick: () => alert('YES') }, 'Click me');

JSX has since been adopted by many frameworks, even if there is little or no connec-
tion to React. There’s a lot more on JSX in Chapter 10.

React typings for TypeScript come with lots of interfaces for all possible HTML ele-
ments. But sometimes your browsers, your frameworks, or your code are a little bit
ahead of what’s possible.

Let’s say you want to use the latest image features in Chrome and load your images
lazily. This is a progressive enhancement, so only browsers that understand what’s
going on know how to interpret this. Other browsers are robust enough not to care:

But your TypeScript JSX code? Errors:

function Image({ src, alt }) {
// Property 'loading' does not exist.
return ;
}
To prevent this, we can extend the available interfaces with our own properties. This
TypeScript feature is called declaration merging.

Create an @types folder and put a jsx.d.ts file in it. Change your TypeScript config so
your compiler options allow for extra types:

{
"compilerOptions": {
/* Type declaration files to be included in compilation. */
"types": ["@types/**"],
1
}

9.6 Extending Modules | 265

We re-create the exact module and interface structure:

o The module is called 'react’.

o The interface is ImgHTMLAttributes<T> extends HTMLAttributes<Ts>.

We know that from the original typings. Here, we add the properties we want:
import "react";

declare module "react" {
interface ImgHTMLAttributes<T> extends HTMLAttributes<T> {
loading?: "lazy" | "eager" | "auto";
}
}

And while we are at it, let'’s make sure we don’t forget alt texts:
import "react";

declare module "react" {
interface ImgHTMLAttributes<T> extends HTMLAttributes<T> {
loading?: "lazy" | "eager" | "auto";
alt: string;
}
}

That’s much better! TypeScript will take the original definition and merge your decla-
rations. Your autocomplete can give you all available options and will error when you
forget an alt text.

When working with Preact, things are a bit more complicated. The original HTML
typings are very generous and not as specific as React’s typings. That’s why we have to
be a bit more explicit when defining images:

declare namespace JSX {
interface IntrinsicElements {
img: HTMLAttributes & {
alt: string;
src: string;
loading?: "lazy" | "eager" | "auto";
b
}
}

This makes sure that both alt and src are available and adds a new attribute called
loading. The technique is the same, though: declaration merging, which works on
the level of namespaces, interfaces, and modules.

266 | Chapter9: The Standard Library and External Type Definitions

https://preactjs.com

9.7 Augmenting Globals

Problem

You use a browser feature like ResizeObserver and see that it isn't available in your
current TypeScript configuration.

Solution

Augment the global namespace with custom type definitions.

Discussion

TypeScript stores types to all DOM APIs in lib.dom.d.ts. This file is autogenerated
from Web IDL files. Web IDL stands for Web Interface Definition Language and is a
format the W3C and WHATWG use to define interfaces to web APIs. It came out
around 2012 and has been a standard since 2016.

When you read standards at W3C—like on Resize Observer—you can see parts of a
definition or the full definition somewhere within the specification. Like this one:

enum ResizeObserverBoxOptions {
"border-box", "content-box", "device-pixel-content-box"

}

dictionary ResizeObserverOptions {
ResizeObserverBoxOptions box = "content-box";

}

[Exposed=(Window)]
interface ResizeObserver {
constructor(ResizeObserverCallback callback);
voild observe(Element target, optional ResizeObserverOptions options);
void unobserve(Element target);
void disconnect();

}

callback ResizeObserverCallback = void (
sequence<ResizeObserverEntry> entries,
ResizeObserver observer

)s

[Exposed=Window]
interface ResizeObserverEntry {
readonly attribute Element target;
readonly attribute DOMRectReadOnly contentRect;
readonly attribute FrozenArray<ResizeObserverSize> borderBoxSize;
readonly attribute FrozenArray<ResizeObserverSize> contentBoxSize;
readonly attribute FrozenArray<ResizeObserverSize> devicePixelContentBoxSize;

}

9.7 Augmenting Globals | 267

https://www.w3.org
https://oreil.ly/XeSUG

interface ResizeObserverSize {
readonly attribute unrestricted double inlineSize;
readonly attribute unrestricted double blockSize;

}

interface ResizeObservation {
constructor(Element target);
readonly attribute Element target;
readonly attribute ResizeObserverBoxOptions observedBox;
readonly attribute FrozenArray<ResizeObserverSize> lastReportedSizes;
1
Browsers use this as a guideline to implement respective APIs. TypeScript uses these
IDL files to generate lib.dom.d.ts. The TypeScript and JavaScript lib generator project
scrapes web standards and extracts IDL information. Then an IDL to TypeScript gen-
erator parses the IDL file and generates the correct typings.

Pages to scrape are maintained manually. The moment a specification is far enough
and supported by all major browsers, people add a new resource and see their change
released with an upcoming TypeScript version. So it’s just a matter of time until we
get ResizeObserver in lib.dom.d.ts.

If we can’t wait, we can add the typings ourselves but only for the project we currently
are working with.

Let’s assume we generated the types for ResizeObserver. We would store the output
in a file called resize-observer.d.ts. Here are the contents:

type ResizeObserverBoxOptions =
"border-box" |
"content-box" |
"device-pixel-content-box";

interface ResizeObserverOptions {
box?: ResizeObserverBoxOptions;

}

interface ResizeObservation {
readonly lastReportedSizes: ReadonlyArray<ResizeObserverSize>;
readonly observedBox: ResizeObserverBoxOptions;
readonly target: Element;

}

declare var ResizeObservation: {
prototype: ResizeObservation;
new(target: Element): ResizeObservation;

b

interface ResizeObserver {
disconnect(): void;

268 | Chapter9: The Standard Library and External Type Definitions

https://oreil.ly/WLcLB

observe(target: Element, options?: ResizeObserverOptions): void;
unobserve(target: Element): void;

}

export declare var ResizeObserver: {
prototype: ResizeObserver;
new(callback: ResizeObserverCallback): ResizeObserver;

};

interface ResizeObserverkntry {
readonly borderBoxSize: ReadonlyArray<ResizeObserverSize>;
readonly contentBoxSize: ReadonlyArray<ResizeObserverSize>;
readonly contentRect: DOMRectReadOnly;
readonly devicePixelContentBoxSize: ReadonlyArray<ResizeObserverSizes;
readonly target: Element;

}

declare var ResizeObserverEntry: {
prototype: ResizeObserverEntry;
new(): ResizeObserverEntry;

b

interface ResizeObserverSize {
readonly blockSize: number;
readonly inlineSize: number;

}

declare var ResizeObserverSize: {
prototype: ResizeObserverSize;
new(): ResizeObserverSize;

b

interface ResizeObserverCallback {
(entries: ResizeObserverEntry[], observer: ResizeObserver): void;

}
We declare a ton of interfaces and some variables that implement our interfaces, like
declare var ResizeObserver, which is the object that defines the prototype and
constructor function:

declare var ResizeObserver: {
prototype: ResizeObserver;
new(callback: ResizeObserverCallback): ResizeObserver;

IH
This already helps a lot. We can use the (arguably) long type declarations and put
them directly in the file where we need them. ResizeObserver is found! We want to
have it available everywhere, though.

Thanks to TypeScripts declaration-merging feature, we can extend namespaces and
interfaces as needed. This time, we're extending the global namespace.

9.7 Augmenting Globals | 269

The global namespace contains all objects and interfaces that are, well, globally avail-
able. Like the window object (and Window interface), as well as everything else that
should be part of our JavaScript execution context. We augment the global namespace
and add the ResizeObserver object to it:

declare global { // opening up the namespace
var ResizeObserver: { // merging ResizeObserver with it
prototype: ResizeObserver;
new(callback: ResizeObserverCallback): ResizeObserver;
}
}

Let’s put resize-observer.d.ts in a folder called @types. Don't forget to add the folder to
the sources that TypeScript will parse as well as the list of type declaration folders in
tsconfig.json:

{
"compilerOptions": {
Y/
"typeRoots": ["@types", "./node_modules/@types"],
Y/
1
"{nclude": ["src", "@types"]

}

Since there’s a significant possibility that ResizeObserver is not yet available in your
target browser, make sure that you make the ResizeObserver object undefined. This
urges you to check if the object is available:

declare global {
var ResizeObserver: {
prototype: ResizeObserver;
new(callback: ResizeObserverCallback): ResizeObserver;
} | undefined
}

In your application:

if (typeof ResizeObserver !== 'undefined') {
const x = new ResizeObserver((entries) => {});

}

This makes working with ResizeObserver as safe as possible!

270 | Chapter9: The Standard Library and External Type Definitions

It might be that TypeScript doesn’t pick up your ambient declaration files and the
global augmentation. If this happens, make sure that:

« You parse the @types folder via the include property in tsconfig.json.

» Your ambient type declaration files are recognized as such by adding them to
types or typeRoots in the tsconfig.json compiler options.

o You add export {} at the end of your ambient declaration file so TypeScript rec-
ognizes this file as a module.

9.8 Adding Non-JS Modules to the Module Graph

Problem

You use a bundler like Webpack to load files like .css or images from JavaScript, but
TypeScript does not recognize those files.

Solution

Globally declare modules based on filename extensions.

Discussion

There is a movement in web development to make JavaScript the default entry point
of everything and let it handle all relevant assets via import statements. What you
need for this is a build tool, a bundler, that analyzes your code and creates the right
artifacts. A popular tool for this is Webpack, a JavaScript bundler that allows you to
bundle everything—CSS, Markdown, SVGs, JPEGs, you name it:

// like this
import "./Button.css";

// or this
import styles from

./Button.css";

Webpack uses a concept called loaders, which looks at file endings and activates cer-
tain bundling concepts. Importing .css files in JavaScript is not native. It's part of
Webpack (or whatever bundler you are using). However, we can teach TypeScript to
understand files like this.

There is a proposal in the ECMAScript standards committee to
allow imports of files other than JavaScript and assert certain built-
in formats for this. This will have an effect on TypeScript eventu-
ally. You can read all about it here.

9.8 Adding Non-JS Modules to the Module Graph | 271

https://webpack.js.org
https://oreil.ly/stAm5

TypeScript supports ambient module declarations, even for a module that is not
“physically” there but in the environment or reachable via tooling. One example is
Node’s main built-in modules, like url, http or path, as described in TypeScripts
documentation:

declare module "path" {
export function normalize(p: string): string;
export function join(...paths: any[]): string;
export var sep: string;

}

This is great for modules where we know the exact name. We can also use the same
technique for wildcard patterns. Let’s declare a generic ambient module for all our .css
files:

declare module '*.css' {
// to be done.
}

The pattern is ready. This listens to all .css files we want to import. What we expect is
a list of class names that we can add to our components. Since we don’t know which
classes are defined in the .css files, let’s go with an object that accepts every string key
and returns a string:

declare module '*.css' {
interface IClassNames {
[className: string]: string

}
const classNames: IClassNames;
export default classNames;

}

That’s all we need to make our files compile again. The only downside is that we can't
use the exact class names to get autocompletion and similar benefits. A way to solve
this is to generate type files automatically. There are packages on NPM that deal with
that problem. Feel free to choose one of your liking.

It’s a bit easier if we want to import something like MDX into our modules. MDX lets
us write Markdown, which parses to regular React (or JSX) components (more on
React in Chapter 10).

We expect a functional component (that we can pass props to) that returns a JSX
element:

declare module '*.mdx' {
let MDXComponent: (props) => JSX.Element;
export default MDXComponent;

}

272 | Chapter9: The Standard Library and External Type Definitions

https://oreil.ly/sDBv0

And voila! We can load .mdx files in JavaScript and use them as components:

import About from '../articles/about.mdx';

function App() {
return <>
<About/>
</>
}
If you don’t know what to expect, make your life easy. All you need to do is declare
the module. Don't provide any types. TypeScript will allow loading but won't give you

any type safety:

declare module '*.svg';

To make ambient modules available to your app, it is recommended to create an
@types folder somewhere in your project (probably root level). There you can put any
amount of .d.ts files with your module definitions. Add a referral to your tsconfig.json,
and TypeScript knows what to do:

{
"compilerOptions": {

"typeRoots": [
"./node_modules/@types",
"./@types”

1,

.
}

One of TypeScripts main features is to be adaptable to all JavaScript flavors. Some
things are built-in, and others need some extra patching from you.

9.8 Adding Non-JS Modules to the Module Graph | 273

CHAPTER 10
TypeScript and React

React is arguably one of the most popular JavaScript libraries in recent years. Its sim-
ple approach to the composition of components has changed the way we write front-
end (and, to an extent, backend) applications, allowing you to declaratively write Ul
code using a JavaScript syntax extension called JSX. Not only was this simple princi-
ple easy to pick up and understand, but it also influenced dozens of other libraries.

JSX is undoubtedly a game changer in the JavaScript world, and with TypeScript’s
goal to cater to all JavaScript developers, JSX found its way into TypeScript. In fact,
TypeScript is a full-fledged JSX compiler. If you have no need for additional bundling
or extra tooling, TypeScript is all you need to get your React app going. TypeScript is
also immensely popular. At the time of writing, the React typings on NPM clocked 20
million downloads per week. The fantastic tooling with VS Code and the excellent
types made TypeScript the first choice for React developers around the globe.

While TypeScript’s popularity among React developers continues unabated, one cir-
cumstance makes the use of TypeScript with React a bit difficult: TypeScript isn’t the
React team’s first choice. While other JSX-based libraries are now mostly written in
TypeScript and therefore provide excellent types out of the box, the React team works
with their own static type-checker called Flow, which is similar to, but ultimately
incompatible with, TypeScript. This means the React types millions of developers rely
on are made subsequently by a group of community contributors and published on
Definitely Typed. While @types/react are considered to be excellent, they are still
just the best effort to type a library as complex as React. This inevitably leads to gaps.
For the places where those gaps become visible, this chapter will be your guide.

275

https://flow.org

In this chapter, we look at situations where React is supposed to be easy, but Type-
Script gives you a hard time by throwing complex error messages. We are going to
figure out what those messages mean, how you can work around them, and what sol-
utions help you in the long run. You will also learn about various development pat-
terns and their benefits, and how to use TypeScript’s built-in JSX support.

What you won't get is a basic setup guide for React and TypeScript. The ecosystem is
so vast and rich, many roads lead to Rome. Pick your framework’s documentation
pages and look out for TypeScript. Also note that I assume some React experience up
front. In this chapter, we deal mostly with typing React.

While there is a strong inclination toward React in this chapter, you will be able to
use certain learnings and apply them to other JSX-based frameworks and libraries as
well.

10.1 Writing Proxy Components

Problem

You write a lot of standard HTML components, but you don’t want to set all neces-
sary properties all the time.

Solution

Create proxy components and apply a few patterns to make them usable for your
scenario.

Discussion

Most web applications use buttons. Buttons have a type property that defaults to
submit. This is a sensible default for forms where you perform an action over HTTP,
where you POST the contents to a server-side API. But when you just want to have
interactive elements on your site, the correct type for buttons is button. This is not
only an aesthetic choice but also important for accessibility:

<button type="button">Click me!</button>

When you write React, chances are you rarely submit a form to a server with a
submit type, but you interact with lots of button-type buttons. A good way to deal
with situations like these is to write proxy components. They mimic HTML elements
but preset a couple of properties:

function Button(props) {
return <button type="button" {...props} />;

}

276 | Chapter 10: TypeScript and React

The idea is that Button takes the same properties as the HTML button, and the
attributes are spread out to the HTML element. Spreading attributes to HTML ele-
ments is a nice feature where you can make sure that you are able to set all the HTML
properties that an element has without knowing up front which you want to set. But
how do we type them?

All HTML elements that can be used in JSX are defined through intrinsic elements in
the JSX namespace. When you load React, the JSX namespace appears as a global
namespace in your file, and you can access all elements via index access. So the cor-
rect prop types for Button are defined in JSX.IntrinsicElements.

An alternative to JSX.IntrinsicElements is React.ElementType, a
generic type within the React package, which also includes class
and function components. For proxy components, JSX.Intrinsic
Elements is sufficient and comes with an extra benefit: your com-
ponents stay compatible with other React-like frameworks like
Preact.

JSX.IntrinsicElements is a type within the global JSX namespace. Once this name-
space is in scope, TypeScript is able to pick up basic elements that are compatible with
your JSX-based framework:

type ButtonProps = JSX.IntrinsicElements["button"];

function Button(props: ButtonProps) {
return <button type="button" {...props} />;

}

This includes children: we spread them along! As you see, we set a button’s type to
button. Since props are just JavaScript objects, it’s possible to override type by setting
it as an attribute in props. If two keys with the same name are defined, the last one
wins. This may be desired behavior, but you alternatively may want to prevent you
and your colleagues from overriding type. With the Omit<T, K> helper type, you can
take all properties from a JSX button but drop keys you don’t want to override:

type ButtonProps = Omit<JSX.IntrinsicElements["button"], "type"s>;

function Button(props: ButtonProps) {
return <button type="button" {...props} />;
}

const aButton = <Button type="button">Hi</Button>;

// A

// Type '{ children: string; type: string; }' is not

// assignable to type 'IntrinsicAttributes & ButtonProps'.
// Property 'type' does not exist on type

// 'IntrinsicAttributes & ButtonProps'.(2322)

1

10.1 Writing Proxy Components | 277

If you need type to be submit, you can create another proxy component:

type SubmitButtonProps = Omit<JSX.IntrinsicElements["button"], "type"s;

function SubmitButton(props: SubmitButtonProps) {
return <button type="submit" {...props} />;
}

You can extend this idea of omitting properties if you want to preset even more prop-
erties. Perhaps you adhere to a design system and don’t want class names to be set
arbitrarily:

type StyledButton = Omit<
JSX.IntrinsicElements["button"],

"type" | "className" | "style"
> & {
type: "primary" | "secondary";

};

function StyledButton({ type, ...allProps }: StyledButton) {
return <Button type="button" className={ btn-${type} '} {...allProps}/>;
}

This even allows you to reuse the type property name.

We dropped some props from the type definition and preset them to sensible
defaults. Now we want to make sure our users don’t forget to set some props, such as
the alt attribute of an image or the src attribute.

For that, we create a MakeRequired helper type that removes the optional flag:
type MakeRequired<T, K extends keyof T> = Omit<T, K> & Required<Pick<T, K>;
And build our own props:

type ImgProps
= MakeRequired<
JSX.IntrinsicElements["img"],
"alt" | "src"
>3
export function Img(props: ImgProps) {
return ;

}

const anImage = ;

// 8

// Type '{}' is missing the following properties from type

// 'Required<Pick<DetailedHTMLProps<ImgHTMLAttributes<HTMLImageElement>,
// HTMLImageElement>, "alt" | "src">>': alt, src (2739)

278 | Chapter 10: TypeScript and React

With just a few changes to the original intrinsic element’s type and a proxy compo-
nent, we can ensure that our code becomes more robust, more accessible, and less
error prone.

10.2 Writing Controlled Components

Problem

Form elements like inputs add another complexity as we need to decide where to
manage state: in the browser or in React.

Solution

Write a proxy component that uses discriminated unions and the optional never
technique to ensure you won’t switch from uncontrolled to controlled at runtime.

Discussion

React differentiates form elements between controlled components and uncontrolled
components. When you use regular form elements like input, textarea, or select,
you need to keep in mind that the underlying HTML elements control their own
state. Whereas in React, the state of an element is also defined through React.

If you set the value attribute, React assumes that the element’s value is also controlled
by React’s state management, which means you are not able to modifiy this value
unless you maintain the element’s state using useState and the associated setter
function.

There are two ways to deal with this. First, you can choose defaultValue as a prop-
erty instead of value. This will set the value of the input only in the first rendering,
and subsequently leaves everything in the hands of the browser:

function Input({
value = "", ...allProps
}: Props) {
return (
<input
defaultValue={value}
{...allProps}
/>
)5
}

Or you manage value interally via React’s state management. Usually, it's enough just
to intersect the original input elements props with our own type. We drop value
from the intrinsic elements and add it as a required string:

10.2 Writing Controlled Components | 279

type ControlledProps =
Omit<JSX.IntrinsicElements["input"], "value"> & {
value: string;

IH
Then, we wrap the input element in a proxy component. It is not best practice to
keep state internally in a proxy component; rather, you should manage it from the
outside with useState. We also forward the onChange handler we pass from the origi-
nal input props:

function Input({

value = "", onChange, ...allProps
}: ControlledProps) {
return (
<input

value={value}
{...allProps}
onChange={onChange}
/>
)5
}

function AComponentUsingInput() {
const [val, setVal] = useState("");
return <Input
value={val}
onChange={(e) => {
setVal(e.target.value);
1
/>
}

React raises an interesting warning when dealing with a switch from uncontrolled to
controlled at runtime:

A component is changing an uncontrolled input to be controlled. This is likely caused
by the value changing from undefined to a defined value, which should not happen.
Decide between using a controlled or uncontrolled input element for the lifetime of the
component.
We can prevent this warning by making sure at compile time that we either always
provide a defined string value or provide a defaultValue instead, but not both. This
can be solved by using a discriminated union type using the optional never technique
(as seen in Recipe 3.8), and using the OnlyRequired helper type from Recipe 8.1 to
derive possible properties from JSX.IntrinsicElements["input"]:

import React, { useState } from "react";

// A helper type setting a few properties to be required
type OnlyRequired<T, K extends keyof T = keyof T> = Required<Pick<T, K>> &
Partial<Omit<T, K>>;

280 | Chapter 10: TypeScript and React

// Branch 1: Make "value" and "onChange" required, drop ‘defaultValue®
type ControlledProps = OnlyRequired<
JSX.IntrinsicElements["input"],

"value" | "onChange"
> & {
defaultValue?: never;

b

// Branch 2: Drop ‘value' and ‘onChange', make ‘defaultValue' required
type UncontrolledProps = Omit<

JSX.IntrinsicElements["input"],

"value" | "onChange"
> & {

defaultValue: string;

value?: never;

onChange?: never;

b
type InputProps = ControlledProps | UncontrolledProps;

function Input({ ...allProps }: InputProps) {
return <input {...allProps} />;
}

function Controlled() {

const [val, setVal] = useState("");

return <Input value={val} onChange={(e) => setVal(e.target.value)} />;
}

function Uncontrolled() {
return <Input defaultValue="Hello" />;
}

In all other cases, having an optional value or having a defaultValue and trying to
control values will be prohibited by the type system.

10.3 Typing Custom Hooks

Problem

You want to define custom hooks and get proper types.

Solution

Use tuple types or const context.

10.3 Typing Custom Hooks | 281

Discussion

Lets create a custom hook in React and stick to the naming convention as regular
React hooks do: returning an array (or tuple) that can be destructured. For example,
useState:

const [state, setState] = useState(0);

Why do we even use arrays? Because the array’s fields have no name, and you can set
names of your own:

const [count, setCount] = useState(0);
const [darkMode, setDarkMode] = useState(true);

So naturally, if you have a similar pattern, you also want to return an array. A custom
toggle hook might look like this:

export const useToggle = (initialValue: boolean) => {
const [value, setValue] = useState(initialvalue);
const toggleValue = () => setValue(!value);
return [value, toggleValue];

}

Nothing out of the ordinary. The only types we have to set are the types of the input
parameters. Let’s try it:

export const Body = () => {
const [isVisible, toggleVisible] = useToggle(false)
return (
<>
<button onClick={toggleVisible}></button>
{ /* Error. See below */ }
{isVisible && <div>World</div>}>}
</>
)

}
// Error: Type 'boolean | (() => void)' is not assignable to

// type 'MouseEventHandler<HTMLButtonElement> | undefined'.

// Type 'boolean' is not assignable to type

// 'MouseEventHandler<HTMLButtonElement>'. (2322)
So why does this fail? The error message might be cryptic, but what we should look
out for is the first type, which is declared incompatible: boolean | (() => void)'.
This comes from returning an array: a list of any length that can hold as many ele-
ments as virtually possible. From the return value in useToggle, TypeScript infers an
array type. Since the type of value is boolean (great!) and the type of togglevalue is
(() => void) (a function expected to return nothing), TypeScript tells us that both
types are possible in this array.

282 | Chapter 10: TypeScript and React

This is what breaks the compatibility with onClick. onClick expects a function.
That’s fine, but toggleValue (or toggleVisible) is a function. According to Type-
Script, however, it can also be a Boolean! TypeScript tells you to be explicit, or at least
to do type-checks.

But we shouldn’t need to do extra type-checks. Our code is very clear. Its the types
that are wrong. Because we're not dealing with an array, let’s go for a different name:
tuple. While an array is a list of values that can be of any length, we know exactly how
many values we get in a tuple. Usually, we also know the type of each element in a
tuple.

So we shouldn’t return an array but a tuple at useToggle. The problem: in JavaScript
an array and a tuple are indistinguishable. In TypeScript’s type system, we can distin-
guish them.

First option: let’s be intentional with our return type. Since TypeScript—correctly!—
infers an array, we have to tell TypeScript that we are expecting a tuple:

// add a return type here
export const useToggle = (initialValue: boolean): [boolean, () => void] => {
const [value, setValue] = useState(initialvalue);
const toggleValue = () => setValue(!value);
return [value, toggleValue];
b
With [boolean, () => void] as a return type, TypeScript checks that we are return-
ing a tuple in this function. TypeScript does not infer, but rather makes sure that your
intended return type is matched by the actual values. And voila, your code doesn’t
throw errors anymore.

Second option: use const context. With a tuple, we know how many elements we are
expecting, and we know the type of these elements. This sounds like a job for freezing
the type with a const assertion:

export const useToggle = (initialValue: boolean) => {
const [value, setValue] = useState(initialvalue);
const toggleValue = () => setValue(!value);
// here, we freeze the array to a tuple
return [value, toggleValue] as const;

}
The return type is now readonly [boolean, () => void], because as const makes
sure that your values are constant and not changeable. This type is a little bit different
semantically, but in reality you wouldn’t be able to change the values you return out-
side of useToggle. So being readonly would be slightly more correct.

10.3 Typing Custom Hooks | 283

10.4 Typing Generic forwardRef Components

Problem

You use forwardRef for your components, but you need them to be generic.

Solution

There are several solutions to this problem.

Discussion

If you are creating component libraries and design systems in React, you might
already have fowarded refs to the DOM elements inside your components.

This is especially useful if you wrap basic components or leaves in proxy components
(see Recipe 10.1), but want to use the ref property just like you're used to:

const Button = React.forwardRef((props, ref) => (
<button type="button" {...props} ref={ref}>
{props.children}
</button>
))s

// Usage: You can use your proxy just like you use

// a regular button!

const reference = React.createRef();

<Button className="primary" ref={reference}>Hello</Button>

Providing types for React.forwardRef is usually pretty straightforward. The types
shipped by @types/react have generic type variables that you can set upon calling
React.forwardRef. In that case, explicitly annotating your types is the way to go:

type ButtonProps = JSX.IntrinsicElements["button"];

const Button = React.forwardRef<HTMLButtonElement, ButtonProps>(
(props, ref) => (
<button type="button" {...props} ref={ref}>
{props.children}
</button>
)
);

// Usage
const reference = React.createRef<HTMLButtonElement>();

<Button className="primary" ref={reference}>Hello</Button>

284 | Chapter 10: TypeScript and React

So far, so good. But things get a bit hairy if you have a component that accepts generic
properties. The following component produces a list of list items, where you can
select each row with a button element:

type ClickableListProps<T> = {
items: T[];
onSelect: (item: T) => void;

1

function ClickableList<T>(props: ClickableListProps<T>) {
return (

{props.items.map((item, idx) => (
<1li>
<button key={idx} onClick={() => props.onSelect(item)}>
Choose
</button>
{item}
</1i>
N}

)5
}

// Usage
const items = [1, 2, 3, 4];
<ClickableList items={items}
onSelect={(item) => {
// item is of type number
console.log(item);

Y /s

You want the extra type safety so you can work with a type-safe item in your on
Select callback. Say you want to create a ref to the inner ul element: how do you
proceed? Let’s change the ClickableList component to an inner function compo-
nent that takes a ForwardRef and use it as an argument in the React.forwardRef
function:

// The original component extended with a ‘ref’
function ClickableListInner<T>(
props: ClickableListProps<T>,
ref: React.ForwardedRef<HTMLUListElement>
) o
return (
<ul ref={ref}>
{props.items.map((item, 1) => (
<1li key={i}>
<button onClick={(el) => props.onSelect(item)}>Select</button>
{item}
</1i>
N}

10.4 Typing Generic forwardRef Components | 285

);
}

// As an argument in ‘React.forwardRef"
const ClickableList = React.forwardRef(ClickableListInner)

This compiles but has one downside: we can’t assign a generic type variable for
ClickableListProps. It becomes unknown by default. This is good compared to any
but also slightly annoying. When we use ClickableList, we know which items to
pass along, and we want to have them typed accordingly! So how can we achieve this?
The answer is tricky ... and you have a couple of options.

The first option is to do a type assertion that restores the original function signature:

const ClickableList = React.forwardRef(ClickableListInner) as <T>(
props: ClickableListProps<T> & { ref?: React.ForwardedRef<HTMLUListElement> }
) => ReturnType<typeof ClickableListInner>;

Type assertions work great if you happen to have only a few situations where you
need generic forwardRef components, but they might be too clumsy when you work
with lots of them. Also, you introduce an unsafe operator for something that should
be default behavior.

The second option is to create custom references with wrapper components. While
ref is a reserved word for React components, you can use your own custom props to
mimic a similar behavior. This works just as well:

type ClickableListProps<T> = {

items: T[];

onSelect: (item: T) => void;

mRef?: React.Ref<HTMLUListElement> | null;
b

export function ClickableList<T>(
props: ClickableListProps<T>
) {
return (
<ul ref={props.mRef}>
{props.items.map((item, 1) => (
<11 key={i}>
<button onClick={(el) => props.onSelect(item)}>Select</button>
{item}
</1i>
N}

)s
}

286 | Chapter 10: TypeScript and React

You introduce a new API, however. For the record, there is also the possibility of
using a wrapper component that allows you to use forwardRef inside an inner com-
ponent and expose a custom ref property to the outside:

function ClickableListInner<T>(
props: ClickableListProps<T>,
ref: React.ForwardedRef<HTMLUListElement>

) {

return (
<ul ref={ref}>
{props.items.map((item, 1) => (
<11 key={i}>
<button onClick={(el) => props.onSelect(item)}>Select</button>
{item}

N}

)s
}

const ClickableListWithRef = forwardRef(ClickableListInner);

type ClickableListWithRefProps<T> = ClickableListProps<T> & {
mRef?: React.Ref<HTMLUListElement>;
b

export function ClickableList<T>({

mRef,

...props
}: ClickableListWithRefProps<T>) {

return <ClickableListWithRef ref={mRef} {...props} />;
}

Both are valid solutions if the only thing you want to achieve is passing that ref. If you
want to have a consistent API, you might look for something else.

The third and final option is to augment forwardRef with your own type definitions.
TypeScript has a feature called higher-order function type inference that allows propa-
gating free type parameters to the outer function.

This sounds a lot like what we want with forwardRef to begin with, but it doesn’t
work with our current typings. The reason is that higher-order function type infer-
ence works only on plain function types. The function declarations inside
forwardRef also add properties for defaultProps and so on. These are relics from
the class component days, things you might not want to use anyway.

So without the additional properties, it should be possible to use higher-order
function type inference!

10.4 Typing Generic forwardRef Components | 287

https://oreil.ly/rVsq9

We are using TypeScript, so we have the ability to redeclare and redefine global
module, namespace, and interface declarations on our own. Declaration merging is
a powerful tool, and we’re going to use it:

// Redecalare forwardRef
declare module "react" {
function forwardRef<T, P = {}>(
render: (props: P, ref: React.Ref<T>) => React.ReactElement | null
): (props: P & React.RefAttributes<T>) => React.ReactElement | null;
}

// Just write your components like you're used to!

type ClickableListProps<T> = {
items: T[];
onSelect: (item: T) => void;
b
function ClickableListInner<T>(
props: ClickableListProps<T>,
ref: React.ForwardedRef<HTMLUListElement>
) {
return (
<ul ref={ref}>
{props.items.map((item, 1) => (
<1 key={i}>
<button onClick={(el) => props.onSelect(item)}>Select</button>
{item}
</11>
N}

)s
}

export const ClickableList = React.forwardRef(ClickableListInner);

The nice thing about this solution is that you write regular JavaScript again and work
exclusively on a type level. Also, redeclarations are module scoped: no interference
with any forwardRef calls from other modules!

10.5 Providing Types for the Context API

Problem

You want to use the context API for globals in your app, but you don’t know the best
way to deal with type definitions.

288 | Chapter 10: TypeScript and React

Solution

Either set default properties for context and let the type be inferred or create a partial
of your context’s properties and instantiate the generic type parameter explicitly. If
you don’t want to provide default values, but want to make sure that all properties are
provided, create a helper function.

Discussion

React’s context API allows you to share data on a global level. To use it, you need two
things:

Providers
Providers pass data to a subtree.

Consumers
Consumers are components that consume the passed data inside render props.

With React’s typings, you can use context without doing anything else most of the
time. Everything is done using type inference and generics.

First, we create a context. Here, we want to store global application settings, like a
theme and the app’s language, along with the global state. When creating a React con-
text, we want to pass default properties:

import React from "react";

const AppContext = React.createContext({
authenticated: true,
lang: "en",
theme: "dark",

s

And with that, everything you need to do in terms of types is done for you. We have
three properties: authenticated, lang, and theme; they are of types boolean and
string. React’s typings take this information to provide you with the correct types
when you use them.

Next, a component high up in your component tree needs to provide context—for
example, the application’s root component. This provider trickles down the values
you've set to every consumer below:

function App() {
return (
<AppContext.Provider

value={{
authenticated: true,
lang: "de",
theme: "light",

13

10.5 Providing Types for the Context APl | 289

>
<Header />
</AppContext.Provider>
)5
}

Now, every component inside this tree can consume this context. You already get type
errors when you forget a property or use the wrong type:

function App() {
// Property 'theme' is missing in type '{ lang: string; }' but required
// in type '{ lang: string; theme: string; authenticated: boolean }'.(2741)
return (
<AppContext.Provider
value={{
lang: "de",
13
>
<Header />
</AppContext.Provider>
)s
}

Now, let’s consume our global state. Consuming context can be done via render
props. You can destructure your render props as deep as you like, to get only the
props you want to deal with:

function Header() {
return (
<AppContext.Consumer>
{({ authenticated }) => {
if (authenticated) {
return <hil>Logged in!</h1>;
}
return <h1>You need to sign in</h1>;
13
</AppContext.Consumer>
)5
}

Another way of using context is via the respective useContext hook:

function Header() {
const { authenticated } = useContext(AppContext);
if (authenticated) {
return <hil>Logged in!</h1>;

}

return <hi>You need to sign in</hil>;
}
Because we defined our properties earlier with the right types, authenticated is of
type boolean at this point. Again, we didn’t have to do anything to get this extra
type safety.

290 | Chapter 10: TypeScript and React

The whole previous example works best if we have default properties and values.
Sometimes you don't have default values or you need to be more flexible in which
properties you want to set.

Instead of inferring everything from default values, we annotate the generic type
parameter explicitly, not with the full type, but with a Partial.

We create a type for the context’s props:

type ContextProps = {
authenticated: boolean;
lang: string;
theme: string;

b
And initialize the new context:
const AppContext = React.createContext<Partial<ContextProps>>({});

Changing the semantics of the context’s default properties has some side effects on
your components as well. Now you don't need to provide every value; an empty con-
text object can do the same! All your properties are optional:

function App() {
return (
<AppContext.Provider
value={{
authenticated: true,

1

>
<Header />
</AppContext.Provider>
)5
}

This also means you need to check for every property if it's defined. This doesn’t
change the code where you rely on boolean values, but every other property needs to
have another undefined check:

function Header() {
const { authenticated, lang } = useContext(AppContext);
if (authenticated && lang) {
return <>
<h1>Logged in!</h1>
<p>Your language setting is set to {lang}</p>
</>;
}
return <h1>You need to sign in (or don't you have a language setting?)</hi1>;

}

10.5 Providing Types for the Context APl | 291

If you can't provide default values and want to make sure that all properties are pro-
vided by a context provider, you can help yourself with a helper function. Here, we
want explicit generic instantiation to supply a type but give the right type guards so
that when consuming context, all possibly undefined values are correctly set:

function createContext<Props extends {}>() { (1)
const ctx = React.createContext<Props | undefined>(undefined); (2]
function useInnerCtx() { ©
const c = useContext(ctx);
if (c === undefined) (4]
throw new Error("Context must be consumed within a Provider");
return c; (5]

}

return [useInnerCtx, ctx.Provider as React.Provider<Props>] as const; (6]

}

What’s going on in createContext?

© We create a function that has no function arguments but generic type parame-
ters. Without the connection to function parameters, we can’t instantiate Props
via inference. This means that for createContext to provide proper types, we
need to explicitly instantiate it.

® We create a context that allows for Props or undefined. With undefined added
to the type, we can pass undefined as value. No default values!

© Inside createContext, we create a custom hook. This hook wraps useContext
using the newly created context ctx.

O Then we do a type guard where we check if the returned Props includes
undefined. Remember, when calling createContext, we instantiate the generic
type parameter with Props | undefined. This line removes undefined from the
union type again.

Which means that here, c is Props.
We assert that ctx.Provider doesn’t take undefined values. We call as const to
return [useInnerContext, ctx.Provider] asa tuple type.
Use createContext similar to React.createContext:
const [useAppContext, AppContextProvider] = createContext<ContextProps>();

When using AppContextProvider, we need to provide all values:

function App() {
return (
<AppContextProvider

292 | (Chapter 10: TypeScript and React

value={{ lang: "en", theme: "dark", authenticated: true }}
>
<Header />
</AppContextProvider>
)5
}

function Header() {
// consuming Context doesn't change much
const { authenticated } = useAppContext();
if (authenticated) {
return <hil>Logged in!</h1>;
}

return <h1>You need to sign in</h1l>;

}

Depending on your use case, you have exact types without too much overhead.

10.6 Typing Higher-Order Components

Problem

You are writing higher-order components to preset certain properties for other compo-
nents but don’t know how to type them.

Solution

Use the React.ComponentType<P> type from @types/react to define a component
that extends your preset attributes.

Discussion

React is influenced by functional programming, which we see in the way components
are designed (via functions), assembled (via composition), and updated (stateless,
unidirectional data flow). It didn't take long for functional programming techniques
and paradigms to find their way into React development. One such technique is
higher-order components, which draw inspiration from higher-order functions.

Higher-order functions accept one or more parameters to return a new function.
Sometimes those parameters are here to prefill certain other parameters, as we see,
for example, in all currying recipes from Chapter 7. Higher-order components are
similar: they take one or more components and return themselves another compo-
nent. Usually, you create them to prefill certain properties where you want to make
sure they won’t be changed later on.

Think about a general-purpose Card component, which takes title and content
as strings:

10.6 Typing Higher-Order Components | 293

type CardProps = {
title: string;
content: string;

};

function Card({ title, content }: CardProps) {
return (
<>

<h2>{title}</h2>
<div>{content}</div>
</>
)5
}

You use this card to present certain events, like warnings, information bubbles, and
error messages. The most basic information card has "Info" as its title:

<Card title="Info" content="Your task has been processed" />;

You could subset the properties of Card to allow for only a certain subset of strings
for title, but on the other hand, you want to be able to reuse Card as much as possi-
ble. So you create a new component that already sets title to "Info" and only allows
for other properties to be set:

const Info = withInjectedProps({ title: "Info" }, Card);

// This should work
<Info content="Your task has been processed" />;

// This should throw an error
<Info content="Your task has been processed" title="Warning" />;

In other words, you inject a subset of properties and set the remaining ones with the
newly created component. A function withInjectedProps is easily written:

function withInjectedProps(injected, Component) {
return function (props) {
const newProps = { ...injected, ...props };
return <Component {...newProps} />;
IH
}

It takes the injected props and a Component as parameters, returns a new function

component that takes the remaining props as parameters, and instantiates the origi-
nal component with merged properties.

So how do we type withInjectedProps? Let’s look at the result and see what’s inside:

function withInjectedProps<T extends {3}, U extends T>((1]
injected: T,
Component: React.ComponentType<U> (2]

) o
return function (props: Omit<U, keyof T>) { (3]

294 | Chapter 10: TypeScript and React

const newProps = { ...injected, ...props } as U; (4]
return <Component {...newProps} />;
3
}

Here is what’s going on:

We need to define two generic type parameters. T is for the props we already
inject; it extends from {} to make sure we only pass objects. U is a generic type
parameter for all props of Component. U extends T, which means that U is a subset
of T. This says that U has more properties than T but needs to include what T
already has defined.

We define Component to be of type React.ComponentType<U>. This includes class
components as well as function components and says that props will be set to U.
With the relationship of T and U and the way we defined the parameters of with
InjectedProps, we ensure that everything that will be passed for Component
defines a subset of properties for Component with injected. If we make a typo,
we quickly get the first error message!

The function component that will be returned takes the remaining props. With
Omit<U, keyof T>we make sure that we don't allow prefilled attributes to be set
again.

Merging T and Omit<U, keyof T> should result in U again, but since generic type
parameters can be explicitly instantiated with something different, they might
not fit Component again. A type assertion helps ensure that the props are actually
what we want.

And that’s it! With those new types, we get proper autocomplete and errors:

const Info = withInjectedProps({ title: "Info" }, Card);

<Info content="Your task has been processed" />;

<Info content="Your task has been processed" title="Warning" />;
// 8

// Type '{ content: string; title: string; }' is not assignable
// to type 'IntrinsicAttributes & Omit<CardProps, "title">'.

// Property 'title' does not exist on type

// 'IntrinsicAttributes & Omit<CardProps, "title">'.(2322)

withInjectedProps is so flexible that we can derive higher-order functions that cre-
ate higher-order components for various situations, like withTitle, which is here to
prefill title attributes of type string:

10.6 Typing Higher-Order Components | 295

function withTitle<U extends { title: string }>(
title: string,
Component: React.ComponentType<U>

) {
return withInjectedProps({ title }, Component);

}

Your functional programming goodness knows no limits.

10.7 Typing Callbacks in React’s Synthetic Event System

Problem

You want to get the best possible typings for all browser events in React and use the
type system to restrict your callbacks to compatible elements.

Solution

Use the event types of @types/react and specialize on components using generic
type parameters.

Discussion

Web applications become alive through user interaction. Every user interaction trig-
gers an event. Events are key, and TypeScripts React typings have great support for
events, but they require you not to use the native events from lib.dom.d.ts. If you do,
React throws errors:

type WithChildren<T = {}> = T & { children?: React.ReactNode };

type ButtonProps = {
onClick: (event: MouseEvent) => void;
} & WithChildren;

function Button({ onClick, children }: ButtonProps) {
return <button onClick={onClick}>{children}</button>;
// 4
// Type '(event: MouseEvent) => void' is not assignable to
// type 'MouseEventHandler<HTMLButtonElement>".
// Types of parameters 'event' and 'event' are incompatible.
// Type 'MouseEvent<HTMLButtonElement, MouseEvent>' is missing the following
// properties from type 'MouseEvent': offsetX, offsetY, x, y,
// and 14 more. (2322)
}

React uses its own event system, which we refer to as synthetic events. Synthetic events
are cross-browser wrappers around the browser’s native event, with the same inter-
face as its native counterpart but aligned for compatibility. A change to the type from
@types/react makes your callbacks compatible again:

296 | Chapter 10: TypeScript and React

import React from "react";
type WithChildren<T = {}> = T & { children?: React.ReactNode };

type ButtonProps = {
onClick: (event: React.MouseEvent) => void;
} & WithChildren;

function Button({ onClick, children }: ButtonProps) {
return <button onClick={onClick}>{children}</button>;
}

The browser’s MouseEvent and React.MouseEvent are different enough for Type-
Script’s structural type system, meaning that there are some missing properties in the
synthetic counterparts. You can see in the preceding error message that the original
MouseEvent has 18 properties more than React.MouseEvent, some of them arguably
important, like coordinates and offsets, which come in handy if, for example, you
want to draw on a canvas.

If you want to access properties from the original event, you can use the nativeEvent
property:
function handleClick(event: React.MouseEvent) {

console.log(event.nativeEvent.offsetX, event.nativeEvent.offsetY);

}

const btn = <Button onClick={handleClick}>Hello</Button>};

Events supported are: AnimationEvent, ChangeEvent, ClipboardEvent, Composition
Event, DragEvent, FocusEvent, FormEvent, KeyboardEvent, MouseEvent, Pointer
Event, TouchEvent, TransitionEvent, and WheelEvent, as well as SyntheticEvent
for all other events.

So far, we applied the correct types to make sure we don’t have any compiler errors.
Easy enough. But we're using TypeScript not only to fulfill the ceremony of applying
types to keep the compiler from complaining but also to prevent situations that might
be problematic.

Let’s think about a button again. Or a link (the a element). Those elements are sup-
posed to be clicked; that’s their purpose. But in the browser, click events can be
received by every element. Nothing keeps you from adding onClick to a div element,
the element that has the least semantic meaning of all elements, and no assistive tech-
nology will tell you that a div can receive a MouseEvent unless you add lots of
attributes to it.

Wouldn't it be great if we could keep our colleagues (and ourselves) from using the
defined event handlers on the wrong elements? React.MouseEvent is a generic type
that takes compatible elements as its first type. This is set to Element, which is the

10.7 Typing Callbacks in React’s Synthetic Event System | 297

base type for all elements in the browser. But you are able to define a smaller set of
compatible elements by subtyping this generic parameter:

type WithChildren<T = {}> = T & { children?: React.ReactNode };

// Button maps to an HTMLButtonElement
type ButtonProps = {

onClick: (event: React.MouseEvent<HTMLButtonElement>) => void;
} & WithChildren;

function Button({ onClick, children }: ButtonProps) {
return <button onClick={onClick}>{children}</button>;
}

// handleClick accepts events from HTMLButtonElement or HTMLAnchorElement
function handleClick(
event: React.MouseEvent<HTMLButtonElement | HTMLAnchorElement>

) {

console.log(event.currentTarget.tagName);
}

let button = <Button onClick={handleClick}>Works</Button>;
let link = Works;

let broken = <div onClick={handleClick}>Does not work</div>;

// 8

// Type '(event: MouseEvent<HTMLButtonElement | HTMLAnchorElement,

// MouseEvent>) => void' is not assignable to type

// 'MouseEventHandler<HTMLDivElement>".

// Types of parameters 'event' and 'event' are incompatible.

// Type 'MouseEvent<HTMLDivElement, MouseEvent>' 1s not assignable to
// type 'MouseEvent<HTMLButtonElement | HTMLAnchorElement, MouseEvent>'.
// Type 'HTMLDivElement' is not assignable to type #

// 'HTMLButtonElement | HTMLAnchorElement'.

Although React’s types give you more flexibility in some areas, it lacks features in oth-
ers. For example, the browser native InputEvent is not supported in @types/react.
The synthetic event system is meant to be a cross-browser solution, and some of
React’s compatible browsers still lack implementation of InputEvent. Until they catch
up, it’s safe for you to use the base event SyntheticEvent:
function onInput(event: React.SyntheticEvent) {
event.preventDefault();

// do something
}

const inp = <input type="text" onInput={onInput} />;

Now you get at least some type safety.

298 | Chapter 10: TypeScript and React

10.8 Typing Polymorphic Components

Problem

You create a proxy component (see Recipe 10.1) that needs to behave as one of many
different HTML elements. It’s hard to get the right typings.

Solution

Assert forwarded properties as any or use the JSX factory React.createElement
directly.

Discussion

A common pattern in React is to define polymorphic (or as) components, which pre-
define behavior but can act as different elements. Think of a call-to-action button, or
CTA, which can be a link to a website or an actual HTML button. If you want to style
them similarly, they should behave alike, but depending on the context they should
have the right HTML element for the right action.

Selecting the right element is an important accessibility factor. a
and button elements represent something users can click, but the
semantics of a are fundamentally different from the semantics of a
button. a is short for anchor and needs to have a reference (href)
to a destination. A button can be clicked, but the action is usually
scripted via JavaScript. Both elements can look the same, but they
act differently. Not only do they act differently, but they also are
announced differently using assistive technologies, like screen
readers. Think about your users and select the right element for the
right purpose.

The idea is that you have an as prop in your component that selects the element type.
Depending on the element type of as, you can forward properties that fit the element
type. Of course, you can combine this pattern with everything that you have seen in
Recipe 10.1:

<Cta as="a" href="https://typescript-cookbook.com">
Hey hey
</Cta>

<Cta as="button" type="button" onClick={(e) => { /* do something */ }}>
My my
</Cta>

10.8 Typing Polymorphic Components | 299

When throwing TypeScript into the mix, you want to make sure that you get auto-
complete for the right props and errors for the wrong properties. If you add an href
to a button, TypeScript should give you the correct squiggly lines:

// Type '{ children: string; as: "button"; type: "button"; href: string; }'

// 1s not assignable to type 'IntrinsicAttributes & { as: "button"; } &

// ClassAttributes<HTMLButtonElement> &
// ButtonHTMLAttributes<HTMLButtonElement> & { ...; }'.

// Property 'href' does not exist on type ... (2322)

// v

<Cta as="button" type="button" href="" ref={(el) => el?.id}>
My my

</Cta>

Lets try to type Cta. First, we develop the component without types at all. In Java-
Script, things don’t look too complicated:

function Cta({ as: Component, ...props }) {
return <Component {...props} />;

}

We extract the as prop and rename it as Component. This is a destructuring mecha-
nism from JavaScript that is syntactically similar to a TypeScript annotation but
works on destructured properties and not on the object itself (where youd need a
type annotation). We rename it to an uppercase component so we can instantiate it
via JSX. The remaining props will be collected in .. .props and spread out when cre-
ating the component. Note that you can also spread out children with ...props, a
nice little side effect of JSX.

When we want to type Cta, we create a CtaProps type that works on either "a" ele-
ments or "button" elements and takes the remaining props from JSX.Intrinsic
Elements, similar to what we've seen in Recipe 10.1:

type CtaElements = "a" | "button";

type CtaProps<T extends CtaElements> = {
as: T;
} & ISX.IntrinsicElements[T];

When we wire up our types to Cta, we see that the function signature works very well
with just a few extra annotations. But when instantiating the component, we get quite
an elaborate error that tells us how much is going wrong:

function Cta<T extends CtaElements>({
as: Component,
...props
}: CtaProps<T>) {
return <Component {...props} />;
// .
// Type 'Omit<CtaProps<T>, "as" | "children"> & { children: ReactNode; }'
// 1s not assignable to type 'IntrinsicAttributes &

300 | Chapter 10: TypeScript and React

// LibraryManagedAttributes<T, ClassAttributes<HTMLAnchorElement> &

// AnchorHTMLAttributes<HTMLAnchorElement> & ClassAttributes<...> &

// ButtonHTMLAttributes<...>>"'.

// Type 'Omit<CtaProps<T>, "as" | "children"> & { children: ReactNode; }' is not
// assignable to type

// 'LibraryManagedAttributes<T, ClassAttributes<HTMLAnchorElement>

// & AnchorHTMLAttributes<HTMLAnchorElement> & ClassAttributes<...>

// & ButtonHTMLAttributes<...>>"'.(2322)

}

So where does this message come from? For TypeScript to work correctly with JSX,
we need to resort to type definitions in a global namespace called JSX. If this name-
space is in scope, TypeScript knows which elements that aren’t components can be
instantiated and which attributes they can accept. These are the JSX.Intrinsic
Elements we use in this example and in Recipe 10.1.

One type that also needs to be defined is LibraryManagedAttributes. This type is
used to provide attributes that are defined either by the framework itself (like key) or
via means like defaultProps:

export interface Props {
name: string;

}

function Greet({ name }: Props) {
return <div>Hello {name.toUpperCase()}!</div>;

}
// Goes into LibraryManagedAttributes
Greet.defaultProps = { name: "world" };

// Type-checks! No type assertions needed!
let el = <Greet key={1} />;

React’s typings solve LibraryManagedAttributes by using a conditional type. And as
we see in Recipe 12.7, conditional types won't be expanded with all possible variants
of a union type when being evaluated. This means that TypeScript won’t be able to
check that your typings fit the components because it won't be able to evaluate
LibraryManagedAttributes.

One workaround for this is to assert props to any:

function Cta<T extends CtaElements>({
as: Component,
...props
}: CtaProps<T>) {
return <Component {...(props as any)} />;

}

That works, but it is a sign of an unsafe operation that shouldn’t be unsafe. Another
way is to not use JSX in this case but use the JSX factory React.createElement.

10.8 Typing Polymorphic Components | 301

Every JSX call is syntactic sugar to a JSX factory call:

<h1 className="headline">Hello World</h1>

// will be transformed to

React.createElement("h1", { className: "headline" }, ["Hello World"]);
If you use nested components, the third parameter of createElement will contain
nested factory function calls. React.createElement is much easier to call than JSX,
and TypeScript won't resort to the global JSX namespace when creating new elements.
Sounds like a perfect workaround for our needs.

React.createElement needs three arguments: the component, the props, and the
children. Right now, we've smuggled all child components with props, but for
React.createElement we need to be explicit. This also means that we need to explic-
itly define children.

For that, we create a WithChildren<T> helper type. It takes an existing type and adds
optional children in the form of React.ReactNode:

type WithChildren<T = {}> = T & { children?: React.ReactNode };
WithChildren is highly flexible. We can wrap the type of our props with it:
type CtaProps<T extends CtaElements> = WithChildren<{
as: T;
} & ISX.IntrinsicElements[T]>;
Or we can create a union:
type CtaProps<T extends CtaElements>

as: T;
} & ISX.IntrinsicElements[T] & WithChildren;

{

Since T is set to {} by default, the type becomes universally usable. This makes it a lot
easier for you to attach children whenever you need them. As a next step, we
destructure children out of props and pass all arguments into React.createEle
ment:

function Cta<T extends CtaElements>({
as: Component,
children,
...props
}: CtaProps<T>) {
return React.createElement(Component, props, children);

}

And with that, your polymorphic component accepts the right parameters without
any errors.

302 | Chapter 10: TypeScript and React

CHAPTER 11
Classes

When TypeScript was released for the very first time in 2012, the JavaScript ecosys-
tem and the features of the JavaScript language were not comparable to what we have
today. TypeScript introduced many features not only in the form of a type system but
also syntax, enriching an already existing language with possibilities to abstract parts
of your code across modules, namespaces, and types.

One of these features was classes, a staple in object-oriented programming. Type-
Script’s classes originally drew a lot of influence from C#, which is not surprising if
you know the people behind both programming languages.! But they are also
designed based on concepts from the abandoned ECMAScript 4 proposals.

Over time, JavaScript gained much of the language features pioneered by TypeScript
and others; classes, along with private fields, static blocks, and decorators, are now
part of the ECMAScript standard and have been shipped to language runtimes in the
browser and the server.

This leaves TypeScript in a sweet spot between the innovation it brought to the lan-
guage in the early days and standards, which is what the TypeScript team sees as a
baseline for all upcoming features of the type system. While the original design is
close to what JavaScript ended up with, there are some differences worth mentioning.

In this chapter, we look at how classes behave in TypeScript and JavaScript, the possi-
bilities we have to express ourselves, and the differences between the standard and
the original design. We look at keywords, types, and generics, and we train an eye to
spot what’s being added by TypeScript to JavaScript, and what JavaScript brings to the
table on its own.

1 C# and TypeScript are made by Microsoft, and Anders Hejlsberg has been heavily involved in both
programming languages.

303

11.1 Choosing the Right Visibility Modifier

Problem

There are two flavors in TypeScript for property visibility and access: one through
special keyword syntax—public, protected, private—and another one through
actual JavaScript syntax, when properties start with a hash character. Which one
should you choose?

Solution

Prefer JavaScript-native syntax as it has some implications at runtime that you don’t
want to miss. If you rely on a complex setup that involves variations of visibility mod-
ifiers, stay with the TypeScript ones. They won’t go away.

Discussion

TypeScript’s classes have been around for quite a while, and while they draw huge
inspiration from ECMAScript classes that followed a few years after, the TypeScript
team also decided to introduce features that were useful and popular in traditional
class-based object-oriented programming at the time.

One of those features is property visibility modifiers, also referred to as access modi-
fiers. Visibility modifiers are special keywords you can put in front of members—
properties and methods—to tell the compiler how they can be seen and accessed
from other parts of your software.

All visibility modifiers, as well as JavaScript private fields, work on
methods as well as properties.

The default visibility modifier is public, which can be written explicitly or just
omitted:

class Person {
public name; // modifier public is optional
constructor(name: string) {
this.name = name;
}
}

const myName = new Person("Stefan").name; // works

Another modifier is protected, limiting visibility to classes and subclasses:

304 | Chapter11: Classes

class Person {
protected name;
constructor(name: string) {
this.name = name;
}
getName() {
// access works
return this.name;
}
}

const myName = new Person("Stefan").name;

// 3

// Property 'name' is private and only accessible within
// class 'Person'.(2341)

class Teacher extends Person {
constructor(name: string) {
super(name);

}

getFullName() {
// access works
return ‘Professor ${this.name};
}
}

protected access can be overwritten in derived classes to be public instead.
protected access also prohibits accessing members from class references that are not
from the same subclass. So while this works:

class Player extends Person {
constructor(name: string) {
super(name);

}

pair(p: Player) {
// works
return ‘Pairing ${this.name} with ${p.name}";
}
}

using the base class or a different subclass won’t work:

class Player extends Person {
constructor(name: string) {
super(name);

}

pair(p: Person) {
return ‘Pairing ${this.name} with ${p.name}’;
// 8

// Property 'name' is protected and only accessible through an

11.1 Choosing the Right Visibility Modifier | 305

// instance of class 'Player'. This is an instance of
// class 'Person'.(2446)
}
}

The last visibility modifier is private, which allows access only from within the same
class:

class Person {
private name;
constructor(name: string) {
this.name = name;
}
}

const myName = new Person("Stefan").name;

// 4

// Property 'name' is protected and only accessible within
// class 'Person' and its subclasses. (2445)

class Teacher extends Person {
constructor(name: string) {
super(name);

}

getFullName() {
return ‘Professor ${this.name} ;
// A
// Property 'name' is private and only accessible
// within class 'Person'.(2341)
}
}

Visibility modifiers also can be used in constructors as a shortcut to define properties
and initialize them:

class Category {
constructor(
public title: string,
public id: number,
private reference: bigint
) {}
}

// transpiles to

class Category {
constructor(title, id, reference) {
this.title = title;
this.id = id;
this.reference = reference;
}
}

306 | Chapter11: Classes

With all the features described here, it should be noted that TypeScripts visibility
modifiers are compile-time annotations that get erased after the compilation step.
Often, entire property declarations get removed if they are not initialized via the class
description but in the constructor, as we saw in the last example.

They are also valid only during compile-time checks, meaning that a private prop-
erty in TypeScript will be fully accessible in JavaScript afterward; thus, you can bypass
the private access check by asserting your instances as any, or access them directly
once your code has been compiled. They are also enumerable, which means that their
names and values become visible when being serialized via JSON.stringify or
Object.getOwnPropertyNames. In short: the moment they leave the boundaries of the
type system they behave like regular JavaScript class members.

Next to visibility modifiers, it’s also possible to add readonly
modifiers to class properties.

Since limited access to properties is a feature that is reasonable not only within a type
system, ECMAScript has adopted a similar concept called private fields for regular
JavaScript classes.

Instead of a visibility modifier, private fields actually introduce new syntax in the
form of a pound sign or hash in front of the member’s name.

Introducing a new syntax for private fields has resulted in heated
debate within the community on the pleasance and aesthetics of
the pound sign. Some participants even called them abominable. If
this addition irritates you as well, it might help to think of the
pound sign as a little fence that you put in front of the things you
don’t want everybody to have access to. Suddenly, the pound sign
syntax becomes a lot more pleasant.

The pound sign becomes a part of the property’s name, meaning that it also needs to
be accessed with the sign in front of it:

class Person {
#name: string;

constructor(name: string) {
this.#name = name;

}

// we can use getters!
get name(): string {

11.1 Choosing the Right Visibility Modifier | 307

return this.#name.toUpperCase();
}
}

const me = new Person("Stefan");

console.log(me.#name);

// A

// Property '#name' is not accessible outside

// class 'Person' because it has a private identifier.(18013)

console.log(me.name); // works

Private fields are JavaScript through and through; there is nothing the TypeScript
compiler will remove, and they retain their functionality—hiding information inside
the class—even after the compilation step. The transpiled result, with the latest
ECMAScript version as a target, looks almost identical to the TypeScript version, just
without type annotations:

class Person {
#name;

constructor(name) {
this.#name = name;

}

get name() {
return this.#name.toUpperCase();

}
}
Private fields can’t be accessed in runtime code, and they are also not enumerable,
meaning that no information of their contents will be leaked in any way.

The problem is now that both private visibility modifiers and private fields exist in
TypeScript. Visibility modifiers have been there forever and have more variety com-
bined with protected members. Private fields, on the other hand, are as close to Java-
Script as they can get, and with TypeScript’s goal to be a “JavaScript syntax for types,’
they pretty much hit the mark when it comes to the long-term plans of the language.
So which one should you choose?

First, no matter which modifier you choose, they both fulfill their goal of telling you
at compile time when there’s property access where it shouldn't be. This is the first
feedback you get informing you that something might be wrong, and this is what
were aiming for when we use TypeScript. So if you need to hide information from the
outside, every tool does its job.

But when you look further, it again depends on your setting. If you already set up a
project with elaborate visibility rules, you might not be able to migrate them to the
native JavaScript version immediately. Also, the lack of protected visibility in

308 | Chapter11: Classes

JavaScript might be problematic for your goals. There is no need to change something
if what you have already works.

If you run into problems with the runtime visibility showing details you want to hide:
if you depend on others using your code as a library and they should not be able to
access all the internal information, then private fields are the way to go. They are
well-supported in browsers and other language runtimes, and TypeScript comes with
polyfills for older platforms.

11.2 Explicitly Defining Method Overrides

Problem

In your class hierarchy, you extend from base classes and override specific methods in
subclasses. When you refactor the base class, you might end up carrying around old,
unused methods because nothing tells you that the base class has changed.

Solution

Switch on the noImplicitOverride flag and use the override keyword to signal
overrides.

Discussion

You want to draw shapes on a canvas. Your software is able to take a collection of
points with x and y coordinates, and based on a specific render function, it will draw
either polygons, rectangles, or other elements on an HTML canvas.

You decide to go for a class hierarchy, where the base class Shape takes an arbitrary
list of Point elements and draws lines between them. This class takes care of house-
keeping through setters and getters but also implements the render function itself:

type Point = {
X: number;
y: number;

b

class Shape {
points: Point[];
fillStyle: string
lineWidth: number

"white";
10;

constructor(points: Point[]) {
this.points = points;

}

set fill(style: string) {

11.2 Explicitly Defining Method Overrides | 309

this.fillStyle = style;
}

set width(width: number) {
this.lineWidth = width;
}

render(ctx: CanvasRenderingContext2D) {
if (this.points.length) {
ctx.fillStyle = this.fillStyle;
ctx.lineWidth = this.lineWidth;
ctx.beginPath();
let point = this.points[0];
ctx.moveTo(point.x, point.y);
for (let 1 = 1; 1 < this.points.length; i++) {
point = this.points[i];
ctx.lineTo(point.x, point.y);
}
ctx.closePath();
ctx.stroke();
}
}
}

To use it, create a 2D context from an HTML canvas element, create a new instance of
Shape, and pass the context to the render function:

const canvas = document.getElementsByTagName("canvas")[0];
const ctx = canvas?.getContext("2d");

const shape = new Shape([
{ x: 50, y: 140 },
{ x: 150, y: 60 },
{ x: 250, y: 140 },
D;
shape.fill = "red";
shape.width = 20;

shape.render(ctx);

Now we want to use the established base class and derive subclasses for specific
shapes, like rectangles. We keep the housekeeping methods and specifically override
the constructor, as well as the render method:

class Rectangle extends Shape {
constructor(points: Point[]) {

if (points.length !== 2) {

throw Error(Wrong number of points, expected 2, got ${points.length}’);
}
super(points);

}

render(ctx: CanvasRenderingContext2D) {

310 | Chapter 11: Classes

ctx.fillStyle = this.fillStyle;
ctx.lineWidth = this.lineWidth;
let a = this.points[0];
let b = this.points[1];
ctx.strokeRect(a.x, a.y, b.x - a.x, b.y - a.y);
}
}

The usage of Rectangle is pretty much the same:

const rectangle = new Rectangle([
{x: 130, y: 190},
{x: 170, y: 250}

IDH

rectangle.render(ctx);

As our software evolves, we inevitably change classes, methods, and functions, and
somebody in our codebase will rename the render method to draw:

class Shape {
// see above

draw(ctx: CanvasRenderingContext2D) {
if (this.points.length) {
ctx.fillStyle = this.fillStyle;
ctx.lineWidth = this.lineWidth;
ctx.beginPath();
let point = this.points[0];
ctx.moveTo(point.x, point.y);
for (let 1 = 1; 1 < this.points.length; i++) {
point = this.points[i];
ctx.lineTo(point.x, point.y);
}
ctx.closePath();
ctx.stroke();
}
}
}

This is not a problem per se, but if we are not using the render method of Rectangle
anywhere in our code, perhaps because we publish this software as a library and

didn’t use it in our tests, nothing tells us that the render method in Rectangle still
exists, with no connection to the original class whatsoever.

This is why TypeScript allows you to annotate methods you want to override with the
override keyword. This is a syntax extension from TypeScript and will be removed
the moment TypeScript transpiles your code to JavaScript.

11.2 Explicitly Defining Method Overrides | 311

When a method is marked with the override keyword, TypeScript will make sure
that a method of the same name and signature exists in the base class. If you rename
render to draw, TypeScript will tell you that the method render wasn’t declared in the
base class Shape:

class Rectangle extends Shape {
// see above

override render(ctx: CanvasRenderingContext2D) {
// 8
// This member cannot have an 'override' modifier because it
// 1s not declared in the base class 'Shape'.(4113)
ctx.fillStyle = this.fillStyle;
ctx.lineWidth = this.lineWidth;
let a = this.points[0];
let b = this.points[1];
ctx.strokeRect(a.x, a.y, b.x - a.x, b.y - a.y);
}
}

This error is a great safeguard to ensure that renames and refactors don’t break your
existing contracts.

Even though a constructor could be seen as an overridden
method, its semantics are different and handled through other
rules (for example, making sure that you call super when instanti-
ating a subclass).

By switching on the noImplicitOverrides flag in your fsconfig.json, you can further
ensure that you need to mark functions with the override keyword. Otherwise,
TypeScript will throw another error:

class Rectangle extends Shape {
// see above

draw(ctx: CanvasRenderingContext2D) {
/7
// This member must have an 'override' modifier because it
// overrides a member in the base class 'Shape'.(4114)
ctx.fillStyle = this.fillStyle;
ctx.lineWidth = this.lineWidth;
let a = this.points[0];
let b = this.points[1];
ctx.strokeRect(a.x, a.y, b.x - a.x, b.y - a.y);
}
}

312 | Chapter 11: Classes

Techniques like implementing interfaces that define the basic shape
of a class already provide a solid baseline to prevent you from run-
ning into problems like this. So, it’s good to see the override key-
word and noImplictOverrides as additional safeguards when
creating class hierarchies.

When your software needs to rely on class hierarchies to work, using override
together with noImplicitAny is a good way to ensure that you don’t forget anything.
Class hierarchies, like any hierarchies, tend to grow complicated over time, so take
any safeguard you can get.

11.3 Describing Constructors and Prototypes

Problem

You want to instantiate subclasses of a specific abstract class dynamically, but Type-
Script won't allow you to instantiate abstract classes.

Solution

Describe your classes with the constructor interface pattern.

Discussion

If you use class hierarchies with TypeScript, the structural features of TypeScript
sometimes get in your way. Look at the following class hierarchy for instance, where
we want to filter a set of elements based on different rules:

abstract class FilterItem {
constructor(private property: string) {};
someFunction() { /* ... */ };
abstract filter(): void;

}

class AFilter extends FilterItem {
filter() { /* ... */ }
}

class BFilter extends FilterItem {
filter() { /* ... */ }
}

11.3 Describing Constructors and Prototypes | 313

The FilterItem abstract class needs to be implemented by other classes. In this
example AFilter and BFilter, both concretizations of FilterItem, serve as a base-
line for filters:

const some: FilterItem = new AFilter('afilter'); // ok

Things get interesting when we are not working with instances right off the bat. Lets
say we want to instantiate new filters based on a token we get from an AJAX call. To
make it easier for us to select the filter, we store all possible filters in a map:

declare const filterMap: Map<string, typeof FilterItem>;

filterMap.set('number', AFilter);
filterMap.set('stuff', BFilter);

The map’s generics are set to a string (for the token from the backend) and every-
thing that complements the type signature of FilterItem. We use the typeof key-
word here to be able to add classes to the map, not objects. We want to instantiate
them afterward, after all.

So far everything works as you would expect. The problem occurs when you want to
fetch a class from the map and create a new object with it:

let obj: FilterItem;
// get the constructor
const ctor = filterMap.get('number');

if(typeof ctor !== 'undefined') {
obj = new ctor();
// 4
// cannot create an object of an abstract class

}
This is a problem! TypeScript only knows at this point that we get a FilterItem back
and we can’t instantiate FilterItem. Abstract classes mix type information (type
namespace) with an actual implementation (value namespace). As a first step, let’s just
look at the types: what are we expecting to get back from filterMap? Let’s create an
interface (or type alias) that defines how the shape of FilterItem should look:

interface IFilter {
new(property: string): IFilter;
someFunction(): void;
filter(): void;

}

declare const filterMap: Map<string, IFilter>;

Note the new keyword. This is a way for TypeScript to define the type signature of a
constructor function. If we substitute the abstract class for an actual interface, lots of
errors start appearing. No matter where you put the implements IFilter command,
no implementation seems to satisfy our contract:

314 | Chapter 11: Classes

abstract class FilterItem implements IFilter { /* ... */ }

/"

// Class 'FilterItem' incorrectly implements interface 'IFilter’.
// Type 'FilterItem' provides no match for the signature

// 'new (property: string): IFilter'.

filterMap.set('number', AFilter);

// 8

// Argument of type 'typeof AFilter' is not assignable

// to parameter of type 'IFilter'. Type 'typeof AFilter' is missing

// the following properties from type 'IFilter': someFunction, filter
What’s happening here? It seems like neither the implementation nor the class itself
can get all the properties and functions we've defined in our interface declaration.

Why?

JavaScript classes are special; they have not just one type we could easily define but
two: the type of the static side and the type of the instance side. It might be clearer if
we transpile our class to what it was before ES6, a constructor function and a
prototype:

function AFilter(property) { // this is part of the static side
this.property = property; // this is part of the instance side

}

// a function of the instance side
AFilter.prototype.filter = function() {/* ... */}

// not part of our example, but on the static side

Afilter.something = function () { /* ... */ }
One type to create the object. One type for the object itself. So let’s split it up and cre-
ate two type declarations for it:

interface FilterConstructor {
new (property: string): IFilter;

}

interface IFilter {
someFunction(): void;
filter(): void;
}
The first type, FilterConstructor, is the constructor interface. Here are all static
properties and the constructor function itself. The constructor function returns an
instance: IFilter. IFilter contains type information of the instance side. All the
functions we declare.

11.3 Describing Constructors and Prototypes | 315

By splitting this up, our subsequent typings also become a lot clearer:

declare const filterMap: Map<string, FilterConstructor>; /* 1 */

filterMap.set('number', AFilter);
filterMap.set('stuff', BFilter);

let obj: IFilter; /* 2 */
const ctor = filterMap.get('number');
if(typeof ctor !== 'undefined') {

obj = new ctor('a');

}
1. We add instances of type FilterConstructor to our map. This means we only
can add classes that produce the desired objects.

2. What we want in the end is an instance of IFilter. This is what the constructor
function returns when being called with new.

Our code compiles again, and we get all the autocompletion and tooling we desire.
Even better, we are not able to add abstract classes to the map because they don't pro-
duce a valid instance:

filterMap.set('notworking', FilterItem);

// 4

// Cannot assign an abstract constructor type to a
// non-abstract constructor type.

The constructor interface pattern is used throughout TypeScript and the standard
library. To get an idea, look at the ObjectContructor interface from lib.es5.d.ts.

11.4 Using Generics in Classes

Problem

TypeScript generics are designed to be inferred a lot, but in classes, this doesn’t always
work.

Solution

Explicitly annotate generics at instantiation if you can’t infer them from your parame-
ters; otherwise, they default to unknown and accept a broad range of values. Use
generic constraints and default parameters for extra safety.

Discussion

Classes also allow for generics. Instead of only being able to add generic type parame-
ters to functions, we can also add generic type parameters to classes. While generic

316 | Chapter11: Classes

type parameters at class methods are valid only in function scope, generic type
parameters for classes are valid for the entirety of a class.

Let’s create a collection, a simple wrapper around an array with a restricted set of con-
venience functions. We can add T to the class definition of Collection and reuse this
type parameter throughout the entire class:

class Collection<T> {
items: T[];
constructor() {
this.items = [];

}

add(item: T) {
this.items.push(item);

}

contains(item: T): boolean {
return this.items.includes(item);

}
}

With that, we are able to explicitly substitute T with a generic type annotation, for
example, allowing a collection of only numbers or only strings:

const numbers = new Collection<number>();
numbers.add(1);
numbers.add(2);

const strings = new Collection<string>();

strings.add("Hello");

strings.add("World");
We as developers are not required to explicitly annotate generic type parameters.
TypeScript usually tries to infer generic types from usage. If we forget to add a generic
type parameter, TypeScript falls back to unknown, allowing us to add everything:

const unknowns = new Collection();
unknowns.add(1);
unknowns.add("World");

Let’s stay at this point for a second. TypeScript is very honest with us. The moment
we construct a new instance of Collection, we don't know what the type of our items
is. unknown is the most accurate depiction of the collection’s state. And it comes with
all the downsides: we can add anything, and we need to do type-checks every time we
retrieve a value. While TypeScript does the only thing possible at this point, we might
want to do better. A concrete type for T is mandatory for Collection to properly
work.

Let’s see if we can rely on inference. TypeScript’s inference on classes works just like it
does on functions. If there is a parameter of a certain type, TypeScript will take this

11.4 Using Genericsin Classes | 317

type and substitute the generic type parameter. Classes are designed to keep state, and
state changes throughout their use. The state also defines our generic type parameter
T. To correctly infer T, we need to require a parameter at construction, maybe an ini-
tial value:

class Collection<T> {
items: T[];
constructor(initial: T) {
this.items = [initial];

}

add(item: T) {
this.items.push(item);

}

contains(item: T): boolean {
return this.items.includes(item);
}
}

// T is number!
const numbersInf = new Collection(0);
numbersInf.add(1);

This works, but it leaves a lot to be desired for our API design. What if we don’t have
initial values? While other classes might have parameters that can be used for infer-
ence, this might not make a lot of sense for a collection of various items.

For Collecttion, it is absolutely essential to provide a type through annotation. The
only way left is to ensure we don’t forget to add an annotation. To achieve this, we can
make sure of TypeScript’s generic default parameters and the bottom type never:

class Collection<T = never> {
items: T[];
constructor() {
this.items = [];

}

add(item: T) {
this.items.push(item);

}

contains(item: T): boolean {
return this.items.includes(item);
}
}
We set the generic type parameter T to default to never, which adds some very inter-
esting behavior to our class. T still can be explicitly substituted with every type
through annotation, working just as before, but the moment we forget an annotation

318 | Chapter11: Classes

the type is not unknown, it's never. Meaning that no value is compatible with our col-
lection, resulting in many errors the moment we try to add something:

const nevers = new Collection();
nevers.add(1);

// "

// Argument of type 'number' is not assignable
// to parameter of type 'never'.(2345)
nevers.add("World");

// "

// Argument of type 'string' is not assignable
// to parameter of type 'never'.(2345)

This fallback makes the use of our generic classes a lot safer.

11.5 Deciding When to Use Classes or Namespaces

Problem

TypeScript offers a lot of syntax for object-oriented concepts like namespaces, or
static and abstract classes. Those features don't exist in JavaScript, so what should you

do?

Solution

Stick with namespace declarations for additional type declarations, avoid abstract
classes when possible, and prefer ECMAScript modules instead of static classes.

Discussion

One thing we see from people who worked a lot with traditional object-oriented pro-
gramming languages like Java or C# is their urge to wrap everything inside a class. In
Java, you don’'t have any other options as classes are the only way to structure code. In
JavaScript (and thus TypeScript), plenty of other possibilities do what you want
without any extra steps. One of those is static classes or classes with static methods:

// Environment.ts

export default class Environment {
private static variablelList: string[] = []

static variables(): string[] { /* ... */ }
static setVariable(key: string, value: any): void { /* ... */}
static getValue(key: string): unknown { /* ... */}

}

// Usage in another file
import * as Environment from "./Environment";

console.log(Environment.variables());

11.5 Deciding When to Use Classes or Namespaces | 319

While this works and is even—sans type annotations—valid JavaScript, it's way too
much ceremony for something that can easily be just plain, boring functions:

// Environment.ts
const variablelList: string = []

export function variables(): string[] { /* ... */ }
export function setVariable(key: string, value: any): void { /* ... */}
export function getValue(key: string): unknown { /* ... */ }

// Usage in another file
import * as Environment from "./Environment";

console.log(Environment.variables());

The interface for your users is exactly the same. You can access module scope vari-
ables just the way you would access static properties in a class, but you have them
module scoped automatically. You decide what to export and what to make visible,
not some TypeScript field modifiers. Also, you don't end up creating an Environment
instance that doesn’t do anything.

Even the implementation becomes easier. Check out the class version of
variables():

export default class Environment {
private static variablelList: string[] = [];
static variables(): string[] {
return this.variablelist;
}
}

as opposed to the module version:

const variablelList: string = []

export function variables(): string[] {
return variablelList;

}

No this means less to think about. As an added benefit, your bundlers have an easier
time doing tree shaking, so you end up with only the things you actually use:

// Only the variables function and variablelist
// end up in the bundle
import { variables } from

./Environment";

console.log(variables());

That’s why a proper module is always preferred to a class with static fields and meth-
ods. That’s just an added boilerplate with no extra benefit.

As with static classes, people with a Java or C# background cling to namespaces, a
feature that TypeScript introduced to organize code long before ECMAScript

320 | Chapter11: Classes

modules were standardized. They allowed you to split things across files, merging
them again with reference markers:

// file users/models.ts
namespace Users {
export interface Person {
name: string;
age: number;
}
}

// file users/controller.ts

/// <reference path="./models.ts" />
namespace Users {
export function updateUser(p: Person) {
// do the rest
}
}
Back then, TypeScript even had a bundling feature. It should still work. But as noted,
this was before ECMAScript introduced modules. Now with modules, we have a way
to organize and structure code that is compatible with the rest of the JavaScript eco-
system. And that’s a plus.

So why do we need namespaces? Namespaces are still valid if you want to extend defi-
nitions from a third-party dependency, for example, that lives inside node modules.
Say you want to extend the global JSX namespace and make sure img elements feature
alt texts:

declare namespace JSX {
interface IntrinsicElements {
"img": HTMLAttributes & {
alt: string;
src: string;
loading?: 'lazy' | 'eager' | 'auto';
}
}
}

Or you want to write elaborate type definitions in ambient modules. But other than
that? There is not much use for it anymore.

Namespaces wrap your definitions into an object, writing something like this:

export namespace Users {
type User = {
name: string;
age: number;

};

export function createUser(name: string, age: number): User {

11.5 Deciding When to Use Classes or Namespaces | 321

return { name, age };
}
}

This emits something very elaborate:

export var Users;
(function (Users) {
function createUser(name, age) {
return {
name, age
b
}

Users.createUser = createUser;

P(Users || (Users = {}));

This not only adds cruft but also keeps your bundlers from tree shaking properly!
Using them also becomes a bit wordier:

import * as Users from "./users";

Users.Users.createUser("Stefan", "39");

Dropping them makes things a lot easier. Stick to what JavaScript offers. Not using
namespaces outside of declaration files makes your code clear, simple, and tidy.

Last but not least, there are abstract classes. Abstract classes are a way to structure a
more complex class hierarchy where you predefine a behavior but leave the actual
implementation of some features to classes that extend from your abstract class:

abstract class Lifeform {
age: number;
constructor(age: number) {
this.age = age;

}

abstract move(): string;

}

class Human extends Lifeform {
move() {
return "Walking, mostly...";
}
}

It’s for all subclasses of Lifeform to implement move. This is a concept that exists in
basically every class-based programming language. The problem is that JavaScript
isn’t traditionally class based. For example, an abstract class like the following gener-
ates a valid JavaScript class but is not allowed to be instantiated in TypeScript:

abstract class Lifeform {
age: number;
constructor(age: number) {

322 | (Chapter11: Classes

this.age = age;
}
}

const lifeform = new Lifeform(20);

// 4

// Cannot create an instance of an abstract class.(2511)
This can lead to some unwanted situations if you're writing regular JavaScript but rely
on TypeScript to provide the information in the form of implicit documentation,
such as if a function definition looks like this:

declare function movelLifeform(lifeform: Lifeform);

» You or your users might read this as an invitation to pass a Lifeform object to
moveLifeform. Internally, it calls 1ifeform.move().

o Lifeform can be instantiated in JavaScript, as it is a valid class.

o The method move does not exist in Lifeform, thus breaking your application!

This is due to a false sense of security. What you actually want is to put some pre-
defined implementation in the prototype chain and have a contract that tells you
what to expect:

interface Lifeform {
move(): string;

}

class BasicLifeForm {
age: number;
constructor(age: number) {
this.age = age;
}
}

class Human extends BasicLifeForm implements Lifeform {
move() {
return "Walking";
}
}

The moment you look up Lifeform, you can see the interface and everything it
expects, but you seldom run into a situation where you instantiate the wrong class by
accident.

With everything said about when not to use classes and namespaces, when should
you use them? Every time you need multiple instances of the same object, where the
internal state is paramount to the functionality of the object.

11.5 Deciding When to Use Classes or Namespaces | 323

11.6 Writing Static Classes

Problem

Class-based object-oriented programming taught you to use static classes for certain
features, but you wonder how those principles are supported in TypeScript.

Solution

Traditional static classes don’t exist in TypeScript, but TypeScript has static modifiers
for class members for several purposes.

Discussion

Static classes are classes that can’'t be instantiated into concrete objects. Their purpose
is to contain methods and other members that exist once and are the same when
being accessed from various points in your code. Static classes are necessary for pro-
gramming languages that have only classes as their means of abstraction, like Java or
C#. In JavaScript, and subsequently TypeScript, there are many more ways to express
ourselves.

In TypeScript, we can’t declare classes to be static, but we can define static mem-
bers on classes. The behavior is what youd expect: the method or property is not part
of an object but can be accessed from the class itself.

As we saw in Recipe 11.5, classes with only static members are an antipattern in Type-
Script. Functions exist; you can keep state per module. A combination of exported
functions and module-scoped entries is usually the way to go:

// Anti-Pattern
export default class Environment {
private static variablelList: string[] = []

static variables(): string[] { /* ... */ }
static setVariable(key: string, value: any): void { /* ... */ }
static getValue(key: string): unknown { /* ... */}

}

// Better: Module-scoped functions and variables
const variablelList: string = []

export function variables(): string[] { /* ... */ }
export function setVariable(key: string, value: any): void { /* ... */ }
export function getValue(key: string): unknown { /* ... */}

But there is still a use for static parts of a class. We established in Recipe 11.3 that a
class consists of static members and dynamic members.

324 | Chapter11: Classes

The constructor is part of the static features of a class, and properties and methods

are part of the dynamic features of a class. With the static keyword we can add to
those static features.

Let’s think of a class called Point that describes a point in a two-dimensional space. It
has x and y coordinates, and we create a method that calculates the distance between
this point and another one:

class Point {
X: number;
y: number;

constructor(x: number, y: number) {
this.x = x;
this.y = y;

}

distanceTo(point: Point): number {
const dx = this.x - point.x;
const dy = this.y - point.y;
return Math.sqrt(dx * dx + dy * dy);
}
}

const a = new Point(0, 0);
const b = new Point(1l, 5);

const distance = a.distanceTo(b);

This is good behavior, but the API might feel a bit weird if we choose a starting point
and end point, especially since the distance is the same no matter which one is first. A
static method on Point gets rid of the order, and we have a nice distance method
that takes two arguments:

class Point {
X: number;
y: number;

constructor(x: number, y: number) {
this.x = x;
this.y = y;

}

distanceTo(point: Point): number {
const dx = this.x - point.x;
const dy = this.y - point.y;
return Math.sqrt(dx * dx + dy * dy);
}

static distance(pl: Point, p2: Point): number {
return pl.distanceTo(p2);

11.6 Writing Static Classes | 325

}
}

const a = new Point(0, 0);
const b = new Point(1l, 5);

const distance = Point.distance(a, b);

A similar version using the constructor function/prototype pattern that was used pre-
ECMAScript classes in JavaScript would look like this:

function Point(x, y) {
this.x = x;
this.y = y;

}

Point.prototype.distanceTo = function(p) {
const dx = this.x - p.x;
const dy = this.y - p.y;
return Math.sqrt(dx * dx + dy * dy);

}

Point.distance = function(a, b) {
return a.distanceTo(b);

}

As in Recipe 11.3, we can easily see which parts are static and which parts are
dynamic. Everything that is in the prototype belongs to the dynamic parts. Everything
else is static.

But classes are not only syntactic sugar to the constructor function/prototype pattern.
With the inclusion of private fields, which are absent in regular objects, we can do
something that is actually related to classes and their instances.

If we want to, for example, hide the distanceTo method because it might be confus-
ing and wed prefer our users to use the static method instead, a simple private modi-
fier in front of distanceTo makes it inaccessible from the outside but still keeps it
accessible from within static members:

class Point {
X: number;
y: number;

constructor(x: number, y: number) {
this.x = x;
this.y = y;

}

#distanceTo(point: Point): number {
const dx = this.x - point.x;
const dy = this.y - point.y;
return Math.sqrt(dx * dx + dy * dy);

326 | Chapter11: Classes

}

static distance(pl: Point, p2: Point): number {
return pl.#distanceTo(p2);
}
}

The visibility also goes in the other direction. Let’s say you have a class that represents
a certain Task in your system, and you want to limit the number of existing tasks.

We use a static private field called nextId that we start at 0, and we increase this pri-
vate field with every constructed instance Task. If we reach 100, we throw an error:

class Task {
static #nextId = 0;
#id: number;

constructor() {
if (Task.#nextId > 99) {
throw "Max number of tasks reached";
}
this.#id = Task.#nextId++;
}
}

If we want to limit the number of instances by a dynamic value from a backend, we
can use a static instantiation block that fetches this data and updates the static pri-
vate fields accordingly:

type Config = {
instances: number;

b

class Task {
static #nextId = 0;
static #maxInstances: number;
#id: number;

static {
fetch("/available-slots")
.then((res) => res.json())
.then((result: Config) => {
Task.#maxInstances = result.instances;

s
}

constructor() {
if (Task.#nextId > Task.#maxInstances) {
throw "Max number of tasks reached";
}
this.#1d = Task.#nextId++;
}
}

11.6 Writing Static Classes | 327

Other than fields in instances, TypeScript at the time of writing does not check if
static fields are instantiated. If we, for example, load the number of available slots
from a backend asynchronously, we have a certain time frame during which we can
construct instances but have no check if we reached our maximum.

So, even if there is no construct of a static class in TypeScript and static-only classes
are considered an antipattern, there might be a good use for static members in many
situations.

11.7 Working with Strict Property Initialization

Problem

Classes keep state, but nothing tells you if this state is being initialized.

Solution

Activate strict property initialization by setting strictPropertyInitialization to
true in your tsconfig.

Discussion

Classes can be seen as code templates for creating objects. You define properties and
methods, and only through instantiation do actual values get assigned. TypeScript
classes take basic JavaScript classes and enhance them with more syntax to define
types. For example, TypeScript allows you to define the properties of the instance in a
type- or interface-like manner:

type State = "active" | "inactive";

class Account {
id: number;
userName: string;
state: State;
orders: number[];

}
However, this notation only defines the shape: it doesn't set any concrete values, yet.

When being transpiled to regular JavaScript, all those properties are erased; they exist
only in the type namespace.

This notation is arguably very readable and gives the developer a good idea of what
properties to expect. But there is no guarantee that these properties actually exist. If
we don't initialize them, everything is either missing or undefined.

328 | Chapter11: Classes

TypeScript has safeguards for this. With the strictPropertyInitialization flag set
to true in your tsconfig.json, TypeScript will make sure that all properties youd
expect are actually initialized when creating a new object from your class.

strictPropertyInitialization is part of TypeScripts strict
mode. If you set strict to true in your tsconfig—which you
should—you also activate strict property initialization.

Once this is activated, TypeScript will greet you with many red squiggly lines:

class Account {
id: number;

// ” Property 'id' has no initializer and is

// not definitely assigned in the constructor.(2564)
userName: string;

// » Property 'userName' has no initializer and is

// not definitely assigned in the constructor.(2564)
state: State;

// ” Property 'state' has no initializer and 1is

// not definitely assigned in the constructor.(2564)
orders: number[];

// » Property 'orders' has no initializer and 1is

// not definitely assigned in the constructor.(2564)

}

Beautiful! Now it’s up to us to make sure that every property will receive a value.

There are multiple ways to do this. If we look at the Account example, we can define
some constraints or rules, if our application’s domain allows us to do so:

o id and userName need to be set; they control the communication to our backend
and are necessary for display.

o state also needs to be set, but it has a default value of active. Usually, accounts
in our software are active, unless they are set intentionally to inactive.

o orders is an array that contains order IDs, but what if we haven’t ordered any-
thing? An empty array works just as well, or maybe we set orders to not be
defined yet.

Given those constraints, we already can rule out two errors. We set state to be
active by default, and we make orders optional. There’s also the possibility to set
orders to be of type number[] | undefined, which is the same thing as optional:

11.7 Working with Strict Property Initialization | 329

class Account {
id: number; // still errors
userName: string; // still errors
state: State = "active"; // ok
orders?: number[]; // ok

}

The other two properties still throw errors. By adding a constructor and initializing
these properties, we rule out the other errors as well:

class Account {
id: number;
userName: string;
state: State = "active";
orders?: number[];

constructor(userName: string, id: number) {
this.userName = userName;
this.id = id;
}
}

That’s it, a proper TypeScript class! TypeScript also allows for a constructor short-
hand, where you can turn constructor parameters into class properties with the same
name and value by adding a visibility modifier like public, private, or protected.
It's a convenient feature that gets rid of a lot of boilerplate code. It's important that
you don’t define the same property in the class shape:

class Account {
state: State = "active";
orders?: number[];

constructor(public userName: string, public id: number) {}

}

If you look at the class right now, you see that we rely only on TypeScript features.
The transpiled class, the JavaScript equivalent, looks a lot different:

class Account {
constructor(userName, id) {
this.userName = userName;
this.id = id;
this.state = "active";
}
}

Everything is in the constructor, because the constructor defines an instance.

330 | Chapter11: Classes

While TypeScript shortcuts and syntax for classes seem nice, be
careful how much you buy into them. TypeScript switched gears in
“ recent years to be mostly a syntax extension for types on top of reg-
\ ular JavaScript, but their class features that have existed for many
years now are still available and add different semantics to your
code than youd expect. If you lean toward your code being “Java-
Script with types,” be careful when you venture into the depths of
TypeScript class features.

Strict property initialization also understands complex scenarios, like setting the
property within a function that is being called via the constructor. It also under-
stands that an async class might leave your class with a potentially uninitialized state.

Let’s say you just want to initialize your class via an id property and fetch the user
Name from a backend. If you do the async call within your constructor and set user
Name after the fetch call is complete, you still get strict property initialization errors:

type User = {
id: number;
userName: string;

b

class Account {
userName: string;
// ”~ Property 'userName' has no initializer and is
// not definitely assigned in the constructor.(2564)
state: State = "active";
orders?: number[];

constructor(public id: number) {
fetch(' /api/getName?id=${id}")
.then((res) => res.json())
.then((data: User) => (this.userName = data.userName ?? "not-found"));
}
}

And it’s true! Nothing tells you that the fetch call will be successful, and even if you
catch errors and make sure that the property will be initialized with a fallback value,

there is a certain amount of time when your object has an uninitialized userName
state.

You can do a few things to get around this. One nice pattern is having a static factory
function that works asynchronously, where you get the data first and then call a con-
structor that expects both properties:

class Account {

state: State = "active";
orders?: number[];

11.7 Working with Strict Property Initialization | 331

constructor(public id: number, public userName: string) {}

static async create(id: number) {
const user: User = await fetch(/api/getName?id=${id}).then((res) =>
res.json()
);
return new Account(id, user.userName);
}
}

This allows both objects to be instantiated in a non-async context if you have access

to both properties, or within an async context if you have only id available. We switch
responsibilities and remove async from the constructor entirely.

Another technique is to simply ignore the uninitialized state. What if the state of user
Name is totally irrelevant to your application, and you want to access it only when
needed? Use the definite assignment assertion (an exclamation mark) to tell Type-
Script you will treat this property as initialized:

class Account {
userName!: string;
state: State = "active";
orders?: number[];

constructor(public id: number) {
fetch('/api/getName?id=${id}")
.then((res) => res.json())
.then((data: User) => (this.userName = data.userName));
}
}

The responsibility is now in your hands, and with the exclamation mark you have
TypeScript-specific syntax you can qualify as unsafe operation, runtime errors
included.

11.8 Working with this Types in Classes

Problem

You extend from base classes to reuse functionality, and your methods have signa-
tures that refer to an instance of the same class. You want to make sure that no other
subclasses are getting mixed in your interfaces, but you don’t want to override meth-
ods just to change the type.

Solution

Use this as type instead of the actual class type.

332 | Chapter11: Classes

Discussion

In this example, we want to model a bulletin board software’s different user roles
using classes. We start with a general User class that is identified by its user ID and
has the ability to open threads:

class User {
#id: number;
static #nextThreadId: number;

constructor(id: number) {
this.#id = id;
}

equals(user: User): boolean {
return this.#id === user.#id;

}

async openThread(title: string, content: string): Promise<number> {
const threadId = User.#nextThreadId++;
await fetch("/createThread", {
method: "POST",
body: JSON.stringify({
content,
title,
threadlId,
b,
b;

return threadld;
}
}

This class also contains an equals method. Somewhere in our codebase, we need to
make sure that two references to users are the same, and since we identify users by
their ID, we can easily compare numbers.

User is the base class of all users, so if we add roles with more privileges, we can easily
inherit from the base User class. For example, Admin has the ability to close threads,
and it stores a set of other privileges that we might use in other methods.

There is much debate in the programming community if inheri-
tance is a technique better to ignore since its benefits hardly out-
weigh its pitfalls. Nevertheless, some parts of JavaScript rely on
inheritance, such as Web Components.

Since we inherit from User, we don’t need to write another openThread method, and
we can reuse the same equals method since all administrators are also users:

11.8 Working with this Types in Classes | 333

class Admin extends User {
#privileges: string[];
constructor(id: number, privileges: string[] = []) {
super(id);
this.#privileges = privileges;

}

async closeThread(threadId: number) {
await fetch("/closeThread", {
method: "POST",
body: "" + threadId,
b
}
}

After setting up our classes, we can create new objects of type User and Admin by
instantiating the right classes. We can also call the equals method to compare if two
users might be the same:

const user = new User(1);
const admin = new Admin(2);

console.log(user.equals(admin));

console.log(admin.equals(user));
One thing is bothersome, though: the direction of comparison. Of course, comparing
two numbers is commutative; it shouldn’t matter if we compare a user to an admin,
but if we think about the surrounding classes and subtypes, there is some room for
improvement:

o It's OK to check if a user equals an admin, because it might gain privileges.

o It’s doubtful if we want an admin to equal a user, because the broader supertype
has less information.

o If we have another subclass of Moderator adjacent to Admin, we definitely don't
want to be able to compare them as they don’t share properties outside the base
class.

Still, in the way equals is developed now, all comparisons would work. We can work
around this by changing the type of what we want to compare. We annotated the
input parameter with User first, but in reality we want to compare with another
instance of the same type. There is a type for that, and it is called this:

class User {

Y/

equals(user: this): boolean {
return this.#id === user.#id;

}

}

334 | Chapter11: Classes

This is different from the erasable this parameter we know from functions, which we
learned about in Recipe 2.7, as the this parameter type allows us to set a concrete
type for the this global variable within the scope of a function. The this type is a
reference to the class where the method is located. And it changes depending on the
implementation. So if we annotate a user with this in User, it becomes an Admin in
the class that inherits from User, or a Moderator, and so on. With that, admin.equals
expects another Admin class to be compared to; otherwise, we get an error:

console.log(admin.equals(user));

// 4

// Argument of type 'User' is not assignable to parameter of type 'Admin’.
The other way around still works. Since Admin contains all properties from User (it’s a
subclass, after all), we can easily compare user.equals(admin).

this types can also be used as return types. Take a look at this OptionBuilder, which
implements the builder pattern:

class OptionBuilder<T = string | number | boolean> {
#options: Map<string, T> = new Map();
constructor() {}

add(name: string, value: T): OptionBuilder<T> {
this.#options.set(name, value);
return this;

}

has(name: string) {
return this.#options.has(name);

}

build() {
return Object.fromEntries(this.#options);
}
}

It's a soft wrapper around a Map, which allows us to set key/value pairs. It has a chain-
able interface, which means that after each add call, we get the current instance back,
allowing us to do add call after add call. Note that we annotated the return type with
OptionBuilder<T>:
const options = new OptionBuilder()
.add("deflate", true)

.add("compressionFactor", 10)
.build();

We are now creating a StringOptionBuilder that inherits from OptionBuilder and
sets the type of possible elements to string. We also add a safeAdd method with
checks if a certain value is already set before it is written, so we dont override
previous settings:

11.8 Working with this Types in Classes | 335

class StringOptionBuilder extends OptionBuilder<string> {
safeAdd(name: string, value: string) {
if (!this.has(name)) {
this.add(name, value);

}

return this;
}

}

When we start using the new builder, we see that we can’t reasonably use safeAdd if
we have an add as the first step:

const languages = new StringOptionBuilder()
.add("en", "English")
.safeAdd("de", "Deutsch")
/"
// Property 'safeAdd' does not exist on type 'OptionBuilder<string>'.(2339)
.safeAdd("de", "German")
.build();

TypeScript tells us that safeAdd does not exist on type OptionBuilder<string>.
Where has this function gone? The problem is that add has a very broad annotation.
Of course StringOptionBuilder is a subtype of OptionBuilder<string>, but with

the annotation, we lose the information on the narrower type. The solution? Use this
as return type:

class OptionBuilder<T = string | number | boolean> {

[/ ...

add(name: string, value: T): this {
this.#options.set(name, value);
return this;

}
}

The same effect happens as with the previous example. In OptionBuilder<T>, this
becomes OptionBuilder<T>. In StringBuilder, this becomes StringBuilder. If
you return this and leave out the return type annotation, this becomes the inferred
return type. So using this explicitly depends on your preference (see Recipe 2.1).

11.9 Writing Decorators

Problem

You want to log the execution of your methods for your telemetry, but adding manual
logs to every method is cumbersome.

336 | Chapter11: Classes

Solution

Write a class method decorator called log to annotate your methods.

Discussion

The decorator design pattern has been described in the renowned book Design Pat-
terns: Elements of Reusable Object-Oriented Software by Erich Gamma et al.
(Addison-Wesley) and describes a technique that can decorate classes and methods to
dynamically add or overwrite certain behavior.

What began as a naturally emerging design pattern in object-oriented programming
has become so popular that programming languages that feature object-oriented
aspects have added decorators as a language feature with a special syntax. You can see
forms of it in Java (called annotations) or C# (called attributes) and in JavaScript.

The ECMAScript proposal for decorators has been in proposal hell for quite a while
but reached stage 3 (ready for implementation) in 2022. And with all features reach-
ing stage 3, TypeScript is one of the first tools to pick up the new specification.

Decorators have existed in TypeScript for a long time under the
experimentalDecorators compiler flag. With TypeScript 5.0, the
native ECMAScript decorator proposal is fully implemented and

\ available without a flag. The actual ECMAScript implementation
differs fundamentally from the original design, and if you devel-
oped decorators prior to TypeScript 5.0, they won't work with the
new specification. Note that a switched-on experimentalDecora
tors flag turns off the ECMAScript native decorators. Also, in
regard to types, lib.decorators.d.ts contains all type information for
the ECMAScript native decorators, while types in lib.decorators.leg-
acy.d.ts contain old type information. Make sure your settings are
correct and that you dont consume types from the wrong
definition file.

Decorators allow us to decorate almost anything in a class. For this example, we want
to start with a method decorator that allows us to log the execution of method calls.

Decorators are described as functions with a value and a context, both depending on
the type of class element you want to decorate. Those decorator functions return
another function that will be executed before your own method (or before field initi-
alization, or before an accessor call, etc.).

A simple log decorator for methods could look like this:

function log(value: Function, context: ClassMethodDecoratorContext) {
return function (this: any, ...args: any[]) {
console.log(calling ${context.name.toString()});

11.9 Writing Decorators | 337

return value.call(this, ...args);
1
}

class Toggler {
#toggled = false;

@log
toggle() {
this.#toggled = !this.#toggled;
}
}

const toggler = new Toggler();
toggler.toggle();

The log function follows a ClassMethodDecorator type defined in the original deco-
rator proposal:

type ClassMethodDecorator = (value: Function, context: {
kind: "method";
name: string | symbol;
access: { get(): unknown };
static: boolean;
private: boolean;
addInitializer(initializer: () => void): void;
}) => Function | void;

Many decorator context types are available. lib.decorator.d.ts defines the following
decorators:

type ClassMemberDecoratorContext =
| ClassMethodDecoratorContext
| ClassGetterDecoratorContext
| ClassSetterDecoratorContext
| ClassFieldDecoratorContext
| ClassAccessorDecoratorContext

B

/'k*
* The decorator context types provided to any decorator.
*/
type DecoratorContext =
| ClassDecoratorContext
| ClassMemberDecoratorContext

B

You can read from the names exactly which part of a class they target.

Note that we haven't written detailed types yet. We resort to a lot of any, mostly
because the types can get very complex. If we want to add types for all parameters, we
need to resort to a lot of generics:

338 | (Chapter11: Classes

https://oreil.ly/76JuE
https://oreil.ly/76JuE

function log<This, Args extends any[], Return>(
value: (this: This, ...args: Args) => Return,
context: ClassMethodDecoratorContext
): (this: This, ...args: Args) => Return {
return function (this: This, ...args: Args) {
console.log(calling ${context.name.toString()});
return value.call(this, ...args);
b
}
The generic type parameters are necessary to describe the method we are passing in.
We want to catch the following types:

o This is a generic type parameter for the this parameter type (see Recipe 2.7). We
need to set this as decorators are run in the context of an object instance.

o Then we have the method’s arguments as Args. As we learned in Recipe 2.4, a
method or function’s arguments can be described as a tuple.

o Last, but not least, the Return type parameter. The method needs to return a
value of a certain type, and we want to specify this.

With all three, we are able to describe the input method as well as the output method
in the most generic way, for all classes. We can use generic constraints to make sure
that our decorator works only in certain cases, but for log, we want to be able to log
every method call.

At the time of writing, ECMAScript decorators in TypeScript are
fairly new. Types get better over time, so the type information you
get may already be much better.

We also want to log our class fields and their initial value before the constructor
method is called:

class Toggler {
@logField #toggled = false;

@log
toggle() {
this.#toggled = !this.#toggled;

}
}

For that, we create another decorator called logField, which works on a ClassField

DecoratorContext. The decorator proposal describes the decorator for class fields as
follows:

11.9 Writing Decorators | 339

https://oreil.ly/76JuE

type ClassFieldDecorator = (value: undefined, context: {
kind: "field";
name: string | symbol;
access: { get(): unknown, set(value: unknown): void };
static: boolean;
private: boolean;

}) => (initialvalue: unknown) => unknown | void;

Note that the value is undefined. The initial value is being passed to the replacement
method:

type FieldDecoratorFn = (val: any) => any;

function logField<Val>(
value: undefined,
context: ClassFieldDecoratorContext
): FieldDecoratorFn {
return function (initialvalue: Val): val {
console.log(Initializing ${context.name.toString()} to ${initialvalue});
return initialvalue;
¥
}
There’s one thing that feels off. Why would we need different decorators for different
kinds of members? Shouldn’t our log decorator be capable of handling it all? Our
decorator is called in a specific decorator context, and we can identify the right context
via the kind property (a pattern we saw in Recipe 3.2). So there’s nothing easier than
writing a log function that does different decorator calls depending on the context,
right?

Well, yes and no. Of course, having a wrapper function that branches correctly is the
way to go, but the type definitions, as we've seen, are pretty complex. Finding one
function signature that can handle them all is close to impossible without defaulting
to any everywhere. And remember: we need the right function signature typings;
otherwise, the decorators won't work with class members.

Multiple different function signatures just scream function overloads. So instead of
finding one function signature for all possible decorators, we create overloads for field
decorators, method decorators, and so on. Here, we can type them just as we would
type the single decorators. The function signature for the implementation takes any
for value and brings all required decorator context types in a union, so we can do
proper discrimination checks afterward:

function log<This, Args extends any[], Return>(
value: (this: This, ...args: Args) => Return,
context: ClassMethodDecoratorContext
): (this: This, ...args: Args) => Return;
function log<Val>(
value: Val,
context: ClassFieldDecoratorContext

340 | Chapter11: Classes

): FieldDecoratorFn;
function log(
value: any,
context: ClassMethodDecoratorContext | ClassFieldDecoratorContext
) {
if (context.kind === "method") {
return logMethod(value, context);
} else {
return logField(value, context);
}
}

Instead of fumbling all the actual code into the 1f branches, wed rather call the origi-
nal methods. If you don't want to have your logMethod or logField functions
exposed, then you can put them in a module and only export log.

There are a lot of different decorator types, and they all have vari-
ous fields that differ slightly. The type definitions in [lib.decora-
tors.d.ts are excellent, but if you need a bit more information, check
out the original decorator proposal at TC39. Not only does it
include extensive information on all types of decorators, but it also
contains additional TypeScript typings that complete the picture.

There is one last thing we want to do: adapt logMethod to log both before and after
the call. For normal methods, it’s as easy as temporarily storing the return value:

function log<This, Args extends any[], Return>(
value: (this: This, ...args: Args) => Return,
context: ClassMethodDecoratorContext
) {
return function (this: This, ...args: Args) {
console.log(calling ${context.name.toString()});
const val = value.call(this, ...args);
console.log(‘called ${context.name.toString()}: ${val});
return val;
b
}

But for asynchronous methods, things get a little more interesting. Calling an asyn-
chronous method yields a Promise. The Promise itself might already have been exe-
cuted, or the execution is deferred to later. This means if we stick with the implemen-
tation from before, the called log message might appear before the method actually
yields a value.

11.9 Writing Decorators | 341

https://oreil.ly/76JuE

As a workaround, we need to chain the log message as the next step after the Promise
yields a result. To do so, we need to check if the method is actually a Promise. Java-
Script Promises are interesting because all they need to be awaited is having a then
method. This is something we can check in a helper method:

function isPromise(val: any): val is Promise<unknown> {

return (
typeof val === "object" &&
val &&
"then" in val &&
typeof val.then === "function"
)5

}

And with that, we decide whether to log directly or deferred based on if we have a
Promise:

function logMethod<This, Args extends any[], Return>(
value: (this: This, ...args: Args) => Return,
context: ClassMethodDecoratorContext

): (this: This, ...args: Args) => Return {

return function (this: This, ...args: Args) {
console.log(calling ${context.name.toString()});
const val = value.call(this, ...args);

if (isPromise(val)) {
val.then((p: unknown) => {
console.log(called ${context.name.toString()}: ${p});
return p;
s
} else {
console.log(‘called ${context.name.toString()}: ${val});
}

return val;
I
}
Decorators can get very complex but are ultimately a useful tool to make classes in
JavaScript and TypeScript more expressive.

342 | Chapter11: Classes

CHAPTER 12
Type Development Strategies

All recipes up until now have dealt with specific aspects of the TypeScript program-
ming language and its type system. You have learned about effectively using basic
types in Chapters 2 and 3, making your code more reusable through generics in
Chapter 4, and crafting advanced types for very delicate situations using conditional
types in Chapter 5, string template literal types in Chapter 6, and variadic tuple types
in Chapter 7.

We established a collection of helper types in Chapter 8 and worked around standard
library limitations in Chapter 9. We learned how to work with JSX as a language
extension in Chapter 10 and how and when to use classes in Chapter 11. Every recipe
discussed in detail the pros and cons of each approach, giving you better tools to
decide correctly for every situation, creating better types, more robust programs, and
a stable development flow.

That’s a lot! One thing is still missing, though, the final piece that brings everything
together: how do we approach new type challenges? Where do we start? What do we
need to look out for?

The answers to these questions make up the contents of this chapter. Here you will
learn about the concept of low maintenance types. We will explore a process on how
you can start with simple types first and gradually get more refined and stronger. You
will learn about the secret features of the TypeScript playground and how to deal with
libraries that make validation easier. You will find guides to help you make hard deci-
sions and learn about workarounds to the most common yet tough-to-beat type
errors that will definitely hit you in your TypeScript journey.

If the rest of the book brought you from novice to apprentice, the next recipes will
lead you to become an expert. Welcome to the last chapter.

343

https://www.typescriptlang.org/play

12.1 Writing Low Maintenance Types

Problem

Every time your model changes, you need to touch a dozen types throughout your
codebase. That is tedious, and it’s also easy to miss something.

Solution

Derive types from others, infer from usage, and create low maintenance types.

Discussion

Throughout this book, we have spent a lot of time creating types from other types.
The moment we can derive a type from something that already exists means we
spend less time writing and adapting type information and more time fixing bugs and
errors in JavaScript.

TypeScript is a layer of metainformation on top of JavaScript. Our goal is still to write
JavaScript but make it as robust and easy as possible: tooling helps you stay produc-
tive and doesn’t get in your way.

That’s how I write TypeScript in general: I write regular JavaScript, and where Type-
Script needs extra information, I happily add some extra annotations. One condition:
I don’t want to be bothered maintaining types. I'd rather create types that can update
themselves if their dependencies or surroundings change. I call this approach creating
low maintenance types.

Creating low maintenance types is a three-part process:

1. Model your data or infer from existing models.
2. Define derivates (mapped types, partials, etc.).

3. Define behavior with conditional types.

Let’s take a look at this brief and incomplete copy function. I want to copy files from
one directory to another. To make my life easier, I created a set of default options so I
don’t have to repeat myself too much:

const defaultOptions = {
from: "./src",
to: "./dest",

1

function copy(options) {
// Let's merge default options and options
const allOptions = { ...defaultOptions, ...optilons};

344 | Chapter 12: Type Development Strategies

// todo: Implementation of the rest
}
That’s a pattern you might see a lot in JavaScript. What you see immediately is that
TypeScript misses some type information. Especially the options argument of the
copy function is any at the moment. So let’s add a type for that!

I could create types explicitly:
type Options = {

from: string;
to: string;

b

const defaultOptions: Options = {
from: "./src",
to: "./dest",

b

type PartialOptions = {
from?: string;
to?: string;

};

function copy(options: PartialOptions) {
// Let's merge default options and options
const allOptions = { ...defaultOptions, ...optilons};

// todo: Implementation of the rest
}

That’s a reasonable approach. You think about types, then you assign types, and then
you get all the editor feedback and type-checking you are used to. But what if some-
thing changes? Let’s assume we add another field to Options; we would have to adapt
our code three times:

type Options = {
from: string;
to: string;
overwrite: boolean; // added

b

const defaultOptions: Options = {
from: "./src",
to: "./dest",
overwrite: true, // added

b

type PartialOptions = {
from?: string;
to?: string;

12.1 Writing Low Maintenance Types | 345

overwrite?: boolean; // added
1
But why? The information is already there! In defaultOptions, we tell TypeScript
exactly what we're looking for. Let’s optimize:

1. Drop the PartialOptions type and use the utility type Partial<T> to get the
same effect. You might have guessed this one already.

2. Use the typeof operator in TypeScript to create a new type on the fly:

const defaultOptions = {
from: "./src",
to: "./dest",
overwrite: true,

b

function copy(options: Partial<typeof defaultOptions>) {
// Let's merge default options and options
const allOptions = { ...defaultOptions, ...options};

// todo: Implementation of the rest
}

There you go. Just annotate where we need to tell TypeScript what were looking for:

o If we add new fields, we don’t have to maintain anything at all.

o If we rename a field, we get just the information we care about: all uses of copy
where we have to change the options we pass to the function.

o We have one single source of truth: the actual defaultOptions object. This is the
object that counts because it’s the only information we have at runtime.

And our code becomes a little bit more concise. TypeScript becomes less intrusive
and more aligned to how we write JavaScript.

Another example is one that has accompanied us from the beginning: the toy shop
that started in Recipe 3.1, and has continued in Recipes 4.5 and 5.3. Revisit all three
items and think about how we can change only the model to get all other types
updated.

12.2 Refining Types Step by Step

Problem

Your API needs elaborate types, using advanced features like generics, conditional
types, and string template literal types. You don’t know where to start.

346 | Chapter 12: Type Development Strategies

Solution

Refine your types step by step. Start with basic primitive and object types, subset, add
generics, and then go all-in advanced. The process described in this lesson will help
you craft types. It’s also a good way to recap everything you've learned.

Discussion
Take a look at the following example:

app.get("/api/users/:userID", function (req, res) {
if (reqg.method === "POST") {
res.status(20).send({
message: "Got you, user " + reg.params.userld,

s
}
s
We have an Express-style server that allows us to define a route (or path) and exe-
cutes a callback if the URL is requested.

The callback takes two arguments:

The request object
Here we get information on the HTTP method used—for example, GET, POST,
PUT, DELETE—and additional parameters that come in. In this example userID
should be mapped to a parameter userID that, well, contains the user’s identifier!

The response or reply object
Here we want to prepare a proper response from the server to the client. We want
to send correct status codes (method status) and send JSON output over the
wire.

What we see in this example is heavily simplified, but it gives a good idea of what we
are up to. The previous example is also riddled with errors! Take a look:

app.get("/api/users/:userID", function (req, res) {
if (reqg.method === "POST") { /* Error 1 */
res.status(20).send({ /* Error 2 */
message: "Welcome, user " + req.params.userld /* Error 3 */,
b;
}
b;

12.2 Refining Types Step by Step | 347

https://expressjs.com
https://oreil.ly/zcoUS

Three lines of implementation code and three errors? What happened?

1. The first error is nuanced. While we tell our app that we want to listen to GET
requests (hence app.get), we do something only if the request method is POST.
At this particular point in our application, req.method can’t be POST. So we
would never send any response, which might lead to unexpected timeouts.

2. It’s great that we explicitly send a status code! 20 isn’t a valid status code, though.
Clients might not understand what’s happening here.

3. This is the response we want to send back. We access the parsed arguments but
have a typo. It's userID, not userId. All our users would be greeted with “Wel-
come, user undefined!” Something you definitely have seen in the wild!

Solving issues like this is TypeScript's main purpose. TypeScript wants to understand
your JavaScript code better than you do. And where TypeScript can't figure out what
you mean, you can assist by providing extra type information. The problem is that it’s
often hard to start adding types. You might have the most puzzling edge cases in your
mind but don’t know how to get to them.

I want to propose a process that may help you get started and also shows you where
there’s a good place to stop. You can increase the strengths of your types step by step.
It gets better with each refinement, and you can increase type safety over a longer
period of time. Let’s start!

Step 1: Basic typing

We start with some basic type information. We have an app object that points to a get
function. The get function takes a path, which is a string, and a callback:

const app = {
get /* post, put, delete, ... to come! */,
IH

function get(path: string, callback: CallbackFn) {
// to be implemented --> not important right now

}

CallbackFn is a function type that returns void and takes two arguments:

o req, which is of type ServerRequest

o reply, which is of type ServerReply

type CallbackFn = (req: ServerRequest, reply: ServerReply) => void;

ServerRequest is a pretty complex object in most frameworks. We do a simplified
version for demonstration purposes. We pass in a method string, for "GET", "POST",
"PUT", "DELETE", and so on. It also has a params record. Records are objects that

348 | Chapter 12: Type Development Strategies

associate a set of keys with a set of properties. For now, we want to allow every string
key to be mapped to a string property. We'll refactor this one later:
type ServerRequest = {
method: string;
params: Record<string, string>;
1
For ServerReply, we lay out some functions, knowing that a real ServerReply object
has many more. A send function takes an optional argument obj with the data we
want to send. We have the possibility to set a status code with the status function
using a fluent interface:’

type ServerReply = {
send: (obj?: any) => void;
status: (statusCode: number) => ServerReply;
IH
With some very basic compound types and a simple primitive type for paths, we
already added a lot of type safety to our project. We can rule out a couple of errors:

app.get("/api/users/:userID", function(req, res) {

if(req.method === 2) {
// 2 This condition will always return 'false' since the types
// 'string' and 'number' have no overlap.(2367)

res.status("200").send()

// 8

// Argument of type 'string' is not assignable to

// parameter of type 'number'.(2345)

}

H;
That’s great, but there’s still a lot to do. We can still send wrong status codes (any
number is possible) and have no clue about the possible HT'TP methods (any string is
possible). So let’s refine our types.

Step 2: Subset primitive types

You can see primitive types as a set of all possible values of that certain category. For
example, string includes all possible strings that can be expressed in JavaScript,
number includes all possible numbers with double float precision, and boolean
includes all possible Boolean values, which are true and false.

TypeScript allows you to refine those sets to smaller subsets. For example, we can cre-

ate a type Methods that includes all possible strings we can receive for
HTTP methods:

1 Fluent interfaces allow for chainable operations by returning the instance with every method call.

12.2 Refining Types Step by Step | 349

type Methods = "GET" | "POST" | "PUT" | "DELETE";

type ServerRequest = {
method: Methods;
params: Record<string, string>;
¥
Methods is a smaller set of the bigger string set. Methods is also a union type of literal
types, the smallest unit of a given set. A literal string. A literal number. There is no
ambiguity: it’s just "GET". You put them in a union with other literal types, creating a
subset of whatever bigger types you have. You can also do a subset with literal types of
both string and number, or different compound object types. There are lots of possi-
bilities to combine and put literal types into unions.

This has an immediate effect on our server callback. Suddenly, we can differentiate
between those four methods (or more if necessary) and can exhaust all possibilities in
code. TypeScript will guide us.

That's one less category of errors. We now know exactly which possible HTTP meth-
ods are available. We can do the same for HTTP status codes, by defining a subset of
valid numbers that statusCode can take:

type StatusCode =

100 | 101 | 102 | 200 | 201 | 202 | 203 | 204 | 205 |
206 | 207 | 208 | 226 | 300 | 301 | 302 | 303 | 304 |
305 | 306 | 307 | 308 | 400 | 401 | 402 | 403 | 404 |
405 | 406 | 407 | 408 | 409 | 410 | 411 | 412 | 413 |
414 | 415 | 416 | 417 | 418 | 420 | 422 | 423 | 424 |
425 | 426 | 428 | 429 | 431 | 444 | 449 | 450 | 451
499 | 500 | 501 | 502 | 503 | 504 | 505 | 506 | 507 |
508 | 509 | 510 | 511 | 598 | 599;

type ServerReply = {

send: (obj?: any) => void;

status: (statusCode: StatusCode) => ServerReply;
}s

Type StatusCode is again a union type. And with that, we exclude another category
of errors. Suddenly, code like that fails:

app.get("/api/user/:userID", (req, res) => {
if(req.method === "P0S") {
// * This condition will always return 'false' since
// the types 'Methods' and '"P0S"' have no overlap.(2367)
res.status(20)
// 8
// Argument of type '20' is not assignable to parameter of
// type 'StatusCode'.(2345)
}
b

350 | Chapter 12: Type Development Strategies

And our software becomes a lot safer. But we can do more!

Step 3: Adding generics

When we define a route with app.get, we implicitly know that the only HTTP
method possible is "GET". But with our type definitions, we still have to check for all
possible parts of the union.

The type for CallbackFn is correct, as we could define callback functions for all possi-
ble HTTP methods, but if we explicitly call app.get, it would be nice to save some
extra steps, which are only necessary to comply with typings.

TypeScript generics can help. We want to define ServerRequest in a way that we can
specify a part of Methods instead of the entire set. For that, we use the generic syntax
where we can define parameters as we would do with functions:
type ServerRequest<Met extends Methods> = {
method: Met;
params: Record<string, string>;

¥
Here is what happens:

« ServerRequest becomes a generic type, as indicated by the angle brackets.
o We define a generic parameter called Met, which is a subset of type Methods.

o We use this generic parameter as a generic variable to define the method.

With that change, we can specify different ServerRequest variants without
duplicating:
type OnlyGET = ServerRequest<"GET">;

type OnlyPOST = ServerRequest<"POST">;
type POSTorPUT = ServerRquest<"POST" | "PUT">;

Since we changed the interface of ServerRequest, we have to change all our other
types that use ServerRequest, like CallbackFn and the get function:

type CallbackFn<Met extends Methods> = (
req: ServerRequest<Met>,
reply: ServerReply

) => void;

function get(path: string, callback: CallbackFn<"GET">) {
// to be implemented
}

With the get function, we pass an actual argument to our generic type. We know that
this wont be just a subset of Methods; we know exactly which subset we are
dealing with.

12.2 Refining Types Step by Step | 351

Now, when we use app.get, we only have one possible value for req.method:

app.get("/api/users/:userID", function (reg, res) {
req.method; // can only be GET
b
This ensures we don’t assume HTTP methods like "POST" or similar are available
when we create an app.get callback. We know exactly what we are dealing with at
this point, so let’s reflect that in our types.

We already did a lot to make sure that request.method is reasonably typed and rep-
resents the actual state of affairs. One nice benefit of subsetting the Methods union
type is that we can create a general-purpose callback function outside of app.get that
is type safe:

const handler: CallbackFn<"PUT" | "POST"> = function(res, req) {
res.method // can be "POST" or "PUT"

5

const handlerForAllMethods: CallbackFn<Methods> = function(res, req) {
res.method // can be all methods

b

app.get("/api", handler);
// 5
// Argument of type 'CallbackFn<"POST" | "PUT">' is not

// assignable to parameter of type 'CallbackFn<"GET">'.

app.get("/api", handlerForAllMethods); // This works

Step 4: Advanced types to type-check

What we haven't touched yet is typing the params object. So far, we get a record that
allows accessing every string key. It's our task now to make that a little more specific!

We do so by adding another generic variable, one for methods and one for the possi-
ble keys in our Record:

type ServerRequest<Met extends Methods, Par extends string = string> = {
method: Met;
params: Record<Par, string>;

1Y
The generic type variable Par can be a subset of type string, and the default value is
every string. With that, we can tell ServerRequest which keys we expect:

// request.method = "GET"
// request.params = {
// userID: string

/7 }
type WithUserID = ServerRequest<"GET", "userID">;

352 | Chapter 12: Type Development Strategies

Let’s add the new argument to our get function and the CallbackFn type, so we can
set the requested parameters:

function get<Par extends string = string>(
path: string,
callback: CallbackFn<"GET", Par>

) {
// to be implemented

}

const app = {
get /* post, put, delete, ... to come! */,
b

type CallbackFn<Met extends Methods, Par extends string> = (
req: ServerRequest<Met, Par>,
reply: ServerReply
) => void;
If we don't set Par explicitly, the type works like we are accustomed to, since Par
defaults to string. If we set it, though, we suddenly have a proper definition for the
req.params object:
app.get<"userID">("/api/users/:userID", function (req, res) {
req.params.userID; // Works!!
req.params.anythingElse; // doesn't work!!
s
That’s great! One little thing can be improved, though. We still can pass every string
to the path argument of app.get. Wouldn't it be better if we could reflect Par in there
as well? We can! This is where string template literal types (see Chapter 6) come into
play.

Let’s create a type called IncludesRouteParams to make sure that Par is properly
included in the Express-style way of adding a colon in front of the parameter name:

type IncludesRouteParams<Par extends string> =
| “${string}/:${Par}"
| “${string}/:${Par}/${string}";
The generic type IncludesRouteParams takes one argument, which is a subset of
string. It creates a union type of two template literals:

o The first template literal starts with any string, then includes a / character fol-
lowed by a : character, followed by the parameter name. This ensures that we
catch all cases where the parameter is at the end of the route string.

o The second template literal starts with any string, followed by the same pattern
of /, :, and the parameter name. Then we have another / character, followed by

12.2 Refining Types Step by Step | 353

any string. This branch of the union type makes sure we catch all cases where the
parameter is somewhere within a route.

This is how IncludesRouteParams with the parameter name userID behaves with
different test cases:

const a: IncludesRouteParams<"userID"> = "/api/user/:userID"; // works

const b: IncludesRouteParams<"userID"> = "/api/user/:userID/orders"; // works
const c: IncludesRouteParams<"userID"> = "/api/user/:userld"; // breaks

const d: IncludesRouteParams<"userID"> = "/api/user"; // breaks

const e: IncludesRouteParams<"userID"> = "/api/user/:userIDAndmore"; // breaks

Let’s include our new utility type in the get function declaration:

function get<Par extends string = string>(
path: IncludesRouteParams<Par>,
callback: CallbackFn<"GET", Par>

) {
// to be implemented

}

app.get<"userID">(
"/api/users/:userID",
function (req, res) {
req.params.userID; // Yes!
}
);
Great! We get another safety mechanism to ensure that we don’t miss out on adding
the parameters to the actual route. That’s powerful.

Step 5: Locking literal types

But guess what: I'm still not happy with it. A few issues with that approach become
apparent the moment your routes get a little more complex:

o The first issue is that we need to explicitly state our parameters in the generic
type parameter. We have to bind Par to "userID", even though we would specify
it anyway in the path argument of the function. This is not JavaScript-y!

o This approach handles only one route parameter. The moment we add a union—

for example, "userID" | "orderId"—the fail-safe check is satisfied with only
one of those arguments being available. That’s how sets work. It can be one or the
other.

There must be a better way. And there is. Otherwise, this recipe would end on a very
bitter note.

Let’s inverse the order! Instead of defining the route params in a generic type variable,
we extract the variables from the path passed as the first argument of app.get:

354 | Chapter 12: Type Development Strategies

function get<Path extends string = string>(
path: Path,
callback: CallbackFn<"GET", ParseRouteParams<Path>>

) {
// to be implemented

}
We remove the Par generic type and add Path, which can be a subset of any string.
When we set path to this generic type Path, the moment we pass a parameter to get,

we catch its string literal type. We pass Path to a new generic type ParseRouteParams
that we haven't created yet.

Let’s work on ParseRouteParams. Here, we switch the order of events again. Instead
of passing the requested route params to the generic to make sure the path is all right,
we pass the route path and extract the possible route params. For that, we need to
create a conditional type.

Step 6: Adding conditional types

Conditional types are syntactically similar to the ternary operator in JavaScript. You
check for a condition, and if the condition is met, you return branch A; otherwise,
you return branch B. For example:
type ParseRouteParams<Route> =

Route extends ‘${string}/:${infer P}’

7P

. never;
Here, we check if Route is a subset of every path that ends with the parameter at the
end Express-style (with a preceding "/:"). If so, we infer this string, which means we
capture its contents into a new variable. If the condition is met, we return the newly
extracted string; otherwise, we return never, as in: “there are no route parameters.”

If we try it, we get something like:

type Params = ParseRouteParams<"/api/user/:userID">; // Params is "userID"

type NoParams = ParseRouteParams<"/api/user">; // NoParams is never: no params!

That’s already much better than we did earlier. Now, we want to catch all other possi-
ble parameters. For that, we have to add another condition:

type ParseRouteParams<Route> = Route extends ‘${string}/:${infer P}/${infer R}’
? P | ParseRouteParams<'/${R} >
: Route extends '${string}/:${infer P}’
2P
: never;

Our conditional type now works as follows:

12.2 Refining Types Step by Step | 355

1.

In the first condition, we check if there is a route parameter somewhere in
between the route. If so, we extract both the route parameter and everything else
that comes after. We return the newly found route parameter P in a union where
we call the same generic type recursively with the rest R. For example, if we pass
the route "/api/users/:userID/orders/:orderID" to ParseRouteParams, we
infer "userID" into P and "orders/:orderID" into R. We call the same type with
R.

. This is where the second condition comes in. Here we check if there is a type at

the end. This is the case for "orders/:orderID". We extract "orderID" and
return this literal type.

. If there are no more route parameters left, we return never:

// Params is "userID"
type Params = ParseRouteParams<"/api/user/:userID">;

// MoreParams is "userID" | "orderID"
type MoreParams = ParseRouteParams<"/api/user/:userID/orders/:orderId">;

Let’s apply this new type and see what our final usage of app.get looks like:

app.get("/api/users/:userlD/orders/:orderID", function (req, res) {
req.params.userID; // Works
req.params.orderID; // Also available

s

And that’s it! Let’s recap. The types we just created for one function app.get make
sure that we exclude a ton of possible errors:

We can only pass proper numeric status codes to res.status().

req.method is one of four possible strings, and when we use app.get, we know it
can only be "GET".

We can parse route params and make sure we don’t have any typos inside our
callback parameters.

If we look at the example from the beginning of this recipe, we get the following error
messages:

app.get("/api/users/:userID", function(req, res) {
if (reqg.method === "POST") {
// 7 This condition will always return 'false' since
// the types 'Methods' and '"POST"' have no overlap.(2367)
res.status(20).send({

// 8

// Argument of type '20' is not assignable to parameter of

// type 'StatusCode'.(2345)
message: "Welcome, user

+ req.params.userld

356

| Chapter 12: Type Development Strategies

// 4
// Property 'userId' does not exist on type
// "{ userID: string; }'. Did you mean 'userID'?
s
}
s

And all that before we actually run our code! Express-style servers are a perfect exam-
ple of the dynamic nature of JavaScript. Depending on the method you call and the
string you pass for the first argument, a lot of behavior changes inside the callback.
Take another example and all your types look entirely different.

The great thing about this approach is that every step added more type safety:
1. You can easily stop at basic types and get more out of it than having no types
at all.
2. Subsetting helps you get rid of typos by reducing the number of valid values.
3. Generics help you tailor behavior to use case.

4. Advanced types like string template literal types give your app more meaning in a
stringly-typed world.

5. Locking in generics allows you to work with literals in JavaScript and treat them
as types.

6. Conditional types make your types as flexible as your JavaScript code.

The best thing? Once you added your types, people will just write plain JavaScript
and still get all the type information. Thats a win for everybody.

12.3 Checking Contracts with satisfies

Problem

You want to work with literal types but need an annotation type-check to make sure
you fulfill a contract.

Solution

Use the satisfies operator to do annotation-like type-checking while retaining the
literal types.

Discussion

Mapped types are great, as they allow for the flexibility in object structures JavaScript
is known for. But they have some crucial implications for the type system. Take this

12.3 Checking Contracts with satisfies | 357

example from a generic messaging library, which takes a “channel definition” where
multiple channel tokens can be defined:

type Messages =
| "CHANNEL_OPEN"
| "CHANNEL_CLOSE"
| "CHANNEL_FAIL"
| "MESSAGE_CHANNEL_OPEN"
| "MESSAGE_CHANNEL_CLOSE"
| "MESSAGE_CHANNEL_FAIL";

type ChannelDefinition = {
[key: string]: {
open: Messages;
close: Messages;
fail: Messages;
b
b

The keys from this channel definition object are what the user wants them to be. So
this is a valid channel definition:

const impl: ChannelDefinition = {
test: {
open: 'CHANNEL_OPEN',
close: 'CHANNEL_CLOSE',
fail: 'CHANNEL_FAIL'
}s
message: {
open: 'MESSAGE_CHANNEL_OPEN',
close: 'MESSAGE_CHANNEL_CLOSE',
fail: 'MESSAGE_CHANNEL_FAIL'
}
}

We have a problem, however: when we want to access the keys we defined so flexibly.
Let’s say we have a function that opens a channel. We pass the whole channel defini-
tion object, as well as the channel we want to open:

function openChannel(
def: ChannelDefinition,
channel: keyof ChannelDefinition

) {
// to be implemented

}
So what are the keys of ChannelDefinition? Well, its every key: [key: string]. So
the moment we assign a specific type, TypeScript treats impl as this specific type,
ignoring the actual implementation. The contract is fulfilled. Moving on. This allows
for wrong keys to be passed:

// Passes, even though "massage" is not part of impl
openChannel(impl, "massage");

358 | Chapter 12: Type Development Strategies

So we are more interested in the actual implementation, not the type we assign to our
constant. This means we have to get rid of the ChannelDefinition type and make
sure we care about the actual type of the object.

First, the openChannel function should take any object that is a subtype of Channel
Definition but work with the concrete subtype:

function openChannel<
T extends ChannelDefinition
>(def: T, channel: keyof T) {
// to be implemented
}

TypeScript now works on two levels:

o It checks if T actually extends ChannelDefinition. If so, we work with type T.

o All our function parameters are typed with the generic T. This also means we get
the real keys of T through keyof T.

To benefit from that, we have to get rid of the type definition for impl. The explicit
type definition overrides all actual types. From the moment we explicitly specify the
type, TypeScript treats it as ChannelDefinition, not the actual underlying subtype.
We also have to set const context, so we can convert all strings to their unit type (and
thus be compliant with Messages):

const impl = {

test: {
open: "CHANNEL_OPEN",
close: "CHANNEL_CLOSE",
fail: "CHANNEL_FAIL",

}s

message: {
open: "MESSAGE_CHANNEL_OPEN",
close: "MESSAGE_CHANNEL_CLOSE",
fail: "MESSAGE_CHANNEL_FAIL",

1

} as const;
Without const context, the inferred type of implis:

/// typeof impl
{
test: {
open: string;
close: string;
fail: string;
IH
message: {
open: string;
close: string;

12.3 Checking Contracts with satisfies | 359

fail: string;
¥
}

With const context, the actual type of impl is now:

/// typeof impl

{
test: {
readonly open: "CHANNEL_OPEN";
readonly close: "CHANNEL_CLOSE";
readonly fail: "CHANNEL_FAIL";
b
message: {
readonly open: "MESSAGE_CHANNEL_OPEN";
readonly close: "MESSAGE_CHANNEL_CLOSE";
readonly fail: "MESSAGE_CHANNEL_FAIL";
IH
}

Const context allows us to satisfy the contract made by ChannelDefinition. Now
openChannel works correctly:

openChannel(impl, "message"); // satisfies contract
openChannel(impl, "massage");

// 4

// Argument of type '"massage"' is not assignable to parameter
// of type '"test" | "message"'.(2345)

This works but comes with a caveat. The only point where we can check if impl is
actually a valid subtype of ChannelDefinition is when we are using it. Sometimes we
want to annotate early to figure out potential breaks in our contract. We want to see if
this specific implementation satisfies a contract.

Thankfully, there is a keyword for that. We can define objects and do a type-check to
see if this implementation satisfies a type, but TypeScript will treat it as a literal type:

const impl = {

test: {
open: "CHANNEL_OPEN",
close: "CHANNEL_CLOSE",
fail: "CHANNEL_FAIL",

}s

message: {
open: "MESSAGE_CHANNEL_OPEN",
close: "MESSAGE_CHANNEL_CLOSE",
fail: "MESSAGE_CHANNEL_FAIL",

}s

} satisfies ChannelDefinition;

function openChannel<T extends ChannelDefinition>(
def: T,
channel: keyof T

360 | Chapter 12: Type Development Strategies

) {
// to be implemented

}
With that, we can make sure that we fulfill contracts but have the same benefits as
with const context. The only difference is that the fields are not set to readonly, but
since TypeScript takes the literal type of everything, there is no way to set fields to
anything else after a satisfaction type-check:

impl.test.close = "CHANEL_CLOSE_MASSAGE";

// 8

// Type '"CHANEL_CLOSE_MASSAGE"' is not assignable

// to type '"CHANNEL_CLOSE"'.(2322)
With that, we get the best of both worlds: proper type-checks at annotation time as
well as the power of narrowed types for specific situations.

12.4 Testing Complex Types

Problem

You have written very elaborate and complex types, and you want to make sure that
they behave correctly.

Solution

Some commonly known helper types work like a test framework. Test your types!

Discussion

In dynamically typed programming languages people always circle around the dis-
cussion of if you need types when you can have a proper test suite. This is at least
what one camp says; the other thinks, why should we test so much when we can have
types? The answer is probably somewhere in the middle.

It is true that types can solve a lot of test cases. Is the result a number? Is the result an
object with certain properties of certain types? This is something we can easily check
via types. Does my function produce correct results? Are the values what I expect
them to be? This belongs to tests.

Throughout this book, we learned a lot about very complex types. With conditional
types, we opened up the metaprogramming capabilities of TypeScript, where we
could craft new types based on certain features of previous types. Powerful, Turing
complete, and very advanced. This leads to the question: how do we ensure that those
complex types actually do what they should do? Maybe we should test our types?

12.4Testing Complex Types | 361

We actually can. There are a few helper types known within the community that can
serve as some sort of testing framework. The following types come from the excellent
Type Challenges repository, which allows you to test your TypeScript type system
skills to an extreme. They include very challenging tasks: some that have relevance to
real-world use cases and others that are just for fun.

Their testing library starts with a few types that expect a truthy or a falsy value. They
are pretty straightforward. By using generics and literal types, we can check if this
one Boolean is true or false:

export type Expect<T extends true> = T;
export type ExpectTrue<T extends true> = T;
export type ExpectFalse<T extends false> = T;
export type IsTrue<T extends true> = T;
export type IsFalse<T extends false> = T;

They don’t do much on their own but are fantastic when being used with Equal<X,
Y> and NotEqual<X, Y>, which return either true or false:

export type Equal<X, Y>

(<T>() => T extends X ? 1 : 2) extends

(<T>() => T extends Y ? 1 : 2) ? true : false;
export type NotEqual<X, Y> = true extends Equal<X, Y> ? false : true;

el

Equal<X, Y> is interesting as it creates generic functions and checks them against
both types that should be compared with each other. Since there is no resolution on
each conditional type, TypeScript compares both conditional types and can see if
there is compatibility. It’s a step within TypeScript’s conditional type logic that is mas-
terfully explained by Alex Chashin on Stack Overflow.

The next batch allows us to check if a type is any:

export type IsAny<T> = 0 extends 1 & T ? true : false;

export type NotAny<T> = true extends IsAny<T> ? false : true;
It’s a simple conditional type that checks 0 against 1 & T, which should always narrow
down to 1 or never, which always yields the false branch of the conditional type.
Except when we intersect with any. An intersection with any is always any, and 0 is a
subset of any.

The next batch is reinterpretations of Remap and DeepRemap we saw in Recipe 8.3,
along with Alike as a way to compare types that are equal in structure but not
construction:

export type Debug<T> = { [K in keyof T]: T[K] };

export type MergeInsertions<T> = T extends object

? { [K in keyof T]: Mergelnsertions<T[K]> }
: T;

export type Alike<X, Y> = Equal<MergelInsertions<X>, MergeInsertions<Y>>;

362 | Chapter 12: Type Development Strategies

https://tsch.js.org
https://oreil.ly/ywWd4

The Equal check before should theoretically be able to understand that { x : num
ber, y: string }isequal to { x: number } & { y: string }, but implementa-
tion details of the TypeScript type-checker don't see them as equal. That’s where
Alike comes into play.

The last batch of the type challenges testing file does two things:

o It does subset checks with a simple conditional type.

o It checks if a tuple you have constructed can be seen as a valid argument for a
function:

export type ExpectExtends<VALUE, EXPECTED> = EXPECTED extends VALUE
? true
: false;
export type ExpectValidArgs<
FUNC extends (...args: any[]) => any,
ARGS extends any[]
> = ARGS extends Parameters<FUNC> ? true : false;

Having a small helper type library like this for type testing and debugging is really

helpful when your types get more complex. Add them to your global type definition
files (see Recipe 9.7) and use them.

12.5 Validating Data Types at Runtime with Zod

Problem

You rely on data from external sources and can’t trust them to be correct.

Solution

Define schemas using a library called Zod and use it to validate data from external
sources.

Discussion

Congratulations! We're almost at the end. If you have followed along from start to fin-
ish, you have been constantly reminded that TypeScript’s type system follows a couple
of goals. First and foremost, it wants to give you excellent tooling so you can be
productive when developing applications. It also wants to cater to all JavaScript
frameworks and make sure they are fun and easy to use. It sees itself as an add-on to
JavaScript, as a syntax for static types. There are also some non-goals or trade-offs. It
prefers productivity over correctness, it allows developers to bend the rules to their
needs, and it has no claim of being provably sound.

12.5 Validating Data Types at Runtime withZod | 363

In Recipe 3.9 we learned that we can influence TypeScript if we think that types
should be something different through type assertions, and in Recipe 9.2 we learned
how we can make unsafe operations more robust and easier to spot. Since TypeScript’s
type system is compile-time only, all our safeguards evaporate once we run JavaScript
in our selected runtime.

Usually, compile-time type-checks are good enough. As long as we are within the
inner world where we write our own types, let TypeScript check that everything is
OK, and our code is good to go. In JavaScript applications, however, we also deal with
a lot of things beyond our control: user input, for example. APIs from third parties
that we need to access and process. Inevitably, we reach a point in our development
process where we need to leave the boundaries of our well-typed application and deal
with data that we can't trust.

While developing, working with external sources or user input might work well
enough, but to make sure that the data we use stays the same when running in pro-
duction requires extra effort. You may want to validate that your data adheres to a
certain scheme.

Thankfully, there are libraries that deal with that kind of task. One library that has
gained popularity in recent years is Zod. Zod is TypeScript-first, which means it
makes sure not only that the data you consume is valid and what you expect but also
that you get TypeScript types you can use throughout your program. Zod sees itself as
the guard between the outer world outside of your control and the inner world where
everything is well-typed and also type-checked.

Think of an API that gives you data for the Person type we've seen throughout the
book. A Person has a name and age, a profession that is optional, and also a status: in
our system, they can be either active, inactive, or only registered, waiting for confir-
mation.

The API also packs a couple of Person objects in an array contained within a Result
type. In short, it’s an example for a classic response type for HTTP calls:

type Person = {
name: string;
age: number;
profession?: string | undefined;
status: "active" | "inactive" | "registered";

b

type Results = {
entries: Person[]

b

364 | Chapter 12: Type Development Strategies

https://zod.dev

You know how to type models like this. By now, you are fluent in recognizing and
applying both syntax and patterns. We want to have the same type, but at runtime for
data outside our control, we use Zod. And writing the same type in JavaScript (the
value namespace) looks very familiar:

import { z } from "zod";

const Person = z.object({
name: z.string(),
age: z.number().min(0).max(150),
profession: z.string().optional(),
status: z.union([
z.literal("active"),
z.literal("inactive"),
z.literal("registered"),
D,
b

const Results = z.object({
entries: z.array(Person),

;s
As you see, we are in JavaScript, and we add names to the value namespace, not the
type namespace (see Recipe 2.9), but the tools we get from Zod’s fluent interface are
very familiar to us TypeScript developers. We define objects, strings, numbers, and
arrays. We can also define union types and literals. All the building blocks for defin-
ing models are here, and we can also nest types, as we see by defining Person first and
reusing it in Results.

The fluent interface also allows us to make certain properties optional. All things that
we know from TypeScript. Furthermore, we can set validation rules. We can say that
age should be above or equal to 0 and below 100. Things that we can’t do reasonably
within the type system.

Those objects are not types that we can use like we would use TypeScript types. They
are schemas, waiting for data they can parse and validate. Since Zod is TypeScript-
first, we have helper types that allow us to cross the bridge from the value space to the
type space. With z.infer (a type, not a function), we can extract the type we defined
through Zod’s schema functions:

type PersonType = z.infer<typeof Person>;

type ResultType = z.infer<typeof Results>;
So, how do we apply Zod’s validation techniques? Let’s talk about a function called
fetchData, which calls an API that gets entries of type ResultType. We just don’t
know if the values we receive actually adhere to the types we've defined. So, after
fetching data as json, we use the Results schema to parse the data we've received. If
this process is successful, we get data that is of type ResultType:

12.5 Validating Data Types at Runtime withZod | 365

type ResultType = z.infer<typeof Results>;

async function fetchData(): Promise<ResultType> {
const data = await fetch("/api/persons").then((res) => res.json());
return Results.parse(data);

}

Note that we already had our first safeguard in how we defined the function interface.
Promise<ResultType> is based on what we get from z.infer.

Results.parse(data) is of the inferred type but without a name. The structural type
system makes sure that we return the right thing. There might be errors, and we can
catch them using the respective Promise.catch methods or try-catch blocks.

Usage with try-catch:

fetchData()
.then((res) => {
// do something with results
b
.catch((e) => {
// a potential zod error!

b
// or

try {
const res = await fetchData();

// do something with results
} catch (e) {
// a potential zod error!

}

While we can ensure that we continue only if we have correct data, we are not forced
to do error checking. If we want to make sure that we look at the parsing result first
before we continue with our program, safeParse is the way to go:

async function fetchData(): Promise<ResultType> {
const data = await fetch("/api/persons").then((res) => res.json());
const results = Results.safeParse(data);
if (results.success) {
return results.data;
} else {
// Depending on your application, you might want to have a
// more sophisticated way of error handling than returning
// an empty result.
return { entries: [] };
}
}

This already makes Zod a valuable asset if you need to rely on external data. Further-
more, it allows you to adapt to API changes. Lets say that your program can work

366 | Chapter 12: Type Development Strategies

only with active and inactive states of Person; it does not know how to handle
registered. It’s easy to apply a transform where, based on the data you get, you mod-
ify the "registered" state to be actually "active":

const Person = z.object({
name: z.string(),
age: z.number().min(0).max(150),
profession: z.string().optional(),
status: z
.union([
z.literal("active"),
z.literal("inactive"),
z.literal("registered"),
D
.transform((val) => {
if (val === "registered") {
return "active";
}
return val;
b,
b

You then work with two different types: the input type represents what the API is giv-
ing you, and the output type is the data you have after parsing. Thankfully, we can get
both types from the respective Zod helper types z.input and z.output:

type PersonTypeln = z.input<typeof Person>;
/*
type PersonTypelIn = {
name: string;
age: number;
profession?: string | undefined;
status: "active" | "inactive" | "registered";
}s
*/

type PersonTypeQut = z.output<typeof Person>;

/*

type PersonTypeOut
name: string;
age: number;
profession?: string | undefined;
status: "active" | "inactive";

}s

*/

Zod’s typings are clever enough to understand that you removed one of the three lit-

erals from status. So there are no surprises and you actually deal with the data
you've been expecting.

{

Zod’s API is elegant, easy to use, and closely aligned with TypeScripts features. For
data at the boundaries that you can’t control, where you need to rely on third parties

12.5 Validating Data Types at Runtime withZod | 367

to provide the expected shape of data, Zod is a lifesaver without you having to do too
much work. It comes at a cost, though: runtime validation takes time. The bigger the
dataset, the longer it takes. Also, at 12KB it’s big. Be certain that you need this kind of
validation for data at your boundaries.

If the data you request comes from some other team within your company, maybe the
person sitting next to you, no library, not even Zod, beats talking with each other and
collaborating toward the same goals. Types are a way to guide collaboration, not a
means to get rid of it.

12.6 Working Around Index Access Restrictions

Problem

When accessing an object’s property using index access, TypeScript complains that
the type you want to assign is not assignable to never.

Solution

TypeScript looks for the lowest common denominator of possible values. Use a
generic type to lock in specific keys so TypeScript doesn't assume the rule needs to
apply for all.

Discussion

Sometimes when writing TypeScript, actions youd usually do in JavaScript work a lit-
tle differently and cause some weird and puzzling situations. Sometimes you just
want to assign a value to an object property via index access and get an error like
“Type 'string | number' is not assignable to type 'never'. Type 'string' is not
assignable to type 'never'.(2322)”

This isn’t out of the ordinary; it’s just where “unexpected intersection types” make
you think a little bit more about the type system.

Let’s look at this example. We create a function that lets us update from one object
anotherPerson to object person via providing a key. Both person and another
Person have the same type Person, but TypeScript throws errors:
let person = {
name: "Stefan",

age: 39,
b

type Person = typeof person;

let anotherPerson: Person = {
name: "Not Stefan",

368 | Chapter 12: Type Development Strategies

age: 20,
b

function update(key: keyof Person) {
person[key] = anotherPerson[key];
//” Type 'string | number' is not assignable to type 'never'.
// Type 'string' is not assignable to type 'never'.(2322)
}

update("age");

Property assignments via the index access operator are hard for TypeScript to track
down. Even if you narrow all possible access keys via keyof Person, the possible val-
ues that can be assigned are string or number (for name and age, respectively). While
this is fine if you have index access on the righthand side of a statement (reading), it
gets a little interesting if you have index access on the lefthand side of a statement
(writing).

TypeScript can’'t guarantee that the value you pass along is actually correct. Look at
this function signature:

function updateAmbiguous(key: keyof Person, value: Person[keyof Person]) {

/.
}

updateAmbiguous("age", "Stefan");

Nothing prevents me from adding a falsely typed value to every key. Except for Type-
Script, which throws an error. But why does TypeScript tell us the type is never?

To allow for some assignments TypeScript compromises. Instead of not allowing any
assignments at all on the righthand side, TypeScript looks for the lowest common
denominator of possible values, for example:

type Switch = {
address: number,
on: 0 | 1
b
declare const switcher: Switch;
declare const key: keyof Switch;
Here, both keys are subsets of number. address is the entire set of numbers; on on the
other side is either @ or 1. It's absolutely possible to set 0 or 1 to both fields! And this
is what you get with TypeScript as well:
switcher[key] = 1; // This works

switcher[key] = 2; // Error
// * Type '2' is not assignable to type '0 [1'.(2322)

12.6 Working Around Index Access Restrictions | 369

TypeScript gets to the possible assignable values by doing an intersection type of all
property types. In the case of the Switch, it'’s number & (0 | 1), which boils down to
@ | 1.In the case of all Person properties, it’s string & number, which has no over-
lap; therefore it’s never. Hah! There’s the culprit!

One way to get around this strictness (which is for your own good) is by using gener-
ics. Instead of allowing all keyof Person values to access, we bind a specific subset of
keyof Person to a generic variable:

function update<K extends keyof Person>(key: K) {
person[key] = anotherPerson[key]; // works

}
update("age");
When I update("age"), K is bound to the literal type of "age". No ambiguity there!

There is a theoretical loophole since we could instantiate update with a much broader
generic value:

update<"age" | "name">("age");

This is something the TypeScript team allows, for now. See also this comment by
Anders Hejlsberg. Note that he asks to see use cases for such a scenario, which per-
fectly details how the TypeScript team works. The original assignment via index
access on the righthand side has so much potential for error that they give you
enough safeguards until you make it very intentional what you want to do. This is
ruling out entire classes of errors without getting too much in the way.

12.7 Deciding Whether to Use
Function Overloads or Conditional Types

Problem

With conditional types, you have more possibilities to define function signatures than
before. You wonder if you still need function overloads or if they’re obsolete.

Solution

Function overloads provide better readability and an easier way to define expecta-
tions from your type than conditionals. Use them when the situation requires.

Discussion

With type system features like conditional types or variadic tuple types, one techni-
que to describe a function’s interface has faded into the background: function

370 | Chapter 12: Type Development Strategies

https://oreil.ly/0Fetp

overloads. And for good reason. Both features have been implemented to deal with
the shortcomings of regular function overloads.

See this concatenation example directly from the TypeScript 4.0 release notes. This is
an array concat function:

function concat(arri, arr2) {
return [...arrl, ...arr2];

}

To correctly type a function like this so it takes all possible edge cases into account,
we would end up in a sea of overloads:

// 7 overloads for an empty second array
function concat(arrl: [], arr2: []): [1;
function concat<A>(arri: [A], arr2: []): [A];
function concat<A, B>(arrl: [A, B], arr2: []): [A, B];
function concat<A, B, C>(arrl: [A, B, C], arr2: []): [A, B, C];
function concat<A, B, C, D>(arrl: [A, B, C, D], arr2: []): [A, B, C, D];
function concat<A, B, C, D, E>(
arrl: [A, B, C, D, E],
arr2: []
): [A, B, C, D, EJI;
function concat<A, B, C, D, E, F>(
arrl: [A, B, C, D, E, F],
arr2: []
): [A, B, C, D, E, F];
// 7 more for arr2 having one element
function concat<A2>(arrl: [], arr2: [A2]): [A2];
function concat<Al, A2>(arril: [A1], arr2: [A2]): [A1, A2];
function concat<Al, B1, A2>(arrl: [Al, B1], arr2: [A2]): [A1l, B1, A2];
function concat<A1l, B1, C1, A2>(
arrl: [A1, B1, C1],
arr2: [A2]
y: [Al, B1, C1, A2];
function concat<Al, B1, C1, D1, A2>(
arrl: [A1, B1, C1, D1],
arr2: [A2]
y: [Al1, B1, C1, D1, A2];
function concat<Al, B1, C1, D1, E1, A2>(
arrl: [A1, B1, C1, D1, E1],
arr2: [A2]
y: [Al, B1, C1, D1, E1, A2];
function concat<Al, B1, C1, D1, E1, F1, A2>(
arrl: [A1, B1, C1, D1, E1, F1],
arr2: [A2]
y: [Al1, B1, C1, D1, E1, F1, A2];
// and so on, and so forth

12.7 Deciding Whether to Use Function Overloads or Conditional Types | 371

And this only takes into account arrays that have up to six elements. Variadic tuple
types help greatly with these situations:

type Arr = readonly any[];

function concat<T extends Arr, U extends Arr>(arrl: T, arr2: U): [...T, ...U] {
return [...arrl, ...arr2];

}

The new function signature requires a lot less effort to parse and is very clear on what
types it expects to get as arguments and what it returns. The return value also maps to
the return type. No extra assertions: TypeScript can make sure that you are returning
the correct value.

It’s a similar situation with conditional types. This example is very similar to Recipe
5.1. Think of software that retrieves orders based on customer, article, or order ID.
You might want to create something like this:

function fetchOrder(customer: Customer): Order[]

function fetchOrder(product: Product): Order[]

function fetchOrder(orderId: number): Order

// the implementation

function fetchOrder(param: any): Order | Order[] {
Y7

}

But this is just half the truth. What if you end up with ambiguous types where you
don’t know exactly if you get only a Customer or only a Product? You need to take
care of all possible combinations:

function fetchOrder(customer: Customer): Order[]
function fetchOrder(product: Product): Order[]
function fetchOrder(orderId: number): Order
function fetchOrder(param: Customer | Product): Order[]
function fetchOrder(param: Customer | number): Order | Order[]
function fetchOrder(param: number | Product): Order | Order[]
// the implementation
function fetchOrder(param: any): Order | Order[] {

Y72
}

Add more possibilities, and you end up with more combinations. Here, conditional
types can reduce your function signature tremendously:

type FetchParams = number | Customer | Product;

type FetchReturn<T> = T extends Customer
? Order[]
: T extends Product
? Order[]
: T extends number
? Order

372 | Chapter 12: Type Development Strategies

: never;

function fetchOrder<T extends FetchParams>(params: T): FetchReturn<T> {
Y72
}

Since conditional types distribute a union, FetchReturn returns a union of return
types.

So there is good reason to use those techniques instead of drowning in too many
function overloads. So, to return to the question: do we still need function overloads?

Yes, we do.

Different function shapes

One scenario where function overloads remain handy is if you have different argu-
ment lists for your function variants. This means not only the arguments (parame-
ters) themselves can have some variety (this is where conditionals and variadic tuples
are fantastic) but also the number and position of arguments.

Imagine a search function that has two different ways of being called:

o Call it with the search query. It returns a Promise you can await.

o Call it with the search query and a callback. In this scenario, the function does
not return anything.

This can be done with conditional types but is very unwieldy:

// => (1)
type SearchArguments =
// Argument list one: a query and a callback
| [query: string, callback: (results: unknown[]) => void]
// Argument list two:: just a query
| [query: string];

// A conditional type picking either void or a Promise depending
// on the input => (2)
type ReturnSearch<T> = T extends [query: string]

? Promise<Array<unknown>>

. void;

// the actual function => (3)
declare function search<T extends SearchArguments>(...args: T): ReturnSearch<T>;

// z is void
const z = search("omikron", (res) => {});

// v 1s Promise<unknown>
const y = search("omikron");

12.7 Deciding Whether to Use Function Overloads or Conditional Types | 373

Here’s what we did:

1. We defined our argument list using tuple types. Since TypeScript 4.0, we can
name tuple fields just like we would objects. We create a union because we have
two different variants of our function signature.

2. The ReturnSearch type selects the return type based on the argument list variant.
If it’s just a string, return a Promise. Otherwise return void.

3. We add our types by constraining a generic variable to SearchArguments so that
we can correctly select the return type.

That is a lot! And it features a ton of complex features we love to see in TypeScript’s
feature list: conditional types, generics, generic constraints, tuple types, union types!
We get some nice autocomplete, but it's nowhere near the clarity of a simple function
overload:

function search(query: string): Promise<unknown[]>;
function search(query: string, callback: (result: unknown[]) => void): void;
// This is the implementation, it only concerns you
function search(
query: string,
callback?: (result: unknown[]) => void
): void | Promise<unknown> {
// Implement
}

We use a union type only for the implementation part. The rest is very explicit and
clear. We know our arguments, and we know what to expect in return. No ceremony,
just simple types. The best part of function overloads is that the actual implementa-
tion does not pollute the type space. You can go for a round of any and just not care.

Exact arguments

Another situation where function overloads can make things easier is when you need
exact arguments and their mapping. Let’s look at a function that applies an event to
an event handler. For example, we have a MouseEvent and want to call a MouseEvent
Handler with it. Same for keyboard events and so on. If we use conditionals and
union types to map event and handler, we might end up with something like this:

// All the possible event handlers
type Handler =
| MouseEventHandler<HTMLButtonElement>
| KeyboardEventHandler<HTMLButtonElement>;

// Map Handler to Event

type Ev<T> = T extends MouseEventHandler<infer R>
? MouseEvent<R>
: T extends KeyboardEventHandler<infer R>
? KeyboardEvent<R>

374 | Chapter 12: Type Development Strategies

: never;

// Create a
function apply<T extends Handler>(handler: T, ev: Ev<T>): void {
handler(ev as any); // We need the assertion here

}

At first glance, this looks fine. It might be a bit cumbersome, though, if you think
about all the variants you need to keep track of.

But there’s a bigger problem. The way TypeScript deals with all possible variants of
the event is causing an unexpected intersection, as we see in Recipe 12.6. This means
that, in the function body, TypeScript can’t tell what kind of handler you are passing.
Therefore, it also can’t tell which kind of event we're getting. So TypeScript says the
event can be both: a mouse event and a keyboard event. You need to pass handlers
that can deal with both, which is not how we intend our function to work.

The actual error message is “T'S 2345: Argument of type KeyboardEvent<HTMLButton
Element> | MouseEvent<HTMLButtonElement, MouseEvent> is not assignable to
parameter of type MouseEvent<HTMLButtonElement, MouseEvent> & Keyboard
Event<HTMLButtonElement>”

This is why we need an as any type assertion to make it possible to actually call the
handler with the event.

The function signature works in a lot of scenarios:

declare const mouseHandler: MouseEventHandler<HTMLButtonElement>;
declare const mouseEv: MouseEvent<HTMLButtonElement>;

declare const keyboardHandler: KeyboardEventHandler<HTMLButtonElement>;
declare const keyboardEv: KeyboardEvent<HTMLButtonElement>;

apply(mouseHandler, mouseEv); // works

apply(keyboardHandler, keyboardEv); // woirks

apply(mouseHandler, keyboardEv); // breaks like it should!

// A

// Argument of type 'KeyboardEvent<HTMLButtonElement>' is not assignable
// to parameter of type 'MouseEvent<HTMLButtonElement, MouseEvent>'

But once there’s ambiguity, things don’t work out as they should:

declare const mouseOrKeyboardHandler:
MouseEventHandler<HTMLButtonElement> |
KeyboardEventHandler<HTMLButtonElement>; ;

// This is accepted but can cause problems!
apply(mouseOrKeyboardHandler, mouseEv);

When mouseOrKeyboardHandler is a keyboard handler, we can’t reasonably pass a
mouse event. Wait: this is exactly what the TS2345 error from before tried to tell us!

12.7 Deciding Whether to Use Function Overloads or Conditional Types | 375

We just shifted the problem to another place and made it silent with an
as any assertion.

Explicit, exact function signatures make everything easier. The mapping becomes
clearer, the type signatures are easier to understand, and there’s no need for condi-
tionals or unions:

// Overload 1: MouseEventHandler and MouseEvent
function apply(
handler: MouseEventHandler<HTMLButtonElement>,
ev: MouseEvent<HTMLButtonElement>
): void;
// Overload 2: KeyboardEventHandler and KeyboardEvent
function apply(
handler: KeyboardEventHandler<HTMLButtonElement>,
ev: KeyboardEvent<HTMLButtonElement>
): void;
// The implementation. Fall back to any. This is not a type!
// TypeScript won't check for this line nor
// will it show in the autocomplete.
// This is just for you to implement your stuff.
function apply(handler: any, ev: any): void {
handler(ev);
}

Function overloads help us with all possible scenarios. We make sure there are no
ambiguous types:

apply(mouseHandler, mouseEv); // works!

apply(keyboardHandler, keyboardEv); // works!
apply(mouseHandler, keyboardEv); // breaks like it should!

// ~ No overload matches this call.
apply(mouseOrKeyboardHandler, mouseEv); // breaks like it should
// ~ No overload matches this call.

For the implementation, we can even use any. Since you can make sure that you won’t
run into a situation that implies ambiguity, you can rely on the happy-go-lucky type
and don’t need to bother.

The catch-all function body

Last but not least, there’s the combination of conditional types and function over-
loads. Remember the example from Recipe 5.1: we saw that conditional types gave the
function body a hard time to map values to the respective generic return types. Mov-
ing the conditional type to a function overload and using a very broad function sig-
nature for implementation helps both the users of the function as well as the
implementers:

function createlLabel<T extends number | string | StringlLabel | NumberLabel>(

input: T
): GetLabel<T>;

376 | Chapter 12: Type Development Strategies

function createlLabel(
input: number | string | StringLabel | NumberLabel
): NumberLabel | StringLabel {

if (typeof input === "number") {
return { id: input };
} else if (typeof input === "string") {

return { name: input };
} else if ("id" in input) {
return { i1d: input.id };
} else {
return { name: input.name };
}
}
Function overloads are still very useful and, for a lot of scenarios, the way to go.
They're easier to read, easier to write, and, in a lot of cases, more exact than what we

get with other means.

But it’s not either-or. You can happily mix and match conditionals and function over-
loads if your scenario needs it.

12.8 Naming Generics

Problem

T and U don't tell you anything about generic type parameters.

Solution

Follow a naming pattern.

Discussion

TypeScript’s generics are arguably one of the most powerful features of the language.
They open a door to TypeScript's own metaprogramming language, which allows for
a very flexible and dynamic generation of types. It comes close to being its own func-
tional programming language.

Especially with the arrival of string literal types and recursive conditional types in the
most recent TypeScript versions, we can craft types that do astonishing things. This
type from Recipe 12.2 parses Express-style from route information and retrieves an
object with all its parameters:

type ParseRouteParameters<T> =
T extends “${string}/:${infer U}/${infer R} ?
{ [P in U | keyof ParseRouteParameters<'/${R} '>]: string } :
T extends "${string}/:${infer U} ?
{ [P in U]: string } : {}

12.8 Naming Generics | 377

type X = ParseRouteParameters<"/api/:what/:is/notyou/:happening">
// type X = {

// what: string,

// 1s: string,

// happening: string,

/7 }

When we define a generic type, we also define generic type parameters. They can be of
a certain type (or more correctly, be a certain subtype):

type Foo<T extends string> = ...
They can have default values:
type Foo<T extends string = "hello"> = ...

And when using default values, order is important. This is just one of many similari-
ties to regular JavaScript functions! So since we are almost talking functions, why are
we using single-letter names for generic type parameters?

Most generic type parameters start with the letter T. Subsequent parameters go along
the alphabet (U, V, W) or are abbreviations like K for key. This can lead to highly
unreadable types, however. If I look at Extract<T, U>, it is hard to tell if we extract T
from U, or the other way around.

Being a bit more elaborate helps:
type Extract<From, Union> = ...

Now we know that we want to extract from the first parameter everything that is
assignable to Union. Furthermore, we understand that we want to have a union type.

Types are documentation, and our type parameters can have speaking names, just like
you would do with regular functions. Go for a naming scheme, like this one:

o All type parameters start with an uppercase letter, like you would name all other
types!

« Only use single letters if the usage is completely clear. For example, ParseRoute
Params can have only one argument, the route.

« Don’t abbreviate to T (that’s way too ... generic!) but to something that clarifies
what we are dealing with. For example, ParseRouteParams<R>, where R stands
for Route.

o Rarely use single letters; stick to short words or abbreviations: Elem for Element,
Route can stand as is.

o Use prefixes to differentiate from built-in types. For example, Element is taken,
so use GElement (or stick with Elem).

378 | Chapter 12: Type Development Strategies

o Use prefixes to make generic names clearer: URLObj is clearer than Obj,
for instance.

o Same patterns apply to inferred types within a generic type.

Let’s look at ParseRouteParams again and be more explicit with our names:

type ParseRouteParams<Route> =
Route extends “${string}/:${infer Param}/${infer Rest} ?
{ [Entry in Param | keyof ParseRouteParameters<'/${Rest} '>]: string } :
Route extends “${string}/:${infer Param} ?
{ [Entry in Param]: string } : {}
It becomes a lot clearer what each type is meant to be. We also see that we need to
iterate over all Entrys in Param, even if Param is just a set of one type.

Arguably, it’s a lot more readable than before!

There is one caveat: it'’s almost impossible to distinguish type parameters from actual
types. There’s another scheme that has been heavily popularized by Matt Pocock:
using a T prefix:

type ParseRouteParameters<TRoute> =
Route extends “${string}/:${infer TParam}/${infer TRest}" ?
{ [TEntry in TParam | keyof ParseRouteParameters<'/${TRest} >]: string } :
Route extends “${string}/:${infer TParam}' ?
{ [TEntry in TParam]: string } : {}

This comes close to a Hungarian Notation for types.

Whatever variation you use, making sure that generic types are readable to you and
your colleagues, and that their parameters speak for themselves, is as important as in
other programming languages.

12.9 Prototyping on the TypeScript Playground

Problem
Your project is so big, it’s hard for you to properly fix bugs in typings.

Solution
Move your types to the TypeScript playground and develop them in isolation.

Discussion

The TypeScript playground as shown in Figure 12-1 is a web application that has
been with TypeScript since its first release, showcasing how TypeScript syntax is com-
piled to JavaScript. Its capabilities were originally limited and focused on “breaking

12.9 Prototyping on the TypeScript Playground | 379

https://oreil.ly/Y1i-Q
https://oreil.ly/c23gW
https://www.typescriptlang.org/play

the ice” for new developers, but in recent years it has become a powerhouse of online
development, rich in features and indispensable for TypeScript development. The
TypeScript team asks people to submit issues including a re-creation of the bug using
the playground. They also test new and upcoming features by allowing the nightly
version to be loaded into the application. In short: the TypeScript playground is

essential for TypeScript development.

Q00 TypeScript Playground - Struct. x | 4

TypeScript

Playground

Download Docs Handbook Community Tools

TS Config v Examples v Help ~

v494~ Run Export~ Share

// TypeScript is a Structural Type System. A structural type
// system means that when comparing types, TypeScript only
// takes into account the members on the type.

// could create two types but could not assign them to each

1
2
3
uy
5 // This is in contrast to nominal type systems, where you
6
7 // other. See example:nominal-typing

8

9 // For example, these two interfaces are completely
10 // transferrable in a structural type system:

12 interface Ball {

13 diameter: number;
1

15 interface Sphere {
16 diameter: number;
17}

18

19 let ball: Ball = { diameter: 10 };
20 let sphere: Sphere = { diameter: 20 };

22 sphere = ball;
23 ball = sphere;

25 // If we add in a type which structurally contains all of
26 // the members of Ball and Sphere, then it also can be
27 // set to be a ball or sphere.

28

29 interface Tube {
30 diameter: number;
31 length: number;
32}

4D C QO & typescriptiang.org/play?&q=271#code/PTAEBUEBACFMGUDGANAItALGVBNUBDUEDZAVOQIOXWBSIZY/IcNYBDAOIA.. @ ¢y | @ A

-1

mo¢

®@0osx00E

0O Search Docs
Settings
JS DTS ErrorseLogs Plugins Clippy

DT Prettier

"use strict";

// TypeScript is a Structural Type Sys

// system means that when comparing ty

// takes into account the members on t

let ball = { diameter: 10 };

let sphere = { diameter: 20 };

sphere = ball;

ball = sphere;

let tube = { diameter: 12, length: 3 }

tube = ball;

ball = tube;

// Because a ball does not have a leng

// assigned to the tube variable. Howe

// of Ball are inside tube, and so it

// TypeScript is comparing each member

// each other to verify their equality

// A function is an object in JavaScri

// in a similar fashion. With one usef

// the params:

let createBall = (diameter) => ({ diam

let createSphere = (diameter, useInche
return { diameter: useInches ? dia

Y

createSphere = createBall;

createBall = createSphere;

Figure 12-1. The TypeScript playground showing one of the built-in examples

For your regular development practices, the TypeScript playground is a great way to
develop types in isolation, independent from your current project. As TypeScript
configurations grow, they become confusing, and it becomes hard to understand
which types contribute to your actual project. If you encounter weird or unexpected
behavior in your types, try re-creating them in the playground, in isolation, without
the rest of your project.

380 | Chapter 12: Type Development Strategies

The playground doesn’t feature a full tsconfig.json, but you can define the important
pieces of your configuration via a user interface, as seen in Figure 12-2. Alternatively,
you can set compiler flags using annotations directly in the source code:

// @strictPropertyInitialization: false
// @target: esnext

// @module: nodenext

// @lib: es2015,dom

Not as comfortable but highly ergonomic as it allows you to share compiler flags
much more easily.

U TypeScript: TS Playground - An X |+

m ¢

4 D C [@ typescriptiang.org/play?q=76#handbook-0 a o @A @0 MO
TypeScript Download Docs Handbook Community Playground Tools A Search Docs
Playground TS Config Examples ~ Help ~ Settings

Js DTS Errorsochs Plugins DT
TS Conflg Clippy Prettier

"use strict";

Lang Target: [ES2017v JSX: [React | Module: // A nominal type system means that ea

Set the JavaScript Specify what JSX code // and even if types have the same dat
Which language should language version for is generated. Specify what module // across types.

be used in the editor emitted JavaScript and code is generated. // We will use a function to transform

include compatible // a ValidatedInputString - but the po

library declarations. // is that we're just _telling_ TypeSc

const validateUserInput = (input) => {
const simplevValidatedInput = input

N return simpleValidatedInput;

Output Formatting Ny

// Now we can create functions which w

// our new nominal type, and not the g

const printName = (name) => {

preserveWatchOutput
O pisable wiping the console in watch mode.

pretty console.log(name);
O Enable color and formatting in TypeScript's output to H
make compiler errors easier to read. // For example, here's some unsafe inp
// through the validator and then bein
noErrorTruncation const input = "alert('bobby tables')";
O pisable truncating types in error messages. const validatedInput = validateUserInp

printName(validatedInput);

// On the other hand, passing the un-v
Emit // printName will raise a compiler err
printName(input);
// You can read a comprehensive overvi
// different ways to create nominal ty
// trade-offs in this 400 comment long
/7
// https://github.com/Microsoft/TypeSc

declaration
Generate .d.ts files from TypeScript and JavaScript
files in your project.

removeComments
O Disable emittina comments.

Figure 12-2. Instead of writing an actual tsconfig.json, you set compiler flags using the
TSConfig panel

You also can compile TypeScript, get extracted type information, run small pieces of
code to see how they behave, and export everything to various destinations, including
other popular online editors and IDEs.

12.9 Prototyping on the TypeScript Playground | 381

You can select various versions to ensure that your bug isn't dependent on version
updates, and you can run various, well-documented examples to learn the basics of
TypeScript while trying out actual source code.

As noted in Recipe 12.10, developing JavaScript would be nothing without using
dependencies. In the TypeScript playground, it’s possible to fetch type information for
dependencies directly from NPM. If you import, for example, React within the Type-
Script playground, the playground will try to acquire types:

1. First, it will look at the respective package on NPM and check if there are types
defined or .d.ts files somewhere in its contents.

2. If not, it will check on NPM if Definitely Typed type information exists and will
download the respective @types package.

This is recursive, meaning that if some types require types from other packages, type
acquisition will also go through the type dependencies. For some packages, you can
even define which version to load:

import { render } from "preact"; // types: legacy
Here, types is set to legacy, which loads the respective legacy version from NPM.

There’s more to the ecosystem. An important tool of the TypeScript playground is
Twoslash. Twoslash is a markup format for TypeScript files that lets you highlight
code, handle multiple files, and show the files the TypeScript compiler creates. It’s
fantastic for blogs and websites—you basically have an inline TypeScript compiler for
code examples—but its also fantastic if you need to create complex debugging
scenarios.

The compiler flag annotations are handled by Twoslash, but you can also get inline
hints on current types by adding a marker in a comment directly under a variable
name:

// @jsxFactory: h
import { render, h } from "preact";

function Heading() {
return <h1>Hello</h1>
}

const elem = <Heading/>
/2

// This line above triggers inline hints

You can see the result in Figure 12-3.

382 | Chapter 12: Type Development Strategies

// @jsxFactory: h
import { render, h } from "preact";

function Heading() {

return <hl>Hello</hl>

const elem = <Heading/>
// *?const elem: h.JSX.Element

O o g0 ;B WM

Figure 12-3. Twoslash in action: setting compiler flags via annotations

Twoslash is also part of the bug workbench, which is a fork of the playground with an
emphasis on creating and displaying complex reproductions of bugs. Here, you can
also define multiple files to see how imports and exports work:

export const a = 2;
// @filename: a.ts

import { a } from "./input.js"
console.log(a);

Multifile support is triggered by the first @filename annotation. Everything before
this line becomes a file called input.tsx, basically your main entry point.

Last but not least, the playground can work as your entire demo suite for workshops
and trainings. Using Twoslash, you can create multiple files in a GitHub Gist reposi-
tory and load the TypeScript files along with documentation as part of a Gist docset,
as seen in Figure 12-4.

This is immensely powerful for immersive learning. From mere reproductions to
full-fledged demo suites, the TypeScript playground is the one-stop source for Type-
Script developers—whether you need to file bugs, try out something new, or work on
types in isolation. It’s a great resource to start with, and from there you can easily
migrate to “real” IDEs and tools.

12.9 Prototyping on the TypeScript Playground | 383

https://oreil.ly/jVU3u

®O® (O 1ype|Treats2020 TypeScript: TS Playground - An X | + v

4> C n & i % i 0 n1PA ®0x»0DB =

TypeScript Download Docs Handbook Community Playground Tools O Search Docs

Playground TS Config + Examples v Help = Settings

Type | Treats 2020 _JS DTS Emors Logs Plugins DT
The Challenge

© Intro.md Clippy Prettier

0 e Welcome to TypeScript's first ever set of virtual code challenges: Type | Treat (or “Type or Treat")l We will

"use strict";

// You've been keeping a diary of you
// results for your street, they gene
// three categories: treats, tricks a

mliotermediatai G be presenting some "spoaky” code challenges that will allow you to get deeper into the TypeScript language

S Answers 1.md butin a fun way.

9 Day 2md Starting tomorrow, a new code challenge will be posted every weekday, along with its solution the day after.
= Beginner 2.ts The last solution will be posted on Halloween day. // Can you make three types which can
® Intermediate 2.ts // these results?
5 Answers.md . const treats = [

Are The Challenges For TypeScript Developers Only? { location: "House 1', result: "t
° Day 3.md o X { location: "House 3", result: "t
o B Absolutely not! We want all developers, familiar with TypeScript or not to be apart of Type | Treat. Every day { Location: "House 4", result: "t
e will have two different types of challenges, one for begi and one for i i 1
5 Answers 3.md developers. That way everyone can participate. const tricks = [

Beginner/Learner Challenge { location: "House 2", result: "t
5 Day 4md { location: "House 7", result: "t
m Beginner 4.ts IH
const noShows = [

{ location: "House 6", result: "n

The TypeScript team is being hired to investigate recent hauntings in the community, and we are trying to
figure which ghost is the trouble-maker! We found an API that will allow us to get data on the ghosts
hawever, out code isn't fully optimized. So we need your help.

u Intermediate 4.ts

5 Answers 4md

1

5 Day 5.md Head to this link and help us figure out the best type to use in one of our function parameters! // Now that you have the types, can yi
u BeginnerS.ts // not duplicate 'location' and 'resu
= iate 5.t Challenge // a union for 'result' and a new inti

5 Answers 5.md
Your kids have come back from trick or treating with a lot of loot. Someone's going to have to sort this pile,

and it looks like that job has fallen to you. Can you ionally filter the pile into lists?

Head over to start sorting.

Figure 12-4. A Gist docset in the playground

12.10 Providing Multiple Library Versions

Problem

You write external types for a library and want to maintain type updates relative to
library version updates.

Solution

Use reference triple-slash directives, as well as modules, namespaces, and interfaces
for declaration merging.

Discussion

Programming would be tough without external libraries that take care of a lot of
work for you. JavaScripts ecosystem is arguably one of the richest when it comes to
third-party dependencies, mainly through NPM. Also, most of them come with Type-
Script support, either through built-in types or through types from Definitely Typed.
According to the TypeScript team, almost 80% of NPM is typed. However, there is
still the odd holdout: for example, libraries are not written in TypeScript, or legacy
code from your own company that you still need to make compatible with today’s
software.

384 | Chapter 12: Type Development Strategies

https://npmjs.org
https://oreil.ly/G2Ktl

Think of a library called “lib”, which exposes a Connector class that you can use to
target internal systems. This library exists in multiple versions, and features have
been added constantly:

import { Connector } from "lib";

// This exists in version 1
const connector = new Connector();
const connection = connector.connect("127.0.0.1:4000");

connection.send("Hi!");

// This exists in version 2
connection.close();

It's worth noting that this library can be used by multiple projects within your organi-
zation, with varying versions. Your task is to write types so your teams get proper
autocomplete and type information.

In TypeScript, you can provide multiple versions of a library’s types by creating an
ambient module declaration for each version of the library. An ambient module dec-
laration is a file with a .d.ts extension that provides TypeScript with the types for a
library not written in TypeScript.

By default, TypeScript is greedy: it includes type definitions and globs everything it
can. If you want to limit TypeScript’s file access, make sure to use the "exclude" and
"include" properties in tsconfig.json:

{
"compilerOptions": {
/) ...
"typeRoots": [
"@types”
1,
"rootDir": "./src",
"outDir": "dist",
}s
"include": ["./src", "./@types"]
}

We create a folder next to the folders we included in tsconfig.json. Here, we create a
file called lib.v1.d.ts, where we store the basic information on how objects are created:

declare module "lib" {
export interface ConnectorConstructor {
new (): Connector;

}

var Connector: ConnectorConstructor;

export interface Connector {
connect(stream: string): Connection;

}

12.10 Providing Multiple Library Versions | 385

export interface Connection {
send(msg: string): Connection;
}
}

Note that we use modules to define the name of the module and that we also use
interfaces for most of our types. Both modules and interfaces are open to declaration
merging, which means we can add new types in different files and TypeScript merges
them together. This is crucial if we want to define multiple versions.

Also note that we use the constructor interface pattern (see Recipe 11.3) for
Connector:

export interface ConnectorConstructor {
new (): Connector;

}

var Connector: ConnectorConstructor;
In doing so, we can change the signature of the constructor and make sure that an
instantiable class is being recognized by TypeScript.

In another file called lib.v2.d.ts, next to lib.v1.d.ts, we redeclare "1ib" and add more
methods to Connection. Through declaration merging, the close method gets added
to the Connection interface:

/// <reference path="lib.v1.d.ts" />

declare module "1lib" {
export interface Connection {
close(): void;
}
}
Using triple-slash directives, we refer from lib.v2.d.ts to lib.vl.d.ts, signaling that
everything from version 1 is to be included in version 2.

All those files exist in a folder called @lib. Using the configuration we declared earlier,
TypeScript won't pick them up. We can, however, write a new file lib.d.ts and put it in
@types, and from there, refer to the version we want to include:

/// <reference path="../@lib/lib.v2.d.ts" />

declare module "1lib" {}

A simple change from “./@lib/lib.v2.d.ts” to “./@lib/lib.v1.d.ts” will change the version
we target, while we still maintain all library versions independently.

If you are curious, try looking into the included library files from TypeScript. They
are a treasure trove of external type definitions, and there is a lot to learn. If you use
your editor to find references, for example, to Object.keys, you will see that this

386 | Chapter 12: Type Development Strategies

function exists in multiple locations, and based on your TypeScript configuration, the
right file will be included. Figure 12-5 shows how Visual Studio Code displays various
file locations for Object.keys. TypeScript is so flexible that you can use the same
techniques for your project, even extending TypeScript’s built-in types themselves
(see Recipe 9.7).

2
3 const keys = Object.keys(document);
yS

lib.es5.... /Applications/Visual Studio Code.app/Contents/Resources/app/extensions/node_m... - Definition... X
zoT +EpaTamT U UDJTTT TU—TTSTE -
v lib.es2015.core.d.ts... (@)

256 */ .

257 isExtensible(o: any): boolean; | keys(o: {}): string[];
258 v lib.esb.d.ts /Applicati... (@)
o) /xx keys (o: object): string[];
260 * Returns the names of the enumerable string proj !
261 * @param o Object that contains the properties ar

262 */

263 keys(o: object): stringl]l;

264 }

265

266 /%%

267 * Provides functionality common to all JavaScript ob:

268 */

269 declare var Object: ObjectConstructor;

270

a71

Figure 12-5. Finding references to built-in types in Visual Studio Code shows you how
TypeScript manages multiple versions of ECMAScript and the DOM

In conclusion, providing multiple versions of a library’s types in TypeScript can be
done by creating ambient module declarations for each version of the library and ref-
erencing the appropriate declaration in your TypeScript code. Hopefully, you will be
able to use package managers in your project to manage different versions of libraries
and their corresponding types, making it easier to handle dependencies and avoid
conflicts.

12.11 Knowing When to Stop

Problem

Writing elaborate and complicated types is exhausting!

Solution

Don't write elaborate and complicated types. TypeScript is gradual; use what makes
you productive.

12.11 Knowing WhentoStop | 387

Discussion

I want to end this book with some general advice on how to stop at the right time. If
you have read through the entire book and ended up here, you have read through
more than one hundred recipes with a lot of advice about everyday TypeScript prob-
lems. Be it project setup, complicated situations where you need to find the right type,
or workarounds when TypeScript runs into a situation where it’s too strict for its own
good, we have covered it all.

Solutions can get very complex, especially when we enter the area of conditional
types and everything around them, like helper types, variadic tuple types, and string
template literal types. TypeScript’s type system is undoubtedly powerful, especially if
you understand that every decision, every feature, has its roots in the fact that Java-
Script lies underneath it all. Creating a type system that gives you strong, static types
for a programming language that is so inherently dynamic is an amazing achieve-
ment. I have nothing but the deepest admiration for the bright minds in Redmond
who made all of this possible.

However, undeniably, things can get very complicated at times. Types can be hard to
read or create, and the fact that the type system is its own Turing-complete meta-
programming system that needs testing libraries doesn't help. And developers take
pride in understanding every aspect of their craft and tools, often preferring a com-
plex type solution over simpler types that don't give the same type safety but are ulti-
mately easier to read and understand.

A project that goes into the nitty-gritty of the type system is called Type Challenges.
It’s a fantastic project of brainteasers that show what’s possible with the type system. I
fiddle around with some of the more challenging riddles, getting great ideas for how
to explain the type system better. And while puzzles are fantastic for training a
developer’s mind, most of them lack a significant grasp of real-world, everyday situa-
tions.

And those are the situations where we often overlook TypeScript’s wonderful capabil-
ity that you don't often see in mainstream programming languages: its gradual adop-
tion of types. Tools like any, generic type parameters, and type assertions and the fact
that you can write simple JavaScript with a couple of comments make the barrier to
entry so much lower. The latest effort from the TypeScript team and TC39 is to lower
the barrier even more by adding type annotations to JavaScript, a proposal currently
in discussion. The goal of this proposal is not to make JavaScript type safe but to
remove compile steps if we want to have simple, easy-to-understand type annota-
tions. JavaScript engines can treat them as comments, and type-checkers can get real
information on the program’s semantics.

388 | Chapter 12: Type Development Strategies

https://tsch.js.org
https://oreil.ly/yQnIO

As developers, project leaders, engineers, and architects, we should use this feature.
Simple types are always better types: easier to understand and much easier to con-
sume.

The TypeScript website changed its claim from “JavaScript that scales” to “JavaScript
with syntax for types,” which should give you an idea of how to approach TypeScript
in projects: write JavaScript, annotate where necessary, write simple but comprehen-
sive types, and use TypeScript as a way to document, understand, and communicate
your software.

I think TypeScript follows the Pareto principle: 80% of type safety comes from 20% of
its features. This doesn’t mean the rest of it is bad or unnecessary. We just spent one
hundred recipes to understand situations where we effectively need TypeScript’s more
advanced features. It should just give you an idea of where to put effort. Don’t run
into advanced TypeScript trickery on every occasion. Monitor if loser types are a
problem. Estimate the effort to change types in your program, and make well-
informed decisions. Also know that in a refinement process (see Recipe 12.2), the rea-
son for multiple steps is to easily be able to stop.

12.11 Knowing WhentoStop | 389

https://typescriptlang.org
https://oreil.ly/smytJ

Symbols

! (exclamation mark), 332

(pound sign; hash), 307

$ (dollar sign; CLI convention), 6
{} (empty object) type, 42-44

A

abstract classes
describing constructors and prototypes,
313-316
when to use, 322-323
access modifiers, 304-309
accumulation technique, 180-183
addEventListener function, 55
AllOrNone<T, K> helper type, 231-235
ambient module declarations, 272
annotation-like type-checking, 357-361
annotations (see type annotations)
any type
basics, 12
disabling type-checking with, 27
exceptions and, 84
generic type parameters as alternative to,
116-118
Serialize<T> and, 164
testing complex types, 362
typing polymorphic components with, 301
unknown type versus, 39-42
uses for, 40
APIs
creating exclusive or (XOR) models with
optional never, 85-88

enabling loose autocomplete for string sub-

sets, 106-108

Index

function overloads and, 50-52
arguments (see function arguments)
Array.prototype.includes, 259-262
arrays

annotating with tuple types, 45-47

defining custom hooks, 281-283

tuple types and, 45-47

typing a concat function for, 189-192
as components, 299

(see also polymorphic components)
as keyword, type assertions and, 88-91
assertion signatures, modifying objects with,

127-130
assertNever function, 70-74
autocomplete, 106-108

B

backend requests, 183-187

base class, 309-313

basic types
annotating effectively, 35-39
any and unknown, 39-42
choosing the right object type, 42-44
defining function overloads, 50-52
interfaces versus type aliases, 48-50
overview, 35
this parameter types, 53-56
tuple types, 45-47
value and type namespaces, 59-62
working with symbols, 56-59

Boolean constructor, filtering nullish values
with, 263-264

bottom types, 72

builder pattern, 335-336

391

buttons, 276-279, 299

C
callbacks
promisify functions and, 192-196
typing in React's synthetic event system,
296-298
void as substitutable type for, 79-82
catch clauses
error types in, 82-85
in JavaScript, 84
class hierarchies, 313-316
classes
choosing the right visibility modifier,
304-309
deciding when to use classes or namespaces,
319-323
describing constructors and prototypes,
313-316
explicitly defining method overrides,
309-313
overview, 303
using generics in, 316-319
working with strict property initialization,
328-332
working with types in, 332-336
writing decorators, 336-342
writing static classes, 324-328
Common]S, 27-30
complex types, testing, 361-363
components (SPA framework), 139
compound types, 42
concat function, 189-192
conditional types
combining with conditional types for typing
a curry function, 197-199
creating an enum from a tuple, 206-210
filtering with never, 147-151
function overloads versus, 370-377
grouping elements by kind, 151-157
inferring types in conditionals, 160-165
managing complex function signatures,
143-147
overview, 143
refining types by adding, 355-357
removing specific object properties, 157-160
writing a formatter function, 174-177
configurations, predefined, 33-34
const context

defining custom hooks, 283
literals and, 76
const modifier, 138-142
constants, enums and, 97-102
constructor interface pattern, 313-316
context API, type definitions for, 288-293
contracts, checking with satisfies operator,
357-361
contravariance, 239-242
covariance, 239-242
curry function
currying defined, 197
typing, 197-199
typing a flexible curry function, 200-203
typing the simplest curry function, 203-206
custom event system, 168-170
custom hooks, defining, 281-283
custom type definitions, augmenting global
namespace with, 267-271

D
data modeling, 63-68
declaration merging, 48-50
extending modules, 264-266
filtering nullish values, 263-264
type maps and, 133
decorators, 336-342
DeepPartial<T> type, 218-220, 243-245
DeepRemap<T> helper type, 220-222
defineProperty, 253-258
definite assignment assertion, 332
DefinitelyTyped repository, 13-16
Deno, 30-33
dependencies
Deno and, 32
migrating a JavaScript project to TypeScript,
11
discriminated union types, 68-70
controlled components and, 279-281
exhaustiveness checking with assertNever,
70-74
template literals as discriminants, 183-187
distributive conditional type
for filtering with never, 147-151
grouping elements by kind with, 153

E
ECMAScript
decorator proposal, 337

392 | Index

loading different module types in Node.js,
27-30
typing ECMAScript modules from URLS,
24-27
edge cases, 243-245
editor hints, 220-222
empty object ({}) type, 42-44
enums
creating from a tuple, 206-210
working with, 97-102
error types, in catch clauses, 82-85
esModulelnterop, 8
event callbacks, creating, 170-174
event system, custom, 168-170
exact arguments, function overloads for,
374-376
ExactlyOne<T> helper type, 231-235
exactOptionalPropertyTypes, 95-97
exhaustiveness checking, 70-74
external libraries, 384-387
external type definitions (see standard library
and external type definitions)
external types, providing multiple library ver-
sions for, 384-387
Extract helper, 151-157

F

factory functions, 130-134
falsy values, 263
filter method, 263-264
for-in loop, 248-251
format parameter types, 177-180
formatter function
extracting format parameter types, 177-180
writing, 174-177
forwardRef components, 284-288
full-stack application, 16-21
function arguments
creating related, 112-116
defining function overloads, 50-52
function overloads
conditional types versus, 370-377
decorators and, 340
defining, 50-52
for different function shapes, 373-374
for exact arguments, 374-376
managing complex function signatures,
143-147
typing a flexible curry function, 200-203

function signatures
deciding whether to use function overloads
or conditional types with, 370-377
generalizing, 110-112
managing complex function signatures,
143-147
splitting all elements of, 210-211

G

generic constant, 113
generic helper functions, 259-262
generic instantiation, 116
generic type parameters, 111, 113-118, 378
generic types, working around index access
restrictions with, 368-370
generics, 109
adding const context to generic type param-
eters, 138-142
creating related function arguments,
112-116
generalizing function signatures, 110-112
generating new object types, 123-127
getting rid of any and unknown, 116-118
instantiation, 118-122
mapping types with type maps, 130-134
modifying objects with assertion signatures,
127-130
naming, 377-379
refining types with, 351-352
using in classes, 316-319
using ThisType<T> to define this in objects,
134-137
GetRequired<T>, 223-226
global namespace, augmenting with custom
type definitions, 267-271
globals, type definitions for context API,
288-293
Group type, 151-157

H

Haskell, 198

helper function, 189-192

helper types, 213
allowing at least one property, 226-231
allowing exactly one or all or none, 231-235
converting union to intersection types,

235-242

dealing with recursion limits, 180-183
getting all required keys, 223-226

Index | 393

modifying nested objects, 217-220
remapping, 220-222
setting specific properties optional, 213-217
testing complex types with, 361-363
using type-fest, 242-245
higher order components, 293-296
higher-order functions, 287, 293
HTML components, 276-279
HTMLElementTagNameMap, 132

|
IDE, 2
index access restrictions, working around,
368-370
index signatures, 91-95, 133
infer keyword, 160-165
installation (TypeScript), 6-9
instantiation
describing constructors and prototypes,
313-316
generics and, 118-122
interfaces, type aliases versus, 48-50
intersection types
converting union types to, 235-242
data modeling with, 66-67
defined, 66
intrinsic elements, 277-279
iterating over objects with Object.keys, 248-251

J

JavaScript
catch clauses in, 84
keeping types on the side, 9-10
migrating a project to TypeScript, 11-13
Node.js features versus, 17
type-checking, 2-5
void, 80
js extension, TypeScript and, 24
JSDoc, 4
JSX, 265, 272, 275-276
JSX namespace, 277
JSX.IntrinsicElements, 277-278

K

key remapping, 170-174

keys, defining open set with index signatures,
91-95

kind property, 151-157

L
libraries, 242
(see also standard library)
providing multiple library versions for
external types, 384-387
type-fest, 242-245
literal types, 67, 74
(see also string template literal types)
adding conditional types, 355-357
checking contracts with satisfies, 357-361
refining types by locking, 354
loaders (Webpack), 271
log (class method decorator), 336-342
low maintenance types
type-fest and, 242
working with, 344

M

mapped types
generating new object types from generic
mapped types, 123-127
index signatures and, 94
mapping types with type maps, 130-134
Markdown, 272
MDX, 272
method overrides, 309-313
migration, JavaScript to TypeScript, 11-13
missing properties, undefined values versus,
95-97
Mocha, 21-23
module graph, adding non-JS modules to,
271-273
modules
adding non-JS modules to the module
graph, 271-273
extending, 264-266
loading different module types in Node.js,
27-30

N

named constants, enums and, 97-102
namespaces

augmenting globals with custom type defi-

nitions, 267-271

deciding when to use, 320-322

JSX, 277

value and type, 59-62
nested conditional types, 177-180

394 | Index

nested objects, modifying, 217-220
never type
allowing exactly one or all or none, 231-235
and assert never technique, 72
controlled components and, 279-281
creating exclusive or (XOR) models, 85-88
filtering with, 147-151
optional never technique and, 87, 231
removing specific object properties with,
158
when using generics in classes, 318
Node.js, 6
Deno versus, 31
JavaScript features versus, 17
loading different module types in, 27-30
testing frameworks, 21-24
writing full-stack application targeting,
16-21
nolmplicitAny flag, 12
nominal types
defining in a structural type system, 102-106
enums as, 100
NonNullable<T>, 186
NPM, 6-7
nullish coalescing, 97
nullish values, filtering, 263-264

0

Object interface, 42-44

object properties, 253-258

object type
generating new, 123-127
removing specific object properties, 157-160

Object.defineProperty, 253-258

Object.keys, 248-251

objects, modifying with assertion signatures,
127-130

one-property objects, 226-231

optional never technique
allowing exactly one or all or none, 231-235
controlled components and, 279-281
creating exclusive or (XOR) models, 85-88

OptionBuilder<T>, 335-336

overloads (see function overloads)

P

package.json, 6
Parameters<F> helper type, 210-211
pinning types, const context for, 74-77

polymorphic components, 299-302
Preact, 266
predicates, 77-79
primitive types, 42, 349-351
private fields, 307-309
project setup
full-stack project, 16-21
installing TypeScript, 6-9
keeping types on the side, 9-10
loading different module types in Node.js,
27-30
loading types from DefinitelyTyped, 13-16
loading types in Node, 27-30
migrating a project to TypeScript, 11-13
overview, 1
test setup, 21-24
type-checking JavaScript, 2-5
typing ECMAScript modules from URLS,
24-27
using predefined configurations, 33-34
working with Deno and dependencies,
30-33
Promises, 192-196
promisify function, 192-196
properties
distinguishing missing properties and unde-
fined values, 95-97
removing specific object properties, 157-160
property visibility modifiers, 304-309
prototyping, TypeScript playground for,
379-383
proxy components
controlled components and, 279-281
typing polymorphic components in React,
299-302
writing, 276-279

R
React, TypeScript and, 275-276
type definitions for context API, 288-293
typing callbacks in synthetic event system,
296-298
typing custom hooks, 281-283
typing generic forwardRef components,
284-288
typing higher order components, 293-296
typing polymorphic components, 299-302
writing controlled components, 279-281
writing proxy components, 276-279

Index | 395

React.ComponentType<P>, 293-296
React.createElement factory, 299-302
recursion limits, 180-183
recursive conditional types

formatter function and, 176

inferring types in conditionals, 160-165
recursive helper types, 217-220
refining types, 346-357

adding generics, 351-352

basic typing, 348-349

locking literal types, 354

subsetting primitive types, 349-351
Remap<T> helper type, 220-222
required properties, getting keys for, 223-226
Resize Observer, 267-271
rest elements, 47, 194
ReturnType<F> helper type, 210-211
router (SPA framework), 139
runtime, validating data types at, 363-368

S
satisfies operator, 357-361
schemas, defining, 363-368
serialization, defined, 160
serialize function, 160-165
Serialize<T> type, 160-165
SetOptional (custom helper type), 214-216
single-page application (SPA) frameworks, 139
SPA (single-page application) frameworks, 139
Split<T> helper type, 226-231
standard library and external type definitions,
247
adding non-JS modules to the module
graph, 271-273
augmenting globals, 267-271
expanding types for Array.proto-
type.includes, 259-262
explicitly highlighting unsafe operations
with type assertions and unknown,
251-253
extending modules, 264-266
filtering nullish values, 263-264
iterating over objects with Object.keys,
248-251
working with defineProperty, 253-258
state, managing
working with strict property initialization,
328-332
writing controlled components, 279-281

static classes, 324-328

static modifiers, 324-328

strict mode, 8

strict property initialization, 328-332

string & {}, 106-108

string literals, 106-108

string manipulation types, 170-174

string patterns, custom event system for,
168-170

string template literal types, 167
creating event callbacks with string manipu-

lation types and key remapping, 170-174

dealing with recursion limits, 180-183
defining a custom event system, 168-170
extracting format parameter types, 177-180
mapped types and, 133
template literals as discriminants, 183-187
writing a formatter function, 174-177

structural type system, 37

structural typing, 102-106

substitutability, 82

subtypes, generic instantiation and, 118-122

symbol type, 56-59

Symbol() factory function, 56

synthetic event system (React), 296-298

T

tail-call optimization, 180-183
template literal types, 168
(see also string template literal types)
as discriminants, 183-187
defining a custom event system, 168-170
test index tag, 110-115
tests
setup when globals for testing frameworks
interfere with production code, 21-24
testing complex types, 361-363
text editors, 2
this object pointer
this parameter types, 53-56
using ThisType<T> to define this in objects,
134-137
this parameter types, 53-56
this type, 332-336
ThisType<T>, 134-137
top types, 39-42
triple-slash directives, 33
troubleshooting, prototyping on the TypeScript
playground for, 379-383

396 | Index

truthiness of a value, 263
try-catch blocks, 82-85
@ts-check, 2, 4, 10
@ts-expect-error, 12
ts-ignore, 27
tsconfig.json, 7
tsconfig/bases, 33
tuple types, 45-47
(see also variadic tuple types)
defined, 191
defining custom hooks, 281-283
tuples, creating enums from, 206-210
TupleToUnion<T>, 208-210
Twoslash, 382-383
type aliases, interfaces versus, 48-50
type annotations
annotating effectively, 35-39
type assertions as substitute for, 251-253
type assertions
effective use of, 88-91
explicit highlighting unsafe operations with
type assertions and unknown, 251-253
type casts versus, 89
Type Challenges, 362, 388
type definitions
external (see standard library and external
type definitions)
for context API, 288-293
type development strategies
checking contracts with satisfies, 357-361
function overloads versus conditional types,
370-377
knowing when to stop, 387-389
low maintenance types, 344
naming generics, 377-379
overview, 343
prototyping on the TypeScript playground,
379-383
providing multiple library versions, 384-387
refining types step by step, 346-357
testing complex types, 361-363
validating data types at runtime with Zod,
363-368
working around index access restrictions,
368-370
type hierarchy, 42
type maps
defined, 131
mapping types with, 130-134

type namespaces, 59-62
type system, 63
creating exclusive or models with optional
never, 85-88
data modeling with union and intersection
types, 63-68
defining nominal types in a structural type
system, 102-106
distinguishing missing properties and unde-
fined values, 95-97
enabling loose autocomplete for string sub-
sets, 106-108
enums, 97-102
error types in catch clauses, 82-85
exhaustiveness checking with assertNever,
70-74
explicitly defining models with discrimina-
ted union types, 68-70
index signatures, 91-95
pinning types with const context, 74-77
predicates, 77-79
type assertions, 88-91
void, 79-82
type updates, 384-387
type-checking, 2-5
type-fest library, 242-245
types, 13
(see also specific types)
development strategies (see type develop-
ment strategies)
loading from DefinitelyTyped, 13-16
narrowing with predicates, 77-79
narrowing with type assertions, 88-91
working with types in classes, 332-336
TypeScript (generally)
global versus per-project installation, 7
installing, 6-9
migrating a JavaScript project to, 11-13
TypeScript playground, 379-383

U

uncontrolled components, 280

undefined values, missing properties versus,
95-97

undefined, void as subtype of, 81

union types
allowing exactly one or all or none, 231-235
as alternative to enums, 101-102
converting to intersection type, 235-242

Index | 397

data modeling with, 63-68
defined, 65
explicitly defining models with discrimina-
ted union types, 68-70
grouping elements by kind, 151-157
Split<T> helper type and, 226-231
UnionTolntersection<T> helper type, 235-242
unknown type, 42
in absence of generic type parameter, 317
any type versus, 39-42
exceptions and, 84
explicit highlighting unsafe operations with
type assertions and unknown, 251-253
generic type parameters as alternative to,
116-118
unsafe operations, highlighting with type asser-
tions and unknown, 251-253
URLSs, typing ECMAScript modules from,
24-27

)
value namespaces, 59-62
values, undefined, 95-97
variadic tuple types
creating an enum from a tuple, 206-210

defined, 189

overview, 189

splitting all elements of a function signature,

210-211

tuple type versus, 191

typing a concat function, 189-192

typing a curry function, 197-199

typing a flexible curry function, 200-203

typing a promisify function, 192-196

typing the simplest curry function, 203-206
visibility, the right modifier for, 304-309
Visual Studio Code (VSCode), 2
void

JavaScript, 80

TypeScript, 79-82

W

watch function, 170-174
Webpack, 271-273

whitespaces, removing, 181-183
wrapper function, 253-258

z

Zod library, 363-368

398 | Index

About the Author

Stefan Baumgartner is a developer and architect based in Austria. He is the author of
TypeScript in 50 Lessons and runs a popular TypeScript and technology blog. In his
spare time, he organizes meetups and conferences, like the Rust Linz meetup and the
European TypeScript conference. Stefan enjoys Italian food, Belgian beer, and British
vinyl records. Stefan is also an independent consultant and trainer for Rust and Type-
Script at oida.dev.

Colophon

The animal on the cover of TypeScript Cookbook is a plum-headed parakeet (Psitta-
cula cyanocephala). These birds are endemic to the Indian subcontinent. They are
also commonly kept as pets. Like other parrots kept as pets, plum-headed parakeets
require regular interaction and socialization. Compared to other parrots, they are less
aggressive and possessive and are considered to be gentle, social, and affectionate.

Plum-headed parakeets are dimorphic, which means that males and females have
easily distinguishable features. Both have predominantly green bodies with a variety
of different shades on their breast, abdomen, back, and wings. Males have a purplish-
red colored head outlined with a black collar around the neck. Females have bluish-
gray heads and yellow-tinged feathers around their necks. They are medium-sized
birds that are approximately 12 inches long and weigh between 2.3 to 2.8 ounces. An
average lifespan for plum-headed parakeets is between 15 to 20 years.

A typical diet for these parakeets in the wild includes fruits, seeds, fleshy flower pet-
als, and grains. They have also been known to raid agricultural fields and orchards. In
captivity, they are healthiest when fed high-quality seed and pellet mixes that are sup-
plemented with fresh fruits and vegetables (e.g., sprouts, leafy greens, berries, and

peppers).

These birds typically populate woodlands and forested areas from the foothills of the
Himalayas south to Sri Lanka, including India, Pakistan, and Bangladesh. While there
has been a gradual decline in numbers due to habitat loss, plum-headed parakeets are
not in danger of extinction. Many of the animals on O’Reilly covers are endangered;
all of them are important to the world.

The cover illustration is by Karen Montgomery, based on a black-and-white engrav-
ing from Histoire Naturelle. The cover fonts are Gilroy Semibold and Guardian Sans.
The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

https://fettblog.eu
https://tsconf.eu
https://oida.dev

O'REILLY"

Learn from experts.
Become one yourself.

Books | Live online courses
Instant answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

https://www.oreilly.com

9

O'REILLY"

TypeScript Cookbook

TypeScript is one of the most important tools for JavaScript
developers. Still, even experienced developers wonder why
the TypeScript compiler is throwing squiggly red lines at them.
Enter TypeScript Cookbook. With this practical guide, author
Stefan Baumgartner provides senior engineers with solutions
for everyday TypeScript problems.

If you're conversant with JavaScript and TypeScript basics, this
book provides actionable recipes to help you tackle a wide
array of issues. From setting up complex project structures to
developing advanced helper types, each self-contained recipe
guides you through the problem and discusses why

and how a solution works.

The ideal companion for your ongoing TypeScript journey,
this cookbook helps you:

¢ Diveinto the inner workings of the TypeScript type system
¢ Integrate TypeScript into a variety of projects

¢ Craft advanced type definitions that allow for
flexible scenarios

¢ Create useful helper types that function across projects

¢ Ensure readability along with type safety

e Effectively type function signatures that rely on string literals
¢ Work around limitations of the standard library

¢ Integrate TypeScript into advanced React projects

o Apply type development strategies, including testing
of types

¢ Identify situations where the type system makes
exceptions to the rules

“TypeScript Cookbook
shows you how to solve
all sorts of problems
with advanced types.
Even better, it teaches
you how to use
TypeScript's features
to write new types
for yourself.”

—Nathan Shively-Sanders
Software Engineer on
the TypeScript team

Stefan Baumgartner is an
independent trainer for Rust and
TypeScript at oida.dev and a senior
product architect at Dynatrace,
where he leads the development
efforts for TypeScript-based
development tools, libraries, and
language runtimes. He writes about
TypeScript on his popular blog,
fettblog.eu, and published his first
TypeScript book TypeScript in 50
Lessons with Smashing Magazine
in 2020.

WEB DEVELOPMENT

US $65.99 CAN $82.99
ISBN: 978-1-098-13665-9

781

0981136659

56599

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

	Cover
	Copyright
	Table of Contents
	Foreword
	Preface
	Who This Book Is For
	What’s in This Book?
	Organization of This Book
	Conventions Used in This Book
	Programming Conventions
	Typesetting Conventions

	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Project Setup
	1.1 Type-Checking JavaScript
	Problem
	Solution
	Discussion

	1.2 Installing TypeScript
	Problem
	Solution
	Discussion

	1.3 Keeping Types on the Side
	Problem
	Solution
	Discussion

	1.4 Migrating a Project to TypeScript
	Problem
	Solution
	Discussion

	1.5 Loading Types from Definitely Typed
	Problem
	Solution
	Discussion

	1.6 Setting Up a Full-Stack Project
	Problem
	Solution
	Discussion

	1.7 Setting Up Tests
	Problem
	Solution
	Discussion

	1.8 Typing ECMAScript Modules from URLs
	Problem
	Solution
	Discussion

	1.9 Loading Different Module Types in Node
	Problem
	Solution
	Discussion

	1.10 Working with Deno and Dependencies
	Problem
	Solution
	Discussion

	1.11 Using Predefined Configurations
	Problem
	Solution
	Discussion

	Chapter 2. Basic Types
	2.1 Annotating Effectively
	Problem
	Solution
	Discussion

	2.2 Working with any and unknown
	Problem
	Solution
	Discussion

	2.3 Choosing the Right Object Type
	Problem
	Solution
	Discussion

	2.4 Working with Tuple Types
	Problem
	Solution
	Discussion

	2.5 Understanding Interfaces Versus Type Aliases
	Problem
	Solution
	Discussion

	2.6 Defining Function Overloads
	Problem
	Solution
	Discussion

	2.7 Defining this Parameter Types
	Problem
	Solution
	Discussion

	2.8 Working with Symbols
	Problem
	Solution
	Discussion

	2.9 Understanding Value and Type Namespaces
	Problem
	Solution
	Discussion

	Chapter 3. The Type System
	3.1 Modeling Data with Union and Intersection Types
	Problem
	Solution
	Discussion

	3.2 Explicitly Defining Models with
Discriminated Union Types
	Problem
	Solution
	Discussion

	3.3 Exhaustiveness Checking with the
Assert never Technique
	Problem
	Solution
	Discussion

	3.4 Pinning Types with Const Context
	Problem
	Solution
	Discussion

	3.5 Narrowing Types with Type Predicates
	Problem
	Solution
	Discussion

	3.6 Understanding void
	Problem
	Solution
	Discussion

	3.7 Dealing with Error Types in catch Clauses
	Problem
	Solution
	Discussion

	3.8 Creating Exclusive Or Models with Optional never
	Problem
	Solution
	Discussion

	3.9 Effectively Using Type Assertions
	Problem
	Solution
	Discussion

	3.10 Using Index Signatures
	Problem
	Solution
	Discussion

	3.11 Distinguishing Missing Properties
and Undefined Values
	Problem
	Solution
	Discussion

	3.12 Working with Enums
	Problem
	Solution
	Discussion

	3.13 Defining Nominal Types in a Structural Type System
	Problem
	Solution
	Discussion

	3.14 Enabling Loose Autocomplete for String Subsets
	Problem
	Solution
	Discussion

	Chapter 4. Generics
	4.1 Generalizing Function Signatures
	Problem
	Solution
	Discussion

	4.2 Creating Related Function Arguments
	Problem
	Solution
	Discussion

	4.3 Getting Rid of any and unknown
	Problem
	Solution
	Discussion

	4.4 Understanding Generic Instantiation
	Problem
	Solution
	Discussion

	4.5 Generating New Object Types
	Problem
	Solution
	Discussion

	4.6 Modifying Objects with Assertion Signatures
	Problem
	Solution
	Discussion

	4.7 Mapping Types with Type Maps
	Problem
	Solution
	Discussion

	4.8 Using ThisType to Define this in Objects
	Problem
	Solution
	Discussion

	4.9 Adding Const Context to Generic Type Parameters
	Problem
	Solution
	Discussion

	Chapter 5. Conditional Types
	5.1 Managing Complex Function Signatures
	Problem
	Solution
	Discussion

	5.2 Filtering with never
	Problem
	Solution
	Discussion

	5.3 Grouping Elements by Kind
	Problem
	Solution
	Discussion

	5.4 Removing Specific Object Properties
	Problem
	Solution
	Discussion

	5.5 Inferring Types in Conditionals
	Problem
	Solution
	Discussion

	Chapter 6. String Template Literal Types
	6.1 Defining a Custom Event System
	Problem
	Solution
	Discussion

	6.2 Creating Event Callbacks with
String Manipulation Types and Key Remapping
	Problem
	Solution
	Discussion

	6.3 Writing a Formatter Function
	Problem
	Solution
	Discussion

	6.4 Extracting Format Parameter Types
	Problem
	Solution
	Discussion

	6.5 Dealing with Recursion Limits
	Problem
	Solution
	Discussion

	6.6 Using Template Literals as Discriminants
	Problem
	Solution
	Discussion

	Chapter 7. Variadic Tuple Types
	7.1 Typing a concat Function
	Problem
	Solution
	Discussion

	7.2 Typing a promisify Function
	Problem
	Solution
	Discussion

	7.3 Typing a curry Function
	Problem
	Solution
	Discussion

	7.4 Typing a Flexible curry Function
	Problem
	Solution
	Discussion

	7.5 Typing the Simplest curry function
	Problem
	Solution
	Discussion

	7.6 Creating an Enum from a Tuple
	Problem
	Solution
	Discussion

	7.7 Splitting All Elements of a Function Signature
	Problem
	Solution
	Discussion

	Chapter 8. Helper Types
	8.1 Setting Specific Properties Optional
	Problem
	Solution
	Discussion

	8.2 Modifying Nested Objects
	Problem
	Solution
	Discussion

	8.3 Remapping Types
	Problem
	Solution
	Discussion

	8.4 Getting All Required Keys
	Problem
	Solution
	Discussion

	8.5 Allowing at Least One Property
	Problem
	Solution
	Discussion

	8.6 Allowing Exactly One and All or None
	Problem
	Solution
	Discussion

	8.7 Converting Union to Intersection Types
	Problem
	Solution
	Discussion

	8.8 Using type-fest
	Problem
	Solution
	Discussion

	Chapter 9. The Standard Library
and External Type Definitions
	9.1 Iterating over Objects with Object.keys
	Problem
	Solution
	Discussion

	9.2 Explicitly Highlighting Unsafe Operations with
Type Assertions and unknown
	Problem
	Solution
	Discussion

	9.3 Working with defineProperty
	Problem
	Solution
	Discussion

	9.4 Expanding Types for Array.prototype.includes
	Problem
	Solution
	Discussion

	9.5 Filtering Nullish Values
	Problem
	Solution
	Discussion

	9.6 Extending Modules
	Problem
	Solution
	Discussion

	9.7 Augmenting Globals
	Problem
	Solution
	Discussion

	9.8 Adding Non-JS Modules to the Module Graph
	Problem
	Solution
	Discussion

	Chapter 10. TypeScript and React
	10.1 Writing Proxy Components
	Problem
	Solution
	Discussion

	10.2 Writing Controlled Components
	Problem
	Solution
	Discussion

	10.3 Typing Custom Hooks
	Problem
	Solution
	Discussion

	10.4 Typing Generic forwardRef Components
	Problem
	Solution
	Discussion

	10.5 Providing Types for the Context API
	Problem
	Solution
	Discussion

	10.6 Typing Higher-Order Components
	Problem
	Solution
	Discussion

	10.7 Typing Callbacks in React’s Synthetic Event System
	Problem
	Solution
	Discussion

	10.8 Typing Polymorphic Components
	Problem
	Solution
	Discussion

	Chapter 11. Classes
	11.1 Choosing the Right Visibility Modifier
	Problem
	Solution
	Discussion

	11.2 Explicitly Defining Method Overrides
	Problem
	Solution
	Discussion

	11.3 Describing Constructors and Prototypes
	Problem
	Solution
	Discussion

	11.4 Using Generics in Classes
	Problem
	Solution
	Discussion

	11.5 Deciding When to Use Classes or Namespaces
	Problem
	Solution
	Discussion

	11.6 Writing Static Classes
	Problem
	Solution
	Discussion

	11.7 Working with Strict Property Initialization
	Problem
	Solution
	Discussion

	11.8 Working with this Types in Classes
	Problem
	Solution
	Discussion

	11.9 Writing Decorators
	Problem
	Solution
	Discussion

	Chapter 12. Type Development Strategies
	12.1 Writing Low Maintenance Types
	Problem
	Solution
	Discussion

	12.2 Refining Types Step by Step
	Problem
	Solution
	Discussion

	12.3 Checking Contracts with satisfies
	Problem
	Solution
	Discussion

	12.4 Testing Complex Types
	Problem
	Solution
	Discussion

	12.5 Validating Data Types at Runtime with Zod
	Problem
	Solution
	Discussion

	12.6 Working Around Index Access Restrictions
	Problem
	Solution
	Discussion

	12.7 Deciding Whether to Use
Function Overloads or Conditional Types
	Problem
	Solution
	Discussion

	12.8 Naming Generics
	Problem
	Solution
	Discussion

	12.9 Prototyping on the TypeScript Playground
	Problem
	Solution
	Discussion

	12.10 Providing Multiple Library Versions
	Problem
	Solution
	Discussion

	12.11 Knowing When to Stop
	Problem
	Solution
	Discussion

	Index
	About the Author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

