FFTs for programmers
algorithms and source code

preliminary draft version

Jorg Arndt
arndt@jjj.de

This document' was LaTeX’d at February 19, 2001

!This document is online at http://wuw.jjj.de/fxt/. It will stay available online for free.

Contents

1.1
1.2
1.3

14
1.5

1.6
1.7
1.8

1.9

1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17

List of important symbols 2
1 The Fourier transform 3
The discrete Fourier transform L o L 3
Symmetries of the Fourier transform oo oL, 4
Radix 2 FFT algorithms e 5
1.3.1 Alittle bit of notation 5
1.3.2 Decimation in time (DIT) FFT 5
1.3.3 Decimation in frequency (DIF) FFT 8
Saving trigonometric computations L. Lo Lo 10
Higher radix DIT and DIF algorithms 12
1.5.1 More notation 12
1.5.2 Decimation in time L. 12
1.5.3 Decimation in frequency e 13
1.5.4 TImplementation of radix r = p®* DIF/DIT FFTs. 13
Inverse FFT for free 0 . e 17
The revbin permute operation L oL 18
Real valued Fourier transforms L oL 22
1.8.1 Real valued FT via wrapper routines 22
The matrix algorithm (MFA) L 24
Convolutions e e e e 25
Mass storage convolution using the MFA 28
Weighted Fourier transforms Lo 29
Half cyclic convolution for half the price 7 L. 31
Convolution using the MFA 31
Convolution of real valued data using the MFA 33
Convolution without transposition using MFA 33
Split radix Fourier transforms (SRFT), 34
1.17.1 Real tocomplex SRFT 35
1.17.2 Complextoreal SRFT e 37
Multidimensional FTs 39

1.18

CONTENTS

1.18.1 Definition e

1.18.2 The row column algorithm o

2 The z-transform (ZT)

2.1 Definition of the ZT e e e e
2.2 Thechirp ZT o . e e e e e
2.3 Arbitrary length FFT by ZT o o
2.4 Fractional Fourier transform by ZT

3 Walsh transforms

4 The Hartley transform (HT)

4.1 Definition of the HT o . . e
4.2 Complex valued FT by HT e
4.3 Realvalued FT by HT e e e e e e e e
44 HT byreal valued FT o . e
4.5 radix 2 FHT algorithms e

4.5.1 Decimation in time (DIT) FHT

4.5.2 Decimation in frequency (DIF) FHT
4.6 Discrete cosine transform (DCT) by HT,
4.7 Discrete sine transform (DST) by DCT
4.8 Convolution via FHT 00
4.9 Negacyclic convolution via FHT o o o o

5 Numbertheoretic transforms (NTTs)

5.1 Primemodulus: Z/pZ=TF,
5.2 Composite modulus: Z/mZ, cyclic vs. noncyclic L 0.,
5.2.1 Cyclicrings L e
5.2.2 Noncyclicrings e e e
5.3 Pseudocode for NTTs o e e
53.1 Radix 2 DIT NTT e e
5.3.2 Radix 2 DIF NTT e e
5.4 Convolution with NTTSs o e e e e e e e e e e
5.5 Numbertheoretic Hartley transform

6 Wavelet transforms

6.1 The Haar transform e e e e
6.2 Inplace Haar transform L
6.3 Integer to integer Haar transform L Lo o

A Definition of Fourier transforms

39
39

41
41
41
42
42

43

47
47
47
49
50
50
50
51
53
54
55
56

58
58
59
62
62
62
62
63
64
64

65
65
66
67

69

CONTENTS

B The pseudo language Sprache

C Eigenvectors of the discrete Fourier transform
D The Chinese Remainder Theorem (CRT)

E A modular multiplication trick

Bibliography

Index

71

74

76

78

79

87

List of important Symbols

Rz real part of

Sz imaginary part of x

complex conjugate of =

a a sequence, e.g. {ag, a1, ..., an—1}, the index always starts with zero.
transformed (e.g. Fourier transformed) sequence

emphasize that the sequences to the left and right are all of length m

Fla] (=e¢) (discrete) Fourier transform (FT) of a, ¢} = \/Lﬁ S0 ag 27k where z = 27/
F~1a] inverse (discrete) Fourier transform (IFT) of a, 7' [a], = \/%7 Sy ag 2k
Ska a sequence ¢ with elements ¢, := a, et *27iz/n

H [a] discrete Hartley transform (HT) of a

a sequence reversed around element with index n/2

as the symmetric part of a sequence: as :=a+a

ap the antisymmetric part of a sequence: a4 :=a—a

Z a] discrete z-transform (ZT) of a

W, [a] discrete weighted transform of a, weight (sequence) v

W, a) inverse discrete weighted transform of a, weight v

a®b cyclic (or circular) convolution of sequence a with sequence b

a®ge b acyclic (or linear) convolution of sequence a with sequence b

a®_b negacyclic (or skew circular) convolution of sequence a with sequence b
a®gy b weighted convolution of sequence a with sequence b, weight v

n\N n divides N

Chapter 1

The Fourier transform

1.1 The discrete Fourier transform

The discrete Fourier transform (DFT or simply FT) of a complex sequence a of length n is defined as

¢ = Fla (1.1)
1 n—1]

cp = — Zazz"'wk where z =e*27i/m (1.2)
\/ﬁ z=0

z is an n-th root of unity: 2™ = 1.

Backtransform (or inverse discrete Fourier transform IDFT or simply IFT) is then

a = F ' (1.3)
1 n—1
a; = N ch 27k (1.4)
k=0
That this is really true is not straightforward. Consider element y of the IFT of the FT of a:
1 n—1 1 n—1
-1 _ kY ,—vk
IR, = m g 2 e (1.5)

% Zagc Z (2=7Y)* (1.6)
T k

As Y, (2°7¥)F = n for = y and zero else (because z is an n-th root of unity). Therefore the whole
expression is equal to

%n §az(5z,y = ay (1.7)
where
_ 1 (z=y)
Py = {0 (z # 1) (18)

In this book the FT with the plus in the exponent is called forward transform, the one with the minus is
called the backward transform, the choice is arbitrary?.

1Electrical engineers prefer the minus for the forward transform, mathematicians the plus.

CHAPTER 1. THE FOURIER TRANSFORM 6

The FT is a linear transform, i.e. for a;, 8 € C

Flaa+p8b = oFla]+ BF[b] (1.9)

For the FT Parseval’s equation holds, let ¢ = F [a], then
n—1 n—1
Yo = Y g (1.10)
=0 k=0
1

The normalisation factor Jm in front of the FT sums is sometimes replaced by a single L in front of the

inverse FT sum which is often convenient in computation. Then, of course, Parseval’s equation has to be
modified accordingly.

A straightforward implementation of the discrete Fourier transform, i.e. the computation of n sums each
of length n requires ~ n? operations.

Code 1.1 (Fourier transform by definition) Compute the Fourier transform of the complexr se-
quence a[], the result is returned in c[]

procedure ft(a[l,c[],n,is)
for k:=0 to n-1
%oz:'=x(:)=0 to n-1
{ s := s + al[x]*exp(is*2.0*I*PI*x*k/n)
i[k] = s
}

[FXT: slow_ft in file slow/slowft.cc]

A fast Fourier transform (FFT) algorithm is an algorithm that improves the operation count to propor-
tional n EZLI (pr — 1), where n = p1ps - - - P, is a factorization of n. In case of a power n = p™ the value
computes to n (p — 1) log,(n). In the special case p = 2 even n/2 log,(n) multiplications are enough.
There are several different FFT algorithms with many variants.

1.2 Symmetries of the Fourier transform

The FT has several symmetry properties, a bit of notation turns out to be useful becoming written down.
Let @ be the sequence a (length n) reversed around element with index n/2:

60 = Qo (1.11)
Qpja = GpJ2 if n even (1.12)
ap = Qp—k (113)
Let ag, a4 be the symmetric, antisymmetric part of the sequence a, respectively:
as = a+a (1.14)
ag = a-—a (1.15)

(The elements with indices 0 and n/2 of a4 are zero). Now let @ € R (meaning that each element of a is
€ R), then

Flas] € R (1.16)
Flas] = Flas] (1.17)
Flaa] € iR (1.18)
Flaa] = —Flad] (1.19)

CHAPTER 1. THE FOURIER TRANSFORM 7

i.e. the FT of a real symmetric sequence is real and symmetric and the FT of a real antisymmetric
sequence is purely imaginary and antisymmetric. Thereby the FT of a general real sequence is the
complex conjugate of its reversed:

Fla] = m* for a€eR (1.20)

Similarly, for a purely imaginary sequence b € iR:

Flbs] € iR (1.21)
Flos] = Fs] (1.22)
Flba] € R (1.23)
Fibal = ~FTal (120

The FT of a complex symmetric/antisymmetric sequence is symmetric/antisymmetric, respectively.

1.3 Radix 2 FFT algorithms

1.3.1 A little bit of notation

Always assume a is a length-n sequence (n even) in what follows:

Let a®v*™) | q(°d9) denote the (length-n/2) subsequences of those elements of a that have even or odd
indices, respectively.

Let a(!*/Y) denote the subsequence of those elements of a that have indices 0...n/2 — 1.

Similarly, ("9 for indices n/2..n — 1.

Let S*a denote the sequence with elements a, e*#2712/" where n is the length of the sequence a and
the sign is that of the transform. The symbol S shall suggest a shift operator. In the next two sections
only S/2 will appear. S° is the identity operator.

1.3.2 Decimation in time (DIT) FFT

The following observation is the key to the decimation in time (DIT) FFT? algorithm:
For n even the k-th element of the Fourier transform is

n—1 n/2-1 n/2—1
Zazz” = Z as gy 2%k + Z Qg gqp 22FH1E (1.25)
z=0 z=0 =0
n/2—1 n/2—1
= Z Ay 227K 4 2F Z agpq1 22°F (1.26)
=0 =0

where z = e¥#27/" and k € {0,1,...,n — 1}.

The last identity tells us how to compute the k-th element of the length-n Fourier transform from the
length-n/2 Fourier transforms of the even and odd indexed subsequences.

To actually rewrite the length-n FT in terms of length-n/2 FTs one has to distinguish the cases 0 <
kE < n/2 and n/2 < k < n, therefore we rewrite k € {0,1,2,....,n — 1} as k = j + 6 § where j €
{0,1,...,”/2—1}7 56 {071}

n—1 n/2—1 n/2—1
Z ay P (G+03) — Z aﬂ(ve'uen) z2z (J+6 %) + zj—}-é > Z ag:odd) 222 (J+6 %) (127)
z=0 z=0 z=0

2also called Cooley-Tukey FFT.

CHAPTER 1. THE FOURIER TRANSFORM 8

n/2—1 n/2-1
Z az(veven) 2% + 20 Z a;odd) 22 for 6=0
= { R (129
Z a;even) Z2zj _ Zj Z a.SUOdd) ZQEj for =1
z=0 z=0

Noting that 22 is just the root of unity that appears in a length-n/2 FT one can rewrite the last two
equations as the

Idea 1.1 (FFT radix 2 DIT step) Radiz 2 decimation in time step for the FFT:
f[a](left) néZ F [a(even)] + 31/2]: [a(odd)] (129)

}.[a](m’ght) n/2 F [a(even)] _8\?2r [a(odd)] (1.30)

(Here it is silently assumed that '+’ or ’

subtraction.)

—’ between two sequences denotes elementwise addition or

The length-n transform has been replaced by two transforms of length n/2. If n is a power of 2 this
scheme can be applied recursively until length-one transforms (identity operation) are reached.

Thereby the operation count is improved to proportional n/2 log,(n).

Code 1.2 (recursive radix 2 DIT FFT) Pseudo code for a recursive procedure of the (radiz 2) DIT
FFT algorithm, is must be +1 (forward transform) or -1 (backward transform):

procedure rec_fft_dit2(all, n, x[1, is)
// complex a[0..n-1] input
// complex x[0..n-1] result

{
complex b[0..n/2-1], c[0..n/2-1] // workspace
complex s[0..n/2-1], t[0..n/2-11 // workspace
if n == 1 then // end of recursion
x[0] := al[0]
return
nh := n/2
for k:=0 to nh-1 // copy to workspace
slk] := a[2*k] // even indexed elements
t[k] := a[2%k+1] // odd indexed elements
// recursion: call two half-length FFTs:
rec_fft_dit2(s[],nh,b[],is)
rec_fft_dit2(t[],nh,c[],is)
fourier_shift(c[],nh,is*1/2)
for k:=0 to nh-1 // copy back from workspace
x [k] = blk] + c[k];
x[k+nh] := blk] - c[k];
}

The data length n must be a power of 2. The result is in x[]. Note that normalisation (i.e. multiplication
of each element of x[] by 1/4/n) is not included here.

[FXT: recursive dit2_fft in file learn/recfftdit2.cc] The procedure uses the subroutine

Code 1.3 (Fourier shift) For each element in c[0..n-1] replace c[k] by c[k] times e* 27 */™ . Used with
v = +1/2 for the Fourier transform.

CHAPTER 1. THE FOURIER TRANSFORM 9

procedure fourier_shift(c[], n, v)
for k:=0 to n-1
clk] := c[k] * exp(v*2.0%PI*I*k/n)

}

cf. [FXT: fourier_shift in file fft/fouriershift. cc]

The recursive FFT-procedure involves a lot of function calls, this can be avoided by rewriting it in a non-
recursive way. One can even do all operations in place, no workspace array is needed at all. The price is
the necessity of an additional data reordering: The procedure revbin_permute(al[],n) rearranges the
array a[] in a way that each element a, is swapped with az, where Z is obtained from z by reversing its
binary digits. This is discussed in section 1.7.

Code 1.4 (radix 2 DIT FFT, naive) Pseudo code for a non-recursive procedure of the (radiz 2) DIT
algorithm, is must be -1 or +1: (naive version, needs to be improved)

procedure fft_dit2(all, 1ldn, is)
// complex a[0..2*%*1dn-1] input, result

n := 2%*1ldn // length of a[] is a power of 2
revbin_permute(a[l,n)

for 1ldm:=1 to 1ldn // log_2(n) iterations

{
m = 2%*xldm
mh := m/2
for r:=0 to n-m step m // n/m iterations
{
for j:=0 to mh-1 // m/2 iterations
e := exp(is*2¥PI*I*j/m) // log_2(n)*n/m*m/2 = log_2(n)*n/2 computations
u := alr+j]
v := a[r+j+mh] * e
alr+j] =u+v
alr+j+mh] :=u - v
}
}
}

[FXT: dit2_fft_localized in file learn/fftdit2.cc]

This version of a non-recursive FFT procedure already avoids the calling overhead and it works in place.
It works as given, but is a bit wasteful. The (expensive!) computation e := exp(is*2*PIxI*j/m) is
done log 2(n) n/2 times. To reduce the number of trigonometric computations, one can swap the two
inner loops, leading to the first ‘real world’ FFT procedure presented here:

Code 1.5 (radix 2 DIT FFT) Pseudo code for a non-recursive procedure of the (radiz 2) DIT algo-
rithm, is must be -1 or +1:

procedure fft_dit2(all, 1ldn, is)
// complex a[0..2%*1dn-1] input, result

n := 2%x1ldn
revbin_permute(a[],n)

for 1ldm:=1 to 1ldn // log_2(n) iteratiomns
{

m 2%*1dm

mh := m/2
fo

{

r j:=0 to mh-1 // m/2 iterations

o

:= exp(is*2*PI*I*j/m) // 1 + 2 + ... + n/8 + n/4 + n/2 = n-1 computations

CHAPTER 1. THE FOURIER TRANSFORM 10

for r:=0 to n-m step m

{
u := a[r+j]
v := a[r+j+mh] * e
alr+jl = u+ v

alr+j+mh] :=u - v

[FXT: dit2_fft in file learn/fftdit2.cc]

Swapping the two inner loops reduces the number of trigonometric (exp()) computations to n but leads
to a feature that many FFT implementations share: Memory access is highly nonlocal. For each recursion
stage (value of 1dm) the array is traversed mh times with n/m accesses in strides of mh. As mh is a power
of 2 this can (on computers that use memory cache) have a very negative performance impact for large
values of n. On a computer where the CPU clock (366MHz, AMD K6/2) is 5.5 times faster than the
memory clock (66MHz, EDO-RAM) I found that indeed for small n the naive FFT is slower by a factor
of about 0.66, but for large n the same ratio is in favour of the ‘naive’ procedure!

It is a good idea to extract the 1dm==1 stage of the outermost loop, this avoids complex multiplications
with the trivial factors 1+ 0i: Replace

for 1ldm:=1 to 1ldn

by
for r:=0 to n-1 step 2
{alr], alr+11} := {alrl+alr+1], alr]l-alr+11}

for 1ldm:=2 to 1ldn

1.3.3 Decimation in frequency (DIF) FFT

The simple splitting of the Fourier sum into a left and right half (for n even) leads to the decimation in
frequency (DIF) FFT3:

n—1 n/2—1 n
Zawzzk = Z ap 2°F + Z ag 2" (1.31)
=0 z=0 z=n/2
n/2—1 n/2—1
= Z az 2°F + Z o 2 TF DR (1.32)
=0 =0
n/2—1
— Z (a;left) + zkn/2 a:(cright))zzk (133)
=0

(where z = e**27/" and k € {0,1,...,n — 1})

Here one has to distinguish the cases k even or odd, therefore we rewrite k € {0,1,2,...,n—1}ask = 2j+45
where j € {0,2,...,% — 1}, ¢ € {0,1}.

n—1 n/2—1
S 027G = ST (lleft) 4 R0 /2 g(right)) o (2+40) (1.34)
z=0 z=0

3also called Sande-Tukey FFT, cf. [28].

CHAPTER 1. THE FOURIER TRANSFORM 11

n/2—1
Z (agvleft) + az(cright)) pery) for §=0
= nw/;ol (1.35)
Z e (a;left) _ a:(cm'ght)) pRry) for =1
=0

22540 n/2 — ¢Emid i equal to plus/minus 1 for § = 0/1 (k even/odd), respectively.

The last two equations are, more compactly written, the
Idea 1.2 (radix 2 DIF step) Radiz 2 decimation in frequency step for the FFT:

}.[a](even) n/2 J__[a(left)+a(right)] (1.36)

F [q] "2 [81/2 (a(left) _ a(right))] (1.37)

Code 1.6 (recursive radix 2 DIF FFT) Pseudo code for a recursive procedure of the (radiz 2) deci-
mation in frequency FET algorithm, is must be +1 (forward transform) or -1 (backward transform):

procedure rec_fft_dif2(all, n, x[], is)
// complex a[0..n-1] input

// complex x[0..n-1] result

{

complex b[0..n/2-1], c[0..n/2-1] // workspace
complex s[0..n/2-11, t[0..n/2-11 // workspace

if n == 1 then
{

x[0] := a[0]
return
nh := n/2
for k:=0 to nh-1
s[k] := al[k] // ’left’ elements
t[k] := alk+nh] // ’right’ elements

}
for k:=0 to nh-1

{slk]l, tlkl} := {(slkl+t[k]), (s[kI-t[k])}

fourier_shift(t[],nh,is*0.5)
rec_fft_dif2(s[],nh,b[],is)
rec_fft_dif2(t[],nh,c[],is)
j:=0
for k:=0 to nh-1

x[j] b[k]

x[j+1]1 := clk]
j i= 42

The data length n must be a power of 2. The result is in x[].
[FXT: recursive dif2 fft in file learn/recfftdif2.cc]

The non-recursive procedure looks like this:

Code 1.7 (radix 2 DIF FFT) Pseudo code for a non-recursive procedure of the (radiz 2) DIF' algo-
rithm, is must be -1 or +1:

procedure fft_dif2(a[],1ldn,is)

CHAPTER 1. THE FOURIER TRANSFORM 12

// complex a[0..2%*1dn-1] input, result

n := 2%*x1ldn
for ldm:=1ldn to 1 step -1
{

m := 2%*xldm

mh := m/2

for j:=0 to mh-1

{

e := exp(is*2*PI*I*j/m)

for r:=0 to n-1 stepm

{
u := alr+j]
v := a[r+j+mh]
alr+j] = (u + v)
alr+j+mh] := (u - v) * e
}

}
}

revbin_permute(a[],n)
}
cf. [FXT: dif2_fft in file learn/fftdif2. cc]

In DIF FFTs the revbin_permute()-procedure is called after the main loop, in the DIT code it was
called before the main loop. As in the procedure 1.5 the inner loops where swapped to save unnecessary
trigonometric computations.

Extracting the 1dm==1 stage of the outermost loop is again a good idea:
Replace the line

for 1dm:=1ldn to 1 step -1
by
for 1dm:=1dn to 2 step -1

and insert

for r:=0 to n-1 step 2

{alr], alr+1]1} := {alr]l+alr+1], alr]l-a[r+1]}

before the call of revbin_permute(al[],n).

1.4 Saving trigonometric computations

The trigonometric (sin()- and cos()-) computations are an expensive part of any FFT. There are two
apparent ways for saving the involved cpu-cycles, the use of lookup-tables and recursive methods for
trig-computations.

Using lookup tables

The idea is to save all necessary sin/cos-values in an array and later looking up the values needed. This
is a good idea if one wants to compute many FFTs of the same (small) length. For FFTs of large
sequences one gets large lookup tables that likely introduce a high cache-miss rate. Thereby one is likely
experiencing little or no speed gain, even a slowdown isn’t unlikely. However, for a length-n FFT one
doesn’t need to store all the (n complex or 2n real) sin/cos-values exp(27ik/n), k=0,1,2,3,....,n — 1.
Already a table cos(2mik/n), k=0,1,2,3,...,n/4—1 (of n/4 reals) contains all different trig-values that

CHAPTER 1. THE FOURIER TRANSFORM 13

occur in the computation. The size of the trig-table is thereby cut by a factor of 8. For the lookups one
can use the symmetry relations

cos(m+1z) = —cos(x) (1.38)
sin(m +z) = —sin(x) (1.39)

(reducing the interval from 0...27 to 0...7),

cos(m/2+xz) = —sin(x) (1.40)
sin(m/2+z) = +cos(z) (1.41)

(reducing the interval to 0...7/2) and
sin(z) = cos(n/2—x) (1.42)

(only cos()-table needed).

Recursive trig-computation
In the computation of FFTs one typically needs the values
{exp(iw0) =1, exp(iwd), exp(iw2d), exp(iw3dd), ..}

in sequence. The naive idea for a recursive computation of these values is to precompute d = exp(i w 9)
and then compute the next following value using the identity exp(iwkd)) = d - exp(iw (k — 1) d). This
method, however, is of no practical value because the numerical error grows (exponentially) in the process.

Here is a stable version of a trigonometric recursion for the computation of the sequence: Precompute

¢ = cosw, (1.43)
s = sinw, (1.44)
é
a = 2(sin 5)2 (1.45)
B = siné (1.46)
Then compute the next power from the previous as:
Cnezt — C— (CM c+ B S); (147)
Snezt = S — (OéS - /BC); (148)

Do not expect to get all the precision you would get with the repeated call of the sin and cos functions,
but even for very long FFTs less than 3 bits of precision are lost. When (in C) working with doubles
it might be a good idea to use the type long double with the trig recursion: the sin and cos will than
always be accurate within the double-precision.

Using higher radix algorithms

It may be less apparent, that the use of higher radix FFT algorithms also saves trig-computations. The
radix-4 FFT algorithms presented in the next sections replace all multiplications with complex factors
(0, £1) by the obvious simpler operations. Radix-8 algorithms also simplify the special cases where sin(¢)
or cos(@) are £4/1/2. Apart from the trig-savings higher radix also brings a performance gain by their
more unrolled structure.

CHAPTER 1. THE FOURIER TRANSFORM 14

1.5 Higher radix DIT and DIF algorithms

1.5.1 More notation

Again some useful notation, again let a be a length-n sequence.

Let a{"%™) denote the subsequence of those elements of a that have subscripts z = r (mod m); e.g. a(0%?)

is aleven) aB%4) = fa3 a7, a11,a15,...}. The length of a("%™) is* n/m.

Let a{"/™) denote the subsequence of those elements of a that have indices L. (Terl) " _1;eg a2 is
a(r9ht) q(2/3) is the last third of a. The length of a("/™) is also n/m.

1.5.2 Decimation in time

First reformulate the radix 2 DIT step (formulas 1.29 and 1.30) in the new notation:

]:[a](o/2) n/2 SO/2F [a(o%z)] L S2F [a(l%Z)] p (1.49)

n/2

]—'[a](l/2) "2 go/2p [a(o%z)] _Si2F [a(1%2)] (1.50)

n/2 n/2

(Note that S° is the identity operator).

The radix 4 step, whose derivation is analogue as for the radix 2 step, it just involves more writing and
doesn’t give additional insights, is

Idea 1.3 (radix 4 DIT step) Radiz 4 decimation in time step for the FFT:
Fl L 4 8F [4 SVAF [a0%0] 4 SYAF [aF0] 4 SYF [a@] (151)
Fl 48 [0 1ioSVAF [a0%0] - SYAF [aF0] —ioS1F [a@] (1.52)
Fl L s [o0w] st [aann] | g [aen] _ suip o] (155
|

}-[a](3/4) n/4 +80/4F [4(0%4] _ioS\VAF [a(1%4)] _S§YAF [a(2%4)] +ioS3AT [a(3%4)] (1.54)

where o = +£1 is the sign in the exponent. In contrast to the radix 2 step, that happens to be identical
for forward and backward transform (with both decimation frequency/time) the sign of the transform
appears here.

Or, more compact:
Jf[a](j/‘*) n/4 Leo2im0j/4 QO/A T [a(0%4)] L eo2imli/4 Q1A F [a(1%4)] (1.55)
Leo2im2i/4 G2/A [a(2%4)] 4 eo2im3i/4 g3/ [a(3%4)]

where j = 0,1,2,3 and n is a multiple of 4.

Still more compact:
3
j:[a](j/4) n/4 Zeaﬂwkjﬂi .Sok/AE [a(k%4)] (1.56)

k=0

where the summation symbol denotes elementwise summation of the sequences. (The dot indicates
multiplication of every element of the rhs. sequence by the lhs. exponential.)

The general radix r DIT step, applicable when n is a multiple of r, is:

4Throughout this book will m divide n, so the statement is correct.

CHAPTER 1. THE FOURIER TRANSFORM 15

Idea 1.4 (FFT general DIT step) General decimation in time step for the FFT:

r—1
Flain L ST errinkilr soRrp [o0] 20,12, -1 (1.57)
k=0

1.5.3 Decimation in frequency

The radix 2 DIF step (formulas 1.36 and 1.37) was

f[a]glom) E S [30/2 (a(o/z) + a(l/z))] (1.58)
f[a](nl%2) 2o [81/2 (a(0/2) - a(l/z))] (1.59)

The radix 4 DIF step, applicable for n divisible by 4, is

Idea 1.5 (radix 4 DIF step) Radiz 4 decimation in frequency step for the FFT:

F[a] O A r [80/4 (a(0/4) + g/ 4 g2/e 4 a(3/4))] (1.60)
f[a](1%4) n/4 7—“[81/4(a(°/4)+i0a(1/4) —a® _;5aBY] (1.61)
Flg®™® " F [52/4 (a(0/4) N C V2 e 72V a<3/4))] (1.62)
Flg®™ ™4 [83/4 (a(o/4) ioal/h _ g2/ +iaa(3/4))] (1.63)
Or, more compact:
3
SR 0 ey 1o
k=0

where j = 0,1, 2,3 and the sign of the exponent and in the shift operator is the same as in the transform.

The general radix r DIF step is

Idea 1.6 (FFT general DIF step) General decimation in frequency step for the FFT:

r—1
Flav™]—'lS””Ze””“/T-aW”] j=0,1,2,,r—1 (1.65)
k=0

1.5.4 Implementation of radix r = p* DIF/DIT FFTs

If r = p # 2 (p prime) then the revbin_permute() function has to be replaced by its radix-p version:
radix_permute(). The reordering now swaps elements z with Z where Z is obtained from z by reversing
its radix-p expansion.

Code 1.8 (radix p* DIT FFT) Pseudo code for a radiz r:=p® decimation in time FFT:

procedure fftdit_r(all, n, is)

// complex a[0..n-1] input, result

// p (hardcoded)

// r == power of p (hardcoded)

// n == power of p (not necessarily a power of r)

{

CHAPTER 1. THE FOURIER TRANSFORM 16

radix_permute(a[l, n, p)

1x := log(r) / log(p) // r == p **x 1x
In := log(n) / log(p)
ldm := (log(n)/log(p)) % 1x

if (1dm !'= 0) // n is not a power of p
{

XX 1= p¥*xlx
for z:=0 to n-1 step xx

{
}

fft_dit_xx(alz..z+xx-1], is) // inlined length-xx dit fft

}

for ldm:=ldm+lx to 1In step 1x

{
P**ldm

m/r

:= 0 to mr-1

.

m
mr
for
{

e := exp(is*2*PI*I*j/m)
for k:=0 to n-1 stepm

{
// all code in this block should be
// inlined, unrolled and fused:

// temporary ul[0..r-1]
for z:=0 to r-1

ulz] := alk+j+mr*z]

}

radix_permute(u[], r, p)

for z:=1 to r-1 // exx0 =1

ulz] := ulz] * e**z

r_point_fft(ul], is)

for z:=0 to r-1

al[k+j+mr*z] := ulz]

}

Of course the loops that use the variable z have to be unrolled, the (length-p*) scratch space ul] has to
be replaced by explicit variables (e.g. u0, ul, ...) and ther_point_fft(ul],is) shall be an inlined
p®-point FFT.

If » = p® than there is a pitfall one must now: if one uses the radix_permute() procedure instead
of a radix-p® revbin_permute procedure (e.g. radix-2 revbin_permute for a radix-4 FFT), then some
additional reordering is necessary in the innermost loop: in the above pseudo code this is indicated
by the radix_permute(ull,p) just before the p_point_fft(ul],is) line. One wouldn’t really use a
call to a procedure, but change indices in the loops where the a[z] are read/written for the DIT/DIF
respectively. In the code below the respective lines have the comment // (!).

It is wise to extract the stage of the main loop where the exp()-function always has the value 1, which is
the case when 1dm==1 in the outermost loop®. In order not to restrict the possible array sizes to powers
of p* but only to powers of p one will supply adapted versions of the 1dm==1 -loop: e.g. for a radix-4 DIF
FFT append a radix 2 step after the main loop if the array size is not a power of 4.

Code 1.9 (radix 4 DIT FFT) C++ code for a radiz 4 DIF FFT on the array £[1, the data length n
must be a power of 2, is must be +1 or -1:

static const ulong RX = 4; // ==r

5¢f. section 5.3.

CHAPTER 1. THE FOURIER TRANSFORM 17

static const ulong LX = 2; // == log(r)/log(p) == log_2(r)

void

dit4l_fft(Complex *f, ulong ldn, int is)
// decimation in time radix 4 fft

// ldn == log_2(n)

{
double s2pi = (is>0 7 2.0%M_PI : -2.0%M_PI);

const ulong n = (1<<1dn);

revbin_permute(f, n);

ulong ldm = (1dn&1); // == (log(n)/log(p)) % LX

if (1dm!=0) // n is not a power of 4, need a radix 2 step

for (ulong r=0; r<n; r+=2)

Complex a0 f[r];
Complex al = f[r+1];

f[r] a0 + al;
f[r+1] a0 - al;

}
}

ldm += LX;
for (; 1ldm<=ldn ; 1ldm+=LX)
{

ulong m = (1<<1dm);
ulong m4 = (m>>LX);
double phO = s2pi/m;

for (ulong j=0; j<m4; j++)
{

double phi = j*phO;

double ¢, s, c2, s2, c3, s3;
sincos(phi, &s, &c);
sincos(2.0%phi, &s2, &c2);
sincos(3.0*phi, &s3, &c3);

Complex e = Complex(c,s);
Complex e2 Complex(c2,s2);
Complex e3 = Complex(c3,s3);

for (ulong r=0, i0=j+r; r<n; r+=m, iO+=m)

ulong il = i0 + m4;
ulong i2 = il + m4;
ulong i3 = i2 + m4;
£[i0];
£[i2]; // (D)
£li1]; // (D
£[i3];

Complex a0
Complex al
Complex a2
Complex a3

al *= e;
a2 *x= e2;
a3 *= e3;

(a0+a2) + (al+a3);
(a0+a2) - (al+a3);

(a0-a2) + Complex(0,is) * (al-a3);
(a0-a2) - Complex(0,is) * (al-a3);

Complex tO
Complex t2

Complex t1
Complex t3

£[i0] = t0;
£f[i1] = t1;
f[i2] = £2;
£[i3] = t3;

Code 1.10 (radix 4 DIF FFT) Pseudo code for a radiz 4 DIF FFT on the array all, the data length
n must be a power of 2, is must be +1 or -1:

CHAPTER 1. THE FOURIER TRANSFORM 18

procedure fftdif4(al[],1ldn,is)
// complex a[0..2%*1dn-1] input, result

n := 2%*xldn
for 1dm := 1ldn to 2 step -2
{
m := 2%*ldm
mr := m/4
for j := 0 to mr-1
{
e := exp(is*2*PI*I*j/m)
e2 (= e * e
ed = e2 * e
for r := 0 to n-1 step m
{
u0 := alr+j]
ul := al[r+j+mr]
u2 := alr+j+mr*2]
u3 := al[r+j+mr*3]
x :=uQ + u2
y :=ul + u3
t0 x+y // == (u0+u2) + (ul+u3)

t1 ;; x -y // == (u0+u2) (ul+u3)

x := u0 - u2
y := (ul - u3)*Ixis
t2 x+y // == (u0-u2) + (ul-u3)*Ix*is

t3 ;; x-y // - (u0-u2)

(u1-u3) *I*is

tl = tl * e
t2 = t2 * e2
t3 = t3 * e3
alr+j] = t0
a[r+j+mr] =t2 // (D
a[r+j+mr*2] =t1 // (V)
alr+j+mr*3] := t3
}
}
}
if is_odd(1ldn) then // n not a power of 4
¢ for r:=0 to n-1 step 2
{alr], alr+1]} := {alr]l+alr+1], alr]-alr+1]}
}

revbin_permute(a[],n)

Note the ‘swapped’ order in which t1, t2 are copied back in the innermost loop, this is what
radix_permute(ul[], r, p) was supposed to do.

The multiplication by the imaginary unit (in the statement y := (ul - u3)*I*is) should of course be
implemented without any multiplication statement: one could unroll it as

(dr,di) := ul - u2 // dr,di = real,imag part of difference
if is>0 then y (-di,dr) // use (a,b)*(0,+1) == (-b,a)
else y (di,-dr) // use (a,b)*(0,-1) == (b,-a)

In section 1.6 it is shown how the if-statement can be eliminated.

If n is not a power of 4, then 1dm is odd during the procedure and at the last pass of the main loop one
has 1dm=1.

To improve the performance one will instead of the (extracted) radix 2 loop supply extracted radix 8 and
radix 4 loops. Then, depending on whether n is a power of 4 or not one will use the radix 4 or the radix
8 loop, respectively. The start of the main loop then has to be

for 1dm := 1ldn to 3 step X

and at the last pass of the main loop one has 1dm=3 or 1dm=2.

CHAPTER 1. THE FOURIER TRANSFORM 19

[FXT: dit4l fft in file learn/fftdit4l.cc] [FXT: dif4l fft in file learn/fftdif4l.cc] [FXT:
dit4_fft in file fft/fftdit4.cc] [FXT: dif4_fft in file fft/fftdif4. cc]

Code 1.11 (radix permute) C++ code for the radiz permutation of the array £1[1,

9, 90, 900 for r=10, x=3
1, 10, 100 for r=10, x=3

extern ulong nt[]l; // nt[]
extern ulong kt[1; // kt[]
template <typename Type>
void

radix_permute(Type *f, ulong n, ulong r)

// swap elements with index pairs i, j were the
// radix-r representation of i and j are mutually
// digit-reversed (e.g. 436 <-—> 634)

//
// This is a radix-r generalization of revbin_permute()
// revbin_permute(f, n) ="= radix_permute(f, n, 2)
//
// must be:
// n == pxxx for some x>=1
// T >=2
//
ulong x = 0;
nt[0] = r-1;
kt[0] = 1;
while (1)
ulong z = kt[x] * r;
if (z>n) break;
++x;
kt[x] = z;
nt[x] = ntlx-1] * r;
// here: n == p¥*x
for (ulong i=0, j=0; i < mn-1; i++)
if (i<j) swap(£f[il, £[j1);
ulong t = x - 1;
ulong k = nt[t]l; // ="= k = (r-1) * n / r;
while (k<=j)
.
j—=k
) k =nt[--t]l; // ="= k /=r;
j +=ktltl; // ="= j += (k/(x-1));
}

[FXT: radix_permute in file permute/radixpermute.h]

1.6 Inverse FFT for free

Suppose you programmed some FFT algorithm just for one value of is, the sign in the exponent. There
is a nice trick that gives the inverse transform for free, if your implementation uses seperate arrays for
real and imaginary part of the complex sequences to be transformed. If your procedure is something like

procedure my_fft(ar[], ai[l, 1dn) // only for is==+1 !
// real ar[0..2%*1dn-1] input, result, real part
// real ai[0..2*%1dn-1] input, result, imaginary part

// incredibly complicated code
// that you can’t see how to modify
// for is==-1

CHAPTER 1. THE FOURIER TRANSFORM 20

Then you don’t need to modify this procedure at all in order to get the inverse transform. If you want
the inverse transform somewhere then just, instead of

my_fft(ar[], aill, 1dn) // forward fft
type
my_fft(aill, ar[l, 1dn) // backward fft

Note the swapped real- and imaginary parts ! The same trick works if your procedure coded for fixed
is=-—1.

1.7 The revbin permute operation

The procedure revbin_permute(al],n) used in the DIF and DIT FFT algorithms rearranges the array
al] in a way that each element a, is swapped with az, where T is obtained from x by reversing its binary
digits. For example if n = 256 and = = 43,9 = 001010115 then Z = 11010100, = 212,3. Note that &
depends both on z and on n.

A naive version

Code 1.12 (revbin_permute, naive)
procedure revbin_permute(al[],n)
// al0..n-1] input,result

for x:=0 to n-1

{

r := revbin(x,n)
if r>x then swap(alx],alr])

The function revbin(x,n) shall return the reversed bits of x.
Code 1.13 (revbin)

function revbin(x,n)

j::=0
1ldn := log2(n) // is an integer
¥hi1e 1dn>0

j = j«K1

ji=3j+&x&l)

x:=x>>1

1dn := 1dn - 1
return j

The condition r>x before the swap() statement makes sure that the swapping isn’t undone when the
loop variable x has the value of the present r. This version of the revbin_permute-routine is pretty
unefficient (even if revbin() is inlined and 1dn is only computed once). Each execution of revbin()
costs proportional 1dn operations, giving a total of proportional 7 log,(n) operations (neglecting the
swaps for the moment). One can do better.

CHAPTER 1. THE FOURIER TRANSFORM 21

A fast version

The key idea is to compute the value # from the value z—1. As z is one added to z — 1, Z is one
‘reversed’ added to z — 1 if one finds a routine for that ‘reversed add’ update much of the computation
can be saved.

Code 1.14 (revbin update) Update r, that must be the same as the the result of revbin(x-1,n) to
what would be the result of revbin(x,n)

function revbin_update(r,n)

{
do
{
n = n >>
= r’n // bitwise exor
} whlle ((r&n) =
} return r

In C this can be cryptified to an efficient piece of code:

inline unsigned revbin_update(unsigned r, unsigned n)

for (unsigned m=n>>1; (!((r"=m)&m)); m>>=1);
return r;

}

Now we are ready for
Code 1.15 (revbin_permute, fast) Put data in revbin order

procedure revbin_permute(al[],n)
// al0..n-1] input,result

if n<=2 return
r := 0 // the reversed 0
for x:=1 to n-1

r := revbin_update(r,n) // inline me
if r>x then swap(alx],alr])

}

This routine is several times faster than the naive version. revbin_update() does for half of the calls
just one iteration because in half of the updates just the leftmost bit changes®, in half of the remaining
updates it does two iterations, in half of the still remaining updates it three and so on. The total number

operations done by revbin_update() is therefore proportional to n (l + 2 + § + % +..+ M) which is

n Zlog2(n) 4L for n large this sum converges against 2n. Thereby the asymptoucs of revbin_permute ()
is 1mproved from proportional n log(n) to proportional n.

How many swaps ?

How many swap ()-statements will be executed in total for different n ? About n — /n, as there are only
few numbers with symmetric bit patterns: for even loga(n) =: 2b the left half of the bit pattern must be
the reversed of the right half. There are 2 = v/22b such numbers. For odd logs(n) =: 2b + 1 there are
twice as much symmetric patterns, the bit in the middle does not matter and can be 0 or 1.

Scorresponding to the change in only the rightmost bit if one is added to an even number

CHAPTER 1. THE FOURIER TRANSFORM

Summarizing: almost all ‘revbin-pairs’ will be swapped by revbin_permute().

A still faster version

n | 2 # swaps # Symm. pairs
2 0 2
4 2 2
8 4 4
16 12 4
32 24 8
64 56 8
210 992 32
220 | 0.999 - 220 210
©| n-vn vn

T T2 To T A | Z>x?
0 00000 | 00000 0| -31
1 00001 | 10000 16 16 y
2 00010 | 01000 8 -8 y
3 00011 | 11000 24 | 16 y
4 00100 | 00100 4 | -20
5 00101 | 10100 20 16 y
6 00110 | 01100 12 -8 y
7 00111 | 11100 28 16 y
8 01000 | 00010 2 | -26
9 01001 | 10010 18 16 y
10 01010 | 01010 10 -8
11 01011 | 11010 26 16 y
12 01100 | 00110 6 | -20
13 01101 | 10110 22 16 y
14 01110 | 01110 14 -8
15 01111 | 11110 30 16 y
16 10000 | 00001 1| -29
17 10001 | 10001 17 | 16
18 10010 | 01001 9 -8
19 10011 | 11001 25 16 y
20 10100 | 00101 5| -20
21 10101 | 10101 21 16
22 10110 | 01101 13 -8
23 10111 | 11101 29 16 y
24 11000 | 00011 3| -26
25 11001 | 10011 19 16
26 11010 | 01011 11 -8
27 11011 | 11011 27 16
28 11100 | 00111 71 -20
29 11101 | 10111 23 16
30 11110 | 01111 15 -8
31 11111 | 11111 31 16

22

where the subscript 2 indicates printing in base 2, A := & — z—1 and an ‘y’ in the last column marks

index pairs where revbin_permute() will swap elements.

Observation one: A = 7 for all odd z.

Observation two: if for even z < % there is a swap (for the pair 2, Z) then there is also a swap for the
pairn—1-2,n—1-2%. Aszr< Zandf< fonehasn—1—-2>% andn—1-2 > Z,ie. the swaps

are independent.

CHAPTER 1. THE FOURIER TRANSFORM 23

There should be no difficulties to cast these observations into
Code 1.16 (revbin_permute, faster) Put data in revbin order

procedure revbin_permute(al[],n)

{
if n<=2 return
nh := n/2
r := 0 // the reversed 0
%hiie x<nh
// x odd:
r :=r +n
swap(a[x],alr])
x :=x +1
// x even:
r := revbin_update(r,n) // inline me
if r>x then
swap(alx],alr])
swap(a[n-1-x],a[n-1-r])
}
x :=x+1
}
}

The revbin_update() would be in C, inlined and the first stage of the loop extracted

r =nh; for (unsigned m=(nh>>1); !((r"=m)&m); m>>=1) {}
The code above is an ideal candidate to derive an optimised version for zero padded data:
Code 1.17 (revbin_permute for zero padded data) Put zero padded data in revbin order

procedure revbin_permuteO(a[].n)
{

if n<=2 return

nh := n/2
r := 0 // the reversed 0

X ;=
while x<nh

// x odd:

r :=r + nh
alr] al[x]
alx] := 0
x :=x +1

// x even:

r := revbin_update(r,n) // inline me
if r>x then swap(alx],alr])

x :=x +1

}

One could carry the scheme that lead to the ‘faster’ revbin_permute procedures further, e.g. using 3
hardcoded constants Aj, Ay, A3 depending on whether x mod 4 = 1,2, 3 only calling revbin_update ()
for £ mod 4 = 0. However, the code quickly gets quite complicated and there seems to be no measurable
gain in speed, even for very large sequences.

If, for complex data, one works with seperate arrays for real and imaginary part” one might be tempted to
do away with half of the bookkeeping as follows: write a special procedure revbin_permute(al[],b[],n)
that shall replace the two successive calls revbin_permute(al[],n) and revbin_permute(b[],n) and
has after each statement swap(a[x],alr]) inserted a swap(b[x],b[r]). If you do so, be prepared for
disaster! Very likely the real and imaginary element for the same index lie apart in memory by a power
of two, leading to one hundred percent cache miss for the typical computer. Even in the most favourable
case the cache miss rate will be increased. Do expect to hardly ever win anything noticable but in most
cases to lose big. Think about it, whisper “direct mapped cache’ and forget it.

[FXT: revbin permute in file permute/revbinpermute.h]
7

as opposed to: using a data type ‘complex’ with real and imaginary part of each number in consecutive places

CHAPTER 1. THE FOURIER TRANSFORM 24

1.8 Real valued Fourier transforms

The Fourier transform of a purely real sequence ¢ = F [a] where a € R has® a symmetric real part
(Re = Re) and an antisymmetric imaginary part (8¢ = —S¢). Simply using a complex FFT for real
input is basically a waste of a factor 2 of memory and CPU cycles. There are several ways out:

e sincos wrappers for complex FFTs
e usage of the fast Hartley transform
e a variant of the matrix Fourier algorithm

e special real (split radix algorithm) FFTs

All techniques have in common that they store only half of the complex result to avoid the redundancy
due to the symmetries of a complex FT of purely real input. The result of a real to (half-) complex
FT (abbreviated R2CFT) must contain the purely real components ¢y (the DC-part of the input signal)
and, in case n is even, ¢, > (the nyquist frequency part). The inverse procedure, the (half-) complex to
real transform (abbreviated C2RFT) must be compatible to the ordering of the R2CFT. The procedures
presented here use the following ordering of the real part of the resulting data c in the output array a[]:

alo] = Reo (1.66)
alt] = Re
a2 = Re

a[n/2] = Re,)

The imaginary part of the result is stored like

an/2+1] = Sg (1.67)
aln/2+2] = Se
an/2+3] = S

a[n - 1] = C\}Cn/g_l

except for the Hartley transform based R2CFT, which uses the reversed order for the imaginary part

an/2+4+1] = Sy (1.68)
a[n/2 + 2] = %Cn/2—2
an/2+3] = Scpo-3

an—1] = Sa

Note the absence of the elements Scg and e, /2 which are zero.

1.8.1 Real valued FT via wrapper routines

A simple way to use a complex length-n/2 FFT for a real length-n FFT (n even) is to use some post-
and preprocessing routines. For a real sequence a one feeds the (half length) complex sequence f =
aleven) 4 jq(0dd) into a complex FFT. Some postprocessing is necessary. This is not the most elegant
real FFT available, but it is directly usable to turn complex FFTs of any (even) length into a real-valued
FFT.

Here is the

8¢f. relation 1.20

CHAPTER 1. THE FOURIER TRANSFORM

Code 1.18 (R2CFT with wrap routines) C++ code for a real to complex FFT (R2CFT):

void
wrap_real_complex_fft(double *f, ulong ldn, int is/*=+1%/)

// ordering of output:

// £[0] = rel[0] (DC part, purely real)

// £[1] = re[n/2] (nyquist freq, purely real)
// £[2] = re[1]

// £[3] = im[1]

// £[4] = re[2]

;; £[5] = im[2]

// £[2%i] = re[i]

;; f[2*i+1] = im[i]

// £[n-2]1 = re[n/2-1]

;5 f[n-1] = im[n/2-1]

// equivalent:

// { fht_real_complex_fft(f, 1ldn, is); evenodd_permute(f, n); }
//

{

if (1dn==0) return;
fht_fft((Complex *)f, 1ldn-1, +1);
const ulong n = 1<<1dn;

const ulong nh = n/2, n4d = n/4;
const double phiO = M_PI / nh;
for(ulong i=1; i<n4; i++)

{
ulong il = 2 * i; // re low [2, 4, ..., n/2-2]
ulong i2 = i1 + 1; // im low [3, 5, ..., n/2-1]
ulong i3 = n - il; // re hi [n-2, n-4, ..., n/2+2]
ulong i4 = i3 + 1; // im hi [n-1, n-3, ..., n/2+3]

double filr, f2i;
sumdiff05(£[i3], f[i1]l, fir, £2i);

double f2r, f1i;

sumdiffO5(£[i2], f[i4], f2r, f1i);
double c, s;

double phi = i*phiO;

sincos(phi, &s, &c);

double tr, ti;

cmult(c, s, f2r, f2i, tr, ti);

// f£li1] fir + tr; // re low
// £[i3] = fir - tr; // re hi

// ="=

sumdiff (fir, tr, f[il1], £[i3]);

// £[i4] = is * (ti + £1i); // im hi

5/ f£i2] = is * (ti - f1i); // im low

if (is>0) sumdiff(ti, f1i, £[i4], £[i2]);
else sumdiff (-ti, f1i, f[i2], f[i4]);

}
sumdiff (£[0], £[1]);
if (n>=4) f[nh+1] *= is;

Code 1.19 (C2RFT, with wrap routines) C++ code for a complez to real FFT (C2RFT):

void
wrap_complex_real_fft(double *f, ulong ldn, int is/*=+1%/)

// inverse of wrap_real_complex_fft()
//
// ordering of input:

// like the output of wrap_real_complex_fft()
{

CHAPTER 1. THE FOURIER TRANSFORM 26

if (1dn==0) return;
const ulong n = 1<<1dn;
const ulong nh = n/2, n4 = n/4;

const double phi0O = -M_PI / nh;
for(ulong i=1; i<n4; i++)

{
ulong il = 2 * i; // re low [2, 4, ..., n/2-2]
ulong i2 = i1 + 1; // im low [3, 5, ..., n/2-1]
ulong i3 = n - il; // re hi [n-2, n-4, ..., n/2+2]
ulong i4 = i3 + 1; // im hi [n-1, n-3, ..., n/2+3]

double filr, f2i;
// double fir = f[i1] + £[i3]; // re symm
// double f2i = f£[i1] - f[i3]; // re asymm

// ="=
sumdiff (f[i1], f[i3], fir, f2i);

double f2r, fi1i;
// double f2r
// double fili

-f[i2] - f[i4]; // im symm
fli2] - f[i4]; // im asymm

// ="=

sumdiff (-f[i4], f[i2], f1i, f2r);
double c, s;

double phi = i*phiO;

sincos(phi, &s, &c);

double tr, ti;

cmult(c, s, f2r, f2i, tr, ti);

// £[i1] = fir + tr; // re low
// fEiS] fir - tr; // re hi

/

sumdiff (fir, tr, f[il1], f[i3]);
// f£li2] ti - f1i; // im low
// £[i4] = ti + f1i; // im hi

/ =
sumdiff (ti, f1i, f[i4], £[i2]);

}

sumdiff (£[0], £[1]);

if (n>=4) { flnh] *= 2.0; f[nh+1] *= 2.0; }
fht_fft((Complex *)f, 1dn-1, -1);

if (is<0) reverse_nh(f, n);

[FXT: wrap_real complex_fft in file realfft/realfftwrap.cc]
[FXT: wrap_complex real fft in file realfft/realfftwrap. cc]

1.9 The matrix algorithm (MFA)

The matrix Fourier algorithm® (MFA) works for (composite) data lengths n = RC. Consider the input
array as a R x C-matrix (R rows, C' columns).

Idea 1.7 (matrix Fourier algorithm) The matriz Fourier algorithm (MFA) for the FFT:

1. Apply a (length R) FFT on each column.
2. Multiply each matriz element (index r,c) by exp(£2mirc/n) (sign is that of the transform).
3. Apply a (length C) FFT on each row.

4. Transpose the matriz.

9A variant of the MFA is called ‘four step FFT’ in [127].

CHAPTER 1. THE FOURIER TRANSFORM 27

Note the elegance!

It is trivial to rewrite the MFA as the

Idea 1.8 (transposed matrix Fourier algorithm) The transposed matriz Fourier algorithm
(TMFA) for the FFT:

1. Transpose the matrix.
2. Apply a (length C) FFT on each column (transposed row).
3. Multiply each matriz element (index r,c) by exp(£2mirc/n).

4. Apply a (length R) FFT on each row (transposed column).

FFT algorithms are usually very memory nonlocal, i.e. the data is accessed in strides with large skips (as
opposed to e.g. in unit strides). In radix 2 (or 2") algorithms one even has skips of powers of 2, which is
particularly bad on computer systems that use direct mapped cache memory: One piece of cache memory
is responsible for caching addresses that lie apart by some power of 2. With an ‘usual’ FFT algorithm
one gets 100% cache misses and therefore a memory performance that corresponds to the access time
of the main memory, which is very long compared to the clock of modern CPUs. The matrix Fourier
algorithm has a much better memory locality (cf. [127]), because the work is done in the short FFTs over
the rows and columns.

For the reason given above the computation of the column FFTs should not be done in place. One can
insert additional transpositions in the algorithm to have the columns lie in contiguous memory when they
are worked upon. The easy way is to use an additional scratch space for the column FFTs, then only the
copying from and to the scratch space will be slow. If one interleaves the copying back with the exp()-
multiplications (to let the CPU do some work during the wait for the memory access) the performance
should be ok. Moreover, one can insert small offsets (a few unused memory words) at the end of each row
in order to avoid the cache miss problem almost completely. Then one should also program a procedure
that does a ‘mass production’ variant of the column FFTs, i.e. for doing computation for all rows at once.

It is usually a good idea to use factors of the data length n that are close to \/n. Of course one can
apply the same algorithm for the row (or column) FFTs again: It can be a good idea to split n into 3
factors (as close to n'/3 as possible) if a length-n'/? FFT fits completely into the second level cache (or
even the first level cache) of the computer used. Especially for systems where CPU clock is much higher
than memory clock the performance may increase drastically, a performance factor of two (even when
compared to else very good optimised FFTs) can be observed.

1.10 Convolutions

The cyclic convolution of two sequences a and b is defined as the sequence h with elements h, as follows:
h = a®b (1.69)

h, = Y anby

z+y=7(mod n)

The last equation may be rewritten as

n—1
he =) azbr, (1.70)
z=0

where negative indices 7 — x must be understood as n + 7 — z, it’s a cyclic convolution.

CHAPTER 1. THE FOURIER TRANSFORM 28

Code 1.20 (cyclic convolution by definition) Compute the cyclic convolution of a[]l with b[] using
the definition, result is returned in c[]

procedure convolution(a[],b[],c[],n)

{
for tau:=0 to n-1
s :=0
for x:=0 to n-1
tx := tau-x
if tx<0 then tx := tx+n
s := s + a[x]*b[tx]
c[taul] := s
}

This procedure uses (for length-n sequences a, b) proportional n? operations, therefore it is slow for large
values of n. The Fourier transform provides us with a more efficient way to compute convolutions that
only uses proportional n log(n) operations. First we have to establish the convolution property of the
Fourier transform:

Fla®b = Fla] F[0] (1.71)

i.e. convolution in original space is ordinary (elementwise) multiplication in Fourier space.

Here is the proof:
Flal, Fbl, = Zazzkzzbyzky (1.72)
z y

with y:=7—-1z

— Z ag zkw z by Zk (r—2z)
— Z Z ag zkz ch zk (r—=x)

r T—Z

S (2 a b> sk

T

- ()

= (Fla®b]),

Rewriting formula 1.71 as
a®b = F '[F[a]F[b] (1.73)
tells us how to proceed:

Code 1.21 (cyclic convolution via FFT) Pseudo code for the cyclic convolution of two complez val-
ued sequences x[1 and y[1, result is returned in y[1:

procedure fht_cyclic_convolution(x[],y[],n)

complex x[0..n-1], y[0..n-1]

// transform data:
fft(x[]1,n,+1)
fft(y[d,n,+1)

// convolution in transformed domain:
for i:=0 to n-1

CHAPTER 1. THE FOURIER TRANSFORM 29

y[i]l := y[i] * x[i]

// transform back:
fft(y[],n,-1)

// normalise:
for i:=0 to n-1

y[il := y[il/n
}

It is assumed that the procedure ££t () does no normalisation. In the normalisation loop you precompute
1.0/n and multiply as divisions are much slower than multiplications.

real convolutions: e [FXT: fht fft convolution in file fft/fftcnvl.cc] [FXT:
split_radix fft_convolution in file fft/fftcnvl.cc]

Auto (or self) convolution is defined as

h = a®a (1.74)
hy := Z Qg Gy
z4+y=7(n)

The corresponding procedure should be obvious. [FXT: fht_convolution in file fht/fhtenvl. cc] [FXT:
fht_convolutionO in file fht/fhtenvl.cc]

In the definition of the cyclic convolution (1.69) one can distinguish between those summands where the
x+y ‘wrapped around’ (i.e. z+y = n+ 7) and those where simply x +y = 7 holds. These are (following
the notation in [77]) denoted by (") and h(®) respectively. Then

o= A9 4p® (1.75)
where

MO = N aybr

z<T

h(l) = Z Ay bn+T7:c

T>T

There is a simple way to seperate h(®) and A(!) as the left and right half of a length-2n sequence. This
is just what the acyclic (or linear) convolution does: Acyclic convolution of two (length-n) sequences a
and b can be defined as that length-2n sequence h which is the cyclic convolution of the zero padded
sequences A and B:

A = {ao,al,az, ...,an_l,0,0, ,0} (176)
Same for B. Then

2n—1

hT = Z Aw BT*:E 7':0,]_,2,...,2’”—1 (177)
=0

S aby =) asbyt+ D asby (1.78)

z+y=7(2n) 0<z<n n<lz<2n
z,y<2n -

where the right sum is zero because a, = 0 for n < z < 2n. Now

D aeby = Y @b+ > arbrnyro =R+, (1.79)

0<z<n <1 z>T

CHAPTER 1. THE FOURIER TRANSFORM 30

where the rhs. sums are silently understood as restricted to 0 < x < n.

For 0 < 7 < n the sum S; is always zero because by, 1,5 is zero (n < 2n+7—2 < 2nfor 0 < 7—1x < n);
the sum R, is already equal to hgo). For n < 7 < 2n the sum S, is again zero, this time because it

extends over nothing (simultaneous conditions z < n and z > 7 > n); R, can be identified with hg)
(0 < 7' < n) by setting 7 =n + 7.

As an illustration consider the convolution of the sequence {1,1, 1,1} with itself: its linear self convolution
is {1,2,3,4,3,2,1,0}, its cyclic self convolution is {4,4,4,4}, i.e. the right half of the linear convolution
elementwise added to the left half.

By the way, relation 1.71 is also true for the more general z-transform, but there is no (simple) back-
transform, so we cannot turn (the analogue of 1.73)

a®b = Z ' [Z[a] Z[b] (1.80)

into a practical algorithm.

1.11 Mass storage convolution using the MFA

The matrix Fourier algorithm is also an ideal candidate for (adaption for) mass storage FFTs, i.e. FFTs
for data sets that do not fit into physical RAM1?.

In convolution computations it is straightforward to save the transpositions by using the MFA followed
by the TMFA. (The data is assumed to be in memory as rowg, rowy, ..., TOWg—_1, i.e. the way array
data is stored in memory in the C language, as opposed to the Fortran language.) For simplicity auto
convolution is considered here:

Idea 1.9 (matrix convolution algorithm) The matriz convolution algorithm:

1. Apply a (length R) FFT on each column.
(memory access with C-skips)

2. Multiply each matriz element (index r,c) by exp(£2wirc/n).

3. Apply a (length C) FET on each row.
(memory access without skips)

4. Complez square row (elementwise).

5. Apply a (length C) FET on each row (of the transposed matriz).
(memory access is without skips)

6. Multiply each matriz element (index r,c) by exp(F2wirc/n).

7. Apply a (length R) FFT on each column (of the transposed matriz).
(memory access with C-skips)

Note that steps 3, 4 and 5 constitute a length-C convolution.

[FXT: matrix_convolution in file matrix/matrixcnvl.cc] [FXT: matrix_convolutionO in file
matrix/matrixcnvl.cc] [FXT: matrix auto_convolution in file matrix/matrixcnvla.cc] [FXT:
matrix_auto_convolutionO in file matrix/matrixcnvla. cc]

A simple consideration lets one use the above algorithm for mass storage convolutions, i.e. convolutions
of data sets that do not fit into the RAM workspace. An important consideration is the

10The naive idea to simply try such an FFT with the virtual memory mechanism will of course, due to the nonlocality of
FFTs, end in eternal harddisk activity

CHAPTER 1. THE FOURIER TRANSFORM 31

Minimisation of the number of disk seeks

The number of disk seeks has to be kept minimal because these are slow operations which, if occur too
often, degrade performance unacceptably.

The crucial modification of the use of the MFA is not to choose R and C as close as possible to v/n as
usually done. Instead one chooses R minimal, i.e. the row length C corresponds to the biggest data set
that fits into the RAM memory'!. We now analyse how the number of seeks depends on the choice of
R and C': in what follows it is assumed that the data lies in memory as rowg, rowy, ..., FOWgR_1, i.e. the
way array data is stored in the C language, as opposed to the Fortran language convention. Further let
a > 2 be the number of times the data set exceeds the RAM size.

In step 1 and 3 of algorithm 1.14 one reads from disk (row by row, involving R seeks) the number of
colums that just fit into RAM, does the (many, short) column-FFTs!'2, writes back (again R seeks) and
proceeds to the next block; this happens for a of these blocks, giving a total of 4 a R seeks for steps 1
and 3.

In step 2 one has to read (a times) blocks of one or more rows, which lie in contiguous portions of the
disk, perform the FFT on the rows and write back to disk, leading to a total of 2 & seeks.

Thereby one has a number of 2 @ + 4 a R seeks during the whole computation, which is minimised by the
choice of maximal C. This means that one chooses a shape of the matrix so that the rows are as big as
possible subject to the constraint that they have to fit into main memory, which in turn means there are
R = a rows, leading to an optimal seek count of K = 2a + 4 2.

If one seek takes 10 milliseconds then one has for a = 16 (probably quite a big FFT) a total of K - 10 =
1056 - 10 milliseconds or approximately 10 seconds. With a RAM workspace of 64 Megabytes'® the CPU
time alone might be in the order of several minutes. The overhead for the (linear) read and write would
be (throughput of 10MB/sec assumed) 6 - 1024 M B/(10M B/sec) = 600sec or approximately 10 minutes.

With a multithreading OS one may want to produce a ‘double buffer’ variant: choose the row length so
that it fits twice into the RAM workspace; then let always one (CPU-intensive) thread do the FFTs in
one of the scratch spaces and another (hard disk intensive) thread write back the data from the other
scratch-space and read the next data to be processed. With not too small main memory (and not too
slow hard disk) and some fine tuning this should allow to keep the CPU busy during much of the hard
disk operations.

The remarks about the computation of the column FFTs on page 25 also apply here.

1.12 Weighted Fourier transforms

Let us define a new kind of transform by slightly modifying the definition of the FT (cf. formula 1.1):

c = Wyld] (1.81)
n—1

e = vaawz” vy #0 Vz
z=0

where z := e* 27", The sequence c shall be called weighted (discrete) transform of the sequence a with
the weight (sequence) v. Note the v, that entered: the weighted transform with v, = ﬁ Vz is just the
usual Fourier transform. The inverse transform is

a = W' (1.82)

more precisely: the amount of RAM where no swapping will occur, some programs plus the operating system have to
be there, too.

12real-complex FFTs in step 1 and complex-real FFTs in step 3.

13allowing for 8 million 8 byte floats, so the total FFT size is S = 16 - 64 = 1024 MB or 32 million floats

11

CHAPTER 1. THE FOURIER TRANSFORM 32

n—1
_ 1 zk
Ay = Cr %
n vy
k=0

This can be easily seen:

W{l[Wv[a]]y = —Zva%zzkz*yk

= ay

(cf. section 1.1). That W, [W; ! [a]] is also identity is apparent from the definitions.

Given an implemented FFT it is trivial to set up a weighted Fourier transform:
Code 1.22 (weighted transform) Pseudo code for the discrete weighted Fourier transform

procedure weighted_ft(all, v[1, n, is)
for x:=0 to n-1

al[x] := a[x] * v[x]

fft(all,n,is)

Inverse weighted transform is also easy:

Code 1.23 (inverse weighted transform) Pseudo code for the inverse discrete weighted Fourier
transform

procedure inverse_weighted_ft(all, v[], n, is)

fft(all,n,is)

for x:=0 to n-1
alx] := a[x] / v[x]
}

is must be negative wrt. the forward transform.

[FXT: weighted fft in file weighted/weightedfft.cc]

[FXT: weighted_inverse_fft in file weighted/weightedfft.cc]
Introducing a weighted (cyclic) convolution h, by

hy = a®{v}b (1.83)
= W, Wy [a] Wy [b]]

(cf. formula 1.73)

Then for the special case v, = V* one has

h, = h®4vyrp®) (1.84)

CHAPTER 1. THE FOURIER TRANSFORM 33

(h® and h(!) were defined by formula 1.75). It is not hard to see why: Up to the final division by the
weight sequence, the weighted convolution is just the cyclic convolution of the two weighted sequences,
which is for the element with index 7 equal to

S @V VY) = Y b, oV 4D asbpyra VT (1.85)

z+y=7(mod n) <7 z>T

Final division of this element (by V7) gives h(® + V"™ h(1) as stated.

The cases when V™ is some root of unity are particularly interesting: For V™ = £i = £+/—1 one gets
the so called right-angle convolution:

hy = A xin® (1.86)

This gives a nice possibility to directly use complex FFTs for the computation of a linear (acycclic)
convolution of two real sequences: for length-n sequences the elements of the linear convolution with
indices 0,1,...,n — 1 are then found in the real part of the result, the elements n,n+1,...,2n — 1 are the
imaginary part. Choosing V" = —1 leads to the negacyclic convolution (or skew circular convolution):

hy, = h©® —pM (1.87)

Cyclic, negacyclic and right-angle convolution can be understood as a polynomial product modulo 2™ —1,
2™+ 1 and 2™ + 4, respectively (cf. [3]).

[FXT: weighted complex_auto_convolution in file weighted/weightedconv. cc]
[FXT: negacyclic_complex_auto_convolution in file weighted/weightedconv. cc]

[FXT: right_angle _complex.auto_convolution in file weighted/weightedconv.cc]

1.13 Half cyclic convolution for half the price ?

The computation of h(®) from formula 1.75 (without computing (1)) is called half cyclic convolution.
Clearly, one asks for less information than one gets from the acyclic convolution. One might hope to find
an algorithm that computes h(®) and uses only half the memory compared to the linear convolution or
that needs half the work, possibly both. It may be a surprise that no such algorithm seems to be known
currently'.

Here is a clumsy attempt to find A(®) alone: Use the weighted transform with the weight sequence
vy = V% where V" is very small. Then A(!) will in the result be multiplied with a small number and
we hope to make it almost disappear. Indeed, using V™ = 1000 for the cyclic self convolution of the
sequence {1,1,1,1} (where for the linear self convolution h(® = {1,2,3,4} and h(") = {3,2,1,0}) one
gets {1.003,2.002, 3.001,4.000}. At least for integer sequences one could choose V™ (more than two times)
bigger than biggest possible value in 2(!) and use rounding to nearest integer to isolate h(?). Alas, even
for modest sized arrays numerical overflow and underflow gives spurious results. Careful analysis shows
that this idea leads to an algorithm far worse than simply using linear convolution.

1.14 Convolution using the MFA

With the weighted convolutions in mind we reformulate the matrix (self-) convolution algorithm (section
1.9):

1. Apply a FFT on each column.

141f you know one, tell me about it!

CHAPTER 1. THE FOURIER TRANSFORM 34

2. On each row apply the weighted convolution with V¢ = e27i7/E = 1"/E where R is the total
number of rows, r = 0..R — 1 the index of the row, C the length of each row (or, equivalently the
total number columns)

3. Apply a FFT on each column (of the transposed matrix).

First consider

The case R =2

The cyclic auto convolution of the sequence x can be obtained by two half length convolutions (one cyclic,
one negacyclic) of the sequences!® s := 2(%/2) 4 £(1/2) and d := £(°/2) — 2(1/?) using the formula

1
rT®T = §{s®s+d®,d, s®s—d®_d} (1.88)
The equivalent formula for the cyclic convolution of two sequences x and y is
1
T®Y = 3 {82 ®sy+da ®_dy, S ®8y—ds ®_dy} (1.89)
where
s, = x0/2) 4 p(1/2)
d, = 202 _z1/2)
sy = y(©/2) 4 4(1/2)
d, = y(0/2) _ 4(1/2)

For the acyclic (or linear) convolution of sequences one can use the cyclic convolution of the zero padded
sequences 2, := {Zo, %1, ..-;Mn—1,0,0,...,0} (i.e. £ with n zeros appended). Using formula 1.88 one gets
for the two sequences z and y (with s, =d, =z, s, = dy =y):
1
T®wcy = #®z = S{z@y+re-y, z®y-z8-_y} (1.90)

And for the acyclic auto convolution:

1
TR = 2®2 = §{£U®IE+.’L°®7ZL', rT®r—2r®_ 2} (1.91)

The case R =3

Let w = % (1 + v/3) and define

A = 2O/ 4 L0/3) L L /3)
B = z0/3) 4 2073 4 2 5(2/3)
C = 203 4 250/3) 4523
Then, if h := x ®,. , there is
203 = A®A+B ®(w) B+C @2 C (1.92)
213 = A@ A+ w? (B ®w} B)+w(C ®w2})
2?3 = A®@A+w(B & B)+w? (C @2y 0)

For real valued data C' is the complex conjugate of B and (with w? = cc.w) B®(,} B is the cc. of C®(,2,C
and therefore every B ®(; B-term is the cc. of the C' ®;; C-term in the same line. Is there a nice and
general scheme for real valued convolutions based on the MFA? Read on for the positive answer.

155, d lower half plus/minus higher half of

CHAPTER 1. THE FOURIER TRANSFORM 35

1.15 Convolution of real valued data using the MFA

For row 0 (which is real after the column FFTs) one needs to compute the (usual) cyclic convolution;
for row R/2 (also real after the column FFTs) a negacyclic convolution is needed!®, the pseudo code for
that task is given on page 56.

All other weighted convolutions involve complex computations, but it is easy to see how cut the work by
50 percent: As the result must be real the data in row number R — r must, because of the symmetries of
the real and imaginary part of the (inverse) Fourier transform of real data, be the complex conjugate of
the data in row . Therefore one can use real FFTs (R2CFTs) for all column-transforms for step 1 and
half-complex to real FFTs (C2RFTs) for step 3.

Let the computational cost of a cyclic (real) convolution be ¢, then

For R even one must perform 1 cyclic (row 0), 1 negacyclic (row R/2) and R/2 — 2 complex (weighted)
convolutions (rows 1,2,...,R/2—1)

For R odd one must perform 1 cyclic (row 0) and (R — 1)/2 complex (weighted) convolutions (rows
1,2, (R—1)/2)

Now assume, slightly simplifying, that the cyclic and the negacyclic real convolution involve the same
number of computations and that the cost of a weighted complex convolution is twice as high. Then in
both cases above the total work is exactly half of that for the complex case, which is about what one
would expect from a real world real valued convolution algorithm.

For acyclic convolution one may want to use the right angle convolution (and complex FFTs in the column
passes).

1.16 Convolution without transposition using MFA

An algorithm for convolution using the MFA that uses revbin_permute instead of transpose (works for
sizes that are a power of two, generalizes for sizes a power of some prime):

rows=8 columns=4
input data (symbolic format: ROOC) :
0: 0 1 2 3
1000 1001 1002 1003
2000 2001 2002 2003
3000 3001 3002 3003
4000 4001 4002 4003
5000 5001 5002 5003
6000 6001 6002 6003
7000 7001 7002 7003

~NOoO oW

FULL REVBIN_PERMUTE for transposition:

0: 0 4000 2000 6000 1000 5000 3000 7000
1: 2 4002 2002 6002 1002 5002 3002 7002
2: 1 4001 2001 6001 1001 5001 3001 7001
3: 3 4003 2003 6003 1003 5003 3003 7003

DIT FFTs on revbin_permuted rows (in revbin_permuted sequence), i.e. unrevbin_permute rows:
(apply weight after each FFT)

0: 0 1000 2000 3000 4000 5000 6000 7000
1: 2 1002 2002 3002 4002 5002 6002 7002
2: i 1001 2001 3001 4001 5001 6001 7001
3: 3 1003 2003 3003 4003 5003 6003 7003

6For R odd there is no such row and no negacyclic convolution is needed.

CHAPTER 1. THE FOURIER TRANSFORM 36

FULL REVBIN_PERMUTE for transposition:
0: 0 1 2 3
4000 4001 4002 4003
2000 2001 2002 2003
6000 6001 6002 6003
1000 1001 1002 1003
5000 5001 5002 5003
3000 3001 3002 3003
7000 7001 7002 7003

~NO O WN

CONVOLUTIONS on rows (don’t care revbin_permuted sequence), no reordering.

FULL REVBIN_PERMUTE for transposition:

0: 0 1000 2000 3000 4000 5000 6000 7000
1: 2 1002 2002 3002 4002 5002 6002 7002
2: 1 1001 2001 3001 4001 5001 6001 7001
3: 3 1003 2003 3003 4003 5003 6003 7003

(apply inverse weight before each FFT)
DIF FFTs on rows (in revbin_permuted sequence), i.e. revbin_permute rows:

0: 0 4000 2000 6000 1000 5000 3000 7000
1: 2 4002 2002 6002 1002 5002 3002 7002
2: 1 4001 2001 6001 1001 5001 3001 7001
3 3 4003 2003 6003 1003 5003 3003 7003

FULL REVBIN_PERMUTE for transposition:
0: 0 1 2 3
1000 1001 1002 1003
2000 2001 2002 2003
3000 3001 3002 3003
4000 4001 4002 4003
5000 5001 5002 5003
6000 6001 6002 6003
7000 7001 7002 7003

~N O O W

1.17 Split radix Fourier transforms (SRFT)

Code 1.24 (split radix DIF FFT) Pseudo code for the split radiz DIF algorithm, is must be -1 or
+1:

procedure fft_splitradix_dif(x[],y[],1ldn,is)

n := 2%*xldn

if n<=1 return
n2 := 2%n

for k:=1 to 1ldn

e := 2 % PI / n2
for j:=0 to n4-1
{

a:=3j*e

ccl := cos(a)

ssl := sin(a)

cc3 := cos(3*%a) // == 4*ccl*(ccl*ccl-0.75)

CHAPTER 1. THE FOURIER TRANSFORM
ss3 := sin(3%a) // == 4%ss1%(0.75-ssl*ssl)
ix := j
id := 2%n2

while ix<n-1

iQ := ix
while i0 < n

il := iQ0 + n4

i2 := il + n4

i3 := i2 + n4

{x[i0], r1} := {x[i0] + x[i2],
{x[i1], r2} := {x[i1] + x[i3],
{yli0], s1} := {y[i0] + y[i2],
{y[i1], s2} := {y[i1] + y[i3],
{r1, s3} := {ri1+s2, ri-s2}
{r2, s2} := {r2+s1, r2-si}

// complex mult: (x[i2],y[i2])
x[i2] := rl*ccl - s2*ssi
y[i2] -s2%ccl - ril*ssi

// complex mult: (y[i3],x[i3]) :

x[i0] - x[i2]}
x[i1] - x[i3]}
y[i0o]l - y[i21}
yl[i1]l - y[i31}

-(s2,r1) * (ssi,ccl)

(r2,s3) * (cc3,ss3)

x[i3] := s3%cc3 + r2*ss3
y[i3] := 1r2%cc3 - s3#*ss3
i0 := i0 + id
}
ix := 2 * id - n2 + j
id := 4 * id
}
}
ix := 1
id := 4
while ix<n
for i0:=ix-1 to n-id step id
{
il := i0 + 1
{x[i0], x[i1]1} := {x[i0]+x[i1], x[i0]-x[i1]}
{y[i0]1, y[i1l} := {y[i0l+y[i1l, y[iol-y[i1l}
}
ix = 2 *x id - 1
) id := 4 * id

revbin_permute (x[],n)
revbin_permute (y[],n)

%f is>0
for j:=1 to n/2-1

swap(x[j],x[n-j1)
swap(y[jl,y[n-j1)

[FXT: splitradixfft in file

fft/cfftsplitradix.cc]

1.17.1 Real to complex SRFT

fft/fftsplitradix.cc]

[FXT: splitradixfft in

Code 1.25 (split radix R2CFT) Pseudo code for the split radix R2CFT algorithm

procedure r2cft_splitradix_dit(x[],1dn)

n := 2%*ldn

1;
4;

ix
id :

37

file

CHAPTER 1.

THE FOURIER TRANSFORM

do
{ .
;= ix-1
while i0<n
il :=i0 + 1
{x[i0], x[i11} := {x[i0]+x[i1], x[i0]l-x[i1l}
i0 := i0 + id
}
ix = 2%id-1
id := 4 % id
while ix<n
n2 := 2
nn := n/4
while nn!=0
ﬁ% = 8*n2
id := 2*n2
nd := n2/4
n8 := n2/8
do // ix loop
{

i0 . := ix
while i0<n

}

ix
id :

i0Q

il + n4
i2 + n4
i3 +n

il
i2
i1
{t1, x[i4]} := {x[i4]1+x[i3], x[i4]1-x[i3]}

{x[i1], x[i3]1} := {x[i1]l+t1, x[i1]-t1}
if n4'=1

t il := il + n8

i2 := i2 + n8

i3 := i3 + n8

i4 := i4 + n8

t1 := (x[i31+x[i4]) * sqrt(1/2)

t2 := (x[i3]-x[i4]) * sqrt(1/2)

{x[i4], x[i31} := {x[i2]-t1, -x[i2]-t1}
) {x[i1], x[i2]1} := {x[i1]+t2, =x[i1]-t2}
i0 := i0 + id
:= 2%id - n2
= 2*id

while ix<n

e := 2.0%PI/n2
a = e
for j:=2 to n8
{
ccl := cos(a)
ssl := sin(a)
cc3 := cos(3*a) // == 4*ccl*(ccl*ccl-0.75)
ss3 := sin(3%a) // == 4%ss1%(0.75-ssl*ssl)
a := jke
ix = Q
id := 2*n2
do // ix-loop
i, .
iQ := ix
while 1iO<n
i1 := 0+ j - 1
i2 := i1 + nd
i3 := i2 + nd
i4 := i3 + n4
i :=i0 + nd - j + 1
ig := ig + né
i7 := i6 + n4
i8 := i7 + n4d

38

CHAPTER 1. THE FOURIER TRANSFORM

// complex mult: (t2,t1) := (x[i7],x[i3]) * (ccl,ssl)
t1 := x[i3]*ccl + x[i7]*ss1
t2 := x[i7]*ccl - x[i3]*ss1

// complex mult: (t4,t3) := (x[i8],x[i4]) * (cc3,ss3)

t3 := x[i4]*cc3 + x[i8]*ss3
t4 := x[i8]*cc3 - x[i4]*ss3
th = t1 + t3
tg = 12 + 4
t ti=tl - t
t4d := t2 - t4
{t2, x[i3]1} := {t6+x[i6], t6-x[i6]}
x[i8] := t2
{t2,x[17]1} := {x[i2]-t3, -x[i2]-t3}
x[i4] := t2
{t1, x[i6]1} := {x[i1]+t5, x[i1]-t5}
x[i1] := t1
{t1, x[i5]1} := {x[ib]+t4, x[i5]1-t4}
x[i2] := t1
i0 := 10 + id
}
ix := 2%id - n2
id := 2*id

while ix<n

nn := nn/2

1.17.2 Complex to real SRFT
Code 1.26 (split radix C2RFT) Pseudo code for the split radix C2RFT algorithm

procedure c2rft_splitradix_dif(x[],1dn)

n := 2%*ldn

n2 n/2

nn := n/4
while nn!=0

0

n2
n2/2
n2/4
n2/8

do // ix loop

B
N
nmnmwmnn

i0, := ix
while i0<n
il := i0
;2,1%
1ot
{x[i1], t1} := {x[i1]+x[i3], x[i1]-x[i3]}
x[i2] := 2*x[i2]

13
x[i4] := 2*x[i4]
{x[i3], x[i4]1} := {t1+x[i4], t1-x[i4]1}

+ né
+ n4
+ n

if n4!=1
il = i1 + ng
i2 := i2 + n
i3 := i3 + n8
i4 := i4 + n8

{x[i1], t1} := {x[i2]+x[i1], x[i2]-x[i1]}
{t2, x[i2]1} := {x[i4]1+x[i3], x[i4]1-x[i3]}

x[13] := -sqrt(2)*(t2+t1)

39

CHAPTER 1. THE FOURIER TRANSFORM

x[i4] :=

sqrt (2) *(t1-t2)

}
i0 := i0 + id
ix := 2*id - n2
id := 2%id
while ix<n
e := 2.0%PI/n2
a := e
for j:=2 to n8
{
ccl := cos(a)
ssl := sin(a)
cc3 := cos(3*a) // == 4*ccl*(ccl*ccl-0.75)
ss3 := sin(3*%a) // == 4*ss1*(0.75-ssl*ssl)
a := j*e
ix = Q
id := 2%n2
do // ix-loop
i .
i0 := ix
while 10<n
i1 1= 30+ j - 1
i2 := il + n4
i3 i= i2 + nd
i = i3 + né
i5 := i0 + nd - j + 1
i6 := i5 + n4d
i7 := i6 + nd
i8 := i7 + n4d
{x[i1], t1} := {x[i1]+x[i6], x[i1]l-x[i6]1}
{x[i5], t2} := {x[i5]1+x[i2], x[i5]1-x[i2]}
{t3, x[i6]} := {x[i8]1+x[i3], x[i8]-x[i3]}
{t4, x[i2]} := {x[i4]1+x[i7], x[i4]1-x[i7]1}
{t1, t5} := {t1+t4, ti-t4}
{t2, t4} := {t2+t3, t2-t3}
// complex mult: (x[i7],x[i3]) := (t5,t4)
x[i3] := t5*ccl + t4d#*ssl
x[i7] := -td*ccl + tb5*ssi
// complex mult: (x[i4],x[i8]) := (t1,t2)
x[i4] := ti1*cc3 - t2*ss3
x[i8] := t2%cc3 + tl*ss3
i0 := i0 + id
}
ix := 2%id - n2
) id := 2%id
while ix<n
}
nn := nn/2
}
ix := 1;
id := 4;
do
.
i0 := ix-1
while iO<n
il :=i0 + 1
{x[i0], x[i11} := {x[i0]+x[i1], x[i0]-x[i1]l}
i0 := i0 + id
}
ix = 2%id-1
id := 4 % id

while ix<n

* (ssl,ccl)

* (cc3,ss3)

40

CHAPTER 1. THE FOURIER TRANSFORM 41

1.18 Multidimensional FT's

1.18.1 Definition

Let az 4 (z = 0,1,2,..,C and y = 0,1,2,..., R) be a 2-dimensional array of datal”. Its 2-dimensional
Fourier transform cy,p, is defined by:

c = f[a] (1.93)
C-1R-1
Ch,h T ZZ Z2ZRtUh ghere z=et27U" p=RC (1.94)
n =0 z=0
Its inverse is
a = F ' (1.95)
C—-1R-1
a; = ! Z k,hz—(zk—i-yh) (196)
‘/ﬁ k=0 h=0

For a m-dimensional array az (¥ = (z1,%2,23,...,Zm), ¢; € 0,1,2,...,.5;) the m-dimensional Fourier
transform ¢ (k = (k1, k2, k3, ..., km), ki € 0,1,2,...,5;) is defined as

S1—182—-1 Sp,m—1

g = Z Z Z ag LAF (1.97)

x1=0 22=0 Tm=0

where 2z = ei”i/”, n=.595...5m

The inverse transform is again the one with the minus in the exponent of z.

1.18.2 The row column algorithm

The equation of the definition of the two dimensional FT (1.93) can be recast as

c-1
Chh = Z 2%k Z Qg,y 2Y (1.98)

which shows that the 2-dimensional FT can be accomplished by using 1-dimensional FTs to transform
first the rows and then the columns'®. This leads us directly to the row column algorithm:

Code 1.27 (row column FFT) Compute the two dimensional FT of a[1[] using the row column
method

procedure rowcol_ft(all[]l,R,C)

{
complex a[RI[C] // R (length-C) rows, C (length-R) columns
for r:=0 to R-1 // FFT rowus
fft(alr][1,C,is)
complex t[R] // scratch array for columns
for c:=0 to C-1 // FFT columns
copy a[0,1,...,R-1]1[c] to t[l // get column
fft(t[],R,is)
copy t[] to a[0,1,...,R-1]1[c] // write back column
}
}

Imagine a R x C matrix of R rows (of length C) and C columns (of length R).
180r first the rows, then the columns, the result is the same

CHAPTER 1. THE FOURIER TRANSFORM 42

Here it is assumed that the rows lie in contiguous memory (as in the C language).

Transposing the array before the column pass in order to avoid the copying of the columns to extra
scratch space will probably do good for the performance. The transposing back before returning can be
avoided if a backtransform will follow!?, the backtransform must then be called with R and C swapped.

19as typical for convolution etc.

Chapter 2

The z-transform (ZT)

2.1 Definition of the ZT

The z-transform (ZT) Z [a] = a of a (length n) sequence a with elements a, is defined as
n—1
ar = Zaz 2k (2.1)
z=0

The z-transform is a linear transformation, its most important property is the convolution property
(formula 1.71): Convolution in original space corresponds to ordinary (elementwise) multiplication in
z-space. (See [26] and [27].)

Note that the special case z = e£27i/n

is the discrete Fourier transform.

2.2 The chirp ZT

In the definition of the (discrete) z-transform we rewrite! the product z k as

zk = % (2 + Kk — (k—12)%) (2.2)
. n—1 . n—1 .)
F = Z L /2 Z (fz 5T /2) 5 (k—2)?/2 (2.3)
=0 =0

This leads to the following

Idea 2.1 (chirp z-transform) Algorithm for the chirp z-transform:

1. Multiply f elementwise with 2% /2,

2. Convolve (acyclically) the resulting sequence with the sequence Pl 2| zero padding of the sequences

is required here.
3. Multiply elementwise with the sequence ZK°/2

The above algorithm constitutes a ‘fast’ (~ n log(n)) algorithm for the ZT because fast convolution is
possible via FFT.

TEST: ref chirpzt: 2.1, pageref: 41
Lef. [3]

43

CHAPTER 2. THE Z-TRANSFORM (ZT) 44

2.3 Arbitrary length FFT by ZT

We first note that the length n of the input sequence a for the fast z-transform is not limited to highly
composite values (especially n prime is allowed): For values of n where a FFT is not feasible pad the
sequence with zeros up to a length L with L >= 2n and a length L FFT feasible (e.g. L is a power of 2).

Second remember that the FT is the special case z = e¥27#/" of the ZT: With the chirp ZT algorithm
one also has an (arbitrary length) FFT algorithm

The transform takes a few times more than an optimal transform (by direct FFT) would take. The worst
case (if only FFTs for n a power of 2 are available) is n = 27 + 1: One must perform 3 FFTs of length
2P+2 ~ 4n for the computation of the convolution. So the total work amounts to about 12 times the
work a FFT of length n = 2P would cost. It is of course possible to lower this ‘worst case factor’ to 6 by
using highly composite L slightly greater than 2n.

2.4 Fractional Fourier transform by ZT

The z-transform with z = e*27#™ and a # 1 is called the fractional Fourier transform (FRFT). Uses of
the FRFT are e.g. the computation of the DFT for data sets that have only few nonzero elements and
the detection of frequencies that are no integer multiples of the lowest frequency of the DFT. A thorough
discussion can be found in [128].

[FXT: fft_fract in file chirp/fftfract.cc]

Chapter 3

Walsh transforms

How to make a Walsh transform out of your FFT:
‘Replace exp(something) by 1, done.’

Very simple, so we are ready for

Code 3.1 (radix 2 DIT Walsh transform, first trial) Pseudo code for a radiz 2 decimation in time
Walsh transform: (has a flaw)

procedure walsh_wak_dit2(a[],1dn)

{
n := 2%x1ldn
for ldm := 1 to ldn
m := 2%*x1dm
mh := m/2
for j := 0 to mh-1
{
for r := 0 to n-1 step m
{
tl :=r + j
t2 := tl + mh
u := a[ti]
v := al[t2]
al[tl] (= u + v
al[t2] :=u -v
}
}
}
}

The transform involves proportional n log,(n) additions (and subtractions) and no multiplication at all.
Note the absence of any permute(a[],n) function call. The transform is its own inverse, so there is
nothing like the is in the FFT procedures here. Let’s make a slight improvement: Here we just took the
code 1.5 and threw away all trig computations. But the swapping of the inner loops, that caused the
nonlocality of the memory access is now of no advantage, so we try this piece of

Code 3.2 (radix 2 DIT Walsh transform) Pseudo code for o radiz 2 decimation in time Walsh
transform:

procedure walsh_wak_dit2(a[]l,1dn)

{
n := 2%*ldn
for ldm := 1 to ldn
m = 2%x1dm
mh := m/2

45

CHAPTER 3. WALSH TRANSFORMS 46

for r := 0 to n-1 stepm
{
tl =r
t2 = r + nh
for j := 0 to mh-1
{
u := a[t1]
v := a[t2]
al[tl] :(=u + v
al[t2] :=u -v
tl = t1 + 1
t2 = t2 + 1
}
}

}

Which performance impact can this innocent change in the code have? For large n it gave a speedup by
a factor of more than three when run on a computer with a main memory clock of 66 Megahertz and a
5.5 times higher CPU clock of 366 Megahertz.

The equivalent code for the decimation in frequency algorithm looks like this:

Code 3.3 (radix 2 DIF Walsh transform) Pseudo code for a radiz 2 decimation in frequency Walsh
transform:

procedure walsh_wak_dif2(a[],1dn)

n := 2%*xldn
for 1dm := 1dn to 1 step -1
{
m = 2%*xldm
mh := m/2
for r := 0 to n-1 stepm
{
tl=r
t2 = r + mh
for j := 0 to mh-1
{
u := a[t1]
v := al[t2]
al[tl] :=u + v
al[t2] :(=u -v
tl :=t1l +1
t2 =12 + 1

}

The basis functions look like this (for n = 16):

Here is a formula for the Walsh basis functions

wak;(z) = XXX (3.1)

A term analogue to the frequency of the Fourier basis functions is the so called ‘sequency’ of the Walsh
functions, the number of the changes of sign of the individual functions. If one wants the basis functions
ordered with respect to sequency one can use a procedure like this:

Code 3.4 (sequency ordered Walsh transform (wal))

procedure walsh_wal_dif2(a[],n)
{
gray_permute (a[],n)
permute (a[l,n)
walsh_wak_dif2(a[],n)

CHAPTER 3. WALSH TRANSFORMS 47
permute(al],n) is what it used to be (cf. section 1.7). The procedure gray_permute(a[],n) reorders
data element with index m by the element with index gray_code (m).

Code 3.5 (Gray permute)

procedure gray_permute(al[],n)
// real al[0..n] input, result

{
real t[] // workspace
for i:=0 to n-1
g := graycode(i)
tlg] := alil
copy t[] to all
}

The graycode reordering can’t be (easily) done inplace, therefore the temporary array t[]. The function
graycode (i) shall return the graycode of its (integer) argument, i.e. i exor’d with i/2. In C one can
write this compactly as

inline unsigned long graycode(unsigned long x) { return x~(x>>1); }

The Walsh transform of integer input is integral, cf. section 6.3.

CHAPTER 3. WALSH TRANSFORMS

e el e
g W= O

e e
abdh W N, O

0O ~NO O WN PO 0O ~NOYO s WN RO

00 ~NO U WwWwN O

[* % % % % % % % % % % % % *
[* * * * * * *
[* * * k * * * *
[* * ok * ok * ok
[* * * % * ¥

[* * * * ok *
[* * * k * *

[* * * * *
[* * * % * * *

[* * x * ok %
[* * * k *
[* * * *

[* % % * *
[* * * * * *
[* * * ok * *
[* * * % * % *

WAK (Walsh-Kronecker base)

[*
[*
[*
[*
[*
[*
[*
[*
[*
[*
[*
[*
[*
[*
[*
[*

* K X *
* ¥ Ok *
*
*

* ¥ K K K K X ¥

* ¥ ¥ ¥
* ¥ X ¥
* K K K
* %
*
*

* ¥ ¥ Ok

* * *

WAL (Walsh-Kaczmarz base)

[* * * * % * ok k k k k k %
[* * * % % % % *

[* k k k k * * %
[* % % % *

[* k * * *
[* % *

L * ¥ * k * *
[* * * * *
[* =* * * ok *
[=* * * * ok
[* * * * *
[* =* * * *
[=* * * * x
[=* * * *
[* * * *
[* * * * *

SEQ

*

*]
]
]

*]
]

*]

* *]

* ¥ ¥ Ok

* *

]
]
*]
*]
]
*]
1
]
*]

*]

*]

*]

*]

*]

*]

*]

*]

*

*

* * ¥ ¥
{ Iy N ey Ry S Ty Ny N N Ty Y Y

—_

()
(15)
D
(X:))
(3
(12)
()
(11)
QD)
(14)
Q)
(GF°))
(2
(13)
(5
(10)

0)
1
2)
3)
4)
5)
6)
7
8)

AN AN AN AN A A A A

(10)
(11)
(12)
(13
(14)
(15)

0)
1)
2)
3)
4)
5)
6)
7
8)

A A A A A A A A

(10)
(11)
(12)
(13)
(14)
(15)

[* * % % * * ok Kk XK
[* * * % *

[* * * * * k Kk Kk
[* * % *

[* * * * ¥
[* * * *
[* * * * ok
[* * * *
[* * * * *

[* *x * * x
[* * * * k *
[* * * * *
[* * * k

[* * * * ok
[* * * * *
[* * * ok * %

PAL (Walsh-Paley base)

[* * * k Kk Kk k Kk K ok
[* *

[* * * k x k
[* * * *
[* * k * ok

[* * * X * ok
[* * * * k

[* * * *
[* * * * *
[* * * * *
[* * * x *

[* * ok * * ok
[* * * *

[* * * ok

[* * % % * ok
[* * * % % % % *
CIRCLE

[* * * *
[* * *

[* * * Kk Xk

[* * * kX *
[* * % * k *
[* * * * X

[* * * *

[* % * * *
[* * ok * x *
[* * ok * x

[* * kK

[* * kK

[* * * * X
[* * * ¥

[* *

[* * * kX

INVERSE SEQ

* K K *

* ¥ ¥ ¥

* O ¥ ¥

*
* %]

*]
*]
*]
*]
*]
*]
*]
*]

—_ e

*]

*]

*]

*]

*]

*]

*]

0)
1
3)
2)
7)
6)
4)

(15)
(14)
(12)
(13)
(8
(9
(11)
(10)

(V)
(2)
(4
(86
(8
(10)
(12)
(14)
(15)
(13)
(11)

7)
5)
3)
1

~ N~

(8
«n
(8
n
(8
«n
(8
n
(8
n
(8
n
(8
«n
(8
n

48

Chapter 4

The Hartley transform (HT)

4.1 Definition of the HT

The Hartley transform (HT) is defined like the Fourier transform with ‘cos + sin” instead of ‘cos +i - sin’.
The (discrete) Hartley transform of a is defined as

¢c = Hld (4.1)
1= 27k 27k
cp = %wz::oaz (cos ﬂ-n ? 4 sin ﬂ-n a:) (4.2)
It has the obvious property that real input produces real output,
Hla] € R for a€R (4.3)
It also is its own inverse:
H[H[a]] = a (4.4)

The symmetries of the HT are simply:

Hlas] = Hlas] =H[as] (4.5)
Hlaa]l = Hlaa] = —Hlad] (4.6)

i.e. symmetry is, like for the FT, conserved.

4.2 Complex valued FT by HT

The relations between the HT and the FT can be read off directly from their definitions and their
symmetry relations. Let o be the sign of the exponent in the FT, then the HT of a complex sequence
deCis:
1 . _
Fld = 5 (Hd+Hd+oi (Hld-HT)) (4.7)
Written out for the real and imaginary part d = a+ib (a,b € R):
RF[a+ib] = (H [a] + H]a] — o (’H [b] — [b])) (4.8)

SFla+ib] =

N = N =

(H [b] + H[o] + o (7{ [a] - W)) (4.9)

49

CHAPTER 4. THE HARTLEY TRANSFORM (HT) 50

This leads to the following

Code 4.1 (complex FT by HT, version 1) Pseudo code for the complex Fourier transform that uses
the Hartley transform, is must be -1 or +1:

fft_by_fhti(all,b[],n,is)
// real a[0..n-1] input,result (real part)
// real b[0..n-1] input,result (imaginary part)

fht(al],n)
fht(b[1,n)

for k:=1 to n/2-1

t := n-k

as := alk] + alt]

aa := alk] - alt]

bs := b[k] + b[t]

ba := b[k] - b[t]

aa := is * aa

ba := is * ba

alk] := 1/2 * (as - ba)
alt] := 1/2 * (as + ba)
blk] := 1/2 * (bs + aa)
b[t] := 1/2 * (bs - aa)

}
}

Alternatively, one can recast the relations (using the symmetry relations 4.5 and 4.6) as

1

RFla+ib] = 5Hlas—obd] (4.10)
SF[a+ib] = %H[bs+aaA] (4.11)

which leads to this

Code 4.2 (complex FT by HT, version 2) Pseudo code for the complex Fourier transform that uses
the Hartley transform, is must be -1 or +1:

fft_by_fht2(all,b[],n,is)
// real a[0..n-1] input,result (real part)
// real b[0..n-1] input,result (imaginary part)

{

for k:=1 to n/2-1
t := n-k
as := alk] + a[t]
aa := alk] - alt]
bs := b[k] + b[t]
ba := b[k] - b[t]
aa := is * aa
ba := is * ba
alk] := 1/2 * (as - ba)
alt] := 1/2 * (as + ba)
b[k] := 1/2 * (bs + aa)
b[t] := 1/2 * (bs - aa)

}

fht(al]l,n)
fht (b[],n)

Note that the real and imaginary parts of the FT are computed independently by this procedure.

For convolutions it would be sensible to use procedure 4.1 for the forward and 4.2 for the backward
transform. The complex squarings are then combined with the pre- and postprocessing steps, thereby

CHAPTER 4. THE HARTLEY TRANSFORM (HT) 51

interleaving the most nonlocal memory accesses with several arithmetic operations. In effect the routine
is (about) twice as memory local as the direct FFT implementation.

[FXT: tht_fft in file fht/fhtcfft.cc]
[FXT: fht_££t0 in file fht/fhtcfft.cc]

4.3 Real valued FT by HT

To express the real and imaginary part of a Fourier transform of a purely real sequence a € R by its
Hartley transform use relations 4.8 and 4.9 and set b = 0:

RF [a] (H [a] + H [a]) (4.12)

1
2

S$F[a] = =H[a]-H]a) (4.13)

1
2
The pseude code is straightforward:

Code 4.3 (real to complex FFT via FHT)

procedure real_complex_fft_by_fht(a[],n)
// real a[0..n-1] input,result

fht(all,n)
ﬁor i:=1 to n/2-1

}

At the end of this procedure the ordering of the output data ¢ € C is

alo] = Re (4.14)
all] = Re
a2 = Re
aln/2] = Rews
a[n/Q + 1] = gcn/2—1
a[n/2 + 2] = C\?CH/Q,Q
afn/2+3] = Sennos
an—1] = S¢

The inverse procedure is:
Code 4.4 (complex to real FFT via FHT)

procedure complex_real_fft_by_fht(al[],n)
// real al[0..n-1] input,result

{
for i:=1 to n/2-1

t :=n -1

CHAPTER 4. THE HARTLEY TRANSFORM (HT) 52

u := a[il
v := al[t]
al[i]

a[t]

+

urv
u-v

fht(all,n)

4.4 HT by real valued FT

4.5 radix 2 FHT algorithms

4.5.1 Decimation in time (DIT) FHT

For a sequence a of length n let X/2a denote the sequence with elements a, coswz/n + @, sinwz/n
(this is the ‘shift operator’ for the Hartley transform).

Idea 4.1 (FHT radix 2 DIT step) Radiz 2 decimation in time step for the FHT:

2 a7V "2 g [a(even)] L x\/2y [a(odd)] (4.15)
,H[a]slright) n/2 U [a(even)] _x\2y [a(odd)] (4.16)

Code 4.5 (recursive radix 2 DIT FHT) Pseudo code for a recursive procedure of the (radiz 2) DIT
FHT algorithm:

procedure rec_fht_dit2(all,n,x[])
// real a[0..n-1] input
{/ real x[0..n-1] result

real b[0..n/2-1], c[0..n/2-1] // workspace
real s[0..n/2-11, t[0..n/2-11 // workspace

if n == then
x[0] := al[0]
return
nh := n/2;
for k:=0 to nh-1
s[k] := a[2x*k] // even indexed elements
t[k] := a[2*%k+1] // odd indexed elements

rec_fht_dit2(s[],nh,b[])
rec_fht_dit2(t[]1,nh,c[])

hartley_shift(c[],nh,1/2)
for k:=0 to nh-1

x[k] b[k] + c[k];
x [k+nh] blk] - clk];

The result is in x[].
[FXT: recursive.dit2_fht in file learn/recfhtdit2.cc]

The procedure hartley shift() replaces element ¢, of the input sequence ¢ by cjcos(mk/n) +
cn—k sin(m k/n). Here is the pseudo code:

CHAPTER 4. THE HARTLEY TRANSFORM (HT) 53

Code 4.6 (Hartley shift)

procedure hartley_shift(c[],n,v)
// real c[0..n-1] input, result
nh := n/2

j = n-1
for k:=1 to nh-1

cos (v¥2%PIxk/n)
sin(v*2%PIxk/n)

{clkx]l, c[jl1} := {clkl*c+tc[jI*s, c[kl*s-c[jl*c}
j o= -1

c :
S

}
}

[FXT: hartley shift 05 in file fht/hartleyshift.cc]

Code 4.7 (radix 2 DIT FHT, naive) Pseudo code for a non-recursive procedure of the (radiz 2) DIT
FHT algorithm:

procedure fht_dit2(a[],1ldn)
// real a[0..n-1] input,result

{
n := 2%x1ldn // length of a[] is a power of 2
revbin_permute (a[],n)
for ldm:=1 to 1ldn
m = 2%%ldm
mh := m/2
méd := m/4
for r:=0 to n—m step m
{
for j:=1 to m4-1 // hartley_shift(a+r+mh,mh,1/2)
{
k := mh - j
u := a[r+mh+j]
v := al[r+mh+k]
c := cos(j*PI/mh)
s := sin(j*PI/mh)
{u, v} := {u*ct+v*s, u*s-v*c}
a[r+mh+j] :=u
a[r+mh+k] := v
}
for j:=0 to mh-1
{
u := a[r+j]
v := a[r+j+mh]
alr+j] = u+ v
alr+j+mh] :=u - v
}
}
}
}

[FXT: dit2_fht_localized in file learn/fhtdit2.cc]

4.5.2 Decimation in frequency (DIF) FHT
Idea 4.2 (FHT radix 2 DIF step) Radiz 2 decimation in frequency step for the FHT:
A [a](even) "éQ ey [a(left) + a(rz’ght)] (417)

H)0 "L 7{[;(1/2 (aaem_a(m’ght))} (4.18)

CHAPTER 4. THE HARTLEY TRANSFORM (HT) 54

Code 4.8 (recursive radix 2 DIF FHT) Pseudo code for a recursive procedure of the (radiz 2) DIF
FHT algorithm:

procedure rec_fht_dif2(all,n,x[])
// real a[0..n-1] input
{/ real x[0..n-1] result

real b[0..n/2-11, c[0..n/2-11 // workspace
real s[0..n/2-1], t[0..n/2-1] // workspace

if n == 1 then
{

x[0] := a[0]
return
}
nh := n/2;
for k:=0 to nh-1
s[k] := a[k] // ’left’ elements
t[k] := alk+nh] // ’right’ elements
}

for k:=0 to nh-1
{slkl, tlkl} := {s[kl+t[k]l, s[kl-t[k1}

hartley_shift(t[],nh,1/2)
rec_fht_dif2(s[],nh,b[])
rec_fht_dif2(t[]1,nh,c[])
j=0
for k:=0 to nh-1

x[j] b[k]

x[j+1] := clk]
j 1= j+2

}
}

The result is found in x[].

[FXT: recursive dit2_fht in file learn/recfhtdit2.cc]

Code 4.9 (radix 2 DIF FHT, naive) Pseudo code for a non-recursive procedure of the (radiz 2) DIF
FHT algorithm:

procedure fht_dif2(all,1ldn)
// real a[0..n-1] input,result

{
n := 2%*ldn // length of a[] is a power of 2

for ldm:=1ldn to 1 step -1

{
m := 2%x1ldm
mh := m/2
mé4 := m/4
for r:=0 to n-m step m
{
for j:=0 to mh-1
{
u := alr+j]
v := a[r+j+mh]
alr+j] =u+v
al[r+j+mh] :=u - v
}
for j:=1 to mé4-1
{
k :=mh - j
u := a[r+mh+j]
v := al[r+mh+k]

[¢]
n

cos (j*PI/mh)

CHAPTER 4. THE HARTLEY TRANSFORM (HT)

s := sin(j*PI/mh)

{u, v} := {u*ct+v*s, uxs-v*c}
a[r+mh+j] :=u
a[r+mh+k] := v

}
}
}

revbin_permute(a[],n)

}

[FXT: dif2 fht_localized in file learn/fhtdif2.cc]

4.6 Discrete cosine transform (DCT) by HT

Code 4.10 (DCT via FHT) Pseudo code for the computation of the DCT via FHT:

procedure dct(x[],1dn)
// real x[0..n-1] input,result
{

n := 2%%n
nh := n/2

real y[0..n-1] // workspace
for k:=0 to nh-1

k2 := 2%k
y [k]
y [nh+k]

x[k2]
x[n-1-k2]

fht(y[],1dn)

x[0] := y[0]

x[nh] := y[nhl]

phi := PI/2/n

for (ulong k:=1; k<nh; k++)
{

cos (phixk)

sin(phixk)

(c+s) *sqrt (1/2)

(c-s) *sqrt(1/2)

x [k] := cms*y[k] + cps*y[n-k]
x[n-k] := cps*y[k] - cms*y[n-k]

s

cps :
cms

[FXT: dcth in file dctdst/dcth.cc]

Code 4.11 (IDCT via FHT) Pseudo code for the computation of the IDCT via FHT:

procedure idct(x[],1dn)
// real x[0..n-1] input,result
{

n := 2%*n
nh := n/2

real y[0..n-1] // workspace
y[0] := x[0]

y[nh] := x[nh]

phi := PI/2/n

for (ulong k:=1; k<nh; k++)
{

c :
S

cos (phixk)
sin(phixk)

cps := (c+s)*sqrt(1/2)

55

CHAPTER 4. THE HARTLEY TRANSFORM (HT)

cms := (c-s)*sqrt(1/2)

y [k]
y [n-k]

cms*x[k] + cps*x[n-k]
cps*x[k] - cms*x[n-k]

fht (y[]1,1dn)
for k:=0 to nh-1

k2 := 2%k
x[k] = y[k2]
x[nh+k] := y[n-1-k2]

[FXT: idcth in file dctdst/dcth. cc]

4.7 Discrete sine transform (DST) by DCT

Code 4.12 (DST via DCT) Pseudo code for the computation of the DST via DCT:

procedure dst(x[],1dn)
// real x[0..n-1] input,result

n := 2%*n
nh := n/2

for k:=1 to n-1 step 2

x [k]

dct(x,1dn)

1= —x[k]

for k:=0 to nh-1

swap (x [k] ,x[n-1-k])

[FXT: dsth in

file dctdst/dsth.cc]

56

Code 4.13 (IDST via IDCT) Pseudo code for the computation of the inverse sine transform (IDST)

using the inverse cosine transform (IDCT):

procedure idst(x[],1dn)
// real x[0..n-1] input,result

swap (x [k] ,x[n-1-k])

for k:=1 to n-1 step 2

1= —x[k]

{
n := 2%*n
nh := n/2
for k:=0 to nh-1
idct (x,1dn)
x [k]
}

[FXT: idsth in file dctdst/dsth. cc]

CHAPTER 4. THE HARTLEY TRANSFORM (HT) 57

4.8 Convolution via FHT

The convolution property of the HT is

Ha®b = % (Hla) (6] - HEa H B + M o] HE] + Ha] 1)) (4.19)

or, written elementwise:

1 - _
’H[a@b]k = E(ckdk—@dk-l-ckdk-l-ﬁdk)
1 — _
= §(ck(dk+dk)+@(dk—dk)) where c="H][a], d=HI[b (4.20)

Code 4.14 (cyclic convolution via FHT) Pseudo code for the cyclic convolution of two real valued
sequences x[1 and y[1, n must be even, result is found in y[J:

procedure fht_cyclic_convolution(x[],y[],n)
// real x[0..n-1] input, modified

// real y[0..n-1] result

{

// transform data:

fht(x[],n)

tht(y[]1,n)

// convglution in transformed domain:

j = n-

for i:=1 to n/2-1

x[i]

x[j]

yp := y[il + y[3j1 // = y[j]1 + y[il
ym := y[i]l - y[3j1 // = -(y[j] - y[iD)
y[il := (xi*yp + xj*ym)/2

y[j] (xj*yp - xi*ym)/2

X j o= g1
y[0] := y[0l*y[0]
if n>1 then y[n/2] := y[n/2]*y[n/2]

// transform back:
fht(y[1,n)

xi :
x]

// normalise:
for i:=0 to n-1

y[il := y[il/n

It is assumed that the procedure fht () does no normalisation.

Equation 4.20 (slightly optimised) for the auto convolution is

1

Hla® al, E(Ck(clﬁ-ﬁ)%-@(ck—@))

1
= ¢y + 3 (c; —) where ¢ = H [a] (4.21)

Code 4.15 (cyclic auto convolution via FHT) Pseudo code for an auto convolution that uses a fast
Hartley transform, n must be even:

procedure cyclic_self_convolution(x[],n)
// real x[0..n-1] input, result

CHAPTER 4. THE HARTLEY TRANSFORM (HT) 58

// transform data:
fht (x[1,n)

// convglution in transformed domain:
j = n-

%or i:=1 to n/2-1

x[i]

x[j]

tl := ci*cj //
t2 := 1/2*%(cixci-cj*cj) //

x[i] := t1 + t2
x[j] := t1 - t2

, d= g
x[0] := x[0]*x[0]
if n>1 then x[n/2] := x[n/2]1*x[n/2]

// transform back:
ftht(x[]1,n)

// normalise:
for i:=0 to n-1

x[i] := x[il/n

ci :=
cj :=
cj*ci

-1/2*(cj*cj-ci*ci)

}
For odd n replace the line
for i:=1 to n/2-1
by
for i:=1 to (n-1)/2
and omit the line

if n>1 then x[n/2] := x[n/2]1*x[n/2]

in both procedures above.

4.9 Negacyclic convolution via FHT

Code 4.16 (negacyclic auto convolution via FHT) Code for the computation of the negacyclic
(auto-) convolution:

procedure negacyclic_self_convolution(x[],n)
// real x[0..n-1] input, result
{

// preprocessing:

hartley_shift(x,n,1/2)

// transform data:

fht (x,n)
// convglution in transformed domain:
j = n-
for i:=0 to n/2-1 // here i starts from zero
a := x[i]
b := x[j]
x[i] := a*b+(a*a-b%*b)/2
x[j] := axb-(a*a-bxb)/2
j=3j1

CHAPTER 4. THE HARTLEY TRANSFORM (HT)

// transform back:
fht (x,n)

// postprocessing:
hartley_shift(x,n,1/2)

FXT: fht_negacyclic_auto_convolution in file fht/fhtnegacnvla.cc
gacy g
(The code for hartley_shift () was given on page 51.)

59

Chapter 5

Numbertheoretic transforms (NTTs)

How to make a numbertheoretic transform out of your FFT:
‘Replace exp(£2mi/n) by a primitive n-th root of unity, done.’

We want to do FFTs in Z/mZ (the ring of integers modulo some integer m) instead of C, the (field of
the) complex numbers. These FFTs are called numbertheoretic transforms (NTTs), mod m FFTs or (if
m is a prime) prime modulus transforms.

There is a restriction for the choice of m: For a length n FFT we need a primitive n-th root of unity. A
number r is called an n-th root of unity if 7 = 1. Tt is called a primitive n-th root if r* # 1V k < n.

In C matters are simple: e*27#/7 ig a primitive n-th root of unity for arbitrary n. 72! is a 21-th root
of unity. r = e2™%/3 is also 21-th root of unity but not a primitive root, because r® = 1. A primitive n-th
root of 1 in Z/mZ is also called an element of order n. The ‘cyclic’ property of the elements r of order
n lies in the heart of all FFT algorithms: r"t% = k.

In Z /mZ things are not that simple since primitive roots of unity do not exist for arbitrary n, they exist
for some maximal order R only. Roots of unity of an order different from R are available only for the
divisors d; of R: r®/% is a d;-th root of unity because (rf/%)di =B =1,

Therefore n must divide R, the first condition for NTTs:

n\R <— 31 (5.1)

The operations needed in FFTs are addition, subtraction and multiplication. Division is not needed,
except for division by n for the final normalization after transform and backtransform. Division by n is
multiplication by the inverse of n. Hence n must be invertible in Z /mZ: n must be coprime! to m, the
second condition for NTTs:

nlm <= 3In~'inZ/mZ (5.2)

Cf. [1], [6], [30] or [3] and books on number theory.

5.1 Prime modulus: Z/pZ =F,

If the modulus is a prime p then Z /pZ is the field F,: All elements except 0 have inverses and ‘division is
possible’ in Z /pZ. Thereby the second condition is trivially fulfilled for all FFT lengthes n < p: a prime
p is coprime to all integers n < p.

1

n coprime to m <= gcd(n,m) =1

60

CHAPTER 5. NUMBERTHEORETIC TRANSFORMS (NTTS) 61

Roots of unity are available for the maximal order R = p—1 and its divisors: Therefore the first condition
on n for a length-n mod p FFT being possible is that n divides p — 1. This restricts the choice for p to
primes of the form p = vn + 1: For length-n = 2¥ FFTs one will use primes like p = 3-5-227 + 1 (31
bits), p = 13- 228 + 1 (32 bits), p = 3-29- 25 + 1 (63 bits) or p = 27-2%% + 1 (64 bits)?. The elements
of maximal order in Z /pZ are called primitive elements, generators or primitive roots modulo p. If r is a
generator, then every element in F, different from 0 is equal to some power ¢ (1 < e < p) of r and its
order is R/e. To test whether r is a primitive n-th root of unity in F, one doesn’t need to check r* # 1
for all k < n. It suffices to do the check for exponents k that are prime factors of n. To find a primitive
root in I, proceed as indicated by the following pseudo code:

Code 5.1 (Primitive root modulo p) Return a primitive root in I,

function primroot (p)

{
if p==2 then return 1
f[] := distinct_prime_factors(p-1)
for r:=2 to p-1
{
x := TRUE
foreach q in f[]
{
if r**((p-1)/q)==1 then x:=FALSE
}
} if x==TRUE then return r
error("no primitive root found") // p cannot be prime !
}

An element of order n is returned by this function:
Code 5.2 (Find element of order n) Return an element of order n in T, :

function element_of_order(n,p)

{
R := p-1 // maxorder

if (R/n)*n != R then error("order n must divide maxorder p-1")
r := primroot(p)

x := r**x(R/n)
Treturn x

5.2 Composite modulus: Z/mZ, cyclic vs. noncyclic

In what follows we will need the function ¢(), the so-called ‘totient’ function. ¢(m) counts the number
of integers prime to and less than m. For m = p prime ¢(p) = p — 1. For m composite p(m) is always
less than m — 1. For m = p* a prime power

p(@*) = pF-p! (5.3)

e.g. p(2F) = 2k=1. (1) = 1. For coprime py, p> (p1, p> not necessarily primes) ¢(p1 p2) = ©(p1) ¢(p2),
() is a so-called multiplicative function.

For the computation of ¢(m) for m a prime power one can use this simple piece of code
Code 5.3 (Compute phi(m) for m a prime power) Return o(p®)

function phi_pp(p,x)

2Primes of that form are not ‘exceptional’, cf. Lipson [6]

CHAPTER 5. NUMBERTHEORETIC TRANSFORMS (NTTS) 62

{

if x==1 then return p - 1
else return p**x - px*(x-1)

}
Pseudo code to compute ¢(m) for general m:

Code 5.4 (Compute phi(m)) Return ¢(m)

function phi(m)

{n, pll, x[1} := factorization(m) // m==product(i=0..n-1,p[i]**x[i])

ph := 1
for i:=0 to n-1

ph := ph * phi_pp(p[il,x[il)

}
}

Further we need the notion of Z /mZ*, the ring of units in Z /mZ. Z /mZ* contains all invertible elements
(‘units’) of Z/mZ, i.e. those which are coprime to m. Evidently the total number of units is given by

p(m):
Z/mZ*| = @(m) (5.4)

If m factorizes as m = 2%0 - pf1 . . pFe then

Z/mZT| = p(2%) - o(p}) - ... p(pke) (5.5)

It turns out that the maximal order R of an element can be equal to or less than |Z/mZ*|, the ring
Z /mZ* is then called cyclic or noncyclic, respectively. For m a power of an odd prime p the maximal
order R in Z/mZ* (and also in Z/mZ) is

RpY) = (") (5.6)

while for m a power of two a tiny irregularity enters:

1 fork=1
R(2Y = 2 fork =2 (5.7)
28=2 fork >3

i.e. for powers of two greater than 4 the maximal order deviates from ((2*) = 2¥~1 by a factor of 2. For
the general modulus m = 2%o . p’fl Cat p{;" the maximal order is

R(m) = lem(R(2%),R(pt"), ., R(p}*)) (5.8)
where lem() denotes the least common multiple.
Pseudo code to compute R(m):
Code 5.5 (Maximal order modulo m) Return R(m), the mazimal order in Z /mZ
function maxorder (m)
{n, p[l, k[1} := factorization(m) // m==product(i=0..n-1,p[i]**k[i])
%o£=i}=0 to n-1
t := phi_pp(p[il,k[i])
if p[i]==2 AND k[i]>=3 then t :=t / 2
R := lem(R,t)

return R

CHAPTER 5. NUMBERTHEORETIC TRANSFORMS (NTTS) 63

Now we can see for which m the ring Z /mZ* will be cyclic:

Z/mZ* cyclic for m =2, 4, p*, 2. pk (5.9)
where p is an odd prime. If m contains two different odd primes p,,py then R(m) =
lem(...,0(Pa), 0(b), -..) is at least by a factor of two smaller than p(m) = ... - p(pa) - @(ps) - ... be-

cause both ¢(p,) and ¢(py) are even, so Z /mZ* can’t be cyclic in that case. The same argument holds
for m = 2% . p¥ if kg > 1. For m = 2F Z/mZ* is cyclic only for k = 1 and k = 2 because of the above
mentioned irregularity of R(2F).

The underlying mathematical proofs can be found in .

Pseudo code (following [30]) for a function that returns the order of some element z in Z /mZ:
Code 5.6 (Order of an element in Z/mZ) Return the order of an element z in Z/mZ

function order(x,m)

if gecd(x,m)!=1 then return 0 // x not a unit
h := phi(m) // number of elements of ring of units

e := h
{n, p[l, k[1} := factorization(h) // h==product(i=0..n-1,p[i]**k[i])
for i:=0 to n-1

f := pli]**k[i]

e:=e/ f

gl := x**e mod m
while gi!=1

{

gl := gl**p[i] mod m
e := e x p[i]

plil := pli] - 1
}

return e

}
Pseudo code for a function that returns some element z in Z/mZ of maximal order:

Code 5.7 (Element of maximal order in Z/mZ) Return an element that has mazimal order in
Z/mL
function maxorder_element (m)

R := maxorder (m)
for x:=1 to m-1

if order(x,m)==R then return x

// never reached

For prime m the function returns a primitive root. It is a good idea to have a table of small primes stored
(which will also be useful in the factorization routine) and restrict the search to small primes and only if
the modulus is greater than the largest prime of the table proceed with a loop as above:

Code 5.8 (Element of maximal order in Z/mZ) Return an element that has mazimal order in
Z|mZ, use a precomputed table of primes

function maxorder_element (m,pt[],np)
// ptl0..np-1] = 2,3,5,7,11,13,17,...
if m==2 then return 1
R := maxorder (m)
for i:=0 to np-1

CHAPTER 5. NUMBERTHEORETIC TRANSFORMS (NTTS) 64

if order(pt[i]l,m)==R then return x
}
// hardly ever reached
for x:=pt[np-1] to m-1 step 2

if order(x,m)==R then return x

}

// never reached

}

[FXT: maxorder_element._mod in file mod/maxorder. cc|

There is no problem if the prime table contains primes > m: The first loop will finish before order() is
called with an element > m, because before that can happen, the element of maximal order is found.

5.2.1 Cyeclic rings

5.2.2 Noncyclic rings

5.3 Pseudocode for NTTs

+2wi/n

To implement mod m FFTs one basically must supply a mod m class® and replace e by an n-th

root of unity in Z /mZ in the code. [FXT: class mod in file mod/mod.h]

For the backtransform one uses the (mod m) inverse 7 of r (an element of order n) that was used for
the forward transform. To check whether 7 exists one tests whether ged(r,m) = 1. To compute the
inverse modulo m one can use the relation 7 = r#»)~! (mod m). Alternatively one may use the extended
Euclidean algorithm, which for two integers a and b finds d = ged(a,b) and u, v so that au + bv = d.
Feeding a = r, b = m into the algorithm gives u as the inverse: ru+muv =ru =1 (mod m).

While the notion of the Fourier transform as a ‘decomposition into frequencies’ seems to be meaningless
for NTTs the algorithms are denoted with ‘decimation in time/frequency’ in analogy to those in the
complex domain.

The nice feature of NTTs is that there is no loss of precision in the transform (as there is always with the

complex FFTs). Using the analogue of trigonometric recursion (in its most naive form) is mandatory, as
the computation of roots of unity is expensive.

5.3.1 Radix 2 DIT NTT

Code 5.9 (radix 2 DIT NTT) Pseudo code for the radiz 2 decimation in time mod fft (to be called
with 1dn=log2(n)):

procedure mod_fft_dit2(f[], 1dn, is)

// mod_type f[0..2%x1dn-1]

{ n := 2%x1dn
rn := element_of_order(n) // (mod_type)
if is<0 then rn := rn**(-1)
revbin_permute (£[],n)
for 1dm:=1 to 1ldn

m := 2%¥ldm

mh := m/2

dw := rn**(2%*(ldn-1dm)) // (mod_type)
w =1 // (mod_type)

3A class in the C++ meaning: objects that represent numbers in Z /mZ together with the operations on them

CHAPTER 5. NUMBERTHEORETIC TRANSFORMS (NTTS)

for j:=0 to mh-1

for r:=0 to n-1 step m

{ tl := r+j
t2 := tl+mh
v := £f[t2]*w // (mod_type)
u := f[t1] // (mod_type)

f[t1]
f[t2]

u+v
u-v

}
W = wkdw
}

}
}

Like in 1.3.2 it is a good idea to extract the 1dm==1 stage of the outermost loop:
Replace

for ldm:=1 to 1ldn

by
for r:=0 to n-1 step 2
{£[r], flr+11} := {f[r]+f[r+1], £lx]-flr+11}

for 1ldm:=2 to 1ldn

5.3.2 Radix 2 DIF NTT

Code 5.10 (radix 2 DIF N'TT) Pseudo code for the radiz 2 decimation in frequency mod fft:
procedure mod_fft_dif2(£[], 1ldn, is)

// mod_type f[0..2%*1dn-1]

{

n := 2%x1ldn
dw := element_of_order(n) // (mod_type)
if is<0 then dw := rn¥*(-1)

for 1dm:=1ldn to 1 step -1

{
m := 2%*ldm
mh := m/2
w :=1 // (mod_type)
for j:=0 to mh-1
{
for r:=0 to n-1 stepm
{
tl = r+j
t2 := til+mh
v := f[t2] // (mod_type)
u := f[t1] // (mod_type)
f[t1] := utv
£f[t2] := (u-v)*w
}
W = wkdw
}
dw := dw*dw
}

revbin_permute (£[],n)

}

As in section 1.3.3 extract the 1dm==1 stage of the outermost loop:
Replace the line

65

CHAPTER 5. NUMBERTHEORETIC TRANSFORMS (NTTS) 66

for 1ldm:=1dn to 1 step -1
by
for 1ldm:=1dn to 2 step -1

and insert

for r:=0 to n-1 step 2

{£[r], £flr+11} := {f[r]+f[r+1], £lr]-f[r+1]}

before the call of revbin_permute (f[],n).

5.4 Convolution with NTTs

The NTTs are natural candidates for (exact) integer convolutions, as used e.g. in (high precision) multi-
plications. One must keep in mind that ‘everything is mod p’, the largest value that can be represented
is p— 1. As an example consider the multiplication of n-digit radix R numbers*. The largest possible
value in the convolution is the ‘central’ one, it can be as large as M = n (R — 1)? (which will occur if
both numbers consist of ‘nines’ only®).

One has to choose p > M to get rid of this problem. If p does not fit into a single machine word
this may slow down the computation unacceptably. The way out is to choose p as the product of several
distinct primes that are all just below machine word size and use the Chinese Remainder Theorem (CRT)
afterwards.

If using length-n FFTs for convolution there must be an inverse element for nn. This imposes the condition
ged(n, modulus) = 1, i.e. the modulus must be prime to n. Usually® modulus must be an odd number.

Integer convolution: Split input mod m1, m2, do 2 FFT convolutions, combine with CRT.

5.5 Numbertheoretic Hartley transform

Let r be an element of order n, i.e. 7™ = 1 (but there is no k < n so that r* = 1) we like to identify r
with exp(2i7/n).

Then one can set

27 r2 41
- 5.10
T 2r ()
o r2—1
, sin — = 5.11
i sin— 5y (5.11)

For This choice of sin and cos the relations exp() = cos() + i sin() and sin()? + cos()? = 1 should hold.

The first check is trivial: L + w;—;l = z. The second is also easy if we allow to write i for some element

2z
2 1 2 2
that is the square root of —1: (“‘;;1)2 + (z;m_zl)2 =L “)4;9 =" — 1. Ok, but what is i in the modular
ring ? Simply 7"/, then we have i2 = —1 and i* = 1 as we are used to. This is only true in cyclic rings .

4Multiplication is a convolution of the digits followed by the ‘carry’ operations.
5A radix R ‘nine’ is R — 1, nine in radix 10 is 9.
Sfor length-2% FFTs

Chapter 6

Wavelet transforms

6.1 The Haar transform

basis functions have compact support
combination step (haar step: nur DC neu + 1.freq aus den 2 alten DC) —; complexity proportional n
as matrix mult

pyramid algorithms

Code 6.1 (Haar transform) pseudo code for the Haar transform:

procedure haar(f[],1dn)
// real £[0..2%*1dn-1] // input, result

n := 2%*x1ldn
real g[0..n-1] // workspace
s2 := sqrt(0.5)
v :=1.0
for m:=n to 2 div_step 2
{
v 1= VvV ¥ s2
mh = m/2

k :=0
for j=0 to m-1 step 2

x = f[j]

y := fl[j+1]

g [k] 1= x+y
glmh+k] := (x-y)*v
k := k+1

copy gl0..m-1] to £[0..m-1]
}

£f[0] := £[0J*v // v==1.0/sqrt(n)

Code 6.2 (inverse Haar transform) pseudo code for the inverse Haar transform:

procedure inverse_haar(f[],1dn)
// real £[0..2%x1dn-11 // input, result

n := 2%*ldn
real g[0..n-11 // workspace

67

CHAPTER 6. WAVELET TRANSFORMS

s2 := sqrt(0.5)

v := 1.0/sqrt(n)

£f[0] := £[0]*v

for m:=2 to n mul_step 2

{
mh := m/2

k :=0

for j=0 to m-1 step 2
£ [k]

y := flmh+k] * v
glil = xty
gli*l = xy
k := k+1

X

copy gl0..m-1] to £[0..m-1]
v =V ¥ s2

}
6.2 Inplace Haar transform

localized ordering of basis functions

Code 6.3 (inplace Haar transform) pseudo code for the inplace Haar transform:

procedure inplace_haar(f[],1ldn)
// real f[0..2%x1dn-1]1 // input, result

{
n := 2%*n
s2 := sqrt(0.5)
v :=1.0
for js:=2 to n mul_step 2
{ v =V ¥ s2
t = j + js/2
for j:=0 to n-1 step js
{
/1 A£031, £0¢1} := {£[j1+£[t], (£0j1-£0t1)*v}
x := f[j]
y = f[t]
f[j] :=x +y
flt] := (x - y) * v
t =t + js

£[0] := £f[0l*v // v==1.0/sqrt(n)

revbin_permute (£f[],n)

}

Code 6.4 (inplace inverse Haar transform) pseudo code for the inverse inplace Haar transform:

procedure inverse_inplace_haar(f[],1ldn)
// real £[0..2%x1dn-1] // input, result
{

n := 2%*n
revbin_permute (f[1,n)

s2 := sqrt(0.5)
v :=1.0/sqrt(n)

f[0] := f[0]*v

CHAPTER 6. WAVELET TRANSFORMS

for js:=n to 2 div_step 2
{

t = j + js/2

for j:=0 to n-1 step js

/7 {£03], £081} = {£[j1+£ [t *v, £[jI-£[t]*v}
x := f[j]

y := flt] * v
f[j] :=x +y
flt] :=x -y
t =1t + js

+

}
vV = VvV ¥ s2

}

6.3 Integer to integer Haar transform

Code 6.5 (integer to integer Haar transform)

procedure int_haar(f[],1dn)
// real f£[0..2%x1dn-1] // input, result

{
n := 2%xn
real gl[0..n-11 // workspace
for m:=n to 2 div_step 2
{
mh = m/2
k :=0
for j=0 to m-1 step 2
{
x := f[j]
y := f[j+1]
d :=x -y
s := y + floor(d/2) // == floor((x+y)/2)
glk 1= s
glmh+k] := d
k:=k+1
}
copy gl0..m-1] to £[0..m-1]
m := m/2
}

jjnote: one can omit floor() with type integer

Code 6.6 (inverse integer to integer Haar transform)

procedure inverse_int_haar(f[],1dn)
// real £[0..2%*1dn-1]1 // input, result

n := 2%*n

real g[0..n-11 // workspace
for m:=2 to n mul_step 2

mh := m/2

k :=0

for j=0 to m-1 step 2
{

£ [k]

f [mh+k]

s - floor(d/2)

S
d :

CHAPTER 6. WAVELET TRANSFORMS

x :=d +y // == s+floor((d+1)/2)
gLjl

glj+1]
k : =k +1

X

y

copy gl0..m-1] to £[0..m-1]
m:=m % 2

}
}

70

Appendix A

Definition of Fourier transforms

The continuous Fourier transform

The (continuous) Fourier transform (FT) of a function f: R* — R*, &+ f(Z) is defined by
1 .
F&@) = —) e’ T dm Al
@ = = [1@ (A1)
where 0 = +1. The FT is is a unitary transform.

Its inverse (‘backtransform’) is

@ = — / F(@) e 73 dm (A2)

i.e. the complex conjugate transform.

For the 1-dimensional case one has

1 +oo orw
Fw) = = /_ f@errda (A3)
_ 1 oo —czw A4
f@) = = [Puerreds (A4)

The ‘frequency’-form is
A +w .

fw) = 1 F@)er 27 g (A5)

+oo .
flx) = /_ fvyeo2mizvqy (A.6)

The semi-continuous Fourier transform

For periodic functions defined on a interval L € R, f : L - R, x — f(x) one has the semi-continuous
Fourier transform:

1 .
cp = ﬁ/Lf(m)e”““/de (A7)
Then
k=400 . .
1 _ ikxz/L fx) if f continuous at x
= 2 et = L0 e (A8)

k=—o

71

APPENDIX A. DEFINITION OF FOURIER TRANSFORMS 72

Another form is given by

1 2nkx
= — d-'E, k:07172a"‘ A9
ag \/Z /I',f(w) cos ()
2
b= = [f@ s e k=12 (A.10)
_ 1 ao i 2 kx . 2rkzx
fl@z) = 7 |2 +; (ak cos —— + by sin 17 >] (A-11)
with
o (k= 0)
o = %(ak —ibg) (k> 0) (A.12)
5(ar +ibp) (K <0)

The discrete Fourier transform

The discrete Fourier transform (DFT) of a sequence f of length n with elements f, is defined by

1 n—1)
= —— Zfz ea27rzwk/n (A]_3)
\/ﬁ z=0
Backtransform is
1 n—1
fa: - ch easz’mk/n (A]_4)
v =

Cf. [3] and [27].

Appendix B

The pseudo language Sprache

Many algorithms in this book are given in a pseudo language called Sprache. Sprache is meant to be
immediately understandable for everyone who ever had contact with programming languages like C,
FORTRAN, pascal or algol. Sprache is hopefully self explanatory. The intention of using Sprache instead
of e.g. mathematical formulas (cf. [9]) or description by words (cf. [18] or [30]) was to minimize the work it
takes to translate the given algorithm to one’s favorite programming language, it should be mere syntax
adaptation.

By the way ‘Sprache’ is the german word for language,

// a comment:
comments are useful.

// assignment:
t = 2.71

// parallel assignment:
{s, t, u} := {5, 6, 7}
// same as:

s :

t
u :

2

{s, t} := {s+t, s-t}

// same as (avoid temporary):
temp :=s + t

t 1= s - t;

temp

s
// if conditional:
if a==b then a:=3

// with block
if a>=3 then

// do something ...
}

// a function returns a value:
function plus_three(x)

return x + 3;
// a procedure works on data:
procedure increment_copy(f[],gl[],n)

// real £[0..n-1] input
// real gl[0..n-1] result

for k:=0 to n-1
glkl := f[k] + 1

73

APPENDIX B. THE PSEUDO LANGUAGE SPRACHE 74

// for loop with stepsize:
for i:=0 to n step 2 // i:=0,2,4,6,...

// do something
}

// for loop with multiplication:
for i:=1 to 32 mul_step 2
{

print i, ", "

will print 1, 2, 4, 8, 16, 32,
// for loop with division:
for i:=32 to 8 div_step 2

print i, ", "

will print 32, 16, 8,

// while loop:

i:=b |

while i>0
// do something 5 times...
i:=1i-1

}

The usage of foreach emphasizes that no particular order is needed in the array acces (so parallelization
is possible):

procedure has_element (f[],x)

{

foreach t in f[]
if t==x then return TRUE
return FALSE

Emphasize type and range of arrays:

real al0..n-11, // has n elements (floating point reals)
complex b[0..2%%n-11 // has 2**n elements (floating point complex)
mod_type m[729..1728] // has 1000 elements (modular integers)
integer i[] // has 7 elements (integers)

Arithmetical operators: +, -, *, /, % and ** for powering. Arithmetical functions: min(), max(),
gcd(), 1lem(),

Mathematical functions: sqr(), sqrt(), pow(), exp(), log(), sin(), cos(), tan(), asin(),
acos(), atan(),

Bitwise operators: ~, &, |, ~ for negation, and, or, exor, respectively. Bit shift operators: a<<3 shifts
(the integer) a 3 bits to the left a>>1 shifts a 1 bits to the right.

Comparison operators: ==, !=, <, > ,<=, >=

There is no operator ‘=" in Sprache, only ‘==" (for testing equality) and ‘:=" (assignment operator).
A well known constant: PT = 3.14159265...

The complex square root of minus one in the upper half plane: I = /—1

Boolean values TRUE and FALSE

Logical operators: NOT, AND, OR, EXOR

APPENDIX B. THE PSEUDO LANGUAGE SPRACHE 75

// copying arrays of same length:
copy all to b[]

// more copying arrays:
copy al[n..n+m] to b[O0..m]

// skip copy array:
copy al0,2,4,...,n-1] to b[0,1,2,...,n/2-1]

Modular arithmetic: x := a * b mod m shall do what it says, i := a**(-1) mod m shall set i to the
modular inverse of a.

Appendix C

Eigenvectors

transform

For as := a + a:

Let uy := as + F [as] then

Let u_ := ag — F[ag] then

uy and u_ are symmetric.

For ay :=a —a:

vy :=aa +1F[a4]

v_ i=aa —iF[aa]

vy and v_ are antisymmetric.

F[u_]

F[v4]

F

FlFlasl] = as

= .7:[615] +ag

as + Flas] = +1-ugt

f[as] —as

—(as — .7:[(15]) =—1-u_

[Flaall = -—aa

Flaal—iaa
—i(aga +iFlaa]) = —i- vt

f[aA] +iaa
+i(aa —iFlaa]) = +i-v_

of the discrete Fourier

(C.9)
(C.10)

Uy, U_, v4 and v_ are eigenvectors of the FT, with eigenvalues +1, —1, —i and +i respectively. The

eigenvectors are pairwise perpendicular.

How to find sequences u4, u—, vy, v— and numbers (€ C) ay, a_, B4, f— that for a given sequence a

76

APPENDIX C. EIGENVECTORS OF THE DISCRETE FOURIER TRANSFORM 7

a = oayuyrta_u_+pfrvp+Pov_ (C.11)
where o +a® + 85 + 8% =1
first compute ag then with ag/2 = ay uy +a_u_ and Flas/2] = +1ajur —1a_u_ one has 1/4(as +
Flas]) = at uy and 1/4(as — Flasg])) = a— u_

Analogue with a4 for vy, v_, B4 and B_.

Thereby we can compute a transform that is the ‘square root’ of the FT: for some sequence a compute
Ug, U, vy, v— and ay, @, By, B as above then for A € R one can define a transform F* [a] as

Fal = (+F) epug + (1) acus + (=) By op + (+0)* B v- (C.12)
FO[a] is identity

F1la] is the FT
F/2[a] (which is not unique) is a transform so that F/2 [F1/2 [a]] = F [a].

Appendix D

The Chinese Remainder Theorem

(CRT)

The Chinese remainder theorem (CRT):

Let mq,ma, ...,my be pairwise relatively' prime (i.e. ged(m;,m;) =1, Vi # j)
If z = z; (mod m;) i =1,2,..., f then z is unique modulo the product mq - ms - ... - my.

For only two moduli m;, ms compute z as follows?:

Code D.1 (CRT for two moduli) pseudo code to find unique x (mod my msy) with x = z1 (mod my)
T = zy (mod ms):

function crt2(x1,ml,x2,m2)

mi**(-1) mod m2 // inverse of ml modulo m2
((x2-x1)*c) mod m2

return x1 + s*ml

c :

S

For repeated CRT calculations with the same moduli one will use precomputed c.

For more more than two moduli use the above algorithm repeatedly.
Code D.2 (CRT) Code to perform the CRT for several moduli:

function crt(x[],m[],f)

x[i]
m[i]

:= crt2(x1,ml,x2,m2)
ml := ml * m2

i:=13i+1
oo
while i<f

return x1

Inote that it is not assumed that any of the m; is prime
2
cf. [6]

78

APPENDIX D. THE CHINESE REMAINDER THEOREM (CRT) 79

To see why these functions really work we have to formulate a more general CRT procedure that specialises
to the functions above.

Define
T, =[] (D.1)
kl=1
and
ni = T modm; (D.2)
then for
Xi = mnT; (D.3)
one has
. o x; for j=i
X; modm; = { 0 else (D.4)
and so
ZXk = I; mod m; (D5)
k
For the special case of two moduli mq,ms one has
T = me (D.6)
T, = m (D.7)
m = my' modmy (D.8)
m: = my' modmy (D.9)
which are related by?3
mme+mnm = 1 (D.10)
ZXk = oimTi+z2mpTs (D.11)
k
1M Mme + T2 12 My (D.12)
= 2 (l—mmi)+z2mm (D.13)
= o + (22 — 1) (m7 " modmy)my (D.14)

as given in the code. The operation count of the CRT implementation as given above is significantly
better than that of a straightforward implementation.

3cf. extended euclidean algorithm

Appendix E

A modular multiplication trick

The following trick allows easy multiplication of two integers a, b modulo some modulus m even if the
product a-b doesn’t fit into a machine integer (that is assumed to have some maximal value z — 1, z = 2F).

Let (z), denote z modulo y, |z| denote the integer part of . For 0 < a,b < m:
a-b
a-b = {WJ-m+(a-b)m (E.1)

rearranging and taking both sides modulo z > m:

(a0-|%2] .m>z = (a-Bm)- (£.2)

m

where the rhs. equals (a - b),,, because m < z.

(@-bm = <(a-b)z _ Q%I’J m>> (E.3)

the expression on the rhs. can be translated into a few lines fo C-code. The code given here assumes that
one has 64 bit integer types int64 (signed) and uint64 (unsigned) and a floating point type with 64 bit
mantissa, float64 (typically long double).

uint64 mul_mod(uint64 a, uint64 b, uint64 m)

{
uint64 y = (uint64) ((float64)a*(float64)b/m+(float64)1/2); // floor(a*xb/m)
y =y *xm; // mxfloor(a*xb/m) mod z
uint64 x = a * b; // a*xb mod z
uint64 r = x - y; // axb mod z - mxfloor(a*b/m) mod =z
if ((int64)r < 0) // normalisation needed 7
{
r=r + m
y=y - 1; // (a*b)/m quotient, omit line if not needed
}
return rT; // (axb)¥m remnant
}

It uses the fact that integer multiplication computes the least significant bits of the result (a-b), whereas
float multiplication computes the most significant bits of the result. The above routine works if 0 <=

a,b < m < 2% = 2. The normalisation isn’t necessary if i < 26 = 2.

80

APPENDIX E. A MODULAR MULTIPLICATION TRICK 81

When working with a fixed modulus the division by p may be replaced by a multiplication with the
inverse modulus, that only needs to be computed once:

float64 i = (float64)1/m;

the line

uint64 y = (uint64) ((float64)ax*(float64)b/m+(float64)1/2);

is the replaced by

uint64 y = (uint64) ((float64)ax*(float64)b*i+(float64)1/2);

so any division inside the routine avoided. But beware, the routine then cannot be used for m >= 2%2:
it very rarely fails for moduli of more than 62 bits. This is due to the additional error when inverting
and multiplying as compared to dividing alone.

This trick is ascribed to Peter Montgomery.

Bibliography

— BOOKS & THESIS —

[1] H.S.Wilf: Algorithms and Complexity, internet edition, 1994,
online at ftp://ftp.cis.upenn.edu/pub/wilf/AlgComp.ps.Z

[2] P.Duhamel, ed.: Papers on the Fast Fourier Transform, IEEE Press, New York 1995
[3] H.J.Nussbaumer: Fast Fourier Transform and Convolution Algorithms, 2.ed, Springer 1982

[4] J.McClellan, C.Rader: Number Theory in Digital Signal Processing, Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1979.

[5] D.Myers: Digital Signal Processing, Efficient Convolution and Fourier Transform Techniques,
Prentice-Hall, 1990

[6] J.D.Lipson: Elements of algebra and algebraic computing, Addison-Wesley 1981

[7] C.van Loan: Computational Frameworks for the Fast Fourier Transform, STAM Frontiers in Applied
Mathematics, 1992

[8] L.P.Jaroslavskij: Einfiihrung in die digitale Bildverarbeitung, german translation of the russian
‘“Vvedenie v cifrovuju obrabotku izobrazenij’, Hiithig Buch Verlag GmbH, 2.ed, Heidelberg 1990

[9] R.Tolimieri, M.An, C.Lu: Algorithms for Discrete Fourier Transform and Convolution, Springer
1997 (second edition)

[10] E.Oran Brigham: The Fast Fourier Transform, Prentice-Hall 1974

[11] W.Briggs, V.Henson: The DFT: An Owner’s Manual for the Discrete Fourier Transform, Philadel-
phia: STAM, 1995

[12] W.Smith, J.Smith: Handbook of Real-Time Fast Fourier Transforms, New York: IEEE Press, 1995
[13] J.Lim, A.Oppenheim: Advanced Topics in Signal Processing, ch. 4. Prentice-Hall, 1988

[14] H.Wesnikoff, R.Wells jr.: Wavelet Analysis, Springer 1998

[15] R.Crandall: Projects in Scientific Computation, Springer/TELOS 1994

[16] R.Crandall: Topics in Advanced Scientific Computation, Springer/TELOS 1996

[17] M.Heideman: Muliplicative Complexity, Convolution and the DFT, Springer

[18] D.E.Knuth: The Art of Computer Programming, 2.edition, Volume 2: Seminumerical Algorithms,
Addison-Wesley 1981,
online errata list at http://www-cs-staff.stanford.edu/ knuth/

82

BIBLIOGRAPHY 83

[19] J.Mendel: Maximum Likelihood Deconvolution, Springer
[20] R.Blahut: Algebraic Methods for Signal Processing and Communications Coding, Springer

[21] R.Tolimieri, M.An, C.Lu: Mathematics of Multidimensional Fourier Transform Algorithms,
Springer

[22] R.Bucy: Lectures on Discrete Time Filtering, Springer
[23] C.Burrus, T.Parks: DFT/FFT and Convolution Algorithms, Wiley 1985
[24] P.Besslich, L.Tian: Diskrete Orthogonaltransformationen, Springer 1990

[25] W.H.Press, S.A.Teukolsky, W.T.Vetterling, B.P.Flannery: Numerical Recipes in C, Cambridge
University Press, 1988, 2nd Edition 1992
online: http://nr.harvard.edu/nr/, be careful with the code !

[26] R.L.Graham, D.E.Knuth, O.Patashnik: Concrete Mathematics, Addison-Wesley, New York 1988

[27] I.N.Bronstein, K.A.Semendjajew, G.Grosche, V.Ziegler, D.Ziegler, ed: E.Zeidler: Teubner-
Taschenbuch der Mathematik, vol. 142, B.G.Teubner Stuttgart, Leipzig 1996, the new edition
of Bronstein’s Handbook of Mathematics, english edition in preparation.

[28] J.Stoer, R.Bulirsch: Introduction to Numerical Analysis, Springer-Verlag, New York, Heidelberg,
Berlin 1980

[29] M.Waldschmidt, P.Moussa, J.-M. Luck, C.Itzykson (Eds.): From Number Theory to Physics,
Springer Verlag 1992

[30] H.Cohen: A Course in Computational Algebraic Number Theory, Springer Verlag, Berlin Heidelberg
1993,
online errata list at http://XXX

[31] B.Fino: Recursive definition and computation of fast unitary transforms, Ph.D. dissertation, Univ.
California, Berkeley, Nov. 1973

— PAPERS —

[32] C.Rader: Discrete Fourier Transforms When the Number of Data Samples is Prime, Proc. IEEE
56, 1968 pp.1107-1108

[33] J.Johnson, R.Johnson, D.Rodriguez, R.Tolimieri: A Methodology for Designing, Modifying and
Implementing Fourier Transform Algorithms on Various Architectures, IEEE Trans. Circuits Sys.
9, 1990

[34] C.Temperton: Self-Sorting Mixed Radix Fast Fourier Transforms, J. ACM 10, 1967 pp.647-654

[35] C.Temperton: Implementation of a Self-Sorting In-Place Prime Factor FFT Algorithm, J. Comp.
Physics 58, 1985 pp.283-299

[36] C.Temperton: A Note on a Prime Factor FFT, J. Comp. Physics 52, 1983 pp.198-204

[37] C.Burrus, P.Eschenbacher: An In-place IN-order Prime factor FFT Algorithm, IEEE Trans. on
Acoustics, Speech and Signal Processing, 29, Aug. 1981 pp.806-817

[38] D.Kolba, T.Parks: A Prime factor FFT Algorithm Using High-speed Convolution, IEEE Trans. on
Acoustics, Speech and Signal Processing, 25, Aug. 1977 pp.281-294

[39] S.Chu, C.Burrus: A Prime Factor FFT Algorithm Using Distributed Arithmetic, IEEE Trans. on
Acoustics, Speech and Signal Processing, 30, April 1982 pp.217-227

BIBLIOGRAPHY 84

[40] J.Cooley, O.Tukey: An Algorithm for the Machine Calculation of Complex Fourier Series, Math.
Comp. 19 pp.297-301, 1965

[41] G.Duhamel, M.Vetterli: Fast Fourier Transforms: A Tutorial Review, Signal Processing 19 pp.259-
299, 1990

[42] G.Strang: Wavelet Transforms Versus Fourier Transforms, Bull. Amer. Math. Soc. 28 pp.288-305,
1993

[43] A.Saidi: Decimation-in-time-frequency FFT algorithm, Proceedings of the IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, (IEEE ICASSP-94, Adelaide, Australia),
pp.I11:453-456, Apr.1994

[44] H.Guo, G.Sitton, C.Burrus: The quick discrete Fourier transform, in Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing, (IEEE ICASSP-94, Adelaide,
Australia), pp.IT1:445-448, Apr.1994

[45] H.Guo, G.Sitton, C.Burrus: The quick Fourier transform, an FFT based on symmetries, IEEE
Transactions on Signal Processing, submitted Oct. 1994

[46] H.Sorensen, D.Jones, M.Heideman, C.Burrus: Real-Valued Fast Fourier Transform algorithms,
TIEEE Trans. on Acoustics, Speech and Signal Processing, Vol ASSP-35, no.6 pp.849-863, 1987

[47] R.Crochiere, L.Rabiner Interpolation and Decimation of Digital signals - A tutorial Review, Proc.
of the IEEE, Vol 69, no.3 pp.300-331, 1981

[48] M.Heideman, D.Johnson, C.Burrus: Gauss and the history of the fast Fourier transformation, IEEE
ASSP Magazine 1 pp.14-21, 1984

[49] P.Duhamel, H.Hollmann: Split radix FFT algorithm, Electronis Letters 20 pp.14-16, 1984

[50] P.Duhamel: Implementation of ’split-radix’ FFT algorithms for complex, real and real-symmetric
data, IEEE Trans. on Acoustics, Speech and Signal Processing, ASSP-34 pp.285-295, 1986

[51] H.Sorensen, M.Heideman, C.Burrus: Oncomputing the split-radix FFT, IEEE Trans. on Acoustics,
Speech and Signal Processing, ASSP-34 152-156, 1986

[52] S.Winograd: On computing the discrete Fourier transform, Math. of Comp. 32, Jan. 1978 pp.175-
199

[63] C.Lu, R.Tolimieri: Extension of Winograd Multiplicative Algorithm to Transform size N =
p?q, p?qr and Their Implementation, Proc. ICASSP 89, 19(D.3), Scotland

[54] R.Tolimieri, C.Lu, W.Johnson: Modified Winograd FFT Algorithm and Its Variants for Transform
Size N = p™ and Their Implementations, Advances in apllied Mathematics, 10, 1989 pp.228-251

[55] H.Silverman: An introduction to programming the Winograd Fourier transform algorithm (WFTA),
TIEEE Trans. on Acoustics, Speech and Signal Processing, ASSP-25 pp.152-164, 1977

[56] L.Auslander, E.Feig, S.Winograd: The Multiplicative Complexity of the Discrete Fourier Trans-
form, Adv. in Appl. Math. 5, 1984 pp.87-109

[57] Y.Tadokoro, T.Higuchi: Discrete Fourier transform computation via the Walsh transform, IEEE
Trans. on Acoustics, Speech and Signal Processing, ASSP-26 pp.236-240, 1978

[58] Y.Tadokoro, T.Higuchi: Comments on “Discrete Fourier transform computation via the Walsh
transform”, ASSP-27 pp.295-296, 1979

[59] Y.Tadokoro, T.Higuchi: Another discrete Fourier transform computation with small multiplications
via the Walsh transform, ICASSP’81 Proceedings of the 1981 IEEE International Conference on
Acoustics, Speech and Signal Processing, 1 pp-308-309

BIBLIOGRAPHY 85

[60] R.Storn: Fast algorithms for the discrete Hartley transform, Archiv fiir Elektronik &
Ubertragungstechnik 40 pp.233-240, 1986

[61] S.Pei, J.Wu: Split-radix fast Hartley transform, Electronics Letters 22 pp.26-27, 1986
[62] H.Hou: The fast Hartley transform algorithm, IEEE Trans. Comp. C-36 pp.147-156, Feb.1987

[63] H.Hou: Correction to: The fast Hartley transform algorithm, IEEE Trans. Comp. C-36 pp.1135-
1136, 1987

[64] H.Sorensen, D.Jones, C.Burrus, M.Heideman: On computing the discrete Hartley transform, IEEE
Trans. on Acoustics, Speech and Signal Processing, ASSP-33 pp.1231-1238, Oct.1985

[65] H.Meckelburg, D.Lipka: Fast Hartley transform algorithm, Electronics Letters 21 pp.341-343, 1985

[66] C.Hsu, J.Wu: Fast computation of the discrete Hartley transform via Walsh-Hadamard transform,
Electronics Letters 23 pp.466-468, 1987

[67] C.Hsu, J.Wu: The Walsh-Hadamard /discrete Hartley transform, Int. J. Electronics 62 pp.744-755,
1987

[68] J.Fine: On the Walsh Functions, Transactions of the American Math. Soc. vol.65 pp.372-414, 1949

[69] J.Fine: The generalised Walsh-Functions, Transactions of the American Math. Soc. vol.69 pp.66-77,
1950

[70] O.Buneman: Conversion of FFT’s to fast hartley transforms, SITAM J. Sci. Stat. Comput. pp.624-
639, 1986

[71] H.Malvar: Fast computation of the discrete cosine transform through fast Hartley transform, Elec-
tronics Letters 22 pp.352-353, 1986

[72] H.Malvar: Fast Computation of the discrete cosine transform and the discrete Hartley transform,
IEEE Trans. on Acoustics, Speech and Signal Processing, ASSP-35 pp.1484-1485, 1987

[73] Z.Mou, P.Duhamel: In-place butterfly style FFT of 2-D real sequences, IEEE Trans. on Acoustics,
Speech and Signal Processing, ASSP-36 pp.1642-1650, 1988

[74] R.Bracewell, O.Buneman, H.Hao, J.Villasenor: fast two-dimensional Hartley transform, Proc. IEEE
74 pp.1282-1283, 1986

[75] R.Kumaresan, P.Gupta: Vector radix algorithm for a 2-D discrete Hartley transform, Proc. IEEE
74 pp.755-757, 1986

[76] M.Haque: A two-dimensional fast cosine transform, IEEE Trans. on Acoustics, Speech and Signal
Processing, ASSP-33 pp.1532-1539, 1985

[77] R.Crandall, B.Fagin: Discrete Weighted Transforms and Large Integer Arithmetic, Math. Comp.
(62) 1994 pp.305-324

[78] P.Roeser, M.Jernigan: Fast Haar transform algorithms, IEEE Trans. Comput. C-31 pp.175-177,
1982

[79] Z.Wang: New algorithm for the slant transform, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4
pp.551-555, 1982

[80] Z.Wang: A fast algorithm for the discrete sine transform implemented through the fast cosine
transform, IEEE Trans. on Acoustics, Speech and Signal Processing, vol. 30, pp.814-815, 1982

[81] B.Fino, V.Algazi: Slant-Haar transform, Proc. IEEE 62 pp.653-654, 1974

BIBLIOGRAPHY 86

[82] B.Fino, V.Algazi: A unified treatment for fast unitary transforms, STAM J.Comput.,vol.6 no.4,
pp.700-717, 1977

[83] H.Jones, D.Hein, S.Knauer: The Karhunen-Loeve, discrete cosine, and related transforms obtained
via the hadamard transform, presented at the Int. Telemetring Conf. Nov.1978

[84] Z.Wang: Fast algorithms for the discrete W transform and the discrete fourier transform, IEEE
Trans., Acoust., Speech, Signal Processing, ASSP-32 pp.803-816, Aug.1984

[85] J.Martens: Recursive cyclotomic factorization - a new algorithm for calculating the discrete Fourier
transform, IEEE Trans. on ASSP, vol.32, pp.750-762, Aug.1984

[86] M.Vetterli, H.Nussbaumer: imple FFT and DCT algorithms with reduced number of operations,
Signal Processing, vol.6, pp.267-278, Aug.1984

[87] M.Vetterli, P.Duhamel: Split-radix algorithms for length - pm DFT’s, IEEE Trans. on ASSP, vol.37,
pp-57-64, Jan.1989. Also in ICASSP-88 Proceedings, pp.1415-1418, Apr.1988

[88] R.Stasinski: The techniques of the generalized fast Fourier transform algorithm, IEEE Transactions
on Signal Processing, vol.39, pp.1058-1069, May 1991

[89] M.Heideman, C.Burrus: On the number of multiplications necessary to compute a length-2n DFT,
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.34, pp.91-95, Feb.1986

[90] J.Beard: An in-place, self-reordering FFT, Proceedings of the ICASSP-78, (Tulsa), pp.632-633,
Apr.1978.

[91] H.Johnson, C.Burrus: An in-place, in-order radix-2 FFT, in ICASSP-84 Proceedings, p.28A.2,
Mar.1984

[92] C.Burrus: Unscrambling for fast DFT algorithms, IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol.36, pp.1086-1087, Jul.1988

[93] P.Rosel: Timing of some bit reversal algorithms, Signal Processing, vol.18, pp.425-433, Dec.1989

[94] J.Jeong, W.Williams: A fast recursive bit-reversal algorithm, in Proceedings of the ICASSP-90,
(Albuquerque, NM), pp.1511-1514, Apr.1990

[95] D.Evans: A second improved digit-reversal permutation algorithm for fast transforms, IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, vol.37, pp.1288-1291, Aug.1989

[96] J.Rodriguez: An improved FFT digit-reversal algorithm, IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol.37, pp-1298-1300, Aug.1989

[97] J.Walker: A new bit reversal algorithm, IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol.38, pp.1472-1473, Aug.1990

[98] A.Yong: A better FFT bit-reversal algorithm without tables, IEEE Transactions on Signal Pro-
cessing, vol.39, pp.2365-2367, Oct.1991

[99] D.Sundararajan, M.Ahamad, M.Swamy: A fast FFT bit-reversal algorithm, IEEE Transactions on
Circuits and Systems, I1, vol.41, pp.701-703, Oct.1994

[100] J.Rius, R.De Porrata-Doria: New FFT bit-reversal algorithm, IEEE Transactions on Signal Pro-
cessing, vol.43, pp.991-994, Apr.1995

[101] C.Temperton: Nesting strategies for prime factor FFT algorithms, Journal of Computational
Physics, vol.82, pp.247-268, Jun.1989

[102] C.Temperton: A generalized prime factor FFT algorithm for any n = 2p 3q5r, SIAM Journal of
Sci. Stat. Comp., 1992

BIBLIOGRAPHY 87

[103] R.Stasinski: Prime factor DFT algorithms for new small-N DFT modules, IEEE Proceedings, Part
G, vol.134, no.3, pp.117-126, 1987

[104] H.Johnson, C.Burrus: The design of optimal DFT algorithms using dynamic programming, IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol.31, pp.378-387, Apr.1983

[105] H.Johnson, C.Burrus: On the structure of efficient DFT algorithms, IEEE Transactions on Acous-
tics, Speech, and Signal Processing, vol.33, pp.248-254, Feb.1985

[106] H.Johnson, C.Burrus: Large DFT modules: N = 11, 13, 17, 19, and 25, Tech. Rep. 8105, Depart-
ment of Electrical Engineering, Rice University, Houston, TX 77251-1892, 1981

[107] C.Temperton: A new set of minimum-add small-n rotated DFT modules, Journal of Computational
Physics, vol.75, pp.190-198, 1988

[108] F.Wang, P.Yip: Fast prime factor decomposition algorithms for a family of discrete trigonometric
transforms, Circuits, Systems, and Signal Processing, vol.8, no.4, pp.401-419, 1989

[109] P.Duhamel, M.Vetterli: Improved Fourier and Hartley transfrom algorithms, application to cyclic
convolution of real data, IEEE Trans. on ASSP, vol.35, pp-818-824, Jun.1987

[110] M.Popovic, D.Sevic: A new look at the comparison of the fast Hartley and Fourier transforms,
IEEE Transactions on Signal Processing, vol.42, pp.2178-2182, Aug.1994

[111] P.Uniyal: Transforming real-valued sequences: fast Fourier versus fast Hartley transform algo-
rithms, IEEE Transactions on Signal Processing, vol.42, pp.3249-3254, Nov.1994

[112] G.Bruun: Z-transform DFT filters and FFTs, IEEE Transactions on ASSP, vol.26, pp.56-63,
Feb.1978

[113] R.Storn: On the Bruun algorithm and its inverse, Frequenz, vol.46, pp.110-116, 1992

[114] C.Rader, N.Brenner A new principle for fast Fourier transformation, IEEE Transactions on Acous-
tics, Speech, and Signal Processing, vol. ASSP-24, pp.264-266, Jun.1976

[115] K.Cho, G.Temes: Real-factor FFT algorithms, in Proceedings of IEEE ICASSP-78, (Tulsa, OK),
pp-634-637, Apr.1978

[116] J.Glassman: A generalization of the fast Fourier transform, IEEE Transactions on Computers,
vol.C-19, pp.105-116, Feb.1970

[117] W.Ferguson, Jr.: A simple derivation of Glassman general-n fast Fourier transform, Comput. and
Math. with Appls., vol.8, no.6, pp.401-411, 1982. Also, in Report AD-A083811, NTIS, Dec.1979

[118] L.Rabiner, R.Schafer, C.Rader: The chirp z-transform algorithm, IEEE Transactions on Audio
Electroacoustics, vol.AU-17, pp.86-92, Jun.1969

[119] I.Selesnick, C.Burrus: Multidimensional mapping techniques for convolution, in Proceedings of the
IEEE International Conference on Signal Processing, (IEEE ICASSP-93, Minneapolis), pp.I11-288-
291, Apr.1993

[120] I.Selesnick, C.Burrus: Automating the design of prime length FFT programs, in Proceedings of the
IEEE International Symposium on Circuits and Systems, (ISCAS-92, San Diego, CA), pp.133-136,
May 1992

[121] I.Selesnick, C.Burrus: Automatic generation of prime length FFT programs, IEEE Transactions on
Signal Processing, 1995

[122] W.Hocking: Performing Fourier transforms on extremely long data streams, Computers in Physics,
vol.3, pp-59-65, Jan.1989

BIBLIOGRAPHY 88

[123] R.Agarwal, C.Burrus: Number theoretic transforms to implement fast digital convolution, Proceed-
ings of the IEEE, vol.63, pp.550-560, Apr.1975. Also in IEEE Press DSP Reprints II, 1979

[124] H.Sorensen, C.Burrus, D.Jones: A new efficient algorithm for computing a few DFT points, in
Proceedings of the IEEE International Symposium on Circuits and Systems, (Espoo, Finland),
pp.1915-1918, Jun.1988

[125] C.Roche: A split-radix partial input/output fast Fourier transform algorithm, IEEE Transactions
on Signal Processing, vol.40, pp.1273-1276, May 1992

[126] H.Sorensen, C.Burrus: Efficient computation of the DFT with only a subset of input or output
points, IEEE Transactions on Signal Processing, vol.41, pp.1184-1200, Mar.1993

[127] D.H.Bailey: FFTs in External or Hierarchical Memory, 1989
online at http://www.nas.nasa.gov/"dbailey/

[128] D.H.Bailey: The Fractional Fourier Transform and Applications, 1990
online at http://www.nas.nasa.gov/“dbailey/

[129] M.Hegland: A self-sorting in-place fast Fourier transform algorithm suitable for vector and parallel
processing
online at XXX

[130] Mikko Tommila: apfloat, A High Performance Arbitrary Precision Arithmetic Package, 1996,
online at http://www.hut.fi/“mtommila/apfloat/

Index

acyclic convolution, 27

C2RFT, via FHT, 49
C2RFT, with wrap routines, 23
cache, direct mapped, 25
complex to real FFT, via FHT, 49
convolution

acyclic, 27

cyclic, 25

half cyclic, 31

linear, 27

mass storage, 28

negacyclic, 31

right angle, 31

skew circular, 31

weighted, 30
convolution, and FHT, 55
convolution, negacyclic, 56
cosine transform (DCT), 53
cosine transform, inverse (IDCT), 53
CRT for two moduli

code, 76
cyclic auto convolution, via FHT, 55
cyclic convolution, 25
cyclic convolution, via FFT, 26
cyclic convolution, via FHT, 55

DCT via FHT, 53
DFT
definition, 3
direct mapped cache, 25
discrete Fourier transform
definition, 3
DST via DCT, 54

FFT, radix 2 DIF, 9

FFT, radix 2 DIT, 7

FFT, radix 2 DIT, naive, 7
FFT, radix 4 DIF, 15
FFT, radix 4 DIT, 14
FFT, split radix DIF, 34
FHT, and convolution, 55
FHT, DIF step, 51

FHT, DIF, recursive, 52
FHT, DIT step, 50

89

FHT, DIT, recursive, 50
FHT, radix 2 DIF, 52
FHT, radix 2 DIT, 51
FHT, shift, 50
Fourier shift, 6
Fourier transform
definition, 3
, Fp, prime modulus, 58
FT
definition, 3

gray-code procedure, 45
gray-permute procedure, 45
graycode in C, 45

Haar transform, 65

Haar transform, inplace, 66

Haar transform, int to int, 67

Haar transform, inverse, 65

Haar transform, inverse, inplace , 66
Haar transform, inverse, int to int, 67
half cyclic convolution, 31

Hartley shift, 50

IDCT via FHT, 53

IDST via IDCT, 54

inverse cosine transform (IDCT), 53
inverse Haar transform, 65

inverse Haar transform, int to int, 67
inverse sine transform (IDST), 54

linear convolution, 27
mass storage convolution, 28
negacyclic convolution, 31, 56

R2CFT, via FHT, 49

R2CFT, with wrap routines, 22
radix permute, 17

real to complex FFT, via FHT, 49
revbin_permute, naive, 18

right angle convolution, 31

sequency, 44
shift, for FHT, 50

INDEX

shift, Fourier, 6

sine transform (DST), 54

sine transform, inverse (IDST), 54
skew circular convolution, 31

Walsh transform, radix 2 DIF, 44

Walsh transform, radix 2 DIT , 43

Walsh transform, sequency ordered (wal), 44
weighted convolution, 30

,Z /mZ, composite modulus, 59
, Z [pZ, prime modulus, 58

90

