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Предисловие 

Градиентная оптика является сравнительно новым разделом оп­

тики, сформировавшимся около 50 лет назад. Широкое применение 
оптических неоднородных элементов обусловлено развитием воло­

конно-оптических линий связи (ВОЛС) , созданием тонких эндоско­

пических приборов. Благодаря современной вычислительной техни­

ке и соответствующим компьютерным программам стало доступным: 

выполнение габаритного расчета и оценки качества изображения гра­

диентной оптической среды (ГрОС). Вместе с тем необходима осно­

ванная на теории аберраций предварительная оценка качества систе­

мы, дающая логическое обоснование полученного аберрационного 

решения. В отечественной учебной литературе пока нет достаточно 

полного пособия по теории аберраций и методам проектирования 

градиентных оптических элементов (ГрОЭ) и ГрОС, что в определен­

ной мере компенсируется настоящим пособием, которое включает 

материалы лекций, читаемых в МПУ им. Н. Э. Баумана по направ­

лению <<Оптотехника>>. 
Цель данного издания - методическая проработка основных тео­

ретических положений градиентной оптики в направлении решения 

прикладных задач. 

Изучение пособия позволит студентам: расширить знания в обла­

сти свойств новых оптических материалов с нетрадиционными свой­

ствами; получить навыки в расчетах параксиальных характеристик 

основных типов градиентных элементов; овладеть методикой расчета 

аберрации 3-го порядка простейших оптических элементов (граданов, 

линз с осевым, радиальным и сфероконцентрическим типами неод­

нородности показателя преломления (ПП)) ; доказать необходимость 

применения градиентных элементов в оптических схемах приборов; 

спроектировать ОС с ранее недостижимыми оптическими и массога­

баритными характеристиками. 

Учебное пособие предназначено для студентов старших курсов, 

обучающихся по оптическим специальностям. Изложенная теорети­

ческая база может стать полезной инженерам-разработчикам и инже­

нерам-исследователям. 
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Введение 

Первой освоила коммерческое производство ГрОЭ японо-амери­

канская фирма Nippon Sheet Glass, сейчас она называется GO!FOTON. 
В настоящее время многие американские, японские и немецкие фир­

мы выпускают ГрОЭ типа selfoc, а также радиально- и аксиально-гра­
диентные линзы. В России подобными работами занимается фирма 

<<Гринекст>> (Санкт-Петербург). 

Теоретические разработки методов проектирования оптических 

систем (ОС) с градиентными элементами проводили для следую­

щих схем приборов: объектива монокуляра; FLIR-системы; объекти­

ва микроскопа. В ряде отечественных публикаций освещена теория 

проектирования жестких эндоскопов, позволяющая предварительно 

рассчитывать, а также давать ориентир для проведения технологиче­

ских исследований по созданию необходимых типов ГрОЭ. Совер­

шенствование ОС в направлении уменьшения габаритных размеров, 

снижения массы, повышения качества изображения в сочетании с 

ранее недостижимыми оптическими характеристиками обусловило 

развитие концепции использования в качестве дополнительной сте­

пени свободы регулярной неоднородности ПП в элементах системы 

для повышения ее оптических характеристик. 

Однако проектирование ГрОС представляет некоторые трудно­

сти, связанные с недостаточными знаниями об аберрационных и 

технологических свойствах градиентных элементов. Существующая 

информация разбросана по книгам разного назначения (в основном 

зарубежньrм) , журнальным статьям, интернет-сайтам, поэтому необ­

ходимы осмысление и методическая проработка этой информации 

для ее использования на практике с применением сложившихся в 

отечественной оптической школе понятий. 

Излагаемые методы проектирования ГрОС ориентированы наши­

рокий класс систем: с круговой симметрией образующих оптические 

элементы поверхностей и с осесимметричными законами распреде­

ления показателя преломления (РПП) градиентных оптических сред 

п(х, у, z) или п2(х, у, z). Принято считать, что ось симметрии в РПП 
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градиентной среды совпадает с оптической осью системы, а показа­

тель преломления не связан с направлением распространения света. 

Каждую поверхность раздела сред можно представить уравнением 

относительно координат точки, лежащей на этой поверхности. Как 

правило, оптическую поверхность описывают в декартовой системе 

координат с началом в вершине поверхности при условии, что пло­

скость ХОУ - касательная к поверхности, а ось ОZнаправлена слева 

направо (система координат Федера). 

Список основных сокращений 

АП - асферическая поверхность 

ГрОС - градиентная оптическая система 

ГрОСр - градиентная оптическая среда 

ГрОЭ - градиентный оптический элемент 

КР - константа распределения при РРПП 

ОРПП - осевое распределение показателя преломления 

ОС - оптическая система 

ОСр - оптическая среда 

ПП - показатель преломления 

РПП - распределение показателя преломления 

РРПП - радиальное распределение показателя преломления 

СРПП - сфероконцентрическое распределение показателя пре-

ломления 



1. МЕТОДЫ РАСЧЕТА РЕАЛЬНЫХ ЛУЧЕЙ 
В ОПТИЧЕСКОЙ СИСТЕМЕ, СОДЕРЖАЩЕЙ 
ГРАДИЕНТНЫЕ ОПТИЧЕСКИЕ ЭЛЕМЕНТЫ 

Проектирование ГрОС базируется на методах геометрической 

(лучевой) оптики, в основе которых лежат расчеты параметров тра­

екторий параксиальных и реальных лучей. Эти методы подразделяют 

на два - методы габаритного и аберрационного расчетов. Последние 

опираются на итоговые положения теории хроматизма и аберраций 

3- и 5-го порядков. По результатам расчета траекторий реальных лу­
чей находят значения реальных аберраций ОС и проводят оценку ка­

чества изображения. 

1.1. Лучевое уравнение и обзор методов его решения 

Для расчета ГрОС требуются значительные затраты времени и 

усилий разработчика. Чтобы получить сбалансированную по абер­

рациям ОС, используют аналитические методы проектирования, ос­

нованные на уравнениях аберраций 3-го порядка и хроматических 

аберраций 1-го порядка. Аналитические методы предполагают расчет 

траектории двух параксиальных лучей, что позволяет проанализиро­

вать вклад отдельных поверхностей и оптических сред в каждый тип 

аберраций. 

По результатам расчета первичных аберраций ГрОС получают ин­

формацию для решения задачи синтеза и анализа ОС, а также обо­

снования направлений технологических исследований, связанных 

с изготовлением новых типов градиентных оптических сред (ГрОСр) 

и элементов. Также в процессе проектирования необходимо учи­

тывать значения технологически достижимых параметров ГрОСр и 

ГрОЭ. К таким параметрам относятся: глубина градиентной среды; 

закон изменения и максимальное изменение (перепад) ПП; угловой 

коэффициент наклона для осевого РПП; чувствительность функ-
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ции РПП к углу между осью симметрии ГрОСр и оптической осью 

ГрОЭ. 

Одной из особенностей проектирования градиентных ОС по 

сравнению с системами из однородных оптических элементов явля­

ется включение в методику этапа <<Пересчета параметров ОС>> после 

перехода от теоретической (расчетной) функции РПП к реально су­

ществующей. 

Векторное дифференциальное уравнение, описывающее траекто­

рию луча в неоднородной среде в системе прямоугольных координат 

OXYZ, известно как лучевое уравнение. На рис. 1.1 показана траектория 
луча между точками Р1(хр Ур z1) и Р/х2, у2, ~). Представим общую 

длину пути луча в неоднородной среде как сумму элементарных от­

резков ds, на каждом из которых значение ПП постоянно. 

у 

Х' 
'J'1-'1,~ 

?~'1,' 

1, 
i\' 

IJ-\' ? '\ 

х 

о z 

Рис. 1.1. Траектория луча в среде с изменяющимся показателем 
преломления п = п(х, у, z) 

Согласно принципу Ферма луч между двумя точками идет по та­

кому пути, на прохождение которого требуется наименьшее время, 

т. е. по самому быстрому: 

(1.1) 

где п = п(х, у, z). 
Для элемента пути ds имеем 

( ds )
2 = ( dx )

2 
+ ( dy )

2 
+ ( dz )

2
, 

ds = ✓( х2 + j;2 + 1 )dz , 

. dx . dy 
Х=- у=-. 

dz ' dz 
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Обозначим L = п,Jх2 + у2 + 1, тогда для выполнения (1.1) должно 
соблюдаться условие Эйлера-Лагранжа: 

d (дLJ дL - . 
dz дх - дх' 

d (дL] дL 
dz ду = ду ' 

~ дL дL 
Наидем производные-, -. и подставим их в (1.2): 

дх дх 

дL пх дL . (: 2 . 2 l . ds 
дх = ✓ х2 + у2 + 1 ; -дх- = пх \/ х + у + = пх -dz ; 

!!_( пдх,J х2 
+ j;

2 
+ 1] = пх ds , 

dz дs,Jx2 + у2 + 1 dz 

где пх - производная. 

(1 .2) 

Аналогичные преобразования для L проводим и по координатам 
у, z. В результате получаем систему диффере~щиальных уравнений 
луча по параметру ds: 

!!_(п дхJ=п · ds дs х' 

!!_(п дуJ=п; 
ds дs у 

(1.3) 

!!_(п дzJ=п ds дs z' 

где пУ , nz - производные. 

Представим (1.3) в векторной форме 

!!_(п dR] = Vn, 
ds ds 

(1.4) 

где R - радиус-вектор, определяющий положение точки на траекто­
рии луча в неоднородной оптической среде n(R). 

Лучевое уравнение (1.4) можно записать как 
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где 

или в матричной форме 

~ ( п f ( R)) = grad п, 

- ( -) dR Т R = -
ds 

l
dn / dxl lnx l gradn(.R) = v'n = dn / dy = ~У • 

dn / dz nz 

Выражение (1.3) обычно представляют в виде системы дифферен­

циальных уравнений 2-го порядка, полученной с помощью диффе­

ренцирования по координате z и соответствующих преобразований: 

.. (1 · 2 · 2 )[дп . дп] О· пх+ +у +х -х-- = , 
дz дх 

.. (l . 2 • 2 )[дп. дп] 0 пу+ +у +х -у-- = . 
дz ду 

(1.5) 

Для системы (1.5) вводим понятие оптического направляющего 
косинуса луча с осями ОХ, ОУ, OZ: 

dx 
n- =ncosa=p· 

ds ' 
dy 

п ds = ncosf) = q; (1.6) 

п dz = п cosy = l 
ds ' 

где а, р, у - углы между касательной к лучу в точке Р. и осями коор-
1 

динат ОХ, ОУ, OZ соответственно; р, q, l - оптические направляющие 

косинусы. 

Запишем уравнения (1.3) с учетом (1.6): 

dp дп 
- - -

' ds дх 

dq дп 
(1.7) - - -

' ds ду 

dl дп 
- - -
ds дz 
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Стандартный метод решения лучевого уравнения. По уравнениям 

(1 .7) можно определить траекторию луча в неоднородной среде в па­
раметрической форме R = R ( s) , которая не является наилучшей для 
вычислений. Использование координаты z в качестве независимой 
переменной обеспечивает снижение размерности уравнеIШЙ (1.3) и 
их взаимозависимости. Полученная форма лучевого уравнения, на­

зываемая гамильтоновой, пригодна к прямому численному интегри-

рованию стандартным методом: 

dx р dy q 
- = = 
dz ,Jп2-p2-q2' dz ,Jп2 _ р2 -q2' 

дп 

dp 
п-

= дх ппх 

dz ,Jп2 _ р2 -q2 ,J п2 _ р2 _ q2 ' 

дп 
(1.8) 

п-
dq 

= 
ду 

= 
ппу 

dz ,Jп2 _ р2 -q2 ,Jп2 _ р2 -q2' 

При вычислении траектории луча с помощью (1.8) используют 
проверочные соотношения 

р2 + q2 + /2 = п2; 
xq - УР = Xoqo - УоРо = С, 

где С - постоянная, называемая косым инвариантом; индекс <<0>> обо­
значает параметры в начале градиентной среды, где z = О. 

Метод разложения в ряд Тейлора. Траекторию луча разбивают на 

элементарные отрезки Лs в окрестности точки s и последовательно 
находят точки траектории и касательные к ней. Решение уравнения 

( 1.4) и его производную представляют в виде ряда Тейлора: 

- - dR 1d2R 
R(s + Лs) = R(s) +ds(s) Лs + 

2 
ds2 (s )Лs2 + ... ; (1.9) 

dR dR d2R 
-(s+Лs)=-(s)+-(s) Лs+ ... , 
ds ds ds2 (1.10) 
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dR -
где - = Т - единичный вектор, касательный к траектории ( оптиче-

ds 

u u ) d
2 R_ к-

скии лучевои вектор ; --= - вектор кривизны траектории. 

ds2 

Поскольку Т · К= О , то с учетом (1.4) получаем 

K=[vп-f(vn f )]. 
п 

Таким образом, по координатам и углу наклона луча в точке тра­

ектории s и при последовательном использовании выражений ( 1.9), 
(1.10) находят значения этих величин в точке s + Лs. При этом в (1.10) 
можно вычислить только члены до 2-го порядка малости и невозмож­

но перейти к более высоким степеням приближения для повышения 

скорости сходимости метода. 

Метод Шарма. В настоящее время этот метод является общепри­

знанным для решения лучевого уравнения (1.4), которое преобразуют 
путем введения параметра dt: 

d 
ds 

t= - , 
п 

тогда ( 1.4) с учетом ( 1.11) принимает вид 

или 

или 

d2 fl.. 
--=nVn 
dt2 ' 

Оптический вектор M(R) определяют по уравнению 

- - - dx - dy - dz 
M(R)=i п- + jn- +kn-, 

ds ds ds 

[

dx/ ds] 
М ( R) = п dy / ds , 

dz/ds 

- - -
где i , j , k - единичные направляющие векторы. 

(1.11) 

(1 .12) 

(1.13) 
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где 

Введем обозначение 

d2R = D(R) 
dt2 

' 

п( ft.) = ½ дп2 /ду = п дп/ду . [дп
2

/дхJ [дп/дх] 
дп2/дz дп/дz 

dM 
С учетом (1.13) получают - = n"vn. 

dt 

Векторные функции М (R) и T(R) связаны соотношением 

[
cosa] [PJ м (я) = t (я) п (я) = п cos ~ = q . 

cosy l 

(1.14) 

Начальные условия для точки P(Ro) входа луча в градиентную 
среду: 

dR 

dt 

(1.15) 

Уравнение (1.12) при начальных условиях (1.15) можно решить 
численными методами, например Рунге-Кутты, с помощью рекур­

рентных соотношений: 

- - [ - 1 ( - -)J Rj+I = Rj + Лt Mj + 6 А+ 2В ; 

- - 1 ( - - -) 
Mj+I = Mj +6 А+4В+С; 

где А, В, С - векторы;j - количество шагов; Лt- шаг интегрирова­

ния; t - это параметр интегрирования (dt = ds/n) . 
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- -(- 1 - 1 - J B=D R1 + 2М1Лt+ 8Алt ; 

ё = ь( R1 + М1м + ~ в м Jм, 

где в соответствии с ( 1.14) 

n(R1 )=ngradn __ . 
R=R1 

Конкретный вид выражения для вычисления вектора D(R) зави­
сит от выбранной формы уравнения РПП - п(х, у, z) или п2(х, у, z). 

1.2. Способы описания поверхности оптических элементов 
и неоднородного показателя преломления 

Поверхности ОС разграничивают оптические среды с разными 

показателями преломления, что позволяет получать системы с задан -
ными оптическими характеристиками. В общем случае поверхности 

могут быть несферическими, однако наиболее технологичными явля­

ются сферы. Рассмотрим способы и законы описания поверхностей 

ОСиПП. 

Поверхности, ограничивающие оптические элементы, в общем 

случае можно задавать как асферические: 

(1 .16) 

Для асферической поверхности (АП) 2-го порядка существует 

другая форма записи ( 1.16): 

х2 + у2 =2r0z-(1-e2 )z2
, 

где е, r0 - соответственно эксцентриситет и радиус кривизны поверх­

ности при вершине. 

Известны также и другие уравнения, например: 

z=a,(x2 + у2)+а2(х2 + у2)2 +аз(х2 + у2 )з + ... , 

z= Рк(х2+у2) +а2(Х2+у2)2+аз(Х2+у2)з+ ... , (1.17) 
1+✓1-а1р;(х2 + у2 ) 
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где р - кривизна поверхности при вершине; ар а2, а3, ••• - коэффи­

циенты. 

Наиболее распространенные оптические поверхности - сферу и 

плоскость - можно представить выражениями (1.16), (1.17). 
Распределение ПП nJx, у, z) осевой симметрии в k-й среде ОС 

обычно задают полиномом 

(1.18) 

где z - расстояние до точки ГрОСр с координатами (х,у ,z), взятое от 
некоторой опорной плоскости, перпендикулярной оптической оси; 

r - расстояние от оптической оси до точки среды, r = .Jx2 + у2 ; n0,k(z), 
n1,k(z), n2/z), ... - степенные многочлены: 

no,k ( Z) = noo,k + no,,kz + no2,kZ2 + • • .; 

ni,k ( Z) = nlO,k + п, l,kz + n,2,kZ
2 + ... ; (1.19) 

n2,k ( z) = n20,k + n21,kZ + n22,kZ
2 + .. . 

Опорная плоскость может проходить через вершину первой по­

верхности, ограничивающей k-ю среду ОС, и быть внутри линзы, 

если градиентная зона примыкает к выходной поверхности линзы. 

На рис. 1.2 приведены два вида распределений показателя пре­
ломления: осевое (ОРПП) и радиальное (РРПП). Функции ОРПП и 

РРПП описывают полиномами по координатам z и r соответственно: 
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а б 

Рис. 1.2. Иллюстрация ОРПП (а) и РРПП (6): 

(1.20) 

(1.21) 

1 - оптическая поверхность; 2 - направление распределения показателя 

преломления 



Сфероконцентрическое распределение показателя преломления 

(СРПП) можно задать функцией 

nk (x,y,z) = nk (~) = no,k + n1,k~ + l½,k~
2 + nз,k~3 + ... , 

где ~ = х2 + у2 + (z- z)2; х, у, z - координаты точки k-й среды в мест­
ной прямоугольной системе координат, связанной с вершиной по­

верхности входа луча в среду; z - положение центра СРПП; п0 k' п1 k' 

n2 k ' ••• - коэффициенты. 

Иногда СРПП задают в виде полинома в сферической системе 

координат (рис. 1.3): 

(1.22) 

где R - технологический радиус формирования сфероконцентриче­

ской неоднородности ПП; р - текущая координата; пР0 - ПП на по­

верхности линзы; прР пР2, пР3 - коэффициенты. 

с z 

Рис. 1.3. Схема с РПП в сферической системе координат: 
р - текущая координата; R - технологический радиус 

В простейшем случае линейного СРПП (1.22) коэффициенты для 
тонкой линзы в декартовой системе координат в начальном прибли­

жении будут следующие: 

-п п 
п_ - n . п_ - n . n = _p_l . n = _p_l . 
"1.Ю - рО, '"UI - pt, 10 2R ' 11 2R2' 

- пР1 . 3 
'½о - 8Rз ' '½1 = пр1 8R4 . 

(1.23) 
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Несмотря на то что формулы (1.23) являются первым приближе­
нием, они могут быть полезны на начальном этапе синтеза линзы, 

имеющей СРПП, поскольку устанавливают исходные соотношения 

между коэффициентами в сферической и прямоугольной системах 

координат. 

Известен и другой вид уравнений, определяющих РПП: 

nf = nf ( z, ri) = flo,k ( Z) + ~.k ( Z )ri + '½,k ( Z )ri2 + · · ., 

где ri = х2 + у2 , а коэффициенты n0,k ( z) , n1,k ( z), n2,k ( z) ,... представля­
ют как 

'½,k ( Z) = '½o,k + '½1,kZ + '½2,kZ
2 + .... 

Для РРПП отнесенная к меридиональной плоскости функция ПП 

часто приобретает вид 

(1 .24) 

где g, h4, h
6

, h
8 

- коэффициенты. 

Каждая среда ОС характеризуется функцией РПП, которую при­

нято записывать в местной системе координат, связанной с первой по 

ходу луча поверхностью, ограничивающей среду (рис. 1.4). 
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Рис. 1.4. Местные системы прямоугольных координат 
в описании оптической системы по формулам Федера 



В осесимметричной центрированной ОС переход от k-й к (k + 1)-й 
системе координат Федера осуществляют по формуле 

или xk+i = xk; Yk+i = Yk ; Zk+l = zk - dk , где Rk+J, Rk - векторы координат 
точки в (k+ 1)- и k-й системах координат; dk - расстояние между вер­

шинами k- и (k+l)-й поверхностей (см. рис. 1.4). 

1.3. Расчет траектории реального луча 

Расчет траектории произвольного луча, проходящего через оп­

тическую систему с однородными и градиентными элементами, яв­

ляется основой для решения известными методами геометрической 

оптики задач по анализу, синтезу и оптимизации ОС. Реальный луч 

(для градиентной и однородной систем) рассчитывают по формулам 

Федера, включающим направляющий косинус угла луча с осями У, 

Х, Z. 
Расчет хода луча состоит из нескольких этапов: определение тра­

ектории луча в оптической среде (ОСр) пространства предметов и 

точки встречи луча с поверхностью Ф(.R) = О ограничивающей среды 
(на входе и выходе луча); вычисление начальных условий при входе в 

следующую среду (преломление на границе раздела двух сред). 

Геометрические световые лучи - это линии, ортогональные к 

волновым фронтам (геометрическим волновым поверхностям) . Как 

показано в 1.1, ход луча в изотропной неоднородной ОСр описывает­
ся векторным лучевым уравнением (1.4), в котором 

:~ =T(R)= dy / ds = cos~ = µ , - rdx / dsl rcosal r"л,l 
dz / ds cosy v 

где T(R) - оптический лучевой вектор в точке траектории с коорди­

натой R (рис. 1.5); 'л. , µ, v - направляющие косинусы луча. 

Как бьшо показано ранее, от параметрической формы описания 

траектории луча переходят к системе дифференциальных уравнений 
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о z 

Траектория 

луча 

Рис. 1.5. Траектория действительного луча в градиентной среде, 
задаваемая радиус-вектором R 1 

по независимой координате z. Эта система пригодна к прямому чис­
леююму интегрированию методами, рассмотренными в 1.1. 

Для оптической однородной среды п ( R) = const , луч описывают 

уравнением прямой и перемещение от точки R к R' вдоль луча на 
расстояние s составляет 

R' =R+ f s; х' =х+ л.s; y' =y +µs; z' =z +vs, 

' ' ' где х , у , z - координаты точки на траектории луча на выходе из 

ОСр. 

Определим точку Р пересечения луча с поверхностью Ф(R.) ( см. 
рис. 1.6). В процессе вычисления траектории луча на каждом шаге 

интегрирования, т. е . для каждого R.1 , отслеживаем знак функции 

Ф(R): если при переходе от шагаj к (j + 1) функция меняет свой знак, 

то это является сигналом события пересечения лучом поверхности. 

Тогда необходимо повторить вычисления наj-м шаге с уменьшением 

последнего на Лt. Координаты точки Р пересечения лучом поверхно­

сти следует устанавливать с заранее заданной точностью. 

Преломление луча на границе двух сред описывает закон Снелли­

уса, который представим в векторной форме: 

п'( Nf') = п( йf ), (1.25) 
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➔ 

Траектория 

луча 

n(R) 

d 

Zp 

Ур 

z 

Рис. 1.6. К выводу уравнений для расчета точки пересечения луча с ограни­
чивающей среду поверхностью 

где п, п' - показатели преломления первой и второй ОСр в точке Р 

падения луча на поверхность раздела сред; N - вектор нормали к 

поверхности раздела в точке Р; Т , Т' - направляющие косинусы па­
дающего и преломленного лучей: 

N(x,y,z)=gradФ=VФ= дФ/ду = Ny, [дФ / дх] [Nx] 
дФ /дz Nz 

где N , N , N - координаты N по осям Х, У, Z. 
х у z 

Из (1.25) с учетом (1 .26) находим 

пТ'=пТ+уй , r= ✓n'2 -n2 +(пNf)2 -пйt 
или 

(1.26) 

При расчете траектории действительного луча в ОС ( содержащей 
как неоднородные, так и однородные оптические элементы), рас­

положенной в однородных по показателю преломления средах про-
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странств предметов и изображений, формулы Федера несколько ви­

доизменяют, переходя к оптическим направляющим косинусам: 

ek+i = -[( zk - dk) lk+1 + Ykqk+1 + xk Pk+1 ]/ nk+1; 

Af+1 = ( zk - dk )
2 
+ yf + х; - ef+i; 

1 -.J 2 ·2 • qk+I -nk+2 - nk+I +] k+I , 

где k = 0,1 ,2, ... ,т - номер поверхности в ОС при условии, что за 

нулевую принята плоскость входного зрачка; ek+i, 1lk+i, А; +i, ~+1, 

gk + 1 - вспомогательные величины; qk + 1 - угол преломления; nk + " 
nk + 

2 
- пока~атели преломления соответственно до и после поверхно­

сти (k + 1); dk+i - косая толщина;jk+ 
1 

- угол падения на поверхность 

(k+ 1); Pk+2, qk+2, lk+2 - оптические направляющие косинусы луча по­

сле преломления на поверхности ( k + 1). 
Во время проектирования ОС помимо действительных лучей при 

расчетах используют бесконечно узкие пучки, в частности, их приме-
, , 

няют для определения астигматических отрезков Zs и Zm . 

20 



В программах для градиентных ОС расчет бесконечно близких лу­

чей узких наклонных пучков проводится для действительных лучей, 

идущих на конечном малом расстоянии. 

Вопросы для самопроверки 

1. Приведите форму записи лучевого уравнения в скалярном и 
векторном видах. 

2. Запишите систему диффереIЩиальных уравнений в прямо­
угольной системе координат для случаев радиального и осевого РПП. 

3. В чем отличие оптических направляющих косинусов для гра­
диентной и однородной оптических сред? 

4. Поясните особенность метода Шарма по сравнению с универ­
сальным методом расчета траектории реального луча в ГрОСр. 

5. Приведите известные способы описания оптических поверхно­
стей в ОС осевой симметрии. 

6. Какова форма записи полинома РПП для осесимметричной 
оптической среды? 

7. Охарактеризуйте функции, описывающие РРПП, ОРПП и 
СРПП. 

8. Назовите и охарактеризуйте содержание основных этапов рас­
чета траектории реального луча через ОС с однородными и неодно­

родными оптическими средами. 

9. В чем особенность применения формул Федера для случая ОС 
с ГрОЭ? 



2. ТЕХНОЛОГИЧЕСКИЕ И ОПТИЧЕСКИЕ 
ХАРАКТЕРИСТИКИ ГРАДИЕНТНЫХ СРЕД 

И ЭЛЕМЕНТОВ 

Долгое время недостаточное развитие технологии градиентных 

сред было сдерживающим фактором в совершенствовании методов 

расчета и проектирования систем, содержащих ГрОЭ. Однако в по­

следние десятилетия появилась информация о получении градиента 

в ПП стекол, кристаллов и полимеров, что дало импульс в развитии 

методов расчета ГрОС. Преимущества использования градиентных 

элементов могут быть реализованы при условии получения высоких 

оптических характеристик ОС, обеспечения воспроизводимости и 

идентичности параметров ГрОЭ в серийном производстве. 

2.1. Обзор технологий градиентных сред 

Существуют две развитые технологии изготовления градиентных 

оптических стекол: внешняя ионообменная диффузия стекло - рас­

плав соли и внутренняя диффузия порошков или пластин стекол. 

Первую из них используют при производстве элементов с РРПП и 

ОРПП (в основном граданов), вторую - для линзовых элементов с 

ОРПП. Если базовой средой является полимер, то применяется тех­

нология, основанная на сополимеризации исходных мономеров под 

действием ультрафиолетового или лазерного излучений. 

Существующая с 60-70-х годов ХХ в. технология физико-хи­

мической обработки стекла - ионообменная диффузия - основана 

на процессе ионного обмена между стеклом и солевым расплавом. 

В настоящее время эту технологию продолжают совершенствовать 

в США (фирмы LightPaht, Gradient Lens Corp.), Германии (фирмы 
GRINTECH, SСНОТТ), Китае. В России ограниченную номенкла­

туру градиентных элементов с РРПП и ОРПП вьmускает ЗАО <<Гри­

некст>>. Ионообменная технология как метод изменения ПП стекла 
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отличается высокой воспроизводимостью параметров и возможно­

стью коррекции диффузионных распределений ПП изменением со­

става солевого расплава, температуры и времени обработки. 

Типы компонентов ионного обмена, используемые в технологии 

поверхностной обработки, представлены в табл. 2.1. 

Таблица 2.1 

Характеристики различных типов ионноrо обмена 

Типы ионного Числовые Диаметр Область 

обмена апертуры (NA) градана, мм применения 

Li+ ~Na+ 
стеюю расплав 

0,05- 0,23 0,3- 3 Жесткие эндоскопы 

т1+ ~к+ 0,3- 0,7 0,3- 3 
Жесткие эндоскопы, 

стеюю расплав устройства воле 

Жесткие эндоскопы, 
дg+ N + стекло~ а расшrав 0,23- 0,48 0,3- 80 устройства воле, 

линзы с ОРПП 

К основным технологическим характеристикам ГрОСр относятся: 

глубина слоя неоднородного ПП; перепад ПП (Лп) ; угловой коэффи­

циент (наклон) функции n(z) для сред с ОРПП (\Jf). 
В табл. 2.2 приведены основные характеристики известных техно­

логий получения ГрОСр. 

Таблица 2.2 

Характеристики rрадиентной среды при различных 

технолоrиях ее получения 

Технология Глубина Перепад ПП, 

изготовления ГрОСр градиентной Лп 

области, мм 

На основе стекла: 

закалка 2,5 До 0,045 (К8) 

сплав шихты переменного состава 20 0,02 

сплав слоев стекла переменного состава 10 0,15 

нейтронное облучение 0,1 0,02 

рентгеновское облучение 0,1 6. 10-б 
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Окончание табл. 2.2 

Технология Глубина Перепад ПП, 

изготовления ГрОСр градиентной Лп 

области, мм 

осаждение слоев стекла из 

парогазовой фазы 1,0 0,03 

ионное наполнение 10,0 0,15 

ионный обмен 10,0 0,04 

Материалы для ИК-диапазона: 

выращивание кристаллов 

Ge- Si 20,0 0,15 

ZnSe- ZsnS 10,0 0,24 

Пр им е чан и е. В полимерных ГрОСр глубина градиентной области 

составляет 20 мм, а Лп = 0,15. 

Метод химического осаждения слоев стекла из парогазовой фазы 

широко используют в промышленном производстве градиентных 

сверхпрозрачных оптических волокон. Попытки изготовления гради­

ентных слоев в стекле под действием рентгеновского и нейтронного 

облучений позволили получить небольшой перепад ПП на малой глу­

бине, к тому же облученные стекла в некоторых случаях имели наве­

денную радиоактивность. 

Высокие требования к воспроизводимости характеристик опти­

ческих сред выдвигают на первый план те способы формирования 

градиентных ( G RIN) материалов, которые регулируются физико-хи­

мической природой процесса. В этом случае преимущество принад­

лежит подчиняющемуся термодинамическим закономерностям мето­

ду ионообменной диффузии - ее можно проводить как в системах 

стекло-расплав солей (внешняя диффузия), так и в системах, состо­

ящих из двух или нескольких последовательных слоев или порошков 

тонкодробленых стекол различного состава, находящихся в диффу­

зионном контакте в интервале температур размягчения стекла (вну­

тренняя диффузия). 

Моделирование ГрОЭ включает создание физических моделей 

коэффициента диффузии, функции ПП, спектральных характери­

стик, термических и механических свойств ГрОСр. В качестве при­

мера на рис. 2.1 приведена схема технологического процесса ионной 
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Рис. 2.1. Схема формирования заготовки с ОРПП 
на основе стекла BL24: 

1 - заготовка; 2 - расплав AgCI; 3 - ванна 

Лп ------------~ 

0,060 

0,045 

0,030 

0,015 

о 6 

' \ 
\ 

\ 

" '-
' , __ 

12 18 24 30 z,мм 

Рис. 2.2. Графики распределения показателя преломления: 
1 - после отжига в течение 168 ч при t = 515 °С; 

2 - после диффузионной обработки 

обработки ГрОЭ с ОРПП из стекла BL2406 фирмы Bausch and Lomb 
(США) . Состав стекла: SiO

2 
- 67 %; Na

2
O - 25,6 %; ~0

3 
- 7,4 %. 

Конфигурация исходной заготовки - цилиндр диаметром 40 мм и 
высотой 50 мм. Расплав соли: один килограмм AgCl с одним процен­
том NaCl; температура t = 515 °С. Время прохождения диффузионного 
процесса составляет 960 ч (40 сут). Графики РПП до и после операции 
отжига (в течение 168 ч) приведены на рис. 2.2. Анализ графика по­
казьmает, что он имеет вид гауссианы на глубину -17 мм с Лп = 0,036 
(до отжига) и Лп = 0,028 (после отжига), а в средней части включает 

участок с зависимостью, близкой к линейной n(z). 
Далее приведен обзор производителей элементов градиентной 

оптики и применяемые у них математические закономерности опи­

сания функций и дисперсий ПП. 

Стекла Gradium ™. Фирма Light Path ( США) выпускает линзы с 
ОРПП под названием GRADIUM™. Номенклатура включает ряд ти­
пов в двух модификациях: с возрастанием и убыванием функции ПП 
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от поверхности линзы на глубину 5,8 ... 14,8 мм. Функцию РПП заго­
товки линзы представляют полиномом 11-й степени: 

п ( z) = t n; (~ ]; = l1o + n1 (~ ]

1 

+ '½ (~ ]

2 

+ ... + 11i 1 (~ )

11 

, 
,-О Zm Zm Zm Zm 

где zm - максимальная глубина градиентной зоны; п0 - ПП на оси 

ГрОЭ. 

Дисперсионное выражение - модифицированная формула Зель­

мейера: 

( )
2 ( )2 """ К).,, 

2 

n Л, - n Лоп = L,. 2 ' - л -L. 1 l 

где п(л ) - ПП на опорной длине волны; К, L. - константы, опре-
оп l l 

деляемые как 

л0 - длина волны в мкм; К., L .. - коэффициенты. 
lJ lJ 

Параметры градиентных стекол Gradium™ (максимальная глубина 
градиентной зоны zm и показатель преломления п0 на оси для длины 
волны излучения л = 587 нм) приведены в табл. 2.3. 

Таблица 2.3 

Параметры градиентных стекол Gradium™ 

Код стекла zm, мм по 

G14SFN 5,8 1,8049 

G14SFP 5,8 1,6489 

G51SFN 14,8 1,7446 

G51FP 14,8 1,6982 

G4SLAКN 13,931 1,7384 

G4LAКP 13,931 1,6726 

Стекла Selfok™. Для вьшускаемых фирмой GO!FOTON элементов 
Selfok™ используют РРПП вида 
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2Лп 
где а = 2; А = --

0 
; Лп - перепад ПП; rk - половина диаметра 

ГрОЭ. nork 
В табл. 2.4 показаны параметры элементов Se/fok: ПП на оси (п0) и 

диаметр, входящий в кодовое обозначение, например, элемент SLN20 
имеет диаметр 2,0 мм. 

Таблица 2.4 

Значение показателя преломления п0 по оси градиентных стекол 
различных марок 

Марка по Марка по Марка по 

стекла стекла стекла 

SLN20 1,5845 SLA12A 1,5900 GT050-08 1,623 

SLW20 1,5868 SLW18 1,5868 GTl00-08 1,623 

SLA12 1,5930 SLA09 1,5845 GT180-06 1,623 

SLSl0 1,5477 SLA20A 1,6098 GT050-13 1,616 

SLW30 1,5868 EGl0 1,5204 GT050-13 1,616 

SLA06A 1,5238 EG20 1,5204 GT180-13 1,616 

SLS20 1,5477 EG27 1,5204 GT050-15 1,615 

SLH18 1,6294 EG31 1,5204 GTl00-15 1,615 

SLA09A 1,5845 GTO50-06 1,62885 GT180-15 1,615 

SLWl0 1,5868 GTl00-06 1,62885 GTl00 1,530 

SLA06 1,5238 GT180-06 1,62885 GT180 1,530 

Стекла фирмы Gradient Lens Corp. Распределение ПП задается 

формулой п ( r) = n00 + п10r2 + ~ 0r4 
, в которой дисперсишrnые значения 

коэффициентов n
00

, n
10

, n
20 
рассчитывают следующим образом: 

n;; (л) =А+ Вл. 2 + .Е_ + !!_, , л,2 л,4 

где 'л, - в нм. 

В табл. 2.4 приведены также параметры ГрОЭ: ПП на оси и диа­
метр, входящий в кодовое обозначение, так элемент EGIO имеет ди­
аметр 1, О мм. 

Стекла фирмы Grintech Radial Gradient. У этих стекол РРПП опре­
деляют из выражения 
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п (у) = п0 sech ( gy) = п( ) , 
cosh gy 

где g - фокусирующая константа или константа РПП размерностью 

мм-1 • 

Дисперсионная зависимость 

7614 
по (л) = 1,61189+~-

Кодовые обозначения элементов и ПП на оси также находятся в 

табл. 2.4, например GT180-13. 
Градиентная среда Рочестерского университета. Для такой среды 

РПП общего вида n(x,y,z) задается полиномом 

который детализируют как РРПП или ОРПП с помощью коэффици­

ентов перед z или r2. 

2.2. Оптические свойства сред с осевым распределением 
показателя преломления 

В данном подразделе приведены характеристики стекол с ОРПП, 

полученным методом ионообменной диффузии. Световые диаметры 

линзовых элементов составляют несколько сантиметров, что позво­

ляет использовать их при проектировании систем высокого качества 

в оптическом видимом диапазоне. 

Измерения РПП проводят на модуляционном интерферометре, 

дающем на выходе электронного блока сигнал, пропорциональный 

показателю преломления в точке измерений. Изготовление линз с 

ОРПП открывает перспективы дальнейшего совершенствования ОС. 

Регрессионное описание функции РПП. Профили РПП в стеклах 

BL15 (Bausch&Lomb), S2 (Schott), FM40 (Рочестерский университет) 
представлены на рис. 2.3. Данные при сканировании образца получе­
ны по результатам измерений в 70-80 точках. 

Чтобы применить в расчетах ОС полученные данные по РПП, 

выполняют регрессионный анализ на гауссову кривую либо на сте­

пенной полином. Результаты такого анализа позволяют рассчитывать 

системы с использованием реальных параметров градиентной среды. 
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Рис. 2.3. Профили распределений показателя преломления 
различных стекол: 

а - BL-15, л, = 0,5145 мкм, обмен Ag-Na; 6 - S2, л, = 0,6471 мкм, обмен Li- Na; 
в - FM40, л = 0,5145 мкм, обмен Li- Na; 1 - экспериментальные точки; 

2 - усредненная линия 

В табл. 2.5 приведены результаты регрессии осевого РПП пласти­
ны из стекла BL15 на нелинейный (az4 + bz + с) и линейный (az + Ь) 
полиномы для 'Л, = 0,5145 мкм. 

Образец 

BL15A7 

BL15Bl 

BL15Cl 

Таблица 2.5 

Результаты регрессии на полином в образцах стекла BL15 

Область Результаты регрессии 

анализа РПП, для разных полиномов 

мм 

at' + bz + с az + Ь 

0,7 ... 6,3 -0,033355z+0,023356z4 -0,028142z 

0,7 ... 6,3 - 0,034156z+0,028267z4 - 0,027923z 

0,7 ... 6,5 - 0,034006z+0,025187z4 - 0,028050z 
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Формула регрессионного анализа на гауссову кривую: 

Лn=a+bexp[-c(x-d/J 

По значениям коэффициентов а, Ь, с, d рассчитывают максималь­
ный угол наклона кривой РПП (градиент ПП) и его положение отно­

сительно первой поверхности: 

1Jf •~ - -ь5с ехр( -~} 

z,., = {1 +d. 
Ymax ~2с 

Результаты регрессии РПП на гауссову кривую в пластине из 

стекла BL15 для л = 0,5145 мкм показаны в табл. 2.6. 

Образец 

BL15A7 

BL15Bl 

BL15Cl 

Таблица 2.6 

Результаты регрессии РПП на гауссову кривую 

в образцах стекла BL15 

z'llmax ' IJI max' Максимальное 

мм см-' отклонение от кривой, % 

2,772 -0,0351 0,19 

2,595 -0,0355 0,21 

2,738 -0,0358 0,26 

Из сравнения двух типов регрессий следует, что они находятся в 

соответствии друг с другом. В общем виде наилучшим образом под­

ходящий полином содержит 1-, 2- и 4-ю степени ряда и имеет мак­
симальное отклонение от экспериментальных точек, равное 2 % . Для 
гауссовой кривой такое отклонение составляет 0,3 %. 

Воспроизводимость профиля РПП. Эту характеристику проверя­

ли на десяти образцах стекол одного сорта двух различных плавок с 

использованием идентичной процедуры диффузионной обработки. 

Результаты приведены в табл. 2. 7. Анализировали воспроизводимость 
РПП марок от BL14 до BL24 для полиномиального и гауссова пред­
ставлений в области 1,1 .. .4,4 мм от края образца. 
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Таблица 2. 7 

Результаты исследования на воспроизводимость профиля РПП 

Образец Плавка Полиномиальное Гауссова 

представление кривая 

50 % n01' см- 1 \/1 см- 1 

max' 
Полуши-

от zm, мм рина, мм 

BL14A2 10225 2,73 - 0,03251 - 0,0355 2,541 

BL15A2 >> 2,99 - 0,03299 - 0,0362 2,491 

BL17Al » 2,62 -0,03201 -0,0355 2,443 

BL18Al >> 2,83 - 0,03537 - 0,0387 2,477 

BL19Al » 2,75 - 0,03175 - 0,0349 2,463 

BL20Bl 10215 2,80 - 0,03134 - 0,0345 2,525 

BL21Al 10225 2,65 - 0,03175 - 0,0356 2,443 

BL22Al 10225 2,78 - 0,03023 - 0,0337 2,386 

BL23Al 10215 2,90 - 0,03441 - 0,0377 2,467 

BL24Al 10225 2,75 - 0,03266 - 0,0361 2,328 

Значения коэффициента наклона кривой п01 в зависимости от ме­
ста расположения градиентной зоны на образце при полиномиальном 

представлении РПП приведены в табл. 2.8. Коэффициент п01 является 
основным элементом в каждом из многочленов. Погрешность пред­

ставления составила приблизительно 7 % . Однако такой анализ очень 
чувствителен к интервалу зоны неоднородности ПП (градиентной 

зоне). Для образцов BL18 и BL23 показаны значения n0 1' рассчитан­

ные для разных интервалов зоны РПП. Погрешность составила 2 % . 

Таблица 2.8 

Зависимость коэффициента n
01 
от места расположения 

градиентной зоны на образце 

Образец Интервал градиентной зоны, мм n01' см- 1 

BL18A2 1,0 .. .4,2 -0,035159 

BL18A2 1,0 .. .4,5 - 0,034563 

BL23Al 1,2 .. .4,3 - 0,034406 

BL23Al 1,2 .. .4,7 - 0,033769 

Погрешность гауссова представления (см. табл. 2.6) равна 0,3 %. 
Максимальный наклон кривой РПП приходится на ее точку переги-
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Рис. 2.4. Диаграмма точности воспроизводимости градиентной 
оптической среды марки BL: 80 - погрешность 

ба. На рис. 2.4 изображена диаграмма точности воспроизводимости 
градиентных стекол марки BL. 

Дисперсионные зависимости РПП. Для однородных стекол диспер­

сия показателя преломления - хорошо изученная характеристика. 

Типичный крон с номинальным значением п = 1,52 имеет в видимой 
области спектра изменение показателя преломления Лп = 0,012 (око­
ло 0,8 %). У градиентных сред существуют также дисперсионные за­
висимости. В табл. 2.9 приведены результаты измерений Лп в образце 
BL15 для разных длин волн л.. 

Таблица 2.9 

Изменение показателя преломления Лп в стекле BL15 для разных длин волн л 

Номер образца А,МКМ Лп 

61 0,4579 0,0155 
51 0,5145 0,0146 
38 0,6764 0,0143 

При линейном представлении РПП и толщине градиентного эле­

мента 5,8 мм изменение спектрального коэффициента п01 для синей 
(л.1 = 0,4579 мкм) и красной (л.2 = 0,6764 мкм) областей диапазона 
относительно желто-зеленой области (л.О = 0,5145 мкм) составляет со­
ответственно 6,16 % и - 2,055 %. Относительная дисперсия градиента 
ПП (п01"гп01 ,)/п0 1 "0 равна 8,22 % (табл. 2.10). 
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Таблица 2.1 О 

Изменение коэффициентов - спектральноrо n01 и дисперсии v 01 lpOCp 
для разных длин волн л.i 

лi n0 " см- 1 
VOI 

л1 - 0,002672414 no,,.o 
л.О - 0,002517241 Vo1 = = 12,16 

л.2 -0,002465517 
nош -no21.2 



п 

1,51 

1,50 А2 

~-~--~--~-~ 
о 2 4 6 z,мм 

Рис. 2.5. Графики дисперсионной зависимости показателя преломления 
от толщины образца стекла BL15 

На рис. 2.5 для образца BL15 показаны спектральные кривые 
РПП как функции тошцины. 

На рис. 2.6 для образцов BL15A, BLl 7 А, BL18A, BL21A и S2A изо­
бражены спектральные функции наклона распределения показателя 

преломления, полученные с помощью полиномиальной регрессии, из 

которых следует наличие значительной дисперсии ГрОСр. Погреш­

ность составила 1 %. 

\j/, см-1 

- 0,036 

- 0,035 

- 0,034 

-0,033 

-0,032 

- 0,031 

- 0,030 

0,4 0,5 0,6 л,, мкм 

Рис. 2.6. Спектральные функции наклона РПП при ее полиномиальном 
представлении для разных образцов стекол 

Спектральные функции РПП в случае гауссовой регрессии пред­

ставлены на рис. 2. 7, а результаты их анализа в диапазоне градиент­
ной зоны 1,1 ... 1,4 мм - в табл. 2.11, где п - ПП базового стекла. 
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Рис. 2. 7. Спектральные функции РПП при гауссовом представлении 
для разных образцов стекол 

А, 

мкм 

0,4579 

0,4808 

0,5145 

0,6471 

0,6764 

Таблица 2.11 

Результаты анализа спектральной функции РПП (по рис. 2. 7) 

Характеристики для образцов разных марок стекла 

п по1 ' см:-1 \JI см:-1 
max' 

BL15A BL21A BL15A BL21A BL15A BL21A 

1,5112 1,5112 - 0,03518 - 0,03243 - 0,0376 - 0,03643 

1,5084 1,5084 - 0,03395 - 0,03181 - 0,0376 - 0,03633 

1,5066 1,5066 -0,03299 -0,03200 -0,0362 -0,03555 

1,5001 1,5001 - 0,03190 - 0,03054 - 0,0357 - 0,03449 

1,4993 1,4993 - 0,03295 - 0,03118 - 0,0358 - 0,03487 

Примечание. '1' - как показано раньше - максимальный на-
max 

клон гауссовой кривой 

Приведенные в табл. 2.11 наклон гауссовых кривых 'V max и коэф­

фициенты n
01 
для линейного полиномиального приближения являют­

ся главными дисперсионными характеристиками градиентных сред с 

ОРПП. Из рис. 2.6, 2.7 следует, что спектральные функции РПП для 
рассмотренных регрессий имеют схожую конфигурацию. Хромати­

ческие изменения коэффициента n
01 
и наклона РПП соответственно 
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для полиномиального и гауссова представлений составляют (6 ... 10) % 
и 5 % от аналогичных значений для основной длины волны. Указан­

ные изменения имеют определяющее значение для ахроматизации 

ОС. Чтобы исправить сферохроматическую аберрацию, используют 

два параметра - дисперсию показателя преломления базового стек­

ла и дисперсию градиента ПП. Эти параметры могут быть противо­

положны по знаку, что позволяет в одиночной градиентной линзе 

получать меньшую сферохроматическую аберрацию по сравнению с 

исходной однородной линзой. 

На рис. 2.8 представлена диаграмма с характеристиками пер­
спективных ГрОСр, которые могут изготовить фирмы Bausch&Lomb, 
Schott Optical, U niversity of Rochester. Важнейшими характеристиками 
являются максимальный наклон РПП \j/ max и его расположение отно­

сительно первой поверхности пластины (z'l'm"J 

- 1 
\\fmax , СМ ~-----------------~ 

0,28 -

0,24 -

0,20 -

0,16 -

0,12 -

0,08 -

i1 32 
272~47 д 
дЛO118д5~8д36 46 д д д д37 д32 

48 д30д29 л41 

25 д4i 49 д34 

0 18 

о 36 

50дд53 д 38 
д35 

д39 д 

40 

□ 2 

д43 

д 54 д 44 

0,04 - 119 д 17 
1924 18 2315 

21д~~д д 
о 

о ' ' ' 
, 22 20 51 

0,4 0,8 1,2 1,6 2,0 2,4 Zmax, ММ 

Рис. 2.8. Характеристики перспективных градиентных сред 
различных фирм: 

д - Bausch&Lomb; о Schott Optical; 
о - Рочестерский университет 

Итак, измерения показали, что регрессии на полином и гауссову 

кривую хорошо соответствуют друг другу. Подходящий наилучшим 

образом полином имеет 1-, 2- и 4-ю степени ряда и максимальное 
отклонение от экспериментальных точек не более 2 %. Для гауссо­
вой кривой максимальное отклонение от экспериментальных точек 

составило О, 3 % . 
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2.3. Обзор характеристик 
известных градиентных оптических элементов 

Применение ГрОЭ при создании новых систем связано с разра­

боткой целого комплекса новейших технологий и целесообразно в 

ОС, где использование традиционных однородных сред и техноло­

гий не обеспечивает необходимые требования. В первую очередь это 

относится к микрооптическим линзовым элементам и макрооптиче­

ским системам, предназначенным для работы в ИК-диапазоне. 

Коллимационные линзы с ОРПП малых и средних диаметров. 

В этом разделе приводятся взятые из патентной литературы харак­

теристики ГрОСр, конструктивные данные, числовые апертуры NA 
и фокусные расстояния f линз. Применены следующие обозначения: 

R
1
, R

2 
- радиусы кривизны поверхностей; d - толщина линзы по оси; 

D - световой диаметр линзы. Параметры РПП различных образцов 

приведены в табл. 2.12. 

Номер 

образца 

1 

2 

3 

4 

5 

6 

7 
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Таблица 2.12 

Параметры РПП для разных образцов линз 

Диапазон Зависимость n(z) 
по координате z, мм 

0- 0,4 1,556- 0,138z-0,00513z2 

0,4- 2,0 1,50 

0-0,4 1,650-0,124z 
0,4- 1,6 1,60 
1,6- 2,0 l ,6+0,124(z-1,6) 

0- 0,15 1,608- 0,0514z 
0,152,0 1,60 

0,4- 2,0 1,687- 0,0297z 
2,0- 2,4 1,675 

0- 1,0 1,631- 0,0309z 
1,0- 3,0 1,60 

0- 0,5 1,68- 0,034538z 
0,5- 1,5 1,663 

0- 0,5 1,635- 0,041z+0,040z2 

0,5- 1,0 1,624 
1,0-1,5 1,624+0,021(z-1,0) 



Окончание табл. 2.12 

Номер Диапазон Зависимость n(z) 
образца по координате z, мм 

8 0- 1,0 1,66- 0,034z 
1,0-2,0 1,625 +0,034(z-1) 

9 0- 0,5 1,627- 0,041z 
0,5-1,0 1,606 
1,0- 1,5 1,606+0,041(z-1) 

10 0- 1,6 1,765- 0,0573z 
1,6-5,1 1,675 

11 0- 0,6 1,583- 0,135z+0,0055z2 

0,6- 2,2 1,5 

12 0-2,7 l ,684- 0,0314z 
2, 7- 9,2 1,6 

9,2- 11,9 l,6+0,0314(z- 9,2) 

В табл. 2.13 показаны конструктивные характеристики образцов 
линз. 

Номер 

образца 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Таблица 2.13 

Конструктивные характеристики различных образцов линз 

R1,мм ~, мм d,мм D,мм NA /, мм 

3,23 - 13,76 2,0 3,0 0,30 5,0 

3,42 - 50,85 2,0 3,0 0,30 5,0 

7,56 - 181,40 2,0 2,4 0,10 12,0 

13,19 303,66 2,0 6,0 0,15 20,0 

12,82 - 694,13 3,0 10,0 0,25 20,0 

11,56 00 1,5 4,76 0,14 17,0 

10,80 00 1,5 5,0 0,16 17,0 

11,88 00 2,0 5,4 0,15 18,0 

9,40 00 1,5 5,7 0,19 15,0 

7,42 149,8 5,1 9,0 0,45 10,0 
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Окончание табл. 2.13 

Номер RРмм R2, мм d,мм D,мм NA f, мм 
образца 

11 3,33 - 14,92 2,2 3,5 0,35 5,0 

12 14,60 - 137,0 11,9 16,0 0,40 20,0 

Аберрации в центре поля изображения для различных образцов 

линз представлены в табл. 2.14: Лs;Ф.mах - максимальная сферическая 
аберрация; лу; - кома. 

Таблица 2.14 

Значения аберраций различных образцов линз 

Номер ' лу: , Лsсф.mах, 
образца 

мкм мкм 

1 0,3 0,4 

2 0,7 1,5 

3 0,1 0,3 

4 0,1 0,8 

5 0,6 4,0 

6 0,3 0,4 
7 0,7 1,5 

8 0,1 0,3 

9 0,1 0,8 

10 2,0 8,0 

11 1,0 1,0 

12 10,0 10,0 

На рис. 2.9 изображены типичный профиль осевого РПП (а) и 
зависимость диаметра пятна рассеивания D ( б) от положения первой 

р 

поверхности линзы, которое задается смещением Лzвх от входной по-

верхности заготовки с ОРПП. Из рис. 2.9 следует, что минимальное 

пятно рассеивания соответствует самому крутому участку графика 

РПП (Лzвх = 4). 
Линзы GRADIUM с осевым распределением показателя преломле­

ния. Достоинством GRADIUM-линз с ОРПП (как и ОС, имеющих 

асферические элементы) является возможность получения высокого 

качества изображения: меньшее пятно рассеивания, низкая дистор-
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п 

2 

2 

4 
а 

4 
б 

6 Лzвх, усл. ед. 

6 Лzвх, усл. ед. 

Рис. 2.9. Типичный профиль РПП (а) и зависимость диаметра 
пятна рассеивания D светового пучка от положения первой поверхности 

р 

ЛИНЗЫ Лzвх ( б) 

а б 

Рис. 2.10. Сферическая аберрация линз GRADIUM (а) 
и однородной ( б) 
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сия, способность взаимодействовать с высокими мощностями излу­

чения. На рис. 2.10 для сравнения изображены сферические аберра­
ции двух линз - однородной и GRADIUM. 

В результате дисперсии градиента ПП в одиночной линзе появля­

ется дополнительный параметр для улучшения коррекции хроматиз­

ма, что приближает коррекционные возможности ГрОЭ к линзовому 

дублету из однородных линз. Как известно, недостатком однородных 

сферических линз является сферическая аберрация, определяющая 

размеры светового пятна. Рассмотрим технические характеристики 

освоенных для промышленного производства градиентных линз. 

Основные технические характеристики GRADIUM-линз: 

Расчетная ДЛЮiа воm~ы ........................................................................... 546 нм 
Температурный диапазон: 

при эксплуатации ............................................................ (-20 ... +200) 0С 
во время хранения . . .. . .. . . . . . . .. . . . . . .. .. . .. . .. . . . . .. . .. . .. . . . .. . . . . .. . . . . .. (-40 ... + 300) 0С 

Допуск: 

на наружный диаметр .... ... .... .. .. .. .. ........ ....... ......... ... .... .... ......... ±0,250 мм 
на центральную толщину ......................................................... ±0,100 мм 
на эквивалентное фокусное расстояние и рабочую дистанцию 

для серий 

GAD .......................................................................................... ±2 % 
GPX, GBX, GMN .................................................................... ±1 % 

Требования качества поверхности ............................. 40/20 царапин/выколок 

На рис. 2.11 схематично показаны этапы технологического про­
цесса получения заготовки стекла с ОРПП (типа GRADIUM). Про­
цесс состоит из укладывания множества тонких однородных сте­

клянных пластинок с постепенно увеличивающимися показателями 

преломления ( J) и далее при нагреве материала получения плавного 
градиента ПП (2) от основания до вершины. Показатель преломле­
ния и дисперсию подбирают с помощью изменения толщины и оп­

тических свойств составляющих стеклянных пластинок и параметров 

диффузионного процесса. В результате появляется определенная за­

висимость ПП по толщине материала ( J). 
Изготавливают следующие типы GRADIUM-линз: плосковьmу­

клая (GPX); двояковыпуклая (GBX); менискообразная (GMN) - гра­

диент в области вьmуклой поверхности; ахроматический вьmуклый 

дублет (GAD). Характеристики некоторых линз, применяемых в из­
делиях стандартных и на заказ, представлены в табл. 2.15, где К обо­
значает диафрагменное число; d - толщину по центру; s~, - задний 
фокальный отрезок; D - полный диаметр. 

п 
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п 

z 

1 2 3 

Рис. 2.11. Схема технологического процесса получения стекла GRADIUM: 
1 - специальная раскладка тонких стекол; 2 - нагревание; 3 - профиль 

изменения ПП в результате диффузии 

Таблица 2.15 

Габаритные характеристики GRADIUM-линз 

Марка 
Dп, мм D, мм к /, мм d, мм ' 

линзы 
SF, , ММ 

Стандартные изделия 

GPX-5-5 5 4 1,0 5 2,9 3,09 

GPX-5-12,5 5 4 2,8 12,5 2,0 11,30 

GPX-10-10 10 9 1,1 10 3,0 8,00 

GPX-10-18 » >> 2,0 18 2,5 16,52 

GPX-10-22 >> >> 2,5 22 >> 20,54 

GPX-10-25 » >> 2,8 25 >> 23,55 

GPX-10-30 >> >> 3,3 30 >> 28,53 

GPX-10-40 >> >> 4,5 40 2,0 38,84 

GPX-15-15 15 13 1,1 15 4,2 12,24 

GPX-15-40 15 13 3 40 2,0 38,83 

GPX-20-50 20 18 2,8 50 3,0 48,24 

GPX-25-60 25 22 2,6 60 6,0 56,46 

GPX-25-80 25 22 3,5 80 4,0 77,69 

GPX-30-60 30 27 2,2 60 6,0 56,44 

GPX-30-70 >> >> 2,6 70 6,0 66,47 
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Окончание табл. 2.15 

Марка 
Dп, мм D,мм к f, мм d, мм 

f 

линзы 
SF' , ММ 

GPX-30-80 » » 3,0 80 4,0 77,68 

GPX-30-100 » » 3,7 100 6,0 96,53 

GPX-40-80 40 36 2,2 80 6,0 76,47 

GPX-50-100 50 45 2,2 100 8,0 94,90 

GPX-50-120 » » 2,7 120 8,0 114,33 

GPX-50-125 » » 2,8 125 » 120,37 

GPX-50-150 » » 3,3 150 » 145,25 

GPX-50-160 » » 3,6 160 » 155,25 

GPX-50-200 >> >> 4,5 200 >> 195,27 

GPX-80-125 80 72 1,7 125 12,25 116,91 

Изделия на заказ 

GBX-25-40 25 22 1,8 40 4,6 37,51 

GBX-30-40 30 27 1,5 40 5,76 36,72 

GBX-50-80 50 45 1,8 80 8,0 75,46 

GPX-40-100 40 36 2,8 100 6,0 96,56 

GPX-40-125 » 36 3,5 125 6,0 121,52 

GPX-40-150 » 36 4,2 150 6,0 146,49 

GAD-5-15 5 4 3,3 15 4,0 13,07 

GAD-10-20 10 9 2,2 20 6,0 17,17 

GAD-25-50 25 22 2,2 50 11,0 44,37 

GMN-30-50 30 27 1,9 50 5,0 46,82 

Из табл. 2.15 следует, что у стандартных плосковыпуклых 

GRADIUM-линз диаметры находятся в диапазоне от 5 до 72 мм, /' = 
= 5 ... 160 мм, относительные отверстия 1 :К = 1:1 ... 1:4 (в среднем, 

1:2.5 ... 1:3), толщина d составляет 2 ... 12,25 мм. Линзы, изготовляемые 

по специальным требованиям, бывают двояковыпуклой и плосковы­

пуклой конфигурации поверхностей, а также могут иметь повышен­

ное исправление хроматических аберраций (тип Achromat). 
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Рис. 2.12 (начало). Конструкция дублетов (а) и графики аберраций (б-г) широких пучков лучей с РРПП и ОРПП 
в первой или второй линзах дублета: 

1- исходный блок из однородных линз; 2, 3 - блоки с РРПП в первой и второй линзах соответственно 
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Рис. 2.12 (окончание). Конструкция дублетов (а) и графики аберраций (б-г) широких пучков лучей с РРПП и ОРПП 
в первой или второй линзах дублета: 

4, 5 - блоки с ОРПП в первой и второй шmзах соответствеmю; б - для осевого пучка лучей; в, г - соответственно 

меридиональное и сагитальное сечения внеосевого пучка; линза с ГрОЭ окрашена темлым фоном 
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Рис. 2.13 (начало). Конструкция дублетов с градиентным элементом в качестве второй линзы (а) 
и графики (см. рис. 2.12) аберраций (б-г): 

1 - исходный блок из однородных линз; 2 - с использованием градиентных элементов GF41SFN 
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Рис. 2.13 (окончание). Конструкция дублетов с градиентным элементом в качестве второй линзы (а) 
и графики (см. рис. 2.12) аберраций (б-г): 

3-4 - с использованием rрадиенrnых элементов GF41SFP, GF51SFN соответственно 



Дублеты с ОРПП или РРПП в одной из линз. На рис. 2.12 приве­
дены графики аберраций широких наклонных пучков лучей у кон­

струкций блоков линз, одна из которых имеет градиентный ПП. По 

графикам можно сделать вывод, что введение градиента существен­

но уменьшает поперечные аберрации для осевой и внеосевой точек 

предмета. 

На рис. 2.13 показаны графики аберраций широких полихромати­
ческих пучков линзовых дублетов, в которых вторая линза изготовле­

на из среды GRADIUM, что позволяет улучшать коррекцию хрома­
тических аберраций. 

Вопросы для самопроверки 

1. Назовите основные технологии получения неоднородных оп­
тических сред. 

2. Перечислите основные технологические параметры ГрОС. 
3. Поясните особенности описания РПП элементов Selfoc, 

GRADIUM. 
4. В чем заключается регрессивный анализ функции РПП гради­

ентной среды? 



3. МЕТОДЫ РАСЧЕТА ГРАДИЕНТНОЙ 
ОПТИЧЕСКОЙ СИСТЕМЫ В ПАРАКСИАJIЬНОЙ 

ОБЛАСТИ. ГАУССОВЫ КОЭФФИЦИЕНТЫ 

Расчет параксиальных характеристик - важнейшая процедура 

при проектировании ОС. К таким характеристикам относятся фокус­

ные расстояния (/' , Л, фокальные отрезки ГрОЭ ( s F, s~,), положение 
главных плоскостей (sн, s~,), линейное увеличение (Р0) и задний от­
резок ( s') при положении предмета на конечном расстоянии, а также 

хроматические аберрации 1-го порядка в случае, если система пред­

назначена для работы в конечном спектральном диапазоне. 

3.1. Расчет параксиальных лучей в градиентных средах 

Аналитические методы анализа и синтеза ГрОС построены на 

формулах теории аберраций 3-го порядка и хроматизма 1-го поряд­

ка, базирующейся на параметрах первого и второго вспомогательных 

лучей. 

В общем случае распределение осесимметричного показателя 

преломления п(х, у, z) в меридиональной плоскости OYZ задают в 
виде рядов (1.18), (1.19): 

48 

n(z,y) =no(z)+n,(z)y2 +niz)y4; 

11i (z) = n,0 + 11i ,z + !1i2Z
2

; 

~(z)=~o +n2,z +~2Z2. 

Для ОРПП и РРПП имеем соответственно 

n(z) = noo + no1Z + no2Z2 + no3Z
3 + ... ; 



п(у) = noo + n,oY2 + n20Y4 + nзоУ6 + •·· , 

где п .. - коэффициенты. 
у 

Часто, с целью удобства описания ОРПП, в (1 .19) переходят от 
обозначения n

00 
к п0 (п00 ➔ п0). 

Исходные положения расчета параметров траекторий параксиаль­

ных лучей в lрОЭ. Обычно градиентная зона занимает определенную 

часть объема оптической среды. Траектория луча складывается из 

участка от предметной точки до точки встречи с входной поверхно­

стью линзы, участков прохождения луча по градиентной и однород­

ной средам (или наоборот) , а также после преломления на выходной 

поверхности линзы. 

Для всех типов РПП угол луча после преломления его на входной 

поверхности равен углу на входе в градиентную среду ( а' = а2 ): 

, hр(п'-п)+ап 
а = I ' 

п 

(3.1) 

где п, а и п', а' - значения ПП и угла осевого луча до и после по­

верхности преломления соответственно; р - кривизна поверхности. 

При расположении градиентной линзы в воздухе, согласно (3.1), 
имеем 

l7i Р1 ( по - 1) + а1 
а2 =-------, 

по 

где n
0 

- значение ПП на оптической оси при входе луча в ГрОЭ. 

Угол после преломления луча на выходной поверхности 

аз =~P2(l-nz)+a2nz , 

где п , а2 - значение ПП и угол на выходе из неоднородной среды 
z 

соответственно; для РРПП nz = n
00

• 

Фокусное расстояние f' , заднее вершинное фокусное расстояние 
s;,, а также линейное увеличение 1\ и задний отрезок s' вычисляют по 
формулам 

f' = h, / аз; s;,(s') =~/аз; Во = а, /аз. 

Для упрощения расчетов и проверки результатов часто применя­

ют нормировку исходных значений углов и высот первого и второго 

вспомогательных лучей, позволяющую получить угол в пространстве 

изображений а: = 1: 

hi = f' , В, = 1, у, = sвх при s = -оо; 
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где s, sвх - отрезки, определяющие положение предмета и входного 

зрачка. 

Способы описания РПП градиентных сред. Расчет траектории па­

раксиального луча в среде с РРПП. При моделировании ОС с элемен­

тами, имеющими РРПП, функция показателя преломления описыва­

ется полиномами первой п(у) или второй п2(у) степени - см. (1.21), 
(1.24). В зависимости от знака коэффициента п10 в (1.21) различают 
два типа РПП: фокусирующее (п10 <О) или рассеивающее (п 10 > О). 

Выразив коэффициенты п10 из (1.20), (1.21) через h
2

; (1.24), полу­
чим связывающие их выражения: 

1 
n10 = -2 g2noo; 

п 1 
~о= ;о (h4 - 4)g4; 

п h 1 
flзo = ;о(~+ ; -8)g6; 

(3.2) 

п = noo [h + hб - h4 (3-2h )-2-]g8. 
40 2 8 2 8 4 64 

При фокусирующем РПП в системе координат, привязанной к 

первой поверхности линзы, текущие углы и высоты первого и второго 

вспомогательных (параксиальных) лучей на расстоянии z от поверх­
ности вычисляют по формулам 

~ = h(z) = h(O)cos(tz)- а(О) sin(tz) , 
t 

а2 = a(z) = a(O)cos(tz) + h(O)tsin(tz); 

У2 = У ( z) = у (О) cos ( tz )- В (О) sin ( tz), 
t 

132 = В( z) = В(О )cos(tz) + у( О )sin(tz ), 

(3.3) 

где h(O) , у(О), h(z = d), y(z = d) и а(О), a(z = d), ~(О), ~(z = d) - вы­

соты и углы параксиальных лучей соответственно на входе и выходе 

из неоднородной среды; t - фокусирующая константа или константа 

2ln1o l 
РПП, t= 
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При рассеивающем РПП имеем 

~ = h(O)cosh(tz)- а(О) sinh(tz), 
t 

а2 = a(O)cosh(tz)- h(O)tsinh(tz); 

У2 = у (О) cosh ( tz) - В (О) sinh ( tz), 
t 

~ 2 = В (О) cosh ( tz) - у (О) t sinh ( tz). 

(3.4) 

Значение t определяется по той же формуле, что и для фокусиру­
ющего РПП. 

Фокусное расстояние, фокальные отрезки и масштабирование пара­

метров линзы с РРПП. Чтобы найти аналитические выражения для 

фокусного расстояния, заднего и переднего фокальных отрезков лин­

зы в воздухе, воспользуемся формулами (3 .3), (3.4). Так при n
10 

< О: 

sF =-f cos(td)+p2--sin(td) . '[ ( п00 -1) ] 
noo 

В случае тонкой линзы выражение (3.5) для оптической силы бу­
дет таким: 

где Ф од' Ф гр - оптические силы сред - однородной и обусловленной 

наличием градиента ПП, Фrр =-2n10d. 
Из (3.6) следует, что у тонкой однородной линзы с РРПП оптиче­

ская сила складывается из двух составляющих: Ф од однородной линзы 

и Ф плоскопараллельной пластины с РРПП, одинаковой с линзой 
гр 

толщины (линзы Вуда). 

Если n10 > О, то 

-.!, = ( п00 -1 )(р1 -р2 )cosh(td) + PiP2 
( noo - l )

2 

sinh(td)-tno0 sinh(td). 
f noot 
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Из анализа (3.5) получим правило пересчета параметров линзы на 
заданное (новое) фокусное расстояние 1: с коэффициентом масшта­
бирования k = 1: / l 1 

: 

где индекс «н» относится к новым значениям; Р~н = р1 / k; Р2н = Р2 / k; 
d2н =d2k; tн =t / k. 

Итак, чтобы пересчитать параметры линзы на новое фокусное 

расстояние, нужно значения радиусов кривизны поверхности и тол­

щины умножить, а константы t поделить на коэффициент масштаби­
рования k. Новые коэффициенты определяют по формулам 

Расчет траекторий параксиальных лучей в ГрОЭ. Фокусное расстоя­

ние линзы с ОРПП и масштабирование ее параметров. Формулы углов 

и высот для указанного распределения в общем случае, задаваемом 

(1 .20), имеют вид 
d d 

h(z) = hi - а(О)п0 f-z ; 
0 n(z) 

a(z) = а(О)п0 , 
nz 

(3.7) 

где п0 , nz - показатели преломления на входе и выходе луча из ГрОСр. 

Для частного случая линейного ОРПП при п02 = n
03 

= n
04 

. .. = О: 

h(z) = hi - a(O)no 1n nz; 
no1 по 

a(z) = a(O)no . 
nz 

Используя (3.1), (3.7), находим выражение для фокусного рассто­
яния и фокальных отрезков: 

1 d 1 
-, = P1(no -l)-P2(nz -1) + P1Pino -l)(nz -1) f-dz; 
I о~~ 
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s~, = /'[1-р1 (п0 -1) f ~]; 
0 n(z) 

s F = - f '[1 + Р2 ( по -1) f dz ] . 
0 n(z) 

(3.8) 

С помощью (3.8) вьmолняют нормировку исходного фокусного 
расстояния к заданному. Результирующая формула имеет вид 

1 dн 1 
- , =Р,н(по -l)-P2н(nz -l)+Р1нР2н(по -l)(nz -1) f - dz, 
J:. 0 n(z) 

где Р~н, Р2н ,dн - новые значения кривизны поверхностей линзы и тол­

щины. 

При масштабировании значения радиусов кривизны поверхно­

стей и толщины линзы умножаются на коэффициент пересчета k, 
верхний предел интеграла заменяется на dн = k d , а новые значения 

по, no2 
коэффициентов определяют из формул n01 н =-, n02н =-, ... 

k k 2 

При наличии градиентного ПП в некоторой зоне оптической сре­

ды линзы правило масштабирования ее параметров сохраняется. 

Расчет траектории параксиальных лучей в lрОЭ с СРПП. Рассмо­

трим траекторию луча в линзе, у которой в области оптической сре­

ды, прилегающей к первой поверхности, присутствует линейный тип 

СРПП, описывемый в сферической системе координат формулой 

(1.22): 
n(R-p )=про + пр, (R-p ), 

где R - технологический радиус формирования СРПП; про - показа­

тель преломления в центре сферической системы координат; пР1- ли­

нейный коэффициент в функции СРПП. 

Для перехода из сферической в декартову систему координат фор­

мулу (1.22) раскладывают в бесконечный ряд, а количество членов 
разложения выбирают из анализа точности расчета параметров луча. 

Рассматриваемый переход к декартовой системе координат, связан­

ной с первой поверхностью линзы, осуществляют по формулам (1.23): 

1 1 1 
noo = про; по, =пр, ; п,о = -пр, 2R; п,, = пр, 2R2; ~о = пр1 8Rз; 

3 
~, =np1 8R4. 
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Значение ПП на оси перед преломлением на выходной поверх­

ности рассчитывают из уравнения nz = п00 + по, dгр, где dгр - толщина 

градиентной зоны. 

В меридиональной плоскости функция ПП определяется полино­

мом, коэффициенты которого вычисляют по (1.23): 

n(z,y)=no(z)+n,(z)y2 +~(z)y4, 

где по ( Z) = noo + no1 Z; п, ( Z) = п,о + n11 Z ; ~ ( Z) =~о+ n2, Z · 

Высоту луча ~ и угол а.2 на выходе из ГрОСр находят с помощью 
полиномов: 

~ =Ао +A,d +A2d
2 +A3d

3 +A4d
4 +A5d

5
; 

а.2 =-(А,+ 2A2d +3A3d
2 +4A4d

3 +5Asd4
). 

(3.9) 

В (3.9) для луча на входе в градиентную среду получаем А0 = 
= h

1
A1 = -а2• Коэффициенты Ak, стоящие при d;, определяют высоту 

осевого луча и угол его наклона с оптической осью, их рассчитывают 

так: 

А _ 2AoN10 -A1No1. 
2 - 2N ' 

00 

А _ 2А1 N 10 + 2A0N 11 - 2A2N 0, . 
з - 6Noo ' 

А _ 2A2N ,0 -2A1N, 1 -9A3N 01 • 
4 

- 12N ' 
00 

As = A3N,0 - A2N 11 - 8A4N 01 . 
10N00 

(3.10) 

После преломления луча на выходной поверхности, согласно 

(3.1): 

аз = ~Р2 (1- nz) + д.2nz • 

Фокусное расстояние и задний фокальный отрезок вычисля­

ют, как и у однородных ОС: /' = h, / а3 и s~ = ~ / а3 ; высоту и угол 
с осью второго вспомогательного луча рассчитывают по формулам 

(3.9), (3.10), заменив коэффициент Ak на Bk: 
= 

y(d) = LBndn =Во+ B,d + B2d2 + ... ; 
о 

= 
(3.11) 

~(d) = LВпdп = В0 + B1d + B2d
2 + .... 

о 
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Начальные данные для расчета второго вспомогательного луча 

при У1 = sP, Р 1 = 1: Во= У1; В1 = -Р2· 
Параксиальные инварианты на первой и второй поверхностях 

линзы 

I , =n,(y,a, -h,f3,) и I 2=nz(Yii2-~~2) 

должны быть равны. Здесь д.2 , ~ 2 - углы на выходе из ГрОСр. При 
неравенстве инвариантов следует увеличить число коэффициентов 

Ап и Вп в (3.9) и (3.11). 
Функции углов и высот первого и второго параксиальных лучей 

по координате z представляют полиномами: 

д.2 ( z) = -(А, + 2A2z + 3A3z
2 + 4A4 z3 + 5/4z4

); 

~ ( Z) = Аа + Aiz + A2z2 + АзZ3 + A4 z4 + A5z
5

, 

~(z)=-(B, +2B2z+ЗB3z2 +4B4 z3 +5B5z4
); 

y(z) = В0 + B,z+ B2z
2 + B3z

3 + B4z4 + B5z
5

• 

3.2. Гауссовы коэффициенты 
градиентной оптической системы 

(3.12) 

(3.13) 

Параксиальные величины ГрОС можно определить двумя метода­

ми. Первый из них основан на расчете параксиальных лучей с опре­

деленными начальными условиями. Траекторию луча в среде с пока­

зателем преломления n(y,z)=n0 (z)+n,(z)y2 + ... описывают системой 
обыкновенных дифференциальных уравнений 

dy - Р . ----, 
dz no(Z) 

dp 
-=2n,(z)y, 
dz 

(3.14) 

где р, у - соответственно оптический направляющий косинус и вы­

сота параксиального луча. 

В системе (3.14) величина р связана с углом а, который образует 

параксиальный луч с осью OZ: р =-n0 (z)a. Чтобы вычислить траек­
торию луча, проинтегрируем выражения (3.14) с учетом начальных 
условий: 
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y(O)=yl =у; z=O о 

р(О) = Р lz = 
0 
= Ро =-по (О)ао = -noa0 • 

Решения (3.14) для случаев РРПП, ОРПП, СРПП приведены 

в 3.1. 
Второй метод основан на определении гауссовых величин оптиче­

ской системы как функции гауссовых коэффициентов А, В, С, D. Для 
системы, расположенной между плоскостями предмета и изображе­

ния, в параксиальном приближении можно записать 

у2 =ау, + Ьа1 ; 
а2 =су, + da 1, 

(3.15) 

где у 
1
, а1 и у 2, а2 - высота и угол луча с оптической осью соответ­

ственно на входе и выходе ОС. 

Приведем (3.15) в матричном виде: 

У2 = а Ь ~У, . 
а2 с d la1 

Перейдем к оптическим направляющим косинусам относительно 

оси ОУ: 

р, =п, cos( ;-а,)= п, sina, = п,а,; 

р, = п, cos( ;-а, )=п, sina2 = п,а2 , 
получим 

У2 =Ау,+ Вр,; 

Р2 =Cyl +DP1· 

Представим (3.16) в матричном виде: 

(У2 ]=(А ВХУ1 ]=М · (У1 ]· Р2 CD Р1 Р1 

(3.16) 

(3.17) 

Таким образом, в рассматриваемой ОС операции преобразования 

луча соответствует матрица М = (; ~} с помощью которой можно 
рассчитать, согласно (3.17), координату и угол наклона луча на вы-
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ходе из системы по координате и углу наклона на ее входе. Следова­

тельно, эта матрица характеризует свойства системы в параксиальном 

приближении. 

Использование матриц для расчетов основано на трех положе­

ниях. 

1. Каждому элементарному преобразованию луча в ОС соответству­
ет своя матрица. Приведем примеры элементарных преобразований. 

М = R = [ 

1 п,_ ~ п, О 
1
) - матрица преломления луча на выпуклой сфе­

рической поверхности радиусом R, разделяющей оптические среды с 
показателями преломления, равными п1 и п2• 

М = Т = ( ~ z; п ) - матрица перемещения луча на расстояние z в од-
нородной среде с показателем преломления, равным п. 

(
cos(gz) 

М = G = -n
00
gsin(gz) 

sin(gz )/ noog] 
- матрица перемещения луча в 

cosgz 

среде с параболическим РРПП (градан) длиной z, показателем пре­
ломления n

00 
на оси и константой распределения g. 

Конкретный вид каждой матрицы получают из рассмотрения хода 

параксиального луча через ГрОСр. 

2. Матрицу сложной (составной) ОС при прохождении луча вычис­
ляют как произведение матриц элементарных преобразований, взятых 

с порядком сомножителей, обратным тому, в котором луч совершает 

элементарные преобразования (т. е. против хода луча). В этом легко 

убедиться, если рассмотреть ход луча через систему с четырьмя эле­

ментарными преобразованиями: 

(;: )=(м,{;: )=(М, )(м,{;: )= (М, )(М,)(М, J(;:} 
Результирующая матрица всей ОС: 

(3.18) 

3. Выполнение оптической системой определенных функций накла­
дывает требования на элементы матрицы, соответствующей этой си­

стеме. Эти требования или условия достаточно просты: приравнива-
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ние к нулю одного из четырех элементов матрицы, а также создание 

из коэффициентов А, В, С, D определенных комбинаций. 

А= О. Из уравнений (3.17) следует, что у2 = В р1 • 

Высота луча у2 на выходе из ОС не зависит от его высоты на вхо­
де, а определяется только направляющим косинусомр1 на входе луча 
в систему. Лучи с р1 на входе соберутся на выходе в точку с коорди­
натой у2• Таким образом, выражение А = О - условие фокусировки 

системой параллельного пучка лучей. 

В= О. В соответствии с (3.17) у2 = А у1 • 

Положение луча на выходе системы определяется только его по­

ложением на входе. Все лучи, вошедшие в систему в точке с коорди­

натой Ур окажутся на выходе в точке с координатой у2• Выражение 

В = О - условие передачи изображения, при этом А= у2 /у1 - ли­

нейное увеличение. 

С= О. Из (3.17) имеемр2 = D р1 • 

Наклон луча на выходе определяется только его наклоном на вхо­

де и не зависит от координаты луча, т. е . параллельные пучки на входе 

системы остаются таковыми и на выходе. Следовательно, С = О - ус-

ловие телескопичности системы. При этом !!:J... D = Р2 !!:J... = а,2 дает 
~ Р1 n2 а, 

угловое увеличение системы. 

D =О. Из (3.17) получаемр2 = Су1 • 

Вошедшие в систему в точке с координатой у1 лучи имеют одина­
ковый наклон на выходе из системы. Это означает, что D = О - усло­

вие получения параллельного пучка лучей из пучка, выходящего из 

точки. 

Используем формулу (3.17) для градана: 

f' = _]__ = 1 . f = ]__ = - 1 
С n00tsin(td) ' С n00tsin(td) 

Передний, задний фокальные отрезки, а также положения глав­

ных плоскостей градана определяются через коэффициенты А, С, D: 

D 1 , А 1 
Sp=-=----- · Sp,=--=----· 

С t n00 tg(td) ' С t n00 tg(td) ' 

Sн = D-1 =-1-tg(td) ; s~, = 1-А =--1-tg(td)· 
С noot 2 С noot 2 

В качестве примера решим две задачи с использованием методов 

матричной оптики. 
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Задача 1. Левый конец длинного цилиндрического стержня из 
оргстекла с показателем преломления п = 1,56 имеет выпуклую сфе­
рическую поверхность радиусом кривизны 28 мм. Предмет в виде 

стрелки длиной 20 мм расположен в воздухе на расстоянии 150 мм от 
входной поверхности. Определить положение и размер изображения 

внутри стержня. 

Решение: 

Обозначим через z расстояние от вершины поверхности до изо­
бражения. Матрица сложной ОС состоит из матриц элементарных 

преобразований: воздушный промежуток, преломляющая поверх­

ность, промежуток внутри стержня. Запишем эту матрицу, согласно 

(3.18): 

(ML) =(l 1,~6 J( ~,56-1 
О 1 2,8 

о J(l 15J-(1-~ 15--z J l О l - 7,8 о, 78 . 
-0,2 -2 

Условие образования изображения - В= О, отсюда z = 150 • 0,78 = 

= 117 мм, линейное увеличение А = 1- 150 · 0,78/78 = - 0,5, размер 
изображения у2 = 20-(-0,5) = -10 мм (знак минус показывает, что 

изображение перевернутое) . 

Задача 2. На плоский входной торец градана параллельно оси па­
дает пучок лучей, которые, проходя его, преломляются на выходном 

торце и собираются в точке на оси. Найти расстояние от выходного 

торца градана до точки фокусировки, если окружающая градан сре­

да - воздух. Параметры градана: z - длина; g - константа распреде­

ления; п00 - ПП на оси. 

Решение: 

Обозначим искомое расстояние s' . Тогда матрицу системы (гра­
дан, воздушный промежуток длиной s') запишем следующим обра­
зом: 

(ML)= noog . 
(

1 s'J[cos(gz) sin(gz) J 
О 1 

-n00gsin(gz) cos(gz) 

Определяем выражение для коэффициента А матрицы и прирав­

ниваем его к нулю: 
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cos(gz)-11o0 g s' sin(gz) = О; s' = -
1
-ctg(gz). 

11oog 

Матрица расчета хода луча в градиентной среде для элемента с 

п 
1 
= n

2 
-:1:- 1 и плоскими торцами ( <<plano-plano>>) имеет вид 

cos( zt) 

( :',)= -n.,,t sin ( zt) 
~ 

а для плоско-выпуклого элемента ( <<plano-convex>>) 

cos ( zt) - С sin ( zt) 
t 

- noo ltsin(tz) + С cos( zt )1 
n2 

~cos(zt) 
~ 

(3.19) 

(3.20) 

где пР п2 - показатели преломления в пространстве предметов и изо­

бражеIШй; константа преломления С рассчитывается по формуле 

Следует обратить вIШМаIШе на систему координат, для которой 

приведены матричные выражения. В (3.19), (3.20) она привязана к 
плоскости предметов, поэтому расстояние до предмета по ходу луча 

будет со знаком плюс, а знаки углов лучей противоположны знакам 

углов лучей в системе координат, привязанной к первой поверхности 

линзового элемента - для нее матрицы будут следующие: 

cos(zt) п, . ( ) 

«Plano- plano» ( :: )= 
--sш zt 

(~,} noot 

noot sin( zt) ~cos(zt) 
~ ~ 

«Plano-convex» ( :: ) = 
cos ( zt) - ~ sin ( zt) -~sin ( zt) 

(~,} t noot 

noo ltsin ( zt) + С cos( zt )1 
п 
-' cos(zt) 

~ n2 
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Для среды с ОРПП nk = п0,/z) элементы матрицы имеют вид 

d dz 
A=D=1; В= J--; С=О, 

on0 (z) 
где z - расстояние вдоль оmической оси с началом координат в вер­

шине k-й поверхности. 

Если п = n(z) (случай ОРПП), то 
_ • _ d dz . А -1-[ 17о ( О )-1] р1 В, В - f-(-), 

о по z 

3.3. Теория хроматизма градиентных оптических систем. 
Коэффициенты хроматических аберраций 

При работе оптической системы в конечном спектральном диа­

пазоне в изображении присутствуют хроматические аберрации, при­

водящие к снижению разрешающей способности системы. Тради­

ционно в ОС указанные аберрации исправляют применением линз 

из стекол типа <<крОН>> и <<флинт>> с разными коэффициентами дис­

персии, положительными и отрицательными оптическими силами. 

У градиентных сред дисперсией обладает не только базовое стекло, 

но и градиент ПП. 

Дисперсионные модели и константы ГрОСр. Во время проектиро­

вания системы, предназначенной для работы в определенном спек­

тральном диапазоне, для минимизации хроматизма должны быть из­

вестны данные по дисперсионным зависимостям градиентных сред в 

рассматриваемом диапазоне. 

Далее приводятся дисперсионные формулы, применяемые фир­

мами-производителями ГрОЭ различных типов. Использование 

формул удобно при компьютерном моделировании хроматических 

характеристик ГрОС. 

Фирма LightPath - модифицированная формула Зельмейера: 

( )
2 ( )2 ~ К)., 2 

п л - п л0п = L..J 
2

' (л в мкм), ; л -L; 

где п('л, ) - ПП на опорной длине волны; К, L. - константы, 
оп ' ' 

k . l k . l 

K;=rкij[n(z,лon)J-, L;=ILij[n(z,лon)J- ,i = 1, ... ,3. 
J= l J=l 
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Фирма Gradient 
п( r) = п00 + n\Or2 + ~ 0r4 

рассчитывают как 

Lens Corporation. Для ГрОСр с РРПП 

дисперсионные значения коэффициентов п .. 
lJ 

С D 
n;;(л)=А+Вл2 +-+- (л. в нм). , ')-..,2 /1,4 

Фирма Grintech Radial Gradient. Для ГрОСр с РРПП дисперсию за­
дают выражением 

7614 
по (л)=l,61189+~ (л. в нм). 

Фирма GO!FOTON. Выпускает ГрОЭ Selfoc, в которых показатель 
преломления и константу РПП представляют полиномами 

где В, С, К0, КР К2 - константы. 

Типичные графики зависимостей п(л.) и t(л.) с нормальным ходом 

дисперсии приведены на рис. 3.1. 
Градиентные среды характеризуются системой констант - коэф­

фициентов дисперсии. Хроматические полиномы в случае РРПП: 
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n ( лl, У) = nоо,л\ + п\О,л\ У2 + ~О,л\ У4 + 11:зо,л\ У6 + · · · ; 

n(л2,у) = nоО,л2 + ~О,л2У2 + n20,л2У4 + 11:Jо,л2У6 + ··· • 

Среднюю дисперсию такой среды определяют как разность 

n(л1,у )-n(л2,у) = (nоО,л\ -nоо,л2 ) + ( n\О,л \ -n\О,л2 )У2 + 

+( n20,л1 - ~о,л2 ) У4 
+ ( 11:зо,л~ -11:зо,л2) У6 

+ •·· • 

1,~7~ 

1,65~ 
1,63 ~--~---~~ 

0,4 0,5 0,6 '"А, мкм 

а 

t 

::::~ f;; ____ J_J 

0,147 ~--~--~~ 
0,4 0,5 0,6 '"А, мкм 

б 

Рис. 3.1. Спектральные зависимости: а - основного ПП; 

б - константы t градиентного элемента Selfoc 



По аналогии с однородным ПП вводим для РРПП коэффициенты 

дисперсии градиентной среды: 

тогда получаем 

noo л.о -1 
V оо = --'----

noo,л t - nоо,л.2 

n20,л.0 
V20=-----

~о.л1 - ~о.л.2 

nl O,л.O 
У10= -----'----

n10,л1 - n1 0,л2 

llзо,л.О 
Уза = , ··· , 

nзо,л. 1 - nзо,л.2 

п -1 п п п 
( 'll )- ('1 2 ) = оо,ло + ~ 2 + 20,ло 4 + зо,ло 6 + 

п л ,У п л ,У --- у у у .... 
Voo У 10 У20 Vзо 

(3.21) 

В среде с ОРПП полиномы РПП для длин волн лJ, л.2 имеют вид 

n ( лl, Z) = пО,лl + nol,лl Z + п02,лl Z2 + nоЗ,л l zЗ + • · •; 

n(л2,z)=no,л2 +no1,л.2z +no2,л2Z2 +nоз,л2ZУз + ... , 

а среднюю дисперсию ПП определяют как 

n(лl,z)-n(л2,z)=(no,,.1 -no,,.J +(no1,л.1 -no1,,.2 )z+ 

+( nо2,л1 - nо2,л2 )z2 + ( nоз,л.1 - nоз,л.2 )zз + •·· • 

По аналогии с РРПП вводим коэффициенты дисперсии для 

ОРПП: 

по л.О -1 
Yo=--'---

no,л t - nо,л.2 

n02,л.О 
Vo2 =-----

no2,л1 -п02,л.2 

nо1,ло 
Уо1=-----

nо1,л 1 - nо1,л2 

nоз,ло 
Уаз = , ···, 

nоз,л.1 - nоз,л.2 

где v 
O 

- коэффициент дисперсии в начале среды, тогда 

п -1 п п п 
n(л1,z)-n(л2,z )= О,л.О +~z+ 02,л.О z2 + 03,л.О zЗ + .... 

Уа Уо1 V02 Уаз 

(3.22) 

Таким образом, по известным коэффициентам РПП пл.о основной 

длины волны и дисперсии v .. можно рассчитать дисперсию градиент­
у 

ного ПП неоднородной среды. 

Для трехмерного РПП дисперсия показателя преломления выра­

жается через коэффициенты дисперсии v .. коэффициентов п .. уравне-
lj lj 

ния (1.23): 
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п, (z) = n,o + п, ,z + n,2Z2; ~ (z) =~о+ n2,Z + n22Z
2 

• 

Как бьшо отмечено ранее, для функции ОРПП применяют пере­

ход в обозначении n
00 

= п0• 

Коэффициенты хроматических аберраций положения и увеличения. 

Теория хроматизма ОС построена на вычислении и анализе коэффи­

циентов 1-й и 2-й хроматических аберраций (положения Sixp и увели­

чения Sттхр), по значению которых определяют первую и вторую пер­
вичные хроматические аберрации 1-го порядка: 

Лу~1,л2 Sпхр 
I J ' 

Ул.о 
(3.23) 

где J - параксиальный инвариант Лагранжа-Гельмгольца. 

Чтобы вычислить коэффициенты хроматических аберраций, не­

обходимо знать функциональные зависимости h(z) и a(z), коэффици­

енты РПП п00, n10, п0" а также их дисперсии - dn00, dn 10, dn01 • 

Коэффициент хроматической аберрации ОС является суммой 

двух составляющих, обусловленных преломлением лучей на поверх­

ности ( S; k - поверхностный вклад) и прохождением луча через неод-
, -

нородную среду (S;,k - вклад переноса): 

S; = si,k + si,k' i = I, II, k - номер поверхности. 

Для ОС, состоящей изр поверхностей, рассматриваемые коэффи­

циенты рассчитывают по формулам 

../, p-l р р-1 

slxp = L8.rxp,k + I,srxp,k ; Sпхр = L,S'iтxp,k + I,sllxp,k• 
k=l k=I k=l k=l 

В общем случае РПП, заданного зависимостями (1.20), (1.21), 
выражения для поверхностных вкладов у коэффициентов аберраций 

имеют одинаковый вид для однородных и градиентных сред: 

(3.24) 

1 
где hk - высота луча на поверхности; µ k = -; dn0,k = n0,k,лl - n0,k,л2 -

no,k 
средняя дисперсия ПП. Знак разности 8 относится к оптической по­
верхности; для ОРПП имеем dn0 = п0,л, - n0,,. 2 , dnz = nz,лl - nz,,.2; у РРПП 

dno = dnoo = noo,лI -nоо,л2 · 
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В линзе с ОРПП и неоднородностью показателя преломления на 

всю толщину линзы поверхностный вклад в коэффициент хроматиче­

ской аберрации положения составляет 

где v 
0

, v z - коэффициенты дисперсии в вершинах поверхностей 

линзы. 

Поверхностный вклад в коэффициент хроматической аберрации 

положения с учетом v
00 

= v
0 

= vz и при наличии в линзе РРПП: 

S10 =--1-[(а2 -ai)fzi +(а3 -aJI½]. 
Voo 

(3.25) 

Вклады переноса в коэффициенты хроматических аберраций по­

ложения и увеличения k-й среды описывают формулами 

d 

s\xp,k = Л( ha(dno)) + J[2h2 
( dni) + а2 

( dno )]dz; 
о 

d 

SПxp,k = л( h~( dno)) + J[2h у( dn1) + а~( dno )]dz, 
о 

(3.26) 

где dn0 = no,л.t - n0,л. 2 ; dn, = ni,л.t - п1,,.2 ; при РРПП dn0 =dп00, dn1 =dп10, 

a=a(z), ~=~(z) и h =h(z), y=y(z) - функции углов и высот лу­
чей по координате z. 

Хроматизм системы тонких линз с радиальным распределением по­

казателя преломления. Считаем, что РРПП в меридиональной плоско­

сти задано полиномом п (у) = n00 + п10у2 + n20y 4 + .... 
Продольную хроматическую аберрацию системы тонких компо­

нентов в воздухе можно определить по формуле 

1 {, ( - - ) - -
slxp = а'2 L.Jh/ dФ; + dФ; , Ф; = Ф; + Ф;, 

р 1 

(3.27) 

где h; - высота осевого луча на компоненте с номером i ; а: - угол 

первого параксиального луча в пространстве изображений; dФ; -
дисперсия оптической силы компонента, обусловленная дисперсией 

Ф . nоола -1 -
базового ПП, dФ; = - ' , v00 = ----· dФ - дисперсия оптиче-

v оо nоол.1 - nоол.2 

ской силы i-го компонента, обусловленная дисперсией коэффициен-
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тов полинома РРПП, dФ; =-2(n,0,.,1 -n10,.,2 )d, d - толщина плоскопа­
раллельной пластинки, равная толщине линзы (линзы Вуда). 

Коэффициент п 10 можно выразить через коэффициент дисперсии 
v

10
, определенный, согласно (3.21): 

~Ол.О v,o =-----
n10,.,, -п10,.,2 

- - ф 
тогда дисперсию dФ; определяем как dФ; = --' . 

v,a; 

Хроматизм положения одиночного тонкого компонента будет ис-

Ф Ф. 
правлен, если вьmолнено условие --' = ---' . 

Vao; V10; 

Из выражения (3.27) следует условие исправления хроматической 
аберрации положения в одиночной тонкой линзе с РРПП: 

Ф 2п10dл (3.28) 

где dл - толщина линзы. 

По формуле (3.28) можно определить коэффициенты дисперсии 
базового стекла v00 или градиентной среды v10, необходимые для ис­

правления в тонкой линзе первой хроматической аберрации. 

В общем случае у системы из р тонких однородных и градиентных 

компонентов 1-ю и 2-ю хроматические аберрации 1-го порядка мож­
но рассчитать по известным формулам 

, 1 ~ 2 Лу~lл.2 1 ~ 
Лs,.,1 ,.,2 =-,---;:; ~~ Ф;С; , , = J ~h;у;Ф;С; , 

пРаР , У i= I 

где С. - основной хроматический параметр оптической среды, 
l 

С; = Ф; /v;; h;, У; - высоты первого и второго параксиальных лучей на 
компонентах ОС. 

При линейном ОРПП среды можно показать, что для конечной (но 

малой) толщины ОС при условии nJ, d = О вклад переноса в коэффи­
циент хроматической аберрации положения имеет значение, близкое 

к нулю. Коэффициент хроматизма положения будет определяться 

преимущественно поверхностным вкладом: 
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где v,пов, V2пов - коэффициенты дисперсии (числа Аббе) в вершинах 

первой и второй поверхностей линзы: 

поло -1 
v,пов =----, 

по,., -по"2 

( no"o -1 + Лпо"о )voo Vo, 
V2пов = ( l) , 

по - Vo, +Лno,_oVoo 

где v00 , V01 коэффициенты дисперсии ГрОСр; Лп0"0 - перепад 

показателя преломлеIШ.Я между первой и второй поверхностями 

линзы. 

Хроматизм положения толстой линзы с радиальным распределением 

показателя преломления. В случае линзы конечной толщины с РРПП под­

ставляем функции a(z), B(z), h(z) , y(z) из (3.3), (3.4) в (3.25), (3.26), 
проводим алгебраические преобразования и интегрируем полученные 

выражения. В результате получаем формулы Sтхр, Sпхр, удобные для 

анализа коэффициентов первичного хроматизма при решении задачи 

синтеза градиентного компонента: 

Sтхр =--
1 [(а2 -a,)fzi +(аз -а2 )1½]+ 

Уоо 

+dn [1zi2d + a~d + sin(2td)( hi
2 

- а~ J- 2 а 2h1 sin2 (td)] + 
IO t 2 2t 2t3 t 2 

+dno0 [..!. a~d + __!_ /zi2 t2 d + sin ( 2td )( а~ - __!_ h/ tJ + h, а2 sin 2 
( td)] + 

2 2 4t 4 

+dп00 ( !½ ( а2 cos(td) + fzitsin(td) )-'1ia2 ). (3.29) 

Для удобства анализируем (3.29) с помощью графического мето­
да, строя отдельно графики каждой входящей в это выражение функ­

ции от а,2 при заданной дисперсии базового ПП и коэффициента n 10
• 

По минимумам этих функций определяют угол а2, при котором Sтхр 

имеет минимальное значение. Полученное решение проверяют чис­

ленной оптимизацией оценочной функции, включающей оператор 

первой хроматической аберрации. Данный метод расширяет возмож­

ности анализа по сравнению с (3.27), позволяет учитывать влияние 
толщины линзы на хроматическую аберрацию положения. 
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Вопросы для самопроверки 

1. Назовите методы расчета параксиальных характеристик ГрОС. 
2. В чем заключается сущность применения гауссовых коэффи­

циентов при расчете характеристик ГрОС? 

3. В чем состоит особенность масштабирования параметров 

ГрОЭ? 

4. Обоснуйте особеююсти расчета хроматизма тонкого и толстого 
линзовых элементов. 

5. Приведите и поясните математическую запись дисперсионных 
констант ГрОС с РРПП и ОРПП. 

6. Приведите дисперсионные формулы для ГрОСр с РРПП и 
ОРПП. 



4. ТЕОРИЯ МОНОХРОМАТИЧЕСКИХ 
АБЕРРАЦИЙ ТРЕТЬЕГО ПОРЯДКА 

ГРАДИЕНТНЫХ ОПТИЧЕСКИХ СИСТЕМ 

В 1856 г. немецким астрономом и оптиком Ф. Л. Зейделем для об­

щего случая осесимметричных оптических систем была разработана 

теория аберраций, основанная на разложении последних в ряд. Даль­

нейшее развитие теории продолжалось с использованием введенного 

У. Р. Гамильтоном в 1831 г. метода Эйконала - оценка характеристи­

ческой функции оптической системы. Требования по совершенство­

ванию ОС сделали актуальной возможность применения регулярных 

неоднородностей оптических сред в качестве аберрационного пара­

метра. В прямоугольной системе координат на базе расчета вариаций, 

построенных на принципе Ферма, профессором австралийского уни­

верситета Х. А. Бучдолом получены общие выражения для вычисле­

ний аберраций 3-го порядка оптической системы, в которой показа­

тель преломления изменяется непрерывно в направлении от объекта 

к изображению. Американский ученый П. Дж. Сэндс вывел уравне­

ния для коэффициентов аберраций 3-го порядка с любым числом 
границ между оптическими средами. Из вариационного принципа 

следует, что некоторые теоремы, применимые к однородным средам, 

применимы к ОС с неоднородными оптическими средами, также не 

меняется форма параксиального инварианта, одинаковы ряд коэф­

фициентов аберраций 3-го порядка и их геометрическая интерпрета­

ция. Справедливость этих результатов определяется наличием осевой 

симметрии ОС, в остальном РПП произвольно. 

С помощью теории монохроматических аберраций 3-го порядка 

оценивают индивидуальные вклады поверхностей и толщины не­

однородной оптической среды в аберрации системы. Это позволяет 

обосновывать необходимость применения неоднородной среды в 

конкретном случае проектирования. 
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4.1. Аберрационный полином 
и коэффициенты аберраций третьего порядка 

Выражения для аберрационных составляющих лу;п и Лх{п 3-го 
порядка в полярных зрачковых координатах р, 0 включают соответ­
ствующие коэффициенты аберраций cr. и для обладающих вращатель-, 
ной симметрией однородной и градиентной ОС имеют следующий 

общий вид: 

лу;п = cr,p3 cos0 + cr2p
2h(2 + cos20) + (Зсr3 + cr4 )ph2 cos0 + cr5h3; 

где cr
1 5 

- коэффициенты аберраций 3-го порядка: сферической, 

комы,'.астигматизма, кривизны Петцваля, дисторсии; р, 0 - норми­
рованные полярные координаты луча на входном зрачке; h - норми­

рованная высота объекта. 

Как бьшо показано П. Дж. Сэндсом, каждый из коэффициентов 

аберраций 3-го порядка градиентной системы, включающей одну или 

несколько ГрОСр, выражается через сумму вкладов каждой поверх­

ности, разделяющей две различающиеся среды, и сумму интегралов 

по каждой градиентной среде. Вклад поверхности состоит из двух со­

ставляющих: зейделевого (обычного) вклада, вычисленного в пред -
положении однородной среды, и дополнительного члена, учитываю­

щего вариацию ПП по поверхности. Выражение для коэффициентов 

аберраций 3-го порядка: 

где а .. - вклад, вносимый поверхностью раздела двух граничащих 
lJ 

сред; а; - вклад, обусловленный прохождением луча через неод-

v 1 , 
народную среду, так называемыи вклад переноса; 11 = - --,-, v,и -

nиVlи 

угол первого вспомогательного луча в пространстве изображений; i -
индекс коэффициента аберрации, i = 1, ... ,5; k - индекс поверхности, 

k = (1, ... ,(р-1)), р - индекс оптической среды; п - ПП среды про-
и 

странства изображений. 

Вклады поверхности а. описывают выражениями: 
l 
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а =а+Ку4 • l а , 

а2 = qa + КуJуь; 
а3 = q2a + Ку;у;; 

а, =½Ч-гсо( ~) 
3- К 3 а5 =q a+qa4 + УаУь, 

- - 1 ( по 1 J ·2 (. '). к - с s::(2 1 с . ) . где a--no -, - Yala la +va ' -- u п, +- по' 
2 по 2 

(4.1) 

по = по, + 2no2z + 3noзZ2 + ... ; q = ~ь , i0 , iь - углы между нормалью и по-
lа 

верхностью в точке падения первого и второго вспомогательных лу­

чей; л,л-г - инвариант Лагранжа-Гельмгольца; С - кривизна поверх­

ности; 8 - символ разности, отнесенный к k-й поверхности. 

Вклад в коэффициент аберрации, обусловленный переходом луча 

через неоднородную среду: 

. _lп з J 4 22 1 4 • а, --v(noy0 v0 )+ (4~у0 +2n,y0 v0 --nov0 )dz, 
2 2 

, _lп 2 J з 1 з . 
а2 - - V (noYa va Vь)+ [4~УаУь + n,yava(Ya Vь + УьVа)--по va Vь]dz, 

2 2 

а; =_!__V(n0 y
0
v

0
v;)+ J(4п2у;у; +21tiY0YьV0Vь _ _!__n0v;v;)dz; (4.2) 2 . . . 2 

а· = ')..}J.5...dz· 
4 2 ' 

по 

а; =_!__V(noyavl)+ f[4n2YaYl +n,YьV/YaVь + YьVa)-.!..novavndz, 2 . 2 

где v
0

, vь и Уа, Уь - углы и высоты соответственно 1-го и 2-го вспо­

могательных лучей; V - разность значений приведенного в скобках 

выражения, рассчитанного для конца и начала ГрОСр. 

Первое слагаемое в (4.1) является зейделевым вкладом в коэффи­
циент аберрации; второе - дополнительное слагаемое, полученное 

вследствие неоднородной природы либо одной, либо обеих разделен­

ных поверхностью оптических сред, - называется вкладом неодно­

родной природы ОСр. Приведенная форма записи коэффициентов 

аберраций связана с вычислением углов луча с нормалью в точке па­

дения. Покажем, что от записи коэффициента а через величины Уа, 
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ia , v: можно перейти к v а , V: , Уа, т. е. представить ( 4.1) в параметрах 
первого и второго вспомогательных лучей (а, h, у), принятых в отече­
ственной литературе для описания аберраций 3-го порядка. 

Из уравнения ii = ~ ;_;[ п,(: ~ 1 } 0 (i0 +v;)] с учетом 
µ = n01 

, после несложных преобразований находим 

и с учетом Уа➔ h для одной поверхности имеем 

ii = _!_hP 
2 ' 

где Р =( ~: J Л(аµ). 

. Ла 
z =-µ где 
а Лµ ' 

(4.3) 

(4.4) 

Из (4.3) следует, что для перехода от обозначения а; к S;, приня­
тому в отечественной литературе, необходимо учесть коэффициент, 

равный 1/2. 
Кроме того, как показывает анализ, выражения для коэффици­

ентов аберраций щ записаны с учетом знаков углов параксиальных 

лучей в системе координат, привязанной к плоскости предмета. Это 

обстоятельство позволяет получать в окончательном виде выражения 

для коэффициентов аберраций 3-го порядка в обозначениях и норми­

ровке параметров вспомогательных лучей, принятых в отечественной 

литературе. 

4.2. Коэффициенты аберраций третьего порядка в параметрах 
Ланге для градиентных оптических систем 

Выражения (4.1), (4.2) с учетом (4.3), (4.4) для коэффициентов 
аберраций 3-го порядка осесимметричной ГрОС преобразуют к виду 

s. =S.k +S. k, 
l l, l, (4.5) 

где S. - общий коэффициент аберрации для оптической систе-
1 

мы; S;,k, S;,k - вклады поверхностный и переноса соответственно, 
i = 1, ... ,5; k - номер поверхности. 

Формулы для поверхностных вкладов в принятых в отечественной 

научно-технической и учебно-методической литературе обозначениях: 

72 



п 

S1 = 2;(hkPk +Kkh/ ); 
k=I 

(4.6) 

где 

( 
◊(Xk ]

2 

40n1k ◊ 11ok 
Pk = -- 8(akµk); K k =--+-2-; 

8µk rk rk 

8ak = a: -ak; 8Bk =В: -вk; 

{
J :-п1 (s - s Р )а,В, при ~ * =, 
J - -n,h,B, при s - =, 

ak, Bk и а:, в: - углы падения и преломления первого и второго 
вспомогательных лучей на k-й поверхности; hk, yk - высоты соот­

ветственно первого и второго вспомогательных лучей на поверхно­

сти радиусом кривизны rk; Kk - поверхностный неоднородный ко­

эффициент, учитывающий неоднородную природу граничащих сред: 

40nl0k к _ ◊11ok 
K k = -- для РРПП; k - при ОРПП. 

rk r/ 

Вклад переноса S; в i-й коэффициент аберрации определяют из 
следующих выражений: 

- п - -
Sт = L[Л(no,khka~ )-J(8n2,k+1hk~1 +4n1,k+1hk~1д.f+ 1 -no,k+1<ik+1)dz]; 

k= I 

,.., п - - -

Sш = L[Л(nOkhkakBt )-J(8n2k+lh/yf +4nlk+ lhkykak вk -
k= I ' ' ' 

-no,k+ i а.Н-3; )dz]; 

(4.7) 
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~ dk 2n 
Sтv = - J -f dz; 

о по 
(4.7) 

- п - - --

Sv = I,[Л(no,khkPi )-J[81½,k+Ihk y; +2n1,k+1YkPk(hkpk + Y/ik )-
k=l 

- nOk+,akpZ]dz, 

где ak+I , Pk+I и hk+I , Yk+I - функции угла и высоты соответственно 
1-го и 2-го вспомогательных лучей; dk - осевая толщина ГрОСр меж­

ду поверхностями k и k + 1; Л - символ разности значений выраже­

ния, заключенного в скобки, для кшща и начала градиентной среды. 

Таким образом, если знать функциональные зависимости по ко­

ординате z вспомогательных лучей и подставить их в (4.6), (4.7), мож­

но определить коэффициенты аберраций 3-го порядка ГрОС. 

Для среды с РРПП в формулах ( 4. 7) следует применять следую­

щие обозначения: п0 = п00, п 1 = п10, п2 = п20• В этом случае 

Sтv = -I 2n,~,k+I dk. 
k= l noo,k+l 

Выражения для вклада переноса в i-й коэффициент аберрации 

среды с ОРПП: 

Sт = I[Л(no,k hka~ )+ f no,k+l<ik+idz]; 
k=l 
п 

Sп = LJЛ(no,khkaf Рь ) + f no,ka t~kdz]; 
k=l 

п 

Sтп = L,.[Л(no,khkakpf )+ fno,k+laf~l dz]; Sтv =0; 
k=l 

(4.8) 

п 

Sv = L,.[ Л(no,khkPl ) + f no,k+l a kPZ dz], 
k=l 

верхняя черта над переменной означает функцию параметра по ко­

ординате z. 
Чтобы вычислить коэффициенты Sp···, Sv для элементов ОРПП, 

подставляем (3.7) в (4.8) и проводим интегрирование. 

Выражения ( 4.8) можно записать более компактно: 

S1 = nJa~G; 811 = nJa ~p0G; Sш = nJa 0p~G; Sтv = О; Sv = nJP~G, 

[ 
h ]z=d d dz 

где G=Л -
2
- +п0а0 J-3-; а0 =а(О) ; Ро =Р(О) . 

n (z) z=O О n (z) 
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4.3. Обзор свойств асферической поверхности второго порядка 
и ее аберрационные аналогии с градиентными 

оптическими элементами, имеющими РРПП или ОРПП 

Математическая запись формул (4.6) для коэффициентов аберра­
ций 3-го порядка ГрОС очень похожа на аналогичные формулы оп­

тической системы с линзами, имеющими асферические поверхности 

(АП) 2-го порядка. Чтобы выявить аналогии, рассмотрим математи­

ческие выражения для коэффициентов аберраций указанных систем. 

Как показано ранее, АП 2-го порядка в меридиональной плоско­

сти можно представить как у2 = Az + Bz2
, или у2 = 2r0z -( 1-е2 )z2

, 

где е2 - квадрат эксцентриситета поверхности. Иногда представлен­

ную формулу записывают через коническую постоянную k = -е2 : 

По значению конической константы определяют тип поверхно­

сти: k = О - сфера; k > О - сплюснутый эллипсоид; - 1 < k <О - вы­

тянутый эллипсоид; k = - 1 - параболоид; k < - 1 - гиперболоид. 

Параболоид и гиперболоид (по сравнению со сферой) - более 

пологие поверхности, что уменьшает угол луча с нормалью к поверх­

ности в точке падения. При увеличенной координате луча на поверх­

ности уменьшение его угла падения может привести к уменьшению 

аберрации, вплоть до полного исправления. 

При наличии АП 2-го порядка на поверхности линзы выражения 

для коэффициентов аберраций следующие: 

п 

S1 = L( hkPk + Bkhi ); 
k =I 

(4.9) 
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где Bk - поверхностный коэффициент АП, Bk = bk (п;-пk) ; bk - ко­
r.з 
k 

эффициент деформации оптической поверхности, bk = kk = -е}. 
Для системы, вкточающей однородные и градиентные линзы, 

выражения (4.5) - (4.7) сохраняются по математической форме, од­
нако поверхностные асферические коэффициенты Вк заменяют на Kk -
поверхностные градиентные: 

п 

Sт = L( hkPk + Kkhi ); 
k=l 

(4.10) 

В общем случае задания функции ПП в вИде n(z, х2 + у2) для k-й 
поверхности: 

Kk = 84п,о (РРПП), 
rk 

(4.11) 

Сравнив (4.9) и (4.10), получим формулы перехода от параме­
тров АП 2-го порядка к параметрам ГрОСр данного градиентного 
элемента. 

Введение в уравнение поверхности коэффициента деформации Ь 
1 2 

позволяет исправить сферическую аберрацию исходной сферической 
линзы, определяемую коэффициентом S1• Для первой поверхности 

коэффициент деформации рассчитывают по формуле 
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где r
1

, h
1 

- радиус кривизны и высота луча на первой поверхности 

линзы; n
00 

- показатель преломления стекла; исходная нормировка 

высоты hl = J'. 
Для второй поверхности линзы коэффициент деформации равен 

Ь - Sтr/ 
2 - ( noo -1 )Jz1 ' 

где h
2 

- высота луча на второй поверхности линзы. 

Асферизация поверхностей линз малого диаметра - сложная тех­

нологическая задача. Разработка теории аберраций ГрОС и развитие 

технологий неоднородных оптических сред, начавшиеся с 60-х годов 
Х:Х в., дали предпосылки для создания ГрОЭ - линз со сферическими 

поверхностями и качеством аберрационной коррекции, соответству­

ющим качеству коррекции элемента с АП. В первую очередь это от­

носится к исправлению сферической аберрации, устранить которую 

возможно путем изменения показателя преломления по поверхности. 

Вьmолнить это требование можно изменением ПП как по оси OZ 
(ОРПП), так и по ОУ (РРПП): 

В случае ОРПП функция показателя преломления по поверхно­

сти определяется производной от функции осевого распределения 

,i(z). Для линейного РПП - это коэффициент n01 , для полиномиаль­

ного - это ряд (n01 + 2n02 t + 3п03 t 2 + ... ), где t_ - глубина градиентной 

зоны пп. 

Для того чтобы показатель преломления по поверхности ГрОЭ 

изменялся в пределах всего светового диаметра, необходимо обеспе­

чить неоднородность ПП в зоне, глубиной не менее стрелки прогиба 

поверхности, t ~ а1 2 
(ар а2 - стрелки прогиба первой и второй по­

верхностей линзы) : 
В теории аберраций градиентных ОС существуют зависимости, 

позволяющие определять параметры осевого и радиального коррек­

ционных РПП, обеспечивающих исправление сферической абер­

рации в линзе. При использовании ОРПП исходными расчетными 

данными являются коэффициент сферической аберрации Sт исход-
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ной однородной линзы или значение продольной сферической абер­

рации, подлежащей исправлению. 

Для первой поверхности линзы при нормировке h
1 
= / 1

: 

- 4 - (no1 +2no2G1 + ... ) 
S1 --h1 K 1, К1 --'---------'-. 

"2 1 

Переходим к канонической нормировке S1 = S1k: 

3 13 (no1 +2no2a1 + ... ) 
Sik = -hi К1 = - f 

r,2 
1 

и находим значения коэффициентов n
01 

(первое приближение) и n
02

, 

n
03 

••• (второе приближение): 

Отметим, что в (4.11) отсутствует значение исходного показателя 
преломления п00, а присутствует производная от функции ПП, харак­
теризующая скорость изменения показателя преломления по поверх­

ности линзы. 

Если известно значение Лs
1 

продольной сферической аберрации 

линзы, то коэффициенты n
01

, п02 можно определить как 

Лs'( ]
2 

no1 + 2no2a1 + ... = 2 /'2 : ' 

где т - высота луча на поверхности. 

Известно, что для положительной линзы продольная сферическая 

аберрация Лs' < О, следовательно, в области первой поверхности по­
казатель преломления должен быть убывающей функцией по оси OZ, 
что приводит к уменьшению ПП с увеличением высоты луча на по­

верхности линзы. 

При наличии неоднородности ПП в области второй поверхности 

линзы и известном значении S1k получаем 

Sтkr/ 
no1 +2no2G1 =у, 

если известно Лs
1

, то 
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В случае линейного ОРПП n02 = О, тогда 

Лs'( ]
2 

по~ =-2 /'2 : 

Для положительной линзы на второй поверхности n
01 

> О незави­
симо от знака r

2
• 

В п. 3.2 показано, что в описании реальных ОРПП обычно при­

сутствуют линейный и квадратичный члены или член более высокой 

степени, например четвертой. При этом наибольший вклад в изме­

нение ПП по оси и, следовательно, поверхности линзы обеспечивает 

линейный член РПП, т. е. коэффициент n
01

• 

В случае РРПП функция ПП, согласно ( 4.6), определяется коэф­
фициентом n

10
• При h1 = f': 

Переходим к канонической нормировке: 

Srk = -(h? 4п10 -h] 4п10 
] · 

1j '2 
Значения hP h

2 
для исходной однородной линзы можно получить, 

рассчитав первый параксиальный луч по формулам (3.6), (3.7). При­
нимать условие h1 = h2 для линзы конечной толщины здесь некоррек­

тно, так как при r
1 

-:1:- оо высота луча на первой и второй поверхностях 

может существенно отличаться. 

По коэффициенту аберрации S
1
k находим значение 

1 Srk 

n10 = 4(h/ _ h] ]' 

1j '2 
которое не является окончательным и требует уточнения, поскольку 

не учтено влияние толщины ГрОСр. При этом параметрами оптими­

зации являются n
10 
и r

2
, а оптимизируемыми функциями - сфериче­

ская аберрация Лs' и фокусное расстояние f' линзы. Между коэф­
фициентами n

10 
и n

01
, описывающими радиальное и осевое РПП для 

обеих поверхностей линзы, существует связь: 

(4.12) 
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Для АП 2-го порядка и сферической поверхности с неоднород­

ным по поверхности ПП имеются формулы связи коэффициентов Ь k' 

nOlk' n lOk: 

где bk - коэффициент деформации поверхности, связанный с экс­

центриситетом асферической поверхности выражением bk = -е}. 
Из (4.12) делаем вывод, что для исправления сферической аберра­

ции коррекционным РРПП требуется меньшее значение коэффици­

ента n
10 
и, следовательно, меньший перепад ПП, чем у ОРПП. 

Вопросы ДJIЯ самопроверки 

1. В чем отличие формы записи коэффициентов аберраций 3-го 
порядка по Сэндсу и Ланге? 

2. В чем аналогичны выражения для коэффициентов аберраций 
3-го порядка у асферического и градиентного оптических элементов? 

3. В чем разница между асферизацией поверхности элемента и 
введением градиента в ПП оптического элемента с позиции их влия­

ния на аберрации? 



5. ГАУССОВА ОПТИКА ГРАДАНОВ. 
ТЕОРИЯ МОНОХРОМАТИЧЕСКИХ АБЕРРАЦИЙ 

ГРАДАНОВ 

Стержневидный цилиндрический оптический элемент с плоски­

ми (как правило) торцами и убывающим по параболической зависи­

мости вдоль радиуса элемента показателем преломления (в первом 

приближении) - это градан. Главное его свойство - способность фо­

кусировать пучки лучей. В зарубежной литературе подобный элемент 

называют selfoc (самофокусирующий). 
Функцию РПП в градане задают зависимостями 

(5.1) 

или 

(5.2) 

где п,о =-t2noo/2. 
При одинаковых степенях в уравнениях (5.1), (5.2) между коэф­

фициентами существует связь: 

(5.3) 

где g = t - константа распределения РПП, определяющая параксиаль­

ные характеристики ГрОЭ. 
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5.1. Масштабные, апертурные и полевые 
характеристики rрадана 

Характеристики градана удобно анализировать с помощью по­

нятия характеристические параметры - это некоторые экстремаль­

ные значения оптических характеристик, определяемые параметрами 

ГрОС. К ним относятся минимальное фокусное расстояние и соот­

ветствующая ему осевая длина градана, а также максимальный апер­

турный угол. К числу характеристических параметров можно отнести 

константу распределения ( фокусирующую константу) градиентной 
среды, равную 

(5.4) 

Характеристические значения фокусного расстояния и длины 

градана определяют из выражений 

1t 
do=-. 

2t 

Длину градана из угловой градусной меры d O переводят в линей­

пd 0 

ную d по формуле d = --. 
180t 

Кардинальные параметры градана с плоскими торцами вычисля­

ют как 

f' = 1 . 
ntsin(td) ' 

, cos(td)-1 s - ----· 
н - ntsin(td) ' 

1 cos(td)-1 /= ----; Sн = ----. 
ntsin(td) ntsin(td) 

Линейное увеличение градана ~о и расстояние от выходного тор­

ца до изображения в прямом s' и обратном s ходе лучей находят из 
следующих равенств: 

f30 = 1 = cos(td)-
81

1 
sin(td); 

cos(td) + ~ sin(td) fo 
fo 

s'= s- J;tg(td). 
' 

1+~ tg(td) 
1о 

s' + J; tg(td) 
s = , . 

s 
l- /' tg(td) 

(5.5) 
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Максимальные значения апертурного crmax и полевого сотах углов 
градана с радиусом R: 

R 
(t)max = arctg 1; , 

апертурный и полевой углы в пространстве предметов при расстоя­

нии s до предмета равны 

R 
tgcr= R,' R 

tgw=----. 

лJ1+ ~' 
(5.6) 

1; 
о 

Используя (5.6), можно вычислить размер предмета 2у1 и рабо-
тах 

чий апертурный угол tg cr' для заданного положения предмета s: 

tg cr' -tgcr[ cos(td) + ;/in(td) J 
2y]max= 2s(tg со). 

~ 
а 

2 
в 

Рис. 5.1. Траектория осевого 1 и главного внеосевого 2 лучей 
в градане различной длины: 

а - дmmный, ПД - в плоскости промежуточного изображеЮ1Я; 

6 - средней длины, изображение на заднем торце градана, ПД - на выходной 

поверхности; в - короткий, промежуточное изображение внутри градана 

отсугствует, ПД - в плоскости изображения; ВЗ - входной зрачок 
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Положение полевой диафрагмы (ПД) Zпд при заданных положе­

нии предмета и длине градана определяют по наличию промежуточ­

ного (внутреннего) изображения (см. рис. 5.1, где показаны траекто­
рии лучей в длинном, среднем и коротком граданах): 

l s 
Zпд = -arctg-. 

t 1; (5.7) 

Из формул (5.5), (5.7) следует, что плоскость промежуточного изо­
бражения является одновременно и плоскостью полевой диафрагмы. 

Проверить правильность расчета полевого и апертурного углов 

tgffi s 
градана в пространстве предметов (5.6) можно по формуле --= -, . 

tgcr /о 

5.2. Хроматическая аберрация положения градана 

Для расчета хроматических аберраций положения и увеличения 

используют дисперсионные зависимости ПП и константы распреде­

ления (КР) показателя преломления: 

п(л)=В+!!_· 
).._2' 

t (л) = К + К1 + К2 
О ).._2 ).._4' 

(5.8) 

где В, С, К0, К1 , К2 - константы. 

Типичные графики зависимостей п(л) и t(л,) с нормальным хо­

дом дисперсии приведены на рис. 3.1. Средние дисперсии Лп00 и Лt 
можно рассчитать с помощью (5.8). Дисперсию градиента ПП Лп10 
определяют дифференцированием выражения (5.1) по длине волны 
света л: 

1 2 
Лn1ол 1л2 = - - t Лnоо - nootЛt, 

2 

здесь и далее при расчете параметров реальных граданов дифферен­

циалы dn, dt заменены конечными разностями Лп, Лt. 
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Коэффициенты дисперсии градиентной среды: 

nооло -1 
Voo = ----

noo,. , - nоол2 

п,оло 
v ,o = ----

n10,., -п10"2 



Аналитическое значение дисперсии КР получают дифференциро­

ванием (5.3) пол: 

(5.9) 

Из (5.9) следует, что условием хроматической инвариантности КР 
dt / dл = О является равенство отношений градиента ПП к его базово­
му значению и их дисперсий: 

(5.10) 

Выполнение условия (5.10) является желательным, поскольку в 
этом случае длина градана влияет на значение и знак хроматической 

аберрации положения. При dt / dл i:- О хроматическую аберрацию по­
ложения для удаленного положения предмета ( s = - 00 ) рассчитывают 

как 

, 1 [ n t/ ] Лsхр = 
2 

°~ dt+ttg(tl)dno0 +no0 tg(tl)dt , 
[ t noo tg(tl)] cos (t/) 

(5.11) 

где / - длина градана ( d = /). 
Из анализа ( 5 .11) следует, что при dt / dл = О 

Лs:Р = _ dn00 cos(td) = _ dn00 s~,. 
п00 t п00 sin(td) п00 

При выполнении условия (5.10) коэффициент дисперсии и про­
дольную хроматическую аберрацию рассчитывают по формулам 

V = V,o . Лs' =- /' 
гр cos(td) ' хр V гр ' 

т. е. коэффициент дисперсии зависит от длины градана. Выполнение 

условия dt/ dл = О позволяет изменением длины градана получать от­
рицательную, нулевую или положительную хроматическую аберра­

цию положения при сохранении фокусного расстояния. 

При s i:- 00 хроматическую аберрацию положения можно найти из 

формулы, полученной дифференцированием (5.5) пол: 

d I - А+В+С 
sxp - 2' 

[ 1 + s t п00 tg(t/)] 
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где 

А---- - - -s tl · 
- cos2 (t/) floot floo ) ' 

dt ( l 2 ] 

В = ( dnoot + dtn00 )( tg
2
(t? + - 8

-tg2 (t/)- s2tg(t/)] ; С= s tg2 (t/)( dfloo + dt] . 
noot noot noo t 

5.3. Коэффициенты монохроматических аберраций 
третьего порядка rраданов 

Проектирование визуальных и телевизионных приборов эндоско­

пического типа с использованием граданов в качестве базовых эле­

ментов оптической схемы базируется на теории монохроматических 

аберраций 3-го порядка. 

Учтем, что в формулах (4.6), (4.7) для коэффициентов аберраций 
РПП является радиальной функцией, и получим форму записи коэф­

фициентов аберраций для градиентных систем с элементами, имею­

щими РРПП. 

В общепринятых для коэффициентов аберраций 3-го порядка 

обозначениях, согласно (4.5), имеем 

s. =S.k +S. k 
1 l, l, ' 

где S.k - поверхностная составляющая i-го коэффициента аберра-
l, ~ 

ции на k-й поверхности; Sa - составляющая i-го коэффициента 

аберрации в результате перехода луча через k-ю неоднородную среду. 

При суммировании поверхностных составляющих коэффициен­

ты S; записывают в виде сумм: 

(5.12) 
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где 

K k = 
48

lliok ; pk = ( oak ]

2 

oakµk; 8ak = а: -ak; orзk = rз: -rзk ; µk = ni;' ; 
rk 0µk 

{
J :-п, (s - s р )а,rз, пр: s -::f- оо, 
J - -n,h,rJ, при s - оо, 

А I A 'k ak , 1-'k и ak , 1-1 - углы падения и преломления первого и второго 

вспомогательных лучей с оптической осью на k-й поверхности; hk, 
у k - высоты указанных лучей на поверхности радиусом кривизны rk; 
Kk - коэффициент, учитывающий неоднородную природу гранича­

щих сред. 

Коэффициенты S; перехода представлены интегральными выра­
жениями по координате z - толщине (длине) градана, z = O .. . d: 

- п - -

Sт = L [Л(noo,khkai} - J(8n20,k+1hk~1 + 4n10,k+1h/+iCXk+1 - noo,k+1<Xk+1 )dz]; 
k=l 

~ п - - --

Sп = I,{Л(noOkhkairзk )- J[8n2ok+lh/yk +2n,ok+lhkak(hk rзk + ykak)-
k=l ' ' ' 

- noO,k+la{Sk ]dz}; 
- п - - -

Sтп = I,[Л(noo,khkakrзi )- J(8~o.k+lh/yf +4nl0,k+l hkykak rзk -
k=l 

-noo,k+iai~i )dz] ; 

~ п 2п,о k+i dk 
Sтv =-I . 2, ; 

k=l f1oO,k+l 
~ п - - --

Sv = I, {Л(noo,khkrJ1 )-J[8n20,k+lhk.Yl +211io,k+lYkrJk (hkrзk + ykak )-
k=l 

- noo,k+lak~n}dz, 

(5.13) 

где ak+I, rзk+l и hk+l' Yk+l - функции углов и высот соответственно 
первого и второго вспомогательных лучей в градиентной среде; dk -
осевая толщина среды между поверхностями k и (k + 1); Л - символ 

разности, отнесенный к толщине (длине) градана. 
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5.4. Аберрации третьего порядка короткого градана-объектива 

Рассмотрим градан длиной Т/4 с характеристиками п00, /' = J; , t, 
d = d

0
, D (диаметр градана) , которые назовем его основными габарит­

ными параметрами. Величины J; и d0 также являются характеристи­
ческими параметрами. Длина градана Т в радианной мере равна 2n. 
Для основных габаритных параметров справедливы соотношения 

J; 1 d = !!_ Т = 2n. 
0 = n

00
t ' 2t ' t 

Чтобы изучить аберрационные свойства граданов, воспользуемся 

формулами (5.12), (5.13) при следующих условиях нормировки исход­
ных значений вспомогательных лучей: h1 = /' ; а1 = О; ~1 = 1. 

Анализируя первичные аберрации граданов, получаем ответ на 

ряд принципиальных вопросов, возникающих при проектировании 

приборов эндоскопического типа. Например, о необходимом пере­

паде Лп показателя преломления для достижения максимального от­

носительного отверстия градана и прибора в целом, соответствующих 

значениях коэффициентов РПП для получения заданных аберраций 

3-го порядка и соотношении аберраций 3-го и высших порядков при 

различных степенях полиномов РПП градана. 

Сферическая аберрация. Ход лучей и параметры первого и второго 

вспомогательных лучей приведены на рис. 5.2. Принятые обозначе­
ния: ар а2 - углы луча в пространстве предметов и на входе в гради­

ентную среду; а2 , ~ - текущие угол и высота луча, определяемые 

расстоянием z от входной поверхности градана; h
1
, h

2 
- высоты лучей 

на входной и выходной поверхностях градана; s - положение вход-
Р 

ного зрачка. 

Представим РПП полиномом четвертой степени: 

Согласно (5.12), (5.13), коэффициент сферической аберрации S1 

=Sт +Sт , где 

(5.14) 
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А 

Рис. 5.2. Ход лучей осевого (а) и ПП1рокого наклоmюго (6) пучков в градане 
характеристической длm-IЫ d при удаленном положении предмета: 

а,~ - углы первого и второго вспомогательных лучей; h, у - высоты этих же 

лучей относительно оптической оси; 1, 2, 3 - верхний, главный и нижний лучи 

широкоугольного наклонного пучка; r - аберрация кома 

Из (5.14), (5.15) следует, что градан обладает только интегральной 
составляющей S1 • Это несложно показать. Так, для параметров пер­

вого вспомогательного луча имеем следующие уравнения: 

~(z)=~ =h, cos(tz); 

а2 (z) = а2 = h,tsin(tz). 
(5.16) 

В случае произвольного положения предмета поверхностную со­

ставляющую коэффициента сферической аберрации определяют как 

(5.17) 
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Для первой поверхности r 1 = оо, а1 = а2 = О, К1 = О; для второй -
r2 = оо, h2 = О, К2 = О.Отсюда, согласно (5.17) , поверхностная состав-

ляющая S1 = О. 
При а.2 =~ =0 первое слагаемое в (5.15) равно нулю: 

л(п00hkak ) = п00 (~а~ -h1a~) = О . 

Проинтегрировав (5.15) с учетом функций углов и высот (5.16) , 
получим формулу в параметрах п00, п10 , п20 , t, d для коэффициента 
сферической аберрации: 

S, = ~ h,'t'd( "io - : п,012 ) - Зn,,,h,4 d. ( 5.18) 

Рассмотрим параболическое РРПП (п20 = О). Подставляя в (5.18) 
выражение для константы распределения t в параметрах n 00, n 10 и учи­

тывая нормировку h, = f' и знак коэффициента n
10

, получаем форму­
льr для коэффициента S

1 
и продольной сферической аберрации Лs': 

S =l nfo J'4d . 
т 

2 
о, 

noo 

5 2 2 f '2d 
Лs' = __ т1 n 10 о 

4 noo 

или в характеристических параметрах 

Лs' =- 2_ пт/ 
32 f'nlo' 

где т 1 - высота луча во входном зрачке. 

(5.19) 

(5.20) 

Из (5.19), (5.20) следует, что градан с параболическим РПП, как и 

классическая линза с положительным фокусным расстоянием, имеет 

отрицательную продольную сферическую аберрацию. Перепад ПП в 

таком градане можно рассчитать следующим образом: 

Лп=-8Ц;J (5.21) 

Связь значения перепада со сферической аберрацией определим 

из выражений для параболического РПП и характеристического фо­

кусного расстояния градана. Выразим D из (5.21) и подставим его в 
(5.19). Переход к диаметру градана позволяет определять сфериче­
скую аберрацию через Лп: 
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Также рассматриваемую аберрацию как функцию Лп можно найти 

из формулы 

л,' = 0,982/{ ~п) (Лп < О), 

а при известном значении диаметра градана рассчитать как 

Лs' = -О 347 D !?Лпj 
' ' п п 

Лп берется по абсолютному значению. 

Рассмотрим полиномиальное РПП (п20 :;= О). Преобразуем (5.18): 

S - ~ п,20/'4 d - 3 J'4d 
т- --- n20 • 

2 noo 
(5.22) 

Сферическую аберрацию градана можно представить суммой двух 

составляющих, определяемых коэффициентами п 10, n20: 

т. е. подбором соответствующего значения коэффициента n
20 
находим 

желаемую сферическую аберрацию 3-го порядка. 

Рассчитаем продольную сферическую аберрацию градана с уче­

том (5.22): 

Лs' = _l.m2
/'

2d(~ п/о -3п J· 
2 1 2 20 

noo 
(5.23) 

Из (5.23) следует условие исправления сферической аберрации 
3-го порядка: 

5 п?о 
~о=--. 

6 n20 
(5.24) 

Если представить РПП градана полиномом п2(у), то получим сле­

дующее выражение в параметрах /' и h 
4 
для сферической аберрации: 

2 

Лs' = - 1t _!5__(2-Зh ) 
8 /

' 2 4 noo 
(5.25) 
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или через диаметр градана 

Лs' = -О,098~(2-Зh4 ). 
f noo 

Из (5.25) делаем вывод, что h4 = 2/3 - условие исправления сфе­
рической аберрации в градане характеристической длины. 

Кома. Ход лучей наклонного пучка приведен на рис. 5.2. Обозна­
чим текущую высоту внеосевого луча в градане через у2 , а его угол с 

оптической осью через В2 • Формулы первого и второго вспомогатель­
ных лучей принимают вид 

~ = hi cos(td); а2 = f1itsin(td); 

у2 = у1 cos(td)-~sin(td); В2 = В2 cos(td) + y1tsin(td). 
t 

(5.26) 

Согласно (4.6), (4.7), коэффициент аберрации комы равен сумме 
- -

двух составляющих Sп = Sп + Sп , где 

- п - - - -

Sп = L {Л(noo,khkazBk)- f[8n20,k+lh}yk + 2nlO,k+1hkak(hkBk + ykak)­
k=I 

- noo,k+I ai Bk ]dz}. 

(5.27) 

(5.28) 

Можно показать, что при r1 = r2 = оо, а1 = а2 = О, h2 = О коэффициент 
Sп =О.Анализ первого слагаемого в (5.28) показывает, что оно также 
равно нулю. 

Параболический РРПП (п20= О). Подставляем (5.26) в (5.27) и далее 
интегрируем в пределах z = O ... d: 

(5.29) 

Используя формулу связи между t, n10 и учитывая принятые усло­
вия нормировки, перепишем (5.29): 
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(5.30) 

где sP = y l' так как ~1 = 1. 
Из (5.30) видно, что положение входного зрачка s является пара­

Р 

метром для исправления комы. 

Полиномиальный РПП (п20 * О) . Интегрируем в (5.28) слагаемое, 

обусловленное коэффициентом n
20

, и переходим к обозначению 

У1 = sP: 

Sпп = f ~о 3s pd +- . '3 ( 1 J 
w ~о 

Коэффициент S11 - сумма двух слагаемых Sп = Sпп + Sпп , сле-
10 20 

довательно 

Если входной зрачок расположен на входном торце градана, то 

sP = О и выражение для коэффициента Sп упрощается: 

Sп = / '3 (3.о_ + n 20 J· 
2noo п, о 

(5.31) 

Из (5.31) делаем вывод, что кома будет постоянна и неисправи­

ма в случае параболического РПП градана при положении входного 

зрачка на входном торце. Исправление комы возможно при полино­

миальном РПП и значении коэффициента n
20

, определяемом как 

1 п,20 
~о =---. 

2 noo 
(5.32) 

Заменяя n
20 
в (5.32) через h

4 
по формуле (5.3), получим значение, 

при котором в градане длиной d
0 
обеспечивается исправление комы: 

h4 = О. 
Астигматизм. Коэффициент астигматической разности S111 для 

градана в воздухе равен Sтп = Sтп + Sтп : 

(5.33) 
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- п - - -

Sпт = L [ Л(11oo,k hkakBf )- J(8'½.o,k+1h{yf + 4n,o,k+lhkykakвk -
k=I 

(5.34) 

Формулы вспомогательных лучей аналогичны (5.26). При r
1 
= 

= r2 = оо первое слагаемое в (5.34) равно нулю и Sпт =О . Подставляем 

(5.26) в (5.34), интегрируем и получаем выражение для коэффициента 
астигматической разницы: 

+f'2n _ 1-..1_2_ + 1-..12У1 +- t4y2d . 
( 

t 2A2d t 2A 3 ) 
00 8 2 8 1 

Выразим константу распределения t через коэффициент n
10 
РПП 

и заменим hl' у1 соответственно на f ' , sP: 

,2 ( 2 2s P d ] ,2 ( d s;n,0d ] Sпт =-/ '½о 3sPd+ - - --- + f n10 -
2
- +-- -

n10 211оо n10 2noo noo 

(5.35) 

Преобразовав (5.35) с заменой коэффициента n
10 
через n00 и f ' , 

находим удобную для анализа формулу 

S _ 5n s; s Р п f ' 1,3 ( 3 2 4 / ' п 1,2) (5 З6) пт - --2-, + -2- - --2- - noon20 - nsP - sP + - . . 
16 n00f 2п00 16 n00 2 2 

Для параболического профиля РПП из (5.36) получим квадратное 
уравнение относительно s : 

р 

2 ( 5n 1 ( s Р п f ' 
sP 16 ,iJ

0
f' ~ + 2nJ

0 
- 16 n'J

0 
-Sпт = О. (5.37) 

Из (5.37) следует, что существует два положения входного зрачка, 

при которых астигматическая разность в градане отсутствует: 

sP, = 0,259 f '; sP2 = -0, 769 f '. 
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В случае полиномиального РПП при положении входного зрачка 

на первом торце градана sP = О и выражение для Sпr преобразуется к 
виду 

s 7t / ' / '5 7t 
тп = -16 nJo - 2noon20 · (5.38) 

По (5.38) можно судить, что исправление астигматизмадостигает-

1 
ся при ~о = ,

4 3 
, или 

8/ noo 

1 nfo 
~о = ---. (5.39) 

2 noo 

При параболическом РПП и s = О астигматизм неустраним и ко­
Р 

1t f ' 
эффициент S111 вычисляется как Sтп = - --

2
-. 

16 n00 

В общем случае при n20 * О и sP * О астигматизм можно исправить, 
если 

~о = 8/'4nJ0 ( 3ns; -8sP f ' + п/'2 ) • (5.40) 

В (5.39) заменим п20 на h4
, используя (5.3). Получим выражение 

для коэффициента h 
4

, при котором в градане отсутствует астигма­

тизм: h4 = О. 
Исследование влияния на астигматизм Sш коэффициента n20(h4

) 

при изменении положения входного зрачка sP показало, что его рас­

положение справа от переднего торца является оптимальным для ис­

правления астигматизма и коэффициент n
2
o(h

4
) следует использовать 

для оптимизации сферической аберрации, а положение зрачка для 

оптимизации астигматизма. На рис. 5.3 изображены графики за­
висимости коэффициента астигматизма Sm градана (п00 = 1/5; /' = 

= 10 мм, d = 23,56 мм, g = 0,0667 мм-1) от положения входного зрачка 

1 fli.2 5 n2 

sP при изменении коэффициента n2o(h 4) в диапазоне ---0 < ~о < _ __!О_ 
2 noo 6 noo 

(О < h4 < 2/3). 
Кривизна поля. Коэффициент кривизны поля S

1
v, согласно (4.5), 

представляют в виде суммы двух слагаемых Srv = Srv + Srv, где 

S-rv -- - ~ 8µk ,· - 1 . s~ - 2n1od 
~ µk - -, ТV - - -2-. 
, rk nk noo 
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-Sш, усл. ед. 

4 

3 

2 

1 

о µ------::>--..1,,:,=4--~~~:i::::::::r:::~ 

- 1 

- 2 

- 6 - 4 - 2 О 2 4 6 8 sp, усл. ед. 

Рис. 5.3. Графики зависимости коэффициента 
астигматизма Sтп градана от положения входного зрачка sP 

при изменении коэффициента n
2
o<hJ линии 1- 5 соответствуют 

h4 = 0,67; 0,452; 0,317; 0,183; 0,0475 

При плоских торцах градана r
1 

= r2 = оо, S-rv =О . Выразим n
10 
и d 

через основные габаритные параметры, тогда 

S = п_1_ 
1V 2 /' 2 • noo 

(5.41) 

При fo' = 1 из (5.41) получим выражение для основного параметра 
градана: 

П = 1,57 
2 • 

noo 

Кривизна поля Петцваля z; для углового поля со определяется 
из формулы 

z; = -О, 785 ~, tg2ro. 
noo 

Дисторсия. Коэффициент дисторсии S-v, согласно (4.5) , состоит из 

суммы двух слагаемых: S-v = S-v + S-v , 
где 
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(5.42) 

- п 

Sv = L [ Л(noo,khk~k )-
k= I (5.43) 

-J[8J½o,k+lhkyf +2nl0,k+1Ykl3k(hkpk + ykak) -noo,k+lakf3ndz, 

J - инвариант Лагранжа-Гельмгольца. 

В данном случае определяемая по (5.42) составляющая Sv отлич­
на от нуля и вычисляется как 

(5.44) 

также и первое слагаемое в (5.43) не равно нулю: 

(5.45) 

С учетом (5.44), (5.45) и принятых условий нормировки параме­
тров вспомогательных лучей ( h,_ = f', у1 = s Р) имеем 

-~~dJ+ !½о +-1-J 2 2 2 • 
4 11оо 2n1onoo 411оо 

(5.46) 

Анализ (5.46) показывает, что зависимость Sv относительно sP 
представлена кубическим уравнением и при положении входного 

зрачка вблизи первой поверхности 

S = -['[1- !½о - _1_] 
V 2 2 • 

2 noo nlO 411оо 

Для параболического профиля РПП Sv = t'[~ -1] . 
411оо 

(5.47) 
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Из (5.47) получаем условие ортоскопии изображения при положе­
нии входного зрачка на переднем торце градана: 

2 1 n?o 
~о= 2noollio ---. 

2 noo 
(5.48) 

Если РПП задается полиномом п2(у) , то условие ортоскопии изобра­

жения следующее: h4 = п50 • 

5.5. Аберрации третьего порядка rрадана-объектива 
увеличенной длины и rрадана-транслятора изображения 

Градан-объектив увеличенной длины - это градан толщиной 

(длиной) более d
0

, который строит изображение удаленного объекта 

в плоскости выходного торца. В таком одиночном функциональном 

ГрОЭ вьщеляются отрезки, выполняющие функции первичного объ­

ектива и переноса изображения на выходной торец ГрОЭ. 

Схемы двух вариантов длинного градана приведены на рис. 5.4: 
а - предмет расположен на значительном удалении от первой поверх­

ности (градан-объектив увеличенной длины); б - предмет находится 

на первой поверхности градана (градан-транслятор изображения). 

t------ ~---------+-------===Э 
а 

Е-------------1-------------- 3 
б 

Рис. 5.4. Схемы градана-объе:ктива увеличенной длины (а) 
и градана-транслятора изображения (б) 

Iрадан-объектив. Рассмотрим аберрации представленного на 

рис. 5.4, а градана, который можно рассматривать как элемент, состо­

ящий из объектива длиной d0 и ряда оборачивающих систем, имею­

щих длины, равные Т/2. 

Сферическая аберрация. Коэффициент сферической аберрации S1 

определяется выражениями (5.14), (5.15) с учетом увеличения длины 
градана на значение, кратное Т/2. Вычислив определенный интеграл 

в (5.15) с учетом формул углов и высот первого параксиального луча 
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(5.16) и подставив их в формулу для сферической аберрации, находим 
продольную сферическую аберрацию 

Лs' = _ _!_ т2/ ,2 d ( .?._ пго - 3 J 
т 2 oqil 2 ~о ' 

\ noo 

где q - trncлo длин d
0

, укладывающихся на полной длине градана. 

Отметим, что при значении коэффициента n 20, вычисленном по 

(5.24), происходит полное исправление сферической аберрации 3-го 
порядка. 

Кома. С помощью (5.12), (5.13), учитывая связи параметров п10 и 
/ ', d = qd0, определим 

S - /'З ( -.?._ s рпгоd ~ 3 d n 20 J тт - ~-+ + spn20 + • 
2 2п00 2п00 n10 

(5.49) 

Из (5.49) следует, что при sP = О коэффициент Sтт не зависит от 
длины градана и равен значению для градана длиной d

0
• При sP * О 

существует зависимость коэффициента Sп от длины градана d и уда­
ления входного зрачка sP. В этом случае кому 3-го порядка длинного 

градана можно исправить подбором значения коэффициента п20: если 

его определять по (5.24) , то при длине d = qd0 градан будет свободен 
от комы. 

Астигматизм. Преобразуем выражения (5.33), (5.34) длинного гра­
дана с d = qd0 и получим формулу, аналогичную (5.35): 

Sттт =-/'2~0(3s;d+ 2sP - d J+ /'2ni.o(~ + s;n,od J -
n,o 2noon,o 2noo noo 

-f'2n (n10d + sPn,o _i n,20s;d J (5.50) 00 4 з 2 2 2 • noo noo noo 

Проанализировав (5.50), делаем вывод, что при положении вход­

ного зрачка на первой поверхности и длине градана d = qd0 значе­
ние S111 увеличивается в q раз. Если sP = О, то можно найти такое зна­
чение п20, при котором астигматизм отсутствует. 

Таким образом, при n20, определяемом формулой (5.39), и положе­
нии входного зрачка на переднем торце длинного градана-объектива 

астигматизм отсутствует. 

Кривизна поля. Коэффициент S
1
v находим по (5.13), где d = qd0. 

При увеличении длины градана на целое trncлo полудлин периодич-

99 



ности значение Srv увеличивается кратно q и, следовательно, кривиз­

ну поля в градане с плоскими торцами исправить нельзя. 

Дисторсия. Коэффициент Sv при увеличении длины на целое чис­
ло полупериодов сохраняет вид, как в формуле ( 5 .46), в которую вхо­
дят слагаемые, содержащие в качестве сомножителей длину элемен­

та d и положение входного зрачка sP. Поэтому при sP = О дисторсия 
длинного градана-объектива равна дисторсии градана длиной d

0
• 

При s * О решаем уравнение (5.50) относительно s и определяем 
р р 

положение входного зрачка, при котором градан имеет заданное зна-

чение коэффициента Sv. 
Градан-транслятор изображения. Такой градан является аналогом 

двухкомпонентной оборачивающей системы с параллельным ходом 

лучей между компонентами. Градан длиной Т /2 с телецентрическим 
ходом главного луча приведен рис. 5.4, б. При переносе изображения 
с входного торца на выходной и длине градана d = Т /2 линейное уве­
личение составляет (-1). 

Выражения для углов и высот первого вспомогательного луча при 

hl = О: 

~ = h1 cos(tz)- а2 sin(tz) = - а2 sin(tz); 
t t 

а2 = а2 cos(tz) + !1itsin(tz) = а2 cos(tz), 

для второго вспомогательного луча ~
2 
= О: 

У2 = У2 cos(tz)- ~2 sin(tz) = у2 cos(tz); 
t 

132 = ~2 cos(tz) + y1tsin(tz) = y/sin(tz). 

(5.51) 

Сферическая аберрация. Коэффициент сферической аберрации 
~ ~ 

S1 = S1 + S1 , где S1 - вклад поверхностей; S1 - вклад неоднородно-

сти среды. Поскольку h
1 

= h2 = О, можно показать, что S1 =О. Сле­

довательно, коэффициент S1 зависит только от вклада неоднородной 

среды: 
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d 

Sт = Л(noohkai )-f (8n2ol¼4 + 4n1oh/ak - noocik )dz = 
о 

d 

= f (8~ohk4 + 4n10h/ak - nooak )dz. 
о 

(5.52) 



В (5.52) слагаемое Л(n00hkai) =О , так как h 1 = h2 = О. 
Рассмотрим отдельно интегрирование каждого слагаемого форму­

лы (5.52) после подстановки в нее выражений (5.51). 

= 8 а1 ( 3td _ sin(2td) + sin( 4td) J = 3n ai d· 
~о ts 8 4 32 20 t4 ' 

J 4n10h/cЦdz = 411i0 f а2 sin2(td)a~ cos2(td)dz = d _ d( J2 

о о t 

а,4 d а,4 1( sin(4td)11 а,4 =4п - 2 fsin2(td)cos2(td)d(zt) =4п - 2- td---- =-n. - 2 d· 
10 ,з 10 ,з 8 4 2 "10 ,2 ' 

о 

nooak Z-- a 2cos t zt --- -+---+--- -f
d - 4d _ noo df. 4 4 ( d)d( ) _ п00аi ( 3td sin(2td) sin( 4td) J-
о t о t 8 4 32 

3 4d 
=snooa2 · 

В результате 

S- 3 ai d 1 ai 3 4d 5 4 3 l noo Jl
2 

4 d ( ) т=- ~О-4 +-nio-2 d--nooa2 =-nooa2d--~011- а2 . 5.53 
t 2 t 8 8 4 1 llio 

Из (5.53) следует условие, обеспечивающее в градане-трансляторе ис­

правление сферической аберрации 3-го порядка (S1 = S1 =О): 

5 lli20 
~о=--. 

6 noo 
(5.54) 

Сравнение (5.24) и (5.54) показывает, что исправление сфериче­

ской аберрации в градане-объективе и градане-трансляторе достига­

ется при выполнении одного и того же условия для коэффициен­

та п20 . 

Кома. Согласно (5.12) , (5.13), коэффициент комы - это сумма 

вкладов от преломления лучей на поверхности Sп и прохождения лу-

чей через неоднородную среду Sп : Sп = Sп + Sп , 
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где 

- п 

Sп = I, {Л(nоо khkakBk )-
k= I ' 

-J[8n20,k+lh} j\ + 2nio,k+lh/xk (h33k + ykak )- noo,k+l aif3k ]dz}. 

Поскольку h, = h2 = о, то Sп = Q И Л(noohkazBk ) = О. 

Проинтегрируем выражения для Sп с учетом (5.51): 

8n20 1 h}ykdz = 8n201-( а2 )з sin3 (tz)y1 cos(tz)d(tz) = -8~0 а~у, ( sin
4 

(td) ) = О 
о о t t 3 4 

d _ --

2n10 J hkak (hkBk + ykak )dz = 
о 

= 2,;0!(-~2 } in(lz)a2 cos(tz{-~
2 sin(tz)y, sin(tz)+ 

+ у, cos(tz)a 2 cos(tz) ]dz = -2п10 а~ а2у1 [1 sin(tz)cos3(tz)d(zt)-
t2 О 

-! sin3(tz)cos(tz)d(tz)] = О, 

так как fsin(tz)cos3(tz)d(tz)=(.!. - cos
4

(dt) ) =o и 
о 4 4 

d sin4 (td) 
J sin3 (tz)cos(tz)d(zt) = ---=О , то 
о 4 

d _ d d 

п00 J a kBkdz = п00 J а~ cos3(tz)y,tsin(tz)dz = п00а~у,t J cos3(tz)sin(tz)dz = 
о о о 

В результате получим, что у градана-транслятора с увеличением 

(- 1) коэффициент Sп = О независимо от значения п20. Следовательно, 

такой градан при телецентрическом ходе главных лучей наклонных 

световых пучков свободен от аберрации кома. 

Астигматизм. Общее выражение для Sш аналогично (5.33), (5.34): 
- -

Sтп = Sпт + Sпт ; 
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- п 

Sтп = L [ Л(п00 khkaA3t )-
k=t ' (5.55) 

-J(8n20,k+lh/yf +4n,o,k+lhkyka k~k - noo,k+laf~1 )dz]. 

Поскольку h1 = h
2 

= О, то поверхностный вклад Sш = О и 

Л(noohkakBz ) =о . 
Интегрируем (5.55) по частям, учитывая (5.51): 

d _ d 

noo Jaz Bfdz = noo f а~ cos2(tz)yf 12 sin2 (tz)dz = 
о о 

2 2 fd 2 ( ) . 2 ( )d( ) 1 2 2 2d = п00а2у, t cos tz sш tz tz = -п00а2у, t . 
о 8 

В результате находим 

S- 2 a~d 1 2 2d 1 2 2 2d 
ш = ~оУ, f -2п10а2У, - 8пооа2У, t . (5.56) 

Приравниваем Sтп = О, из (5.56) определяем значение п20, при ко­
тором астигматизм градана-транслятора равен нулю. 

Анализ рассмотренных выражений позволяет сделать выводы: 

при параболическом РПП коэффициент Sш -:t О, следовательно, в 

ГрОЭ будет присутствовать астигматизм; при полиномиальном РПП 

1 п2 

равенство ~о = __ ___J_Q_ является условием исправления астигматизма, 
2 noo 

как у градана-объектива характеристической длины с входным зрач­

ком, расположенном на первом торце элемента. 
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Кривизна поля. Коэффициент кривизны поля - это сумма двух 

слагаемых: Sтv = Sтv + Sтv , где 

(5.57) 

Поскольку оба торца градана - плоские поверхности, то Sтv = О и 
коэффициент кривизны, согласно (5.57), зависит только от составля-

- -
ющей Sтv. Выразим Sтv в параметрах характеристического фокусного 

расстояния: 

- 7t 
Sтv =-,-2-· 

f noo 
(5.58) 

Из (5.58) следует, что по сравнению с граданом-объективом дли­

ной Т/4 значение коэффициента S
1
v в градане-трансляторе возросло 

в 2 раза, следовательно, в нем аберрация кривизны Петцваля неустра-

нима и возрастает пропорционально увеличению длины градана. 

Дисторсия. В общем виде выражение для коэффициента Sv анало-
- -

гично (5.41): Sv = Sv + Sv; 

Sv = f {[hkPk(8Bk )2 + J2 8(aknk)]8Bk +KkhkYk} , 
k=l 8ak hk nknk+i 8ak 

- п 

Sv = L { Л(noOkhkBl) + 
k=l ' 

+ f[8f½o,k+lhkyf +2n10,k+1YJ3k(hkf3k + y/ik)- noo,k+la,kf31]}dz. (5.59) 

2 -
Поскольку h

1 
= h

2 
= О и L8( akµk) = О, то Sv = О и первое слагаемое в 

1 

(5.59) тоже равно нулю. 

Учитывая (5.51), проинтегрируем (5.59) по частям в пределах от 
z= O ... d: 

d_ d 

8п20 J hkyf dz = 8п20 J(-a2/t )sin(tz)yf cos3(tz)dz = 
о о 

а d а 
= -81½0 -

2 yf J sin(tz)cos3 (tz)d(tz) = -81½0 -
2 yf (1- cos4 (tz))/4 =О; 

t2 О t2 
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d _ _ d 

2n10 f Yk~k hkdz = 2n,0J(-a2/t)sin2(tz)y( cos(tz)t2 sin(tz)dz = 
о о 

d 

= -2n10Y(a2 f cos(tz)sin3(tz)dz = -2п10у(а2 [ sin4(tz) ] / 4 = О; 
о 

d _ d 

2n,of я~kakdz = 2niof t У( sin(tz)a2 COS
3(tz)dz = 

о о 

d 

= 2п10у(а2 f cos3 (tz)sin(tz)d(zt) = 2п10у(а2 [ (1- cos4 (tz) )/4] = О; 
о 

d _ d 

noofak~fdz = noof а2 cos(td)y(t3 sin3(tz)dz = 
о о 

d 

no0a2y(t2 f sin3 (tz)cos(tz)d(tz) = no0a 2y(t2 
( sin4 (td)/ 4) = О. 

о 

Как видим, все слагаемые выражения (5.59) равны нулю, следо­
вательно, в градане при передаче изображения с увеличением~= -1 
дисторсия отсутствует. 

Таким образом, при телецентрическом ходе главных лучей градан 

обладает свойством симметрии, обеспечивающей исправление комы 

и дисторсии, подобно симметричной однородной линзовой ОС. Сфе­

рическая аберрация, астигматизм и кривизна поля пропорциональны 

длине градана. Кривизна поля Петцваля неустранима, а сферическую 

аберрацию или астигматизм можно исправить выбором коэффици­

ента п20. 

Расчет коэффициентов аберраций коротких и длинных града­

нов-объективов позволил получить условия исправления сфериче­

ской аберрации, комы, астигматизма, дисторсии. Кривизна поля 

неисправима, ее значение уменьшается для среды с увеличенным 

осевым показателем преломления п00. 

Формулы для коэффициентов п2о<h4) полиномов, описывающих 
РПП граданов, при которых обеспечивается коррекция аберраций 

3-го порядка в коротком градане-объективе, а также в длинных гра­

данах ( объективе и трансляторе изображения) при телецентрическом 
ходе второго вспомогательного луча в пространстве изображений, 

приведены в табл. 5.1. 
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Таблица 5.1 

Формулы для обеспечения коррекции аберраций 3-ro порядка 

Формулы для коэффициентов 
Вид аберраций 

п20 h4 

Сферическая (5ni20 )/(6n00 ) 2/3 

Кома -ni20 /(2n00 ) о 

Астигматизм - n12
0 / (2noo) о 

Кривизна поля - -

Дисторсия 2noon12
0 - п/о / ( 2noo) nlo 

5.6. Коэффициенты РПП реальных граданов 

Коэффициенты полиномиального РРПП идеально фокусирую­

щего градана определяют путем разложения в ряд функции sech(ty) 
или sech 2(gy): 

п(у) = n00sech(ty) = '1~ю (1 _.!_(ty)2 + 2(ty)4 _ _o_!__(ty)6 + .. . ), 
2 24 720 

2 17 
п2(у) = n\0sech2 (gy) = п200 (1-(gу)2 +3(gy)4 -

45 
(gy)6 + 

+ 62 (gy)8 + ... ), 
315 

(5.60) 

где фокусирующие константы g и t тождественно равны. 
Достигнутый уровень технологии ионообменной диффузии не 

позволяет получить реальное РРПП с коэффициентами ряда, оди­

наковыми с (5.60). Коэффициенты для реальных устройств обычно 
получают в результате математической обработки интерферограммы 

тонкого среза градана или градана длиной, близкой к 1t/g; обычно ис­
пользуют полином (1.24): п2(у) . 

В табл. 5.2 помещены значения коэффициентов полиномов РПП 
в элементах Selfoc: SLS диаметрами 1,0; 1,5; 2,0 мм и SLW диаметрами 
1,0; 1,5; 1,8; 2,0 мм. 
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Обозначение поо 
элемента 

SLS-10 

SLS-15 1,556 

SLS-20 

SLW-10 

SLW-15 

SLW-18 
1,607 

SLW-20 

Коэффициенты полиномов РПП 

у различных элементов Selfoc 

g, мм-1 h4 h6 hв 

0,506 0,7 0,0 60 

0,333 0,8 - 1,0 2 

0,243 0,7 0,0 150 

0,626 2,7 - 21 - 140 

0,409 2,4 - 13 - 280 

0,337 1,2 - 10 - 180 

0,304 2,3 - 20 - 180 

Таблица 5.2 

do 1: 

3,104 1,270 

4,717 1,929 

6,464 2,644 

2,509 0,994 

3,840 1,521 

4,661 1,846 

5,167 2,046 

На рис. 5.5 приведены графики РПП граданов SLS-10 и SLW-10, 
а также идеального (гиперсекансного п2(у)) распределения с коэффи­

циентами h
4
= 2/3, h

6
= - 17/45, h

8 
= 62/315. Из сравнения этих гра­

фиков следует, что граданы имеют функцию РПП, близкую к гипер­

болическому секансу, обеспечивающему исправление сферической 

аберрации. 

п п 

1,54 1,54 

1,52 1,52 

1,50 .__......_ _ __.__ _ __,_ _ __,_ _ ___.____. 1,50 .__......_ _ __.__ _ __,_ _ __,_ _ ___.____. 
- 0,4 - 0,2 О 0,2 у, усл . ед. - 0,4 - 0,2 О 0,2 у, усл. ед. 

а б 

Рис. 5.5. Распределение ПП элементов Selfoc: SLS-10 (а); SLW-10 (б) ; 

пунктирная линия - идеальное РПП п2 =sech2 (gy) 
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Вопросы для самопроверки 

1. Приведите формулы расчета фокусных расстояний и фокаль­
ных отрезков граданов. 

2. Обоснуйте наличие и положение апертурной и полевой диа­
фрагм в градане. 

3. Назовите способы расчета хроматизма при положении предме­
та на конечном расстоянии от первого торца градана. 

4. Дайте определение апертурного и полевого углов градана. При­

ведите их соотношение. 

5. Получите условие исправления сферической аберрации 3-го 
порядка в линзе Микаэляна. 

6. Как получить градан-объектив с заданным значением продоль­
ной сферической аберрации 3-го порядка? 

7. Возможно ли исправление комы в линзе Микаэляна с парабо­
лическим типом РПП? 

8. Приведите условие исправления астигматической разности 
3-го порядка в линзе Микаэляна при положении входного зрачка на 

входном торце? 

9. Можно ли исправить кривизну Петцваля в линзе Микаэляна? 
10. При каком соотношении коэффициентов РПП можно ис­

править дисторсию 3-го порядка линзы Микаэляна при нахождении 

входного зрачка на входном торце? 

11. Какие аберрации 3-го порядка отсутствуют в градане-транс­
ляторе при телецентрическом ходе главного луча и линейном увели­

чении (-1)? 



6. ПРОЕКТИРОВАНИЕ 
ГРАДИЕНТНОЙ ОПТИЧЕСКОЙ СИСТЕМЫ 

В ОБЛАСТИ АБЕРРАЦИЙ ТРЕТЬЕГО ПОРЯДКА 

Градиентный оптический элемент со сферическими поверхно­

стями - это линза, которая имеет дополнительный коррекционный 

параметр в виде регулярной неоднородности показателя преломле­

ния. В градиентной линзе по сравнению с аналогичной однородной 

присутствует дополнительный хроматический параметр - дисперсия 

градиента ПП, которую можно использовать для минимизации хро­

матизма одиночной линзы или более сложной ОС, например дублета. 

6.1. Проектирование синглета и дублета с ОРПП 

Зададим осевую неоднородность ПП зависимостью n(z) = п/'л) + 
+ п01 (л,)z + п0/л.)z2, где п0(л,) - показатель преломления в начальной 
точке z = О; п0 1 (л.) , п0/л.) - хроматические аберрационные коэффици­

енты. Оптическая ось совпадает с осью Z системы координат OXYZ, 
привязанной к вершине входной поверхности линзы. 

Условие исправления сферической аберрации в линзе с ОРПП. В со­

ответствии с (4.5), (4.6), (4.8) выражение для коэффициента сфериче­
ской аберрации S

1 
(рис. 6.1) в пределах осевой толщины линзы имеет 

вид 

- -
Sт = Sт.н + Sт.G + Sт , 

-
где Sт.н , Sт.G - однородно- и неоднородно-поверхностные составля -

ющие; S1 - вклад переноса. 

На начальном этапе проектирования считаем линзу тонкой и не 

принимаем во внимание вклад переноса. 

Составляющие Sт.н, Sт.G вычисляют при суммировании по по­

верхностям согласно формулам 
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Рис. 6.1. Ход лучей осевого пучка в вьmукло-плоской mrnзe с ОРПП 

на всю тотцину mrnзы: 

ПИ - плоскость изображения 

S = ~ hP р =( 8aJ2 8(аµ) . S = ~ 8(11о, + 2no2t) h4 
Т.Н LJ ' 8µ ' I.G LJ r 2 ' 

где 8а = ak+I - ak; 8µ = µk+I - µk; 8(п01 + 2n02') - разность градиентов 

ПП (k + 1)- и k-сред, разделенных k-й поверхностью линзы; t - глу­

бина зоны неоднородного ПП; µ = 1/п00; а - угол с оптической осью 

первого вспомогательного луча; h, r - высота луча и радиус кривиз­

ны оптической поверхности. Условия нормировки вспомогательного 

луча: а1 = О, h, = f' , а~ = 1. 
Для упрощения анализа будем считать РПП линейной функцией 

от z (при условии n
02 

= О) . Очевидно, чтобы исправить сферическую 

аберрацию, не принимая во внимание составляющую вклада перено-

2 2 8n 
са, нужно выполнить условие LhP =-L-f-h4

• 
, , r 

Сферическая аберрация в одино1П:1ой линзе или дублете исправля­

ется за счет введения неоднородности ПП в одной или обеих линзах. 

При последовательном расположении в блоке однородной игра­

диентной сред, разделенных сферической поверхностью с радиусом 

кривизны r: 

откуда 

S- - 11о , h4 
I.H ---2 , 

r 

При переходе луча из градиентной в однородную среду 

S
- 11о , h4 - r2 

т.н = r2 ' по, = Sт.н --,;;: · 
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Таким образом, по значению коэффициента S1 = Sт.н исходной од­
нородной системы с помощью (6.1) или (6.2) находим исходное зна­
чение коэффициента n

01 
линейного ОРПП, от которого зависит ско­

рость изменения ПП по поверхности линзы в пределах ее светового 

диаметра. Это значение n
01 
далее уточняют с помощью экстраполяции 

по результатам расчета через ГрОС реальных лучей. Следует обратить 

внимание на то, что коэффициенты п01 определяют необходимое зна­
чение (п) ПП на границе однородной и неоднородной оптических 

сред. Используя n
01

, подбирают реальную ГрОСр с коэффициентом, 

наиболее близким к рассчитанному. Данный подход исправления 

сферической аберрации можно применять для ОС более сложных 

конструкций. 

Условие исправления хроматической аберрации положения одиноч­

ной линзы с ОРПП. Для первого вспомогательного луча указанной 

линзы введем обозначения: а2 , n0, h1 и а2 , nz, hz - угол, показатель 

преломления и высота луча соответственно на входе в градиентную 

среду и выходе из нее. 

Хроматическая функция ПП имеет вид ~ ( z) = п0,л (л) + noi,л (л)z. 
На первой и второй поверхностях линзы 

где dn0, dnz - средние дисперсии ПП в начале (z = О) и конце (z = d) 
ГрОСр. 

Воспользуемся формулами (4.6) , (4.8) для первого хроматического 
коэффициента: 

d 

Srxp = Л ( h (Х dno ) + J (Х, 2 
( dno ) dz. (6.3) 

о 

Можно показать, что у тонкой линзы интеграл в (6.3) для вкла­
да переноса S,xp близок к нулю. Действительно, используем зависи­

мость (3. 7) для а2 ( z) , тогда после интегрирования 

(6.4) 

При малой толщине линзы dл можно считать h1 = h2, а произведе­

ние nJ, dл ~ О и, значит, вклад переноса, рассчитанный по (6.4) , Srxp = О. 
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Отсюда следует, что в тонкой линзе параметрами исправления хрома­

тизма положения являются коэффициенты дисперсии v 
0

, v z показате­

ля преломления в начальной и конечной точках градиентной среды. 

Назовем их коэффициентами дисперсии на входной и выходной по­

верхностях линзы. 

Первый хроматический коэффициент 

(6.5) 

В (6.5) выразим средние дисперсии dn
0

, dnz через их коэффициенты 
дисперсии, тогда после преобразования 

(6.6) 

поло - 1 nzлO - 1 
где У0 = ----; Vz = ----

no"1 - no"2 nz"1 - nz"2 

Из условия исправления хроматической аберрации положения 

(S1xp) находим соответствующее ему соотношение коэффициентов 
дисперсии и углов с оптической осью первого вспомогательного луча: 

(6.7) 

Для однородной среды v
0 
= vz, отсюда следует известный вывод об 

конструкции линзы с исправленным хроматизмом положения: а1 = а3 
или r 1 = r

2
, т. е . линза является афокальной. 

Выражения (6.6), (6.7) показывают, что наличие дисперсии гра­

диента ПП в некоторой степени расширяет возможность коррекции 

хроматической аберрации положения одиночной линзы. При ОРПП 

в прилегающей к поверхности линзы области форма линзы остается 

менисковой, но r
1 

-:f:- r
2

• Данное заключение можно распространить и 

на линзу с градиентом ПП только в области одной поверхности. 

Рассмотрим градиентную линзу с линейным ОРПП, у которой 

Ф,пов и Ф2пов - оптические силы первой и второй поверхностей: 

Ф _ СХ.2 - а, аз - д.2 
l пов - Jii ; ф2пов = ~ (6.8) 

В этом случае формулу (6.5) для продольной хроматической абер­
рации положения можно записать как 
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(6.9) 

У тонкой шrnзы d ~ О, h1 = h2, поэтому для нее в окончательном 

виде хроматическую аберрацию положения градиентной шrnзы мож­

но представить формулой 

ds' = __ 1 1,,2(фlпов + ф2лов J 
хр 2 " 1 · 

аз Vo v z 

(6.10) 

Оптическая сила тонкой линзы Ф равна сумме оптических сил 

поверхностей: 

11о -1 
фlлов + ф2лов = ф , фlлов = --

1-п 
ф - z 

2пов - --
lj r2 

С учетом принятых в (6.8)- (6.10) обозначений условие исправ­
ления хроматической аберрации положения в одиночной линзе с 

ОРПП выглядит так: 

( 
n0 - 1 nz -1 J-О 
Vo'i - V zr2 - • 

(6.11) 

Из (6.11) находим требуемое соотношение радиусов кривизны, 
коэффициентов дисперсий и показателей преломления в вершинах 

поверхностей линзы, при выполнении которого обеспечивается усло­

вие исправления хроматической аберрации положения: 

(6.12) 

Формула (6.12) находится в согласии с (6.7). При известных па­
раметрах градиентных сред исправление хроматизма положения воз­

можно в узком диапазоне значений радиусов кривизны поверхностей 

одного знака, т. е. линза с исправленным хроматизмом положения 

должна быть мениском. 

При известных параметрах исходной однородной линзы с помо­

щью (6.10) находим значение коэффициента дисперсии на второй 
поверхности: 

V = z 
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Для линейной зависимости ОРПП коэффициент дисперсии вы­

ходной поверхности линзы связан перепадом ПП Лп и коэффициен­

том дисперсии градиентной среды v 
01

: 

(по -l+Лn)vIv0I 
Vz=( ) , 

по -1 V 0I +Лпv, 
(6.13) 

где Vo1 = no, ,.o 
no,,.1 - no,,.2 

Значение v
0I

, при котором в линзе с ОРПП будет исправлена хро­

матическая аберрация положения, находим из выражения 

где pl' р2 - кривизна первой и второй поверхностей; п0, nz - ПП в 

вершинах указанных поверхностей линзы. 

Приведенные формулы - приближенные, их точность увеличива­

ется с уменьшением тотцины линзы. 

Хроматизм положения дублета из линз - однородной и с ОРПП. 

Дублет представляют как блок из двух тонких линз, находящихся в 

соприкосновении. При наличии ОРПП в первой линзе и положении 

предмета на конечном расстоянии, равном -а1 от передней главной 
плоскости линзы, хроматическую аберрацию положения записывают 

в виде 

(6.14) 

где Ф1пов' v0 и Ф2пов' vz - оптические силы и коэффициенты дисперсии 
соответственно первой и второй поверхностей первой линзы; Ф 

2
, v 

2 
-

оптическая сила и коэффициент дисперсии второй линзы. 

Для первой линзы 

(6.15) 

Подставим (6.15) в (6.14), учтем (6.13) и полученные ранее фор­
мулы для оптических сил: 
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Если предмет находится в бесконечности, то а~ = f' и (6.16) пре­
образуется: 

(6.17) 

Из (6.17) следует условие исправления хроматической аберрации 
положения в рассматриваемом дублете: 

При наличии ОРПП во второй линзе блока и положении предме­

та на конечном расстоянии -а 1 от передней главной плоскости пер­
вой линзы хроматическая аберрация положения 

ds~ = -а~( Ф1 + Ф2пов + Фзпов J· 
У 1 У О,2пов V z,Зпов 

Для второй линзы блока Ф2пов + Фзпов = Ф2 , где 

п -1 1-п 
ф 2пов = _о __ ; ф Зпов = __ z 

r2 1j 

Подставив (6.19) в (6.18), в окончательном виде получим 

d , _ , ( Ф1 по - 1 1-nz J sk - -а2 -+---+--- . 
V I Уо, 2пов Г2 V z,Зпов Гз 

(6.18) 

(6.19) 

(6.20) 

Если предмет находится в бесконечности, то в (6.20) ~ = /': 

d , 1/ Ф, n0 -1 nz -1 J 
sk = - l ~ + Y o,2non r2 - V z,Зпов rз . 

(6.21) 

Из (6.21) получаем условие исправления хроматизма положения 
при наличии градиента ПП во второй линзе: 

(6.22) 

Известное условие исправления хроматизма положения в дублете 

из однородных тонких линз следующее: 
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АнаJШз (6.17), (6.22) показывает, что в дублете, включающем одну 
линзу однородную, а другую с ОРПП, дисперсия градиента показа­

теля преломления является дополнительным параметром, влияющим 

на хроматическую аберрацию положения. Благодаря наличию в ката­

логах большого разнообразия стекол с различными значениями ПП и 

коэффициентами дисперсии, в блоке из двух линз сушественно выше 

возможность исправления хроматизма положения, чем в одиночной 

градиентной линзе. 

6.2. Проектирование линз 
с заданной кривизной поля изображения 

Теория аберраций 3-го порядка для оптической среды РРПП по­

зволяет проводить анализ возможности исправления первичной кри­

визны поля (кривизны поля Петцваля) одиночной линзы, располо­

женной в воздухе. 

Кривизна изображения в области трех порядков аберраций будет 

отсутствовать (изображение будет плоским), если линза является ме­

ниском с поверхностями равной кривизны. Это следует из анаJШза 

формулы для коэффициента SтvE при естественной нормировке ис­

ходных параметров первого и второго вспомогательных лучей: 

s =-~Лµk 
ТУЕ ~ ' 

1 rk 
(6.23) 

где µk = 1/ nk; rk - радиус кривизны поверхности линзы. 

Для предмета и изображения в воздухе переход от естественной 

нормировки коэффициента кривизны поля к канонической осушест­

вляется по формуле Sтvк = SТVE/'. Если линза не является мениском с 
поверхностями одинаковой кривизны, то изображение в области Зей­

деля будет иметь кривизну, определяемую из выражения 

1 п' 
- = --,Sтvк = - SJVE• 
Rs f 

Раскроем формулу (6.23) и получим для ОДИНОЧНОЙ тонкой линзы 
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Srv = _!_( п -1 )(_!_ - _!_]· 
п 1j r2 

Поскольку оптическая сила тонкой линзы равна Ф = ( п -1 )(_!_ - _!_ ], 
1j '2 

то 

(6.24) 

Из (6.24) следует, что в канонической нормировке коэффициент 

S
1
v = SIVк является величиной, обратной ПП линзы. 
Для сложных многолинзовых компонентов, содержащих п-е ко­

личество линз, (6.24) записывается в виде 

(6.25) 

где Фk - оптическая сила k-й линзы. 
Как следует из (6.25), для исправления кривизны поля необходи­

мо присутствие в оптической схеме как положительных, так и отри -
цательных линз. 

Покажем, что применение линз с РРПП создает предпосьшки 

конструктивного упрощения компонента с исправленной первичной 

кривизной изображения. Из анализа формул (4.5)-(4.7): в линзе с 
РРПП для коэффициента аберрации кривизны поля можно получить 

требуемое значение Srvк' в частности, равное нулю. 
Как написано ранее в п. 4.2, коэффициент Srv для градиентной 

линзы имеет две составляющие: 

(6.26) 

где SrvE - составляющая Зейделя, обусловленная показателем пре­

ломления и оптической силой однородной линзы; SrvE - составляю­

щая, обусловленная наличием РРПП. 

Для ГрОЭ в случае тонкой линзы 

SrvE = _ t Лµ = п00 -1(_!_ _ _!_]; SrvE = _ 2n~0d, 
1 rk noo 'i r2 noo 

(6.27) 

где n
00 

- ПП на оси линзы; n
10 

- коэффициент полинома ПП, опреде­

ляющий фокусирующие свойства ГрОСр; d - осевая толщина линзы. 

Линзу с РРПП можно представить в виде находящегося в воздухе 

компонента, состоящего из двух близко расположенных линз оди­

наковой толщины, причем первая линза - однородная с радиусами 
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кривизны rl' r2, вторая - плоскопараллельная пластинка с РРПП 

(линза Вуда). 

Из соотношений (6.26), (6.27) для линзы с РРПП с заданным 
значением SтvE находим уравнение для разности кривизны поверх­

ностей: 

1 1 S ТVEn00 + 2п10d / n00 - - - = -------

/j r2 (п00 -1) 
(6.28) 

Оптическую силу линзы с РРПП, согласно (3.6) , можно рассма­
тривать как сумму сил, обусловленных однородной и неоднородной 

составляющими показателя преломления: 

Ф =Ф+Ф , (6.29) 

где 

(6.30) 

(6.31) 

После подстановки (6.30), (6.31) в (6.29) и алгебраических преоб­
разований совместно с (6.28) получаем формулу для коэффициента 
п 10 , при котором линза имеет заданные значения коэффициента Sтvк и 

фокусного расстояния /', 

[ 
( noo -1) (/')-

1 Sтvк ( 1 noo J]/[ 2 2d ] (6.32) 
nio = lj2 n00 - d ( n00 -1) -у 1j - d ( n00 -1) noo + 1j nJo ' 

дающая первое приближение для получения нужного значения коэф­

фициента кривизны изображения Sтvк и точность (6.32) увеличивается 
с уменьшением толщины линзы. 

В качестве примера рассмотрим описание конструктивных па­

раметров и аберрационных характеристик, рассчитанных по пред­

ложенной методике, у положительного мениска с положительной 

средней кривизной изображения. Конструктивные параметры: r
1 
= 

= -4,356 мм; r
2 

= -3,5243 мм; d = 1,55 мм; D = 1,6 мм; п = 1,7849 + 
зр 

+ О,0142у2 + О,0018у4. Параксиальные характеристики: /' = 29,32 мм; 
s;, = 34,50 мм; ro = 7°; s = О. При расположении входного зрачка на 

р 

первой поверхности линзы и угловом поле 7° коэффициенты РРПП 
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обеспечивают значения астигматических отрезков z~ = 0,468 мм, 
z; = О, 117 мм. Это свидетельствует о наличии у линзы положительной 
средней кривизны изображения z:v = 0,292 мм, полученной при по­
ложительной оптической силе. 

6.3. Проектирование объектива <<'Iриплет>> 
с градиентными линзами 

Методика расчета объектива <<Триплет» (рис. 6.2), включающего 
линзы с РРПП, незначительно отличается от методики Кингслайка 

для однородного триплета. 

Рис. 6.2. Оптическая схема объектива <<Триплет>>: 
у' - размер изображения 

у' 

пи 

Исходная методика предполагает решение трех уравнений: для 

оптических сил трех тонких линз, коэффициентов хроматической 

аберрации положения и кривизны поля изображения (применяемая 

нормировка исходных параметров первого и второго вспомогатель­

ных лучей - h 1 = 1, а7 = 1, /' = 1, р 1 = 1): 

Ф, +!½Ф2 +f7зФ3 =Ф ; 

Ф, + !½Ф2 + hзФз =-S . 
Ixp , 

V1 V2 V3 

(6.33) 

(6.34) 

(6.35) 
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где h. - высота первого вспомогательного луча на i-й линзе; Ф., п. -
l l l 

оптическая сила и ПП i-й линзы; v. - коэффициент Аббе; Ф - общая 
l 

оптическая сила системы; S1xp - коэффициент хроматической абер-

рации положения; Sтv - коэффициент кривизны поля изображения 

(кривизны Петцваля). 

Для решения уравнений (6.33)- (6.35) необходимо задать перво­
начальные значения S1xp, Sтv и выбрать значения для п;, У;- Оптическая 

сила с учетом условий нормировки параметров лучей равна единице, 

Ф = 1. Путем системного изменения высот h2, h3 получают семейства 

решений, одно из которых выбирают в качестве исходного для про­

ведения оптимизации с учетом реальных аберраций. 

Когда одна из линз триплета имеет РРПП, исходная методи­

ка несколько модифицируется. Задаем РРПП линзы в виде ряда 

п,_ (r) = n00,,. + nio,,.r2 + n20,,.r4 + ... , где r - расстояние от оптической оси 

до наружной цилиндрической поверхности линзы; пю,,,, - постоян­

ные коэффициенты, описывающие профиль ПП для отдельных длин 

волн. 

Коэффициенты дисперсии одиночной линзы с РРПП определяют 

п;о,л.0 
по формулам (3.21), (3.22): V;o =----, i=l,2 ... , исключая слу-

nоо,л.о -1 
чай i = О, когда V 00 = -----

nоо,л.1 - nоо,л.2 

n;о, л.1 - n;о,л.2 

В одиночной линзе с РРПП оптическая сила, первая хроматиче­

ская сумма S1xp и кривизна Петцваля приближенно определяются по 

зависимостям 

ф ф 

Sтv =--+ 2 • 

nОО,л.О ( nоо,л.О ) 

Таким образом для триплета, в котором первая линза имеет РРПП, 

(6.33)- (6.35) преобразуются к следующим уравнениям: 

(6.36) 
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(6.37) 

~ + Ф1 2 + Ф2 + Фз =Srv. 
noo,1 ( noo,1 ) ~ nз 

(6.38) 

Поскольку неизвестных переменных теперь четыре (Ф1 , <1>1, Ф2 , 
Ф 

3
), то вводим четвертое уравнение 

(6.39) 

Чтобы решить систему из уравнений (6.36)- (6.39), следует вы­
брать определенные значения для ФР v 10 1 в дополнение к указанным 
ранее значениям для ~ ' hз , Ф, Voo,1, V2, Уз , 1100,1, n2, nз , Sтхр, Srv, 

Подобный набор уравнений получим и в случае, когда вторая 

линза триплета имеет РРПП: 

Ф, +~(Ф2 +Ф2)+hзФз =Ф; 

~ h2 ~ Ф2 Ф2 J h\Фз _ - S . + 2 + +--- lxp, 

v, 1 Voo,2 v ,0,2 Уз 

Вопросы для самопроверки 

1. В чем проявляется действие неоднородного ПП при выполне­
нии им коррекционной функции? 

2. При каком условии в линзе с ОРПП возможно пренебречь 
вкладом в коэффициент аберрации, обусловленным прохождением 

луча по неоднородной среде? 

3. В чем проявляется действие неоднородного ПП в линзе при 
выполнении им силовой функции? Назовите аберрации, которые мо­

гут быть исправлены в этом случае. 

4. В чем отличие методик проектирования объектива типа «Три­
плет>> при использовании однородных и неоднородных оптических 

сред? 
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Заключение 

Математической основой проектирования оптических систем 

с ГрОЭ являются разработанные на основе решения лучевого урав­

нения компьютерные методы расчета траекторий реальных лучей в 

неоднородных средах. Теоретическая база - обобщенная теория пер­

вичных монохроматических и хроматических аберраций. 

Различают силовые и коррекционные свойства ГрОСр. Первые из 

них, аналогично линзе со сферическими поверхностями, определяют 

параксиальные характеристики и первичные аберрации градиентного 

элемента, зависящие от его оптической силы. Градиентная среда мо­

жет выполнять коррекционные функции, являясь с некоторым при­

ближением (по действию на световой пучок) аналогом асферической 

поверхности, влияющей на аберрации линзы. Исправлению могут 

подлежать сферическая аберрация, кома, астигматизм, для которых 

важна конфигурация поверхностей линзы. В данном пособии рассмо­

трены методики расчета коэффициентов хроматической аберрации 

положения и сферохроматической аберрации линзы, представлена 

методика синтеза линзы с улучшенным исправлением сферохрома­

тической аберрации за счет введения в приповерхностный слой опти­

ческого стекла с ОРПП. Для вьmолнения коррекционных функций в 

оптических системах могут быть использованы все три типа распреде­

ления показателя преломления - радиальное, осевое, сфероконцен­

трическое. 

Практическое применение ГрОСр с РРПП реализовано в созда­

нии граданов, соединяющих в физически одном элементе свойства 

одиночного и ряда функциональных элементов: объектива, объектива 

+ транслятора изображений. Последний выполняет функцию пере­
носа первичного изображения, созданного объективом, на требуемое 

расстояние, например в предметную плоскость окуляра. 

Уникальным достоинством элементов со сферическими поверх­

ностями, имеющими РРПП, является возможность исправления в 

фактически одиночной линзе неисправимой для однородных линз 

кривизны поля изображения. Теория аберраций 3-го порядка пока-
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зывает, что как для однородной оптической среды, так и для гра­

диентной линза с целью исправления кривизны поля должна иметь 

менискообразную конфигурацию поверхностей. В линзе с положи­

тельной оптической силой и РРПП можно получить положительную 

кривизну Петцваля, невозможную в традиционном однородном ком­

поненте, где эта аберрация, как правило, отрицательная. 

Теория хроматизма и предварительные расчеты показали, что 

дисперсионные характеристики среды с ОРПП позволяют влиять на 

высшие порядки сферохроматической аберрации. Теория первич­

ных аберраций (монохроматических и хроматических) и аналитиче­

ские методы расчета простейших оптических конструкций, а также 

компьютерные методы расчета траекторий реальных лучей в неод­

нородных средах дают возможность выполнять компьютерное моде­

лирование габаритных и аберрационных свойств оптических систем, 

включающих линзы с градиентом показателя преломления. 
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Приложения 

В приложениях приведены схемы расчетов в среде MathCAD мо­
нохроматических коэффициентов и хроматической аберрации по­

ложения линз с осевым и радиальным типами РПП. Применяемые 

обозначения приведены в начале каждого приложения. 

Приложение 1 

Расчет коэффициентов S
1 
-Sv 

монохроматических аберраций 3-ro порядка 
для линзы с ОРПП с использованием аналитического 

и универсального численного алгоритмов расчета параметров 

вспомогательных лучей 

Применяемые обозначения 

п00, п01 , n
02 

- коэффициенты полинома РПП 

r
1
, r

2 
- радиусы кривизны поверхностей линзы, мм 

п. - показатель преломления среды i , i = 1, 2, 3 
l 

d - толщина линзы, мм 

р 1 , р2 - кривизна поверхностей линзы, мм-1 

sP - удаление входного зрачка от первой поверхности линзы, мм 

т - высота луча на входном зрачке, мм 

z - текущая координата вдоль оптической оси, мм 

п - показатель преломления в вершине последней поверхности 
z 

линзы 

n(z) - зависимость показателя преломления от координаты z 
n.(z) - зависимости коэффициентов функции РПП от координа-, 

тыz 

n(z, у) - функция РПП при изменении ПП по координатам z, у 
а., h. - углы и высоты первого вспомогательного луча (поверх-

, l 

ностная составляющая), h. в мм 
l 
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а,2 , ~ - угол и высота первого вспомогательного луча на выходе 

из ГрОСр 

А, В. - коэффициенты 
l l 

s;, - задний фокальный отрезок, мм 

f' - фокусное расстояние линзы, мм 
~-, Н. - углы и высоты второго вспомогательного луча (поверх-, , 

ностная составляющая), Н. в мм , 
(32 , Й2 - угол и высота второго вспомогательного луча на выходе 

из ГрОСр 

Р. - основной аберрационный параметр , 
/

1
, /

2 
- параксиальные инварианты на поверхностях 

B(z), H(z) , A(z), Л(z) - функции второго вспомогательного луча в 

ГрОСр (буквы греческого алфавита) 

К. - градиентная составляющая поверхностного коэффициента 
l 

аберрации 

S - коэффициенты аберраций 3-го порядка, i = I ... V , 
S;.н' S;_c - поверхностные однородный и неоднородный вклад в 

коэффициент S. , 
S.. - вклады переноса в коэффициент S. 

у , 

Лs' - продольная сферическая аберрация с учетом коэффициен-
тов РПП, мм 
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Лs~ - продольная сферическая аберрация однородной линзы, мм 

Характеристики среды с ОР ПЛ 

и конструктивные параметры линзы 

п00 = 1,65 п, =1 р, = 0,15575 

по, = -0,0605 ~ = 1,65 р2 = 0,0022 

no2 = О 11з = 1 

а, = О sP = -0,1 

hi =10 d =1 1 

Вычисление параксиальных характеристик f и s;, 
по аналитическим формулам 

h,p, (п2 - n1) + а1п1 
а2 = -------

n2 
С(,2 = 0,6135606 



z =l 

f = h)аз 

hi = f 

s~, =h)аз 

nz = 1,5895 

n(z) = 1,5895 

а2 = 0,6369141 

~ = 9,3864394 

~ =9,374908 

аз = 1,0002167 

f = 9,9978337 

S~, = 9,3728771 

Вычисление параксиальных характеристик f и s~, 
при представлении а; и h; рядами 

Ао =10 

Аз = -2(A2no1 + A1noJ 
3noo 

А1 = -0,6135606 

А2 = -0,0112486 

Аз = -2, 7496605-10--4 

А4 = -7,5615664 -10-6 

/4 =-2,2180595-10-7 

~ = 9,374908 

а2 = 0,6369141 
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f = h./аз 

s;, = ~/аз 

аз = 1, 0002166 

f = 9,9978343 

S~, = 9,3728777 

Расчет второго вспомогательного луча по аналитическим формулам 
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В, =1 

В2 = Н,р, (ni -11i) + В, 11i 

'½ 
В2 = о,599925 

й2 = Н, _ п2В2 1n(nz] 
l1o1 '½ 

Н2 =-0,7112001 

~ 2 = 0,6227595 

Вз = о,9907986 

Расчет второго вспомогательного луча при 

представлении 13. и Н рядами , , 

Вз = -(2B2n01 + B,n02 ) 

3noo 

Bs = -n01 (3Вз + 8В4 ) 
10n00 



Н2 =-0,711203 

~2 = 0,6227743 

Параксиальный инвариант на первой поверхности 1
1 

11 = - 1 о, 000000 

Параксиальный инвариант на второй поверхности 12 

12 = -1 о, 000000 

В3 = о,990822 

Расчет коэффициентов аберраций 

Коэффициент S
1 

µ1 =1 

µ2 = 1/~ 

µ3 =1 

il2 = 1/ nz 

Лµ, =µ2 -µ, 

Лµ2 = µ3 -il2 

Поверхностный однородный вклад в коэффициент S1 

Sт.н = 14,4138195 
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Поверхностный неоднородный вклад в коэффициент S1 

S _ 2h4 2z;-4 
т.G - no,P, 1 + no,P2''2 SI.G = -14,6738659 

Вклад переноса 

~iz)=-(B1 +2B2z+3B3z 2 +4B4z 3 +5B5z
4

) 

д.2(z)=-(А1 +2A2z +3A3z
2 +4A4z 3 +5A5z

4
) 

S1_1 = 0,0389304 

S1_2 = 0,2473573 

Суммарное значение коэффициента S1 

S1 = 0,0262412 

Расчет сферической аберрации 3-го порядка 

т = 2 

Градиентная линза 

2 
Лs' = -т s 

2/2 1 
Лs' = -5,2505225-10-4 

Однородная линза 

-т2 
Лsо

1

д1-1 = --Sт н 2/2 . 
Лs~дн = -0,2884013 

Расчет коэффициента Sп 

ЛВ1 = В2 -В, 

ЛВ2 = Вз - ~2 

Поверхностные вклады 

Однородный поверхностный вклад S11.я 

лв, - ЛВ2 
Sп.в = fliPi - + f½P2 --

Ла1 Ла2 
Sп.н = -0,418189 



Неоднородный поверхностный вклад Sтr_a 

Вклады переноса 

s11.1 = п)i;а~132 - ~hia~~2 

s11.G = 0,1465897 

sп., = 0,038066 

S11_2 = 0,2418613 

Суммарное значение коэффициента S11 

Sп = Sп.н + Sтr.a + S11.1 + Sп.2 Sп = 8,327956-10-3 

Расчет коэффициента S
111 

Поверхностные вклады 

Однородный поверхностный вклад Sш.н 

Sпт.н =9,3701731 

Неоднородный поверхностный вклад Sтп.а 

Sша =1,4545954-10-3 

Вклады переноса 

Sпт., = nz1½a2"f3i - ~'1ia2~~ 

Суммарное значение коэффициента S
111 

Sпт = Sшн + Sпт.а + Sш, + Sпт.2 

Sш, = 0,03722 

Sтп.2 = 0,2364871 

Sпт = 9,6424259 

Расчет коэффициента Sтv 

Sтv = 0,0605401 
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Расчет коэффициента Sv 

Поверхностные вклады 

Однородный поверхностный вклад Sv .н 

Sv.н = 9,1602508 

Неоднородный поверхностный вклад Sv .а 

Вклады переноса 

Sv.1 = п}]Ч - n2lzi~~ 

Суммарное значение коэффициента Sv 

Sv = Sv.н + Sv.G + Sv.1 + Sv.2 

Sv.G = 1,3688602 · 10-5 

Sv_1 = 0,0363928 

Sv_2 = 0,2312329 

Sv = 9,4278902 



Приложение 2 

Модель расчета хроматизма положения линзы 

с РРПП рассеивающего типа 

Применяемые обозначения 

Коэффидиент хроматической аберрации S
1
xp 

положения 

Предмет на бесконечности. Исходное 

значение а 1 

а = О 1 

Угол на входе в градиентную среду а2 
Угол на выходе из градиентной среды а _

2 

Угол в пространстве изображений а3 
Дисперсия показателя преломления dn00 = п0" 1 - п0"2 

Дисперсия градиента показателя преломле- dп00 = п0" 1 - n0" 2 

ния 

РПП в градиентном стекле фирмы Olimpus 

Число Аббе однородной среды 

Число Аббе градиентной среды 

'1 = 3,3333 

d = 1,75 

'2 = -1,8967 

п = 1 1 

п2 = 1,522 

п = 1 3 

п10 = 0,0983 мм-2 (рассеивающая среда) 

поо = п2 
P1 = l/r1 P1 = l/r1 t=✓2lnio l/noo 

п -1 
dn00 =-2-=0,01026 

Voo 

V 00 = 50,881 

V 10 = 100 
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п 
dn,0 = ___!_О_ = 9,83 -10-4 мм-2 

v,o 
а1 = О h

1 
= 10 

а2 = h, P1(n2 -n1)+a1n, =1,0289196 
n2 

sinh(z1) = 0,67126 cosh(z1) = 1,2044 

~ = h,(cosh(z1 ))- а2 sinh(z1) = 10,1223222 
t 

а _2 = a 2cosh(z1 )-t h, sinh(z,) = -1,1732948 

аз =~р2(nз -п2)+а_2~ =1,0000586 

f' = !ь__ = 9,99941 
аз 

s; = _&_ = 10,12173 
аз 

Расчет поверхностного вклада S10xp 

S,oxp = -l [ (а2 -а, )lzi +(а3 -а _2)~] = -0,63459 
Уоо 

h 2 (z) = hi cosh(t z)- а2 sinh(t z) 
- t 

а_2 (z) = a 2cosh(zt)-t hi sinh(zt) 

h_2(4) = 16,55351 

а_2 (4)=-4,8515 

Расчет первой составляющей вклада переноса S
11

xp 

dп00 (~а_2 -fzia2)=-0,2274 

Расчет второй составляющей вклада переноса S12xp 

d1 

dn,0 f 2h_iz)2dz = 0,32661 
d1 

dnoo f а _2 (z)2 dz = 7,24929 -10-з 
о о 

s ,xp = -1 [Са2 -a,)fzi +(аз -а_2)~]+ 
Уоо 

d1 d1 

+dп,0 f 2h_2 (z)2 dz + dп00 f а _iz)2dz + dn00 (~a _2 -h,a2) = -0,52814 
о о 

лs~ = ~хр = -0,52807 . 
аз nз 



Приложение 3 

Модель расчета коэффициентов S1 -Sv линзы 
с РРПП фокусирующего типа по универсальному алгоритму 

при положении предмета на конечном расстоянии s = -50 мм 

Применяемые обозначения 

п00, п01 ••• п04, п 10 •• • п 13, п20 •• • п22 - коэффициенты полинома РПП 

R
1

, R
2 

- радиусы кривизны поверхностей линзы, мм 

d - толщина линзы, мм 

п; - ПП среды п0;, i = 1, 2, 3 
sP - удаление входного зрачка, мм 

s - расстояние до предмета, мм 

Во - линейное увеличение 

s . - задний отрезок, мм 
_рпт 

h, Н - высоты первого и второго вспомогательных лучей на по-

верхностях линзы 

а, В - углы с осью первого и второго вспомогательных лучей 

Характеристики неоднородной среды и конструктивные параметры 

n00 = 1,522 n10 = п20 = О 
= - 0,02775827 

s = - 1 О 
р ' 

s = - 50 

R = 1 

= 2,17363 

~= 
= 1,58243 

dl = 1,75 

п = 1 1 

п = 2 

= 1,522 

п = 1 3 

1 
Р1=-= 

Ri 
=0,4600599 

1 
Р2=-= 

R2 
= 0,6319395 
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n1 (z) = n10 + 11i I z + n12Z2 + n1зZ3 

n2 (z) = n20 + n21Z + n22z2 

n(z, y) = по (z) + n1 (z) у2 + ~ (z) у4 

Расчет первого вспомогательного луча 

<Х1 = -0,2715541 

а2 = h1P1(n2 -n1)+a1n1 =1,9639612 
~ 

Ао = hi = 13,577705 А1 = -а2 = -1,9639612 

Аз = 2А1п1 0 +2Aon11 -2A2no1 -2Ai no2 -2A2no1 =O,Ol19396 
6noo 

/4 = Азn10 +Аоп1з -4А2nоз -2A1no4 +A1n12 -6Азnо2 +A2n11 -8A4no1 = 

10noo 

= -2,177545 -10-5 

Во = а1 /а3 = -0,2715541 

S _prim = h_2 / <Хз = 9, 4530945 

Расчет второго вспомогательного луча 

В2 = Н1Р1 (~ -11i) + B111i 
n2 



Параксиальный инвариант на первой поверхности 

Параксиальный инвариант на второй поверхности 

Расчет коэффициентов аберраций 

Коэффициент S
1 

Ла2 =а3 -а_2 

функция B(z) 

функция H(z) 
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Поверхностный однородный вклад 

Sr.н =hiPi +h_2~ =719,1174195 

Поверхностный неоднородный вклад 

Sr.G =K1h1
4 +K2h~2 =-1,1757856-10 3 

S1.н + S1_0 = -456,6681736 

Вклады переноса 

S1_1 = nzh_2a~2 - п2h1а~ = 128,4933467 

d 

S1_2 = J no(z)A(z)4dz = 86,2682164 
о 

d 

S1_3 = f-4n1 (z)A(z)2 A(z)2dz = 143,1924417 
о 

d 

Sr.4 = J-8niz)A(z)4dz = О 
о 

s1_1 +sп_2 =214, 761563 

Суммарное значение коэффициента S
1 

функция a(z) 

функция h(z) 

S1 = S1.н + Sr.G + S1_1 + S1_2 + S1_3 + S1_4 = -98, 7141689 

Расчет сферической аберрации 

U1 =-0,02 U _prim = U1 !Во 

1 
Лs = - - U~,;m ST = 0,2677299 (градиентная JШНЗа) 

2 

Расчет коэффициента Sп 

ЛВ2 = Вз -В_2 



Поверхностные вклады 

Поверхностный однородный вклад 

л~1 л~2 6 Sп.н =h1P., - +h 2Р2-- =-115, 724242 
Ла1 - Ла2 

Поверхностный неоднородный вклад 

Sп.с = K1h? Н1 + K2h~2H_2 = 21,0451389 

Вклады переноса 

Sп. 1 =nzh_2a : 2~_2 -~h1a~~2 =3,2876686 

d 

Sп.2 = f no(z)A(z)3B(z)dz = 16,1331792 
о 

d 

Sп.з = f-2п1 (z)A(z)A(z)(A(z)B(z) + H(z)A(z))dz = 5,2644549 
о 

d 

Sп.4 = f-8~(z)A(z)3H(z)dz = о 
о 

Суммарное значение коэффициента Sн 

Sп = Sп.н + sII.G + Sп.1 + Sп.2 + Sп.з + Sп.4 = -69,9419825 

Расчет коэффициента Sпr 

Поверхностный однородный вклад 

Sш.н = h1P.. ( л~I J
2 

+ h 2Р2( л~2 J
2 

= 4,4024004 
Ла1 - Ла2 

Поверхностный неоднородный вклад 

Sпr.G = кл2 Н? + K2h~2H ~2 = 10,9469886 

Вклад переноса 

Sпт. 1 = nzh_2a _2~ : 2 - п2h1а2~~ = -3,6042152 
d 

Sпт.2 = f п0 (z)A(z)2B(z)2dz =3,0808798 
о 

d 

Sпт.з = f-4n1(z)A(z)A(z)B(z)H(z)dz =-3,383631 
о 
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d 

Sпт.4 = f-8!½(z)A(z)2H(z)2dz = О 
о 

Суммарное значение коэффициента S111 

Sпт =Sш.н +Sш.с +Sш. , +Sш_2 +Sш.3 +Sш.4 =11,4424224 

Расчет коэффициента Sтv 

Поверхностный однородный вклад 

Sтv.н = -(Лµ,р, + Лµ2р2 ) = -0,0589495 

Вклад неоднородности среды 

Sтv.c =-2п,0d,/п50 =0,0419403 

Суммарное значение коэффициента Srv 

Sтv = Srv.н + Sтv.c = -0, О 170092 

Расчет коэффициента Sv 

Вклад однородной поверхности 

Sv.н =hi/Ji - +h 2Р2 - +I, -Лµ,р,-+(-Лµ2Р2)- = 
( 
Лf31 Jз ( Лf32 Jз 2 [ Лf31 Лf32 ] 

Ла, - Ла2 Ла, Ла2 
= 21,1188809 

Вклад неоднородной поверхности 

Вклады переноса 

d 

Sv.2 = f п0 (z)A(z)B(z)3dz = 0,6011632 
о 

d 

Sv.з = J-2n,(z)A(z)B(z}(A(z)B(z)+H(z)A(z))dz = 1,1684647 
о 

d 

Sv.4 = f-8niz)A(z)H(z)3dz = О 
о 



Суммарное значение коэффициента Sv 

Sv = Sv.н + Sv.G + Sv., + Sv.2 + Sv.з + Sv.4 = 18,1125306 

Итоговые значения коэффициентов аберраций 3-го порядка 

S1 = -98, 7141689 

Sтv = -0,0170092 

Sп = -69,9419825 

Sv = 18,1125306 

Sш = 11,4424224 
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